

ibm.com/redbooks

WebSphere Application Server
Network Deployment V6:
High Availability Solutions

Birgit Roehm
Adeline Chun
William Joly

Tim Klubertanz
Li-Fang Lee

Hong Min
Yoshiki Nakajima

Nagaraj Nunna
Terry O’Brien

Kristi Peterson
Jens Rathgeber
Michael Schmitt

WebSphere Handbook Series

Explore WebSphere HA options

Learn about external
clustering solutions

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WebSphere Application Server Network
Deployment V6: High Availability Solutions

October 2005

International Technical Support Organization

SG24-6688-00

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (October 2005)

This edition applies to IBM WebSphere Application Server Network Deployment V6.0.1.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xiii.

Contents

Notices . xiii
Trademarks . xiv

Preface . xv
The team that wrote this redbook. xvi
Become a published author . xix
Comments welcome. xix

Part 1. High availability concepts . 1

Chapter 1. Understanding high availability concepts 3
1.1 Process availability and data availability . 4

1.1.1 Clustering for high availability . 5
1.2 Availability definition . 6

1.2.1 Levels of availability . 7
1.2.2 Availability matrix . 10
1.2.3 Causes of downtime . 12
1.2.4 Possible single points of failure in the WebSphere system. 13
1.2.5 HA technologies for WebSphere system components 16
1.2.6 Levels of WebSphere system availability . 18
1.2.7 Planning and evaluating your WebSphere HA solutions. 27

1.3 Failover terms and mechanisms . 28

Part 2. WebSphere clustering for HA and HA administration . 33

Chapter 2. WebSphere Application Server failover and recovery 35
2.1 Introduction to availability . 36

2.1.1 Hardware-based high availability . 36
2.1.2 Workload management . 36
2.1.3 Failover . 37
2.1.4 HAManager . 38
2.1.5 Session management . 38

2.2 WebSphere Application Server clustering. 39
2.2.1 Clustering for scalability and failover. 40

2.3 WebSphere workload management defined . 43
2.3.1 Distributing workloads . 44
2.3.2 Benefits . 45

2.4 Managing session state among servers . 45
2.4.1 HTTP sessions and the session management facility. 46
© Copyright IBM Corp. 2005. All rights reserved. iii

2.4.2 EJB sessions or transactions . 48
2.4.3 Server affinity . 50

2.5 Web container clustering and failover . 51
2.5.1 Session management and failover inside the plug-in 53
2.5.2 Web container failures . 55
2.5.3 Web server plug-in failover tuning. 56

2.6 EJB container clustering and failover . 65
2.6.1 EJB container redundancy . 66
2.6.2 EJB bootstrapping considerations. 67
2.6.3 EJB client redundancy and bootstrap failover support 68
2.6.4 EJB types, workload management and failover 69
2.6.5 Stateful session bean failover . 73
2.6.6 WebSphere process failures, relationship to EJB processing. 82
2.6.7 EJB WLM exceptions . 85

2.7 Backup cluster support . 87
2.7.1 Runtime behavior of backup clusters . 88
2.7.2 Scenario and configuration description . 89

2.8 WebSphere cell and cluster setup. 89
2.8.1 Security considerations . 91
2.8.2 Backup cluster configuration . 92
2.8.3 Core group bridge configuration . 93
2.8.4 Testing the backup cluster configuration. 99
2.8.5 Troubleshooting . 100

Chapter 3. WebSphere administrative process failures 103
3.1 Introduction to process failures . 104
3.2 Deployment Manager failures . 104

3.2.1 Configuration management. 106
3.2.2 Node Agent . 107
3.2.3 Application server . 107
3.2.4 Naming server. 107
3.2.5 Security service. 108
3.2.6 Application clients . 108
3.2.7 Synchronization Service and File Transfer Service 108
3.2.8 RAS Service and PMI monitoring . 108
3.2.9 Administrative clients . 109
3.2.10 Enhancing Deployment Manager availability 110

3.3 Node Agent failures. 111
3.3.1 Application servers . 111
3.3.2 Deployment Manager . 113
3.3.3 Security service. 114
3.3.4 Naming server. 114
3.3.5 Application clients . 115
iv WebSphere Application Server V6: High Availability Solutions

3.3.6 Synchronization service and File transfer service. 115
3.3.7 RAS service, PMI and monitoring . 115
3.3.8 Administrative clients . 116
3.3.9 Enhancing Node Agent availability . 116

3.4 Restarting WebSphere processes as an OS service 117
3.5 Enhancing WebSphere process availability using clustering software . . 118

Chapter 4. High availability system administration 121
4.1 Introduction to high availability . 122

4.1.1 System setup for the administration scenarios 122
4.2 Starting or stopping application servers and the Web server plug-in retry

interval . 125
4.3 Replacing hardware . 127

4.3.1 Removing the node from the cell . 127
4.3.2 Installing and configuring the new hardware or LPAR 129

4.4 Hardware upgrades. 132
4.5 Installing WebSphere refresh packs . 133

4.5.1 Downloading support packs . 133
4.5.2 The Update Installer for WebSphere Software 133
4.5.3 WebSphere Application Server for distributed platforms 135
4.5.4 WebSphere Application Server for OS/400. 135
4.5.5 WebSphere Application Server for z/OS. 135
4.5.6 Using the Update Installer . 136

4.6 Sample wsadmin scripts for administration tasks 139

Chapter 5. High availability application administration 141
5.1 Administering applications in an HA environment 142

5.1.1 Availability while updating an application . 142
5.1.2 System capacity . 143

5.2 Concepts . 143
5.2.1 Persistence layer. 144
5.2.2 Application update types . 145

5.3 Topologies. 146
5.3.1 Multiple cells environment. 146
5.3.2 Single cell, multiple clusters . 148
5.3.3 Single cell, single cluster. 149
5.3.4 Topologies and update types . 150

5.4 Application administration . 151
5.4.1 Restarting an application. 151
5.4.2 Rollout update (new feature of WebSphere V6) 153
5.4.3 Update types: major release or upgrade. 156
5.4.4 Update type: bugfix release . 164

Part 3. WebSphere HAManager . 173
 Contents v

Chapter 6. WebSphere HAManager . 175
6.1 Introduction to the HAManager . 176
6.2 Core group . 177

6.2.1 Core group coordinator . 179
6.2.2 Transport buffer. 185
6.2.3 Distribution and Consistency Services . 187
6.2.4 Core group policy . 188
6.2.5 Match criteria. 190
6.2.6 Transport type . 192

6.3 High availability group . 194
6.3.1 State change of high availability group members 196

6.4 Discovery of core group members . 197
6.5 Failure Detection . 198

6.5.1 Active failure detection . 198
6.5.2 TCP KEEP_ALIVE . 200

6.6 JMS high availability . 200
6.7 Transaction Manager high availability . 201

6.7.1 Transaction Manager HA of previous versions of WebSphere 204
6.7.2 Hot-failover of Transaction Manager using shared file system 206
6.7.3 Hot-failover of transaction logs using external HA software 213
6.7.4 File System Locking Protocol Test . 213

Part 4. Platform specific information, IBM Eserver iSeries and zSeries 215

Chapter 7. WebSphere HA on IBM Eserver iSeries 217
7.1 Introduction to iSeries HA . 218

7.1.1 WebSphere Network Deployment: High availability for WebSphere
processes . 218

7.1.2 iSeries clustering: High availability for other critical resources in the
application path. 218

7.1.3 Auxiliary Storage Pools (ASP) . 219
7.1.4 Switchable disk pools (independent ASPs). 220
7.1.5 Cross-site mirroring. 221
7.1.6 Cluster resource groups . 223
7.1.7 Device domains. 224

7.2 Sample scenario configuration . 225
7.2.1 Create independent disk pool . 226
7.2.2 Configuring the cluster and resource group objects 231
7.2.3 Configuring cross-site mirroring . 240
7.2.4 Restoring the WebSphere application database into the independent

ASP. 243
7.2.5 Creating a J2C authentication alias . 244
7.2.6 WebSphere data source configuration . 245
vi WebSphere Application Server V6: High Availability Solutions

7.2.7 Messaging engine datastore . 248
7.2.8 Configuring iSeries TCP/IP settings . 250

7.3 Transaction Manager configuration. 251
7.4 Reference material . 257

Chapter 8. WebSphere HA on z/OS . 259
8.1 zSeries Parallel Sysplex . 260
8.2 WebSphere V6.0.1 for z/OS topology overview 261

8.2.1 Base application server on z/OS. 261
8.2.2 Network Deployment on a z/OS LPAR . 263
8.2.3 Network Deployment in a Parallel Sysplex environment. 264
8.2.4 Mixed platform cells . 265

8.3 z/OS workload management and WebSphere workload management. . 265
8.4 Distributing HTTP and IIOP requests to different systems within a Parallel

Sysplex . 268
8.4.1 Sysplex Distributor . 269

8.5 Failover options for WebSphere Application Server V6 on z/OS 271
8.5.1 ARM and PRR. 271
8.5.2 High Availability manager (HAManager) . 271

8.6 Transaction logging and recovery . 272
8.6.1 A word on 2-Phase Commit (2PC) . 272
8.6.2 RRS. 272
8.6.3 XA transactions . 273

8.7 HTTP session and stateful session bean failover 274
8.7.1 HTTP session failover . 274
8.7.2 Stateful session bean failover . 275

8.8 JMS failover. 276
8.9 DB2 data sharing. 277
8.10 WebSphere MQ for z/OS high availability . 278
8.11 A sample high availability configuration . 280
8.12 Hardware, software, and application upgrade. 282
8.13 WebSphere Application Server for Linux on zSeries 282
8.14 Reference . 282

Part 5. Using external clustering software . 283

Chapter 9. Configuring WebSphere Application Server for external
clustering software . 285

9.1 Introduction . 286
9.1.1 IP-based cluster failover versus non-IP based cluster failover 286
9.1.2 High availability configuration types . 287
9.1.3 Failover terms and mechanisms . 288

9.2 Standard practice . 289
9.2.1 Gathering non-functional requirements. 289
 Contents vii

9.2.2 Choosing the HA configuration type . 289
9.2.3 Configuring the environment: WebSphere Application Server binaries

and profiles . 297
9.2.4 Testing . 298

9.3 Deployment Manager high availability. 298
9.3.1 Preparing. 299
9.3.2 Installing WebSphere Application Server Network Deployment . . . 301
9.3.3 Configuring the clustering software. 303

9.4 Node Agent and application server high availability 304
9.4.1 Preparing. 304
9.4.2 Installing WebSphere Application Server Network Deployment . . . 306
9.4.3 Configuring the clustering software. 308

9.5 Common advanced topology. 309
9.5.1 Connecting to a remote database . 310
9.5.2 Connecting to a remote security service, such as LDAP 311
9.5.3 Connecting to a remote messaging engine. 312

9.6 Transaction Manager failover with No Operation policy 313
9.6.1 Prerequisites for Transaction Manager with NoOP policy. 315
9.6.2 Transaction Manager with No Operation policy scenario 316
9.6.3 Configuring WebSphere for TM No Operation policy 317
9.6.4 Configuring external clustering software for Transaction Manager No

Operation policy recovery . 325
9.7 Default messaging provider failover with No Operation policy 347

9.7.1 Prerequisites for default messaging provider with NoOP policy . . . 347
9.7.2 Default messaging provider with No Operation policy scenario . . . 348
9.7.3 Configuring WebSphere for default messaging provider No Operation

policy. 349
9.7.4 Configuring external clustering software for default messaging provider

No Operation policy . 354

Chapter 10. WebSphere and IBM Tivoli System Automation 367
10.1 Introduction to Tivoli System Automation . 368

10.1.1 How Tivoli System Automation works . 368
10.1.2 Configuration basics of Tivoli System Automation 371
10.1.3 Managing resources . 372
10.1.4 Tivoli System Automation and IBM WebSphere MQ 373
10.1.5 Using Cluster Agent for IBM DB2 UDB . 373

10.2 Planning and preparation . 373
10.3 Deployment Manager . 374

10.3.1 Installing the Deployment Manager. 375
10.3.2 Configuring Tivoli System Automation to run the Deployment Manager

scenario . 375
10.3.3 Testing Deployment Manager failover . 379
viii WebSphere Application Server V6: High Availability Solutions

10.4 Node Agent and application server . 380
10.4.1 Installing a Node Agent and application server or servers 382
10.4.2 Configuring Tivoli System Automation to run the Node Agents and

application server . 383
10.4.3 Testing Node Agent and application server failover 389
10.4.4 Example: Monitoring and restarting two nodes 390

10.5 Transaction Manager failover with No Operation policy 394
10.5.1 WebSphere configuration . 397
10.5.2 Tivoli System Automation configuration . 397
10.5.3 Testing Transaction Manager with NoOP policy failover 404

10.6 Default messaging provider with No Operation policy. 405
10.6.1 WebSphere configuration . 408
10.6.2 Tivoli System Automation configuration . 408
10.6.3 Testing messaging engine with NoOP policy failover 414

10.7 Reference . 416

Chapter 11. WebSphere and IBM HACMP . 417
11.1 Introduction to IBM HACMP . 418

11.1.1 How HACMP works. 418
11.1.2 Configuration basics of HACMP . 420
11.1.3 Managing resources . 423
11.1.4 Using WebSphere MQ SupportPac for HACMP 427
11.1.5 Using DB2 with HACMP . 427

11.2 Planning and preparation . 427
11.3 Deployment Manager . 428

11.3.1 Installing the Deployment Manager. 429
11.3.2 Configuring HACMP to run the Deployment Manager 429
11.3.3 Testing Deployment Manager failover . 430

11.4 Node Agent and application server . 431
11.4.1 Installing a Node Agent and application server or servers 431
11.4.2 Configuring HACMP to run the Node Agents and application servers

432
11.4.3 Testing Node Agent and application server failover 433
11.4.4 Application with embedded messaging failover 434

11.5 Transaction Manager failover with No Operation policy 436
11.5.1 WebSphere configuration . 438
11.5.2 HACMP configuration . 439
11.5.3 Testing Transaction Manager with NoOP policy failover 441

11.6 Summary . 442
11.7 Reference . 443

Chapter 12. WebSphere and VERITAS Cluster Server 445
12.1 Introduction to VCS . 446
 Contents ix

12.1.1 How VERITAS Cluster Server works . 446
12.1.2 Configuration basics of VCS . 446
12.1.3 Managing resources . 447
12.1.4 Using Cluster Agent for IBM WebSphere MQ. 448
12.1.5 Using Cluster Agent for IBM DB2 UDB . 448

12.2 Planning and preparation . 449
12.3 Deployment Manager . 449

12.3.1 Installing the Deployment Manager. 450
12.3.2 Configuring VCS to run the Deployment Manager 451
12.3.3 Testing Deployment Manager failover . 456

12.4 Node Agent and application server . 456
12.4.1 Installing a Node Agent and application server or servers 456
12.4.2 Configuring VCS to run the Node Agents and application server or

servers . 457
12.4.3 Testing Node Agent and application server failover 463

12.5 Transaction Manager failover with No Operation policy 464
12.5.1 WebSphere configuration . 464
12.5.2 VCS configuration: service groups and resources 465
12.5.3 Testing Transaction Manager with NoOP policy failover 474

12.6 Default messaging provider failover with No Operation policy 475
12.6.1 WebSphere configuration . 476
12.6.2 VCS configuration: service groups and resources 476
12.6.3 Testing messaging engine with NoOP policy failover 479

12.7 Reference . 481

Chapter 13. WebSphere and Sun Cluster . 483
13.1 Introduction to Sun Cluster . 484

13.1.1 How Sun Cluster works. 484
13.1.2 Configuration basics of Sun Cluster . 486
13.1.3 Managing resources . 487
13.1.4 Using the Cluster Agent for WebSphere MQ 490
13.1.5 Using the Cluster Agent for DB2 . 490

13.2 Planning and preparation . 490
13.3 Deployment Manager . 491

13.3.1 Installing WebSphere Network Deployment 492
13.3.2 Configuring Deployment Manager with Sun Cluster 493
13.3.3 Completing the WebSphere cell . 497
13.3.4 Testing Deployment Manager failover . 499

13.4 Node Agent and application servers . 501
13.4.1 Installing a Node Agent and application server. 502
13.4.2 Completing the configuration . 503
13.4.3 Configuring Sun Cluster to run the Node Agent 504
13.4.4 Configure Sun Cluster to run application server 509
x WebSphere Application Server V6: High Availability Solutions

13.4.5 Testing Node Agent and application server failover 514
13.4.6 Troubleshooting . 517

13.5 Transaction Manager and messaging engine failover with No Operation
policy . 517

13.5.1 Additional Sun Cluster setup. 517
13.5.2 Configuring the Deployment Manager . 519
13.5.3 Installing the node . 519
13.5.4 Completing the configuration . 519
13.5.5 Configuring the Node Agent with Sun Cluster. 521
13.5.6 Configuring an application server with Sun cluster 526
13.5.7 Testing: failing the Node Agent and application servers 544
13.5.8 Troubleshooting . 545

13.6 Reference . 546

Part 6. End-to-end high availability . 547

Chapter 14. Backup and recovery of Network Deployment configuration. .
549

14.1 Network Deployment configurations . 550
14.1.1 Backup methods . 551

14.2 Node failure scenarios. 552
14.2.1 Failure of the Deployment Manager node. 552
14.2.2 Failure of a WebSphere Application Server node 552

14.3 Node recovery . 553
14.3.1 Recovery using file system backup and restore methods. 554
14.3.2 Recovery using backupConfig and restoreConfig. 556

14.4 Conclusion. 560
14.5 Reference material . 560

Chapter 15. WebSphere end-to-end high availability. 561
15.1 Introduction . 562
15.2 WebSphere Load Balancer . 563
15.3 Web server . 565

15.3.1 Server affinity . 566
15.3.2 Web server plug-in file (plugin-cfg.xml) management 571
15.3.3 Data availability . 573

15.4 Database server . 574
15.4.1 Continuous availability . 574
15.4.2 Failover availability . 575
15.4.3 Client application code considerations . 578

15.5 WebSphere MQ (and other messaging providers) 579
15.6 LDAP Server . 580

15.6.1 Using clustering software and shared disks 581
15.6.2 Using clustering software and LDAP master-replica. 582
 Contents xi

15.6.3 Using a network sprayer (Load Balancer) 585
15.6.4 Using a network sprayer (Load Balancer) with LDAP peer replication

(multi-master) . 587
15.6.5 Conclusions. 588

15.7 Firewall . 589
15.7.1 Using clustering software . 590
15.7.2 Using a network sprayer . 591
15.7.3 Conclusions. 594

15.8 Summary . 594
15.8.1 Process availability and data availability . 595

Part 7. Appendixes . 597

Appendix A. Handling StaleConnectionException 599
Connections in auto-commit mode. 600
Connections with auto-commit disabled. 601

Transactions started in the same method . 601
Transactions started in a different method from database access 602

Reference. 602

Appendix B. Additional material . 603
Locating the Web material . 603
Using the Web material . 604

System requirements for downloading the Web material 604
How to use the Web material . 604

Related publications . 607
IBM Redbooks . 607
Online resources . 608
How to get IBM Redbooks . 611
Help from IBM . 611

Index . 613
xii WebSphere Application Server V6: High Availability Solutions

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2005. All rights reserved. xiii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
Redbooks (logo) ™
developerWorks®
iSeries™
i5/OS™
pSeries®
z/OS®
zSeries®
AFS®
AIX 5L™
AIX®
CICS®

Domino®
DB2 Universal Database™
DB2®
Enterprise Storage Server®
FlashCopy®
HACMP™
Informix®
IBM®
IMS™
MQSeries®
MVS™
NetServer™
OS/390®

OS/400®
Parallel Sysplex®
POWER™
POWER5™
Rational®
Redbooks™
SupportPac™
Sysplex Timer®
Tivoli®
TotalStorage®
WebSphere®

The following terms are trademarks of other companies:

Enterprise JavaBeans, EJB, Java, JavaBeans, JDBC, JMX, JSP, JVM, J2EE, Solaris, Sun, Sun
Microsystems, SunPlex, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

VERITAS is a trademark or registered trademark of VERITAS Software Corporation or its affiliates in the
U.S. and other countries

Other company, product, and service names may be trademarks or service marks of others.
xiv WebSphere Application Server V6: High Availability Solutions

Preface

This IBM® Redbook discusses the high availability aspects of IBM WebSphere
Application Server Network Deployment V6 and high availability of related
components, such as the Web servers or directory servers.

This book discusses in detail:

� High availability concepts.

� WebSphere Application Server clustering considerations, the failover
process, the WebSphere® HAManager, and WebSphere component’s
reactions to failures.

� High availability system administration, such as application management,
hardware replacement or upgrade, and software upgrades.

� WebSphere Node Agent and Deployment Manager high availability using
external clustering software solutions such as IBM HACMP™, IBM Tivoli®
System Automation (TSA), VERITAS Cluster Server, and Sun™ Cluster.

� High availability considerations and differences when using WebSphere on
iSeries™ and zSeries®.

� End-to-end WebSphere system high availability involving WebSphere MQ,
Web servers, Load Balancer, firewalls, and LDAP servers.

The book also gives an introduction into how to backup and recover a Network
Deployment configuration.

For information about how high availability is provided for the WebSphere V6
default messaging provider, see Chapter 12, “Using and optimizing the default
messaging provider” of IBM WebSphere V6 Scalability and Performance
Handbook, SG24-6392.
© Copyright IBM Corp. 2005. All rights reserved. xv

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization (ITSO), Raleigh
Center.

Figure 1 From left to right: Jens Rathgeber, Adeline Chun, Nagaraj Nunna, Yoshiki
Nakajima, Michael Schmitt, Li-Fang Lee, Terry O’Brien, Kristi Peterson, Birgit Roehm, Tim
Klubertanz, and William Joly. Not pictured: Hong Min

Birgit Roehm is a Project Leader at the ITSO, Raleigh Center. She writes
redbooks and teaches workshops about various aspects of WebSphere and
Domino®. Before joining the ITSO in 2003, Birgit worked in iSeries Advanced
Technical Support, Germany, and was responsible for Domino and WebSphere
on iSeries.

Adeline Chun is a certified IT Specialist working for IBM WebSphere Technical
Sales in Canada. Prior to joining the technical sales team, she worked as an IT
architect for IBM Lab Services for WebSphere, implementing WebSphere
e-Business solutions for worldwide banks, including HSBC, Banco Santigo, ING,
ICBC Shanghai, Barclays Bank UK, ANZ Bank, and BBL Belgium. Using the
WebSphere architecture, she implemented Teller, Call Center, and Internet
banking solutions. Currently, she helps the sales teams to deliver technical
implementation of J2EE™ applications based on WebSphere across industries,
with expertise in WebSphere Application Server, Edge Components, and
Enterprise Modernization solutions.
xvi WebSphere Application Server V6: High Availability Solutions

William Joly is an IT Architect consultant at LivInfo, a French IT Services
Society based in Noisy-le-grand, close to Paris. He has nine years experience in
Java™ software development. William is architecting WebSphere Application
Server projects for customers and helping them in all project phases. He is
certified in DB2® and WebSphere products.

Tim Klubertanz has six years of experience with IBM and is currently working in
the Systems and Technology Group IBM Eserver® Custom Technology
Center. He holds a bachelors degree in Computer Science from Luther College
and has experience with WebSphere application design and implementation on
multiple platforms, including iSeries and pSeries®. His current role focuses on
iSeries availability solutions for customers, including clustering, storage, and
WebSphere Application Server.

Li-Fang Lee is a test strategist working for the WebSphere Test and Quality
Organization in Rochester, MN. Her current focus area is high availability. She
works to understand customer business requirements, to design customer-like
test scenarios across the organization, and to lead a team to carry out the test
scenario to ensure high availability of WebSphere Application Server.

Hong Min (pictured at left) is an IT specialist at the IBM Design Center for
business on demand, Poughkeepsie, USA. She has eight years of experience
helping customers enabling e-business using IBM technologies. Her technical
interests include WebSphere, J2EE applications, Grid computing and zSeries,
and so forth.

Yoshiki Nakajima is an IT Specialist at IBM Systems Engineering Co. Ltd (ISE),
part of the ATS function in Japan. He has five years of experience with IBM and
IBM subsidiary, having worked within both Global Services and Technical
Support. He has experience in the Java and WebSphere fields and provides
technical support in WebSphere. Lately, he is interested in Web Services and
Enterprise Service Bus.

Nagaraj Nunna is a Managing Consultant and IT Architect at IBM Global
Services, USA. He has been working with IBM since 2001. His areas of expertise
include distributed computing and middleware, in general. Specifically, he has
worked with Enterprise Application Integration (EAI), XML, and Java 2 Enterprise
Edition (J2EE), performance and tuning, and integration with WebSphere
Application Server.

Terry O’Brien is a software engineer from Rochester, MN. He has 22 years of
experience in software engineering with IBM. Terry holds a degree in Computer
Science from Michigan Technological University and a Master in Business
Administration from Winona State University. His areas of expertise include
WebSphere Application Server, high availability software, XML programming,
business-to-business, and Domino for iSeries.
 Preface xvii

Kristi Peterson is a software engineer from Rochester, MN. She has four years
of experience in the field of software testing. Kristi holds a degree in Computer
Science and English from Luther College in Decorah, Iowa. Her areas of
expertise include WebSphere Application Server, software testing, high
availability software, test application development, documentation review, and
scenario testing development.

Jens Rathgeber is a Senior Architect at SerCon GmbH (IBM subsidiary) in
Mainz, Germany. He has more than seven years of experience in the IT field and
has been involved in several customer engagements involving WebSphere for
the last five years. His areas of expertise include performance tests, operations
architecture, and project management.

Michael Schmitt is a Staff Software Engineer in Rochester MN and has worked
for IBM since 2000. He holds a Bachelor of Science degree from Winona State
University in Computer Science. He has experience in Java and WebSphere
Application Server, primarily developing code for the Client Container, Platform
Messaging, and the Workload Manager components. His current role at IBM is
working for the WebSphere Application Server High Availability Center of
Competency, whose primary goal is to provide high availability best practice
information using WebSphere Application Server.

Thanks to the following people for their contributions to this project:

Carla Sadtler, Margaret Ticknor, Jeanne Tucker
ITSO, Raleigh Center

Alex Louwe-Kooijmans, Patrick Ryan
ITSO, Poughkeepsie Center

Thomas Gray, Joanna Pohl-Miszczyk
ITSO, Rochester Center

Douglas Berg, Mark Bransford, Siva Guntaka, James Habinek, Billy Newport,
Wayne Rosario, Darin Scherer, Jim Stopyro
IBM Rochester

Lori Adington, Rohith Ashok, Jakob Mickley, Rengan Sundararaman
IBM Raleigh

Michael Schwinck, Mainz, and Markus Mueller, Boeblingen
IBM Germany

Jeff Anders
Sun Microsystems™, Inc.

Lowell Shulman
VERITAS Software Corporation
xviii WebSphere Application Server V6: High Availability Solutions

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You will team with IBM technical professionals,
Business Partners, or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Obtain more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195
 Preface xix

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xx WebSphere Application Server V6: High Availability Solutions

Part 1 High availability
concepts

Part 1
© Copyright IBM Corp. 2005. All rights reserved. 1

2 WebSphere Application Server V6: High Availability Solutions

Chapter 1. Understanding high
availability concepts

Maintaining high levels of access to information across heterogeneous
environments, without compromising a quality user experience, can challenge
any IT organization.

This chapter introduces some of the WebSphere high availability concepts, the
different levels of WebSphere end-to-end high availability, and WebSphere high
availability solutions planning.

1

© Copyright IBM Corp. 2005. All rights reserved. 3

1.1 Process availability and data availability
There are two kinds of high availability: process high availability and data high
availability.

In a IBM WebSphere Application Server Network Deployment V6 environment,
you can have one or more of each of the following processes:

� WebSphere Deployment Manager process
� WebSphere Node Agent process(es)
� WebSphere Application Server process(es)
� HTTP server process(es)
� Load Balancer process(es)
� Database server processes
� Firewall processes
� LDAP server process(es)
� WebSphere MQ process(es)
� Networked file system (for example NFS, AFS®) process
� Operation system processes

Even if you make all of these processes highly available, the WebSphere system
might still fail due to data availability. Without data availability, the WebSphere
system cannot do any meaningful work. Therefore, we include a short discussion
on how to make the WebSphere data management systems highly available in
this book.

Data management is an integral part of a WebSphere production system and is
needed for storing data such as:

� Application data for the application servers.

� The administrative repository for the WebSphere administrative servers (in
the form of XML files).

� Persistent session data for WebSphere HTTP sessions if not using
memory-to-memory session replication.

� Persistent data for Entity EJBs.

� The default messaging provider data store.

� WebSphere security data for the LDAP servers.

� Transaction log files and other log files.

� WebSphere system and application binaries.

� HTML and image files.
4 WebSphere Application Server V6: High Availability Solutions

1.1.1 Clustering for high availability
Clustering is a fundamental approach for accomplishing high availability. IBM
WebSphere Application Server Network Deployment V6 offers a built-in
application server clustering function and the HAManager for protecting
WebSphere singleton services. Clustering application servers provides workload
management (WLM) and failover for applications that reside on the application
server cluster. For more information about application server clustering and
failover, see Chapter 2, “WebSphere Application Server failover and recovery” on
page 35 and IBM WebSphere V6 Scalability and Performance Handbook,
SG24-6392. For details about the HAManager, see Chapter 6, “WebSphere
HAManager” on page 175.

In addition, other clustering techniques can be used for WebSphere end-to-end
system high availability. The WebSphere system can include a database, an
LDAP directory server, firewalls, a Caching Proxy, one or more Load Balancers,
HTTP servers, and application servers. For more information about high
availability options for components such as the firewalls and Load Balancer, see
Chapter 15, “WebSphere end-to-end high availability” on page 561.

Data access is a very important part of most applications, especially
transactional applications. In order to achieve 99.x% of WebSphere system
availability, we need to integrate platform-specific or application-specific
clustering solutions with WebSphere to meet the high availability needs for
critical applications. However, a failover of a clustered database server might
take minutes to finish if IP-based cluster failover is used.

When using a clustered IBM WebSphere Application Server Network
Deployment V6 environment, WebSphere process failures usually do not
contribute much to the total number of client request failures, as the WebSphere
process failover is instantaneous. Be aware, however, that a clustered database
server failover (IP-based cluster failover) might take minutes. To minimize the
potential downtime, you can use parallel database servers that are provided by
features such as Database Partitioning for DB2 UDB Enterprise Server Edition
V8 or Oracle Real Application Clusters (RAC).

There are two kinds of cluster failovers:

� IP-based cluster failover, such as IBM High Availability Cluster
Multi-Processing for AIX® 5L™ (HACMP), IBM Tivoli System Automation
(TSA), Sun Cluster, and VERITAS Cluster Server.

� Non-IP cluster failover, such as WebSphere WLM and WebSphere
HAManager.

Usually, IP-based cluster failover is slower (one to five minutes), and non-IP
cluster failover is very fast (instantaneous). Whereas the WebSphere V6
 Chapter 1. Understanding high availability concepts 5

HAManager does not require extra software, most non-IP cluster failover still
relies on cluster software such as HACMP, TSA, Sun Cluster, or VERITAS
Cluster Software to provide the cluster information. For more information about
this topic, see Part 5, “Using external clustering software” on page 283. The
concept of IP-based cluster failover and configuration of WebSphere for a
clustered environment is explained in Chapter 9, “Configuring WebSphere
Application Server for external clustering software” on page 285. In addition, this
part of the book covers the following cluster software:

� Chapter 11, “WebSphere and IBM HACMP” on page 417
� Chapter 10, “WebSphere and IBM Tivoli System Automation” on page 367
� Chapter 12, “WebSphere and VERITAS Cluster Server” on page 445
� Chapter 13, “WebSphere and Sun Cluster” on page 483

1.2 Availability definition
Before we describe different high availability (HA) implementations for
WebSphere systems, we first need to define high availability and discuss how to
measure high availability. Availability is a measure of the time that a server is
functioning normally, as well as a measure of the time the recovery process
requires after the system fails. In other words, it is the downtime that defines
system availability. This downtime includes both planned and unplanned
downtime.

Let A be an index of system availability expressed as a percentage, MTBF the
mean time between failures, and MTTR the maximum time to recover the system
from failures. Thus, we have:

A = MTBF/(MTBF + MTTR)

As MTBF gets larger, A increases and MTTR has less impact on A. As MTTR
approaches zero, A increases toward 100%. This means that if we can recover
from failures very quickly, we have a highly available system. The time to recover
a system includes fault detection time and system recovery time. Therefore,
clustering software uses fault detection mechanisms and automatically fails over
the services to a healthy host to minimize the fault detection time and the service
recovery time. MTTR is minimized because the fault detection time is minimized
and no repair attempt is needed. Therefore, A is significantly raised. Any repairs
to the failed node and any upgrades of software and hardware will not impact the
service availability. This is the so-called hot replacement or rolling upgrade.

The availability issue is not as simple as the formula discussed above. First,
MTBF is just a trend. For example, if a CPU has an MTBF of 500,000 hours, it
does not mean that this CPU will fail after 57 years of use. In reality, this CPU
can fail at any time. Second, there are many components in a system, and every
6 WebSphere Application Server V6: High Availability Solutions

component has a different MTBF and MTTR. These variations make system
availability unpredictable using the formula above. We can build a simulation
model for an end-to-end WebSphere system’s availability with a random process
theory such as Markov chains, but this topic is beyond the scope of this book.

For a WebSphere production system, the availability becomes much more
complicated, because a WebSphere production system includes many
components, such as firewalls, Load Balancers, Web servers, application
servers and administrative servers (Node Agent and Deployment Manager), the
administrative repository, log files, the persistent session database, application
database or databases, and LDAP directory server and database. System
availability is determined by the weakest point in the WebSphere production
environment.

Usually, redundant hardware and clustering software are used to achieve high
availability. Our goal is to minimize the MTTR through various HA techniques.
That is, if MTTR=0, then A=100%, no matter what the MTBF is. Using this
approach, system availability becomes predictable and manageable.

1.2.1 Levels of availability
First of all, availability is closely related to cost, as shown in Figure 1-1 on
page 8. It is important to balance the downtime with cost. Normally, the more you
invest, the less downtime there is. Therefore, it is also very important for you to
evaluate what you will lose if your WebSphere service is temporarily unavailable.
Different businesses have different costs of downtime, and some businesses,
such as financial services, might lose millions of dollars for each hour of
downtime during business hours. Costs for the downtime include not only direct
money.
 Chapter 1. Understanding high availability concepts 7

Figure 1-1 Levels of availability and costs

Redundant hardware and clustering software are approaches to high availability.
We can divide availability at the following levels:

1. Basic systems. Basic systems do not employ any special measures to protect
data and services, although backups are taken regularly. When an outage
occurs, the support personnel restores the system from the backup.

2. Redundant data. Disk redundancy or disk mirroring are used to protect the
data against the loss of a disk. Full disk mirroring provides more data
protection than RAID-5.

3. Component failover. For an infrastructure such as WebSphere, there are
many components. As discussed earlier, an outage in any component can
result in service interruption. Multiple threads or multiple instances can be
employed for availability purposes. For example, if you do not make the
firewall component highly available, it might cause the whole system to go
down — worse than that, it might expose your system to hackers — even
though the servers are highly available.

IBM WebSphere Application Server Network Deployment V6 provides
process high availability (using vertically scaled application server clusters)
and process and node high availability (using horizontally scaled clusters).
Highly available data management is critical for a highly available

Basic Systems (1)
Redundant Data (2)

Component Failover (3)
System Failover (4)

Disaster Recovery (5)

Levels of Availability

C
os

t

8 WebSphere Application Server V6: High Availability Solutions

transactional system. Therefore, it is very important to balance the availability
of all components in the WebSphere production system. Do not overspend on
any particular component, and do not underspend on other components
either. For example, for the system shown in Figure 1-2, the system
availability seen by the client would be 85%.

Figure 1-2 Availability chains

4. System failover. A standby or backup system is used to take over for the
primary system if the primary system fails. In principle, any kind of service
can become highly available by employing system failover techniques.
However, this will not work if the software is hard-coded to physical
host-dependent variables.

In system failover, clustering software monitors the health of the network,
hardware, and software process, detects and communicates any fault, and
automatically fails over the service and associated resources to a healthy
host. Therefore, you can continue the service before you repair the failed
system.

You can configure the systems as Active/Active mutual takeover or
Active/Passive takeover. Although the Active/Active mutual takeover
configuration increases the usage of hardware, it also increases the
possibility of interruption, and hence reduces the availability. In addition, it is
not efficient to include all components into a single cluster system. You can
have a firewall cluster, an LDAP cluster, WebSphere server cluster, and
database cluster.

Internet
99%

Firewall
98%

Load
Balancer

99%

Client
99%

Firewall
98%

Web
Server
99.9%

WebSphere
99.9%

File System
99%

Database
Server for
HTTP files

99%

Database
Server for

HTTP session
99%

Database
Server for
EJB data

99%

LDAP
Server
99%

Application Data
Service and Data

99%

Networks, 98%
 Chapter 1. Understanding high availability concepts 9

5. Disaster recovery. This applies to maintaining systems in different sites.
When the primary site becomes unavailable due to disasters, the backup site
can become operational within a reasonable time. This can be done manually
through regular data backups, or automatically by geographical clustering
software.

Continuous availability means that high availability and continuous operations are
required to eliminate all planned downtime.

1.2.2 Availability matrix
We all talk about uptime, and everybody wants 100% uptime. In reality, a 100%
uptime system is prohibitively expensive to implement. For some applications,
99% uptime is adequate, leaving a downtime of 14 minutes per day on average
(see Table 1-1). For some applications, 99.9% or higher uptime is required. Many
people refer to 99%, 99.9%, 99.99%, and 99.999% as two nines, three nines,
four nines, and five nines. The five nines is generally thought of as the best
achievable system with reasonable costs, and many vendors offer such
solutions. Examples for these solutions are:

� IBM with WebSphere WLM and clustering, WebSphere MQ Cluster, HACMP
on AIX, TSA, or the Database Partitioning feature in DB2 UDB Enterprise
Server Edition

� Sun Microsystems with Sun Cluster on Solaris™

� VERITAS with VERITAS Cluster Server

Table 1-1 Availability matrix - nine rule

Tip: You can also use system failover for planned software and hardware
maintenance and upgrades.

9s Percentage of
uptime

Downtime
per year

Downtime
per week

Downtime
per day

90% 36.5 days 16.9 hours 2.4 hours

95% 18.3 days 8.4 hours 1.2 hours

98% 7.3 days 3.4 hours 28.8 minutes

Two 9s 99% 3.7 days 1.7 hours 14.4 minutes

99.5% 1.8 days 50.4 minutes 7.2 minutes

99.8% 17.5 hours 20.2 minutes 2.9 minutes

Three 9s 99.9% 8.8 hours 10.1 minutes 1.4 minutes
10 WebSphere Application Server V6: High Availability Solutions

The five nines availability allows a downtime of 864 milliseconds per day,
6 seconds per week, and 5.3 minutes per year as shown in Table 1-1 on
page 10. For all clustering techniques with IP takeover, a typical database
failover takes two to three minutes. Thus, MTTR equals 2.5 minutes. We,
therefore, need an MTBF of 183 days to achieve 99.999% availability. That
means only two failovers per year.

Some businesses require 7x24x365 availability, while others require 6x20 or
5x12 availability. The latter do not reduce the requirement for high availability if
the business requires the minimum interruption during its business hours.
Because we do not know when outages will happen, clustering techniques can
keep MTTR short and increase available time even if a business operates only
5x12.

Even though clustering techniques can keep a service highly available, service
performance might degrade after the failure occurs until the failed system rejoins
the cluster after repair.

Therefore, we suggest describing availability using three factors:

� System uptime percentage
� Business operation hours and pattern
� Performance availability requirement

You should design a high availability system to satisfy the uptime requirement
during operation hours and to meet the performance availability requirement.

Most business applications do not require 7x24, so software and hardware
upgrades can be performed in the scheduled maintenance time. For the
business that requires 7x24 services, clustering techniques provide rolling
upgrades and hot replacements by failing over manually from one system to
another. See Chapter 4, “High availability system administration” on page 121
and Chapter 5, “High availability application administration” on page 141 for more
information.

Four 9s 99.99% 52.5 minutes 1 minute 8.6 seconds

Five 9s 99.999% 5.3 minutes 6 seconds 864 milliseconds

Six 9s 99.9999% 31.5 seconds 604.8 milliseconds 86.4 milliseconds

Seven 9s 99.99999% 3.2 seconds 60.5 milliseconds 8.6 milliseconds

Eight 9s 99.999999% 315.4 milliseconds 6 milliseconds 0.9 milliseconds

9s Percentage of
uptime

Downtime
per year

Downtime
per week

Downtime
per day
 Chapter 1. Understanding high availability concepts 11

1.2.3 Causes of downtime
The causes of downtime can be either planned events or unplanned events.
Planned events can account for as much as 30% of downtime. As mentioned
before, rolling upgrades and hot replacements can reduce the planned
downtime. However, the most important issue is how to minimize the unplanned
downtime, because nobody knows when the unplanned downtime occurs and all
businesses require the system to be up during business hours.

Studies have shown that software failures and human error are responsible for a
very high percentage of unplanned downtime. Software failures include network
software failure, server software failure, and client software failure. Human errors
could be related to missing skills but also to the fact that system management is
not easy-to-use.

Hardware failures and environmental problems also account for unplanned
downtime, although by far not as much as the other factors. Using functions such
as state-of-the-art LPAR capabilities with self-optimizing resource adjustments,
Capacity on Demand (to avoid overloading of systems), and redundant hardware
in the systems (to avoid single points of failure), hardware failures can be further
reduced. You can find more information about LPAR for the IBM Eserver
iSeries and pSeries systems in the following resources:

� Logical Partitions on the IBM PowerPC: A Guide to Working with LPAR on
POWER5 for IBM Eserver i5 Servers, SG24-8000

� Advanced POWER Virtualization on IBM Eserver p5 Servers: Introduction
and Basic Configuration, SG24-7940

You can find information about Capacity on Demand at:

http://www.ibm.com/servers/eserver/about/cod/

Many environmental problems are data center related. Having a locally located
standby might not suffice, because the entire site environment might be affected.
Geographic clustering and data replication can minimize downtime caused by
such environmental problems.

The end-to-end WebSphere high availability system that eliminates a single point
of failure for all parts of the system can minimize both planned and unplanned
downtime. We describe the implementation of such a WebSphere high
availability system throughout this book.
12 WebSphere Application Server V6: High Availability Solutions

http://www.ibm.com/servers/eserver/about/cod/

1.2.4 Possible single points of failure in the WebSphere system
Table 1-2 lists potential single points of failure in the WebSphere system and
possible solutions.

Table 1-2 Possible single points of failure in the WebSphere system

Failure point Possible solutions

Client access Multiple ISPs.

Firewalls Firewall clustering, firewall sprayer, HA firewall.

Caching Proxy Backup Caching Proxy system.

HTTP sprayer
(such as WebSphere Edge Components’
Load Balancer)

HA solution of vendor, for example backup Load Balancer
server.

Web server Multiple Web servers with network sprayer,
hardware-based clustering.

WebSphere master repository data, log files HA shared file system, Network File System (NFS),
hardware based clustering.

WebSphere Application Server WebSphere Application Server Network Deployment -
application server clustering:
� Horizontal
� Vertical
� Combination of both
Additionally for EJBs: backup cluster.

WebSphere Node Agent Multiple Node Agents in the cluster, OS service,
hardware-based clustering.

Note: The Node Agent is not considered a single point of
failure in WebSphere V6. The Node Agent must be running
when starting the application server on that node so the
application server can register with the Location Service
Daemon (LSD). In WebSphere V6 the LSD is HAManager
enabled therefore you only need one running Node Agent
in the cluster to provide the LSD when the application
servers are started on the node.

The Node Agent must also be running when changing
security related configuration or you might not be able to
synchronize with the Deployment Manager later on any
more.

Refer to Chapter 3, “WebSphere administrative process
failures” on page 103 for more information.
 Chapter 1. Understanding high availability concepts 13

WebSphere Deployment Manager OS service, hardware-based clustering,
backup WebSphere cell.

Note: The Deployment Manager is not considered a single
point of failure in WebSphere V6. You need it to configure
your WebSphere environment, to monitor performance
using the Tivoli Performance Viewer, or to use backup
cluster support. Unless these functions are needed, you
can run a production environment without an active
Deployment Manager. Refer to Chapter 3, “WebSphere
administrative process failures” on page 103 for more
information.

Entity EJBs, application DB HA DBs, parallel DBs.

Note: Make sure your application catches
StaleConnectionException and retries, see 15.4,
“Database server” on page 574 for more information.

Default messaging provider WebSphere application server clustering: HAManager
provides failover.

Default messaging provider data store Clustering, data replication, parallel database.

Application database Clustering, data replication, parallel database.

Session database Memory-to-memory replication, DB clustering, parallel
database.

Transaction logs WebSphere application server clustering: HAManager
provides failover,
shared file system with horizontal clustering.

WebSphere MQ WebSphere MQ cluster, combination of WebSphere MQ
cluster and clustering.

LDAP Master-replica, sprayer, HA LDAP (clustering).

Internal network Dual internal networks.

Hubs Multiple interconnected network paths.

Disk failures, disk bus failure, disk controller
failure

Disk mirroring, RAID-5, multiple buses, multiple disk
controllers.

Network service failures (DNS, ARP,
DHCP, and so forth)

Multiple network services.

OS or other software crashes Clustering, switch automatically to a healthy node.

Failure point Possible solutions
14 WebSphere Application Server V6: High Availability Solutions

Host dies WebSphere application server clustering, hardware-based
clustering: automatically switch to a healthy node.

Power outages UPS, dual-power systems.

Room/floor disaster (fire, flood, and so
forth)

Systems in different rooms/different floors.

Building disasters (fire, flood, tornado, and
so forth)

Systems in different buildings.

City disasters (earthquake, flood, and so
forth)

Remote mirror, replication, geographical clustering.

Region disasters Put two data centers far away with geographical clustering
or remote mirroring.

Human error Train people, simplify system management,
use clustering and redundant hardware/software.

Software and hardware upgrades Rolling upgrades with clustering or WLM for 7x24x365,
planned maintenance for others.

Failure point Possible solutions
 Chapter 1. Understanding high availability concepts 15

1.2.5 HA technologies for WebSphere system components
As you have seen in Table 1-2 on page 13, there are many different options
available to make your WebSphere system highly available. Figure 1-3 is a
graphical representation of these possible options for the client tier, the DMZ, and
the application tier (hardware failures or disasters as mentioned in the table are
not covered in the figures of this section).

Figure 1-3 HA technologies Client Tier - DMZ - Application Tier

Note: WebSphere MQ can be located in either the application tier or the EIS
tier or in both.

Internet

Application TierDMZClient Tier

App Server
App Server

MQ

App Server
App Server

MQ

Deployment Manager

Deployment Manager

FW

FW

IP
Sprayer

IP
Sprayer

EIS Tier

Node Agent

Node Agent

FW

FW

HTTP
Server

Plugin

HTTP
Server

Plugin
16 WebSphere Application Server V6: High Availability Solutions

Figure 1-4 provides the same information for the EIS tier. The graphic shows an
overlap with the application tier for easier comprehension.

Figure 1-4 HA technologies Application Tier - EIS Tier

EIS TierApplication Tier

App DB Server

App DB Server

LDAP
Directory

LDAP
Directory

App Server

Deployment Manager

Deployment Manager

App Server

Node Agent

Node Agent

DMZ

Session data
Messaging data
Transaction logs

Session data
Messaging data
Transaction logs

App Server
MQ

App Server
MQ
 Chapter 1. Understanding high availability concepts 17

1.2.6 Levels of WebSphere system availability
We can deploy WebSphere systems with different redundant hardware, software,
networks, processes and components. For the convenience of our discussion,
we can roughly divide the deployment into several availability levels. Features
discussed for a level are always available for all higher levels also.

The transaction logs reside on the file system. When using horizontal clustering
(HA levels 3 and higher), this should be a shared file system which supports
lease based locking to allow other cluster members to recover in-flight
transactions of a failed application server. For more information, see “WebSphere
system HA level 3” on page 20 and 6.7, “Transaction Manager high availability”
on page 201.

WebSphere system HA level 1
For WebSphere system HA level 1, as shown in Figure 1-5 on page 19, the
HTTP server, WebSphere Application Server, and the database are installed in a
single system. There is one application server available to serve the requests. If
the host machine dies or crashes, all WebSphere services will be unavailable. A
failure of any component will also cause the WebSphere service to become
unavailable.

This level can be used by developers and for sites where downtime is not critical.

Notes - HA levels 1 to 4:

� A DMZ is not shown in the diagrams for WebSphere HA levels 1 to 4. If you
want to establish a DMZ, we recommend to move the HTTP server onto a
separate system (or LPAR) rather than collocating it with the application
server.

� For simplicity reasons, we did not add an LDAP directory server in the level
1 to 4 diagrams. You can either collocate your LDAP directory on (one of)
the system or add a separate system.

� We refer simply to the database for these four HA levels. The database
can, however, include application data, session data, ME data stores, and
so on. Therefore, a failure in the database can affect different areas of your
WebSphere Application Server environment. Refer to the “Possible single
points of failure” section of each HA level for the list of data that can
become a single point of failure for this configuration.
18 WebSphere Application Server V6: High Availability Solutions

Figure 1-5 WebSphere system HA level 1

Possible single points of failure include the following:

� HTTP server

� Application server

� Database (application data, ME data store)

� Firewalls, LDAP (not shown in Figure 1-5)

� Hardware, which includes any hardware component in the system, such as
network cards, network cables, power supply, and so forth, if they are not
redundant

WebSphere system HA level 2
You can create an application server cluster (with two or more cluster members)
to overcome application server process failures. This is WebSphere system HA
level 2, as shown in Figure 1-6 on page 20.

In the case of an application server failure, the WebSphere HAManager makes
sure the transaction logs of the failed server are recovered by another application
server in the cluster. As all application servers are on the same system and thus
can share the available disks, there is no need for additional hardware, such as a
SAN.

If you use the default messaging provider in your application, the HAManager
also ensures that the messaging engine (ME) is restarted in another cluster
member.

Important: You need to make sure that your system is powerful enough to
host the additional application server as well as the additional administrative
servers (Deployment Manager and Node Agent). Refer to “Vertical scaling” on
page 40 for additional information about vertical scaling.

HTTP
Server

WebSphere
Application

 Server
Database
 Chapter 1. Understanding high availability concepts 19

Figure 1-6 WebSphere system HA level 2

Possible single points of failure include the following:

� HTTP server
� Administrative servers (especially Node Agent)
� Database (application data and session data)
� Firewalls, LDAP (not shown in diagram)
� Hardware

WebSphere system HA level 3
For WebSphere HA level 3, a Load Balancer, multiple HTTP servers, WebSphere
vertical and horizontal scaling, a database server hosting the database, plus a
shared file system that supports lease based locking for the transaction logs are
used, as shown in Figure 1-7 on page 21.

The transaction logs can be recovered by the application servers in System2
should System1 fail. The system hosting the database (application data, and so
forth) and the shared file system is, however, still a possible single point of
failure.

As was the case for the previous level, the HAManager takes care of restarting
the messaging engine (ME) for the default messaging provider on another
application server in the cluster should the application server hosting the ME fail.

Note: Using memory-to-memory session replication instead of a persistent
session database eliminates the session data as a single point of failure.
Refer to Chapter 1 and Chapter 6 of the IBM WebSphere V6 Scalability and
Performance Handbook, SG24-6392 for more information about requirements
(such as memory) and configuration, as well as recommendations on when to
use which option.

Note: Transaction logs are only an issue for 2PC transactions. You do not
need a shared file system if you do not have 2PC transactions.

A p p S e rv e r 1

A p p S e rv e r 2

H T T P
S e rv e r

N o d e A g e n t

D M g r

D a ta b a s e

C lu s te r
20 WebSphere Application Server V6: High Availability Solutions

With IBM WebSphere Application Server Network Deployment V6 you have the
option to run mixed version cells which allows you to upgrade the WebSphere
code (apply fixes or install WebSphere new versions) on the various application
server nodes in your cell one after the other without interrupting service.

In addition, you might be able to take advantage of the new application rollout
update feature which allows you to update an application without bringing down
the entire application server cluster. Instead, this function updates one node after
the other. That is, it brings down all application servers on the first node, updates
the application, restarts the application servers, then continues with the next
node. Therefore, the rollout update can only be used with horizontal scaling, not
with vertical scaling as used in HA level 2. This function cannot be used for all
types of application updates and is not suited for all environments, therefore, for
more information refer to 5.4.2, “Rollout update (new feature of WebSphere V6)”
on page 153.

Figure 1-7 WebSphere system HA level 3

Possible single point of failure include the following:

� HTTP sprayer (for example WebSphere Edge Components’ Load Balancer)
� Administrative servers
� Database system (application data, session data)
� Firewalls, LDAP (not shown in diagram)
� Hardware

HTTP
Server

Node Agent

HTTP
Server

Node Agent DMgr

App Server 4

App Server 3

App Server 2

App Server 1

Load
Balancer

Cluster

DB

Shared
File

System

System1

System2
 Chapter 1. Understanding high availability concepts 21

Figure 1-7 on page 21 shows a scenario using a shared file system that supports
lease based locking for transaction log recovery. If your file system does not
support this, then you need to do one of the following:

� Restart the failed application server, using either an automatic or manual
restart or using clustering software. See Part 5, “Using external clustering
software” on page 283 for more information about using clustering software.

� Perform manual peer recovery.

� Disable locking in the transaction service and prevent overloading and
network partitioning.

For more information, see Transactional high availability and deployment
considerations in WebSphere Application Server V6 at:

http://www.ibm.com/developerworks/websphere/techjournal/0504_beaven/0504_be
aven.html

WebSphere system HA level 4
For WebSphere system HA level 4, as shown in Figure 1-8 on page 24, single
point of failure is eliminated for most components of the WebSphere system in
this example:

� There is a backup Load Balancer available - as mentioned earlier, the backup
can be collocated with one of the HTTP servers.

� There are two (or more) HTTP servers available.

� The combination of horizontal and vertical scaling for the application servers
provides failover capabilities for both process failures and hardware failures.

� The database (session data, ME data stores, application data, and so forth)
can failover to a second database system using a clustering software such as
IBM HACMP, IBM TSA, Sun Cluster, VERITAS Cluster Server, and others.

� The transaction logs reside on the same system as the database. However
they are stored in a shared file system that supports lease based locking
which is replicated to the backup database system and can also failover to the
second system.

Important: As the HTTP sprayer/Load Balancer is the entry point into your
WebSphere system, we strongly recommend to make it highly available. A
cost effective solution is to collocate the backup Load Balancer with one of
your HTTP servers. Refer to Chapter 5, “Using IBM WebSphere Edge
Components,” in IBM WebSphere V6 Scalability and Performance Handbook,
SG24-6392 for detailed information about how to configure a backup Load
Balancer.
22 WebSphere Application Server V6: High Availability Solutions

http://www.ibm.com/developerworks/websphere/techjournal/0504_beaven/0504_beaven.html

The administrative servers (Node Agents and Deployment Manager) remain the
only possible single points of failure:

� A failure of the Deployment Manager means that you are not able to use the
Tivoli Performance Viewer (which is included in the Administrative Console in
WebSphere Application Server V6) and to perform configuration changes -
which are rarely done in production environments anyway. Also, the
Deployment Manager is needed for a failover when using the backup cluster
functionality (see 2.7, “Backup cluster support” on page 87 for more
information). Thus a temporarily failure of the Deployment Manager is
normally not a big problem for a production environment (some customers
even run their production environment without the Deployment Manager
being active).

A simple option is to make sure that the Deployment Manager is restarted
automatically after a process failure or a restart of the system is to add it as
an OS service, as explained in Chapter 3, “WebSphere administrative
process failures” on page 103.

� A failure of the Node Agent has a slightly higher impact as discussed in 3.3,
“Node Agent failures” on page 111.

Also, see Part 5, “Using external clustering software” on page 283 for information
about using WebSphere with external clustering software. The chapters in this
part explain how you can make the Deployment Manager, Node Agents, and
application servers highly available using various flavours of clustering software.

Important: We do not show the DMZ and LDAP directory servers in the
diagrams up to this HA level. You need to remember that the firewalls and
LDAP server must be made highly available as well if you want to avoid any
single points of failure in your environment. Refer to Chapter 15, “WebSphere
end-to-end high availability” on page 561for more information about HA
options for these components.
 Chapter 1. Understanding high availability concepts 23

Figure 1-8 WebSphere system HA level 4 - Database clustering/failover

This HA level does not protect you from a site disaster such as a flood, fire, or an
earthquake. The only way to have that level of protection is to go to HA level 5
which includes a backup data center.

WebSphere system HA level 5
For WebSphere system HA level 5, two data centers are used for disaster
recovery. As shown in Figure 1-9 on page 26, one data center is in the primary
service site, and the other data center is a backup. When one site goes down,
the backup site can serve requests after an interruption of under one hour to up
to a few hours, depending on the configuration and setup of the backup site.

The backup data center hosts a second cell with an identical configuration to the
primary cell. The backup cell is not serving any requests. The backup cell is
configured using the same cell name, same node, cluster and application server
names, same resource names, with the same applications installed, and so on.
Only the IP addresses of the systems are different. When the primary data center
is out-of-service, the DNS is changed to reflect the different IP addresses of the
backup environment.

Important: Workload management and failover is not supported between
different cells. Therefore, the switch between the primary and the backup site
always requires user intervention.

HTTP
Server

Node Agent

HTTP
Server

Node Agent DMgr

Cluster

Backup
Load

Balancer

Load
Balancer

Failover of shared file system
 - and -
DB failover (clustering)

App Server 4

App Server 3

App Server 2

App Server 1

DB

Shared
File

System

DB

Shared
File

System
24 WebSphere Application Server V6: High Availability Solutions

It might take just minutes to get your backup data center up and running. The
time it actually takes depends on your setup. For example, if your systems are
not up but need to be powered on first, it will take longer. Another option is to
have the systems up but the software is not started (cold start).

The option that gives you the shortest failover time is a warm start, which means
that all your systems and applications are up and running. The application
servers are started using the No Operation policy (NoOP) for the transaction logs
and MEs as explained in Chapter 9, “Configuring WebSphere Application Server
for external clustering software” on page 285. In this case, in addition to changing
the DNS, you need to do the following:

1. Mount the file systems.

2. Issue a script to change the NoOP policy to the normal policies for the
transaction logs and MEs.

For this HA level, Figure 1-9 on page 26 illustrates the full environment, including
the DMZ, LDAP directory server, WebSphere MQ, and so on.

Important: One box in the diagram does not necessarily mean one system
(one piece of hardware). Many components can be collocated on the same
system or within different LPARs of one physical system.
 Chapter 1. Understanding high availability concepts 25

Figure 1-9 WebSphere system HA level 5

The scenario exploits the following features:

� All firewalls have a backup.

� The Load Balancer is configured with a backup.

� There are two (or more) HTTP servers.

� The combination of horizontal and vertical scaling for the application servers
provides failover capabilities for both process failures and hardware failures.

� Using clustering software such as IBM HACMP or IBM TSA, the database
can failover to a second database system. WebSphere MQ and the LDAP
directory server are also protected under the clustering software.

� The data (WebSphere administration repository, session data, transaction
logs, ME data stores, application data, MQ data, and so forth) is located on a
SAN system. All data is part of one consistency group which is synchronized

F
i
r
e
w
a
l
l

F
i
r
e
w
a
l
l

Internet

LB

LB

HTTP
Server

Database

LDAP

MQ

Clustering

Database

LDAP

MQ

WebSphere
binaries

SAN

App
Server

App
Server

Node Agent

App
Server

App
Server

Node Agent

DMgr

HTTP
Server

F
i
r
e
w
a
l
l

F
i
r
e
w
a
l
l

MQ
data

App.
data

ME data
stores

Transaction
logs

 Session
data

Admin XML
Repository

Consistency
Group

LDAP
data

F
i
r
e
w
a
l
l

F
i
r
e
w
a
l
l

Internet

LB

LB

HTTP
Server

Clustering

Database

LDAP

MQ

App
Server

App
Server

Node Agent

App
Server

App
Server

Node Agent

DMgr

HTTP
Server

F
i
r
e
w
a
l
l

F
i
r
e
w
a
l
l

WebSphere
binaries

LDAP
data

Flashcopy

Database

LDAP

MQ

MQ
data

App.
data

ME data
stores

Transaction
logs

 Session
data

Admin XML
Repository

Consistency
Group

Synch.
(IB

M
 PP

R
C

)

SAN

A
ny

synchronizati on
26 WebSphere Application Server V6: High Availability Solutions

to the backup SAN system using, for example, Peer-to-Peer Remote Copy
(PPRC). This ensures that all data is in sync should a failover be necessary.

� The WebSphere binaries are installed on the SAN too but are not part of the
consistency group. This is not needed because the binaries are changed
rarely and do not need to be in sync with the production data such as
transaction logs and application data.

� The LDAP data is also located on the SAN and can be replicated to the
backup SAN system. As with the WebSphere binaries, the LDAP data must
not be in sync with the WebSphere environment data (and changes less
often) and can therefore reside outside of the consistency group.

� You could also add the Trace logs to the shared disk to ensure problem
determination after a site failure.

1.2.7 Planning and evaluating your WebSphere HA solutions
We recommend that you use the following steps when planning and evaluating
your end-to-end WebSphere HA solutions:

1. Analyze your requirements:

– Do you need continuous operations? Most customers do not need
continuous operations; therefore, upgrades of software and hardware can
be performed offline.

– What kind of availability do you need during your hours of operation?

– What is the performance requirement during a failover? For example, the
performance might be impacted because fewer nodes or servers serve
client requests after a node/server failure. If this is not desired, you need
to provide ample extra resources.

2. Analyze the cost factors. How much will you lose when your system is
unavailable, and how much can you invest in your system availability? If

Tip: You can use the FlashCopy function to copy the binaries to the
backup SAN system. Using this approach allows you, for example, to apply
fixes or to update WebSphere to a new version. Should you find problems
you can go back to the old level. When the new version/level is
successfully tested, you issue the FlashCopy and thus make sure that the
backup cell is up-to-date without the need of applying the fixes or installing
the new version in the backup cell.

See IBM TotalStorage Enterprise Storage Server Implementing ESS Copy
Services in Open Environments, SG24-5757 for details on PPRC and
FlashCopy®.
 Chapter 1. Understanding high availability concepts 27

downtime is costly, you should invest an appropriate amount to improve your
system availability.

3. Estimate the setup and administrative complexity. More complicated systems
require skilled people and more configuration and administration effort.

4. Consider all the components in an end-to-end WebSphere system. Usually,
the overall availability is dominated by the weakest point of the end-to-end
WebSphere system chain. Consider the possibility of a failure in each
component and its failover time.

5. Analyze failover time, which mainly includes fault-detection time and recovery
time. For different failover mechanisms/techniques, the failover time is
different.

6. Analyze the recovery point, where your processing resumes after a failover. It
is directly related to the amount of work that is lost during a failover.

7. Understand the programming models. This concerns whether the failover is
transparent to clients and whether one component’s failover is transparent to
other components in an end-to-end WebSphere system. Some services are
able to perform failover transparently, because the failover is masked from
the application. Others have options for adding application code that can retry
when necessary.

8. Know that there is usually more than one solution to address a given failure.
Some solutions might have special restrictions. Analyze the trade-offs
between the different solutions.

1.3 Failover terms and mechanisms
As mentioned before, an object or an application includes two distinct aspects:
functions and data. Therefore, we have process availability and data availability.
If a function is not associated with individual data or states, it is easy to achieve
high availability by simply restarting this function process when the old process
crashes. However, the reality is that functions are associated with individual data
or state, some with persisted data in database or files, such as Entity EJBs. We
need to make data management systems highly available to all processes and
ensure data integrity because the failed process might damage data.

People use the term failover for different failovers and different failover
mechanisms. We distinguish the following failover mechanisms:

� Failover
� Fail back, fallback
� Fail fast
� Fail transparent
28 WebSphere Application Server V6: High Availability Solutions

Failover
Failover refers to a single process that moves from the primary system to a
backup system in the cluster. This failover process takes several minutes after
the fault is detected. This approach can be used for both function-centric or
data-centric applications for both Active/Passive and Active/Active
configurations. You can also use mutual failover which means that both hosts are
running a (different) application and can failover to the other system.

Fail back, fallback
Fail back or fallback is similar to failover, but occurs from the backup system to
the primary system when the primary system is back online. For mutual failover,
because the backup node has also its original application running, failing back
will improve the performance of both applications.

Fail fast
Fail fast refers to uncoordinated process pairs: the backup process is
pre-existent, as shown in Figure 1-10. This approach is suitable only for
service-centric applications; it cannot be used for data-centric applications.

Figure 1-10 Fail fast without clustering

Note: You can find more information about failover and fail back or fallback in
Chapter 9, “Configuring WebSphere Application Server for external clustering
software” on page 285.

Service ServiceService

Load Balancer
 Chapter 1. Understanding high availability concepts 29

Note the following points:

� These processes belong to the same application.

� These processes are not coordinated; in other words, these processes do not
know each other’s running state.

� These processes are pre-existent on hosts, which is different from the failover
case where a new process starts with the takeover of resources after the
original process fails.

� These processes do not take resources from each other.

As mentioned, fail fast cannot be used in data-centric applications. It relies on 1-n
mapping (such as sprayers) to handle client traffic and process errors. Tuning the
connection and TCP/IP timeout parameters is a key part of this kind of failover
performance. You need to balance normal running performance and failover
performance. Too short a connection and TCP/IP timeout might improve the
failover performance, but can harm the normal running performance.

Fail fast is a good solution for your HTTP servers, Caching Proxies, directory
servers, and so forth, as it does not only provide high availability but also ensures
performance and scalability. See Chapter 15, “WebSphere end-to-end high
availability” on page 561 for more information.

Fail transparent
Fail transparent is defined as coordinated process pairs: we have a primary
process and a backup process running on separate processors, as shown in
Figure 1-11 on page 31. The primary process sends checkpoints to the backup
process. If the primary process fails, the backup process takes over. This
mechanism is based on the backup process anticipating the failure of the primary
process and then taking over without affecting the work in progress or user
sessions. This approach requires that each process knows the states of other
processes as well as the state of the environment. Therefore, a cluster
management layer is required and the application must query the status from this
cluster layer. In other words, the processes are coordinated, and errors are
handled transparently.
30 WebSphere Application Server V6: High Availability Solutions

Figure 1-11 Fail transparent with clustering

Summary
In summary, we have three approaches to achieve high availability:

� Process and dependent resource group takeover

This approach requires cluster information and can be used for both
data-centric and service-centric applications. Its implementation is difficult.

� Multiple uncoordinated processes

This approach does not require cluster information. However, this approach
cannot be used for data-centric applications because it does not support the
resource group concept.

� Multiple coordinated processes

This approach requires cluster information, and its implementation is very
difficult. It can be used for both data-centric and service-centric applications.
It can achieve transparent failover without interruption.

Service

Cluster
Layer

Service

Cluster
Layer

Service

Cluster
Layer

Access Service
 Chapter 1. Understanding high availability concepts 31

32 WebSphere Application Server V6: High Availability Solutions

Part 2 WebSphere
clustering for HA and
HA administration

Part 2
© Copyright IBM Corp. 2005. All rights reserved. 33

34 WebSphere Application Server V6: High Availability Solutions

Chapter 2. WebSphere Application
Server failover and recovery

WebSphere Application Server failover and recovery is realized through the
workload management (WLM) mechanism that are provided by IBM WebSphere
Application Server Network Deployment V6. If you do not use WLM with your
WebSphere Application Servers (and you do not use any other clustering
software), your system cannot provide failover support. In this case, your Web or
Java clients will fail if your WebSphere Application Server fails.

This chapter gives an introduction to the WLM and failover capabilities of IBM
WebSphere Application Server Network Deployment V6. For more details on this
topic, refer to IBM WebSphere V6 Scalability and Performance Handbook,
SG24-6392.

Topics discussed in this chapter include:

� Introduction to availability
� WebSphere Application Server clustering
� WebSphere workload management defined
� Managing session state among servers
� Web container clustering and failover
� EJB container clustering and failover
� Backup cluster support

2

© Copyright IBM Corp. 2005. All rights reserved. 35

2.1 Introduction to availability
Also known as resiliency, availability is the description of the system’s ability to
respond to requests no matter the circumstances. Availability requires that the
topology provide some degree of process redundancy in order to eliminate single
points of failure. Whereas vertical scalability (multiple application servers on one
system) can provide this by creating multiple processes, the physical machine
then becomes a single point of failure. For this reason, a high availability topology
typically involves horizontal scaling across multiple machines or LPARs.

2.1.1 Hardware-based high availability
Using a WebSphere Application Server multiple machine or LPAR configuration
eliminates a given application server process as a single point of failure. In IBM
WebSphere Application Server Network Deployment V6, there are basically no
dependencies on the administrative server process for security, naming, and
transactions. Thus, a single process failure normally does not disrupt application
processing.

In fact, the only single point of failure in a WebSphere cell is the Deployment
Manager, where all central administration is performed. However, a failure of the
Deployment Manager only impacts the ability to change the cell configuration, to
run the Tivoli Performance Viewer (which is included in the Administrative
Console in WebSphere V6), or to perform a failover for EJBs using a backup
cluster (see 2.7, “Backup cluster support” on page 87).

A number of alternatives exist to provide high availability for the Deployment
Manager, including the possible use of an external High Availability solution,
though the minimal impact of a Deployment Manager outage typically does not
require the use of such a solution. Some customers even choose to run their
production environment without an active Deployment Manager. See Part 5,
“Using external clustering software” on page 283 for more information about
using clustering software to make the Deployment Manager highly available.

2.1.2 Workload management
IBM WebSphere Application Server Network Deployment V6 workload
management optimizes the distribution of incoming requests between application
servers that are able to handle a client request. WebSphere workload
management is based on application server clusters containing multiple
application servers, so-called cluster members. An application deployed to a
cluster runs on all cluster members concurrently. The workload is distributed
based on weights that are assigned to each cluster member. Thus more powerful
machines receive more requests than smaller systems.
36 WebSphere Application Server V6: High Availability Solutions

Workload management (WLM) also takes care of failing over existing client
requests to other, still available application servers and of directing new requests
only to available processes should an application server in the cluster fail. In
addition, WLM enables servers to be transparently maintained and upgraded
while applications remain available for users. You can add additional cluster
members to a cluster at any point, providing scalability and performance if an
existing environment is not able to handle the workload any more. For more
details, see 2.3, “WebSphere workload management defined” on page 43.

2.1.3 Failover
The proposition to have multiple servers (potentially on multiple independent
machines) naturally leads to the potential for the system to provide failover. That
is, if any one machine or server in the system were to fail for any reason, the
system should continue to operate with the remaining servers. The load
balancing property should ensure that the client load gets redistributed to the
remaining servers, each of which will take on a proportionally higher percentage
of the total load. Of course, such an arrangement assumes that the system is
designed with some degree of overcapacity, so that the remaining servers are
indeed sufficient to process the total expected client load.

Ideally, the failover aspect should be totally transparent to clients of the system.
When a server fails, any client that is currently interacting with that server should
be automatically redirected to one of the remaining servers, without any
interruption of service and without requiring any special action on the part of that
client. In practice, however, most failover solutions might not be completely
transparent. For example, a client that is currently in the middle of an operation
when a server fails might receive an error from that operation, and might be
required to retry (at which point the client would be connected to another, still
available server). Or the client might observe a pause or delay in processing,
before the processing of its requests resumes automatically with a different
server. The important point in failover is that each client, and the set of clients as
a whole, is able to eventually continue to take advantage of the system and
receive service, even if some of the servers fail and become unavailable.
Conversely, when a previously failed server becomes available again, the
system might transparently start using that server again to process a portion of
the total client load.

The failover aspect is also sometimes called fault tolerance, in that it allows the
system to survive a variety of failures or faults. It should be noted, however, that
failover is only one technique in the much broader field of fault tolerance, and that
no such technique can make a system 100% safe against every possible failure.
The goal is to greatly minimize the probability of system failure, but keep in mind
that the possibility of system failure cannot be completely eliminated.
 Chapter 2. WebSphere Application Server failover and recovery 37

Note that in the context of discussions on failover, the term server often refers to
a physical machine. However, WebSphere also allows for one server process on
a given machine to fail independently, while other processes on that same
machine continue to operate normally.

2.1.4 HAManager
WebSphere V6 introduces a new concept for advanced failover and thus higher
availability, called the High Availability Manager (HAManager). The HAManager
enhances the availability of WebSphere singleton services such as transaction
services or message services. It runs as a service within each application server
process that monitors the health of WebSphere clusters. In the event of a server
failure, the HAManager will failover the singleton service and recover any in-flight
transactions. See Chapter 6, “WebSphere HAManager” on page 175 for details.

2.1.5 Session management
Unless you have only a single application server or your application is completely
stateless, maintaining state between HTTP client requests also plays a factor in
determining your configuration. Use of the session information, however, is a fine
line between convenience for the developer and performance and scalability of
the system. It is not practical to eliminate session data altogether, but care should
be taken to minimize the amount of session data passed. Persistence
mechanisms decrease the capacity of the overall system, or incur additional
costs to increase the capacity or even the number of servers. Therefore, when
designing your WebSphere environment, you need to take session needs into
account as early as possible.

In WebSphere V6, there are two methods for sharing of sessions between
multiple application server processes (cluster members). One method is to
persist the session to a database. An alternate approach is to use
memory-to-memory session replication functionality, which was added to
WebSphere V5 and is implemented using WebSphere internal messaging. The
memory-to-memory replication (sometimes also referred to as “in-memory
replication”) eliminates a single point of failure found in the session database (if
the database itself has not been made highly available using clustering
software).

You can find details in 2.4, “Managing session state among servers” on page 45.
38 WebSphere Application Server V6: High Availability Solutions

2.2 WebSphere Application Server clustering
A cluster is a set of application servers that are managed together and
participate in workload management. Application servers participating in a
cluster can be on the same node or on different nodes. A Network Deployment
cell can contain no clusters, or have many clusters depending on the need of the
administration of the cell. The cluster is a logical representation of the application
servers. It is not necessarily associated with any node, and does not correspond
to any real server process running on any node. A cluster contains only
application servers, and the weighted workload capacity associated with those
servers.

When creating a cluster, it is possible to select an existing application server as
the template for the cluster without adding that application server into the new
cluster (the chosen application server is used only as a template, and is not
affected in any way by the cluster creation). All other cluster members are then
created based on the configuration of the first cluster member.

Cluster members can be added to a cluster in various ways: during cluster
creation and afterwards. During cluster creation, one existing application server
can be added to the cluster or one or more new application servers can be
created and added to the cluster. There is also the possibility of adding additional
members to an existing cluster later on. Depending on the capacity of your
systems, you can define different weights for the various cluster members.

Cluster members are required to have identical application components, but they
can be sized differently in terms of weight, heap size, and other environmental
factors. You must be careful though not to change anything that might result in
different application behavior on each cluster member. This concept allows large
enterprise machines to belong to a cluster that also contains smaller machines
such as Intel® based Windows® servers.

Starting or stopping the cluster starts or stops all cluster members automatically
and changes to the application are propagated to all application servers in the
cluster.

Figure 2-1 on page 40 shows an example of a possible configuration that
includes server clusters. Server Cluster 1 has two cluster members on node B
only. Server Cluster 2, which is completely independent of Server Cluster 1, has
two cluster members on node A and three cluster members on node B. Finally,
node A also contains a free-standing application server that is not a member of
any cluster.
 Chapter 2. WebSphere Application Server failover and recovery 39

Figure 2-1 Server clusters and cluster members

2.2.1 Clustering for scalability and failover
Clustering is an effective way to perform vertical and horizontal scaling of
application servers.

Vertical scaling
In vertical scaling, shown in Figure 2-2 on page 41, multiple cluster members for
an application server are defined on the same physical machine, or node, which
might allow the machine’s processing power to be more efficiently allocated.

Even if a single JVM™ can fully utilize the processing power of the machine, you
might still want to have more than one cluster member on the machine for other
reasons, such as using vertical clustering for process availability. If a JVM
reaches a table/memory limit (or if there is some similar problem), then the
presence of another process provides for failover.

Cluster
Members in
Server
Cluster 1

Cluster
Members in
Server
Cluster 2

EJBServlet

Application Server/Cluster Member
Application Server/Cluster Member EJBServlet

Application Server/Cluster Member

EJBServlet

Application Server/Cluster Member
Application Server/Cluster Member

EJBServlet

Application Server/Cluster Member
Application Server/Cluster Member

Node A

EJBServlet

Application Server

Node B

EJBServlet

EJBServlet

EJBServlet

Server Cluster 2

Server Cluster 1
40 WebSphere Application Server V6: High Availability Solutions

Figure 2-2 Vertical scaling

We recommend that you avoid using rules of thumb when determining the
number of cluster members for a given machine. The only way to determine what
is correct for your environment and application is to tune a single instance of an
application server for throughput and performance, then add it to a cluster, and
incrementally add additional cluster members. Test performance and throughput
as each member is added to the cluster. Always monitor memory usage when
you are configuring a vertical scaling topology and do not exceed the available
physical memory on a machine.

In general, 85% (or more) utilization of the CPU on a large server shows that
there is little, if any, performance benefit to be realized from adding additional
cluster members.

Horizontal scaling
In horizontal scaling, shown in Figure 2-3 on page 42, cluster members are
created on multiple physical machines (or LPARs). This allows a single
WebSphere application to run on several machines while still presenting a single
system image, making the most effective use of the resources of a distributed
computing environment. Horizontal scaling is especially effective in
environments that contain many smaller, less powerful machines. Client
requests that overwhelm a single machine can be distributed over several
machines in the system.

Failover is another important benefit of horizontal scaling. If a machine becomes
unavailable, its workload can be routed to other machines containing cluster
members.

EJB
Container

Web
Container

Cluster 1, Member 1

Node A

EJB
Container

Web
Container

Cluster 1, Member 2

Cluster 1
 Chapter 2. WebSphere Application Server failover and recovery 41

Figure 2-3 Horizontal scaling

Horizontal scaling can handle application server process failures and hardware
failures (or maintenance) without significant interruption to client service.

Combining vertical and horizontal scaling
WebSphere applications can combine horizontal and vertical scaling to reap the
benefits of both scaling techniques, as shown in Figure 2-4.

Figure 2-4 Vertical and horizontal scaling

Secure application cluster members
The workload management service has its own built-in security, which works with
the WebSphere Application Server security service to protect cluster member
resources. If security is needed for your production environment, enable security
before you create a cluster for the application server. This enables security for all
of the members in that cluster.

Note: WebSphere Application Server V5.0 and higher supports horizontal
clustering across different platforms and operating systems.

E JB
C onta iner

W eb
C onta iner

C luster 1 , M em ber 1

N ode A

E JB
C onta ine r

W eb
C onta iner

C luster 1 , M em ber 2

N ode B

C luste r 1

EJB
Container

Web
Container

Cluster 1, Member 1

Node A

EJB
Container

Web
Container

Cluster 1, Member 2

EJB
Container

Web
Container

Cluster 1, Member 3

Node B

EJB
Container

Web
Container

Cluster 1, Member 4

Cluster 1
42 WebSphere Application Server V6: High Availability Solutions

The EJB™ method permissions, Web resource security constraints, and security
roles defined in an enterprise application are used to protect EJBs and servlets in
the application server cluster. Refer to WebSphere Application Server V6:
Security Handbook, SG24-6316 for more information.

2.3 WebSphere workload management defined
Workload management is implemented in IBM WebSphere Application Server
Network Deployment V6 by using application server clusters and cluster
members. These cluster members can all reside on a single node (system) or
can be distributed across multiple nodes (or LPARs).

You might have Web clients or/and thick Java/C++ clients. When using clustered
WebSphere Application Servers, your clients can be redirected either
automatically or manually (depending on the nature of the failure) to another
healthy server in the case of a failure of a clustered application server.

Workload management (WLM) is the WebSphere facility to provide load
balancing and affinity between application servers in a WebSphere clustered
environment. It optimizes the distribution of processing tasks in the WebSphere
Application Server environment; incoming work requests are distributed to the
application servers that can most effectively process the requests.

Workload management is also a procedure for improving performance,
scalability, and reliability of an application. It provides failover when servers are
not available. WebSphere uses workload management to send requests to
alternate members of the cluster. WebSphere also routes concurrent requests
from a user to the application server that serviced the first request, as EJB calls,
and session state will be in memory of this application server.

WLM is most effective when the deployment topology is comprised of application
servers on multiple machines, because such a topology provides both failover
and improved scalability. It can also be used to improve scalability in topologies
where a system is comprised of multiple servers on a single, high-capacity
machine. In either case, it enables the system to make the most effective use of
the available computing resources.

Two types of requests can be workload managed in IBM WebSphere Application
Server Network Deployment V6:

� HTTP requests can be distributed across multiple Web containers. When an
HTTP request reaches the HTTP server, a decision must be made. Some
requests for static content might be handled by the HTTP server. Requests
for dynamic content or some static content will be passed to a Web container
running in an application server. Whether the request should be handled or
 Chapter 2. WebSphere Application Server failover and recovery 43

passed to WebSphere is decided by the WebSphere Web server plug-in,
which runs in-process with the HTTP server. We refer to this as Plug-in WLM.
For these WebSphere requests, high availability for the Web container
becomes an important piece of the failover solution. See 2.5, “Web container
clustering and failover” on page 51 for more information.

� EJB requests can be distributed across multiple EJB containers. When an
EJB client makes calls from the Web container or client container or from
outside, the request is handled by the EJB container in one of the clustered
application servers. If that server fails, the client request is redirected to
another available server. We refer to this as EJS WLM. See 2.6, “EJB
container clustering and failover” on page 65 for additional information.

2.3.1 Distributing workloads
The ability to route a request to any server in a group of clustered application
servers allows the servers to share work and improving throughput of client
requests. Requests can be evenly distributed to servers to prevent workload
imbalances in which one or more servers has idle or low activity while others are
overburdened. This load balancing activity is a benefit of workload management.

Thus the proposed configuration should ensure that each machine or server in
the configuration processes a fair share of the overall client load that is being
processed by the system as a whole. In other words, it is not efficient to have one
machine overloaded while another machine is mostly idle. If all machines have
roughly the same capacity (for example, CPU power), each should process a
roughly equal share of the load. Otherwise, there likely needs to be a provision
for workload to be distributed in proportion to the processing power available on
each machine.

Using weighted definitions of cluster members allows nodes to have different
hardware resources and still participate in a cluster. The weight specifies that the
application server with a higher weight will be more likely to serve the request
faster, and workload management will consequently send more requests to that
node.

With several cluster members available to handle requests, it is more likely that
failures will not negatively affect throughput and reliability. With cluster members
distributed to various nodes, an entire machine can fail without any application
downtime. Requests can be routed to other nodes if one node fails. Clustering
also allows for maintenance of nodes without stopping application functionality.

This section only gives you an introduction into WebSphere WLM. The available
WLM policies and how requests are distributed among available servers is
described in great detail in Chapter 6 and Chapter 7 of IBM WebSphere V6
Scalability and Performance Handbook, SG24-6392.
44 WebSphere Application Server V6: High Availability Solutions

2.3.2 Benefits
Workload management provides the following benefits to WebSphere
applications:

� It balances client processing requests, allowing incoming work requests to be
distributed according to a configured WLM selection policy.

� It provides failover capability by redirecting client requests to a running server
when one or more servers are unavailable. This improves the availability of
applications and administrative services.

� It enables systems to be scaled up to serve a higher client load than provided
by the basic configuration. With clusters and cluster members, additional
instances of servers can easily be added to the configuration. See 2.2,
“WebSphere Application Server clustering” on page 39 for details.

� It enables servers to be transparently maintained and upgraded while
applications remain available for users.

� It centralizes administration of application servers and other objects.

2.4 Managing session state among servers
All the load distribution techniques discussed in this book rely, on one level or
another, on using multiple copies of an application server and arranging for
multiple consecutive requests from various clients to be serviced by different
servers.

If each client request is completely independent of every other client request,
then it does not matter whether two requests are processed on the same server.
However, in practice, there are many situations where all requests from an
individual client are not totally independent. In many usage scenarios, a client
makes one request, waits for the result, then makes one or more subsequent
requests that depend upon the results received from the earlier requests.

Such a sequence of operations on behalf of one client falls into one of two
categories:

� Stateless: the server that processes each request does so based solely on
information provided with that request itself, and not on information that it
“remembers” from earlier requests. In other words, the server does not need
to maintain state information between requests.

� Stateful: the server that processes a request does need to access and
maintain state information generated during the processing of an earlier
request.
 Chapter 2. WebSphere Application Server failover and recovery 45

Again, in the case of stateless interactions, it does not matter if different requests
are being processed by different servers. However, in the case of stateful
interactions, we must ensure that whichever server is processing a request has
access to the state information necessary to service that request. This can be
ensured either by arranging for the same server to process all the client requests
associated with the same state information, or by arranging for that state
information to be shared and equally accessible by all servers that might require
it. In that last case, it is often advantageous to arrange for most accesses to the
shared state to be performed from the same server, so as to minimize the
communications overhead associated with accessing the shared state from
multiple servers.

2.4.1 HTTP sessions and the session management facility
In the case of an HTTP client interacting with a servlet, the state information
associated with a series of client requests is represented as an HTTP session,
and identified by a session ID. The Servlet 2.3 specification defines that, after a
session has been created, all following requests need to go to the same
application server that created the session.

However, in a clustered environment, there is more than one application server
that can serve the client request. Therefore, the Web server plug-in needs to
read a request and be able to identify which cluster member should handle it.
Session identifiers are used to do this - they allow the plug-in to pick the correct
cluster member and Web container to retrieve the current session object.

The session manager module that is part of each Web container is responsible
for managing HTTP sessions, providing storage for session data, allocating
session IDs, and tracking the session ID associated with each client request.

The session manager provides for the storage of session-related information
either in-memory within the application server, in which case it cannot be shared
with other application servers, in a back-end database, shared by all application
servers, or by using memory-to-memory replication.

Database persistence
Storing session information in a database, sometimes referred to as persistent
sessions or session clustering, is one method to share distributed session
information among cluster members. With this option, whenever an application
server receives a request associated with a session ID, which is not in memory, it
can obtain it by accessing the back-end database, and can then serve the
request. When this option is not enabled, and another clustering mechanism is
not used, if any load distribution mechanism happens to route an HTTP request
to an application server other than the one where the session was originally
created, that server would be unable to access the session, and would thus not
46 WebSphere Application Server V6: High Availability Solutions

produce correct results in response to that request. One drawback to the
database solution, just as with application data, is that it provides a single point of
failure so it should be implemented in conjunction with hardware clustering
products such as IBM HACMP, TSA, or solutions such as database replication.
Another drawback is the performance hit, caused by database disk I/O
operations and network communications.

Memory-to-memory session replication
Memory-to-memory replication enables the sharing of sessions between
application servers without using a database. It uses the built-in Data Replication
Service (DRS) of WebSphere to replicate session information stored in memory
to other members of the cluster.

Using this functionality removes the single point of failure that is present in
persistent sessions through a database solution that has not been made highly
available using clustering software. The sharing of session state is handled by
creating a replication domain and then configuring the Web container to use that
replication domain to replicate session state information to the specified number
of application servers. The administrator can define how many replicas should
exist in the domain (either a single replica, a defined number, or the entire
domain).

Memory-to-memory replication, such as database persistence, also incurs a
performance hit, primarily because of the overhead of network communications.
Additionally, because copies of the session object reside in application server
memory this reduces the available heap for application requests and usually
results in more frequent garbage collection cycles by the application server JVM.

Conclusion
Storing session state in a persistent database or using memory-to-memory
replication provides a degree of fault tolerance to the system. If an application
server crashes or stops, any session state that it might have been working on
would normally still be available either in the back-end database or in another still
running application server’s memory, so that other application servers can take
over and continue processing subsequent client requests associated with that
session.

Note: Depending on your application (for example, the session size) and on
your hardware resources, memory-to-memory replication or database
persistence might be the better solution for your environment. Refer to IBM
WebSphere V6 Scalability and Performance Handbook, SG24-6392 for
additional information about resource requirements and performance for
either option.
 Chapter 2. WebSphere Application Server failover and recovery 47

You can find more information about this topic, including traces and logs, 2.5,
“Web container clustering and failover” on page 51 and Chapter 6 of IBM
WebSphere V6 Scalability and Performance Handbook, SG24-6392.

2.4.2 EJB sessions or transactions
In the case of an EJB client interacting with one or more EJBs, the management
of state information that is associated with a series of client requests is governed
by the EJB specification and is implemented by the WebSphere EJB container.
The interaction depends on the types of EJBs that are the targets of these
requests.

Stateless session beans
By definition, a stateless session bean maintains no state information. Each
client request directed to a stateless session bean is independent of the previous
requests that were directed to the bean. The EJB container maintains a pool of
instances of stateless session beans, and provides an arbitrary instance of the
appropriate stateless session bean when a client request is received. Requests
can be handled by any stateless session bean instance in any cluster member of
a cluster, regardless of whether the bean instance handled the previous client
requests.

Stateful session beans
In contrast, a stateful session bean is used precisely to capture state information
that must be shared across multiple consecutive client requests that are part of
one logical sequence of operations. The client must take special care to ensure
that it is always accessing the same instance of the stateful session bean, by
obtaining and keeping an EJB object reference to that bean. The various
load-distribution techniques available in WebSphere make special provisions to
support this characteristic of stateful session beans.

A new feature in WebSphere V6 is the failover support for stateful session beans;
the state information is now replicated to other application servers in the cluster
using the Data Replication Service (DRS). If an application server fails, a new
instance of the bean is created on a different server, the state information is
recovered, requests are directed to the recovered instance and processing
continues.

Entity beans
An entity bean represents persistent data. Most external clients access entity
beans by using session beans, but it is possible for an external client to access
an entity bean directly. The information contained in an entity bean is not
associated with a session or with the handling of one client request or series of
48 WebSphere Application Server V6: High Availability Solutions

client requests. However, it is common for a client to make a succession of
requests targeted at the same entity bean instance. It is also possible for more
than one client to independently access the same entity bean instance within a
short time interval. The state of an entity bean must therefore be kept consistent
across multiple client requests.

For entity beans, the concept of a session is replaced by the concept of a
transaction. An entity bean is instantiated in a container for the duration of the
client transaction in which it participates. All subsequent accesses to that entity
bean within the context of that transaction are performed against that instance of
the bean in that particular container. The container needs to maintain state
information only within the context of that transaction. The workload
management service uses the concept of transaction affinity to direct client
requests. After an entity bean is selected, client requests are directed towards it
for the duration of the transaction.

Between transactions, the state of the entity bean can be cached. The
WebSphere V6.x EJB container supports the following caching options:

� Option A caching

WebSphere Application Server assumes that the entity bean is used within a
single container. Clients of that bean must direct their requests to the bean
instance within that container. The entity bean has exclusive access to the
underlying database, which means that the bean cannot be clustered or
participate in workload management if option A caching is used.

� Option B caching

The bean instance remains active (so it is not guaranteed to be made passive
at the end of each transaction), but it is always reloaded from the database at
the start of each transaction. A client can attempt to access the bean and
start a new transaction on any container that has been configured to host that
bean.

� Option C caching (default)

The entity bean is always reloaded from the database at the start of each
transaction and passivated at the end of each transaction. A client can
attempt to access the bean and start a new transaction on any container that
has been configured to host that bean.

Message-driven beans
The message-driven bean (MDB) was introduced with WebSphere V5. Support
for MDBs is a requirement of a J2EE 1.3 compliant application server. In
WebSphere V4.0, the Enterprise Edition offered a similar functionality called
message beans that leveraged stateless session EJBs and a message listener
service. That container, however, did not implement the EJB 2.0 specification.
 Chapter 2. WebSphere Application Server failover and recovery 49

The MDB is a stateless component that is invoked by a J2EE container when a
JMS message arrives at a particular JMS destination (either a queue or topic).
Loosely, the MDB is triggered by the arrival of a message.

Messages are normally anonymous. If some degree of security is desired, the
listener will assume the credentials of the application server process during the
invocation of the MDB.

MDBs handle messages from a JMS provider within the scope of a transaction. If
transaction handling is specified for a JMS destination, the listener starts a global
transaction before reading incoming messages from that destination. Java
Transaction API (JTA) transaction control for commit or rollback is invoked when
the MDB processing has finished.

2.4.3 Server affinity
The previous discussion implies that any load-distribution facility, when it
chooses a server to direct a request, is not entirely free to select any available
server:

� In the case of stateful session beans or entity beans within the context of a
transaction, there is only one valid server. WebSphere WLM always directs a
client's access of a stateful session bean to the single server instance that
contains the bean (there is no possibility of choosing the wrong server here).
If the request is directed to the wrong server (for example because of a
configuration error), it either fails or that server itself is forced to forward the
request to the correct server at great performance cost.

� In the case of clustered HTTP sessions or entity beans between transactions,
the underlying shared database ensures that any server can correctly
process each request. However, accesses to this underlying database might
be expensive, and it might be possible to improve performance by caching
the database data at the server level. In such a case, if multiple consecutive
requests are directed to the same server, they might find the required data
still in the cache and, thereby, reduce the overhead of access to the
underlying database.

The characteristics of each load-distribution facility, which take these constraints
into account, are generally referred to as server affinity. In effect, the load
distribution facility recognizes that multiple servers might be acceptable targets
for a given request, but it also recognizes that each request might have a
particular affinity for being directed to a particular server where it can be handled
better or faster.

We encounter this notion of server affinity throughout the discussion of the
various load-distribution facilities. In particular, we encounter the notion of
50 WebSphere Application Server V6: High Availability Solutions

session affinity, where the load distribution facility recognizes the existence of a
session and attempts to direct all requests within that session to the same server,
and we also encounter the notion of transaction affinity, in which the load
distribution facility recognizes the existence of a transaction, and behaves
similarly.

A particular server affinity mechanism can be weak or strong. In a weak affinity
mechanism, the system attempts to enforce the desired affinity for the majority of
requests most of the time but might not always be able to provide a total
guarantee that this affinity is respected. In a strong affinity mechanism, the
system guarantees that affinity is always strictly respected and generates an
error when it cannot.

2.5 Web container clustering and failover
A complete WebSphere environment can include several Web server instances
as well as several WebSphere Application Server instances. Each HTTP server
is configured to run the WebSphere Web server plug-in. The cluster members
can all reside on a single node or can be distributed across multiple nodes in the
WebSphere cell (vertical or horizontal scaling).

Each request coming into the Web server is passed through the plug-in, which
uses its configuration information to determine if the request should be routed to
WebSphere, and if so, to which application server (that is to which Web
container) the request should be routed to (see Figure 2-5 on page 52). The
communication between the plug-in and the application servers can be either
HTTP or HTTPS. The Web server plug-in distributes requests around cluster
members that are not available.
 Chapter 2. WebSphere Application Server failover and recovery 51

Figure 2-5 Plug-in (Web container) workload management

The plug-in, which runs in-process with the Web server itself, is responsible for
deciding which Web container the request should be passed to. It uses the
following mechanisms for WLM and failover:

� Application server clustering which creates server process redundancy for
failover support. All application servers in a cluster host the same application
or applications.

� The workload management routing technique built into the WebSphere Web
server plug-in. It controls the routing of client requests among redundant
server processes. This routing is based purely on the weights associated with
the cluster members. If all cluster members have identical weights, the plug-in
sends an equal number of requests to all members of the cluster, when
assuming no session affinity. If the weights are different, the plug-in routes
requests to those cluster members with the higher weight value more often.

� Session management and failover mechanism, which provides HTTP session
data for redundant server processes.

Thus, satisfactory failover support for Web clients can only be achieved by the
use of all three mechanisms.

Servlet
Requests

Application Server1

Application Server2

Web
Container

Web
Container

Plugin

HTTP Server
52 WebSphere Application Server V6: High Availability Solutions

2.5.1 Session management and failover inside the plug-in
As you know, the plug-in always attempts to route a request that contains
session information to the application server that processed the previous
requests. However, if the server that contains the session is not available to the
plug-in when it forwards the request, then the plug-in can route the request to an
alternate server. The alternate server can then retrieve the distributed session
information according to the chosen distribution method (database or
memory-to-memory replication).

There are three methods of identifying a user’s session to the application server:
Cookies, URL rewriting, and SSL ID. Example 2-1 shows a JSESSIONID cookie
which consists of four parts:

� Cache ID (0000)
� Session ID (A2MB4IJozU_VM8IffsMNfdR)
� Separator (:)
� Clone ID (v544d0o0 = application server ID)

Example 2-1 Example of a session identifier - JSESSIONID cookie

JSESSIONID=0000A2MB4IJozU_VM8IffsMNfdR:v544d0o0

In case of a failover, the Clone ID of the failover server is appended at the end,
also separated by a colon. When the original server becomes available again,
the request falls back and is handled by the original server.

Figure 2-6 on page 54 and the subsequent step-by-step explanation explain how
the plug-in performs the failover.
 Chapter 2. WebSphere Application Server failover and recovery 53

Figure 2-6 Session management example

Using Figure 2-6, the steps involved to find a failover application server are:

1. The plug-in processes a request from user A to http://http1/snoop. The
request also contains a JSESSION cookie with a session ID and Clone ID of
v544d031.

2. The plug-in matches the virtual host and URI to the cluster wascluster01
(composed by servers wasmember01 and wasmember03, each one located
in a different machine).

3. The plug-in checks for session affinity and finds the Clone ID of v544d031 in
the request’s JSESSIONID cookie.

4. The plug-in searches for the Clone ID of v544d031 in the plug-cfg.xml’s list of
primary servers and matches the Clone ID to the wasmember01 application
server.

5. The plug-in checks to see if wasmember01 has been marked down. In our
case, it has not been marked down yet.

6. The plug-in attempts to get a stream to wasmember01. Finding the server is
not responding, Web1 is marked as down and the retry timer is started.

7. The plug-in checks the session identifier again.

8. The plug-in checks the servers. When it reaches wasmember01, it finds it is
marked down and the retry timer is not 0, so it skips wasmember01 and
checks the next cluster member in the primary server list.

w a s n a 0 1

w a s m e m b e r0 1

C lo n e ID v 5 4 4 d 0 3 1

U s e r A
U s e r B
U s e r C

S e s s io n C a c h e

U s e r A

A ff in ity
R o u t in g

S e s s io n
S to re

U s e r A

F a ilo v e rR o u te d
R e q u e s t

S e s s io n
re tr ie v e d

w a s n a 0 1

w a s m e m b e r0 1

C lo n e ID v 5 4 4 d 0 3 1

U s e r A
U s e r B
U s e r C

S e s s io n C a c h e

w a s n a 0 2

w a s m e m b e r0 3

C lo n e ID v 5 4 4 d 0 o 0

U s e r D
U s e r E

S e s s io n C a c h e

w a s n a 0 2

w a s m e m b e r0 3

C lo n e ID v 5 4 4 d 0 o 0

U s e r D
U s e r E
U s e r A

S e s s io n C a c h e

S e s s io n
S to re
54 WebSphere Application Server V6: High Availability Solutions

9. The plug-in selects wasmember03 (Clone ID v544d0o0) and attempts to get a
stream to it. The plug-in either opens a stream or gets an existing one from
the queue.

10.The request is sent and received successfully to wasmember03 (which
retrieves the session information from the persistent session database or has
it in-memory because of a previous replication) and sent back to user A.

For additional information about plug-in failover behavior, read “WebSphere
plug-in behavior” in Chapter 6 of IBM WebSphere V6 Scalability and
Performance Handbook, SG24-6392. This section discusses many failure
situations in detail and includes information about logs and traces.

2.5.2 Web container failures
In a clustered environment with several cluster members, an unavailable
application server does not mean an interruption of the service. When the plug-in
has selected a cluster member to handle a request it will attempt to communicate
with the cluster member. There are however a number of situations when the
plug-in might not be able to complete a request to a specific application server. If
this communication is unsuccessful or breaks, then the plug-in marks the cluster
member as down and attempts to find another cluster member to handle the
request. Web container failures are detected based on TCP response values or
lack of response to a plug-in request.

The marking of the cluster member as down means that, should that cluster
member be chosen as part of a workload management policy or in session
affinity, the plug-in will not try to connect to it. The plug-in knows that it is marked
as down and ignores it.

The following are some example scenarios when the plug-in cannot connect to a
cluster member:

� Expected application server failures (the cluster member has been brought
down intentionally for maintenance, for example).

� Unexpected server process failures (the application server JVM has crashed,
for example).

� Server network problems between the plug-in and the cluster member (a
router is broken, for example).

� System problems (whether expected), such as system shutdown or power
failures.

� The cluster member is overloaded and cannot process the request (for
example because the system is too small to handle a large number of clients,
or because the server weight is inappropriate).
 Chapter 2. WebSphere Application Server failover and recovery 55

In the first two failure cases described, the physical machine where the Web
container is supposed to be running is still available, although the WebContainer
Inbound Chain is not available. When the plug-in attempts to connect to the
WebContainer Inbound Chain to process a request for a Web resource, the
machine will refuse the connection, causing the plug-in to mark the application
server as down.

In the third and fourth events, however, the physical machine is no longer
available to provide any kind of response. In these events, if non-blocking
connection is not enabled, the plug-in waits for the local operating system to time
out the request before marking the application server unavailable. While the
plug-in is waiting for this connection to time out, requests routed to the failed
application server appear to hang. The default value for the TCP timeout varies
based on the operating system. While these values can be modified at the
operating system level, adjustments should be made with great care.
Modifications might result in unintended consequences in both WebSphere and
other network dependent applications running on the machine. This problem can
be eliminated by enabling non-blocking connection. Refer to “Connection
Timeout setting” on page 58 for more information.

In the fifth case, overloading can make a healthy server unavailable. To avoid
overloading of servers, you can define the maximum number of connections that
are allowed from HTTP servers to the application server. This is explained in
“Maximum number of connections” on page 61.

2.5.3 Web server plug-in failover tuning
The Web server plug-in uses an XML configuration file called plugin-cfg.xml to
determine information about the WebSphere cell it is serving. There are some
settings in the plug-in file that directly affect how the plug-in works in a workload
management environment. In WebSphere V6 all of these settings can be
modified using the Administrative Console. Plug-in file tags related to workload
management and failover are:

� You can change the retry interval for connecting to a cluster member marked
as down. See “Retry interval” on page 57 for more information.

� You can add the ConnectTimeout attribute for each server. See “Connection
Timeout setting” on page 58.

� You can divide the servers into a primary server list and a backup server list.
This is a feature available since WebSphere V5, also called two-level failover
support. See “Primary and backup servers” on page 60 for information.

� You can change the maximum number of connections that will be allowed to a
server from a given plug-in. If this attribute is set to either zero or -1, there is
56 WebSphere Application Server V6: High Availability Solutions

no limit to the number of pending connections to the application servers. The
default value is -1. Refer to “Maximum number of connections” on page 61.

Retry interval
There is a setting in the plug-in configuration file that allows you to specify how
long to wait before retrying a server that is marked as down. This is useful in
avoiding unnecessary attempts when you know that a server is unavailable, for
example because it is being serviced. The default is 60 seconds. This default
setting means that if a cluster member was marked as down, the plug-in would
not retry it for 60 seconds. If you turn on tracing in the plug-in log file, it is possible
to see how long is left until the cluster member will be tried again.

This setting is specified in the configuration of each Web server in the Retry
interval field. To change this value, go to Servers → Web Servers →
WebServer_Name → Plug-in properties → Request Routing.

Finding the correct setting
There is no way to recommend one specific value; the value chosen depends
entirely on your environment, for example on the number of cluster members in
your configuration.

Setting the retry interval to a small value allows an application server that
becomes available to quickly begin serving requests. However, too small of a
value can cause serious performance degradation, or even cause your plug-in to
appear to stop serving requests, particularly in a machine outage situation.

For example, if you have numerous cluster members and one cluster member
being unavailable does not affect the performance of your application, then you
can safely set the value to a very high number. Alternatively, if your optimum load
has been calculated assuming all cluster members to be available or if you do not
have very many, then you want your cluster members to be retried more often.
Also, take into consideration the time it takes to restart your server. If a server
takes a long time to boot up and load applications, then you need a longer retry
interval.

Another factor to consider for finding the correct retry interval for your
environment is the operating system TCP/IP timeout value. To explain the
relationship between these two values, let's look at an example configuration
with two machines, which we call A and B. Each of these machines is running
two clustered application servers (CM1 and CM2 on A, CM3 and CM4 on B). The
HTTP server and plug-in are running on AIX with a TCP timeout of 75 seconds,
the retry interval is set to 60 seconds, and the routing algorithm is weighted
 Chapter 2. WebSphere Application Server failover and recovery 57

round-robin. If machine A fails, either expected or unexpected, the following
process occurs when a request comes in to the plug-in:

1. The plug-in accepts the request from the HTTP server and determines the
server cluster.

2. The plug-in determines that the request should be routed to cluster member
CM1 on system A.

3. The plug-in attempts to connect to CM1 on machine A. Because the physical
machine is down, the plug-in waits 75 seconds for the operating system
TCP/IP timeout interval before determining that CM1 is unavailable.

4. The plug-in attempts to route the same request to the next cluster member in
its routing algorithm, CM2 on machine A. Because machine A is still down,
the plug-in must again wait 75 seconds for the operating system TCP/IP
timeout interval before determining that CM2 is also unavailable.

5. The plug-in attempts to route the same request to the next cluster member in
its routing algorithm, CM3 on system B. This application server successfully
returns a response to the client, about 150 seconds after the request was first
submitted.

6. While the plug-in was waiting for the response from CM2 on system A, the
60-second retry interval for CM1 on system A expired, and the cluster
member is added back into the routing algorithm. A new request is routed to
this cluster member which is still unavailable, and this lengthy waiting process
will begin again.

There are two options to avoid this problem:

� The recommended approach is to configure your application servers to use a
non-blocking connection. This eliminates the impact of the operating system
TCP/IP timeout. See “Connection Timeout setting” on page 58 for
information.

� An alternative is to set the retry interval to a more conservative value than the
default of 60 seconds, related to the number of cluster members in your
configuration. A good starting point is 10 seconds + (#_of_cluster_members *
TCP_Timeout). This ensures that the plug-in does not get stuck in a situation
of constantly trying to route requests to the failed members. In the scenario
described before, this setting would cause the two cluster members on
system B to exclusively service requests for 235 seconds before the cluster
members on system A are retried, resulting in another 150-second wait.

Connection Timeout setting
When a cluster member exists on a machine that is removed from the network
(because its network cable is unplugged or it has been powered off, for example),
the plug-in, by default, cannot determine the cluster member's status until the
58 WebSphere Application Server V6: High Availability Solutions

operating system TCP/IP timeout expires. Only then can the plug-in forward the
request to another available cluster member.

It is not possible to change the operating system timeout value without
unpredictable side effects. For instance, it might make sense to change this value
to a low setting so that the plug-in can failover quickly. However, the timeout
value on some of the operating systems is not only used for outgoing traffic (from
Web server to application server) but also for incoming traffic. This means that
any changes to this value also change the time it takes for clients to connect to
your Web server. If clients are using dial-up or slow connections and you set this
value too low, they cannot connect.

To overcome this issue, WebSphere Application Server V6 offers an option
within the plug-in configuration that allows you to change the connection timeout
between the plug-in and each Application Server, which makes the plug-in use a
non-blocking connect. To configure this setting, go to Application servers →
<AppServer_Name> → Web Server plug-in properties.

Setting the Connect Timeout attribute for a server to a value of zero (default) is
equal to selecting the No Timeout option. That is, the plug-in performs a blocking
connect and waits until the operating system times out. Set this attribute to an
integer value greater than zero to determine how long the plug-in should wait for
a response when attempting to connect to a server. A setting of 10 means that
the plug-in waits for 10 seconds to time out.

Finding the correct setting
To determine what setting you should use, take into consideration how fast your
network and servers are. You should test to see how fast your network is and
take into account peak network traffic and peak server usage. If the server
cannot respond before the connection timeout, the plug-in marks it as down. This
value is an application server property and thus can be set for each individual
cluster member. For instance, you have a system with four cluster members, two
of which are on a remote node. The remote node is on another subnet and it
sometimes takes longer for the network traffic to reach it. You might want to set
up your cluster in this case with different connection timeout values.
 Chapter 2. WebSphere Application Server failover and recovery 59

If a non-blocking connect is used, you see a slightly different trace output.
Example 2-2 shows what you see in the plug-in trace if a non-blocking connect is
successful.

Example 2-2 Plug-in trace when ConnectTimeout is set

...
TRACE: ws_common: websphereGetStream: Have a connect timeout of 10; Setting
socket to not block for the connect
TRACE: errno 55
TRACE: RET 1
TRACE: READ SET 0
TRACE: WRITE SET 32
TRACE: EXCEPT SET 0
TRACE: ws_common: websphereGetStream: Reseting socket to block
...

Primary and backup servers
Starting with V5, WebSphere Application Server implements a feature called
primary and backup servers. When the plugin-cfg.xml is generated, all servers
are initially listed under the PrimaryServers tag, which is an ordered list of
servers to which the plug-in can send requests.

There is also an optional tag called BackupServers. This is an ordered list of
servers to which requests should only be sent if all servers specified in the
Primary Servers list are unavailable.

Within the Primary Servers, the plug-in routes traffic according to server weight
or session affinity. The Web server plug-in does not route requests to any server
in the Backup Server list as long as there are application servers available from
the Primary Server list. When all servers in the Primary Server list are
unavailable, the plug-in will then route traffic to the first available server in the
Backup Server list. If the first server in the Backup Server list is not available, the
request is routed to the next server in the Backup Server list until no servers are
left in the list or until a request is successfully sent and a response received from
an application server. Weighted round-robin routing is not performed for the
servers in the Backup Server list.

Important: In WebSphere V6, the Primary and Backup Server lists are only
used when the new partition ID logic is not used. In other words, when
partition ID comes into play, then Primary/Backup Server logic does not apply
any longer. To learn about partition ID, refer to IBM WebSphere V6 Scalability
and Performance Handbook, SG24-6392.
60 WebSphere Application Server V6: High Availability Solutions

You can change a cluster member role (primary or backup) using the
Administrative Console. Select Servers → Application servers →
<AppServer_Name> → Web Server plug-in properties and select the
appropriate value from the Server Role pull-down field.

All application server details in the plugin-cfg.xml file are listed under the
ServerCluster tag. This includes the PrimaryServers and BackupServers tags as
illustrated in Example 2-3.

Example 2-3 ServerCluster element depicting primary and backup servers

...
<ServerCluster>
...
</Server>
 <PrimaryServers>
 <Server Name="wasna01_wasmember01"/>
 <Server Name="wasna02_wasmember03"/>
 </PrimaryServers>
 <BackupServers>
 <Server Name="wasna01_wasmember02"/>

<Server Name="wasna02_wasmember04"/>
 </BackupServers>
</ServerCluster>
...

