
ibm.com/redbooks

WebSphere V3.5 Handbook

Ken Ueno
Larry Brown

Larry Clark
Chris Gerken

Geoff Hambrick
Stacy Joines
Sung-Ik Son

Lorrie Tomek
Jim VanOosten

Find out what makes the WebSphere
programming model so compelling

Explore the new features,
including Servlet 2.2 and JSP 1.1

Learn from the experience
of product experts

David Artus
Ashok Iyengar

Simon Kapadia
Mohamed Ramdani

James Roca
Chenxi Zhang

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WebSphere V3.5 Handbook

January 2001

SG24-6161-00

International Technical Support Organization

© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (January 2001)

This edition applies to:

• IBM WebSphere Application Server Standard and Advanced Editions V3.5.2 for AIX and Windows

• IBM HTTP Server V1.3.6.12 for AIX and Windows

• IBM Java Development Kit V1.2.2 for AIX and Windows

• IBM DB2 UDB V7.1 FP1 for AIX and Windows

• Lotus Domino R5.0.4 for AIX

• Oracle 8i (8.1.6) for AIX and Windows

• Sybase 12 for AIX

for use with the AIX V4.3.3, Windows NT 4.0 SP6a and Windows 2000 operating systems.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix H, “Special notices” on page 1131.

Take Note!

Contents

Preface .xix
The team that wrote this redbook. xix
Comments welcome. xxiii

Chapter 1. Overview of WebSphere Application Server V3.5 1
1.1 What is WebSphere Application Server? . 1
1.2 WebSphere Application Server architecture overview. 1

1.2.1 Administration server . 2
1.2.2 Application server . 2
1.2.3 Administrative database . 3
1.2.4 Administrative console . 3

1.3 Standard Edition. 3
1.4 Advanced Edition . 4

1.4.1 Naming. 4
1.4.2 Security . 4
1.4.3 Transactions. 5
1.4.4 Workload management. 5

1.5 Open standards . 5

Chapter 2. What’s new in WebSphere V3.5? . 7
2.1 Installation . 7
2.2 InfoCenter . 8
2.3 Migration . 10
2.4 Java 2 support . 10
2.5 Security . 11
2.6 New and improved administration tools . 11

2.6.1 WebSphere Administrative Console . 11
2.6.2 WSCP . 12
2.6.3 XMLConfig . 13
2.6.4 Web console. 13

2.7 New and improved connection pooling . 13
2.8 New Resource Analyzer . 14
2.9 New Log Analyzer . 14
2.10 New platform support . 15
2.11 New database support . 15
2.12 New Web Server support . 15
2.13 Conclusion . 15

Chapter 3. WebSphere programming model . 17
3.1 Analysis of an example application . 17

3.1.1 Business process model for an Order . 18
© Copyright IBM Corp. 2001 iii

3.1.2 Architectures supported by WebSphere 24
3.1.3 Features of a programming model driven design 30

3.2 Application components . 31
3.2.1 Browser-hosted components . 31
3.2.2 Web application server hosted components 42
3.2.3 Distributed object server-hosted components 63

3.3 Control flow mechanisms . 80
3.3.1 Browser component initiated control flow 80
3.3.2 Web application server component initiated control flow 85

3.4 Data flow sources. 90
3.4.1 Browser-maintained data flow sources . 90
3.4.2 Web application server maintained data flow sources. 94
3.4.3 Enterprise server-maintained data sources. 101

3.5 Chapter summary . 104
3.5.1 Summary of programming model aspects 104
3.5.2 Applying the programming model to our sample application . . . 107
3.5.3 Meeting the challenges. 112

Chapter 4. WebSphere components . 115
4.1 WebSphere Administrative Server . 115

4.1.1 WebSphere administrative services . 116
4.1.2 Starting the administrative server . 118
4.1.3 Stopping the administrative server . 118
4.1.4 Running WebSphere servers as a non-root user 119

4.2 Application server. 122
4.2.1 The application server hierarchy. 122
4.2.2 The Default Server . 123
4.2.3 Create a new application server . 126
4.2.4 Virtual hosts . 130

4.3 What is an enterprise application? . 134
4.4 WebSphere administrative interfaces . 134

Chapter 5. Servlet support. 137
5.1 What is a servlet?. 137
5.2 How servlets work . 137

5.2.1 Servlet process flow . 138
5.2.2 The Java Servlet API . 139
5.2.3 The servlet life cycle . 140

5.3 WebSphere and servlets . 143
5.3.1 The servlet engine . 143
5.3.2 Web applications . 144
5.3.3 Servlets . 144

5.4 Writing a simple servlet example . 144
iv WebSphere V3.5 Handbook

5.4.1 The HelloWorldServlet . 145
5.4.2 Basic servlet structure . 145
5.4.3 Compiling the servlet . 146

5.5 Deploying the example servlet under WebSphere 147
5.5.1 Define a new application server . 148
5.5.2 Define a servlet engine . 150
5.5.3 Create a Web application . 155
5.5.4 Deploying the servlet . 160
5.5.5 Invoking the deployed servlet . 166

5.6 Internal servlets . 167
5.6.1 Adding the internal servlets to your Web application. 167
5.6.2 The invoker servlet . 170
5.6.3 The file servlet . 173
5.6.4 JSP compilers . 176
5.6.5 The chainer servlet . 177
5.6.6 The ErrorReporter servlet . 183

Chapter 6. JSP support . 189
6.1 Using JSP to present dynamic content . 189
6.2 The collaboration between form, servlet, and JSP 190

6.2.1 A bean as contract . 191
6.2.2 Build the static portion of the JSP . 191
6.2.3 Coding the dynamic portion of the JSP 191

6.3 Rapid development using JSP . 193
6.3.1 JSP as scrapbook. 193
6.3.2 JSP as inspector . 193
6.3.3 JSP as configuration query . 194
6.3.4 Testing the servlet/JSP collaboration . 194

6.4 JSP life cycle . 194
6.4.1 Java source generation and compilation 195
6.4.2 Request processing . 196
6.4.3 Termination . 196

6.5 Administering JSP files. 196
6.5.1 Enable JSP handling at the Web application level 196
6.5.2 JSP processors . 197
6.5.3 JSP-enabled Web applications look at all JSP requests 198
6.5.4 Place JSP files and configure Web applications to find them . . 198
6.5.5 JSP reloading . 199

6.6 Batch compiling JSP files . 200
6.7 JSP 1.1 . 200

6.7.1 Custom tags . 201
6.7.2 The custom tag environment . 201
6.7.3 Building a custom tag . 207
v

6.8 Configuring and running your JSPs . 212
6.8.1 Configuring WebSphere for JSP 1.1 . 213
6.8.2 Deploying application components . 221
6.8.3 Start the Web application . 224
6.8.4 Invoking the JSP . 225

6.9 Custom tag examples. 228

Chapter 7. Session support . 245
7.1 V3.02.x vs. V3.5 overview . 246
7.2 Session feature overview . 246

7.2.1 Cookies . 246
7.2.2 URL rewriting . 251
7.2.3 Session API . 254
7.2.4 Local sessions . 258
7.2.5 Persistence . 260
7.2.6 IBM extensions . 265
7.2.7 Session clustering . 276

7.3 Session performance considerations . 287
7.3.1 Session size . 287
7.3.2 Multirow persistent session management 290
7.3.3 Managing your session connection pool 291

7.4 Alternatives to session support: cookies . 292

Chapter 8. Servlet V2.2 in WebSphere V3.5.2 295
8.1 WebSphere support for Servlet API V2.2 . 295
8.2 Selecting Servlet V2.2 support . 297
8.3 Comparison of the Servlet API versions . 298

8.3.1 New interfaces in Servlet API V2.2 . 298
8.3.2 Optional Servlet APIs not supported . 300
8.3.3 Semantic differences . 301
8.3.4 HTTP session scope. 301
8.3.5 Session Cookie Names . 308
8.3.6 Web Path mapping (request mapping) 313
8.3.7 Other API differences . 314

8.4 Multiple error pages . 314
8.4.1 Properties introduction . 315
8.4.2 Test case for error pages . 316

8.5 Welcome file lists . 321
8.6 The Web Application Archive (WAR) . 323

8.6.1 Create a directory structure . 324
8.6.2 Place any static content in the main hierarchy 324
8.6.3 Place any Java class files in the WEB-INF/ classes directory . . 324
8.6.4 Place any JAR files in WEB-INF/ lib . 325
vi WebSphere V3.5 Handbook

8.6.5 Create the deployment descriptor in the WEB-INF directory . . . 325
8.6.6 Create the WAR file . 326

8.7 Deploying an application from a WAR file . 328
8.7.1 Obtaining the example WAR file . 328
8.7.2 Preparation. 330
8.7.3 Deployment . 332
8.7.4 Resulting configuration . 338
8.7.5 Command line deployment . 342
8.7.6 Execution . 345

Chapter 9. Using JNDI to access LDAP . 347
9.1 What is JNDI? . 348
9.2 Naming concepts . 349
9.3 JNDI specifications. 351

9.3.1 JNDI packages . 351
9.3.2 JNDI standard environment properties 352

9.4 JNDI sample application . 353
9.4.1 Sample application design . 354
9.4.2 Running the JNDI sample application . 355
9.4.3 Sample LDAP access implementation 364

Chapter 10. JDBC 2.0 support . 371
10.1 JDBC 2.0 Core API . 371

10.1.1 Scrollable ResultSets . 373
10.1.2 Batch update . 374
10.1.3 Fetch size . 374
10.1.4 Advanced datatypes . 374

10.2 JDBC 2.0 Optional Extension API. 374
10.2.1 JNDI for naming databases . 376
10.2.2 Connection pooling . 376
10.2.3 Distributed transaction support (JTA support) 378
10.2.4 RowSets . 378
10.2.5 IBM JDBC 2.0 extensions . 378

10.3 Administration of data sources . 379
10.3.1 datasources.xml property file . 383

10.4 Best practices for JDBC 2.0 data access with WebSphere 383
10.4.1 Select database manager/driver capabilities. 384
10.4.2 Use connection pooling for JDBC access 385
10.4.3 Configure connection pool sizes . 385
10.4.4 Configure connection pool timeouts . 385
10.4.5 Specify database attributes at deployment time 386
10.4.6 Perform expensive JNDI lookups once per data source 386
10.4.7 Use proper try/catch/finally logic to release JDBC resources . 388
vii

10.4.8 Configure PreparedStatement cache size 389
10.5 Recovery from DB failures . 389
10.6 Reference information . 391

Chapter 11. Enterprise Java Services . 393
11.1 Configuring Enterprise Java Services . 393

11.1.1 Creating a container . 394
11.1.2 Removing a container . 399

11.2 Installing an EJB into a container . 400
11.2.1 Creating the deployment descriptor . 402
11.2.2 Generating stubs and skeletons . 402
11.2.3 Create EJB in a container . 402
11.2.4 Creating the deployment descriptor using jetace. 402
11.2.5 Create an enterprise bean . 411
11.2.6 Creating a deployed JAR using VisualAge for Java 421

11.3 Stateless session beans . 427
11.3.1 The life cycle of a stateless session bean 427
11.3.2 Stateless session beans instance pool 437

11.4 Stateful session beans . 439
11.4.1 The life cycle of the stateful session beans 439
11.4.2 Stateful session beans instance pool 447
11.4.3 Stateful session beans passivation/activation 450
11.4.4 Understanding EJBObject handles . 453

11.5 Container managed persistence (CMP) entity beans 459
11.5.1 Entity beans life cycle . 459
11.5.2 Understanding the entity beans persistence 464
11.5.3 Understanding the entity beans life cycle 466
11.5.4 Understanding CMP commit option A, C caching 467

11.6 WebSphere EJB security . 472
11.6.1 WebSphere EJS security service . 473
11.6.2 Delegation in WebSphere . 474
11.6.3 Configure EJB security . 476
11.6.4 Verify EJB security . 492

Chapter 12. Transactions . 503
12.1 Transaction basics . 503
12.2 Java and transactions . 506

12.2.1 JDBC . 506
12.2.2 WebSphere JDBC support . 509

12.3 Enterprise JavaBeans distributed transaction support 511
12.3.1 Update databases with EJBs . 511
12.3.2 Transaction demarcation . 513
12.3.3 Transactional specifiers . 516
viii WebSphere V3.5 Handbook

12.3.4 Transaction attributes . 517
12.3.5 Transaction isolation attribute . 521

12.4 EJB concurrency control . 525
12.4.1 Setting read-only method with VisualAge for Java 526
12.4.2 Setting read-only method with administrative console. 526
12.4.3 Database locking with EJB . 528

12.5 Settings based on EJB usage. 529
12.6 Transaction exception handling . 533

12.6.1 The preliminaries . 533
12.6.2 What you can assume . 534
12.6.3 What an application can do. 534
12.6.4 What a container will do . 535
12.6.5 TransactionRolledbackException . 535
12.6.6 Dos and don’ts (EJB 1.0, WebSphere V3.5 specific). 535

12.7 WebSphere family interoperability . 537
12.8 Conclusion . 537

Chapter 13. XML and WebSphere . 539
13.1 XML overview. 539
13.2 Using XML in WebSphere . 540

13.2.1 XML versions supported . 542
13.3 An XML example . 543
13.4 XML basics. 544

13.4.1 Document Type Definitions (DTDs). 546
13.4.2 DTD catalogs . 549
13.4.3 XML namespaces . 549
13.4.4 An overview of XML parsing . 550

13.5 XML and Web browsers: XSL and CSS . 552
13.5.1 Stylesheet processing instruction . 554
13.5.2 XSL overview . 555
13.5.3 An XSL stylesheet example . 556
13.5.4 A CSS stylesheet example . 558
13.5.5 XSL and CSS comparison . 560

13.6 Programming with XML . 561
13.6.1 Obtaining the CD catalog data . 561
13.6.2 Dynamic XML formatted with XSL. 562
13.6.3 Dynamic XML formatted with CSS . 562
13.6.4 Dynamic XML formatted on the server with LotusXSL. 563
13.6.5 Supporting a Java client . 566

13.7 Summary . 571

Chapter 14. Application deployment . 573
14.1 Samples we used . 573
ix

14.2 Before configuration . 574
14.3 Create a virtual host . 576
14.4 Create a JDBC driver and data source . 579

14.4.1 Create a JDBC driver . 579
14.4.2 Install a JDBC driver . 582
14.4.3 Create a data source . 585

14.5 Create an application server and other basic resources 587
14.5.1 Types of resources . 588
14.5.2 Application server properties . 589
14.5.3 Application Server Start Option. 590
14.5.4 Node selection . 591
14.5.5 Add enterprise beans . 592
14.5.6 EJBContainer properties. 592
14.5.7 Select a virtual host . 593
14.5.8 Servlet Engine properties . 594
14.5.9 Web application properties . 594
14.5.10 Specify system servlets . 596

14.6 Placing source files . 598
14.7 Add Servlet . 601
14.8 Create enterprise beans . 606
14.9 Verification of the servlet and EJB . 613
14.10 Create an enterprise application . 615
14.11 Verification of an enterprise application . 620
14.12 Deployment and classpaths . 621

14.12.1 Classpaths and classloaders . 622
14.12.2 The application server classpath. 629
14.12.3 The classloader effect. 632
14.12.4 Servlet accessing a local EJB . 636
14.12.5 Servlet access to a remote EJB . 640
14.12.6 EJBs with shared implementation helper classes 642
14.12.7 EJBs with shared interface classes. 642
14.12.8 Summary of JARs and classpaths . 650

Chapter 15. WebSphere security . 651
15.1 Application security . 651

15.1.1 Authentication. 651
15.1.2 Authorization . 651
15.1.3 Delegation . 652
15.1.4 Trust . 652

15.2 WebSphere security model. 652
15.2.1 WebSphere security architecture . 652
15.2.2 WebSphere security authentication . 655
15.2.3 WebSphere security authorization . 657
x WebSphere V3.5 Handbook

15.3 What’s new in WebSphere V3.5 security . 658
15.4 Using client certificate based authentication with WebSphere 658

15.4.1 Web client security flow with certificates 659
15.4.2 Using IBM SecureWay Directory . 660
15.4.3 Managing certificates . 667
15.4.4 Configuring the IBM HTTP Server to support HTTPS 709
15.4.5 Securing a WebSphere application using certificates 726
15.4.6 Testing the secured application . 749

15.5 WebSphere and LDAP servers . 752
15.5.1 Netscape Directory Server . 752
15.5.2 Domino 5.0 . 760
15.5.3 Microsoft Active Directory . 762

15.6 Custom challenge. 769

Chapter 16. Topologies selection . 771
16.1 Topology selection criteria . 771

16.1.1 Security . 771
16.1.2 Performance . 771
16.1.3 Throughput . 772
16.1.4 Availability . 772
16.1.5 Maintainability . 773
16.1.6 Session state . 773
16.1.7 Topology selection summary . 773

16.2 Vertical scaling with WebSphere workload management 774
16.3 HTTP server separation from the application server 775

16.3.1 OSE Remote . 776
16.3.2 Thick Servlet Redirector . 777
16.3.3 Thick Servlet Redirector administrative server agent 779
16.3.4 Thin Servlet Redirector . 780
16.3.5 Reverse proxy / IP forwarding. 781
16.3.6 HTTP server separation selection criteria 783

16.4 Scaling WebSphere in a three-tier environment 783
16.5 Horizontally scaling Web servers with WebSphere 785
16.6 One WebSphere domain vs. many . 785
16.7 Multiple applications within one node vs. one application per node. 788
16.8 Closing thoughts on topologies. 789

Chapter 17. Workload management . 791
17.1 Cloning. 791

17.1.1 Vertical and horizontal cloning . 793
17.1.2 Secure cloned resources . 794

17.2 WLM . 795
17.2.1 WLM runtime . 796
xi

17.2.2 WLM load balancing options . 805
17.2.3 WLM runtime exception handling . 806
17.2.4 WLM for administrative servers . 809

Chapter 18. Administrative console . 811
18.1 About WebSphere Administrative Console 811

18.1.1 Starting the administrative console . 811
18.1.2 Stopping the administrative console . 812
18.1.3 WebSphere Administrative Console features 813
18.1.4 WebSphere Administrative Console functionality 818
18.1.5 The common tasks . 829

18.2 In conclusion . 842

Chapter 19. Web console . 843
19.1 About Web console . 843

19.1.1 Starting the Web administrative console 844
19.1.2 Stopping the Web console . 846

19.2 Web console functionality . 847
19.2.1 Creating an object . 847

19.3 In conclusion . 853

Chapter 20. The WebSphere Control Program (WSCP) 855
20.1 Command line administration . 856

20.1.1 What is WSCP? . 856
20.1.2 What is Tcl? . 857

20.2 Tcl language fundamentals. 857
20.2.1 Basic Tcl syntax . 857
20.2.2 Variables . 858
20.2.3 Command substitution . 858
20.2.4 Quoting. 859
20.2.5 Procedures . 859

20.3 Invoking WSCP . 859
20.3.1 Command-line options . 860
20.3.2 The properties file. 860

20.4 Command syntax of WSCP . 862
20.4.1 Online help . 865
20.4.2 Status and error information . 867
20.4.3 Sample commands . 868

20.5 Example WSCP procedures . 868
20.5.1 Sample procedures: statusToString, checkStatus 869
20.5.2 Advanced sample procedures: getAttrs, setAttrs. 869
20.5.3 Advanced sample procedure: modEnv 871

20.6 Interactive administration with WSCP . 872
20.6.1 Keeping track of the container . 873
xii WebSphere V3.5 Handbook

20.6.2 Command line editing . 874
20.7 Troubleshooting with WSCP . 874

20.7.1 Enabling trace . 874
20.8 Limitations and additional information. 876

20.8.1 Security objects are not supported . 876
20.8.2 Aggregate tasks are not provided . 876
20.8.3 Concurrent use of clients may require coordination 876

20.9 Additional resources . 876

Chapter 21. XMLConfig . 877
21.1 Introduction to XML and XMLConfig . 877
21.2 XMLConfig components . 878
21.3 XMLConfig new features . 879
21.4 XML: a suitable markup language for WebSphere 880
21.5 Customizing XML for the WebSphere XMLConfig tool 881

21.5.1 XMLConfig elements . 882
21.5.2 XMLConfig actions . 883

21.6 XMLConfig examples and uses . 884
21.6.1 Starting and stopping an application server 884
21.6.2 Creating a new JDBC driver . 885
21.6.3 Creating a new DataSource . 886
21.6.4 Creating a new application server . 886
21.6.5 Creating a new EJB container . 888
21.6.6 Creating a new servlet engine . 889
21.6.7 Creating a new Web application . 890
21.6.8 Supporting Servlet 2.2 and JSP 1.1 APIs 891
21.6.9 Creating a new servlet . 892
21.6.10 Creating a new EJB . 893
21.6.11 XMLConfig variable substitution . 894
21.6.12 XMLConfig model and clone support 895
21.6.13 XMLConfig and security . 899
21.6.14 Starting point for generating XML for use with XMLConfig . . 904

Chapter 22. WebSphere sample programs . 907
22.1 How to obtain the samples? . 907
22.2 WebSphere samples matrix . 908
22.3 WebSphere samples installation. 909
22.4 WebSphere samples location . 911
22.5 WebSphere WSsamplesDB2_app Web application 912
22.6 Database configuration. 912

22.6.1 Checking database connectivity . 913
22.6.2 Defining a JDBC driver . 914
22.6.3 Creating a data source . 916
xiii

22.6.4 Installing the driver . 917
22.7 WSsamplesDB2_app User Profile sample 919
22.8 Sample Enterprise JavaBeans configuration 919
22.9 WebSphere Standard Edition samples . 925
22.10 Sample InstantDB configuration . 926
22.11 Standard and Advanced Edition samples listing 927

22.11.1 The examples Web application . 927
22.11.2 The WSsamplesIDB_app Web application 928
22.11.3 The WSsampleDB2_app Web application 929

Chapter 23. Problem determination . 933
23.1 The problem determination process . 933

23.1.1 Messages, logs and traces . 933
23.2 Messages. 934
23.3 The format of log and trace files . 935
23.4 WebSphere log files . 936

23.4.1 Sample output of log files . 938
23.5 The trace facility . 941

23.5.1 Trace basics . 941
23.5.2 Trace string format . 943
23.5.3 Enabling a trace for the administrative console. 943
23.5.4 Enabling trace for the administrative server 944
23.5.5 Setting trace as an application server property 945
23.5.6 Using the Trace Administrative Console 946
23.5.7 Setting trace as a command line option 952
23.5.8 Important trace packages . 952
23.5.9 Trace examples . 953
23.5.10 Nanny trace . 955
23.5.11 Using DrAdmin . 956

23.6 Object level trace (OLT) and the IBM distributed debugger. 958
23.6.1 Installing OLT and the distributed debugger 958
23.6.2 Running OLT . 959
23.6.3 Object level trace - tracing a servlet . 963
23.6.4 Setting method breakpoints on the trace. 967
23.6.5 Running the debugger from OLT . 968
23.6.6 Platforms supported for OLT and Distributed Debugger 973

Chapter 24. Log Analyzer . 975
24.1 Log Analyzer overview . 975
24.2 Downloading and installing the Log Analyzer 977
24.3 Using the Log Analyzer to view the activity.log 977
24.4 Using showlog to view the activity.log. 979
24.5 Configuring the activity.log . 983
xiv WebSphere V3.5 Handbook

24.5.1 Specify the size of activity.log . 983
24.5.2 Specify the port on which the logging service is listening 983

24.6 Display log entries in different groupings . 984
24.6.1 Sorting by ServerName . 986
24.6.2 Sorting by ProcessId . 989

24.7 Analyze action . 992
24.8 Using the Log Analyzer to view the ring buffer dump 996
24.9 Updating the symptom database . 999
24.10 Saving logs as an XML file . 1001

Chapter 25. Resource Analyzer . 1009
25.1 About Resource Analyzer . 1009

25.1.1 Performance data organization . 1010
25.2 What is collected and analyzed? . 1010
25.3 Resource Analyzer functionality . 1012
25.4 Levels of data collection . 1013

25.4.1 Using the EPM specification property 1013
25.4.2 Using the Performance dialog. 1015

25.5 Resource Analyzer requirements . 1016
25.6 Starting the Resource Analyzer . 1017
25.7 Working with the analyzer . 1019

25.7.1 Starting the analysis of a resource . 1020
25.7.2 Setting the Refresh Rate . 1021
25.7.3 Setting the Table Size . 1022
25.7.4 Viewing the analyses in chart form . 1022
25.7.5 Logging function in the analyzer . 1023

25.8 Resource Analyzer with WebSphere V3.5.2 1026
25.9 Resource Analyzer documentation . 1032

Chapter 26. Migration . 1033
26.1 About the Migration Assistant . 1033
26.2 Main steps in WebSphere migration . 1034
26.3 Migration Assistant panels . 1034
26.4 Files that are saved during migration . 1045
26.5 What is left to be done? . 1046
26.6 Migration of WebSphere V2.0.3.x to WebSphere V3.5 1046
26.7 Migration Assistant documentation . 1048

Appendix A. Installation steps . 1049
A.1 Planning . 1049

A.1.1 Web server location . 1049
A.1.2 Database server location . 1049
A.1.3 Java GUI installation or native installation 1050

A.2 Installation steps overview . 1052
xv

A.2.1 Configure operating system . 1052
A.2.2 Install Web server . 1053
A.2.3 Install DB server and create an administrative database 1054
A.2.4 WebSphere installation . 1063
A.2.5 Post configuration . 1075
A.2.6 Fix Pack installation . 1080

A.3 Uninstallation of WebSphere Application Server 1081

Appendix B. Remote Sybase connectivity . 1083
B.1 Sybase jConnect Client. 1083

B.1.1 Remote WebSphere V3.5 installation with Sybase ASE 1084
B.1.2 Checking Sybase jConnect connectivity with jConnect 4.2 1085

Appendix C. XML sample programs . 1087
C.1 Instructions for setting up and running the XML demo: Web Client . . . 1087
C.2 Instructions for setting up and running the XML demo: Java Client . . . 1101

Appendix D. JNDI sample programs . 1105
D.1 JNDI sample files . 1105
D.2 Deploy JNDI sample program to default_app . 1106

D.2.1 Copy HTML files and JSP files . 1106
D.2.2 Copy java files . 1106
D.2.3 Add servlets to default_app . 1107

D.3 Run the JNDI sample . 1108

Appendix E. Big3 application . 1111
E.1 Big3 - small insurance application . 1111
E.2 Object interaction diagram . 1113
E.3 Install Big3 . 1113
E.4 Test the configuration . 1114
E.5 Big3 application directory structure. 1115

Appendix F. The admin.config file definitions 1123

Appendix G. Using the additional material . 1129
G.1 Using the CD-ROM. 1129

G.1.1 How to use the CD-ROM . 1129
G.2 Locating the additional material on the Internet 1129
G.3 Using the Web material . 1130

G.3.1 How to use the Web material . 1130

Appendix H. Special notices . 1131

Appendix I. Related publications. 1135
I.1 IBM Redbooks . 1135
xvi WebSphere V3.5 Handbook

I.2 IBM Redbooks collections . 1135
I.3 Other resources . 1136
I.4 Referenced Web sites . 1136

How to get IBM Redbooks . 1137
IBM Redbooks fax order form . 1138

Index . 1139

IBM Redbooks review . 1155
xvii

xviii WebSphere V3.5 Handbook

Preface

WebSphere Application Server V3.5 is the latest version of the IBM open
standards-based e-business application deployment environment. This
redbook will show you how to install and use the product. It provides detailed
insights into the product’s architecture and gives a wealth of practical advice
about how best to exploit the features of WebSphere.

At the heart of the book are detailed step-by-step descriptions of the tasks
you will carry out to deploy and execute your applications. These descriptions
include not only the use of the improved V3.5 GUI administration console but
also examples of how to exploit the new command line administration
facilities.

The redbook places these task descriptions in a broader context by providing
discussions of possible application architectures, deployment topologies, best
practices and problem determination when using WebSphere Application
Server.

These discussions are founded on clear descriptions of concepts and
technologies that provide the framework for WebSphere Application Server.
These include the Servlet, JSP and EJB APIs, security, transactions, JDBC,
and JNDI.

The redbook also contains details of the support for the Servlet API V2.2 and
JSP V1.1 APIs introduced by WebSphere V3.5 Fix Pack 2 and examples of
using these new facilities.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Ken Ueno is an Advisory IT Specialist in the WebSphere Performance
group, which is a part of WebSphere development in RTP. Previously, he
managed residencies and produced Redbooks, which included WebSphere
V3 Performance Tuning Guide and WebSphere Scalability: WLM and
Clustering at the International Technical Support Organization, Raleigh
Center. Before joining the ITSO, he worked in Internet Systems, IBM Japan
Systems Engineering Co., Ltd. in Japan as an IT Specialist.
© Copyright IBM Corp. 2001 xix

David Artus is a Consulting IT Specialist in the London Solutions Group,
part of IBM EMEA Software Services. He has 20 years of experience in IT,
most recently specializing in consulting for the WebSphere product family.
His areas of expertise include object technologies and transaction
processing.

Larry Brown is a Senior Software Engineer for IBM in the USA. He has
over 15 years of experience in the computing field including development,
customer consulting, and teaching. His areas of expertise include
distributed systems, transaction processing, and fault-tolerant systems.

Larry Clark is an Advisory Software Engineer and a member of the
WebSphere Enablement Team in Research Triangle Park, NC, USA. His
various development roles have included programming, project management,
advanced design, strategy, and architecture.

Chris Gerken is a Senior Programmer for IBM based in the USA. He has
nine years of experience in object-oriented programming and design. He
represented IBM in the discussions leading to the JSP 1.0 and JSP 1.1
specifications and has since developed workshops on the design and use of
JSP custom tags.

Geoff Hambrick is an Executive Consultant on the IBM WebSphere
Enablement Team in Austin, Texas. His areas of expertise include
object-oriented analysis and design methodologies specializing in
distributed object and Web-based applications.

Ashok Iyengar is an Advisory Software Engineer at the IBM Transarc Lab’s
Customer Solutions Center in San Diego, USA. He has 18 years of IT
experience mainly in software development and has worked exclusively with
the WebSphere platform for the past couple of years.

Stacy Joines is an IBM Senior Software Engineer at Research Triangle
Park, NC. She has four years of experience in WebSphere and the Web
application field. She assists customers with proof of concepts regarding
WebSphere Application Server, with a focus on WebSphere performance
engagements.
xx WebSphere V3.5 Handbook

Simon Kapadia is an Advisory IT Specialist at the London Solutions Group,
part of IBM EMEA Software Services (North Region). His work involves going
out to customer sites and implementing solutions, specializing in WebSphere
Application Server and Edge Server. He has 10 years of UNIX experience.

Mohamed Ramdani is an IBM IT Specialist in France. He has two years’
experience in WebSphere-related technologies. He has worked on a
number of projects concerning the design and architecture of an application
based on WebSphere and VisualAge for Java using EJB.

James Roca is an IBM-certified AIX Technical Expert working at the UK
RS/6000 Technical Support Center. His areas of expertise include
multi-vendor UNIX support, AIX network tuning, and firewall (VPN)
consulting.

Sung-Ik Son is an Advisory Software Engineer at IBM, Raleigh. He has 14
years of experience in system and application software development. His
current areas of expertise are enabling and consulting for WebSphere
products.

Lorrie Tomek is an IBM WebSphere consultant in Research Triangle Park,
North Carolina. Her areas of expertise include architecture, design,
performance and reliability analysis, and object-oriented programming.

Jim VanOosten is a Senior Software Engineer at the IBM Rochester Lab.
He has over eight years of experience in object-oriented system design and
has worked on the WebSphere Solutions Integration Team for the past year.

Chenxi Zhang is an IBM IT specialist in China. She has four years of
experience in the IT field. She currently provides level 1 support for
WebSphere in China, helping customers with Web solutions.
xxi

Thanks to the following people for their invaluable contributions to this project:

Chris Pentleton, Pentleton Consulting Inc.
Vess Ivanov, Pentleton Consulting Inc.

Thanks to the following IBM employees:

Jerry Cuomo, Manager, WebSphere Development, Raleigh
Jason R McGee, WebSphere Architect, Raleigh
Michael Fraenkel, WebSphere Architect, Raleigh
Michael Morton, WebSphere Architect, Raleigh
Raj Nagratnam, WebSphere Development, Raleigh
Jamison Wilfred, WebSphere Development, Raleigh
Gabe Montero, WebSphere Development, Raleigh
Subodh Vinchurkar, WebSphere Development, Raleigh
JJ Kahrs, WebSphere Development, Raleigh
Chris Mitchell, WebSphere Development, Raleigh
Thomas Bitoni, WebSphere Development, Raleigh
Richard Bachouse, WebSphere Development, Raleigh
Nabeel Abdallah, WebSphere Development, Raleigh
Scott Johnson, WebSphere Development, Raleigh
Eric Jenney, Manager, WebSphere Development, Rochester
Pete Schommer, WebSphere Development, Rochester
Deb Erickson, WebSphere Development, Rochester
Ken Lawrence, WebSphere Development, Rochester
Russ Newcombe, WebSphere Naming Architect, Austin
Stephen Cocks, WebSphere ORB Architect, Austin
Fred Stock, Manager, WebSphere Development, IBM Transarc Lab
Tim Burt, WebSphere Development, IBM Transarc Lab
Amber Roy-Chowdhury, WebSphere Development, IBM Transarc Lab
Mike Young, WebSphere Development, IBM Transarc Lab
Samar Choudhary, WebSphere Development, IBM Transarc Lab
Dongfeng Li, WebSphere Development, IBM Transarc Lab
Daniel Julin, Websphere Development, IBM Transarc Lab
Hany Salem, WebSphere Serviceability Architect, Austin
Eric Labadie, Object Level Trace Architect, IBM Toronto Lab
Kris Kobylinski, Object Level Trace Development, IBM Toronto Lab
Xing Xue, Object Level Trace Development, IBM Toronto Lab
Ron Bostick, WebSphere Performance, Raleigh
Steve Roma, WebSphere Test, Raleigh
Laura Yen, WebSphere Test, Raleigh
Loc Dang, WebSphere Test, Raleigh
Venu Rao, WebSphere Test, Raleigh
xxii WebSphere V3.5 Handbook

Trish York, WebSphere Documentation, Raleigh
Jim Stetor, Manager, Websphere Solutions Integration
Dave Cai, Websphere Solutions Integration
Melissa Modjeski, Websphere Solutions Integration
Barbara Ballard, Websphere Solutions Integration
Ken McCauley, Manager, Websphere Enablement Team, Raleigh
Ken Hygh, Websphere Enablement Team, Raleigh
Keys Botzum, WebSphere Consulting Services
Kyle Brown, WebSphere Consulting Services
Lisa Tomita, WebSphere Consulting Services
Jeff Blight, EMEA Technical Sales
Kenji Kojima, IBM Japan
Alexander Koutsoumbos, IBM Australia
Ken Klingensmith, Worldwide WebSphere Technical Sales Support
Gail Christensen, ITSO Raleigh Center
Margaret Ticknor, ITSO Raleigh Center
John Ganci, ITSO Raleigh Center
Bill Moore, ITSO Raleigh Center
Tetsuya Shirai, ITSO San Jose Center
Uei Wahli, ITSO San Jose Center

and especially...
Tom Alcott, Worldwide WebSphere Technical Sales Support

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks review” on page 1155 to
the fax number shown on the form.

• Use the online evaluation form found at ibm.com/redbooks

• Send your comments in an Internet note to redbook@us.ibm.com
xxiii

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xxiv WebSphere V3.5 Handbook

Chapter 1. Overview of WebSphere Application Server V3.5

This redbook is a detailed exploration of WebSphere Application Server V3.5,
Standard Edition and WebSphere Application Server V3.5, Advanced Edition.
In this introductory chapter we give an overview of the purpose of these two
products and the differences between them.

You should note that in this redbook we will not address, WebSphere
Application Server, Enterprise Edition. Enterprise Edition builds on the
Advanced Edition by including two further products, Component Broker and
TXSeries.

1.1 What is WebSphere Application Server?

IBM WebSphere Application Server provides a scalable, industrial-strength
deployment platform for your e-business applications.

The Standard Edition supports the standard Java APIs that you can use for
developing dynamic Web content: Servlets, JavaServer Pages (JSP) and
eXtensible Markup Language (XML).

The Advanced Edition adds support for presenting your business logic as
Enterprise JavaBeans (EJB) components. It also provides the capability to
scale your application by distributing it across multiple physical machines,
and the administrative tools you need to manage your distributed site.

By using WebSphere and its supported technologies you can rapidly build
sophisticated applications that are well structured and hence maintainable
and extensible at e-business space. This redbook shows you how to use
WebSphere facilities and also gives practical advice on how best to exploit
them.