The backup server list is only used when all primary servers are down.

Maximum number of connections
There are only so many concurrent requests that can be handled by a Web
container in a cluster member. The number of concurrent requests is determined
by the maximum number of threads available (10 threads implies 10 concurrent
requests). However, a request does not necessarily constitute a user request. A
browser might make multiple requests to get the information that a user
requested.

Connections coming into the Web container’s WebContainer Inbound Chain feed
requests to threads. If there are more connections than threads available,
connections start to backlog, waiting for free threads. The Maximum number of
connections attribute is used to specify the maximum number of pending
connections to an application server.

If there has been a successful connection but it is waiting for a thread in the Web
container, then the plug-in waits for a response (and so does the client). If the
connection backlog is full, the plug-in is refused a connection to the port and the
plug-in basically treats this in the same way as a stopped cluster member. It
 Chapter 2. WebSphere Application Server failover and recovery 61

skips this cluster member and selects another cluster member instead. The
cluster member then can reduce its connection backlog, because the plug-in
does not send new requests. The plug-in checks whether the server is below the
defined number of maximum connections periodically and only sends requests
again when this status is reached, as shown in Example 2-4, Example 2-5 on
page 63, and Example 2-6 on page 63.

Each application server can have a different setting for the maximum number of
pending connections. To change this setting, go to Servers → Application
servers → AppServer_Name → Web Server plug-in properties. The default
setting is No Limit, which is the same as though the value is set to -1 or zero. You
can set the attribute to any arbitrary value. For example, let the two application
servers be fronted by two nodes running IBM HTTP Server. If the
MaxConnections attribute is set to 10, then each application server could
potentially get up to 20 pending connections.

If the number of pending connections reaches the maximum limit of the
application server, then it is not selected to handle the current request. If no other
application server is available to serve the request, HTTP response code 503
(Service unavailable) is returned to the user.

To monitor the behavior of the plug-in when a cluster member has too many
requests, use a load testing tool (such as ApacheBench or JMeter), the plug-in
log, the HTTP servers’ access log, and Tivoli Performance Viewer.

For our test we have configured wasmember05 to have a maximum connections
setting of 3 and wasmember06 of 4. We have one HTTP server fronting the
application servers. Running a load test with 30 concurrent users against this
cluster eventually results in both members having reached the maximum
connections value. At this point, the user gets Error 503. See Example 2-4
(plug-in log) and Example 2-5 on page 63 (HTTP server access log).

Example 2-4 Plug-in log file errors when no server can serve requests (MaxConnections)

...
[Wed May 11 07:26:23 2005] 00007ab5 aaff9bb0 - STATS: ws_server_group:
serverGroupCheckServerStatus: Checking status of wasna01_wasmember05,
ignoreWeights 0, markedDown 0, retryNow 0, wlbAllows 17
reachedMaxConnectionsLimit 1
[Wed May 11 07:26:23 2005] 00007ab5 aaff9bb0 - WARNING: ws_server_group:
serverGroupCheckServerStatus: Server wasna01_wasmember05 has reached maximmum
connections and is not selected
[Wed May 11 07:26:23 2005] 00007ab5 aaff9bb0 - STATS: ws_server_group:
serverGroupCheckServerStatus: Checking status of wasna02_wasmember06,
ignoreWeights 0, markedDown 0, retryNow 0, wlbAllows 14
reachedMaxConnectionsLimit 1
62 WebSphere Application Server V6: High Availability Solutions

[Wed May 11 07:26:23 2005] 00007ab5 aaff9bb0 - WARNING: ws_server_group:
serverGroupCheckServerStatus: Server wasna02_wasmember06 has reached maximmum
connections and is not selected
[Wed May 11 07:26:23 2005] 00007ab5 aaff9bb0 - ERROR: ws_server_group:
serverGroupNextRoundRobinServer: Failed to find a server; all could be down or
have reached the maximimum connections limit
[Wed May 11 07:26:23 2005] 00007ab5 aaff9bb0 - WARNING: ws_common:
websphereFindServer: Application servers have reached maximum connection limit
[Wed May 11 07:26:23 2005] 00007ab5 aaff9bb0 - ERROR: ws_common:
websphereWriteRequestReadResponse: Failed to find a server
[Wed May 11 07:26:23 2005] 00007ab5 aaff9bb0 - ERROR: ESI: getResponse: failed
to get response: rc = 8
[Wed May 11 07:26:23 2005] 00007ab5 aaff9bb0 - ERROR: ws_common:
websphereHandleRequest: Failed to handle request
...

When the plug-in detects that there are no application servers available to satisfy
the request, HTTP response code 503 (Service unavailable) is returned. This
response code appears in the Web server access log, as shown in Example 2-5.

Example 2-5 HTTP Server access log example

[11/May/2005:07:26:23 -0500] "GET /wlm/BeenThere HTTP/1.1" 503 431
[11/May/2005:07:26:23 -0500] "GET /wlm/BeenThere HTTP/1.1" 503 431

Further down in the plug-in log you can see that eventually both servers respond
to requests again when they have reduced their backlog. This is shown in
Example 2-6.

Example 2-6 Max. connections - application servers pick up work again

...
wasmember05 worked off the pending requests and is "back in business",
wasmember06 is still in “reachedMaxConnectionsLimit” status:

[Wed May 11 07:26:23 2005] 00007ab9 b640bbb0 - STATS: ws_server:
serverSetFailoverStatus: Server wasna01_wasmember05 : pendingConnections 0
failedConnections 0 affinityConnections 0 totalConnections 1.
[Wed May 11 07:26:23 2005] 00007ab9 aa5f8bb0 - STATS: ws_server_group:
serverGroupCheckServerStatus: Checking status of wasna01_wasmember05,
ignoreWeights 0, markedDown 0, retryNow 0, wlbAllows 17
reachedMaxConnectionsLimit 0
[Wed May 11 07:26:23 2005] 00007ab9 aa5f8bb0 - STATS: ws_server:
serverSetFailoverStatus: Server wasna01_wasmember05 : pendingConnections 0
failedConnections 0 affinityConnections 0 totalConnections 2.
[Wed May 11 07:26:23 2005] 00007ab9 a9bf7bb0 - STATS: ws_server_group:
serverGroupCheckServerStatus: Checking status of wasna02_wasmember06,
 Chapter 2. WebSphere Application Server failover and recovery 63

ignoreWeights 0, markedDown 0, retryNow 0, wlbAllows 14
reachedMaxConnectionsLimit 1
[Wed May 11 07:26:23 2005] 00007ab9 a9bf7bb0 - WARNING: ws_server_group:
serverGroupCheckServerStatus: Server wasna02_wasmember06 has reached maximmum
connections and is not selected
...
wasmember06 is working off the the requests. Once it reduced the number of
pending connections to below 4 (which is the maximum) it can then also serve
requests again. Both servers are handling user requests now:
...
[Wed May 11 07:26:23 2005] 00007ab5 b4608bb0 - STATS: ws_server:
serverSetFailoverStatus: Server wasna02_wasmember06 : pendingConnections 3
failedConnections 0 affinityConnections 0 totalConnections 4.
[Wed May 11 07:26:23 2005] 00007ab9 b5009bb0 - STATS: ws_server:
serverSetFailoverStatus: Server wasna02_wasmember06 : pendingConnections 2
failedConnections 0 affinityConnections 0 totalConnections 4.
[Wed May 11 07:26:23 2005] 00007ab9 b3c07bb0 - STATS: ws_server:
serverSetFailoverStatus: Server wasna02_wasmember06 : pendingConnections 1
failedConnections 0 affinityConnections 0 totalConnections 4.
[Wed May 11 07:26:23 2005] 00007ab9 b5a0abb0 - STATS: ws_server:
serverSetFailoverStatus: Server wasna02_wasmember06 : pendingConnections 0
failedConnections 0 affinityConnections 0 totalConnections 4.
[Wed May 11 07:26:24 2005] 00007ab9 b3206bb0 - STATS: ws_server_group:
serverGroupCheckServerStatus: Checking status of wasna02_wasmember06,
ignoreWeights 0, markedDown 0, retryNow 0, wlbAllows 14
reachedMaxConnectionsLimit 0
...

This feature helps you to better load balance the application servers fronted by
the plug-in. If application servers are overloaded, the plug-in skips these
application servers automatically and tries the next available application server.

However, a better solution is to have an environment that can handle the load
that you are expecting and to have it configured correctly. This includes setting
weights that correspond to the system capabilities, having the correct balance of
cluster members and Web servers, and setting up the queues for requests and
connections.
64 WebSphere Application Server V6: High Availability Solutions

2.6 EJB container clustering and failover
Many J2EE applications rely on Enterprise JavaBeans™ (EJBs) to implement
key business logic. Therefore, providing a resilient and highly available EJB
runtime system is a critical task for any EJB container provider. WebSphere
Application Server V6 satisfies this requirement for EJB applications by providing
an advanced high availability (HA) solution which guarantees that EJB requests
can be serviced continuously even during various types of failures.

EJB clients can be servlets, JSPs, a J2EE client, stand-alone Java applications,
or other EJBs. When an EJB client makes calls from within the WebSphere
container, client container or outside of a container, the request is handled by the
EJB container in one of the cluster members. If that cluster member fails, the
client request is automatically redirected to another available server. In IBM
WebSphere Application Server Network Deployment V6, the EJB HA is achieved
by a combination of three WebSphere services: the HAManager, the EJB server
cluster, and EJB workload management (WLM).

This section gives an overview and introduction into EJB WLM. For information
about Enterprise Java Services workload management, see Chapter 7 “EJB
workload management” of IBM WebSphere V6 Scalability and Performance
Handbook, SG24-6392.

In WebSphere Application Server V6, the Deployment Manager is not a single
point of failure for WLM routing. With the new High Availability Manager
(HAManager), a failure of the Deployment Manager triggers the HA Coordinator,
which carries the WLM routing information, to failover to any other server in the
same HA core group, based on the defined HA policy. Thus, the WLM routing is
a guaranteed service that is always available to the client even when a
Deployment Manager failure occurs. See Chapter 6, “WebSphere HAManager”
on page 175 for more information.

The option to configure Backup clusters further enhances EJB application
availability. See 2.7, “Backup cluster support” on page 87 for more information.
 Chapter 2. WebSphere Application Server failover and recovery 65

2.6.1 EJB container redundancy
High availability of the EJB container is achieved using a combination of the
WebSphere server cluster support and workload management plug-in to the
WebSphere ORB. Figure 2-7 shows horizontal and vertical scaling that is used
for application server redundancy to tolerate possible process and machine
failures.

Figure 2-7 WebSphere EJB container failover

The mechanisms for routing workload-managed EJB requests to multiple cluster
members are handled on the client side of the application. In WebSphere
Application Server V6, this functionality is supplied by a workload management
plug-in to the client ORB and the routing table in the LSD hosted in the Node
Agent. The WLM failover support for EJBs is to maintain the routing table and to
modify the client ORB to redirect traffic in case of a server failure.

The following is a list of possible failures for WebSphere processes:

� Expected server process failures, for example, stopping the server.

� Unexpected server process failures, for example, the server JVM crashes.

� Server network problems, for example, a network cable is disconnected or a
router is broken.

� Machine problems, for example, a system shutdown, operating system
crashes, or power failures.

� Overloading of EJB clients, for example, a denial of service attack, where the
system is not robust enough to handle a large number of clients, or the server
weight is inappropriate.

Master
Data

EJB
Container

EJB
Container

Admin
Data

EJB
Container

EJB
Container

Tran.
Log

Admin
Data

Incoming
Request

Deployment
Manager

Application
Database

EJB
Container Node Agent

EJB
Container Node Agent

Tran.
Log
66 WebSphere Application Server V6: High Availability Solutions

2.6.2 EJB bootstrapping considerations
In order to access EJBs that are deployed to WebSphere Application Server V6,
the client, regardless of whether it is local or remote, must first obtain a reference
to objects related to an application, such as a reference to an Enterprise
JavaBean (EJB) home object. This process is called EJB bootstrapping. The
bootstrapping service is provided through J2EE Naming that is implemented via
WebSphere CORBA CosNaming.

EJB home objects are bound into a hierarchical structure, referred to as a name
space. An InitialContext is used to access objects in the name space. To obtain
an InititalContext, a bootstrap server and port need to be supplied. If these are
not supplied, then default values are used specific to the client type and its
environment. More information about naming and name spaces can be found in
the redbook WebSphere Application Server V6 System Management and
Configuration Handbook, SG24-6451. Chapter 13 explains the concept in detail.

InitialContext requests participate in workload management when the provider
URL is a clustered resource (cluster member), and they do not when they are not
a clustered resource.

It is very important that you provide fault-tolerant bootstrapping information to the
EJB client to allow for application server (EJB container) failures. If the bootstrap
server and port are not available, then the reference cannot be obtained.
Therefore, it is highly recommended that you do not use the Deployment
Manager as the bootstrapping server as the Deployment Manager can be a
single point of failure in your WebSphere environment. Instead, use multiple
application servers or Node Agents.

Detailed information about EJB bootstrapping can be found in Chapter 7 “EJB
workload management” of the redbook IBM WebSphere V6 Scalability and
Performance Handbook, SG24-6392. This chapter contains code samples and
lists best practices for EJB bootstrapping.
 Chapter 2. WebSphere Application Server failover and recovery 67

2.6.3 EJB client redundancy and bootstrap failover support
When planning an EJB HA solution, in addition to EJB server redundancy, you
should also consider EJB client failover and redundancy. EJB client redundancy
refers to the automatic failover capability for an EJB request originator. In other
words, a user that initiated an EJB request can recover from the failure of a
particular EJB client instance.

The first task for any EJB client is to look up the home of the bean (except MDB).
You should consider the following scenarios:

� EJB requests coming from a clustered environment

Examples could be Web clients from Web containers that are workload
managed, EJB clients from another EJB container server cluster, or EJB
clients from their own server cluster. In this case, EJB clients can use their
own server to bootstrap with the default provider URL. If the bootstrap fails,
the EJB client fails. This failure should be handled by the previous server, for
example the Web server plug-in. Another version of the same client in a
different container might bootstrap from its server successfully. By using client
redundancy, EJB failover and high availability can be achieved.

� EJB requests coming from a non-clustered environment

Examples could be a Java client, J2EE client, C++ client, or third-party ORB
client. In this case, if the client is bootstrapping to only one server, the client
fails if the server fails, because the client is not redundant. You should
bootstrap the client to as many bootstrap servers as possible, as shown in
Example 2-7.

Example 2-7 Lookup with more than one bootstrap server

prop.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
prop.put(Context.PROVIDER_URL, "corbaloc::host1:9810,:host2:9810");
Context initialContext = new InitialContext(prop);
try { java.lang.Object myHome = initialContext.lookup("MyEJB");

From this example, the EJB client has the information for two bootstrap servers.
Therefore, if the request to server host1 fails, the bootstrap engine redirects the
bootstrap request to the server on host2 automatically.

WebSphere Application Server V6 uses the CORBA CosNaming as a naming
solution. It is often convenient to use multiple bootstrap addresses for automatic
retries. Every WebSphere server process contains a naming service, and the
client application can bootstrap to any combination of servers. It is a good
practice to bootstrap to the servers in a cluster, because the InitialContext is
workload-managed and you can use the simple name in the lookup. The
68 WebSphere Application Server V6: High Availability Solutions

InitialContext being workload-managed means that all the cluster members in the
cluster are available in the InitialContext object. This allows the WLM plug-in to
send the requests to another server in the cluster if a request to one server fails.
The other option is to get the InitialContext directly from the Node Agent using
the default port (usually 2809) and use the fully qualified name in the lookup. This
option, however, is not recommended, because the Node Agent is not
workload-managed and has no failover capability. This means that if the Node
Agent that returns the InitialContext fails then the InitialContext is invalid and will
not work, even if you use multiple Node Agents on the CorbaLoc URL. In this
option, the Node Agent is a single point of failure.

For J2EE clients, you can specify a bootstrap host and port in the launch
command line, and try different hosts or ports if you do not succeed when using
the default URL provider.

When the EJB home is location successfully, the naming server returns an
indirect IOR, LSD, and routing table, and the WLM plug-in redirects the client to
one of the clustered EJB containers.

2.6.4 EJB types, workload management and failover
EJB workload management and high availability are achieved by a combination
of WebSphere server cluster support and the WebSphere ORB (Object Request
Broker) workload management plug-in. EJB failover depends on whether this
type of EJB can be workload-managed by the container.

The workload management service provides load balancing and high availability
support for the following types of EJBs:

� Homes of entity or session beans
� Instances of entity beans
� Instances of stateless session beans

The only type of EJB references not subject to load distribution through EJB
WLM are stateful session bean instances. However, IBM WebSphere Application
Server Network Deployment V6 now supports stateful session bean failover as
explained in 2.6.5, “Stateful session bean failover” on page 73.
 Chapter 2. WebSphere Application Server failover and recovery 69

Table 2-1 summarizes the workload management capability of different types of
EJBs.

Table 2-1 Summary of EJB types and WLM

Stateless session beans
The EJB container maintains a pool of instances of stateless session beans and
provides an arbitrary instance of the appropriate stateless session bean when a
client request is received. Requests can be handled by any stateless session
bean instance in any cluster member, regardless of whether the bean instance
handled the previous client requests. If an EJB cluster member fails, the client
request can be redirected to the same stateless EJB deployed under another
WebSphere Application Server cluster member, based on the WLM routing
policy.

Workload management can be applied to the Home object and the bean instance
of a given stateless session bean. Therefore, the stateless session bean is a
perfect programming model when constructing a well-balanced and highly
available enterprise application.

Stateful session beans
A stateful session bean is used to capture state information that must be shared
across multiple consecutive client requests that are part of a logical sequence of
operations. The client must obtain an EJB object reference to a stateful session
bean to ensure that it is always accessing the same instance of the bean.

EJB types Component WLM capable

Entity bean (Option A) Home Yes

CMP bean instance No

BMP bean instance No

Entity bean (Option B,C) Home Yes

CMP bean instance Yes

BMP bean instance Yes

Message-driven bean Bean instance Yes

Session Bean Home Yes

Stateless bean instance Yes

Stateful bean instance No
70 WebSphere Application Server V6: High Availability Solutions

WebSphere Application Server supports the clustering of stateful session bean
home objects among multiple application servers. However, it does not support
the clustering of a specific instance of a stateful session bean. Each instance of a
particular stateful session bean can exist in just one application server and can
be accessed only by directing requests to that particular application server. State
information for a stateful session bean cannot be maintained across multiple
application server cluster members. Thus, stateful session bean instances
cannot participate in WebSphere workload management.

One significant improvement introduced in WebSphere Application Server V6 is
the failover support for stateful session beans, which means that the state
information maintained by a stateful session bean can survive various types of
failures now. This is achieved by utilizing the functions of the Data Replication
Service (DRS) and workload management. This is a new feature in WebSphere
V6 and is discussed in more detail in 2.6.5, “Stateful session bean failover” on
page 73.

Unlike the failover support for stateless session beans, the highly available
stateful session bean does not use a redundant array of stateful session bean
instances. Rather, it replicates its state in a highly available manner, such that
when an instance fails the state can be recovered and a new instance can take
the failed instance’s place. The state replication of a stateful session bean to
another instance is handled by DRS.

Entity beans
An entity bean represents persistent data. It is common for a client to make a
succession of requests targeted at the same entity bean instance. It is also
possible for more than one client to independently access the same entity bean
instance concurrently. The state of an entity bean must be kept consistent across
multiple client requests.

Within a transaction, the WLM ensures that the client is routed to the same
server based on the transaction affinity policy. Between transactions, the state of
the entity bean can be cached. WebSphere V6 supports Option A, Option B, and
Option C caching.

Entity beans can participate in workload management as long as the server
reloads the data into the bean at the start of each transaction, assuming that
transactional affinity is in place. Guaranteed passivation at the end of each

Note: Even though stateful session beans are not workload-managed
themselves, a certain level of WLM can be achieved when the homes are
evenly distributed. It is only after the bean is created that everything will be
performed on the same cluster member.
 Chapter 2. WebSphere Application Server failover and recovery 71

transaction is not a requirement for a bean to participate in workload
management. Hence, Option B and Option C caching are both compatible with
workload management, but Option A caching is not. See “Entity beans” on
page 48 for a detailed description of the three caching options.

Note that WebSphere V6 also supports optimistic concurrency control, where the
cached data is checked, and a collision is detected during the commit stage.
Loading data from the database might not be required at transaction start if the
application design is in place to stamp cached entity beans.

EJB failover capabilities summary
With the addition of the new stateful session bean failover, IBM WebSphere
Application Server Network Deployment V6 supports failover for almost all types
of Enterprise JavaBeans. Table 2-2 summarizes the failover capability for the
various EJB types.

Table 2-2 Summary of EJB types and failover support

Note: For more information about WebSphere Application Server behavior
regarding optimistic concurrent control, go to the InfoCenter and search for
concurrency control.

EJB types Component Failover capable

Entity bean (Option A) Home Yes

CMP bean instance No

BMP bean instance No

Entity bean (Option B, C) Home Yes

CMP bean instance Yes

BMP bean instance Yes

Session Bean Home Yes

Stateless bean instance Yes

Stateful bean instance Yes
72 WebSphere Application Server V6: High Availability Solutions

2.6.5 Stateful session bean failover
One significant high availability improvement introduced in WebSphere
Application Server V6 is the failover support for stateful session beans, which
means that the state information maintained by a stateful session bean can
survive various types of failures now. This is achieved by using the functions of
the Data Replication Service (DRS) and server workload management (WLM).
Because it is a new feature, we describe how to configure stateful session bean
failover as well as best practices in this section.

Unlike the failover support for stateless session beans, the highly available
stateful session bean does not utilize a redundant array of stateful session bean
instances but rather replicates its state in a highly available manner such that
when an instance fails, the state can be recovered and a new instance can take
the failed instance’s place. The state replication of a stateful session bean to
another instance is handled by DRS.

Stateful session bean failover is provided by WebSphere as a runtime feature.
You can use the WebSphere Administrative Console to enable or disable the
failover support. Depending on the scope of the failover target, you can enable or
disable the stateful session failover at the following three levels:

� EJB container
� Enterprise application
� EJB module

This feature provides great flexibility to users who want to enable failover under
the following circumstances:

� For all applications except for a single application, enable failover at the EJB
container level and override the setting at the application level to disable
failover for the single application.

� For a single installed application, disable failover at the EJB container level
and then override the setting at the application level to enable failover for the
single application.

� For all applications except for a single module of an application, enable
failover at the EJB container level, then override the setting at the module
application level to disable failover for the single module.

� For a single installed EJB module, disable failover at the EJB container level
and then override the setting at the EJB module level to enable failover for the
single EJB module.
 Chapter 2. WebSphere Application Server failover and recovery 73

Enable or disable stateful session bean failover
Now, let us look at how to enable the failover support for stateful session beans
at the three different levels.

At EJB container level
To enable stateful session bean failover at the EJB container level, do the
following:

1. In the Administrative Console, select Servers → Application servers →
<AppServer_Name>.

2. Expand EJB Container Settings, and then select EJB container.

3. Select Enable stateful session bean failover using memory-to-memory
replication, as shown in Figure 2-8.

This option is disabled until you define a replication domain. The selection
has a hyperlink to help you configure the replication settings. If no replication
domains are configured, the link takes you to a panel where you can create
one. If at least one domain is configured, the link takes you to a panel where
you can select the replication settings to be used by the EJB container.

4. Click OK and save your changes.

Figure 2-8 Configure stateful session bean failover at EJB container level
74 WebSphere Application Server V6: High Availability Solutions

At application level
To enable stateful session bean failover at the application level, do the following:

1. In the Administrative Console, select Applications → Enterprise
Applications → <Application_name>.

2. Select Stateful session bean failover settings from the Additional
Properties.

3. Select Enable stateful session bean failover using memory to memory
replication, which enables failover for all stateful session beans in this
application. If you want to disable the failover, deselect this option.

4. Define the Replication settings as shown in Figure 2-9 on page 76. You have
two choices:

– Use replication settings from EJB container

If you select this option, any replication settings that you define for this
application are ignored (that is, you do not overwrite the EJB container
settings).

– Use application replication settings

Selecting this option overrides the EJB container settings. This option is
disabled until you define a replication domain. The selection has a
hyperlink to help you configure the replication settings. If no replication
domains are configured, the link takes you to a panel where you can
create one. If at least one domain is configured, the link takes you to a
panel where you can select the replication settings to be used by the
application.

5. Click OK and save your changes.
 Chapter 2. WebSphere Application Server failover and recovery 75

Figure 2-9 Configure stateful session bean failover at application level

At EJB module level
To enable stateful session bean failover at the EJB module level, do the
following:

1. In the Administrative Console, select Applications → Enterprise
Applications → <Application_name>.

2. Under Related Items, select EJB Modules.

3. Select the .jar file with which you want to work.

4. Select Stateful session bean failover settings.

5. Select Enable stateful session bean failover using memory to memory
replication.

6. Define the Replication settings as shown in Figure 2-10 on page 77. You have
two choices:

– Use application or EJB container replication settings

If you select this option, any replication settings that are defined for this
EJB module are ignored.

– Use EJB module replication settings

Selecting this option overrides the replication settings for the EJB
container and application. This option is disabled until a replication domain
is defined. The selection has a hyperlink to help configure the replication
settings. If no replication domains are configured, the link takes you to a
panel where one can be created. If at least one domain is configured, the
76 WebSphere Application Server V6: High Availability Solutions

link takes you to a panel where you can select the replication settings to
be used by the EJB container.

7. Select OK and save your changes.

Figure 2-10 Configure stateful session bean failover at EJB module level

Stateful session bean failover best practices
When designing and applying the failover support for stateful session beans on
your applications, consider the following best practices:

� If the stateful session bean is associated with an active transaction or activity
session when the failure occurs, the container cannot execute the failover for
this stateful session bean. To avoid this possibility, you should write your
application to configure stateful session beans to use container managed
transactions (CMT) rather than Bean Managed Transactions (BMT).

� If you desire immediate failover, and your application creates either an HTTP
session or a stateful session bean that stores a reference to another stateful
session bean, then the administrator must ensure the HTTP session and

Attention: If you use application or EJB container replication settings, then
memory-to-memory replication must be configured at the EJB container
level. Otherwise, the EJB ignores settings on this panel during server
startup, and the EJB container logs a message indicating that stateful
session bean failover is not enabled for this application.
 Chapter 2. WebSphere Application Server failover and recovery 77

stateful session bean are configured to use the same DRS replication
domain.

� Do not use a local and a remote reference to the same stateful session bean.
Normally a stateful session bean instance with a given primary key can only
exist on a single server at any given moment in time. Failover might cause the
bean to be moved from one server to another, but it never exists on more than
one server at a time. However, there are some unlikely scenarios that can
result in the same bean instance (same primary key) existing on more than
one server concurrently. When that happens, each copy of the bean is
unaware of the other and no synchronization occurs between the two
instances to ensure they have the same state data. Thus, your application
receives unpredictable results.

Example: stateful session bean failover
The best way to obtain what happened during a failover on the different
application servers is to check their logs. First, take a look at the logs of the failed
server, which should show the restarting process initiated by the Node Agent (if
the Node Agent did not fail also). Then look at the application server logs that
took over the failed stateful session beans.

Our sample configuration is very simple. We have one cell, known as Cell01, two
nodes called Node01 and Node02, a cluster called Cluster01, and its two cluster
members, FailingServer and UpServer.

The log of the failed application server
For our example, we stopped application server FailingServer using a kill -9
command to simulate a JVM crash. We then restarted the server automatically
by the Node Agent, based on the Monitoring Policy settings for the application
server. You first see the automatic restart of the server by the Node Agent, and
then the server is up again. After that, you can see the resynchronization of the
replication system. The following list steps you through this process:

� Automatic restart

Example 2-8 on page 79 shows the beginning of the restart. You cannot see
the stop of the server in the log because it was killed by the -9 signal.
However, you can guess that it was a violent stop because there is no
message that indicates the stop before the restarting messages. An important
message that you should look for is The startup trace state is *=info.

Attention: To avoid this situation, remember that with failover enabled,
your application should never use both a local (EJBLocalObject) and
remote (EJBObject) references to the same stateful session bean instance.
78 WebSphere Application Server V6: High Availability Solutions

Example 2-8 Restart of the failed node

************ Start Display Current Environment ************
WebSphere Platform 6.0 [ND 6.0.2.0 o0516.14] running with process name
Cell01\Node01\FailingServer and process id 23912
...
Java Library path =
/opt/WebSphere/AppServer/java/bin/../jre/bin:/opt/WebSphere/AppServer/java/jre/
bin/classic:/opt/WebSphere/AppServer/java/jre/bin:/opt/WebSphere/AppServer/bin:
/opt/mqm/java/lib:/opt/wemps/lib:/usr/lib
************* End Display Current Environment *************
[4/26/05 16:26:06:274 CDT] 0000000a ManagerAdmin I TRAS0017I: The startup
trace state is *=info.

� The application server is ready again

Example 2-9 shows the message open for e-business, which means the
application server startup has completed.

Example 2-9 Open for e-business message

[4/26/05 16:27:20:192 CDT] 00000020 WebContainer A SRVE0161I: IBM WebSphere
Application Server - Web Container. Copyright IBM Corp. 1998-2004
[4/26/05 16:27:20:194 CDT] 00000020 WebContainer A SRVE0162I: Servlet
Specification Level: 2.4
[4/26/05 16:27:20:196 CDT] 00000020 WebContainer A SRVE0163I: Supported JSP
Specification Level: 2.0
[4/26/05 16:27:20:248 CDT] 00000020 WebContainer A SRVE0239I: Extension
Factory [class com.ibm.ws.webcontainer.extension.ExtHandshakeVHostExtension
Factory] was registered successfully.
[4/26/05 16:27:20:249 CDT] 00000020 WebContainer A SRVE0240I: Extension
Factory [class com.ibm.ws.webcontainer.extension.ExtHandshakeVHostExtension
Factory] has been associated with patterns [VH:_WS_EH*].
...
[4/26/05 16:27:21:788 CDT] 00000020 SchedulerServ I SCHD0078I: The Scheduler
Service has completed starting the Schedulers.
[4/26/05 16:27:21:803 CDT] 0000000a RMIConnectorC A ADMC0026I: The RMI
Connector is available at port 9809
[4/26/05 16:27:22:168 CDT] 0000000a WsServerImpl A WSVR0001I: Server
FailingServer open for e-business

Attention: When testing the failover mechanism, you must wait for the
message REPLICATION_UP that is shown in Example 2-10. It most probably
appears after the open for e-business message. However, the replication
is only available again after the REPLICATION_UP message. If you stop
another application server before the replication is fully re-enabled, you
might loose some information that is not replicated yet.
 Chapter 2. WebSphere Application Server failover and recovery 79

� The replication is up again

Example 2-10 shows the REPLICATION_UP message, which indicates the
successful restart of the replication service. This message might appear after
the server is up.

Example 2-10 Event REPLICATION_UP

[4/26/05 16:27:35:129 CDT] 0000001d RoleViewLeade I DCSV8054I: DCS Stack
DefaultCoreGroup.tri-store at Member Cell01\Node01\FailingServer: View change
in process.
[4/26/05 16:27:35:134 CDT] 00000014 VSync I DCSV2004I: DCS Stack
DefaultCoreGroup.tri-store at Member Cell01\Node01\FailingServer: The
synchronization procedure completed successfully. The View Identifier is
(1:0.Cell01\Node01\FailingServer). The internal details are [2].
[4/26/05 16:27:35:146 CDT] 00000014 ViewReceiver I DCSV1033I: DCS Stack
DefaultCoreGroup.tri-store at Member Cell01\Node01\FailingServer: Confirmed all
new view members in view identifier (4:0.Cell01\Node02\UpServer). View channel
type is View|Ptp.
[4/26/05 16:27:35:149 CDT] 0000001d DataStackMemb I DCSV8050I: DCS Stack
DefaultCoreGroup.tri-store at Member Cell01\Node01\FailingServer: New view
installed, identifier (4:0.Cell01\Node02\UpServer), view size is 2 (AV=2, CD=2,
CN=2, DF=2)
[4/26/05 16:27:39:642 CDT] 00000035 DRSBootstrapM A CWWDR0001I: Replication
instance launched : HttpSessionCache .
[4/26/05 16:27:39:648 CDT] 00000017 DRSBootstrapM A CWWDR0001I: Replication
instance launched : __homeOfHomes .
[4/26/05 16:27:39:645 CDT] 00000016 DRSBootstrapM A CWWDR0001I: Replication
instance launched : tri-ear .
[4/26/05 16:27:39:653 CDT] 00000035 SessionContex I Received event
REPLICATION_UP.

The logs of the takeover server
This section discusses the most interesting logs. We captured these logs while
stopping the other application server. You can first see that a server is no longer
available, then the takeover, and finally that the failed server is up again.

� A server failed

You can see the failure of the other server which induced a REPLICATION_DOWN
event in Example 2-11. You do not see a message that indicates right away
that another server has failed. Instead, the REPLICATION_DOWN event indicates
that the replication domain lacks one of its members.

Example 2-11 Another server failed

[4/26/05 16:25:26:665 CDT] 0000001d SessionContex I Received event
REPLICATION_DOWN.
80 WebSphere Application Server V6: High Availability Solutions

� Taking over

The REPLICATION_DOWN event triggers the recovery process. The failed server
is known as FailingServer. Example 2-12 shows the DCS messages that tell
you that the recovery processing is started and that FailingServer has been
removed.

The transaction recovery process ends with the status message that indicates
how many transactions are recovered (Transaction service recovering 0
transactions).

Example 2-12 Recovering the failed server

[4/26/05 16:25:26:672 CDT] 00000042 RecoveryDirec I CWRLS0011I: Performing
recovery processing for a peer WebSphere server (Cell01\Node01\FailingServer).
[4/26/05 16:25:26:673 CDT] 0000001e RoleMember I DCSV8052I: DCS Stack
DefaultCoreGroup.tri-store at Member Cell01\Node02\UpServer: Defined set
changed. Removed: [Cell01\Node01\FailingServer].
[4/26/05 16:25:26:679 CDT] 00000042 RecoveryDirec I CWRLS0013I: All
persistent services have been directed to perform recovery processing for a
peer WebSphere server (Cell01\Node01\FailingServer).
[4/26/05 16:25:26:959 CDT] 00000042 RecoveryDirec I CWRLS0013I: All
persistent services have been directed to perform recovery processing for a
peer WebSphere server (Cell01\Node01\FailingServer).
[4/26/05 16:25:27:112 CDT] 00000043 RecoveryManag A WTRN0028I: Transaction
service recovering 0 transactions.

� The failed server comes up again

Next, you see the failed server coming up again. The first action is to halt
recovery processing for this server. In Example 2-13, the most interesting
message is that the replication is up again: Received event REPLICATION_UP.
That message means you are now back to the normal situation.

Example 2-13 The failed server is up again

[4/26/05 16:26:47:033 CDT] 00000014 ViewReceiver I DCSV1033I: DCS Stack
DefaultCoreGroup at Member Cell01\Node02\UpServer: Confirmed all new view
members in view identifier (7:0.Cell01\CellManager01\dmgr). View channel type
is View|Ptp.
[4/26/05 16:26:47:298 CDT] 0000001d RecoveryDirec I CWRLS0014I: Halting any
current recovery processing for a peer WebSphere server
(Cell01\Node01\FailingServer).
[4/26/05 16:26:47:300 CDT] 0000001e RoleMember I DCSV8051I: DCS Stack
DefaultCoreGroup.tri-store at Member Cell01\Node02\UpServer: Defined set
changed. Added: [Cell01\Node01\FailingServer].
[4/26/05 16:26:47:378 CDT] 00000014 MbuRmmAdapter I DCSV1032I: DCS Stack
DefaultCoreGroup.tri-store at Member Cell01\Node02\UpServer: Connected a
defined member Cell01\Node01\FailingServer.
 Chapter 2. WebSphere Application Server failover and recovery 81

[4/26/05 16:27:04:386 CDT] 0000001e RoleMergeLead I DCSV8054I: DCS Stack
DefaultCoreGroup.tri-store at Member Cell01\Node02\UpServer: View change in
process.
[4/26/05 16:27:04:390 CDT] 00000014 VSync I DCSV2004I: DCS Stack
DefaultCoreGroup.tri-store at Member Cell01\Node02\UpServer: The
synchronization procedure completed successfully. The View Identifier is
(3:0.Cell01\Node02\UpServer). The internal details are [4].
[4/26/05 16:27:04:401 CDT] 0000001e DataStackMemb I DCSV8050I: DCS Stack
DefaultCoreGroup.tri-store at Member Cell01\Node02\UpServer: New view
installed, identifier (4:0.Cell01\Node02\UpServer), view size is 2 (AV=2, CD=2,
CN=2, DF=2)
[4/26/05 16:27:04:404 CDT] 00000014 ViewReceiver I DCSV1033I: DCS Stack
DefaultCoreGroup.tri-store at Member Cell01\Node02\UpServer: Confirmed all new
view members in view identifier (4:0.Cell01\Node02\UpServer). View channel type
is View|Ptp.
[4/26/05 16:27:04:937 CDT] 00000018 SessionContex I Received event
REPLICATION_UP.

2.6.6 WebSphere process failures, relationship to EJB processing
For a specific WebSphere environment, the following three types of servers can
fail:

� Deployment Manager
� Node Agent
� WebSphere Application Server cluster member

Each process failure has a different effect on EJB processing.

Deployment Manager failure
Prior to IBM WebSphere Application Server Network Deployment V6, the
Deployment Manager provided the runtime support for WLM services, which is
the key to a successful EJB failover. Thus, when the Deployment Manager failed,
the WLM information was no longer propagated to associated cluster members
and EJB clients. This issue presented a single point of failure for EJB workload
management.

IBM WebSphere Application Server Network Deployment V6 eliminates this
issue with the introduction of the WebSphere High Availability service. The
HAManager is now responsible for running key services such as WLM on all
available servers rather than on a single dedicated Deployment Manager. When
a Deployment Manager failure is detected, the HAManager quickly delegates the
WLM service to another available server, such as one of the Node Agents or
application servers. This delegation provides continuous service for EJB
workload management. Therefore, the Deployment Manager is no longer a
82 WebSphere Application Server V6: High Availability Solutions

single point of failure for EJB workload management, which improves
WebSphere high availability.

Node Agent failure
The Node Agent provides several important services to the Deployment
Manager, application servers, and application clients. Among these services, we
are most interested in the Location Service Daemon (LSD) service, which is used
by EJB workload management to provide the WLM routing information to clients.

If a Node Agent failure occurs after the routing table is available on the client, the
WLM-enabled client code does not need to go to the LSD to determine to which
server the request should be routed. The WLM-aware client code handles the
routing decisions.

However, if the failure occurs before the first client request can retrieve the WLM
information, then WLM depends on the LSD request to failover to another LSD.
Because there is no automatic failover of this service (or the Node Agent) in
WebSphere V6, the developer should make sure that the client has several
options (servers) to retrieve the WLM information. See Chapter 7 of IBM
WebSphere V6 Scalability and Performance Handbook, SG24-6392 for detailed
information about how this can be achieved.

Cluster member failure
If the failure occurs on the first initial request where the routing table information
is not yet available, a COMM_FAILURE exception is returned and the ORB
recognizes that it has an indirect IOR available and resends the request to the
LSD to determine another server to route to. If the failure occurs after the client
retrieves the routing table information, the WLM client handles the
COMM_FAILURE. The server is removed from the list of selectable servers and
the routing algorithm is used to select a different server to which to route the
request.

Consider the following sequence of a client making a request to the EJB
container of an application server:

1. For the initial client request, no server cluster and routing information is
available in the WLM client's runtime process. The request is therefore
directed to the LSD that is hosted on a Node Agent to obtain routing
information. If the LSD connection fails, the request is redirected to an
alternative LSD if specified in the provider URL. If this is not the first request,
the WLM client already has routing information for WLM-aware clients. For
future requests from the client, if there is a mismatch of the WLM client's
routing information with what is on a server's, new routing information is
added to the response (as service context). However, for WLM-unaware
clients, the LSD always routes requests to available servers.
 Chapter 2. WebSphere Application Server failover and recovery 83

2. After getting the InitialContext, the client does a lookup to the EJB's home
object (an indirect IOR to the home object). If a failure occurs at this time, the
WLM code transparently redirects this request to another server in the cluster
that is capable of obtaining the bean's home object.

3. A server becomes unusable during the life cycle of the request:

– If the request has strong affinity, there cannot be a failover of the request.
The request fails if the original server becomes unavailable. The client
must perform recovery logic and resubmit the request.

– If the request is to an overloaded server, its unresponsiveness makes it
seem as though the server is stopped, which might lead to a timeout.
Under these circumstances, it might be helpful to change the server
weight or tune the ORB and pool properties:

• com.ibm.CORBA.RequestTimeout
• com.ibm.CORBA.RequestRetriesCount
• com.ibm.CORBA.RequestRetriesDelay
• com.ibm.CORBA.LocateRequestTimeout

These properties can be changed using the command line or the
Administrative Console.

– If a machine becomes unreachable (network or individual machine errors)
before a connection to a server has been established, the operating
system TCP/IP keep-alive timeout dominates the behavior of the system's
response to a request. This is because a client waits for the OS-specific
timeout before a failure is detected.

– If a connection is already established to a server,
com.ibm.CORBA.RequestTimeout is used (the default value is 180
seconds), and a client waits this length of time before a failure is
announced. The default value should only be modified if an application is
experiencing timeouts repeatedly. Great care must be taken to tune it
properly. If the value is set too high, failover can become very slow; if it is
set too low, requests might time out before the server has a chance to
respond.

The two most critical factors affecting the choice of a timeout value are the
amount of time to process a request and the network latency between the
client and server. The time to process a request, in turn, depends on the
application and the load on the server. The network latency depends on
the location of the client. For example, those running within the same LAN
as a server can use a smaller timeout value to provide faster failover. If the
client is a process inside of a WebSphere Application Server (the client is
a servlet), this property can be modified by editing the request timeout
field on the Object Request Broker property panel. If the client is a Java
84 WebSphere Application Server V6: High Availability Solutions

client, the property can be specified as a runtime option on the Java
command line, for example:

java -Dcom.ibm.CORBA.RequestTimeout=<seconds> MyClient

– A failed server is marked unusable, and a JMX™ notification is sent. The
routing table is updated. WLM-aware clients are updated during
request/response flows. Future requests will not route requests to this
cluster member until new cluster information is received (for example,
after the server process is restarted), or until the expiration of the
com.ibm.websphere.wlm.unusable.interval. This property is set in
seconds. The default value is 300 seconds. This property can be set by
specifying the following as a command-line argument for the client
process:

-Dcom.ibm.websphere.wlm.unusable.interval=<seconds>

2.6.7 EJB WLM exceptions
There are two possible scenarios:

� A failure that occurs during EJB processing

This triggers an exception. Normally, WebSphere WLM catches the exception
and resends the failed request to another application server in the cluster.
This is the normal failover functionality of WebSphere EJB WLM. If, however,
WLM cannot determine whether the transaction completed, it sends an
exception to the application.

� A failure that occurs during WLM processing

If the WLM mechanism is not able to handle the request it sends an exception
to the application.

Exceptions that cause WLM to failover
The EJB workload management catches most of the exceptions that can occur
during execution. WLM handles these exceptions and decides whether the
original request should be redirected to another available cluster member. These
exceptions are:

� org.omg.CORBA.COMM_FAILURE
� org.omg.CORBA_NO_RESPONSE

These exceptions have a COMPLETION_STATUS of NO, YES, or MAYBE and
this value actually determines whether the request fails over to another available
member:

� With a COMPLETION_STATUS of COMPLETED_NO automatic failover
occurs because the request was not completed. The request is then rerouted
to an available cluster member.
 Chapter 2. WebSphere Application Server failover and recovery 85

� With a COMPLETION_STATUS of COMPLETED_YES, there is no need to
failover because the transaction was successfully completed. Some
communication errors might have occurred during the marshalling of the
answer.

� With a COMPLETION_STATUS of COMPLETED_MAYBE, WLM cannot
verify whether the transaction was completed and thus cannot redirect the
request. WLM, according to the programming model, sends this exception to
the client application. It is the applications’ responsibility to handle this
exception and to decide whether to retry the request.

Exceptions during failover
During the failover process, WLM might face problems and then either tries to
redirect the request again or issues a CORBA exception. This means that
something unusual occurred while WLM was trying to redirect the original
request to another server. There are two reasons for such an exception to occur.
Both events are contained in a org.omg.CORBA.TRANSIENT exception, with
different minors:

� Communication problem with one of the other servers

TRANSIENT_SIGNAL_RETRY (minor=1229066306), meaning that an error
occurred during the communication and that the client should retry the
request.

� No reachable server

NO_IMPLEMENT_NO_USEABLE_TARGET (minor=1229066304), meaning
that WLM did not find any cluster member able to answer the request. This is
the worst case because the application cannot retry the request because it
would fail again. This should then lead to a message to the user, for example,
asking to contact the system administrator.

Important: This exception must be handled by the application. It does not
mean that something is broken. The application has to check whether the
transaction was successful and, depending on the result, should then issue
the request. See also “Something unusual happened, check and retry if
necessary” on page 87.
86 WebSphere Application Server V6: High Availability Solutions

EJB WLM exceptions: the application design point of view
In situations where EJB WLM is not able to failover the request to another server
or does not know the status of a request, the application developer must ensure
that exceptions that are sent to the application are handled correctly. The
application should handle three possible return status after calling an EJB: OK,
retry, or error:

� Everything is OK, continue

This is the way it should always be! No further action is required.

� Something unusual happened, check and retry if necessary

WLM tried to complete the request but an unexpected event occurred and
WLM cannot re-issue the request on its own. In this case, the application
should check and retry the request if needed. This behavior should be
implemented if a CORBA exception was caught at the application level with
the following:

– COMPLETION_STATUS of COMPLETED_MAYBE
– Minor code of TRANSIENT_SIGNAL_RETRY (minor=1229066306)

� Unrecoverable error

The most likely cause of such an error is the unavailability of any cluster
member so the request cannot failover to another server. The application will
detect such a situation when it catches a CORBA exception with a minor code
of NO_IMPLEMENT_NO_USEABLE_TARGET (minor=1229066304). In this
case, an error message should be issued to the user.

2.7 Backup cluster support
IBM WebSphere Application Server Network Deployment V6 supports a mirrored
backup cluster that can failover EJB requests from a primary cluster in one cell to
the mirrored backup cluster in another cell when the primary cluster fails. Fail
back is automatic as soon as the primary cluster becomes available.

There are certain situations in which you would use backup cluster support
instead of other high availability options. Any scenario must deal with IIOP traffic
which could be from servlets, Java applications, the client container or other
traffic. If your configuration contains two cells with mirrored applications, you
might want to enable backup clusters for the case of catastrophic failure when an
entire cell goes down.

Before you can enable backup cluster support, you need to create the backup
cluster in another cell with the same cluster name as the primary cluster and
deploy the same applications into both the primary cluster and the mirrored
backup cluster, with the same resources in the backup cluster as in the primary
 Chapter 2. WebSphere Application Server failover and recovery 87

cluster. The primary cluster and the backup cluster must reside in separate cells.
The backup cluster bootstrap host and port determine which cell contains the
backup cluster.

The basic behavior for backup clusters requires that the Deployment Managers
are running in order to perform the failover and possible failback. In WebSphere
V6, backup cluster communication no longer only flows through the Deployment
Manager. Although the Deployment Manager is still required for the failover (as it
stores the location of the backup cluster), core groups and core group bridges
allow backup cluster communication to be dispersed over multiple bridges.

The core group bridge service can be configured to allow communication
between the core groups. The core group bridge service handles the
communication between a primary and backup cluster. You can configure core
group bridges between the Deployment Managers, Node Agents and servers to
prevent a single point of communication failure. Each cluster can only have one
backup cluster. The primary and backup clusters are configured to point to each
other to allow fail back.

2.7.1 Runtime behavior of backup clusters
After a failover, if cluster members in the primary cluster become available again,
the mirrored cluster support attempts to fail back the requests to the primary
cluster. This fail back is automatic. However, for the failback to work, the primary
cluster must be defined as a backup for the backup cluster. In other words, both
primary and backup clusters must have a backup configured, and each cluster's
backup must point to the opposite cluster.

Note that the mirrored cluster failover support is not a cell level failover or Node
Agent level failover. For the most part, the mirrored cluster support depends on a
running Deployment Manager and is limited to cluster failover only. For example,
if the primary cluster's entire cell stops processing, a new client's requests to the
primary cluster will fail and is not sent to the backup cluster. This is because
information regarding the backup cluster cannot be retrieved from the primary
cluster's cell because the primary cluster's cell is not processing. On the other
hand, if the primary cluster's cell Deployment Manager, Node Agents, and
application servers stop processing after the client has already been sending
requests to the primary cluster, the client already knows about the backup cluster
and is able to send the requests to the backup cluster.
88 WebSphere Application Server V6: High Availability Solutions

2.7.2 Scenario and configuration description
The major steps to configure backup clusters are adding the backup cluster
settings and optionally creating a core group bridge. Items to configure are:

1. WebSphere cell and cluster setup.

2. Security considerations. You need to import or export LTPA keys to handle
security across cells.

3. Backup cluster configuration.

4. Core group bridge configuration (optional).

We use the IBM Trade Performance Benchmark Sample for WebSphere
Application Server (called Trade 6 throughout this book) as the sample
application in our backup cluster configuration. You can download Trade 6 at:

http://www.ibm.com/software/webservers/appserv/was/performance.html

Table 2-3 lists the host names, node names, and ports that we used in our
sample configuration. Our domain name is ibmredbook.com.

Table 2-3 Backup cluster sample configuration information

2.8 WebSphere cell and cluster setup
This section describes the setup of the WebSphere cluster. Although it is not
recommended for performance reasons to separate the Web and EJB
containers, this is necessary for the example to work (split-JVM environment).
Therefore, we deploy the Web and EJB modules of Trade 6 into different
clusters. The required steps are:

1. Create two cells with at least one node in each.

– Cell names: wascell02 and wascell03

2. Create a cluster in each cell. Both clusters have to have the same name. If
you install an application that splits across multiple clusters for the Web and

Cell name Deployment Manager information Node Agent information Cluster names

wascell02
(Primary cell)

� washost01
� wasdmgr02
� 9809 (Bootstrap)
� 9352 (DCS)

� washost02
� wasna01
� 9353 (DCS)

� wascluster01
(EJB modules)

� wascluster02
(Web modules)

wascell03
(Backup cell)

� washost02
� wasdmgr03
� 9810 (Bootstrap)
� 9353 (DCS)

� washost04
� wasna01
� 9354 (DCS)

� wascluster01
(EJB modules)

� wascluster02
(Web modules)
 Chapter 2. WebSphere Application Server failover and recovery 89

http://www.ibm.com/software/webservers/appserv/was/performance.html

EJB modules (as is the case in this example), create the additional clusters
as well.

– Trade 6 EJB modules cluster: wascluster01
– Trade 6 Web modules cluster: wascluster02

Note that you could also create the cluster and cluster members using the
trade.jacl script used to set up the Trade 6 resources in the next step.
However, with the split-JVM environment we are setting up, it is easier to
create the clusters using the Administrative Console. The trade.jacl script
asks for cluster and cluster member names and only creates a new cluster
and cluster members if they do not exist in the cell yet.

3. Set up the Trade 6 resources by running the trade.jacl script with the
configure option. Run the script on the primary and backup cell.

4. Install Trade 6 using the Administrative Console. Consider this:

a. On the Map modules to servers step (Step 2), map the TradeEJB module
to wascluster01 and map TradeWeb to wascluster02.

b. Make sure the right database is selected on the Provide options to perform
the EJB Deploy step (Step 3).

c. On the Map EJB references to beans step (Step 9), update the EJB
references. This enables them to contact the EJBs installed on the EJB
cluster. You must change the JNDI names of the ejb/Trade reference
bindings in the TradeWeb module to their fully qualified JNDI names, for
example:

cell/clusters/<EJB_Cluster_Name>/ejb/TradeEJB

In our environment, the correct fully qualified JNDI name is:

cell/clusters/wascluster01/ejb/TradeEJB

So you must add cell/clusters/wascluster01/ to the beginning of the
existing names for the ejb/Trade, ejb/Quote, ejb/LocalQuote, and
ejb/LocalAccountHome settings.

Note: Follow the directions that are included in the Trade 6 download
package for setup and installation, or see Chapter 8 of IBM WebSphere V6
Scalability and Performance Handbook, SG24-6392 for instructions on
how to use the trade.jacl script.
90 WebSphere Application Server V6: High Availability Solutions

2.8.1 Security considerations
If your application requires security between the Web modules and EJB
modules, you need to configure security to work correctly between the cells by
doing the following:

1. Review the time, date, and time zone on all machines in both cells. The
machines in the primary and backup cells need to be within five minutes of
each other.

2. Configure a user registry with an LDAP server, OS security or a custom user
registry.

3. On the primary cell, go to Security → Global security. Under
Authentication, select Authentication mechanisms → LTPA. Enter an
LTPA password on the LTPA authentication page. Remember the password
for later to use on the backup cluster. Click Apply, then save your changes.

4. Still on the LTPA authentication page, enter a path and file name in the Key
file name field and click Export Keys. This exports the LTPA authentication
keys. Later, they are imported into the backup cell.

Key file name: WebSphereKeys/primarycell.keys

Transfer the LTPA key file to the backup cluster’s Deployment Manager’s
machine.

5. Back in the Administrative Console, still on the LTPA authentication page,
under Additional Properties, select Single signon (SSO). Enter an
appropriate Domain name to include both cells.

Domain name: ibmredbook.com

6. Configure any additional necessary security items.

7. On the Global security page, enable global security, and save and
synchronize the changes. Make sure that all Node Agents are up and running
when enabling global security.

8. Restart the primary cell.

9. On the backup cell, configure the same user registry as on the primary cell.

10.In the Administrative Console, go to Security → Global security. Under
Authentication, select Authentication mechanisms → LTPA. In the
Password and Confirm password fields, enter the password from the primary
cell. Click Apply and save your changes.

11.Enter the path and file name of the exported LTPA key file from the primary
cell into the Key file name field. Click Import Keys.

If the password is incorrect, you see an error message in the WebSphere
Administrative Console. Correct the password, click apply, and then repeat
this step.
 Chapter 2. WebSphere Application Server failover and recovery 91

12.On the same panel, under Additional Properties, select Single signon
(SSO). Enter an appropriate Domain name to include both cells. It should be
the same as the primary cell.

Domain name: ibmredbook.com

13.Configure any additional necessary security items.

14.On the Global security page, enable global security, and save and
synchronize your changes.

15.Restart the backup cell.

Security tokens should now flow between the primary and backup cells.

2.8.2 Backup cluster configuration
Figure 2-11 illustrates the configuration of our backup cluster.

Figure 2-11 Primary and backup cluster

To set up a backup cluster, you need to know the host names and the bootstrap
ports of the Deployment Managers for the primary cell and the backup cell. You
need to perform configuration on both cells.

1. Go to the primary cell’s WebSphere Administrative Console. Click System
administration → Deployment manager → Ports. From the list of available
ports, check the port number and host name for the
BOOTSTRAP_ADDRESS port. Write down these values:

– Host: washost01.ibmredbook.com
– Port: 9809

WASCluster01

Node Agent

Deployment
Manager

WASCluster02

Primary Cell - DefaultCoreGroup
(wascell02)

WASCluster01

Node Agent

Deployment
Manager

WASCluster02

Backup Cell - DefaultCoreGroup
(wascell03)
92 WebSphere Application Server V6: High Availability Solutions

2. Go to the backup cell’s WebSphere Administrative Console. Click System
administration → Deployment manager → Ports. From the list of available
ports, check the port number and host name for the
BOOTSTRAP_ADDRESS port. Write down these values:

– Host: washost02.ibmredbook.com
– Port: 9810

3. Return to the primary cell’s WebSphere Administrative Console. Click
Servers → Clusters → Cluster_name → Backup cluster. Ensure that the
name of the backup cluster is the same as the primary cluster.

4. Click Domain bootstrap address. Specify the Host and Port information that
you gathered in step 2 (which is the backup cell information). Click OK and
save the changes.

5. Return to the backup cell’s WebSphere Administrative Console. Click
Servers → Clusters → Cluster_name → Backup cluster.

6. Click Domain bootstrap address. Specify the Host and Port that you looked
up in step 1 on page 92 (the primary cell information). Click OK and save the
changes.

7. Restart both clusters.

The EJB clusters in the primary cell and backup cell should point to each other’s
Deployment Manager in their backup cluster configuration.

Also, refer to the InfoCenter article Creating backup clusters available at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp

2.8.3 Core group bridge configuration

Note: When using a split-JVM environment, make sure that you modify the
cluster that contains the EJB modules. In our example, this cluster is
wascluster01.

Note: WebSphere V6.0.2 includes a fix that allows you to set up backup
clusters without using the core group bridge support. The configuration is then
comparable to previous versions, which means that communication as well as
the failover depend solely on an active Deployment Manager, while when
using core group bridges, the communication can be spread across all peers.
 Chapter 2. WebSphere Application Server failover and recovery 93

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp

If you do not want to create core group bridges, you can skip this section
because your backup cluster is now set up. Remember that the Deployment
Managers must run for the backup cluster failover.

If you want to use the core group bridge service, then configure a core group
bridge between the core groups in both cells. This requires access point groups
and peer access points between one or more processes in each cell. In our
example, we configure bridge points between the Deployment Manager and one
Node Agent from each cell as follows:

1. Go to the primary cell’s WebSphere Administrative Console. Go to
Servers → Core groups → Core group bridge settings → Access point
groups → DefaultAccessPointGroup → Core group access points.

2. On the Core group access points page, select CGAP_1/DefaultCoreGroup,
and click Show Detail.

3. On the CGAP_1 page, select Bridge interfaces.

4. On the Bridge interfaces page, click New.

5. Select the Deployment Manager wasdmgr02/dmgr/DCS from under Bridge
interfaces. Click OK.

6. On the Bridge interfaces page, click New to create a second bridge interface.

7. From the Bridge interface menu, select a Node Agent
(wasna01/nodeagent/DCS). Click OK.

8. Save your changes.

9. Switch to the backup cell’s WebSphere Administrative Console. Go to
Servers → Core groups → Core group bridge settings → Access point
groups → DefaultAccessPointGroup → Core group access points.

10.On the Core group access points page, select CGAP_1/DefaultCoreGroup,
and click Show Detail.

11.On the CGAP_1 page, select Bridge interfaces.

12.On the Bridge interfaces page, click New.

13.From the Bridge interface menu, select the Deployment Manager
(wasdmgr03/dmgr/DCS). Click OK.

14.Click New to create a second bridge interface.

15.From the Bridge interface menu, select a Node Agent
(wasna01/nodeagent/DCS). Click OK.

16.Save your changes.
94 WebSphere Application Server V6: High Availability Solutions

17.Gather the following information about the primary cell:

a. Find the DCS port for the Deployment Manager on the primary cell. Go to
System administration → Deployment manager → Ports →
DCS_UNICAST_ADDRESS. Write down the port number:

DCS_UNICAST_ADDRESS: 9352

b. Find the DCS port for the wasna01 nodeagent on the primary cell. Go to
System administration → Node agents → nodeagent → Ports →
DCS_UNICAST_ADDRESS. Write down the port number:

DCS_UNICAST_ADDRESS: 9353

c. Find the name the of the core group that the EJB cluster belongs to in the
cell. Click Servers → Core groups → Core group settings. Select your
core group (most likely your core group will be the DefaultCoreGroup),
then select Core group servers. Verify that your servers are in the
selected core group and write down the core group name:

Core group: DefaultCoreGroup

d. Find the name of the cell. Click System administration → Cell. Look at
the Name field:

Cell name: wascell02

e. Find the core group access point name. Go to Servers → Core groups →
Core group bridge settings. Expand DefaultAccessPointGroup.
Expand your core group as found in step c, in our case we expand
DefaultCoreGroup. Write down the value after Core Group Access Point:

Core Group Access Point: CGAP_1

18.Gather the same information for the backup cell:

a. Find the DCS port for the Deployment Manager on the backup cell. Go to
System administration → Deployment manager → Ports →
DCS_UNICAST_ADDRESS. Write down the port number:

DCS_UNICAST_ADDRESS: 9353

b. Find the DCS port for the wasna01 nodeagent on the backup cell. Go to
System administration → Node agents → nodeagent → Ports →
DCS_UNICAST_ADDRESS. Write down the port number:

DCS_UNICAST_ADDRESS: 9454

c. Find the name the of the core group that the EJB cluster belongs to in the
cell. Click Servers → Core groups → Core group settings. Select your
core group and select Core group servers. Verify that your servers are in
the selected core group and write down the core group name:

Core group: DefaultCoreGroup
 Chapter 2. WebSphere Application Server failover and recovery 95

d. Find the name of the cell. Click System administration → Cell. Look at
the Name field:

Cell name: wascell03

e. Find the core group access point name. Go to Servers → Core groups →
Core group bridge settings. Expand DefaultAccessPointGroup.
Expand your core group as found in step c on page 95, in our case we
expand DefaultCoreGroup. Write down the value after Core Group
Access Point:

Core Group Access Point: CGAP_1

19.Return to the primary cell’s Administrative Console to create a peer access
group to point to the backup cell. On the primary cell, go to Servers → Core
groups → Core group bridge settings → Access point groups →
DefaultAccessPointGroup → Peer access points. Click New.

20.On the Create new peer access point, Step 1 page, you need to enter values
into the Name, Cell, Core group and Core group access point fields. Enter any
desired name plus the information gathered for the backup cell:

– Name: BackupCellGroup
– Cell: wascell03
– Core group: DefaultCoreGroup
– Core group access point: CGAP_1

Click Next.

21.On the Step 2 page, you need to specify either a peer port or a proxy peer
access point. Select Use peer ports, then enter the backup cell’s
Deployment Manager host name and DCS port:

– Host: washost02
– Port: 9353

Click Next.

22.On the Step 3 page, confirm the new peer access point, and click Finish.

23.Create a second peer port for the Node Agent.

24.On the Peer access points page, select the access point that you just created,
BackupCellGroup/wascell03/DefaultCoreGroup/CGAP_1, and click Show
Detail.

25.On the BackupCellGroup page, select Peer ports in the Peer addressability
box.

26.On the Peer ports page, click New.
96 WebSphere Application Server V6: High Availability Solutions

27.Enter the backup cell’s Node Agent host name and DCS port:

– Host: washost04
– Port: 9454

Click OK.

28.Save the changes to the primary cell.

29.Switch to the backup cell’s Administrative Console to create a peer access
group to point to the primary cell. Go to Servers → Core groups → Core
group bridge settings → Access point groups →
DefaultAccessPointGroup → Peer access points. Click New.

30.On the Create new peer access point, Step 1 page, you need to enter values
into the Name, Cell, Core group and Core group access point fields. Enter any
desired name plus the information gathered for the primary cell:

– Name: PrimaryCellGroup
– Cell: wascell02
– Core group: DefaultCoreGroup
– Core group access point: CGAP_1

Click Next.

31.On the Step 2 page, you need to specify either a peer port or a proxy peer
access point. Select Use peer ports, then enter the primary cell’s
Deployment Manager host name and DCS port:

– Host: washost02
– Port: 9352

Click Next.

32.On the Step 3 page, confirm the new peer access point and click Finish.

33.Create a second peer port for the Node Agent.

On the Peer access points page, select the access point just created,
PrimaryCellGroup/wascell02/DefaultCoreGroup/CGAP_1, and click Show
Detail.

34.On the PrimaryCellGroup page, select Peer ports in the Peer addressability
box.

35.Click New.

36.Enter the primary cell’s Node Agent host name and DCS port:

– Host: washost02
– Port: 9353

Click OK.

37.Save the changes to the backup cell.
 Chapter 2. WebSphere Application Server failover and recovery 97

38.Restart both cells.

Two core group bridges are now configured for the primary and backup cell for
the backup clusters to communicate. To review all of the core group bridge
settings, go to Servers → Core group bridge settings. Expand the
DefaultAccessPointGroup and all items below it to see the group names, host
names and ports. Figure 2-12 illustrates this setup.

You can create additional core group bridges by adding them to the
DefaultAccessPointGroup and Peer ports on both cells.

You can find additional information in the InfoCenter articles Configuring the core
group bridge between core groups that are in the same cell and Configuring the
core group bridge between core groups that are in different cells.

Figure 2-12 Primary and backup clusters with core group bridge

W ASCluster01

Node Agent

Deploym ent
M anager

W ASCluster02

Prim ary Cell - Default Core Group (wascell02)

W ASCluster01

Node Agent

Deploym ent
M anager

W ASCluster02

Backup Cell - Default Core Group (wascell03)

Peer
Access
Points

Access
Point

Group

Peer
Access
Points

Access
Point

Group
98 WebSphere Application Server V6: High Availability Solutions

2.8.4 Testing the backup cluster configuration
Using the Trade 6 application, we split the TradeEJB EJB modules and
TradeWeb Web modules across two clusters. After configuring the backup
cluster support and core group bridge service, we ran this simple test to verify
that the configuration was working:

1. Start all of the Trade clusters in the primary and backup cell.

2. Access the Trade Web site from a server hosting the Web modules in the
primary cell:

http://wascell02_server_name:9080/trade

3. Login and buy some stock.

4. Stop the primary Trade EJB cluster from the Administration Console.

5. Open a new browser and access the Trade Web site from a server in the
primary cell.

6. Login and buy some stock. This should still succeed. If it fails, review the
troubleshooting section.

Additional tests include killing processes that you have assigned to be core
group bridges. As long as there is one core group bridge, communication should
continue. You can also kill the primary server processes or take down the
machines they are running on (as long as the cluster with Web modules stays
up) instead of a graceful stop.

To test failback, restart the primary servers. Stop the backup cluster to confirm
that work is not being routed to it. If failback does not occur, verify that the
backup cluster’s information points to the cluster in the primary cell and there is
an available core group bridge or the Deployment Manager is up. Review the
troubleshooting section.

Note: In WebSphere V6.0.2, dynamic core group bridges were introduced.
After initially setting up bridges and peer ports, additional bridges can be
added without additional corresponding peer ports. The custom property
CGB_ENABLE_602_FEATURES is used on the access point group to enable
this feature. For more information about this feature see the WebSphere
InfoCenter article Configuring the core group bridge between core groups that
are in different cells.
 Chapter 2. WebSphere Application Server failover and recovery 99

2.8.5 Troubleshooting
A few troubleshooting tips:

� The easiest part to misconfigure for backup clusters is the core group bridge.
There are several settings that must be entered from the other cluster. To
review all of the core group bridge settings at once, go to Servers → Core
group bridge settings. Expand the DefaultAccessPointGroup and all
items below to see the group names, host names, and ports. Compare the
primary cell and backup cell to cross check that the access point group from
one matches information in the peer access group of the other.

� Review the backup cluster settings for the correct host name and bootstrap
address on both the primary and backup cell. Double check that the cluster
names are identical.

� Verify that the application is correctly mirrored on the backup cluster. You
might need to set up the same resources with the same settings and install
the same application (or mirrored resources if the same database will not be
used).

� Check that the application works in a non failover mode on both the primary
and backup cells.

� Check that the machines in the cells can all contact each other. If they are
separated by firewalls, verify that the WebSphere related ports are opened.

� When the primary EJB cluster is down, try accessing the EJBs with a new
client or new browser. New connections have the information to connect to
the backup cluster.

Reviewing the logs
If failover does not occur, you might see a CORBA.NO_RESPONSE error on the
Web or client side as shown in Example 2-14.

Example 2-14 CORBA.NO_RESPONSE error in the log

WWLM0061W: An error was encountered sending a request to cluster member
{CELLNAME=wasCell01, CLUSTERNAME=wascluster01,
lsdMemberDistinction=washost1.rchland.ibm.com} and that member has been marked
unusable for future requests to the cluster "", because of exception:
org.omg.CORBA.NO_RESPONSE: Request 60 timed out vmcid: IBM minor code: B01
comp.
100 WebSphere Application Server V6: High Availability Solutions

Another error might be the CORBA.COMM_FAILURE shown in Example 2-15:

Example 2-15 CORBA.COMM_FAILURE error in the log

WWLM0061W: An error was encountered sending a request to cluster member
{MEMBERNAME=wasmember01, NODENAME=wasnode01} and that member has been marked
unusable for future requests to the cluster "", because of exception:
org.omg.CORBA.COMM_FAILURE: CONNECT_FAILURE_ON_SSL_CLIENT_SOCKET - JSSL0130E:
java.io.IOException: Signals that an I/O exception of some sort has occurred.
Reason: Connection refused vmcid: 0x49421000 minor code: 70 completed: No

If you receive these errors and you enabled core group bridges, then verify that
you receive messages of processes joining the access point groups as shown in
Example 2-16. If you do not see these messages, review the core group bridge
settings.

Example 2-16 Process joining messages for access point groups

DCSV1032I: DCS Stack DefaultAccessPointGroup at Member 10.0.4.2:9353: Connected
a defined member 10.0.4.1:9352

Security
If you have security related problems, verify or review the following:

1. Security related messages in the application server logs.

2. You have the same user registry on both cells.

3. LTPA tokens were exported from the primary cell and imported in the backup
cell.

4. After enabling security or making security configuration changes, the cell was
synchronized and restarted.

5. The time matches on all machines in both cells.

6. Security works if the application is installed on a single cluster.
 Chapter 2. WebSphere Application Server failover and recovery 101

102 WebSphere Application Server V6: High Availability Solutions

Chapter 3. WebSphere administrative
process failures

This chapter explains what the effects are for the WebSphere environment if an
administrative process, such as the Deployment Manager or a Node Agent fails
(this also includes planned downtime of one of these processes). The
Deployment Manager and Node Agents cannot automatically failover to other
systems in the WebSphere environment and are thus considered single points of
failure.

However, after reading this chapter, you might find that failures of these
administrative processes are not disastrous for your environment and you can
live with an outage for a certain amount of time.

In case you cannot afford a failure, you can make these processes highly
available using clustering software, such as IBM HACMP, IBM Tivoli System
Automation, VERITAS Cluster Server, or Sun Cluster. Setting up clustered
environments is covered in great detail in Part 5, “Using external clustering
software” on page 283.

Failures of application servers are not covered in this chapter. See Chapter 2,
“WebSphere Application Server failover and recovery” on page 35 for information
about this topic.

3

© Copyright IBM Corp. 2005. All rights reserved. 103

3.1 Introduction to process failures
The Node Agents and the Deployment Manager are administrative processes in
the WebSphere environment. One of their main responsibilities is to keep
configuration data synchronized. Node Agents and the Deployment Manager
both use a repository of XML files on their own nodes. The master repository
data is stored on the Deployment Manager node. That data is then replicated to
each node in the cell. The default synchronization interval is 60 seconds. The
synchronization process is unidirectional from the Deployment Manager to the
Node Agents to ensure repository integrity. That means that any changes made
on the Node Agent level are only temporary and will be overwritten by the
Deployment Manager during the next synchronization. Only changes to the
master data through the Deployment Manager are permanent and replicated to
each node.

Other tasks for the Deployment Manager are related to the Tivoli Performance
Viewer, backup clusters, JMX routing, distributed logging, the naming server and
the security server. To learn what impact a failure of the Deployment Manager
has on the various WebSphere system components, see 3.2, “Deployment
Manager failures” on page 104.

In addition to the file synchronization services, the Node Agent also provides
runtime support for the Location Service Daemon (LSD), JMX server, distributed
logging, naming server, security server, and is required for starting application
servers. See 3.3, “Node Agent failures” on page 111 for details.

You learn in this chapter that, depending on your requirements and WebSphere
environment, the impact of a failure of one of these processes might be minimal.
Some customers even run their production environment without an active
Deployment Manager.

3.2 Deployment Manager failures
The Deployment Manager is not clustered and therefore a single point of failure.
However, its impact on the application client processing is limited because all
configuration data is replicated to every Node Agent in the cell. As soon as the
Deployment Manager server becomes available again, all Node Agents in the
cell will discover it, and all functions will return to normal.

Also, in WebSphere V6, the role of the Deployment Manager during runtime
operation of a WebSphere system is less critical than in previous versions. The
Deployment Manager is no longer responsible for keeping routing tables up to
date for clustered resources such as J2EE applications or messaging engines.
The routing table logic now runs on an elected member of the cluster itself. If that
104 WebSphere Application Server V6: High Availability Solutions

member fails, then the HAManager moves the task to a surviving cluster
member. The routing table is thus now fault tolerant. However, the Deployment
Manager is required for the following tasks:

� Making configuration changes (permanent or runtime) and synchronizing
these with the cell.

The Deployment Manager is the central control point for all administrative and
configurational tasks as well as operational actions. It hosts the Administrative
Console application which is used to configure the entire cell.

� JMX routing through the Deployment Manager to manage application servers
and clusters, to deploy applications to a cluster, and so forth.

Some of these configuration tasks can be done using wsadmin commands
directly on the Node Agent or application server. However these changes are
not permanent and are overwritten based on the master repository
configuration when the Deployment Manager becomes available again. See
3.2.9, “Administrative clients” on page 109 for more information. For details on
JMX and distributed administration see Chapter 3 of WebSphere Application
Server V6 System Management and Configuration Handbook, SG24-6451.

� Performance Monitoring

The Tivoli Performance Viewer is integrated into the Administrative Console in
WebSphere V6.

� Backup cluster failover. See 2.7, “Backup cluster support” on page 87.

Failure causes
What can cause the Deployment Manager to become unavailable? The following
are failure causes:

� Expected server process failure, for example stopping the server.

� Unexpected server process failure, for example the server JVM crashes,
simulated by kill -9.

� Server network problem, for example a network cable is disconnected or a
router is broken.

� Unexpected and expected machine problem, for example a machine
shutdown, operating system crashes, or power failures.

� Disk failure and thus the configuration cannot be read.

The following sections discuss the behaviors of Deployment Manager server
failures and how WebSphere V6 mitigates the impacts of these failures on the
WebSphere environment.
 Chapter 3. WebSphere administrative process failures 105

3.2.1 Configuration management
In WebSphere V5 and higher, each individual node is "added" to the Deployment
Manager cell. The Deployment Manager holds the cell’s master configuration
repository in the form of XML files. A subset of the master repository (related to a
node’s configuration) is then replicated to all the nodes in the cell. The
Deployment Manager keeps all copies of the configuration files synchronized
across all nodes. During normal operation, the Deployment Manager consistently
synchronizes the repository data on each node with the master repository. The
Deployment Manager also synchronizes application binaries to all application
servers in a cluster (through the Node Agent).

You can turn synchronization on or off and change configuration parameters to
tune synchronization using the Administrative Console (System
Administration → Node Agents → Node_Agent_Name → File
synchronization service).

WebSphere V6 also provides the option to synchronize copies of the repository
and application binaries manually by using the syncNode command:

syncNode deploymgr_host deploymgr_port [options]

You can also use the Administrative Console (System administration →
Nodes) as shown in Figure 3-1.

Figure 3-1 Node synchronization in the Administrative Console
106 WebSphere Application Server V6: High Availability Solutions

3.2.2 Node Agent
The Node Agent interacts directly with the Deployment Manager to perform all
administrative and configuration tasks. If the Deployment Manager is unavailable,
all cell-wide tasks cannot be executed and all tasks done locally will be
overwritten by the master repository when the Deployment Manager becomes
available again.

When the Deployment Manager is not available, configuration synchronization
with the Node Agent fails with the following error message:

[6/30/05 9:25:56:061 CDT] 0000002d NodeSyncTask E ADMS0015E: The
synchronization request cannot be completed because the node agent cannot
communicate with the deployment manager.

The Deployment Manager and the Node Agents can be started in any order.
They will discover each other as soon as they are started.

3.2.3 Application server
Application servers have no direct interaction with the Deployment Manager.
Thus, application servers can serve client requests regardless of Deployment
Manager availability. However, they rely on up-to-date configuration data and on
the fact that the Deployment Manager server replicates and initiates any
changes.

3.2.4 Naming server
The Deployment Manager also hosts a cell naming server that controls the whole
naming context structure.

Clients can bootstrap to the cell naming server using:

prop.put(Context.PROVIDER_URL, "corbaloc::dmgrhost:9809");

The Deployment Manager server is not workload managed in WebSphere V6. In
addition, the naming service is not inside the Deployment Manager process.

Note: If the Deployment Manager is not available, the repository cannot be
synchronized. However, you can use wsadmin commands to change the
configuration at the node level directly. Be aware that repository files across all
nodes in the domain might become inconsistent or stale when doing so. When
the Deployment Manager comes online again, all changes made locally to
Node Agents or application servers are lost and are overwritten with the
master repository.
 Chapter 3. WebSphere administrative process failures 107

Unless you have a highly available Deployment Manager using clustering
software such as IBM HACMP or TSA, you should not use it to bootstrap your
application clients. A highly available Deployment Manager has the advantage of
a single image of the domain.

No matter where your client bootstraps, any naming binding or update writing at
cell scope fails if the Deployment Manager is not available.

3.2.5 Security service
The cell security server is not available when the Deployment Manager is down.
This has no impact on application clients because they use the local security
service in every application server. Nevertheless, the LDAP server does present
a single point of failure for security servers. See 15.6, “LDAP Server” on
page 580 for more information about high availability of LDAP servers.

3.2.6 Application clients
There is very limited direct impact on application clients when the Deployment
Manager is not available. They will notice the failure only if they are bootstrapped
to the cell naming server or when the application clients do bindings and
updates. However, application clients might be impacted indirectly by
unavailable configuration and operational services due to the failed Deployment
Manager, for example inconsistent configuration data or aged application
binaries.

3.2.7 Synchronization Service and File Transfer Service
The Deployment Manager provides file transfer and synchronization of
configuration files and application binaries across nodes in the domain. These
services are not available when the Deployment Manager is down.

3.2.8 RAS Service and PMI monitoring
The cell-wide information and remote logs are not available when the
Deployment Manager is unavailable.
108 WebSphere Application Server V6: High Availability Solutions

3.2.9 Administrative clients
This section discusses the impacts of Deployment Manager failures on the
Administrative Console and the wsadmin scripting interface.

Administrative Console
The default adminconsole application cannot be started if the Deployment
Manager is unavailable.

The wsadmin scripting interface
By default, wsadmin connects to the Deployment Manager server. If it is
unavailable, wsadmin fails. You can change the wsadmin.properties file or add
parameters on the command line to attach wsadmin to a Node Agent or
application server.

You can look up the wsadmin connect types and ports in the SystemOut.log file,
for example, for an application server:

The SOAP connector is available at port 8881
The RMI Connector is available at port 9811

For example, you can use the wsadmin interface with the following parameters:

wsadmin -conntype RMI -host localhost -port 9811

Alternatively, you can modify the wsadmin.properties file with the application
servers’ or Node Agents’ host and port as shown in Example 3-1. The
wsadmin.properties file is located in the following directory:

<install_root>/profiles/profilename/properties

Example 3-1 The wsadmin.properties file

...
The connectionType determines what connector is used.
It can be SOAP or RMI.
The default is SOAP.
#---
#com.ibm.ws.scripting.connectionType=SOAP
#com.ibm.ws.scripting.connectionType=null
com.ibm.ws.scripting.connectionType=soap
#com.ibm.ws.scripting.connectionType=RMI
#---
The port property determines what port is used when attempting
a connection.
The default SOAP port for a dmgr or custom profile is 8879
#---
#com.ibm.ws.scripting.port=8879
#com.ibm.ws.scripting.port=null
 Chapter 3. WebSphere administrative process failures 109

com.ibm.ws.scripting.port=8881
#---
The host property determines what host is used when attempting
a connection.
The default value is localhost.
#---
#com.ibm.ws.scripting.host=localhost
#com.ibm.ws.scripting.host=mySystem
#com.ibm.ws.scripting.host=localhost
com.ibm.ws.scripting.host=mySystem.ibmredbook.com
...

Remember that any change made to the Node Agent or the application server is
lost when the Node Agent synchronizes its repository with the master repository
when the Deployment Manager comes up again.

3.2.10 Enhancing Deployment Manager availability
A failure of the Deployment Manager is not critical for the functioning of a
WebSphere environment. However, there are several options to enhance the
availability of the Deployment Manager, such as making it a monitored process
or using clustering software. See 3.4, “Restarting WebSphere processes as an
OS service” on page 117 and 3.5, “Enhancing WebSphere process availability
using clustering software” on page 118 for information.

Another option is the approach that is described in the online article
Implementing a Highly Available Infrastructure for WebSphere Application Server
Network Deployment, Version 5.0 without Clustering by Tom Alcott, which is
available at:

http://www.ibm.com/developerworks/websphere/library/techarticles/
0304_alcott/alcott.html
110 WebSphere Application Server V6: High Availability Solutions

http://www.ibm.com/developerworks/websphere/library/techarticles/0304_alcott/alcott.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0304_alcott/alcott.html

3.3 Node Agent failures
The Node Agent is an administrative process and is not involved in application
serving functions. It hosts important administrative functions such as file transfer
services, configuration synchronization and performance monitoring. The Node
Agent is required to be started before any application servers on that node can
be started and contains the Location Service Daemon (LSD) in which each
application server registers on startup.

The following types of errors in the process, network, disk, and machine might
cause a Node Agent server to fail:

� Expected server process failure, for example stopping the server.

� Unexpected server process failure, for example the server JVM crashes,
simulated by kill -9.

� Server network problem, for example the network cable is disconnected or a
router is broken.

� Unexpected and expected machine problems, for example a machine
shutdown, operating system crashes, or power failures.

� Disk failure and thus the configuration cannot be read.

The following sections discuss the behaviors of Node Agent failures and how
WebSphere V6 mitigates the impacts of these failures on application servers and
application clients.

3.3.1 Application servers
The Node Agent hosts the Location Service Daemon, publishes and
synchronizes configuration data to other application servers, and monitors and
launches the managed application server processes.

Starting application servers
An application server can only be started if the local Node Agent is available. If
the Node Agent is not active, the application server cannot register itself with the
LSD, and you receive the error message shown in Example 3-2.

Example 3-2 Error message at application server startup with inactive Node Agent

...
[6/30/05 9:03:29:208 CDT] 0000000a WsServerImpl E WSVR0009E: Error occurred
during startup META-INF/ws-server-components.xml
[6/30/05 9:03:29:218 CDT] 0000000a WsServerImpl E WSVR0009E: Error occurred
during startup com.ibm.ws.exception.RuntimeError:
com.ibm.ws.exception.RuntimeError: com.ibm.ejs.EJSException: Could not register
 Chapter 3. WebSphere administrative process failures 111

with Location Service Daemon, which could only reside in the NodeAgent. Make
sure the NodeAgent for this node is up an running.; nested exception is:
 org.omg.CORBA.ORBPackage.InvalidName:
LocationService:org.omg.CORBA.TRANSIENT: java.net.ConnectException: Connection
refused:host=system1.ibmredbook.com,port=9100 vmcid: IBM minor code: E02
completed: No
...

For active application servers
When the application server is started, it runs normally even if the Node Agent
becomes unavailable. However, configuration data cannot be updated.

Restarting application servers automatically
Application server processes are managed by the Node Agent. When the Node
Agent is unavailable, the application server loses the benefit of being a managed
server. One of these benefits is that an application server is restarted
automatically if it dies unintentionally.

You can tune the application server process monitoring parameters on the
Administrative Console by changing the Monitoring Policy. To do this, go to
Servers → Application servers → AppServer_Name → Java and Process
Management → Monitoring Policy. Figure 3-2 shows the configuration panel.

Figure 3-2 Managed server monitoring parameters tuning
112 WebSphere Application Server V6: High Availability Solutions

Network failures: loopback alias configuration
The Node Agent normally pings all application servers on the node and restarts
application servers that are not available. If the system is disconnected from the
network, for example due to a network adapter or cable problem, this
communication between the Node Agent and its application servers depends on
the loopback port.

Basically, when the system is disconnected from the network, the Node Agent
cannot ping the application server unless the loopback port address (127.0.0.1)
is configured as an alias endpoint for the machine. The reason for this is that the
loopback port is only considered a valid port for the application server when the
loopback port address is configured as an alias for the system.

If the Node Agent cannot ping the application server for a certain amount of time,
then it tries to restart the application server based on the settings in the
Monitoring Policy.

The following scenario explains why it is important to configure the loopback
alias. Assume that there is a network failure and the ping from the Node Agent to
the application server fails. The Node Agent thinks that the application server is
down, even though it is not.

� If the network is restored prior to the Node Agent, it thinks that the application
server has failed, then everything is fine.

� If the network is restored after the Node Agent, it thinks that the application
server is down. Then, the Node Agent tries to restart the application server,
meaning it would try to start a second copy of the application server, which of
course fails. If the network is restored after the Node Agent gives up trying,
then the Node Agent thinks that the application server is down, even if it is up.

To configure the loopback alias, add the following line to the hosts file:

127.0.0.1 hostname

3.3.2 Deployment Manager
Node Agents and the Deployment Manager work together to manage
administrative tasks and to make configuration and operational changes. If a
Node Agent is not available, the Deployment Manager cannot inform the Node
Agent of these changes. However, when the Node Agent becomes available
again, all missing information is sent to the Node Agent during the first
synchronization.
 Chapter 3. WebSphere administrative process failures 113

3.3.3 Security service
It is very important that all Node Agents in a cell are up and running when you
change security related settings, for example, when you enable global security or
change user registry settings. Otherwise, synchronization with the Deployment
Manager might fail due to inconsistent or missing security information when the
Node Agent comes back up.

Other than this, a failure of a Node Agent does not have any impacts on an
already set up and running secured environment because each application
server JVM hosts a security service. The security service uses the security
settings held in the configuration repository to provide authentication and
authorization functionality.

3.3.4 Naming server
In IBM WebSphere Application Server Network Deployment V6, a naming server
exists in every server process (application server, Node Agent, and Deployment
Manager). You can bootstrap your client to any of these naming servers. Usually
servlets, EJB clients, and J2EE clients start their bootstrap from their local
application server and end up on the server where the objects are found.

For Java clients, you can bootstrap to more than one naming server on different
Node Agents, as shown in Example 3-3.

Example 3-3 Java client bootstrapping

prop.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
prop.put(Context.PROVIDER_URL, "corbaloc::host1:2809,:host2:2809");
Context initialContext = new InitialContext(prop);
try { java.lang.Object myHome =
initialContext.lookup("cell/clusters/MyCluster/MyEJB");
myHome = (myEJBHome) javax.rmi.PortableRemoteObject.narrow(myHome,
myEJBHome.class);
} catch (NamingException e) { }

The client tries the bootstrap servers on host1 and host2 automatically until it
gets an InitialContext object. The order in which the bootstrap hosts are tried is
not guaranteed.

The Node Agent is not workload managed. If a client gets a cached InitialContext
object and that Node Agent is unavailable, the InitialContext object will not
automatically failover to another Node Agent, so the lookup with this
InitialContext object fails. In order to avoid this problem, you need to disable the
114 WebSphere Application Server V6: High Availability Solutions

cache in your client by supplying the following property when initializing the
naming context:

prop.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE)

Where PROPS.JNDI_CACHE_OBJECT is a Java constant defined in
com.ibm.websphere.naming.PROPS.

Or more conveniently by setting the Java command line property as:

java -Dcom.ibm.websphere.naming.jndicacheobject=none MyClient

Using Node Agents as bootstrap servers is not recommended because they are
not workload managed. Because application servers in a cluster are workload
managed, you should use application servers as bootstrap servers instead as
follows:

prop.put(Context.PROVIDER_URL, "corbaloc::host1:9810,:host1:9811,
:host2:9810, :host2:9811");

This discussion is only relevant for naming lookup (read) operations. If your
application is binding (writing), a failure occurs if the Node Agent is unavailable,
because the Node Agent coordinates the binding process.

Refer to IBM WebSphere V6 Scalability and Performance Handbook,
SG24-6392 for more information about bootstrapping.

3.3.5 Application clients
An application client receives its routing information from the LSD hosted in the
Node Agent. If the application server environment does not have routing
information for a client failover available, the client will fail to run if all Node
Agents are unavailable. When the application server environment has routing
information available, the application client will run successfully if it is not using a
single Node Agent to bootstrap and is not binding (writing). All EJB IORs contain
the list of LSD host and ports.

3.3.6 Synchronization service and File transfer service
These services fail to function when the Node Agent is unavailable.

3.3.7 RAS service, PMI and monitoring
A node with a failed Node Agent is not able to provide RAS service, PMI, and
monitoring information to the cell.
 Chapter 3. WebSphere administrative process failures 115

3.3.8 Administrative clients
There are two kinds of administrative clients: the Administrative Console and the
wsadmin scripting interface. The wsadmin tool scripting interface can be attached
to any server (Node Agent, Deployment Manager, or application servers). The
Administrative Console is a Web application that is installed in the Deployment
Manager in a WebSphere Network Deployment environment.

Administrative Console
The following limitations when working with the Administrative Console apply
when a Node Agent is not available:

� Any query for any information about that node fails and leaves the server
status for that node as unknown or unavailable.

� Any configuration changes do not appear on that node until the Node Agent is
restarted.

� Any operational actions (start, stop, delete, create) from the Administrative
Console to the servers on the node with a failed Node Agent fails.

However, you can do any administrative and configuration tasks using the
Administrative Console for other nodes where the Node Agents are still alive.
Configuration changes are synchronized with the Node Agent when it becomes
available again.

The wsadmin scripting interface
You can connect the wsadmin scripting interface to every server in the
WebSphere cell. By default, wsadmin is attached to the Deployment Manager.
You can change the default by editing the wsadmin.properties file located in the
<install_root>/profiles/profilename/properties directory or you can specify the
conntype, host, and port parameters in the command line:

wsadmin -conntype SOAP -host mynode -port 8878

You can look up the conntype and port in the SystemOut.log. For example:

JMXSoapAdapte A ADMC0013I: The SOAP connector is available at port 8878
RMIConnectorC A ADMC0026I: The RMI Connector is available at port 2809

Naturally, wsadmin cannot connect to the Node Agent when it is unavailable.

3.3.9 Enhancing Node Agent availability
In WebSphere Network Deployment, we usually have more than one Node
Agent in the cell, and all Node Agents host the Location Service Daemon (LSD).
So in case of a Node Agent failure, another Node Agent can service client
116 WebSphere Application Server V6: High Availability Solutions

requests. Therefore, having more than one Node Agent in a cell is the basic
solution to ensure LSD availability if a Node Agent process is lost.

Other availability improvement options
There are several other options to enhance the availability of Node Agents, such
as making them a monitored process or using clustering software. See 3.4,
“Restarting WebSphere processes as an OS service” on page 117 and 3.5,
“Enhancing WebSphere process availability using clustering software” on
page 118 for information.

3.4 Restarting WebSphere processes as an OS service
As a first step in making HA provisions for the Deployment Manager or Node
Agent, you should make use of the platform specific mechanisms for providing
operating system process monitoring and restart. When you have added the
Deployment Manager and Node Agent processes as operating system
monitored processes, the operating system restarts them automatically in case
of an abnormal termination. This minimizes the impact of an outage due to a
process failure. For further details, refer to the InfoCenter article Automatically
restarting server processes at:

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

Windows
In Windows, you can use the WASService command to create a Windows service
for any WebSphere Application Server Java process. Adding the service is also
possible during installation of the product but you can always use the WASService
command to add additional processes later or in case you did not add the
Windows service during installation.

Refer to the InfoCenter article WASService command for detailed instructions on
how to use the WASService command.

UNIX and Linux - Deployment Manager
The steps to achieve the same in UNIX® or LINUX are as follows:

1. Navigate to the bin directory under the Deployment Manager’s profile:

cd /IBM/WebSphere/AppServer/profiles/dmgr_profile_name/bin
 Chapter 3. WebSphere administrative process failures 117

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

2. Run the startManager.sh command with the -script option, as shown in
Example 3-3 on page 114

Example 3-4 startManager.sh -script command

./startManager.sh -script
ADMU0116I: Tool information is being logged in file
/IBM/WebSphere/AppServer/profiles/itsoprofile01/logs/dmgr/startServer.log
ADMU0128I: Starting tool with the itsoprofile01 profile
ADMU3100I: Reading configuration for server: dmgr
ADMU3300I: Launch script for server created: start_dmgr.sh

3. Edit the rc.was file under <install_root>/bin and set the value of the
launchScript variable to the script created in step 2.

launchScript=start_dmgr.sh

4. Add an entry to the /etc/inittab file:

dm:23:once:/IBM/WebSphere/AppServer/bin/rc.was >dev/console 2>&1

UNIX and Linux - Node Agent
Follow the instructions from “UNIX and Linux - Deployment Manager” on
page 117 but navigate to the Node Agents’ profile /bin directory and use the
startNode.sh command instead of the startManager.sh command.

3.5 Enhancing WebSphere process availability using
clustering software

Operating system process monitoring and restart does not help if the
Deployment Manager or Node Agent fails due to any network, disk, operating
system, or host machine problem. In order to achieve 24 x 7 availability,
third-party clustering software such as IBM HACMP, IBM Tivoli System
Automation, Sun Cluster, or VERITAS Cluster Server needs to be used.

The underlying concept for all of the aforementioned third-party software is
essentially the same and is described in Chapter 9, “Configuring WebSphere
Application Server for external clustering software” on page 285. Then, we
provide individual chapters for each of these software packages:

� Detailed configuration instructions for using IBM HACMP to create a highly
available Deployment Manager or Node Agent and application server cluster
are provided in Chapter 11, “WebSphere and IBM HACMP” on page 417.

Note: You must have root authority to edit the inittab file.
118 WebSphere Application Server V6: High Availability Solutions

� Detailed configuration instructions for using IBM Tivoli System Automation
(TSA) to create a highly available Deployment Manager or Node Agent and
application server cluster are provided in Chapter 10, “WebSphere and IBM
Tivoli System Automation” on page 367.

� Detailed configuration instructions for using VERITAS Cluster Server to create
a highly available Deployment Manager or Node Agent and application server
cluster are provided in Chapter 12, “WebSphere and VERITAS Cluster
Server” on page 445.

� Detailed configuration instructions for using Sun Cluster to create a highly
available Deployment Manager or Node Agent and application server cluster
are provided in Chapter 13, “WebSphere and Sun Cluster” on page 483.
 Chapter 3. WebSphere administrative process failures 119

120 WebSphere Application Server V6: High Availability Solutions

Chapter 4. High availability system
administration

This chapter describes system administration in a highly available WebSphere
Application Server environment. It helps you to understand the administration
tasks that are required during an hardware upgrade, hardware replacement, and
WebSphere software version upgrade while still maintaining a highly available
system. We describe the procedures for administering these three scenarios via
the Administrative Console and also provide a list of wsadmin scripts to automate
the administration tasks.

Administration of HTTP requests and Web servers are external to WebSphere
Application Server and are not covered in this chapter. We do discuss, however,
what you should consider regarding the Web server plug-in communication to
the application servers when stopping and restarting application servers.

4

© Copyright IBM Corp. 2005. All rights reserved. 121

4.1 Introduction to high availability
A high availability (HA) WebSphere system is made up of two or more machines
or LPARs that host application servers. Each machine or LPAR is considered a
node in the WebSphere environment. Each node hosts one or more application
servers (cluster members) which are interconnected in a cluster that hosts the
same application. Failover and workload distribution is provided among the
members of the cluster.

IBM WebSphere Application Server Network Deployment V6 provides a high
availability framework that eliminates single points of failure for most WebSphere
processes. The HAManager together with the WebSphere workload
management (WLM) component provide redirection of requests within the cluster
when a failure of a node or process is detected.

Refer to Chapter 2, “WebSphere Application Server failover and recovery” on
page 35 and IBM WebSphere V6 Scalability and Performance Handbook,
SG24-6392 for more information about failover and WebSphere WLM. Refer to
Chapter 6, “WebSphere HAManager” on page 175 for information about the
HAManager.

As an HA administrator, you should be aware of the different WebSphere
components that participate in the HA environment and the impact when they are
not available due to a hardware or software upgrade. Planning ahead for the
right hardware capacity to provide high availability support and a carefully
derived schedule for software upgrades are important to avoiding the risk of a
failure without failover coverage.

It is imperative that the remaining nodes are capable of handling all the workload
when one of them is unavailable. This way, you avoid overloading the running
servers and minimize unavailability. So, a highly available environment always
needs some overcapacity.

4.1.1 System setup for the administration scenarios
Figure 4-1 on page 123 shows the full cell configuration of our environment, with
multiple nodes, clusters, and cluster members. For simplicity reasons, we focus
on two nodes, wasna01 and wasna02, for the scenarios that this chapter
describes. Each node is configured to be part of two clusters (wascluster01 and

Note: Perform a software upgrade when there is minimal traffic to the system
and automate the process in a production environment.
122 WebSphere Application Server V6: High Availability Solutions

wascluster02), and each cluster has multiple cluster members (wasmember01
through 06). Figure 4-2 on page 124 illustrates this subset of the entire cell.

Figure 4-1 Cell configuration of the redbook environment

Figure 4-2 on page 124 shows the test environment using only the two nodes
that we used during our tests. This setup illustrates the various adminstration
tasks that are involved in the following administration scenarios:

� Hardware replacement
� Hardware upgrade
� WebSphere version upgrade (installing refresh packs)

We explain these scenarios mainly using the Administrative Console.

In addition, you can find a list of wsadmin scripts that are downloadable from the
IBM developerWorks® Web site in 4.6, “Sample wsadmin scripts for
administration tasks” on page 139. You can use these scripts to automate some
of the common administration tasks in a WebSphere environment.
 Chapter 4. High availability system administration 123

Figure 4-2 HA system and configuration setup

WebSphere Application Server V6 allows for integration of WebSphere into an
environment that uses other high availability frameworks, such as IBM HACMP,
Tivoli System Automation, VERITAS Cluster Server, or Sun Cluster to manage a
highly complex HA system. In this chapter, we focus on the HA setup and
configuration available within WebSphere itself. For information about the
external HA options, refer to Part 5, “Using external clustering software” on
page 283.

WASNA 01

Application
Server Cluster

Member 2Application
Server Cluster

Member 1

Config
Subset

Application
Server Cluster

Member 5

Node Agent

Application
Server Cluster

Member 4Application
Server Cluster

Member 3

Config
Subset

Application
Server Cluster

Member 6

Node Agent

HTTPNODEWASNA 02

WASCLUSTER01

WASCLUSTER02

WASDMGR01

Deployment
Manager

Master
Config

HTTP Server

Plug-in

WASCELL 01
124 WebSphere Application Server V6: High Availability Solutions

4.2 Starting or stopping application servers and the
Web server plug-in retry interval

When stopping and restarting application servers, it is important to consider the
correlation with the Web server plug-in retry interval. This is especially important
in an environment with only a few application servers.

You need to understand the rate between starting and stopping application
servers in a cluster and the retry interval so that you do not get HTTP request
failures when you stop application servers in a cluster. The retry interval tells the
Web server plug-in how long to wait before retrying an HTTP request against a
specific application server. If you stop and start application servers in a cluster
faster than the retry rate, then a situation can occur where the plug-in assumes
that two or more application server are down, when in fact they are not.

Here is an example of this situation. Let us assume the following:

� The retry interval is set to 60 seconds (which is the default).

� There are two application servers in the cluster.

� We are running a servlet application.

� We alternate taking the two servers down. We take them down and restart
them in a 45 second interval.

The Web server plug-in sends a request to a specific application server and if
that server is unavailable, it marks it as down. The request is then sent to the next
application server in the cluster. The plug-in does not retry the marked down
server until the retry interval has passed.

In our example, because the retry interval is longer than the recycle time, there
are time slots where one server’s retry count has not yet expired. So, the plug-in
does not retry that server (even though it might be back up), and the other server
is down. Thus, there might be a time slot where the Web server plug-in thinks
that both servers are down. Figure 4-3 on page 126 illustrates this example.
 Chapter 4. High availability system administration 125

Figure 4-3 Correlation between retry interval and stopping servers

In an environment with two application servers per cluster, the plug-in cannot
forward the request to any application server and, thus, returns an HTTP request
failure. If there are more than two application servers in the cluster, the plug-in
routes the request to the remaining active servers in the cluster. However,
depending on the difference between the retry interval and the application server
recycle time, there might be more than two application servers that are perceived
to be unavailable at any given time.

To avoid this problem, increase the recycle rate to be at least as long in duration
as the retry interval. If your retry interval is 60 seconds, then delay at least
60 seconds between starting one application server and stopping another
application server. You can verify the retry interval setting either by using the
Administrative Console (Servers → Web servers → WebServer_Name →
Plug-in properties → Request Routing) or by looking at the plugin_cfg.xml file.

If it is not possible to add an appropriate delay between recycling servers, then
ensure that your remaining application server environment has the capacity to
handle requests for the application assuming that two (or more) of the application
servers are unavailable at the same time.

So, there are two maxims to remember:

1. Do not stop an application server in a shorter duration than the retry interval.

2. If you stop an application server in a shorter duration than the retry interval,
ensure that the set of remaining active servers can handle the capacity of
having two application servers unavailable for a period of time equal to the
retry interval.

Server A
down

Server A
down, B up

Server B
down, A up

Server B
down, A up

Application server recycle time

Server A unavailable

HTTP request fail areas

Server B unavailable

Server A unavailable

Server B unavailable

Web server plug-in retries
126 WebSphere Application Server V6: High Availability Solutions

4.3 Replacing hardware
In this scenario, we are replacing the hardware which hosts the wasna01 node.

The new hardware is configured to contain the exact same configuration as the
removed node when it is defined in the cell. Obviously, to ensure HA, the node to
be replaced must not be the only physical machine in the environment and the
remaining systems should be able to handle the additional workload.

We recommend reading the entire section before performing the task.

4.3.1 Removing the node from the cell
In order to replace the hardware, you should first ensure that all processes on the
node are stopped:

1. Select Servers → Application servers and select all application servers that
belong to node wasna01, as shown in Figure 4-4 on page 128. Then, click
Stop. In our example the servers to stop are wasmember01 and
wasmember02 (which are part of wascluster01) as well as wasmember05
(which is part of wascluster02).

Note: This scenario covers planned maintenance. Thus, you should not use
this in case of a hardware problem. If you need to recover from a hardware
failure by replacing the hardware, you can follow the description from
Chapter 14, “Backup and recovery of Network Deployment configuration” on
page 549. The approach described there requires a recent backup of your
WebSphere configuration using backupConfig or a file system backup.
 Chapter 4. High availability system administration 127

Figure 4-4 Select the application servers that belong to node wasna01

Depending on the number of application servers that you have chosen, it
might take several minutes to stop all application servers. The Server status
feedback panel gives you continuous information about the stop procedure.
When all processes have stopped, click OK to proceed.

Attention: When using an application that uses the default messaging
provider, such as Trade 6, it is important to drop all tables that were created
for the messaging engines (MEs). The MEs have a UUID assigned to them
upon creation/instantiation and when creating a new application server
(cluster member), there is a UUID mismatch, and the application server
cannot assign the ME.

You can obtain the schema names used for each of your messaging
engines by selecting Service integration → Buses → EJBcluster →
Messaging engines. For each messaging engine, click its link, select
Additional Properties → Data store, and write down the value of the
Schema name field. Connect to the applications’ database and list the
tables for each of the schemas. Then, drop all tables listed for each
schema.

For more information, visit the WebSphere Application Server V6
InfoCenter. Search for the sections Tips for troubleshooting messaging
engines or Problems when re-creating a Service Integration Bus.

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp
128 WebSphere Application Server V6: High Availability Solutions

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

2. You can now remove the node from the cell configuration. Click System
administration → Nodes. Select wasna01 and click Remove Node. Note
that the Node Agent must be active for this procedure to work.

Click OK on the Remove node confirmation screen. Verify that there is no
error on the console. Save your changes.

3. On the System administration → Nodes panel, select all remaining nodes
in the cell and click Full Resynchronize to make sure that all node’s
repositories are synchronized with the Deployment Manager.

4. Now, you can remove the hardware that previously hosted the wasna01 node
from the network without impacting the WebSphere system. Remove the
machine from the network.

4.3.2 Installing and configuring the new hardware or LPAR
We assume that the new hardware or new LPAR has the correct operating
system level and any needed maintenance levels or fixpacks installed. (We refer
to the new machine or LPAR as the new system for the remainder of this section.)

To see the latest list of IBM WebSphere Application Server Network Deployment
V6 hardware and software requirements, visit:

http://www.ibm.com/software/webservers/appserv/was/requirements/

Tip: Alternatively, you can use the removeNode command from the profiles’
\bin directory.

Note: The removeNode command only removes the node-specific
configuration from the cell. It does not uninstall any applications that were
installed previously as the result of executing an addNode -includeapps
command. This is because the application or applications can
subsequently deploy on other application servers in the cell.

As a consequence, an addNode -includeapps command executed after a
removeNode command was done does not move applications into the cell
again because they already exist from the first addNode command. Thus,
application servers added subsequently to the node do not contain any
applications.

To deal with this situation, add the node and use the Deployment Manager
to manage the applications using the application administration panels or
by adding new application servers to a cluster that hosts the application or
applications.
 Chapter 4. High availability system administration 129

http://www.ibm.com/software/webservers/appserv/was/requirements/

We reuse the same configuration as the replaced node (wasna01) had for our
new system. Follow these steps to install and configure the new system:

1. Install the WebSphere Application Server Network Deployment software. You
also need to re-install all refresh packs and fixes that were previously
installed. WebSphere reinstallation can be done either manually or using a
recent file system backup.

2. After successful installation of the core product files, you need to create a
custom profile and federate the node into the cell.

You can use either the Profile creation wizard or the wasprofile command to
do so. Refer to Chapter 4, “Getting started with profiles” of WebSphere
Application Server V6 System Management and Configuration Handbook,
SG24-6451 for detailed information about profile management.

Consider the following:

– Use the original profile name and configuration settings from the removed
node when creating the profile.

– When using the Profile creation wizard you have the option to federate the
node right away. However, you must be able to reach the Deployment
Manager at this point, so the new system must already be in the network
and the Deployment Manager must be up and running.

– Alternatively you can federate the node after profile creation using the
addNode <dmgr_host> <dmgr_soap_port> command. Section 5.5, “Working
with nodes” of WebSphere Application Server V6 System Management
and Configuration Handbook, SG24-6451 explains the addNode command
in detail.

3. Federation of the node, using either one of the federation options, starts the
Node Agent automatically so that you can use the Administrative Console for
further configuration.

Open the Administrative Console and verify that the Node Agent has indeed
been started (System administration → Node agents). Alternatively you
can use the serverStatus nodeagent command.

4. Recreate the cluster members wasmember01 and wasmember02 in
wascluster01 and the cluster member wasmember05 in wascluster02. Cluster
member creation is explained in great detail in Chapter 8, “Implementing the
sample topology” of IBM WebSphere V6 Scalability and Performance
Handbook, SG24-6392.

In the Administrative Console, go to Servers → Clusters and follow these
steps:

a. On the Server Cluster configuration panel, click wascluster01 → Cluster
members → New. Create two cluster members called wasmember01 and
wasmember02 to the node wasna01.
130 WebSphere Application Server V6: High Availability Solutions

b. Back on the Server Cluster configuration panel, click wascluster02 →
Cluster members → New. Add wasmember05 again to node wasna01.

c. Save your changes.

Figure 4-5 Transport Chain ports for cluster member wasmember01

5. Repeat any configuration changes that have been applied to the original
cluster members, such as heap size and other individual settings. The new
cluster members are created based on the configuration of the first cluster
member and take their values from there.

6. Depending on your cell configuration, you might need to regenerate and
propagate the Web server plug-in to pickup the new cluster members’
configuration. This is needed if automatic generation and propagation of the
plug-in is not enabled or if your Web servers are neither on a managed node
nor an IBM HTTP Server v6 on an unmanaged node. See 15.3.2, “Web

Note: When a cluster member is created, WebSphere assigns new port
numbers automatically for two WebContainer Inbound Chains called
WCInboundDefault and WCInboundDefaultSecure. This setting is
found under Servers → Application servers →
App_Server_Name → Web Container Settings → Web container
transport chains.

If you did not use the default ports in your original configuration and
would like to maintain the previously used port numbers for the newly
created cluster members, be sure to go to this panel and make the
appropriate changes (assuming that the original port numbers do not
conflict with other ports on the new system). See Figure 4-5.
 Chapter 4. High availability system administration 131

server plug-in file (plugin-cfg.xml) management” on page 571 for more
information about this topic.

To regenerate and propagate the Web server plug-in:

a. Select Servers → Web servers, select your Web server and select
Generate Plug-in.

b. After regeneration, select the Web server and click Propagate Plug-in to
ensure that the Web server has access to the most current copy of the
plugin-cfg.xml file.

7. You are now ready to start the application servers on the new system. Go to
Servers → Application Servers, select wasmember01, wasmember02, and
wasmember05, and click Start.

8. Verify that you can indeed access the application on the added application
servers by accessing the application directly through the WebContainer
Inbound Chain of each cluster member.

4.4 Hardware upgrades
The different kinds of hardware upgrades have different impacts on your
WebSphere environment. For example, if you are changing the disks of the
machine and this requires reformatting the disks, then you need to follow the
procedure described in 4.3, “Replacing hardware” on page 127.

For systems such as the IBM Eserver pSeries, iSeries, and zSeries, a disk
capacity upgrade should not impact the running WebSphere processes because
new disks can be added to the running system. Thus, they can be upgraded
without stopping the node while the application is still available to users.

For other hardware upgrades, such as memory and processor upgrades, they
are independent system processes and should not impact the configured
WebSphere system, but might impact node availability itself for some platforms.
A HA WebSphere system should always consist of multiple nodes so a failure or
planned maintenance of one node does not impact the availability of the
application. However, follow always the vendor’s installation instructions to avoid
unforeseen system problems.

Capacity on Demand (CoD) is the IBM solution designed to provide continuous
availability for all major business applications, while providing dynamic system
capacity growth and processor upgrade without causing hardware or software
outages, activating and using the additional capacity are transparent to all
132 WebSphere Application Server V6: High Availability Solutions

applications. To learn about IBM CoD, visit the About Capacity on Demand site
available at:

http://www.ibm.com/servers/eserver/about/cod/about/types.html

For more information about CoD for the different IBM platforms, click the
appropriate links on the About Capacity on Demand start page.

4.5 Installing WebSphere refresh packs
In this scenario we upgrade our nodes — one after the other — from IBM
WebSphere Application Server Network Deployment V6.0.1 to V6.0.2 by
installing the refresh pack using the Update Installer for WebSphere Software
program. We refer to this program as Update Installer throughout this chapter.

The properties/version directory under the <install_root> contains data about
WebSphere and its installed components, such as the build version and build
date. You can use the versionInfo command to display the fix and version level
of the various components (but do not use versionInfo during a product
up/downgrade!). Search for Product version information in the WebSphere
InfoCenter to learn more about this.

4.5.1 Downloading support packs
To download the latest WebSphere support packs for the Linux®, UNIX,
Windows, and OS/400® platforms, visit the WebSphere Application Server
support Web site at:

http://www.ibm.com/software/webservers/appserv/was/support/

The downloaded package normally contains both the Update Installer and the
actual WebSphere maintenance package.

Each platform has its own prerequisites and requirements or known issues so
make sure that you read the readme file for the appropriate platform before using
the Update Installer. The readme also contains platform-specific installation
instructions.

4.5.2 The Update Installer for WebSphere Software
The Update Installer updates the core product files of WebSphere Application
Server and other related products, such as the IBM HTTP Server, the Web
server plug-ins, the Application Client, and the WebSphere Edge Components.
 Chapter 4. High availability system administration 133

http://www.ibm.com/servers/eserver/about/cod/about/types.html
http://www.ibm.com/software/webservers/appserv/was/support/

The following files in the <install_root> directory might also be included in the
update process:

� JAR files in the lib directory
� The SDK, Java technology edition, in the java directory
� Scripts in the bin directory
� Profile templates

When installing a fix pack, refresh pack, or maintenance pack, make sure that
you install the software as a user that has the needed authorizations to install the
product updates, such as the root user on Linux and UNIX platforms.

Updating existing profiles
Maintenance packages do not update existing profiles. Thus, existing profiles
might not have the latest features of the installed maintenance package.

Some maintenance packages provide required service for existing profiles in
addition to service for the core product files. Each maintenance package that has
profile maintenance provides a script that changes the profiles. The update
installer prompts you to back up your configuration when installing a
maintenance package that has required maintenance for profiles.

Some maintenance packages provide optional service for existing profiles. The
readme file for the maintenance package describes whether the maintenance
package contains optional service for existing profiles. If so, the readme file
describes how to use the script provided with the maintenance package.

Cluster members
Apply the same maintenance packages to all WebSphere nodes in a cluster.
When not all of the cluster members are at the same service level, an error can
occur that causes memory-to-memory replication to not function properly. See
Example 4-1 for the error message.

Example 4-1 Exception when cluster members are not all at the same service level

DRSCacheApp E DRSW0008E:
 Exception is: com.ibm.disthub.impl.jms.JMSWrappedException:
 {-1361012295|unknown|java.io.OptionalDataException|}

Attention: There are some known problems and issues with the Update
Installer. Refer to the WebSphere InfoCenter for the latest list and
workarounds at the following Web address and search for Update Installer:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp
134 WebSphere Application Server V6: High Availability Solutions

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp

4.5.3 WebSphere Application Server for distributed platforms
For the Linux, UNIX, and Windows platforms, see the Applying service article in
the InfoCenter for additional platform-specific details on how to use the Update
Installer:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/
com.ibm.websphere.nd.doc/info/ae/ae/tins_ptfLevels.html

4.5.4 WebSphere Application Server for OS/400
WebSphere Application Server V6 for OS/400 software is upgraded using the
Update Installer. However, it might be necessary to also install PTFs for Java,
DB2, HTTP server, and so forth. Make sure that you read the iSeries specific
Update Installer readme file as it lists required individual and Group PTFs.

The Applying service article describes how to use the Update Installer on an
iSeries system and what user special authority is needed. You can find this
article in the WebSphere Application Server for OS/400 V6 InfoCenter at:

http://publib.boulder.ibm.com/infocenter/wsdoc400/index.jsp?topic=/com.ibm.
websphere.iseries.doc/info/ae/ae/os400_readme_updateinstaller.html

4.5.5 WebSphere Application Server for z/OS
The Update Installer is only used when upgrading WebSphere Application
Server for z/Linux but not for WebSphere Application Server for z/OS®.
WebSphere on Z/OS is installed via a SMP/E (System Modification Program
Extended) process. SMP/E is an element of z/OS that is used to install most
software products in z/OS and OS/390® systems and subsystems. It controls
these changes at the element level by:

� Selecting the proper levels of elements to be installed from a large number of
potential changes.

� Calling system utility programs to install the changes.

� Keeping records of the installed changes.

SMP/E is an integral part of the installation, service, and maintenance processes
for z/OS and OS/390 software products and product packages. See the Applying
product maintenance article in the WebSphere for z/OS InfoCenter for additional
information. This article is available at:

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.
websphere.zseries.doc/info/zseries/ae/tins_prodmaintenance.html

You can find the WebSphere Application Server for z/OS support Web site at:

http://www.ibm.com/software/webservers/appserv/zos_os390/support
 Chapter 4. High availability system administration 135

http://www.ibm.com/software/webservers/appserv/zos_os390/support
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.zseries.doc/info/zseries/ae/tins_prodmaintenance.html
http://publib.boulder.ibm.com/infocenter/wsdoc400/index.jsp?topic=/com.ibm.websphere.iseries.doc/info/ae/ae/os400_readme_updateinstaller.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tins_ptfLevels.html

4.5.6 Using the Update Installer
A few tips for using the Update Installer:

� It is important that you unzip or untar the update software into the
<install_root> directory of the appropriate product. This unpacks the
downloaded package automatically into the <install_root>/updateinstaller
directory, which contains the Update Installer, and several subdirectories
including the maintenance directory which contains the maintenance package
itself. See Figure 4-6.

Figure 4-6 Subdirectories of the update installer directory

� It is very important that no WebSphere related processes are active on the
system during the update or the installation fails. This includes not only the
application server processes, Node Agent and Deployment Manager
processes, but also the InstallShield and Profile creation wizard, the IBM
Rational® Agent Controller process, or Application Client processes, and so
on.

If your update fails, you first need to uninstall the failed update package, then
start the update again.

Example: installation on Linux or UNIX and Windows
platforms

We assume that you have already downloaded the desired update package,
such as WebSphere V6.0.1 or V6.0.2, from the WebSphere Application Server
support Web site. We also assume that your environment matches the
requirements for the update. For example, to install WebSphere V6.0.1.1, you
must have 6.0.1 installed. You can install WebSphere V6.0.2 on top of version
6.0, 6.0.1, 6.0.1.1, or 6.0.1.2.
136 WebSphere Application Server V6: High Availability Solutions

To install a WebSphere Application Server support pack:

1. Logon as root on the Linux or UNIX platform or as a member of the
administrator group on Windows systems.

For the Linux and UNIX platforms, verify that the umask setting is 022. To
verify the umask setting, issue the umask command. To set the umask setting
to 022, issue the umask 022 command.

2. Verify that there is enough disk space available. See the readme file for
space requirements.

3. Backup and delete the existing <install_root>/updateinstaller directory before
extracting the new .zip or .tar file. To use a newer version of the Update
Installer, you must first remove the older version.

4. Extract the new package into the WebSphere <install_root> directory.

5. Check the Recommended updates page (available from the WebSphere
Application Server support Web site) to see if the Update Installer has been
updated because the downloaded package file was created. If so, download
and unpack the new Update Installer into the installation root directory to
replace the Update Installer files that came with the package.

6. Run the backupConfig command to back up your configuration files. See the
InfoCenter article Backing up and restoring administrative configurations or
WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451 for details on this command.

7. Stop all WebSphere related Java processes.

The update is very likely to fail if you install a refresh pack while a WebSphere
related Java process is running. See Example 4-2 for the error.

Example 4-2 Error message when WebSphere Application Server processes are active

Failure: The update of the following product has failed:
IBM WebSphere Application Server Network Deployment - E:\IBM\WebSphere\ND

The following maintenance package could not be installed
PK00274 - Add jython.jar to ws_ant JVM classpath
For more information, refer to the following log file
E:\IBM\WebSphere\ND\logs\update\PK00274.install\updatelog.txt
Click Finish to exit the wizard

Note: The unzip utility that is included with PKZip might not decompress
the download image correctly. Use another utility (such as WinZip) to unzip
the image.
 Chapter 4. High availability system administration 137

8. From the <install_root>/updateinstaller directory, invoke the update command
to start the installation wizard.

9. Refer to the updatelog.txt file under the
<install_root>/logs/update/<package_name> directory for a complete listing
of the components that have been successfully updated, as shown in
Figure 4-7.

Figure 4-7 updatelog.txt

Tip: See the Technote Stop all WebSphere Application Server-related
Java processes before using the Update Installer for WebSphere software
for a list of processes that can cause the update to fail. The Technote is
available at:

http://www.ibm.com/support/docview.wss?rs=180&uid=swg21199141

Note: You can install updates also in silent mode. In this case, the Update
Installer for WebSphere Software wizard reads the (optional) response
options file to determine responses and does not display the graphical user
interface. For example, run this command to use a response file called
myresponsefile in the responsefiles directory:

./update -options “responsefiles/myresponsefile.txt” -silent

When you omit the response file, the default maintenance directory is
used. For more information about the usage of a response file refer to the
InfoCenter and search for Install.txt.
138 WebSphere Application Server V6: High Availability Solutions

http://www.ibm.com/support/docview.wss?rs=180&uid=swg21199141

10.Restart the WebSphere processes on this node and update the next node to
make sure all cluster members are at the same level.

4.6 Sample wsadmin scripts for administration tasks
The IBM developerWorks Web site provides many useful administration scripts
(.jacl scripts) that you can use to configure and administer your WebSphere
environment. You can run them “as is” or modify them for your own environment.

Note that some of the scripts are not yet available for WebSphere V6. Monitor
the download site for future updates. You can download these scripts from:

http://www.ibm.com/developerworks/websphere/library/samples/
SampleScripts.html

The available scripts include:

� Scripts for automated application deployment that perform functions such as:

– Read a Distribution Directory dynamically to determine what EARs need to
be installed or updated or reconfigured or uninstalled.

– Use environment or stage specific property files to determine the target
Nodes and Servers or Clusters and the application settings.

– Calculate the unique set of affected Nodes and Servers (to avoid
unnecessary interruptions to others).

– Perform a phased update of affected Nodes and Servers to assist in
maintaining high availability.

� Administration scripts that perform common administration functions, such as:

– Create and modify a server, load an application onto the server, and start
the server.

– Stop a server on a given node, uninstall an application and remove the
server from the configuration.

– Invoke various application install commands.

– Invoke commands that produce a short summary of configuration and
runtime information about the WebSphere installation.

– List all enterprise applications installed on a specific application server.

Note: At the time of writing this book, these administration scripts were
available for WebSphere V5 but not V6.
 Chapter 4. High availability system administration 139

http://www.ibm.com/developerworks/websphere/library/samples/SampleScripts.html
http://www.ibm.com/developerworks/websphere/library/samples/SampleScripts.html

� Scripts for WebSphere Application Server security configuration (V5, V5.1,
and V6 versions available).

� Scripts for WebSphere Application Server configuration changes (V5.1.1
only).
140 WebSphere Application Server V6: High Availability Solutions

Chapter 5. High availability application
administration

Having a highly available application server environment introduces certain
issues when it comes to otherwise normal application administration tasks. For
example, you must ensure that the application is available for your clients while
performing tasks such as restarting the application or deploying a new
application version. You cannot wait for the maintenance window, especially if
your application or applications must be available 24 hours a day, 365 days a
year, because it basically does not exist.

In this chapter, we explain the major issues regarding application restarting and
updating. The underlying WebSphere topology is one of these issues. Another
one is the type of application update to be performed. We distinguish between
three different types of updates (major release, update, bugfix). This chapter also
discusses application rollout update — a new function in IBM WebSphere
Application Server Network Deployment V6.

5

© Copyright IBM Corp. 2005. All rights reserved. 141

5.1 Administering applications in an HA environment
Administering an application in a high availability (HA) environment has much
more implications than in a standard environment. The goal when administering
an HA application is to loose no requests while performing application
maintenance tasks. Those maintenance tasks include:

� Restarting an application
� Deploying a new version of the application

Deploying an application for the first time is not covered here as it is out of the HA
scope. For information about general application administration see Chapter 16
of the redbook WebSphere Application Server V6 System Management and
Configuration Handbook, SG24-6451.

5.1.1 Availability while updating an application
It is not always well understood that updating an application can lead to
situations where it is no longer available. Performing an update without paying
special attention to things such as session replication, or even worse, restarting
all application instances at the same time, might lead to downtime of the
application or lost requests. The most obvious cause for downtime is a restart of
an application or application server. Example 5-1 shows that the application was
not available while restarting it.

Example 5-1 Restarting an application

[4/15/05 10:10:17:864 CDT] 0000012a ApplicationMg A WSVR0217I: Stopping
application: BeenThere
[4/15/05 10:10:18:017 CDT] 0000012a EJBContainerI I WSVR0041I: Stopping EJB
jar: BeenThere.jar
[4/15/05 10:10:18:028 CDT] 0000012a ApplicationMg A WSVR0220I: Application
stopped: BeenThere
[4/15/05 10:10:24:646 CDT] 000000e4 ApplicationMg A WSVR0200I: Starting
application: BeenThere
[4/15/05 10:10:24:702 CDT] 000000e4 EJBContainerI I WSVR0207I: Preparing to
start EJB jar: BeenThere.jar
[4/15/05 10:10:24:717 CDT] 000000e4 EJBContainerI I WSVR0037I: Starting EJB
jar: BeenThere.jar
[4/15/05 10:10:24:733 CDT] 000000e4 WebGroup A SRVE0169I: Loading Web
Module: BeenThere WAR.
[4/15/05 10:10:24:776 CDT] 000000e4 VirtualHost I SRVE0250I: Web Module
BeenThere WAR has been bound to
default_host[*:9080,*:80,*:9443,wasmember06.ibmredbook.com:9080,wasmember06.ibm
redbook.com:80,wasmember06.ibmredbook.com:9443,wasmember05.ibmredbook.com:9080,
wasmember05.ibmredbook.com:80,wasmember05.ibmredbook.com:9443].
[4/15/05 10:10:24:852 CDT] 000000e4 ApplicationMg A WSVR0221I: Application
started: BeenThere
142 WebSphere Application Server V6: High Availability Solutions

Another cause for unavailability are changes made to the application that
interfere with HA services under the control of the HAManager. If a new
application version has changed session objects signatures, you are exposed to
class cast exceptions (ClassCastException).

5.1.2 System capacity
It is important that you know the workload during normal operation in your
environment. Updating an application while keeping it available means that you
need to run it on parts of your environment for a certain time.

For example, when it comes to an application rollout update, the application
servers are stopped, updated, restarted on one node after the other. So for the
duration of the update the remaining active servers must be able to handle the
extra workload. This is a normal prerequisite for a highly available environment
anyway but it might be more important during the application update because an
entire node might not be available, while in a failure situation only one application
server (one JVM) might fail.

The impact is most noticeable when using a two nodes topology because the
computing resources might be cut in half during the update. So if each of your
systems has equal processing powers and is using more than 50% of its capacity
during normal operation, then the application update might lead to overloading
the remaining system with side effects such as increased response times and
maybe even request timeouts for the users.

5.2 Concepts
There are several concepts that you need to understand to ensure availability of
an application during an update. Some of these concepts even have an
implication on the application design. The two main concepts you need to
understand are:

� Persistence layer
� Application update types
 Chapter 5. High availability application administration 143

5.2.1 Persistence layer
The application depends on information storages managed by WebSphere
Application Server. Modifying the way the application deals with them in a new
application version might have consequences on availability.

The different types of information storage
As a service provider, WebSphere Application Server manages any kind of data
that is outside of the user request scope, especially the following data types:

Session This is where the status of the user interaction with the
application is kept. The session can contain any type of objects
created by the application developers. Session data can be
either replicated between the cluster members or written to a
database.

Message Application processes can use messages to communicate with
each other. The message queue is independent of the
application itself.

Transaction Ensures that an interaction initiated by a user has terminated
in a predictable manner. Failover of a transaction will in most
cases be handled by another application server JVM which
possibly runs a different version of the application.

Application and persistent information interaction
WebSphere Application Server ensures that data is not lost after a failure of any
of its components. For example, it replicates the session object data between all
(or a defined number of) cluster members or stores the session data in an
external session database when distributed session management is enabled so
another application server can take over the request.

The following is a brief description of how an application should handle persistent
data to avoid inconsistencies:

� When session data changes between application versions, then the new
application version should still be able to read and process sessions from the
old application version or you must make sure that all sessions from the old
version expire before updating the application (see “Tracking live sessions” on
page 157).

Attention: If your application must be available at all times, even during an
application update that includes changes to persistent data, then either the
developer must take special precautions in the new application version or you
need a specific architecture to ensure availability during the update.
Architectures are described in 5.3, “Topologies” on page 146.
144 WebSphere Application Server V6: High Availability Solutions

Let us look at an example: You are adding a Preferred language indicator to
the session data. A session was created in the old application version without
the Preferred language indicator. The application should not end with an error
because of the missing information but rather the new application version
should be designed to handle this situation. For example the existing session
data could be copied into a new session object that includes a default value
for the preferred language.

� If an old application version process sends a message that will be consumed
by a newer application version process, then the new version should either
expect the same message than the previous version used, or the new version
must be designed to handle the different message format.

� If an unfinished transaction fails over to a newer version process, the
application should handle the transaction exactly like the previous version or
again be designed to handle the situation with the different transaction data.

5.2.2 Application update types
We distinguish three different types of application updates - depending on the
impact they have on WebSphere managed information as described in
“Persistence layer” on page 144. These update types are: major release, update,
and bugfix.

Major release
Major release updates involve back-end application modifications, for example,
the application database schema needs changes, a Web Service from a
third-party provider changed or a back-end application is modified which has
then an impact on the WebSphere application. So a major release update
involves changes outside of the WebSphere environment.

Upgrade
Changes to an application that have an impact on the persistence layer of
WebSphere Application Server are considered an application upgrade. There
are two possibilities:

1. Your application handles these changes gracefully. In this case, you can
update the application regardless of your WebSphere topology.

2. Your application needs to have only new version objects in the persistence
layer. You then need a specific environment for the update. See 5.3,
“Topologies” on page 146 for information about the various possible
environments.
 Chapter 5. High availability application administration 145

Bugfix
This kind of update does not modify any critical resources, such as session
objects or database schemas. This is the update type with the lowest impact on
runtime resources. Many bugfix updates can even be made with a running
application server (hot deployment). For more information about replacing single
files in an application or module, see Chapter 16 of WebSphere Application
Server V6 System Management and Configuration Handbook, SG24-6451.

5.3 Topologies
How you manage your applications also depends on your WebSphere topology.
Refer to 1.2.6, “Levels of WebSphere system availability” on page 18 for
additional information about WebSphere HA levels. For an application update, we
distinguish between the following possible topologies:

� Multiple cells environment
� Single cell, multiple clusters
� Single cell, single cluster

5.3.1 Multiple cells environment
This is the top level HA topology, which addresses even a site disaster recovery.
It is the most complex environment to manage, with repetitive administration
tasks for each one of the cells. On the other hand, it is also the most flexible
environment and allows you to acquiesce a full cell at a time without having any
availability issues.

Figure 5-1 on page 147 shows this architecture.

Important: WebSphere Application Server cannot validate changes in the
application. Thus, it is your responsibility to determine whether your
application deals gracefully with the persistence layer before performing the
application update!

Note: We assume a minimum of two HTTP servers and a network sprayer (we
use the WebSphere Edge Components’ Load Balancer throughout this
chapter) for all our scenarios. Having only one HTTP server would introduce a
single point of failure. In addition, updating static content on the HTTP server
might become an issue if there is only one HTTP server.
146 WebSphere Application Server V6: High Availability Solutions

Figure 5-1 WebSphere topology with multiple cells

Any variation of this topology can be used, as long as the following steps can be
performed:

1. Isolate a branch (cell).

2. Wait for all sessions on this branch to expire.

3. Update the offline branch.

4. Make the updated branch available again. This branch now serves the new
application version while the other branch keeps on serving the old
application version.

5. Repeat steps 1 to 4 for the second branch.

Note: For the scenario depicted in Figure 5-1, server affinity must be enabled
at the Load Balancer to make sure that subsequent requests are routed to the
same cell. Another option is to use two different URLs to access the different
cells.

Important: You have to wait for the sessions to end, because there is no
replication between the cells and thus no failover.

Load
Balancer

Cell 1

Node1.1

Node1.2

Cell 2

Node 2.1

Node 2.2

Branch 2

Branch 1

HTTP1

HTTP2

HTTP3

HTTP4

Application V1.0

Application V1.0

Cluster

Application V1.0

Application V1.0

Cluster
 Chapter 5. High availability application administration 147

5.3.2 Single cell, multiple clusters
This topology is very similar to using multiple cells, so the considerations stated
in 5.3.1, “Multiple cells environment” on page 146 also apply for this scenario. For
a single cell, multiple clusters topology the isolation of a branch means the
isolation of a cluster.

Depending on your topology, you might be able to achieve the isolation of one
cluster at the Load Balancer level or at the Web server plug-in level. See
“Updating a WebSphere application and static content on the HTTP server” on
page 168 for more information about how to edit the plugin-cfg.xml file to isolate
application servers.

Figure 5-2 shows such a topology.

Figure 5-2 WebSphere topology with a single cell and multiple clusters

Important: This topology has a major drawback and, thus, is not a
recommended approach. In order to have the same application running on two
clusters in one cell, you actually need two differently deployed instances of the
same application. It is very important that your application design or
development allows for this. For example, there must be no hardcoded
information, such as JNDI references, in the application.

Deployment is more difficult for the second instance of the application, several
modifications must be made. For example, for the second installation, you
need a different context roo and different resource mappings (EJBs,
datasources, and so forth). You might also need to use different virtual hosts.

Because it is possible to configure multiple cells on only two physical
machines, we strongly recommend that you use the multiple cells approach
rather than the multiple clusters approach.

Load
Balancer

Cell 1

Cluster 1.1

Cluster 1.2

HTTP1

HTTP2

Application V1.0

Application V1.0
148 WebSphere Application Server V6: High Availability Solutions

The high-level approach for an application update is as follows:

1. Make sure no new requests are sent to the first cluster (for example by setting
the application server’s weights to 0). Wait until all active sessions have
expired. This is needed because there is no failover from one cluster to the
other.

2. Stop the cluster when all requests are finished.

3. If you need to change static content that is located on the HTTP server:
quiesce, then stop one HTTP server at the Load Balancer level.

4. Update the application on the stopped cluster and update static content on
the stopped HTTP server.

5. Make sure the updated HTTP server only sends requests to the updated
cluster (for example by mapping only this HTTP server to the application
using the Administrative Console or by changing the plugin-cfg.xml file).

6. Restart the HTTP server and application server cluster.

7. Repeat steps 1 to 6 for the second cluster and HTTP server.

8. Change the application modules mapping/plug-in file back to its original state
so both HTTP servers can send to both clusters again.

5.3.3 Single cell, single cluster
This is the most simple topology to administer and ideal for an environment that
accepts downtime while updating an application. The downtime is related to the
fact that there is no option to isolate a branch for the update.

If the cluster members are on different nodes (horizontal scaling), then this
topology also allows for an application rollout update which means that the
different nodes are updated one after the other while having the application up
and running on the other node or nodes. However, the rollout update is not
always the right solution, for example, when it comes to a major release update
with changes to the back-end data or if your new application version cannot
handle changes to the persistence layer gracefully. See 5.4.2, “Rollout update
(new feature of WebSphere V6)” on page 153 for more information about this
function.

Changes to the cluster configuration or application must always be handled with
care, but this is especially true when having only one cluster available because
there is no other cluster and thus application version available in case something
goes wrong.

Figure 5-3 on page 150 shows the single cell, single cluster topology.
 Chapter 5. High availability application administration 149

Figure 5-3 WebSphere topology with a single cell and single cluster

5.3.4 Topologies and update types
The ability to keep an application available during an update is influenced by the
factors described earlier in this section, such as the topology and the application
update type. But the contributing factor is that your topology is compatible with
the update type of the application. For example, when your update is a major
upgrade, then you must have either a multiple cell or at least a multiple clusters
topology.

Table 5-1 details which application update types can be performed on each
topology while keeping the application available.

Table 5-1 Application availability depending on topologies and application update types

For more information, see 5.4.3, “Update types: major release or upgrade” on
page 156 and 5.4.4, “Update type: bugfix release” on page 164.

Load
Balancer

Cell

Cluster

HTTP2

HTTP1

Application V1.0

Multiple cells /
multiple clusters

Single cell, single cluster

Major release OK Not possiblea

a. The major release update involves changes in the EIS tier. You cannot have
different WebSphere application versions in one cluster accessing different
data or back-end applications.

Upgrade OK Possible (under certain circumstances and
using special precautions)b

b. If your new application version can handle changes to the persistence layer
gracefully.

Bugfix OK OK
150 WebSphere Application Server V6: High Availability Solutions

5.4 Application administration
In this section, we explain how to restart and update applications in an HA
environment, including the new application rollout update function. We explain
step-by-step how to update an application in a multiple cell and in a single cell,
single cluster topology respectively. We cover the following scenarios:

� “Restarting an application” on page 151
� “Rollout update (new feature of WebSphere V6)” on page 153
� “Update types: major release or upgrade” on page 156
� “Update type: bugfix release” on page 164

Prerequisites
We assume the following underlying WebSphere configuration:

� At least two cluster members are running on two different nodes
� At least two HTTP servers and a Load Balancer are available
� A HA solution for the Transaction Manager is set up (HAManager)
� A HA solution for messaging is set up (HAManager)
� Distributed session management is configured and active

(memory-to-memory or database persistence)

5.4.1 Restarting an application
If for any reason you need to restart an application, the best way to keep the
application available during the restart is to stop and start, one after the other, all
application servers the application is deployed to.

This can either be done manually or by using the Ripplestart option on the cluster
management panel (Servers → Clusters) in the Administrative Console. The
Ripplestart automatically stops and restarts each application server in the
cluster, one after the other.
 Chapter 5. High availability application administration 151

Thus, whether you are able to use the Ripplestart option depends on the number
of application servers (and their capacity) and the retry interval setting in your
environment.

As mentioned, the stopping and starting can be done manually. However, a
better solution is to write a script that performs the stops and starts using wsadmin
commands. Using such a script you can add a delay between the start of one
cluster member and the stop of the next one that takes your settings for the retry
interval (the default is 60 seconds) into account.

Important: We do not recommend to use the Ripplestart option in an
environment with only a few cluster members (especially with only
2 members) and when 100% application availability is important. Using the
Ripplestart in an environment with only a few cluster members can lead to
Internal Server Errors and failed requests. The reason for this is the way in
which the Ripplestart works:

1. The first cluster member is stopped. It is marked down by the Web server
plug-in. All requests go to the second cluster member.

2. The first cluster member is restarted and back up.

3. The second cluster member is stopped and marked down by the plug-in.
All requests flow to the first cluster member.

4. The second cluster member is restarted and the workload is distributed
between the cluster members again.

The problem is found in step 3. When a cluster member is marked down, the
plug-in will not try it again before the retry interval has passed (see “Retry
interval” on page 57). If now the second cluster member is stopped before the
retry interval of the first cluster member has passed, the plug-in will not try the
first member, even though it is up again, and thus cannot find an active
member to forward requests to.

This is most probably not an issue when you have many cluster members and
your retry interval setting is not particular high. See 4.2, “Starting or stopping
application servers and the Web server plug-in retry interval” on page 125 for
details on the correlation between the retry interval and starting/stopping
application servers.

Note: During our tests, we noticed that we lost a few in-flight HTTP requests
when stopping a cluster member. This problem has been fixed and requires
WebSphere V6.0.2.1.
152 WebSphere Application Server V6: High Availability Solutions

5.4.2 Rollout update (new feature of WebSphere V6)
A new feature of IBM WebSphere Application Server Network Deployment V6 is
the application rollout update which allows to sequentially update an application
on different nodes. So, you can only use this function if your cluster members are
configured on at least two nodes (horizontal scaling).

The rollout update is a good solution for bugfix type application updates. Upgrade
type updates can also use the rollout update function if the application is able to
handle changes to the persistence layer gracefully, as explained in 5.2.1,
“Persistence layer” on page 144. If this is not the case, then you need to use the
application update approach documented in 5.4.3, “Update types: major release
or upgrade” on page 156.

How to perform a rollout update
To perform a rollout update, you start with a classical application update, but then
you perform an additional step rather than saving the update to the master
repository. Follow these steps:

1. In the Administrative Console, go to the application administration panel.
Click Applications → Enterprise Applications.

2. Select your application and click Update. Do not use Rollout Update at this
point. It is not useful until you have an application update pending, which is
initiated by clicking Update.

3. On the Preparing for the application installation panel, select either Local file
system or Remote file system radio, depending on where your new
application version is stored. Then click Browse... to select your .EAR file.
See Figure 5-4 on page 154.

Note: This function requires at least WebSphereV6.0.1.2 or V6.0.2.

Attention: Also for the rollout update, you need to be aware of the correlation
between the Web server plug-in retry interval and the time it takes to stop and
restart the application servers for the application update. If your retry interval
is too high, then the rollout update might lead to failed requests, especially in
an environment with only two nodes. Before using this function, you should,
therefore, verify your configuration settings and test the rollout update in a
meaningful non-production environment.

See 4.2, “Starting or stopping application servers and the Web server plug-in
retry interval” on page 125 for details.
 Chapter 5. High availability application administration 153

Figure 5-4 Application update - select the .EAR file

4. Click Next two times. In case the Application Security Warnings screen
appears, click Continue. You should now be on the Install New Application
panel. Click the Step 2 (Map modules to servers) link.

5. Verify that your application is mapped correctly to the appropriate target
cluster and that the Web modules are also mapped to at least one HTTP
server. This is shown in Figure 5-5 on page 155.

Restriction: The rollout update only works for applications that are
deployed to a cluster. Obviously, a rolling update cannot be performed on a
single server.
154 WebSphere Application Server V6: High Availability Solutions

Figure 5-5 Application to cluster mappings

6. Make all other necessary deployment changes, such as mappings for EJB
references or the virtual host. These changes depend on your application.
You can either step through the remaining configuration steps using Next or
by directly clicking the appropriate Step links. Finally, you should arrive at
Step 8, Summary.

7. Click Finish. The panel shown in Figure 5-6 is displayed.

Figure 5-6 Application installed successfully
 Chapter 5. High availability application administration 155

8. You now have two choices, both lead to the same result:

a. Click the Rollout Update link.

b. Click the Manage Applications link, then select your application from the
Enterprise Applications panel and click Rollout Update.

9. If the Confirm Application Rollout Confirm panel appears, select Yes.

10.You then see a scrolling log of the rollout update as shown in Figure 5-7.

Figure 5-7 Application rollout - success message

5.4.3 Update types: major release or upgrade
As seen in Table 5-1 on page 150, you need at least a multiple cluster topology to
achieve a major release update while keeping the application available during the
update. This is because a major release update involves changes in the EIS tier,
either the database or in a back-end application.

An upgrade type application update can be done in a single cell environment if
the application is able to handle changes to the persistence layer. If this is not the

Important: Do not select the Save to Master Configuration link!

Note: Do not refresh, reload, or press F5 on the Administrative Console during
the application rollout update, this might cause inconsistencies between the
different nodes!
156 WebSphere Application Server V6: High Availability Solutions

case, then you need at least a multiple cluster topology to stay online with your
application while updating it.

Another issue for these two update types might be that you have to wait for active
sessions to expire. This is true for the multiple cells and multiple clusters
topologies because there is no failover between cells or clusters. Therefore the
first step during the update is to make sure no new requests arrive at the cell or
cluster.

Tracking live sessions

One way to check that there are no more active sessions in the system is to use
the Tivoli Performance Viewer (TPV). In the Administrative Console, navigate to
Monitoring and Tuning → Performance Viewer → Current Activity.

Click the link for your first cluster member from the list of application servers.
Expand Performance Modules, and then check Servlet Session Manager.

Figure 5-8 on page 158 shows the needed Tivoli Performance Viewer settings in
order to display the live sessions count.

Important: As mentioned earlier, there is no replication or failover between
different cells. Therefore, before stopping a cell, you must be sure that there
are no more live sessions in the cell. In other words, you must ensure that
there are no users actively using the application in the cell or their requests
will be lost.
 Chapter 5. High availability application administration 157

Figure 5-8 Module selection to show sessions count in Tivoli Performance Viewer

When this is enabled, the pane on the right hand side, shown in Figure 5-9 on
page 159, shows the current live sessions in that application server. Typically,
you see this graph after a certain amount of time.
158 WebSphere Application Server V6: High Availability Solutions

Figure 5-9 The number of live sessions is now 0

As you can see in the bottom line, the LiveCount metric is now 0, meaning that
you do not have any more live sessions on that specific cluster member.

The update scenario
As mentioned in 5.3, “Topologies” on page 146, you should isolate a branch of
your environment and then update this branch. A branch can be an entire cell (in
a multiple cells environment) or a cluster (in a multiple cluster topology).

Important: You need to repeat this action for each cluster member that is to
be stopped and updated.

Note: Even some individual cluster members (in a single cell, single cluster
topology) might be possible to isolate. See 5.4.4, “Update type: bugfix release”
on page 164 for information about how to do this. However, this does not make
sense for major release updates and for upgrade type application updates it
can only be used when the application is able to handle changes to the
persistence layer as explained in 5.2.1, “Persistence layer” on page 144.
 Chapter 5. High availability application administration 159

Considerations for updating a multiple cells topology
When using the same URL to access the application in both cells and the Load
Balancer distributes the workload between the two cells (this is the topology
shown in Figure 5-11 on page 163), then you need to enable session affinity in
the Load Balancer to make sure subsequent requests are routed to the same
cell. You must then quiesce and stop the HTTP servers that serve the requests
to the first cell as explained in step 3 on page 161 below.

Considerations for updating a multiple clusters topology
We assume that all HTTP servers in the environment can send requests to all
application servers in all clusters. See Figure 5-10 on page 161.

If static content on the HTTP servers does not change, then you can simply take
the cluster to be updated offline (as explained in steps 1 on page 161 and 2 on
page 161 below) and all HTTP servers can continue sending requests to the
other cluster or clusters.

If static content on the HTTP servers needs to be changed and thus an HTTP
server needs to be taken offline during the application update, then you first need
to untangle the HTTP server to application mapping to make sure you have a
fixed assignment between one or more HTTP servers and the cluster (meaning:
application) you want to update. This can either be done by changing the
application module mapping using the Administrative Console or by editing the
plugin-cfg.xml file. The next step is then to quiesce and stop the HTTP servers
that serve the requests to the first cluster as explained in step 3 on page 161
below.
160 WebSphere Application Server V6: High Availability Solutions

Figure 5-10 Multiple clusters - assign one HTTP server to one cluster during update

The update steps
The main steps for updating a branch are:

1. Set the application server weights to 0 to make sure no new requests arrive at
the cell or cluster. Affinity requests are still routed to the servers in this
branch. This can be done on the Runtime tab of the cluster member
configuration panel. Go to Servers → Clusters → Cluster_name → Cluster
members → Member_name. Select the Runtime tab and enter 0 into the
Weight field. This change becomes active as soon as you click Apply or OK.
The original weights are used again when the cluster is restarted after the
application update.

2. Monitor the live sessions of all application servers on this branch. See
“Tracking live sessions” on page 157 for additional information. Wait for all
sessions to be either closed or timed out. This ensures that there are no more
active transactions, as nobody is connected to the servers any more.

3. In case you need to update static content on the HTTP server or servers,
quiesce the HTTP servers at the Load Balancer and wait for a reasonable
amount of time so all affinity requests to the HTTP servers have finished or
expired.

For the Load Balancer, you can use the dscontrol manager quiesce
command. The quiesce subcommand allows existing connections to
complete (without being severed) and forwards only subsequent new

Load
Balancer

Cell 1

Cluster 1.1

Cluster 1.2

HTTP1

HTTP2

Application V1.0

Application V1.0

Load
Balancer

Cell 1

Cluster 1.1

Cluster 1.2

HTTP1

HTTP2

Application V1.0

Application V1.0

XX Application
V1.1

X

Before the update

During the update
 Chapter 5. High availability application administration 161

connections from the client to the quiesced server if the connection is
designated as sticky and stickytime has not expired. The quiesce
subcommand disallows any other new connections to the server. You can
check the number of connections to that server with the dscontrol server
rep :: command. When there are no more active connections, you can
safely shut the server down. See the Load Balancer Administration Guide
Version 6.0 for more information about these commands.

4. Stop the application servers in the cell or cluster. Stop the HTTP servers if
static content is to be updated.

5. Update the application. If you need information about how to update an
application see WebSphere Application Server V6 System Management and
Configuration Handbook, SG24-6451.

Depending on the update type, do one of the following:

– For a major release update, first update the back-end system (database,
messaging, middleware, and so forth), and then update your application.

– If only the application needs to be updated, update your application.

6. Start the cell or cluster.

Verify that your new application version works properly before going back
online with this branch. Figure 5-11 on page 163 shows the actual state just
before switching the updated branch back online in a multiple cell topology.
The Load Balancer is not routing any requests to the first branch but the
application is already updated to the new version and can be tested on the
intranet.

Note: We do not explain any details on what might be necessary to
update anything that is outside of the WebSphere cell, such as a
database schema, and so forth. Make sure that you know exactly what
you are doing and what the impact on the overall system might be.
162 WebSphere Application Server V6: High Availability Solutions

Figure 5-11 Multiple cells: during the update, phase 1

7. After updating and testing the first branch you can then reactivate it at the
Load Balancer level.

Figure 5-12 on page 164 shows the state between reactivation of branch 1
and starting to quiesce branch 2 for a multiple cells environment. Both
branches are active, however, with different application versions.

Load
Balancer

Cell 1

Cluster 1.1
Application

V1.1

Cluster 1.2

Cell 2

Cluster 2.1

Cluster 2.2

X
X

Application V1.0

Application V1.0

HTTP3

HTTP4

HTTP2

HTTP1

Application
V1.1
 Chapter 5. High availability application administration 163

Figure 5-12 After branch 1 has been updated - both application versions are online

8. Repeat steps 1 on page 149 to 7 on page 163 to update the next branch.

5.4.4 Update type: bugfix release
This is probably the most common and thus most interesting update type. It can
be performed on a running system for all topologies. Using the rollout update
function, as described in 5.4.2, “Rollout update (new feature of WebSphere V6)”
on page 153 is also an option for this type of application update if your
environment allows for it.

The minimum configuration to achieve this without application downtime is a
cluster on two different nodes (horizontal scaling). Each node hosts at least one
cluster member. If you need to update static content on the HTTP servers also,
then you need a minimum of two HTTP servers.

In this scenario, you might not need to wait for active sessions to expire or end,
as they can failover to the other, still active, cluster members. So, a bugfix update
is a much faster overall process.

The topology that is described in 5.3.3, “Single cell, single cluster” on page 149 is
shown in more detail in Figure 5-13 on page 165. We now need to take the
cluster members and the Web server plug-in configuration file into account.

Load
Balancer

Cell 1

Cluster 1.1

Application V1.1

Cluster 1.2

Cell 2

Cluster 2.1

Cluster 2.2

Application V1.0

Application V1.0

Application V1.1HTTP2

HTTP1

HTTP3

HTTP4
164 WebSphere Application Server V6: High Availability Solutions

Figure 5-13 Single cell, single cluster topology - the details

The update scenario
The update scenario depends on whether you also need to update static content
on the HTTP servers or only the WebSphere application. In both cases, however,
you first need to deactivate the automatic file synchronization service of the Node
Agents. Next, you update the WebSphere application and also any static content
on the HTTP servers that needs to be updated.

After deactivating the file synchronization service, follow “Updating a WebSphere
application only” on page 166 if no static content needs to be updated.
Alternatively, follow “Updating a WebSphere application and static content on the
HTTP server” on page 168 if you need to update static content on the HTTP
servers.

Deactivating the automatic file synchronization service
The following is a step-by-step description of this process:

1. Using the Administrative Console, navigate to System administration →
Node agents.

2. Click nodeagent to open the configuration page, and then select File
synchronization service.

3. Deselect (the fields Enable service at server startup and) Automatic
synchronization as shown in Figure 5-14 on page 166.

Load
Balancer

Cluster

clustermember01
on Node1

clustermember02
on Node2

Application V1.0

Application V1.0

HTTP1 Plug-in

HTTP2 Plug-in
 Chapter 5. High availability application administration 165

Figure 5-14 Disable Automatic synchronization

4. Repeat these steps for each Node Agent in the environment.

5. Save your configuration changes, and propagate them to the nodes using
Synchronize changes with Nodes on the save page.

6. Restart all Node Agents. You can use the Administrative Console Restart.

Updating a WebSphere application only
If you need information about how to update a WebSphere application, see
WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451.

Attention: Follow these steps only if no static content needs to be updated on
the HTTP servers! Follow the instructions in “Updating a WebSphere
application and static content on the HTTP server” on page 168 if you need to
update the WebSphere application as well as static content.
166 WebSphere Application Server V6: High Availability Solutions

To update a WebSphere application:

1. Update the application and save it to the master configuration. Be careful not
to synchronize with the nodes during this task.

At this point the updated application resides in the master repository on the
Deployment Manager system. The nodes and thus cluster members are not
aware of the new code version and continue to serve the old application
version that is stored in their local configuration repository subset.

2. Next you synchronize one node after the other using the Administrative
Console. Go to System administration → Nodes. Select the first node and
click Full Resynchronize. See Figure 5-15.

The synchronized node now serves the new application version while the
other nodes continue to serve the old application version. As a precaution you
can test your application on the updated node before synchronizing the other
nodes.

3. Synchronize your other nodes accordingly. When all nodes are synchronized,
all of them serve the new application version.

Figure 5-15 Resynchronize the node

4. After updating the application on all nodes you can re-enable the file
synchronization service for the Node Agents. Follow the steps described in
“Deactivating the automatic file synchronization service” on page 165 but this
time check the two fields. Do not forget to restart the Node Agents.
 Chapter 5. High availability application administration 167

Updating a WebSphere application and static content on the HTTP
server

In order to update static content on the HTTP servers, you must be able to
remove the HTTP server from the environment while updating it. This means that
you need a minimum of two HTTP servers for this to work seamlessly. In most
cases, all HTTP servers are associated to all cluster members and can thus
forward requests to the entire cluster - this is shown in Figure 5-13 on page 165.
Thus, for this update scenario, you must first untangle the HTTP server to
application mapping to make sure that each HTTP server is only associated with
certain cluster members (we call this a branch again throughout this section).
This situation is depicted in Figure 5-16.

Figure 5-16 HTTP server and nodes: one-to-one assignment

Follow these steps to create and update the branches:

1. For the application servers of the first branch: Stop the application server so
that active requests failover to the application servers of the other branch.
Alternatively you can set the application server weights to 0 to make sure no
new requests arrive and monitor for active sessions to end as described in
“The update steps” on page 161 before continuing with creating the branches.

2. Using the Administrative Console, deactivate automatic propagation of the
plug-in file to the HTTP server. Click Servers → Web servers →
Web_Server_Name → Plug-in properties. Deselect Automatically

Note: All cluster members on a node must belong to the same branch but you
could have more than one node in a branch.

Important: There is no failover of active requests available any more when
the branches are created because the HTTP server does not know about the
other application servers. Therefore you must make sure that there are no
active sessions in the branch you wish to update.

Load
Balancer

Cluster

clustermember01
on Node1

clustermember02
on Node2

Application V1.0

Application V1.0

HTTP1 Plug-in

HTTP2 Plug-in
168 WebSphere Application Server V6: High Availability Solutions

propagate plugin configuration file on the configuration panel shown in
Figure 5-17. Click OK and save your changes.

Do this for all HTTP servers in your environment.

Figure 5-17 Disable automatic propagation of plug-in configuration file

3. On each HTTP server machine, copy the Web server plug-in file
(plugin-cfg.xml) so you have a backup file for later restoration. Then edit the
original plugin-cfg.xml file. Comment out the lines for the application servers
of the other branch(es) so the HTTP server only knows about the application
servers of its own branch.

Wait as long as the time specified in the RefreshInterval (at the top of the
plug-in file), by default this is 60 seconds. After this time, the HTTP server
reloads the plug-in file and your changes take effect.

Note: You cannot use the Administrative Console to change this mapping
as the console only allows you to change the mapping for the application
itself, which means for the entire cluster and not for individual cluster
members.
 Chapter 5. High availability application administration 169

The highlighted lines in Example 5-2 show which lines need to be commented
out in the plugin-cfg.xml file. (In our example, we keep wasmember06 in the
branch and remove wasmember05.)

Example 5-2 Isolate the branch by removing the server from the list of servers

...
<ServerCluster CloneSeparatorChange="false" LoadBalance="Round Robin"
Name="wascluster02" PostSizeLimit="-1" RemoveSpecialHeaders="true"
RetryInterval="60">
 <Server CloneID="10cp2mdfn" ConnectTimeout="0" ExtendedHandshake="false"
LoadBalanceWeight="2" MaxConnections="-1" Name="wasna02_wasmember06"
ServerIOTimeout="0" WaitForContinue="false">
 <Transport Hostname="wasmember06.ibmredbook.com" Port="9083"
Protocol="http"/>
 <Transport Hostname="wasmember06.ibmredbook.com" Port="9446"
Protocol="https">
 <Property Name="keyring"
Value="/opt/IBM/WebSphere/Plugins/etc/plugin-key.kdb"/>
 <Property Name="stashfile"
Value="/opt/IBM/WebSphere/Plugins/etc/plugin-key.sth"/>
 </Transport>
<!-- </Server>
 <Server CloneID="10cuccd8v" ConnectTimeout="0" ExtendedHandshake="false"
LoadBalanceWeight="2" MaxConnections="-1" Name="wasna01_wasmember05"
ServerIOTimeout="0" WaitForContinue="false">
 <Transport Hostname="wasmember05.ibmredbook.com" Port="9084"
Protocol="http"/>
 <Transport Hostname="wasmember05.ibmredbook.com" Port="9447"
Protocol="https">
 <Property Name="keyring"
Value="/opt/IBM/WebSphere/Plugins/etc/plugin-key.kdb"/>
 <Property Name="stashfile"
Value="/opt/IBM/WebSphere/Plugins/etc/plugin-key.sth"/>
 </Transport>
 </Server>
-->
 <PrimaryServers>
 <Server Name="wasna02_wasmember06"/>
<!-- <Server Name="wasna01_wasmember05"/> -->
 </PrimaryServers>
 </ServerCluster>
...

4. Quiesce the HTTP server at the Load Balancer and wait for a reasonable
amount of time so all affinity requests to the HTTP servers have finished or
expired, then stop the HTTP server.
170 WebSphere Application Server V6: High Availability Solutions

For the Load Balancer, you can use the dscontrol manager quiesce
command. The quiesce subcommand allows existing connections to
complete (without being severed) and forwards only subsequent new
connections from the client to the quiesced server if the connection is
designated as sticky and stickytime has not expired. The quiesce
subcommand disallows any other new connections to the server. You can
check the number of connections to that server with the dscontrol server
rep :: command. When there are no more active connections, you can
safely shut the server down. See the Load Balancer Administration Guide
Version 6.0 for more information about these commands.

5. Update the application and save it to the master configuration. Be careful not
to synchronize with the nodes during this task.

At this point the updated application resides in the master repository on the
Deployment Manager system. The nodes and thus cluster members are not
aware of the new code version and all active servers continue to serve the old
application version that is stored in their local configuration repository subset.

6. Update the static content on the HTTP server.

7. Now you can synchronize the updated application code to the nodes of your
first branch. Using the Administrative Console, go to System
administration → Nodes. Select the appropriate node and click Full
Resynchronize. See Figure 5-15 on page 167.

The synchronized node can now serve the new application version while the
other node or nodes of the other branch or branches continue to serve the old
application version.

If there is more than one node in your first branch, synchronize the other
nodes accordingly. As a precaution you can test your application on the
updated node before synchronizing the other node or nodes.

Figure 5-18 shows the status during the update.

Figure 5-18 During the update

XLoad
Balancer

Cluster

clustermember01
on Node1

clustermember02
on Node2 Application V1.0

HTTP1 Plug-in

HTTP2 Plug-in

Application V.1.1
 Chapter 5. High availability application administration 171

8. After testing it, make the updated branch accessible again:

a. Start the application server cluster.

b. Start the HTTP server or servers.

Requests should now flow from the Load Balancer to all HTTP servers again.
However, all requests being sent to the HTTP server of the first branch will
use the new application version.

9. The next step is to update the second branch. Repeat steps 1 on page 168
to 8 for the second branch.

10.Restore the original plugin-cfg.xml files of the HTTP servers or remove the
comment indicators from the files. This makes sure that all HTTP servers can
send requests to all application servers again and that workload management
and failover is available again.

11.Re-enable the file synchronization service for the Node Agents. Follow the
steps described in “Deactivating the automatic file synchronization service”
on page 165 but this time check the two fields. Save your changes and do not
forget to restart the Node Agents.

12.The last step is to re-enable automatic propagation of the plug-in file. Follow
the steps described in step 2 on page 168 and select Automatically
propagate plugin configuration file. Save the changes.
172 WebSphere Application Server V6: High Availability Solutions

Part 3 WebSphere
HAManager

Part 3
© Copyright IBM Corp. 2005. All rights reserved. 173

174 WebSphere Application Server V6: High Availability Solutions

Chapter 6. WebSphere HAManager

IBM WebSphere Application Server Network Deployment V6 introduces a new
feature called High Availability Manager (commonly called HAManager) that
enhances the availability of WebSphere singleton services such as transaction or
messaging services. It provides a peer recovery mechanism for in-flight
transactions or messages among clustered WebSphere application servers.

HAManager leverages the latest storage technologies, such as IBM SAN FS
(Storage Area Network File System) to provide fast recovery time of two-phase
transactions. In addition, it adds the possibility of hot standby support to high
availability solutions using conventional failover middleware such as IBM High
Availability Clustered Multi-Processing (HACMP) or Tivoli System Automation
(TSA).

This chapter discusses various of these HA scenarios.

6

© Copyright IBM Corp. 2005. All rights reserved. 175

6.1 Introduction to the HAManager
High Availability Manager (HAManager) enhances the availability of singleton
services in WebSphere. These singleton services include:

� Transaction service - Transaction log recovery
� Messaging service - Messaging engine restarting

The HAManager runs as a service within each WebSphere process (Deployment
Manager, Node Agents, or application servers) that monitors the health of
WebSphere singleton services. In the event of a server failure, the HAManager
will failover any singleton service that was running on the failed server to a peer
server. Examples of such a failover include the recovery of any in-flight
transactions or restarting any messaging engines that were running on the failed
server. As depicted in Figure 6-1, each application server process runs a
HAManager component and shares information through the underlying
communication infrastructure Distribution and Consistency Services (DCS) such
that no single point of failure would exist in the topology. Every member in a
WebSphere cluster knows where singleton services are running.

Figure 6-1 HAManager architecture

Application
Server 1

DCS Services

HAManager

Application
Server 2

DCS Services

HAManager

Application
Server 3

DCS Services

HAManager

DCS Traffic

Application
Server 5

DCS Services

HAManager

Core Group

DCS Services

HAManager

Application
Server 4

DCS Services

HAManager

Application
Server 6

Application
Server 5
176 WebSphere Application Server V6: High Availability Solutions

This peer-to-peer failover model dramatically improves recovery time. Also,
WebSphere clusters can be made highly available with a simpler setup. No
external high availability software is required.

6.2 Core group
A core group is a high availability domain within a cell. It serves as a physical
grouping of JVMs in a cell that are candidates to host singleton services. It can
contain stand-alone servers, cluster members, Node Agents, or the Deployment
Manager. Each of these run in a separate JVM. See Figure 6-2.

Figure 6-2 Conceptual diagram of a core group

A cell must have at least one core group. The WebSphere Application Server
creates a default core group, called DefaultCoreGroup, for each cell. Each JVM
process can only be a member of one core group. Naturally, cluster members
must belong to the same core group. At runtime, the core group and policy

Note: Deployment Managers and Node Agents cannot be made highly
available with HAManager. Refer to Part 5, “Using external clustering
software” on page 283 for information about how to achieve this.

Core Group

Cell

Node 3

Node Agent

HAManager

AppServer2

HAManager

AppServer3

HAManager

Node 1

Deployment Manager

HAManager

Node 2

Node Agent

HAManager

AppServer1

HAManager
 Chapter 6. WebSphere HAManager 177

configurations are matched together to form high availability groups. For more
information about policies and high availability groups, see 6.2.4, “Core group
policy” on page 188 and 6.3, “High availability group” on page 194.

A set of JVMs can work together as a group to host a highly available service. All
JVMs with the potential to host the service join the group when they start. If the
scope of the singleton (such as a Transaction Manager or a messaging engine) is
a WebSphere cluster then all members of the cluster are part of such a group of
JVMs that can host the service.

A core group cannot extend beyond a cell, or overlap with other core groups.
Core groups in the same cell or from different cells, however, can share workload
management routing information using the core group bridge service. See
Figure 6-3.

Figure 6-3 Conceptual diagram of multiple core groups

Cell

Node 4

Node Agent

HAManager

AppServer4

HAManager

Node 5

Node Agent

HAManager

AppServer5

HAManager

Node 1

Node 2

Node Agent

HAManager

AppServer1

HAManager

Node 3

Node Agent

HAManager

AppServer2

HAManager

AppServer3

HAManager

Core Group1

HAManager

Deployment Manager

Cluster 1

Cluster 2

Core Group2

Core Group Bridge
178 WebSphere Application Server V6: High Availability Solutions

In a large-scale implementation with clusters spanning multiple geographies, you
can create multiple core groups in the cell and link them together with the core
group bridge to form flexible topologies. The most important thing is that every
JVM in a core group must be able to open a connection to all other members of
the core group.

The core group bridge service can be used when configuring a backup cluster for
EJB container failover. We have provided a step-by-step configuration example
for the core group bridge service in 2.7, “Backup cluster support” on page 87.

6.2.1 Core group coordinator
After the membership of the core group stabilizes at runtime, certain members
can be elected to act as coordinators for the core group. A core group
coordinator is responsible for managing the high availability groups within a core
group. See Figure 6-4 on page 180. The following aspects are managed by the
core group coordinator:

� Maintaining all group information including the group name, group members
and the policy of the group.

� Keeping track of the states of group members as they start, stop, or fail and
communicating that to every member.

� Assigning singleton services to group members and handling failover of
services based on core group policies.

Tip: Using core group bridges is a good way to handle intra-cell firewalls.
 Chapter 6. WebSphere HAManager 179

Figure 6-4 The responsibilities of a core group coordinator

Preferred coordinator servers
By default, the HAManager elects the lexically lowest named core group process
to be the coordinator. The name of the process consists of cellname, nodename,
and process name. For example in our environment, we have (among others),
the following process names:

� wascell01/wasdgmr01/dmgr
� wascell01/wasna01/wasmember01
� wascell01/wasna01/nodeagent

In this example, the Deployment Manager has the lexically lowest name,
followed by the Node Agent on wasna01, then wasmember01 and thus the
Deployment Manager would become the coordinator server if no preferred
coordinator has been configured. See Table 6-1 on page 183 for more examples
of how the coordinator is elected (also when a preferred coordinator is specified).

Because a coordinator takes up additional resources in the JVM, you might want
to override the default election mechanism by providing your own list of preferred

HA Group State

HA Group1 (TM) Idle

HA Group2 (TM) Active

HAGroup3(ME) Idle

Monitor

JVM3

HAManager

HA Group State

HA Group1 (TM) Disable

HA Group2 (TM) Idle

HAGroup3 (ME) Active

Monitor

JVM2

HAManager

HA Group State

HA Group1 (TM) Active

HA Group2 (TM) Idle

Monitor

JVM1

HAManager

Communicate

HA Group3 (ME)

HA Group1 (TM)

HA Group2 (TM)

Coordinator

Manage

HA Groups

Clustered TM Policy

Default SIBus Policy

My ME Policy

Policies

Process State

JVM1 Active

JVM2 Idle

Process State

JVM1 Active

JVM2 Disable

JVM3 Idle

Process State

JVM1 Idle

JVM2 Idle

JVM3 Active
180 WebSphere Application Server V6: High Availability Solutions

coordinator servers in the WebSphere Administrative Console. You can do this
by selecting Servers → Core groups → Core group settings →
<core_group_name> → Preferred coordinator servers. Specifying just one
server in the list does not make it a single point of failure. The HAManager simply
gives the server a higher priority over others in the core group instead of giving it
an exclusive right to be a coordinator. Consider the following when deciding
which JVMs should become preferred coordinators:

� Find a JVM with enough memory.

Being a coordinator, a JVM needs extra memory for the group and status
information mentioned earlier. For core groups of moderate size, the memory
footprint is small. You can enable verbose garbage collection to monitor the
heap usage of the JVM running as the coordinator and to determine whether
the JVM heap size needs to be increased or more coordinators are needed.

� Do not put the coordinator in a JVM that is under a constant heavy load.

A coordinator needs CPU cycles available to react quickly to core group
events, for example, when one of the core group servers crashes, the
coordinator needs to update the status of that server and to communicate the
event to all processes. Any heavily loaded system will prevent the
HAManager from functioning properly and thus jeopardize your WebSphere
high availability environment. A heavily loaded system is not one that is
running at 100% of its capacity, but one that is running a much heavier
workload than it can handle. Under such load, a system will be unable to
schedule the tasks required for a coordinator in a reasonable amount of time.
For example, if an alarm were scheduled to run every two seconds, such a
system would have the alarm firing all the time without being able to process
the coordinator workload. Clearly, this severely disrupts the normal
processing of the HA services. The HAManager displays a warning message
(HMGR0152) when it detects these types of scheduling delays. If this
message is observed then you need to take action to prevent the
circumstances causing this problem. That can include stopping paging,
retuning the thread pools to a more reasonable level for the number of CPUs
in the system or using more or faster hardware for the application. The usual
causes for this problem are either:

– Swapping.

– The server is configured to use a very large number of threads when
compared with the number of CPUs on the system.

– Other processes or JVMs on the system are causing thread scheduling
delays (that is, the total number of active busy threads on the system is too
high for it).

These symptoms typically impact everything on the system.
 Chapter 6. WebSphere HAManager 181

� Use a JVM that is not often started or stopped.

When a preferred coordinator server is stopped then a small amount of CPU
will be used on all machines in the core group to recover the coordinator
state. This typically takes well under a second. If the server is later restarted
then the same process is repeated as the new coordinator recovers the state.

Using multiple coordinators can reduce the rebuild time by spreading the
rebuild and steady state coordinator CPU/memory load over multiple
computers. However, the amount of CPU required in steady state is
practically zero and the rebuild CPU is also minimal in almost all scenarios.
The only scenarios where the rebuild times would increase beyond
subsecond times are when there is a very large number of JVMs in the core
group as well as a very large number of clustered applications or JMS
destinations.

Refer to the WebSphere V6 InfoCenter for more information about this topic.

To explain the election of coordinators, let us look at an example configuration
with a core group consisting of the following JVMs in lexical order (all of them are
in wascell01):

� wasdmgr01/dmgr
� wasna01/nodeagent
� wasna01/wasmember01
� wasna01/wasmember02
� wasna01/wasmember05
� wasna02/nodeagent
� wasna02/wasmember03
� wasna02/wasmember04
� wasna02/wasmember06
182 WebSphere Application Server V6: High Availability Solutions

Table 6-1 lists the possible configurations of preferred coordinator servers and
election results.

Table 6-1 Example configurations and results of preferred coordinator servers

Because JVMs take up the role of a coordinator during a view change, a
message is written to the SystemOut.log file as seen in Example 6-1.

Example 6-1 Message for a JVM becoming an active coordinator

[6/20/05 5:50:55:107 CDT] 00000018 CoordinatorIm I HMGR0206I: The Coordinator
is an Active Coordinator for core group DefaultCoreGroup.

For JVMs that do not become coordinators, the message in Example 6-2 is
displayed.

Example 6-2 Message for a JVM joining a view not as a coordinator

[6/20/05 5:50:55:112 CDT] 00000017 CoordinatorIm I HMGR0228I: The Coordinator
is not an Active Coordinator for core group DefaultCoreGroup.

Number of
coordinators

Preferred coordinator
servers

Inactive processes Elected coordinators

1 nil nil wasdmgr01/dmgr

1 wasna01/wasmember01 wasna01/wasmember01 wasdmgr01/dmgr

2 wasna01/wasmember01 nil wasna01/wasmember01
wasdmgr01/dmgr

2 wasna01/wasmember01
wasdmgr01/dmgr

nil wasna01/wasmember01
wasdmgr01/dmgr

2 wasdmgr01/dmgr
wasna01/wasmember01

nil wasdmgr01/dmgr
wasna01/wasmember01

2 wasna01/wasmember01
wasna01/wasmember02

wasna01/wasmember01 wasna01/wasmember02
wasdmgr01/dmgr

2 wasna01/wasmember01
wasna02/wasmember03

nil wasna01/wasmember01
wasna02/wasmember03
 Chapter 6. WebSphere HAManager 183

The preferred coordinator list can be changed dynamically. If there is a newly
elected coordinator, a message as in Example 6-3 is written to the
SystemOut.log.

Example 6-3 Message for an active coordinator retiring from the role

[6/20/05 5:54:58:994 CDT] 00000018 CoordinatorIm I HMGR0207I: The Coordinator
was previously an Active Coordinator for core group DefaultCoreGroup but has
lost leadership.

Coordinator failure
When a JVM process with the active coordinator is no longer active (because it is
stopped or crashes), the HAManager elects the first inactive server in the
preferred coordinator servers list. If there is none available, it will simply elect the
lexically lowest named inactive server. If there are fewer JVMs running than the
number of coordinators in the core group settings, then all running JVMs are
used as coordinators.

The newly elected coordinator initiates a state rebuild, sending a message to all
JVMs in the core group to report their states. This is the most
processor-intensive operation of a coordinator.

How many coordinators do I need?
Most medium-scale core groups only need one coordinator. The following are
possible reasons for increasing the number of coordinators:

� Heavy heap usage found in the verbose garbage collection log of the JVM
acting as the active coordinator.

� High CPU usage when a newly elected coordinator becomes active.

These conditions are only a problem under the following circumstances:

� There are many WebSphere clusters deployed in the core group.

� There are thousands of JMS destinations deployed in the core group.

� A WebSphere Extended Deployment application using partitioning is having
more than 5000 partitions.

For 99% of customers, it is not necessary to use more than a single coordinator.
Normally, you use a preferred server to pin the coordinator to a server that does
not start or stop typically. However, if that server fails, then the coordinator
moves to the lexically lowest JVM.
184 WebSphere Application Server V6: High Availability Solutions

6.2.2 Transport buffer
The underlying message transport of HAManager is a reliable publish/subscribe
messaging service, known as Distribution and Consistency Services (DCS). A
buffer is created to hold unprocessed incoming messages and outgoing
messages that have not been acknowledged. The default memory size is 10MB
with the rationale to reduce memory footprint. As the buffer is shared with DRS
for HTTP session replication and stateful session bean state replication, you
might want to increase the buffer size if your WebSphere environment has high
replication demands.

When an application server is running low on the transport buffer, various
messages are displayed in the SystemOut.log of the JVM as shown in
Example 6-4.

Example 6-4 Congestion related messages in SystemOut.log

Messages indicating congestion
DCSV1051=DCSV1051W: DCS Stack {0} at Member {1}: Raised a high severity
congestion event for outgoing messages. Internal details are {2}.
...
DCSV1052=DCSV1052W: DCS Stack {0} at Member {1}: Raised a medium severity
congestion event for outgoing messages. Internal details are {2}.
DCSV
...
Message indicating that congestion cleared
DCSV1053=DCSV1053I: DCS Stack {0} at Member {1}: Outgoing messages congestion
state is back to normal.

These are not error messages. They are simply informational messages that
indicate a congestion event has occurred in the transport buffer. The messages
that are not sent during the congestion are retried later, or they are sent as a
batch to use the transport buffer more efficiently.

Congestion should normally only occur when doing a lot of session replication or
when a large core group is started by simultaneously starting all members.
Congestion can be reduced by tuning the buffer size.

Important: The replication function was heavily tuned for the 6.0.2 release of
WebSphere, and we recommend at least that level to customers with heavy
HTTP session replication needs.
 Chapter 6. WebSphere HAManager 185

Setting the transport buffer size
The ideal setting for the transport buffer is very dependant on load but during
some internal benchmarks, we used buffer sizes of 80 MB for a cluster that was
processing 20 000 HTTP requests per second and each request resulted in
10 KB of session state to replicate. This is an extreme that very few customers
would see in practice but gives an idea of the scale of things.

It is recommended to keep the transport buffer size setting symmetric on all
processes. The amount of static storage that is consumed is actually quite small.
For example, if you set the transport buffer size to 80 MB, only 12 MB actually
gets statically allocated. The rest of the space is the limit of dynamic memory that
is allowed to be allocated.

To change the transport buffer size, open the WebSphere Administrative
Console, and click Servers → Application servers → <AppServer_Name> →
Core group service (under Additional Properties). See Figure 6-5 for the
configuration panel. Restart all processes in the core group after changing this
setting.

Figure 6-5 Change the transport buffer size of an application server

Note: This setting is per application server. You need to perform this change
for all application servers in the core group.
186 WebSphere Application Server V6: High Availability Solutions

Setting the IBM_CS_DATASTACK_MEG custom property
Whenever you change the transport buffer size, you should also increase the
amount of heap space that in-flight messages are allowed to consume. This is
changed by setting the IBM_CS_DATASTACK_MEG custom property for the
core group. Its default value is 50.

We suggest to set this value to 100. Go to Servers → Core groups → Core
group settings → DefaultCoreGroup (or click your core group) → Custom
properties → New. Enter IBM_CS_DATASTACK_MEG for the Name and 100 into the
Value field. See Figure 6-6. Restart all processes in the core group after
changing this setting.

Figure 6-6 Core group custom property IBM_CS_DATASTACK_MEG

Refer to the WebSphere V6 InfoCenter for more information about this custom
property.

6.2.3 Distribution and Consistency Services
Distribution and Consistency Services (DCS) provide the underlying group
services framework for the HAManager such that each application server
process knows the healthiness and status of JVMs and singleton services. It
basically provides view synchronous services to the HAManager. DCS itself uses
RMM as its reliable pub/sub message framework. RMM is an ultra high speed
publish/subscribe system that WebSphere uses internally for its core group
communication fabric as well as for DRS traffic.
 Chapter 6. WebSphere HAManager 187

6.2.4 Core group policy
A core group policy determines how many and which members of a high
availability group are activated to accept work at any point of time. Each service
or group can have its own policy. A single policy manages a set of high
availability groups (HA groups) using a matching algorithm. A high availability
group must be managed by exactly one policy. For more information about HA
groups refer to 6.3, “High availability group” on page 194. You can add, delete, or
edit policies while the core group is running. These changes take effect
immediately. There is no need to restart any JVMs in the core group for a policy
change to take effect.

To create or show a core group policy, click Servers → Core groups → Core
group settings → <core_group_name> → Policies → <existing_policy> (or
New). The panel in Figure 6-7 is shown.

Figure 6-7 Editing or creating a core group policy

There are five types of core group policies available:

� All active policy
� M of N policy
� No operation policy
� One of N policy
� Static policy
188 WebSphere Application Server V6: High Availability Solutions

One of N policy
Only one server activates the singleton service at a time under this policy. If a
failure occurs, the HAManager starts the service on another server. Make sure
that all external resources are available to all high availability group members at
all times when using this policy. For example, if database access is required for
messaging, all members should have the remote database catalogued. If there
are transaction logs, they should be put on a highly available file system, such as
Network Access Storage (NAS), that is available to all members. This is the
recommended policy for systems that require automatic failover and do not use
external high availability software.

The One of N policy has the following additional options to cater for different
usage scenarios:

� Preferred servers

You can specify an ordered list of servers that the HAManager observes
when choosing where to run a singleton service.

� Quorum

Leave this option deselected.

This option is only needed for WebSphere Extended Deployment customers
using partitioning and using hardware to enforce quorums. However, if you
are using WPF (Partition Facility) and the appropriate hardware, then contact
IBM support to configure this setting correctly.

� Fail back

When enabled, a singleton service is moved to a preferred server when one
becomes available. One example usage is the Transaction Manager. When
the failing server with the Transaction Manager becomes online again, it
should re-acquire the Transaction Manager service as Transaction Manager
failover only caters for recovery processing.

� Preferred servers only

This option makes a singleton service to run exclusively on servers in the
preferred servers list.

Two default One of N policies are defined for the DefaultCoreGroup: Clustered
TM Policy for the high availability of a Transaction Manager and Default SIBus
Policy for protecting the Service Integration Bus (messaging) services.

Attention: The default policies should never be edited, changed or deleted.
They can be overridden by new policies that have a more specific matchset.
 Chapter 6. WebSphere HAManager 189

No operation policy
Using this policy, the HAManager never activates a singleton service on its own.
It is primarily intended to be used with an external clustering software, such as
IBM HACMP or Tivoli System Automation. The software controls where to
activate a singleton service by invoking operations on the HAManager MBean.

Typically, this mode is used when overall system infrastructure dictates the
singleton service to have dependencies on resources managed outside
WebSphere. For example, Transaction Manager logs might be placed on a
Journal File System (JFS) that is present on a SAN disk. Only one server can
mount a JFS file system at a time, even though it is on a shared disk. Recovery
time is significantly reduced than the cold standby model in previous versions of
WebSphere Application Server because all JVMs are running before a failover
event. The expensive JVM start time is avoided during the critical failover time.

For more information about when and how to use this policy refer to Part 5,
“Using external clustering software” on page 283.

Static policy
This policy should be used when you want the singleton service to run on a
specific high availability group member. If the member is not online, the singleton
service will not be running. The singleton service will not automatically failover.
Manual intervention is required. The fixed member can be changed on the fly
without restarting WebSphere. This option is useful when automatic failover is
undesirable. If the server fails, the service can be moved to another server by
updating the server name on the policy and saving it.

6.2.5 Match criteria
Every singleton service is managed by a high availability group to which a policy
is assigned at runtime. The assignment is done by comparing the match criteria
of each of the available policies against the HA group name properties of the
high availability group. The policy with the strongest match will be assigned to
the HA group.

First the HAManager will find the set of policies that are eligible to govern the HA
group. In order for a policy to be eligible, the match set must be a proper subset
of the HA group name (all <name,value> pairs in the match set of an eligible
policy must be in the name of the HA group). Secondly, the HAManager will
choose the policy from the eligible list based on the number of matches. The
eligible policy with the most name,value pair matches is selected.

Important: The results of these two steps must yield exactly one policy,
otherwise the HAManager cannot assign a policy for the group.
190 WebSphere Application Server V6: High Availability Solutions

Examples
In the following examples a name,value pair is represented using the notation
name=value. Suppose you have the following policies:

1. Policy P1 has a match set of <name=Timmy>
2. Policy P2 has a match set of <name=Douglas>
3. Policy P3 has a match set of <age=5>
4. Policy P4 has a match set of <name=Timmy,age=5>

� When you have an HA group with the name of <name=Timmy>, policy P1 is
the only eligible policy. P4 is not eligible because the match set for P4
contains a name,value pair of <age=5> that is not contained in the group
name. Policy P1 is chosen for this HA group.

� Suppose you have an HA group with the name of
<name=Timmy,surname=Stevens>. Again, policy P1 is the only eligible policy
and will be chosen for this HA group.

� When you have an HA group with the name of
<name=Douglas,age=5,surname=Berg>, policies P2 and P3 are both eligible
because all the name,value pairs in the match sets of these policies are
contained in the HA group name. However, both P2 and P3 each have one
match. Neither one is better. The HAManager cannot choose a single policy,
so neither is chosen (and an error message is e logged).

� Suppose you have an HA group with the name
<name=Timmy,age=5,surname=Stevens>. Policies P1, P3 and P4 are all
eligible because all the name,value pairs in the match sets of each of these
policies are contained in the HA group name. P1 and P3 each have one
match, while P4 has two matches. Therefore policy P4 will be chosen.

� When you have an HA group with the name <name=Harry> then there are no
eligible policies. An error message will be logged.

� Suppose you have an HA group with the name <surname=Douglas>. There
are no eligible policies (both name and value must match, thus
<name=Douglas> and <surname=Douglas> do not match.) An error
message will be logged.

You can edit a policy by clicking Servers → Core groups → Core group
settings → New or <existing_core_group_name> → Policies → New or
<existing_policy_name> → Match criteria.
 Chapter 6. WebSphere HAManager 191

Refer to Table 6-2 and Table 6-3 for match criteria name, value pairs of
messaging engines, and Transaction Managers, respectively.

Table 6-2 Match criteria for messaging engines

Table 6-3 Match criteria for Transaction Managers

6.2.6 Transport type
A transport type is the type of network communication a core group uses to
communicate to its members. The following types of transports are available:

� Multicast
� Unicast
� Channel Framework

No matter which transport type is used, there is always a socket between each
pair of JVMs for point-to-point messages and failure detection. For example, if
you have a total of eight JVMs in your core group, then every JVM will have
seven sockets to others.

Multicast
Multicast is a high performance protocol and the HAManager is designed to
perform best in the multicast mode especially when using very large core groups.

Publishing a message in this mode is efficient as the publish only has to transmit
once. Only a fixed number of threads is used independent of the number of JVMs

Name Value Match targets

type WSAF_SIB All messaging engines

WSAF_SIB_MESSAGING_ENGINE Name of your
messaging engine

One particular
messaging engine

WSAF_SIB_BUS Name of your bus All messaging engines
in a bus

IBM_hc Name of your cluster All messaging engines
in a cluster

Name Value Match targets

type WAS_TRANSACTIONS All Transaction Managers

IBM_hc Cluster name All Transaction Managers in a cluster

GN_PS Home server name One particular Transaction Manager
192 WebSphere Application Server V6: High Availability Solutions

in a core group. However, consider the following factors to decide if multicast is
suitable for your environment:

� Multicast typically requires all JVMs in the core group to be on the same
subnet (TTL can be tuned, contact IBM support for details).

� All members in a core group receive multicast messages. JVMs waste CPU
cycles on discarding messages that are not intended for them.

Unicast
Communications between JVMs are performed via the direct TCP sockets
between each pair of JVMs under this transport mode. The unicast mode has the
following advantages and disadvantages:

� Unicast is WAN friendly. There is no limitation to localize JVMs on a single
subnet.

� Publishing a message which is intended only for a small number of servers is
more effective than multicast. Servers that have no interest in the message
will not waste CPU cycles on discarding messages.

� Only a fixed number of threads are used regardless of the number of JVMs.

� Publishing a message to a large number of servers is more expensive
considering each message is sent once per destination JVM.

� Unicast uses more ports than the Channel Framework transport.

Channel Framework
This default transport mode has similar pros and cons as unicast. It is more
flexible than unicast in the sense that a core group in this transport is associated
with a channel chain, and a chain can use HTTP tunneling, SSL or HTTPS. The
performance of channel framework is around 20% less than unicast for tasks
such as HTTP session replication. It is a trade-off option between performance
and flexibility for different environments. SSL and HTTP tunneling are only
available using the channel framework transport.

If the transport type in a core group is changed, all JVMs in that group must be
restarted. The following is the recommended procedure for changing the
transport type:

1. Stop all cluster members and Node Agents in the core group.

2. Modify the transport type using the WebSphere Administrative Console by
clicking Servers → Core groups → Core group settings →
<core_group_name>.

3. Change the Transport type setting on the Configuration tab.

4. Perform a manual synchronization using the syncNode command line utility.
 Chapter 6. WebSphere HAManager 193

5. Start all Node Agents.

6. Start all cluster members and application servers.

6.3 High availability group
High availability groups are dynamic components created in a core group at run
time. Each group represents a highly available singleton service. The available
members in a group are ready to host the service at any time. See Figure 6-8.

Figure 6-8 High availability group for a Transaction Manager

To view a list of high availability groups, click Servers → Core groups → Core
group settings → <core_group_name>. Then select the Runtime tab. Specify
a match criterion for a list of specific high availability groups or an asterisk (*) as
a wildcard to get a complete list of groups. For example, specifying
type=WAS_TRANSACTIONS results in a list of Transaction Manager high
availability groups. See Figure 6-9 on page 195.

Transaction
Manager

Application
Server

Transaction
Manager

Application
Server

Transaction
Manager

Application
Server

HA Group for Transaction Manager
Clustered TM Policy

Deployment
Manager

Cluster

Default Core Group for Cell
194 WebSphere Application Server V6: High Availability Solutions

Figure 6-9 Find high availability groups for Transaction Managers

When you click Show groups, a list of high availability groups that match the
criteria you specified is displayed as shown in Figure 6-10. Each high availability
group is displayed along with its associated policy.

Figure 6-10 Listing Transaction Managers high availability groups

Select any high availability group and a list of group members is displayed as
shown in Figure 6-11 on page 196. Only running JVMs are displayed in the group
member list. From here you can manage the group members by activating,
deactivating, enabling or disabling them.
 Chapter 6. WebSphere HAManager 195

Figure 6-11 Managing a high availability group

6.3.1 State change of high availability group members
Here is an example for the one of N policy: There are two servers (A and B) in a
group, only server A is a preferred server. HAManager activates the services
(Transaction Manager or messaging engine) in server A, right after it joins the
group. Later, server B starts and joins the group. Server B stays in idle state until
server A fails. At that time, HAManager activates the services in server B until
server A restarts. If the failback flag in the policy is set to true, when server A
starts, HAManager deactivates the services in server B and activates them in
server A again. If the failback flag is set to false, HAManager leaves server B as
the active member.

Note: Be aware that even though you can perform these actions on the
Administrative Console, you cannot do something that conflicts with the core
group policies. For example, suppose you had a One of N policy with a
preferred server managing a messaging engine and the ME is running on the
preferred server. If you try to move the ME using the Administrative Console,
the policy overrides that and leaves the ME where it is running. In that case,
the only choice you have is to change the policy.
196 WebSphere Application Server V6: High Availability Solutions

Figure 6-12 shows the state changes for the group members.

Figure 6-12 High availability group life cycle

6.4 Discovery of core group members
A JVM that is starting in a core group goes through the following stages before
joining the group:

1. Not connected

The JVM has not established network connectivity with other group members.
It will send a single announcement message if the multicast transport mode is
used. Or it will send a message to each member of the group if unicast is
used. It sends multiple messages in unicast because it doesn't know which
other members are started.

2. Connected

The JVM has already opened a stream to all current members of the installed
view. The coordinator considers this JVM as a candidate to join the view. A
view is the set of online JVMs ready for running singleton services.

3. In a view

The JVM is a full participant in a core group at this stage. The view is updated
and installed in all members.

Activate

Deactivate

Activated

Deactivated

Join
Group

Disabled

Deactivating

Idle Active

Group
Disabled Service

HA Manager

Unstable State

Stable State

Activating
 Chapter 6. WebSphere HAManager 197

When a new view is installed, message HMGR0218I is displayed in the
SystemOut.log file of each JVM in the group indicating how many JVMs are
currently a member of the view.

Example 6-5 Message HMGR0218I for a new view being installed

[6/20/05 7:28:44:458 CDT] 00000018 CoordinatorIm I HMGR0218I: A new core
group view has been installed. The view identifier is
(9:0.wascell01\wasna01\nodeagent). The number of members in the new view is 6.

JVMs in the current view constantly try to discover others that are not in the view.
Each in-view JVM periodically tries to open sockets to JVMs that are not in the
current view. This process continues until all JVMs in the core group are in the
view.

6.5 Failure Detection
The HAManager monitors JVMs of core group members and updates the view
accordingly. Changes in the view initiate failover, when necessary. It uses the
following methods to detect a process failure:

� Active failure detection
� TCP KEEP_ALIVE
� Sockets closing

6.5.1 Active failure detection
A JVM is marked as failed if its heartbeat signals to its core group peers are lost
for a specified interval. The DCS sends heartbeats between every JVM pair in a
view. With the default settings, heartbeats are sent every 10 seconds and 20
heartbeat signals must be lost before a JVM is raised as a suspect and a failover
is initiated. The default failure detection time is therefore 200 seconds.

This setting is very high and should be modified by most customers in a
production environment. A setting of 10 to 30 seconds is normally recommended
for a well tuned cell.

Attention: When running a large number of JVMs on a single box, the
operating system might need to be tuned to prevent running out of ephemeral
ports. Consult your operating system documentation for details.
198 WebSphere Application Server V6: High Availability Solutions

When a JVM failure is detected, it is suspected by others in the view. This can be
seen in the SystemOut.log shown in Example 6-6 on page 212. The new view
installation in this case is fast in order to achieve fast recovery. New view
installations are slower for new views generated from JVM starts. Otherwise,
there would be frequent view installations when several JVMs are started
together.

Heartbeat delivery can be delayed due to a number of commonly-seen system
problems:

� Swapping

When a system is swapping, the JVM could get paged and heartbeat signals
are not sent or received in time.

� Thread scheduling thrashing

Java is not a real time environment. When there are a lot of runable threads
accumulated in a system, each thread will suffer a long delay before getting
scheduled. Threads of a JVM might not get scheduled to process heartbeat
signals in a timely fashion. This thread scheduling problem also impacts the
applications on that system as their response times will also be unacceptable.
Therefore, systems must be tuned to avoid CPU starving or heavy paging.

Any of the above problems can cause instability in your high availability
environment. After tuning the system not to suffer from swapping or thread
thrashing, the heartbeat interval can be lowered to increase the sensitivity of
failure detection.

Use the core group custom properties listed in Table 6-4 on page 200 to change
the heartbeat frequency.

Notes:

� For WebSphere V6.0.2, the default heartbeat settings have been changed
to sending a heartbeat every 30 seconds and six consecutive lost
heartbeats denote a failure.

� Settings as low as 6 seconds are possible but typically only used with
WebSphere Extended Deployment WPF applications. Core groups
requiring such a low setting should be kept small for best performance.

Contact IBM support or services if there is a need to tune these settings
below the recommended range.
 Chapter 6. WebSphere HAManager 199

Table 6-4 Changing the frequency of active failure detection

Heartbeating is always enabled regardless of the message transport type for the
HAManager.

6.5.2 TCP KEEP_ALIVE
If a socket between two peers is closed then the side receiving the closed socket
exception will signal its peers that the other JVM is to be regarded as failed. This
means that if a JVM panics or exits then the failure is detected as quickly as the
TCP implementation allows. If the failure is because of a power failure or a
network failure, then the socket will be closed after the period defined by the
KEEP_ALIVE interval of the operating system. This is normally a long time and
should be tuned to more realistic values in any WebSphere system. A long
KEEP_ALIVE interval can cause many undesirable behaviors in a highly
available WebSphere environment when systems fail (including database
systems).

This failure detection method is however less prone to processor or memory
starvation from swapping or thrashing. Both failure detectors together offer a
very reliable mechanism of failure detection.

6.6 JMS high availability
WebSphere Application Server V6 includes a pure Java implementation of JMS
messaging engines. Given each application server has database connectivity to
the database server for persistent messages, the messaging service can be
protected by a One of N policy. For details on JMS high availability and
configuration options, refer to Chapter 12 of IBM WebSphere V6 Scalability and
Performance Handbook, SG24-6392.

Name Description Default value

IBM_CS_FD_PERIOD_SECS This is the interval between heartbeats in
seconds.

10

IBM_CS_FD_CONSECUTIVE_MISSED This is the number of missed heartbeats to
mark a server as a suspect.

20

Attention: The TCP KEEP_ALIVE value is a network setting of your operating
system. Changing its value might have side-effects to other processes running
in your system.
200 WebSphere Application Server V6: High Availability Solutions

6.7 Transaction Manager high availability
The WebSphere Application Server Transaction Manager writes to its
transaction recovery logs when it handles global transactions that involve two or
more resources. Transaction recovery logs are stored on disk and are used for
recovering in-flight transactions from system crashes or process failures. To
enable WebSphere application server transaction peer recovery, it is necessary
to place the recovery logs on a highly available file system, such as IBM SAN FS
or NAS, for all the application servers within the same cluster to access. All
application servers must be able to read from and write to the logs.

For a peer server to recover in-flight transactions, any database locks associated
with the failed transactions should be released prior to the recovery. You need to
use the lease-based exclusive locking protocol, such as Common Internet File
System (CIFS) or Network File System (NFS) Version4, to access remote
recovery logs from WebSphere application server nodes. Without the
lease-based locking support, if one of the nodes crashes, locks held by all the
processes on that node will not automatically be released. As a result, the
transactions cannot be completed, and database access can be impaired due to
the unreleased locks.

As depicted in Figure 6-13 on page 202, as two application servers perform
two-phase commit (2PC) transactions, they place table or row locks in the
database, depending on the configuration of lock granularity.
 Chapter 6. WebSphere HAManager 201

Figure 6-13 Two phase commit transactions and database locking

In the event of a server failure, the transaction service of the failed application
server is out of service. Also, the in-flight transactions that have not be
committed might leave locks in the database, which blocks the peer server from
gaining access to the locked records.

wasmember01wasmember01
TransactionTransaction

LogLog

Application Server

wasmember01

Transaction
Service

wasmember02wasmember02
TransactionTransaction

LogLog

Application Server

wasmember02

Transaction
Service

HA DatabaseHA Database

Database LocksDatabase Locks

.

was
member

01

was
member

02

was
member

01
202 WebSphere Application Server V6: High Availability Solutions

Figure 6-14 Server failure during an in-flight transaction

There are only two ways to complete the transactions and release the locks. One
is to restart the failed server and the other is to start an application server
process on another box that has access to the transaction logs.

wasmember01wasmember01
TransactionTransaction

LogLog

Application Server

wasmember01

Transaction
Service

wasmember02wasmember02
TransactionTransaction

LogLog

Application Server

wasmember02

Transaction
Service

HA DatabaseHA Database

Database LocksDatabase Locks

.

was
member

01

was
member

02

was
member

01
 Chapter 6. WebSphere HAManager 203

Figure 6-15 Recovery of failed transactions

Using the new HAManager support, a highly available file system and a
lease-based locking protocol, a recovery process will be started in a peer
member of the cluster. The recovery locks are released and in-flight transactions
are committed.

We describe this configuration in detail in the next sections.

6.7.1 Transaction Manager HA of previous versions of WebSphere
In previous versions of WebSphere Application Server, transaction log recovery
could only be achieved by restarting the application server which leads to slow
recovery time from a failure (you can either restart the application server itself —
automatically or manually — or use clustering software to failover to a backup
server).

Starting a backup server using clustering software is known as a cold failover as
the backup server needs to start an application server process during the
failover. WebSphere also requires IP failover for transaction log recovery in older
versions of WebSphere. Figure 6-16 on page 205 depicts a typical HA setup with
previous versions of WebSphere Application Server:

Application Server

wasmember01

Transaction
Service

Application Server

wasmember02

Transaction
Service

HA DatabaseHA Database

Database LocksDatabase Locks

.
was

member
02

Recovery
Process

wasmember01

Highly available file system

wasmember01wasmember01
TransactionTransaction

LogLog

wasmember02wasmember02
TransactionTransaction

LogLog
204 WebSphere Application Server V6: High Availability Solutions

Figure 6-16 Traditional Transaction Manager high availability setup

A shared drive is attached to both servers. It holds the configuration repository,
log files, transaction logs and the WebSphere Application Server binaries as
well. Both servers have their own IP addresses, and share a virtual IP address
through which clients can access the application server. An external HA
software, such as IBM HACMP or Tivoli System Automation, is used to manage
the resource group of the virtual IP address, shared disk and its file systems, and
scripts to start or to stop the WebSphere Application Server process.

If the active server crashes or fails, the HA software moves the resource group to
the backup server. It involves assigning and mounting the shared drive on the
backup server, assigning the virtual IP address and then starting the WebSphere
Application Server process. Although this is a proven solution, it has a number of
disadvantages:

� Recovery time is slow. The application server process can only be started
during a failover to recover the transaction logs and resolve any in-doubt
transactions. This can potentially take more than five minutes due to JVM
start times.

Cluster SW

Clients

Heartbeat

Virtual Hostname

Shared
Disk

Transaction
Log

DB2

HHOST3

HHOST1

App Server

Transaction
Manager

HHOST2

App Server

Transaction
Manager
 Chapter 6. WebSphere HAManager 205

� There is a single virtual IP address to be failed over, which leads to a
limitation of having both servers on the same subnet. This is not desirable
when you want to have your application servers physically located at different
sites for a high level of resilience.

� The configuration of this HA solution is highly complex. Additional HA
software is necessary. And there are timing and dependency issues in
starting components in the resource group.

By leveraging the latest storage technologies, WebSphere Application Server V6
offers a much simpler HA configuration. The newly introduced peer-to-peer
hot-failover model allows transaction recovery to be performed in a much shorter
time. While the new version can still work with external HA software, IBM
WebSphere Application Server Network Deployment V6 itself can be a
Transaction Manager HA solution with the right environment as described in the
following section.

6.7.2 Hot-failover of Transaction Manager using shared file system
This is the simplest of all Transaction Manager HA setups. It requires all cluster
members to have access to a shared file system on NAS or SAN FS, where the
transaction logs are stored, see Figure 6-17 on page 207.

Normally, every cluster member runs its own Transaction Manager. When a
failover occurs, another cluster member will be nominated to perform recovery
processing for the failed peer according to the Clustered TM Policy of the core
group. The recovery process completes in-doubt transactions, releases any
locks in the backend database and then releases the transaction logs. No new
work is performed beyond recovery processing. The Transaction Manager fails
back when the failed server is restarted.
206 WebSphere Application Server V6: High Availability Solutions

Figure 6-17 Network Deployment V6 transaction service high availability using NAS

Environment
The shared file system must support automatic lock recovery in order to make
the peer-to-peer (One of N) recovery model work. File system locking is
obviously vital to prevent corruption of the transaction log files. Lock recovery is
necessary to ensure peer cluster members can access the transaction logs when
held by the failed member.

The following file system types are supported when the One of N policy is used:

� Network File System (NFS) version 4
� Windows Common Internet File System (CIFS)
� IBM TotalStorage® SAN File System

Important: All shared file systems that are compatible with WebSphere V6.0
currently use lock leasing. The lock lease times should be tuned to an
acceptable time. Most default lock lease times are around the 45 second
mark. While the HAManager can be tuned to failover in 10 seconds, this does
not help if the lock lease time is 45 seconds, because the locks will not free up
until 45 seconds. We recommend that you set the lock lease times to
10 seconds and the HAManager failure detection time to just over the lock
lease time, 12 seconds (2 second for heart beats, 6 missed heartbeats means
suspect).

App lica tion
Server 1

Transaction
S erv ice

N FS v4

App lica tion
Server 2

Transaction
S erv ice

N FS v4

.

G igab it E thernet S w itch

H A N AS

server 1
transaction

logs

serve r 2
transaction

logs
 Chapter 6. WebSphere HAManager 207

However, basically any shared file system with the following characteristics
should work:

� Flush means all changes to the file are written to persistence store (physical
disks or NVRAM on a SAN server).

� File locks use a leasing mechanism to allow locks held by failed machines to
be released in a reasonable amount of time without requiring the failed server
to restart.

If you are unsure whether your selected file system supports this, see 6.7.4, “File
System Locking Protocol Test” on page 213 for information about how to obtain a
test program to verify this.

For more information about IBM NAS and SAN FS technologies, go to the IBM
TotalStorage homepage at:

http://www.storage.ibm.com

The Network Attached Storage (NAS) and all the cluster members are connected
together in a network. There is no limitation on placing servers on the same
subnet as long as they can make connections to each other.

All cluster members must be running WebSphere Application Server V6 or later.
Peer recovery processing does not work with V5 cluster members.

Configuration
Follow these steps to make the Transaction Manager highly available:

1. Install WebSphere Application Server V6 on all nodes. It is not necessary to
have the WebSphere Application Server binaries on the shared file system.

2. Create a cluster and add cluster members (on the different nodes).

Note: AIX 5.2 supports NFS version 3 while AIX 5.3 supports NFS version 4.
For information about NFS V4, refer to Securing NFS in AIX An Introduction to
NFS v4 in AIX 5L Version 5.3, SG24-7204.

Tip: The white paper Transactional high availability and deployment
considerations in WebSphere Application Server V6 on IBM WebSphere
Developer Technical Journal is an excellent description of Transaction
Manager recovery in different environments. You can find this paper at:

http://www.ibm.com/developerworks/websphere/techjournal/0504_beaven/
0504_beaven.html
208 WebSphere Application Server V6: High Availability Solutions

http://www.storage.ibm.com
http://www.ibm.com/developerworks/websphere/techjournal/0504_beaven/0504_beaven.html
http://www.ibm.com/developerworks/websphere/techjournal/0504_beaven/0504_beaven.html

3. Enable the cluster to enforce high availability for transaction logs.

High availability for persistent service is a cluster setting. Click Servers →
Clusters → <cluster_name>. Select Enable high availability for
persistent services on the Configuration tab shown in Figure 6-18.

Figure 6-18 Enable high availability for the transaction service of a cluster

4. Stop the cluster.

5. Change the transaction log directories of all cluster members.

Click Servers → Application servers → <AppServer_Name> → Container
Services → Transaction Service. Enter the transaction logs location on the
NFS mount point of the cluster member into the Transaction log directory
field. See Figure 6-19 on page 210.

Tips:

� It is recommended to use the hard option in the NFS mount command
(mount -o hard) to avoid data corruption.

� We recommend the same settings that a database would use if it used
the shared file system. Most NAS vendors document recommended
settings for this environment. Settings that work for a database such as
DB2 or Oracle also work for WebSphere V6 transaction logs.
 Chapter 6. WebSphere HAManager 209

Figure 6-19 Change the transaction log directory of a cluster member

6. Save and synchronize the configuration.

7. Copy the existing transaction logs to the shared file system. Make sure the
location and file permissions are correct.

8. Start the cluster.

The Transaction Manager is highly available after the cluster restart. To verify
how many high availability groups are backing up the singleton service, follow the
steps in 6.3, “High availability group” on page 194.

Failover test
Now we perform a simple simulation of a JVM crash of application server
wasmember01, and server wasmember02 performs the peer recovery of
transaction logs for wasmember01. Application servers wasmember01 and
wasmember02 run on different AIX nodes (wasna05 and wasna06 respectively).
Application servers wasmember01 and wasmember02 are members of the same
cluster, see Figure 6-20 on page 211.
210 WebSphere Application Server V6: High Availability Solutions

Figure 6-20 Test environment for transaction log failover

Both application servers are up and running. We issue the AIX command
kill -9 <pid_of_wasmember01> to terminate the process of wasmember01. The
wasmember02 application server immediately detects the event from the closed
socket connection and raises wasmember01 as a suspect. A new view is
immediately installed to reflect the change. Then a recovery process is started in
the wasmember02 JVM to recover the transaction logs of wasmember01. The
recovery process is complete around three seconds after the server is killed. This
is a big improvement when compared with the minutes required by previous
versions of WebSphere. See Example 6-6 on page 212 for the details.

Important: It is important for you to understand that application servers on
Windows and AIX can indeed coexist in a Transaction Manager HA scenario if
all systems of the environment have access to the shared disk.

However, the principal issue is that the directory names are very different
between Windows and UNIX. A UNIX machine will not understand a Windows
file name and vice versa. Clever use of WebSphere environment variables
can help you make the environment work.

Clients

DB2

HHOST3

Cluster
wascluster01

Shared
Disk

AppServer2
Tran Log

HHOST1

App Server1
(wasmember01)

Transaction
Manager

HHOST2

App Server2
(wasmember02)

Transaction
Manager

AppServer1
Tran Log

IHS

HHOST4
 Chapter 6. WebSphere HAManager 211

Example 6-6 SystemOut.log of wasmember02 after terminating wasmember01

[5/2/05 9:57:21:598 CDT] 00000017 RmmPtpGroup W DCSV1113W: DCS Stack
DefaultCoreGroup at Member wascell07\wasna06\wasmember02: Suspected another
member because the outgoing connection to the other member was closed.
Suspected member is wascell07\wasna05\wasmember01. DCS logical channel is
View|Ptp.
[5/2/05 9:57:21:638 CDT] 00000017 DiscoveryRmmP W DCSV1111W: DCS Stack
DefaultCoreGroup at Member wascell07\wasna06\wasmember02: Suspected another
member because the outgoing connection from the other member was closed.
Suspected members is wascell07\wasna05\wasmember01. DCS logical channel is
Connected|Ptp.
[5/2/05 9:57:21:657 CDT] 00000017 DiscoveryRmmP W DCSV1113W: DCS Stack
DefaultCoreGroup at Member wascell07\wasna06\wasmember02: Suspected another
member because the outgoing connection to the other member was closed.
Suspected member is wascell07\wasna05\wasmember01. DCS logical channel is
Connected|Ptp.
[5/2/05 9:57:21:784 CDT] 00000017 VSync I DCSV2004I: DCS Stack
DefaultCoreGroup at Member wascell07\wasna06\wasmember02: The synchronization
procedure completed successfully. The View Identifier is
(75:0.wascell07\wasdmgr07\dmgr). The internal details are [0 0 0 0 0].
[5/2/05 9:57:21:989 CDT] 00000016 CoordinatorIm I HMGR0228I: The Coordinator
is not an Active Coordinator for core group DefaultCoreGroup.
[5/2/05 9:57:22:013 CDT] 00000017 ViewReceiver I DCSV1033I: DCS Stack
DefaultCoreGroup at Member wascell07\wasna06\wasmember02: Confirmed all new
view members in view identifier (76:0.wascell07\wasdmgr07\dmgr). View channel
type is View|Ptp.
[5/2/05 9:57:22:013 CDT] 00000016 CoordinatorIm I HMGR0218I: A new core group
view has been installed. The view identifier is
(76:0.wascell07\wasdmgr07\dmgr). The number of members in the new view is 4.
[5/2/05 9:57:22:187 CDT] 00000016 CoreGroupMemb I DCSV8050I: DCS Stack
DefaultCoreGroup at Member wascell07\wasna06\wasmember02: New view installed,
identifier (76:0.wascell07\wasdmgr07\dmgr), view size is 4 (AV=4, CD=4, CN=4,
DF=5)
[5/2/05 9:57:22:801 CDT] 00000070 RecoveryDirec A WTRN0100E: Performing
recovery processing for a peer WebSphere server (FileFailureScope:
wascell07\wasna05\wasmember01 [-572854721])
[5/2/05 9:57:22:894 CDT] 00000070 RecoveryDirec A WTRN0100E: All persistant
services have been directed to perform recovery processing for a peer WebSphere
server (FileFailureScope: wascell07\wasna05\wasmember01 [-572854721])
[5/2/05 9:57:23:328 CDT] 00000070 RecoveryDirec A WTRN0100E: All persistant
services have been directed to perform recovery processing for a peer WebSphere
server (FileFailureScope: wascell07\wasna05\wasmember01 [-572854721])
[5/2/05 9:57:23:818 CDT] 00000073 RecoveryManag A WTRN0028I: Transaction
service recovering 2 transactions.
......
212 WebSphere Application Server V6: High Availability Solutions

6.7.3 Hot-failover of transaction logs using external HA software
If you have a specific requirement to use an external HA software in your
environment, you can still take advantages of the hot-failover support available in
WebSphere V6 or later.

You need to configure your clustering software in a way that when the active
application server fails, the clustering software kicks off a script to activate the
required services on the active peer server to take over the resource and
continue. This feature provides a significant performance improvement by
eliminating the server start time. For details on hot-failover of transaction logs
using external HA software, refer to 9.6, “Transaction Manager failover with No
Operation policy” on page 313.

6.7.4 File System Locking Protocol Test
The File System Locking Protocol Test indicates whether a shared file system
supports the failover of transaction logs in WebSphere Application Server V6.
The procedures and executable programs of this verification test determine if the
shared file system supports the lease based locking protocol. Verification of the
write through to disk on flush functionality of the shared file system cannot be
reliably tested with a verification test because of the short timing window for
testing this functionality.

The following Web site provides information about the File System Locking
Protocol Test, including prerequisites and installation instructions, as well as the
downloadable code:

http://www.ibm.com/support/docview.wss?rs=180&uid=swg24010222

Tip: In AIX, use the command kill -9 <pid_of_JVM_process> to simulate a
JVM crash. The kill -9 <pid> command issues a SIGKILL signal to
immediately terminate a process, while the kill <pid> command by default
sends a SIGTERM signal to normally stop a process.
 Chapter 6. WebSphere HAManager 213

http://www.ibm.com/support/docview.wss?rs=180&uid=swg24010222

214 WebSphere Application Server V6: High Availability Solutions

Part 4 Platform specific
information,
IBM Eserver iSeries
and zSeries

Part 4
© Copyright IBM Corp. 2005. All rights reserved. 215

216 WebSphere Application Server V6: High Availability Solutions

Chapter 7. WebSphere HA on
IBM Eserver iSeries

This chapter describes a recommended high-availability scenario for an
application deployed to WebSphere Application Server Network Deployment V6
in an IBM Eserver iSeries environment.

WebSphere Network Deployment provides high availability for
WebSphere-managed resources via WebSphere clustering and other Network
Deployment options, which are described in various other chapters of this book,
that are common to all WebSphere platforms. iSeries clusters provide the high
availability for resources, such as database servers and file servers, that are
outside the scope of WebSphere management.

Each of the technologies that we use is addressed individually at a high level for
general understanding before going into detail about how to set up the iSeries
cluster and make it usable by WebSphere. We then discuss the implications of
using WebSphere Application Server in a highly available iSeries environment as
well as configuration steps and considerations.

For our example we use independent ASPs and cross-site mirroring.

7

© Copyright IBM Corp. 2005. All rights reserved. 217

7.1 Introduction to iSeries HA
From its inception, the IBM Eserver iSeries system has been designed to run
applications in support of core business processes. Features of the operating
system and hardware have been designed to avoid unscheduled downtime
whenever possible and to provide the ability to quickly restore the system to an
operational state should a failure occur.

Today, iSeries systems are recognized as one of the most reliable and available
servers in the marketplace. However, many companies are finding that even
scheduled maintenance and the risk of unforeseen outages are unacceptable.
This can be especially true in Web environments where you could have users or
customers at any hour of the day. To reach this nearly continuous availability,
eventually some type of clustering solution is required.

7.1.1 WebSphere Network Deployment: High availability for
WebSphere processes

WebSphere Network Deployment should be used to configure horizontal clusters
for enterprise applications; this enables high availability for WebSphere
processes. Significant new options in WebSphere Network Deployment V6
include stateful session bean failover, peer recovery of WebSphere-managed
transactions, and failover for the default messaging provider.

Refer to Chapter 2, “WebSphere Application Server failover and recovery” on
page 35 and Chapter 6, “WebSphere HAManager” on page 175 for information
about configuring and using these options.

7.1.2 iSeries clustering: High availability for other critical resources
in the application path

Clustering in an iSeries environment is accomplished through Cluster Resource
Services (CRS). Cluster Resource Services are a built-in part of the OS/400
operating system and, therefore, runs on each system in the cluster. CRS
provides failover and switchover capabilities for systems used as database
servers or application servers. CRS also provides the following functionality:

� Heartbeat monitoring for determining the state of systems in the cluster. If a
failure occurs in one of the nodes, CRS alerts backup nodes to begin
preparation for failover.

� Node communications allowing administrators on one system in the cluster to
issue clustering commands to other machines (or nodes) in the cluster.
218 WebSphere Application Server V6: High Availability Solutions

� A GUI interface makes it easier to set up and manage cluster implementation.
Some examples of this functionality include:

– Add a node to an existing cluster
– Add a switchable hardware group to a cluster
– Add a switchable software product to a cluster
– Change the cluster description
– Change the exit program name
– Change the takeover IP address for a switchable software product
– Delete a cluster
– Start a cluster
– Stop a cluster
– Switch cluster resources from the primary node to the backup node
– View messages relative to cluster activity

� Application recoverability via an API interface that maintains a program’s
state when switching between nodes in a cluster.

� Device resiliency, which allows control of switchable storage devices to be
switched from a failing node in the cluster to a different node assigned as a
backup.

One of the biggest benefits of clustering is the management of shared resources
across the cluster. This includes managing a smooth transition of critical devices,
data, and applications to a designated backup system in the event of a failure.

For the specific topology that we describe in this document, we use the device
resiliency capabilities of iSeries clustering to enable high availability of the
remote database servers as well as the file servers that host the WebSphere
transaction logs.

7.1.3 Auxiliary Storage Pools (ASP)
iSeries single-level storage treats all storage as one large virtual address space
(this includes main storage as well as disk storage). There is no concept of a disk
volume or data set partition. However, the system provides the capability to
separate this contiguous address space into smaller disk pools to make system
backup and recovery faster and to provide Hierarchical Storage Management
facilities. These pools are called auxiliary storage pools.

Conceptually, each ASP on the system is a separate pool of disk units for
single-level storage. The system spreads data across the disk units within the
ASP. If a disk failure occurs, you need to recover only the data in the ASP that
contains the failed unit. The use of ASPs can reduce system backup time. To do
this, create ASPs to include individual applications and data. A single ASP can
then be backed up without impacting business operations while other
applications that operate from different ASPs stay online.
 Chapter 7. WebSphere HA on IBM Eserver iSeries 219

An IASP can also be made dedicated, rather than switchable, for isolation of an
application and its associated data.

7.1.4 Switchable disk pools (independent ASPs)
Independent auxiliary storage pools (IASPs) take the concept of ASPs further by
making the ASP switchable between systems in a cluster when it resides on a
switchable device. This could be an external expansion tower or an input/output
processor (IOP) on the bus shared by logical partitions. The server that owns, or
is attached to, the switchable device containing the independent disk pool, can
then be switched either automatically, in the case of a failover, or manually by an
administrator.

An IASP contains all of the information and data needed to make it an
independently functioning storage device regardless of its controlling system.
This includes having its own IFS which is mounted automatically as a UDFS onto
the root directory for you when the resource is varied on. This means it also has
standard IBM directories such as QIBM, including the ProdData and UserData
directories. Although these resemble the ones in the system disk pool, they
should not be confused. You can reference or change the current directory to
/iaspName/ to view the IFS on the IASP.

It is also important to note that not all objects can be, or should be, installed into
an IASP. Table 7-1 provides a list of object types supported by independent ASPs
in OS/400 V5R3. Table 7-2 on page 221 lists object types that are not supported.

Table 7-1 Object types supported by IASPs in OS/400 V5R3

Object types supported by IASPs in V5R3

ALRTBL DTAQ LIB PAGSEG SRVPGM

BLKSF FCT LOCALE PDG STMF

BNDDIR FIFO MEDDFN PGM SVRSTG

CHTFMT FILE MENU PNLGRP SYMLNK

CHRSF FNTRSC MGTCOL PSFCFG TBL

CLD FNTTBL MODULE QMFORM USRIDX

CLS FORMDF MSGF QRYDFN USRQ

CMD FTR MSGQ SBSD USRSPC

CRQD GSS NODGRP SCHIDX VLDL

CSI IGCDCT NODL SPADCT WSCST
220 WebSphere Application Server V6: High Availability Solutions

Table 7-2 Object types not supported by IASPs in OS/400 V5R3

WebSphere installation
While the objects types might be compatible with IASPs, it is not recommended
that you install licensed software or application code into an independent disk
pool. Therefore, the WebSphere Application Server V6 binaries should be
installed into the system disk pool. It is also recommended that your WebSphere
V6 application code be deployed to the system disk pool. IBM WebSphere
Application Server Network Deployment V6 provides the administrative
functionality to deploy and promote your application code to all the nodes in your
application server cluster.

However, the database and content for your application should be stored in the
IASP and the application can then connect to its database in the independent
disk pool at runtime. Alternatively, you can configure a connection pool to use the
IASP, which is demonstrated in 7.2.6, “WebSphere data source configuration” on
page 245). This provides the structure for a recovery environment for your
applications in the event of a failover.

7.1.5 Cross-site mirroring
Another option that can be leveraged in a multisystem environment is cross-site
mirroring or XSM. XSM provides a method of copying or duplicating the data in

DIR JOBD OVL SPLF

DTAARA JRN OUTQ SQLPKG

DTADCT JRNRCV PAGDFN SQLUDT

Object types not supported by IASPs in V5R3

AUTL DDIR IGCSRT MODD PRDDFN

CFGL DEVD IGCTBL M36 PRDLOD

CNNL DOC IMGCLG M36CFG RCT

COSD DSTMF IPXD NTBD SOCKET

CRG EDTD JOBQ NWID SSND

CSPMAP EXITRG JOBSCD NWSD S36

CSPTBL FLR LIND PRDAVL USRPRF

CTLD

Object types supported by IASPs in V5R3
 Chapter 7. WebSphere HA on IBM Eserver iSeries 221

an independent ASP to a second system which could optionally be
geographically separated. We use cross-site mirroring in our sample scenario.

XSM uses a direct connection to the mirror system to write all changes to
memory pages onto both systems in order to maintain data synchronization.
When configuring cross-site mirroring you define logically equivalent
independent ASPs on both systems. Then, when you start mirroring, XSM first
copies all data from the designated primary copy to the mirror copy. When
synchronized, each change to a page in memory on the primary will also be
changed on the backup. Cluster Services can then provide failover support
allowing you to switch to the backup system in a defined resource group in the
event of a hardware failure or even environmental disaster.

Example
In the example shown in Figure 7-1 on page 223, the production site in New York
has one IASP which is switchable between two systems, Node A and Node B. In
a normal production environment, Node A is the primary system and has
ownership of the IASP. In the event of a hardware failure, Node B can assume
control of the IASP and continue operating as the production node in New York.

The IASP is also mirrored real-time to a second site in Boston, where there is a
similar configuration. If a disaster occurs in New York, the mirror copy IASP in
Boston would become the production copy and operations would resume on
Node C or Node D. When the New York site is restored, the IASP there would
resume as the mirror copy until synchronization is completed, at which time
administrators have the option of keeping production in Boston or performing a
controlled switch to bring production back to New York.

Note: When mirroring is started, the IASP on the backup is in a varied on but
not available state, which allows synchronization but does not allow use of or
access to the data on the mirror copy. Use of the mirror copy requires a
detach from mirroring and involves a full re-synchronization in order to
resume.
222 WebSphere Application Server V6: High Availability Solutions

Figure 7-1 Double redundant solution using switchable ASP and geographic mirroring

7.1.6 Cluster resource groups
Resources that are available or known across multiple nodes within the cluster
are called cluster resources. A cluster resource can conceptually be any physical
or logical entity (database, file, application, device, and so forth). Examples of
cluster resources include iSeries objects, IP addresses, applications, and
physical resources.

Cluster nodes that are grouped together to provide resiliency for one or more
clustered resources are called the recovery domain for that group of resources.
A recovery domain can be any subset of the nodes in a cluster, and each cluster
node might actually participate in multiple recovery domains. Resources that are
grouped together for purposes of recovery action or accessibility across a
recovery domain are known as a Cluster Resource Group or CRG. The CRG
defines the recovery or accessibility characteristics and behavior for that group of
resources. A CRG describes a recovery domain and supplies the name of the
Cluster Resource Group exit program that manages cluster-related events for
that group. One such event is moving the users from one node to another node
 Chapter 7. WebSphere HA on IBM Eserver iSeries 223

in case of a failure. There are three Cluster Resource Group object types that are
used with Cluster Services:

� Application CRG

An application resilient CRG enables an application (program) to be restarted
on either the same node or a different node in the cluster.