1.2 WebSphere Application Server architecture overview

When you install and run either Standard or Advanced editions of WebSphere
on a single machine you will see certain key processes running. In this
section we give a brief introduction to these processes and their purpose. In
later chapters we will give more details and describe other optional facilities.
© Copyright IBM Corp. 2001 1

Figure 1 gives a high-level overview of the major components that comprise a
WebSphere instance.

Figure 1. WebSphere components

The following sections describe the components shown in this figure.

1.2.1 Administration server
The administrative server is the systems management runtime component of
WebSphere. The administrative server is responsible for runtime
management, security, transaction coordination, and workload management.
In most cases (exceptions will be outlined later), the administrative server
runs on all nodes in a WebSphere administrative domain and controls the
interaction between each node and application server process in the domain.

1.2.2 Application server
Your code, servlets, JSPs, EJBs and their supporting classes run in an
application server. You can define multiple application servers, each of which
has its own Java Virtual Machine (JVM).

Application
Server(s)

application
server(s) administrative

console

administration
server administrative

database
2 WebSphere V3.5 Handbook

You decide which of your servlets, JSPs and EJBs run in which of your
application servers.

1.2.3 Administrative database
WebSphere stores all runtime configuration information for a domain in a
single persistent repository. In Standard Edition this repository can be stored
in InstantDB (which ships with the Standard Edition), DB2 or Oracle.
Advanced Edition supports DB2, Oracle and Sybase. In all cases you need to
check the WebSphere release notes for exactly which versions of your
chosen database you should use.

In our diagram we show a single node running all processes, and this is
common in small-scale development situations. It is entirely reasonable to
configure the database on a remote server, and in production environments
we recommend that you do so.

1.2.4 Administrative console
The administrative console is the graphical user interface used for
administration of a WebSphere administrative domain. The administrative
console can run on one of the nodes that the administrative server is running
on, or it can be a remote node that attaches to a running administrative
server.

1.3 Standard Edition

WebSphere Standard Edition is a single system, extremely easy-to-use Web
Application Server. You can use Standard Edition for applications producing
both static and dynamic Web pages containing:

• Static HTML (HTML, .gif, .wav, etc.)

• HTML with imbedded client-side scripts, for example JavaScript

You can develop applications producing dynamic content with servlets and
JSPs.

WebSphere Standard Edition’s objective is to be a simple, easy-to-use but
complete solution for building an active Web site and basic Web applications
that integrate with databases.

WebSphere Standard Edition does not provide the workload management
(WLM) functionality that is available in WebSphere Advanced Edition, but
does allow for multiple JVMs on a single physical server. WebSphere
Chapter 1. Overview of WebSphere Application Server V3.5 3

Standard Edition is also limited to a single node/machine unlike WebSphere
Advanced Edition. These JVMs can be mapped to multiple virtual hosts on a
single HTTP server to provide support for hosting multiple Web sites on a
single application server.

1.4 Advanced Edition

WebSphere Advanced Edition extends the WebSphere Standard Edition’s
functions across multiple machines to provide complete support for
developing new high-performance, scalable and available, transactional
Web-driven applications. WebSphere Advanced Edition focuses on new
applications (JSPs and EJBs) that access relational databases for persistent
state data.

WebSphere Advanced Edition also supports distributed system management
across the nodes in your distributed WebSphere Advanced Edition systems.
The set of nodes that are administered collectively comprise a WebSphere
administrative domain. You can administer an entire WebSphere domain from
a single administrative console.

The distributed WebSphere Advanced Edition architecture also requires other
fundamental services. We briefly outline their purpose in the following
sections.

1.4.1 Naming
In an object-oriented distributed computing environment, clients must have a
mechanism to locate and identify the objects as if the clients and objects
were all on the same machine. A naming service provides this mechanism.
WebSphere uses the Java Naming and Directory Interface (JNDI) to provide a
common front end to the naming service. We describe these features, and the
underlying use of Lightweight Directory Access Protocol (LDAP) in Chapter 9,
“Using JNDI to access LDAP” on page 347.

1.4.2 Security
WebSphere Advanced Edition allows you to control access to Web resources
such as HTML pages and JSPs, and also to control access to EJBs and the
business methods they provide. Authorization to access a resource is
permission-based. You can grant access permissions to users/groups and
control which users/groups can access the resource.

We describe the WebSphere security architecture in Chapter 15,
“WebSphere security” on page 651.
4 WebSphere V3.5 Handbook

1.4.3 Transactions
A transaction is a set of operations that transforms data from one consistent
state to another. Any realistic business application will have operations that
require several updates be made to a database, and that either all these
operations should complete or none should complete. For example, a money
transfer should debit one bank account and credit another; it would be a
serious error if only one of the two updates were to occur.

Traditional implementations of such business process would require the
programmer to place explicit transaction BEGIN and COMMIT statements in
the application code. One benefit of the EJB programming model is that you
specify your transactional requirements when you configure the EJB, not in
the code. So the code is much simpler to write.

WebSphere Advanced Edition in supporting EJBs provides full transactional
capabilities. These are implemented using the mechanism defined in the
Java Transaction API (JTA).

In Chapter 12, “Transactions” on page 503 gives a detailed explanation of
transactions, their support in WebSphere and implementation considerations
that developers need to take into account.

1.4.4 Workload management
The workload management (WLM) functionality in WebSphere Advanced
Edition introduces the notion of modelling of application server processes.
Clones, which are instances of a model, can be created either on a single
machine or across multiple machines in a cluster. In either case the
WebSphere Advanced Edition WLM provides workload distribution and
failover.

We describe these features in Chapter 17, “Workload management” on page
791.

1.5 Open standards

Both WebSphere Standard and Advanced are based on and support key
open-industry standards such as HyperText Transfer Protocol (HTTP),
HyperText Markup Language (HTML), eXtensible Markup Language (XML),
Secure Sockets Layer (SSL), Java, JavaBeans, Common Object Request
Broker Architecture (CORBA), Lightweight Directory Access Protocol (LDAP),
and most importantly the following Enterprise Java APIs:
Chapter 1. Overview of WebSphere Application Server V3.5 5

• Enterprise JavaBeans (EJB) technology is a reusable Java component for
connectivity and transactions (EJB support is provided only in the
Advanced Edition).

• JavaServer Pages (JSP) represent inline Java code scripted within Web
pages.

• Java Servlets are used in building and deploying server-side Java
applications.

• Java Interface Definition Language (JIDL) supports objects whose
interfaces are defined in CORBA IDL.

• JDBC is for connections to relational databases. WebSphere supports
JDBC within its connection manager and within EJBs, for distributed
database interactions and transactions.

• Java Messaging Service (JMS) is to be supported via MQSeries for
asynchronous messaging and queuing and for providing an interface.

• Java Transaction Service (JTS) and Java Transaction API (JTA) are
low-level APIs for interacting with transaction-capable resources such as
relational databases. WebSphere uses these within EJBs for supporting
distributed transactions.

• Java Naming and Directory Interface (JNDI) is for communicating with
directories and naming systems and is used in WebSphere Application
Server to look up existing EJBs and interact with directories.

• Java Remote Method Invocation over Internet Inter-ORB Protocol
(RMI/IIOP) is for communicating with Java objects in remote application
servers.
6 WebSphere V3.5 Handbook

Chapter 2. What’s new in WebSphere V3.5?

This chapter describes in brief the improvements and additions to IBM
WebSphere Application Server V3.5 from the previous release, namely
V3.0.2.x. Some changes are very obvious, such as the new look and feel of
the WebSphere Administrative Console. Other changes are subtle and affect
the runtime, such as performance enhancements to connection manager.

The list of new/improved features in WebSphere V3.5.x includes:

1. Installation

2. InfoCenter (Documentation)

3. Migration

4. JDK1.2

5. Security

6. Administration Tools

7. Connection Pooling

8. Resource Analyzer

9. Log Analyzer

10.New Platform support

11.New Database support

12.New Web Server support

The above feature list is based on WebSphere V3.5 PTF 2 (V3.5.2) and will
be discussed in the following sections.

2.1 Installation

The popular GUI installation has three options - Quick, Full, Custom. In
addition to that, there is a native installer. This command line feature has two
modes - silent (or non-interactive) and interactive. This is useful for remote
and multi-node installations.
© Copyright IBM Corp. 2001 7

Other installation enhancements:

- Enhanced prerequisite checking for Custom Installation option

- Quick Installation option installs prerequisites (Web server, database,
JDK, etc.)

- Increased support for granting read/write authorities for deployment
directories during installation

- Intelligent starting and stopping of services (on Windows-based
systems)

- Easier Web downloads of installation image

- Support for organization-wide roll-outs of custom installs

For various installation scenarios and details, please see Appendix A,
“Installation steps” on page 1049.

2.2 InfoCenter

Complementing the Help file, ReadMe file, Getting Started Guide, and the
Release Notes is a preview version of InfoCenter. It provides a single point of
search and navigation among the many pieces of information available for the
WebSphere product. From one interface, the user has access to planning and
configuration information, installation guides, softcopy books, help files,
documentation articles, and other technical supplements.

The Information Center basically replaces the Documentation Center, help
frame set, and the Troubleshooter.

WebSphere V3.5 ships with a starter version of InfoCenter. It is normally
installed under <WAS_HOME>/web. View it in a browser by pointing to the
following file: .../WebSphere/AppServer/web/InfoCenter/index.html.

The complete InfoCenter can be viewed at or downloaded from:

http://www.ibm.com/software/webservers/appserv/infocenter.html

Note
8 WebSphere V3.5 Handbook

Figure 2. Top-level window of WebSphere V3.5 InfoCenter

Other documentation level enhancements:

• New, all-inclusive InfoCenter with search and print capabilities

• Expanded step-by-step installation and configuration documentation

• New planning documentation for single and multiple machine topologies

• Expanded and better organized migration documentation

• New sections devoted to security and workload management (Advanced
Edition)

• Excellent problem determination documentation
Chapter 2. What’s new in WebSphere V3.5? 9

2.3 Migration

WebSphere V3.5 comes with a migration assistant. This GUI-based tool is
helpful in migrating WebSphere V3.0.2 installations to WebSphere V3.5. The
Migration Assistant leads users through the upgrade process. During
installation of WebSphere V3.5 on the Windows NT platform, if there is an
existing WebSphere V3.0.2 installation, the Migration Assistant automatically
detects it and runs. On UNIX platforms it has to be manually started.

The Migration Assistant backs up existing configuration files and all the user
files. Only EJBs need to be redeployed and package name changes related to
transaction and datasource need to be manually configured.

There are other tools also available that allow database migration. There is
also an easier migration facility to migrate from InstantDB to a production
level database such as DB2, and JDK migration.

WebSphere migration is discussed in detail in Chapter 26, “Migration” on
page 1033.

2.4 Java 2 support

With support for JDK 1.2.2 (Java 2 SE) the following Java APIs are supported
with WebSphere Advanced Edition (AE) V3.5 (specific support that exists
only in the Enterprise Edition (EE) is noted):

• EJB 1.0 (plus extensions to support RMI/IIOP, transactions, and CMP)

• Java Servlet Specification 2.2

- WAR files support for deployment

- Multiple error page support

- Request dispatchers by name and by relative path

• JavaServer Pages (JSP) 1.1 including Tag Library support

• JDBC 2.0

• Java Naming and Directory Interface (JNDI)1.2

• RMI/IIOP 1.0

• Java Transaction Service (JTS)/Java Transaction API (JTA)1.0

• Java Messaging Service (JMS)1.0 (in conjunction with MQSeries)

• JavaIDL and CORBA (EE only)
10 WebSphere V3.5 Handbook

2.5 Security

Performance is significantly improved when security is enabled in WebSphere
V3.5. One of the new features within security is Client Certificate based
authentication.

Microsoft’s Active Directory is now supported along with other LDAP servers
such as IBM SecureWay, iPlanet, Domino, and Novell Directory Services.

Other security enhancements:

• A Custom Login option

• The ability to enable Domino Single Sign On

• GSKIT 4.0 GUI-based key generation tool

For a detailed discussion on WebSphere Security please see Chapter 15,
“WebSphere security” on page 651.

2.6 New and improved administration tools

WebSphere V3.5 improved the administration tools: the WebSphere
Administrative Console, the WebSphere Control Program (WSCP),
XMLConfig, and Web console.

2.6.1 WebSphere Administrative Console
New functionality has been added while some old confusing functionality has
been deleted. The top level console menu has been consolidated and
simplified. A couple of new icons were added to the console tool bar.
Context-sensitive actions menus are displayed upon right-clicking items.

Other enhancements with administration:

• Enhanced Java console performance

• Improved user interface conventions

- Eliminated need to explicitly start and stop wizards

- Standardized wizards, toolbars, and property dialogs

- Provided toggle between topology and types views

- Improved progress indicators
Chapter 2. What’s new in WebSphere V3.5? 11

Figure 3. WebSphere V3.5 Advanced administrative console

The Help menu has been improved upon with better context-sensitive topics.
New wizards walk you through the tasks of creating a data source, deploying
EJBs, and setting security.

For more details, please see Chapter 18, “Administrative console” on page
811.

2.6.2 WSCP
The WebSphere Control Program, WSCP, is a command-line and scripting
interface for administering resources in WebSphere AE. It is based on Tcl
(tool command language). Tcl is a portable command language that provides
programming facilities, such as variables, procedures, and list-processing
functions. The WSCP interface extends Tcl by providing a set of commands
for manipulating WebSphere objects.

Among other things, WSCP allows you to:

• Define, configure, and manage repository objects from any node

• Import and export configuration data
12 WebSphere V3.5 Handbook

• Perform diagnostic operations such as enabling trace

For more details, please see Chapter 20, “The WebSphere Control Program
(WSCP)” on page 855.

2.6.3 XMLConfig
XMLConfig which was technology previewed in WebSphere V3.0.2 is now
fully functional. It is very useful for exporting and importing WebSphere
configurations. The tool enables batch and command-line updates.

XML Configuration tool is discussed in Chapter 21, “XMLConfig” on page
877.

2.6.4 Web console
HTTPAdmin runs as a Web application (WebApp) under the Default Server in
a WebSphere Administration domain. It basically uses XMLConfig as the
underlying tool. Since it uses HyperText Transfer Protocol (HTTP), it works
through firewalls and is especially good for managing WebSphere that runs
within a DMZ (the secure area between two Internet firewalls).

See Chapter 19, “Web console” on page 843 for a discussion on Web
console.

2.7 New and improved connection pooling

The connection manager has been optimized for faster performance. It can
handle broken connections, for example. When the database goes down
WebSphere does not have to be restarted.

From a coding perspective Table 1 shows you the differences between
WebSphere V3.02 and V3.5:

Table 1. Code changes related to the connection manager

WebSphere V3.02 WebSphere V3.5

import package/s com.ibm.ejs.dbm.jdbcext.*; com.ibm.ejs.cm.*;
com.ibm.ejs.cm.pool.*;

Exception ConnectionTimeoutException ConnectionWaitTimeoutEx
ception
(ConnectionPreemptedEx
ception is not supported)
Chapter 2. What’s new in WebSphere V3.5? 13

2.8 New Resource Analyzer

Resource Analyzer is now a separate tool replacing the old one. It is a
stand-alone Java client that monitors the performance of WebSphere
Application Server, Standard and Advanced Edition. The Resource Analyzer
can be invoked via the command line and has a GUI to retrieve and view data
in a table or chart form. The new version of Resource Analyzer is a
technology preview.

Resource Analyzer is discussed in detail in Chapter 25, “Resource Analyzer”
on page 1009.

2.9 New Log Analyzer

A new problem determination tool, the Log Analyzer, is available from the
product Web site as a Technical Preview. This GUI-based tool permits the
customer to view a log file, named activity.log. It also logs errors which can be
filtered based on severity, process ID, thread ID, etc. More importantly, this
tool stores all the log information in a simple XML database which permits the
customer to analyze the errors and offers additional information such as why
the error occurred and how to recover from it.

Details about Log Analyzer can be found in Chapter 24, “Log Analyzer” on
page 975.

DataSource Indexed by database URL +
user name + passwd.

One pool for every unique
combination of
URL+user+passwd.

Indexed by name.

DataSource name
corresponds to database
URL.

One connection pool
associated with one
DataSource.

A pool can have
connections for different
database users/password.

Recovery from DB
failure

Mark connection stale and
destroy on application's
connection.close().

Destroy the connection.

WebSphere V3.02 WebSphere V3.5
14 WebSphere V3.5 Handbook

2.10 New platform support

• HP-UX

WebSphere V3.5 can be installed on the HP-UX operating system V11.0.

National Language Support (NLS) has been added to Solaris and HP-UX.

• Windows 2000

WebSphere V3.5 can easily be installed on the Windows 2000 server
platform in a manner similar to that on Windows NT.

2.11 New database support

• Sybase

Sybase’s Adaptive Server Enterprise Edition R12.0 can now be used as
the WebSphere administrative database and with container-managed
persistence (CMP) EJBs. This support is available of the AIX, Solaris, and
Windows NT platforms.

• Oracle 8.1.6

Additionally Oracle 8.1.6, both thin and thick JDBC drivers, are supported.

WebSphere V3.5 also supports Distributed Transaction Support for
Sybase and Oracle.

2.12 New Web Server support

There is now support for the iPlanet Web Server Enterprise Edition 4.0. The
iPlanet Server is a product of Sun and Netscape’s alliance. WebSphere
continues to support Netscape Server 4.0.

2.13 Conclusion

The latest release of WebSphere has definitely raised the bar on Web
application servers. With all the new features it is no wonder that WebSphere
is the most popular application server in the world.

Some other new/improved features in WebSphere V3.5.x are:

• Updated samples for use on all supported databases and respective
platforms

• New Session Affinity algorithm maximizes session caching
Chapter 2. What’s new in WebSphere V3.5? 15

• Client device detection support for pervasive computing

• Domino DSAPI plug-in support
16 WebSphere V3.5 Handbook

Chapter 3. WebSphere programming model

This chapter outlines the programming model used to develop applications
targeted for the IBM WebSphere Application Server Advanced Edition V3.5.