� Data CRG

A data resilient CRG enables data resiliency, so that multiple copies of data
can be maintained on more than one node in a cluster.

� Device CRG

A device resilient CRG enables a hardware resource to be switched between
systems. The device CRG is represented by a configuration object with a
device type of independent ASP. As of OS/400 V5R3, device CRGs are
supported only for switchable hardware units, which include some disk
resource or IASP.

With regard to the WebSphere application that we use in our example, only a
device CRG is required to store the user databases and WebSphere transaction
logs. Each CRG definition object can specify an exit program to be called for all
actions on the cluster. The exit program is responsible for handling the action
codes passed to it by the Cluster Resource Group Manager. Action codes are
managed in the APIs that interact with the applicable CRG. The Cluster
Resource Group exit program allows for customization in how the movement of
the access point of a resilient resource takes place. Exit programs are written or
provided by High Availability Business Partners and by cluster-aware application
programs.

7.1.7 Device domains
A device domain is a subset of cluster nodes that share a set of resilient devices.
A resilient device might be an independent ASP or any resource that is
switchable between systems. The function of a device domain is to prevent
conflicts that would cause an attempt to switch a resilient device between
systems to fail. It is a logical construct within Cluster Resource Services. A
device domain is used to ensure that, when a resource is given a name and
identifying number on one system, all other systems in the domain reserve that
number and name so that those configuration details are available on all nodes
that might become the owning system in the event of a switchover or failover.

Resource assignments are negotiated with all other nodes of the domain at
creation time to ensure that no conflicts exist and thereby ensuring uniqueness
within the entire device domain. It is this construct that, even though only one
224 WebSphere Application Server V6: High Availability Solutions

node can use a resilient device at any given time, ensures the device can be
switched to another node and brought online.

The following are a few examples of resource identifiers that need to be unique in
order to bring them online and are therefore negotiated across all systems in the
device domain:

� IASP number assignments

IASPs are automatically assigned a number to correlate the name of the
IASP. The user chooses the resource name. The system manages the
assigned IASP numbers, which might not be in numerical order. The order
depends on a number of factors, including the creation date and the creation
of IASPs on other nodes in the device domain.

� DASD unit number assignments

To keep from conflicting with the permanently attached disk units of each
node, all IASP unit numbers begin with a 4. IASP disk unit numbers start with
the number 4001.

� Virtual address assignments

The cluster configuration determines the virtual address space required for
the IASP. Virtual address assignments (the cluster configuration) are ensured
not to conflict across all nodes in the device domain.

7.2 Sample scenario configuration
Now that we have provided an overview of some of the clustering components
used in iSeries clustering, we detail how to set up such an environment and
discuss the implications for WebSphere V6 in iSeries environments. This
involves creating an IASP and cluster, creating and adding nodes to the device
domain, configuring cross-site mirroring and then how to set up your applications
to utilize this highly available architecture.

We use the IBM Trade Performance Benchmark Sample for WebSphere
Application Server (called Trade 6 throughout this book) as our WebSphere
application. Trade 6 requires a special installation script in iSeries environments.
We also assume that the database is on an iSeries system. Therefore, we do not
recommend to use the Trade 6 version that can be downloaded from the internet.
Instead, we provide the Trade_iSeries.zip file in the redbook repository. This
zip-file contains the trade.ear file as well as the iSeries installation script and an
OS/400 save file containing the database. Refer to Appendix B, “Additional
material” on page 603 for download and installation instructions.

Figure 7-2 on page 226 shows our sample scenario.
 Chapter 7. WebSphere HA on IBM Eserver iSeries 225

Figure 7-2 Redbook sample clustering and cross-site mirroring configuration

7.2.1 Create independent disk pool
The name of our IASP is trade. The two systems where the IASPs eventually
reside are called ITSOSVR1 (primary) and ITSOSVR2 (backup). The Trade 6
database is installed on the IASP.

Planning
There are several things to consider before creating your IASP:

� Determine how much space you need. Although you can add more disk units
at a later time it is easiest if you consider future requirements up front.

� Only unallocated disk units can be allocated to an independent ASP. You,
therefore, need to have space in your system for new disk units or you need
to clear some existing disks. Remember to consider how this affects your
existing RAID parity sets and how you will be configuring parity for the new
IASP disk units.

� In our scenario, we implemented cross-site mirroring which requires both the
production copy IASP and the mirror copy IASP to be nearly equal in size.

IASP

Trade

ITSOCLU Cluster

ITSOSVR1

DEVCRG

ITSOSVR2

Device domain

IASP

TradeXSM

Important: We can create the IASP first, before creating the cluster, because
we only create one IASP on a single node. If you need to create multiple
IASPs on separate nodes, then you must create the cluster and assign the
device domain first. Otherwise, you might get resource assignment conflicts.
226 WebSphere Application Server V6: High Availability Solutions

The best way to do this is to use disk units with the same capacities for both
copies.

� For best performance of your WebSphere application, you must also consider
the number of disk units or read/write arms in your disk configuration.

� If you intend to configure your IASP as a switchable tower between two
systems, then you need to make sure that your devices are part of a
switchable entity or tower. Remember that all devices associated with that
tower will be switched during a failover!

Creating the IASP
Although it is possible to use the green screen interface, the simplest and
recommended method to configure and manage an IASP is using the iSeries
Navigator GUI. Access to disk functions is controlled via Service Tools user
profiles. Make sure that you have access to a user profile authorized for SST
before proceeding.

This section highlights the aspects of creating an IASP using the iSeries
Navigator. You can find step-by-step instructions for creating IASPs in Chapter 7
of Clustering and IASPs for Higher Availability on the IBM Eserver iSeries
Server, SG24-5194.

To create the IASP:

1. From iSeries Navigator under the menu for the primary system, click
Configuration and Service → Hardware → Disk Units.

2. Enter the SST user ID and password into the Service Device Sign-on dialog
box and click OK.

3. Under Disk Units right-click Disk Pools and select New Disk Pool from the
context menu (see Figure 7-3 on page 228).
 Chapter 7. WebSphere HA on IBM Eserver iSeries 227

Figure 7-3 Create new disk pool with iSeries Navigator

4. This starts the New Disk Pool wizard with the Welcome page. Click Next.

5. The New Disk Pool panel appears next. Choose Primary for the type of disk
pool and give the pool a name, we use trade for our example. The database
field allows you to customize the name of the database that will be used by
the system to create a relational database entry. Leaving this field as
Generated by the system defaults the database name to the name of the disk
pool (see Figure 7-4).

Figure 7-4 New Disk Pool panel
228 WebSphere Application Server V6: High Availability Solutions

6. On the Select Disk Pool panel, select Next. This panel allows you to select
the disk pools that you want to add disk resources to and should have already
have your new IASP selected, as shown in Figure 7-5.

Figure 7-5 Select pools to which to add disk units

7. The Add Disk to Pool window is shown. Now that we have a Disk Pool
defined, we need to add unallocated disk units to the pool. Click Add Disks to
add disks to the pool.

8. The Add Disks panel allows you to select disk units to be added into the
independent ASP. Remember that only unconfigured disk units are eligible.
Therefore, before you start the configuration, it is important to have
unallocated disks available for the disk pool. Because we do have an
unallocated disk, it appears on this panel. Select the disk or disks that you
would like to use, and click Add to add them to the pool (see Figure 7-6 on
page 230).

Note: If you selected the Protect the data in this disk pool box on the New
Disk Pool panel, then you get two buttons called Add Disks to be Mirrored
and Add Parity-Protected Disk instead of the Add Disks button.
 Chapter 7. WebSphere HA on IBM Eserver iSeries 229

Figure 7-6 Add Disks to the new ASP

9. Verify the disk unit that were added to the disk pool. Make sure that the
selection you made is correct, and select Next to continue.

10.Verify the disk pool configuration. Make sure that the disk pool configuration
is correct, and click Finish to create the pool, as shown in Figure 7-7.

Figure 7-7 Final summary of disk pool before creation
230 WebSphere Application Server V6: High Availability Solutions

After clicking Finish, a dialog box that shows the progress of the command is
shown. The disk pool is now in the process of being created. There is also a
level of formatting and preparing each of the disks in the IASP so this can
take several minutes.

11.Before the command completes, you might see a message box warning you
that the IASP is not associated with a device group. You can ignore this
message for now and continue as we will be creating the clustering portion
next. Select Complete to finish the creation wizard.

The wizard has completed and you should see the IASP named Trade in the
Disk Pools list, as shown in Figure 7-8. The next step is to configure the cluster.

Figure 7-8 iSeries Navigator view of newly created disk pool

7.2.2 Configuring the cluster and resource group objects
The next step is to create the cluster. A cluster describes the nodes (machines)
that participate in the cluster and the respective interface address. The cluster
interface address is an IP address which is used by Cluster Resource Services
to communicate with other nodes in the cluster.

To prepare for configuring clusters using the iSeries Navigator GUI, you should
make sure that the iSeries environment is set up and configured as described in
this section. Therefore, prior to creating a cluster, make sure that all
requirements are met and necessary configuration tasks completed.
 Chapter 7. WebSphere HA on IBM Eserver iSeries 231

These are the steps for creating the clustering components:

1. Prepare your server by creating the necessary TCP/IP interfaces and setting
the system attributes to allow clustering (see “Verifying or installing software
and other system requirements” on page 232 and “TCP/IP requirements” on
page 232).

2. Create the cluster and duplicate it on the second machine (see “Creating the
cluster” on page 233).

3. Create a cluster resource group to associate the IASP into (see “Creating a
cluster resource group” on page 237 and “Configuring the recovery domain
and data ports” on page 238).

Verifying or installing software and other system requirements
You need to verify or install Product Option 41 - OS/400 - HA Switchable
Resources (Licensed Program Product 5722-SS1) which is required for
clustering and for sharing resources.

In addition, the follow system requirements must be met:

� The QUSER user profile must be enabled.

� The Allow add to cluster (ALWADDCLU) parameter of the Change Network
Attributes (CHGNETA) command must be set to *ANY to allow other cluster
nodes to add this node to their cluster.

TCP/IP requirements
TCP/IP requirements include the following:

� TCP/IP must be started on every node chosen to be in the cluster (STRTCP).

� TCP Server *INETD must be active on all nodes in the cluster (STRTCPSVR
*INETD). Verify this by checking for the presence of a QTOGINTD (user
QTCP) job in the Active Jobs list on the subject node. *INETD provides a port
in the TCP connection list that listens for various clustering functions.

� Ports 5550 and 5551 are reserved for IBM clustering and must not be used by
other applications. Use the NETSTAT command to review port usage. Port
5550 is opened by clustering and is in Listen state when *INETD is started.

Tip: Configure *INETD to start automatically when TCP/IP is started. In
iSeries Navigator, select System_name → Network → Servers →
TCP/IP. Right-click INETD in the right-hand pane, select Properties, and
enable Start when TCP/IP is started.
232 WebSphere Application Server V6: High Availability Solutions

� The cluster needs several IP interfaces on the cluster nodes. These
interfaces are:

– The takeover IP address which is assigned to the CRG and is activated on
the system that becomes the primary. We use the IP address
192.168.100.150 in our scenario. Configure this interface with the
AUTOSTART parameter set to *NO.

– At least one TCP/IP interface on each of the cluster nodes for the cluster
communication. However, it is recommended to use multiple interfaces,
preferably on separate network adapters. These interfaces are needed
when creating the cluster (see “Creating the cluster” on page 233). For our
scenario we use the following addresses:

Node IP Address
ITSOSVR1 192.168.100.101
ITSOSVR2 192.168.100.102

– At least one TCP/IP interface on each of the cluster nodes for the cluster
replication. These IP addresses are used as the data port addresses
when configuring the recovery domain (see “Configuring the recovery
domain and data ports” on page 238).

It is highly recommended to use a high-speed connection, for example
OptiConnect, for the cluster replication. It is also recommended to have
redundant data ports to ensure availability of the cluster replication in case
of a communications device failure. In addition, having multiple data ports
also improves the cluster replication performance.

� Configure the TCP loopback address of 127.0.0.1. It must show a status of
Active. Use the NETSTAT command to verify the status on the subject node.

Creating the cluster
To create the cluster:

1. In iSeries Navigator, under Management Central, ensure that your central
system is the system that you want to be your primary cluster node (with the
IASP). If this system is not the current central system, change it by
right-clicking and selecting Change Central System.

2. Right-click Clusters under the Management Central connection and select
the option to create a New Cluster from the menu, as shown in Figure 7-9 on
page 234.

Note: You can use the same physical device for the cluster communication
interface and the takeover IP address.
 Chapter 7. WebSphere HA on IBM Eserver iSeries 233

Figure 7-9 Start the new cluster wizard

3. Select Next on the New Cluster wizard.

4. Specify the cluster name and press Next. In our scenario, we use the name
ITSOCLU.

5. The next panel asks you for details about the cluster member:

a. Specify the name that you would like clustering to use as a reference for
this system. This can be any name, but typically the system’s host name is
used. We use ITSOSVR1 for our configuration.

b. Specify the server’s host name in the second field. In our case, this is
again ITSOSVR1.

c. The next two fields are for the IP addresses that clustering uses for
communication between the nodes in the cluster. These are the interfaces
that you created in “TCP/IP requirements” on page 232 and which are
used at this point. For higher availability you should use two separate lines
and interfaces for cluster communications. However, we have only one
interface available on each system so we can only specify one. For
system ITSOSVR1, this value is 192.168.100.101, which we enter into the
Cluster interface IP address 1 field.

d. Click Next after you have filled in all values.
234 WebSphere Application Server V6: High Availability Solutions

Figure 7-10 Specify cluster node

6. Specify the second node ITSOSVR2 and the IP interfaces for clustering
communication and click Next again.

7. If a warning message is presented indicating that no switchable software is
found, select Next to continue and create the cluster.

8. The cluster creation status is displayed on the Create Cluster window. Click
Finish when the creation process has completed.

You have created a cluster. Figure 7-11 on page 236 depicts the current
configuration.
 Chapter 7. WebSphere HA on IBM Eserver iSeries 235

Figure 7-11 Sample cluster configuration - current status

Starting the cluster
At this point you should start the cluster on both nodes. You can do this by
issuing the following commands:

STRCLUNOD ITSOCLU ITSOSVR1
STRCLUNOD ITSOCLU ITSOSVR2

You can also right-click each node in the cluster under Management Central →
Clusters, and choose Start.

Adding device domain entries
When using iSeries Navigator to create a cluster, a device domain with the same
name as the cluster is added to all nodes in the cluster automatically. However,
you must still add the device domain entries. This can either be done in iSeries
Navigator or using an OS/400 command following these steps:

1. Ensure that clustering is started. On an OS/400 command line, enter the Add
Device Domain Entry (ADDDEVDMNE) command, and press Enter or F4. You
need to enter the following parameters:

– Cluster (CLUSTER)
– Device domain (DEVDMN)
– Node identifier (NODE)

2. In iSeries Navigator, select Management Central → Clusters →
Cluster_Name → Nodes. Right-click the first cluster node and select
Properties. Select the Clustering tab. Specify the device domain and click
OK. Repeat this for all nodes (using the same device domain name) in the
cluster.

IASP

Trade

ITSOCLU Cluster

ITSOSVR1 ITSOSVR2
236 WebSphere Application Server V6: High Availability Solutions

Creating a cluster resource group
To create a cluster resource group:

1. Under Management Central, expand Clusters → Cluster Name (ITSOCLU
in our example), then right-click Switchable Hardware and select New
Group, as shown in Figure 7-12.

Figure 7-12 Create new cluster resource group

2. Select ITSOSVR1 as the Primary Node in CRG, and click Next.

3. Specify a name for the CRG. We have chosen DEVCRG. Enter the Takeover
IP address (192.168.100.150) that you created in “TCP/IP requirements” on
page 232 into the appropriate field. Then, click Next.

4. You are now asked if you would like to create a new switchable disk pool or if
you would like to use an existing one. We are using the Trade IASP that we
created in “Creating the IASP” on page 227. Enter the name of the IASP and
click Enter.

5. Confirm the settings on the summary screen and click Finish when you are
satisfied.

The cluster resource group that we just configured will manage control of the disk
group by ensuring that only one copy is the primary at any given time.
Figure 7-13 on page 238 shows the configuration at this time. Do not start the
CRG yet!
 Chapter 7. WebSphere HA on IBM Eserver iSeries 237

Figure 7-13 Sample configuration after creating the cluster resource group

Configuring the recovery domain and data ports
To configure the recovery domain and data ports, follow these steps:

1. Right-click the DEVCRG cluster resource group just created, and select
Properties.

2. Select the Recovery Domain tab.

3. Specify the primary node and backup node roles.

4. Add a site name and data port address for each node by selecting each node
and clicking Edit. These fields are used for cross-site mirroring, which we will
configure more specifically later.

a. Add a site name for the node. The site contains a subset of recovery
domain nodes in the physical location. All nodes at a site have access to
the same copy of the auxiliary storage pool. For our example, use SITE1
for the primary node Site name.

b. Click Add to add the Data port IP address. The data port IP address is
used to send updates from the source node that owns the production copy
of the ASP to the mirror copy on the backup or target node.

In our case, the IP address that we are using for the primary node is
192.168.100.201. The address used for the backup node is

Note: The Replicate option is used to tell clustering that this node is part of
the cluster only for replication purposes. It can never become the primary
node. Do not select the Replicate option.

IASP

Trade

ITSOCLU Cluster

ITSOSVR1

DEVCRG

ITSOSVR2
238 WebSphere Application Server V6: High Availability Solutions

192.168.100.202. Click OK after making the updates for the primary node.
Figure 7-14 shows an example.

Figure 7-14 Configure the Site name and Data port IP addresses for mirroring

c. Repeat step b on page 238 for each backup node in the domain.

5. Figure 7-15 shows how the DEVCRG properties page looks after making the
updates. When you are finished, click OK.

Figure 7-15 Specifying primary and backup nodes in a CRG

Note: You should define at least two TCP/IP connections between the two
sites for the cross-site mirroring replication processing. This provides not
only network redundancy but also better performance.
 Chapter 7. WebSphere HA on IBM Eserver iSeries 239

Summary
The diagram in Figure 7-16 shows the current configuration after creating the
device domain. Note that there is still only one copy of the IASP. The mirror copy
is created next when we configure cross-site mirroring. Do not start the CRG at
this time!

Figure 7-16 Sample configuration after recovery domain creation

7.2.3 Configuring cross-site mirroring
There are several prerequisites for configuring cross-site mirroring. To find the
current list of recommended and required fixes, go to:

http://www-912.ibm.com/s_dir/slkbase.nsf/ibmscdirect/

Then, click the link for Geographic Mirroring.

To configure cross-site mirroring perform the following steps:

1. From the iSeries Navigator, select your primary server. Then, choose
Configuration and Service → Hardware → Disk Units.

2. Enter the Service tools user ID and password if you are prompted to do so.
Then, click Disk pools.

3. Right-click your IASP name, and under the Geographic Mirroring menu
select Configure Geographic Mirroring. See Figure 7-17 on page 241 for
details.

IASP

Trade

ITSOCLU Cluster

ITSOSVR1

DEVCRG

ITSOSVR2

Device domain
240 WebSphere Application Server V6: High Availability Solutions

http://www-912.ibm.com/s_dir/slkbase.nsf/ibmscdirect/

Figure 7-17 Configure cross-site mirroring

4. Click OK on the dialog box that confirms that you are starting the
configuration of geographic mirroring on the DEVCRG resource group.

5. On the Welcome page confirm that your IASP is in the box and press Next.

6. Select your IASP on the next panel, and click Edit to change its attributes.

7. Modify the Trade disk pool attributes to the following values:

a. Update the mode to Synchronous.

b. If you plan to configure local protection check the box to Protect the data
in this disk pool. This ensures that you have the option to configure local
mirroring or parity protection in a few minutes.

c. Select OK to confirm your attribute changes.
 Chapter 7. WebSphere HA on IBM Eserver iSeries 241

Figure 7-18 Modify attributes for Trade disk pool

8. After returning to the Disk Pools window, click Next to continue.

9. Specify the remote node on which you are creating the mirror copy IASP. In
our example, we use ITSOSVR2. Click Next.

10.It is now time to configure the second IASP by adding unconfigured disk units
to the device. Click Add Disk Units, select all of the disks to add to the IASP,
and click OK.

11.Click Finish to perform the configuration. This likely takes a few minutes.
Also, when the IASP is varied on later, any protection you configured takes
effect, which lengthens the time for the vary on.

Starting the CRG
You have now completed the setup for clustering and mirroring and are ready to
start the CRG by issuing the STRCRG ITSOCLU DEVCRG command or by
right-clicking the cluster resource group in iSeries Navigator and selecting Start.
You should then verify that mirroring started. If it did not start, right-click the disk
pool, and under the Geographic Mirroring menu, choose Start Mirroring.
242 WebSphere Application Server V6: High Availability Solutions

Summary
Figure 7-19 depicts the completed configuration including the second IASP and
cross-site mirroring.

Figure 7-19 Completed clustering and cross-site mirroring configuration

For more detailed information about configuring IASPs, geographic or cross-site
mirroring or managing clusters, refer to the iSeries Information Center available
at:

http://publib.boulder.ibm.com/html/as400/infocenter.html

7.2.4 Restoring the WebSphere application database into the
independent ASP

The process for restoring data is not different when using an independent ASP
and clustering except that you should take care to specify the destination or
restore to ASP. All restore commands now have the option of specifying that the
data should be restored to a given ASP, which can be referenced by the IASP
name or the ASP number. This includes the RSTLIB command to restore full
libraries.

Restoring IFS files using the RST command is slightly different in that the
destination path you specify should use the UDFS path that is automatically
mounted when the IASP is varied on. In our previous example, the IASP was
named Trade, so the restore path is /trade/Subdirectory_Name.

IASP

Trade

ITSOCLU Cluster

ITSOSVR1

DEVCRG

ITSOSVR2

Device domain

IASP

TradeXSM
 Chapter 7. WebSphere HA on IBM Eserver iSeries 243

http://publib.boulder.ibm.com/html/as400/infocenter.html

When configuring mirroring these changes are automatically pushed to the mirror
copy as well if it is already started - or it will be copied as part of synchronization
if you choose to configure mirroring after restoring all of your data.

7.2.5 Creating a J2C authentication alias
This is an optional step which allows you to store a user ID and an encrypted
password as part of the configuration. When this information is needed for
configuration objects later, such as in a data source or connection pool, you can
choose to use the authentication alias instead of entering the user and password.
This has multiple benefits including a single location to make changes if the
password were to change and to keep from making this password visible in
configuration or properties files.

Follow these steps to configure a J2C authentication data entry in the
WebSphere Administrative Console:

1. Select Security, then Global security. Expand the JAAS Configuration
section, and select J2C Authentication data.

2. Click New, and specify the following information to create the authentication
data. When completed, the authentication information should be similar to
Figure 7-20 on page 245.

a. Enter an Alias name for the data entry. This should be a descriptive name
that you will use in your configurations to identify that this is the
authentication data that should be used.

b. Enter the User ID.

c. Enter the Password.

d. Click OK when finished.

This authentication entry can now be used wherever you are allowed to select a
component-managed authentication alias. We will be using it when creating a
data source.
244 WebSphere Application Server V6: High Availability Solutions

Figure 7-20 Configure a J2C authentication data entry

7.2.6 WebSphere data source configuration
After you have created or restored your database you need to configure a data
source in WebSphere so that your Web applications can easily access the
database. There are two reasons for the way we configure the data source:

� We are using an independent ASP for our main application data storage.

� We are using clustering so the primary copy of the database could switch to a
different system.

Although the database appears local to one WebSphere node, it is a remote
database for the rest. Plus, during a failure, the database could switch to a
different machine. So, we are going to handle that event in the pool by
configuring all connections on all machines as remote database connections,
even if the database is on the local system. Then, we configure and direct the
connections to the IP takeover address so that when a switch happens, the pool
rebuilds the connections to the new database host, which assumes ownership of
the IP takeover address.

Creating the JDBC provider
The first step in creating the connection pool is to create a new JDBC™ provider:

1. In the Administrative Console navigation tree, expand Resources.

2. Click JDBC Providers, and make sure the red arrow is pointing to the scope
in which you would like your new provider and data source to be (to switch to
 Chapter 7. WebSphere HA on IBM Eserver iSeries 245

cell level you must remove the data in the node level text box and then click
Apply).

3. To create a new provider, click New.

4. In the General Properties pane there are several fields you need to fill in:

a. Select the database type of DB2.

b. Select the provider type of DB2 UDB for iSeries (Toolbox).

The toolbox is the recommended driver if you are connecting to remote
databases. Remember that the database can be local for the system
currently but after a failover it will be available on a different system as a
remote database. Also, because this new data source is published at cell
level, each of the other systems views the database as remote. For this
reason we are treating all connections such as a remote database. This
also allows the pool to automatically reconnect to the database after a
failover.

c. Select the implementation type of XA data source. This provides support
for 2-Phase Commit if necessary.

Figure 7-21 shows an example of what you should select for your new
provider. Click Next when you are finished.

Figure 7-21 Configure a new JDBC provider

5. The next page allows you to change the classpaths and implementation
details for the provider. Typically the defaults are fine unless you choose to
give it a different name. Click Apply to create the provider and to enable the
Additional Properties links.
246 WebSphere Application Server V6: High Availability Solutions

Creating the data source
Next, we create a data source using the provider we just created:

1. The Additional Properties should now be enabled on the right side of page.
Click Data sources.

2. Click New to create the new data source.

3. Optionally change the Name and Description of your data source. In the
Component-managed authentication alias field select the authentication alias
that you have configured in 7.2.5, “Creating a J2C authentication alias” on
page 244.

Figure 7-22 Configure authentication alias for the data source

4. At the bottom of the page, in the Server name field of the DB2 UDB for iSeries
(Toolbox) data source properties frame, enter the takeover IP address that
you assigned to the cluster resource group. This makes sure the database
can be accessed regardless of whichever system is the current primary for
the database. In our example, the takeover IP address is 192.168.100.150.

Figure 7-23 Specifying the IP takeover address for the data source

5. Click Apply. This enables the links under Additional Properties.

6. Select Connection pool properties from the Additional Properties. Because
we are using an independent ASP we want our pool to rebuild all of the
connections in the event of a failover to the backup system. Optionally, you
can do this by changing the Purge policy field to Entire pool. Then click OK.

7. There are also several custom properties that you must configure (and some
optional ones) for use with a failover database or IASP environment. From
your data source page, click Custom properties and change or add each of
the following properties as needed:

– databaseName: The name of the database that you are connecting to
that lives in the IASP.

– libraries: This field allows you to specify the name of the library the data
for your application is in.
 Chapter 7. WebSphere HA on IBM Eserver iSeries 247

– keepAlive: Set this field to true so that TCP probes will be sent
periodically to test the liveness of the other end of the connection. This is
critical in order for connections to get closed in the event of a back-end
database failure so that WebSphere threads are available to establish new
connections when the IP takeover address becomes active at the end of
database server failover processing.

– receiveBufferSize: Set the Value to 1000000.

– sendBufferSize: Set the Value to 1000000.

8. Save the new settings.

7.2.7 Messaging engine datastore
The default messaging provider support requires a separate datastore for every
messaging engine (ME). Each ME stores its configuration properties in its
assigned datastore. This datastore is the equivalent of a collection in DB2 or a
library on iSeries systems and must be accessible from every server that could
potentially run the messaging engine.

Because we are providing failover capability we should to configure WebSphere
to keep this datastore also in the independent ASP for high availability and
failover capability. To do this, you first need to create the collection on the
independent ASP and then configure WebSphere to use it.

Creating the ME datastore in the IASP
Follow these steps to create the datastore in the IASP:

1. First you must obtain the name of the collection you need to create. You can
find this information in the Administrative Console by clicking Service
integration → Buses → ClusterName → Messaging engines →
ClusterNodeName → Data store.

Write down the Schema names, for example IBMME2, as this is the name of
the collection you need to create later. See Figure 7-24 on page 249.

Note: You can find detailed descriptions of these custom properties and the
steps for configuring a data source for use in a WebSphere on the iSeries
environment in the paper iSeries and High Availability An e-Business
Perspective, which is available at:

http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver
/product/iSeriesAndHa.pdf
248 WebSphere Application Server V6: High Availability Solutions

http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/product/iSeriesAndHa.pdf
http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/product/iSeriesAndHa.pdf

Figure 7-24 Messaging engine data store properties

2. You need to create the collection using an SQL command. Simply creating
the library on the system would not provide you with all of the files that are
created when you make a new collection.

Enter STRSQL on an OS/400 command line.

3. You are, by default, connected to the system database. To connect to the
IASP enter the following:

connect to iasp_Name using userid

For example, our command is connect to trade using qsecofr.

Complete and submit the password when prompted.

4. Create the collections using the following:

create collection Schema_Name

In this command, Schema_Name is the name of the ME datastore that you noted
in step 1 on page 248, for example, IBMME2.

5. Exit the SQL command entry.
 Chapter 7. WebSphere HA on IBM Eserver iSeries 249

6. Verify that the data source used for the ME datastore points to the correct
location in the IASP:

– In the Administrative Console navigation tree, click Resources → JDBC
Providers → DB2 JDBC for iSeries (Toolbox) → Data sources →
MEDataSource.

– Verify or enter the takeover IP address that you assigned to the cluster
resource group into the DB2 UDB for iSeries (Toolbox) data source
properties frame. Compare to “Creating the data source” on page 247.

– Save if you made any changes.

The messaging engine now uses the database in the independent ASP for
saving its data. This data then continues to be available on the backup machine
in the event of a failover or system outage.

7.2.8 Configuring iSeries TCP/IP settings
You should also configure some TCP/IP settings for the host, using the CHGTCPA
command, to achieve a timely failover for your database and connections.
Specifically, you should verify the following attributes, as shown in Example 7-1
on page 251:

� TCP keep alive: 2 minutes
� TCP R1 retransmission count: 3
� TCP R2 retransmission count: 9
� ARP cache timeout: 2 minutes
250 WebSphere Application Server V6: High Availability Solutions

Although you might need to make some additional adjustments for each specific
configuration, these settings are a good starting point for optimizing the timeouts
to handle a database failover.

Example 7-1 iSeries TCP/IP configuration values

Change TCP/IP Attributes (CHGTCPA)
Type choices, press Enter.
TCP keep alive 2 1-40320, *SAME, *DFT
TCP urgent pointer *BSD *SAME, *BSD, *RFC
TCP receive buffer size 8192 512-8388608, *SAME, *DFT
TCP send buffer size 8192 512-8388608, *SAME, *DFT
TCP R1 retransmission count . . 3 1-15, *SAME, *DFT
TCP R2 retransmission count . . 9 2-16, *SAME, *DFT
TCP minimum retransmit time . . 250 100-1000, *SAME, *DFT
TCP closed timewait timeout . . 120 0-14400, *SAME, *DFT
TCP close connection message . . *THRESHOLD *SAME, *THRESHOLD, *ALL...
UDP checksum *YES *SAME, *YES, *NO
Path MTU discovery:
 Enablement *YES *SAME, *DFT, *NO, *YES
 Interval 10 5-40320, *ONCE
 IP datagram forwarding *YES *SAME, *YES, *NO
 IP source routing *YES *SAME, *YES, *NO
 IP reassembly time-out 10 5-120, *SAME, *DFT

More...
 F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
 F13=How to use this display F24=More keys

7.3 Transaction Manager configuration
Many tips for configuring the Transaction Manager for high availability are found
in 6.7, “Transaction Manager high availability” on page 201. However, there are a
few differences to this in iSeries environments. Several of the tips in this section
count on having a shared file system for sharing information and the iSeries
integrated file system is not yet compatible with NFS V4.

One solution is to use the QNTC file system for sharing files in the iSeries
environment. This means that we support an i5/OS™ WebSphere cluster as well
as a heterogeneous WebSphere cluster containing both Windows and i5/OS
cluster members when Transaction Manager logs are part of the configuration.

This section explains the high level steps for configuring high availability for the
transaction logs using QNTC. For more details on configuring the transaction
logs see 6.7, “Transaction Manager high availability” on page 201.
 Chapter 7. WebSphere HA on IBM Eserver iSeries 251

Before we configure the file system, there are a couple of important points to
consider in order to ensure back-end failures are handled properly. First, we
recommend that you use the same IASP to host both the transaction logs and
the associated application databases. This ensures that both are made available
at the same time during a failover event in order to avoid rollback processing.
Journaling of access paths is also critical so that the application databases are
truly available for reading and writing immediately after the IP takeover address
becomes active. Following are the steps to configure the QNTC file system for
the transaction logs.

Creating QNTC links
First, you need to create the QNTC links and directories on the IASP:

1. Enter WRKLNK on an OS/400 command line. Then change your current
directory to QNTC using the cd qntc command.

2. Because we are creating the log files on the IASP, which could switch to a
different system, we need to create a link to the IP takeover address which
points to the current primary. The command is:

MKDIR Takeover_IP_Address

In our case the command is:

MKDIR 192.168.100.150

Important: You must create this directory on each of the cluster member
systems.

Also, the directories that are added by the mkdir command only remain
visible until the next IPL of the iSeries servers that host the WebSphere
cluster members. Therefore, you need to reissue the commands listed in
steps 1 and 2 after an IPL of those systems to ensure WebSphere access
to the transaction logs that are hosted on a remote iSeries server. As an
alternative, we recommend that a small script be written to issue these
commands automatically after each IPL.

Another important tip is with regard to the remote file server systems.
Change the time-out period property for iSeries NetServer™ on the two
i5/OS cluster node systems to not allow idle connections to be terminated
by NetServer. To change this setting:

1. In iSeries Navigator, open the iSeries NetServer Properties panel.
2. Go to the Advanced tab.
3. Click Next start and deselect Allow inactive sessions to time-out.
4. Click OK.
5. Restart iSeries NetServer to pick up the change.
252 WebSphere Application Server V6: High Availability Solutions

6. Change into the new directory and you should now see the IFS of the current
primary system.

7. Note that we are not yet pointing to the IASP. Change the directory to the
IASP using

cd ’root/iasp_Name’

In our case the IASP is named trade so the command is:

cd ’root/trade’

8. Create a new directory called logs that will hold the transaction logs of all
WebSphere cluster members:

MKDIR logs

9. Change into the logs directory (cd logs). Then, enter the WRKLNK command
again to see the contents of the current directory.

10.We now need to create directories for each of the cluster members. This will
be the new location for the transaction logs. By naming them the same as the
member name, the Transaction Manager is able to ensure that the
information can be recovered and used by another member if one fails.

For each cluster member type mkdir Member_Name and press Enter.

11.When all directories for the cluster members are created, you need to copy
the content of the existing transaction log directories into the new directories
on the IASP.

Configuring transaction log location in WebSphere
The next task is to enable WebSphere for transaction log recovery and to
configure the newly created directories on the IASP as the transaction log
directories. Follow these steps:

1. Go to the WebSphere Administrative Console and stop the cluster by
selecting Servers → Clusters. Select your cluster and click Stop.

2. High availability for persistent services is a cluster setting that needs to be
activated. From the clusters page click your cluster name to display the
details of your cluster. Select Enable high availability for persistent
services on the Configuration tab, as shown in Figure 7-25 on page 254.
Click OK.
 Chapter 7. WebSphere HA on IBM Eserver iSeries 253

Figure 7-25 Enable high availability for persistent services

3. Change the transaction log directories of all cluster members from within
WebSphere to use the new directories on the IASP.

Click Servers → Application servers → AppServer_Name → Container
Services → Transaction Service.

Enter the new Transaction log directory location as shown in Figure 7-26 on
page 255. Our sample path is
/qntc/192.168.100.150/root/trade/logs/member4.

This needs to be repeated for each cluster member.
254 WebSphere Application Server V6: High Availability Solutions

Figure 7-26 Configuration of transaction log location

4. Save and synchronize the configuration.

Authorization
Next, you need to set the proper authorities. The QEJBSVR user profile needs to
have authority to view the logs on the remote system. By default, QEJBSVR
does not have a password. However, to avoid conflicts, we need to specify the
same password for QEJBSVR on each of the WebSphere cluster nodes. Follow
these steps:

1. To set the password, invoke the WRKUSRPRF QEJBSVR command.

2. Enter Option 2 (= change), and then set the User password to a common
value on each system.

3. You should also validate that the profile has authority to each of the
directories that contain the transaction logs.

4. Repeat steps 1 to 3 on each node in the cluster.
 Chapter 7. WebSphere HA on IBM Eserver iSeries 255

Figure 7-27 WebSphere and database/IASP on different iSeries systems

Starting the WebSphere cluster
Restart the previously stopped WebSphere cluster in Servers → Clusters.
Transaction log recovery is now enabled and transactions are logged in the
directories on the IASP.

Important: If your IASP is not directly connected to the systems that have
WebSphere installed and are running the WebSphere cluster, then you need
to create the QEJBSVR user profile with the same password on the database
systems. This is because this user profile comes with WebSphere and, thus,
is not likely to exist on the database or iSeries cluster systems. Figure 7-27
shows a scenario that illustrates such an environment.

IASP

Trade

ITSOCLU Cluster

ITSOSVR1

DEVCRG

ITSOSVR2

Device domain

IASP

TradeXSM

WebSphere
Server1

WebSphere
Server2

Access to DB on IASP from
WebSphere systems

WebSphere Cluster
256 WebSphere Application Server V6: High Availability Solutions

7.4 Reference material
The following resources are available:

� The white paper (iSeries and High Availability: An e-Business Perspective)
explains HA options on the iSeries for the various components of an
e-business environment, such as firewalls, the Load Balancer and HTTP
server, back-end data, and so on. You can find the paper at:

http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/
product/iSeriesAndHa.pdf

� Clustering and IASPs for Higher Availability on the IBM Eserver iSeries
Server, SG24-5194
 Chapter 7. WebSphere HA on IBM Eserver iSeries 257

http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/product/iSeriesAndHa.pdf

258 WebSphere Application Server V6: High Availability Solutions

Chapter 8. WebSphere HA on z/OS

This chapter describes WebSphere high availability on zSeries. Its focus is on
z/OS systems.

WebSphere Application Server for z/OS takes advantage of some of the high
availability features of z/OS available in a Parallel Sysplex® environment. This
chapter describes how some of these high availability functions are achieved on
z/OS systems. The topics discussed are:

� zSeries Parallel Sysplex
� WebSphere V6.0.1 for z/OS topology overview
� z/OS workload management and WebSphere workload management
� Workload distribution to different systems in a Parallel Sysplex
� Failover options for WebSphere Application Server Version 6 on z/OS
� Transaction failover
� HTTP session and stateful session bean failover
� Messaging engine high availability
� DB2 data sharing
� WebSphere MQ high availability
� A high availability configuration

This chapter does not go into great detail about how to set up WebSphere HA on
z/OS. For more information about the different scenarios and set up, see
WebSphere for z/OS V6 High Availability, SG24-6850.

8

© Copyright IBM Corp. 2005. All rights reserved. 259

8.1 zSeries Parallel Sysplex
The zSeries Parallel Sysplex Clustering Technology offers the highest standard
for multi-system availability. See Figure 8-1. This section introduces some of the
terminology that we use in this chapter.

� LPAR

LPAR stands for logical partition. A logical partition is a division of zSeries
computing resources, including processors, memory and storage, and so
forth into multiple sets of resources, so that each set of resources can be
operated independently with its own operating systems instances and
application. From an application point of view, you can think of a z/OS LPAR
as a single system image as with any other operating system. In this chapter,
the terms LPAR and system are used interchangeably.

� Parallel Sysplex

A sysplex is a group of z/OS systems that communicate and cooperate with
one another using specialized hardware and software. They are connected
and synchronized through a Sysplex Timer® and enterprise systems
connection channels. A Parallel Sysplex is a sysplex that uses one or more
coupling facilities. See Figure 8-1.

� Coupling Facility

A Coupling Facility is a special LPAR accessible by every system in the
Parallel Sysplex. It provides data sharing, high-speed caching, list
processing, and lock processing for any application on the sysplex.

Figure 8-1 Parallel Sysplex architecture elements
260 WebSphere Application Server V6: High Availability Solutions

8.2 WebSphere V6.0.1 for z/OS topology overview
This section introduces the available WebSphere Application Server for z/OS
versions and their implementation on z/OS.

8.2.1 Base application server on z/OS
A base WebSphere Application Server on a non-z/OS platform is a process with
a JVM running inside that provides a set of services. These services include an
embedded HTTP server, a Web container, an EJB container, a messaging
engine, a Web Services engine, and depending on the version of the product,
eventually one or more other services.

On z/OS, a base application server has a number of address spaces or
processes in UNIX terms. These address spaces are shown in Figure 8-2 and
explained in the sections that follow.

Figure 8-2 Base application server on z/OS

Controller region
One address space is the controller region (CR) or controller, which manages
tasks and handles communications. The embedded HTTP server is also hosted
in the CR. The CR is the endpoint of an application server. There is one
controller region address space per application server.

z/OS LPAR

Application Server

Location Service Daemon

Controller Region

Control Region Adjunct

Servant Region

RA

RA
Dispatcher
(for MDB)

Web
Services
Engine

Web
Container

EJB
ContainerEmbedded HTTP Server

Messaging Engine

WLM
queue
 Chapter 8. WebSphere HA on z/OS 261

Servant region
The second type of address space is the servant region (SR) or servant. There is
a JVM running in each servant region, and this is where the Web container, EJB
container, Web Services engine, and so on are running. The servant region has
no TCP/IP endpoint. The servant region is where the application code is being
processed.

An application server can have one or more servant regions. z/OS workload
management (WLM) starts additional servant regions as needed when workload
increases. For more information about WLM, see 8.3, “z/OS workload
management and WebSphere workload management” on page 265.

Control region adjunct
The third type of address space is new in WebSphere Application Server V6. It is
called control region adjunct or CRA. The CRA is used to host the messaging
engine. It acts as a messaging communication endpoint, comparing to the
controller region as the HTTP communication endpoint.

Unlike the controller region which is always there, the CRA is only present when
the application server is a member of the bus and has a messaging engine
created.

Location Service Daemon
In addition to these address spaces, there is an address space called Location
Service Daemon that runs in each WebSphere LPAR. The Location Service
Daemon provides the CORBA location service in support of RMI/IIOP, which is
the protocol for remote EJB invocation. Multiple application servers in the same
LPAR share the same Location Service Daemon.
262 WebSphere Application Server V6: High Availability Solutions

8.2.2 Network Deployment on a z/OS LPAR
A Network Deployment cell environment on a single LPAR is shown in
Figure 8-3.

Figure 8-3 Network Deployment on a z/OS LPAR

Deployment Manager
The Deployment Manager also has a pair of address spaces: a controller and a
servant. The Administrative Console is a J2EE application that runs in the
Deployment Manager servant region. There is only one servant region for the
Deployment Manager because some administrative tasks require serialization
that can only run in a single JVM.

Node Agent
The Node Agent runs in its own address space.

Location Service Deamon
There is one Location Service Daemon for each cell in each system.

Application
Server

Controller
Region

Control Region
Adjunct

Servant
Region

RA

RA
Dispatcher
(for MDB)

Web
Services
Engine

Web
Container

EJB
ContainerEmbedded HTTP

Server

Messaging
Engine

Application
Server

Controller
Region

Control Region
Adjunct

Servant
Region

RA

Web
Services
Engine

Web
Container

EJB
ContainerEmbedded HTTP

Server

Messaging
Engine

z/OS
LPAR

Location Service
Daemon

CELL Deployment
Manager Servant Node AgentController

WLM
queue

RA
Dispatcher
(for MDB)
 Chapter 8. WebSphere HA on z/OS 263

8.2.3 Network Deployment in a Parallel Sysplex environment
Various WebSphere configurations are possible in a Parallel Sysplex
environment, as shown in Figure 8-4.

Figure 8-4 WebSphere for z/OS in a sysplex

A WebSphere cell can span across multiple LPARs with one Deployment
Manager that resides on one of the LPARs. Thus, a cluster in a cell can include

SYS3

D

N
S

S

Node A

Node D

DM

N
S

S

Node B

Cluster

Cluster

N
S

S

DCELL

SYS1 SYS2

D

SS

D

N
S

S

Node A

N
S

S

CELL

Node C

DM

Node C Node B
Cluster

Deployment
ManagerDM

N Node
Agent

D Daemon

S
Application Server
(CR, CRA and SR)
264 WebSphere Application Server V6: High Availability Solutions

application servers from multiple LPARs within the same cell. Multiple cells can
also coexist in the same LPAR.

8.2.4 Mixed platform cells
A new concept called node group is introduced in WebSphere Application Server
V6. A node group is a collection of managed nodes. A node group defines the
boundary for cluster formation. Nodes organized into a node group should be
enough alike in terms of installed software, available resources, and
configuration to enable servers on those nodes to host the same applications as
part of a server cluster.

With node groups it is possible to mix z/OS WebSphere nodes with distributed
WebSphere nodes in the same cell. A distributed node and a z/OS node cannot
belong to the same node group; a z/OS node belongs to a Sysplex Node Group,
which is unique for the z/OS environment. Because a node group defines the
cluster boundary and a distributed and z/OS node cannot be combined in the
same cluster in WebSphere Version 6, a WebSphere HA configuration does not
include both a distributed and z/OS system.

For more information about node groups see WebSphere Application Server V6
System Management and Configuration Handbook, SG24-6451.

8.3 z/OS workload management and WebSphere
workload management

WebSphere Application Server for z/OS takes advantage of several z/OS
functions to assure availability. This section explains the z/OS workload
management (WLM) concept and how it manages WebSphere.

Workload management for z/OS is different than the workload management
component that is included in WebSphere Application Server Version 6 for all
platforms. WLM on z/OS provides sysplex-wide workload management
capabilities based on installation specified performance goals and the business
importance of the workloads. Workload management can dynamically start and
stop server address spaces to process work from application environments.

WLM manages the response time and throughput of WebSphere transactions
according to their assigned service class, the associated performance
objectives, and the availability of system resources.

When starting a WebSphere application server on z/OS, a controller region is
first started by MVS™ as a started task, then WLM starts one or more servant
 Chapter 8. WebSphere HA on z/OS 265

regions. The minimum (at least one) and maximum numbers of servant regions
that stay up is configured through the Server Instance settings of the application
server. See Figure 8-5.

Figure 8-5 Configure minimum and maximum servant regions

When a work request arrives at the controller region, it is put on an in-memory
WLM queue. Depending on the priority of the work, WLM dispatches work to
worker threads in the servants. As workload increases, WLM might start more
servants to meet the WLM performance goal setting for the application server, up
to the maximum servant number specified.

WLM supports servant region session affinity for HTTP requests. For
applications with no HTTP sessions or short HTTP session requests, you can
use the default workload distribution strategy, which picks a hot servant to handle
the new request for better performance. A hot servant has just had a recent
request dispatched to it and has threads available as well as resources in
memory.

For applications with many HTTP sessions and long HTTP sessions, WLM
features a function called even distribution of HTTP requests. This function is
available in z/OS 1.4 and later. Even distribution of HTTP requests supports
distribution of incoming HTTP requests without servant affinity in a round-robin
manner across the servants. When a new HTTP request without affinity arrives
266 WebSphere Application Server V6: High Availability Solutions

on a work queue, WLM dispatches the request to a servant with available worker
threads and the smallest number of affinities.

From an availability point of view, WLM ensures that the configured minimum
number of servants are available to handle requests. If for some unexpected
reason one servant goes down, WLM starts another one under the same
controller. The application server stays up. This is different than WebSphere
Application Server on other platforms. When the JVM of an application server on
non-zOS platform goes away, the application server goes away and needs to be
restarted (automatically or manually, depending on its configuration).

WebSphere Application Server for z/OS supports the use of HTTP session
objects in memory for application servers with multiple servants. WLM
dispatches work to servants with session affinity.

In a Parallel Sysplex environment, WLM provides system resource information to
subsystems such as DB2 and WebSphere so they can properly distribute work.
With WebSphere Application Server for z/OS, WLM helps the Sysplex Distributor
(see 8.4, “Distributing HTTP and IIOP requests to different systems within a
Parallel Sysplex” on page 268) to balance and route requests to different LPARs
for IIOP requests and stateless HTTP request.

Again, WLM on z/OS is different and complementary to the workload
management functions included in WebSphere Application Server for other
platforms. Together they help to achieve high availability of WebSphere
Application Server on z/OS.
 Chapter 8. WebSphere HA on z/OS 267

Table 8-1 lists the high level differences between WLM on z/OS and WebSphere
WLM.

Table 8-1 High level comparison of WLM on z/OS and WebSphere WLM

In summary, WLM on z/OS allows you to classify and prioritize work so that
performance goals are respected and so that resources are given to the proper
workload.

8.4 Distributing HTTP and IIOP requests to different
systems within a Parallel Sysplex

Distributing TCP/IP workload among systems within a Parallel Sysplex can be
achieved through the Sysplex Distributor, which is built on Dynamic virtual IP
addresses (DVIPA). Dynamic virtual IP addressing (DVIPA) is a z/OS
Communication Server function that is used in high availability configuration in
sysplex.

The Virtual IP Address, or VIPA, provides an IP address that is owned by a
TCP/IP stack but that is not associated with any particular physical adapter.
Because the VIPA is associated with a virtual device, it is always available as

Workload management for z/OS WebSphere Application Server
V6 workload management

Product Part of z/OS Part of WebSphere Application
Server version 6

Management mechanism System resource management,
in-memory work requests routing

Application level distribution and
workload balancing

Workload distribution Distributes requests to different
servants within an application
server

Distributes requests to application
servers within a cluster

Management level Manages within each LPAR
(system)

Also provides capacity information
of each system to Sysplex
Distributor for workload routing
among multiple systems within a
sysplex

Manages application servers
within a cluster across multiple
systems

WebSphere configuration
requirement

Any base server or application
server within a cluster

Cluster
268 WebSphere Application Server V6: High Availability Solutions

long as its owning TCP/IP stack is functional. For systems such as zSeries with
multiple network adapters, VIPA provides failure independence from any
particular adapter or link, as long as at least one is available and connected.
VIPA becomes unavailable when its owning TCP/IP fails.

DVIPA improves the VIPA function by allowing a TCP/IP stack to be moved from
one system to another in the sysplex. DVIPA takeover is possible when a DVIPA
is configured as active on one stack and as backup on another stack within the
sysplex. When the stack on which the DVIPA is active terminates, then the
backup stack will automatically activate the DVIPA and notify the routing
daemon. For DVIPA takeover to be useful, the applications that service the
DVIPA addresses must be available on the backup stacks.

DVIPA can be used by the Deployment Manager and by application servers.

8.4.1 Sysplex Distributor
The Sysplex Distributor is a z/OS Communication Server function that provides a
single visible IP address to the network for the entire Parallel Sysplex and
balances TCP/IP workload within the sysplex.

The Sysplex Distributor consists of a primary distributor stack denoted by a
primary DVIPA (possibly a backup stack VIPA) and a set of target stacks. An
inbound packet destined for that DVIPA flows through the primary distributor
stack which then forwards the packet over an internal link to the selected target
stack. Only inbound requests go through the distributor stack. The distributor
consults other system information, including capacity information provided by
WLM, to make the routing decision. Figure 8-6 on page 270 shows Sysplex
Distributor in a Parallel Sysplex environment.
 Chapter 8. WebSphere HA on z/OS 269

Figure 8-6 Sysplex Distributor

Sysplex Distributor routes and balances TCP/IP requests. It is not capable of
making content-based decision. It acts as a secondary workload balancer in a
WebSphere environment, located behind the HTTP plug-in of the HTTP server
on z/OS or on other platforms. It balances IIOP requests and sessionless HTTP
requests. In a Web application serving environment, Sysplex Distributor is
complementary to other balancing techniques such as CISCO and WebSphere
Application Server Edge Components.

Note: The IBM-recommended implementation is that if you are running in a
sysplex, set up your TCP/IP network with Sysplex Distributor to increase
availability and aid in workload balancing.

Parallel
Sysplex

Coupling
Facility

Switches

RoutersRouters

192.168.253.4

VIPA Primary
192.168.253.4

VIPA Backup
192.168.253.4

SD: System Distributor

Network

System A

SD

System B

Backup
SD

VIPA hidden
192.168.253.4

System D

VIPA hidden
192.168.253.4

System E

VIPA hidden
192.168.253.4

System C

Switches
270 WebSphere Application Server V6: High Availability Solutions

8.5 Failover options for WebSphere Application Server
V6 on z/OS

Before V6, WebSphere Application Server for z/OS used the z/OS Automatic
Restart Manager (ARM) and Peer Restart and Recovery (PRR) for failover. This
option still exists in V6, in addition to the new WebSphere HAManager
peer-recovery option.

8.5.1 ARM and PRR
The z/OS ARM enables fast recovery of the subsystems that might hold critical
resources at the time of failure. It restarts a started task and job automatically
after it detects their failure.

WebSphere Application Server for z/OS uses ARM to recover application
servers. Each WebSphere Application Server for z/OS controller registers with
an ARM group. If the controller terminates abnormally, ARM tries to restart the
failing address space and dependent address spaces in appropriate order on the
same system. This recovery mechanism applies to the application servers,
Deployment Manager and Node Agents.

ARM can also use another function called Peer Restart and Recovery (PRR) for
WebSphere Application Server V6 on z/OS to restart a related server on an
alternate system in the same cell.

PRR restarts the controller on another system and goes through the transaction
restart and recovery process so that we can assign outcomes to transactions that
were in progress at the time of failure. During this transaction restart and
recovery process, data might be temporarily inaccessible until the recovery
process is complete. The restart and recovery process does not result in lost
data. PRR does not require a cluster configuration but it does require a node to
be designated as a Recovery Node, and that the Location Service Daemon and
Node Agent are both running on that system.

8.5.2 High Availability manager (HAManager)
Failover with ARM and PRR is a cold failover. With the introduction of the
WebSphere HAManager in WebSphere Application Server V6, you have the
option of hot standby and peer recovery. It does not restart a server. Instead, the
transaction on the failing server is recovered by a different application server in
the same cluster. For more information about HAManager and peer recovery,
see Chapter 6, “WebSphere HAManager” on page 175.
 Chapter 8. WebSphere HA on z/OS 271

Only the Type 4 JDBC driver is supported by the HAManager. HAManager is
required for Web Services, the default messaging provider, JCA 1.5 connectors
and so on. It is recommended to gradually migrate to the HAManager approach
because the PRR function will not be supported in future releases of WebSphere
Application Server on z/OS.

8.6 Transaction logging and recovery
WebSphere Application Server V6 on z/OS supports two types of transaction
recovery: Resource Recovery Services (RRS), part of z/OS, and XA
transactions.

8.6.1 A word on 2-Phase Commit (2PC)
Applications that need to coordinate updates with more than one resource
manager can use the two-phase commit process to do so. For each unit of
recovery (UR) there is one sync point manager and a number of resource
managers. The sync point manager determines the outcome, either commit or
backout for each UR.

If the resource manager cannot commit the changes, it tells RRS to back out the
changes. If all the resource managers agree to commit, RRS stores the decision
in an RRS log, which means the decision is hardened, and phase 2 begins.

When the commit decision is agreed to, the application changes are considered
to be committed. If the application, any of the involved resource managers, RRS,
or the system fails after the decision is hardened, the application changes are
made during restart. If the decision is to back out the changes, RRS generally
does not harden the decision, and phase 2 begins as soon as the decision is
made.

8.6.2 RRS
Resource Recovery Services (RRS) is a system-wide (read LPAR-wide)
resource recovery subsystem included in z/OS. It provides two-phase commit
support across participating resource managers. RRS-compliant resource
managers include WebSphere Application Server, DB2, CICS®, IMS™, and
WebSphere MQ.

Important: You can use either HAManager or PRR for recovery in
WebSphere V6. However, do not use both, because unpredictable results can
occur.
272 WebSphere Application Server V6: High Availability Solutions

RRS must be up and running before the WebSphere Application Server for z/OS
servers are started. RRS plays a key role in Peer Restart and Recovery (PRR).

WebSphere Application Server for z/OS supports resource adapters (RAs) that
use Resource Recovery Services (RRS) to enable global transaction processing,
in addition to XA and non-XA type resource adapters supported on distributed
platforms. RRS is the transaction coordinator between WebSphere and other
subsystems such as DB2, IMS, CICS on z/OS.

z/OS resource adapters that are capable of using RRS are:

� IMS Connector for Java

� CICS CTG ECI J2EE Connector

� IMS JDBC Connector

� DB2 for z/OS Local JDBC connector when used as a JDBC provider under
the WebSphere Relational Resource Adapter (RRA)

Normally, all systems in a Parallel Sysplex share a common set of RRS logs for
sync point processing. The log streams can be defined as Coupling Facility log
streams or DASD-only log streams (DASD stands for Direct Access Storage
Device, a term for a disk drive on zSeries).

When using Coupling Facility log streams, RRS on different systems use shared
log streams to keep track of the work. If a system fails, an instance of RRS on
another system in the Parallel Sysplex can use the shared logs to take over the
work from the failed system.

8.6.3 XA transactions
WebSphere Application Server V6 enables hot failover of in-transit two-phase
commit (2PC) transactions. The XA transaction log for WebSphere on z/OS
should be configured to use a shared Hierarchical File System (HFS). Every
system in the Parallel Sysplex can be configured to access the shared HFS.
Because every server can read another server’s transaction log, recovery of an
in-doubt transaction is quick and easy. For performance reason, we recommend
to use a separate shared HFS for XA transaction logging, rather than using the
same HFS that is used for the server configuration.

The log stream can also be used for XA transaction logging. Using Coupling
Facility log streams is recommended for sysplex-wide recovery.

Note: Use two Coupling Facilities in a Parallel Sysplex to prevent a single
point of failure in the sysplex.
 Chapter 8. WebSphere HA on z/OS 273

The use of a shared HFS for XA transaction logging must be enabled explicitly,
Check the Enable high availability for persistent services box in the cluster
configuration as shown in Figure 8-7.

Figure 8-7 Enable HA for persistent services

8.7 HTTP session and stateful session bean failover
This section explains how HTTP session and stateful session bean failover are
handled in WebSphere for z/OS.

8.7.1 HTTP session failover
HTTP sessions in WebSphere Application server can be replicated from one
server instance to another to prevent single point of failures. This
memory-to-memory replication uses the Data Replication Service (DRS) of
WebSphere Application Server. Another option for HTTP session state is to
persist session data in DB2.

The Web server plug-in keeps a list of the primary and possible backup
application servers in the replication domain. When an HTTP session request
fails on the primary server, the Web server plug-in sends the request to one of
the backup application servers where the session is replicated (or which can
retrieve the session from the database).

Application servers on z/OS that are enabled for HTTP session
memory-to-memory replication can store replicated HTTP session data in the
controller and replicate data to other application servers.

Note: Ensure that no ARM policy exists for the cluster.
274 WebSphere Application Server V6: High Availability Solutions

The HTTP session data that is stored in a controller is retrievable by any of the
servants of that controller. HTTP session affinity is still associated to a particular
servant. However, if that servant should fail, any of the other servants can
retrieve the HTTP session data stored in the controller and establish a new
affinity.

To handle sessional HTTP requests, the Web server plug-ins for all HTTP
servers need to use static IP addresses. In addition, for sessionless HTTP
requests, the plug-ins should also use a cell level IP address (DVIPA) so Sysplex
Distributor can balance these requests between all systems in the sysplex.

8.7.2 Stateful session bean failover
In WebSphere Application Server on z/OS, the distribution of IIOP requests is
handled by the Location Service Daemon. When a request for an EJB lookup
arrives at the controller region, the controller region points the requestor to the
Location Service Daemon. Then the requestor sends a locate request to the
daemon, the daemon assigns a controller to the client, one of the servants of the
assigned controller creates the EJB and all subsequent calls to the EJB from the
same requestor go through the same controller.

The state replication of a stateful session bean is also based on DRS, similar to
HTTP session replication.

The J2EE 1.4 specification requires HTTP session state objects to be able to
contain local references to EJBs. Using local references to EJBs has big
performance advantages. WebSphere Application Server V6 can collocate
stateful session bean replicas and HTTP session replicas for hot failover. In other
words, if an HTTP session object in a server contains a local reference to a
stateful session EJB instance in the same server, both HTTP session and EJB
session are replicated to the same replica in the replication domain. In case of a
failover, the HTTP session still holds the local reference to the EJB and is able to
locate the local session EJB instance.

Another aspect regarding WebSphere z/OS EJB session failover is failover
among servant regions for unmanaged servers. In an unmanaged z/OS server,
stateful session bean failover among servants can be enabled. Failover only
occurs between the servants of a given unmanaged server. If an unmanaged
z/OS server has only one servant, then enabling failover has no effect. To enable
failover between servants in an unmanaged server, use the Administrative
Console to add a new custom property called
EJBContainerEnableUnmanagedServerReplication to the servant JVMs and set
it to true.
 Chapter 8. WebSphere HA on z/OS 275

Because you might not want to enable failover for every single stateful session
bean in the EJB container, you can override the EJB container settings at either
the application or EJB module level. You can either enable or disable failover at
each of these levels. This is the same as WebSphere on other platforms. See
2.6.5, “Stateful session bean failover” on page 73 for more information about this
topic.

To enable sysplex-wide distribution of EJB requests, a WebSphere Application
Server and its Location Service Daemon must be started on each system. A
DVIPA can be used as the sysplex-wide Location Service Daemon IP. The
Sysplex Distributor uses this IP to balance requests across the systems. In this
configuration, the stateful session EJB sessions must be replicated using DRS.
Also, a shared HFS should be used for passivating EJBs.

8.8 JMS failover
WebSphere Application Server V6 introduces a new default messaging provider.
See Chapter 12, “Using and optimizing the default messaging provider” of the
redbook IBM WebSphere V6 Scalability and Performance Handbook,
SG24-6392 for details.

On z/OS, the messaging engine (ME) runs inside a separate address space,
called the Control Region Adjunct (CRA). See Figure 8-2 on page 261. A
resource adapter in the CRA is responsible for taking a messaging request and
sending it to a message dispatcher (RA dispatcher) in a servant region, where
the MDB is really dispatched. This resource adapter supports transaction commit
and rollback. Messages in MEs can be persisted in a database for recovery.

CRA is a special type of servant region. It is started by Workload Manager for
z/OS. When a CRA fails within a server, WLM on z/OS restarts the CRA.
Meanwhile the messaging engine in the failed CRA is moved to another server in
the cluster and JMS connections are subsequently routed to that ME. Depending
on the configuration, the ME is then moved back to the original server's CRA
when it is restarted or stays in the CRA. Thus, WLM on z/OS and HAManager
complement each other.
276 WebSphere Application Server V6: High Availability Solutions

8.9 DB2 data sharing
A complete WebSphere high availability solution also requires other components
that WebSphere interacts with, to be highly available. These components can be
DB2, WebSphere MQ, and so on.

The high availability solution for DB2 on z/OS is DB2 Data Sharing. See
Figure 8-8. This function enables multiple applications to read from, and write to,
the same DB2 data concurrently. The applications can run on different DB2
subsystems residing on multiple Central Processor Complexes (CPCs) in a
Parallel Sysplex.

Figure 8-8 A DB2 Data Sharing Group in a sysplex

DB2 data sharing improves the availability of DB2 data, extends the processing
capacity of your system, provides more flexible ways to configure your
environment, and increases transaction rates. You do not need to change the
SQL in your applications to use data sharing, although you might need to do
some tuning for optimal performance.

Data sharing provides multiple paths to data, a member can be down, and
applications can still access the data through other members of the data sharing

Parallel Sysplex

Coupling
Facility

shared disks

DB2B
 log

zOS

DB2A

buffer
poolsLocks

zOS

DB2B

buffer
poolsLocks

zOS

DB2C

buffer
poolsLocks

gobal
Locks

group
buffer
pool

DB2 Data Sharing group

DB2A
 log shared

DB2 data

DB2C
log
 Chapter 8. WebSphere HA on z/OS 277

group. When one member is down, Transaction Managers are informed that the
member is unavailable, and they can direct new application requests to another
member of the group. For more information about DB2 for z/OS Data Sharing,
see the DB2 InfoCenter at:

http://publib.boulder.ibm.com/infocenter/dzichelp/index.jsp

8.10 WebSphere MQ for z/OS high availability
In addition to using MQ clusters as a high availability choice (see 15.5,
“WebSphere MQ (and other messaging providers)” on page 579), WebSphere
MQ on z/OS can take advantage of MQ queue sharing. See Figure 8-9 on
page 279. A queue sharing group is a collection of queue managers on different
systems in a Parallel Sysplex that have access to the same set of shared queues
and to shared definitions. The WebSphere MQ queue sharing group
configuration requires DB2 data sharing.

The shared WebSphere MQ object definitions are stored in DB2 tables, and
messages belonging to a shared queue reside in the Coupling Facility. Two
Coupling Facilities can be used in a Parallel Sysplex to prevent a single point of
failure.

For more details on WebSphere MQ, see WebSphere MQ in a z/OS Parallel
Sysplex Environment, SG24-6864.
278 WebSphere Application Server V6: High Availability Solutions

http://publib.boulder.ibm.com/infocenter/dzichelp/index.jsp

Figure 8-9 WebSphere MQ queue sharing

Parallel Sysplex

System A

Queue
Manager1

Channel
initiator

System A System A

Queue
Manager2

Channel
initiator

System B

Coupling
Facility

Shared queues

DB2 databaseLocal page sets and logs Local page sets and logs

MQ Sharing Group
 Chapter 8. WebSphere HA on z/OS 279

8.11 A sample high availability configuration
After having explained some basic concepts of WebSphere high availability on
z/OS, let us put together a sample high availability configuration for z/OS. See
Figure 8-10.

Figure 8-10 High availability WebSphere in a sysplex configuration,

This high availability WebSphere configuration on z/OS requires a Parallel
Sysplex environment plus the following setups within and outside the Parallel
Sysplex.

Setup outside the Parallel Sysplex includes:

� Redundant network path leading to the Web servers and application servers.

� Redundant Web servers. In many cases, HTTP servers are on another
platform instead of z/OS while application servers run on z/OS.

N Node Agent

D Daemon

Deployment ManagerDM

S
Application Server
(CR, CRA and SR)

* DB2 data sharing or DRS (memory-to-memory replication)

SYS3

D

N S

Node A

DM

N S

Node B

Cluster

D

CELL

SYS1 SYS2

D

N S

Node A

Sysplex Distributor

IIOP

HTTP

HTTP Session*
DB2

Web Server with WebSphere
Web server plug-in
280 WebSphere Application Server V6: High Availability Solutions

� A WebSphere Web server plug-in must be installed in each of the Web
servers and configured to use HTTP DVIPA for sessionless requests and
static IP addresses for sessional requests.

Setup within the Parallel Sysplex includes:

� A highly available Parallel Sysplex with two Coupling Facilities and at least
three LPARs hosting application servers within a cell. The LPARs in the
sysplex should be on separate hardware instances to prevent a single point of
failure. A high availability configuration without the need to perform software,
hardware or application updates only needs two LPARS. We recommend a
third LPAR in the configuration such that the configuration is highly available
even when one of the LPARs is brought down for upgrade.

� A WebSphere Application Server for z/OS node on each LPAR that is
configured into a Network Deployment cell. The Deployment Manager server
(required, and configured on its own node) can be configured on one of the
LPARs or on a separate LPAR. Also note that there is a daemon process
(WebSphere CORBA Location Service) on each LPAR that has one or more
nodes in the same cell.

� An application server defined on each node, and formed into a server cluster
which consists of at least three nodes from three LPARs.

� A Dynamic virtual IP address (DVIPA) defined through the z/OS Sysplex
Distributor as the daemon IP name for the cell. This IP address enables
WLM-balanced routing and failover between the LPARs for IIOP requests.

� A Dynamic virtual IP address (DVIPA) defined through Sysplex Distributor as
the HTTP transport name for the cell. This IP address enables WLM-balanced
routing and failover between the LPARs for sessionless HTTP requests.

� A static IP address is required for each node as an auxiliary HTTP transport
name for the cell. This enables directed HTTP routing for sessional HTTP
requests.

� If using HTTP sessions, the session state must be shared between the cluster
member using DRS or session data must be stored in DB2. If you are using
stateful session Enterprise JavaBeans (EJBs), the stateful session must be
replicated using DRS, and a shared HFS must be configured for passivating
session EJBs. Note that using stateful session beans is not a best practice.
 Chapter 8. WebSphere HA on z/OS 281

8.12 Hardware, software, and application upgrade
Certain hardware and software upgrades and installations can be performed in
the Parallel Sysplex in a nondisruptive manner, such as varying a processor
online or offline. Certain other software and hardware changes require a system
to be taken offline. For a more detailed discussion of this topic see WebSphere
for z/OS V6 High Availability, SG24-6850.

Application updates in WebSphere Application Server on z/OS are performed the
same way as in WebSphere V6 on other platforms. See Chapter 5, “High
availability application administration” on page 141 for more information.

8.13 WebSphere Application Server for Linux on zSeries
WebSphere Application Server for Linux on zSeries works the same way as
WebSphere on any other Linux platform. High availability can be achieved using
the WebSphere provided facilities and clustering products, such as Tivoli System
Automation for Multiplatforms. See Chapter 10, “WebSphere and IBM Tivoli
System Automation” on page 367 for more information.

8.14 Reference
The following resources are available:

� Parallel Sysplex Cluster Technology at:

http://www.ibm.com/servers/eserver/zseries/pso/sysover.html

� Leveraging z/OS TCP/IP Dynamic VIPAs and Sysplex Distributor for higher
availability at:

http://www.ibm.com/servers/eserver/zseries/library/techpapers/gm130165.html

� DB2 Information Management Software Information Center for z/OS
Solutions at:

http://publib.boulder.ibm.com/infocenter/dzichelp/index.jsp

� WebSphere for z/OS V6 High Availability, SG24-6850

� WebSphere MQ in a z/OS Parallel Sysplex Environment, SG24-6864
282 WebSphere Application Server V6: High Availability Solutions

http://www.ibm.com/servers/eserver/zseries/pso/sysover.html
http://www.ibm.com/servers/eserver/zseries/library/techpapers/gm130165.html
http://publib.boulder.ibm.com/infocenter/dzichelp/index.jsp

Part 5 Using external
clustering software

Part 5
© Copyright IBM Corp. 2005. All rights reserved. 283

284 WebSphere Application Server V6: High Availability Solutions

Chapter 9. Configuring WebSphere
Application Server for
external clustering software

This chapter provides information about how to configure WebSphere
Application Server to benefit from external clustering software. We explain how
to make the Deployment Manager or Node Agent and application server highly
available in this chapter.

Also covered in this chapter is a typical topology, consisting of several application
servers connected to some backend services. Those services, for example
database, messaging, or LDAP services, reside on clustered remote systems.

This discussion is independent from the chosen clustering software. A more
detailed perspective about how to configure WebSphere V6 to depend on a
special clustering software is discussed in the following chapters:

� Chapter 11, “WebSphere and IBM HACMP” on page 417
� Chapter 10, “WebSphere and IBM Tivoli System Automation” on page 367
� Chapter 12, “WebSphere and VERITAS Cluster Server” on page 445
� Chapter 13, “WebSphere and Sun Cluster” on page 483

9

© Copyright IBM Corp. 2005. All rights reserved. 285

9.1 Introduction
The high availability capabilities of WebSphere V6 have been further improved
compared to previous versions. WebSphere Application Server V6 can be used
as part of an overall 99.999% availability solution. However, to achieve this, your
environment has to be highly available. For that reason, you also need to
consider the surrounding services. We cover some WebSphere V6 settings for
interacting with typical enterprise services.

You should modify some parameters in the WebSphere V6 configuration to
leverage the benefits of using external clustering software in your environment.
These settings are driven by the systems architecture and thus valid for all
flavours of external clustering software. We discuss the settings for:

� Node Agent and application server HA
� Deployment Manager HA
� Configuring JMS resources
� Configuring JDBC/data sets
� Configuring security

Platform-clustering software packages can be used to enhance the availability of
the entire WebSphere system. The unit of failover usually includes a collection of
network definitions and disk storage, and one or more services such as the DB2
database server (or other database servers), the HTTP server, firewalls, LDAP
server, WebSphere Application Server, WebSphere Node Agent or Deployment
Manager. However, it is not standardized, and different vendors use different
terms. For example, the unit of failover in IBM HACMP or HACMP/ES Cluster is
called an application server, while the unit of failover in IBM Tivoli System
Automation (TSA) is called resource group. Sun Cluster calls its failover unit a
logical host, and the unit of failover in VERITAS Cluster Server is called Service
Group.

9.1.1 IP-based cluster failover versus non-IP based cluster failover
When people talk about clustering, they often mean different things. The reason
is that there are two kinds of cluster failovers:

� IP-based cluster failover:

This approach deals with a Virtual IP Address or IP Alias. The IP Alias is only
used for one system at a time. In case of a failover, the IP Alias is moved to
the other system. All applications or services have to use the Virtual IP
Address to access the cluster.

Examples for software using this approach are IBM HACMP, TSA, Sun
Cluster, VERITAS Cluster Server.
286 WebSphere Application Server V6: High Availability Solutions

� Non-IP cluster failover:

In this case, there is a process failover, regardless of the TCP/IP connection
parameter. Such a failover is provided by an application or a vendor specific
protocol.

For example, WebSphere workload management (WLM) and the WebSphere
HAManager use this approach.

Usually, IP-based cluster failover is slower (one to five minutes), and non-IP
cluster failover is very fast (instantaneous). While the WebSphere V6
HAManager does not require extra software, most non-IP cluster failover still
relies on external cluster software to provide the cluster information.

9.1.2 High availability configuration types
There are two types of highly available data services:

� A scalable data service spreads an application across multiple nodes to
create a single, logical service. Scalable services leverage the number of
nodes and processors in the entire cluster on which they run. In case of a
failure this solution means a loss in capacity.

� A failover data service runs an application on only one primary node in the
cluster at a time. Other nodes might run other applications, but each
application runs on only a single node. If a primary node fails, the applications
running on the failed node failover to another node and continue running. We
can further divide this category into two subcategories:

– Active/Active mode, where two services reside in two nodes that are
configured as mutual failover.

– Active/Passive mode, where one node is configured as the primary to run
the service, while the other node is configured as a hot standby.

The configuration for both modes is very similar. The advantage of the
Active/Active mode configuration is lower hardware cost. However, the
service performance is reduced when a failover occurs. The advantage of the
Active/Passive mode configuration is steady performance, but redundant
hardware is needed. Furthermore, the Active/Active mode configuration might
have twice as many interruptions as the Active/Passive mode configuration,
because a failure in any of two nodes can cause a failover.
 Chapter 9. Configuring WebSphere Application Server for external clustering software 287

9.1.3 Failover terms and mechanisms
An object or an application includes two distinct aspects: functions and data.
Therefore, we have process availability and data availability. If a function is not
associated with individual data or states, it is easy to achieve high availability by
simply restarting this function process when the old process crashes. However,
the reality is that functions are associated with individual data or state, some with
persisted data in database or files, such as Entity EJBs. We need to make data
management systems highly available to all processes and ensure data integrity
because the failed process might damage data.

� Failover

Failover refers to the single process that moves from the primary system to
the backup system in the cluster. The failure recovery includes several steps:

a. Stop and exit the failed process.
b. Release the resources.
c. Detach the disk array.
d. Reattach the disk array to the backup system.
e. Check the disk and file system.
f. Repair the data integrity.
g. Gain all resources for running the process in the backup system.
h. Start the process in the backup system.

This failover process takes several minutes after the fault is detected. This
approach can be used for both function-centric or data-centric applications for
both Active/Passive and Active/Active configurations.

� Fail back, fallback

Fail back or fallback is similar to failover, but occurs from the backup system
to the primary system when the primary system is back online. For mutual
takeover, because the backup node has its original application running, as
shown in Figure 9-8 on page 297, failing back improves the performance of
both applications.
288 WebSphere Application Server V6: High Availability Solutions

9.2 Standard practice
Every project starts with a planning phase. In this section, we provide some
tasks, that are, from our point of view, just a starting point. For more information
about planning, we recommend the IBM WebSphere V6 Planning and Design
Handbook, SG24-6446 and IBM WebSphere V6 Scalability and Performance
Handbook, SG24-6392. In addition, your local IBM representative can help you.

9.2.1 Gathering non-functional requirements
To make a decision on how to set up your systems, you have to gather some
relevant information. Some of the most important information are the
non-functional requirements. Depending on those non-functional requirements,
your system architecture, or operational model, should be designed. This is
usually a high-level design.

The non-functional requirements are determined through your business needs.
They directly impact the cost of your solution, but they also define the gainable
service level.

If you come to the conclusion that you need to set up WebSphere Application
Server using some kind of platform-specific clustering software, then there are
different ways to do this as described in the following sections.

For more information about non-functional requirements, see the article Quality
busters: Forget the environment at:

http://www.ibm.com/developerworks/web/library/wa-qualbust1/index.html

9.2.2 Choosing the HA configuration type
As discussed in “High availability configuration types” on page 287, there are
different ways on how to configure your high availability solution. This section
gives a short overview of the failover behavior of the Active/Passive versus the
Active/Active configuration type to help you choose the right configuration type
for your environment.
 Chapter 9. Configuring WebSphere Application Server for external clustering software 289

http://www.ibm.com/developerworks/web/library/wa-qualbust1/index.html

Configuration in Active/Passive mode
During normal operations only one system runs the process. The process is
down on the second system. Both systems share the same file system. The
following figures show Active/Passive failover configurations. Figure 9-1 shows
the configuration before the failover.

Figure 9-1 Active/Passive configuration before failover

WASDMgr
process

VHost1

NAS

VHost2

WebSphere
process

WebSphere
process

Platform specific
cluster software
290 WebSphere Application Server V6: High Availability Solutions

In case of a failure on the active system, the clustering software detects that
failure and initiates a failover. Be aware that there is a downtime at the time of
the failure! This is because the running process has failed and the backup
process waits to get started by the cluster software. Figure 9-2 shows this
situation.

Figure 9-2 Active/Passive configuration at failure time

Important: Make sure that your failure detection mechanism is set up
properly. How to set up the monitoring varies between the different cluster
software products.

WASDMgr
process

VHost1

NAS

VHost2

WebSphere
process

WebSphere
process

Platform specific cluster
 Chapter 9. Configuring WebSphere Application Server for external clustering software 291

The failover starts after failure detection. For a WebSphere Application Server
process, a typical failover means that the following occurs (as shown in
Figure 9-3):

1. Cleaning up the process.
2. Releasing the disk.
3. Shutting down the interface to which the Virtual IP Address (VIP) is bound.
4. Mounting the disk on the backup system.
5. Checking the disk.
6. Starting the interface to which the VIP is bound.
7. Starting the WebSphere process.

Figure 9-3 Active/Passive configuration during failover

WASDMgr
process

VHost1

NAS

VHost2

WebSphere
process

WebSphere
process

Platform specific cluster
292 WebSphere Application Server V6: High Availability Solutions

After the failover has finished, the process runs on the backup system as
illustrated in Figure 9-4.

Figure 9-4 Active/Passive configuration after failover

Important: Cluster software does not avoid failures! It however helps to
determine the maximum downtime if a process fails. The amount of process
downtime is time of failure detection + time to failover.

WASDMgr
process

VHost1

NAS

VHost2

WebSphere
process

WebSphere
process

Platform specific cluster
 Chapter 9. Configuring WebSphere Application Server for external clustering software 293

Configuration in Active/Active mode
You can spread multiple independent applications across your cluster servers.
This is called an Active/Active setup. Such a configuration allows for a better use
of your hardware because all systems are constantly in use. In our example in
Figure 9-5, there is a WebSphere process1 on a system called VHost1 and a
second WebSphere process2 on a system called VHost2.

Figure 9-5 Active/Active configuration before failover

WASDMgr
process

VHost1

NAS

VHost2

WebSphere
process1

WebSphere
process2

Platform specific
cluster software
294 WebSphere Application Server V6: High Availability Solutions

In case of a failure on, for example, VHost1, the clustering software detects that
failure and initiates a failover. There is also a downtime for the failed process!
This is because the backup process waits to get started by the cluster software.
Figure 9-6 shows this situation.

Figure 9-6 Active/Active configuration at failure time

Important: Make sure that your failure detection mechanism is set up
properly. How to set up the monitoring varies between the different cluster
software products.

WASDMgr
process

VHost1

NAS

VHost2

WebSphere
process1

WebSphere
process2

Platform specific
cluster software
 Chapter 9. Configuring WebSphere Application Server for external clustering software 295

As soon as the failure is detected by the cluster software, the failover starts. For
a WebSphere Application Server process a typical failover means that the
following occurs (as shown in Figure 9-7):

1. Cleaning up the process.
2. Releasing the disk.
3. Shutting down the interface to which VIP (for this particular process!) is

bound.
4. Mounting the disk on the backup system.
5. Checking the disk.
6. Starting the interface to which the VIP for this particular process is bound.
7. Starting the WebSphere V6 process.

Figure 9-7 Active/Active configuration during failover

WASDMgr
process

VHost1

NAS

VHost2

WebSphere
process1

WebSphere
process2

Platform specific
cluster software

WebSphere
process1
296 WebSphere Application Server V6: High Availability Solutions

After the failover has finished, the process runs on the backup system in addition
to the other processes running on that system as shown in Figure 9-8. Which
means you now have reduced system capacities for all processes.

Figure 9-8 Active/Active configuration after failover

9.2.3 Configuring the environment: WebSphere Application Server
binaries and profiles

WebSphere Application Server V6 separates read only binary data from
customizable configuration data. The installation procedure provides the binary
data while the profile creation after installation provides the configuration data.
This approach allows you to set up independent instances of WebSphere
Application Server that share one set of binaries. You need to decide where to

Important: Cluster software does not avoid failures! It however helps to
determine the maximum downtime if a process fails. Again, a process failure
causes a maximum downtime of time of failure detection + time to failover.
Additionally, a process failure causes more load on the backup system in an
Active/Active configuration.

WASDMgr
process

VHost1

NAS

VHost2

WebSphere
process1

WebSphere
process2

Platform specific
cluster software

WebSphere
process1
 Chapter 9. Configuring WebSphere Application Server for external clustering software 297

put the binaries and the profile data in your HA environment. There are two
options:

� Everything on shared disks
� Only the profiles on shared disks

See the sections titled Preparing of each scenario in the sections that follow for
more information about this topic. The “Installing WebSphere Application Server
Network Deployment” sections of each scenario contain instructions on how to
create the proper profiles.

For more information about profiles, see Chapter 4 of WebSphere Application
Server V6 System Management and Configuration Handbook, SG24-6451.

9.2.4 Testing
After you finished the installation and configuration, it is necessary to test the
failover abilities of your environment. Possible test scenarios are:

� Simulating a network failure
� Shutting down the system that is currently active
� Deleting the pid file of your application server (if this file is monitored)
� Killing the process of your application server
� And more

These tests should be extended by additional ones - depending on your needs.
This list does not cover all possible test scenarios.

9.3 Deployment Manager high availability
Application errors occur more often than system failures. The first option to
increase process or application availability is therefore to try a local restart of the
failed application. If successful, this approach minimizes downtime as a process
restart is significantly faster than a failover to a remote system. See 3.4,
“Restarting WebSphere processes as an OS service” on page 117 for
information about how to do this.

In fact, there is no need for a highly available Deployment Manager in
WebSphere V6. All critical singleton services can now run on different processes
in the cell and are controlled by the HAManager. Therefore, the Deployment
Manager is no longer a single point of failure. See Chapter 3, “WebSphere
administrative process failures” on page 103 for more information.

If you decide however, that you still want to make your Deployment Manager
highly available, then the information provided in this section should be helpful.
298 WebSphere Application Server V6: High Availability Solutions

9.3.1 Preparing
Consider the following regarding your WebSphere installation:

� Make sure you choose the installation method that fits into your systems
architecture. Basically there are two different ways to install a Deployment
Manager (DMgr) on a platform-specific cluster:

a. Installing the binaries on a shared disk that is attached to all cluster
members.

b. Installing the binaries locally on every cluster member and placing only the
profiles on a shared disk.

Both methods are applicable, but if disk space is not an issue, we recommend
to use the second option.

� To install WebSphere V6, you have to:

a. Install the binaries.
b. Create a profile.

Depending on which installation method you choose, the binaries and the
profile are on the same disk or mountpoint (in case of a volume), or they are
separated.

� Installing IBM WebSphere Application Server Network Deployment V6 on an
platform-specific cluster that uses the IP-based cluster failover mechanism
demands that your host name is bound to your IP Alias (Virtual IP Address).
This IP Alias is used to access your system.

When creating a profile, you are prompted for the host name. To benefit from
the failover technique of any platform-specific clustering software, you must
use the host name related to your IP Alias.

To check the DNS mapping using a command line, enter this command:

$ nslookup your_ip_address

Note: The term cluster member in this context refers to the
platform-specific cluster, not to a WebSphere cluster.
 Chapter 9. Configuring WebSphere Application Server for external clustering software 299

Redbook sample scenario for Deployment Manager HA
Figure 9-9 shows our lab setup. We used two systems in an Active/Passive
configuration which means that the Deployment Manager is running only on one
of the systems at a time. We decided to install the WebSphere V6 binaries locally
on both systems for the VERITAS Cluster Server scenario while installing them
on the shared disk for the other cluster software scenarios. In the first case, only
the Deployment Manager profile resides on the NAS and is accessible by both
systems.

Figure 9-9 Lab example showing two systems connected to NAS for DMgr HA

Important: The value of your WAS_HOME variable has to be the same on
both systems!

WASDMgr
process

WebSphere
V6

profile

VHost1

NAS

VHost2

WebSphere V6
local binaries

WASDMgr
process

WebSphere V6
local binaries

WASDMgr
process

WebSphere V6
local binaries

Platform specific
cluster software
300 WebSphere Application Server V6: High Availability Solutions

9.3.2 Installing WebSphere Application Server Network Deployment
To install IBM WebSphere Application Server Network Deployment V6, follow the
instructions that are provided in the document IBM WebSphere Application
Server Network Deployment V6: Installing your application serving environment
at:

ftp://ftp.software.ibm.com/software/webserver/appserv/library/v60/
wasv600nd_gs.pdf

Make sure that you select the correct location for the binaries, depending on your
decision for local or shared disks. After the installation of the code has
completed, you need to create a Deployment Manager profile. WebSphere
Application Server V6 provides two ways to create profiles:

� Using the Profile creation wizard
� Using the wasprofile script on a command line

Example 9-1 shows how to create a Deployment Manager profile using the
command line.

Example 9-1 Creating DMgr profile using the command line

$./wasprofile.sh -create -profileName your_profilename -profilePath
/NAS_Path/path_of_your_profile -templatePath
/IBM/WebSphere/AppServer/profileTemplates/dmgr -nodeName your_profile_node
-cellName your_cell_name -hostName your_virtual_hostname

You can also use the Profile creation wizard to create a Deployment Manager
profile. To start the wizard, for example on Linux, use this command:

<WAS_HOME>/bin/ProfileCreator/pctLinux.bin
 Chapter 9. Configuring WebSphere Application Server for external clustering software 301

ftp://ftp.software.ibm.com/software/webserver/appserv/library/v60/wasv600nd_gs.pdf

Then choose the appropriate profile type as shown in Figure 9-10.

Figure 9-10 Profile creation wizard for a Deployment Manager profile
302 WebSphere Application Server V6: High Availability Solutions

For our lab example, the DNS entry of the IP Alias is VCluster.ibmredbook.com.
This value must be entered as the Host name, which is shown in Figure 9-11.

Figure 9-11 Profile creation wizard, prompting for the Host name, DMgr profile

9.3.3 Configuring the clustering software
As mentioned before, the first and easiest option to enhance Deployment
Manager availability is to monitor the process using the operating systems’s
capabilities. See 3.4, “Restarting WebSphere processes as an OS service” on
page 117 for information about how to do this.

The configuration steps to make WebSphere Application Server highly available
using a platform-specific clustering technique vary from product to product. But
you always have to define some kind of failover unit. These units are switched
between the nodes in case of a failover. Usually the failover units need a start,
stop, and monitor program. You can find detailed instructions on how to set up
HACMP, Sun Cluster, Tivoli System Automation, and VERITAS Cluster Server in
the appropriate chapters of Part 5.
 Chapter 9. Configuring WebSphere Application Server for external clustering software 303

Independent from the clustering software you choose, do these steps during a
failover:

� Stop the Deployment Manager process in the failed host
� Release the shared disk and other resources from this node
� Remove the service IP address from the failed node
� Mount the shared disk to the other, healthy node
� Add the same service IP address to the adopted node
� Start the Deployment Manager process

9.4 Node Agent and application server high availability
Although it is possible to make the Node Agent highly available through
third-party clustering software, we do not recommend that you do so. Often a
simple restart of the process solves your problem.

Therefore, before failing over the Node Agent process to another system, you
should try to restart it on the local system. If you are able to restart the process
locally, the downtime is greatly reduced compared with failing over to the backup
system. See 3.4, “Restarting WebSphere processes as an OS service” on
page 117 for information about how to restart the process automatically.

If you decide that you want to make your Node Agent highly available using
clustering software, this section describes what you need to consider.

9.4.1 Preparing
Basically, the same considerations as for Deployment Manager high availability
also apply for Node Agent and application server HA:

� As described in “Deployment Manager high availability” on page 298,
specifically in the Preparing section, there are two different ways to install
WebSphere on a platform specific cluster:

a. Installing the binaries on shared disks that are accessible by all cluster
members.

b. Installing the binaries locally on every cluster member and placing only the
profiles onto the shared disks.

Even though either method is applicable, we recommend to use the second
option as long as there are no disk space issues.

� To install WebSphere V6, you have to:

a. Install the binaries.
b. Create a profile.
304 WebSphere Application Server V6: High Availability Solutions

Depending on the chosen installation method, the binaries and the profile are
located on the same disk or mountpoint (in case of a volume), or separated.

� On a platform-specific, IP-failover based cluster, make sure that your host
name is bound to your IP Alias (Virtual IP Address). You have to provide the
DNS name that is mapped to that IP Alias as the Host name during profile
creation.

Example 9-2 Checking the DNS mapping of the IP Alias

$ nslookup your_ip_address

A redbook sample scenario for Node Agent and application
server HA

Figure 9-12 on page 306 shows our lab setup. We used two systems in
Active/Passive configuration. As a result of that, there is only one system running
the Node Agent or application server at a time. As described for the Deployment
Manager, we split up our installation. The binaries are located on local disks and
the profiles are placed on the shared disk drive. In our case, the shared disk is an
NAS that can be concurrently accessed by both systems.

As for the Deployment Manager, we decided to install the WebSphere V6
binaries locally on both systems for the VERITAS Cluster Server scenario while
installing them on the shared disk for the other cluster software scenarios. In the
first case, only the application server profiles reside on the NAS and are
accessible by both systems.
 Chapter 9. Configuring WebSphere Application Server for external clustering software 305

Figure 9-12 Lab example showing two systems connected to NAS for Node Agent HA

9.4.2 Installing WebSphere Application Server Network Deployment
First you need to install the Network Deployment software. Choose the correct
location for the binaries (shared or local disk). For more information about
installation see the document IBM WebSphere Application Server Network
Deployment V6: Installing your application serving environment, which can be
found at:

ftp://ftp.software.ibm.com/software/webserver/appserv/library/v60/
wasv600nd_gs.pdf

When the code is installed, the next step is to create the profile. To create a
managed node (or Node Agent), you need to create a Custom profile or
Application Server profile and federate it into a cell. To create a profile:

� Use the Profile creation wizard.
� Use the wasprofile script on a command line.

Important: The value of your WAS_HOME variable has to be the same on
both systems!

WASDMgr
process

WebSphere
V6

profiles

VHost1

NAS

VHost2

AppServer1

Node Agent
process

WebSphere V6
local binaries

Node Agent
process

WebSphere V6
local binaries

AppServer n AppServer1 AppServer n

Platform specific
cluster software
306 WebSphere Application Server V6: High Availability Solutions

ftp://ftp.software.ibm.com/software/webserver/appserv/library/v60/wasv600nd_gs.pdf

In our example, we created the profile using the command line, as shown in
Example 9-3.

Example 9-3 Creating a custom profile using the command line

$./wasprofile.sh -create -profileName your_profilename -profilePath
/NAS_Path/path_of_your_profile -templatePath
/IBM/WebSphere/AppServer/profileTemplates/managed -nodeName your_profile_node
-cellName your_cell_name -hostName your_virtual_hostname

You can also use the Profile creation wizard to create a profile of a managed
node. To start the wizard, for example on Linux, use the following command:

WAS_HOME/bin/ProfileCreator/pctLinux.bin

Then choose the appropriate profile type. In our case, the Application Server
profile was chosen, as shown in Figure 9-12 on page 306.

Figure 9-13 Choosing the Application Server profile type - Application Server profile

Attention: To federate an Application Server profile into a cell you have to run
the addNode command manually after profile creation. You can also federate a
profile into a cell during profile creation. In this case, you need to create a
custom profile.
 Chapter 9. Configuring WebSphere Application Server for external clustering software 307

In our example, the DNS entry of the IP Alias is VCluster.ibmredbook.com. This
name must be entered as the Host name during profile creation, as shown in
Figure 9-14.

Figure 9-14 Profile creation wizard, prompting for the host name

9.4.3 Configuring the clustering software
The first option to enhance the Node Agent’s availability is to monitor the process
using the operating system’ capabilities. See 3.4, “Restarting WebSphere
processes as an OS service” on page 117.

The configuration steps to make WebSphere Application Server highly available
using a platform-specific clustering technique vary from product to product. But
you always have to define some kind of failover unit. These units are switched
between the nodes in case of a failover. Usually the failover units need a start,
stop, and monitor program. You find detailed instructions on how to set up
HACMP, Sun Cluster, Tivoli System Automation, and VERITAS Cluster Server in
the appropriate chapters of this part.
308 WebSphere Application Server V6: High Availability Solutions

9.5 Common advanced topology
Because your environment consists of more than just the WebSphere V6
components, you have to consider also other services and their availability.

We found that the scenario shown in Figure 9-15 is a typical topology. To provide
high availability, there are some services outside of WebSphere Application
Server, located on a platform-specific cluster. In this scenario it is the Database,
LDAP, and IBM WebSphere MQ.

Even though the Deployment Manager does not necessarily have to be highly
available, we placed it on the existing cluster. As mentioned in 9.3, “Deployment
Manager high availability” on page 298, this is nice to have but not a must.

Figure 9-15 Typical example of a real life environment

In such an environment, you have to be aware of some general configuration
topics. As you connect to remote systems, there are some settings, regarding
time-outs or retry intervals, that have to be set correctly. These settings are
covered in this section.

Admin XML
Repository

MQ
 Session DB

App.
DB

LDAP
DB

F
i
r
e
w
a
l
l

F
i
r
e
w
a
l
l

Internet

LB

LB

F
i
r
e
w
a
l
l

HTTP
Server

App Server

App Server

Node Agent

App Server

App Server

Node Agent

F
i
r
e
w
a
l
l

HTTP
Server

Database

LDAP

MQ

DMgr

Database

LDAP

MQ

DMgr

Clustering
 Chapter 9. Configuring WebSphere Application Server for external clustering software 309

9.5.1 Connecting to a remote database
For general information about how to configure WebSphere V6 resources,
especially JDBC resources, see WebSphere Application Server V6 System
Management and Configuration Handbook, SG24-6451.

In case the database you are using resides on a platform-specific cluster, you
have to be aware of the possible service interruption during a failover. As
mentioned in 9.2.2, “Choosing the HA configuration type” on page 289, the
maximum downtime of a process, in this case the database, consists of the time
to detect the failure + the time to failover. It is important to identify these two
times and to consider them when setting your datasource connection pool
properties. There are two important settings:

� Connection timeout
� Server name

Connection timeout
The connection timeout defines the maximum wait period for a new connection
request before it throws a ConnectionWaitTimeoutException. This means, for
example, that if your maximum downtime (time to detect a failure + time to
failover) is 300 seconds, but your connection timeout is set to 180 seconds, this
might cause unnecessary errors.

To verify/change your Connection timeout setting, go to Resources → JDBC
providers → JDBC_provider_name → Data sources →
Data_source_name → Connection pool properties in the Administrative
Console. See Figure 9-16.

Figure 9-16 Setting the connection timeout
310 WebSphere Application Server V6: High Availability Solutions

Server name
The Server name for the database on the cluster must be the IP Alias, as
configured in the DNS. In our example the IP Alias of the cluster is mapped to
VCluster.ibmredbook.com.

To change or verify the Server name in the Administrative Console, go to
Resources → JDBC providers → JDBC_provider_name → Data sources →
Data_source_name as shown in Figure 9-17.

Figure 9-17 Setting the Server name to the DNS entry of the IP Alias

9.5.2 Connecting to a remote security service, such as LDAP
In case you are connecting to a remote LDAP directory server that resides on a
cluster, you should also consider your maximum downtime. The default timeout
value for WebSphere V6 waiting for a LDAP response is 120 seconds. In case
your maximum downtime is greater than that and your application can handle a
greater waittime, you can adjust this timeout value.

The other important setting in such a configuration scenario is again the Host
name. Both settings are configured on the same panel in the Administrative
Console, which can be reached via Security → Global security → LDAP. This
panel is shown in Figure 9-18 on page 312.

Search timeout
The default value is to wait 120 seconds before WebSphere Application Server
aborts the request.

Host name
Make sure that you provide the IP Alias or the host name assigned to that IP
Alias. This is important as in case of a cluster switch, the LDAP node changes.
Giving the IP Alias ensures that you can still access the LDAP service after a
cluster switch. In our example the DNS name of the IP Alias is
VCluster.ibmredbook.com.
 Chapter 9. Configuring WebSphere Application Server for external clustering software 311

Figure 9-18 Configure the IP Alias and search timeout value for LDAP

9.5.3 Connecting to a remote messaging engine
If your messaging engine resides on a cluster, you must again consider your
maximum downtime. The default timeout value for WebSphere V6 waiting for a
new connection to a messaging engine is 180 seconds. In case your maximum
downtime is greater than that and your application can handle a greater waittime,
you can adjust this timeout value. Figure 9-19 on page 313 shows an example.

For further information about settings regarding high availability of messaging
engines, see Part 5, “Messaging,” of the IBM WebSphere V6 Scalability and
Performance Handbook, SG24-6392.
312 WebSphere Application Server V6: High Availability Solutions

Figure 9-19 Configure the messaging engine connection timeout value

9.6 Transaction Manager failover with No Operation
policy

WebSphere Application Server V6 has a new built in component called High
Availability Manager (HAManager). This component is responsible for running
key services on available servers. Prior to V6, these key services ran on
dedicated servers and became single points of failure. Transaction Manager
(TM) recovery is one of the key services that take advantage of the HAManager
component to ensure that recovery of failed or in-doubt transactions can be done
by other servers in the cluster.
 Chapter 9. Configuring WebSphere Application Server for external clustering software 313

The Transaction Manager supports three different HA policies to achieve the
recovery of transaction logs in a highly available manner:

� One of N policy

This is the default style of peer recovery initiation. If an application server
fails, the HAManager selects another server to perform peer recovery
processing on behalf of the failed server.

� Static policy

This style of peer recovery must be explicitly configured. If an application
server fails, the operator can use the Administrative Console to select another
server to perform the recovery processing.

� No Operation policy

This style of peer recovery must be explicitly configured. It indicates that
external clustering software is monitoring the Transaction Manager and will
failover to an application server that is configured by the external clustering
software to perform the recovery processing.

Chapter 6, “WebSphere HAManager” on page 175, contains information about
Transaction Manager failover and specifically the effect of the One of N and
Static policies. In addition, the white paper Transactional high availability and
deployment considerations in WebSphere Application Server V6 provides an
excellent description of the One of N and Static policies. You can find this paper
at:

http://www.ibm.com/developerworks/websphere/techjournal/0504_beaven/
0504_beaven.html

This section concentrates on how to use the No Operation (NoOP) policy for TM
recovery.

The No Operation policy is used in situations where the customer requirements
dictate great control over when and where transaction log recovery occurs.
Some customers might want to store the WebSphere transaction logs on file
systems that allow only one system to mount at a time, for example the Journal
File System (JFS) of AIX. In such an environment, external clustering software is
necessary to make the WebSphere solution highly available. The external HA
software performs failure detection and controls the allocation of shared
resources such as shared file systems and IP addresses.
314 WebSphere Application Server V6: High Availability Solutions

http://www.ibm.com/developerworks/websphere/techjournal/0504_beaven/0504_beaven.html

9.6.1 Prerequisites for Transaction Manager with NoOP policy
There are several pre-requisites that need to be met prior to configuring the
Transaction Manager with the NoOP policy:

� Shared file system

In order for other cluster members to be able to perform transaction recovery,
the cluster members must have access to the transaction logs of the failed
server. If the cluster members are on different physical systems, then the file
system must be accessible from each system.

Another important consideration regarding the file system are the file locking
semantics. When a cluster member becomes unavailable, then the peer
cluster member that is elected to perform recovery must be able to exclusively
lock the transaction log to ensure data integrity. See 6.7.2, “Hot-failover of
Transaction Manager using shared file system” on page 206 for more
information about shared file systems and the requirements for TM.

� External clustering software

This software provides continuity to business applications. The software
typically provides functionality such as IP takeover, monitoring of applications,
starting and stopping applications, heartbeating and various other availability
functions. There are many clustering software vendors with products such as
IBM HACMP, Tivoli System Automation (TSA), Sun Cluster and VERITAS
Cluster Server.
 Chapter 9. Configuring WebSphere Application Server for external clustering software 315

9.6.2 Transaction Manager with No Operation policy scenario
In order to explain how to configure the Transaction Manager peer recovery with
the No Operation (NoOP) policy, we use the Trade 6 application in the topology
shown in Figure 9-20. In this sample topology, the WebSphere hardware
environment consists of two nodes and a shared file system. The cell contains
one cluster with two cluster members, one on each node. Each cluster member
has its own transaction log.

Figure 9-20 Sample topology for TM with NoOP policy

The scenario is as follows: one cluster member fails and the other cluster
member takes over the transaction log to perform a peer recovery of in-doubt
transactions. The NoOP policy indicates that external clustering software
controls the actions of selecting which cluster member performs the transaction
recovery and when this cluster member performs the recovery.

The example that we tested and that we describe here is an Active/Active
solution for hot failover/log recovery. This means that both cluster members are
actively running and processing transactions. When one cluster member fails,
then the external clustering software directs the other cluster member to perform
the recovery of the failing cluster member transaction log.

Our cluster name is TradeCluster, the cluster members are called TradeServer1
and TradeServer2.

The procedures needed to configure WebSphere and the external clustering
software are described in the sections that follow.

Cluster
Member1

Cluster
Member2

System A System B

Transaction
Manager

Transaction
Manager

/mnt/logs/TM1

/mnt/logs/TM2

WebSphere cluster

Shared
File System
316 WebSphere Application Server V6: High Availability Solutions

9.6.3 Configuring WebSphere for TM No Operation policy
First, install WebSphere on your nodes. See 9.4.2, “Installing WebSphere
Application Server Network Deployment” on page 306 for information. Then,
create your cluster. For detailed instructions on how to set up clusters in
WebSphere Application Server V6, see WebSphere Application Server V6
System Management and Configuration Handbook, SG24-6451.

When you have created your cluster, you need to enable the high availability
option for the transaction logs and make the transaction logs available to all the
cluster members. The recommended procedure to do this is as follows:

1. Stop the cluster members.

2. Enable high availability for the Transaction Manager.

3. Copy existing transaction logs to the new, shared directory.

4. Configure your servers to point to the new location for the transaction logs.

5. Create the No Operation policy for the Transaction Manager.

Enabling high availability for the Transaction Manager
After stopping the cluster members, you must tell the Transaction Manager that
you want all cluster members to have the ability to recover each others
transaction logs. To do this, go to Servers → Cluster → your_cluster and
select Enable high availability for persistent services (Figure 9-21). Do not
forget to save your changes.

Figure 9-21 Example of enabling for transaction log high availability
 Chapter 9. Configuring WebSphere Application Server for external clustering software 317

The affect of selecting this option is that each cluster member joins the HA group
associated with each cluster member’s Transaction Manager. In our example,
this means that TradeServer1 and TradeServer2 are both members of the HA
group that is associated with the Transaction Manager for TradeServer1.
Likewise, TradeServer1 and TradeServer2 are also members of the HA group
associated with the Transaction Manager for TradeServer2. The net affect of this
is that it enables each cluster member to be notified by the HAManager that it
can perform peer recovery for another cluster member. In the NoOP policy, this
notification is triggered by the external clustering software.

Copying existing transaction logs to the shared directory
After you have enabled the high availability for persistent services, you
determine the location of the transaction logs so that they are accessible by each
cluster member. There are several options available for how to perform this task,
depending on the operation system and storage device that you are using.

In our example, we used a Network Attached Storage (NAS) device and a Linux
operating system. We also used iSCSI to attach to the NAS and mounted the file
system. Our environment allowed us to have simultaneous access to the file
system from both systems in our topology.

In some environments, however, only one system can have mount access to the
device at one time. In this case, you need to create a mount resource in your
external clustering software and explicitly mount the shared device during the
failover. We discuss this further in 9.6.4, “Configuring external clustering software
for Transaction Manager No Operation policy recovery” on page 325.

For our example, we mounted our shared device onto the /shared file system
and put the logs into a directory called logs. We created two transaction log
directories, one for each cluster member: /shared/logs/TradeServer1 for the first
cluster member’s transaction log and /shared/logs/TradeServer2 for the second
cluster member’s transaction log.

When you have determined the location of the transaction logs, you have to
move any existing logs into the appropriate directory for the cluster member on
your shared file system. You also need to inform WebSphere about the location
of the transaction logs on the shared file system.

To move the existing logs, go to the following directory:

<install_root>/WebSphere/AppServer/profiles/profilename/tranlog/
cellname/nodename/servername/transaction

Copy both the tranlog and partnerlog subdirectories to the shared file system
directory that you created for your transaction logs.
318 WebSphere Application Server V6: High Availability Solutions

In our example, we copied these logs to the /shared/logs/TradeServer1/tranlog
and /shared/logs/TradeServer1/partnerlog directories.

Pointing the TM to the new location for the transaction logs
After you have moved the existing transaction logs to the shared file system, you
need to configure the location of each cluster members log in WebSphere. In the
Administrative Console:

1. Go to Servers → Application servers → your_server → Container
Services → Transaction Service as shown in Figure 9-22.

Figure 9-22 Way to configure the Transaction service
 Chapter 9. Configuring WebSphere Application Server for external clustering software 319

2. Enter the location of the transaction log on the shared file system into the
Transaction Log Directory field. In our example for our first cluster member
(TradeServer1), we entered the directory /shared/logs/TradeServer1 (see
Figure 9-23). You have to set the log directory for each member of the cluster.

Figure 9-23 Specify the transaction log location

3. Save your changes and make sure the configuration is synchronized to all
nodes.

Creating the No Operation policy for the Transaction Manager
The last configuration step is to create the No Operation policy for the
Transaction Manager.

Policies are associated with core groups. You can either configure your own core
groups or use the default one that is available for each cell. See 6.2, “Core group”
on page 177 for a discussion on core groups. In our example, we assume that
there is only the default core group.

HA groups and match criteria
The Transaction Manager registers himself as an HA group under a specific
naming convention. In order to set the policy to correlate to the Transaction
Manager, you must set policy match criteria that corresponds to the Transaction
Manager HA group. Table 9-1 on page 321 lists the naming convention for the
Transaction Manager HA group.
320 WebSphere Application Server V6: High Availability Solutions

Table 9-1 TM HA group naming conventions

In our example, there are two HA groups associated with our Transaction
Managers. The first HA group is associated with the Transaction Manager for our
first cluster member (TradeServer1) and has the following HA group name:

GN_PS=myCell\myNode01\TradeServer1,IBM_hc=myCluster,type=WAS_TRANSACTIONS

The second HA group is associated with the Transaction Manager for our second
cluster member (TradeServer2) and has the following HA group name:

GN_PS=myCell\myNode02\TraderServer2,IBM_hc=myCluster,type=WAS_TRANSACTIONS

The Administrative Console allows to see all HA groups that exist for your
WebSphere environment. While the cluster members are started, go to the
Administrative Console and click Servers → Core groups → Core group
settings → DefaultCoreGroup. Select the Runtime tab, and click Show
groups. This displays all existing HA groups and the name of each group.
Remember that HA groups are only alive at runtime, so the cluster members
must be started for this panel to show the desired content. Figure 9-24 on
page 322 shows the HA group list for our environment.

Name Value

GN_PS cellname\nodename\servername

IBM_hc clustername

type WAS_TRANSACTIONS
 Chapter 9. Configuring WebSphere Application Server for external clustering software 321

Figure 9-24 List of active HA groups
322 WebSphere Application Server V6: High Availability Solutions

Creating the HA policy
Now that we understand how the Transaction Manager HA group is named, we
need to define an HA policy that matches the HA group. To set the HA policy:

1. Go to Servers → Core groups → Core group settings →
DefaultCoreGroup and click Policies.

Figure 9-25 Create TM NoOP policy

2. Click New to create a new policy.

3. Select No operation policy as the policy type and click Next.

4. Enter a name for the policy. In our example, we named our policy Cluster TM
Ext Cluster Sfw.

5. Click OK. Figure 9-26 on page 324 shows the resulting panel.
 Chapter 9. Configuring WebSphere Application Server for external clustering software 323

Figure 9-26 Create NoOP policy for TM HA group

Next click Match criteria in the Additional Properties section. This allows you to
set the match criteria needed to associate this policy with an HA group.
Specifically, we want to match the HA group for the Transaction Manager. If you
refer back to the paragraph above on the naming convention for the Transaction
Manager HA group, you can see that there are three parts to the name: GN_PS,
IBM_hc, and type.

We want to define one policy that matches all Transaction Manager HA groups in
the cluster. Therefore, we do not include the GN_PS part of the Transaction
Manager HA group, because it has a value that is specific for each cluster
member. If we were to include GN_PS as part of the match criteria, then we
would have to define a NoOP policy for each cluster member. If we however do
not include GN_PS then we can define one policy and have it match all the
Transaction Manager HA groups in the cluster. Therefore, we include only the
type and the IBM_hc values as match criteria for the new No Operation policy. In
our example, the match criteria we want to define are type=WAS_TRANSACTIONS
and IBM_hc=TradeCluster.

To do this:

1. Click New.

2. Enter type as the Name and WAS_TRANSACTIONS as the Value. Click OK.
324 WebSphere Application Server V6: High Availability Solutions

3. Create the second match criteria by clicking New again.

4. Enter IBM_hc as the Name and TradeCluster as the Value. Click OK.

Figure 9-27 shows the result.

Figure 9-27 Create match criteria for TM NoOP policy

Save your changes and make sure your configuration is synchronized to all
nodes.

We have finished configuring WebSphere for the Transaction Manager No
Operation recovery policy. Now, we must configure the external clustering
software to control the operations of the failover.

9.6.4 Configuring external clustering software for Transaction
Manager No Operation policy recovery

This section discusses how to configure external clustering software for the
Transaction Manager No Operation policy recovery. The section does not
describe any specific cluster software but discusses configuring a generic cluster
software. The remaining chapters in this part of the book discuss how to
configure the specific clustering software.

Important: Do not attempt to start your cluster members with the Transaction
Manager No Operation policy defined until you have completed configuring
the external clustering software!
 Chapter 9. Configuring WebSphere Application Server for external clustering software 325

Terminology
In order to generically discuss how to configure any clustering software for the
TM NoOP policy, we first describe a common set of clustering software
components:

� Resource

This is an entity that can failover. A resource has a type and is started,
stopped and monitored. Typically, the resource types include an application
type, an IP type, and a file system type. Some clustering software allows the
definition of custom resource types.

� Failover unit

This is a group of resources that make up an application and typically failover
as a group. Some resources in the group are configured as critical and if one
of these resources fails, the entire group fails over.

� Dependency

This is a linkage between resources within a group and within groups. For
example, a dependency can indicate the starting order of resources (that is:
the file system must be mounted prior to the application starting) or indicate
the starting order of groups (that is: application group A has to start before
starting group B).

Clustering software tasks
When the TM is configured with the NoOP recovery policy, several functions
must be coordinated with the external clustering software. These functions are:

� The startup of a cluster member that is configured with the TM NoOP
recovery policy halts prior to completion of the start. The startup of the cluster
member is halted until the HAManager is notified, via an MBean call, that it
can continue. The reason for halting the cluster member startup allows the
external clustering software to ensure all the dependant resources are online
and available on the system that is hosting the cluster member. This allows
any dependent file system to be mounted.

� Monitoring a specific cluster member’s TM and when it becomes unavailable,
moving any dependent resources to another system and then notifying the
cluster member on the other system that it can perform the recovery for the
cluster member that is unavailable.

These tasks are illustrated in Figure 9-28 on page 327.
326 WebSphere Application Server V6: High Availability Solutions

Figure 9-28 Failover units and resources actions

In order to achieve these functions, the external clustering software must be
configured with the following units of work, resources and dependencies:

1. Start Server failover unit

This failover unit is responsible for ensuring that the application server starts
up and stays up on each system in the cluster. This failover unit is defined as
an Active/Active failover unit which means that the failover units start the
servers up simultaneously on each system in the cluster and that there is no
failover from one system to another when a server is down. If the monitoring
programs notice that a critical resource in not available, an attempt is made to
restart it on the system that is defined to host the resource. This failover unit
consists of two resources:

a. Start, stop, and monitor the Node Agent. This resource is defined as an
application resource. The start and stop programs are invocations of the
WebSphere startNode and stopNode commands. The monitoring is done
by either specifying the process ID that needs to be active or by
monitoring a port that the Node Agent listens on to ensure that it is
listening. The specific monitoring technique used depends on the
functionality provided by the external clustering software and is thus
described in the individual chapter for the cluster software. This resource
starts, stops, and monitors the Node Agents on each system in the cluster.
Typically, this resource is not deemed as critical to this failover unit, which
means that the Node Agent can be unavailable and the clustering
software does not attempt to restart it. This is because the cluster

Cluster
Member1

Cluster
Member2

System A System B

Transaction
Manager

Transaction
Manager

/mnt/logs/TM1
/mnt/logs/TM2

WAS Cluster

Servers Unit of Work
Node Agent Resource
Cluster Member Resource

TM for Cluster Member1 Unit of Work
Mount FS Resource
TM for Cluster Member1 Resource

TM for Cluster Member2 Unit of Work
Mount FS Resource
TM for Cluster Member1 Resource

start,stop,monitor

start,stop,monitor

start,stop,monitor

start,stop,monitor

start,stop,monitor

activate recovery

activate recovery

mount

mount

Shared
File

System

start,stop,monitor
 Chapter 9. Configuring WebSphere Application Server for external clustering software 327

members can still process runtime requests without the Node Agent being
active.

b. Start, stop, and monitor the cluster member. This resource is defined as
an application resource. As mentioned above, when a cluster member that
has the TM NoOP recovery policy defined starts up, it goes into a halt
state until the HAManager is notified. The objective of this resource is to
initiate the starting of the cluster members and then return with a
successful return code so the cluster software does not try to restart or
failover the application server. In order to do this, the start, stop, and
monitor programs are invocations of the wasctrl-as script (see “Scripts to
start, stop, and monitor WebSphere resources” on page 331). This script
invokes the startServer command with a timeout parameter so that it only
waits for a specific amount of time and then ensures that a return code of
success is returned. This resource has a dependency on the Node Agent
resource which must have completed its starting before this resource can
start.

2. TM for Cluster Member1 failover unit

This failover unit cannot start until the Start Server failover unit has completed
its start. This failover unit is defined as a Active/Passive or Primary/Backup
resource. This means that it is only active on a single system at one time.
When the monitoring determines that a resource is unavailable, then the
failover unit is failed over to the Standby/Backup system. The primary system
for this failover unit is the system where Cluster Member1 is hosted. This
failover unit consists of two resources:

a. Mount the dependant file system. This resource is defined as a file system
resource. It mounts the file system where the Transaction Manager log is
stored.

b. Activate, deactivate, and monitor the TM for Cluster Member1. This
resource is defined as an application resource. This resource uses the
wasctrl-tm script to perform its functions. It has different invocation strings
registered for the primary and the secondary systems. The primary system
is the system hosting the Transaction Manager for the cluster member (in
this case the Transaction Manager for Cluster Member1). The secondary
system is the system hosting the cluster member that is defined to perform
the peer recovery. This resource performs the following functions:

i. It activates the Transaction Manager for the cluster member. If the
cluster member is in initial start, the activate allows the cluster member
to complete its startup processing. This action happens when the
resource runs on the cluster members’ hosting system.

ii. It activates the Transaction Manager recovery for another cluster
member. If the primary cluster member fails, then this resource tells
328 WebSphere Application Server V6: High Availability Solutions

another cluster member’s Transaction Manager to perform the peer
recovery of the transactions of the failed cluster member.

iii. It deactivates the Transaction Manager. If it runs on the primary
system, then it does nothing. This is because the Transaction Manager
does not allow itself to be deactivated when it is active on its primary
system. If it is run against the secondary system, then the deactivate
indicates that the Transaction Manager of the secondary cluster
member is not to perform any more recovery.

iv. It monitors the status of the Transaction Manager.

3. TM for Cluster Member2 failover unit

This failover unit cannot start until the Start Server failover unit has completed
its start. This failover unit is defined as a Active/Passive or Primary/Backup
resource. This means that it is only active on a single system at one time.
When the monitoring determines that a resource is unavailable, then the
failover unit is failed over to the Standby/Backup system. The primary system
for this failover unit is the system where Cluster Member2 is hosted. This
failover unit consists of two resources:

a. Mount the dependant file system. This resource is defined as a file system
resource. It mounts the file system where the Transaction Manager log is
stored.

b. Activate, deactivate and monitor the TM for Cluster Member2. This
resource is defined as an application resource. This resource uses the
wasctrl-tm script to perform its functions. It has different invocation strings
registered for the primary and the secondary systems. The primary system
is the system hosting the Transaction Manager for the cluster member (in
this case the Transaction Manager for Cluster Member2). The secondary
system is the system hosting the cluster member that is defined to perform
the peer recovery. This resource performs the following functions:

i. It activates the Transaction Manager for the cluster member. If the
cluster member is in initial start, the activate allows the cluster member
to complete its startup processing. This action happens when the
resource runs on the cluster members’ hosting system.

ii. It activates the Transaction Manager recovery for another cluster
member. If the primary cluster member fails, then this resource tells
another cluster member’s Transaction Manager to perform the peer
recovery of the transactions of the failed cluster member.

iii. It deactivates the Transaction Manager. If it runs on the primary
system, then it does nothing. This is because the Transaction Manager
does not allow itself to be deactivated when it is active on its primary
system. If it is run against the secondary system, then the deactivate
 Chapter 9. Configuring WebSphere Application Server for external clustering software 329

indicates that the Transaction Manager of the secondary cluster
member is not to perform any more recovery.

iv. It monitors the status of the Transaction Manager.

The chapters that follow provide examples of Transaction Manager No Operation
policy configurations for a specific set of clustering software products (IBM
HACMP, TSA, VERITAS Cluster Server, and Sun Cluster).

Monitoring resources
Most external clustering software requires the ability to monitor resources. In the
context of these scenarios the desired resources to manipulate are the
WebSphere Application Server highly available singleton services managed by
the HAManager. Examples of such WebSphere groups or singletons are the
Transaction Manager and messaging engines.

The singleton service resources can be manipulated in a variety of ways. The
HAManager makes the singleton services/groups accessible via its MBeans.
Among other functions the MBeans provide the ability to activate, deactivate, and
query. See the HAManager.html document in <install_root>/web/mbeanDocs for
more information.

Another approach is to use a wsadmin script to check if the group is active on the
local cluster member but there are several problems with this approach. Ideally,
this monitoring should have no impact on the running server, that is, it should use
as little server resources as possible. The wsadmin utility starts a JVM and then
loads many classes before actually executing the script. It can take as long as 20
to 30 seconds before wsadmin executes the script, and during this time, the utility
might take 100% CPU. Obviously, this is not a lightweight monitor capability. It
also takes around 30 seconds on an unloaded server. If one chooses to monitor
every 10 seconds (or less) then this approach does not work.

Some of the overhead with wsadmin can be avoided by writing a Java JMX client
to execute the same commands but this is still a JVM start and again many Java
classes are loaded. It would still take several seconds of CPU time to run.

HAMonitorWeb application
Another alternative, very lightweight, approach for monitoring whether a group is
active on the local cluster member is to use a servlet. We wrote a servlet which
we deployed to the WebSphere cluster being monitored.

The HAMonitorWeb application (hamonitor.ear file) - together with the scripts
explained in the next section - can be downloaded from the redbook repository.
See Appendix B, “Additional material” on page 603 for download and installation
instructions.
330 WebSphere Application Server V6: High Availability Solutions

The servlet performs the following functions:

ActivateLocalGroupMember(String groupName, int state)

This sets the state of the local group member to either active (1) or idle (0).

QueryLocalGroupState(String groupName)

This returns the state for the local group for the specified group.

The servlet takes the name of the group to be used. The group name is a
comma-delimited string with the group name. For example, the group name of a
Transaction Manager group would look similar to the following:

GN_PS=myCell\myNode01\TraderServer1,IBM_hc=myCluster,type=WAS_TRANSACTIONS

This example is the group name for the Transaction Manager resource for cluster
member TraderServer1 in the cluster myCluster. For more information about HA
group names see Table 9-1 on page 321.

As part of the lightweight monitoring, the servlet can be invoked by a Perl script.
In our case, the servlet is invoked by the support scripts mentioned below.

The benefit of Perl is almost zero startup time and processor usage during the
monitor operation. This monitor can be used with high frequency while putting
very low load on the server.

Scripts to start, stop, and monitor WebSphere resources
To interact with the HAManager singleton services and other associated
WebSphere Application Server resources, we wrote a set of generic scripts that
most external clustering software can use without much variation.

In total there are five scripts, which are listed in Table 9-2 on page 332. They can
be separated into two categories:

� Main control scripts
� Support scripts

The control scripts perform all of the main control and call the underlying support
scripts for minor activities. Although we give details of their function, the
clustering software does not directly invoke the support scripts.
 Chapter 9. Configuring WebSphere Application Server for external clustering software 331

Table 9-2 Scripts listing

Main control scripts
The main script for HA control is known as wasctrl-tm. The script takes a set of
parameters that can be broken down into a hierarchy of purposes. The
categories are Action, Connectivity, Match Criteria, and Host information. The
action category indicates the action the script should do when it runs.
Connectivity relates to the TCP network connectivity. Match criteria are the
name/value pairs for IBM_hc and type. The fully qualified match criteria consist of
the name/value pairs along with the cell name, node name, server name
described in the Host info parameters. See Table 9-3 on page 333 for a
description of wasctrl-tm.

Name Description

Example 9-4 wasctrl-tm Starts, stops, or returns status on a
HAManager resource group.

Example 9-5 wasctrl-as Starts, stops, or returns status on an
application server instance.

Example 9-6 controlHA.pty The wsadmin script invoked by wasctrl-tm.
Although accessible, this script is not
normally called by the user.

Example 9-7 activategroup.pl Attaches to the HTTP client on the local
cluster member of the server and calls the
ActivateLocalGroupMember method.

Example 9-8 deactivategroup.pl Attaches to the HTTP client on the local
cluster member of the server and calls the
ActivateLocalGroupMember() method.

Example 9-9 monitorgroup.pl Attaches to the HTTP client on the local
cluster member of the server and calls
QueryLocalGroupState() method.
332 WebSphere Application Server V6: High Availability Solutions

Table 9-3 wasctrl-tm

Name wasctrl-tm
This script starts, stops, or returns the status of a HAManager resource
group.

Example wasctrl-tm start
/opt/IBM/WebSphere/AppServer/profiles/wasNode01/ 9080 systemb
8879 IBM_hc=TradeCluster,type=WAS_TRANSACTIONS WASCell04
TradeServer2 /usr/bin/WAS_HA_SCRIPTS/ systembNode01

Parameter
Description

� Action: The first parameter indicates whether to start, stop, or
monitor the HA resource group.

� Connectivity: The third and fourth parameters are the host name
and port for the servlet that is installed on the cluster member to
perform the MBean actions. The fifth parameter is the wsadmin
binding (SOAP) port. When activating against a cluster member that
is not started (the primary cluster member), the script uses a JACL
script and this is the SOAP port against which to run wsadmin and
the JACL script.

� Match Criteria: The sixth parameter is part of the match criteria for
selecting which TM to work against.

� Host info: The second parameter is the install directory for the node.
The seventh parameter is the WebSphere cell name. The eight
parameter is the name of the application server. The tenth
parameter is the name of the node that hosts the WebSphere
Application Server. The seventh, eight and tenth parameter are
actually part of the match criteria and must always point to the TM's
original cell/node/application server. The ninth parameter is a
pointer to where the scripts are installed.

Return
values

The script prints different values depending on the action specified:

� start

– 0 returned if started ok
– 42 returned if there was a problem

� stop

– 0 returned if started ok
– 42 returned if there was a problem

� monitor

– 110 returned if the resource is online
– 100 returned if the resource is offline
 Chapter 9. Configuring WebSphere Application Server for external clustering software 333

The main script for WAS application server control is known as wasctrl-as and is
explained in Table 9-4.

Table 9-4 wasctrl-as

Name wasctrl-as
This script starts, stops, or returns the status of an application server
instance.

Example start /opt/IBM/WebSphere/AppServer/profiles/wasNode01/ 9080
TradeServer2

Parameter
Description

The first parameter is the action and indicates to start the application
server. The second parameter is the installation directory of the
WebSphere node. The third parameter is the WebSphere Application
Server’s listening port. It is queried to determine if the application server
is available. The fourth parameter is the name of the WebSphere
application server to act upon.

Be advised that case matters when specifying the application server
name.

Return
values

The script prints different values depending on the action specified.

� start

– 0 returned if started ok

� stop

– 0 returned if stopped ok
– 246 returned if there was a timeout problem and the stop server

never executed

� monitor

– 110 returned if the resource is online
– 100 returned if the resource is offline
334 WebSphere Application Server V6: High Availability Solutions

Support scripts
There are four support scripts, controlHA.pty, activategroup.pl,
deactivategroup.pl, and monitorgroup.pl. These scripts are explained in the
tables that follow.

Table 9-5 controlHA.pty

Table 9-6 activategroup.pl

Name controlHA.pty

Example wsadmin.sh -conntype SOAP -host TradeServer2 -port $HOST_PORT
-lang jython -f /usr/bin/WAS_HA_SCRIPTS/controlHA.pty activate
ms=GN_PS=WASCell04\systembNode01\systemb,IBM_hc=TradeCluster,t
ype=WAS_TRANSACTIONS

Parameter
Description

There are two sets of parameters involved in invoking the controlHA
script. The first set are for wsadmin, the second set are the parameters
used by the script itself.

� wsadmin parameters

The first parameter is the type of connection to use with wsadmin.
The second parameter is the host. The third parameter is the port.
The fourth parameter is the type of script being passed to wsadmin.
The fifth parameter is the fully qualified name of the script.

� Script parameters

The first parameter is the action to invoke on the HA group. The
second parameter is criteria used to find the proper HA group.

Name activategroup.pl

Example perl activategroup.pl WASCell04 wasNode01 TradeCluster
TradeServer2 9080 IBM_hc=myCluster,type=WAS_TRANSACTIONS

Parameter
Description

The first parameter is the WebSphere cell name.
The second parameter is the WebSphere node name.
The third parameter is the WebSphere cluster name.
The fourth parameter is the WebSphere application server name.
The fifth parameter is the WebSphere application server listening port.
The sixth parameter is the match criteria for the group.
 Chapter 9. Configuring WebSphere Application Server for external clustering software 335

Table 9-7 deactivategroup.pl

Table 9-8 monitorgroup.pl

The scripts
This section shows the full scripts. You can download these scripts from the
redbook repository. See Appendix B, “Additional material” on page 603 for
instructions on how to obtain the scripts.

Example 9-4 shows the wasctrl-tm script.

Example 9-4 wasctrl-tm

#!/bin/ksh
##
#
was HA service automation control script
#
Input:
$1 action (<start|stop|status>)
$2 na_home, the nodeagent's home directory USER_INSTALL_ROOT
$3 as_tcpp, the applicationServer's listening port (WC_defaultHost)
$4 host_name, name of the system that is hosting the application server
$5 host_port, SOAP_CONNECTOR_ADDRESS port of the application server
$6 matchingCriteria, HA policy matching criteria for the NOOP Policy

Name deactivategroup.pl

Example perl deactivategroup.pl WASCell04 wasNode01 TradeCluster
TradeServer2 9080 IBM_hc=myCluster,type=WAS_TRANSACTIONS

Parameter
Description

The first parameter is the WebSphere cell name.
The second parameter is the WebSphere node name.
The third parameter is the WebSphere cluster name.
The fourth parameter is the WebSphere application server name.
The fifth parameter is the WebSphere application server listening port.
The sixth parameter is the match criteria for the group.

Name monitorgroup.pl

Example perl monitorgroup.pl WASCell04 wasNode01 TradeCluster
TradeServer2 9080 IBM_hc=myCluster,type=WAS_TRANSACTIONS

Parameter
Description

The first parameter is the WebSphere cell name.
The second parameter is the WebSphere node name.
The third parameter is the WebSphere cluster name.
The fourth parameter is the WebSphere application server name.
The fifth parameter is the WebSphere application server listening port.
The sixth parameter is the match criteria for the group.
336 WebSphere Application Server V6: High Availability Solutions

$7 cell_name, name of the cell that is hosting the application server
$8 servername, name of the application server or cluster member.
$9 script_path, directory that contains the scripts (Perl scripts and
tmHA.pty)
$10 nodename, name of the WAS node that is hosting the application server
(for ex: mySystemNode01)
#
##
#
init section
#

UNKNOWN=0
ONLINE=110
OFFLINE=100

Action=${1:-status}
NA_HOME=$2
AS_TCPP=$3
HOST_NAME=$4
HOST_PORT=$5
CRITERIA=$6
CELL_NAME=$7
SERVER_NAME=$8
SCRIPT_PATH=$9
NODENAME="${10}"

export
PATH=$PATH:/bin:/usr/bin:/sbin:/usr/sbin:/usr/sbin/rsct/bin:${NA_HOME}/bin

#
#

case ${Action} in
 start)
 AS_UP=`netstat -lnt | grep :${AS_TCPP}`
 if ["${AS_UP}" != ""]; then
 print "Application Server is up so run the perl script"
 RetC=`perl $SCRIPT_PATH/activategroup.pl ${CELL_NAME}
${NODENAME} ${SERVER_NAME} ${AS_TCPP} ${CRITERIA}|awk '{print $1}'`
 # rcs must be tested!!
 if [$RetC == "<OK/>"]; then
 RC=0
 else
 RC=42
 fi
 Chapter 9. Configuring WebSphere Application Server for external clustering software 337

 print "Transaction manager start rc: ${RC}"
 else
 print "Application Server is down so run the wsadmin
command"
 wsadmin.sh -conntype SOAP -host $HOST_NAME -port $HOST_PORT
-lang jython -f $SCRIPT_PATH/controlHA.pty activate ${CRITERIA}
 fi
 ;;
 stop)
 RetC=`perl $SCRIPT_PATH/deactivategroup.pl ${CELL_NAME}
${NODENAME} ${SERVER_NAME} ${AS_TCPP} ${CRITERIA} |awk '{print $1}'`
 # rcs must be tested!!
 if [$RetC == "<OK/>"]; then
 RC=0
 else
 RC=42
 fi
 print "Transaction manager stop rc: ${RC}"
 ;;
 status)
 print "Requesting status"
 RetC=`perl $SCRIPT_PATH/monitorgroup.pl ${CELL_NAME}
${NODENAME} ${SERVER_NAME} ${AS_TCPP} ${CRITERIA} `
 # rcs must be tested!!
 print "Status = ${RetC}"
 if [$RetC == "<ACTIVE/>"]; then
 RC=$ONLINE
 else
 RC=$OFFLINE
 fi

 print "Transaction manager status rc: ${RC}"
 ;;
 *)
 print "Error: Incorrect parameter >${Action}<"
 RC=${UNKNOWN}
 ;;
esac

exit ${RC}
338 WebSphere Application Server V6: High Availability Solutions

Example 9-5 shows the wasctrl-as script.

Example 9-5 wasctrl-as

#!/bin/ksh
##
#
was applicationServer automation control script
#
Input:
$1 action (<start|stop|status>)
$2 na_home, the nodeagent's home directory
USER_INSTALL_ROOT
$3 as_tcpp, the applicationServer's listening port
$4 server_name, name of the applicationServer
#
##
#
init section
#

SCEN3="yes"

UNKNOWN=0
ONLINE=110
OFFLINE=100

Action=${1:-status}
NA_HOME=$2
AS_TCPP=$3
SERVER_NAME=$4

export
PATH=$PATH:/bin:/usr/bin:/sbin:/usr/sbin:/usr/sbin/rsct/bin:${NA_HOME}/bin

#
#

case ${Action} in
 start)
 startServer.sh ${SERVER_NAME} -timeout 180 > /dev/null 2>&1
 RC=0;
 print "ApplicationServer start rc: ${RC}"
 ;;
 stop)
 stopServer.sh ${SERVER_NAME} -timeout 180 -trace > /dev/null
2>&1
 RC=$?
 if [$RC -eq 0]; then
 Chapter 9. Configuring WebSphere Application Server for external clustering software 339

 print "$ApplicationServer stop rc: ${RC}"
 elif [$RC -eq 246]; then
 print "$ApplicationServer stop rc: ${RC} (applicationServer
did not run)."
 else
 print "$ApplicationServer stop rc: ${RC}"
 AS_pid=`cut -f1
$NA_HOME/logs/${SERVER_NAME}/${SERVER_NAME}.pid`
 kill -9 ${AS_pid} > /dev/null 2>&1
 print "$ApplicationServer (pid ${AS_pid}) killed."
 fi
 ;;
 status)

 AS_UP=`netstat -lnt | grep :${AS_TCPP}`
 if ["${AS_UP}" != ""];
 then
 RC=$ONLINE
 else
 RC=$OFFLINE
 fi
 ;;
 *)
 print "Error: Incorrect parameter >${Action}<"
 RC=${UNKNOWN}
 ;;
esac
print "exiting with return code >${RC}<"
exit ${RC}

Example 9-6 shows the controlHA.pty support script.

Example 9-6 controlHA.pty

#This jython script is used to activate a HA service being managed by an HA
cluster. The HA cluster decides which machine the HA service should be
activated on and runs a script on that machine. The script invoked by the HA
cluster should be a shell script (bat file) that runs wsadmin targetting the
server that it wants the HA service to run on. This is achieved by setting the
host and port in the wsadmin conntype. The shell script (bat file) therefore
needs to be specialised on each node in the HA cluster.

For example: Two machines in a cluster each have a shell script called
"controlscript" and each wants to activate an HA singleton service
<-------------- "controlscript" ------------>
machine 1: invoke wsadmin on server1's host and port : wsadmin -conntype SOAP
-host mach1 -port 8880 -lang jython controlHA.pty activate
IBM_hc=myCluster,type=WAS_TRANSACTIONS
340 WebSphere Application Server V6: High Availability Solutions

The controlHA will activate <meName> in the server to which wsadmin is
connected

machine 2: invoke wsadmin on server2's host and port: wsadmin -conntype SOAP
-host mach2 -port 8881 -lang jython controlHA.pty activate
IBM_hc=myCluster,type=WAS_TRANSACTIONS
The controlHA script will activate <meName> in the server to which wsadmin is
connected

#The controlHA script is passed the name of the cluster and the group type
"WAS_TRANSACTIONS" to indicate transaction manager and starts the service in
the server process to which wsadmin is connected. It does this by finding the
local HAManager MBean and calling the relevant operation on the MBean, e.g. for
action==start, it calls activateMember()

from com.ibm.ws.hamanager import AttributeNamesMemberProps
Print usage information
def printHelp():
 print "Usage: controlHA <action> <matchingcriteria> where action is one
of {start|stop|monitor} and matchingcriteria is the HA policy matching criteria
to perform the action against (for example
IBM_hc=myCluster,type=WAS_TRANSACTIONS)"
 return

Get the HAManager MBean for the specified server.
def getServerHAMProxy(servername):
 strObjectName =
AdminControl.queryNames("type=HAManager,process="+servername+",*")
 objectName = AdminControl.makeObjectName(strObjectName)
 mb = TypedProxy.makeProxy(AdminControl, objectName,
"com.ibm.websphere.hamanager.jmx.CoordinatorJMX")
 return mb
Find the group for the specified service and the status of its members
def getHAGroup(matchingCrit):
 global gHAM

matchSet="GN_PS="+cell+"\\"+node+"\\"+server+","+matchingCrit
 print matchSet
 gs={}
 gs = gHAM.queryGroupState(matchSet,1,1)

#Should be only one HAGroup that matches.
if (len(gs) < 1):

 print "There is no HAGroup for "+matchingCrit
 return {}
 elif (len(gs) > 1):
 print "There are multiple HAGroups for "+matchingCrit

 return {}
else:
 Chapter 9. Configuring WebSphere Application Server for external clustering software 341

 # There is one HAGroup for the match criteria
 groupName = gs[0].getGroupName()
return groupName

START

global gHAM
if (len(sys.argv) ==2):
 action = sys.argv[0]
 matchingCrit = sys.argv[1]

else:
 printHelp()
 sys.exit(1)

Find out which cell and node and server we are running in.
node = AdminControl.getNode()
cell = AdminControl.getCell()

print "node is "+node
print "cell is "+cell
serverMBean = AdminControl.queryNames('processType=ManagedProcess,*')
server = AdminControl.getAttribute(serverMBean,'name')

print "server is "+server

Connect to the HAM MBean in the specified server
If that server is not running then the operation won't work anyway so give up
gHAM = {}
gHAM = getServerHAMProxy(server)
if (gHAM == {}):

print "Cannot connect to HAManager MBean, giving up"
sys.exit(1)

Locate the HAGroup for the service
haGroup = {}
haGroup = getHAGroup(matchingCrit)
if (haGroup == {}):
 print "Cannot identify HAGroup for "+matchingCrit+": giving up"

sys.exit(1)

if (action == 'activate'):
 print "Attempting to activate " +matchingCrit+" on server
"+node+"."+server
 # Activate the local member
 gHAM.activateMember(haGroup,node,server)
elif (action == 'deactivate'):
342 WebSphere Application Server V6: High Availability Solutions

 print "Attempting to deactivate "+matchingCrit+" on server
"+node+"."+server
 # Activate the local member
 gHAM.deactivateMember(haGroup,node,server)
elif (action == 'monitor'):
 print "Monitor action not yet implemented!!!"
else:
 printHelp()
 sys.exit(1)

Example 9-7 shows the activategroup.pl support script.

Example 9-7 activategroup.pl

#
Invocation:
perl activategroup.pl cellname nodename clustername servername [portnumber]
where:
cellname is the name of the cell that contains the application
server or cluster member
nodename is the name of the node that contains the application
server or cluster member
servername is the name of the server or cluster member that
requires the group to be activated.
portnumber is the port number of the application that is doing
the activation.
matching is the HA matching criteria for the policy (for example
IBM_hc=myCluster,type=WAS_TRANSACTIONS)
#

require HTTP::Request;
require LWP::UserAgent;
use Sys::Hostname;

if (@ARGV != 5) {
 print "Illegal number of arguments";
} else {
 $CELLNAME= $ARGV[0];
 $NODENAME = $ARGV[1];
 $SERVERNAME = $ARGV[2];
 $PORTNAME = $ARGV[3];
 $MATCHING = $ARGV[4]
}

my $hostname = hostname();
my $getrequest =
'http://'.$hostname.":".$PORTNAME."/HAMonitorWeb/ActivateLocalGroupMember?ms=GN
_PS=".$CELLNAME."\\".$NODENAME."\\".$SERVERNAME.",".$MATCHING."&s=a";
 Chapter 9. Configuring WebSphere Application Server for external clustering software 343

$request = HTTP::Request->new(GET => $getrequest);

$ua = LWP::UserAgent->new();
$response = $ua->request($request);
if ($response->is_success) {
 $result = $response->content;
 if(index($result, "<OK/>", 0) >= 0)
 {
 print "<OK/>";
 }
 else
 {
 print "<NOT OK/>";
 }
}
else
{
 print "1";
 print STDERR $response->status_line, "\n";
}

Example 9-8 shows the deactivategroup.pl support script.

Example 9-8 deactivategroup.pl

#
Invocation:
perl deactivategroup.pl cellname nodename clustername servername [portnumber]
where:
cellname is the name of the cell that contains the application server or
cluster member
nodename is the name of the node that contains the application server or
cluster member
servername is the name of the server or cluster member that requires the
group to be deactivated.
portnumber is the port number of the application that is doing the
deactivation.
matching is the HA matching criteria for the policy (for example
IBM_hc=myCluster,type=WAS_TRANSACTIONS)
#

require HTTP::Request;
require LWP::UserAgent;
use Sys::Hostname;

if (@ARGV != 5) {
 print "Illegal number of arguments";
} else {
344 WebSphere Application Server V6: High Availability Solutions

 $CELLNAME= $ARGV[0];
 $NODENAME = $ARGV[1];
 $SERVERNAME = $ARGV[2];
 $PORTNUMBER = $ARGV[3];
 $MATCHING = $ARGV[4]
}

my $hostname = hostname();
my $getrequest =
'http://'.$hostname.":".$PORTNUMBER."/HAMonitorWeb/ActivateLocalGroupMember?ms=
GN_PS=".$CELLNAME."\\".$NODENAME."\\".$SERVERNAME.",".$MATCHING."&s=d";

$request = HTTP::Request->new(GET => $getrequest);

$ua = LWP::UserAgent->new();
$response = $ua->request($request);
if ($response->is_success) {
 $result = $response->content;
 if(index($result, "<OK/>", 0) >= 0)
 {
 print "<OK/>";
 }
 else
 {
 print "<NOT OK/>";
 }
print $result;
}
else
{
 print "1";
 print STDERR $response->status_line, "\n";
}

Example 9-9 shows the monitorgroup.pl support script.

Example 9-9 monitorgroup.pl

#
Invocation:
perl monitorgroup.pl cellname nodename clustername servername [portnumber]
where:
cellname is the name of the cell that contains the application server or
cluster member
nodename is the name of the node that contains the application server or
cluster member
servername is the name of the server or cluster member that requires the
group to be activated.
 Chapter 9. Configuring WebSphere Application Server for external clustering software 345

portnumber is the port number of the application that is doing the
activation.
matching is the HA matching criteria for the policy (for example
IBM_hc=myCluster,type=WAS_TRANSACTIONS)
#

require HTTP::Request;
require LWP::UserAgent;
use Sys::Hostname;

if (@ARGV != 5) {
 print "Illegal number of arguments";
} else {
 $CELLNAME= $ARGV[0];
 $NODENAME = $ARGV[1];
 $SERVERNAME = $ARGV[2];
 $PORTNUMBER = $ARGV[3];
 $MATCHING = $ARGV[4]
}

my $hostname = hostname();
my $getrequest =
'http://'.$hostname.":".$PORTNUMBER."/HAMonitorWeb/QueryLocalMemberState?ms=GN_
PS=".$CELLNAME."\\".$NODENAME."\\".$SERVERNAME.",".$MATCHING."&s=a";

$request = HTTP::Request->new(GET => $getrequest);

$ua = LWP::UserAgent->new();
$response = $ua->request($request);
if ($response->is_success) {
 $result = $response->content;
 if(index($result, "<ACTIVE/>", 0) >= 0)
 {
 print "<ACTIVE/>";
 }
 else
 {
 print "<INACTIVE/>";
 }
}
else
{
 print "1";
 print STDERR $response->status_line, "\n";
}

346 WebSphere Application Server V6: High Availability Solutions

9.7 Default messaging provider failover with No
Operation policy

The messaging engine (ME) component of the default messaging provider is one
of the key services that take advantage of the HAManager to ensure that failover
of failed messaging engines can occur to other servers in the cluster. The default
messaging provider supports three different HA policies to achieve the failover of
a ME in a highly available manner:

� One of N policy

This is the default style of peer recovery initiation. If an application server
fails, the HAManager selects another server to perform peer recovery
processing on behalf of the failed server.

� Static policy

This style of peer recovery must be explicitly configured. If an application
server fails, the operator can use the Administrative Console to select another
server on which to activate the ME.

� No Operation policy

This style of peer recovery must be configured explicitly. It indicates that
external clustering software is monitoring the messaging engine and will
failover to an application server that is configured by the external clustering
software to perform the further messaging processing.

Chapter 12 of the IBM WebSphere V6 Scalability and Performance Handbook,
SG24-6392 and the WebSphere InfoCenter contain information about
messaging engine failover and, specifically, the effect of the One of N and Static
policies. This section concentrates on how to use the No Operation policy for ME
failover.

The No Operation (NoOP) policy is used in situations where customer
requirements dictate great control over when and where messaging engine
failover occurs.

9.7.1 Prerequisites for default messaging provider with NoOP policy
You need to use external clustering software in addition to WebSphere
Application Server in order to make this work.

This software provides continuity to business applications. The software typically
provides functionality such as IP takeover, monitoring of applications, starting
and stopping applications, heartbeating and various other availability functions.
 Chapter 9. Configuring WebSphere Application Server for external clustering software 347

There are many clustering software vendors with products such as IBM HACMP,
Tivoli System Automation (TSA), Sun Cluster, and VERITAS Cluster Server.

9.7.2 Default messaging provider with No Operation policy scenario

In order to explain how to configure the default messaging provider with the No
Operation (NoOP) policy, we use the Trade 6 application in the WebSphere
topology shown in Figure 9-29. In this sample topology, the WebSphere
environment consists of two nodes, the cell contains one cluster with two cluster
members, one on each node. Our cluster name is TradeCluster, the cluster
members are called TradeServer1 and TradeServer2. The Trade 6 application
configuration script configures a default messaging provider messaging engine
for each cluster member.

Figure 9-29 Sample topology for default messaging provider with NoOP policy

The example that we tested and that we describe here is an Active/Active
solution for hot failover. This means that both cluster members are actively
running and processing transactions. When the messaging engine in one cluster
member fails, then the external clustering software directs the other cluster
member to activate the failed messaging engine.

The procedures needed to configure WebSphere and the external clustering
software are described in the sections that follow.

Cluster
Member1

Cluster
Member2

System A System B

Messaging
Engine 0

Messaging
Engine 1

tradedb.IBMME0

WebSphere Cluster

tradedb.IBMME1

DB2
348 WebSphere Application Server V6: High Availability Solutions

9.7.3 Configuring WebSphere for default messaging provider No
Operation policy

First, install WebSphere on your nodes. See 9.4.2, “Installing WebSphere
Application Server Network Deployment” on page 306 for information. Then,
create your cluster. For detailed instructions on how to set up clusters in
WebSphere Application Server V6, see WebSphere Application Server V6
System Management and Configuration Handbook, SG24-6451.

We used the script that comes with the Trade 6 application to create all
necessary resources, including the default message provider messaging
engines, and to install the application. This script, by default, sets up one ME per
cluster member. For details on configuring default messaging provider
messaging engines, see Chapter 11 of the WebSphere Application Server V6
System Management and Configuration Handbook, SG24-6451, or Chapter 12
of the IBM WebSphere V6 Scalability and Performance Handbook, SG24-6392.

Creating the No Operation policy for the messaging engines
The configuration step that we discuss in this section is how to configure the No
Operation policy for the default messaging provider messaging engines. As
mentioned, during the Trade 6 configuration, two messaging engines are created
and configured. They are called IBMME0 and IBMME1.

We create the NoOP policy in a way that one policy covers both messaging
engines. Policies are associated with core groups. You can either configure your
own core groups or use the default one that is available for each cell. See 6.2,
“Core group” on page 177 for a discussion on core groups. In our example, we
assume that there is only the default core group.

HA groups and match criteria
Each messaging engine of the default messaging provider registers himself as
an HA group under a specific naming convention. In order to set the policy to
correlate to the messaging engines, you must set policy match criteria that
corresponds to the messaging engines HA groups. The naming convention for
the messaging engines HA groups is shown in Table 9-9 on page 350.
 Chapter 9. Configuring WebSphere Application Server for external clustering software 349

Table 9-9 Messaging engines naming convention

For our example, there are two HA groups associated with our messaging
engines. The first HA group (for TradeServer1) is associated with the messaging
engine named TradeCluster.000-TradeCluster and has a HA group name of

IBM_hc=TradeCluster,WSAF_SIB_BUS=TradeCluster,WSAF_SIB_MESSAGING_ENGINE=
TradeCluster.000-TradeCluster,type=WSAF_SIB

The second HA group (for TradeServer2) is associated with the messaging
engine named TradeCluster.001-TradeCluster and has a HA group name of

IBM_hc=TradeCluster,WSAF_SIB_BUS=TradeCluster,WSAF_SIB_MESSAGING_ENGINE=
TradeCluster.001-TradeCluster,type=WSAF_SIB

The Administrative Console allows you to see all HA groups that exist for your
WebSphere environment. While the cluster members are started, go to the
Administrative Console, and click Servers → Core groups → Core group
settings → DefaultCoreGroup. Select the Runtime tab, and click Show
groups. An example of this view is shown in Figure 9-30 on page 351. This
displays all existing HA groups and the name of each group. Remember that HA
groups are only alive at runtime, so the cluster members must be started for this
panel to show the desired content. See 6.3, “High availability group” on page 194
for more information about HA groups.

Name Value

WSAF_SIB_BUS Name of the default messaging provider bus

WSAF_SIB_MESSAGING_ENGINE Name of the messaging engine

IBM_hc clustername

type WSAF_SIB
350 WebSphere Application Server V6: High Availability Solutions

Figure 9-30 List of active HA groups

Creating the HA policy
Now that we understand how the messaging engine HA groups are named, we
need to define an HA policy that matches the HA groups. To create the HA
policy:

1. Go to Servers → Core groups → Core group settings →
DefaultCoreGroup and click Policy.

2. Click New to create a new policy.

3. Select No operation policy as the policy type and click Next.

4. Enter a name for the policy. In our example, we named our policy Cluster ME
Ext Cluster Sfw.

5. Click OK.

Figure 9-31 on page 352 shows the resulting panel.
 Chapter 9. Configuring WebSphere Application Server for external clustering software 351

Figure 9-31 Create HA group policy for ME group

Next click Match criteria in the Additional Properties section. This allows you to
set the match criteria needed to associate this policy with an HA group.
Specifically, we want to match the HA group for the messaging engines. If you
refer back to the paragraph above on the naming convention for the messaging
engine HA groups, you can see that there are four parts to the name:
WSAF_SIB_BUS, WSAF_SIB_MESSAGING_ENGINE, IBM_hc and type.

What we want to do is to define one policy that matches all messaging engine
HA groups in the cluster. Therefore, we do not include the
WSAF_SIB_MESSAGING_ENGINE part of the messaging engine HA group
name because it has a value that is specific for each cluster member. If we were
to include WSAF_SIB_MESSAGING_ENGINE as part of the match criteria, then
we would have to define a NoOP policy for each cluster member. If we however
do not include WSAF_SIB_MESSAGING_ENGINE, then we can define one
policy and have it match all the messaging engine HA groups in the cluster.
352 WebSphere Application Server V6: High Availability Solutions

In our example, there are already policies defined for the messaging engines.
These are One of N policies for each messaging engine. We want to implement a
single NoOP policy that overrides these existing policies. Notice in Figure 9-32
that the match criteria for the existing policies include two values as match
criteria: the WSAF_SIB_MESSAGING_ENGINE and the type.

Figure 9-32 Existing HA policies for messaging engines

In order to override the existing policies in a definitive way, we need to define
three values in the match criteria. By using three values, we have a more precise
match criteria than the two values used by the existing policies. Therefore, we
include the WSAF_SIB_BUS, type, and the IBM_hc values as match criteria for
the new No Operation policy. For our example, the match criteria to be defined
are WSAF_SIB_BUS=TradeCluster, type=WSAF_SIB, and IBM_hs=TradeCluster.

To do this:

1. Click New.

2. Enter WSAF_SIB_BUS as the Name and TradeCluster as the Value. Click OK.

3. Create the second match criteria by clicking New again.

4. Enter type as the Name and WSAF_SIB as the Value. Click OK.
 Chapter 9. Configuring WebSphere Application Server for external clustering software 353

5. Create the third match criteria by clicking New again.

6. Enter IBM_hs as the Name and TradeCluster as the Value. Click OK.

Figure 9-33 shows the result.

Figure 9-33 Match criteria for ME NoOP policy

Save your changes and make sure your configuration is synchronized to all
nodes.

Now that we have WebSphere configured for the messaging engines No
Operations policy, we must configure the external clustering software to control
the operations of the failover.

9.7.4 Configuring external clustering software for default messaging
provider No Operation policy

This section discusses how to configure external clustering software for the
messaging engine No Operation policy. We do not describe any specific
clustering software but discuss this in a generic way so it is valid for all clustering
software. The remaining chapters of this part of the book discuss how to
configure the specific clustering software (TSA, VERITAS Cluster Server, Sun
Cluster).
354 WebSphere Application Server V6: High Availability Solutions

Terminology
In order to discuss generically how to configure clustering software for the
messaging engine NoOP policy, we first need an understanding of the common
set of clustering software components. Refer to “Terminology” on page 355 for a
description of these components.

Clustering software tasks
When the messaging engine is configured with NoOP policy, several functions
must be coordinated with external clustering software. These functions are:

1. Starting the cluster members and then activating the ME in the cluster
members that hosts the MEs.

2. Monitoring a specific cluster member’s ME and when it becomes unavailable,
moving any dependent resources to another system and then notifying the
cluster member on that system that it can start the ME. The HAMonitorWeb
application is can also be used for monitoring the application servers in this
scenario. See “HAMonitorWeb application” on page 330 for information.

In order to achieve these functions, the external clustering software must be
configured with the following units of work, resources, and dependencies:

1. Start Server failover unit

This failover unit is responsible for ensuring that the application server starts
up and stays up on each system in the cluster. This failover unit is defined as
an Active/Active failover unit, which means that the failover units start the
servers up simultaneously on each system in the cluster and that there is no
failover from one system to another when a server is down. If the monitoring
programs notice that a critical resource in not available, an attempt is made to
restart it on the system that is defined to host the resource. This failover unit
consists of two resources:

a. Start, stop, and monitor the Node Agent. This resource is defined as an
application resource. The start and stop programs are invocations of the
WebSphere startNode and stopNode commands. The monitoring is done
by either specifying the process ID that needs to be active or by
monitoring a port that the Node Agent listens on to ensure that it is
listening. The specific monitoring technique used depends on the
functionality provided by the external clustering software and is thus
described in the individual chapter for the cluster software. This resource
starts, stops, and monitors the Node Agents on each system in the cluster.
Typically, this resource is not deemed as critical to this failover unit, which
means that the Node Agent can be unavailable and the clustering
software does not attempt to restart it. This is because the cluster
members can still process runtime requests without the Node Agent being
active.
 Chapter 9. Configuring WebSphere Application Server for external clustering software 355

b. Start, stop, and monitor the cluster member. This resource is defined as
an application resource. The objective of this resource is to initiate the
starting of the cluster members. This resource invokes the startServer
and stopServer commands. This resource has a dependency on the
Node Agent resource which must have completed its starting before this
resource can start.

2. ME for Cluster Member1 failover unit

This failover unit cannot start until the Start Server failover unit has completed
its start. This failover unit is defined as a Active/Passive or Primary/Backup
resource. This means that it is only active on a single system at one time.
When the monitoring determines that a resource is unavailable, then the
failover unit is failed over to the Standby/Backup system. The primary system
for this failover unit is the system where Cluster Member1 is hosted. This
failover unit has a single resource in it:

a. Activate, deactivate, and monitor the ME for Cluster Member1. This
resource is defined as an application resource. This resource uses the
wasctrl-me script to perform its functions. It has different invocation strings
registered for the primary and the secondary systems. The primary system
is the system hosting the messaging engine for the cluster member (in this
case Cluster Member1). The secondary system is the system hosting the
Cluster Member2. This resource performs the following functions:

i. It activates the messaging engine for the cluster member. The
activation occurs on the primary cluster member initially and when the
monitoring program determines that the messaging engine is
unavailable there, it activates the messaging engine on the secondary
cluster member.

ii. It deactivates the messaging engine.

iii. It monitors the status of the messaging engine.

3. ME for Cluster Member2 failover unit

This failover unit cannot start until the Start Server failover unit has completed
its start. This failover unit is defined as a Active/Passive or Primary/Backup
resource. This means that it is only active on a single system at one time.
When the monitoring determines that a resource is unavailable, then the
failover unit is failed over to the Standby/Backup system. The primary system
for this failover unit is the system where Cluster Member2 is hosted. This
failover unit has a single resource in it:

a. Activate, deactivate, and monitor the ME for Cluster Member2. This
resource is defined as an application resource. This resource uses the
wasctrl-me script to perform its functions. It has different invocation strings
registered for the primary and the secondary systems. The primary system
is the system hosting the messaging engine for the cluster member (in this
356 WebSphere Application Server V6: High Availability Solutions

case Cluster Member2). The secondary system is the system hosting the
Cluster Member1. This resource performs the following functions:

i. It activates the messaging engine for the cluster member. The
activation occurs on the primary cluster member initially and when the
monitoring program determines that the messaging engine is
unavailable there, it activates the messaging engine on the secondary
cluster member.

ii. It deactivates the messaging engine.

iii. It monitors the status of the messaging engine.

The chapters that follow provide examples of messaging engine No Operation
policy configurations for a specific set of clustering software products.

Scripts to start, stop, and monitor WebSphere resources
There are five scripts available to start, stop, and monitor WebSphere resources
for this scenario. They are called wasctrl-me, controlME.pty, activategroupME.pl,
deactivategroupME.pl and monitorgroupME.pl. For additional information about
the scripts, refer to the tables that follow. The TM NoOP scripts are comparable
to these ME NoOP scripts.

Example 9-10 shows the wasctrl-me script.

Example 9-10 wasctrl-me

#!/bin/ksh
##
#
was ME service automation control script
#
Input:
$1 action (<start|stop|status>)
$2 na_home, the nodeagent's home directory
USER_INSTALL_ROOT
$3 as_tcpp, the applicationServer's listening port
(WC_defaultHost)
$4 host_name, name of the system that is hosting the application
server
$5 host_port, SOAP_CONNECTOR_ADDRESS port of the application
server
$6 matchingCriteria, HA group matching criteria (for example
GN_PS=WASCell04\bottechiaNode01\TradeServer1,IBM_hc=myCluster,type=WAS_TRANSACT
IONS)
$7 script_path, directory that contains the scripts (Perl scripts
and tmHA.pty)
#
#

 Chapter 9. Configuring WebSphere Application Server for external clustering software 357

History:
#
7.04.2005 initial version ms
#
##
#
init section
#

UNKNOWN=0
ONLINE=110
OFFLINE=100

Action=${1:-status}
NA_HOME=$2
AS_TCPP=$3
HOST_NAME=$4
HOST_PORT=$5
CRITERIA=$6
SCRIPT_PATH=$7

export
PATH=$PATH:/bin:/usr/bin:/sbin:/usr/sbin:/usr/sbin/rsct/bin:${NA_HOME}/bin

#
#

case ${Action} in
 start)
 AS_UP=`netstat -lnt | grep :${AS_TCPP}`
 if ["${AS_UP}" != ""]; then
 print "Application Server is up so run the perl script"
 RetC=`perl $SCRIPT_PATH/activategroupME.pl ${AS_TCPP}
${CRITERIA}|awk '{print $1}'`
 # rcs must be tested!!
 if [$RetC == "<OK/>"]; then
 RC=0
 else
 RC=42
 fi
 print "Transaction manager start rc: ${RC}"
 else
 print "Application Server is down so run the wsadmin
command"
 wsadmin.sh -conntype SOAP -host $HOST_NAME -port $HOST_PORT
-lang jython -f $SCRIPT_PATH/controlME.pty activate ${CRITERIA}
 fi
358 WebSphere Application Server V6: High Availability Solutions

 ;;
 stop)
 RetC=`perl $SCRIPT_PATH/deactivategroupME.pl ${AS_TCPP}
${CRITERIA} |awk '{print $1}'`
 # rcs must be tested!!
 if [$RetC == "<OK/>"]; then
 RC=0
 else
 RC=42
 fi
 print "Transaction manager stop rc: ${RC}"
 ;;
 status)
 print "Requesting status"
 RetC=`perl $SCRIPT_PATH/monitorgroupME.pl ${AS_TCPP}
${CRITERIA} `
 # rcs must be tested!!
 print "Status = ${RetC}"
 if [$RetC == "<ACTIVE/>"]; then
 RC=$ONLINE
 else
 RC=$OFFLINE
 fi

 print "Transaction manager status rc: ${RC}"
 ;;
 *)
 print "Error: Incorrect parameter >${Action}<"
 RC=${UNKNOWN}
 ;;
esac

exit ${RC}

Support scripts
Example 9-11 shows the controlME.pty script.

Example 9-11 controlME.pty

This jython script is used to activate a HA service being managed by an HA
cluster. The HA cluster decides which machine the HA service should be
activated on and runs a script on that machine. The script invoked by the HA
cluster should be a shell script (bat file) that runs wsadmin targetting the
server that it wants the HA service to run on. This is achieved by setting the
host and port in the wsadmin conntype. The shell script (bat file) therefore
needs to be specialised on each node in the HA cluster.
 Chapter 9. Configuring WebSphere Application Server for external clustering software 359

For example: Two machines in a cluster each have a shell script called
"controlscript" and each wants to activate the messaging engine HA service
<-------------- "controlscript" ------------>
machine 1: invoke wsadmin on server1's host and port : wsadmin -conntype SOAP
-host mach1 -port 8880 -lang jython controlHA.pty activate
IBM_hc=myCluster,type=WSAF_SIB
The controlHA will activate <meName> in the server to which wsadmin is
connected

machine 2: invoke wsadmin on server2's host and port: wsadmin -conntype SOAP
-host mach2 -port 8881 -lang jython controlHA.pty activate
IBM_hc=myCluster,type=WSAF_SIB
The controlHA script will activate <meName> in the server to which wsadmin is
connected

#The controlHA script is passed the name of the cluster and the group type
"WSAF_SIB" to indicate messaging engine and starts the ME in the server process
to which wsadmin is connected. It does this by finding the local HAManager
MBean and calling the relevant operation on the MBean, e.g. for action==start,
it calls activateMember()

from com.ibm.ws.hamanager import AttributeNamesMemberProps
Print usage information
def printHelp():
 print "Usage: controlHA <action> <matchingcriteria> where action is one
of {start|stop|monitor} and matchingcriteria is the HA policy matching criteria
to perform the action against (for example
GN_PS=WASCell04\bottechiaNode01\TradeServer1,IBM_hc=myCluster,type=WSAF_SIB)"
 return

Get the HAManager MBean for the specified server.
def getServerHAMProxy(servername):
 strObjectName =
AdminControl.queryNames("type=HAManager,process="+servername+",*")
 objectName = AdminControl.makeObjectName(strObjectName)
 mb = TypedProxy.makeProxy(AdminControl, objectName,
"com.ibm.websphere.hamanager.jmx.CoordinatorJMX")
 return mb

Find the group for the specified service and the status of its members
def getHAGroup(matchingCrit):
 global gHAM
matchSet="GN_PS="+cell+"\\"+node+"\\"+server+","+matchingCrit
print matchSet
 gs={}
 gs = gHAM.queryGroupState(matchingCrit,1,1)

#Should be only one HAGroup that matches.
if (len(gs) < 1):
360 WebSphere Application Server V6: High Availability Solutions

 print "There is no HAGroup for "+matchingCrit
 return {}
 elif (len(gs) > 1):
 print "There are multiple HAGroups for "+matchingCrit

 return {}
else:

 # There is one HAGroup for the messaging engine
 groupName = gs[0].getGroupName()
 #displayGroupProperties(groupName) # optional information
 #displayGroupState(gs[0].getMemberData()) # optional information
 return groupName

START

global gHAM
if (len(sys.argv) ==2):
 action = sys.argv[0]
 matchingCrit = sys.argv[1]

else:
 printHelp()
 sys.exit(1)

Find out which cell and node and server we are running in.
node = AdminControl.getNode()
cell = AdminControl.getCell()

print "node is "+node
print "cell is "+cell
serverMBean = AdminControl.queryNames('processType=ManagedProcess,*')
server = AdminControl.getAttribute(serverMBean,'name')

print "server is "+server

Connect to the HAM MBean in the specified server
If that server is not running then the operation won't work anyway so give up
gHAM = {}
gHAM = getServerHAMProxy(server)
if (gHAM == {}):

print "Cannot connect to HAManager MBean, giving up"
sys.exit(1)

Locate the HAGroup for the service
haGroup = {}
haGroup = getHAGroup(matchingCrit)
if (haGroup == {}):
 Chapter 9. Configuring WebSphere Application Server for external clustering software 361

 print "Cannot identify HAGroup for "+matchingCrit+": giving up"
sys.exit(1)

if (action == 'activate'):
 print "Attempting to activate " +matchingCrit+" on server
"+node+"."+server
 # Activate the local member
 gHAM.activateMember(haGroup,node,server)
elif (action == 'deactivate'):
 print "Attempting to deactivate "+matchingCrit+" on server
"+node+"."+server
 # Activate the local member
 gHAM.deactivateMember(haGroup,node,server)
elif (action == 'monitor'):
 print "Monitor action not yet implemented!!!"
else:
 printHelp()
 sys.exit(1)

Example 9-12 shows the activategroupME.pl script.

Example 9-12 activategroupME.pl

#
Invocation:
perl activategroup.pl cellname nodename clustername servername [portnumber]
where:
portnumber is the port number of the application that is doing
the activation.
matching is the HA matching criteria for the policy (for example
GN_PS=WASCell04\bottechiaNode01\TradeServer1,IBM_hc=myCluster,type=WAS_TRANSACT
IONS)
#

require HTTP::Request;
require LWP::UserAgent;
use Sys::Hostname;

if (@ARGV != 2) {
 print "Illegal number of arguments";
} else {
 $PORTNAME = $ARGV[0];
 $MATCHING = $ARGV[1]
}

my $hostname = hostname();
362 WebSphere Application Server V6: High Availability Solutions

my $getrequest =
'http://'.$hostname.":".$PORTNAME."/HAMonitorWeb/ActivateLocalGroupMember?ms=".
$MATCHING."&s=a";

$request = HTTP::Request->new(GET => $getrequest);

$ua = LWP::UserAgent->new();
$response = $ua->request($request);
if ($response->is_success) {
 $result = $response->content;
 if(index($result, "<OK/>", 0) >= 0)
 {
 print "<OK/>";
 }
 else
 {
 print "<NOT OK/>";
 }
}
else
{
 print "1";
 print STDERR $response->status_line, "\n";
}

Example 9-13 shows the deactivategroupME.pl script.

Example 9-13 deactivategroupME.pl

#
Invocation:
perl deactivategroup.pl cellname nodename clustername servername [portnumber]
where:
cellname is the name of the cell that contains the application
server or cluster member
nodename is the name of the node that contains the application
server or cluster member
servername is the name of the server or cluster member that
requires the group to be activated.
portnumber is the port number of the application that is doing
the activation.
matching is the HA matching criteria for the policy (for example
GN_PS=WASCell04\bottechiaNode01\TradeServer1,IBM_hc=myCluster,type=WAS_TRANSACT
IONS)
#

require HTTP::Request;
require LWP::UserAgent;
 Chapter 9. Configuring WebSphere Application Server for external clustering software 363

use Sys::Hostname;

if (@ARGV != 2) {
 print "Illegal number of arguments";
} else {
 $PORTNUMBER = $ARGV[0];
 $MATCHING = $ARGV[1]
}

my $hostname = hostname();
my $getrequest =
'http://'.$hostname.":".$PORTNUMBER."/HAMonitorWeb/ActivateLocalGroupMember?ms=
".$MATCHING."&s=d";

$request = HTTP::Request->new(GET => $getrequest);

$ua = LWP::UserAgent->new();
$response = $ua->request($request);
if ($response->is_success) {
 $result = $response->content;
 if(index($result, "<OK/>", 0) >= 0)
 {
 print "<OK/>";
 }
 else
 {
 print "<NOT OK/>";
 }
print $result;
}
else
{
 print "1";
 print STDERR $response->status_line, "\n";
}

Example 9-14 shows the monitorgroupME.pl script.

Example 9-14 monitorgroupME.pl

#
Invocation:
perl monitorgroup.pl cellname nodename clustername servername [portnumber]
where:
cellname is the name of the cell that contains the application
server or cluster member
nodename is the name of the node that contains the application
server or cluster member
364 WebSphere Application Server V6: High Availability Solutions

servername is the name of the server or cluster member that
requires the group to be activated.
portnumber is the port number of the application that is doing
the activation.
matching is the HA matching criteria for the policy (for example
IBM_hc=myCluster,type=WAS_TRANSACTIONS)
#

require HTTP::Request;
require LWP::UserAgent;
use Sys::Hostname;

if (@ARGV != 5) {
 print "Illegal number of arguments";
} else {
 $CELLNAME= $ARGV[0];
 $NODENAME = $ARGV[1];
 $SERVERNAME = $ARGV[2];
 $PORTNUMBER = $ARGV[3];
 $MATCHING = $ARGV[4]
}

my $hostname = hostname();
my $getrequest =
'http://'.$hostname.":".$PORTNUMBER."/HAMonitorWeb/QueryLocalMemberState?ms=GN_
PS=".$CELLNAME."\\".$NODENAME."\\".$SERVERNAME.",".$MATCHING."&s=a";

$request = HTTP::Request->new(GET => $getrequest);

$ua = LWP::UserAgent->new();
$response = $ua->request($request);
if ($response->is_success) {
 $result = $response->content;
 if(index($result, "<ACTIVE/>", 0) >= 0)
 {
 print "<ACTIVE/>";
 }
 else
 {
 print "<INACTIVE/>";
 }
}
else
{
 print "1";
 print STDERR $response->status_line, "\n";
}

 Chapter 9. Configuring WebSphere Application Server for external clustering software 365

366 WebSphere Application Server V6: High Availability Solutions

Chapter 10. WebSphere and IBM Tivoli
System Automation

This chapter provides an introduction into the basics of clustering IBM
WebSphere Application Server V6 using Tivoli System Automation.

10

Important: At the time of writing this redbook, Tivoli System Automation was
not in the list of supported software. However, the following configurations
exist:

� Supported
� Not supported
� Other

Tivoli System Automation falls into the Other category. For details about how
IBM Support handles this category, see the document IBM WebSphere
Application Server - Clarification of configurations support that is available at:

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=
swg27004311

For the latest list of supported products see:

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html
© Copyright IBM Corp. 2005. All rights reserved. 367

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg27004311

10.1 Introduction to Tivoli System Automation
IBM Tivoli System Automation for Multiplatforms is a product that provides high
availability (HA) by automating the control of IT resources such as processes, file
systems, IP addresses and other resources. It facilitates the automatic switching
of users, applications, and data from one system to another in the cluster after a
hardware or software failure.

10.1.1 How Tivoli System Automation works
The IBM Tivoli System Automation product provides HA by automating
resources such as processes, applications, and IP addresses. To automate an IT
resource (for example, an IP address), the resource must be defined to Tivoli
System Automation. Every application must be defined as a resource in order to
be managed and automated with Tivoli System Automation. Application
resources are usually defined in the generic resource class IBM.Application. For
the HA IP address, the resource class IBM.ServiceIP must be used.

Reliable Scalable Cluster Technology, or RSCT, is a product fully integrated into
IBM Tivoli System Automation. RSCT is a set of software products that together
provide a comprehensive clustering environment for AIX and Linux. RSCT is the
infrastructure to provide clusters with improved system availability, scalability, and
ease of use. RSCT provides three basic components, or layers, of functionality:

� RMC (Resource Monitoring and Control), provides global access for
configuring, monitoring, and controlling resources in a peer domain.

� HAGS (High Availability Group Services), is a distributed coordination,
messaging, and synchronization service.

� HATS (High Availability Topology Services), provides a scalable heartbeat for
adapter and node failure detection, and a reliable messaging service in a peer
domain.

Terminology
Some of the key terms used in describing Tivoli System Automation are:

� Cluster or peer domain

The group of host systems upon which Tivoli System Automation manages
resources is known as a cluster. A cluster can consist of one or more systems
or nodes.

� Resource

A resource is any piece of hardware or software that can be defined to IBM
Tivoli System Automation. These resources can be either defined manually
by the administrator using the mkrsrc (make resource) command or through
368 WebSphere Application Server V6: High Availability Solutions

the “harvesting” functionality of the cluster infrastructure, whereby resources
are automatically detected and prepared for use. All resources are controlled
through the appropriate resource managers.

� Resource class

A resource class is a collection of resources of the same type. For example, if
an application is a resource, then all applications defined in the cluster would
comprise a resource class. Resource classes allow you to define the common
characteristics among the resources in its class. In the case of applications,
the resource class can define identifying characteristics, such as the name of
the application, and varying characteristics, such as whether or not the
application is running. So each resource in the class can then be noted by its
characteristics at any given time.

� Resource group

Resource groups are logical containers for a collection of resources. This
container allows you to control multiple resources as a single logical entity.
Resource groups are the primary mechanism for operations within IBM Tivoli
System Automation. Resource groups can also be nested, meaning that
applications can be split into several resource groups which themselves are
part of another higher level resource group. Also, resource groups can be
defined in such a way that their members can be located on different systems
in the cluster.

� Managed resource

A managed resource is a resource that has been defined to IBM Tivoli
System Automation. To accomplish this, the resource is added to a resource
group, at which time it becomes manageable through Tivoli System
Automation.

� Nominal state

The nominal state of a resource group indicates to Tivoli System Automation
whether the resources with the group should be Online or Offline at this point
in time. So setting the nominal state to .Offline indicates that you wish for
Tivoli System Automation to stop the resources in the group, and setting the
nominal state to .Online. is an indication that you wish to start the resources in
the resource group.

� Equivalency

An equivalency is a collection of resources that provides the same
functionality. For example, equivalencies are used for selecting network
adapters that should host an IP address. If one network adapter goes offline,
Tivoli System Automation selects another network adapter to host the IP
address.
 Chapter 10. WebSphere and IBM Tivoli System Automation 369

� Relationships

IBM Tivoli System Automation allows for the definition of relationships
between resources in a cluster. There are two different relationship types:

– Start/stop relationships

These relationships are used to define start and stop dependencies
between resources. You can use the StartAfter, StopAfter, DependsOn,
DependsOnAny, and ForcedDownBy relationships to achieve this. For
example, a resource must only be started after another resource was
started. You can define this by using the policy element StartAfter
relationship.

– Location relationships

Location relationships are applied when resources must, or should if
possible, be started on the same or a different node in the cluster.

� Resource manager

Resource classes are managed by the various resource managers (RM),
depending on what type of resource is being managed. A resource manager
is a software layer between a resource and RMC. The following resource
managers are provided by IBM Tivoli System Automation:

– Recovery RM (IBM.RecoveryRM)

This resource manager serves as the decision engine for IBM Tivoli
System Automation. When a policy for defining resource availabilities and
relationships is defined, this information is supplied to the Recovery RM.
This RM runs on every node in the cluster, with exactly one Recovery RM
designated as the master. The master evaluates the monitoring
information from the various resource managers. When a situation
develops that requires intervention, the Recovery RM drives the decisions
that result in start or stop operations on the resources as needed.

– Global Resource RM

The Global Resource RM (IBM.GblResRM) supports two resource
classes:

• IBM.Application

The IBM.Application resource class defines the behavior for general
application resources. This class can be used to start, stop, and
monitor processes. As a generic class, it is very flexible and can be
used to monitor and control various kinds of resources. Most of the
applications that you automate are done using this class.
370 WebSphere Application Server V6: High Availability Solutions

• IBM.ServiceIP

This application class defines the behavior of Internet Protocol (IP)
address resources. It allows you to assign IP addresses to an adapter.
In effect, it allows IP addresses to “float” among nodes.

– Configuration RM

The Configuration RM (IBM.ConfigRM) is used in the cluster definition. In
addition, quorum support, which is a means of insuring data integrity when
portions of a cluster lose communication, is provided.

– Event Response RM

The Event Response RM (IBM.ERRM) provides the ability to monitor
conditions in the cluster in order for the RMC system to react in certain
ways.

– Test RM

The Test resource manager (IBM.TestRM) manages test resources and
provides functions to manipulate the operational state of these resources.
The resource manager is operational in a peer domain mode only and
provides the resource class IBM.Test.

For more detailed information about Tivoli System Automation Resource
Managers see IBM Tivoli System Automation for Multiplatforms Guide and
Reference found at:

http://publib.boulder.ibm.com/tividd/td/ITSAFL/SC33-8210-03/en_US/PDF/
halgre11.pdf

10.1.2 Configuration basics of Tivoli System Automation
Configuring Tivoli System Automation to automate or to manage resources
involves the following basic steps:

� Creating a Tivoli System Automation Domain
� Creating a resource group
� Creating resources
� Adding resources to resource group
� Creating equivalencies (typically used for IP address resources)
� Specifying dependencies

In order to create a new resource of the Application resource class (for example,
for the Deployment Manager), the following three scripts (or commands
respectively) must be provided:

1. A start script (or command) to bring the resource online.
2. A stop script (or command) to take the resource offline.
3. A script (or command) to monitor the resource through polling.
 Chapter 10. WebSphere and IBM Tivoli System Automation 371

http://publib.boulder.ibm.com/tividd/td/ITSAFL/SC33-8210-03/en_US/PDF/halgre11.pdf

For details on how to develop these scripts, refer to IBM Tivoli System
Automation for Multiplatforms Guide and Reference.

10.1.3 Managing resources
When creating resources, two approaches have proven to work:

� Create resources from definitions.

Have definition files with the attributes for each resource in classes such as
IBM.Application, IBM.ServiceIP. Those are referenced by a simple script that
creates the resources using the RSCT mkrsrc -f command.

The advantages are that you learn how to create resources using RSCT
commands and you will be able to change the script easily. You can mix and
match definitions and scripts.

However, one of the chief drawbacks is that if you want to, for example, add a
node, you must change the same NodeNameList parameter in each definition
file.

� Create resources from a configuration file.

Have a single configuration file that feeds a script to make the resources. The
script must be sophisticated enough to assemble the mkrsrc command
arguments from the configuration dynamically.

The advantage here is that you define variables in simple syntax only once in
the configurations file, while the script interprets it and generates the various
mkrsrc calls on the fly. However, you will not learn about the mkrsrc
command and the attributes to make resources for other applications. The
smart script is more difficult to understand and to change.

The recommendation is:

– If the automation structure in terms of automated resources and their
relationships will not change, use the configuration file approach.

– If it is likely that you must extend the automated resources and add
relationships, use the definitions approach.

To benefit from both, we combine these approaches by providing a
configuration file that can be tailored. Executing the cfg-script generates .def
files and the corresponding script to make resources. If option -p is specified,
the resources are created directly.

Note, that this is also useful in three other aspects:

a. Studying the make script, you learn the commands to remove and
generate automated resources.

b. If –p is not specified, then you can study the .def files to learn how the
Tivoli System Automation definitions for the attributes look. That way,
372 WebSphere Application Server V6: High Availability Solutions

when you list resource attributes using Tivoli System Automation
commands, you will be able to recognize the resources you created easily.

c. You can check what resources will be removed and created without really
making them, and can read just the configuration and repeatedly run the
configuration script until you are satisfied with the resources that will be
created.

Note that neither approach has direct support for removing resources selectively.
A remove command must be used similar to what is generated in the
make-script; this remove command must then be executed separately.

10.1.4 Tivoli System Automation and IBM WebSphere MQ
Currently, there are no plans to make a Cluster Agent or sample scripts available
to use IBM WebSphere MQ with Tivoli System Automation.

10.1.5 Using Cluster Agent for IBM DB2 UDB
Information about how to make DB2 highly available using Tivoli System
Automation can be downloaded from:

http://www.ibm.com/software/tivoli/products/sys-auto-linux/downloads.html

Download the document entitled Highly available DB2 with Tivoli System
Automation for Linux as well as the Sample policies and scripts to make DB2
highly available.

10.2 Planning and preparation
Before proceeding to configure Tivoli System Automation for WebSphere,
ensure the following:

� Install IBM Tivoli System Automation for Multiplatforms 2.1 following the
instructions in the IBM Tivoli System Automation for Multiplatforms Guide and
Reference.

� WebSphere must not be installed to use the host names of either server.
Instead, a third virtual/alias IP address should be obtained along with a host
name for that Virtual IP Address. The Virtual IP Address is a separate IP
address in the cluster and does not match any IP address assigned to the
network adapters on each cluster node, that are made in system definitions
outside of Tivoli System Automation. This address is in contrast created by
Tivoli System Automation and is an additional alias address on an
appropriate network adapter on the node where the Deployment Manager
resides. When the Deployment Manager moves to a new location, the alias
 Chapter 10. WebSphere and IBM Tivoli System Automation 373

http://www.ibm.com/software/tivoli/products/sys-auto-linux/downloads.html

address is removed from the former node and recreated on the new node,
where the Deployment Manager is about to be restarted.

10.3 Deployment Manager
This section discusses the steps needed to make the Deployment Manager
highly available using Tivoli System Automation.

Scenario description
The environment for the Deployment Manager failover scenario is as follows:

� Two nodes in the peer domain, one production node and one standby node.

� A file system containing the WebSphere files that are shared between the
production node and the standby node.

� Cold failover to the standby node in case of, for example, a failure of the
production node's operating system, network adapter, or other hardware
components.

Resources
� One Deployment Manager
� One IP address

The resources are of type floating.

Network equivalencies
An equivalency is defined for the network interfaces on which the floating IP
address depends.

Resource groups
The Deployment Manager and IP address are members of the same resource
group.

Relationships between resources
� The Deployment Manager depends on the IP address.
� The IP address depends on the network interface equivalency.

Hardware topology
The hardware used in our tests consisted of two blade servers called thost1 and
thost2 running in an IBM Blade Center. Both blades have a fiber adapter installed
and a LUN with the shared disk is available to both blades. The LUN is managed
by an IBM TotalStorage SAN Volume Controller (SVC) which uses a FAStT900
for its storage. The FAStT900 has a large block of storage that is managed by
374 WebSphere Application Server V6: High Availability Solutions

the SVC. The SVC is configured to have a VLUN of around 5GB for use by our
Deployment Manager. That VLUN is mapped so that it is visible on both thost1
and thost2.

10.3.1 Installing the Deployment Manager
Install and configure the WebSphere components (here the WebSphere binaries
and the Deployment Manager profile) on a shared file system concurrently
mounted on both servers. A shared disk that is physically attached to both the
primary and backup servers but without the file system mounted on both servers
can also be used. However, that requires that Tivoli System Automation
manages the file system failover.

In our tests, we used a shared file system. A shared file system could be an NFS
file system or a Samba file system.

The file server should be itself highly available and the disks that the file server
uses should be RAID volumes that offer data protection in the event of disk
failure. If this approach is used then there is no need for external software such
as Tivoli System Automation to manage the file system.

For more details on how to install and configure the Deployment Manager refer
to 9.3, “Deployment Manager high availability” on page 298.

10.3.2 Configuring Tivoli System Automation to run the Deployment
Manager scenario

As mentioned in 10.1.2, “Configuration basics of Tivoli System Automation” on
page 371, there are several steps involved when configuring Tivoli System
Automation. This section explains these steps for the Deployment Manager
scenario.

Note: If NFS V3 or V2 is used, it is possible that in case of a failure of the
primary system the administrator might need to clear file locks on the NFS
volume manually prior to failover.

This is not a problem with NFS V4 or Windows shared file systems as the
locks are automatically released. To determine whether your file system
clears locks, you can run the test that is discussed in 6.7.4, “File System
Locking Protocol Test” on page 213.
 Chapter 10. WebSphere and IBM Tivoli System Automation 375

Creating and starting the Tivoli System Automation domain
We create a dedicated domain for this scenario. A domain is simply a Tivoli
System Automation cluster. The domain consists of nodes or physical boxes on
which applications or resources can be placed. First, prepare both servers:

1. Execute the following command on thost1:

preprpnode thost1 thost2

2. Execute the following command on thost2:

preprpnode thost1 thost2

3. Create the domain and execute the command on either server. We use thost2
in this example.

mkrpdomain DMGRDOMAIN thost1 thost2

4. Start the domain:

startrpdomain DMGRDOMAIN

Adding a tie-breaker disk for quorum purposes is recommended as a best
practice and is necessary when the domain has an even number of nodes. For
details on how to add a tie-breaker disk see IBM Tivoli System Automation for
Multiplatforms Guide and Reference found at:

http://publib.boulder.ibm.com/tividd/td/ITSAFL/SC33-8210-03/en_US/PDF/
halgre11.pdf

Creating a resource group
We first make a resource group. A resource group is a container for a set of
resources that should be operated on as a single entity. It does not matter on
which system this and the following commands are executed.

mkrg dmgr-rg

Creating resources
Next, we need to create resource definition files for the Deployment Manager and
the IP address to be managed by Tivoli System Automation as shown in
Example 10-1 on page 377 and Example 10-2 on page 377. Using these
examples, create your own definition text files (for example dmgr-jvm.def) and
run the following commands to create the resources:

mkrsrc -f dmgr-ip.def IBM.ServiceIP
mkrsrc -f dmgr-jvm.def
376 WebSphere Application Server V6: High Availability Solutions

http://publib.boulder.ibm.com/tividd/td/ITSAFL/SC33-8210-03/en_US/PDF/halgre11.pdf

Example 10-1 dmgr-jvm.def

PersistentResourceAttributes::
Name=dmgr-jvm
ResourceType=1
StartCommand=/mnt/sanfs/sanfs/test/tsa/nd/dm_start.ksh
StopCommand=/mnt/sanfs/sanfs/test/tsa/nd/dm_stop.ksh
MonitorCommand=/mnt/sanfs/sanfs/test/tsa/nd/dm_monitor.ksh
StartCommandTimeout=120
StopCommandTimeout=60
MonitorCommandTimeout=9
MonitorCommandPeriod=30
ProtectionMode=1
NodeNameList={'thost1','thost2'}
UserName=root

Example 10-2 dmgr-ip.def

PersistentResourceAttributes::
Name="dmgr-ip"
ResourceType=1
IPAddress=192.168.10.3
NetMask=255.255.255.0
ProtectionMode=1
NodeNameList={"thost1","thost2"}t

The scripts to start (dm_start.ksh), stop (dm_stop.ksh) and monitor
(dm_monitor.ksh) the Deployment Manager are shown in Example 10-3,
Example 10-4 on page 378, and Example 10-5 on page 378.

Example 10-3 dm_start.ksh

#!/bin/ksh -p
PATH=/bin:/usr/bin:/sbin:$PATH

logger -i -p info -t $0 "Starting deployment manager"
/mnt/sanfs/sanfs/test/was/profiles/dmgr/bin/startManager.sh
rc=$?
logger -i -p info -t $0 "DM started with exit code " $rc
return $rc
 Chapter 10. WebSphere and IBM Tivoli System Automation 377

Example 10-4 dm_stop.ksh

#!/bin/ksh -p
PATH=/bin:/usr/bin:/sbin:$PATH
logger -i -p info $0 "Stopping Deployment Manager"
/mnt/sanfs/sanfs/test/was/profiles/dmgr/bin/stopManager.sh
logger -i -p info $0 "Stopped Deployment Manager"
return 0

Example 10-5 dm_monitor.ksh

#!/bin/ksh -p
PATH=/bin:/usr/bin:/sbin:$PATH
logger -i -p info $0 "Monitor Deployment Manager"
running=$(netstat -a | grep 9061 | wc -l)
if [${running} -eq 0]; then

logger -i -p info "Deployment Manager not running"
return 2

fi
logger -i -p info $0 "Deployment Manager running"
return 1

Adding resources to the resource group
Run the following commands to add the previously created resources to the
resource group:

addrgmbr -g dmgr-rg IBM.ServiceIP:dmgr-ip
addrgmbr -g dmgr-rg IBM.Application:dmgr-jvm

Important: The monitor script is executed periodically by Tivoli System
Automation to check if the Deployment Manager is running. This script needs
to be very efficient as it will be executed continually. The script can be written
to use a variety of approaches to check if a Deployment Manager is running.
The above example uses the netstat command to see if there is a process
listening on the HTTP port for our Deployment Manager. The number 9061 in
this script should be changed to be the HTTP port for your Deployment
Manager. This is a basic test. Additional tests can be incorporated into this
script for a more robust test. For example, an HTTP client could ping the home
page of the console. If an HTML page is received, then the Deployment
Manager is working.

The wsadmin serverstatus command should never be used to check if the
Deployment Manager is running. It takes a lot of CPU when it starts, and it
takes around 20 to 30 seconds to complete.
378 WebSphere Application Server V6: High Availability Solutions

Creating equivalencies
Create an equivalency for the network adapters on both servers that we want to
use for the IP alias:

mkequ dmgr-ip-equ IBM.NetworkInterface:eth0:thost1,eth0:thost2

Specifying dependencies
Execute the following command to specify that the IP address is dependant on
the equivalence:

mkdep -p DependsOn -S IBM.ServiceIP:dmgr-ip \
-G IBM.Equivalence:dmgr-ip-equ dmgr-ip-rel-equ

Execute the following command to specify that the Deployment Manager is
dependant on the IP:

mkdep -p DependsOn -S IBM.Application:dmgr-jvm -G IBM.ServiceIP:dmgr-ip \
dmgr-jvm-rel-ip

10.3.3 Testing Deployment Manager failover
Now that the Deployment Manager is automated, we can bring it online by telling
Tivoli System Automation to bring the resource group online. This is done using
the following command on any node in the Tivoli System Automation domain:

chrg -o online dmgr-rg

After executing this command, you should see the Deployment Manager starting
on one of the two nodes, either thost1 or thost2. You can bring the Deployment
Manager down again using the command:

chrg -o offline dmgr-rg

We can test failover by first bringing the Deployment Manager online using the
chrg command and then telling Tivoli System Automation to remove the node
where it's currently running from the allowed list. Tivoli System Automation keeps
a list of nodes that are to be excluded from running a resource group. If the
Deployment Manager was running on thost1, then the following command
excludes thost1 from running the Deployment Manager. You should see the
Deployment Manager being shut down on thost1 and then started on thost2:

samctrl -u a thost1

Note: The Deployment Manager should never be started using the
startManager command or by using a start script (for example, rc.d). It should
only be started by Tivoli System Automation. This ensures that the IP address
and any file systems (if managed by Tivoli System Automation) are also
mounted correctly.
 Chapter 10. WebSphere and IBM Tivoli System Automation 379

This adds thost1 to the excluded node list for the domain. This triggers a orderly
failover to thost2. When the Deployment Manager is running on thost2 then you
can undo this command using:

samctrl -u d thost1

This removes the node thost1 from the disabled node list and makes thost1
available again for running the Deployment Manager. No automatic failback
occurs. You can fail the Deployment Manager back to thost1 by first excluding
thost2 using samctrl -u a thost2 and then, when the Deployment Manager is
running, undo that command.

This is just one of the possible test scenarios. You can run other test scenarios,
such as killing the Deployment Manager process, shutting down the system
where the Deployment Manager runs or unplugging the network cable. All of
these events should trigger a failover.

10.4 Node Agent and application server
This section demonstrates how to make a WebSphere Node Agent and related
application server on a two-node cluster highly available. This scenario can be
scaled up to N nodes by following the steps for two nodes.

Scenario description
� Two nodes in the peer domain, one production node and one standby node.

A Node Agent and related application server run on the production node.

� A file system containing the WebSphere files that are shared between the
production node and the standby node.

� Cold failover to the standby node in case of, for example, a failure of the
production node's operating system, network adapter, or other hardware
components.

Resources
� One Node Agent
� One application server
� One IP address

The resources are of type floating.

Network equivalencies
An equivalency is defined for the network interfaces on which the floating IP
address depends.
380 WebSphere Application Server V6: High Availability Solutions

Resource groups
The Node Agent, application server and IP address are members of the same
resource group.

Relationships between resources
� The IP address depends on the network interface equivalency.
� The Node Agent depends on the IP address.
� The application server depends on the Node Agent.

Figure 10-1 illustrates the resources and dependencies for the Node Agent and
application server failover scenario.

Figure 10-1 Node Agent and application server scenario- resources and dependencies

Hardware topology
The hardware used in our tests consisted of two blade servers called thost1 and
thost2 running in an IBM Blade Center. Both blades have a fiber adapter installed
and a LUN with the shared disk is available to both blades. The LUN is managed
 Chapter 10. WebSphere and IBM Tivoli System Automation 381

by an IBM TotalStorage SAN Volume Controller (SVC) which uses a FAStT900
for its storage. The FAStT900 has a large block of storage that is managed by
the SVC. The SVC is configured to have a VLUN of around 5GB for use by the
Node Agent and application servers. That VLUN is mapped so that it is visible on
both thost1 and thost2.

10.4.1 Installing a Node Agent and application server or servers
In our setup, we opted for simplicity and configured our system to run in cold
failover mode (otherwise known as Active/Passive). The WebSphere binaries
and profiles are located on a shared file system.

Figure 10-2 on page 383 shows our lab setup. We used two systems that have
access to a Network Attached Storage (NAS) device. The systems use iSCSI to
attach to the NAS and this provides simultaneous and concurrent access to the
directories that contain the WebSphere configuration data. We configured Tivoli
System Automation to have an Active/Passive configuration. This means the
Node Agent and application servers are running only on one of the systems at a
time. One system is deemed the primary system and when the processes fail on
that system, the secondary system becomes active and all requests are served
by the secondary system.

See 9.4, “Node Agent and application server high availability” on page 304 for
details on how to install and configure WebSphere for this scenario.
382 WebSphere Application Server V6: High Availability Solutions

Figure 10-2 Tivoli System Automation: Node Agent and application server setup

10.4.2 Configuring Tivoli System Automation to run the Node Agents
and application server

The Tivoli System Automation configuration steps are similar to those described
for the Deployment Manager in 10.3.2, “Configuring Tivoli System Automation to
run the Deployment Manager scenario” on page 375. In this section we provide
example Tivoli System Automation commands, resource definitions, stop, start
and monitor scripts, and describe in detail any additional configuration steps
necessary to configure Tivoli System Automation to run the Node Agent and
application server.

Creating and starting the Tivoli System Automation domain
First you need to run the preprpnode command on both nodes, then create a
domain, start the domain and add the tie-breaker if needed as described in
“Creating and starting the Tivoli System Automation domain” on page 376.

Completing the Tivoli System Automation configuration
Run the commands shown in Example 10-6 on page 384 to create resource
groups, make resources, add resources to resource groups, make network
equivalencies and to specify dependencies. When this is done, the system is

WebSphere process
(Node Agent)

thost1

NAS

thost2

IBM Tivoli System
Automation

WebSphere process
(application server)

WebSphere process
(Node Agent)

WebSphere process
(application server)
 Chapter 10. WebSphere and IBM Tivoli System Automation 383

managed by Tivoli System Automation and all processes on the system need to
be started/stopped using Tivoli System Automation.

Dependencies
It is important to understand the dependencies between the resources:

1. The IP address depends on network interface equivalency.
2. The Node Agent depends on the IP address.
3. The application server depends on the Node Agent.

This means that the network equivalency of the two boxes and the file system
must be online before the Node Agent can be online. Also, the Node Agent must
be online before the application server can be started.

Example 10-6 Commands for Node Agent and application server HA

make resource group(s)
mkrg SA-was-rg

make resources
mkrsrc -f SA-was-na.def IBM.Application
mkrsrc -f SA-was-as.def IBM.Application
mkrsrc -f SA-was-ip-1.def IBM.ServiceIP

make network equivalencies
mkequ was-node1-ip-equ IBM.NetworkInterface:eth0:thost2,eth0:thost1

add resources to resource group
addrgmbr -m T -g SA-was-rg IBM.Application:SA-was-na
addrgmbr -m T -g SA-was-rg IBM.Application:SA-was-as
addrgmbr -m T -g SA-was-rg IBM.ServiceIP:SA-was-ip-1

specify dependencies and equivalencies
mkrel -S IBM.Application:SA-was-na -G IBM.ServiceIP:SA-was-ip-1 -p DependsOn
SA-was-na-on-ip-1
mkrel -S IBM.ServiceIP:SA-was-ip-1 -G IBM.Equivalency:SA-was-nieq-1 -p
DependsOn SA-was-ip-on-nieq-1
mkrel -S IBM.Application:SA-was-as -G IBM.Application:SA-was-na -p DependsOn
SA-was-as-on-na
mkequ SA-was-nieq-1 IBM.NetworkInterface:eth0:thost1,eth0:thost2

Important: Due to the nature of IP, all of the hosts involved in the network
equivalency must be on the same subnet for IP failover to work properly.
384 WebSphere Application Server V6: High Availability Solutions

Example resource definition files for a Virtual IP Address, Node Agent, and
application server are shown in the following examples.

Example 10-7 SA-was-ip-1.def

PersistentResourceAttributes::
 Name="SA-was-ip-1"
 ResourceType=1
 IPAddress=192.168.4.1
 NetMask=255.255.255.0
 ProtectionMode=NodeNameList={"thost1","thost2"}

Example 10-8 SA-was-na.def

PersistentResourceAttributes::
Name=SA-was-na
ResourceType=1
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-na start
/opt/IBM/WebSphere/AppServer/profiles/node1 8878
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-na stop
/opt/IBM/WebSphere/AppServer/profiles/node1 8878
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-na status
/opt/IBM/WebSphere/AppServer/profiles/node1 8878
StartCommandTimeout=60
StopCommandTimeout=60
MonitorCommandTimeout=19
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost1','thost2'}
UserName=root

Example 10-9 SA-was-as.def

PersistentResourceAttributes::
Name=SA-was-as
ResourceType=1
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-as start
/opt/IBM/WebSphere/AppServer/profiles/node1 8879 thost1
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-as stop
/opt/IBM/WebSphere/AppServer/profiles/node1 8879 thost1server
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-as status
/opt/IBM/WebSphere/AppServer/profiles/node1 8879 thost1server
StartCommandTimeout=180
StopCommandTimeout=180
MonitorCommandTimeout=19
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
 Chapter 10. WebSphere and IBM Tivoli System Automation 385

NodeNameList={'thost1','thost2'}
UserName=root

Example start, stop, and monitor scripts for the Node Agent and application
server are shown in Example 10-10 and Example 10-11 on page 387. These
scripts are also used in the subsequent scenarios in this chapter.

Example 10-10 wasctrl-na

#!/bin/ksh
##
#
was nodeAgent automation control script
#
Input:
$1 action (<start|stop|status>)
$2 na_home, root directory of node configuration
USER_INSTALL_ROOT
$3 na_tcpp, node agent's SOAP_CONNECTOR_ADDRESS
#
#
##
#
init section
#

UNKNOWN=0
ONLINE=1
OFFLINE=2

Action=${1:-status}
NA_HOME=$2
NA_TCPP=$3

export
PATH=$PATH:/bin:/usr/bin:/sbin:/usr/sbin:/usr/sbin/rsct/bin:${NA_HOME}/bin

case ${Action} in
 start)
 startNode.sh -timeout 600
 RC=$?
 logger -i -p info -t $0 "NodeAgent start rc: ${RC}"
 ;;
 stop)
 stopNode.sh -timeout 180
 RC=$?
 if [$RC -eq 0]; then
 logger -i -p info -t $0 "NodeAgent stop rc: ${RC}"
386 WebSphere Application Server V6: High Availability Solutions

 elif [$RC -eq 246]; then
 logger -i -p info -t $0 "NodeAgent stop rc: ${RC} (NodeAgent
did not run)."
 else
 logger -i -p info -t $0 "NodeAgent stop rc: ${RC}"
 NA_pid=`cut -f1 $NA_HOME/logs/nodeagent/nodeagent.pid`
 kill -9 ${NA_pid} > /dev/null 2>&1
 logger -i -p info -t $0 "NodeAgent (pid ${NA_pid}) killed."
 fi
 ;;
 status)
 NA_UP=`netstat -lnt | grep :${NA_TCPP}`
 if ["${NA_UP}" != ""];
 then
 RC=$ONLINE
 else
 RC=$OFFLINE
 fi
 ;;
 *)
 logger -i -p info -t $0 "Error: Incorrect parameter
>${Action}<"
 RC=${UNKNOWN}
 ;;
esac
exit ${RC}

Example 10-11 wasctrl-as

#!/bin/ksh
##
#
was applicationServer automation control script
#
Input:
$1 action (<start|stop|status>)
$2 na_home, the nodeagent's home directory
USER_INSTALL_ROOT
$3 as_tcpp, the applicationServer's SOAP_CONNECTOR_ADDRESS
$4 server_name, name of the applicationServer
#
##
#
init section
#

UNKNOWN=0
ONLINE=1
OFFLINE=2
 Chapter 10. WebSphere and IBM Tivoli System Automation 387

Action=${1:-status}
NA_HOME=$2
AS_TCPP=$3
SERVER_NAME=$4

export
PATH=$PATH:/bin:/usr/bin:/sbin:/usr/sbin:/usr/sbin/rsct/bin:${NA_HOME}/bin

case ${Action} in
 start)
 startServer.sh ${SERVER_NAME} -timeout 300
 RC=$?
 logger -i -p info -t $0 "ApplicationServer start rc: ${RC}"
 ;;
 stop)
 stopServer.sh ${SERVER_NAME} -timeout 180
 RC=$?
 if [$RC -eq 0]; then
 logger -i -p info -t $0 "ApplicationServer stop rc: ${RC}"
 elif [$RC -eq 246]; then
 logger -i -p info -t $0 "ApplicationServer stop rc: ${RC}
(applicationServer did not run)."
 else
 logger -i -p info -t $0 "ApplicationServer stop rc: ${RC}"
 AS_pid=`cut -f1
$NA_HOME/logs/${SERVER_NAME}/${SERVER_NAME}.pid`
 kill -9 ${AS_pid} > /dev/null 2>&1
 logger -i -p info -t $0 "ApplicationServer (pid ${AS_pid})
killed."
 fi
 ;;
 status)
 AS_UP=`netstat -lnt | grep :${AS_TCPP}`
 if ["${AS_UP}" != ""];
 then
 RC=$ONLINE
 else
 RC=$OFFLINE
 fi
 ;;
 *)
 logger -i -p info -t $0 "Error: Incorrect parameter
>${Action}<"
 RC=${UNKNOWN}
 ;;
esac
exit ${RC}
388 WebSphere Application Server V6: High Availability Solutions

10.4.3 Testing Node Agent and application server failover
When all resources are set up and running on the systems, we recommend you
test the setup to see that everything is working as expected.

Using Tivoli System Automation
As mentioned, from now on the Node Agent and application server can only be
stopped or started using Tivoli System Automation. The commands that Tivoli
System Automation uses to start and stop the Node Agent and application server
are shown in Example 10-12.

Example 10-12 Starting and stopping managed Node Agent and application server

command to start the Node Agent
startrsrc -s "Name='SA-was-na'" IBM.Application

command to stop the Node Agent
stoprsrc -s "Name='SA-was-na'" IBM.Application

command to stop the application server
stoprsrc -s "Name='SA-was-as'" IBM.Application

command to start the application server
startrsrc -s "Name='SA-was-as'" IBM.Application

You can test failover by first bringing the Node Agent and application server
resource group online using the chrg -o online SA-was-rg command. This
causes Tivoli System Automation to run the start scripts (shown in
Example 10-10 on page 386 and Example 10-11 on page 387) for all the
resources (and their equivalencies) that were added in Example 10-6 on
page 384.

Then, tell Tivoli System Automation to remove the node where the resource
group (and subsequently resources) is currently running from the allowed list.
Tivoli System Automation keeps a list of nodes that are to be excluded from
running a resource group. If the Node Agent and application server is running on
thost1, then the following command excludes thost1 from running the resource
group. You see the Node Agent and application server shutdown on thost1 and
then started on thost2:

samctrl -u a thost1

This adds thost1 to the excluded node list for the domain, which triggers a orderly
failover to thost2. When the Node Agent and application server are running on
thost2 then you can undo this command using the following:

samctrl -u d thost1
 Chapter 10. WebSphere and IBM Tivoli System Automation 389

This command removes the node thost1 from the disabled node list and makes
thost1 available again to running the Node Agent and application server. No
failback will occur when the Tivoli System Automation node is added back to the
enabled node list. You can fail the Node Agent and application server back to
thost1 by first excluding thost2 using samctrl -u a thost2 and then, when the
Node Agent and application server are running on thost1 again, undo the
exclude command by adding the node back to the enabled list using samctrl -u
d thost2.

Testing manually
To test failover manually:

1. Shut down the system where the Node Agent and application server are
running.

2. Kill the Node Agent or application server process using the kill -9 command
(UNIX or Linux). The process ids are denoted in the .pid file located in the
respective Node Agent and application server logs directories.

10.4.4 Example: Monitoring and restarting two nodes
This example is less of a failover scenario and more of a monitoring and
restarting scenario. The Node Agents and application servers will be restarted on
their respective node in case of a process failure but will not failover to another
node. We describe how to configure IBM Tivoli System Automation to protect the
two nodes.

Scenario description
� A WebSphere cluster spans two application servers, each one on a separate

node hosting also the Node Agent.

� Both nodes are production nodes in the peer domain.

� The goal is an automatic restart of the Node Agent or application server in
case of their failure.

� Tivoli System Automation has one resource group containing four group
members. The four group members consist of two Node Agents and two
application servers. Each resource group member has a Tivoli System
Automation IBM.Application definition mapping the start, stop, and monitor
scripts for the WebSphere resources.

Resources
� Two Node Agents (one on each peer node).
� Two application servers (one on each node).

The resources are of type fixed.
390 WebSphere Application Server V6: High Availability Solutions

Network equivalencies
None.

Resource groups
The Node Agent and the application server are members of the same group.
There is one group for each peer node defined.

Relationships between resources
The application server depends on the Node Agent running on the same peer
node for server start.

Figure 10-3 illustrates the resources and dependencies for the Node Agent and
application server monitoring and restarting scenario.

Figure 10-3 Node Agent and application monitoring scenario
 Chapter 10. WebSphere and IBM Tivoli System Automation 391

Configuring Tivoli System Automation for the monitoring and
restarting example

In Example 10-13, notice the resource groups being tied together so that when or
if the Node Agent is stopped, the application server on that same node is also
stopped.

Example 10-13 Commands to set up sample environment with two nodes

make resource groups
mkrg SA-was-na1-rg

make resources
mkrsrc -f SA-was-na1.def IBM.Application
mkrsrc -f SA-was-na2.def IBM.Application
mkrsrc -f SA-was-as1.def IBM.Application
mkrsrc -f SA-was-as2.def IBM.Application

add resources to resource group
addrgmbr -m T -g SA-was-na1-rg IBM.Application:SA-was-na1
addrgmbr -m T -g SA-was-na2-rg IBM.Application:SA-was-na2
addrgmbr -m T -g SA-was-as1-rg IBM.Application:SA-was-as1
addrgmbr -m T -g SA-was-as2-rg IBM.Application:SA-was-as2

specify dependencies and equivalencies
No dependencies or equivalencies needed for this scenario

Example 10-14 SA-was-na1.def

PersistentResourceAttributes::
Name=SA-was-na1
ResourceType=0
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-na start
/opt/IBM/WebSphere/AppServer/profiles/node1 8878
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-na stop
/opt/IBM/WebSphere/AppServer/profiles/node1 8878
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-na status
/opt/IBM/WebSphere/AppServer/profiles/node1 8878
StartCommandTimeout=60
StopCommandTimeout=60
MonitorCommandTimeout=9
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost1'}
UserName=root
392 WebSphere Application Server V6: High Availability Solutions

Example 10-15 SA-was-na2.def

PersistentResourceAttributes::
Name=SA-was-na2
ResourceType=0
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-na start
/opt/IBM/WebSphere/AppServer/profiles/node2 8878
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-na stop
/opt/IBM/WebSphere/AppServer/profiles/node2 8878
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-na status
/opt/IBM/WebSphere/AppServer/profiles/node2 8878
StartCommandTimeout=60
StopCommandTimeout=60
MonitorCommandTimeout=9
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost2'}
UserName=root

Example 10-16 SA-was-as1.def

PersistentResourceAttributes::
Name=SA-was-as1
ResourceType=0
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-as start
/opt/IBM/WebSphere/AppServer/profiles/node1 8879 thost1server
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-as stop
/opt/IBM/WebSphere/AppServer/profiles/node1 8879 thost1server
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-as status
/opt/IBM/WebSphere/AppServer/profiles/node1 8879 thost1server
StartCommandTimeout=180
StopCommandTimeout=180
MonitorCommandTimeout=9
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost1'}
UserName=root

Example 10-17 SA-was-as2.def

PersistentResourceAttributes::
Name=SA-was-as2
ResourceType=0
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-as start
/opt/IBM/WebSphere/AppServer/profiles/node2 8879 thost2server
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-as stop
/opt/IBM/WebSphere/AppServer/profiles/node2 8879 thost2server
 Chapter 10. WebSphere and IBM Tivoli System Automation 393

MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-as status
/opt/IBM/WebSphere/AppServer/profiles/node2 8879 thost2server
StartCommandTimeout=180
StopCommandTimeout=180
MonitorCommandTimeout=9
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost2'}
UserName=root

Testing monitoring and restarting example
When all resources are set up and running on the systems we recommend you
test the setup to see that everything is working as expected. To test the
monitoring and restart scenario, you can kill the Node Agent or application server
process using the kill -9 command (UNIX or Linux). The process IDs are
denoted in the .pid file located in the respective Node Agent and application
server logs directories.

10.5 Transaction Manager failover with No Operation
policy

A general discussion of configuring the Transaction Manager failover with the No
Operation policy is provided in “Transaction Manager failover with No Operation
policy” on page 313.

In this section, we discuss how to configure IBM Tivoli System Automation to
correctly failover the Transaction Manager with the No Operation recovery policy.

Scenario description
� Two production nodes in the peer domain.

� Automatic restart of a Node Agent or application server in case of their failure.

� In addition, in case of an application server failure, this scenario provides
failover of the affected Transaction Manager to the other peer node and
failback when the failed application server has restarted.

� A shared file system containing the transaction logs that can be accessed by
the peer nodes.

Note: For sample wasctrl-na and wasctrl-as scripts, see Example 10-10 on
page 386 and Example 10-11 on page 387.
394 WebSphere Application Server V6: High Availability Solutions

Resources
� Two Node Agents (one for each node).

� Two application servers (one for each node).

� Two Transaction Managers (one per node). In order to control the
Transaction Managers with Tivoli System Automation, the WebSphere policy
must be set to No Operation. In addition, match criteria must be defined for
each Transaction Managers instance. For an example look into the
sa-was.conf.sample file which is part of the premade policy for
WebSphere V6 available at:

http://www.ibm.com/software/tivoli/products/sys-auto-linux/
downloads.html

� Four application server monitors (two for each application server). These
monitors report an online operation state as soon as the monitored
application server becomes online. And they report offline as long as the
monitored application server is not in online state.

The Transaction Manager resources are of type floating, all other resources are
of type fixed.

Network equivalencies
None.

Equivalencies of application server monitors
Two equivalencies of application server monitors are defined, one for each
Transaction Manager. The SelectFromPolicy attribute of the equivalencies must
be set to 27 for this scenario.

Resource groups
� Two for two Node Agent/application server pairs, one for each pair.
� Two for the Transaction Managers, one for each instance.

Relationships between resources
1. The application server depends on the Node Agent.

2. Each Transaction Manager depends on one of the equivalencies of the
application server monitors. This establishes an implicit dependency between
each of the Transaction Managers (TM) and the application server the TM
runs on.

Note: At the time of writing this redbook, the WebSphere V6 policy and
sample script files were not yet available for download. This is planned for
the near future. Monitor the Web site for availability.
 Chapter 10. WebSphere and IBM Tivoli System Automation 395

http://www.ibm.com/software/tivoli/products/sys-auto-linux/downloads.html

Figure 10-4 illustrates the resources and dependencies for the Transaction
Manager NoOP failover scenario.

Figure 10-4 Transaction Manager NoOP scenario - resources and dependencies

Note: If the two application servers are started simultaneously but take a
significantly different amount of time to initialize, both Transaction Managers
will be started on the same node. After the “slower” application server has
initialized too, its Transaction Manager will be failed back to it.
396 WebSphere Application Server V6: High Availability Solutions

10.5.1 WebSphere configuration
Follow the instructions in 9.6.3, “Configuring WebSphere for TM No Operation
policy” on page 317 to configure WebSphere for this scenario.

10.5.2 Tivoli System Automation configuration
Example 10-18 lists the configuration commands needed to set up the
Transaction Manager with NoOP policy scenario in Tivoli System Automation.

Example 10-18 Commands to set up Transaction Manager NoOP scenario

make resource groups
mkrg SA-was-na1-rg
mkrg SA-was-na2-rg
mkrg SA-was-as1-rg
mkrg SA-was-as2-rg
mkrg SA-was-tm1-rg
mkrg SA-was-tm2-rg

make resources
mkrsrc -f SA-was-na1.def IBM.Application
mkrsrc -f SA-was-na2.def IBM.Application
mkrsrc -f SA-was-as1.def IBM.Application
mkrsrc -f SA-was-as2.def IBM.Application
mkrsrc -f SA-was-tm1.def IBM.Application
mkrsrc -f SA-was-tm2.def IBM.Application
mkrsrc -f SA-was-ascon11.def IBM.Application
mkrsrc -f SA-was-ascon12.def IBM.Application
mkrsrc -f SA-was-ascon21.def IBM.Application
mkrsrc -f SA-was-ascon22.def IBM.Application

add resources to resource group
addrgmbr -m T -p A -g SA-was-na1-rg IBM.Application:SA-was-na1:thost1
addrgmbr -m T -p A -g SA-was-na2-rg IBM.Application:SA-was-na2:thost2
addrgmbr -m T -p A -g SA-was-as1-rg IBM.Application:SA-was-as1:thost1
addrgmbr -m T -p A -g SA-was-as2-rg IBM.Application:SA-was-as2:thost2
addrgmbr -m T -p A -g SA-was-tm1-rg IBM.Application:SA-was-tm1
addrgmbr -m T -p A -g SA-was-tm2-rg IBM.Application:SA-was-tm2

specify dependencies and equivalencies
mkequ SA-was-asconeq1
IBM.Application:SA-was-ascon11:thost1,SA-was-ascon12:thost2
chrsrc -s 'Name=\"SA-was-asconeq1\"' IBM.Equivalency SelectFromPolicy=27
mkequ SA-was-asconeq2 IBM.Application:SA-was-ascon22:thost2,SA-was-ascon21:
chrsrc -s 'Name=\"SA-was-asconeq2\"' IBM.Equivalency SelectFromPolicy=27
mkrel -S IBM.Application:SA-was-as1: -G IBM.Application:SA-was-na1:thost2 -p
DependsOn SA-was-as1:thost1-on-na1:thost1
 Chapter 10. WebSphere and IBM Tivoli System Automation 397

mkrel -S IBM.Application:SA-was-as2:thost2 -G IBM.Application:SA-was-na2:thost2
-p DependsOn SA-was-as2:thost2-on-na2:thost2
mkrel -S IBM.Application:SA-was-tm1 -G IBM.Equivalency:SA-was-asconeq1 -p
DependsOn SA-was-tm1-on-asconeq1
mkrel -S IBM.Application:SA-was-tm2 -G IBM.Equivalency:SA-was-asconeq2 -p
DependsOn SA-was-tm2-on-asconeq2

A sample start, stop, and monitor script (wasctrl-ascon) for the application server
resource groups is shown in Example 10-19.

Example 10-19 wasctrl-ascon

#!/bin/ksh
##
#
was tm automation control, auxiliary script
#
Input:
$1 action (<start|stop|status>)
$2 application server's resource group name
$3 as_tcpp, the applicationServer's SOAP_CONNECTOR_ADDRESS
#
###
#
init section
#

UNKNOWN=0
ONLINE=1
OFFLINE=2

Action=${1:-status}
ASERVER_RG=$2
AS_TCPP=$3

export PATH=$PATH:/bin:/usr/bin:/sbin:/usr/sbin:/usr/sbin/rsct/bin

case ${Action} in
 start)
 chrg -o online $ASERVER_RG
 RC=$?
 logger -i -p info -t $0 "Resource group $ASERVER_RG start rc:
${RC}"
 ;;
 stop)
 chrg -o offline $ASERVER_RG
 RC=$?
 if [$RC -eq 0]; then
398 WebSphere Application Server V6: High Availability Solutions

 logger -i -p info -t $0 "Resource group $ASERVER_RG stop rc:
${RC}"
 else
 logger -i -p info -t $0 "Resource group $ASERVER_RG stop
failed with rc: ${RC}"
 fi
 ;;
 status)
 opstate=`lsrg -g ${ASERVER_RG} OpState |awk '/OpState/ {print
$3}'`
 if [$opstate == "2"]; then
 RC=$OFFLINE;
 else
 AS_UP=`netstat -lnt | grep :${AS_TCPP}`
 if [$opstate == "1" -a "${AS_UP}" != ""]; then
 RC=$ONLINE;
 else
 RC=$OFFLINE;
 fi
 fi
 ;;
 *)
 logger -i -p info -t $0 "Error: Incorrect parameter
>${Action}<"
 RC=${UNKNOWN}
 ;;
esac

exit ${RC}

The examples that follow show the definition files for the commands listed
previously.

Example 10-20 SA-was-na1.def

PersistentResourceAttributes::
Name=SA-was-na1
ResourceType=0
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-na start
/opt/IBM/WebSphere/AppServer/profiles/node1 8878
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-na stop
/opt/IBM/WebSphere/AppServer/profiles/node1 8878
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-na status
/opt/IBM/WebSphere/AppServer/profiles/node1 8878

Note: For sample wasctrl-na and wasctrl-as scripts, see Example 10-10 on
page 386 and Example 10-11 on page 387.
 Chapter 10. WebSphere and IBM Tivoli System Automation 399

StartCommandTimeout=60
StopCommandTimeout=60
MonitorCommandTimeout=19
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost1'}
UserName=root

Example 10-21 SA-was-na2.def

PersistentResourceAttributes::
Name=SA-was-na2
ResourceType=0
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-na start
/opt/IBM/WebSphere/AppServer/profiles/node2 8878
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-na stop
/opt/IBM/WebSphere/AppServer/profiles/node2 8878
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-na status
/opt/IBM/WebSphere/AppServer/profiles/node2 8878
StartCommandTimeout=60
StopCommandTimeout=60
MonitorCommandTimeout=19
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost2'}
UserName=root

Example 10-22 SA-was-as1.def

PersistentResourceAttributes::
Name=SA-was-as1
ResourceType=0
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-as start
/opt/IBM/WebSphere/AppServer/profiles/node1 8879 thost1server
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-as stop
/opt/IBM/WebSphere/AppServer/profiles/node1 8879 thost1server
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-as status
/opt/IBM/WebSphere/AppServer/profiles/node1 8879 thost1server
StartCommandTimeout=180
StopCommandTimeout=180
MonitorCommandTimeout=19
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost1'}
UserName=root
400 WebSphere Application Server V6: High Availability Solutions

Example 10-23 SA-was-as2.def

PersistentResourceAttributes::
Name=SA-was-as2
ResourceType=0
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-as start
/opt/IBM/WebSphere/AppServer/profiles/node2 8879 thost2server
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-as stop
/opt/IBM/WebSphere/AppServer/profiles/node2 8879 thost2server
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-as status
/opt/IBM/WebSphere/AppServer/profiles/node2 8879 thost2server
StartCommandTimeout=180
StopCommandTimeout=180
MonitorCommandTimeout=19
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost2'}
UserName=root

Example 10-24 SA-was-tm1.def

PersistentResourceAttributes::
Name=SA-was-tm1
ResourceType=1
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-tm start thost1
/opt/IBM/WebSphere/AppServer/profiles/node1 8879 TradeCluster
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-tm stop thost1
/opt/IBM/WebSphere/AppServer/profiles/node1 8879 TradeCluster
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-tm status thost1
/opt/IBM/WebSphere/AppServer/profiles/node1 8879 TradeCluster
StartCommandTimeout=60
StopCommandTimeout=60
MonitorCommandTimeout=9
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost1','thost2'}
UserName=root

Note: The wasctrl-tm script that is used in the next two examples is explained
in great detail in 9.6, “Transaction Manager failover with No Operation policy”
on page 313, specifically in “Scripts to start, stop, and monitor WebSphere
resources” on page 331.
 Chapter 10. WebSphere and IBM Tivoli System Automation 401

Example 10-25 SA-was-tm2.def

PersistentResourceAttributes::
Name=SA-was-tm2
ResourceType=1
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-tm start thost2
/opt/IBM/WebSphere/AppServer/profiles/node2 8879 TradeCluster
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-tm stop thost2
/opt/IBM/WebSphere/AppServer/profiles/node2 8879 TradeCluster
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-tm status thost2
/opt/IBM/WebSphere/AppServer/profiles/node2 8879 TradeCluster
StartCommandTimeout=60
StopCommandTimeout=60
MonitorCommandTimeout=9
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost1','thost2'}
UserName=root

Example 10-26 SA-was-ascon11.def

PersistentResourceAttributes::
Name=SA-was-ascon11
ResourceType=0
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon start SA-was-as1-rg
8879
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon stop SA-was-as1-rg 8879
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon status SA-was-as1-rg
8879
StartCommandTimeout=180
StopCommandTimeout=180
MonitorCommandTimeout=19
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost1'}
UserName=root

Note: The following definition files use the wasctrl-ascon script shown in
Example 10-19 on page 398.
402 WebSphere Application Server V6: High Availability Solutions

Example 10-27 SA-was-ascon12.def

PersistentResourceAttributes::
Name=SA-was-ascon12
ResourceType=0
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon start SA-was-as2-rg
8879
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon stop SA-was-as2-rg 8879
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon status SA-was-as2-rg
8879
StartCommandTimeout=180
StopCommandTimeout=180
MonitorCommandTimeout=19
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost2'}
UserName=root

Example 10-28 SA-was-ascon21.def

PersistentResourceAttributes::
Name=SA-was-ascon21
ResourceType=0
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon start SA-was-as1-rg
8879
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon stop SA-was-as1-rg 8879
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon status SA-was-as1-rg
8879
StartCommandTimeout=180
StopCommandTimeout=180
MonitorCommandTimeout=19
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost1'}
UserName=root
 Chapter 10. WebSphere and IBM Tivoli System Automation 403

Example 10-29 SA-was-ascon22.def

PersistentResourceAttributes::
Name=SA-was-ascon22
ResourceType=0
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon start SA-was-as2-rg
8879
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon stop SA-was-as2-rg 8879
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon status SA-was-as2-rg
8879
StartCommandTimeout=180
StopCommandTimeout=180
MonitorCommandTimeout=19
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost2'}
UserName=root

10.5.3 Testing Transaction Manager with NoOP policy failover
When all resources are set up and running on the systems we recommend you
test the setup to see that everything is working as expected. Possible test
scenarios are:

1. Shut down the system where the application server is running.

2. Kill the application server process using the kill -9 command (UNIX or
Linux). The process ID is denoted in the .pid file located in the application
server logs directory.