For a programming model to be compelling, we must be able to use it to
develop applications that exhibit the following qualities1:

• Functional - satisfies user requirements

• Reliable - performs under changing conditions

• Usable - enables easy access to application functions

• Efficient - uses system resources wisely

• Maintainable - can be modified easily

• Portable - can be moved from one environment to another

Further more, the programming model must support a development process
that has the following characteristics:

• Repeatable - has well-defined steps

• Measurable - has well-defined work products that result

• Toolable - has well-defined mapping of inputs to outputs

• Predictable - can make reliable estimates of task times

• Scalable - works with varying project sizes

• Flexible - can be varied to minimize risks

The challenge is to balance both sets of requirements while developing an
application.

To help make the discussion of the programming model more meaningful and
concrete, we will trace the development of an example application from
analysis through architecture and design. During the process of developing
an application to support order entry (“online buying”), you will see first-hand
how the programming model can be employed to meet the challenges
outlined above.

3.1 Analysis of an example application

It is not within the scope of this section to describe (or endorse) a specific
analysis method, because the WebSphere programming model can be used

1 These characteristics are derived from ISO 9126 Software Quality Characteristics, now out of print.
© Copyright IBM Corp. 2001 17

with any method. However, we are partial to the Unified Modeling Language
(UML) as a notation to describe important analysis work products.

We recommend capturing both the static and dynamic requirements of the
system into models, where static models describe the data and dynamic
models describe the behaviors.

For the static model we will use a UML class diagram that shows objects and
associated properties, as well as relationships between them. The
relationships are augmented to show such characteristics as role and
cardinality.

For the dynamic model we will use a UML state-transition diagram that shows
the life cycle states of an object and the events, conditions and actions that
cause a transition (or flow of control) to the specified next state.

A complete model of the system takes into account the life cycle of important
business objects (a business process model), as well as how a given user
can access important system functions (an application flow model).

The business process model can be developed first, followed by an
application flow model to provide access to the functions defined. This
approach is sometimes called “enterprise out”. Conversely, the application
flow model can be developed first with the actions and data defined driven
into the business process model. This approach is sometimes called
“application in” (or when applied to Web applications: “Web up”).

For purposes of our sample online-buying application, we will use the
enterprise out approach and analyze the requirements of the business
process first, then focus on those of the application flow.

3.1.1 Business process model for an Order
Probably the hardest part of business process analysis is knowing where to
start. There are many approaches, but one that works reasonably well is to
identify an object that represents the relationship between user and system
roles.

In our example, two major roles are the company that makes products
available for sale and the customer that orders them. An order represents the
relationship between the two. The life cycle we define for an order will
describe the business process that governs the way customers and
employees (and possibly agents) of the company interact.
18 WebSphere V3.5 Handbook

For the purposes of our simple example, we will say that an Order has three
states in its business process life cycle:

1. Entry, where a Customer (or a Customer agent) can create an order, add
or modify line items, and finally, submit or cancel it.

2. Fulfillment, where a person from the Shipping department can pack one or
more of the order’s line items and ship them to the customer. Packing and
shipping continues until all the items are shipped.

3. Completed, where a representative from Marketing can perform various
data mining queries on the orders in the system until they no longer find
the data useful, in which case, they purge it from the system.

Figure 11 shows this life cycle in a graphical form known in the Unified
Modeling Language (UML) as a state-transition diagram (STD). In a STD, the
nodes show the life cycle states of the associated object and the directed
edges show transitions (events, actions and conditions) that cause a flow of
control from one life cycle state to the next. The transitions describe the units
of work that are accessible from a given state by a given role. We have made
a minor extension to the STD notation to show the role that owns the order in
that state.

Figure 4. Online buying business process state-transition diagram

After the dynamic model for a given object is completed, the next step is to
develop the static model that holds in the context of each life cycle state. A
static model shows a given object, its properties, and relationships to other
objects.

One way to develop a static model is to infer the objects and specific
characteristics of the relationships (typically role and cardinality) from the

Entry Fulfillment

Completed

submit()
ship (shipper)

create()

[all items
shipped]

purge
modify line

item
(product,
quantity)

cancel()

Customer Shipping
Marketing

add line item
(product,
quantity)

[not all items
shipped]pack line item

(product, quantity)
Chapter 3. WebSphere programming model 19

descriptions of the units of work associated with the transitions in the
dynamic model. Another approach is to reverse engineer existing data
sources.

Our focus for this example will be the Customer role, so we will only specify
the relationships that hold between various objects associated with an order
in the Entry state:

• A Customer is associated with all the Orders that they have opened; only
one Order may be in the opened status for a Customer at any given time,
although a given Customer may have no associated open Order.

• An Order has an ID and a status indicating whether it is open, submitted or
cancelled. An Order is also associated with the Customer that created it.
Further, an Order is associated with zero or more Line Items.

• A Line Item indicates the ID of the product with which it is associated and
the quantity of that Product to be associated with the Order within which it
is contained.

• A Product has a number called a “sku” which serves as the ID, and an
associated description. Of course, a real order entry system would have
price, discounts and other associated attributes that we omit here for
simplicity.

Figure 5 on page 21 shows these static relationships between objects in a
graphical fashion known in UML as a class diagram. In a class diagram, the
boxes represent the objects with associated attributes. Lines connect the
object to those with which it is associated, with containment, labels and
cardinalities listed to help clarify the relationships. The labels closest to an
object describe the role of the object on the far end of the relationship. The
numbers closest to an object describe the cardinality of that object with
respect to that on the far end of the relationship.
20 WebSphere V3.5 Handbook

Figure 5. Class diagram of an order in entry state

For example, Figure 5 on page 21 shows that a Customer can have up to one
Order, its role being labeled “openOrder”.

A complete analysis of the business process requirements would repeat this
process for the static models associated with the Fulfillment and Completed
states. It would also likely analyze dynamic models for how a Product is
moved into and out of inventory, and how Customers are registered and rated
(possibly depending on their past behavior and credit history), among other
business process models.

However, using object technology makes it easy to develop an application
incrementally and iteratively, beginning architecture and design after a set of
end-to-end functions (often called use cases) are defined.

The business process model describes the back end of the end-to-end flow,
while the application flow model discussed next describes the front end.

3.1.1.1 Application flow model for Customer
An application flow model describes how a given user role invokes functions
of the business process model to which they have access.

Like a business process model, an application flow model has static and
dynamic aspects. In this case, however, the static model describes the data
visible to the user, and the dynamic model describes the events that a user
can trigger. For this reason, class and state-transition diagrams are also ideal
for capturing the requirements of a given application flow model.

Depending on the client display technology, the states in a STD can represent
pages, screens, windows, panels, forms, pop-ups, pull-downs, and dialogs
among other possibilities, while the transitions can represent clicking buttons

0 ..n
L in e I te m

q u a n t i t y

O rd e r

o rd e r ID
s ta tu s

P ro d u c t

s k u
d e s c r ip t io n

C u s to m e r

c u s to m e r ID

0 . .n c u s to m e r

o p e n O rd e r

p ro d u c t 0 ..1
Chapter 3. WebSphere programming model 21

or links, pressing various keys, and selecting menu items using a
touch-screen stylus.

This close mapping to display technologies makes it relatively easy to
develop the application flow model from prototypes or by examination of
existing applications.

It should be noted, however, that a well-designed application flow model is
abstract, and can be applied to any number of specific display technologies.
For this reason, use-case analysis is another approach to developing an
application flow model.

Still another “top down” approach is to take the states associated with various
business process models for a given user role and add “usability” states and
transitions, such as confirmations, validations, selections, and helps among
others.

In any event, we have chosen for our sample system a rather simple
application flow to provide a Customer access to the functions associated
with an order in the Entry state. It includes the following states:

1. Customer Home, which is basically a menu providing access to the
Product Catalog, Order Status and Order Details states.

2. Product Catalog, which shows a list of products available for purchase,
allowing the Customer to add a specified quantity of a selected product to
the open order associated with the Customer (opening a new one if
necessary).

3. Order Status, which shows the orders opened by the Customer, allowing
them to view the details (and possibly modify them, if the order is open).
From this state, a Customer can also open a new order, if none is already
open.

4. Order Details, which shows the line items associated with a given order,
defaulting to the open order associated with the Customer if none is
specified. From this state the Customer can modify the line item quantities
if the order is open. A Customer can also submit or cancel an open order.

5. Already Open, which occurs when a Customer attempts to open an order
when one is already open. It provides the ability for the Customer to view
the details of the opened order.

6. Action Result, which displays the result of adding or modifying a line item,
or submitting or cancelling an order.
22 WebSphere V3.5 Handbook

7. Confirm Submit or Cancel, which provides the Customer with the ability to
verify that he or she really wants to submit or cancel the open order, as the
case may be.

Figure 6 shows this application flow graphically, also using a UML
state-transition diagram, where the nodes show the states of the application
life cycle, and the arcs show application events that trigger flow of control
between states.

Figure 6. Customer application flow model state-transition diagram

Given the states and transitions described above, we would then do an
analysis of the data visible to the Customer role in each state. Figure 7 shows
a UML class diagram with the results of this analysis.

Order
Details

Confirm
Submit

submit

ok

cancel

Order
Status

Confirm
Cancel

open

[already open]

Customer
Home

Product
Catalog

Action
Result

{create new order}

edit line item

ok

{submit order}
{cancel order}

{modify item
(product,
quantity)}

add to order
{add item

(product, quantity)}
Already
Open

[open ok]

(order)

(order)

(order)

(order)
Chapter 3. WebSphere programming model 23

Figure 7. Class diagram showing the object model of states in application flow STD

A complete application flow requirements analysis would repeat this process
for the Shipper and Marketing roles. However, as for the business process
model, development can proceed in an incremental and iterative fashion
rather than a traditional “waterfall” approach.

In any event, the sections to follow will first show how components associated
with these models will be distributed across the “tiers” of an application
architecture (high-level design). Then we will see how these components are
mapped to the features of the WebSphere programming model, depending on
the architecture chosen (detailed design).

3.1.2 Architectures supported by WebSphere
Once we have the functional requirements broken into static and dynamic
aspects of business process and application flow models, the next step is to
determine the application architecture. WebSphere Application Server V3.5
supports three basic application architectures: Web-enabled client/server,
distributed object-based, and Web-enabled distributed object-based.

We will discuss each in terms of its features, along with advantages and
disadvantages to consider when making a decision about which pattern is
most appropriate for your application. Of course, any large system will likely
use all of the patterns discussed here, so understanding the trade-offs and
when that pattern best applies is key to choosing the application architecture.

3.1.2.1 Web-based client/server applications
Web-based client/server applications have a “thin” client tier where a Web
browser executes, a “middle” tier that runs the Web application server (such

0..n 0..n

Line Item

productID
description
quantity

O rder

orderID
status

Product

productID
description

O rder
Details

customerID
orderID
status

Order
Status

customerID

Product
C atalog

0..n

Product
C atalog

A lready
O pen

customerID
orderID

Action
Result

message

Confirm
Action

orderID
action

Custom er
Hom e
24 WebSphere V3.5 Handbook

as WebSphere), and a “back-end” tier that hosts servers accessible to the
entire enterprise, such as databases, and global directories.

The primary purpose of the Web browser is to display data generated by the
Web application server components and then trigger application events on
behalf of the user through HTTP requests. The data roughly corresponds to
the static model associated with the application flow model states.

The Web application server’s purpose is likewise twofold: it controls the
application flow in response to HTTP requests sent by the client. As noted in
the previous section, transitions on the application flow model will trigger
transitions on an underlying business process model. The business logic
associated with the business process model (BPM) transition may access
data and functions from enterprise servers.

An enterprise server’s main purpose is to provide access to the data
associated with BPM transitions. In some cases, business process functions
may be delegated to enterprise servers (such as CICS transactions). The
protocol used will depend on the back end.

Figure 8 on page 26 shows the relationship between these three tiers in a
graphical fashion, indicating the system components normally hosted on that
tier along with the primary protocol by which it communicates with the other
tiers (the ‘???’ label on the connection indicates that there are possibly many
different ones depending on the system).
Chapter 3. WebSphere programming model 25

Figure 8. Web--enabled client/server application architecture showing where model components are hosted

Some advantages of a Web-enabled client/server application are as follows:

1. There is no need to install anything specific on the client tier, since the
pages are rendered by a Web server or Web application server and
passed back as part of a request.

2. The end-to-end path length is relatively short (compared to the other
supported architectures), since the Web application server components
have direct access to the enterprise servers.

3. HTTP connections are stateless, making it possible to scale to large
numbers of clients, especially when load-balancing routers are employed.
However, we should note here that a common function provided by Web
application servers is to provide “state” for the application. Utilizing this
function can reduce the benefits of statelessness (more on this point
later).

Some disadvantages include:

1. Controlling the application flow in the Web application server rather than in
the client will have an impact on response time, making it crucial to
minimize the number of HTTP requests from the browser.

Browser

0..n 0..n

Line Item

productID
description
quantity

Order

orderID
status

Product

productID
description

Order Details

customerID
orderID
status

Order Status

customerID

Product
Catalog

0..n

Product
Catalog

Already Open

customerID
orderID

Action Result

message

Confirm Action

orderID
action

Customer Home

products items orders

Enterprise
Server

0..n

Line Item

quantity

Order

orderID
status

Product

sku
description

Customer

customerID

0..n customer

openOrder

product 0..1

Web
Application

Server

Order
Details

Confirm
Submit

submit

ok

cancel

Order
Status

Confirm
Cancel

open

[already open]

Customer Home

Product Catalog

Action Result

{create new order}

edit line item

ok

{submit order}

{cancel order}

{modify item
(product, quantity)}

add to order
{add item

(product, quantity)} Already Open

[open ok]

(order)

(order)

(order)

(order)

Entry
Fulfillment

Completed

submit()

ship (shipper)

create()

[all items shipped]

purge

modify line item
(product, quantity)

cancel()

Customer
Shipping

Marketing

add line item (product,
quantity)

[not all items shipped]

pack line item
(product, quantity)

HTTP ???
26 WebSphere V3.5 Handbook

2. Components controlling the business process model must be installed on
the Web application server as well as client code to the enterprise servers
upon which these components depend, which makes maintenance much
more difficult (especially if a number of servers are needed to handle the
HTTP traffic).

3. Having both the application flow and business process logic executing in
the same Web application server can increase the processor and memory
requirements of the host machines, which may impact throughput.

4. Having the business process logic executing in the same tier as the Web
application server can be considered a security risk, especially if the Web
application is within the “demilitarized zone” (servers outside of the
firewall).

5. Also, having both the application flow and business process logic
executing in the same Web application server makes it difficult to share
the business logic with non-Web-enabled clients.

3.1.2.2 Distributed object-based applications
Distributed object-based applications supported by WebSphere are
characterized by:

• An application client tier that controls both the application flow and
associated data display.

• One or more servers that host distributed objects encapsulating the logic
associated with the business process model.

• One or more back-end enterprise servers that maintain the data
associated with the business process model.

• Communication between the client and distributed object server tiers is
achieved through the Internet Inter-ORB Protocol (IIOP).

Figure 9 on page 28 shows a graphical view of a distributed object-based
application architecture.
Chapter 3. WebSphere programming model 27

Figure 9. N-tier distributed object-based application architecture showing where model components are hosted

Distributed object-based applications are considered to have “n” logical tiers
because distributed objects can actually be clients of other distributed
objects. The tiers are logical because the distributed objects can be
co-deployed on the same physical tier.

Advantages of a distributed object-based application include:

1. Controlling the application flow on the client tier usually makes for
snappier response time, especially where heavily used data is cached
locally.

2. The business logic is separated from the application client, providing for
better security and maintainability.

3. Having the business logic separated means that it can be shared by
multiple clients.

4. It is also possible to load balance across multiple distributed object
servers to get higher throughput and system availability.

5. The application clients need not install the client code associated with
enterprise servers.

Disadvantages include:

Application
Client

0..n 0..n

Line Item

productID
description
quantity

Order

orderID
status

Product

productID
description

Order Details

customerID
orderID
status

Order Status

customerID

Product
Catalog

0..n

Product
Catalog

Already Open

customerID
orderID

Action Result

message

Confirm Action

orderID
action

Customer Home

products items orders

Order
Details

Confirm
Submit

submit

ok

cancel

Order
Status

Confirm
Cancel

open

[already open]

Customer
Home

Product
Catalog

Action Result

{create new order}

edit line item

ok

{submit order}

{cancel order}

{modify item
(product, quantity)}

add to order
{add item

(product, quantity)} Already Open

[open ok]

(order)

(order)

(order)

(order)

Enterprise
Server

0..n

Line Item

quantity

Order

orderID
status

Product

sku
description

Customer

customerID

0..n customer

openOrder

product 0..1

Distributed
Object Server

Entry
Fulfillment

Completed

submit()

ship (shipper)

create()

[all items shipped]

purge

modify line item
(product, quantity)

cancel()

Customer
Shipping

Marketing

add line item (product,
quantity)

[not all items shipped]

pack line item
(product, quantity)

???IIOP
28 WebSphere V3.5 Handbook

1. Application programs must be explicitly installed on the client tier, making
maintenance a consideration. This can also increase the processor and
memory requirements of the client machines.

2. There is extra path length incurred by adding a distributed object server
between the client, which will have an impact on response time.

3.1.2.3 Web-enabled distributed object applications
A powerful feature of the WebSphere programming model is that these two
styles can be used together in a single application architecture, such as one
where the Web application server components make use of distributed
objects that encapsulate the business process logic. This style of architecture
can be considered to be a Web-enabled distributed object-based application,
as shown in Figure 10.

Figure 10. Web-enabled distributed object application architecture showing where model components are hosted

This approach gets the advantages of both, including:

1. There is no need to install anything specific on the client tier, since the
pages are rendered by a Web server or Web application server and
passed back as part of a request.

2. HTTP connections are stateless, making it possible to scale to large
numbers of clients, especially when load balancing routers are employed.

3. The business logic is separated from the application client, providing for
better security and maintainability.

4. Having the business logic separated means that it can be shared by
multiple clients.

5. It is also possible to load balance across multiple distributed object
servers to get higher throughput and system availability.

6. The Web application servers need not install the client code associated
with enterprise servers.

Web
Application

Server
Browser Enterprise

Server

0..n 0..n

Line Item

productID
descr iption
quantity

Order

orderID
status

Product

productID
descr iption

Order Details

customerID
orderID
status

Order Status

customerID

Product
Catalog

0..n

Product
Catalog

Already Open

customerID
orderID

Action Result

message

Conf irm
Action

orderID
action

Customer
Home

products items orders

Order
Details

Confirm
Submit

submit

ok

cancel

Order
Status

Confirm
Cancel

open

[already open]

Customer
Home

Product
Catalog

Action Result

{create new order}

edit line item

ok

{submit order}
{cancel order}

{modify item
(product,
quantity)}

add to order
{add item

(product, quantity)}
Already
Open

[open ok]

(order)

(order)

(order)

(order)

0..n
Line Item

quantity

Order

orderID
status

Product

sku
description

Customer

customerID

0..n customer

openOrder

product 0..1

Distributed
Object Server

Entry
Fulfillment

Completed

submit()

ship (shipper)

create()

[all items shipped]

purge

modify line item
(product, quantity)

cancel()

Customer
Shipping

Marketing

add line item (product,
quantity)

[not all items shipped]

pack line item
(product, quantity)

IIOP ???HTTP
Chapter 3. WebSphere programming model 29

A Web-enabled distributed object application has relatively few of the
disadvantages of either:

1. Controlling the application flow in the Web application server rather than in
the client will have an impact on response time, making it crucial to
minimize the number of HTTP requests from the browser.

2. There is extra path length incurred by adding a distributed object server
between the client, which will have an additional impact on response time.
This impact makes it crucial to minimize the number of distributed object
requests from the Web application server.

We will look at our sample application in terms of this hybrid architecture,
since it will cover all the features of the programming model by WebSphere
Application Server V3.5.

3.1.3 Features of a programming model driven design
Once we have the candidate architecture identified, the next step is design,
where we map the requirements specified in the analysis phase to
programming model features associated with the architectural tiers.

All programming models, regardless of the architectural tier, have three
distinct features that are key to developing an application:

• The components that embody application functions.

• Control flow mechanisms used to invoke one component from another.

• Data flow sources that you can use to pass information from one
component to another.

Each of these features will be discussed in a separate section with the
following information:

• A basic definition of the component or mechanism

• The role it plays in the architecture, especially with respect to the example
application described above

• Some pros and cons as to its usage

• Alternative approaches, if any exist

Together these sections provide an end-to-end overview of how the
components and mechanisms (services) can be used together effectively to
develop a WebSphere V3.5-based application. Individual chapters that follow
will get further into the details of how WebSphere supports the various APIs
(which will drive the code phase), and what you can do at deployment time to
exploit the WebSphere V3.5 platform.
30 WebSphere V3.5 Handbook

3.2 Application components

Application components are those that a developer will actually have to
program, whether manually or with the aid of tools. The other features of the
programming model represent services that the developer can use when
coding an application component. The language used to develop a given
application component will depend in large part upon the “tier” where the
component will be executed at runtime.

For example, browser-based components will tend to use tag and
script-oriented languages, while Web application server components will tend
towards Java. Enterprise server components may use a variety of languages
other than just Java, such as C, C++, COBOL and the like, so we will focus on
the distributed object server, which tends towards Java as the language of
choice.

Because the language differences tend to divide along tier boundaries, we
will divide this section into three separate subsections as we describe the
components you develop that are hosted by browsers, Web application
servers, and distributed object servers.

We will discuss the components for each tier in turn.

3.2.1 Browser-hosted components
While a browser is not provided by WebSphere V3.5 Advanced Edition,
browser-hosted components make up a large part of any Web-enabled
application. The reason, of course, is that the browser serves as the runtime
engine for the user interface of a Web application.

The browser-hosted components that are most relevant to the WebSphere
programming model include:

• HTML

• DHTML and JavaScript

• Framesets and Named Windows

• eXtensible Markup Language (XML), XML Style Language (XSL) and
Document Type Definition (DTD)

We will discuss each in turn.
Chapter 3. WebSphere programming model 31

3.2.1.1 HTML
HyperText Markup Language (HTML) is the basic “programming language” of
the browser. With HTML, you can direct the browser to display text, lists,
tables, forms, images, and just about everything else you can think of.

Role in the architecture
Every state in our example application flow model, from the Product Catalog
to the Action Result, will ultimately result in an HTML page or dialog of some
sort, However, we need to draw the distinction between static and dynamic
content in an HTML page.

In this example, the HTML associated with the Customer Home state is
"static". It does not change based on application events, but merely provides
access to other states of the application like a menu.

At the other extreme, the HTML associated with the Action Result state is
"dynamic" because it needs to display a message specific to the result of the
action. For example, the result of adding a line item from the Product Catalog
state is to indicate how many of that product are currently ordered.

In the “grey” area are pages associated with states such as Product Catalog.
Some companies with small, stable product lines may develop static product
catalog pages. Other companies may have large, constantly changing
product lines that would require generating the Product Catalog page
dynamically from a database.

The reason that this distinction is important is that static HTML pages do not
require that the content be generated by programmatic means, such as Web
application components hosted within WebSphere (servlets and JSPs).
These components will be discussed in the next section.

For our example online buying application, only Customer Home is assumed
to be handled by static HTML as shown in Figure 11 on page 33.
32 WebSphere V3.5 Handbook

Figure 11. Online buying application flow model showing Customer Home state as static HTML

Pros
The main advantage of using static HTML for Web pages is that they are not
generated by Web application components, such as servlets and JSPs. Their
static nature means that they can be cached by either the browser or proxy
servers.

On the development side, they can be created and maintained with a
WYSIWYG (what-you-see-is-what-you-get) editor.

Cons
The downside of using static HTML is that they cannot be customized on the
fly based on customer preferences or application events. Even pages that
may seem to be “naturally” static, such as the Customer Home, might actually
benefit from being generated dynamically. For example, you might limit the
functions that a Customer sees based on the class of service for which they
are registered.

Alternatives
As mentioned above, the “programming language” of the browser is mainly
HTML (with DHTML and JavaScript being the primary exception as described
next). However, an XML-enabled browser can be used to generate the HTML
on the client side.

Finally, you should consider creating dynamic components for every “top
level” (non-dialog state), even if it appears to be static. This approach not only

Order
Details

Confirm
Submit

submit

ok

cancel

Order
Status

Confirm
Cancel

open

[already open]

Customer
Home

Product
Catalog

Action
Result

{create new order}

edit line item

ok

{submit order}
{cancel order}

{modify item
(product,
quantity)}

add to order
{add item

(product, quantity)}
Already
Open

[open ok]

(order)

(order)

(order)
(order)
Chapter 3. WebSphere programming model 33

makes it easier to add dynamic content later, but also makes it easier to
compose into other pages. Future versions of WebSphere Application Server
will provide support for caching dynamic page fragments, which will make
composing pages much more efficient. We will discuss this alternative in later
sections of this chapter.

3.2.1.2 DHTML and JavaScript
Dynamic HyperText Markup Language (DHTML) is an extension to HTML
wherein all the components of the HTML page are considered to be objects.
Together these objects make up the Document Object Model (DOM) of the
page.

Each object in the DOM has a set of associated attributes and events,
depending on the type of object. For example, most objects have attributes
describing their background and foreground colors, default font, and whether
they are visible or not. Most have an event that is triggered when the object is
loaded into the DOM or displayed. An object, such as a button, has attributes
that describe the label and events that fire when it has been pressed.

Events are special because they can be associated with a program that
executes when the event is triggered. One language that can be used for the
program is JavaScript, which is basically a simplified form of Java. JavaScript
can be used to change the attributes of objects in the DOM, thereby providing
limited control of the application flow by the browser.

Role in the architecture
This ability makes DHTML/JavaScript perfect for handling confirmations, data
validations, cascading menus, and certain types of list processing on the
browser side without invoking an HTTP request to the Web application server.

Where validations are concerned, it is important to draw the distinction
between those that are merely syntactic from those that are more semantic in
nature.

Syntactic validations include checks on individual fields of an input form. For
example, is the entry a minimum length? Is it alpha or numeric? Does it have
the right format for a date, phone number or social security number? These
simple types of syntactic validations should be done on the client.

Semantic validations are those that ultimately require access to business
process logic and data. For example, is an order or product number valid?
Will the change in quantity make the resulting line item quantity less than
zero? Is the requested price within 10 percent of the current average?
Semantic validations belong on the server side.
34 WebSphere V3.5 Handbook

In the middle ground are more complex syntactic validations that involve
multiple fields or begin to incorporate business process policies. For example,
is the start date less than the end date? Does the date requested fall on a
weekend or holiday? There are arguments both for and against handling
complex syntactic validations on the client side. The most forceful arguments
against are that it introduces extra complexity and redundancy in the DHTML,
and can cause a maintenance problem as policies change.

In our online buying example, we would suggest handling confirmation of the
submit or cancel actions in JavaScript rather than bringing up a separate
HTML page as shown in Figure 12.

Figure 12. Online buying application flow STD showing states handled by DHTML and
JavaScript

This approach effectively “collapses” the two confirmation states into
substates of the OrderDetails state.

Although not shown explicitly on the application flow diagram, we also would
suggest using JavaScript on the add line item action to validate that the
quantity specified is non-zero.

Although it was not required in our example, we have seen cases where
developers used sophisticated JavaScript programs to build multiple entry
input dialogs where the list of choices appears on one side, with the items
chosen on the other. Items can be selected on either side of the list and the
appropriate directional arrow button chosen to “move” it to the other side.

Order
Details

Confirm
Submit

submit

ok

cancel

Order
Status

Confirm
Cancel

open

[already open]

Customer
Home

Product
Catalog

Action
Result

{create new order}

edit line item

ok

{submit order}
{cancel order}

{modify item
(product,
quantity)}

add to order
{add item

(product, quantity)}
Already
Open

[open ok]

DHTMLKey: HTML

(order)

(order)

(order)
(order)
Chapter 3. WebSphere programming model 35

Pros
Hopefully, the benefit of using DHTML and JavaScript in these scenarios is
obvious: one or more round trips to the Web application server are
eliminated, making the application both more efficient and more usable
(mainly because the response time is much snappier).

In the case of the Confirm Cancel or Confirm Submit states, it is likely that the
associated page would be generated dynamically showing the current state of
the Order so that the user knows exactly what they are confirming. With a
JavaScript pop-up, the order is still visible in the browser window. The trip to
the Web server is eliminated along with a query to get the current state of the
order, reducing contention for back-end system resources as well.

Cons
One disadvantage to using DHTML/JavaScript is that developing application
control flow, whether it is on the client or server side, requires programming
skill. Pages that rely on DHTML and JavaScript are more complicated to
develop and test. You cannot use WYSIWYG editors for the code.

Another disadvantage to using DHTML and JavaScript is that there are
differences among the browsers in the details of the functions supported. To
avoid a browser dependency for the Web application, programmers are forced
to either:

• Stay within a common subset of functions supported by all the major
browsers.

• Put branching logic that has a case for each browser with code optimized
for the version of JavaScript supported by that browser

When syntactic validations (either simple or complex) are handled in DHTML
and JavaScript, you will still need to revalidate on the server side for each
request just in case the client circumvents the input forms. This leads to
redundancy of code on the client and server.

Alternatives
Really, there is no good alternative to DHTML and JavaScript for handling
confirmations, validations, menus, and lists. The complexity for the HTML
developer can be managed somewhat by having a separate programming
group develop a set of common functions that encapsulate the differences
between the browsers and have every page designer include this set of
functions within their HTML.
36 WebSphere V3.5 Handbook

3.2.1.3 Framesets and named windows
Framesets and named windows are specialized HTML extensions that break
up a page into separate frames (for framesets) or windows (for named
windows). Each frame or window can be further subdivided as a frameset as
well.

Various browser-initiated control flow actions (described in 3.3.1, “Browser
component initiated control flow” on page 80) can be targeted to a given
frame or window, leaving the other frames and windows untouched.

The main difference between framesets and named windows is that
framesets tile the various frames within a single browser window, while
named windows have a separate window for each unique name. Frames in a
frameset can have various attributes that define behaviors such as whether
they are resizable, scrolling, or have borders. Separate named windows can
be cascaded or manually tiled by the user as they see fit.

From a targeting perspective, there is no difference between framesets or
named windows. In fact, they can be used together. If no frame or window
with a given name is open already, one will be opened by the browser to
receive the result of the request. The opened windows can be resized and
tiled manually to achieve an effect very similar to framesets.

Role in the architecture
Framesets are an excellent way to group related states in the application flow
model. For example, the online buying application Web page could be
implemented as a frameset that includes the following three frames (or
windows):

• Navigation, an area that is populated with the Customer Home navigation
links

• Main, an area that is populated with the Product Catalog, Order Status or
Order Details data, depending on the link selected in the Navigation frame.
This area would also be the target of an “open new order” action in the
Order Status state, so it would possibly be populated with the Already
Open page.

• Result, an area that displays the result of an add to order, modify line item,
submit, or cancel operation.

Figure 13 on page 38 shows a stylized view of how this page might look using
framesets.
Chapter 3. WebSphere programming model 37

Figure 13. Stylized view of online buying application frameset

Although not explored in any more detail here, a frameset makes it easy to
mingle Web publishing and business applications together. In this approach,
you provide visual interest such as images, advertisements, news, and such
in the “surrounding” frames, and keep the frames associated with the
business of the application clean, simple, and most importantly fast (since
they can be mostly text based).

Pros
The advantages of a properly defined frameset to the application flow are
many:

1. Simplifies navigation. By having the Customer Home state always visible,
reliance on the browser “back” button (or explicit navigations coded into
each state) is eliminated.

2. Maximizes visibility of the important data and functions. The main displays
for the Catalog, Status and Details pages consist of a list of items
(products, orders and line items, respectively). This area can be returned
as a frameset, with the unchanging data and functions and table headers
in the top frame, and the table rows in the bottom area. This approach
allows a large list of items to be scrolled without losing access to the
action buttons and header information. For example, when viewing an
open order on the Order Details page, the Order number, Submit and
Cancel buttons will always be visible.

Navigation Main Area

Action Result

displays Product Catalog,
Order Status or Order Details,

depending on selection

adding to order, editing
quantity, cancelling or

submitting targets result area

simply the
Customer

Home
navigation
bar where
selections
target main

area
38 WebSphere V3.5 Handbook

3. Minimizes the size of an individual request. Only the data required for the
target area is returned from a given request. For example, when an add,
modify, submit or cancel action is invoked, only the result message need
be returned to the browser. The main area still has the previous contents
and need not be rerendered. The Navigation area need never be
rerendered.

4. Improves the application flow and efficiency when errors occur. This
advantage is related to #3 above. If an application error occurs, such as
trying to submit or cancel an unopened order, or entering an invalid
product ID or quantity, the form data is still visible and can be referred to in
the result message. It is even possible to use JavaScript to highlight the
erroneous fields in the form.

5. Parallelizes requests. When a frameset is rendered, each frame is issued
as an individual request, allowing them to be handled and displayed
separately. This can have a dramatic effect on usability, as the “static”
areas (like the navigation and header areas) will likely come back very
quickly, providing cues to the user that the server is processing the
request. An example where this is an extremely useful feature is in a
“portal” application where user preference data drives individual queries to
various back-end services, such as stock quotes, hot news items of
interest, etc. The initial request to the user’s portal page could return a
frameset that has individual frames for the various services selected. Each
frame would be a separate request, providing the user with information as
it becomes available rather than after the entire page is rendered.

6. Hides “ugly” URLs. The URLs for the individual frames in the frameset do
not display in the browser’s location line. This is a nice feature especially
for some Web applications where the URL has rather lengthy and ugly
encoded strings to hold various IDs (see 3.4.1, “Browser-maintained data
flow sources” on page 90 for a discussion of browser-maintained data).
When using framesets, the URL is usually very “clean”.

Cons
There are some disadvantages to using framesets. Improperly designed, the
navigation can be confusing. Also, if more than one frame accesses shared
system resources, such as HttpSession state or databases, it can cause
contention problems that affect performance, and may even cause deadlocks.
The design we suggested above does not suffer from these problems.

But beyond this, framesets have some behaviors that are hard to get used to.
Chapter 3. WebSphere programming model 39

For example, when printing within a frameset, only the “active” frame (usually
where the cursor is located when the print is requested) is printed. This can
be disconcerting when you expect the whole frameset to be printed.

Bookmarking a frameset uses the browser location line, and not the specific
content frame URLs. In our example, this means that OnlineBuying.html
would be bookmarked, and the “default” page would come up. It wouldn’t
matter that we had selected the Order Details for order 12345, or had
browsed the Product Catalog down to the raincoats.

Another disadvantage is that the browser back and forward functions work a
frame at a time. This can be somewhat disconcerting. Let us examine the
situation that occurs when the customer is viewing the Product Catalog, adds
an item to the open order, switches to see the Order Details, then modifies
the quantity. Pressing back will first redisplay the result area from adding the
item to the order. The next back will return to the Product Catalog display.

Probably the most serious disadvantage is that not all browsers support
framesets, so a non-frame version must be provided if the application is
designed to be browser independent.

Alternatives
Before we abandon framesets because of the disadvantages mentioned
above, there are some workarounds to consider:

• Printing. Many developers provide an explicit print function that returns a
page suitable for printing. Others like the fact that it prints only the area
selected, and consider that a feature (assuming that the user can use the
print screen function to get the window contents).

• Bookmarking. Some developers maintain the details of the last page
viewed in a customer database, so that those values can be used as
defaults. In this manner, the application-level bookmark works nicely and
still has an easy-to-read-and-remember URL.

• Back and Forward. Many developers disable the back and forward buttons
on the browser, especially when they provide a navigation area like the
one we provided in the example.

• Browser support. Many browsers that do not support framesets provide
named windows, allowing the basic flow to remain unchanged. The
frameset pages take advantage of the “no frameset” tag to open the main
windows instead.

If these workarounds cannot be used in your Web application, the only real
alternative to framesets is to compose the pages representing the individual
40 WebSphere V3.5 Handbook

states, and pay the cost of rerendering the entire page on every request. In
this case we would recommend that each state be handled by dynamic Web
application components (HttpServlets and JSPs) in order to take advantage
of caching that will be supported in future versions of WebSphere Application
Server.

3.2.1.4 XML, DTD and XSL
XML provides a means by which documents can be encoded as a set of tags
describing the associated values. The tag language is expressive enough that
tags can be nested and can repeat, so that complex data structures can be
encoded in a form that is both human and machine readable.

An XML document can be associated with a DTD, which is a special XML file
that defines the tags and their structure. A DTD can be used by an XML
parser to validate that the XML is not just well formed syntactically, but is also
semantically legal with respect to the DTD.

Finally, more and more browsers are becoming XML enabled. XML-enabled
browsers can handle XML documents returned from the Web server in
response to a request. The XML document can refer to an associated
stylesheet coded in XSL. The stylesheet is used by the browser to map the
XML tags to the HTML that is ultimately displayed. If no stylesheet is
specified, the browser will use a default format that takes advantage of the
tag names.