Refer to 11.5.3, “Testing Transaction Manager with NoOP policy failover” on
page 441 in the HACMP chapter for instructions on how to verify whether your
Transaction Manager failed over as expected. Alternatively, you can look at the
messages in the SystemOut.log file of the failed-over server where you will find
messages indicating the start.
404 WebSphere Application Server V6: High Availability Solutions

10.6 Default messaging provider with No Operation
policy

A general discussion of configuring the default messaging provider failover with
the No Operation policy is provided in “Default messaging provider failover with
No Operation policy” on page 347.

In this section, we discuss how to configure IBM Tivoli System Automation to
correctly failover the messaging engines with the No Operation recovery policy.

Scenario description
� Two production nodes in the peer domain.

� Automatic restart of a Node Agent or application server in case of their failure.

� In addition, in case of an application server failure, failover of the affected
messaging engine to the other peer node.

Resources
� Two Node Agents (one for each node).

� Two application servers (one for each node).

� Two messaging engines (one per node). In order to control the messaging
engine with Tivoli System Automation the WebSphere policy must be set to
No Operation. In addition, match criteria must be defined for each messaging
engine instance. For an example look into the sa-was.conf.sample file which
is part of the premade policy for WebSphere V6 available at:

http://www.ibm.com/software/tivoli/products/sys-auto-linux/
downloads.html

3. Four application server monitors (two for each application server). These
monitors report an online operation state as soon as the monitored
application server becomes online. And they report offline as long as the
monitored application server is not in online state.

The messaging engine resources are of type floating, all other resources are of
type fixed.

Network equivalencies
None.

Note: At the time of writing this redbook, the WebSphere V6 policy and
sample script files were not yet available for download. This is planned for
the near future. Monitor the Web site for availability.
 Chapter 10. WebSphere and IBM Tivoli System Automation 405

http://www.ibm.com/software/tivoli/products/sys-auto-linux/downloads.html

Equivalencies of application server monitors
Two equivalencies of application server monitors are defined, one for each
messaging engine. The SelectFromPolicy attribute of the equivalencies must be
set to 25 for this scenario.

Resource Groups
� Two for two Node Agent/application server pairs, one for each pair.
� Two for the messaging engines, one for each instance.

Relationships between resources
� The application server depends on the Node Agent.

� Each messaging engine depends on one of the equivalencies of the
application server monitors. This establishes an implicit dependency between
each of the messaging engines and the application server the messaging
engine runs on.

Figure 10-5 on page 407 illustrates the resources and dependencies for the
messaging engine NoOP failover scenario.

Note: Under certain circumstances, both messaging engines might be started
on the same peer node (see “Relationships between resources” on page 395).
406 WebSphere Application Server V6: High Availability Solutions

Figure 10-5 Messaging engine NoOP scenario - resources and dependencies
 Chapter 10. WebSphere and IBM Tivoli System Automation 407

10.6.1 WebSphere configuration
Follow the instructions in 9.7.3, “Configuring WebSphere for default messaging
provider No Operation policy” on page 349 to configure WebSphere for this
scenario.

10.6.2 Tivoli System Automation configuration
Example 10-30 lists the configuration commands needed to set up the
messaging engine with NoOP policy scenario in Tivoli System Automation.

Example 10-30 Commands to set up messaging engine NoOP scenario

make resource groups
mkrg SA-was-1-rg
mkrg SA-was-2-rg
mkrg SA-was-me1-rg
mkrg SA-was-me2-rg

make resources
mkrsrc -f SA-was-na1.def IBM.Application
mkrsrc -f SA-was-na2.def IBM.Application
mkrsrc -f SA-was-as1.def IBM.Application
mkrsrc -f SA-was-as2.def IBM.Application
mkrsrc -f SA-was-me1.def IBM.Application
mkrsrc -f SA-was-me2.def IBM.Application
mkrsrc -f SA-was-ascon11.def IBM.Application
mkrsrc -f SA-was-ascon12.def IBM.Application
mkrsrc -f SA-was-ascon21.def IBM.Application
mkrsrc -f SA-was-ascon22.def IBM.Application

specify dependencies and equivalencies
addrgmbr -m T -p A -g SA-was-1-rg IBM.Application:SA-was-na1:thost1
addrgmbr -m T -p A -g SA-was-2-rg IBM.Application:SA-was-na2:thost2
addrgmbr -m T -p A -g SA-was-1-rg IBM.Application:SA-was-as1:thost1
addrgmbr -m T -p A -g SA-was-2-rg IBM.Application:SA-was-as2:thost2
addrgmbr -m T -p A -g SA-was-me1-rg IBM.Application:SA-was-me1
addrgmbr -m T -p A -g SA-was-me2-rg IBM.Application:SA-was-me2

specify dependencies and equivalencies
mkequ SA-was-asconeq1
IBM.Application:SA-was-ascon11:thost1,SA-was-ascon12:thost2
chrsrc -s 'Name="SA-was-asconeq1"' IBM.Equivalency SelectFromPolicy=25
mkequ SA-was-asconeq2
IBM.Application:SA-was-ascon22:thost2,SA-was-ascon21:thost1
chrsrc -s 'Name="SA-was-asconeq2"' IBM.Equivalency SelectFromPolicy=25
mkrel -S IBM.Application:SA-was-as1:thost1 -G IBM.Application:SA-was-na1:thost1
-p DependsOn SA-was-as1:thost1-on-na1:thost1
408 WebSphere Application Server V6: High Availability Solutions

mkrel -S IBM.Application:SA-was-as2:thost2 -G IBM.Application:SA-was-na2:thost2
-p DependsOn SA-was-as2:thost2-on-na2:thost2
mkrel -S IBM.Application:SA-was-me1 -G IBM.Equivalency:SA-was-asconeq1 -p
DependsOn SA-was-me1-on-asconeq1
mkrel -S IBM.Application:SA-was-me2 -G IBM.Equivalency:SA-was-asconeq2 -p
DependsOn SA-was-me2-on-asconeq2

The following examples show the definition files for the commands listed
previously.

Example 10-31 SA-was-na1.def

PersistentResourceAttributes::
Name=SA-was-na1
ResourceType=0
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-na start
/opt/IBM/WebSphere/AppServer/profiles/node1 8878
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-na stop
/opt/IBM/WebSphere/AppServer/profiles/node1 8878
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-na status
/opt/IBM/WebSphere/AppServer/profiles/node1 8878
StartCommandTimeout=60
StopCommandTimeout=60
MonitorCommandTimeout=19
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost1'}
UserName=root

Note: For sample wasctrl-na and wasctrl-as scripts see Example 10-10 on
page 386 and Example 10-11 on page 387.
 Chapter 10. WebSphere and IBM Tivoli System Automation 409

Example 10-32 SA-was-na2.def

PersistentResourceAttributes::
Name=SA-was-na2
ResourceType=0
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-na start
/opt/IBM/WebSphere/AppServer/profiles/node2 8878
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-na stop
/opt/IBM/WebSphere/AppServer/profiles/node2 8878
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-na status
/opt/IBM/WebSphere/AppServer/profiles/node2 8878
StartCommandTimeout=60
StopCommandTimeout=60
MonitorCommandTimeout=19
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost2'}
UserName=root

Example 10-33 SA-was-as1.def

PersistentResourceAttributes::
Name=SA-was-as1
ResourceType=0
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-as start
/opt/IBM/WebSphere/AppServer/profiles/node1 8879 thost1server
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-as stop
/opt/IBM/WebSphere/AppServer/profiles/node1 8879 thost1server
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-as status
/opt/IBM/WebSphere/AppServer/profiles/node1 8879 thost1server
StartCommandTimeout=180
StopCommandTimeout=180
MonitorCommandTimeout=19
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost1'}
UserName=root
410 WebSphere Application Server V6: High Availability Solutions

Example 10-34 SA-was-as2.def

PersistentResourceAttributes::
Name=SA-was-as2
ResourceType=0
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-as start
/opt/IBM/WebSphere/AppServer/profiles/node2 8879 thost2server
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-as stop
/opt/IBM/WebSphere/AppServer/profiles/node2 8879 thost2server
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-as status
/opt/IBM/WebSphere/AppServer/profiles/node2 8879 thost2server
StartCommandTimeout=180
StopCommandTimeout=180
MonitorCommandTimeout=19
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost2'}
UserName=root

Example 10-35 SA-was-me1.def

PersistentResourceAttributes::
Name=SA-was-me1
ResourceType=1
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-me start
/opt/IBM/WebSphere/AppServer/profiles/node1
/opt/IBM/WebSphere/AppServer/profiles/node2 /usr/sbin/rsct/sapolicies/was 8879
9080
WSAF_SIB_BUS=TradeCluster,WSAF_SIB_MESSAGING_ENGINE=TradeCluster.000-TradeClust
er,IBM_hc=TradeCluster,type=WSAF_SIB
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-me stop
/opt/IBM/WebSphere/AppServer/profiles/node1
/opt/IBM/WebSphere/AppServer/profiles/node2 /usr/sbin/rsct/sapolicies/was 8879
9080
WSAF_SIB_BUS=TradeCluster,WSAF_SIB_MESSAGING_ENGINE=TradeCluster.000-TradeClust
er,IBM_hc=TradeCluster,type=WSAF_SIB
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-me status
/opt/IBM/WebSphere/AppServer/profiles/node1
/opt/IBM/WebSphere/AppServer/profiles/node2 /usr/sbin/rsct/sapolicies/was 8879
9080
WSAF_SIB_BUS=TradeCluster,WSAF_SIB_MESSAGING_ENGINE=TradeCluster.000-TradeClust
er,IBM_hc=TradeCluster,type=WSAF_SIB

Note: The wasctrl-me script used in Example 10-35 and Example 10-36 is
explained in great detail in 9.7, “Default messaging provider failover with No
Operation policy” on page 347, specifically in “Scripts to start, stop, and
monitor WebSphere resources” on page 357.
 Chapter 10. WebSphere and IBM Tivoli System Automation 411

StartCommandTimeout=60
StopCommandTimeout=60
MonitorCommandTimeout=9
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost1','thost2'}
UserName=root

Example 10-36 SA-was-me2.def

PersistentResourceAttributes::
Name=SA-was-me2
ResourceType=1
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-me start
/opt/IBM/WebSphere/AppServer/profiles/node2
/opt/IBM/WebSphere/AppServer/profiles/node1 /usr/sbin/rsct/sapolicies/was 8879
9080
WSAF_SIB_BUS=TradeCluster,WSAF_SIB_MESSAGING_ENGINE=TradeCluster.001-TradeClust
er,IBM_hc=TradeCluster,type=WSAF_SIB
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-me stop
/opt/IBM/WebSphere/AppServer/profiles/node2
/opt/IBM/WebSphere/AppServer/profiles/node1 /usr/sbin/rsct/sapolicies/was 8879
9080
WSAF_SIB_BUS=TradeCluster,WSAF_SIB_MESSAGING_ENGINE=TradeCluster.001-TradeClust
er,IBM_hc=TradeCluster,type=WSAF_SIB
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-me status
/opt/IBM/WebSphere/AppServer/profiles/node2
/opt/IBM/WebSphere/AppServer/profiles/node1 /usr/sbin/rsct/sapolicies/was 8879
9080
WSAF_SIB_BUS=TradeCluster,WSAF_SIB_MESSAGING_ENGINE=TradeCluster.001-TradeClust
er,IBM_hc=TradeCluster,type=WSAF_SIB
StartCommandTimeout=60
StopCommandTimeout=60
MonitorCommandTimeout=9
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost2','thost1'}
UserName=root
412 WebSphere Application Server V6: High Availability Solutions

Example 10-37 SA-was-ascon11.def

PersistentResourceAttributes::
Name=SA-was-ascon11
ResourceType=0
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon start SA-was-1-rg 8879
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon stop SA-was-1-rg 8879
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon status SA-was-1-rg
8879
StartCommandTimeout=180
StopCommandTimeout=180
MonitorCommandTimeout=19
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost1'}
UserName=root

Example 10-38 SA-was-ascon12.def

PersistentResourceAttributes::
Name=SA-was-ascon12
ResourceType=0
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon start SA-was-2-rg 8879
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon stop SA-was-2-rg 8879
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon status SA-was-2-rg
8879
StartCommandTimeout=180
StopCommandTimeout=180
MonitorCommandTimeout=19
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost2'}
UserName=root

Note: The following definition files use the wasctrl-ascon script that is shown
in Example 10-19 on page 398.
 Chapter 10. WebSphere and IBM Tivoli System Automation 413

Example 10-39 SA-was-ascon21.def

PersistentResourceAttributes::
Name=SA-was-ascon21
ResourceType=0
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon start SA-was-1-rg 8879
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon stop SA-was-1-rg 8879
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon status SA-was-1-rg
8879
StartCommandTimeout=180
StopCommandTimeout=180
MonitorCommandTimeout=19
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost1'}
UserName=root

Example 10-40 SA-was-ascon22.def

PersistentResourceAttributes::
Name=SA-was-ascon22
ResourceType=0
StartCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon start SA-was-2-rg 8879
StopCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon stop SA-was-2-rg 8879
MonitorCommand=/usr/sbin/rsct/sapolicies/was/wasctrl-ascon status SA-was-2-rg
8879
StartCommandTimeout=180
StopCommandTimeout=180
MonitorCommandTimeout=19
MonitorCommandPeriod=30
ProtectionMode=1
RunCommandsSync=0
NodeNameList={'thost2'}
UserName=root

10.6.3 Testing messaging engine with NoOP policy failover
When all the resources are set up and running on the systems we recommend
you test the setup to see that everything is working as expected. Possible tests
include:

1. Shut down the system where the application server is running.

2. Kill the application server process using the kill -9 command (UNIX or
Linux). The process ID is denoted in the .pid file located in the application
server logs directory.
414 WebSphere Application Server V6: High Availability Solutions

When a messaging engine starts in a server, messages are written to the
SystemOut.log file. Therefore, monitor this file on the failed-over system for
messages similar to the ones shown in Example 10-41.

Example 10-41 Message engine startup messages

[8/25/05 11:18:03:743 CDT] 00000045 SibMessage I
[TradeCluster:TradeCluster.000-TradeCluster] CWSIS1538I: The messaging engine,
ME_UUID=02BF0BF501CE0540, INC_UUID=373ad6a9ee6e8153, is attempting to obtain an
exclusive lock on the data store.
...
[8/25/05 11:18:04:037 CDT] 00000045 SibMessage I
[TradeCluster:TradeCluster.000-TradeCluster] CWSIS1537I: The messaging engine,
ME_UUID=02BF0BF501CE0540, INC_UUID=373ad6a9ee6e8153, has acquired an exclusive
lock on the data store.
...
[8/25/05 11:18:11:227 CDT] 00000027 SibMessage I
[TradeCluster:TradeCluster.000-TradeCluster] CWSID0016I: Messaging engine
TradeCluster.000-TradeCluster is in state Started.

Alternatively, you can open the Administrative Console and go to Core
groups → Core group settings → CoreGroupName (most probably
DefaultCoreGroup) → Runtime tab.

Enter WSAF_SIB_MESSAGING_ENGINE=Your_ME into the Group name properties field
and click Show groups. (For example,
WSAF_SIB_MESSAGING_ENGINE=TradeCluster.000-TradeCluster.) You
could also leave the asterisk (*) in the Group name properties field and click
Show groups to display all High availability groups.

Click the link for your HA group to display the Name of the Server the ME runs
on. This panel also shows the status of the ME. See Figure 10-6. Verify this
panel before and after the failover.

Figure 10-6 ME status and server it runs on
 Chapter 10. WebSphere and IBM Tivoli System Automation 415

10.7 Reference
� IBM Tivoli System Automation for Multiplatforms Web site

http://www.ibm.com/software/tivoli/products/sys-auto-linux/

� IBM Tivoli System Automation for Multiplatforms Guide and Reference

http://publib.boulder.ibm.com/tividd/td/ITSAFL/SC33-8210-03/en_US/PDF/
halgre11.pdf

� IBM Tivoli System Automation for Multiplatforms, Downloads (papers and
scripts)

http://www.ibm.com/software/tivoli/products/sys-auto-linux/
downloads.html
416 WebSphere Application Server V6: High Availability Solutions

http://publib.boulder.ibm.com/tividd/td/ITSAFL/SC33-8210-03/en_US/PDF/halgre11.pdf
http://www.ibm.com/software/tivoli/products/sys-auto-linux/downloads.html
http://www.ibm.com/software/tivoli/products/sys-auto-linux/

Chapter 11. WebSphere and IBM HACMP

This chapter provides an introduction into the basics of clustering IBM
WebSphere Application Server V6 using IBM High Availability Clustered
Multi-Processing (HACMP). We describe how to set up IBM WebSphere
Application Server Network Deployment V6 to leverage the benefits of IBM
HACMP.

11
© Copyright IBM Corp. 2005. All rights reserved. 417

11.1 Introduction to IBM HACMP
In general, high availability is achieved by making systems redundant. The more
system redundancy, the higher the level of availability that can be achieved. IBM
HACMP for AIX provides a highly available computing environment by adding
software and redundant hardware components. It automatically switches
applications and data from one system to another in an HACMP cluster after a
hardware or software failure. WebSphere Application Server, coupled with IBM
HACMP for AIX, delivers a proven and reliable software portfolio for
mission-critical On Demand Business applications.

This chapter provides a set of examples of how to set up IBM WebSphere
Application Server Network Deployment V6 in an HACMP environment and how
to configure WebSphere Application Server to failover successfully. It is not our
intention to document the complete HACMP setup, including planning,
designing, customization, installation, and configuration. For more detailed
information about HACMP setup, refer to the HACMP documentation available
at:

http://www.ibm.com/servers/eserver/pseries/library/hacmp_docs.html

We conducted a series of tests to demonstrate how several WebSphere
Application Server Network Deployment components achieve high availability
through the configuration of HACMP. We examined the following WebSphere
Application Server components:

� Deployment Manager

� Node Agent and application servers configured to use the default messaging
provider and an application with two-phase commit transactions to recover
messages and in-doubt transactions.

� Transaction Manager failover using the NoOP policy (see 9.6, “Transaction
Manager failover with No Operation policy” on page 313 for a generic
description of this scenario).

11.1.1 How HACMP works
Our HACMP configuration was a typical configuration of HACMP’s cascading
resource group. Resources move through an ordered list of nodes from the
highest to lowest priority in the group. In our configuration, all resources in the
group are moved from the primary machine to its standby machine when the
primary machine fails. During a failure, such as a network or hardware failure,
HACMP on the primary machine notifies its peer services on the standby
machine through the heartbeat communication. HACMP on the standby machine
recognizes the failure event. It takes over the service IP address of the primary
machine, mounts the shared file system and starts all registered servers, such as
418 WebSphere Application Server V6: High Availability Solutions

http://www.ibm.com/servers/eserver/pseries/library/hacmp_docs.html

WebSphere Application Server. For our tests, IBM HACMP/ES 4.5.0.3 was
installed on two systems with AIX V5.1 (note that the latest HACMP version is
V5.2). All tests described in this chapter were performed using the same HACMP
configuration.

We show the HACMP failover flow in Figure 11-1 and Figure 11-2 on page 420.
Before the failure (Figure 11-1), the disk array is attached to the primary
machine, called Machine1. WebSphere services run on the primary machine.
Clients make requests to the primary machine using the virtual network interface
called hacmp1.

Figure 11-1 Before failover

Machine1
(Primary)

Machine2
(Secondary)

Heartbeat

Shared
Disk

Resource

HACMP

Virtual
Network
Interface:
hacmp1

Clients
 Chapter 11. WebSphere and IBM HACMP 419

When a hardware or software failure happens, the HACMP system detects the
failure and executes the failover procedure. After the failover, as shown in
Figure 11-2, the disk array and the virtual network interface are attached to the
secondary machine, Machine2. The WebSphere services now run on the
secondary machine.

Figure 11-2 After failover

11.1.2 Configuration basics of HACMP
Our HACMP cluster consists of two IBM Eserver pSeries systems attached to
an SSA 7133-D40 disk rack used for sharing the data. The hardware
configuration details are as follows:

� Primary machine HHOST1 - 1 CPU, 2GB memory

� Standby machine HHOST2 - 4 CPUs, 4GB memory

� One IP network — Ethernet to external network

� One non-IP network — Serial RS232 for heartbeat between Machine1 and
Machine2

Machine1
(Primary)

Machine2
(Secondary)

Heartbeat

Shared
Disk

Resource

HACMP

Virtual
Network
Interface:
hacmp1

X
Clients
420 WebSphere Application Server V6: High Availability Solutions

The defined HACMP cluster is called hacmpcluster. Its cluster ID is 77. This
cluster has two nodes (HHOST1 and HHOST2), one resource group
(hacmpgroup), and one HACMP application server (hacmpas). Note that here
the term application server means the unit of failover in HACMP.

Example 11-1 shows the query result for the HACMP cluster topology, including
the names of the nodes, network definitions, and other pertinent information.
Note that hacmp1 is the name of the service interface on Machine1. To display
the cluster topology, follow these steps:

1. Enter smitty hacmp in an operating system command prompt and press
Enter.

2. Select Cluster Configuration.

3. Select Cluster Topology.

4. Select Show Cluster Topology.

5. Select Show Cluster Topology again.

Example 11-1 The result of Show Cluster Topology

[TOP]
Cluster Description of Cluster hacmpcluster
Cluster ID: 77
There were 2 networks defined: haether, haserial
There are 2 nodes in this cluster.
NODE hnode1:
This node has 2 service interface(s):
Service Interface hacmp1:
 IP address: 10.0.2.1
 Hardware Address:
 Network: haether
 Attribute: public
 Aliased Address?: Not Supported
Service Interface hacmp1 has 1 boot interfaces.
 Boot (Alternate Service) Interface 1: hacmp1bt
 IP address: 10.0.2.2
 Network: haether
 Attribute: public
Service Interface hacmp1 has 1 standby interfaces.
 Standby Interface 1: hacmp1sb
 IP address: 10.10.0.11
 Network: heather

Service Interface hacmp1tty:
 IP address: /dev/tty0
 Hardware Address:
 Network: haserial
 Attribute: serial
 Chapter 11. WebSphere and IBM HACMP 421

 Aliased Address?: Not Supported
Service Interface hacmp1tty has no boot interfaces.
Service Interface hacmp1tty has no standby interfaces.

NODE hnode2:
This node has 2 service interface(s):
Service Interface hacmp2:
 IP address: 10.0.2.3
 Hardware Address:
 Network: haether
 Attribute: public
 Aliased Address?: Not Supported

Service Interface hacmp2 has 1 boot interfaces.
 Boot (Alternate Service) Interface 1: hacmp2bt
 IP address: 10.0.2.4
 Network: haether
 Attribute: public
Service Interface hacmp2 has 1 standby interfaces.
 Standby Interface 1: hacmp2sb
 IP address: 10.10.0.12
 Network: haether
 Attribute: public
Service Interface hacmp2tty:
 IP address: /dev/tty0
 Hardware Address:
 Network: haserial
 Attribute: serial
 Aliased Address?: Not Supported

Service Interface hacmp2tty has no boot interfaces.
Service Interface hacmp2tty has no standby interfaces.

Breakdown of network connections:
Connections to network haether
Node hnode1 is connected to network haether by these interfaces:
 hacmp1bt
 hacmp1
 hacmp1sb
Node hnode2 is connected to network haether by these interfaces:
 hacmp2bt
 hacmp2
 hacmp2sb
Connections to network haserial
Node hnode1 is connected to network haserial by these interfaces:
 hacmp1tty
Node hnode2 is connected to network haserial by these interfaces:
 hacmp2tty
[BOTTOM]
422 WebSphere Application Server V6: High Availability Solutions

11.1.3 Managing resources
The nodes have a shared external disk, with only one node accessing the disk at
a time. Both nodes can access a volume group (havg), and a file system
(/usr/WebSphere6).

HACMP resource information
Example 11-2 shows the query result for the HACMP resource information of the
resource group, including the resource groups and the shared file system. To
display this information for your HACMP environment, follow these steps:

1. Enter smitty hacmp in an operating system command prompt and press
Enter.

2. Select Cluster Configuration.

3. Select Cluster Resources.

4. Select Show Cluster Resources.

5. Select Show Resource Information by Resource Group.

6. Select your defined Resource_Group_Name.

Example 11-2 The result of Resource Information query

[TOP]
Resource Group Name hacmpgroup
Node Relationship cascading
Site Relationship ignore
Participating Node Name(s) hnode1 hnode2
Dynamic Node Priority
Service IP Label hacmp1
Filesystems /usr/WebSphere6
Filesystems Consistency Check fsck
Filesystems Recovery Method sequential
Filesystems/Directories to be exported
Filesystems to be NFS mounted
Filesystems to be NFS mounted
Network For NFS Mount
Volume Groups havg
Concurrent Volume Groups
Disks
GMD Replicated Resources
PPRC Replicated Resources
Connections Services
Fast Connect Services
Shared Tape Resources
Application Servers hacmpas
Highly Available Communication Links
Primary Workload Manager Class
 Chapter 11. WebSphere and IBM HACMP 423

Secondary Workload Manager Class
Miscellaneous Data
Automatically Import Volume Groups false
Inactive Takeover false
Cascading Without Fallback false
SSA Disk Fencing false
Filesystems mounted before IP configured false
Run Time Parameters:
Node Name hnode1
Debug Level high
Format for hacmp.out Standard
Node Name hnode2
Debug Level high
Format for hacmp.out Standard
[BOTTOM]

HACMP application server information
Example 11-3 shows the query result for the HACMP application servers. To
display this information for your environment, do the following:

1. Enter smitty hacmp in an operating system command prompt and press
Enter.

2. Select Cluster Configuration.

3. Select Cluster Resources.

4. Select Define Application Servers.

5. Select Change / Show an Application Server.

6. Select your defined Application_Server_Name.

Example 11-3 The result of querying the application server information

Server Name hacmpas
New Server Name [hacmpasas]
Start Script [/usr/bin/ha.start]
Stop Script [/usr/bin/ha.stop]
424 WebSphere Application Server V6: High Availability Solutions

Sample start and stop scripts
Our Start Script is called ha.start, and our Stop Script is called ha.stop, as shown
in Example 11-3 on page 424. The content of these scripts varies depending on
which WebSphere component is made highly available using the HACMP cluster
— the Deployment Manager, the Node Agent and application servers. The
following examples show the content of the start and stop scripts that are used
for the various scenarios.

Deployment Manager failover scripts
Example 11-4 Sample ha.start script for Deployment Manager failover

/usr/WebSphere6/AppServer/profiles/Dmgr01/bin/startManager.sh

Example 11-5 Sample ha.stop script for Deployment Manager failover

/usr/WebSphere6/AppServer/profiles/Dmgr01/bin/stopManager.sh

Node Agent and application server failover scripts
Example 11-6 Sample ha.start script for application server node

/usr/WebSphere6/AppServer/profiles/Custom01/bin/startNode.sh
sleep 60
/usr/WebSphere6/AppServer/profiles/Custom01/bin/startServer.sh wasmember07
/usr/WebSphere6/AppServer/profiles/Custom01/bin/startServer.sh wasmember08

Example 11-7 Sample ha.stop script for application server node

/usr/WebSphere6/AppServer/profiles/Custom01/bin/stopServer.sh wasmember07
/usr/WebSphere6/AppServer/profiles/Custom01/bin/stopServer.sh wasmember08
/usr/WebSphere6/AppServer/profiles/Custom01/bin/stopNode.sh

The scripts for the Transaction Manager No Operation policy failover are more
complicated and call other scripts inside and are thus described in detail in 11.5,
“Transaction Manager failover with No Operation policy” on page 436.

HACMP Application Monitor Information
If you need to monitor a specific WebSphere Application Server process or
listening network port, you can use the HACMP Application Monitor function. We
use a script that monitors the application server’s listening port.
 Chapter 11. WebSphere and IBM HACMP 425

Example 11-8 shows the query result for the HACMP application monitor. To
display this information, do the following:

1. Enter smitty hacmp in an operating system command prompt and press
Enter.

2. Select Cluster Configuration.

3. Select Cluster Resources.

4. Select Configure Application Monitoring.

5. Select Define Custom Application Monitor.

6. Select Change/Show Custom Application Monitor.

7. Select your defined Application_Server_Name.

Example 11-8 The result of displaying Monitoring Information

Application Server Name hacmpas
Monitor Method [/usr/bin/ha.monitor]
Monitor Interval [10]
Hung Monitor Signal [9]
Stabilization Interval [180]
Restart Count [0]
Restart Interval [0]
Action on Application Failure [failover]
Notify Method []
Cleanup Method [/usr/bin/ha.stop]
Restart Method [/usr/bin/ha.start]

We use the ha.monitor script shown in Example 11-9. The HACMP system
executes this script periodically, and if the return code is not zero (0), HACMP
executes a failover. In this script , we check the TCP/IP listening port of the
Deployment Manager or application server to determine whether the Deployment
Manager or application server is running. We use the Deployment Manager’s
SOAP port and the application server’s WebContainer Inbound Chain port
respectively.

Example 11-9 Sample ha.monitor script

#!/bin/ksh
AS_UP=`netstat -at | grep *.<monitoring_tcpip_portnumber>`
if ["${AS_UP}" != ""];
then

RC=0
else

RC=1
fi
exit ${RC}
426 WebSphere Application Server V6: High Availability Solutions

11.1.4 Using WebSphere MQ SupportPac for HACMP
Configuration and implementation information about how to make IBM
WebSphere MQ highly available using HACMP is provided in the MQSeries for
AIX - Implementing with HACMP Version 2.0 guide, which is available at:

ftp://ftp.software.ibm.com/software/integration/support/supportpacs/
individual/mc63.pdf

11.1.5 Using DB2 with HACMP
Configuration and implementation information about how to make IBM DB2
Universal Database™ highly available using HACMP is provided in the IBM DB2
Universal Database Enterprise Edition for AIX and HACMP/ES guide, which is
available at:

ftp://ftp.software.ibm.com/software/data/pubs/papers/db2ee-aixhacmp.pdf

Also refer to the DB2 Information Center at:

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

11.2 Planning and preparation
HACMP planning and configuration itself is not related to the WebSphere
configuration. Refer to the HACMP planning and installation guides for the
different HACMP versions to find information about how to set up your HACMP
cluster. These guides are available at:

http://www.ibm.com/servers/eserver/pseries/library/hacmp_docs.html

We assume the following prerequisites are met before starting the WebSphere
configuration:

� You have an HACMP cluster configured that consists of at least two systems
which share a storage device.

� You have checked the prerequisites needed for IBM WebSphere Application
Server Network Deployment V6 at:

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

� You have an IP Alias or virtual host name.

Note: At the time of writing this redbook, the officially supported
configuration is running the Deployment Manager on HACMP/ES 5.1.
 Chapter 11. WebSphere and IBM HACMP 427

ftp://ftp.software.ibm.com/software/integration/support/supportpacs/individual/mc63.pdf
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp
ftp://ftp.software.ibm.com/software/data/pubs/papers/db2ee-aixhacmp.pdf
http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www.ibm.com/servers/eserver/pseries/library/hacmp_docs.html

� You have determined how you are going to configure WebSphere.
Specifically, you have determined whether you are going to separate the
binary files from the configuration files. You have two options:

– You can put the binaries and configuration files on the shared disk.
– You can put the binaries on a local disk and the configuration files on the

shared disk.

11.3 Deployment Manager
We configured the HACMP environment shown in Figure 11-3 for the
Deployment Manager failover scenario. The WebSphere product binaries are
installed on the shared file system.

Figure 11-3 HACMP Deployment Manager failover test scenario

HACMP
Shared

Disk

HHOST1 HHOST2

Deployment
Manager

Heartbeat
Deployment

Manager

Cluster:
wascluster01

App Server

IHS

App Server

Node
Agent

HHOST3

Virtual Host: hacmp1
DB2

HHOST4

Clients

Cell:wascell06
428 WebSphere Application Server V6: High Availability Solutions

11.3.1 Installing the Deployment Manager
To install the Deployment Manager and create the profile, do the following:

1. Start the HACMP services on HHOST1 to mount the file system
/usr/WebSphere6 from the shared disk array.

2. Install IBM WebSphere Application Server Network Deployment V6 on
HHOST1. The installation path is on the shared file system, in our scenario
the path is /usr/WebSphere6/AppServer.

3. If necessary, install any needed WebSphere Refresh packs or Fix packs. We
installed WebSphere V6.0.1 for our tests.

4. Create a Deployment Manager profile on HHOST1. In our environment,
where the binaries are installed on the shared file system, the profile directory
is a subdirectory of the WebSphere <install_root>, for example
/usr/WebSphere6/AppServer/profiles/Dmgr01.

When creating the profile, use the virtual host name (in our environment this
is hacmp1) as the Host name, you must not use the physical host name or
physical IP address. See 9.3.2, “Installing WebSphere Application Server
Network Deployment” on page 301 for additional information.

5. Start the Deployment Manager and add nodes to the cell as needed. Use the
virtual host name hacmp1 when you specify the Host name or IP address of
the Deployment Manager. In our example, we federated node HHOST3 into
the cell managed by the Deployment Manager on HHOST1.

11.3.2 Configuring HACMP to run the Deployment Manager
To configure HACMP to run the Deployment Manager, do the following:

1. Add the Deployment Manager stop and start commands to the respective
HACMP stop (ha.stop) and start (ha.start) scripts on HHOST1 and HHOST2.
Our Deployment Manager stop and start scripts are shown in Example 11-10
and Example 11-11.

Example 11-10 Script to stop the Deployment Manager

/usr/WebSphere6/AppServer/profiles/Dmgr01/bin/stopManager.sh

Example 11-11 Script to start the Deployment Manager

/usr/WebSphere6/AppServer/profiles/Dmgr01/bin/startManager.sh

2. Ensure that the HACMP services are active on HHOST2.
 Chapter 11. WebSphere and IBM HACMP 429

11.3.3 Testing Deployment Manager failover
A Deployment Manager failover does not affect client access to your application.
We tested the following failover scenarios:

� Conducting a graceful failover test using the HACMP takeover option. Watch
the SystemOut.log of the Deployment Manager for a successful start. Check
all Node Agents to make sure they can synchronize before and after failover.
There might be failed synchronization attempts during the failover. See
Example 11-12 for a sample SystemOut.log of the Node Agent.

Example 11-12 Node Agent’s SystemOut.log after Deployment Manager failover

#before failover
[4/13/05 12:19:36:632 CDT] 000001c0 NodeSyncTask A ADMS0003I: The
configuration synchronization completed successfully.
....
#during failover
[4/13/05 12:20:45:600 CDT] 000001c4 NodeSync E ADMS0015E: The
synchronization request cannot be completed because the node agent cannot
communicate with the deployment manager.
[4/13/05 12:20:45:615 CDT] 000001c4 NodeSyncTask A ADMS0016I: The
configuration synchronization failed.
....
#after failover
[4/13/05 12:23:56:548 CDT] 000001cb DiscoveryMBea I ADMD0023I: The system
discovered process (name: dmgr, type: DeploymentManager, pid: 13478)
[4/13/05 12:24:01:732 CDT] 000001d0 NodeSyncTask A ADMS0003I: The
configuration synchronization completed successfully.

� Fall back to HHOST1 and conduct a shutdown failover test using reboot –q
on HHOST1. Watch the SystemOut.log on the Deployment Manager and the
Node Agents for success.

Other possible test scenarios include ending the Deployment Manager process
using the kill command or unplugging the network cable of HHOST1.
430 WebSphere Application Server V6: High Availability Solutions

11.4 Node Agent and application server
In our HACMP environment, we configured the test environment shown in
Figure 11-3 on page 428 for Node Agent and application servers failover. The
product binaries are installed on the shared file system. We assume that the
Deployment Manager is installed, configured, and started on a remote system.

Figure 11-4 HACMP Node Agent and application server failover test scenario

11.4.1 Installing a Node Agent and application server or servers
To install a Node Agent and create a profile, do the following:

1. Start HACMP services on HHOST1 to mount the file system
/usr/WebSphere6 from the shared disk array.

2. Install WebSphere Application Server Network Deployment V6.0 on
HHOST1. The installation path is on the shared file system. In our example,
the path is /usr/WebSphere6/AppServer.

HACMP

HHOST3

Deployment
Manager

Cluster:
wascluster01

DB2

HHOST4

Clients

Cell:wascell01

Heartbeat

Virtual Host: hacmp1

HHOST5

IHS

App Server

App Server

Node
Agent

HHOST1

App Server

App Server

Node
Agent

HHOST2
Shared

Disk
 Chapter 11. WebSphere and IBM HACMP 431

3. If necessary, install Refresh packs or Fix packs. We installed the V6.0.1
Refresh pack.

4. Create a custom profile on HHOST1. The profile directory path is also on the
shared file system, for example in our environment, the profile directory is
/usr/WebSphere6/AppServer/profiles/Custom01. During profile creation, use
the virtual host name (in our environment it is hacmp1) as the Host name, not
the physical host name or physical IP address. See 9.4.2, “Installing
WebSphere Application Server Network Deployment” on page 306 for more
information.

5. Federate the node to the Deployment Manager while creating the custom
profile or later using the addNode command. We federated our node to the
Deployment Manager on HHOST3.

6. Create application servers on the node as desired. We have configured two
application servers that are members of the same cluster (vertical scaling).

11.4.2 Configuring HACMP to run the Node Agents and application
servers

To configure HACMP to run the Node Agents and application servers, you add
the Node Agent stop and start commands as well as the appropriate start and
stop commands for each application server in the failover unit to the HACMP
stop and start scripts. Follow these steps:

1. Add the Node Agent and application server stop commands to the HACMP
stop script (ha.stop) on both HHOST1 and HHOST2. See Example 11-13
where we added a Node Agent and two application servers (wasmember07
and wasmember08) to the script. Be aware that the application server names
are case sensitive. Also make sure that you specify the correct profile
directory.

Example 11-13 Script to stop application server node

/usr/WebSphere6/AppServer/profiles/Custom01/bin/stopServer.sh wasmember07
/usr/WebSphere6/AppServer/profiles/Custom01/bin/stopServer.sh wasmember08
/usr/WebSphere6/AppServer/profiles/Custom01/bin/stopNode.sh

2. Add the Node Agent and application server start commands to the HACMP
start script (ha.start) on both HHOST1 and HHOST2. Notice that a Sleep 60
command was added after the Node Agent start command. This is because
the application servers depend on an active Node Agent to be able to start
successfully. This value might need to be adjusted for your environment,
depending on the time the Node Agent takes to start. See Example 11-14 on
page 433.
432 WebSphere Application Server V6: High Availability Solutions

Example 11-14 Script to start application server node

/usr/WebSphere6/AppServer/profiles/Custom01/bin/startNode.sh
sleep 60
/usr/WebSphere6/AppServer/profiles/Custom01/bin/startServer.sh wasmember07
/usr/WebSphere6/AppServer/profiles/Custom01/bin/startServer.sh wasmember08

3. Ensure that the HACMP services are active on HHOST2.

11.4.3 Testing Node Agent and application server failover
During the failover process, the application servers hosted on the HACMP node
cannot serve any client requests. We tested the following two failover scenarios:

� Conducting a graceful failover test using the HACMP takeover option. Watch
the SystemOut.log on the Node Agent and each application server for a
successful start. Check the Node Agent to make sure it can synchronize with
the Deployment Manager before and after failover. There might be failed
synchronization attempts during the failover. See Example 11-15 and
Example 11-16 on page 434 for sample SystemOut.logs of the Deployment
Manager and Node Agent.

� Fall back to HHOST1 and conduct a shutdown failover test using reboot –q
on HHOST1. Watch the SystemOut.log on the Node Agent and each
application server for a successful start.

Example 11-15 Deployment Manager’s SystemOut.log during node failover

#during failover
[4/15/05 18:11:57:750 CDT] 0000001c RmmPtpGroup W DCSV1111W: DCS Stack
DefaultCoreGroup at Member wascell01\wasdmgr01\dmgr: Suspected another member
because the outgoing connection from the other member was closed. Suspected
members is wascell01\wasna03\nodeagent. DCS logical channel is View|Ptp.
[4/15/05 18:11:57:753 CDT] 0000001c DiscoveryRmmP W DCSV1111W: DCS Stack
DefaultCoreGroup at Member wascell01\wasdmgr01\dmgr: Suspected another member
because the outgoing connection from the other member was closed. Suspected
members is wascell01\wasna03\nodeagent. DCS logical channel is Connected|Ptp.
[4/15/05 18:11:57:756 CDT] 0000001c DiscoveryRmmP W DCSV1113W: DCS Stack
DefaultCoreGroup at Member wascell01\wasdmgr01\dmgr: Suspected another member
because the outgoing connection to the other member was closed. Suspected
member is wascell01\wasna03\nodeagent. DCS logical channel is Connected|Ptp.
....
[4/15/05 18:12:33:981 CDT] 0000001c DiscoveryRmmP W DCSV1111W: DCS Stack
DefaultCoreGroup at Member wascell01\wasdmgr01\dmgr: Suspected another member
because the outgoing connection from the other member was closed. Suspected
members is wascell01\wasna03\wasmember07. DCS logical channel is Connected|Ptp.
[4/15/05 18:13:09:341 CDT] 0000001c DiscoveryRmmP W DCSV1111W: DCS Stack
DefaultCoreGroup at Member wascell01\wasdmgr01\dmgr: Suspected another member
 Chapter 11. WebSphere and IBM HACMP 433

because the outgoing connection from the other member was closed. Suspected
members is wascell01\wasna03\wasmember08. DCS logical channel is Connected|Ptp.
....
#after Node Agent started
[4/15/05 18:16:43:223 CDT] 0000001c MbuRmmAdapter I DCSV1032I: DCS Stack
DefaultCoreGroup at Member wascell01\wasdmgr01\dmgr: Connected a defined member
wascell01\wasna03\nodeagent.
....
[4/15/05 18:16:53:790 CDT] 000015c6 DiscoveryMBea I ADMD0023I: The system
discovered process (name: wasna03, type: NodeAgent, pid: 16008)
....
#after application server#1 started
[4/15/05 18:19:37:880 CDT] 0000001c MbuRmmAdapter I DCSV1032I: DCS Stack
DefaultCoreGroup at Member wascell01\wasdmgr01\dmgr: Connected a defined member
wascell01\wasna03\wasmember07.
....
#after application server#2 started
[4/15/05 18:21:44:091 CDT] 0000001c MbuRmmAdapter I DCSV1032I: DCS Stack
DefaultCoreGroup at Member wascell01\wasdmgr01\dmgr: Connected a defined member
wascell01\wasna03\wasmember08.
(complete failover)

Example 11-16 Node Agent’s SystemOut.log during node failover

#after the Node Agent started
[4/15/05 18:15:52:038 CDT] 0000000a WsServerImpl A WSVR0001I: Server
nodeagent open for e-business
[4/15/05 18:15:55:208 CDT] 0000002d NodeSyncTask A ADMS0003I: The
configuration synchronization completed successfully.
....
[4/15/05 18:18:50:199 CDT] 0000003a DiscoveryMBea I ADMD0023I: The system
discovered process (name: wasmember07, type: ManagedProcess, pid: 25444)
....
[4/15/05 18:20:56:052 CDT] 00000056 DiscoveryMBea I ADMD0023I: The system
discovered process (name: wasmember08, type: ManagedProcess, pid: 30534)

11.4.4 Application with embedded messaging failover
The WebSphere setup for this scenario is the same as for the Node Agent and
application server failover scenario described previously. The Deployment
Manager has been installed on a remote system and the custom profile is
installed into the HACMP cluster system. In addition, for this scenario, we
installed an application that puts and gets messages to/from embedded
messaging destinations.

For this scenario, you need to make sure that the messaging engine (ME) runs
only on the application server that is running in the HACMP cluster. If you want to
434 WebSphere Application Server V6: High Availability Solutions

operate the ME in a specific application server, you have to configure the proper
core group policy for the ME. (For more information about core group policy
configurations, see 6.2.4, “Core group policy” on page 188.) Therefore, we
configured a static policy and relating match criteria as well as static group
servers. We specified a certain messaging engine in the match criteria and
selected the application server running in the HACMP cluster as the static group
server. Thus the messaging engine can now only run in our failover application
server.

Testing the message engine failover scenario
First you must put messages on the destination. You can confirm the queued
messages in the Administrative Console. Select Service integration →
Buses → Bus_Name → Messaging engines → Messaging_Engine_Name →
Queue points → Queue_Point_Identifier → Runtime tab → Messages. See
Figure 11-5 for an example of this panel.

Figure 11-5 Confirm queued messages

After putting messages on the destination, conduct a shutdown failover test using
the reboot –q option. After the failover, the application should be able to process
the messages properly. Watch the logs or database on HHOST2 to see if the ME
was started successfully and is indeed processing the messages.
 Chapter 11. WebSphere and IBM HACMP 435

You can confirm that the ME is starting properly in the application server‘s
SystemOut.log. See Example 11-17 for the messages that are written to the
SystemOut.log.

Example 11-17 Application server‘s SystemOut.log during failover

[4/19/05 17:42:33:608 CDT] 0000002b SibMessage I
[wascluster01:wascluster01.004-wascluster01] CWSID0016I: Messaging engine
wascluster01.004-wascluster01 is in state Joined.
....
[4/19/05 17:42:33:803 CDT] 00000030 SibMessage I
[wascluster01:wascluster01.004-wascluster01] CWSID0016I: Messaging engine
wascluster01.004-wascluster01 is in state Starting.
[4/19/05 17:42:38:453 CDT] 00000030 SibMessage I
[wascluster01:wascluster01.004-wascluster01] CWSIS1538I: The messaging engine
is attempting to obtain an exclusive lock on the data store.
[4/19/05 17:42:38:558 CDT] 00000032 SibMessage I
[wascluster01:wascluster01.004-wascluster01] CWSIS1537I: The messaging engine
has acquired an exclusive lock on the data store.
....
[4/19/05 17:42:42:883 CDT] 00000030 SibMessage I
[wascluster01:wascluster01.004-wascluster01] CWSIP0212I: messaging engine
wascluster01.004-wascluster01 on bus wascluster01 is starting to reconcile the
WCCM destination and link configuration.
[4/19/05 17:42:42:941 CDT] 00000030 SibMessage I
[wascluster01:wascluster01.004-wascluster01] CWSIP0213I: messaging engine
wascluster01.004-wascluster01 on bus wascluster01 has finished reconciling the
WCCM destination and link configuration.
[4/19/05 17:42:43:146 CDT] 00000030 SibMessage I
[wascluster01:wascluster01.004-wascluster01] CWSID0016I: Messaging engine
wascluster01.004-wascluster01 is in state Started.
....

11.5 Transaction Manager failover with No Operation
policy

In this scenario, we want to control the Transaction Manager (TM) failover by
using HACMP and the No Operation (NoOP) policy. HACMP detects the
hardware or software failure and executes the Transaction Manager failover.

A general discussion on configuring the Transaction Manager failover with the
No Operation Policy is provided in 9.6, “Transaction Manager failover with No
Operation policy” on page 313.
436 WebSphere Application Server V6: High Availability Solutions

To take advantage of the Transaction Manager peer recovery in HAManager,
you need to use a shared file system which all application servers that can
perform transaction log recovery can access at the same time. This shared file
system then holds the transaction logs for all these application servers. So we
had to configure another test environment where we used an NAS disk system.
See Figure 11-6. As you can see, in this test environment both nodes can access
the shared file system. We mounted the shared file system to the same mount
point (/mnt/nas) on both nodes.

The HACMP setup itself is basically the same as for the Deployment Manager
failover or Node Agent and application server failover, for details see
“Configuration basics of HACMP” on page 420 and “Managing resources” on
page 423. However, you need to perform a different WebSphere installation and
some additional configuration steps, and you also need to change the previously
used HACMP start and stop scripts. The sections that follow describe the
necessary changes.

Figure 11-6 HACMP Transaction Manager failover test environment

HACMP

HHOST3

Deployment
Manager

Cluster:
wascluster01

DB2

HHOST4

Clients

Cell:wascell01

Heartbeat

HHOST5

IHS

App Server

HHOST1

App Server

Node
Agent

HHOST2

Shared file system
(Transaction logs)

Local disk
(WebSphere
installation)

Local disk
(WebSphere
installation)

Node
Agent
 Chapter 11. WebSphere and IBM HACMP 437

11.5.1 WebSphere configuration
You need to install the product binaries and the profiles locally instead of on the
shared disks for this scenario. You also need to enable high availability for the
Transaction Manager and move the transaction log directories onto the shared
disk. Figure 11-7 shows our WebSphere setup.

The WebSphere configuration steps are described in great detail in 9.6.3,
“Configuring WebSphere for TM No Operation policy” on page 317. This is what
you need to do:

1. Follow the steps described for configuring the TM in “Enabling high availability
for the Transaction Manager” on page 317.

2. Copy the transaction logs to the shared file system as described in “Copying
existing transaction logs to the shared directory” on page 318.

3. Inform the Transaction Manager of the new transaction log locations as
described in “Pointing the TM to the new location for the transaction logs” on
page 319.

4. Create the HA policy. See “Creating the No Operation policy for the
Transaction Manager” on page 320.

Figure 11-7 WebSphere configuration overview

DB2

HHOST3

Cluster

NAS
Shared Disk

AppServer2
Tran Log

HHOST1

AppServer1
(wasmember01)

Transaction
Manager

HHOST2

AppServer2
(wasmember02)

Transaction
Manager

AppServer1
Tran Log
438 WebSphere Application Server V6: High Availability Solutions

11.5.2 HACMP configuration
The concept of what needs to be configured on the cluster software side is
described in 9.6.4, “Configuring external clustering software for Transaction
Manager No Operation policy recovery” on page 325. Here we describe how this
needs to be done for HACMP.

There is however a difference in the HACMP setup compared to the other
clustering software setups: Our HACMP is an Active/Passive setup while the
other clustering software setups are Active/Active. Because of this different
setup, the application server needs to be started outside of HACMP and only the
failover of the Transaction Manager is done using HACMP.

You need to configure new start and stop scripts in HACMP as well as for starting
the application servers outside of HACMP. These start and stop scripts call the
wasctrl-as and wasctrl-tm scripts described in “Scripts to start, stop, and monitor
WebSphere resources” on page 331.

This example assumes that you run the TM for wasmember01 on HHOST1 and
want to failover the TM to wasmember02 on HHOST2.

1. First you need a script to start the application server wasmember01 and its
Transaction Manager (which is configured with the No Operation policy) on
the local system (HHOST1). This script is called server.start and is shown in
Example 11-18. The server.start script calls the wasctrl-as and wasctrl-tm
scripts with the value start as the action parameter.

Example 11-18 server.start script on HHOST1 - starting the application server and TM

#!/bin/ksh
/usr/bin/HAScrp/wasctrl-as start /usr/WebSphere/AppServer/profiles/Custom01/
9080 wasmember01
/usr/bin/HAScrp/wasctrl-tm start /usr/WebSphere/AppServer/profiles/Custom01/
9080 HHOST1 8879 IBM_hc=wascluster01,type=WAS_TRANSACTIONS wascell01
wasmember01 /usr/bin/HAScrp/ wasna05

Tip: For AIX V5.1, you might have to install an additional module
(perl.libwww-5.41.0.0.exe) for the Perl program to execute the wasctrl-tm
script. If you use AIX 5.2 or 5.3, this module is installed by default.

Note: You need to execute this script on a command line to start the
application server and TM outside of HACMP.
 Chapter 11. WebSphere and IBM HACMP 439

The same action needs to be done on HHOST2 to start wasmember02. See
Example 11-19 for the server.start script for the second system.

Example 11-19 server.start script on HHOST2 - starting the application server and TM

#!/bin/ksh
/usr/bin/HAScrp/wasctrl-as start /usr/WebSphere/AppServer/profiles/Custom01/
9080 wasmember02
/usr/bin/HAScrp/wasctrl-tm start /usr/WebSphere/AppServer/profiles/Custom01/
9080 HHOST2 8879 IBM_hc=wascluster01,type=WAS_TRANSACTIONS wascell01
wasmember02 /usr/bin/HAScrp/ wasna06

2. The application server (wasmember01) is monitored in HACMP on HHOST1
using the ha.monitor script shown in Example 11-20.

Example 11-20 ha.monitor script on HHOST1

#!/bin/ksh
/usr/bin/HAScrp/wasctrl-as status /usr/WebSphere/AppServer/profiles/Custom01/
9080 wasmember01
RC=$?
exit ${RC}

3. You need to define the HACMP start script (ha.start). This script is shown in
Example 11-21 and is executed by HACMP on HHOST2 in case of a failure of
wasmember01. This script starts the TM of wasmember01 on the secondary
system (which is wasmember02 on HHOST2).

Example 11-21 ha.start script - TM failover to HHOST2

#!/bin/ksh
/usr/bin/HAScrp/wasctrl-tm start /usr/WebSphere/AppServer/profiles/Custom01/
9080 HHOST2 8879 IBM_hc=wascluster01,type=WAS_TRANSACTIONS wascell01
wasmember01 /usr/bin/HAScrp/ wasna05

4. The HACMP stop script for HHOST1 is shown in Example 11-22. This script
is executed on HHOST1 when monitoring detected that wasmember01 is
down and thus the failover of the TM to wasmember02 is initiated. The script
calls the wasctrl-as and wasctrl-tm scripts with the value stop as the action
parameter.

Example 11-22 ha.stop script on HHOST1

#!/bin/ksh
/usr/bin/HAScrp/wasctrl-tm stop /usr/WebSphere/AppServer/profiles/Custom01/
9080 HHOST1 8879 IBM_hc=wascluster01,type=WAS_TRANSACTIONS wascell01
wasmember01 /usr/bin/HAActivationScripts/ wasna05
/usr/bin/HAScrp/wasctrl-as stop /usr/WebSphere/AppServer/profiles/Custom01/
9080 wasmember01
440 WebSphere Application Server V6: High Availability Solutions

If you also want to setup failover of the Transaction Manager for wasmember02,
then you need to define another HACMP resource group and configure similar
scripts to start the other cluster members’ TM.

11.5.3 Testing Transaction Manager with NoOP policy failover
In our environment, we killed the process ID of the application server and shut
down the system:

1. Ensure HACMP services are active on both HHOST1 and HHOST2.

2. Conduct a failover test by ending the application server process using the
kill -9 Application_server_process_ID command on HHOST1. You can
find the PID of the application server by looking at the
application_server_name.pid file in the application server’s log directory.

3. Verify the Transaction Manager’s failover:

a. In the Administrative Console click Servers → Core groups → Core
group settings → Core_group_name. Select the Runtime tab.

b. Enter type=WAS_TRANSACTIONS into the Group name properties field, and
then click Show groups. A panel similar to the one in Figure 11-8 is
displayed. This panel shows all Transaction Manager High availability
groups of your environment.

Figure 11-8 Checking Transaction Manager failover - 1
 Chapter 11. WebSphere and IBM HACMP 441

c. Select the High availability group which is related to the failed application
server’s Transaction Manager. The panel in Figure 11-9 is shown. Then
verify that the Transaction Manager’s Status is active and the Transaction
Manager is running on the other application server.

Figure 11-9 Checking Transaction Manager failover - 2

If there are any in-doubt transactions when the failover happens, you would
see transaction recovery messages in the SystemOut.log of the take-over
application server.

11.6 Summary
There are various ways to set up the HACMP failover behavior, for example, one
system can be the backup for several other primary systems. In our environment,
a simple cascading resource group was set up for demonstrating how
WebSphere Application Server leverages the HACMP features to provide a
highly available environment.

The WebSphere Application Server software is installed on the disk array shared
by the primary and standby machines. When the primary machine fails, the
WebSphere Application Server configuration on the disk array will be mounted to
the standby machine. The HACMP start script on the standby machine then runs
each command in the script to start all necessary servers. Also, the standby
machine takes over the service adapter of the primary machine. During this
failover process, WebSphere is not available for its clients. There is a need to
add error recovery logic into the client program to handle the server failure.

In addition to testing the WebSphere Application Server administrative servers
(Deployment Manager and Node Agent), we tested the failover of application
servers with 2-phase Commit transactions and active messaging engines to
442 WebSphere Application Server V6: High Availability Solutions

make sure that potential in-doubt transactions are recovered and unprocessed
messages are processed after the failover occurs.

The adjustments of several settings given in this paper are based on our lab
environment. As with performance tuning, the values might vary for different
business environments.

11.7 Reference
� HACMP for AIX 5L Web site:

http://www.ibm.com/servers/aix/products/ibmsw/high_avail_network/
hacmp.html

� HACMP documentation:

http://www.ibm.com/servers/eserver/pseries/library/hacmp_docs.html

� MQSeries for AIX - Implementing with HACMP Version 2.0 guide:

ftp://ftp.software.ibm.com/software/integration/support/supportpacs/
individual/mc63.pdf

� IBM DB2 Universal Database Enterprise Edition for AIX and HACMP/ES
guide:

ftp://ftp.software.ibm.com/software/data/pubs/papers/db2ee-aixhacmp.pdf
 Chapter 11. WebSphere and IBM HACMP 443

http://www.ibm.com/servers/eserver/pseries/library/hacmp_docs.html
ftp://ftp.software.ibm.com/software/data/pubs/papers/db2ee-aixhacmp.pdf
ftp://ftp.software.ibm.com/software/integration/support/supportpacs/individual/mc63.pdf
http://www.ibm.com/servers/aix/products/ibmsw/high_avail_network/hacmp.html

444 WebSphere Application Server V6: High Availability Solutions

Chapter 12. WebSphere and VERITAS
Cluster Server

This chapter provides an introduction into the basics of clustering IBM
WebSphere Application Server V6 using VERITAS Cluster Server (VCS). We
show how to configure VCS to manage WebSphere V6 as well how to set up
WebSphere Application Server to leverage the benefits a VCS provides.

12

 Important:

� Throughout this chapter you find information and material from VERITAS
Software Corporation. This information was printed by permission of
VERITAS Software Corporation.

� At the time of writing this redbook, VCS was not in the list of supported
software. There are however three different kinds of configurations:
Supported, Not supported and Other. VCS falls into the Other category.
For details about how IBM Support handles this category, see the
document IBM WebSphere Application Server - Clarification of
configurations support, which is available at:

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=
swg27004311

For the latest list of supported products see:

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html
© Copyright IBM Corp. 2005. All rights reserved. 445

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg27004311

12.1 Introduction to VCS
Setting up a cluster using VCS requires a basic understanding of the way VCS
works and what its main components are. It is especially important to understand
the model of service and resource groups. This understanding is necessary for
the successful configuration of a VERITAS cluster that provides high availability
to applications such as WebSphere Application Server. We also discuss the way
VCS monitors and manages resources using agents.

12.1.1 How VERITAS Cluster Server works
VERITAS Cluster Server acts like an abstraction layer over a group of physical
systems which typically behave like one single system. It can also monitor and
control applications residing on those systems. You can configure VCS to run
your application on one ore more systems at the same time.

A cluster consists of hardware or software resources. Examples for resources
are disks and disk groups, network interfaces and IP addresses, or any
application residing on the cluster. Those resources can be managed by the
VCS. VCS will start, stop, and monitor resources, which allows you to logically
group resources and to failover to another system when a critical resource fails.

To control the cluster communication and membership, VCS uses:

� High-Availability Daemon (HAD) which runs on all systems in the cluster. The
HAD maintains the status of all resources in the cluster.

� Low Latency Transport (LLT) is used for communication between the cluster
systems. LLT balances the communication stream between the assigned
network interfaces. Additionally, it is used for the heartbeat, which is a health
check to determine the Group Membership Service (GAB).

� Group Membership Service (GAB) works together with LLT to maintain the
cluster communication and cluster membership. It ensures the message
delivery to the cluster systems.

12.1.2 Configuration basics of VCS
VCS uses two files for its configuration. These files contain the configuration of
the resources and service groups, their properties and dependencies:

� The main.cf file for the cluster
� The types.cf file for the different resource types
446 WebSphere Application Server V6: High Availability Solutions

You can create those files in the following ways:

� Using the Cluster Manager GUI (available as a Java or Web Console)
� Using the command line interface
� Using an editor, such as vi, emacs, or Notepad while VCS is stopped

12.1.3 Managing resources
Management of resources means starting, stopping and monitoring them. In
some cases there are dependencies between resources. For example to
unmount a file system, the application that uses the file system has to be taken
offline before unmounting the file system. To simplify the management of a set of
resources and resource dependencies, you can define a service group. You can
distinguish between three different types of service groups:

� Failover Service Group means that the group runs only on one system at a
time.

� Parallel Service Group means that the group runs concurrently on the
systems in the cluster.

� Hybrid Service Group means a combination of the Failover and Parallel
Service Group used for replicated clusters.

More information about service groups is available at:

http://www.veritas.com

Managing resources depends on the type of the resource. VCS comes with a
bundle of resource types, for example Application, DNS, Mount, or Volume. As
you add a resource to your service group, you choose a resource type and select
whether it is critical or just enabled. Critical means, a failure of this resource
initiates a failover of the service group. Enabled means that this resource is
monitored by an agent.

Agents are management processes for predefined resource types or third party
applications, for example, IBM WebSphere MQ or IBM DB2 UDB. They consist
of type declaration files and binaries to enlarge the management capabilities of
VCS.

The concept of service groups allows VCS to distinguish between application
and node failures. Service groups are switched between the nodes in case of a
failover. Therefore, it is necessary to use a Virtual IP Address (VIP), which is
also moved when failing over. The use of virtual IP addresses is also known as
IP Aliasing.
 Chapter 12. WebSphere and VERITAS Cluster Server 447

http://www.veritas.com

12.1.4 Using Cluster Agent for IBM WebSphere MQ
VERITAS Cluster Server provides so-called Enterprise Agents for different third
party applications. The Enterprise Agent for IBM WebSphere MQ provides a
more extended failure detection than the Bundled Agents, for example:

� Process check looks for the appropriate process of a specified Queue
Manager.

� Second-Level Check pings the Queue Manager using a MQClient, which
ensures that the process is really working.

To perform the installation, for example on UNIX or Linux, follow the instructions
provided in the VERITAS Cluster Server Agent 3.5 for WebSphere MQ
Installation and Configuration Guide found at:

http://ftp.support.veritas.com/pub/support/products/ClusterServer_UNIX/
273084.pdf

After the agent is installed, you have to import the VProWSMQTypes.cf file. Then
you are able to create and configure a IBM WebSphere MQ Queue Manager
resource.

12.1.5 Using Cluster Agent for IBM DB2 UDB
VERITAS Cluster Server provides so-called Enterprise Agents for different third
party applications. The Enterprise Agent for IBM DB2 UDB provides a more
extended failure detection than the Bundled Agents, for example:

� In depth monitoring allows checking the output of db2nps (shows active
processes of the instance).

� Also possible is an evaluation of the output of db2gcf (shows, for example,
the current status of an instance).

Important: Enterprise Agents usually need a separate license. Contact
VERITAS for detailed information.

Important: Enterprise Agents usually need a separate license. Contact
VERITAS for detailed information.
448 WebSphere Application Server V6: High Availability Solutions

http://ftp.support.veritas.com/pub/support/products/ClusterServer_UNIX/273084.pdf

To install this agent, for example on UNIX/Linux, follow the instructions provided
in VERITAS Cluster Server Enterprise Agent 4.0 for DB2 Installation and
Configuration Guide, which is available at:

http://ftp.support.veritas.com/pub/support/products/ClusterServer_UNIX/
270374.pdf

After the agent is installed, you have to import the DB2udbTypes.cf file. Then,
you are able to create and configure a service group for IBM DB2 UDB.

12.2 Planning and preparation
These are the prerequisites to follow our scenario:

� We assume you have at least two systems running with VCS. Both systems
share one storage device.

� We further assume that you have checked the prerequisites needed for IBM
WebSphere Application Server Network Deployment V6. These are found at:

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

� You have an IP Alias for the Deployment Manager/Node Agent system.

It is also possible to install without having a separate IP Alias. In this case,
you have to join or link to an existing service group that uses an IP Alias.
Make sure that this configuration fits into your systems architecture
respectively meets your non-functional requirements.

� You should determine how you are going to configure WebSphere.
Specifically, if you are going to separate the binary files from the configuration
files. You have two options: you can put the binaries and configuration files on
the shared disk or you can put the binaries on a local disk and the
configuration files on the shared disk.

12.3 Deployment Manager
In IBM WebSphere V6, the Deployment Manager is a key component in a
WebSphere cell. It provides the administrative interface, keeps the master
repository, and synchronizes the configuration with all nodes in the cell. For more
information about the Deployment Manager see WebSphere Application Server
V6 System Management and Configuration Handbook, SG24-6451. In
WebSphere V6 the Deployment Manager is not required for runtime
transactions, but needed for administration and configuration changes. For that
reason it might be useful to make the Deployment Manager highly available. One
way to do this, is using VCS with shared disks.
 Chapter 12. WebSphere and VERITAS Cluster Server 449

http://ftp.support.veritas.com/pub/support/products/ClusterServer_UNIX/270374.pdf
http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

12.3.1 Installing the Deployment Manager
To install the Deployment Manager follow the steps provided in 9.3, “Deployment
Manager high availability” on page 298. This section covers the various options
for how to install the Deployment Manager so that the configuration information is
available to each node in the cluster.

Installing IBM WebSphere Application Server Network Deployment V6 with an IP
failover based cluster software requires that your host name is bound to your IP
Alias (Virtual IP Address). When creating the Deployment Manager profile, the
host name associated with the virtual IP address is used in the configuration.
Whenever the Deployment Manager is accessed, the host name associated with
the VIP is used. For example, when specifying the URL for the Administrative
Console, use

http://viphostname:9060/ibm/console/

The benefit of using the host name that is associated with the VIP is that it
isolates the client from the specific system that is currently hosting the
Deployment Manager. If System A is hosting the Deployment Manager and it
fails over to System B, then the clustering software switches the virtual IP
address to be associated with System B. However, the DNS name (and thus the
URL for the Administrative Console) does not need to change and will continue
to work.

Figure 12-1 on page 451 shows our lab setup, which is as follows:

� We have two systems that have access to a Network Attached Storage (NAS)
device. The systems utilize iSCSI to attach to the NAS which provides
simultaneous and concurrent access to the directories that contain the
WebSphere configuration data.

� We configured VCS to have an Active/Passive configuration which means
that the Deployment Manager is running only on one of the systems at a time.
One system is deemed the primary system and when the Deployment
Manager process fails on that system, the secondary system becomes active
and all requests of the Deployment Manager occur on the secondary system.

� We installed the WebSphere V6 binaries locally on both systems.

� We created the Deployment Manager profile on the shared file system
located on the NAS. This makes the configuration data available to both the
primary and secondary system.
450 WebSphere Application Server V6: High Availability Solutions

Figure 12-1 Lab example showing two systems connected to NAS

12.3.2 Configuring VCS to run the Deployment Manager
To leverage the benefits of VCS, you have two configuration options:

� Setting up a unique service group for the Deployment Manager failover.

This method requires a unique virtual IP Address for every Deployment
Manager Service Group. So the failing over of a Deployment Manager
Service Group is disjoint from another Deployment Manager Service Group
failover.

� Using the existing ClusterService Service Group

VCS creates a default service group called ClusterService. The
ClusterService service group contains a resource for the network interface
card (NIC), for the virtual IP address, and for the VCSWeb applications. It is
easy to add the mount resource and application resource for the Deployment
Manager to this service group. However, resources that are by default critical
in this service group might cause the Deployment Manager to failover (even
though the Deployment Manager is not dependent on the resources).

WASDMgr
process

WebSphere
V6 DMgr

profile

VHost1

NAS

VHost2

WebSphere V6
local binaries

WASDMgr
process

WebSphere V6
local binaries

WASDMgr
process

WebSphere V6
local binaries

Veritas Cluster Server
 Chapter 12. WebSphere and VERITAS Cluster Server 451

Individual circumstances will help determine which option is appropriate for you.
With everything equal, it appears that the first option, and the ability to create a
Deployment Manager Service Group - with the resource required for that
Deployment Manager encapsulated in the service group - is the better option.

We assume that you are familiar with the administration of VCS. So we highlight
only a few important points. VCS provides the application resource type that we
used to represent the Deployment Manager. The application resource requires a
start and stop program to control an application. The application resource also
requires at least one of the following for monitoring the application:

� A monitor program
� A pid file
� A process name displayed by the ps command

In our example, we provided the start and stop scripts under the
<WAS_HOME>/bin directory and use the pid file for monitoring.

When the Deployment Manager server starts up, it creates a pid file called
dmgr.pid. This file is located in the
<WAS_HOME>/profiles/your_profile_name/logs/dmgr/ directory and contains
the process ID of the Deployment Manager. The application resource for the
Deployment Manager reads that file and looks for the given process ID to
monitor this process. If this process is not active, then a failover is initiated.

In our example, we use an NAS shared file system to contain the profile for the
Deployment Manager. Therefore, in VCS, we need to configure a mount
resource for mounting/unmounting the file system that contains the profile for the
Deployment Manager.

The procedure we followed to make the Deployment Manager highly available
using VCS is as follows:

1. Create a new service group.

See Figure 12-12 on page 463 for the configuration panel. Ensure that you
select Failover for the Service Group Type. This indicates to VCS that it is an
Active/Passive service group. When a critical resource on the primary system
fails, then VCS will failover all resources in the service group to the secondary
system.

Notice that the systems named Bottechia and SystemB are the two systems
in our environment. The system called Bottechia has a priority of 0 and the
system called SystemB has a priority of 1. In our example, Bottechia is
considered the primary system and SystemB the secondary system.
452 WebSphere Application Server V6: High Availability Solutions

Figure 12-2 Creating a new Service Group using the Configuration Wizard for DMgr

2. Add resources to that service group:

a. Add a resource type Application for the Deployment Manager. See
Figure 12-13 on page 466.

In our example, we used the following WebSphere commands as the start
and stop programs for the Deployment Manager application resource:

<WAS_HOME>/profiles/dmgrprofile/bin/startManager
<WAS_HOME>/profiles/dmgrprofile/bin/stopManager

We used the pid file as the monitoring option for the resource. The pid file
is located at:

<WAS_HOME>/profiles/dmgrprofile/logs/dmgr/dmgr.pid

The use of the pid file for monitoring the Deployment Manager is very
good in detecting a crash of the Deployment Manager’s JVM.

Attention: If you plan to enable global security, you need to add a user
and a password to your soap.client.props or sas.client.props file. Which
props file to use depends on the protocol you use to connect to the
Deployment Manager. For more information about this, see
WebSphere Application Server V6: Security Handbook, SG24-6316.
 Chapter 12. WebSphere and VERITAS Cluster Server 453

Figure 12-3 Attributes of our resource WASDMgr

b. Add a resource type Mount for the shared disk that contains the shared
WAS profile.

In our example, the configuration files managed by the Deployment
Manager reside on a shared file system with a mount point name of
/shared. This resource ensures that the file system is mounted and
available to the Deployment Manager. See Figure 12-14 on page 467.

Figure 12-4 Attributes of resource DMgrSharedFS
454 WebSphere Application Server V6: High Availability Solutions

c. Set resource dependencies.

Figure 12-5 shows the resource dependencies necessary when adding
our WASDMgr resources to the existing ClusterService service group.

In our example, we configured a start sequence:

i. Check if NIC (network card interface) is up.
ii. Assigning the VIP (Virtual IP Address) to that NIC.
iii. Mounting the shared file system.
iv. Starting the Deployment Manager.

Figure 12-5 Resource dependencies - Deployment Manager configuration

Important: At this point, you have to create the resource for the VIP for the
Deployment Manager.

Due to some restrictions in our lab environment, we were not able to obtain
a VIP for the Deployment Manager and therefore, we used the default IP
for this scenario. However, the configuration of a separate VIP is described
in 12.4.2, “Configuring VCS to run the Node Agents and application server
or servers” on page 457 as we were able to use a VIP for the Node Agent
and application server scenario.
 Chapter 12. WebSphere and VERITAS Cluster Server 455

12.3.3 Testing Deployment Manager failover
Now that you configured VCS to manage the Deployment Manager, we
recommend to test if everything works as expected. Three possible tests you
could do, are:

1. Shutting down the system where the Deployment Manager is running.

2. Killing the Deployment Manager process using the kill -9 command (on
UNIX or Linux).

3. Deleting the pid.file.

In all of these test scenarios, VCS as we set it up realized the failure and
switched the Deployment Manager to the second system.

These tests are just examples of possible test scenarios. You can try any other
test that might better fulfill your needs.

12.4 Node Agent and application server
The need to make the Node Agent highly available is reduced in WebSphere
Version 6. In 9.4, “Node Agent and application server high availability” on
page 304, we explained why and how to make the Node Agent highly available
with clustering software in a generic way. This section focuses on how to make
the Node Agent highly available using VCS.

12.4.1 Installing a Node Agent and application server or servers
For information about how to install a Node Agent or application server see 9.4,
“Node Agent and application server high availability” on page 304.

Figure 12-6 on page 457 shows the configuration of our test environment. As
described for the Deployment Manager, we split up our installation: the binaries
are located locally and the profiles are placed on the shared disk drive. In our
case the shared disk is an NAS that can be concurrently accessed by both
systems.
456 WebSphere Application Server V6: High Availability Solutions

Figure 12-6 Lab example showing two systems connected to NAS

12.4.2 Configuring VCS to run the Node Agents and application
server or servers

One key concept in configuring the highly available Node Agent is that the Node
Agent is coupled with all the application servers that reside in the node. If the
Node Agent is to failover, all the corresponding application servers must failover
also. The ramifications of this concept for configuring VCS is that you must
define a single service group that contains the resources for the Node Agent
application and all the application servers that reside in the node. Then this
service group will failover as a group to maintain the coupling that is needed.

In our example, we configured the Node Agent and application servers as
application resources. As mentioned before, VCS application resources require a
start and stop program to control an application. In our example, we provided the
start and stop scripts under the <WAS_HOME>/bin directory and the pid file for
monitoring.

WASDMgr
process

WebSphere
V6

profiles

VHost1

NAS

VHost2

AppServer1

Node Agent
process

WebSphere V6
local binaries

Node Agent
process

WebSphere V6
local binaries

Veritas Cluster Server

AppServer n AppServer1 AppServer n
 Chapter 12. WebSphere and VERITAS Cluster Server 457

To monitor application resources you need to provide at least one of the
following:

� A monitor program
� A pid file
� A process name displayed by the ps command

At start, the Node Agent creates a pid file which is found in this location:

<WAS_HOME>/profiles/your_profile_name/logs/nodeagent/nodeagent.pid

This pid file contains the process ID of the Node Agent. The VCS application
resource reads the pid file and looks for the process to determine if the Node
Agent is up or down. In case the process is down, a failover is initiated.

In our example, we use an NAS shared file system to contain the profile for the
Node Agent and the application servers. Therefore, in VCS, we need to configure
a mount resource for mounting or unmounting the file system that contains the
profiles. The procedure we followed to make the Node Agent and corresponding
application servers highly available using VCS is as follows:

1. Create a new Service Group

Ensure that you select the Failover option for the Service Group Type. This
indicates to VCS that it is an Active/Passive service group. When a critical
resource on the primary system fails, then VCS will failover all the resources
in the service group to the secondary system. Notice that the systems named
Bottechia and SystemB are the two systems in our lab. The system called
Bottechia has a priority of 0 and the system called SystemB has the priority of
1. In our example, Bottechia is considered the primary system and SystemB
the secondary system. See Figure 12-7.

Figure 12-7 Creating a new Service Group for Node Agent
458 WebSphere Application Server V6: High Availability Solutions

2. Add resources to that service group:

a. Add a resource type Application for the Node Agent.

In our example, we used the following WebSphere commands as the start
and stop programs for the Node Agent application resource:

<WAS_HOME>/profiles/testprofile/bin/startNode
<WAS_HOME>/profiles/testprofile/bin/stopNode

We used the pid file as the monitoring option for the resource. The pid file
is located at:

<WAS_HOME>/profiles/testprofile/logs/nodeagent/nodeagent.pid

The use of the pid file for monitoring the Node Agent is very good in
detecting a crash of the Node Agents’s JVM. See Figure 12-8 on page 460
for our configuration.

Attention: If you plan to enable global security, you need to add a user
and a password to your soap.client.props or sas.client.props file. Which
props file to use depends on the protocol you use to connect to the
Deployment Manager. For more information about this, see
WebSphere Application Server V6: Security Handbook, SG24-6316.
 Chapter 12. WebSphere and VERITAS Cluster Server 459

Figure 12-8 Attributes of resource NodeAgent

b. Add a resource type Mount for the shared disk that has to be mounted.

In our example, the configuration files managed by the Node Agent reside
on a shared file system with a mount point name /sharedB. This resource
ensures that the file system is mounted and available to the Node Agent.
See Figure 12-9 on page 461.
460 WebSphere Application Server V6: High Availability Solutions

Figure 12-9 Attributes of resource NASharedFS

c. Add a resource for the IP Alias as shown in Figure 12-10.

Figure 12-10 Attributes of resource IP Alias

d. Add resources for each application server on the node.

Because each application server must failover with the Node Agent, a
resource is defined for each application server. In our example, we used
the WebSphere commands as the start and stop programs for the Node
Agent application resource:

<WAS_HOME/>profiles/testprofile/bin/startServer
<WAS_HOME>/profiles/testprofile/bin/stopServer
 Chapter 12. WebSphere and VERITAS Cluster Server 461

We used the pid file as the monitoring option for the resource. The pid file
is located at:

<WAS_HOME>/profiles/testprofile/logs/AppServerName/server.pid

Figure 12-11 Resource for application server AppSrv01

e. Set resource dependencies

Figure 12-12 on page 463 shows the resource dependencies necessary
when adding our Node Agents’ resources to the Node Agent service
group.

In our example, we configured a start sequence:

i. Assigning VIP (Virtual IP Address).
ii. Mounting the shared file system.
iii. Starting the Node Agent.
iv. Start each application server.
462 WebSphere Application Server V6: High Availability Solutions

Figure 12-12 Resource dependencies - Node Agent configuration

12.4.3 Testing Node Agent and application server failover
Now that you configured VCS to manage the Node Agent, we recommend to test
if everything works as expected. You can perform the following possible tests:

1. Shutting down the system where the Node Agent is running.

2. Killing the Node Agent process using the kill -9 command (on UNIX or
Linux).

3. Deleting the pid.file.

In our setup, for all of these test scenarios, VCS realized the failure and switched
the Node Agent to the second system.

These tests are just examples of possible test scenarios. You can try any other
test that might better fulfill your needs.
 Chapter 12. WebSphere and VERITAS Cluster Server 463

12.5 Transaction Manager failover with No Operation
policy

A general discussion of configuring the Transaction Manager failover with the No
Operation policy is provided in 9.6, “Transaction Manager failover with No
Operation policy” on page 313. In this section we discuss how to configure VCS
to correctly failover the Transaction Manager with the No Operation (NoOP)
recovery policy.

In order to describe the configuration we refer to the example defined in
“Transaction Manager with No Operation policy scenario” on page 316. In our
setup, we have two WebSphere Application Server nodes. One node is the
system named Bottechia and the other is the system named SystemB. Each
node hosts a single application server: TradeServer1 on Bottechia and
TradeServer2 on SystemB. Both application servers are cluster members of
TradeCluster.

For this scenario, we need to define the following service groups in VCS:

� WAS servers service group

This group will be configured as parallel (Active/Active) and will start, stop,
and monitor the Node Agent and the cluster members.

� TM activate for system Bottechia

This group will be configured as failover (Active/Passive) and will activate,
deactivate and monitor the TM on system Bottechia (primary) and failover to
system SystemB (secondary).

� TM activate for system SystemB

This group will be configured as failover (Active/Passive) and will activate,
deactivate and monitor the TM on system SystemB (primary) and failover to
system Bottechia (secondary).

We also need to configure links (dependencies) between each group. The TM
activate groups are linked to the WAS servers group. This means that the TM
activate groups will not start until the WAS servers group completes starting. The
TM activate groups are not linked to each other.

12.5.1 WebSphere configuration
Follow the instructions in 9.6.3, “Configuring WebSphere for TM No Operation
policy” on page 317 to configure WebSphere for the transaction log failover.
464 WebSphere Application Server V6: High Availability Solutions

12.5.2 VCS configuration: service groups and resources
Next, we describe each service group and the resources that make up each
group.

WAS servers service group
This group must be configured as a parallel group. This means that the
resources start on each system simultaneously and there is no failover. This
group contains two application resources and a mount resource. The application
resources are responsible for starting, stopping and monitoring the Node Agents
and the cluster members. The mount resource is responsible for mounting the
shared file system that contains the transaction logs.

Here is a description of the resources that you need for this service group:

� Node Agent application resource

This resource is responsible for starting, stopping, and monitoring the Node
Agent. There is a definition for each system (Bottechia and SystemB) so that
the resource can start the Node Agent associated with each system
simultaneously. In our example, this resource is marked as enabled but not
as critical. This is because the application server can still process
transactions if the Node Agent fails.

In this resource, we used the WebSphere commands of startNode and
stopNode to start and stop the Node Agent. We used the nodeagent.pid file as
the monitoring technique. VCS reads the PID in this file and monitors it to
ensure that the Node Agent is available.

Figure 12-13 on page 466 shows our configuration.
 Chapter 12. WebSphere and VERITAS Cluster Server 465

Figure 12-13 Node Agent resource for TM NoOP policy

� Cluster member application resource

This resource is responsible for starting, stopping and monitoring the cluster
members. See Figure 12-14 on page 467. There is a definition for each
system (Bottechia and SystemB) so that the resource can start the cluster
members associated with each system simultaneously. In our example, this
resource is marked as enabled and critical.
466 WebSphere Application Server V6: High Availability Solutions

Figure 12-14 Cluster member resource for TM NoOP policy

As shown in Figure 12-14, this resource uses the wasctrl-as script that is
described in “Scripts to start, stop, and monitor WebSphere resources” on
page 331 to start, stop, and monitor the cluster members.

The script is needed because the cluster members halt during start and wait
for the HAManager to be notified to activate the Transaction Manager for the
cluster member. The script starts the cluster members with a time-out setting
so that they return after a certain amount of time. This allows the TM activate
groups to activate the Transaction Manager for this cluster member. Notice
that the cluster member TradeServer2 is started on SystemB and
TradeServer1 is started on Bottechia.
 Chapter 12. WebSphere and VERITAS Cluster Server 467

� Shared file system mount resource

This resource mounts the shared file system that contains the transaction
logs. This resource could also be located in the TM activate groups, but in our
example it is in the WebSphere Application Servers servers group. See
Figure 12-15 on page 469.

Note: The wasctrl-as and wasctrl-tm scripts have to be modified slightly.
The scripts set return codes for the status of the resource. VCS has
defined ranges of return codes to indicate whether a resource status is
online, offline or unknown. The scripts have to be modified so that the
correct status value is returned for VCS. The scripts need to have the
following values modified:

� UNKNOWN=0
� ONLINE=110
� OFFLINE=100
468 WebSphere Application Server V6: High Availability Solutions

Figure 12-15 Mount resource for TM NoOP policy

The dependencies between the resources in this group are shown in
Figure 12-16 on page 470. The cluster members depend on the Node Agent and
mount point resources. The Node Agent must be started first for the cluster
members to start successfully.
 Chapter 12. WebSphere and VERITAS Cluster Server 469

Figure 12-16 WAS servers service group dependencies for TM NoOP policy
470 WebSphere Application Server V6: High Availability Solutions

TM activate for system Bottechia
This group is configured as a failover group, with the primary system being
Bottechia and the secondary system being SystemB. In our example, we
configured this group with one application resource. It is likely that this group
would be configured with a mount resource for the shared file system that
contains the transaction logs. This is a likely scenario in a customer environment,
but, in our example, we mounted the shared file system with the servers service
group.

� Activate TM application resource

This resource activates, deactivates and monitors the Transaction Manager
and is shown in Figure 12-17 on page 472. For the primary system
(Bottechia), this resource activates the Transaction Manager and allows the
cluster member on this system to continue its start processing and then to log
transactions for requests made to the cluster member.

In a failure situation, the activate indicates to the Transaction Manager of the
cluster member on the secondary system (SystemB) to start peer recovery of
the transactions that are in the primary cluster member’s recovery log.
 Chapter 12. WebSphere and VERITAS Cluster Server 471

Figure 12-17 TM activate resource for TM NoOP policy

This resource specifies the script wasctrl-tm as explained in “Scripts to start,
stop, and monitor WebSphere resources” on page 331. It is important to
understand the invocation parameters for the scripts on the different systems
(primary and secondary). The script invocation for activating the TM on the
primary system is:

/usr/bin/WAS_HA_SCRIPTS/wasctrl-tm start
/opt/IBM/WebSphere/AppServer/profiles/wasNode02/ 49080 bottechia 48879
IBM_hc=TradeCluster,type=WAS_TRANSACTIONS WASCell04 TradeServer1
/usr/bin/WAS_HA_SCRIPTS/ bottechiaNode01
472 WebSphere Application Server V6: High Availability Solutions

The first parameter is the action and indicates to start the TM. The second
parameter is the installation directory of the node. The next two parameters
are the host and port for the servlet that is installed on the cluster member to
perform the MBean actions. The next port is the wsadmin binding port. When
activating against a cluster member that is not started (the primary cluster
member), the script uses a JACL script and this is the SOAP port for running
wsadmin and the JACL script. The next parameter is part of the match criteria
for selecting which TM to work against. The fully qualified match criteria
consists of the cell name, node name, server name and the name/value pairs
for IBM_hc and type. These are the 6th, 7th, 8th and 10th parameters. The
9th parameter is a pointer to where the scripts are installed.

The invocation for activating the TM recovery on the secondary system is:

/usr/bin/WAS_HA_SCRIPTS/wasctrl-tm start
/opt/IBM/WebSphere/AppServer/profiles/wasNode01/ 49080 systemb 48879
IBM_hc=TradeCluster,type=WAS_TRANSACTIONS WASCell04 TradeServer1
/usr/bin/WAS_HA_SCRIPTS/ bottechiaNode01

Notice that the secondary invocation indicates to run on the secondary
system (SystemB) but to activate the TM for the primary system (Bottechia).
The parameters for the node install directory, the servlet port, host name and
SOAP port are all pointing to the secondary system (even though some of the
values are the same as for the primary system). The parameters that deal
with the match criteria (name/value pairs, cell name, node name and server
name) are all pointing to the TM associated with the primary cluster member
(Bottechia).

TM activate for system SystemB
This group is very similar to the previous group. This group is configured as a
failover group, with the primary system being SystemB and the secondary
system being Bottechia. In our example, we configured this group with one
application resource.

� Activate TM application resource

This resource activates, deactivates and monitors the Transaction Manager.
For the primary system (SystemB), this resource activates the Transaction
Manager and allows the cluster member on this system to continue its start
processing and to log transaction for requests made to the cluster member.

In a failure situation, the activate indicates to the Transaction Manager of the
cluster member on the secondary system (Bottechia) to start peer recovery of
the transactions that are in the primary cluster member’s recovery log.

This resource specifies the script wasctrl-tm as explained in “Scripts to start,
stop, and monitor WebSphere resources” on page 331. It is important to
understand the invocation parameters for the scripts on the different systems
 Chapter 12. WebSphere and VERITAS Cluster Server 473

(primary and secondary). The script invocation for activating the TM on the
primary system is:

/usr/bin/WAS_HA_SCRIPTS/wasctrl-tm start
/opt/IBM/WebSphere/AppServer/profiles/wasNode01/ 49080 systemb 48879
IBM_hc=TradeCluster,type=WAS_TRANSACTIONS WASCell04 TradeServer2
/usr/bin/WAS_HA_SCRIPTS/ systembNode01

The primary invocation indicates to run on the primary system (SystemB),
and activate the TM for the primary system (SystemB). The parameters for
the node install directory, the servlet port, host name and SOAP port are all
pointing to the primary system. The parameters that deal with the match
criteria (name/value pairs, cell name, node name and server name) all are
pointing to the TM associated with the primary cluster member (SystemB).

The invocation for activating the TM recovery on the secondary system is:

/usr/bin/WAS_HA_SCRIPTS/wasctrl-tm start
/opt/IBM/WebSphere/AppServer/profiles/wasNode02/ 49080 bottechia 48879
IBM_hc=TradeCluster,type=WAS_TRANSACTIONS WASCell04 TradeServer2
/usr/bin/WAS_HA_SCRIPTS/ systembNode01

Notice that the secondary invocation indicates to run on the secondary
system (Bottechia) but to activate the TM for the primary system (SystemB).
The parameters for the node install directory, the servlet port, host name and
SOAP port are all pointing to the secondary system (even though some of the
values are the same as the primary system). The parameters that deal with
the match criteria (name/value pairs, cell name, node name and server name)
all are pointing to the TM associated with the primary cluster member
(SystemB).

12.5.3 Testing Transaction Manager with NoOP policy failover
When you have finished the setup, you should test if your configured
environment performs failover as expected. Possible tests include killing the
process ID of the application server and shutting down the system.

Refer to 11.5.3, “Testing Transaction Manager with NoOP policy failover” on
page 441 in the HACMP chapter for instructions on how to verify whether your
Transaction Manager failed over as expected.

Alternatively, you can look at the messages in the SystemOut.log file of the
failed-over server where you will find messages indicating the start.
474 WebSphere Application Server V6: High Availability Solutions

12.6 Default messaging provider failover with No
Operation policy

A general discussion of configuring messaging engine failover with the No
Operation Policy is provided in 9.7, “Default messaging provider failover with No
Operation policy” on page 347. In this section we discuss how to configure VCS
to correctly failover the messaging engine with the No Operation policy.

In order to describe the configuration we refer to the example defined in 9.7.2,
“Default messaging provider with No Operation policy scenario” on page 348. In
our setup, we have two WebSphere Application Server nodes. One node is the
system named Bottechia and the other is the system named SystemB. Each
node hosts a single application server which is part of a cluster called
TradeCluster. The cluster members are TradeServer1 on Bottechia and
TradeServer2 on SystemB. The Trade 6 application is configured with two
messaging engines (ME): TradeCluster.000-TradeCluster and
TradeCluster.001-TradeCluster. The primary cluster member for the
TradeCluster.000-TradeCluster messaging engine is TradeServer1 and the
primary cluster member for the TradeCluster.001-TradeCluster messaging
engine is TradeServer2.

In order to configure VCS, we need to define the following service groups:

1. WAS servers service group

This group will be configured as parallel (Active/Active) and will start, stop,
and monitor the Node Agent and the cluster members.

2. ME activate for system Bottechia

This group will be configured as failover (Active/Passive) and will activate,
deactivate and monitor the ME on system Bottechia (primary) and failover to
system SystemB (secondary).

3. ME activate for system SystemB

This group will be configured as failover (Active/Passive) and will activate,
deactivate and monitor the ME on system SystemB (primary) and failover to
system Bottechia (secondary).

We also need to configure links (dependencies) between each group. The ME
activate groups are linked to the WAS servers group. This means that the ME
activate groups will not start until the WAS servers group completes starting. The
ME activate groups are not linked to each other.
 Chapter 12. WebSphere and VERITAS Cluster Server 475

12.6.1 WebSphere configuration
Follow the instructions in 9.7.3, “Configuring WebSphere for default messaging
provider No Operation policy” on page 349 to configure WebSphere for this
scenario.

12.6.2 VCS configuration: service groups and resources
This section describes each service group and the resources that make up each
group.

WAS servers service group
This is configured in exactly the same way that the TM NoOP Policy WAS
servers service group is configured. Refer to 12.5, “Transaction Manager failover
with No Operation policy” on page 464.

ME activate for system Bottechia
This group is configured as a failover group, with the primary system being
Bottechia and the secondary system being SystemB. In our example, we
configured this group with one application resource:

� Activate ME application resource

This resource activates, deactivates and monitors the messaging engine. It is
shown in Figure 12-18 on page 477. For the primary system (Bottechia), this
resource activates the messaging engine. In a failure situation, the messaging
engine on the cluster member on the secondary system (SystemB) is
activated.
476 WebSphere Application Server V6: High Availability Solutions

Figure 12-18 ME activate resource for ME NoOP policy

This resource specifies the script wasctrl-me as explained in “Scripts to start,
stop, and monitor WebSphere resources” on page 331. It is important to
understand the invocation parameters for the scripts on the different systems
(primary and secondary). The script invocation for activating the ME on the
primary system is:

/usr/bin/WAS_HA_SCRIPTS/wasctrl-me start
/opt/IBM/WebSphere/AppServer/profiles/wasNode02/ 49080 bottechia 48879
IBM_hc=TradeCluster,WSAF_SIB_BUS=TradeCluster,WSAF_SIB_MESSAGING_ENGINE=
TradeCluster.000-TradeCluster,type=WSAF_SIB /usr/bin/WAS_HA_SCRIPTS/

The first parameter is the action and indicates to start the ME. The second
parameter is the install directory for the node. The next two parameters are
the host and port for the servlet that is installed on the cluster member to
perform the MBean actions. The next port is the wsadmin binding port. When
activating against a cluster member that is not started (the primary cluster
member), the scripts uses a JACL script and this is the SOAP port for running
 Chapter 12. WebSphere and VERITAS Cluster Server 477

wsadmin and the JACL script. The next parameter is the match criteria for
selecting which ME to work against. The match criteria is the fully qualified
name of the HA group associated with the messaging engine
TradeCluster.000-TradeCluster. The last parameter is a pointer to where the
scripts are installed.

The invocation for activating the ME recovery on the secondary system is:

/usr/bin/WAS_HA_SCRIPTS/wasctrl-me start
/opt/IBM/WebSphere/AppServer/profiles/wasNode01/ 49080 systemb 48879
IBM_hc=TradeCluster,WSAF_SIB_BUS=TradeCluster,WSAF_SIB_MESSAGING_ENGINE=
TradeCluster.000-TradeCluster,type=WSAF_SIB /usr/bin/WAS_HA_SCRIPTS/

Notice that the secondary invocation indicates to run on the secondary
system (SystemB) but to activate the ME that failed on the primary system
(Bottechia). The parameters for the node install directory, the servlet port,
host name, and SOAP port are all pointing to the secondary system (even
though some of the values are the same as the primary system). The
parameter for the match criteria indicates the ME associated with the primary
cluster member (Bottechia).

ME activate for system SystemB
This group is very similar to the previous group. This group is configured as a
failover group, with the primary system being SystemB and the secondary
system being Bottechia. In our example, we configured this group with one
application resource.

� Activate ME application resource

This resource activates, deactivates and monitors the messaging engine. For
the primary system (SystemB), this resource activates the messaging engine.
In a failure situation, the messaging engine on the cluster member on the
secondary system (Bottechia) will be activated.

This resource specifies the script wasctrl-me as explained in “Scripts to start,
stop, and monitor WebSphere resources” on page 357. It is important to
understand the invocation parameters for the scripts on the different systems

Note: The wasctrl-me script has to be modified slightly. The script sets
return codes for the status of the resource. VCS has defined ranges of
return codes to indicate whether a resource status is online, offline or
unknown. The script has to be modified so that the correct status value is
returned for VCS. The script needs to have the following values modified:

� UNKNOWN=0
� ONLINE=110
� OFFLINE=100
478 WebSphere Application Server V6: High Availability Solutions

(primary and secondary). The script invocation for activating the ME on the
primary system is:

/usr/bin/WAS_HA_SCRIPTS/wasctrl-me start
/opt/IBM/WebSphere/AppServer/profiles/wasNode01/ 9080 systemb 8879
IBM_hc=TradeCluster,WSAF_SIB_BUS=TradeCluster,WSAF_SIB_MESSAGING_ENGINE=
TradeCluster.001-TradeCluster,type=WSAF_SIB /

The first parameter is the action and indicates to start the ME. The second
parameter is the install directory for the node. The next two parameters are
the host and port for the servlet that is installed on the cluster member to
perform the MBean actions. The next port is the wsadmin binding port. When
activating against a cluster member that is not started (the primary cluster
member), the script uses a JACL script and this is the SOAP port for running
wsadmin and the JACL script. The next parameter is the match criteria for
selecting which ME to work against. The match criteria is the fully qualified
name of the HA group associated with the messaging engine
TradeCluster.001-TradeCluster. The last parameter is a pointer to where the
scripts are installed.

The invocation for activating the ME recovery on the secondary system is:

/usr/bin/WAS_HA_SCRIPTS/wasctrl-me start
/opt/IBM/WebSphere/AppServer/profiles/wasNode02/ 49080 bottechia 48879
IBM_hc=TradeCluster,WSAF_SIB_BUS=TradeCluster,WSAF_SIB_MESSAGING_ENGINE=
TradeCluster.001-TradeCluster,type=WSAF_SIB /usr/bin/WAS_HA_SCRIPTS/

Notice that the secondary invocation indicates to run on the secondary
system (Bottechia) but to activate the ME that failed on the primary system
(SystemB). The parameters for the node install directory, the servlet port,
host name, and SOAP port are all pointing to the secondary system (even
though some of the values are the same as the primary system). The
parameter for the match criteria indicates the ME associated with the primary
cluster member (SystemB).

12.6.3 Testing messaging engine with NoOP policy failover
When all resources are set up and running on the systems we recommend you
test the setup to see that everything is working as expected. Possible tests
include:

� Shut down the system where the application server is running.
� Kill the application server process using the kill -9 command.

When a messaging engine starts in a server, messages are written to the
SystemOut.log file. Therefore, monitor this file on the failed-over system for
messages similar to the ones shown in Example 12-1 on page 480.
 Chapter 12. WebSphere and VERITAS Cluster Server 479

Example 12-1 Message engine start messages

[8/25/05 11:18:03:743 CDT] 00000045 SibMessage I
[TradeCluster:TradeCluster.000-TradeCluster] CWSIS1538I: The messaging engine,
ME_UUID=02BF0BF501CE0540, INC_UUID=373ad6a9ee6e8153, is attempting to obtain an
exclusive lock on the data store.
...
[8/25/05 11:18:04:037 CDT] 00000045 SibMessage I
[TradeCluster:TradeCluster.000-TradeCluster] CWSIS1537I: The messaging engine,
ME_UUID=02BF0BF501CE0540, INC_UUID=373ad6a9ee6e8153, has acquired an exclusive
lock on the data store.
...
[8/25/05 11:18:11:227 CDT] 00000027 SibMessage I
[TradeCluster:TradeCluster.000-TradeCluster] CWSID0016I: Messaging engine
TradeCluster.000-TradeCluster is in state Started.

Alternatively, you can open the Administrative Console and go to Core
groups → Core group settings → CoreGroupName (most probably
DefaultCoreGroup) → Runtime tab.

Enter WSAF_SIB_MESSAGING_ENGINE=Your_ME into the Group name properties field,
and click Show groups (for example,
WSAF_SIB_MESSAGING_ENGINE=TradeCluster.000-TradeCluster). You could also
leave the asterisk (*) in the Group name properties field, and click Show groups
to display all High availability groups.

Click the link for your HA group to display the Name of the Server the ME runs
on. This panel also shows the status of the ME. See Figure 12-19. Verify this
panel before and after the failover.

Figure 12-19 ME status and server it runs on
480 WebSphere Application Server V6: High Availability Solutions

12.7 Reference
� VERITAS Web site

http://www.veritas.com

� VERITAS Cluster Server Agent 3.5 for WebSphere MQ Installation and
Configuration Guide

http://ftp.support.veritas.com/pub/support/products/ClusterServer_
UNIX/273084.pdf

� VERITAS Cluster Server Enterprise Agent 4.0 for DB2 Installation and
Configuration Guide

http://ftp.support.veritas.com/pub/support/products/ClusterServer_UNIX/
270374.pdf
 Chapter 12. WebSphere and VERITAS Cluster Server 481

http://www.veritas.com
http://ftp.support.veritas.com/pub/support/products/ClusterServer_UNIX/273084.pdf
http://ftp.support.veritas.com/pub/support/products/ClusterServer_UNIX/270374.pdf

482 WebSphere Application Server V6: High Availability Solutions

Chapter 13. WebSphere and Sun Cluster

This chapter describes setting up WebSphere Application Server to run on a Sun
Cluster environment. We discuss how to install WebSphere Application Server
Network Deployment and how to create a Sun Cluster resource to restart
WebSphere processes.

We are using the IBM Trade Performance Benchmark Sample for WebSphere
Application Server application for our scenario. We refer to this application as
Trade 6 throughout the chapter.

13

Important: This chapter contains information and material from Sun
Microsystems, Inc. This information was printed by permission of Sun
Microsystems, Inc.
© Copyright IBM Corp. 2005. All rights reserved. 483

13.1 Introduction to Sun Cluster
The Sun Cluster, or SunPlex™ system, is an integrated hardware and software
solution that is used to create highly available and scalable services. The Sun
Cluster system extends the Solaris operating environment into a cluster
operating system. There are existing resource types for DB2 and WebSphere
MQ. Resource types can also be made for various WebSphere Application
Server processes.

13.1.1 How Sun Cluster works
The Sun Cluster system achieves high availability through a combination of
hardware and software. The redundant cluster interconnects storage and public
networks to protect against single points of failure. The cluster software
continuously monitors the health of member nodes and prevents failing nodes
from participating in the cluster, protecting against data corruption. Also, the
cluster monitors services and their dependent system resources, and fails over
or restarts services in case of failures. Sun Cluster supports up to 16 nodes (in
Sun Cluster 3.1).

Sun Cluster uses agents to simplify cluster configuration. Each type of resource
supported in a cluster is associated with an agent. An agent is an installed
program designed to control a particular resource type. For Sun Cluster to bring
a certain resource online, it does not need to understand it, but simply pass the
online command to the agent. Sun Cluster has Oracle, DB2, Informix®, and
SyBase agents. Many other enterprise agents are also available. Some of these
agents come with the base cluster software, and some require additional
purchase. Sun Cluster can use the Solaris Volume Manager or the VERITAS
Volume Manager.

The Resource Group manager handles high availability and scalability in Sun
Cluster. It manages the resource types (also known as data services), resource
groups and resources.

Sun Cluster supports both Active/Passive failover and Active/Active availability.
Sun Cluster uses the terms failover and scalable to describe these activities.

Sun Cluster can:

� Reduce or eliminate system downtime because of software or hardware
failures.

� Ensure availability of data and applications to users, regardless of the kind of
failure that would normally take down a single-server system.
484 WebSphere Application Server V6: High Availability Solutions

� Increase application throughput by enabling services to scale to additional
processors by adding nodes to the cluster.

� Provide enhanced availability of the system by enabling you to perform
maintenance without shutting down the entire cluster.

Sun Cluster configurations tolerate the following types of single-point failures:

� Server operating environment failure because of a crash or a panic
� Data service failure
� Server hardware failure
� Network interface failure
� Disk media failure

As depicted in Figure 13-1, clients access the primary system.

Figure 13-1 Sun Cluster setup: running on primary machine

Machine1
(Primary)

Machine2
(Secondary)

Shared
Disk

Resource

Sun Cluster

Virtual
Network
Interface:
suncluster

Clients

Port Probe
 Chapter 13. WebSphere and Sun Cluster 485

In the case of a failure, the clients failover to the second machine as shown in
Figure 13-2.

Figure 13-2 Sun Cluster setup: primary machine fails, failover to secondary machine

You can find more information about Sun Cluster software at:

http://www.sun.com/clusters

13.1.2 Configuration basics of Sun Cluster
There are several steps to configure a Sun Cluster for WebSphere:

1. Connect and configure the shared disk subsystem.

Files are stored in a mirrored or RAID shared disk array that can be
connected physically to two nodes (multihost disk). When one node fails, the

Notes:

� The current version of Sun Cluster is 3.1 8/05.

� We used Sun Cluster 3.0 during our tests.

Machine1
(Primary)

Machine2
(Secondary)

Shared
Disk

Resource

Sun Cluster

Virtual
Network
Interface:
suncluster

X
Clients

Port Probe
486 WebSphere Application Server V6: High Availability Solutions

http://www.sun.com/clusters

other node can access the same data and log files. You can configure the
shared disk using either Solaris Volume Manager or VERITAS Volume
Manager.

2. Install and configure the Sun Cluster data service software. Refer to the
appropriate Sun Cluster Software Installation and the Sun Cluster Software
Administration guides for your Sun Cluster version, which is available at:

http://docs.sun.com/app/docs

3. Start the Sun Cluster and take ownership of the disk group using this
command:

scadmin startcluster

4. Create a resource group using the scrgadm command. See the article How to
Create a Failover Resource Group, which is available at:

http://docs.sun.com/app/docs/doc/817-1526/6mh8j0jd4?a=view#babhbcji

5. Add logical host name resources and shared address resources. See the
article Adding Resources to Resource Groups, which is available at:

http://docs.sun.com/app/docs/doc/817-1526/6mh8j0jd6?a=view

Using this basic set up, WebSphere Application Server resources can be added
to the resource group.

13.1.3 Managing resources
Resource groups and resources can be managed with the scswitch command.
The resource group can be stopped, started and switched between systems.
Resources can be enabled and disabled. Enabling a resource kicks off the start
script and Sun Cluster begins to monitor it. Disabling a resource initiates the stop
script.

To switch the resource group to another system, use the following command:

scswitch -Z -g resource_group_name

To enable a resource and initiate the start script, use the following command:

scswitch -e -j resource_name

To disable a resource and initiate the stop script, use the following command:

scswitch -n -j resource_name

Refer to the man page for scswitch from Sun at:

http://docs.sun.com/app/docs/doc/816-5251/6mbdimpp2?q=scswitch&a=view
 Chapter 13. WebSphere and Sun Cluster 487

http://docs.sun.com/app/docs/doc/816-5251/6mbdimpp2?q=scswitch&a=view
http://docs.sun.com/app/docs/doc/817-1526/6mh8j0jd4?a=view#babhbcji
http://docs.sun.com/app/docs/doc/817-1526/6mh8j0jd6?a=view
http://docs.sun.com/app/docs

To review the status of the resource groups and resources, use the scstat
command. Example 13-1 shows output for the scstat command.

Example 13-1 Result of scstat

--

-- Cluster Nodes --

 Node name Status
 --------- ------
 Cluster node: ws-cluster1 Online
 Cluster node: ws-cluster2 Online

--

-- Cluster Transport Paths --

 Endpoint Endpoint Status
 -------- -------- ------
 Transport path: ws-cluster1:qfe3 ws-cluster2:qfe3 Path online
 Transport path: ws-cluster1:qfe0 ws-cluster2:qfe0 Path online

--

-- Quorum Summary --

 Quorum votes possible: 4
 Quorum votes needed: 3
 Quorum votes present: 4

-- Quorum Votes by Node --

 Node Name Present Possible Status
 --------- ------- -------- ------
 Node votes: ws-cluster1 1 1 Online
 Node votes: ws-cluster2 1 1 Online

-- Quorum Votes by Device --

 Device Name Present Possible Status
 ----------- ------- -------- ------
 Device votes: /dev/did/rdsk/d12s2 1 1 Online
 Device votes: /dev/did/rdsk/d13s2 1 1 Online

--
488 WebSphere Application Server V6: High Availability Solutions

-- Device Group Servers --

 Device Group Primary Secondary
 ------------ ------- ---------

-- Device Group Status --

 Device Group Status
 ------------ ------

--

-- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------
 Resources: db2_db2inst1_0-rg suncluster db2_db2inst1_0-rs nodeagent-rs
wasmem09-rs wasmem10-rs
 Resources: cluster1TM -
 Resources: cluster2TM -

-- Resource Groups --

 Group Name Node Name State
 ---------- --------- -----
 Group: db2_db2inst1_0-rg ws-cluster1 Offline
 Group: db2_db2inst1_0-rg ws-cluster2 Online

 Group: cluster1TM ws-cluster1 Unmanaged
 Group: cluster1TM ws-cluster2 Unmanaged

 Group: cluster2TM ws-cluster2 Unmanaged
 Group: cluster2TM ws-cluster1 Unmanaged

-- Resources --

 Resource Name Node Name State Status Message
 ------------- --------- ----- --------------
 Resource: suncluster ws-cluster1 Offline Offline
 Resource: suncluster ws-cluster2 Online Online -
LogicalHostname online.

 Resource: db2_db2inst1_0-rs ws-cluster1 Offline Offline
 Resource: db2_db2inst1_0-rs ws-cluster2 Online Online

 Resource: nodeagent-rs ws-cluster1 Offline Offline
 Chapter 13. WebSphere and Sun Cluster 489

 Resource: nodeagent-rs ws-cluster2 Online Online

 Resource: wasmem09-rs ws-cluster1 Offline Offline
 Resource: wasmem09-rs ws-cluster2 Online Online

 Resource: wasmem10-rs ws-cluster1 Offline Offline
 Resource: wasmem10-rs ws-cluster2 Online Online

13.1.4 Using the Cluster Agent for WebSphere MQ
Sun Cluster has an existing data service or resource type for running WebSphere
MQ. The agent is preprogrammed to start and to shut down, fault monitor, and
perform automatic failover for the WebSphere MQ Integrator service.

For detailed instructions on using the MQ agent, see Sun Cluster Data Service
for WebSphere MQ Integrator Guide for Solaris OS, which is available at:

http://docs.sun.com/app/docs/doc/817-4580

13.1.5 Using the Cluster Agent for DB2
Sun Cluster has an existing data service or resource type for running DB2. It can
start, stop, monitor and administer DB2 UDB in a Sun Cluster 3.x environment.