Role in the architecture
As we will see in later sections, XML can play a role in every tier of the
application architecture. For a Web-enabled browser tier, the response to a
given request can be an XML document containing only the data to be
displayed. For example, we could build XML documents representing the data
described for each state as shown in Figure 7 on page 24, then provide a
default stylesheet in XSL mapping this data to HTML tables and forms.

Pros
One advantage of using XML rather than HTML is that the stylesheet can be
modified to change the look and feel without having to change the Web
application components (described later) that generate the data.

Another advantage is that the size of the result will be smaller than the
resulting HTML in many cases.

Yet another advantage is that the same XML document may be usable in
other contexts than a Web browser, making it possible to reuse the Web
application components.
Chapter 3. WebSphere programming model 41

Cons
The main disadvantage is that XML-enabled browsers are not yet available
every where, although they are rapidly becoming so.

Another disadvantage is that XSL-based stylesheets can be quite complex to
code and difficult to debug. WYSIWYG editors for XML/XSL are not yet widely
available either.

Alternatives
One alternative is to have the Web application components check the browser
type and either generate HTML for non-XML-enabled browsers or return the
raw XML for XML-enabled browsers. The next subsection will discuss this
idea further.

3.2.2 Web application server hosted components
In the previous section, we discussed how HTML is the ultimate programming
language for the browser tier, but drew a sharp distinction between static and
dynamic content for Web pages.

We also discussed how a browser is not specifically provided by the
WebSphere V3.5 platform. This is not the case for the Web server and Web
application server. WebSphere provides the IBM HTTP Server as a Web
server that can be used to serve up static pages, but can be configured to use
other popular Web servers from Microsoft and Netscape, among others.

Of course, the focus of this section is the WebSphere Application Server V3.5
used to serve up dynamic pages.

By discussing HTML, DHTML, JavaScript, framesets and XML, we have
already covered the static components of the programming model. The Web
application server components hosted by WebSphere that are most useful in
generating dynamic content include:

• Servlets

• JavaServer Pages (JSPs)

While no special support is provided by WebSphere Application Server, there
are two other components that are useful for clients (including Web
applications) of business logic and data hosted on back-end servers:

• Data Structure Java Beans

• Business Logic Access Beans
42 WebSphere V3.5 Handbook

Together these components provide the basis for a very effective
Model-View-Controller (MVC) architecture, where data structure and access
beans represent the business process model (Model), servlets control the
application flow (Controller), and JSPs handle the layout (View).

An MVC architecture is effective because of the ability to independently
develop, test, deploy and modify the various components.

We will discuss each of these four components in the context of an MVC
architecture in the subsections to follow.

3.2.2.1 Servlets
The details of Servlets are discussed in more depth in Chapter 5, “Servlet
support” on page 137. For purposes of understanding the programming
model, we will say here that you develop HttpServlets to encapsulate Web
application flow of control logic on the server side (when it cannot be handled
by DHTML on the client side).

An HttpServlet is a subclass of a generic Java servlet. Most people mean
HttpServlet when they say servlet, but there is a difference. An HttpServlet is
specifically designed to handle HTTP requests from a client.

However, in this redbook, we call it “servlet” unless we need to distinguish
them.

The HttpServlet Java class from which you will inherit (extend) has a number
of methods that you can implement that are invoked at specific points in the
life cycle. The most important ones are:

• init(), executed once when the HttpServlet is loaded

• doGet(), executed in response to an HTTP GET request

• doPost(), executed in response to an HTTP PUT request

• service(), executed in response to a request if a doXXX() method
associated with the request type is not implemented

• destroy(), executed once when the HttpServlet is unloaded

The service type methods (for example, doGet() and doPost()) are passed
two parameters: an HttpServletRequest and HttpServletResponse, which are
Java classes that encapsulate the differences among various Web servers in
how they expect you to get parameters and generate the resulting reply back
to the client.
Chapter 3. WebSphere programming model 43

Role in the architecture
HttpServlets are designed from the ground up to handle dynamic requests
from an HTTP client. In an MVC architecture, HttpServlets represent the
Controller component.

However, there is a question of granularity that needs to be addressed. That
is, how many servlets are required to control a Web application?

At one extreme, there are those that create only one servlet to control the
entire application (or worse, they may only build one servlet, ever). The
doGet(), doPost() or service() methods use a parameter from the
HttpServletRequest to determine the action to take, given the current state.
We do not recommend this extreme because it is:

• Unmaintainable, when implemented as a large case statement (only one
programmer can safely work on the code at a given time).

• Redundant with other approaches described next, when implemented by
forwarding to an action-specific servlet or JavaServer Pages (you might as
well route the request directly to the appropriate servlet).

• Redundant with the servlet APIs themselves, when implemented by
loading an action-specific functional class (the class loaded and invoked
will need to look just like a servlet, with request and response analogues
passed in on the service type methods).

• Security for a given function must be manually coded rather than use per
servlet security provided by the WebSphere administration tools.

At the other extreme of the granularity spectrum is one servlet per action.
This is a much better approach than a single servlet per application, because
you can assign different servlets to different developers without fear that they
will step on each other’s toes. However, there are some minor issues with this
approach as well:

• Servlet names can get really long to insure uniqueness across the
application.

• It is more difficult to take advantage of commonality between related
actions without creating auxiliary classes or using inheritance schemes.

In the middle is to develop a single servlet per state in the application flow
model that has dynamic content or actions. This approach resolves the issues
associated with the approaches described above.

For example, it leads to a “natural” naming convention for a servlet:
StateServlet. The doGet() method is used to gather and display the data for a
given state, while the doPost() method is used to handle the transitions out of
44 WebSphere V3.5 Handbook

the state with update side effects. Ownership can be assigned by state.
Further, commonality tends to occur most often within a given state and
service method type (doGet() or doPost()).

Using this approach in our example, we would develop the following servlets:

• ProductCatalogServlet, whose init method can read the current list of
products into a cache, whose doGet() method reads the cached catalog
for display, and whose doPost() handles the add item transition.

• OrderStatusServlet, whose doGet() method reads the list of orders for a
given customer to display their current status, and whose doPost() handles
the open order transition.

• OrderDetailsServlet, whose doGet() method reads the line items for a
given order for display, and whose doPost() handles the modify, submit
and cancel transitions.

See Figure 14 for a graphical view, with the STD of the online buying
application flow model extended to show where servlets would be used to
control transitions, with side effects triggering events on the underlying
business process model.

Figure 14. Online buying application flow STD showing states controlled by servlets

Regardless of the approach used, another use for servlets in an application
architecture is to develop an inheritance hierarchy to handle the common look
and feel of the Web application. For example, we might want to build an

Order
Details

Confirm
Submit

submit

ok

cancel

Order
Status

Confirm
Cancel

open

[already open]

Customer
Home

Product
Catalog

Action
Result

{create new order}

edit line item

ok

{submit order}
{cancel order}

{modify item
(product,
quantity)}

add to order
{add item

(product, quantity)}
Already
Open

[open ok]

DHTMLKey: HTML Servlet

(order)

(order)

(order)
(order)
Chapter 3. WebSphere programming model 45

OnlineBuyingServlet that provides common parsing functions, and whose
doGet method:

• Checks authentication (routing to a login state if necessary)

• Calls the abstract method doGetOnlineBuying() implemented by the
subclass to get the content

• Handles any errors in a common manner

The inherited doPost() method would:

• Attempt to authenticate for login, if shunted there from a previous call
(routing back to the original state for display if OK)

• If not authorized, or login failed, reroute to a login state with an
appropriate message

• If authorized, call the abstract doPostOnlineBuying() to handle the
state-specific action

• Handle errors if any

We will discuss some extensions to this superclass servlet in later sections.

Pros
Before the Servlet API became available, each Web application component
(usually a CGI program) had to code to a Web server-specific API (such as
Netscape API, otherwise known as NSAPI). By being based on Java, servlets
are very portable and can be used with the leading Web servers.

Also, servlets stay resident once they are initialized and can handle multiple
requests. CGIs generally start a new process for each request.

Servlets can be multi-threaded, making them very scalable. For example, the
Web application server can create new instances or threads as needed to
handle the load from the clients.

Since servlets are Java programs, they can be developed with an IDE, such
as VisualAge for Java.

Using an inherited servlet to provide a common look and feel and common
functions provides all of the benefits of a single servlet approach with none of
the disadvantages.

Cons
A minor disadvantage to HttpServlets is that they require explicit compiling
and deployment into an application server (see the Chapter 5, “Servlet
46 WebSphere V3.5 Handbook

support” on page 137 for more details on how to deploy servlets into
WebSphere).

Alternatives
Although we are strong proponents of using servlets as the controller in an
MVC architecture, an alternative is to develop monolithic servlets that handle
both the application flow logic and generate HTML (through the PrintWriter
accessible from the HttpServletResponse object). Some even go to the
extreme of handling business process logic directly within the servlet. The
only advantage of this approach is that the end-to-end path length is shorter.

The problem with monolithic servlets is that the layout cannot be developed
with a WYSIWYG editor, nor can the business logic be reused in other client
types, such as Java applications.

Further, it makes it much more difficult to move the application to alternate
output media, such as WAP and WML.

JavaServer Pages, to be discussed next, are considered by some to be a
viable alternative to servlets, since they are functionally equivalent.

3.2.2.2 JavaServer Pages
JavaServer Pages (JSPs) are a standard extension to HTML that provide
escapes so that values can be dynamically inserted.

There are numerous tags that allow the developer to do such things as import
Java classes, and declare common functions and variables. The most
important ones used by a JSP developer to generate dynamic content are:

• java code block (<% code %>), usually used to insert logic blocks such as
loops for tables, selection lists, options, and so on

• expressions (<%=expression%>), usually used to insert substitute variable
values into the HTML.

• bean tag (<jsp:bean>), used to get a reference to a Java Bean scoped to
various sources, such as the request, session, or context.

• property tag (<jsp:beanproperty>) is a special-purpose version of the
expression tag that substitutes a specified property from a bean (loaded
with the bean tag).

There is also a standard tag extension mechanism in JSP that allows the
developer to make up new tags and associate them with code that can either
convert the tag into HTML or control subsequent parsing (depending on the
type of tag created). This feature would allow a developer (or third-party
Chapter 3. WebSphere programming model 47

providers) to build tags that eliminate the need to explicitly code expressions
and java code blocks, making the JSP code look more HTML-like and less
Java like. See Chapter 6, “JSP support” on page 189 for more details.
Custom tags can make it very easy for non-programmers to develop
JavaServer Pages (those with Java skills can develop specialized tags to
generate tables, option lists, and such).

In any event, a JSP is compiled at runtime by WebSphere into a servlet that
executes to generate the resulting dynamic HTML. Subsequent calls to the
same JSP simply execute the compiled servlet. In Chapter 6, “JSP support”
on page 189, we discuss the performance benefits of precompiling JSPs
(JSP 1.0 only).

Role in the architecture
JSPs are best used to handle the display of data associated with a given
state having dynamic content. This role represents the view in an MVC
architecture and contrasts with that of the servlet that represents the
controller. The way they work together is that the servlet gathers the data or
handles the transition action, and then routes flow of control to the associated
JSP to generate the response.

For our example application, this approach would result in the following JSPs
being developed, with the naming convention being State.jsp:

• ProductCatalog.jsp, which takes the catalog data provided by the
corresponding HttpServlet and primarily formats an HTML table displaying
the product IDs and descriptions, along with a form allowing a Customer to
specify a quantity to add to the order.

• OrderStatus.jsp, which takes the order data provided by
OrderStatusServlet and primarily formats an HTML table displaying the
order IDs and current status, along with a button allowing a Customer to
view the selected order.

• OrderDetails.jsp, which takes the line items associated with an order
provided by the OrderDetailsServlet and formats a table showing the
product ID, description, and quantity, along with a form allowing a
Customer to specify a modified quantity.

• AlreadyOpen.jsp, which simply formats a page showing the order number
that is already open.

• ActionResult.jsp, which simply displays a message describing the result of
a given action.

Figure 15 on page 49 shows the online buying application STD extended to
show these JSPs.
48 WebSphere V3.5 Handbook

Figure 15. Online buying application STD extended to show display controlled by JSPs

We would likely want to develop specialized tags to handle generating a table
by iterating through indexed Java Bean properties. This tag would be used to
generate the tables associated with the ProductCatalog, OrderDetails and
OrderStatus states. As an example of the differences, here is a fragment of
the ProductCatalog JSP with embedded Java:

<TABLE BORDER=0 CELLPADDING=2 WIDTH="90%" HEIGHT=25>
<TR BGCOLOR="blue">

<TH WIDTH="10%" ALIGN=CENTER>
Product ID

<TH WIDTH="64%" ALIGN=LEFT>
Description

<TH WIDTH="16%" ALIGN=CENTER>
Action

</TR>
<%

int sku = 0;
String description = null;
online.buying.data.ProductData d[] = v.getCatalog();
for (int i=0; i < d.length; i++)
{

sku = d[i].getSku();
description = d[i].getDescription();

%>

add to order
{add item

(product, quantity)}

Order
Details

Confirm
Submit

submit

ok

cancel

Order
Status

Confirm
Cancel

open

[already open]

Customer
Home

Product
Catalog

Action
Result

{create new order}

edit line item

ok

{submit order}
{cancel order}

{modify item
(product,
quantity)}

Already
Open

[open ok]

DHTMLKey: HTML Servlet JSP

(order)

(order)

(order)
(order)
Chapter 3. WebSphere programming model 49

<TR>
<TD WIDTH="10%" ALIGN=CENTER>

<%=sku%>
<TD WIDTH="64%" ALIGN=LEFT>

<%=description%>
<TD WIDTH="16%" ALIGN=CENTER>

<FORM METHOD=POST
ACTION="/servlet/online.buying.servlets.ProductCatalogServlet">

<INPUT TYPE=HIDDEN NAME="productID"
VALUE="<jsp:beanproperty name=product property=sku/>">

<INPUT TYPE=TEXT NAME="quantity" VALUE=1 SIZE=3 MAXLENGTH=3>
<INPUT TYPE=SUBMIT NAME="action" VALUE="Add to Order">

</FORM>
</TD>

</TR>
<%

}
%>
</TABLE>

Here is how the same JSP fragment might look using custom tags:

<TABLE BORDER=0 CELLPADDING=2 WIDTH="90%" HEIGHT=25>
<TR BGCOLOR="blue">

<TH WIDTH="10%" ALIGN=CENTER>
Product ID

<TH WIDTH="64%" ALIGN=LEFT>
Description

<TH WIDTH="16%" ALIGN=CENTER>
Action

</TR>
<onlineBuying:indexedProperty

beanName=v property=catalog
value=product
type=online.buying.data.ProductData

>
<TR>

<TD WIDTH="10%" ALIGN=CENTER>

<jsp:beanproperty name=product property=sku/>

<TD WIDTH="64%" ALIGN=LEFT>

<jsp:beanproperty name=product property=description/>

<TD WIDTH="16%" ALIGN=CENTER>
50 WebSphere V3.5 Handbook

<FORM METHOD=POST
ACTION="/servlet/online.buying.servlets.ProductCatalogServlet">

<INPUT TYPE=HIDDEN NAME="productID"
VALUE="<jsp:beanproperty name=product property=sku/>">

<INPUT TYPE=TEXT NAME="quantity" VALUE=1 SIZE=3 MAXLENGTH=3>
<INPUT TYPE=SUBMIT NAME="action" VALUE="Add to Order">

</FORM>
</TD>

</TR>
</onlinebuying:indexedProperty>
</TABLE>

The example shows that there is no Java required at all when using custom
tags.

Whether extended tags are used or not, we recommend developing JSPs
such that multiple states can be composed within a single page (see 3.2.1.1,
“HTML” on page 32 and 3.2.1.3, “Framesets and named windows” on page 37
for more details on page composition). This approach actually simplifies the
individual JSPs since they need not worry about setting headers or the
<HTML><BODY> and other enclosing tags. The associated HttpServlet can
handle this setup, or can delegate it to an inherited servlet as discussed in
the previous section. This approach will also make it easier to exploit dynamic
caching that will be supported in later versions of WebSphere Application
Server.

Pros
One huge advantage of JSPs is that they are mostly HTML with a few special
tags here and there to fill in the blanks from data variables. The standard
extension mechanism allows new tags to be developed that eliminate the
need to use the Java escape tags at all.

Further, JSPs require none of the “println” syntax required in an equivalent
servlet. This tag-oriented focus makes them relatively easy to WYSIWYG edit
with tools such as WebSphere Studio Page Designer. This focus also makes
it easier to assign the task of building JSPs to developers more skilled in
graphic design than programming.

JSPs can be used to provide meaningful error indicators on the same page as
the input fields, including specific messages and highlighting. Static HTML
does not provide this capability.

Another advantage is that JSPs do not require an explicit compile step,
making them easy to develop and test in rapid prototyping cycles. This
feature tempts some developers to use JSPs instead of servlets to handle the
Chapter 3. WebSphere programming model 51

data gathering and update-transition functions, logic that is traditionally
associated with the controller component of an MVC architecture.

Cons
There are some good reasons not to give in to the temptation and use JSPs
to control the application flow:

1. Current JSP tools do not provide IDE functions for code blocks. For
example, method completion and hierarchy exploration are not available
during edit, incremental compile, test and debug facilities are not available
in preview mode (usually the logic blocks and escapes show up as strange
symbols on the window).

2. While there is no conceptual reason that prevents a JSP tool from
providing a “dual mode” capability, combining the two concepts makes it
impossible for one developer to handle the control flow of an application
and another to handle the layout.

3. Combining application flow and layout logic in a JSP has the same
disadvantage as combining them in a servlet: it is much more difficult to
migrate the application to use different output media.

4. Finally, JSP 1.0 and beyond have eliminated the ability to override an
abstract method defined by a superclass, such as doGetOnlineBuying().
All HTML tags are compiled into the HttpServlet service() method. This
makes inheritance of common look-and-feel behaviors in JSPs much more
difficult and error prone.

Regardless of whether they are used to control application flow or not, there
are some minor issues associated with using JSPs.

1. JSPs compile on the first invocation, which usually causes a noticeable
response time delay while the compile, load and init take place. To avoid
this delay in production environments, use a batch JSP precompiler if
available (see Chapter 6, “JSP support” on page 189 for more details).

2. Communication between the JSP and servlet creates a name, type and
data flow source convention issue. In other words, how do you pass data
elements between a servlet and the corresponding JSP? The next section
discusses using a Java Bean to encapsulate the data needed by a JSP.

Alternatives
If you insist on using JSPs to control the application flow, we recommend
building two per state:

1. StateServlet.jsp, playing the role of an HttpServlet with nothing but a script
tag implementing doGet() and doPost() type methods, It can safely inherit
from a superclass HttpServlet as described in the previous section.
52 WebSphere V3.5 Handbook

2. State.jsp, playing the role of a JSP as described in this section.

This approach allows you to take advantage of the quick prototyping
capability of JSPs early in the development cycle (no compile or deploy step
needed). Later on you could convert the “servlet” JSP to a real servlet (to
avoid the need to precompile the JSPs as described above).

However, we should say here that such tools as VisualAge for Java Enterprise
Edition with its embedded WebSphere Test Environment provide the ability to
rapidly develop and test servlets as easily as JSPs, minimizing the
development cycle-time advantage described above that might motivate the
use of JSPs for application flow control.

Finally, XML actually provides a viable alternative to JSP in some situations. It
is possible to have the servlet for a given state return XML directly to an
XML-enabled browser, using an XML parser-generator. Even if a user’s
browser does not support XML, the servlet could use the associated
stylesheet to generate the corresponding HTML without using a JSP. We will
discuss this possibility further in the next section, where Java Beans can be
employed to simplify this process.

3.2.2.3 Data structure Java Beans (data beans)
A Java Bean is a class that follows strictly specified conventions for naming
properties, events and methods. An auxiliary class, called a BeanInfo class,
contains additional descriptive information that can be used by tools to
provide, among other things, extra levels of documentation and runtime
support to edit property values.

A data structure Java Bean is usually nothing but a simple set of properties,
with no need for events or methods (beyond gets and sets of the associated
properties).

Data structure Java Beans are sometimes made “immutable”. That is, all
properties are private and only get methods are provided to prevent the data
from being updated. Also, data structure Java Beans sometimes are
associated with a separate key subcomponent that encapsulates those
properties that uniquely identify the associated data.

Immutable or not, key or not, a data structure Java Bean should implement
the serializable interface that enables it to be passed remotely and stored in
various files and databases. An implication of being serializable is that the
object properties must be simple types or strings, or that any contained
objects must be serializable.
Chapter 3. WebSphere programming model 53

Strictly speaking, WebSphere Application Server V3.5 has no special support
for Java Beans. However, data structure Java Beans fill so many useful roles
in the end-to-end architecture that we feel required to include them in a
discussion about the programming model.

Role in the architecture
In an MVC architecture, data structure Java Beans can be considered to
represent the static properties associated with objects in the model. This
makes them useful to maintain data reads from back-end systems, or results
from executing back-end business functions (more on this in the next section
on business logic access beans).

For purposes of the Web application server tier, we also see them used to
maintain the data passed between the servlet and other middle-tier
components, especially JavaServer Pages (described in the 3.2.2.2,
“JavaServer Pages” on page 47) when there is more than one property
involved. They may represent data from the model as it is transformed for a
specific view associated with a JSP, or as occurs in many cases, it may be
that the model object does not need transforming and can be passed to the
JSP as is.

Our example online buying application has three servlets that pass complex
data to an associated JSP: ProductCatalogServlet, OrderStatusServlet and
OrderDetailsServlet. This association leads us to suggest developing three
data structure Java Beans, named ProductCatalogData, OrderStatusData
and OrderDetailsData, respectively. Figure 16 shows the online buying
application STD extended to show where data structure Java Beans are being
used to model the contract between the servlet and JSP.
54 WebSphere V3.5 Handbook

Figure 16. Online buying application STD extended to show data structure Java Beans that
encapsulate the dynamic content

Some developers build a data structure Java Bean for every JSP whether it
has more than one property or not, and whether or it is associated with a
servlet or not. They may also make these data structure Java Beans
immutable, as described above, to make them easier to deal with in
WYSIWYG editors (only get methods would show in the palette of functions
available).

In any event, the properties associated with these data structure Java Beans
can be derived directly from the more complex objects in static models
associated with the application flow model as shown in Figure 17.

DHTMLHTML
Servlet
doPost

add to order
{add item

(product, quantity)}

Order
Details

Confirm
Submit

submit

ok

cancel

Order
Status

Confirm
Cancel

open

[already open]

Customer
Home

Product
Catalog

Action
Result

{create new order}

edit line item

ok

{submit order}
{cancel order}

{modify item
(product,
quantity)}

Already
Open

[open ok]

Key: JSP JSP+Bean
+doGet

(order)

(order)

(order)
(order)
Chapter 3. WebSphere programming model 55

Figure 17. Data structure Java Beans derived from application flow static object model

Pros
Either approach using a data structure Java Bean to contain JSP data has
enormous advantages:

1. The data structure Java Bean represents a formal contract between the
servlet and JSP developer roles involved.

2. Adding properties to the contract is easy because the servlets already
create, populate, and pass the associated Java Bean, while the JSPs
already use the bean and property tags. You can independently modify the
programs to use the new properties. Also, the new properties can be
optional with a default assigned as part of the constructor.

3. Removing a property from the contract without modifying the associated
servlets and JSPs that use them will cause errors to be caught at compile
rather than runtime.

4. It allows the servlet developer for a given state to focus entirely on Java to
control the application control and data flow, while the JSP developer can
focus entirely on HTML or XML-like tags that control the layout.

5. Many tools are available that take advantage of Java Bean introspection
for such varied functions as providing command completion and selection
of properties from a palette at development time, to populating from and
generating XML at runtime.

6. Setting properties into a data structure Java Bean, and then setting the
whole data structure into a data flow source (such as HttpServletRequest
attributes to be discussed in 3.4.2.1, “HttpServletRequest attributes” on
page 94) is much more efficient than setting individual properties into that
source one at a time.

0 . .n 0 . . n

L in e I t e m

p r o d u c t I D
d e s c r ip t io n
q u a n t i t y

O r d e r

o r d e r ID
s t a tu s

P r o d u c t

p r o d u c t I D
d e s c r ip t io n

O r d e r
D e t a i ls

c u s t o m e r ID
o r d e r I D
s t a t u s

O r d e r
S ta t u s

c u s t o m e r I D

P r o d u c t
C a ta lo g

0 . . n

P r o d u c t
C a ta lo g
56 WebSphere V3.5 Handbook

7. Conversely, getting a single data structure Java Bean from that same
source, and then getting its properties locally, is much more efficient than
getting multiple properties directly from the source.

8. The same data structure Java Beans are likely to be used as contracts
with other components because of their simplicity, providing a high degree
of reuse (more on this advantage in the next section).

Cons
There are no serious disadvantages to using data structure Java Beans. The
only issue is that they can be rather expensive to create, and may cause extra
garbage collection cycles as memory is used. To circumvent this problem,
some developers use pooling techniques, where a number of pre-constructed
Java Beans wait to be requested, used, and then released back to the pool.

Alternatives
Some XML enthusiasts propose XML as a dynamic substitute for explicitly
coded Java Beans (see 3.2.1.4, “XML, DTD and XSL” on page 41). With this
approach, a single XML string is passed or stored rather than a data structure
Java Bean. The receiving component then uses the XML parser to retrieve
the data.

While we are strong proponents of XML, and see its merits as a possible
serialized format of a data structure Java Bean, we would not recommend
using XML-encoded strings as a substitute, especially in situations where the
data structure is known at design time.

The extra overhead of generating and parsing the XML strings, plus the
storing, retrieving and transmitting of all the extra tags, makes them very
expensive with respect to the equivalent data structure Java Bean. For
example, it will take only few bytes to serialize a Java Bean such as
LineItemData containing a simple string for the description and couple of
integers for the productID and quantity. Using XML could take many, many
more bytes, depending on how the tags are specified and how much white
space is encoded:

<LineItemData>
<productID>1111</productID>
<description>Cat food bowl</description>
<quantity>1</quantity>

</LineItemData>

An alternate XML design might be a little more conservative of space, but still
is much more expensive than the equivalent serialized data structure Java
Bean:
Chapter 3. WebSphere programming model 57

<LineItemData productID=1111 description=“Cat food bowl” quantity=1/>

Don’t forget that neither of these fragments include the surrounding tags that
make it a well-formed XML document.

In summary, there is honestly no good alternative to using data structure Java
Beans as the formal contract between components in the architecture. And,
as we will see in the following sections, data structure Java Beans are used
just about everywhere, making them well worth the investment.

3.2.2.4 Business logic access beans
We noted in the previous subsection on data structure Java Beans that they
represent the static properties of the model. In the same vein, a business
logic access bean can be thought of as encapsulating the dynamic behavior
of the model.

A business logic access bean is a Java class whose methods encapsulate a
unit of work needed by any type of application, be it for the Web or a
distributed client/server. In other words, a business logic access bean is
intended to be user interface independent.

The other primary purpose of the business logic access bean is to insulate
the client from various technology dependencies that may be required to
implement the business logic.

Business logic access beans will almost always make use of data structure
Java Beans and associated keys in the input and output parameters. Further,
any data cached within an access bean is likely to be in terms of data
structure Java Beans and associated keys, so the two concepts go hand in
hand.

Like data structure Java Beans, WebSphere Application Server V3.5 has no
special support for business logic access beans, However, they are so useful
in the end-to-end architecture that we feel required to include them in this
discussion as well.

Access bean as it is used here is intended to be a generic Java wrapper,
and not to be confused with the specific kind of access beans generated by
VisualAge for Java Enterprise Edition.

Note
58 WebSphere V3.5 Handbook

Role in the architecture
We noted in the previous subsection that data structure Java Beans represent
the static properties of the model in an MVC architecture. In the same vein, a
business logic access bean can be thought of as encapsulating the dynamic
behavior of the model.

There are numerous approaches to developing business logic access beans,
covering many different aspects that may be useful in a given application. We
touch on a few of them here, but it is not within the scope of this book to
discuss all the different patterns that may be used (see Design Patterns:
Elements of Reusable Object-Oriented Software, by Erich Gamma, et al).

The first aspect we consider is whether the business logic is stateless or
stateful:

• Stateless access beans have methods whose input parameters include all
the data necessary to complete the unit of work and whose return values
have the complete result. Stateless access beans retain no memory of
what a given client program has done between invocations. However,
“statelessness” does not mean that the access bean cannot cache data,
just that any data cached must be accessible using parameters passed in
a given method signature.

• Stateful access beans have methods that may rely on the result of
previous methods, thus having an implied “state” model. Statefulness can
be exploited to simplify the method signatures, since parameters or results
of previous calls can be cached so that fewer parameters are needed in
subsequent method signatures. Stateful access beans must have a
one-to-one association with the client so that two different clients in two
different “states” do not interfere with each other. This association is often
called client/server affinity, and it can make stateful access beans less
scalable than an equivalent stateless one by limiting the ability to
arbitrarily load balance method calls.

• You can sometimes simulate a stateful access bean with a stateless one
by including extra parameters that either identify the client or contain the
current state data.

The identity is used in the first approach to look up state data cached in
the access bean. If the second approach is used, the current state data is
used in the called method and a new current state is returned to the client
(as a data structure Java Bean, as described in the 3.2.2.3, “Data
structure Java Beans (data beans)” on page 53) to keep until the next call.
Chapter 3. WebSphere programming model 59

Another aspect to consider is granularity. Like servlets described in 3.2.2.1,
“Servlets” on page 43, there is a continuum of granularity that could be
considered when developing a business logic access bean:

• On the one extreme, there could be a single business logic access bean
per unit of work.

• On the other, all units of work for the business process could be
represented by methods on a single business logic access bean.

• In the middle, all the methods needed for the transitions in a given state in
the application flow model could be grouped into a single business logic
access bean.

• Also in the middle (but coarser grained), all the transitions associated with
a state in the business process model could be represented by methods
on a single business logic access bean.

Some of you may be familiar with the following types of business logic access
beans:

• A command bean is a fine-grained stateful business logic access bean
that encapsulates a single unit of work. The programming model for a
command bean is to create it (or get one from a pool), set properties (its
state) that represent the input parameters, perform the unit of work, and
finally get the properties representing the return parameters (also part of
the state). See Design and Implement Servlet, JSPs, and EJBs,
SG24-5754 for more details.

• A business logic access bean that is stateful and holds the data returned
from a query result is sometimes called a rowset. A rowset can be
considered to be a specialized form of command bean. Its programming
model is to set parameters representing a query, perform the query, then
iterate through the results in the rowset.

By way of an example, if we decided to use a stateless approach with a
business logic access bean per state in the online buying business process
model, we might end up with the following:

1. EntryAccess, with the following stateless methods:

- OrderKey create(CustomerKey), where a new order is created on
behalf of the customer and the key is returned

- void addLineItem(CustomerKey, ProductKey, quantity), where the
specified quantity of a product is added to the open order for the
specified customer. If no order is open, a new one is opened.
60 WebSphere V3.5 Handbook

- void modifyLineItem(CustomerKey, ProductKey, quantity), where an
existing line item on an order is modified.

- void submit(CustomerKey), where the open order associated with the
customer is submitted to the Shipping department for Fulfillment.

- void cancel(CustomerKey), where the open order associated with the
customer is cancelled and moved to the Completed state for data
mining by the Marketing.

2. FulfillmentAccess, with the following stateless methods:

- void packLineItem(Shipper, OrderKey, ProductKey, quantity), where the
specified quantity of product up to the line item quantity is added to a
shipment associated with the order. If no shipment is open, a new one
is created.

- void ship(Shipper, OrderKey), where the shipment associated with an
order is shipped. If all line items associated with the order have been
shipped, then the order is moved to the Completed state.

3. CompletedAccess, with the following stateless methods:

- void purge(Marketer, OrderKey), where the order is finally deleted from
the system after all data mining activities have been exhausted.

Figure 18 shows the business process model from which these access beans
and associated methods were derived.

Figure 18. Online buying business process model driving the business logic access beans

These descriptions only show the update methods associated with the
business logic access beans. The assumption is that there would be
read-only methods that provide access to data associated with the static

Entry Fulfillment

Completed

submit()
ship (shipper)

create()

[all items
shipped]

purge
modify line

item
(product,
quantity)

cancel()

Customer Shipping
Marketing

add line item
(product,
quantity)

[not all items
shipped]pack line item

(product, quantity)
Chapter 3. WebSphere programming model 61

model underlying the business process state. For the OrderEntry state we
might see the following read-only methods:

• ProductData[] getProducts(), which returns the current list of products in
the catalog.

• OrderDetails getOpenOrderDetails(CustomerKey), which returns the
details of the open order associated with the customer passed in (or null if
no order is open).

• OrderDetails getOrderDetails(OrderKey), which returns the details for the
order passed in (or null if the order does not exist).

• OrderData[] getOrders(CustomerKey), which returns the list of orders
associated with the customer.

The OrderDetails class derived from the application flow static object model is
used to pass data for the getOpenOrderDetails() and getOrderDetails()
methods, while the ProductData and OrderData classes used to return data
from the getProducts() and getOrders() methods are derived from the static
object model associated with the business process OrderEntry state as
shown in Figure 19.

Figure 19. Static object model of Order in Entry state driving read-only calls

It often makes sense to wrap the business objects used by the business logic
access beans with access beans as well, to provide the ability for each to be
maintained in a separate data store transparent to the business logic. In this
case, we would have a business object access bean for Product, Customer,
Order, and LineItem respectively (named ProductAccess, CustomerAccess,
OrderAccess and LineItemAccess).

0..n
L ine Item

quantity

O rder

orderID
status

Product

sku
description

Custom er

custom erID

0..n custom er

openO rder

product 0..1
62 WebSphere V3.5 Handbook

Pros
One big advantage of wrapping the business logic associated with the
business process model is that wrappers provide an encapsulating layer that
hides the details of where and how the business logic gets invoked from the
client. This insulation will make it possible to evolve the technology used by
the application over time. For example, in early stages, the code may make
direct calls to JDBC, and then over time migrate to use Enterprise JavaBeans,
all without having to recompile the client applications.

Another big advantage is that once the method signatures are defined, it is
possible to build the client applications in parallel with the back-end business
logic, and speed the overall development process. Testing becomes simpler
too, since the logic controlling the application flow is cleanly separated from
the logic controlling the business process, minimizing the number of code
segments that need to be tested.

Cons
There is absolutely no downside to wrapping business logic in objects
separate from the client, even in cases where there is little or no opportunity
to reuse the business logic in other applications.

Alternatives
That said, there is an alternative to wrapping business logic into “vanilla” Java
classes, and that is to directly use Enterprise JavaBeans in the client code. In
the next section, we discuss the various types and applications in the next
section that we feel make this a viable alternative.

3.2.3 Distributed object server-hosted components
The WebSphere programming model provides support for Java-based
distributed objects called Enterprise JavaBeans (EJBs). EJBs can be thought
of as a standard mechanism to wrapper enterprise business logic and data
(usually hosted on some enterprise server) that can take advantage of the
following object services:

• Distribution, the ability for the server to be remote from the client

• Persistence, maintenance of the essential data associated with the
component

• Transactions, providing ACID characteristics for the units of work

• Security, control of the roles that can access the objects and associated
methods

• Trace and monitoring, configurable instrumentation for debugging and
performance tuning
Chapter 3. WebSphere programming model 63

There are two main types of EJBs that can be developed as part of the
programming model: session and entity. In a nutshell, session EJBs are those
that have a very short life cycle that lasts only as long as both the client and
server maintain a reference to the session. This reference can be lost if the
client explicitly removes the session, or if the server goes down or “times out”
the session.

An entity EJB is one that once created (either explictly or implicitly) can be
subsequently found with a “key” for use by a client application. It persists until
the remove() operation is invoked by a client application or until the data is
explicitly removed from the underlying store.

Within a session EJB there are three implementation types to choose from
(stateless, stateful, and stateful with session synchronization). Within an
entity EJB there are two implementation types depending on how persistence
is managed: container-managed persistence (CMP), and bean-managed
persistence (BMP).

This section will discuss each implementation choice at a high level with
respect to their role in the architecture, what the pros and cons of each type
are, and alternatives to each. Details of how to deploy EJBs are found in
Chapter 11, “Enterprise Java Services” on page 393.

3.2.3.1 Stateless session EJBs
Stateless session EJBs are those whose method signatures have all the
parameters needed to complete the associated unit of work; they return the
complete result in the method return value (or exceptions that may be
thrown).

The effect of being stateless is that any active instance of a stateless session
EJB can service a request from any client in any sequence. This feature
makes stateless session EJBs the most scalable.