For installation and configuration instructions for DB2 with Sun Cluster, see the
IBM white paper, IBM DB2 Universal Database and High Availability on Sun
Cluster 3.x, which is available at:

ftp://ftp.software.ibm.com/software/data/pubs/papers/suncluster.pdf

13.2 Planning and preparation
We assume that you have installed Sun Cluster on a group of Solaris systems. In
the following sections, we describe how to configure WebSphere Application
Server using a pair of Solaris machines with Sun Cluster installed. These
machines share a disk and can access it at the same time. Both machines
access the shared disk and a logical host name. In this example, a DB2 resource
group and resource were previously created. We add a WebSphere Application
Server resource to the existing resource group, db2_db2inst1_0-rg, which
contains a host name resource and db2 resource.

This chapter discusses how to set up a Deployment Manager, Node Agent, and
application servers in failover resources. We also provide information about
setting up a Node Agent and application servers in a scalable environment.
490 WebSphere Application Server V6: High Availability Solutions

ftp://ftp.software.ibm.com/software/data/pubs/papers/suncluster.pdf
http://docs.sun.com/app/docs/doc/817-4580

The following are important names that we use in this example:

Solaris machine 1: SHost01
Solaris machine 2: SHost02
Shared disk: /global/scudb
Logical host name: suncluster.ibmredbook.com
Shared scalable host name: a-suncluster.ibmredbook.com
Failover resource group: db2_db2inst1_0-rg
Shared scalable resource group: websphere_active-rg
Logical host name resource: suncluster
Scalable host name resource: a-suncluster

13.3 Deployment Manager
Making the Deployment Manager highly available using Sun Cluster requires that
you install it on the shared disk. It is also possible to install WebSphere Network
Deployment locally and only the profile on the shared disk. Nodes are installed
on remote machines. We set up an Active/Passive configuration.

After installing the Deployment Manager, you need to create a Deployment
Manager resource for Sun Cluster to start, stop, and monitor the Deployment
Manager automatically. Then, you need to verify the scenario by failing over and
monitoring the nodes and the restart of the Deployment Manager.

The end result should be a Deployment Manager that is available on two Sun
systems, as pictured in Figure 13-3 on page 492.
 Chapter 13. WebSphere and Sun Cluster 491

Figure 13-3 Deployment Manager configured on Sun Cluster (Active/Passive)

13.3.1 Installing WebSphere Network Deployment
To limit single points of failure, you should install the Deployment Manager on
the Sun Cluster system and the nodes on separate systems. In our scenario,
there is one Deployment Manager and one WebSphere Application Server node.

To install WebSphere:

1. Install WebSphere Network Deployment V6.0.1 onto the shared disk drive on
SHost01.

2. Create a Deployment Manager profile. Provide the host name of the logical
host name for the Sun Cluster setup. In our example, we use
suncluster.ibmredbook.com.

3. Start the Deployment Manager, and verify that it starts successfully. Review
the Deployment Manager logs and open the Administrative Console.

4. Stop the Deployment Manager.

Sun Cluster
Shared

Disk

SHOST01 SHOST02

Deployment
Manager

Deployment
Manager

Cluster:
wascluster01

App Server

IHS

App Server

Node
Agent

SHOST03

Virtual Host: suncluster
DB2

SHOST04

Clients

Cell:wascell02

Port Probe
492 WebSphere Application Server V6: High Availability Solutions

The Deployment Manager is now ready for nodes to be federated on the Sun
Cluster configuration.

13.3.2 Configuring Deployment Manager with Sun Cluster
In order for Sun Cluster to restart and monitor the Deployment Manager, you
must create a resource for the Deployment Manager. This requires several steps
using Solaris and Sun Cluster tools and commands, which are discussed in the
sections that follow.

Creating a Deployment Manager package
Use the SunPlex Agent Builder to create a package that includes the start and
stop commands for the Deployment Manager. To create the Deployment
Manager package:

1. Open SunPlex Agent Builder:

/usr/cluster/bin/scdsbuilder

2. In the Step 1 of the SunPlex Agent Builder window, fill in these fields:

– Vendor Name: IBM
– Application Name: WAS
– Working Directory: /workarea/agentbuilder
– Failover: selected
– Resource Type: ksh

Click Create.

3. Click OK in the success window.

4. Click Next in the SunPlex Agent Builder window.

5. In the Step 2 of the SunPlex Agent Builder window, you need to fill in the start
and stop commands for the Deployment Manager in the appropriate fields.

– For Start Command, enter the path to the startManager.sh command. In
our example the path is:

/global/scudb/WebSphere/ApplicationServer/profiles/itsoprofile/bin/
startManager.sh

– For Stop Command, enter the path to the stopManager.sh command. In
our example the path is:

/global/scudb/WebSphere/ApplicationServer/profiles/itsoprofile/bin/
stopManager.sh

– Leave the Probe Command field blank.

Click Configure.

6. Click OK on the success box.
 Chapter 13. WebSphere and Sun Cluster 493

7. After the package has been created, click Cancel in the SunPlex Agent
Builder window.

8. Open a command window and change to your Working Directory, then
change to the IBMWAS/pkg directory. In our example you need to be in

/workarea/agentbuilder/IBMWAS/pkg

9. Run the pkgadd command to add the newly created IBMWAS package:

pkgadd -d . IBMWAS

10.Zip the agentbuilder directory and transfer it to the second system (SHost02).
Unzip into the same directory structure, change to the
/workarea/agentbuilder/IBMWAS/pkg directory, and run the pkgadd command
from step 8 to create the package on this system as well.

Adding a Deployment Manager resource to Sun Cluster
Using the scsetup GUI and scrgadm command, add a Deployment Manager
resource to Sun Cluster by following these steps:

1. On SHost01, run the scsetup GUI:

/usr/cluster/bin/scsetup

2. On the Main Menu, select 2) Resource groups.

3. On the Resource Group Menu, select 3) Add a data service resource to a
resource group.

4. On the Add a Data Service Resource to a Resource Group panel, enter yes to
when asked if it is OK to continue. The following steps, 5 to 22 on page 496,
are all performed on this panel.

5. Enter the existing resource group for the question when prompted for a new
resource.

To find the name of existing resource groups, run the scstat command in
another window. Look for the Resource Groups and Resources section and
the Group Name column. Sample output for our scenario is shown in
Example 13-2.

Example 13-2 Existing resource groups and resources

-- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------
 Resources: db2_db2inst1_0-rg suncluster db2_db2inst1_0-rs
 Resources: cluster1TM -
 Resources: cluster2TM -

Here we find our Resource group called db2_db2inst1_0-rg.
494 WebSphere Application Server V6: High Availability Solutions

6. Select IBM.WAS WAS server for Sun Cluster as the type of resource you
want to add. This is the resource type that you created in “Creating a
Deployment Manager package” on page 493.

7. Still on the same panel, answer yes when prompted whether the software for
this service is installed on each node.

8. Answer yes when prompted to register this resource type now. The panel
generates and runs the following command to add the resource type:

scrgadm -a -t IBM.WAS

9. Press Enter to continue.

10.Enter a name for the resource. Our resource name is dmgr-rs.

11.When you see the section shown in Example 13-3, enter yes to override the
default setting.

Example 13-3 Adding a Deployment Manager port for monitoring

This data service uses the "Port_list" property. The default
 "Port_list" for this data service is as follows:

 <NULL>

 Please check the documentation for this resource type for more
 information on how the list should be set for this resource.

 Do you want to override the default (yes/no) [no]?

12.Fill in a Deployment Manager port.

The probe monitoring system from Sun Cluster tries to connect to this port to
determine whether the Deployment Manager is running. We use the
Deployment Manager’s SOAP port.

To find the Deployment Manager’s SOAP port, open the WebSphere
Administrative Console. Click System administration → Deployment
manager → Ports. Open SOAP_CONNECTOR_ADDRESS. The SOAP port
number for our Deployment Manager is 8879, thus, for Port number (Ctrl+D to
finish), enter 8879.

13.Enter yes to the question whether this is a TCP port.

14.Press Ctrl+D to stop entering ports.

15.The panel now confirms the TCP port just entered, answer yes if it is correct.

16.Press Enter to continue.

17.When prompted for extension properties that you would like to set, enter no.
However, if you know that you do want to change properties, you can enter
 Chapter 13. WebSphere and Sun Cluster 495

yes and change properties. The list of properties might look similar to that
shown in Example 13-4.

Example 13-4 Extension properties that can be updated

Here are the extension properties for this resource:

 Property Name Default Setting
 ============= ===============

 Confdir_list <NULL>
 Monitor_retry_count 4
 Monitor_retry_interval 2
 Probe_timeout 30
 Child_mon_level -1

 Please enter the list of properties you want to set:
 (Type Ctrl-D to finish OR "?" for help)

18.Answer yes when prompted to proceed with the update if you are ready to
add the Deployment Manager resource.

19.Based on your entries, the Add a Data Service Resource to a Resource
Group panel generates and runs this command:

scrgadm -a -j dmgr-rs -g db2_db2inst1_0-rg -t IBM.WAS -y Scalable=false
-y Port_list=8879/tcp

If something goes wrong with adding the resource, you can copy and reuse
this command instead of stepping through scsetup again.

20.Press Enter to continue.

21.Answer no when prompted whether you want to enable this resource.

22.Enter q twice to exit scsetup.

23.Update the Thorough_Probe_Interval and Retry_Interval properties.

Updating these properties allows the Deployment Manager enough time to
start before Sun Cluster checks to see if it is running. If Sun Cluster probes
too soon, it tries to stop and restart the Deployment Manager in the middle of
its initial start process. The Retry_Interval must be equal to or greater than
the Thorough_Probe_Interval multiplied by the Retry_Count. To update these
properties:

a. Update the Retry_Interval to 1000:

scrgadm -c -j dmgr-rs -y Retry_Interval=1000

b. Update the Thorough_Probe_Interval:

scrgadm -c -j dmgr-rs -y Thorough_Probe_Interval=500
496 WebSphere Application Server V6: High Availability Solutions

These values assume the Retry_Count is set to 2.

24.In a command window, activate the resource using the scswitch command:

scswitch -e -j dmgr-rs

Review the Deployment Manager’s log for a successful start. If there are
problems starting, you can stop the resource using the -n parameter on
scswitch:

scswtich -n -j dmgr-rs

25.Use the scstat command to review the status of the resources. The dmgr-rs
resource should be added to the previously selected resource group listed in
the Resource Groups and Resources section. See Example 13-5.

Example 13-5 Resources including the dmgr-rs resource

-- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------
 Resources: db2_db2inst1_0-rg suncluster db2_db2inst1_0-rs dmgr-rs
 Resources: cluster1TM -
 Resources: cluster2TM -

Sun Cluster can now control the Deployment Manager. Sun Cluster is able to
stop and start the Deployment Manager and checks the SOAP port for its status.

13.3.3 Completing the WebSphere cell
A few more steps are required to complete the cell’s configuration, such as
federating nodes, possible enabling security, and installing the application.

Federating nodes
If you do not have a node already federated, configure a custom profile on a
remote system and federate it to the Deployment Manager on the Sun Cluster
setup. The host name for the Deployment Manager is the logical host name. For
our configuration, the addNode command looks as follows:

addNode.sh suncluster 8879

Security considerations
Enable security if necessary. Use the soap.client.props properties file to enter the
user and password for stopping the Deployment Manager. If you do not add the
user name and password to the soap.client.properties file, the stopManager
command expects the properties on the command line when security is enabled.
This fails because the parameters are not part of the Sun Cluster stop script.
 Chapter 13. WebSphere and Sun Cluster 497

To update and encode soap.client.props:

1. Go to the Deployment Manager’s profile directory. Under the properties
directory, open soap.client.props.

2. Add the user name and password to the JMX SOAP connector identity
section:

– com.ibm.SOAP.loginUserid=username
– com.ibm.SOAP.loginPassword=password

3. Use the PropFilePasswordEncoder tool to encode the login password. Pass
com.ibm.SOAP.loginPassword as the property to encode. From the
Deployment Manager’s profile bin directory, run:

./PropFilePasswordEncoder.sh ../properties/soap.client.props
com.ibm.SOAP.loginPassword

After encoding, the properties file might be rearranged. A backup properties
file is also created under the name of soap.client.props.bak.

You can find more information about this topic in the InfoCenter article Protecting
plain text passwords.

Installing Trade 6
You need to install Trade 6 on the Deployment Manager. You can download
Trade 6 from:

http://www.ibm.com/software/webservers/appserv/was/performance.html

Follow the directions included in the Trade 6 download package for setup and
installation, or see Chapter 8 of IBM WebSphere V6 Scalability and Performance
Handbook, SG24-6392 for instructions on how to install and configure Trade 6.

If you use the trade.jacl script that is provided with the package to configure and
install the application, you might need to include the -conntype and -host
parameters if wsadmin cannot find the local host:

/global/scudb/WebSphere/AppServer/bin/wsadmin.sh -conntype soap -host
suncluster -f trade.jacl
498 WebSphere Application Server V6: High Availability Solutions

http://www.ibm.com/software/webservers/appserv/was/performance.html

If wsadmin cannot find the local host, you see the message that is shown in
Example 13-6.

Example 13-6 wsadmin fails to find local host

WASX7023E: Error creating "SOAP" connection to host "localhost"; exception
information:
com.ibm.websphere.management.exception.ConnectorNotAvailableException:
com.ibm.websphere.management.exception.ConnectorNotAvailableException: Failed
to get a connection with IP address associated with hostname localhost

Start the Trade application and verify that it works correctly by populating and
trading.

13.3.4 Testing Deployment Manager failover
After configuring the Deployment Manager and Sun Cluster, verify that the
Deployment Manager will failover. The application should continue to run
uninterrupted and the Node Agent should reconnect to the Deployment Manager
after restart.

Two possible tests include:

� Killing the server process and ensuring that Sun Cluster restarts the
Deployment Manager.

� Taking down a machine and verifying that the Deployment Manager remains
active or restarts on the second machine.

Failing the Deployment Manager
To verify that Sun Cluster can monitor and restart the Deployment Manager, you
can kill the Deployment Manager process:

1. On SHost01, use scstat to check where the resource group is located. If it is
active on SHost02, use the scswitch command to swap to SHost01:

scswitch -Z -g db2_db2inst1_0-rg

2. Verify that the Deployment Manager is started. Either open the Administrative
Console or review the log for the following message:

WSVR0001I: Server dmgr open for e-business.

If the Deployment Manager is not running, start it using the scswitch
command:

scswitch -e -j dmgr-rs
 Chapter 13. WebSphere and Sun Cluster 499

3. Check the log for the Node Agent. It should successfully synchronize with the
Deployment Manager as indicated by the following message:

ADMS0003I: The configuration synchronization completed successfully.

4. Find the process number of the Deployment Manager by looking at the .pid
file in the Deployment Manager’s log directory. Use the kill command to end
the process:

kill -9 pid

5. Continue trading with the Trade 6 application. The application should not be
affected.

6. Review the Node Agent’s log. It notes that the Deployment Manager is no
longer available as shown in Example 13-7.

Example 13-7 Node Agent log, Deployment Manager not available

...DCSV1113W: DCS Stack DefaultCoreGroup at Member wascell02\wasna01\nodeagent:
Suspected another member because the outgoing connection to the other member
was closed. Suspected member is wascell02\wasdmgr02\dmgr. DCS logical channel
is Connected|Ptp.
...DCSV8053I: DCS Stack DefaultCoreGroup at Member wascell02\wasna01\nodeagent:
View change in process. Excluded members are [wascell02\wasdmgr02\dmgr].

The Node Agent also fails to synchronize with the Deployment Manager, as
shown in Example 13-8.

Example 13-8 Node Agent fails to synchronize

...ADMS0015E: The synchronization request cannot be completed because the node
agent cannot communicate with the deployment manager.
...ADMS0016I: The configuration synchronization failed.

7. Watch the Deployment Manager log for restarting. Review the log for the
following message that indicates a successful start:

WSVR0001I: Server dmgr open for e-business.

8. When the Deployment Manager restarts, return to the Node Agent log. It
should recognize that the Deployment Manager restarted, discover it, and
synchronize successfully, as shown in Example 13-9.

Example 13-9 Node Agent discovers that the Deployment Manager restarted.

...DCSV1032I: DCS Stack DefaultCoreGroup at Member wascell02\wasna01\nodeagent:
Connected a defined member wascell02\wasdmgr02\dmgr.
...ADMD0023I: The system discovered process (name: dmgr, type:
DeploymentManager, pid: 12278)
...NodeSyncTask A ADMS0003I: The configuration synchronization completed
successfully.
500 WebSphere Application Server V6: High Availability Solutions

This example shows the Deployment Manager process dying and being
managed by Sun Cluster.

Rebooting a Sun Cluster machine
To test that the Deployment Manager is highly available on both machines using
a failover configuration with Sun Cluster, reboot the machine acting as the
primary.

1. On SHost01, use scstat to check where the resource group is located. If it is
active on SHost02, use the scswitch command to swap to SHost01:

scswitch -Z -g db2_db2inst1_0-rg

2. Verify that the Deployment Manager is started. Either open the Administrative
Console or review the log for the following message:

WSVR0001I: Server dmgr open for e-business.

If the Deployment Manager is not running, start it using the scswitch
command:

scswitch -e -j dmgr-rs

3. Check the Node Agent log. It should synchronize successfully with the
Deployment Manager, as indicated by the following message:

ADMS0003I: The configuration synchronization completed successfully.

4. Reboot SHost01.

5. Ping the logical host name, suncluster.ibmredbook.com. It should be
available shortly.

6. On SHost02, review the Deployment Manager log for the Deployment
Manager restart.

7. Review the Node Agent log, it should synchronize successfully with the
Deployment Manager, as indicated by the following message:

ADMS0003I: The configuration synchronization completed successfully.

8. During the failover, continue trading with Trade 6. It should behave normally.

13.4 Node Agent and application servers

Using Sun Cluster for WebSphere Application Server nodes might require
making both the Node Agent and application servers highly available. We are
using an Active/Passive configuration. In our example, a WebSphere node is
installed on the shared disk. Both machines have access to the same files. It is
also possible to install the Network Deployment binaries locally and only the
node profile on the shared disk.
 Chapter 13. WebSphere and Sun Cluster 501

We assume that the Deployment Manager is installed, configured, and started on
a remote machine. After installing the node, create resources for Sun Cluster to
automatically start, stop, and monitor the Node Agent and application servers.
Then, verify the scenario by failing over and monitoring the Node Agent and the
restart of the servers.

The end result should be a Node Agent and applications servers that are
available on two Sun systems, as pictured in Figure 13-4.

Figure 13-4 Node Agent and application servers configured with Sun Cluster

13.4.1 Installing a Node Agent and application server
To install a Node Agent and application server (or servers):

1. Install WebSphere Network Deployment V6.0.1 onto the shared disk drive on
SHost01.

2. Create a custom profile. Enter the logical host name of the Sun Cluster setup
in the Hostname field. For our scenario, we use suncluster.ibmredbook.com.

3. Federate the node to the Deployment Manager on the remote machine.

Sun Cluster

SHOST03

Deployment
Manager

Cluster:
wascluster01

DB2

SHOST04

Clients

Cell:wascell01

Virtual Host: suncluster

SHOST05

IHS

App Server

App Server

Node
Agent

SHOST01

App Server

App Server

Node
Agent

SHOST02
Shared

Disk

Port Probe
502 WebSphere Application Server V6: High Availability Solutions

13.4.2 Completing the configuration
To finish the configuration, you need to configure a Web server, create a cluster
and cluster members, install the sample application, change settings for the
application servers, and enable security if desired.

Configuring a Web server
Install a Web server. In this example, we installed IBM HTTP Server and
configured it in the cell using the name http1. Refer to Chapter 6 of IBM
WebSphere V6 Scalability and Performance Handbook, SG24-6392 for
information about how to configure a Web server in a cell.

Installing Trade 6
Install Trade 6 on the Deployment Manager. Follow the directions that are
included in the Trade 6 download package for setup and installation, and use the
trade.jacl script for the setup. For additional information about how to install and
configure Trade 6, refer to Chapter 8 of IBM WebSphere V6 Scalability and
Performance Handbook, SG24-6392.

During the installation, create an application server cluster with two cluster
members. In our example, we used the following names:

� Cluster name: wascluster01
� Cluster members: wasmember09, wasmember10

Map the Trade 6 Web modules to the previously created Web server, http1.

Changing application server monitoring policies
Change the automatic restart property of the application servers. This allows Sun
Cluster to gain control over restarting the servers and prevents the Node Agent
and Sun Cluster from trying to restart an application server at the same time.

To disable the automatic restart for the application servers:

1. In the Administrative Console, go to Servers → Application servers →
wasmember09 → Java and Process Management → Process
Definition → Monitoring Policy.

2. Deselect the Automatic restart field. Click OK and save your changes.

3. Repeat this for wasmember10.

4. Restart the application servers and the Node Agent.

You can find more information about this option in the InfoCenter article
Monitoring policy settings.
 Chapter 13. WebSphere and Sun Cluster 503

Security considerations
Enable security if necessary. Use the soap.client.props properties file on the
node to enter the user name and password for stopping the Node Agent and
application servers. If you do not add the user name and password to the
soap.client.properties file, the stopNode and stopServer commands expect the
properties on the command line, which does not appear as part of the Sun
Cluster start and stop scripts.

Encode the soap.client.props property file:

1. Go to the node’s profile directory. Under the properties directory, open
soap.client.props.

2. Add the user name and password to the JMX SOAP connector identity
section:

– com.ibm.SOAP.loginUserid=username
– com.ibm.SOAP.loginPassword=password

3. Use the PropFilePasswordEncoder tool to encode the login password. Pass
com.ibm.SOAP.loginPassword as the property to encode. From the node’s
profile bin directory, run:

./PropFilePasswordEncoder.sh ../properties/soap.client.props
com.ibm.SOAP.loginPassword

After encoding, the properties file might be rearranged. A backup properties
file is also created under the name of soap.client.props.bak.

Also, see the InfoCenter article Protecting plain text passwords.

Testing the application
Start the Trade 6 application and verify that it works correctly by populating the
Trade 6 database and trading. Stop the Node Agent and cluster.

13.4.3 Configuring Sun Cluster to run the Node Agent
To enable Sun Cluster to restart the Node Agent, create a new resource type and
resource. In our example, an existing resource group is used.

Creating a Node Agent package
Use the SunPlex Agent Builder to create a package with start and stop
commands for the Node Agent. To create a Node Agent package:

1. Open SunPlex Agent Builder:

/usr/cluster/bin/scdsbuilder
504 WebSphere Application Server V6: High Availability Solutions

2. In the Step 1 of the SunPlex Agent Builder window, fill in these fields:

– Vendor Name: IBM
– Application Name: WASNA
– Working Directory: /workarea/agentbuilder2
– Failover: selected
– Resource Type: ksh

Click Create.

3. Click OK in the success window.

4. Click Next on the SunPlex Agent Builder window.

5. In the Step 2 of the SunPlex Agent Builder window, you need to fill in the start
and stop commands for the Node Agent in the appropriate fields.

For Start Command, enter the path to the startNode.sh command. In our
example the path is:

/global/scudb/WebSphere/ApplicationServer/profiles/itsoprofile3/bin/
startNode.sh

For Stop Command, enter the path to the stopNode.sh command. In our
example the path is:

/global/scudb/WebSphere/ApplicationServer/profiles/itsoprofile3/bin/
stopNode.sh

Leave the Probe Command field blank.

Click Configure.

6. Click OK on the success box.

7. After creation of the package, click Cancel on the SunPlex Agent Builder
window.

8. Open a command window and change to your Working Directory, then
change to the IBMWASNA/pkg directory. In our example you need to be in:

/workarea/agentbuilder2/IBMWASNA/pkg

Run the pkgadd command to add the newly created IBMWASNA package:

pkgadd -d . IBMWASNA

9. Zip the agentbuilder2 directory and transfer it to the second system
(SHost02). Unzip into the same directory structure, change to the
IBMWASNA/pkg directory, and run the pkgadd command from step 8 to create
the package on this system as well:

pkgadd -d . IBMWASNA
 Chapter 13. WebSphere and Sun Cluster 505

Add Node Agent resource to Sun Cluster
Using the scsetup GUI and scrgadm command, add a Node Agent resource to
Sun Cluster:

1. On SHost01, run the scsetup GUI:

/usr/cluster/bin/scsetup

2. On the Main Menu, select 2) Resource groups.

3. On the Resource Group Menu, select 3) Add a data service resource to a
resource group.

4. On the Add a Data Service Resource to a Resource Group panel, enter yes
when prompted on wether to continue. The following steps, 5 to 22 on
page 508, are all performed on this same panel.

5. Enter the existing resource group when prompted for the group that you want
to add the new resource. To find the name of existing resource groups, run
the scstat command in another window. Look for the Resource Groups and
Resources section and the Group Name column. Sample output for our
scenario is shown in Example 13-10.

Example 13-10 Existing resource groups and resources

-- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------
 Resources: db2_db2inst1_0-rg suncluster db2_db2inst1_0-rs
 Resources: cluster1TM -
 Resources: cluster2TM -

Here we find our Resource group called db2_db2inst1_0-rg.

6. Select IBM.WAS WASNA server for Sun Cluster when prompted for the
type of resource that you want to add. This is the resource type created in
“Creating a Node Agent package” on page 504.

7. Still on the same panel, answer yes to the question on whether the software
for this service is installed on each node.

8. Answer yes to the question of whether it is okay to register this resource type
now. The panel generates and runs the following command to add the
resource type:

scrgadm -a -t IBM.WASNA

9. Press Enter to continue.

10.When prompted for the name of the resource that you want to add, enter a
name for the resource. Our resource name is nodeagent-rs.
506 WebSphere Application Server V6: High Availability Solutions

11.When you see the section shown in Example 13-11, enter yes to override the
default setting.

Example 13-11 Adding a Deployment Manager port for monitoring

This data service uses the "Port_list" property. The default
 "Port_list" for this data service is as follows:

 <NULL>

 Please check the documentation for this resource type for more
 information on how the list should be set for this resource.

 Do you want to override the default (yes/no) [no]?

12.Fill in a Node Agent port. The probe monitoring system from Sun Cluster tries
to connect to this port to determine whether the Node Agent is running. We
use the Node Agent’s SOAP port.

To find the Node Agent’s SOAP port, open the WebSphere Administrative
Console. Select System administration → Node agents → nodeagent →
Ports. Open SOAP_CONNECTOR_ADDRESS.

The SOAP port number for our Node Agent is 8880, thus, for Port number
(Ctrl+D to finish), enter 8880.

13.Enter yes to the question whether this is a TCP port.

14.Press Ctrl+D to stop entering ports.

15.The panel now confirms the TCP port just entered, answer yes if it is correct.

16.Press Enter to continue.

17.When prompted to set extension properties, enter no. However, if you know
that you do want to change properties, you can enter yes and change
properties. The list of properties might look similar to that shown in
Example 13-12.

Example 13-12 Extension properties that can be updated

Here are the extension properties for this resource:
Property Name Default Setting
============= ===============

 Confdir_list <NULL>
 Monitor_retry_count 4
 Monitor_retry_interval 2
 Probe_timeout 30
 Child_mon_level -1

Please enter the list of properties you want to set:
 (Type Ctrl-D to finish OR "?" for help)
 Chapter 13. WebSphere and Sun Cluster 507

18.Answer yes when prompted on whether to proceed with the update, if you are
ready to add the Node Agent resource.

19.Based on your entries, the Add a Data Service Resource to a Resource
Group panel generates and runs this command:

scrgadm -a -j nodeagent-rs -g db2_db2inst1_0-rg -t IBM.WASNA -y
Scalable=false -y Port_list=8880/tcp

If something goes wrong with adding the resource, you can copy and reuse
this command instead of stepping through scsetup again.

20.Press Enter to continue.

21.Answer no when prompted on whether you want to enable this resource.

22.Enter q twice to exit scsetup.

23.Update the Thorough_Probe_Interval and Retry_Interval properties.

Updating these properties allows the Node Agent enough time to start before
Sun Cluster checks to see if it is running. If Sun Cluster probes too soon, it
tries to stop and restart the Node Agent in the middle of its initial start
process. The Retry_Interval must be equal to or greater than the
Thorough_Probe_Interval multiplied by the Retry_Count. To update these
properties:

a. Update the Retry_Interval to 1000:

scrgadm -c -j nodeagent-rs -y Retry_Interval=1000

b. Update the Thorough_Probe_Interval:

scrgadm -c -j nodeagent-rs -y Thorough_Probe_Interval=500

These values assume the Retry_Count is set to 2.

24.In a command window, activate the resource using the scswitch command:

scswitch -e -j nodeagent-rs

Review the Node Agent’s log for a successful start. If there are problems
starting, you can stop the resource using the -n parameter on scswitch:

scswtich -n -j nodeagent-rs

25.Use scstat to review the status of the resources. The nodeagent-rs resource
should be added to the previously selected resource group under the
Resource Groups and Resources heading as shown in Example 13-13.

Example 13-13 Resources including the nodeagent-rs resource

-- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------
 Resources: db2_db2inst1_0-rg suncluster db2_db2inst1_0-rs nodeagent-rs
508 WebSphere Application Server V6: High Availability Solutions

 Resources: cluster1TM -
 Resources: cluster2TM -

Sun Cluster can now control the Node Agent. Sun Cluster is able to stop and
start the Node Agent and checks the SOAP port for its status.

13.4.4 Configure Sun Cluster to run application server
To allow Sun Cluster to restart the application server, create a new resource type
and resource. We use an existing resource group in our scenario.

Creating an application server package
Use the SunPlex Agent Builder to create a package with start and stop
commands for an application server. To create an application server package:

1. Open SunPlex Agent Builder:

/usr/cluster/bin/scdsbuilder

2. In the Step 1 of the SunPlex Agent Builder window, fill in these fields:

– Vendor Name: IBM
– Application Name: WASA9
– Working Directory: /workarea/agentbuilder3
– Failover: selected
– Resource Type: ksh

Click Create.

3. Click OK on the success window.

4. Click Next on the SunPlex Agent Builder window.

5. In the Step 2 of the SunPlex Agent Builder window, you need to fill in the start
and stop commands for the application server in the appropriate fields.

For Start Command, enter the path to the startServer.sh command. In our
scenario, the path is as follows:

/global/scudb/WebSphere/ApplicationServer/profiles/itsoprofile3/bin/
startServer.sh

After selecting the command, add the name of the application server to be
started at the end of the Start Command field. In this example, we add
wasmember09 to the end of the command:

/global/scudb/WebSphere/ApplicationServer/profiles/itsoprofile3/bin/
startServer.sh wasmember09

For Stop Command, enter the path the stopServer.sh command. In our
scenario, the path is as follows:
 Chapter 13. WebSphere and Sun Cluster 509

/global/scudb/WebSphere/ApplicationServer/profiles/itsoprofile3/bin/
stopNode.sh

After selecting the command, add the name of the application server to be
stopped at the end of the Stop Command field. In this example, we add
wasmember09 to the end of the command:

/global/scudb/WebSphere/ApplicationServer/profiles/itsoprofile3/bin/
stopServer.sh wasmember09

Leave the Probe Command field blank.

Click Configure.

6. Click OK on the success box.

7. After creation of the package, click Cancel on the SunPlex Agent Builder
window.

8. Open a command window and change to your Working Directory, then
change to the IBMWASA9/pkg directory. In our example you need to be in

/workarea/agentbuilder3/IBMWASA9/pkg

Run the pkgadd command to add the newly created IBMWASA9 package:

pkgadd -d . IBMWASA9

9. Zip the agentbuilder3 directory and transfer it to the second system
(SHost02). Unzip into the same directory structure, change to the
IBMWASA9/pkg directory and run the pkgadd command from step 8 to create
the package on this system as well:

pkgadd -d . IBMWASA9

Adding an application server resource to Sun Cluster
Using the scsetup GUI and scrgadm command, add an application server
resource to Sun Cluster:

1. On SHost01, run the scsetup GUI:

/usr/cluster/bin/scsetup

2. On the Main Menu, select 2) Resource groups.

3. On the Resource Group Menu, select 3) Add a data service resource to a
resource group.

4. On the Add a Data Service Resource to a Resource Group panel, enter yes
when prompted to continue. The following steps, 5 to 22 on page 512, are all
performed on this panel.

5. Enter the existing resource group when prompted for the group to which you
want to add the new resource.
510 WebSphere Application Server V6: High Availability Solutions

To find the name of existing resource groups, run the scstat command in
another window. Look for the Resource Groups and Resources section and
the Group Name column. Sample output for our scenario is shown in
Example 13-14.

Example 13-14 Existing resource groups and resources

-- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------
 Resources: db2_db2inst1_0-rg suncluster db2_db2inst1_0-rs
 Resources: cluster1TM -
 Resources: cluster2TM -

Here we find our Resource group called db2_db2inst1_0-rg.

6. Select IBM.WASA9 WASA9 server for Sun Cluster when prompted for the
type of resource that you want to add. This is the resource type that was
created in “Creating an application server package” on page 509.

7. Still on the same panel, answer yes when prompted whether the software for
this service is installed on each node.

8. Answer yes when prompted to register this resource type. The panel
generates and runs the following command to add the resource type:

scrgadm -a -t IBM.WASA9

9. Press Enter to continue.

10.When prompted for the name of the resource that you want to add, enter a
name for the resource. Our resource name is wasmem09-rs.

11.When you see the section shown in Example 13-15, enter yes to override the
default setting.

Example 13-15 Adding an application server port for monitoring

This data service uses the "Port_list" property. The default
 "Port_list" for this data service is as follows:

 <NULL>

 Please check the documentation for this resource type for more
 information on how the list should be set for this resource.

 Do you want to override the default (yes/no) [no]?

12.Fill in an application server port. The probe monitoring system from Sun
Cluster tries to connect to this port to determine whether the application
server is running. We use the application server’s SOAP port.
 Chapter 13. WebSphere and Sun Cluster 511

To find the application server’s SOAP port, open the WebSphere
Administrative Console. Select Servers → Applications servers →
wasmember09 → Ports. Open SOAP_CONNECTOR_ADDRESS.

The SOAP port number for our application server is 8879, thus, for Port
number (Ctrl+D to finish), enter 8879.

13.Enter yes to the question whether this is a TCP port.

14.Press Ctrl+D to stop entering ports.

15.The panel now confirms the TCP port just entered, answer yes if it is correct.

16.Press Enter to continue.

17.When prompted for extension properties that you would like to set, enter no.
However, if you know that you do want to change properties, you can enter
yes and change properties. The list of properties might look similar to that
shown in Example 13-16.

Example 13-16 Extension properties that can be updated

Here are the extension properties for this resource:
 Property Name Default Setting

 ============= ===============
 Confdir_list <NULL>

 Monitor_retry_count 4
 Monitor_retry_interval 2
 Probe_timeout 30
 Child_mon_level -1

Please enter the list of properties you want to set:
 (Type Ctrl-D to finish OR "?" for help)

18.Answer yes when prompted to proceed with the update if you are ready to
add the application server resource.

19.Based on your entries, the Add a Data Service Resource to a Resource
Group panel generates and runs this command:

scrgadm -a -j wasmem09-rs -g db2_db2inst1_0-rg -t IBM.WASA9 -y
Scalable=false -y Port_list=8879/tcp

If something goes wrong with adding the resource, you can copy and reuse
this command instead of stepping through scsetup again.

20.Press Enter to continue.

21.Answer no when prompted to enable this resource.

22.Enter q twice to exit scsetup.

23.The next step is to update the Thorough_Probe_Interval and Retry_Interval
properties. Updating these properties allows the application server enough
time to start before Sun Cluster checks to see if it is running. If Sun Cluster
512 WebSphere Application Server V6: High Availability Solutions

probes too soon, it tries to stop and restart the application server in the middle
of its initial start process. The Retry_Interval must be equal to or greater than
the Thorough_Probe_Interval multiplied by the Retry_Count. To update these
properties:

a. Update the Retry_Interval to 1000:

scrgadm -c -j wasmem09-rs -y Retry_Interval=1000

b. Update the Thorough_Probe_Interval:

scrgadm -c -j wasmem09-rs -y Thorough_Probe_Interval=500

These values assume the Retry_Count is set to 2.

24.In a command window, activate the resource group using the scswitch
command:

scswitch -e -j wasmem09-rs

Review the application server’s log for a successful start. If there are
problems starting, you can stop the resource using the -n parameter on
scswitch:

scswtich -n -j wasmem09-rs

25.Use the scstat command to review the status of the resources. The
wasmem09-rs resource should be added to the previously selected resource
group under the section Resource Groups and Resources as shown in
Example 13-17.

Example 13-17 Resources including the wasmem09-rs resource

-- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------
 Resources: db2_db2inst1_0-rg suncluster db2_db2inst1_0-rs nodeagent-rs
wasmem09-rs
 Resources: cluster1TM -
 Resources: cluster2TM -

Sun Cluster now controls the application server, wasmember09. Sun Cluster is
able to stop and start the application server and checks the SOAP port for its
status.

Adding the second cluster member
Repeat the steps from 13.4.4, “Configure Sun Cluster to run application server”
on page 509 to create a package, resource type, and resource for
wasmember10.
 Chapter 13. WebSphere and Sun Cluster 513

13.4.5 Testing Node Agent and application server failover
After configuring the Node Agent and application servers with Sun Cluster, verify
that they will successfully failover. The application should continue to run
uninterrupted if the Node Agent goes down. If an application server fails, traffic
should be rerouted to another member in the cluster until the application server
restarts.

Two possible tests include:

� Killing the server processes and ensuring that Sun Cluster restarts them and
taking down a machine.

� Verifying that the Deployment Manager remains in action on the second
machine.

Failing the Node Agent
To verify that Sun Cluster can monitor and restart the Node Agent, you can kill
the Node Agent process:

1. On SHost01, use scstat to check where the resource group is located. If it is
active on SHost02, use the scswitch command to swap the group to
SHost01:

scswitch -Z -g db2_db2inst1_0-rg

2. Verify that the Node Agent is started. Either open the Administrative Console
and check the Node Agent’s status or review the log for the following
message:

WSVR0001I: Server nodeagent open for e-business.

If the Node Agent is not running, start it using the scswitch command:

scswitch -e -j nodeagent-rs

3. Check the Node Agent’s log. It should synchronize successfully with the
Deployment Manager. Look for the following message:

ADMS0003I: The configuration synchronization completed successfully.

4. Find the process number of the Node Agent by looking at the .pid file in the
Node Agent’s log directory. Use the kill command to end the process:

kill -9 pid

5. Use the Trade 6 application. The application should not be affected by the
Node Agent failure.

6. Review the Node Agent’s log to verify that it is restarting.

7. Verify that it discovers the Deployment Manager process and the application
servers, as shown in Example 13-18 on page 515.
514 WebSphere Application Server V6: High Availability Solutions

Example 13-18 Node Agent discovers Deployment Manager and application servers

[4/19/05 15:58:26:894 CDT] 00000032 DiscoveryMBea I ADMD0023I: The system
discovered process (name: dmgr, type: DeploymentManager, pid: 21791)
[4/19/05 15:58:29:849 CDT] 00000038 DiscoveryMBea I ADMD0023I: The system
discovered process (name: wasmember09, type: ManagedProcess, pid: 2441)
[4/19/05 15:58:31:161 CDT] 00000041 DiscoveryMBea I ADMD0023I: The system
discovered process (name: wasmember10, type: ManagedProcess, pid: 2440)

8. Trade 6 should continue to work normally.

Failing an application server
To verify that Sun Cluster can monitor and restart an application server, you can
kill an application server process as follows:

1. On SHost01, use scstat to check where the resource group is located. If it is
active on SHost02, use the scswitch command to swap the group to
SHost01:

scswitch -Z -g db2_db2inst1_0-rg

2. Verify that the Node Agent is started. Either open the Administrative Console
and check the Node Agent’s status or review the log for the following
message:

WSVR0001I: Server nodeagent open for e-business.

If the Node Agent is not running, start it using the scswitch command:

scswitch -e -j wasmem09-rs

3. Run Trade 6 against the wasmember09’s WebContainer Inbound Chain and
the external Web server. Verify that you can buy stock.

4. Find the process number of the application server by looking at the .pid file in
the application server’s log directory. Use the kill command to end the
process:

kill -9 pid

5. Continue trading with the Trade 6 application via the Web server. The
application should not be affected and should route all requests to the other
cluster member, wasmember10.

6. Review wasmember09’s logs for a successful server start.
 Chapter 13. WebSphere and Sun Cluster 515

7. Verify that it discovers the Node Agent, as shown in Example 13-19.

Example 13-19 Application server discovers Node Agent and finishes start

[4/19/05 16:06:15:914 CDT] 00000047 DiscoveryMBea I ADMD0023I: The system
discovered process (name: nodeagent, type: NodeAgent, pid: 24575)
[4/19/05 16:06:29:852 CDT] 0000000a WsServerImpl A WSVR0001I: Server
wasmember09 open for e-business

8. Run Trade 6 against wasmember09 directly and the Web server. Trade 6
should work normally. It might recover transactions that were interrupted at
failover if you use the Asynchronous_2-Phase Order-Processing Mode for
Trade 6. Look for the Transaction recovery messages, such as the following:

WTRN0027I: Transaction service recovering 1 transaction.

Rebooting the machine
To test that the Node Agent is highly available on both machines using a failover
configuration with Sun Cluster, reboot the machine acting as the primary by
following these steps:

1. On SHost01, use scstat to check where the resource group is located. If it is
active on SHost02, use the scswitch command to swap to SHost01:

scswitch -Z -g db2_db2inst1_0-rg

2. Verify that the Node Agents and application servers are started. Open the
Administrative Console and check their status. If they are not running, start
them using the appropriate scswitch commands:

scswitch -e -j nodeagent-rs
scswitch -e -j wasmem09-rs
scswitch -e -j wasmem10-rs

3. Run Trade 6 to verify that it is working. Use the Web server.

4. Reboot SHost01.

5. Ping the logical host name, suncluster.ibmredbook.com. It should be
available shortly.

6. Review the application server logs for a successful restart as shown in
Example 13-19.

7. Run Trade 6 again. It might recover transactions interrupted at failover. Look
for the Transaction recovery message:

WTRN0027I: Transaction service recovering 1 transaction.
516 WebSphere Application Server V6: High Availability Solutions

13.4.6 Troubleshooting
If you encounter problems where Sun Cluster attempts to start, stop, and restart
the application server or Node Agent repeatedly, you might need to adjust some
of the time related properties on the resource. Sun Cluster might be trying to
probe the resource too soon. Try adjusting the Thorough_Probe_Interval and
Retry_Interval. There are also timeouts on the stop and start commands.

13.5 Transaction Manager and messaging engine
failover with No Operation policy

A discussion of configuring the Transaction Manager failover with No Operation
Policy is provided in 9.6, “Transaction Manager failover with No Operation policy”
on page 313. A discussion of configuring the messaging engine failover with No
Operation Policy is provided in 9.7, “Default messaging provider failover with No
Operation policy” on page 347.

In this section, we discuss how to configure Sun Cluster to correctly failover the
Transaction Manager and messaging engine with the No Operation Policy. For
this scenario, we need an Active/Active (or scalable) configuration. Some of the
steps for making the Node Agent and application servers available in an
Active/Active scenario are similar to the Active/Passive scenario. A scalable
group still requires a failover group which contains a logical and scalable host
name. This example uses the db2_db2inst1_0-rg as the failover group containing
the logical host name, suncluster.

When using an Active/Active or scalable configuration, WebSphere’s
Transaction Manager (TM) and default messaging provider need to be controlled
differently. They must be activated manually to avoid conflicts between two
active servers trying to use them at the same time.

13.5.1 Additional Sun Cluster setup
To create scalable resources, the Sun Cluster configuration needs a shared
address and scalable resource group. The shared address goes in the failover
group. The scalable group, which uses the shared address, has a dependency
on the failover group.

Adding a shared address to a failover group
The shared host name must be on the same subnet as the system IP addresses
and the logical host name. In this example, the logical host name is suncluster
and part of the db2_db2inst1_0-rg failover resource group. The shared host
 Chapter 13. WebSphere and Sun Cluster 517

name, a-suncluster, is added to the same group. To add a shared address to a
failover group:

1. Add the shared host name to /etc/hosts on the Sun Cluster nodes.

2. Use the scrgadm command to create a shared address resource and add it to
the existing failover group, db2_db2inst1_0-rg. In this example, the name of
the shared host name group is a-suncluster:

scrgadm -a -S -j a-suncluster -g db2_db2inst1_0-rg -l a-suncluster

3. Activate the new shared address resource using the scswitch command:

scswitch -e -j a-suncluster

For more information about adding a shared address, see the article How to Add
a Shared Address Resource to a Resource Group, which is available at:

http://docs.sun.com/app/docs/doc/817-6564/6mlunk5a0?a=view

Creating a scalable resource group
A scalable resource group must be created. It depends on the failover group that
contains a shared address. Use the scrgadm command to add the resource
group. In this case, we have two Sun Cluster nodes, and we want them to both
be primaries. The resource group is named websphere_active-rg:

scrgadm -a -g websphere_active-rg -y Maximum_Primaries=2 -y
Desired_Primaries=2 -y RG_mode=Scalable -y
RG_dependencies=db2_db2inst1_0-rg

Then, switch the group to managed using the scswitch command:

scswitch -o -g websphere_active-rg

Finally, activate the resource group with the scswitch command:

scswitch -Z -g websphere_active-rg

For more information about creating scalable resource groups, see the article
How to Create a Scalable Resource Group, which is available at:

http://docs.sun.com/app/docs/doc/817-6564/6mlunk59s?a=view

Creating additional failover group
Part of the application server is on a separate failover resource group. Create an
additional group with the scrgadm command:

scrgadm -a -g websphere-tm-rg -y RG_dependencies=websphere_active-rg

In this example, it is called websphere_tm-rg. It has a dependency on the
scalable resource group.
518 WebSphere Application Server V6: High Availability Solutions

http://docs.sun.com/app/docs/doc/817-6564/6mlunk5a0?a=view
http://docs.sun.com/app/docs/doc/817-6564/6mlunk59s?a=view

13.5.2 Configuring the Deployment Manager
On a remote system, install WebSphere Application Server Network Deployment
V6.0.1. Create a Deployment Manager profile and start the Deployment
Manager.

13.5.3 Installing the node
To install the node:

1. Install WebSphere Network Deployment 6.0.1 onto the shared disk drive on
SHost01.

2. Create a custom profile. Enter the logical host name of the Sun Cluster setup
in the Hostname field. For our scenario, we use
a-suncluster.ibmredbook.com.

3. Federate the node to the Deployment Manager on the remote machine.

13.5.4 Completing the configuration
To finish the configuration, you need to configure a Web server, create a cluster
and cluster members, install the sample application, change settings for the
application servers (monitoring policy and core group settings), and enable
security if desired.

Configuring a Web server
Install a Web server. In this example, we installed IBM HTTP Server and
configured it in the cell using the name http1. Refer to Chapter 6 of IBM
WebSphere V6 Scalability and Performance Handbook, SG24-6392 for
information about how to configure a Web server in a cell.

Installing Trade 6
Install Trade 6 on the Deployment Manager. Follow the directions that are
included in the Trade 6 download package for setup and install, using the
trade.jacl script for the setup. For additional information about how to install and
configure Trade 6, refer to Chapter 8 of IBM WebSphere V6 Scalability and
Performance Handbook, SG24-6392.

During the installation, create an application server cluster with two cluster
members. In our example, we used the following names:

� Cluster name: wascluster01
� Cluster members: wasmember09, wasmember10

Map the Trade 6 Web modules to the previously created Web server, http1.
 Chapter 13. WebSphere and Sun Cluster 519

Changing application server monitoring policies
Change the automatic restart property of the application servers. This allows Sun
Cluster to gain control over restarting the servers and prevents the Node Agent
and Sun Cluster from trying to restart an application server at the same time.

To disable the automatic restart for the application servers:

1. In the Administrative Console, go to Servers → Application servers →
wasmember09 → Java and Process Management → Process
Definition → Monitoring Policy.

2. Deselect the Automatic restart field. Click OK and save your changes.

3. Repeat this for wasmember10.

4. Restart the application servers and the Node Agent.

You can find more information about this option in the InfoCenter article
Monitoring policy settings.

Security considerations
Enable security if necessary. Use the soap.client.props properties file on the
node to enter the user name and password for stopping the Node Agent and
application servers. If you do not add the user name and password to the
soap.client.properties file, the stopNode and stopServer commands expects the
properties on the command line, which does not appear as part of the Sun
Cluster start and stop scripts.

Encode the soap.client.props property file by following these steps:

1. Go to the node’s profile directory. Under the properties directory, open
soap.client.props.

2. Add the user name and password to the JMX SOAP connector identity
section:

– com.ibm.SOAP.loginUserid=username
– com.ibm.SOAP.loginPassword=password

3. Use the PropFilePasswordEncoder tool to encode the login password. Pass
com.ibm.SOAP.loginPassword as the property to encode. From the node’s
profile bin directory, run the following:

./PropFilePasswordEncoder.sh ../properties/soap.client.props
com.ibm.SOAP.loginPassword

After encoding, the properties file might be rearranged. A backup properties
file will also be created under the name of soap.client.props.bak.

Also see the InfoCenter article Protecting plain text passwords.
520 WebSphere Application Server V6: High Availability Solutions

Changing core group policies
You need to add or change the transaction policy for servers running as scalable.
If the servers might run messaging engines, you also have to add or change the
policy for the messaging engines. In both of these cases, the policy types are No
Operation or NoOP policies, which means that WebSphere does not start the
Transaction Manager or messaging engine.

For our example, a NoOP policy for wasmember09’s Transaction Manager is
created with a match criteria of the following:

� GN_PS=wascell01\wasna04\wasmember09
� IBM_hc=wascluster01
� type=WAS_TRANSACTIONS

A NoOP policy is also created for the messaging engine,
wascluster01.005-wascluster01 with a match criteria of the following:

� WSAF_SIB_MESSAGING_ENGINE=wascluster01.005-wascluster01
� type=WSAF_SIB

See 9.6.2, “Transaction Manager with No Operation policy scenario” on page 316
and 9.7.2, “Default messaging provider with No Operation policy scenario” on
page 348, where we describe the concept and how to set up the policies in detail.

Testing the application
Start the Trade 6 application and verify that it works correctly by populating the
Trade 6 database and trading. Stop the Node Agent and cluster.

13.5.5 Configuring the Node Agent with Sun Cluster
Configuring the Node Agent to run as scalable is similar to the failover mode.
There are some changes to the setup, but a resource type and resource must
still be created. When the resource is enabled, the Node Agent essentially is
running on both systems. You see duplicate messages in the logs and there is a
Java process running on both systems.

Creating a Node Agent package
Use the SunPlex Agent Builder to create a package with start and stop
commands for the Node Agent. To create a Node Agent package:

1. Open SunPlex Agent Builder:

/usr/cluster/bin/scdsbuilder

2. In the Step 1 of the SunPlex Agent Builder window, fill in these fields:

– Vendor Name: IBM
 Chapter 13. WebSphere and Sun Cluster 521

– Application Name: AWASNA
– Working Directory: /workarea/agentbuilder5
– Scalable: selected
– Resource Type: ksh

Click Create.

3. Click OK in the success window.

4. Click Next on the SunPlex Agent Builder window.

5. In Step 2 of the SunPlex Agent Builder window, fill in the start and stop
commands for the Node Agent in the appropriate fields.

For Start Command, enter the path to the startNode.sh command. In our
example the path is:

/global/scudb/WebSphere/ApplicationServer/profiles/itsoprofile4/bin/
startNode.sh

For Stop Command, enter the path to the stopNode.sh command. In our
example the path is:

/global/scudb/WebSphere/ApplicationServer/profiles/itsoprofile4/bin/
stopNode.sh

Leave the Probe Command blank.

Click Configure.

6. Click OK on the success box.

7. After creation of the package, click Cancel on the SunPlex Agent Builder
window.

8. Open a command window and change to your Working Directory, then
change to the IBMWASNA/pkg directory. In our example you need to be in

/workarea/agentbuilder5/IBMAWASNA/pkg

Run the pkgadd command to add the newly created IBMAWASNA package:

pkgadd -d . IBMAWASNA

9. Zip the agentbuilder5 directory and transfer it to the second system
(SHost02). Unzip into the same directory structure, change to the
IBMWASNA/pkg directory and run the pkgadd command from step 8 to create
the package on this system as well:

pkgadd -d . IBMAWASNA

Adding a Node Agent resource to Sun Cluster
Using the scsetup GUI and scrgadm command, add a Node Agent resource to
Sun Cluster:

1. On SHost01, run the scsetup GUI:
522 WebSphere Application Server V6: High Availability Solutions

/usr/cluster/bin/scsetup

2. On the Main Menu, select 2) Resource groups.

3. On the Resource Group Menu, select 3) Add a data service resource to a
resource group.

4. On the Add a Data Service Resource to a Resource Group panel, enter yes
when asked to continue. The following steps, 5 to 25 on page 525, are all
performed on this panel.

5. Enter the existing resource group when prompted for the group that you want
to add the new resource. Enter the name of the scalable resource group. In
this example, we use websphere_active-rg.

6. Select IBM.AWASNA AWASNA server for Sun Cluster when prompted to
select the type of resource that you want to add. This is the resource type that
was created in “Creating a Node Agent package” on page 521.

7. Still on the same panel, answer yes to the question whether the software for
this service is installed on each node.

8. Answer yes to the question if it is okay to register this resource type now. The
panel generates and runs the following command to add the resource type:

scrgadm -a -t IBM.AWASNA

9. Press Enter to continue.

10.When prompted for the name of the resource that you want to add, enter a
name for the resource. Our resource name is nodeagent-rs.

11.Next, you are requested to specify SharedAddress resources as shown in
Example 13-20. This is the shared address added to the failover group in
“Adding a shared address to a failover group” on page 517. For our example
this is a-suncluster.

Example 13-20 Adding SharedAddress resources

For scalable resources, you must specify a list of SharedAddress
 resources upon which the new scalable resource depends. Since network
 resources can only belong to failover resource groups, the
 SharedAddress resources that you name must live in a different
 resource group.

Please list one SharedAddress resource dependency per line. At least
 one such resource must be given. When finished, type Control-D.

SharedAddress resource:

12.Press Ctrl+D to stop entering shared addresses.

13.The panel confirms the list of shared address. Enter yes if it is correct.
 Chapter 13. WebSphere and Sun Cluster 523

14.When you see the section shown in Example 13-21, type yes to override the
default setting.

Example 13-21 Adding a Deployment Manager port for monitoring

This data service uses the "Port_list" property. The default
 "Port_list" for this data service is as follows:

 <NULL>

 Please check the documentation for this resource type for more
 information on how the list should be set for this resource.

 Do you want to override the default (yes/no) [no]?

15.Fill in a Node Agent port. The probe monitoring system from Sun Cluster tries
to connect to this port to determine whether the Node Agent is running. We
use the Node Agent’s SOAP port.

To find the Node Agent’s SOAP port, open the WebSphere Administrative
Console. Select System administration → Node agents → nodeagent →
Ports. Open SOAP_CONNECTOR_ADDRESS.

The SOAP port number for our Node Agent is 8880, thus, for Port number
(Ctrl+D to finish), enter 8880.

16.Enter yes to the question whether this is a TCP port.

17.Press Ctrl+D to stop entering ports.

18.The panel now confirms the TCP port just entered. Answer yes if it is correct.

19.Press Enter to continue.

20.When prompted for any extension properties that you would like to set, enter
no. However, if you know that you do want to change properties, you can
enter yes and change properties. The list of properties might look similar to
that shown in Example 13-22.

Example 13-22 Extension properties that can be updated

Here are the extension properties for this resource:
 Property Name Default Setting

 ============= ===============
 Confdir_list <NULL>

 Monitor_retry_count 4
 Monitor_retry_interval 2
 Probe_timeout 30
 Child_mon_level -1

Please enter the list of properties you want to set:
 (Type Ctrl-D to finish OR "?" for help)
524 WebSphere Application Server V6: High Availability Solutions

21.Answer yes when prompted to proceed with the update if you are ready to
add the Node Agent resource.

22.Based on your entries, the Add a Data Service Resource to a Resource
Group panel generates and runs this command:

scrgadm -a -j nodeagent-rs -g websphere_active-rg -t IBM.AWASNA -y
Scalable=true -y Network_resources_used=a-suncluster -y
Port_list=8880/tcp

If something goes wrong with adding the resource, you can copy and reuse
this command instead of stepping through scsetup again.

23.Press Enter to continue.

24.Answer no when asked whether you want to enable this resource.

25.Enter q twice to exit scsetup.

26.Update the Thorough_Probe_Interval and Retry_Interval properties.

Updating these properties allows the Node Agent enough time to start before
Sun Cluster checks to see if it is running. If Sun Cluster probes too soon, it
tries to stop and restart the Node Agent in the middle of its initial start
process. The Retry_Interval must be equal to or greater than the
Thorough_Probe_Interval multiplied by the Retry_Count. To update these
properties:

a. Update the Retry_Interval to 1000:

scrgadm -c -j nodeagent-rs -y Retry_Interval=1000

b. Update the Thorough_Probe_Interval:

scrgadm -c -j nodeagent-rs -y Thorough_Probe_Interval=500

These values assume the Retry_Count is set to 2.

27.Activate the resource using the scswitch command.

scswitch -e -j nodeagent-rs

Review the Node Agent’s log for a successful start. If there are problems
starting, you can stop the resource using the -n parameter on scswitch:

scswtich -n -j nodeagent-rs
 Chapter 13. WebSphere and Sun Cluster 525

28.Use the scstat command to review the status of the resources. The
nodeagent-rs resource should be added to the previously selected resource
group under the Resource Groups and Resources heading as listed in
Example 13-13 on page 508.

Example 13-23 Resources including the nodeagent-rs resource

-- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------
 Resources: db2_db2inst1_0-rg suncluster db2_db2inst1_0-rs a-suncluster
 Resources: websphere_active-rg nodeagent-rs
 Resources: cluster1TM -
 Resources: cluster2TM -

Sun Cluster can now control the Node Agent. It is able to stop and start the Node
Agent and checks the SOAP port for its status.

13.5.6 Configuring an application server with Sun cluster
Configuring the application server to run as scalable requires several additional
steps than setting up for failover. The application server, the Transaction
Manager and the messaging engine, are each controlled with separate
resources. When the resource is enabled, essentially, the application server is
started on both systems. You see duplicate messages in the logs, and there is a
Java process running on both systems. The application server is started only
fully on one system. The mirrored server is started partially and waits for
Transaction Manager start.

Preparing start and stop scripts for the application server
The scripts needed are explained in detail in “Scripts to start, stop, and monitor
WebSphere resources” on page 331 for the Transaction Manager and “Scripts to
start, stop, and monitor WebSphere resources” on page 357 for the messaging
engine failover.

You need to make the following changes the scripts for them to work on Sun
Cluster:

1. In the wasctrl-as script, update the return codes near the top of the script as
follows. For Sun Cluster, a return code of zero is successful.

– UNKNOWN=2
– ONLINE=0
– OFFLINE=1
526 WebSphere Application Server V6: High Availability Solutions

2. Depending on the speed of your system, adjust the -timeout value on the
startServer.sh and stopServer.sh commands in the start and stop sections
of the script.

3. In the status section, change the netstat command to the following:

netstat -anP tcp | grep ${AS_TCPP} | grep LISTEN

4. Gather the following information for use with the script:

– The node profile directory:
/global/WebSphere/ApplicationServer/profiles/itsoprofile

– The SOAP port for wasmember09: 8879

– The name of the application server: wasmember09

Creating an application server package
Use the SunPlex Agent Builder to create a package with start and stop
commands for an application server. The start and stop commands come from
the wasctrl-as script. To create an application server package:

1. Open SunPlex Agent Builder:

/usr/cluster/bin/scdsbuilder

2. In the Step 1 of the SunPlex Agent Builder window, fill in these fields:

– Vendor Name: IBM
– Application Name: WASA9
– Working Directory: /workarea/agentbuilder3
– Scalable: selected
– Resource Type: ksh

Click Create.

3. Click OK on the success window.

4. Click Next on the SunPlex Agent Builder window.

5. In the Step 2 of the SunPlex Agent Builder window, fill in the start and stop
commands for the application server in the appropriate fields.

For Start Command, enter the path to the wasctrl-as script. In our example
the path is /global/scudb/scripts/wasctrl-as. After selecting the command, add
the rest of the script parameters to the Start Command field. In this example,
we add the start command, the profile directory, the SOAP port, and the
server name to the end of the command:

/global/scudb/scripts/wasctrl-as start
/global/WebSphere/ApplicationServer/profiles/itsoprofile 8879
wasmember09

For Stop Command, enter the path the wasctrl-as script again. In this
example, we use /global/scudb/scripts/wasctrl-as. After selecting the
 Chapter 13. WebSphere and Sun Cluster 527

command, add the rest of the script parameters to the Stop Command field.
In this example, we add the stop command, the profile directory, the SOAP
port and the server name to the end of the command:

/global/scudb/scripts/wasctrl-as stop
/global/WebSphere/ApplicationServer/profiles/itsoprofile 8879
wasmember09

For Probe Command, enter the path the wasctrl-as script again. In this
example, we use /global/scudb/scripts/wasctrl-as. After selecting the
command, add the rest of the script parameters to the Probe Command field.
In this example, we add the status command, the profile directory, the SOAP
port and the server name to the end of the command:

/global/scudb/scripts/wasctrl-as status
/global/WebSphere/ApplicationServer/profiles/itsoprofile 8879
wasmember09

Click Configure.

6. Click OK on the success box.

7. After creation of the package, click Cancel on the SunPlex Agent Builder
window.

8. Open a command window and change to your Working Directory, then
change to the IBMWASA9/pkg directory. In our example, you need to be in
the following directory:

/workarea/agentbuilder3/IBMWASA9/pkg

Run the pkgadd command to add the newly created IBMWASA9 package.

pkgadd -d . IBMWASA9

9. Zip the agentbuilder3 directory and transfer it to the second system
(SHost02). Unzip into the same directory structure, change to the
IBMWASA9/pkg directory and run the pkgadd command from step 8 to create
the package on this system as well:

pkgadd -d . IBMWASA9

Adding an application server resource to Sun Cluster
Using the scsetup GUI and scrgadm command, add an application server
resource to Sun Cluster:

1. On SHost01, run the scsetup GUI:

/usr/cluster/bin/scsetup

2. On the Main Menu, select 2) Resource groups.

3. On the Resource Group Menu, select 3) Add a data service resource to a
resource group.
528 WebSphere Application Server V6: High Availability Solutions

4. On the Add a Data Service Resource to a Resource Group panel, enter yes
when prompted to continue. The following steps, 5 to 23 on page 531, are all
performed on this panel.

5. Enter the existing resource group when prompted for the group for which you
want to add the new resource. Enter the name of the scalable resource
group. In this example, we use websphere_active-rg.

6. Select IBM.WASA9 WASA9 server for Sun Cluster when prompted for the
type of resource that you want to add. This is the resource type that was
created in “Creating an application server package” on page 527.

7. Still on the same panel, answer yes to the question whether the software for
this service is installed on each node.

8. Answer yes to the question whether it is okay to register this resource type
now. The panel generates and runs the following command to add the
resource type:

scrgadm -a -t IBM.WASA9

9. Press Enter to continue.

10.When prompted for the name of the resource that you want to add, enter a
name for the resource. Our resource name is wasmem09-rs.

11.Specify SharedAddress resources as shown in Example 13-24. This is the
shared address added to the failover group in “Adding a shared address to a
failover group” on page 517. For our example this is a-suncluster.

Example 13-24 Adding SharedAddress resources

For scalable resources, you must specify a list of SharedAddress
 resources upon which the new scalable resource depends. Since network
 resources can only belong to failover resource groups, the
 SharedAddress resources that you name must live in a different
 resource group.

 Please list one SharedAddress resource dependency per line. At least
 one such resource must be given. When finished, type Control-D.

 SharedAddress resource:
 Chapter 13. WebSphere and Sun Cluster 529

12.When you see the section that is shown in Example 13-25, type yes to
override the default setting.

Example 13-25 Adding an application server port for monitoring

This data service uses the "Port_list" property. The default
 "Port_list" for this data service is as follows:

 <NULL>

 Please check the documentation for this resource type for more
 information on how the list should be set for this resource.

 Do you want to override the default (yes/no) [no]?

13.Fill in an application server port. The probe monitoring system from Sun
Cluster tries to connect to this port to determine whether the application
server is running. We use the application server’s SOAP port.

To find the application server’s SOAP port, open the WebSphere
Administrative Console. Select Servers → Applications servers →
wasmember09 → Ports. Open SOAP_CONNECTOR_ADDRESS.

The SOAP port number for our application server is 8879, thus, for Port
number (Ctrl+D to finish), enter 8879.

14.Enter yes to the question whether this is a TCP port.

15.Press Ctrl+D to stop entering ports.

16.The panel now confirms the TCP port just entered, answer yes if it is correct.

17.Press Enter to continue.

18.When prompted for extension properties that you would like to set, enter no.
However, if you know that you do want to change properties, you can enter
yes and change properties. The list of properties might look similar to that
shown in Example 13-26.

Example 13-26 Extension properties that can be updated

Here are the extension properties for this resource:
 Property Name Default Setting

 ============= ===============
 Confdir_list <NULL>

 Monitor_retry_count 4
 Monitor_retry_interval 2
 Probe_timeout 30
 Child_mon_level -1

Please enter the list of properties you want to set:
 (Type Ctrl-D to finish OR "?" for help)
530 WebSphere Application Server V6: High Availability Solutions

19.Answer yes when prompted to proceed with the update if you are ready to
add the application server resource.

20.Based on your entries, the Add a Data Service Resource to a Resource
Group panel generates and runs this command:

scrgadm -a -j wasmem09-rs -g db2_db2inst1_0-rg -t IBM.WASA9 -y
Scalable=true -y Port_list=8879/tcp

If something goes wrong with adding the resource, you can copy and reuse
this command instead of stepping through scsetup again.

21.Press Enter to continue.

22.Answer no when prompted to enable this resource.

23.Enter q twice to exit scsetup.

24.The next step is to update the Thorough_Probe_Interval and Retry_Interval
properties.

Updating these properties allows the application server enough time to start
before Sun Cluster checks to see if it is running. If Sun Cluster probes too
soon, it tries to stop and restart the application server in the middle of its initial
start process. The Retry_Interval must be equal to or greater than the
Thorough_Probe_Interval multiplied by the Retry_Count. To update these
properties:

a. Update the Retry_Interval to 1000:

scrgadm -c -j wasmem09-rs -y Retry_Interval=1000

b. Update the Thorough_Probe_Interval:

scrgadm -c -j wasmem09-rs -y Thorough_Probe_Interval=500

These values assume the Retry_Count is set to 2.

25.Activate the resource group using the scswitch command:

scswitch -e -j wasmem09-rs

Review the application server’s log for a successful start. If there are
problems starting, you can stop the resource using the -n parameter on
scswitch:

scswtich -n -j wasmem09-rs

26.Use the scstat command to review the status of the resources. The
wasmem09-rs resource should be added to the previously selected resource
 Chapter 13. WebSphere and Sun Cluster 531

group under the section Resource Groups and Resources as shown in
Example 13-27.

Example 13-27 Resources including the wasmem09-rs resource

-- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------
 Resources: db2_db2inst1_0-rg suncluster db2_db2inst1_0-rs a-suncluster
 Resources: websphere_active-rg nodeagent-rs wasmem09-rs
 Resources: websphere_tm-rg -
 Resources: cluster1TM -
 Resources: cluster2TM -

Sun Cluster now controls the application server, wasmember09. Sun Cluster can
stop and start the application server and check the SOAP port for its status. The
server is started to the point of when the Transaction Manager would normally
start. Because there is a NoOP policy for the Transaction Manager, the server
does not finish starting until the Transaction Manager is started manually.

Adding the second cluster member
Repeat the steps to create a package, resource type, and resource for
wasmember10.

Preparing start and stop scripts for the Transaction Manager
To finish the application server start, the Transaction Manager needs to be
started manually. This is done through several scripts and the HAMonitor
application. The wasctrl-tm script calls stop, start, and monitor scripts for the
Transaction Manager. For more information about the scripts and the HAMonitor
application, refer to 9.6, “Transaction Manager failover with No Operation policy”
on page 313.

1. In the wasctrl-tm script, update the return codes near the top of the script. For
Sun Cluster, a return code of zero is successful.

– UNKNOWN=2
– ONLINE=0
– OFFLINE=1

2. In the start section, change the netstat command to

netstat -anP tcp | grep ${AS_TCPP} | grep LISTEN
532 WebSphere Application Server V6: High Availability Solutions

3. At the end of each Perl command, add the HOST_NAME parameter,
${HOST_NAME} as shown in Example 13-28.

Example 13-28 Adding HOST_NAME to the Perl command in the start section

RetC=`perl $SCRIPT_PATH/activategroup.pl ${CELL_NAME} ${NODENAME}
${SERVER_NAME} ${AS_TCPP} ${CRITERIA} ${HOST_NAME} |awk '{print $1}'`

4. On each of the Perl scripts, activategroup.pl, deactivategroup.pl, and
monitorgroup.pl, add a HOST_NAME parameter. Replace the existing
HOST_NAME parameter with one that is passed into the script, as shown in
Example 13-29.

Example 13-29 Example of updating the monitorgroup.pl script

if (@ARGV != 6) {
 print "Illegal number of arguments";
} else {
 $CELLNAME= $ARGV[0];
 $NODENAME = $ARGV[1];
 $SERVERNAME = $ARGV[2];
 $PORTNUMBER = $ARGV[3];
 $MATCHING = $ARGV[4];
 $HOST = $ARGV[5]
}

#my $hostname = hostname();
my $getrequest =
'http://'.$HOST.":".$PORTNUMBER."/HAMonitorWeb/QueryLocalMemberState?ms=GN_PS="
.$CELLNAME."\\".$NODENAME."\\".$SERVERNAME.",".$MATCHING."&s=a";

5. Gather the following information for use with the wasctrl-tm script:

– The node profile directory:
/global/WebSphere/ApplicationServer/profiles/itsoprofile

– The default host port of wasmember09 (WC_defaultHost): 9083

– The host name of wasmember09: a-suncluster

– The SOAP port of wasmember09 (SOAP_CONNECTOR_ADDRESS):
8879

– The match criteria for the wasmember09’s Transaction Manager NoOP
policy, without the GN_PS criteria:
IBM_hc=wascluster01,type=WAS_TRANSACTIONS

– The name of the cell wasmember09 is in: wascell02

– The server name: wasmember09
 Chapter 13. WebSphere and Sun Cluster 533

– The path to the rest of the Perl scripts and controlHA.pty:
/global/scudb/scripts

– The node name that wasmember09 belongs to: wasnode04

Creating a Transaction Manager package
Use the SunPlex Agent Builder to create a package with start and stop
commands for the Transaction Manager. The start and stop commands come
from the wasctrl-tm script. The Transaction Manager resource is a failover
resource. To create an application server package:

1. Open SunPlex Agent Builder:

/usr/cluster/bin/scdsbuilder

2. In the Step 1 of the SunPlex Agent Builder window, fill in these fields:

– Vendor Name: IBM
– Application Name: WASTMb
– Working Directory: /workarea/agentbuilder4
– Failover: selected
– Resource Type: ksh

Click Create.

3. Click OK on the success window.

4. Click Next on the SunPlex Agent Builder window.

5. In the Step 2 of the SunPlex Agent Builder window, fill in the start and stop
commands in the appropriate fields.

For Start Command, enter the path to the wasctrl-tm script. In this example,
we use global/scudb/scripts/wasctrl-tm. After selecting the command, add
the rest of the script parameters to the Start Command field. In this example,
we add the start command, the profile directory, the SOAP port, and the
server name to the end of the command:

/global/scudb/scripts/wasctrl-tm start
/global/scudb/WebSphere/AppServer/profiles/itsoprofile04/ 9083
a-suncluster 8879 IBM_hc=wascluster01,type=WAS_TRANSACTIONS wascell02
wasmember09 /global/scudb/scripts wasna04

For Stop Command, enter the path the wasctrl-tm script again. In this
example, we use /global/scudb/scripts/wasctrl-tm. After selecting the
command, add the rest of the script parameters to the Stop Command field.
In this example, we add the stop command, the profile directory, the SOAP
port, and the server name to the end of the command:

/global/scudb/scripts/wasctrl-tm stop
/global/scudb/WebSphere/AppServer/profiles/itsoprofile04/ 9083
a-suncluster 8879 IBM_hc=wascluster01,type=WAS_TRANSACTIONS wascell02
wasmember09 /global/scudb/scripts wasna04
534 WebSphere Application Server V6: High Availability Solutions

Leave the Probe Command field blank.

Click Configure.

6. Click OK on the success box.

7. After creating the package, click Cancel on the SunPlex Agent Builder
window.

8. Open a command window and change to your Working Directory, then
change to the IBMWASTM/pkg directory. In our example you need to be in

/workarea/agentbuilder4/IBMWASTM/pkg

Run the pkgadd command to add the newly created IBMWASTM package:

pkgadd -d . IBMWASTM

9. Zip the agentbuilder4 directory and transfer it to the second system
(SHost02). Unzip into the same directory structure, change to the
IBMWASTM/pkg directory and run the pkgadd command from step 8 to create
the package on this system as well:

pkgadd -d . IBMWASTM

Adding a Transaction Manager resource
Using the scsetup GUI and scrgadm command, add a Transaction Manager
resource to Sun Cluster:

1. On SHost01, run the scsetup GUI:

/usr/cluster/bin/scsetup

2. On the Main Menu, select 2) Resource groups.

3. On the Resource Group Menu, select 3) Add a data service resource to a
resource group.

4. On the Add a Data Service Resource to a Resource Group panel, enter yes
when prompted to continue. The following steps, 5 to 22 on page 537, are all
performed on this panel.

5. On the Add a Data Service Resource to a Resource Group panel, enter the
additional failover resource group, websphere_tm-rg.

6. Select IBM.WASTM WASTM server for Sun Cluster when prompted to
select the type of resource that you want to add. This is the resource type that
was created in “Creating a Transaction Manager package” on page 534.

7. Still on the same panel, answer yes to the question whether the software for
this service is installed on each node.

8. Answer yes to the question if it is okay to register this resource type now. The
panel generates and runs the following command to add the resource type:

scrgadm -a -t IBM.WASTM
 Chapter 13. WebSphere and Sun Cluster 535

9. Press Enter to continue.

10.When prompted for the name of the resource that you want to add, enter a
name for the resource. Our resource name is wasmem09TM-rs.

11.When you see the section shown in Example 13-30, type yes to override the
default setting.

Example 13-30 Adding an application server port for monitoring

This data service uses the "Port_list" property. The default
 "Port_list" for this data service is as follows:

 <NULL>

 Please check the documentation for this resource type for more
 information on how the list should be set for this resource.

 Do you want to override the default (yes/no) [no]?

12.Fill in an application server port.

The probe monitoring system from Sun Cluster tries to connect to this port to
determine whether the application server is running. We use the application
server’s default host port.

To find the application server’s default host port, open the WebSphere
Administrative Console. Select Servers → Applications servers →
wasmember09 → Ports. Open WC_defaulthost.

The port number for our application server is 9083. Thus, for Port number
(Ctrl+D to finish), enter 9083.

13.Enter yes to the question whether this is a TCP port.

14.Press Ctrl+D to stop entering ports.

15.The panel confirms the TCP port just entered. Answer yes if it is correct.

16.Press Enter to continue.
536 WebSphere Application Server V6: High Availability Solutions

17.When prompted for extension properties that you would like to set , enter no.
However, if you know that you do want to change properties, you can enter
yes and change properties. The list of properties might look similar to that
shown in Example 13-31.

Example 13-31 Extension properties that can be updated

Here are the extension properties for this resource:
 Property Name Default Setting

 ============= ===============
 Confdir_list <NULL>

 Monitor_retry_count 4
 Monitor_retry_interval 2
 Probe_timeout 30
 Child_mon_level -1

Please enter the list of properties you want to set:
 (Type Ctrl-D to finish OR "?" for help)

18.Answer yes when prompted to proceed with the update if you are ready to
add the application server resource.

19.Based on your entries, the Add a Data Service Resource to a Resource
Group panel generates and runs this command:

scrgadm -a -j wasmem09TM-rs -g websphere_tm-rg -t IBM.WASTM -y
Scalable=false -y Port_list=9083/tcp

If something goes wrong with adding the resource, you can copy and reuse
this command instead of stepping through scsetup again.

20.Press Enter to continue.

21.Answer no when prompted to enable this resource.

22.Enter q twice to exit scsetup.

23.Update the Thorough_Probe_Interval and Retry_Interval properties.

We update these to allow the application server enough time to start before
Sun Cluster checks to see if it is running. If Sun Cluster probes too soon, it
tries to stop and restart the application server in the middle of its initial start
process. The Retry_Interval must be equal to or greater than the
Thorough_Probe_Interval multiplied by the Retry_Count. To update these
properties:

a. Update the Retry_Interval to 360:

scrgadm -c -j wasmem09-rs -y Retry_Interval=360

b. Update the Thorough_Probe_Interval:

scrgadm -c -j wasmem09-rs -y Thorough_Probe_Interval=180

These values assume the Retry_Count is set to 2.
 Chapter 13. WebSphere and Sun Cluster 537

24.Activate the resource group using the scswitch command:

scswitch -e -j wasmem09TM-rs

Review the application server’s log for a successful start. If there are
problems starting, you can stop the resource using the -n parameter on
scswitch:

scswtich -n -j wasmem09TM-rs

25.Use scstat to review the status of the resources. The wasmem09-rs resource
should be added to the previously selected resource group under the section
Resource Groups and Resources, as shown in Example 13-32.

Example 13-32 Resources including the wasmem09TM-rs resource

-- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------
 Resources: db2_db2inst1_0-rg suncluster db2_db2inst1_0-rs s-suncluster
 Resources: websphere_active-rg nodeagent-rs wasmem09-rs
 Resources: websphere_tm-rg wasmem09TM-rs
 Resources: cluster1TM -
 Resources: cluster2TM -

Sun Cluster now controls the Transaction Manager for wasmember09 and is able
to stop and start the Transaction Manager.

Adding the second cluster member
Repeat these steps to create a package, resource type, and resource for
wasmember10.

Preparing start and stop scripts for a messaging engine
The messaging engine also needs to be started manually. This is done through
several scripts and the HAMonitor application. The wasctrl-me script calls stop,
start, and monitor scripts for the messaging engine. The messaging engine being
controlled is wascluster01.005-wascluster01. To prepare these scripts:

1. On the wasctrl-me script, update the return codes near the top of the script.
For Sun Cluster, a return code of zero is successful.

– UNKNOWN=2
– ONLINE=0
– OFFLIN=1

2. In the start section, change the netstat command to the following:

netstat -anP tcp | grep ${AS_TCPP} | grep LISTEN
538 WebSphere Application Server V6: High Availability Solutions

3. At the end of each Perl command, add the HOST_NAME parameter,
${HOST_NAME} as shown in Example 13-33.

Example 13-33 Adding HOST_NAME to the Perl command in the start section

RetC=`perl $SCRIPT_PATH/activategroupME.pl ${AS_TCPP} ${CRITERIA}
${HOST_NAME}|awk '{print $1}'`

4. On each of the Perl scripts, activategroupME.pl, deactivategroupME.pl, and
monitorgroupME.pl, add a HOST_NAME parameter. Replace the existing
HOST_NAME parameter with one that is passed into the script, as shown in
Example 13-34.

Example 13-34 Modification to the monitorgroupME.pl script to add hostname parameter

if (@ARGV != 3) {
 print "Illegal number of arguments";
} else {
 $PORTNUMBER = $ARGV[0];
 $MATCHING = $ARGV[1];
 $HOST = $ARGV[2]
}

#my $hostname = hostname();
my $getrequest =
'http://'.$HOST.":".$PORTNUMBER."/HAMonitorWeb/QueryLocalMemberState?ms=".$MATC
HING."&s=a";

5. Gather the following information for use with the wasctrl-me script:

– The node profile directory:
/global/WebSphere/ApplicationServer/profiles/itsoprofile

– The default host port of wasmember09 (WC_defaultHost): 9083

– The host name of wasmember09: a-suncluster

– The SOAP port of wasmember09 (SOAP_CONNECTOR_ADDRESS):
8879

– The match criteria for the wasmember09’s messaging engine NoOP
policy:
WSAF_SIB_MESSAGING_ENGINE=wascluster01.005-wascluster01,
type=WSAF_SIB

– The path to the rest of the Perl scripts and controlHA.pty:
/global/scudb/scripts
 Chapter 13. WebSphere and Sun Cluster 539

Creating messaging engine package
Use the SunPlex Agent Builder to create a package with start and stop
commands for the messaging engine. The start and stop commands come from
the wasctrl-me script. The messaging engine resource is a failover resource.

To create an application server package:

1. Open SunPlex Agent Builder:

/usr/cluster/bin/scdsbuilder

2. In the Step 1 of the SunPlex Agent Builder window, fill in these fields:

– Vendor Name: IBM
– Application Name: WASME
– Working Directory: /workarea/agentbuilder5
– Failover: selected
– Resource Type: ksh

Click Create.

3. Click OK on the success window.

4. Click Next on the SunPlex Agent Builder window.

5. In the Step 2 of the SunPlex Agent Builder window, fill in the start and stop
commands in the appropriate fields.

For Start Command, enter the path to the wasctrl-me script. In this example,
we use /global/scudb/scripts/wasctrl-me. After selecting the command, add
the rest of the script parameters to the Start Command field. In this example,
we add the start command, the profile directory, the SOAP port, and the
server name to the end of the command:

/global/scudb/scripts/wasctrl-me start
/global/scudb/WebSphere/AppServer/profiles/itsoprofile04/ 9083
a-suncluster 8879
WSAF_SIB_MESSAGING_ENGINE=wascluster01.005-wascluster01,
type=WSAF_SIB /global/scudb/scripts

For Stop Command, enter the path the wasctrl-as script again. In this
example, we use /global/scudb/scripts/wasctrl-me. After selecting the
command, add the rest of the script parameters to the Stop Command field.
In this example, we add the stop command, the profile directory, the SOAP
port, and the server name to the end of the command:

/global/scudb/scripts/wasctrl-me stop
/global/scudb/WebSphere/AppServer/profiles/itsoprofile04/ 9083
a-suncluster 8879
WSAF_SIB_MESSAGING_ENGINE=wascluster01.005-wascluster01,
type=WSAF_SIB /global/scudb/scripts

Leave the Probe Command blank, and click Configure.
540 WebSphere Application Server V6: High Availability Solutions

6. Click OK on the success box.

7. After creation of the package, click Cancel on the SunPlex Agent Builder
window.

8. Open a command window and change to your Working Directory, then
change to the IBMWASME/pkg directory. In our example you need to be in
the following directory:

/workarea/agentbuilder5/IBMWASME/pkg

Run the pkgadd command to add the newly created IBMWASME package:

pkgadd -d . IBMWASME

9. Zip the agentbuilder5 directory and transfer it to the second system
(SHost02). Unzip into the same directory structure, change to the
IBMWASME/pkg directory and run the pkgadd command from step 8 to
create the package on this system as well:

pkgadd -d . IBMWASME

Adding a messaging engine resource
Using the scsetup GUI and scrgadm command, add a messaging engine
resource to Sun Cluster:

1. On SHost01, run the scsetup GUI:

/usr/cluster/bin/scsetup

2. On the Main Menu, select 2) Resource groups.

3. On the Resource Group Menu, select 3) Add a data service resource to a
resource group.

4. On the Add a Data Service Resource to a Resource Group panel, enter yes
when prompted to continue. The following steps, 5 to 22 on page 543, are all
performed on this panel.

5. On the Add a Data Service Resource to a Resource Group panel, enter the
additional failover resource group, websphere_tm-rg.

6. Select IBM.WASME WASME server for Sun Cluster when prompted for the
type of resource that you want to add. This is the resource type that was
created in “Creating a Node Agent package” on page 521.

7. Still on the same panel, answer yes to the question whether the software for
this service is installed on each node.

8. Answer yes to the question if it is okay to register this resource type now. The
panel generates and runs the following command to add the resource type:

scrgadm -a -t IBM.WASME

9. Press Enter to continue.
 Chapter 13. WebSphere and Sun Cluster 541

10.When prompted for the name of the resource that you want to add, enter a
name for the resource. Our resource name is wasmem09ME-rs.

11.When you see the section that is shown in Example 13-35, type yes to
override the default setting.

Example 13-35 Adding an application server port for monitoring

This data service uses the "Port_list" property. The default
 "Port_list" for this data service is as follows:

 <NULL>

 Please check the documentation for this resource type for more
 information on how the list should be set for this resource.

 Do you want to override the default (yes/no) [no]?

12.Fill in an application server port.

The probe monitoring system from Sun Cluster tries to connect to this port to
determine whether the application server is running. We use the application
server’s SIB_ENDPOINT_ADDRESS.

To find the application server’s SIB_ENDPOINT_ADDRESS port, open the
WebSphere Administrative Console. Select Servers → Applications
servers → wasmember09 → Ports. Open SIB_ENDPOINT_ADDRESS.

The port number for our application server is 7279. Thus, for Port number
(Ctrl+D to finish), enter 7279.

13.Enter yes to the question whether this is a TCP port.

14.Press Ctrl+D to stop entering ports.

15.The panel now confirms the TCP port just entered. Answer yes if it is correct.

16.Press Enter to continue.

17.When prompted for extension properties that you would like to set, enter no.
However, if you know that you do want to change properties, you can enter
542 WebSphere Application Server V6: High Availability Solutions

yes and change properties. The list of properties might look similar to that
shown in Example 13-36.

Example 13-36 Extension properties that can be updated

Here are the extension properties for this resource:

 Property Name Default Setting
 ============= ===============

 Confdir_list <NULL>
 Monitor_retry_count 4
 Monitor_retry_interval 2
 Probe_timeout 30
 Child_mon_level -1

 Please enter the list of properties you want to set:
 (Type Ctrl-D to finish OR "?" for help)

18.Answer yes when prompted to proceed with the update if you are ready to
add the application server resource.

19.Based on your entries, the Add a Data Service Resource to a Resource
Group panel generates and runs this command:

scrgadm -a -j wasmem09ME-rs -g websphere_tm-rg -t IBM.WASTM -y
Scalable=false -y Port_list=7279/tcp

If something goes wrong with adding the resource, you can copy and reuse
this command instead of stepping through scsetup again.

20.Press Enter to continue.

21.Answer no when prompted to enable this resource.

22.Enter q twice to exit scsetup

23.The next step is to update the Thorough_Probe_Interval and Retry_Interval
properties.

We update these to allow the application server enough time to start before
Sun Cluster checks to see if it is running. If Sun Cluster probes too soon, it
tries to stop and restart the application server in the middle of its initial start
process. The Retry_Interval must be equal to or greater than the
Thorough_Probe_Interval multiplied by the Retry_Count. To update these
properties:

a. Update the Retry_Interval to 360:

scrgadm -c -j wasmem09-rs -y Retry_Interval=360

b. Update the Thorough_Probe_Interval:

scrgadm -c -j wasmem09-rs -y Thorough_Probe_Interval=180
 Chapter 13. WebSphere and Sun Cluster 543

These values assume the Retry_Count is set to 2.

24.Activate the resource group using the scswitch command:

scswitch -e -j wasmem09ME-rs

Review the application server’s log for a successful start. If there are
problems starting, you can stop the resource using the -n parameter on
scswitch:

scswtich -n -j wasmem09ME-rs

25.Use the scstat command to review the status of the resources. The
wasmem09-rs resource should be added to the previously selected resource
group under the section Resource Groups and Resources, as shown in
Example 13-37.

Example 13-37 Resources including the wasmem09ME-rs resource

-- Resource Groups and Resources --

 Group Name Resources
 ---------- ---------
 Resources: db2_db2inst1_0-rg suncluster db2_db2inst1_0-rs s-suncluster
 Resources: websphere_active-rg nodeagent-rs wasmem09-rs
 Resources: websphere_me-rg wasmem09ME-rs
 Resources: cluster1TM -
 Resources: cluster2TM -

Sun Cluster now controls the messaging engine,
wascluster01.005-wascluster01, and is able to stop and start the messaging
engine.

Adding the second cluster member
Repeat these steps to create a package, resource type, and resource for
wasmember10.

13.5.7 Testing: failing the Node Agent and application servers

To verify the scalable resource properties and that the Transaction Manager and
messaging engine will restart on the second system, reboot the primary
machine. The partially started server on the backup machine should finish
starting the server with the Transaction Manager and messaging engine.
544 WebSphere Application Server V6: High Availability Solutions

Rebooting the machine
To test that the Node Agent is highly available on both machines using a failover
configuration with Sun Cluster, reboot the machine that acts as the primary. Do
the following:

1. On SHost01, use the scstat command to check the location of the resource
groups. If it is active on SHost02, use the scswitch command to swap to
SHost01:

scswitch -Z -g db2_db2inst1_0-rg
scswitch -S -g websphere_active-rg
scswitch -Z -g websphere_tm-rg

2. Verify that the Node Agents and application servers are started. Open the
Administrative Console, and check their status. If they are not running, start
them using the scswitch command. When starting the resources with the
scswitch command, watch the application server logs to determine when to
start the wasmem09TM-rs and wasmem09ME-rs. Start the wasmem09TM-rs
when the application server pauses, waiting for the Transaction Manager to
start. Enable wasmem09ME-rs after the server starts.

scswitch -e -j nodeagent-rs
scswitch -e -j wasmem09-rs
scswitch -e -j wasmem09TM-rs
scswitch -e -j wasmem09ME-rs

3. Run Trade 6 to verify that it is working using wasmember09’s WebContainer
Inbound Chain.

4. Reboot SHost01.

5. Review the application server log on SHOST02, it should complete the start
process and possible recover transactions.

6. Run Trade 6 again against the WebContainer Inbound Chain for
wasmember09.

13.5.8 Troubleshooting
If you have problems where Sun Cluster attempts to start, stop, and restart the
application server or Node Agent repeatedly, you might need to adjust some of
the time related properties on the resource. Sun Cluster might be trying to probe
the resource too soon. Try adjusting the Thorough_Probe_Interval and
Retry_Interval. There are also timeouts on the stop and start commands within
Sun Cluster.

You can also adjust the various scripts if necessary. The script to start the
application server, wasctrl-as, has a timeout attached to the startServer.sh and
stopServer.sh commands. You might need to adjust this value to fit your
environment.
 Chapter 13. WebSphere and Sun Cluster 545

Also, you can put the messaging engine in a separate resource group from the
Transaction Manager to have finer control over the resource behavior.

13.6 Reference
� Sun Cluster software

http://www.sun.com/clusters

� Sun Cluster Software Installation and Sun Cluster Software Administration
guides

http://docs.sun.com/app/docs

� Sun Cluster Data Service for WebSphere MQ Integrator Guide for Solaris OS

http://docs.sun.com/app/docs/doc/817-4580

� IBM DB2 Universal Database and High Availability on Sun Cluster 3.x

ftp://ftp.software.ibm.com/software/data/pubs/papers/suncluster.pdf
546 WebSphere Application Server V6: High Availability Solutions

http://www.sun.com/clusters
http://docs.sun.com/app/docs
http://docs.sun.com/app/docs/doc/817-4580
ftp://ftp.software.ibm.com/software/data/pubs/papers/suncluster.pdf

Part 6 End-to-end high
availability

Part 6
© Copyright IBM Corp. 2005. All rights reserved. 547

548 WebSphere Application Server V6: High Availability Solutions

Chapter 14. Backup and recovery of
Network Deployment
configuration

This chapter describes two simple and tested procedures to backup and restore
the configuration data of a Network Deployment configuration in the case of a
node failure that is caused, for example, by a hard disk corruption or similar
event. It explains the steps that are required to restore a node to a previously
saved configuration state using either a file system backup or the command-line
tools backupConfig and restoreConfig.

14

Important: These procedures should not be seen as a replacement for
established and more powerful backup scenarios for the entire system, using
backup tools such as IBM Tivoli Storage Manager or other third-party backup
mechanisms. Only WebSphere Application Server configuration data is
restored. Other data that is required typically for a production cell, such as the
SSL keyring, is not backed up or restored by the WebSphere supplied utilities.
© Copyright IBM Corp. 2005. All rights reserved. 549

14.1 Network Deployment configurations
In a typical Network Deployment cluster configuration, capacity and reliability can
be increased by horizontal scaling, for example by using multiple physical nodes
inside a cell and application clustering across these nodes (see Figure 14-1).
The Deployment Manager holds the master configuration repository and
provides a centralized point of cell administration.

Figure 14-1 A Network Deployment cell configuration

In the case of an application server node failure, the other cluster members take
over the load of the failed one transparently, and after restoration, the node
continues to participate in sharing the workload. If the Deployment Manager
node fails, the application servers in the cell keep working. However, making
configuration changes without the central administration view becomes inefficient
and burdensome. You can choose to configure your system in a highly available
cluster to minimize downtime, but this would require additional hardware and
software and adds to the complexity of the system configuration.

For an alternative implementation of Deployment Manager high availability
without clustering, refer to the developerWorks article by Tom Alcott, which
provides additionally hints and insights into system backup and restoration. You
can find this article at:

http://www.ibm.com/developerworks/websphere/library/techarticles/
0304_alcott/alcott.html

Deployment
Manager

 Cell

Application Servers

Nodes B and C
Deployment Manager

Node A

Application
Server Cluster

Members
Application

Server Cluster
Members

Application
Server Cluster

Members
Node Agent

Application
Server Cluster

Members
Application

Server Cluster
Members

Application
Server Cluster

Members
Node Agent

Master
Configuration
Repository

Local
Configuration
Repository

Local
Configuration
Repository
550 WebSphere Application Server V6: High Availability Solutions

http://www.ibm.com/developerworks/websphere/library/techarticles/0304_alcott/alcott.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0304_alcott/alcott.html

14.1.1 Backup methods
There are several different methods to backup and restore a WebSphere
Application Server node. One of them is to use the backupConfig and
restoreConfig command-line tools that come with the product. Another is to
save the files inside the <WAS_HOME> directory tree using backup software
such as IBM Tivoli Storage Manager. Example 14-1 shows the output when
backing up a repository using the backupConfig command.

Example 14-1 Backing up a repository using backupConfig

C:\WebSphere\AppServer\bin>backupConfig -nostop
ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\dm\logs\backupConfig.log
ADMU0128I: Starting tool with the dm profile
ADMU5001I: Backing up config directory
 C:\WebSphere\AppServer/profiles/dm\config to file
 C:\WebSphere\AppServer\bin\WebSphereConfig_2004-10-28.zip
...
...
...
...
...
................
ADMU5002I: 411 files successfully backed up

C:\WebSphere\AppServer\bin>dir WebSphereConfig*
 Volume in drive C is WINDOWS2000
 Volume Serial Number is 842D-BF03

 Directory of C:\WebSphere\AppServer\bin

10/28/2004 02:44p 3,786,819 WebSphereConfig_2004-10-28.zip
 1 File(s) 3,786,819 bytes
 0 Dir(s) 1,433,133,568 bytes free

Independent of the backup strategy that you implemented, it is recommended to
take a backup before major configuration changes or updates. You should also
have backups scheduled on a regular basis. On UNIX platforms, schedule
backup jobs using the cron utility. On Windows platforms, use the Scheduler
facility, or use your backup software’s proprietary mechanisms to achieve the
same.

Tip: The backupConfig command uses the -nostop option, which allows you
to perform a backup in a production environment without stopping any service.
 Chapter 14. Backup and recovery of Network Deployment configuration 551

This chapter focuses on the steps that are necessary to restore a failed system in
a Network Deployment configuration. Restoring a base configuration, that is a
stand-alone node, is straightforward and is not discussed here. Refer to
WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451 for more information about backing up and restoring a
stand-alone node installation.

14.2 Node failure scenarios
We discuss the following two node failure scenarios in a Network Deployment
cell configuration:

1. Failure of the Deployment Manager node
2. Failure of a WebSphere Application Server node

14.2.1 Failure of the Deployment Manager node
Because the Deployment Manager provides a centralized view for the
administration of the cell, backing up the master cell configuration repository on a
regular basis is an important task. If the Deployment Manager fails, the cell’s
application servers continue to do their work. However, you cannot change the
configuration using the Deployment Manager’s Administrative Console. It is
possible to administer individual application server nodes using wsadmin, but any
local changes are overwritten when the Deployment Manager is online again. In
this case, an automatic or manual repository synchronization is done.

You can find additional techniques for improving system availability, such as
Deployment Manager high availability through external clustering, in Chapter 9,
“Configuring WebSphere Application Server for external clustering software” on
page 285.

14.2.2 Failure of a WebSphere Application Server node
A WebSphere Application Server node holds a partial copy of the master cell
configuration repository. When it fails, its configuration state is available in the
master copy on the Deployment Manager node, making the restoration process
very easy.

To check for an unavailable node:

1. Log on to the WebSphere Administrative Console and select System
Administration → Node agents. The Node Agent on the failed node should
be unavailable because the Deployment Manager has lost contact (see
Figure 14-2 on page 553).
552 WebSphere Application Server V6: High Availability Solutions

Figure 14-2 Status of failed Node Agent (unavailable)

2. Select System Administration → Nodes. Figure 14-3 shows that the status
of the failed node is Unknown.

Figure 14-3 Display node status for failed node

14.3 Node recovery
This section explains the steps that are necessary for recovering a failed node,
either the Deployment Manager or an application server node, using two different
methods. Which method you use depends on individual requirements and
general conditions of your environment (for example, backup storage cost,
 Chapter 14. Backup and recovery of Network Deployment configuration 553

budget, software licenses for backup software, mean time to repair, service level
agreements, and so forth). These recovery methods are as follows:

� Using a conventional file system backup.
� Using the backupConfig and restoreConfig command-line tools.

We assume that the failed node has been either repaired or replaced up to the
point where the WebSphere Application Server prerequisites are met again (that
is, hardware requirements are met and the operating system and all required OS
fixes are installed). See the WebSphere Application Server hardware and
software requirements at:

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

Regardless of the recovery method, always start with a re-install of WebSphere
Application Server so that the system registry is set up correctly.

14.3.1 Recovery using file system backup and restore methods
The advantages of using a file system backup and restore over the backupConfig
method are that fixes and fixpacks, and the entire configuration including the
federated state of the node are restored instantly, shortening node repair time.
Although we could restore the file system backup only, we decided to initially
install the WebSphere Application Server software so that all necessary entries
and information in the system registry are set. A disadvantage is that more files
than necessary are backed up, increasing the storage space requirements on
your archiving system.

Prerequisites
For the complete recovery of a failed node, the following prerequisites have to be
met:

� The installation files for WebSphere Application Server Network Deployment
are available.

� An up-to-date file system backup of the <WAS_HOME> subdirectory of the
failed node, which is part of a Network Deployment cell, is available.

Note: The recommended method for system recovery is a file system based
backup and recovery because the backupConfig method does not address
SSL keyring files and other property files.

Tip: Consider installing the software using response files to avoid errors
during the (repeated) product and fixes installation and for a quick and silent
(unattended) setup process. For detailed information about silent product
installation, refer to the InfoCenter, search for silent install.
554 WebSphere Application Server V6: High Availability Solutions

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

Restoring the Deployment Manager node
To restore the Deployment Manager node:

1. Reinstall WebSphere Application Server Network Deployment with the same
parameters or features that were used at the time of the initial system setup.

For information about installing WebSphere Application Server Network
Deployment and IBM HTTP Server, refer to WebSphere Application Server
V6 System Management and Configuration Handbook, SG24-6451 or to the
InfoCenter.

2. If the Deployment Manager process is running after installation, stop it using
the stopManager command.

3. Restore the file system backup of the <WAS_HOME> directory.

4. Start the Deployment Manager using the startManager command.

Check the status of the nodes using the Administrative Console. You should
find all previously defined nodes, Node Agents, application servers,
enterprise applications, and so forth.

5. Optionally update the cell configuration with the latest changes since the
backup snapshot was taken. Save and synchronize the configuration. Any
changes made to the individual application servers are lost because they are
overwritten by the master configuration data from the Deployment Manage
node.

Restoring a WebSphere Application Server node
Because all configuration data is kept in the master repository on the
Deployment Manager node, the following procedure is fairly easy due to the
centralized configuration replication mechanism in WebSphere Application
Server. To restore the node:

1. Reinstall WebSphere Application Server Network Deployment (and IBM
HTTP Server if collocated on the same system) with the same parameters or
features that were used at the time of the initial system setup.

You can retrieve the node name of the failed node from the WebSphere
Administrative Console by expanding System Administration and selecting
Nodes (as shown in Figure 14-3 on page 553).

For information about installing WebSphere Application Server and IBM
HTTP Server, refer to WebSphere Application Server V6 System
Management and Configuration Handbook, SG24-6451 or to the InfoCenter.

Important: Remove (or rename) the <WAS_HOME> directory before
restoring the backup. Otherwise this would result in a garbled repository,
containing data of the initial default and the newly restored configuration.
 Chapter 14. Backup and recovery of Network Deployment configuration 555

2. Restore the file system backup into the <WAS_HOME> directory.

3. Perform a full node synchronization using the syncNode command. The Node
Agent contacts the Deployment Manager and performs a full repository
synchronization. When it terminates, the node has the latest configuration
data.

For detailed instructions on how to use syncNode, refer to Chapter 5 in
WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451 or to the InfoCenter.

4. Start the Node Agent using the startNode command.

5. Start the application server or cluster member on the newly restored node.

14.3.2 Recovery using backupConfig and restoreConfig
The backupConfig and restoreConfig command line utilities are part of
WebSphere Application Server and provide an easy way of backup and recovery
of the configuration repository in case of a node outage.

The advantage of using these tools is that you do not have to create a full file
system backup. One drawback is that you have to reinstall all previously installed
fixes and fixpacks manually (in contrary to a file system restore). However, you
can speed up this task by using semi-automated, silent installations that use
response files.

Another disadvantage is that the utilities do not back up SSL keyring files (default
location <WAS_HOME>/etc) and the <WAS_HOME>/property directory. These
files contain additional security related information and are not saved! Therefore,
you should only use this method if a file system based recovery approach is not
practicable or if you are able to use the default, initially installed versions of these
files.

For detailed instructions on how to use backupConfig and restoreConfig, refer to
Chapter 5 in the WebSphere Application Server V6 System Management and
Configuration Handbook, SG24-6451 or to the InfoCenter.

Important: Remove (or rename) the <WAS_HOME> directory before
restoring the backup. Otherwise, the backup results in a repository that
contains data of the initial, default, and the newly restored configuration.
556 WebSphere Application Server V6: High Availability Solutions

Prerequisites
For the complete recovery of a failed node, the following prerequisites have to be
fulfilled:

� The installation files for WebSphere Application Server Network Deployment
are available.

� All previously installed fixes and fixpacks are available.

� A previously saved configuration backup file as produced by the
backupConfig command is available. The default filename of a backup
archive is <WAS_HOME>/bin/WebSphereConfig_yyyy-mm-dd.zip.

� Additionally, some properties files are not restored, because they are located
outside the <WAS_HOME>/config directory subtree. In a cluster configuration
these files are identical to the ones on the other cluster members in the cell.
Depending on whether you adapted these files, you either have to repeat that
configuration step or to copy them manually from another cluster member or
the Deployment Manager to the restored node.

These files are as follows (not necessarily a complete list):

– Property files, for example, security related files in the
<WAS_HOME>/properties/ directory:

• sas.client.properties
• sas.server.properties
• wsadmin.properties

– Files in the <WAS_HOME>/etc/ directory (for example, SSL keyring files
such as plugin-key.kdb).

– The plug-in configuration file, if it was modified manually on the Web
server node (or nodes).

Restoring the Deployment Manager node
To restore the Deployment Manager node:

1. Reinstall WebSphere Application Server Network Deployment with the same
parameters/features as used at the time of the initial system setup. Specify
the same values for Node name, Host name, and Cell name in the setup
dialog that were used during the previous installation.

For information about installing WebSphere Application Server Network
Deployment, refer to WebSphere Application Server V6 System Management
and Configuration Handbook, SG24-6451 or to the InfoCenter.

2. If the Deployment Manager process is running after installation, stop it using
the stopManager command.

Reinstall all fixes and fixpacks that were previously installed on the system
using the Update Installer product. The Updateinstaller comes with fixpacks,
 Chapter 14. Backup and recovery of Network Deployment configuration 557

but you can also obtain it separately from the WebSphere support page at the
following URL by selecting the appropriate fixpack in the Self Help →
Download section:

http://www.ibm.com/software/webservers/appserv/was/support/

Refer to the included readme file and documentation on how to use the
Update Installer program.

3. Restore a previously taken configuration backup using the restoreConfig
command (see Example 14-2). The initial cell configuration data is backed up
automatically and replaced by the restored configuration in this step.

Example 14-2 Restoring a configuration using restoreConfig

C:\WebSphere\AppServer\bin>restoreConfig WebSphereConfig_2004-10-28.zip
ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\dm\logs\restoreConfig.log
ADMU0128I: Starting tool with the dm profile
ADMU0505I: Servers found in configuration:
ADMU0506I: Server name: dmgr
ADMU2010I: Stopping all server processes for node dmNode
ADMU7702I: Because dmgr is registered to run as a Windows Service, the request
 to stop this server will be completed by stopping the associated
 Windows Service.
ADMU5502I: The directory C:\WebSphere\AppServer\profiles\dm\config already
 exists; renaming to C:\WebSphere\AppServer\profiles\dm\config.old
ADMU5504I: Restore location successfully renamed
ADMU5505I: Restoring file WebSphereConfig_2004-10-28.zip to location
 C:\WebSphere\AppServer\profiles\dm\config
...
...
...
...
...
................
ADMU5506I: 411 files successfully restored
ADMU6001I: Begin App Preparation -
ADMU6009I: Processing complete.

4. Start the Deployment Manager using the startManager command.

Check the status of the nodes using the Administrative Console. You should
find all previously defined nodes, Node Agents, application servers,
enterprise applications, and so forth.

Attention: The Deployment Manager must have the highest fix level in the
entire cell!
558 WebSphere Application Server V6: High Availability Solutions

http://www.ibm.com/software/webservers/appserv/was/support/

5. Optionally, update the cell configuration with the latest changes since the
backup snapshot was taken. Save and synchronize the configuration. Any
changes made to the individual application servers is lost because they are
overwritten by the master configuration data from the Deployment Manager
node.

Restoring a WebSphere Application Server node
To restore a WebSphere Application Server node:

1. Reinstall WebSphere Application Server Network Deployment with the same
parameters/features as used at the time of the initial system setup. Specify
the same values for Node name and Host Name in the setup dialog as during
the previous installation.

The node name of the failed node can be retrieved from the WebSphere
Administrative Console by expanding System Administration and selecting
Nodes (see Figure 14-3 on page 553).

For information about installing WebSphere Application Server Network
Deployment, refer to WebSphere Application Server V6 System Management
and Configuration Handbook, SG24-6451, or to the InfoCenter.

2. Reinstall all fixes and fixpacks that were previously installed on the system
using the Update Installer product. The Updateinstaller comes with fixpacks,
but you can also obtain it separately from the WebSphere support page at the
following URL by selecting the appropriate fixpack in the Self Help →
Download section:

http://www.ibm.com/software/webservers/appserv/was/support/

Refer to the included readme file and documentation on how to use the
Update Installer program.

3. Restore a previously taken configuration backup using the restoreConfig
command (see Example 14-2 on page 558). The initial configuration data is
backed up automatically and replaced by the restored configuration in this
step.

4. Perform a full node synchronization using the syncNode command. The Node
Agent contacts the Deployment Manager and performs a full repository
synchronization. When it terminates, the node has the latest configuration
data.

For detailed instructions on how to use syncNode, refer to Chapter 5 in
WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451, or to the InfoCenter.

5. Start the Node Agent using the startNode command.

6. Start the application server or cluster member on the newly restored node.
 Chapter 14. Backup and recovery of Network Deployment configuration 559

http://www.ibm.com/software/webservers/appserv/was/support/

14.4 Conclusion
Using either file system backups or taking configuration snapshots by running
the backupConfig command on a regular basis lets you easily restore a failed
node in a Network Deployment configuration. If downtime is critical, stick to the
file system recovery method. For a small cell, when the focus is centered more
around the budget and additional files such as SSL keyring files or property files
are no issue, the command-line tools backupConfig and restoreConfig provide
another, cheaper but nearly equally effective alternative.

14.5 Reference material
These documents contain additional information about backing up and restoring
WebSphere Application Server:

� Section 5.9, “Managing your configuration files” in the WebSphere Application
Server V6 System Management and Configuration Handbook, SG24-6451.

� Chapter 6, “Administration with scripting” in WebSphere Application Server
V6 System Management and Configuration Handbook, SG24-6451.

� Implementing a Highly Available Infrastructure for WebSphere Application
Server Network Deployment, Version 5.0 without Clustering, which is
available at:

http://www.ibm.com/developerworks/websphere/library/techarticles/0304_alcot
t/alcott.html

� White paper Server Clusters for High Availability in WebSphere Application
Server Network Deployment Edition 5.0, which is available at:

http://www.ibm.com/support/docview.wss?uid=swg27002473
560 WebSphere Application Server V6: High Availability Solutions

http://www.ibm.com/developerworks/websphere/library/techarticles/0304_alcott/alcott.html
http://www.ibm.com/support/docview.wss?uid=swg27002473

Chapter 15. WebSphere end-to-end high
availability

A complete WebSphere system includes several components. WebSphere
system availability is determined by the weakest part in the chain. This chapter
provides an overview of the high availability options that you can use at various
layers in building a highly available WebSphere system.

15
© Copyright IBM Corp. 2005. All rights reserved. 561

15.1 Introduction
An end-to-end WebSphere environment, as shown in Figure 15-1, involves many
different components, such as the Web server, firewalls, application servers,
directory servers, databases, and so forth.

Figure 15-1 End-to-end WebSphere environment

Each of these components can become a single point of failure if it is not made
highly available, with different effects on your entire system. For example, if your
network sprayer, which is the entry point into your system, fails, no Internet
clients can access your application any more. If your directory server (LDAP)
fails, only those parts of the application that need authentication are affected.
However, this could be the most important part of your application so it might still
be very important to have a HA directory server. Refer to Chapter 1,
“Understanding high availability concepts” on page 3 for conceptual information
about WebSphere system availability.

Note: A component box in Figure 15-1 does not mean that this is also a
separate hardware system. Many of these components can be collocated on
one physical system (even though for security reasons you might want to use
multiple LPARs or multiple systems).

Web
Client

Application
Client

Web
Client

Fi
re

w
al

l

Web
Server

Sprayer

HA File
SystemHA File

System

Data
Data

HA File
System

Session DB
Server

Data
Data

HA File
System

Entity EJBs,
App DB Server

Data
Data

HA File
System

LDAP
Server

Data
Data

Deployment
Manager

Data
Data

Fi
re

w
al

l

Sprayer

Node
Agent

Application Server
(Web and EJB

Containers)
562 WebSphere Application Server V6: High Availability Solutions

Each component in a WebSphere system offers different options on how it can
be made highly available. In this chapter, we discuss HA options for the
following:

� WebSphere Load Balancer
� Web server
� Database server
� LDAP Server
� Firewall

This chapter does not discuss HA options for the WebSphere components
themselves. For this information, see Chapter 2, “WebSphere Application Server
failover and recovery” on page 35.

15.2 WebSphere Load Balancer
In this section, we summarize the capabilities of the WebSphere Load Balancer,
which is part of the IBM WebSphere Application Server Network Deployment V6
Edge Components, and provide an overview of how to set up a highly available
Load Balancer pair.

The Load Balancer has several components that can be used separately or
together to provide failover and high availability support:

� Dispatcher
� Content Based Routing (CBR)
� Site Selector
� Cisco CSS Controller
� Nortel Alteon Controller

We are mainly interested in the Dispatcher component which can be used to
distribute workload between multiple Web servers (that is, a Web server cluster).
This provides both, scalability and high availability for the Web servers. The
workload is dispatched to the Web servers in the cluster based on a load
balancing mechanism usually known as IP spraying, which intercepts the HTTP
requests and redirects them to the appropriate machine in the cluster, based on
weights and availability.

Users must be able to reach the application regardless of failed servers. In a
clustered Web server environment, the Load Balancer monitors the availability of
the Web servers. If a Web server has failed, no more requests are sent to it.
Instead, all requests are routed to the remaining active Web servers. See “Web
server” on page 565 for additional information.
 Chapter 15. WebSphere end-to-end high availability 563

Being the entry point into your WebSphere system, it is extremely important that
your Load Balancer is highly available. This can be achieved by setting up a
second Load Balancer server with exactly the same configuration. You have to
define one or more heartbeat connections between these servers. The heartbeat
mechanism is built into the WebSphere Load Balancer. You have two options to
configure such a highly available Load Balancer environment:

� Active/Active configuration with mutual takeover
� Active/Passive configuration

For details on Load Balancer configuration, see Chapter 4 and Chapter 5 of the
IBM WebSphere V6 Scalability and Performance Handbook, SG24-6392, where
step-by-step configuration instructions are provided.

Figure 15-2 shows an Active/Passive configuration before a failover to the
backup LB system.

Figure 15-2 Load Balancer configuration

WebSphere Edge
Components

Load Balancer
Backup Node

Heartbeat exchange

Cluster
IP

WebSphere Edge
Components

Load Balancer
Primary Node

Web Server 1

Web Server 2
564 WebSphere Application Server V6: High Availability Solutions

Figure 15-3 shows the takeover of the cluster IP address by the backup Load
Balancer server in case of a failure of the primary LB server.

Figure 15-3 Load Balancer configuration after failover

The Load Balancer can also be used to provide high availability for other
components, such as firewalls and directory servers. This is covered in the
various components’ sections in this chapter.

15.3 Web server
A mechanism of providing request distribution and failover for incoming HTTP
requests is required. Without this mechanism, the Web server becomes a single
point of failure, and scalability is limited to the size of the hardware used to host
the Web server. A likely solution is to employ an IP sprayer, such as the
Dispatcher component of the WebSphere Edge Components’ Load Balancer.

Figure 15-2 on page 564 shows a basic configuration that implements the Load
Balancer as the network sprayer (actually the Dispatcher component of Load
Balancer is distributing the workload). The Load Balancer is configured in a
cluster with a backup Load Balancer, which maintains a heartbeat with the
primary server. If the primary system fails, the backup system takes over the
Virtual IP Address and processes requests from the HTTP clients.

Each Web server in the topology is configured with at least one physical IP
address and a loopback alias configured with a shared Virtual IP Address, also

WebSphere Edge
Components
Load Balancer
Backup Node

Heartbeat exchange

Cluster
IP

WebSphere Edge
Components

Load Balancer
Primary Node

Web Server 1

Web Server 2
 Chapter 15. WebSphere end-to-end high availability 565

called the cluster address. HTTP clients make HTTP requests to this Virtual IP
Address. All requests are routed to the Load Balancer, which in turn sprays them
among the members of the Web server cluster. The Web server cluster consists
of identical Web servers running on different physical machines (or in different
LPARs). In the event of a failure of one of the Web servers, the Dispatcher
discontinues directing work to the failed server.

You can use the Manager component of Dispatcher to determine the status of
Web servers. It provides weight values of each balanced Web server. Running
the Manager component is optional, but it is necessary for dynamic weighting of
the Web servers and also for identifying failed servers.

15.3.1 Server affinity
Server affinity allows load balancing for those applications that need to preserve
state across distinct connections from a client. If server affinity is not enabled in
the Load Balancer, the Dispatcher routes the traffic according to server weights.
There are several ways for the Dispatcher to maintain server affinity:

� Stickiness to source IP address
� Cross port affinity
� Passive cookie affinity
� Active cookie affinity
� URI affinity
� SSL session ID

The easiest way to configure the server affinity is by configuring the clustered
port to be sticky. Configuring a cluster port to be sticky allows subsequent client

Note: When i5/OS HTTP servers are part of a Load Balancer Web server
cluster, then the following is an example of the command that you must run on
each of the i5/OS HTTP server systems to create a Virtual IP Address that can
then be started:

ADDTCPIFC INTNETADR('10.10.10.100') LIND(*VIRTUALIP)
SUBNETMASK('255.255.255.0')

In this command, 10.10.10.100 is the cluster address as defined in the
Dispatcher configuration.

Also, you need to ensure that at least two system network interfaces — the
cluster address and the interface defined within the Load Balancer that
corresponds to the address of that specific HTTP server — are bound to each
of the i5/OS HTTP server instances. Of course, choosing to bind all system
interfaces to the i5/OS HTTP server instances is another option if that might
be appropriate for your environment.
566 WebSphere Application Server V6: High Availability Solutions

requests to be directed to the same server - until the timeout expires for binding
the source IP address and server port. See Chapter 4, “Introduction to
WebSphere Edge Components” in IBM WebSphere V6 Scalability and
Performance Handbook, SG24-6392 for more information about these options.

Depending on your WebSphere environment you should or should not enable
server affinity at the Load Balancer level. Some possible scenarios and their
impact on server affinity at the Load Balancer are:

� One Load Balancer with multiple Web servers behind it. Multiple application
servers behind the Web servers and every Web server is connected to every
application server (See Scenario 1).

� One Load Balancer, multiple Web servers and multiple application servers.
Each Web server however is connected to only some of the application
servers, not all of them (See Scenario 2).

� Multiple Load Balancers, multiple Web servers and multiple application
servers. Every Web server is connected to every application server. The
workload between the two or more Load Balancers is distributed via DNS
round-robin (See Scenario 3).

� Multiple Load Balancers, multiple Web servers and multiple application
servers. This time, however, every Web server is only connected to a certain
number of application servers (See Scenario 4).

Now what happens with sessions in each of these scenarios? Because you
already have session affinity in the Web server plug-in, how should server affinity
be configured in the Load Balancer?

Note: All of the Load Balancers in these scenarios should be configured with a
backup Load Balancer. However, for simplicity reasons, we do not discuss the
backup Load Balancer here.
 Chapter 15. WebSphere end-to-end high availability 567

Scenario 1
This scenario consists of one Load Balancer and multiple Web servers behind it.
Multiple application servers are behind the Web servers and every Web server is
connected to every application server. This environment is shown in Figure 15-4.

Figure 15-4 Load Balancer server affinity, Scenario 1

For this environment, you do not need to enable server affinity in the Load
Balancer. Having it disabled is even the best solution from a performance point of
view because the Web server plug-in takes care of session affinity to the
application servers (for example based on the JSESSIONID cookie) and all Web
servers can handle the incoming requests. Even if a client is directed to a
different Web server as the initial request, the plug-in would do it's job and make
sure the request is sent to the same application server. So sending the request to
the same Web server again is not necessary.

Scenario 2
This scenario consists of one Load Balancer, multiple Web servers, and multiple
application servers. However, each Web server is only connected to some of the
application servers, not all of them, as shown in Figure 15-5.

Figure 15-5 Load Balancer server affinity , Scenario 2

Application Server1

Application Server2

Application Server3

Application Server4

Load Balancer

HTTP Server

Plugin

HTTP Server

Plugin

Application Server1

Application Server2

Application Server3

Application Server4

HTTP Server

Plugin

HTTP Server

Plugin

Load Balancer
568 WebSphere Application Server V6: High Availability Solutions

For this environment, you must enable server affinity in the Load Balancer to
make sure the requests are sent to the same Web server again. This is because
that Web server is only connected to a part of the application servers in the
environment and the plug-in can only distribute to the application servers it
knows. S, o you must make sure that subsequent requests are sent to the same
Web server.

Scenario 3
This scenario consists of multiple Load Balancers, multiple Web servers, and
multiple application servers. Every Web server is connected to every application
server. The workload between the two or more Load Balancers is distributed via
DNS round-robin. There are two possible configuration options here:

� All Load Balancers are connected to all Web servers.
� Each Load Balancer knows only a part of the Web servers.

This environment is shown in Figure 15-6 on page 570.

Restriction: For MAC forwarding, you can only use the Stickiness to source
IP address (and cross port affinity) type server affinity. However, this affinity
strategy has some drawbacks:

� Some ISPs use proxies that collapse many client connections into a small
number of source IP addresses. Thus a large number of users who are not
part of the session will be connected to the same Web server. The plug-in
still takes care of distributing to the correct application server but you might
have more requests going to one of your Web servers.

� Other proxies use a pool of user IP addresses chosen at random, even for
connections from the same user, invalidating the affinity.
 Chapter 15. WebSphere end-to-end high availability 569

Figure 15-6 Load Balancer server affinity, Scenario 3

You should switch off server affinity in the Load Balancer for both of these
configuration options. This is because a subsequent client request might be send
to a different Load Balancer, although this is not very likely because, most
probably, the IP address for the Load Balancer that is sent back by the DNS will
be cached for a sufficiently long time. Thus, subsequent client requests always
end up at the same Load Balancer.

For the configuration where all Load Balancers are connected to all Web servers:
This scenario is basically identical to Scenario 1 from a workload distribution
point of view. When the request arrives at any of the Load Balancers, it can be
distributed to any Web server and the plug-in takes care of sending the request
to the correct application server. So, for this configuration you could enable
server affinity at the Load Balancer. However, for performance reasons, it is best
not to do so.

For the configuration where the Load Balancers are only connected to a part of
the Web servers, it is important that server affinity is switched off. In the case
where a subsequent client request is sent to another LB, that LB would not know
the Web server for which the server affinity was previously established. As
however all Web servers know all application servers, any Web server plug-in
can forward the request to the correct application server based on the previously
established session affinity.

HTTP Server

HTTP Server

HTTP Server

Plugin

HTTP Server

Plugin

DNS

Plugin

Plugin All HTTP
Servers
know all

application
servers

Load Balancer

Load Balancer

Application Server1

Application Server2

Application Server3

Application Server4

Application Server5

Application Server6

Application Server7

Application Server8
570 WebSphere Application Server V6: High Availability Solutions

Scenario 4
This scenario consists of multiple Load Balancers, multiple Web servers, and
multiple application servers. Each Load Balancer knows only some of the Web
servers. Also, every Web server is only connected to a certain number of
application servers. This environment is shown in Figure 15-7.

Figure 15-7 Load Balancer server affinity, Scenario 4

For this scenario it is important that a subsequent client request is always sent to
the same Load Balancer. This can be achieved by DNS Time-To-Live to enforce
the affinity to the Load Balancer or by using different URLs for the Load
Balancers and not using DNS round-robin to distribute the workload between the
Load Balancers.

Otherwise if a request ends up at the wrong Load Balancer and thus the request
is sent to a Web server that does not know the application server that handled
the previous request, session information is lost and the client has to start over
again.

For server affinity in the Load Balancer: You can choose either setting, on or off,
because in the end, it is basically similar to scenario 1. What must be made sure
for this scenario is that the request is sent to the right LB.

15.3.2 Web server plug-in file (plugin-cfg.xml) management
Since WebSphere Application Server V6, Web servers are an important
conceptual part of a cell configuration. This integration allows you to perform
many management tasks for the Web server directly from the Administrative

Application Server1

Application Server2

Application Server3

Application Server4

HTTP Server

HTTP Server

Application Server5

Application Server6

Application Server7

Application Server8

HTTP Server

HTTP Server

DNS

Plugin

Load Balancer

Load Balancer

Plugin

Plugin

Plugin

Plugin
 Chapter 15. WebSphere end-to-end high availability 571

Console. See Chapter 3 and Chapter 6 of IBM WebSphere V6 Scalability and
Performance Handbook, SG24-6392 for details.

One of the big advantages of this new design is that you can (and should) map
applications to a Web server during deployment. Consequently, individual plug-in
files for each Web server are generated which contain only the entries that are
relevant for this Web server. For example, only the applications it is supposed to
serve and only the application servers it can forward requests to are listed in this
individual plug-in file.

The plug-in properties configuration (accessible through Servers → Web
servers → WebServerName → Plug-in properties) has two important options
that are related to the generation and propagation of the plug-in file:

� Automatically generate the plug-in configuration file
� Automatically propagate plug-in configuration file

Automatic generation of the plug-in file
For this setting to work, the Web server plug-in configuration service must be
enabled by selecting System Administration → Deployment manager →
Administration Services → Web server plug-in configuration service and
selecting Enable automated Web server configuration processing. It is
enabled by default.

Using the automatic plug-in generation option ensures that a plug-in file is
automatically updated every time a configuration change happened that is
relevant for that plug-in file. The individual plug-in files are generated and stored
on the Deployment Manager machine at this location:

<WAS_HOME>/profiles/dmProfileName/config/cells/cellName/nodes/
nodeName/servers/serverName

For example, in our environment with two Web servers on two different nodes in
the same cell, the locations are as follows:

<WAS_HOME>/profiles/itsoprofile01/config/cells/wascell01/nodes/
httpnode1/servers/http1

<WAS_HOME>/profiles/itsoprofile01/config/cells/wascell01/nodes/
httpnode2/servers/http2

Propagation of the plug-in file to the Web server
It depends on your environment whether you can automatically propagate the
plug-in file. For example, if your Web server is on a managed node, then
automatic propagation is supported and uses the node synchronization function.
If you are using the IBM HTTP Server and a firewall is located between the
Deployment Manager and the Web server machine, then the propagation fails
572 WebSphere Application Server V6: High Availability Solutions

unless you open the correct port in the firewall. You need to open the IBM HTTP
Server administrative port, by default this is port 8008. Or, if your Web server is
on an unmanaged node and is not an IBM HTTP Server V6, then you are not
able to propagate the file automatically.

Using the automatic propagation option ensures that each Web server uses the
correct plug-in file and that it is always up-to-date. If your environment does not
allow to propagate the plug-in files, then you can copy them manually to the Web
servers.

In an HA environment with multiple Web servers, it is very important to copy the
correct plug-in file to each one of the Web servers as now it is not a generic file
any more that contains entries for all application servers and all applications.

You must specify the plug-in installation location during configuration of a Web
server in the cell. When propagating the plug-in configuration file, it is then
placed into the config directory found under this previously specified directory on
the Web server’s file system, normally:

<PLUGIN_HOME>/config/WebServerName

For our Web server on Linux, this is:

/opt/IBM/WebSphere/Plugins/config/http1

If you copy the configuration file or files manually, they must be copied to that
very same location.

Manually editing the plug-in file
In WebSphere V6, almost all plug-in related settings can be configured using the
Administrative Console. If you have to or prefer to edit the plugin-cfg.xml file
directly, you should first disable automatic propagation of the plug-in file to make
sure your edited plug-in file is not overwritten by an automatically propagated
plug-in file.

15.3.3 Data availability
How the data needed by the Web servers is made available depends upon how
(where) the members of the cluster are placed. When all of the Web server
machines are located in close geographic proximity then a mirrored or RAID
protected, distributed file system can be accessed by all of the members of the
cluster. When the Web servers are located around the world then some other
mechanism to replicate the data must be employed.
 Chapter 15. WebSphere end-to-end high availability 573

15.4 Database server
A highly available database is a key requirement for a highly available
WebSphere solution. Enhancing database availability is critical for WebSphere
and can be achieved utilizing software and hardware cluster solutions. However,
simply making the database engine highly available does not necessarily create
a HA solution. It is important to note that even in a WebSphere environment
which employs a HA database there is still an interruption in service while a
database is switched from a failed server to an available server. This section
focuses on the options available to build a highly available DB2 cluster and the
application code (client) implications within WebSphere for database high
availability and covers:

� Continuous availability
� Failover availability
� Client application code considerations

The information found in this section is based on the developerWorks article An
Overview of High Availability and Disaster Recovery for DB2 UDB by Monty
Wright, which is available at:

http://www.ibm.com/developerworks/db2/library/techarticle/0304wright/
0304wright.html

15.4.1 Continuous availability
Continuous availability demands that the database engine be available for
processing SQL transactions 100% of the time. This type of availability is
typically only implemented in the most critical of applications. To achieve this
goal, total redundancy is required. That means you must have two systems that
are fully independent of one another, both in hardware and software.

Essentially, SQL transactions take place on both systems. The failure of one
system will cause no interruption of transaction processing on its partner. To
make this a reality the application must be aware of both systems and implement
each transaction as a distributed unit of work (DUOW) across both systems. A
DUOW is series of SQL statements executed as a single transaction that is
coordinated between systems. The application will submit a transaction to both
systems and receive return codes from both systems upon success or failure.
The application can then continue to process another DUOW or perform another
type of operation. If a failure takes place during which one database system can
no longer function, then the application, which is coded to catch the error, can
continue to process its workload with the remaining system with no interruption.

To implement a DUOW requires a type 2 database connection and a transaction
monitor. A type 2 database connection establishes an environment for a DUOW.
574 WebSphere Application Server V6: High Availability Solutions

http://www.ibm.com/developerworks/db2/library/techarticle/0304wright/0304wright.html

A transaction monitor is responsible for implementing the DUOW and insuring
completion or rollback of transactions in the DUOW. DB2 can act as a
transaction monitor or you can use a transaction monitor from another software
vendor. Figure 15-8 illustrates such a configuration.

Figure 15-8 Database: continuous availability, DUOW

15.4.2 Failover availability
Failover availability is differentiated from continuous availability by the fact that for
some period of time, however small, the database engine is not available for
transaction processing. The essential elements for this type of solution are:

� Primary and secondary systems
� Failure detection
� Data source movement

The two systems have copies of the database data, and when a failure is
detected, a failover takes place. In the failover process, the data source is moved
from the primary to the secondary system.

There are two types of failover availability: synchronous and asynchronous.

Application

Transaction
Monitor

Active

Server A

Active

Server B

Data Data
 Chapter 15. WebSphere end-to-end high availability 575

Synchronous availability
Synchronous availability guarantees that the data sources on the primary and
secondary systems are identical, and complete continuity is maintained after a
failover. Synchronous availability is the most preferred and commonly used
approach and involves tight integration of the database software with specialized
HA software to produce a HA cluster. HA software support varies by operating
system platform. Available HA solutions include:

� High Availability Cluster Multi-Processing (HACMP) for AIX
� Tivoli System Automation (TSA) for AIX and Linux
� Sun Cluster for Sun Solaris
� VERITAS Cluster Server for UNIX, Linux, and Windows
� Microsoft® Cluster Server (MSCS) for Windows
� iSeries clustering with synchronous remote journaling or business partner

replication solutions

All these solutions essentially work the same way. If there is a failure, the
database server can move from one machine to a backup system. To accomplish
this task the HA software moves all the necessary resources to the secondary
system. These resources include the disk resources of the physical database,
the network resources, and the database server resources.

In the HA cluster solution, a single copy of the physical database is stored on a
shared storage system. In the DB2 environment only one system can own the
storage array at a time. When a failure is detected, ownership of the storage is
moved from the primary system to the secondary system. The network resources
are moved as well. Finally, the database server resources are started on the
secondary system and the database is made available. See Figure 15-9.

Figure 15-9 Database: failover availability

IP
Address

Active

Server A

Passive

Server B

Data
External
Storage

Storage Owner Possible Storage Path
576 WebSphere Application Server V6: High Availability Solutions

The detection of a failure is performed by a heartbeat connection between the
servers. This heartbeat is a function of the HA software and is aware of both
hardware and software failures.

Because there is only a single copy of the database, it is always in sync. The
time for the failover and restart of the database engine depends on several
factors:

� The time needed to detect the failure.

� The length of time necessary to move database resource dependencies
(storage array, networking resources, and so forth).

� The time required for the DB2 engine to perform crash recovery.

DB2 always performs crash recovery when the database is not shut down
properly. Crash recovery is the processing of the log files, making sure all
committed transactions are written to disk and uncommitted transactions are
rolled back. The time required to perform this operation depends upon the
amount of open work in the database logs at the point of failure. The entire
failover could take just a few seconds, or longer if a large workload needs to be
processed from the log files.

One advantage of this type of availability solution is that it does not require that
any changes be made to the application or to the client configuration directories.
The HA software provides a Virtual IP Address resource for database
connections. The IP address fails over when a failure is detected, and the same
connect statement can be used by the application that was used before. When a
failover takes place, all applications are disconnected, and the client returns a
communication error condition to the application. When the database server is
running on the secondary system, the application can simply reissue the connect
statement and continue to process work as before.

This solution is known as a hot standby configuration. However, the secondary
system does not have to remain idle while waiting for a failover. The systems can
also be configured in a mutual takeover configuration where both servers are
actively hosting different databases. Each machine is prepared to take over the
workload of its partner in the event of a failure.

See the following sections for information about how to obtain available Cluster
Agents and for setup documentation for the various clustering products:

� 11.1.5, “Using DB2 with HACMP” on page 427
� 10.1.5, “Using Cluster Agent for IBM DB2 UDB” on page 373
� 12.1.5, “Using Cluster Agent for IBM DB2 UDB” on page 448
� 13.1.5, “Using the Cluster Agent for DB2” on page 490
 Chapter 15. WebSphere end-to-end high availability 577

Asynchronous availability
Asynchronous availability does not guarantee that the primary and secondary
system databases are completely in sync. The method of moving database
changes from the primary to the secondary system varies, but the process
produces a window of time during which data has not migrated from one system
to the other. The amount of data might be very small and the window very short,
but it must be taken into consideration when you're deciding on a solution.

The options for implementing an asynchronous availability solution with DB2
include IBM DB2 Replication and High Availability and Disaster Recovery
(HADR). IBM DB2 Replication is discussed in A Practical Guide to DB2 UDB
Data Replication V8, SG24-6828. For information about the DB2 HADR feature
refer to:

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/
com.ibm.db2.udb.doc/admin/c0011267.htm

15.4.3 Client application code considerations
WebSphere allows (client) application code to recover from the interruption and
subsequent restoration of a database service, through the use of IBM extensions
to the JDBC 2.0 API. These extensions allow clients connecting to or applications
running within an application server the capability to reconnect to a database
server, if it has either:

� Recovered from a failure
� Recognized that the database is not responding to requests.

The first JDBC extension allows client code to catch a
com.ibm.websphere.ce.cm.StaleConnectionException. This exception maps
multiple SQL return codes, which indicate a database server failure or outage, to
a single exception. Catching this exception allows application code the ability to
recognize the need to attempt a reconnection to a database, after service is
restored, and is part of the WebSphere programming model for application
components (servlets, JSPs, and EJBs).

From an application code perspective stale connections are connections which
are no longer usable, for example, if the database server is shut down or the
network is experiencing problems. When a StaleConnectionException is
detected in the application server runtime, the connection pool is flushed and
repopulated. Explicitly catching a StaleConnectionException is not required,
because applications already catch java.sql.SQLException and
StaleConnectionException extends SQLException. Specifically coding to catch a
StaleConnectionException can trigger an application to perform additional
(custom) recovery steps. However, in many instances application programmers
that develop on WebSphere (normally) need not custom recovery, because there
578 WebSphere Application Server V6: High Availability Solutions

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/admin/c0011267.htm

is an automatic reconnection with the server runtime. The use of
StaleConnectionException should be limited to applications that need an extra
level of transparent recovery, in addition to that provided by WebSphere. Custom
recovery code can be very difficult to develop, especially in complex multiple
resources configurations or logic flows.

The second extension allows for a
com.ibm.ejs.cm.pool.ConnectionWaitTimeoutException to be caught by the
application code. This exception occurs when the connection timeout parameter,
for a data source, is exceeded. The timeout parameter specifies how long an
application will wait to obtain a connection from the pool, if the maximum number
of connections is reached and all of the connections are in use. When an
exception is received, an application should resubmit a request to obtain a free
connection.

Sample code is provided in Appendix A, “Handling StaleConnectionException”
on page 599.

15.5 WebSphere MQ (and other messaging providers)
If you are using any other WebSphere supported external messaging system,
such as WebSphere MQ, then you need to make sure that this messaging
system is made highly available by using the HA functions provided by the
messaging vendor. A combination of those built-in HA functions and the use of
clustering software might also be valuable.

WebSphere MQ
For WebSphere MQ on distributed platforms, the approach is to use WebSphere
MQ clustering, which means that there are multiple clustered queue managers
available. If a queue manager becomes unavailable, new messages are routed
around the failed queue manager. However, each of the queue managers owns a
particular message queue (a so-called private message queue) and messages in
that queue are only accessible as long as the queue manager (QM) is running.
Messages that are already in the queue when a QM fails, cannot be accessed
before that QM is available again.

Clustering software, such as HACMP or TSA, can be used to restart the queue
manager on a backup system and thus make the messages in its private queue
available again.
 Chapter 15. WebSphere end-to-end high availability 579

For information about availability of Cluster Agents or setup documentation for
the various clustering products, see the following sections:

� 11.1.4, “Using WebSphere MQ SupportPac for HACMP” on page 427
� 10.1.4, “Tivoli System Automation and IBM WebSphere MQ” on page 373
� 12.1.4, “Using Cluster Agent for IBM WebSphere MQ” on page 448
� 13.1.4, “Using the Cluster Agent for WebSphere MQ” on page 490

In addition to WebSphere MQ clustering, WebSphere MQ for z/OS also supports
shared message queues that can be accessed by multiple queue managers. If
one queue manager fails, another queue manager can access and process the
messages.

All of these HA options and scenarios, including limitations and information about
when to use which HA option, are covered in detail in the white paper
Understanding high availability with WebSphere MQ by Mark Hiscock and Simon
Gormley, which is available at:

http://www3.software.ibm.com/ibmdl/pub/software/dw/wes/pdf/
0505_hiscock_MQ_HA.pdf

Default messaging provider
High availability for the default messaging provider is provided by the
HAManager. The HAManager is covered in Chapter 6, “WebSphere
HAManager” on page 175. In addition, many details and sample scenarios are
described in Chapter 12, “Using and optimizing the default messaging provider”
of the IBM WebSphere V6 Scalability and Performance Handbook, SG24-6392.

15.6 LDAP Server
A directory is often described as a database, but it is a specialized database that
has characteristics that set it apart from general-purpose relational databases.
One special characteristic of directories is that they are accessed (read or
searched) much more often than they are updated (written). Lightweight
Directory Access Protocol (LDAP) is a popular technology for accessing common
directory information. LDAP has been embraced and implemented in most
network-oriented middleware. Building LDAP-enabled networks and applications
is a common practice in enterprise applications. WebSphere is LDAP-enabled.
When the LDAP server fails, WebSphere cannot access directory data, such as
security data, and hence fails to service client requests. Therefore, building a HA
LDAP is a part of the highly available WebSphere system.
580 WebSphere Application Server V6: High Availability Solutions

http://www3.software.ibm.com/ibmdl/pub/software/dw/wes/pdf/0505_hiscock_MQ_HA.pdf

15.6.1 Using clustering software and shared disks
In a way similar to building an HA database, you can build an HA LDAP service
with clustering software as shown in Figure 15-10. Two nodes are interconnected
with public networks and private networks. Private networks are dedicated to the
heartbeat message. A shared disk that is connected to both nodes is used to
store common directory data. Clustering software and LDAP software are
installed in each node. A resource group is created, and can be failed over from
one node to the other under the control of the clustering software. Instead of
individual physical host IP addresses, the cluster IP address is used to access
the LDAP service.

Figure 15-10 Clustered LDAP with shared disks

Private Network

Public Network

LDAP Data

Shared Disks

Host A
(Primary)
Clustering

LDAP

WebSphere

Cluster
IP

Host B
(Backup)
Clustering

LDAP
 Chapter 15. WebSphere end-to-end high availability 581

The cluster IP address is moved to the healthy backup node under the control of
the clustering software when the primary node fails and the cluster detects the
failure through the heartbeat mechanism. The LDAP client (WebSphere) uses
the same IP address (the cluster IP address) to access the LDAP service, as
shown in Figure 15-11. You can configure the service to fall back automatically to
the primary node when the primary node is up again, or you can do it manually.

Figure 15-11 Clustered LDAP with shared disks after failover

15.6.2 Using clustering software and LDAP master-replica
The multihost shared disk is used in the above configuration for storing LDAP
data. In addition, most LDAP vendors support a master and replica architecture
that makes it possible for you to configure a HA LDAP without shared disks.
Install clustering software on both nodes, and configure LDAP to use local data.

Private Network

Public Network

LDAP Data

Shared Disks

Host A
(Primary)
Clustering

LDAP

Host B
(Backup)
Clustering

LDAP

WebSphere
Cluster

IP
582 WebSphere Application Server V6: High Availability Solutions

The primary node is configured as the LDAP master, and the backup node is
configured as the LDAP replica, as shown in Figure 15-12. Any LDAP change
requests that go to the replica server are referred to the master server because
the replica server cannot change data. The master server sends all changes to
the replica server to synchronize its data.

Figure 15-12 Clustered master-replica LDAP with individual disks

Note: Replication is not part of the LDAP standard. Therefore, the
master-replica function is implemented vendor specific and can differ from
product to product. Refer to your LDAP administration manuals for information
about how to use and configure this option.

Private Network

Public Network

LDAP Data
(Master)

LDAP Data
(Replica)

LDAP Changes

LDAP Referrals

Host B
Clustering

LDAP
Replica

Host A
Clustering

LDAP
Master

WebSphere
AppCluster

IP
 Chapter 15. WebSphere end-to-end high availability 583

When the primary server (master) is down due to some network, hardware, or
software reason, the LDAP service is moved to the backup server under the
control of the clustering software. The replica server is promoted temporarily to
the master server and continues to service LDAP requests, as shown in
Figure 15-13.

Figure 15-13 Clustered master-replica LDAP with individual disks after failover

When the primary node is up again, you can move the LDAP service back to the
primary node. You should not configure automatic fallback, because by doing so,
you will lose all updates. You need to export the latest data from the backup
server manually and import it to the primary server before you start the primary
LDAP server again. It takes time to synchronize the data in the master server in
this share-nothing configuration. In the shared disks LDAP configuration,
because you use the same data in the shared disks, you do not need to
synchronize the data between two servers. However, it is easier to configure the
cluster without shared disks.

Private Network

Public Network

LDAP Data
(Master)

LDAP Data
(Replica)

LDAP Changes

LDAP Referrals

Host B
Clustering

LDAP
Replica

Host A
Clustering

LDAP
Master

WebSphere
App

Cluster
IP
584 WebSphere Application Server V6: High Availability Solutions

15.6.3 Using a network sprayer (Load Balancer)
Besides of configuring a HA LDAP with clustering software, you can build a
low-cost, easy-to-configure HA LDAP with a network sprayer such as the
WebSphere Edge Components’ Load Balancer, or a DNS server that has a load
balancing function (DNS round-robin), as shown in Figure 15-14.

Figure 15-14 LDAP and Load Balancer, master-replica

WebSphere
Edge Components

Load Balancer

Load Balancer
Backup

WebSphere

LDAP Changes

LDAP Referrals

LDAP
Replica

LDAP
Master
 Chapter 15. WebSphere end-to-end high availability 585

The Load Balancer distributes client requests to both servers. When one of the
LDAP servers fails, the requests are directed to the other server, as shown in
Figure 15-16 on page 587.

Figure 15-15 LDAP and Load Balancer after failure of an LDAP server

WebSphere
Edge Components

Load Balancer

Load Balancer
Backup

WebSphere

LDAP Changes

LDAP Referrals

LDAP
Replica

LDAP
Master
586 WebSphere Application Server V6: High Availability Solutions

Because the Load Balancer has a backup configured, this system also caters for
a failure of the Load Balancer as shown in Figure 15-16.

Figure 15-16 LDAP and Load Balancer after failure of the LB server

15.6.4 Using a network sprayer (Load Balancer) with LDAP peer
replication (multi-master)

This setup is similar to the previous one with the exception that both LDAP
servers are masters. It is possible to have several servers acting as masters for
directory information, with each master responsible for updating other master
servers and replica servers. This is referred to as peer replication. Some
vendors also refer to this replication topology as multi-master. See Figure 15-17
on page 588.

Peer replication can improve performance, availability, and reliability.
Performance is improved by providing a local server to handle updates in a
widely distributed network. Availability and reliability are improved by providing a
backup master server ready to take over immediately if the primary master fails.
Peer master servers replicate all client updates to the replicas and to the other
peer masters, but do not replicate updates received from other master servers.

WebSphere
Edge Components

Load Balancer

Load Balancer
Backup

WebSphere

LDAP Changes

LDAP Referrals

LDAP
Replica

LDAP
Master
 Chapter 15. WebSphere end-to-end high availability 587

Figure 15-17 LDAP and Load Balancer, multi-master/peer replication

15.6.5 Conclusions
For high-end enterprise applications, combining clustering software and a
network sprayer can improve both, LDAP availability and scalability by reducing
downtime and providing more servers, as shown in Figure 15-18 on page 589.
During the clustering transition downtime, you can still access LDAP servers
(read only) with this configuration. You can also partition your directory structure
to enhance scalability, and use approaches discussed here to enhance
availability.

Further information about implementing LDAP can be found in the
Understanding LDAP Design and Implementation, SG24-4986.

Note: If a high volume of directory changes could occur in a brief interval of
time, then you should consider using an “always true” Load Balancer rule and
adding just one LDAP server to that rule to ensure that all requests get
directed to only one LDAP server while still ensuring that the other LDAP
server can service requests in the event of a failure of the designated LDAP
server associated with the always true rule.

WebSphere
Edge Components

Load Balancer

Load Balancer
Backup

WebSphere

LDAP Changes

LDAP Changes

LDAP
Master

LDAP
Master
588 WebSphere Application Server V6: High Availability Solutions

Figure 15-18 Combined LB and clustered LDAP

15.7 Firewall
Usually, a WebSphere production system includes at least one firewall. Two
firewalls are commonly used to create a demilitarized zone (DMZ) to enhance
WebSphere system security. If the firewall fails, customers are not able to access
any services and the site can be exposed to security risks (hacker’s attacks).
Therefore, the firewall availability is an important part of the WebSphere
system’s availability.

We can configure a highly available firewall environment by using two separate
firewalls on two hosts. Some firewall products provide built-in HA features, such
as state synchronization of the firewall modules that allow active connections to
continue after failover. However, you also need a synchronization mechanism to
synchronize the security policy (filter rules and users) between the firewalls or
you will have a a single point of failure.

In this section, we discuss two advanced solutions:

� Building an HA firewall with clustering software such as HACMP, TSA, and so
forth.

� Building an HA firewall with a network sprayer such as WebSphere Edge
Components’ Load Balancer.

LDAP
Replica3

LDAP
Replica2

Load Balancer
Backup

HA LDAP

WebSphere

HA LB

LDAP
Master

LDAP
Replica1

Hardware Clustering

WebSphere
EdgeComponents

Load Balancer
 Chapter 15. WebSphere end-to-end high availability 589

15.7.1 Using clustering software
As shown in Figure 15-19, clustering software is used to provide highly available
service IP addresses, resource groups, and fault-monitoring mechanisms.

Each node has a complete installation of the firewall software. Configure both
nodes in such a way that the equal and interchangeable configurations on both
nodes are assured.

Figure 15-19 Clustered firewall for high availability

When the firewall process, network, or machine itself goes down, the clustering
software will detect it and relocate the resource group, including the service IP
address, to the backup node, then start the firewall service, as shown in
Figure 15-20 on page 591. The highly available firewall environment is
reestablished after a failover. As soon as the primary firewall is up, the firewall
service can automatically fall back to the primary node, or you can do this
manually (this is determined by the clustering configuration settings).

Firewall 1
Clustering Software

Firewall 2
Clustering Software

HTTP Servers

WebSphere Servers

Private Network

HA Firewall

Application
590 WebSphere Application Server V6: High Availability Solutions

Figure 15-20 Clustered firewall after failover

15.7.2 Using a network sprayer
The HA firewall through clustering service discussed above is rather costly and
its configuration is complicated. It can be used by high-end customers. You can
also set up an HA firewall with a network sprayer such as WebSphere Edge
Components’ Load Balancer, as shown in Figure 15-21 on page 592. The Load
Balancer is a load balancing product that divides up the workload generated by
new connections among a group of back-end servers. This can be done either by
changing the assignment between the host name and the IP address (DNS
redirection), or by rerouting TCP and UDP traffic directly to the server with the
lowest workload. Load Balancer also recognizes server failures and
automatically keeps new requests from being dispatched to the failed server.

Firewall 1
Clustering Software

Firewall 2
Clustering Software

HTTP Servers

WebSphere Servers

Private Network

HA Firewall

Application
 Chapter 15. WebSphere end-to-end high availability 591

Figure 15-21 Load Balancer configured firewall

As mentioned before, the Load Balancer is a sophisticated load balancing tool.
The clients target a cluster IP address configured on the LB server. The requests
are then rerouted by the Load Balancer to the server with the lowest workload.
The LB recalculates the workload of the servers either with information collected
by the LB itself, such as the number of active connections and new connections,
or with system information collected by the Metric Server running locally on the
servers, such as CPU load or memory utilization.

Load Balancer
Backup

WebSphere Servers

HA Firewall

Application

Heartbeat

HTTP Servers

Load Balancer

Firewall 1 Firewall 2
592 WebSphere Application Server V6: High Availability Solutions

Figure 15-22 Load Balancer configured firewall after failover

The Load Balancer server is a single point of failure in the system. To prevent
this, Load Balancer gives us the option to configure a backup Load Balancer
server that automatically takes over in case of a failure. The actual load
information and client routing tables are shared between the two Load Balancer
servers, so nearly all connections can be preserved in the case of a breakdown.
Some external scripts are automatically executed during takeover, and they can
be modified to provide the high availability of the firewall. This is similar to the
scenario described for the LDAP servers with the Load Balancer, see
Figure 15-16 on page 587.

Detailed information about the Load Balancer and the WebSphere Edge
Components can be found in Chapters 4 and 5 of the IBM WebSphere V6
Scalability and Performance Handbook, SG24-6392.

Load Balancer
Backup

WebSphere Servers

HA Firewall

Application

Heartbeat
Load Balancer

Firewall 1 Firewall 2

HTTP Servers
 Chapter 15. WebSphere end-to-end high availability 593

15.7.3 Conclusions
In making a comparison of the high availability features of clustering and network
sprayer, the following aspects should be considered.

Using third party clustering software is complicated and the clustering software
needs to establish multiple connections between the two servers. These
connections must be allowed by the firewall. Configuration and troubleshooting of
this solution is not an easy job and produces an environment that is not easy to
understand. Therefore, the firewall administrator must have a good
understanding of the clustering software to keep this solution running.

Using the high availability function provided with LB is fairly simple. The Load
Balancer executes shell scripts for start and takeover events, which configure the
cluster IP addresses either to the loopback device or to the network card,
depending on the state of the system. These scripts can be customized for your
environment and can include commands to start and stop application proxies
and generate alerts for takeover events. Because LB only uses one TCP
connection on a dedicated port for the heartbeat, and ping for testing network
functionality, there are few changes on the firewall configuration, so setup is fairly
easy.

Both software packages can test network connectivity to determine if a network
card on the active firewall has failed or if there is a general network failure by
pinging other systems on that network.

15.8 Summary
We have discussed various techniques to implement high availability end-to-end
WebSphere production systems. Availability commonly refers to uptime. Using
techniques discussed here, you can build the entire WebSphere system with
99.5% availability or better.

High availability is not only for 7x24 businesses. There are two types of
downtimes: planned downtime and unplanned downtimes. The techniques we
discussed are for both planned downtime and unplanned downtime. Clustering
techniques make rolling upgrades of hardware and software and hot
replacement possible. Nobody knows when unplanned downtime will occur. It
might occur during your business hours, even though you are in a 5x8 business.
Clustering techniques help the system with automatic fault detection and service
recovery. If you want to avoid interruptions to your operations due to system
failures, then you need to use these techniques whether you are a 7x24, 6x20, or
594 WebSphere Application Server V6: High Availability Solutions

5x8 business. Non-7x24 business hours provide opportunities for planned
downtime for system maintenance and software/hardware upgrades off-line, but
your system can still fail at any time due to hardware, software, and network
problems.

Any high availability implementation needs high investment in hardware,
software, and skilled personnel. Therefore, it is important to evaluate how much
you will lose if your system is down during your operation hours.

WebSphere production system availability is determined by the weakest link in
the WebSphere system chain. Therefore, it is very important to evaluate each
part of the end-to-end WebSphere system high availability and eliminate all
single points of failure, as shown in Figure 15-23.

Figure 15-23 An end-to-end WebSphere system that removes single points of failure

15.8.1 Process availability and data availability
Process availability is achieved by multiple processes of an application, such as
WebSphere workload management using server clusters, multiple Web servers,
multiple database instance processes, multiple firewall processes, and multiple
LDAP server processes. Usually, clients find the available process using 1-to-n
mapping, redirection (IP spraying), or transparent IP takeover.

Data availability is achieved by replication or clustering. When data is shared by
multiple processes, data integrity should be ensured by distributed lock
management. Data is either stored in memory or on disk. For in-memory or local
data, we need to maintain client request affinity to access the same data. It is
very important to make sure that data inconsistencies be corrected before any
process uses data, because a failed process can damage data integrity.

Web
Client

Application
Client

Web
Client

Fi
re

w
al

l

Web
Server

Sprayer

HA File
SystemHA File

System

Data
Data

HA File
System

Session DB
Server

Data
Data

HA File
System

Entity EJBs,
App DB Server

Data
Data

HA File
System

LDAP
Server

Data
Data

Deployment
Manager

Data
Data

Fi
re

w
al

l

Sprayer

Node
Agent

Application Server
(Web and EJB

Containers)
 Chapter 15. WebSphere end-to-end high availability 595

Depending on data change and access frequencies, we have different
approaches to achieve data high availability:

� Type I. Static data

There are no changes for a period of months. An example is software install
binaries. This static data is usually placed in individual hosts. For
convenience of management, it can also be placed in shared disks or file
systems.

� Type II. Rarely changing data with planned change time (change period:
several hours to several days)

Examples are firewall configuration files, Web server configuration files,
WebSphere configuration files, or HTTP static files. You can copy these files
to different nodes (replication). However, an HA file system can help to
minimize your administration burden. If, for example, you have 10 Web
servers and you need to copy HTTP files to 10 Web servers every day
(assuming that you change Web pages once a day), content management
software could be used to reduce the administrative work involved in
managing this data.

� Type III. Rarely changing data with unplanned change time

An examples is LDAP data. Clustering or replication can be used for high
availability.

� Type IV. Active data with frequent accesses and frequent changes

Examples are Entity EJBs data, session data, and application data.

Data high availability is more difficult to implement than process high availability.
Most importantly, data high availability and process high availability are both
needed to complete the task. Data high availability is essential in most
applications. It does not make any sense for a business to run a process if that
process cannot access required data. For example, there is little value in running
a stock brokerage system if stock data and trading session data are unavailable.
It does not help to have the WebSphere EJB container process available if Entity
EJBs cannot access their data states, or to have the WebSphere Web container
process if servlets cannot access needed HTTP session states.

We have discussed aspects and techniques for building an end-to-end highly
available WebSphere production system. Through these techniques, we can
achieve both data high availability and process high availability for the
WebSphere system.
596 WebSphere Application Server V6: High Availability Solutions

Part 7 Appendixes

Part 7
© Copyright IBM Corp. 2005. All rights reserved. 597

598 WebSphere Application Server V6: High Availability Solutions

Appendix A. Handling
StaleConnectionException

This appendix provides details and code samples for handling the
StaleConnectionException thrown by WebSphere. Generally, when a
StaleConnectionException is caught, the transaction in which the connection was
involved needs to be rolled back and a new transaction begun with a new
connection. Details on how to do this can be broken down into three categories:

� A connection in auto-commit mode.

� A connection not in auto-commit and transaction begun in the same method
as database access.

� A connection not in auto-commit and transaction begun in a different method
from database access.

A

© Copyright IBM Corp. 2005. All rights reserved. 599

Connections in auto-commit mode
By default, any connection obtained from a one-phase datasource (implementing
javax.sql.ConnectionPoolDataSource) is in auto-commit mode, when there is no
scoping transaction. When in auto-commit mode, each database action
(statement) is executed and committed in a single database transaction. Servlets
often use connections in auto-commit, because transaction semantics are not
necessary.

Enterprise applications do not usually use auto-commit connections, because
they frequently require multiple statements to be executed, and serially
committing each would be quite cumbersome. Auto-commit can be explicitly
disabled by calling setAutoCommit() on a Connection object. When a
StaleConnectionException is caught from a connection in auto-commit mode,
recovery is a simple matter of closing all of the associated JDBC resources and
retrying the operation with a new connection.

However, in some cases the cause of a database outage might be transient. In
these cases, adding a delay in the retry logic can allow a database service to be
restored. The number of retries as well as any delay should be small, so as to
keep a client from waiting an inordinate amount of time. Sample code is shown in
Example A-1.

Example: A-1 Sample code for connections in auto-commit mode

public void myConnPool() throws java.rmi.RemoteException {
// retry indicates whether to retry or not
// numOfRetries states how many retries have been attempted
boolean retry = false;
int numOfRetries = 0;
java.sql.Connection conn = null;
java.sql.Statement stmt = null;
do {

try {
//Assumes that a datasource has already been obtained from JNDI
conn = ds.getConnection();
stmt = conn.createStatement();
stmt.execute(

"INSERT INTO ORG VALUES (10, 'Pacific', '270', 'Western',
'Seattle')");

retry = false;
} catch (com.ibm.websphere.ce.cm.StaleConnectionException sce) {

//if a StaleConnectionException is caught rollback and retry the
action

if (numOfRetries < 2) {
retry = true;
numOfRetries++;
// add an optional pause
600 WebSphere Application Server V6: High Availability Solutions

Thread.sleep(10000);
} else {

retry = false;
}

} catch (java.sql.SQLException sqle) {
//deal with other database exception

} finally {
//always cleanup JDBC resources
try {

if (stmt != null)
stmt.close();

} catch (java.sql.SQLException sqle) {
//usually can ignore

}
try {

if (conn != null)
conn.close();

} catch (java.sql.SQLException sqle) {
//usually can ignore

}
}

} while (retry);
}

Connections with auto-commit disabled
When a connection has auto-commit disabled, multiple database statements can
be executed in the same transaction. Because transactions tend to use a
significant number of resources, fewer transactions result in better performance.
Therefore, if an application requires executing multiple statements, best practice
is to disable auto-commit, and use transactions to group a number of statements
into one unit of work. Keep in mind that if a transaction has a very large number
of statements, the database can experience memory resource issues.

Transactions started in the same method
If a transaction is begun in the same method as the database access, recovery is
straightforward and similar to the case of using a connection in auto-commit
mode. When a StaleConnectionException is caught, the transaction is rolled
back and the method retried. As was the case with connections where
 Appendix A. Handling StaleConnectionException 601

auto-commit is enabled, the time delay between, as well as the number of, retries
should be limited. This is illustrated in Example A-2.

Example: A-2 Sample code for transactions started in same method as database access

do {
try {

//begin a transaction
tran.begin();
//Assumes that a datasource has already been obtained from JNDI
conn = ds.getConnection();
conn.setAutoCommit(false);
stmt = conn.createStatement();
stmt stmt.execute(

"INSERT INTO ORG VALUES (10, 'Pacific', '270', 'Western',
'Seattle')");

tran.commit();
retry = false;

} catch (com.ibm.websphere.ce.cm.StaleConnectionException sce) {
//if a StaleConnectionException is caught rollback and retry the action
try {

tran.rollback();
} catch (java.lang.Exception e) {

//deal with exception in most cases, this can be ignored
}
// deal with other database exceptions and clean up as before

}
}

Transactions started in a different method from database access
When a transaction is begun in a method different from where a database
connection is accessed, an exception needs to be thrown from the database
access method, to indicate a failure. In an ideal situation, a method can throw an
application-defined exception, indicating that the transaction logic can be retried.
However this is not always allowed, and often a method is defined only to throw a
particular exception. This is the case, for example, in the ejbLoad and ejbStore
methods on an enterprise bean.

Reference
The WebSphere V6 InfoCenter contains verbose information about this topic.
Search for StaleConnectionException to find examples and additional
information.
602 WebSphere Application Server V6: High Availability Solutions

Appendix B. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246688

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the
redbook form number, SG24-6688.

B

© Copyright IBM Corp. 2005. All rights reserved. 603

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
TM_NoOP.zip Zipped code samples for Transaction Manager NoOP

scenario
ME_NoOP.zip Zipped code samples for messaging engine NoOP

scenario
Trade_iSeries.zip Zipped code, installation instructions, and installation

scripts for Trade 6 in an iSeries WebSphere environment

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 25 MB minimum (for Trade_iSeries.zip), 1 MB for other
zipped files

Operating System: Windows, Linux, UNIX, OS/400

How to use the Web material

TM_NoOP.zip and ME_NoOP.zip
� Create a subdirectory (folder) on your workstation, and unzip the contents of

the Web material zip file into this folder.

� Use the scripts as described in the chapters from Part 5, “Using external
clustering software” on page 283.

� The HAMonitorWeb application (= the hamonitor.ear file) should be installed
on the cluster using all default settings.

Trade_iSeries.zip
� Create a subdirectory (folder) on your workstation, and unzip the contents of

the Web material zip file into this folder. This gives you 2 files:

– trade51dbz
– tradeinstall.zip

� trade51dbz: This is an OS/400 save file that contains the database needed
for Trade 6. First ftp this file to the iSeries environment into an existing save
file, then restore it.

� tradeinstall.zip: Extract the files into the /home IFS directory on the system
where you wish to install Trade 6. This creates the /home/tradeinstall
directory.
604 WebSphere Application Server V6: High Availability Solutions

� In QSHELL, cd to /home/tradeinstall. From here, run the command
installTrade60.sh.

The install script asks a few questions regarding your environment, answer
them as follows:

– Select the backend database type: iSeriesNative
– Enter the database schema: trade51dbz
– Enter the database user name: Enter a valid user profile
– Enter the database password: The password for the user profile

The script then stops and restarts the server, and you are ready to go.

� Next, fine-tune the application server with the following command:

tuneWAS60.jacl server trade60

� Finally, verify the maximum heap size of the application server JVM. It should
be set to 0 (which is the default setting in WebSphere for iSeries and means
no limit).
 Appendix B. Additional material 605

606 WebSphere Application Server V6: High Availability Solutions

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 611. Note that some of the documents referenced here
might be available in softcopy only.

� IBM WebSphere V6 Scalability and Performance Handbook, SG24-6392

� IBM WebSphere V6 Planning and Design Handbook, SG24-6446

� WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451

� WebSphere Application Server V6: Security Handbook, SG24-6316

� Logical Partitions on the IBM PowerPC: A Guide to Working with LPAR on
POWER5 for IBM Eserver i5 Servers, SG24-8000

� Clustering and IASPs for Higher Availability on the IBM Eserver iSeries
Server, SG24-5194

� Advanced POWER Virtualization on IBM Eserver p5 Servers: Introduction
and Basic Configuration, SG24-7940

� WebSphere v6 HA for z/OS, SG24-6850

� WebSphere MQ in a z/OS Parallel Sysplex Environment, SG24-6864

� Securing NFS in AIX An Introduction to NFS v4 in AIX 5L Version 5.3,
SG24-7204

� IBM TotalStorage Enterprise Storage Server Implementing ESS Copy
Services in Open Environments, SG24-5757

� A Practical Guide to DB2 UDB Data Replication V8, SG24-6828

� Understanding LDAP Design and Implementation, SG24-4986
© Copyright IBM Corp. 2005. All rights reserved. 607

Online resources
These Web sites and URLs are also relevant as further information sources:

� WebSphere V6 InfoCenter:

http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp

� IBM WebSphere Application Server Network Deployment V6 hardware and
software requirements:

http://www.ibm.com/software/webservers/appserv/was/requirements/

� WebSphere Application Server support Web site:

http://www.ibm.com/software/webservers/appserv/was/support/

� WebSphere Application Server for z/OS support Web site:

http://www.ibm.com/software/webservers/appserv/zos_os390/support

� IBM WebSphere Application Server - Clarification of configurations support:

http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg2700
4311

� IBM WebSphere Application Server Network Deployment V6: Installing your
application serving environment:

ftp://ftp.software.ibm.com/software/webserver/appserv/library/v60/wasv60
0nd_gs.pdf

� White paper Transactional high availability and deployment considerations in
WebSphere Application Server V6:

http://www.ibm.com/developerworks/websphere/techjournal/0504_beaven/
0504_beaven.html

� Trade 6 download:

http://www.ibm.com/software/webservers/appserv/was/performance.html

� Sample wsadmin scripts for WebSphere administration tasks:

http://www.ibm.com/developerworks/websphere/library/samples/SampleScript
s.html

� Technote Stop all WebSphere Application Server-related Java processes
before using the Update Installer for WebSphere software:

http://www.ibm.com/support/docview.wss?rs=180&uid=swg21199141

� File System Locking Protocol Test:

http://www.ibm.com/support/docview.wss?rs=180&uid=swg24010222
608 WebSphere Application Server V6: High Availability Solutions

http://www.ibm.com/developerworks/websphere/techjournal/0504_beaven/0504_beaven.html
http://www.ibm.com/software/webservers/appserv/was/performance.html
http://publib.boulder.ibm.com/infocenter/wasinfo/v6r0/index.jsp
http://www.ibm.com/software/webservers/appserv/was/requirements/
http://www.ibm.com/software/webservers/appserv/was/support/
http://www.ibm.com/software/webservers/appserv/zos_os390/support
http://www.ibm.com/support/docview.wss?rs=180&uid=swg21199141
http://www.ibm.com/developerworks/websphere/library/samples/SampleScripts.html
http://www.ibm.com/developerworks/websphere/library/samples/SampleScripts.html
ftp://ftp.software.ibm.com/software/webserver/appserv/library/v60/wasv600nd_gs.pdf
http://www.ibm.com/support/docview.wss?rs=180&context=SSEQTP&uid=swg27004311
http://www.ibm.com/support/docview.wss?rs=180&uid=swg24010222

� Implementing a Highly Available Infrastructure for WebSphere Application
Server Network Deployment, Version 5.0 without Clustering:

http://www.ibm.com/developerworks/websphere/library/techarticles/
0304_alcott/alcott.html

� White paper Server Clusters for High Availability in WebSphere Application
Server Network Deployment Edition 5.0:

http://www.ibm.com/support/docview.wss?uid=swg27002473

� Capacity on Demand Web site:

http://www.ibm.com/servers/eserver/about/cod/

� Parallel Sysplex Cluster Technology:

http://www.ibm.com/servers/eserver/zseries/pso/sysover.html

� Leveraging z/OS TCP/IP Dynamic VIPAs and Sysplex Distributor for higher
availability:

http://www.ibm.com/servers/eserver/zseries/library/techpapers/
gm130165.html

� iSeries Information Center:

http://publib.boulder.ibm.com/html/as400/infocenter.html

� iSeries cross-site mirroring fixes:

http://www-912.ibm.com/s_dir/slkbase.nsf/ibmscdirect/

� iSeries and High Availability An e-Business Perspective:

http://www.ibm.com/servers/eserver/iseries/software/websphere/
wsappserver/product/iSeriesAndHa.pdf

� IBM TotalStorage Web site:

http://www.storage.ibm.com

� DB2 Information Center:

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

� DB2 Information Management Software Information Center for z/OS
Solutions:

http://publib.boulder.ibm.com/infocenter/dzichelp/index.jsp

� An Overview of High Availability and Disaster Recovery for DB2 UDB by
Monty Wright:

http://www.ibm.com/developerworks/db2/library/techarticle/0304wright/
0304wright.html

� DB2 HADR:

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/
com.ibm.db2.udb.doc/admin/c0011267.htm
 Related publications 609

http://www.ibm.com/servers/eserver/zseries/pso/sysover.html
http://www.ibm.com/servers/eserver/zseries/library/techpapers/gm130165.html
http://publib.boulder.ibm.com/infocenter/dzichelp/index.jsp
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/admin/c0011267.htm
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/admin/c0011267.htm
http://www.ibm.com/servers/eserver/about/cod/
http://www.storage.ibm.com
http://www-912.ibm.com/s_dir/slkbase.nsf/ibmscdirect/
http://publib.boulder.ibm.com/html/as400/infocenter.html
http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/product/iSeriesAndHa.pdf
http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/product/iSeriesAndHa.pdf
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp
http://www.ibm.com/developerworks/websphere/library/techarticles/0304_alcott/alcott.html
http://www.ibm.com/support/docview.wss?uid=swg27002473
http://www.ibm.com/developerworks/db2/library/techarticle/0304wright/0304wright.html

� Understanding high availability with WebSphere MQ by Mark Hiscock and
Simon Gormley:

http://www3.software.ibm.com/ibmdl/pub/software/dw/wes/pdf/0505_hiscock_
MQ_HA.pdf

� HACMP for AIX 5L Web site:

http://www.ibm.com/servers/aix/products/ibmsw/high_avail_network/
hacmp.html

� HACMP documentation:

http://www.ibm.com/servers/eserver/pseries/library/hacmp_docs.html

� MQSeries for AIX - Implementing with HACMP Version 2.0:

ftp://ftp.software.ibm.com/software/integration/support/supportpacs/indi
vidual/mc63.pdf

� IBM DB2 Universal Database Enterprise Edition for AIX and HACMP/ES:

ftp://ftp.software.ibm.com/software/data/pubs/papers/db2ee-aixhacmp.pdf

� IBM Tivoli System Automation for Multiplatforms Web site:

http://www.ibm.com/software/tivoli/products/sys-auto-linux/

� IBM Tivoli System Automation for Multiplatforms Guide and Reference:

http://publib.boulder.ibm.com/tividd/td/ITSAFL/SC33-8210-03/en_US/PDF/
halgre11.pdf

� IBM Tivoli System Automation for Multiplatforms - Downloads:

http://www.ibm.com/software/tivoli/products/sys-auto-linux/
downloads.html

� Quality busters: Forget the environment:

http://www.ibm.com/developerworks/web/library/wa-qualbust1/index.html

� Veritas Web site:

http://www.veritas.com

� VERITAS Cluster Server Agent 3.5 for WebSphere MQ Installation and
Configuration Guide:

http://ftp.support.veritas.com/pub/support/products/ClusterServer_UNIX/
273084.pdf

� VERITAS Cluster Server Enterprise Agent 4.0 for DB2 Installation and
Configuration Guide:

http://ftp.support.veritas.com/pub/support/products/ClusterServer_UNIX/
270374.pdf

� Sun Cluster software:

http://www.sun.com/clusters
610 WebSphere Application Server V6: High Availability Solutions

http://www.ibm.com/developerworks/web/library/wa-qualbust1/index.html
http://www.ibm.com/servers/eserver/pseries/library/hacmp_docs.html
http://www.ibm.com/servers/aix/products/ibmsw/high_avail_network/hacmp.html
ftp://ftp.software.ibm.com/software/integration/support/supportpacs/individual/mc63.pdf
ftp://ftp.software.ibm.com/software/data/pubs/papers/db2ee-aixhacmp.pdf
http://publib.boulder.ibm.com/tividd/td/ITSAFL/SC33-8210-03/en_US/PDF/halgre11.pdf
http://www.ibm.com/software/tivoli/products/sys-auto-linux/downloads.html
http://www.ibm.com/software/tivoli/products/sys-auto-linux/
http://www.veritas.com
http://ftp.support.veritas.com/pub/support/products/ClusterServer_UNIX/273084.pdf
http://ftp.support.veritas.com/pub/support/products/ClusterServer_UNIX/270374.pdf
http://www.sun.com/clusters
http://www3.software.ibm.com/ibmdl/pub/software/dw/wes/pdf/0505_hiscock_MQ_HA.pdf

� Sun Cluster Software Installation and Sun Cluster Software Administration
guides:

http://docs.sun.com/app/docs

� Sun Cluster Data Service for WebSphere MQ Integrator Guide for Solaris OS:

http://docs.sun.com/app/docs/doc/817-4580

� IBM DB2 Universal Database and High Availability on Sun Cluster 3.x:

ftp://ftp.software.ibm.com/software/data/pubs/papers/suncluster.pdf

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
 Related publications 611

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://docs.sun.com/app/docs
http://docs.sun.com/app/docs/doc/817-4580
ftp://ftp.software.ibm.com/software/data/pubs/papers/suncluster.pdf

612 WebSphere Application Server V6: High Availability Solutions

Index

Symbols
.pid 390, 394, 404, 414

Numerics
2PC 246, 272

Resource manager 272
Sync point manager 272
Transaction 273

2PC transaction 20, 201
2-Phase Commit See 2PC

A
Access point

Group 94
Peer 94

activategroup.pl script 335
activategroupME.pl script 362
Active/Active mode 287
Active/Passive mode 287
addNode command 129, 432
Affinity

Server 50
Session 51
Transaction 49, 51

Application
Administration 142
Availability 142
Management 151

Retry interval 152
Ripplestart 151
Using scripts 152

Rollout update 153
Start and stop 151
Update 142

Major release 157
Rollout update 143
Upgrade 157

Application rollout update 21, 153
Application update

Hot deployment 146
Type

Bugfix 146
© Copyright IBM Corp. 2005. All rights reserved.
Major release 145
Upgrade 145

ASP 219
Asynchronous availability 578
Auto-commit mode 600
Automatic lock recovery 207
Auxiliary storage pool See ASP
Availability 36

Causes of downtime 12
Continuous 10
Enhancing

Deployment Manager 117–118
Node Agent 117–118

Failover 37
Hardware-based high availability 36
Levels 6, 418
Uptime 594

Availability matrix 10, 200

B
Backup

Master cell configuration repository 552
Network Deployment configuration 549
Property files 554
Scheduling 551
SSL keyring files 554

Backup cluster 87
Bootstrap host 88
Configuration 89

Backup cluster settings 92
Core group bridge 94
Security 91
WebSphere cells and cluster 89

Mirrored cluster 87
Testing 99
Troubleshooting 100

Logs 100
Security 101

Backup servers 56
backupConfig command 137, 549, 551, 556
BackupServers tag 60
Basic systems 8
Bean managed transactions See BMT
 613

BMT 77
Bootstrap 67

Server 67
Bootstrap host 114

C
Capacity on Demand 12, 132
Cell

Administration 550
Master configuration repository 104

Synchronization interval 104
Central Processor Complex 277
CGB_ENABLE_602_FEATURES 99
CICS 272

CTG ECI J2EE Connector 273
CIFS See Common Internet File System
CISCO 270
ClassCastException 143
Cluster 39

Backup servers 56
Failover 88
Primary servers 56

Cluster address 582
Cluster failover

IP-based 5, 286
Non-IP 5, 287

Cluster member 39
Failure 83
Marking down 55
Security 42

Cluster Resource Services 218
Functionality 218

Cluster settings 209
Clustered TM Policy 189, 206
Clustering

Active/Active 287
Active/Active configuration 294

Downtime 297
Failover process 296
Failure detection 295

Active/Passive 287, 382
Active/Passive configuration 290

Downtime 293
Failover process 292
Failure detection 291

Configuration types 289
Active/Active 287
Active/Passive 287, 290

Advantages and disadvantages 287
Clustering software 22

Configure for ME NoOP 347, 354
HAMonitorWeb application 355
Scripts 357
WebSphere 349

Configure for TM NoOP 325
HAMonitorWeb application 331
Monitoring resources 330
Scripts 332

Dependency 326
Failover unit 326
Resource 326
Terminology 326, 355

Clustering solutions 124
CMT 77
CoD See Capacity on Demand
Cold failover 204
com.ibm.CORBA.LocateRequestTimeout 84
com.ibm.CORBA.RequestRetriesCount 84
com.ibm.CORBA.RequestRetriesDelay 84
com.ibm.CORBA.RequestTimeout 84
com.ibm.ejs.cm.pool.ConnectionWaitTimeoutEx-
ception 579
com.ibm.websphere.ce.cm.StaleConnectionExcep-
tion 578
com.ibm.websphere.naming.PROPS 115
com.ibm.websphere.wlm.unusable.interval 85
COMM_FAILURE 83
Commands

addNode 129, 432
backupConfig 137, 549, 551, 556
dscontrol 161
kill 78, 105, 111, 211, 213, 390, 394, 404, 414,
430, 441, 456, 463, 474, 499, 514–515
removeNode 129
serverStatus 130
startManager 493
startNode 327, 355
startServer 328, 356
stopManager 493
stopNode 327, 355
stopServer 356
syncNode 106, 556, 559
update 138
versionInfo 133
wasprofile 130, 301, 306
WASService 117

Common Internet File System 201
614 WebSphere Application Server V6: High Availability Solutions

Component failover 8
Connection backlog 61
Connection timeout 58, 310
ConnectionWaitTimeoutException 310
ConnectTimeout 58
Container Managed Transactions See CMT
Continuous availability 10, 574
Control Region Adjunct 262, 276
controlHA.pty script 335
Controller 274
Controller Region 261
controlME.pty script 359
Cookies 53
CORBA 281
CORBA CosNaming 68
CORBA location service 262
CORBA.COMM_FAILURE 101
CORBA.NO_RESPONSE 100
Core group 65, 88, 177, 320, 349

Bridge service 88, 178
Dynamic 99

Coordinator 179
Election 182
Failure 184
Preferred 180

Selection 181
Custom properties

IBM_CS_DATASTACK_MEG 187
Member 177
Member discovery 197
Member status 197

Connected 197
In a view 197
Not connected 197

Policy 177, 188, 196, 435
Clustered TM Policy 206
Configuration

Fail back 189
Preferred servers 189
Preferred servers only 189
Quorum 189

Static 435
Type 188

All active 188
M of N 188
No operation 188, 190
One of N 188–189
Static 188, 190

Transport type 192

Channel Framework 193
Multicast 192
Unicast 193

Cost of downtime 7
Coupling Facility 260, 273

Logstream 273
CPC See Central Processor Complex
CPU starving 199
CR See Controller Region
CRA See Control Region Adjunct
Create package 534, 540
Create resource 535, 541
cron utility 551

D
Data high availability 4, 595
Data Replication Service See DRS
Database

Availability
Client code considerations 578

Continuous availability 574
Distributed unit of work
Transaction monitor 574

Failover availability 575
Asynchronous 578
Synchronous 576

High availability 574
Type 2 connection 574

Data-centric application 29, 288
DB2 272

High Availability and Disaster Recovery 578
Replication 578

DB2 Data Sharing 277
DB2 for z/OS Local JDBC connector 273
DCS 176, 185, 187, 198

Heartbeat 198
deactivategroup.pl script 336
deactivategroupME.pl script 363
Default messaging provider 347

Failover 19
High availability 580

Default SIBus Policy 189
DefaultCoreGroup 177, 189
Demilitarized zone See DMZ
Deployment Manager 36, 104

Configuration management 106
Failure 82, 105

Impact on Administrative Console 109
 Index 615

Impact on application clients 108
Impact on application servers 107
Impact on cell naming server 107
Impact on cell security server 108
Impact on File Transfer Service 108
Impact on Node Agent 107
Impact on PMI monitoring 108
Impact on RAS Service 108
Impact on Synchronization Service 108
Impact on wsadmin 109

File synchronization 106
High availability without clustering 550
Node failure 550
single point of failure 65, 104

developerWorks 139
Disaster recovery 10
Disk

Multihost 486
Distributed unit of work 574
Distribution and Consistency Services See DCS
dmgr.pid 452–453
DMZ 589
DNS

Redirection 591
round-robin 585
Time-To-Live 571

Downtime 6, 12
Planned 6
Unplanned 6

DRS 47, 71, 73, 185, 274–275
dscontrol command 161
DUOW See Distributed unit of work
DVIPA 268, 276, 281
Dynamic virtual IP addresses See DVIPA

E
EJB

Bootstrapping 67
Caching options 49

Option A caching 49, 71
Option B caching 49, 71
Option C caching 49, 71

Entity bean 48
Server affinity 50
Session 48
Stateful session beans 48

Failover 73
Stateless session beans 48

Transaction 48
EJB caching

Option A caching 49, 71
Option B caching 49, 71
Option C caching 49, 71

EJB container 44, 48
Failover 65

Tuning 84
EJB processing

Failures
Cluster member 83
Deployment Manager 82
Node Agent 83

EJB WLM
Transaction affinity 49
WebSphere on z/OS 275

EJBLocalObject 78
EJBObject 78
EJS workload management 44, 65

Entity bean 48
Stateful session beans 48
Stateless session beans 48

Enhance Deployment Manager availability 303
Entity bean 48

Failover 71
Server affinity 50

Even distribution See z/OS Workload Management
External clustering software 190

F
Fail back 29, 288
Fail transparent 30
Failover 29, 37, 45, 288

Availability 575
Cold 204
Hot 206
Mutual 29, 287
Non-IP-based database 574
Primary and backup servers 60
Programming transparent 565
Stateful session beans

Best practices 77
Configuration 74

Application level 75
EJB container level 74
EJB module level 76

Example 78
Stateless session beans 70
616 WebSphere Application Server V6: High Availability Solutions

Terms and mechanisms 28, 288
Time 28

Fault-detection 28
Recovery 28

Web server plug-in 60
Failover data service 287

Active/Active mode 287
Active/Passive mode 287
Hot standby 287

Failover tuning
ConnectTimeout 58
RetryInterval 57

Failover unit 303, 308
Failure

Deployment Manager 82, 105
Node Agent 111

Fallback 29, 288
FAStT900 374, 382
Fault tolerance 37
Fault-detection time 28
File system locking 207
File System Locking Protocol Test 213
File transfer services 111
Firewall

High availability 589
Policy synchronization 589

Five nines 10
FlashCopy 27
Function-centric application 29, 288

G
Garbage collection 181
Global security

Enable 114
Group PTF 135

H
HA group 188, 318, 320, 349, 478
HA policy 65, 347
HA software 206
HA system administration

Replacing hardware 127
HACMP 5, 108, 118, 175, 190, 205, 286, 303, 308,
315, 348, 418, 562, 576, 579

Application Monitor information 425
Application server 286, 421

Information 424
Cluster 418

Cluster topology 421
Configuration

Custom profile for Node Agent failover 432
Deployment Manager failover 429
Deployment Manager profile 429
Node Agent failover 432
Transaction Manager failover 437, 439

Deployment Manager failover
Testing 430

Embedded messaging failover scenario 434
Failure situation 418
IBM DB2 UDB 427
Installation 427
Message engine failover

Testing 435
Node Agent failover

Testing 433
Planning 427
Resource group 421
Resource information 423
Sample configuration 418
Scripts

Monitoring 426
Start 425

Application servers 432
Deployment Manager 429
Node Agent 432

Stop 425
Application servers 432
Deployment Manager 429
Node Agent 432

Transaction Manager failover
Configuration 439
Testing 441

Transaction Manager NoOP policy 436
WebSphere

Configuration
Transaction Manager failover 438

Installation
Transaction Manager failover 438

WebSphere installation 429
WebSphere MQ SupportPac 427

HACMP/ES 286
HADR See High Availability and Disaster Recovery
HAManager 38, 65, 82, 105, 122, 143, 271, 298,
313, 326

Core group 177
Bridge service 178
Member 177
 Index 617

Policy 177, 188, 196
Failure detection 198

Active 198
TCP KEEP_ALIVE 200
Time 198

High availability group 178, 188, 194
Members 195

State 197
IBM_CS_DATASTACK_MEG custom property
187
Match criteria 190, 324, 352

Define 324, 353
Examples 191

MBean 190
Messaging services 176
Server failure 176
Singleton service 176
Transaction service HA 176
Transport buffer 185

Size 186
Tuning 186

View 197
Installation 199

HAMonitorWeb application 330, 355, 532
Hardware-based high availability 36
HFS 273
Hierarchical File System See HFS
Hierarchical Storage Management 219
High availability

Basic systems 8
Business operation hours and pattern 11
Causes of downtime 12
Clustering 5
Component failover 8
Continuous 10
Data 4, 595

Types 596
Database 309, 574

Connection timeout 310
Server name 311

Data-centric application 29, 288
DB2 database server 286
Default messaging provider 580
Deployment Manager 286
Disaster recovery 10
EJB bootstrap failover 68
EJB container failover 65
EJB container redundancy 66
Fail back 29, 288

Fail transparent 30
Failover 29, 288
Failover data service 287
Fallback 29, 288
Firewall 286, 589

Using clustering software 590
Using network sprayer 591

Five nines 10
Function-centric application 29, 288
HACMP 286
HACMP/ES 286
Hardware upgrade 132
Horizontal scaling 8
Hot replacement 6
Hot standby 287
HTTP server 286, 565
IBM WebSphere MQ 309
Increase process/application availability

Deployment Manager 298
Node Agent 304

IP-based cluster failover 5, 286
LDAP 309, 311, 580, 582

Host name 311
Search timeout 311

LDAP server 286
Levels 6
Load Balancer 563
Loopback alias configuration 113
Maximum downtime 310
Minimize downtime 298
Network Dispatcher 589
Network failure 113
Node Agent 116, 286
Non-IP cluster failover 5, 287
Operating system TCP timeout value 57
Oracle Real Application Clusters
Overcapacity 37
Parallel database server 5
Performance availability requirement 11
Process 4, 595
Process redundancy 36
Redundant data 8
Remote messaging 312
Scalable data service 287
Solution

Planning 27
SPOF, single point of failure 12
Sun Cluster 286
System capacity 143
618 WebSphere Application Server V6: High Availability Solutions

System failover 9
System uptime percentage 11
Transaction log recovery 313
Transaction Manager

Enable 317
TSA 286
Uncoordinated processes 29
Unit of failover 286
VERITAS Cluster Server 286
Vertical scaling 8
Web server 565
WebSphere availability levels 18

HA level 1 18
HA level 2 19
HA level 3 20
HA level 4 22
HA level 5 24

WebSphere end-to-end 562
WebSphere MQ 579

Clustering 580
WebSphere process failures 5

High Availability and Disaster Recovery 578
High availability group See HA group
High Availability Manager See HAManager
Horizontal scaling 41, 149, 153
Hot failover 206
Hot replacement 6
Hot standby 287
HTTP request failure 125

Avoid 126
HTTP response code 503 62–63
HTTP server

High availability 565
HTTP session 46, 77

Failover on z/OS 274
Server affinity 50

HTTP tunneling 193
HTTPS 193

I
i5/OS HTTP server 566
IASP See iSeries IASP
IBM Blade Center 374, 381
IBM DB2 Replication 578
IBM DB2 UDB 447
IBM eServer

iSeries 132
pSeries 132, 420

zSeries 132
IBM extensions 578
IBM HACMP See HACMP
IBM HACMP/ES 286
IBM High Availability Clustered Multi-Processing
See HACMP
IBM Tivoli Storage Manager 549, 551
IBM Tivoli System Automation See TSA
IBM TotalStorage 207
IBM TotalStorage SAN Volume Controller 374, 382
IBM WebSphere Application Server Network De-
ployment V6

Installation 301, 306
IBM WebSphere MQ 309, 447
IMS 272

Connector for Java 273
JDBC Connector 273

Independent auxiliary storage pools See iSeries
IASP
InitialContext 67–68, 84, 114
Installation

Using response files 554
IP Alias 286, 299, 305, 308, 311, 427, 447, 450,
461
IP spraying 563
iSCSI 318, 382, 450
iSeries

ASP 219
Auxiliary storage pool See ASP
Cluster 218

Creation 231
CRG

Start 242
Cross-site mirroring

Configuration 240
Recovery Domain

Configuration 238
Resource group

Creation 237
Cluster resource 223
Cluster Resource Group 223

Exit program 223
Manager 224
Object types 224

Application 224
Data 224
Device 224

Cluster Resource Services 218, 231
Functionality 218
 Index 619

Clustering 222, 576
Cross-site mirroring 221

Resource group 222
Data source

Configuration 245
Custom properties 247

Device domain 224
File systems 220

QNTC 251
IASP 220

Creation 227
Data 243
Planning 226
UDFS path 243

IFS 220
JDBC provider

Creation 245
Messaging engine

Configure in IASP 248
Recovery domain 223
Single-level storage 219
TCP/IP configuration 250
Transaction Manager

Configuration 251
WebSphere installation 221

iSeries Navigator 227
Create IASP 227

J
J2C authentication alias

Creation 244
J2EE

Naming 67
J2EE 1.4 specification 275
Java Transaction API 50
java.sql.SQLException 578
JDBC 2.0 API 578
JDBC driver

Type 4 272
JMS 200

High availability 200
JMX 104

Client 330
Routing 105

Journal File System 190, 314
JSESSIONID cookie 568
JVM 177, 261

K
kill command 78, 105, 111, 211, 213, 390, 394,
404, 414, 430, 441, 456, 463, 474, 499, 514–515

L
LDAP 562

High availability 580–581, 585
Clustering software

Master - replica 582
Shared disk 581

Fallback 584
Master and replica 582
Multi-master 587
Peer replication 587

Lease based locking protocol 213
Level of availability 418
Lightweight Directory Access Protocol See LDAP
Load Balancer 22

Active/Passive HA configuration 564
Dispatcher 565
Dispatcher component 563
High availability 563
MAC forwarding 569
Manager 566
Server affinity 566

Scenarios 567
Load balancing 37, 44–45
Location Service Daemon See LSD
Lock lease 207
Lock recovery 207
Logical host 286
Logical partition See LPAR
Loopback alias

Configuration 113
LPAR 12, 25, 36, 260
LSD 66, 83, 104, 111, 116, 262, 275
LUN 374, 381

M
Managing state 45
Master configuration repository 104, 550
Master repository 106
Match criteria See HAManager
Maximum number of threads 61
Maximum time to recover 6
MBean 326
MDB 49, 276
ME See Messaging engine
620 WebSphere Application Server V6: High Availability Solutions

Mean time between failures 6
Memory-to-memory replication 47
Message-driven beans See MDB
Messaging

publish/subscribe 185
Services 176

Messaging engine 178, 276, 347, 434
Messaging engine NoOP policy

Configuration
TSA 405

Microsoft Cluster Server 576
Mirrored backup cluster 87
monitorgroup.pl script 336
monitorgroupME.pl script 364
Monitoring Policy 78, 112–113
MTBF 6
MTTR 6
Multihost disk 486
Mutual failover 287
MVS 265

N
Name space 67
NAS 189, 206, 318, 382, 437, 450
Network Attached Storage See NAS
Network card interface 455
Network Dispatcher

High availability 589
Network File System See NFS
Network latency 84
Network sprayer 585
NFS 201, 207, 375
NIC 455
No Operation policy 25
Node

Managed 131, 572
Unmanaged 131, 573

Node Agent 104, 111
Failure 83

Impact on Administrative Console 116
Impact on application clients 115
Impact on application servers 111
Impact on File transfer service 115
Impact on naming servers 114
Impact on PMI and monitoring 115
Impact on RAS service 115
Impact on Synchronization service 115
Impact on wsadmin 116

High availability 116
Node failure 550
Node group 265
nodeagent.pid 459
Non-blocking connection 59
Non-functional requirements 289
nslookup 299
NVRAM 208

O
Object Request Broker 69, 84
Optimistic concurrency control 72
Option A caching 49, 71
Option B caching 49, 71
Option C caching 49, 71
Oracle Real Application Clusters 5
org.omg.CORBA.COMM_FAILURE 85
org.omg.CORBA.TRANSIENT 86
org.omg.CORBA_NO_RESPONSE 85
OS TCP/IP timeout 84
OS/400 218

P
Paging 199
Parallel Sysplex 259–260, 267–268

Configuration changes 282
Coupling Facility 260

Parallel Sysplex Clustering 260
Partition Facility 189, 199
pctLinux.bin 301, 307
Peer access point 94
Peer Restart and Recovery (PRR) 271, 273
Perl 331
Persistence layer 144

Messages 144
Session data 144
Transactions 144

Persistent service
High availability 209

Persistent sessions 46
plugin-cfg.xml 56, 132, 169, 572

Editing 573
Policy 347

Create 323, 351
No Operation 25, 314, 347
One of N 314, 347
Static 314, 347

Primary cluster 88
 Index 621

Primary servers 56
PrimaryServers tag 60
Process high availability 4, 595
Profile creation wizard 301, 306
Profiles 297

Custom profile 306
Deployment Manager 301

Provider URL 67
PRR See Peer Restart and Recovery
PTF 135
Publish/subscribe messaging 185

Q
Queue manager 278
Quorum 189, 376

R
RAC See Oracle Real Application Clusters
RAID 226, 375, 486, 573
RAID-5 8
Recover a failed node 557
Recovery Node 271
Redbooks Web site 611

Contact us xix
Redundant data 8
RefreshInterval 169
Relational Resource Adapter (RRA) 273
Reliable Scalable Cluster Technology See TSA
removeNode command 129
Replication domain 78
Resilience 206
Resource adapter 273
Resource Recovery Services (RRS) 272–273
Restore

Consideration for system registry 554
Network Deployment configuration 549
Plug-in configuration file 557
Property files 557
SSL keyring files 557
Using restoreConfig

Re-install fixes 556
restoreConfig 549, 551, 556, 558–559
Retry interval 152–153
RetryInterval 56–57
Ripplestart 151
RMI/IIOP 262
RMM 187
Routing tables 104

RSCT See TSA
Reliable Scalable Cluster Technology

RST command 243
RSTLIB command 243

S
Samba 375
SAN 26, 190, 206–207

FlashCopy 27
Peer-to-Peer Remote Copy 27
PPRC 27

sas.client.props 453, 459
Scalability 40

Horizontal and vertical combined 42
Horizontal scaling 41
Vertical scaling 40

Scalable data service 287
Scripts

activategroup.pl 335
activategroupME.pl 362
controlHA.pty 335
controlME.pty 359
deactivategroup.pl 336
deactivategroupME.pl 363
monitorgroup.pl 336
monitorgroupME.pl 364
wasctrl-as 334
wasctrl-me 357
wasctrl-tm 332

Security
Cluster member 42
Enable 114

Servant 275
Servant region 262

Session affinity 266
Server affinity 50

EJB 50
Entity bean 50
HTTP session 50
Stateful session beans 50

Server failure 176
Server weights 52
server.pid 462
serverStatus command 130
Service Integration Bus services 189
Servlet 2.3 specification 46
Session affinity 51
Session beans
622 WebSphere Application Server V6: High Availability Solutions

EJB
Session bean 48

Session clustering 46
Session ID See Session identifier
Session identifier 46, 53

Cookies 53
SSL ID 53
URL rewriting 53

Session management 38, 45–46
Database persistence 38, 46
DRS 47
EJB

 48
Memory-to-memory replication 38, 47
Persistent sessions 46
Session clustering 46

Session state 38
Shared file system 315
Shared File System Verification Test 213
single point of failure 176

eliminating all 595
single point of failure (SPOF) 12, 65, 122, 562
Singleton service 38, 176, 189, 194

Messaging engine 178
Transaction Manager 178

Site disaster recovery 146
SMP/E 135
soap.client.props 453, 459
Software upgrade

Application Client 133
Download WebSphere support packs 133
Fix pack 134
IBM HTTP Server 133
Maintenance pack 134
Refresh pack 134
Web server plug-ins 133
WebSphere Application Server for OS/400 V6
135
WebSphere Application Server for z/OS 135
WebSphere Edge Components 133
WebSphere maintenance package 133

Solaris Volume Manager 484, 487
SPOF, single point of failure 65, 122, 562
SQL 249, 277
SR 262
SSL 193

ID 53
Keyring files 554

StaleConnectionException 578, 599

Handling 600
startManager command 493, 555, 558
startNode command 327, 355, 556, 559
startServer command 328, 356
Stateful 45
Stateful session beans 48

Failover 73
Best practices 77
Configuration 74

Application level 75
EJB container level 74
EJB module level 76

Example 78
Server affinity 50

Stateless 45
Stateless session beans 48

Failover 70
stopManager command 493, 555, 557
stopNode command 327, 355
stopServer command 356
Sun Cluster 5, 118, 303, 308, 315, 348, 354, 484,
576

Agent 484
Cluster Agent

DB2 490
WebSphere MQ 490

Configuration
For WebSphere 486
Shared disk subsystem 486

Deployment Manager failover 491
Create resource 493
Sun Cluster configuration 493
Testing 499
WebSphere installation 492

Failover type
Active/Active (Scalable) 484
Active/Passive (Failover) 484

Failure types 485
Messaging engine failover 517

Scripts 538
Sun Cluster configuration 517, 540–541
Testing 544
Troubleshooting 545

Messaging engine NoOP policy 517
Node Agent failover 501

Create resources 504
Sun Cluster configuration 504
Testing 514
Troubleshooting 517
 Index 623

WebSphere installation 502
Resource Group manager 484
Resource type 484
Resources

Management 487
Transaction Manager failover 517

Scripts 532
Sun Cluster configuration 517, 534–535
Testing 544
Troubleshooting 545

Transaction Manager NoOP policy 517
Sun Solaris 484
SunPlex Agent Builder 493
SunPlex See Sun Cluster
Synchronous availability 576
syncNode command 106, 556, 559
Sysplex 260
Sysplex Distributor 267–269, 275–276, 281
Sysplex Timer 260
System failover 9
System Modification Program Extended 135
SystemOut.log 183, 198

T
TCP/IP keep-alive 84
TCP/IP timeout 30, 56, 84
Tivoli Performance Viewer 23, 105, 157

Metrics
LiveCount 159

Sessions counter 157
Tivoli Storage Virtualization Controller 382
Tivoli System Automation See TSA
Topology 146

Multiple cells 146, 157
Multiple clusters 148
Single cluster 149

Tracking active sessions 157
Trade 6 89, 225, 316, 348, 498
Transaction 48, 77
Transaction affinity 49, 51, 71
Transaction log

Recovery 19
Transaction logs 201, 206

Location of 319
Transaction Manager 178, 189, 206, 313, 436

HA solution 206
High availability 201

Failover 210

Hot-failover 206
Configuration 208
Using shared file system 206

WebSphere V5 204
Transaction Manager NoOP policy

Configuration
HACMP 436
Sun Cluster 517
TSA 394
VERITAS Cluster Server 464

Transaction monitor 574
Transaction service 176

Failure 202
Recovery process 204

Transport buffer 185–186
Transport type 192

Channel Framework 193
Multicast 192
Unicast 193

TSA 5, 108, 118, 175, 205, 282, 286, 303, 308,
315, 348, 354, 576, 579

Active/Passive configuration 382
Cluster 368
Commands

addrgmbr 378
chrg 379
mkdep 379
mkequ 379
mkrg 376
mkrpdomain 376
mkrsrc 376
preprpnode 376, 383
samctrl 379, 389
startrpdomain 376
startrsrc 389
stoprsrc 389

Configuration 371
Dependency 379
Domain

Create 376
Equivalence 379
Resource

Add to resource group 378
Create 376

Resource group 376
Deployment Manager failover 374–375

Testing 379
Domain

Create 376
624 WebSphere Application Server V6: High Availability Solutions

Equivalency 369
High Availability Group Services 368
High Availability Topology Services 368
IBM DB2 UDB 373
IBM WebSphere MQ 373
Messaging engine failover

Testing 414
Messaging engine NoOP policy 405

Configuration 408
WebSphere configuration 408

mkrsrc command 368
Node Agent failover 383

Dependencies 384
Testing 389

Peer domain 368
Relationships 370

Location 370
Start/stop 370

DependsOn 370
DependsOnAny 370
ForcedDownBy 370
StartAfter 370
StopAfter 370

Reliable Scalable Cluster Technology 368
Resource 368

Managed 369
Resource class 368–369

IBM.Application 368
IBM.ServiceIP 368

Resource group 369
Nominal state 369

.Offline 369

.Online 369
Resource manager 369–370

Configuration 371
Event Response 371
Global Resource 370

IBM.Application 370
IBM.ServiceIP 371

IBM.ConfigRM 371
IBM.ERRM 371
IBM.GblResRM 370
IBM.RecoveryRM 370
IBM.TestRM 371
Recovery 370
Test 371

Resource Monitoring and Control 368
Resources

Managing 372

RM See TSA Resource manager
Sample scenario

Monitoring and restarting processes 390
Testing 394

Scripts
Deployment Manager

Monitor 377
Start 377
Stop 377

Node Agent and application server 386
TM NoOP policy 398

Transaction Manager failover
Testing 404

Transaction Manager NoOP policy 394
TSA configuration 397

Scripts 398
WebSphere configuration 397

Two-phase commit transaction 201
Type 2 database connection 574
Type 4 JDBC driver 272

U
UDFS 220
Uncoordinated processes 29
update command 138
Update Installer 133, 557, 559

Using 136
Update Installer for WebSphere Software 133
Uptime 594
URL

Rewriting 53
User registry 114
Using clustering software

Failover unit 303, 308
Location of WebSphere binaries 297, 299, 304
Testing 298

V
VCS See VERITAS Cluster Server
VERITAS Cluster Server 5, 118, 286, 303, 308,
315, 348, 354, 445, 576

Administration 452
Agent 447
Application failure 447
Cluster Manager GUI 447
Configure for application server 457
Deployment Manager 449
Deployment Manager failover 451
 Index 625

Add resources to service group 453
Create service group 452
Set resource dependencies 455
Testing 456

Enterprise Agents
IBM DB2 UDB 448
IBM WebSphere MQ 448

Group Membership Service 446
High-Availability Daemon 446
Low Latency Transport 446
Messaging engine failover 475

Configuration 475
Create resources 476
Scripts 478

Testing 479
Messaging engine NoOP policy 475
Node Agent failover 457

Add resources to service group 459
Create service group 458
Set resource dependencies 462
Testing 463

Node failure 447
Resource group 446
Resource management 447
Resource type

Application 447, 452
Monitoring 452, 458
Monitoring pid file 452–453, 458
Start program 452, 457
startManager start program 453
startNode start program 459
startServer start program 461
Stop program 452, 457
stopManager stop program 453
stopNode stop program 459
stopServer stop program 461

Critical 447
DNS 447
Enabled 447
Mount 447, 452, 458
Volume 447

Resources 446
Service group 446–447

ClusterService 451
Failover 447
Hybrid 447
Parallel 447

Transaction Manager failover 464
Configuration 465

Create resources 465
Scripts 468

Testing 474
Transaction Manager NoOP policy 464

VERITAS Volume Manager 484, 487
versionInfo command 133
Vertical scaling 40
VIP 286, 292, 299, 305, 373, 447, 449–450, 455,
462, 565

iSeries 566
VIPA 268
Virtual host name 427
Virtual IP Address See VIP
VLUN 375, 382

W
wasctrl-as script 334
wasctrl-me script 357
wasctrl-tm script 332
wasprofile command 130, 301, 306
wasprofile.sh 301, 307
WASService command 117
Web container 43

Clustering and failover 51
Failover 51
Failure 51

Web server
Access log 63
High availability 565
i5/OS 566

Web server plug-in 44, 572
Automatic generation 572
Failover 60
Marking down cluster member 55
Marking down of application servers 125
Primary and backup servers 60
Propagation 572
Retry interval 125
Settings 56
Workload management 44, 51

Web Service 145
WebContainer Inbound Chain 56, 61
WebSphere

Availability levels 18
Cluster 39
Deployment Manager 36
High availability 5, 122
Resource analyzer 62
626 WebSphere Application Server V6: High Availability Solutions

Topology 146
Update

Example 136
Existing profiles 134
Refresh pack 133
Silent 138

Workload management 43
Benefits 45
EJB requests 44
EJS 44, 65
HTTP requests 43, 51
Web server plug-in 44, 51

WebSphere Application Server
Support Web site 133, 608

WebSphere Application Server Edge Components
270
WebSphere Application Server for OS/400 V6

Software upgrade 135
WebSphere Application Server for z/OS 259

Software upgrade 135
WebSphere binaries 297
WebSphere CORBA CosNaming 67
WebSphere Edge Components 563
WebSphere Extended Deployment 189, 199
WebSphere high availability on z/OS

Sample configuration 280
WebSphere High Availability service 82
WebSphere MQ 26, 272, 277, 579

High availability 580
WebSphere MQ for z/OS 580

Queue sharing 278
WebSphere on z/OS

EJB WLM 275
Implementation 261
Network Deployment

In parallel sysplex 264
Single LPAR 263

Recovery of application servers 271
WebSphere support packs

Download 133
WebSphere transaction service 201
Windows Common Internet File System 207
Windows service 117
WLM See z/OS Workload Management
Workload management 35, 43–44, 122

BackupServers tag 60
Benefits 45
EJB requests 44
EJS 44, 65

HTTP requests 43, 51
PrimaryServers tag 60
Web server plug-in 44, 51

Workload Manager for z/OS 276
WPF 189, 199
Write through to disk on flush 213
wsadmin 116, 152, 330
wsadmin.properties file 109, 116

X
XA transaction 272
XSM See iSeries Cross-site mirroring

Z
z/OS 259
z/OS Automatic Restart Manager (ARM) 271
z/OS Workload Management 262, 265

HTTP session management
Even distribution 266

Manage address spaces 265
Performance objectives 265
Service class 265

zSeries 259
LPAR 260
 Index 627

628 WebSphere Application Server V6: High Availability Solutions

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

W
ebSphere Application Server Netw

ork
Deploym

ent V6: High Availability Solutions

®

SG24-6688-00 ISBN 0738492507

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

WebSphere Application Server
Network Deployment V6:
High Availability Solutions

WebSphere
Handbook Series

Explore WebSphere
HA options

Learn about external
clustering solutions

This IBM Redbook discusses the high availability aspects of
IBM WebSphere Application Server Network Deployment V6
and high availability of related components, such as the Web
servers or directory servers. This book discusses in detail:

• High availability concepts.
• WebSphere Application Server clustering considerations,

the failover process, the WebSphere HAManager, and
WebSphere component’s reactions to failures.

• High availability system administration, such as
application management, hardware replacement or
upgrade, and software upgrades.

• WebSphere Node Agent and Deployment Manager high
availability using external clustering software solutions
such as IBM HACMP, IBM Tivoli System Automation
(TSA), VERITAS Cluster Server, and Sun Cluster.

• High availability considerations and differences when
using WebSphere in iSeries environments and zSeries
environments.

• End-to-end WebSphere system high availability involving
WebSphere MQ, Web servers, Load Balancer, firewalls,
and LDAP servers.

The book also gives an introduction into how to backup and
recover a Network Deployment configuration.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 High availability concepts
	Chapter 1. Understanding high availability concepts
	1.1 Process availability and data availability
	1.1.1 Clustering for high availability

	1.2 Availability definition
	1.2.1 Levels of availability
	1.2.2 Availability matrix
	1.2.3 Causes of downtime
	1.2.4 Possible single points of failure in the WebSphere system
	1.2.5 HA technologies for WebSphere system components
	1.2.6 Levels of WebSphere system availability
	1.2.7 Planning and evaluating your WebSphere HA solutions

	1.3 Failover terms and mechanisms

	Part 2 WebSphere clustering for HA and HA administration
	Chapter 2. WebSphere Application Server failover and recovery
	2.1 Introduction to availability
	2.1.1 Hardware-based high availability
	2.1.2 Workload management
	2.1.3 Failover
	2.1.4 HAManager
	2.1.5 Session management

	2.2 WebSphere Application Server clustering
	2.2.1 Clustering for scalability and failover

	2.3 WebSphere workload management defined
	2.3.1 Distributing workloads
	2.3.2 Benefits

	2.4 Managing session state among servers
	2.4.1 HTTP sessions and the session management facility
	2.4.2 EJB sessions or transactions
	2.4.3 Server affinity

	2.5 Web container clustering and failover
	2.5.1 Session management and failover inside the plug-in
	2.5.2 Web container failures
	2.5.3 Web server plug-in failover tuning

	2.6 EJB container clustering and failover
	2.6.1 EJB container redundancy
	2.6.2 EJB bootstrapping considerations
	2.6.3 EJB client redundancy and bootstrap failover support
	2.6.4 EJB types, workload management and failover
	2.6.5 Stateful session bean failover
	2.6.6 WebSphere process failures, relationship to EJB processing
	2.6.7 EJB WLM exceptions

	2.7 Backup cluster support
	2.7.1 Runtime behavior of backup clusters
	2.7.2 Scenario and configuration description

	2.8 WebSphere cell and cluster setup
	2.8.1 Security considerations
	2.8.2 Backup cluster configuration
	2.8.3 Core group bridge configuration
	2.8.4 Testing the backup cluster configuration
	2.8.5 Troubleshooting

	Chapter 3. WebSphere administrative process failures
	3.1 Introduction to process failures
	3.2 Deployment Manager failures
	3.2.1 Configuration management
	3.2.2 Node Agent
	3.2.3 Application server
	3.2.4 Naming server
	3.2.5 Security service
	3.2.6 Application clients
	3.2.7 Synchronization Service and File Transfer Service
	3.2.8 RAS Service and PMI monitoring
	3.2.9 Administrative clients
	3.2.10 Enhancing Deployment Manager availability

	3.3 Node Agent failures
	3.3.1 Application servers
	3.3.2 Deployment Manager
	3.3.3 Security service
	3.3.4 Naming server
	3.3.5 Application clients
	3.3.6 Synchronization service and File transfer service
	3.3.7 RAS service, PMI and monitoring
	3.3.8 Administrative clients
	3.3.9 Enhancing Node Agent availability

	3.4 Restarting WebSphere processes as an OS service
	3.5 Enhancing WebSphere process availability using clustering software

	Chapter 4. High availability system administration
	4.1 Introduction to high availability
	4.1.1 System setup for the administration scenarios

	4.2 Starting or stopping application servers and the Web server plug-in retry interval
	4.3 Replacing hardware
	4.3.1 Removing the node from the cell
	4.3.2 Installing and configuring the new hardware or LPAR

	4.4 Hardware upgrades
	4.5 Installing WebSphere refresh packs
	4.5.1 Downloading support packs
	4.5.2 The Update Installer for WebSphere Software
	4.5.3 WebSphere Application Server for distributed platforms
	4.5.4 WebSphere Application Server for OS/400
	4.5.5 WebSphere Application Server for z/OS
	4.5.6 Using the Update Installer

	4.6 Sample wsadmin scripts for administration tasks

	Chapter 5. High availability application administration
	5.1 Administering applications in an HA environment
	5.1.1 Availability while updating an application
	5.1.2 System capacity

	5.2 Concepts
	5.2.1 Persistence layer
	5.2.2 Application update types

	5.3 Topologies
	5.3.1 Multiple cells environment
	5.3.2 Single cell, multiple clusters
	5.3.3 Single cell, single cluster
	5.3.4 Topologies and update types

	5.4 Application administration
	5.4.1 Restarting an application
	5.4.2 Rollout update (new feature of WebSphere V6)
	5.4.3 Update types: major release or upgrade
	5.4.4 Update type: bugfix release

	Part 3 WebSphere HAManager
	Chapter 6. WebSphere HAManager
	6.1 Introduction to the HAManager
	6.2 Core group
	6.2.1 Core group coordinator
	6.2.2 Transport buffer
	6.2.3 Distribution and Consistency Services
	6.2.4 Core group policy
	6.2.5 Match criteria
	6.2.6 Transport type

	6.3 High availability group
	6.3.1 State change of high availability group members

	6.4 Discovery of core group members
	6.5 Failure Detection
	6.5.1 Active failure detection
	6.5.2 TCP KEEP_ALIVE

	6.6 JMS high availability
	6.7 Transaction Manager high availability
	6.7.1 Transaction Manager HA of previous versions of WebSphere
	6.7.2 Hot-failover of Transaction Manager using shared file system
	6.7.3 Hot-failover of transaction logs using external HA software
	6.7.4 File System Locking Protocol Test

	Part 4 Platform specific information, IBM Eserver iSeries and zSeries
	Chapter 7. WebSphere HA on IBM Eserver iSeries
	7.1 Introduction to iSeries HA
	7.1.1 WebSphere Network Deployment: High availability for WebSphere processes
	7.1.2 iSeries clustering: High availability for other critical resources in the application path
	7.1.3 Auxiliary Storage Pools (ASP)
	7.1.4 Switchable disk pools (independent ASPs)
	7.1.5 Cross-site mirroring
	7.1.6 Cluster resource groups
	7.1.7 Device domains

	7.2 Sample scenario configuration
	7.2.1 Create independent disk pool
	7.2.2 Configuring the cluster and resource group objects
	7.2.3 Configuring cross-site mirroring
	7.2.4 Restoring the WebSphere application database into the independent ASP
	7.2.5 Creating a J2C authentication alias
	7.2.6 WebSphere data source configuration
	7.2.7 Messaging engine datastore
	7.2.8 Configuring iSeries TCP/IP settings

	7.3 Transaction Manager configuration
	7.4 Reference material

	Chapter 8. WebSphere HA on z/OS
	8.1 zSeries Parallel Sysplex
	8.2 WebSphere V6.0.1 for z/OS topology overview
	8.2.1 Base application server on z/OS
	8.2.2 Network Deployment on a z/OS LPAR
	8.2.3 Network Deployment in a Parallel Sysplex environment
	8.2.4 Mixed platform cells

	8.3 z/OS workload management and WebSphere workload management
	8.4 Distributing HTTP and IIOP requests to different systems within a Parallel Sysplex
	8.4.1 Sysplex Distributor

	8.5 Failover options for WebSphere Application Server V6 on z/OS
	8.5.1 ARM and PRR
	8.5.2 High Availability manager (HAManager)

	8.6 Transaction logging and recovery
	8.6.1 A word on 2-Phase Commit (2PC)
	8.6.2 RRS
	8.6.3 XA transactions

	8.7 HTTP session and stateful session bean failover
	8.7.1 HTTP session failover
	8.7.2 Stateful session bean failover

	8.8 JMS failover
	8.9 DB2 data sharing
	8.10 WebSphere MQ for z/OS high availability
	8.11 A sample high availability configuration
	8.12 Hardware, software, and application upgrade
	8.13 WebSphere Application Server for Linux on zSeries
	8.14 Reference

	Part 5 Using external clustering software
	Chapter 9. Configuring WebSphere Application Server for external clustering software
	9.1 Introduction
	9.1.1 IP-based cluster failover versus non-IP based cluster failover
	9.1.2 High availability configuration types
	9.1.3 Failover terms and mechanisms

	9.2 Standard practice
	9.2.1 Gathering non-functional requirements
	9.2.2 Choosing the HA configuration type
	9.2.3 Configuring the environment: WebSphere Application Server binaries and profiles
	9.2.4 Testing

	9.3 Deployment Manager high availability
	9.3.1 Preparing
	9.3.2 Installing WebSphere Application Server Network Deployment
	9.3.3 Configuring the clustering software

	9.4 Node Agent and application server high availability
	9.4.1 Preparing
	9.4.2 Installing WebSphere Application Server Network Deployment
	9.4.3 Configuring the clustering software

	9.5 Common advanced topology
	9.5.1 Connecting to a remote database
	9.5.2 Connecting to a remote security service, such as LDAP
	9.5.3 Connecting to a remote messaging engine

	9.6 Transaction Manager failover with No Operation policy
	9.6.1 Prerequisites for Transaction Manager with NoOP policy
	9.6.2 Transaction Manager with No Operation policy scenario
	9.6.3 Configuring WebSphere for TM No Operation policy
	9.6.4 Configuring external clustering software for Transaction Manager No Operation policy recovery

	9.7 Default messaging provider failover with No Operation policy
	9.7.1 Prerequisites for default messaging provider with NoOP policy
	9.7.2 Default messaging provider with No Operation policy scenario
	9.7.3 Configuring WebSphere for default messaging provider No Operation policy
	9.7.4 Configuring external clustering software for default messaging provider No Operation policy

	Chapter 10. WebSphere and IBM Tivoli System Automation
	10.1 Introduction to Tivoli System Automation
	10.1.1 How Tivoli System Automation works
	10.1.2 Configuration basics of Tivoli System Automation
	10.1.3 Managing resources
	10.1.4 Tivoli System Automation and IBM WebSphere MQ
	10.1.5 Using Cluster Agent for IBM DB2 UDB

	10.2 Planning and preparation
	10.3 Deployment Manager
	10.3.1 Installing the Deployment Manager
	10.3.2 Configuring Tivoli System Automation to run the Deployment Manager scenario
	10.3.3 Testing Deployment Manager failover

	10.4 Node Agent and application server
	10.4.1 Installing a Node Agent and application server or servers
	10.4.2 Configuring Tivoli System Automation to run the Node Agents and application server
	10.4.3 Testing Node Agent and application server failover
	10.4.4 Example: Monitoring and restarting two nodes

	10.5 Transaction Manager failover with No Operation policy
	10.5.1 WebSphere configuration
	10.5.2 Tivoli System Automation configuration
	10.5.3 Testing Transaction Manager with NoOP policy failover

	10.6 Default messaging provider with No Operation policy
	10.6.1 WebSphere configuration
	10.6.2 Tivoli System Automation configuration
	10.6.3 Testing messaging engine with NoOP policy failover

	10.7 Reference

	Chapter 11. WebSphere and IBM HACMP
	11.1 Introduction to IBM HACMP
	11.1.1 How HACMP works
	11.1.2 Configuration basics of HACMP
	11.1.3 Managing resources
	11.1.4 Using WebSphere MQ SupportPac for HACMP
	11.1.5 Using DB2 with HACMP

	11.2 Planning and preparation
	11.3 Deployment Manager
	11.3.1 Installing the Deployment Manager
	11.3.2 Configuring HACMP to run the Deployment Manager
	11.3.3 Testing Deployment Manager failover

	11.4 Node Agent and application server
	11.4.1 Installing a Node Agent and application server or servers
	11.4.2 Configuring HACMP to run the Node Agents and application servers
	11.4.3 Testing Node Agent and application server failover
	11.4.4 Application with embedded messaging failover

	11.5 Transaction Manager failover with No Operation policy
	11.5.1 WebSphere configuration
	11.5.2 HACMP configuration
	11.5.3 Testing Transaction Manager with NoOP policy failover

	11.6 Summary
	11.7 Reference

	Chapter 12. WebSphere and VERITAS Cluster Server
	12.1 Introduction to VCS
	12.1.1 How VERITAS Cluster Server works
	12.1.2 Configuration basics of VCS
	12.1.3 Managing resources
	12.1.4 Using Cluster Agent for IBM WebSphere MQ
	12.1.5 Using Cluster Agent for IBM DB2 UDB

	12.2 Planning and preparation
	12.3 Deployment Manager
	12.3.1 Installing the Deployment Manager
	12.3.2 Configuring VCS to run the Deployment Manager
	12.3.3 Testing Deployment Manager failover

	12.4 Node Agent and application server
	12.4.1 Installing a Node Agent and application server or servers
	12.4.2 Configuring VCS to run the Node Agents and application server or servers
	12.4.3 Testing Node Agent and application server failover

	12.5 Transaction Manager failover with No Operation policy
	12.5.1 WebSphere configuration
	12.5.2 VCS configuration: service groups and resources
	12.5.3 Testing Transaction Manager with NoOP policy failover

	12.6 Default messaging provider failover with No Operation policy
	12.6.1 WebSphere configuration
	12.6.2 VCS configuration: service groups and resources
	12.6.3 Testing messaging engine with NoOP policy failover

	12.7 Reference

	Chapter 13. WebSphere and Sun Cluster
	13.1 Introduction to Sun Cluster
	13.1.1 How Sun Cluster works
	13.1.2 Configuration basics of Sun Cluster
	13.1.3 Managing resources
	13.1.4 Using the Cluster Agent for WebSphere MQ
	13.1.5 Using the Cluster Agent for DB2

	13.2 Planning and preparation
	13.3 Deployment Manager
	13.3.1 Installing WebSphere Network Deployment
	13.3.2 Configuring Deployment Manager with Sun Cluster
	13.3.3 Completing the WebSphere cell
	13.3.4 Testing Deployment Manager failover

	13.4 Node Agent and application servers
	13.4.1 Installing a Node Agent and application server
	13.4.2 Completing the configuration
	13.4.3 Configuring Sun Cluster to run the Node Agent
	13.4.4 Configure Sun Cluster to run application server
	13.4.5 Testing Node Agent and application server failover
	13.4.6 Troubleshooting

	13.5 Transaction Manager and messaging engine failover with No Operation policy
	13.5.1 Additional Sun Cluster setup
	13.5.2 Configuring the Deployment Manager
	13.5.3 Installing the node
	13.5.4 Completing the configuration
	13.5.5 Configuring the Node Agent with Sun Cluster
	13.5.6 Configuring an application server with Sun cluster
	13.5.7 Testing: failing the Node Agent and application servers
	13.5.8 Troubleshooting

	13.6 Reference

	Part 6 End-to-end high availability
	Chapter 14. Backup and recovery of Network Deployment configuration
	14.1 Network Deployment configurations
	14.1.1 Backup methods

	14.2 Node failure scenarios
	14.2.1 Failure of the Deployment Manager node
	14.2.2 Failure of a WebSphere Application Server node

	14.3 Node recovery
	14.3.1 Recovery using file system backup and restore methods
	14.3.2 Recovery using backupConfig and restoreConfig

	14.4 Conclusion
	14.5 Reference material

	Chapter 15. WebSphere end-to-end high availability
	15.1 Introduction
	15.2 WebSphere Load Balancer
	15.3 Web server
	15.3.1 Server affinity
	15.3.2 Web server plug-in file (plugin-cfg.xml) management
	15.3.3 Data availability

	15.4 Database server
	15.4.1 Continuous availability
	15.4.2 Failover availability
	15.4.3 Client application code considerations

	15.5 WebSphere MQ (and other messaging providers)
	15.6 LDAP Server
	15.6.1 Using clustering software and shared disks
	15.6.2 Using clustering software and LDAP master-replica
	15.6.3 Using a network sprayer (Load Balancer)
	15.6.4 Using a network sprayer (Load Balancer) with LDAP peer replication (multi-master)
	15.6.5 Conclusions

	15.7 Firewall
	15.7.1 Using clustering software
	15.7.2 Using a network sprayer
	15.7.3 Conclusions

	15.8 Summary
	15.8.1 Process availability and data availability

	Part 7 Appendixes
	Appendix A. Handling StaleConnectionException
	Connections in auto-commit mode
	Connections with auto-commit disabled
	Transactions started in the same method
	Transactions started in a different method from database access

	Reference

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