There is no guarantee that two calls to the same stateless session EJB will be
services by the same instance on the server. Because of this feature (good
for scalability), there is a common misconception that stateless session EJBs
cannot have instance variables and thus maintain “state”. They can, as long
as the values can be used by any client, and in any sequence. For example,
many applications cache connections to back-end resources and frequently
used stable read-only data in stateless session EJBs.
64 WebSphere V3.5 Handbook

Role in the architecture
Stateless session EJBs are ideal for implementing the business logic
associated with the business process model, as we described in see 3.2.2.4,
“Business logic access beans” on page 58.

You could use the stateless session EJBs directly by the client program, or
have the business logic access bean wrapper calls to the stateless session
bean. In either case, the method signatures of the stateless session EJBs
would look exactly like those described in 3.2.2.4. The method signatures for
the Entry stateless session bean derived from the online-buying business
process model as shown in Figure 20 on page 65 are:

• OrderKey createOrder(CustomerKey), where a new order is created on
behalf of the customer and the key is returned.

• void addLineItem(CustomerKey, ProductKey, quantity), where the
specified quantity of a product is added to the open order for the specified
customer. If no order is open, a new one is opened.

• void modifyLineItem(CustomerKey, ProductKey, quantity), where an
existing line item on the open order associated with the customer is
modified.

• void submitOrder(CustomerKey), where the open order associated with
the customer is submitted to the Shipping department for Fulfillment.

• void cancelOrder(CustomerKey), where the open order associated with
the customer is cancelled and moved to the Completed state for data
mining by the Marketing department.

Figure 20. Stateless session EJBs derived from business process model

Note: add a CustomerKey to every transition to derive method signatures.

Entry Fulfillment

Completed

submit()
ship (shipper)

create()

[all items
shipped]

purge
modify line

item
(product,
quantity)

cancel()

Customer Shipping
Marketing

add line item
(product,
quantity)

[not all items
shipped]pack line item

(product, quantity)
Chapter 3. WebSphere programming model 65

The implementations of the methods can be exactly the same as those
provided for the business logic access beans, or they can take advantage of
the features of stateless session EJBs.

For example, if the code manually manages a connection pool for a relatively
expensive resource, you can cache the connection in the stateless session
EJB (as long as it is not client specific). This approach effectively lets the EJB
container act as the pooling mechanism, and makes getting the connection
transparent to the business logic, which can simply use the connection.

As another example, if the methods managed standard JTA (Java Transaction
API) transactions at the beginning and end of the business logic to provide
ACID properties, this code could be removed, since it is provided
automatically by the container.

Pros
Besides simplifying the code to handle connection pooling, transactions and
security, a key advantage gained when using stateless session EJBs is that
the business logic can be moved out of (distributed from) the client tier
without having to reprogram the client or server components. This ability can
be important for security purposes.

For example, we may be happy to have the Web server and servlets within
the DMZ (since the application flow can be inferred by navigating the Web site
anyway), but we would probably want to host the business logic behind the
inner firewall of the DMZ to protect it from direct access by hackers. In other
cases we may want to co-deploy the business logic with the application flow
logic, but put both behind the DMZ (using WebSphere’s OSE Remote
deployment option).

Another advantage of using stateless session EJBs is that it is possible to
efficiently load balance them across multiple application servers and achieve
a high degree of scalability.

Distributing the business logic out of the client tier can make the client much
“thinner” since there is no need to install (possibly very expensive)
connectivity options. Only the Enterprise Java Servers would need to
maintain the connectivity to the back-end systems. It can communicate with
the client, with the client-side ORB providing RMI/IIOP connectivity. In large
Web application server farms, or Java applets, having a thin middle tier can
be a very attractive advantage.
66 WebSphere V3.5 Handbook

Finally, distributing the business logic out of the client means that it can be
reused in multiple application types, not just Web applications, as we show in
the introduction (3.1.2.2, “Distributed object-based applications” on page 27).

Cons
One disadvantage to using EJBs in general is that the overhead (distributed
calls, security checks and transaction management) can be quite expensive
even when the client and server are co-deployed. For this reason, you must
take care to design the EJBs to minimize the number of calls required per unit
of work (our design requires only one call per unit of work after the EJB is
created).

The second disadvantage to using EJBs is that the need to find a Home in the
JNDI context, narrow it to the specific home interface type, and create the
remote interface prior to using it adds complexity to the client programming
model.

Still a third disadvantage when using EJBs is the increased complexity in
testing, debugging, deployment, and administration.

Specific to stateless session EJBs, a disadvantage with respect to other EJB
types is the need to pass in extra parameters on the call, and receive all the
data on the return value. This requirement can significantly increase the data
transmission costs, if the objects are not carefully designed.

Also, expensive computations may be repeated (if the EJB is called more
than once in the logical session), because a stateless session EJB retains no
memory of previous calls.

Alternatives
If, for example, all the logic is handled by back-end CICS transactions, or all
the data is maintained in a single DB2 database using precompiled SQLJ
queries, then a simple business logic access bean that directly accesses
these back-end systems may be the preferred approach.

Rather than look up the home in the JNDI context, narrow it, and create the
session over and over again for each request, you can create the session
once and cache it in the client (either the servlet or, preferably, the business
logic access bean). This approach should be considered a “best practice”
even though the IBM implementation of the JNDI context in WebSphere
Application Server V3.5.2 automatically caches homes to provide a high
degree of scalability.

Also, it is a common practice to cache stable read-only data in a stateless
session EJB (or in an associated singleton object) to minimize repeating
Chapter 3. WebSphere programming model 67

expensive computations. For example, we may want to cache the product
catalog data within a singleton referenced by the stateless session bean.

3.2.3.2 Stateful session EJBs
Stateful session EJBs have a complex life cycle model that allows methods to
maintain state between calls. The effect is that a given task can span multiple
invocations.

Unlike stateless session EJBs, stateful session beans can support a custom
create that takes parameters useful in initializing the state. This feature can
be very useful in simplifying the other method signatures, since they can
assume that the state of the session EJB includes those parameters useful
for the lifetime of the session.

Role in the architecture
Since the “business logic” of our example application only allows a single
order to be open for a customer at a given time, we could have designed a
stateful session EJB for the OrderEntry state in the online buying business
process model as follows:

• OrderEntry ejbCreate(CustomerKey), where the session is created and
the current open order for the customer (if any) is cached. This method
would appear on the OrderEntryHome as a custom create.

• void addLineItem(ProductKey, quantity), where the specified quantity of a
product is added to the open order for the stored customer. If no order is
open, a new one is opened.

• void modifyLineItem(ProductKey, quantity), where an existing line item on
the open order associated with the session is modified.

• void submitOrder(), where the open order is submitted to the Shipping
department for Fulfillment.

• void cancelOrder(), where the open order is cancelled and moved to the
Completed state for data mining by the Marketing department.

Figure 21 shows how the OrderEntry stateful session EJB methods were
derived more directly from the associated business process model state
(customer was added only as a parameter to the create method).
68 WebSphere V3.5 Handbook

Figure 21. The business process model from which stateful session EJB methods were derived

Pros
One benefit of using stateful session EJBs is that the methods map more
closely to the transitions associated with the business process model than
those of the stateless session EJB (or business logic access bean) described
previously. Also, the fewer number of parameters means that there is less
data to marshal and demarshal in a remote method invocation.

Another benefit of a stateful session EJB is that it can reduce the number of
calls to the back end by caching frequently used data as part of its state. In
our example, caching the open order associated with the customer eliminates
the need to keep reading the database to retrieve it, as would be required in
just about every method associated with the “equivalent” stateless session
EJB.

Taking this idea to an extreme, stateful session EJBs can cache data
considered to be work-in-progress, eliminating all calls to the back end until
specific “checkpoint” type transitions. This can be especially advantageous in
situations where application events may terminate the processing before its
logical conclusion.

For example, we could have opted to cache the order line item data in the
OrderEntry stateful session EJB until the submit or cancel is invoked. Only on
the submit would it access the back-end system to move the cached data to a
persistent store.

A middle of the road approach would both cache the state in the EJB, and
store it persistently on the back end. Any update methods on the stateful
session EJB (such as addLineItem) would write to the persistent store, and if

Entry Fulfillment

Completed

submit()
ship (shipper)

create()

[all items
shipped]

purge
modify line

item
(product,
quantity)

cancel()

Customer Shipping
Marketing

add line item
(product,
quantity)

[not all items
shipped]pack line item

(product, quantity)
Chapter 3. WebSphere programming model 69

successful, would update the cache to reflect the results. Read-only methods
(such as getOrderLineItems) on the EJB would simply use the data in the
cache.

Whatever you decide to cache using stateful session EJBs, the “state” is
managed automatically by the container rather than by explicit programming.
All the programmer need do is specify the instance variables as non transient,
and they are considered to be part of the state that gets managed. If memory
gets overloaded with sessions, the container will passivate one (probably one
that is least recently used, or LRU), reactivating it later if necessary.

Also, a properly designed stateful session EJB makes these caching
decisions transparent to the client.

Cons
The primary disadvantage to using stateful session EJBs is that there are
very few quality of service guarantees with respect to the ACID properties you
might expect when working with components:

1. For example, the container is not obligated by the specification to provide
for failover of stateful sessions by backing up the nontransient instance
variables in a shared file or database; so in general, if the server hosting
the stateless session EJB goes down, the state is lost.

2. Further, even if failover of stateful sessions was provided for by a shared
database (which WebSphere does not support), the session may time out
due to inactivity. Timeout always causes the state to be lost.

Both of these cases would probably be considered to be disastrous in the
example where line item data was only maintained as state within the stateful
session EJB, since a significant amount of work by the Customer would be
lost. However, a stateful session can be coded to manually back up the data
in a persistent store. In this case timeout or failover would only require
reinitialization of the session during the ejbCreate() method.

Another disadvantage related to the quality of service guaranteed for stateful
session EJBs is that the container does not roll back the state if the overall
transaction fails. For example, if the client application made multiple
addLineItem() calls to the Entry stateful session in the context of a single
transaction that subsequently fails, the state data would be incorrect. The
backing store may be in an inconsistent state as well.

Still another disadvantage to using stateful session EJBs is that scalability is
affected, since (unlike stateless sessions) a client must be attached to the
server hosting the specific stateful session EJB that is referenced. This
70 WebSphere V3.5 Handbook

requirement for client/server affinity limits the ability to balance the workload
among multiple servers. If the clients are not able to share the reference to
the EJB (either through a serialized handle or some other mechanism), then
client/server affinity must “ripple” all the way back to the client. This ripple
effect can greatly affect the scalability, performance, and failover
characteristics of the application.

Finally, another downside is that the mapping of data from the non-transient
variables to the backing store (file or database) during passivation/activation
is through the serialization mechanism. In short, the data is stored as a Blob
(Binary Large Object). The effect is that you cannot index or retrieve the data
using complex queries, as you could if you explicitly mapped the data to
specific columns.

Alternatives
There are alternatives to using stateful session EJBs. For example, any of the
approaches for converting a stateful to stateless access bean described in
3.2.2.4, “Business logic access beans” on page 58 can be used. These same
approaches could be used to convert a stateful session EJB into a stateless
one, especially in situations where the data is stable and read only, or if
client/server affinity is already being used.

In either of these cases, a singleton memory cache can be shared by all
instances of a stateless session EJB within the same JVM to maintain data. It
is also possible to cache this data in the client or Web application server (see
3.4, “Data flow sources” on page 90 for details).

Another alternative to stateful session EJBs when failover and ACID
properties are required is to use an entity EJB (discussed in detail below). In
this case, the “pseudo session” life cycle would be explicitly managed by the
application, but its state data would be immune to timeout as well as server
and transaction failures.

3.2.3.3 Session EJBs with session synchronization
Session beans can support the session synchronization interface, which lets
them participate in the container’s transaction processing. The session
synchronization interface includes methods that signal when a transaction
has been started, when it is being prepared for commit, and when it is finally
completed, either with a commit or a rollback.

The effect is that the same session EJB can be called one or more times in
the context of a single transaction, and the container (in conjunction with the
transaction controller) manages the calls required to close out the transaction
without an explicit call from the business logic methods.
Chapter 3. WebSphere programming model 71

Session synchronization requires that the session EJB be stateful, since it
adds life cycle states associated with transactional semantics. However, you
should think of it as “converting” either a stateless or a stateful session EJB to
support synchronization. The reason this is important is that the advantages
and disadvantages of the underlying session EJB type tend to dominate.
Also, from a programming model perspective, this characterization associates
the choice of session synchronization with deployment rather than with the
business logic itself.

Role in the architecture
Let’s say that in our online buying application, we decided to cache the Entry
data in a stateful session bean because going to the database for each
update was too expensive. We initially felt comfortable in this decision
because it was determined that timeout of stateful sessions was actually
desirable, and that client/server affinity and lack of failover support were not
issues. However, we realized that many of the business logic methods could
fail after partially updating the cached data, and the programming required to
restore the data to its previous state was more or less complex depending on
the business logic.

One way to reduce the complexity is to support the session synchronization
interface on the Entry stateful session. The afterBegin() implementation
would simply make a backup copy of the current state, and hold it in an
instance variable. The beforeCompletion() implementation could simply
return true, since there is no need to do anything. Finally, the
afterCompletion() implementation would restore the current state to the
previous copy, if the input parameter indicates that a rollback is required.

The business logic methods can throw a system exception or set a flag to
cause a rollback; they can throw application exceptions or exit normally to
cause a commit.

Another situation where session synchronization may apply is in situations
where data is backed up in a resource with a non-JTA-based transaction
model. For example, Persistence Builder (PB) is a VisualAge for Java feature
that provides advanced object model to relational mappings, such as preload
caching of related objects, that are not yet available in our CMP entity EJB
implementations. Unfortunately, PB has its own transactional model that must
be followed.

Let’s say that in our online buying application the Entry stateless session was
coded to use a number of “business object” access beans that wrappered
individual PB object types for Product, Customer, Order and OrderLineItem
(Figure 22 on page 73).
72 WebSphere V3.5 Handbook

Figure 22. Static object model of Order in Entry state driving business object access beans

The problem is that a given business object access bean is written to be
independent of the others. It cannot safely start a PB transaction since it does
not know if the client (stateless session EJB) will call another one in the
context of the same transaction. We certainly do not want multiple PB
transactions to run under a single unit of work, nor do we want to clutter up
the business logic with PB specific calls.

In this case, we would consider making the Entry support session
synchronization, where the afterBegin() starts the PB transaction, the
beforeCompletion() simply returns true (since PB transactions do not support
a prepare state - otherwise we would call the appropriate method and return
its result), and the afterCompletion() does a commit or a rollback on the PB
transaction depending on the input parameter (commit on true or rollback on
false, respectively).

Pros
The nice thing about session synchronization is that the business logic of the
session no longer needs to be concerned with managing transactions and
cached state. Instead, business logic methods need only throw an exception
when an error occurs to cause a rollback, or return successfully to cause a
commit. In either case, the associated state is properly managed. If the code
needs to cause a rollback without throwing an exception (say for read-only
methods), it can explicitly invoke a setRollbackOnly() on its EJB transaction
retrieved from the context.

In cases where the session EJB was originally stateless and only added
session synchronization (and state) to hold a transaction, then failover and

0..n
L ine Item

quantity

O rder

orderID
status

Product

sku
description

Custom er

custom erID

0 ..n custom er

openO rder

product 0..1
Chapter 3. WebSphere programming model 73

timeout is definitely not an issue, since the client (HttpSession or business
logic access bean) will create one as needed anyway.

Cons
Except for the simple cases described above, the session synchronization
interface can be very difficult code to implement, especially if the underlying
resource does not provide support.

Also, the code to manage transactions must apply to all methods on the
session that require a transaction. For example, there is no way to process
the backup/restore differently based on the method(s) invoked without
involving the methods themselves. In this case, it may be best to handle the
compensation in the methods themselves.

Implementing the session synchronization interface cannot be considered to
support true two-phase commit. The reason is that the transaction
coordinator is not obligated to resurrect the session and complete the
transaction if there is a failure between phases. The net effect is that there is
a window of opportunity where resources can become out of synch.

Finally, session synchronization is relatively expensive to achieve at runtime,
because it adds an additional set of methods that must be called to manage a
transaction. There should never be more than one or two per unit of work
(either of our designs above have only one).

Alternatives
If a stateful session EJB is being converted to use session synchronization
simply to provide transactional semantics of the cached data, then consider
using a CMP entity EJB. The advantage would be transparent transactional
semantics on the persistent properties.

In other cases, the best alternative is to defer session synchronization
implementation to the deployer role and have the business logic developer
code the session methods to be as independent of transactional semantics as
possible. This alternative takes session synchronization out of the “normal”
programming model and makes it a deployment responsibility.

3.2.3.4 Container-managed persistence entity EJBs
While a session EJB represents an object with a transient identity lasting only
as long as the client and server both maintain a reference to it, an entity EJB
represents an object with a persistent identity that lasts until the object is
actually removed from the container. Because of this difference, entity EJBs
have an associated key, and the home supports methods to find references in
various ways:
74 WebSphere V3.5 Handbook

• Find methods that return a single EJB reference based on the primary key
or a set of properties that uniquely identify an entity

• Find methods that return multiple EJB references based on zero or more
properties that identify a subset of all entities in the container

An entity has a set of properties, including those that make up the key, which
are considered to be part of its persistent state. The associated business
logic methods operate upon these properties without regard to how they are
loaded and stored.

In a CMP entity EJB, the container manages the persistent properties. When
bean-managed persistence (BMP) is specified, the developer explicitly codes
well-defined methods invoked by the container to manage the persistent
properties.

Role in the architecture
In our online buying application, the business objects associated with the
various states in the business process model are the most natural fit for CMP
entity EJBs, whether we wrap these business objects with access beans or
not (see Figure 23 on page 75).

Figure 23. Static object model of Order in Entry state driving CMP entity EJBs

As with all EJBs, care must be taken to minimize the interactions between the
client and server, even if the two will be co-deployed (as when the client is a
session EJB). For entity EJBs, we recommend the use of the following
approaches:

• Custom creates. These are designed to create the object and initialize its
properties in a single call, rather than the default create that takes just the

0..n
L ine Item

quantity

O rder

orderID
status

Product

sku
description

Custom er

custom erID

0 ..n custom er

openO rder

product 0..1
Chapter 3. WebSphere programming model 75

key properties followed by individual sets (or a call to a copy helper
method as described below). For example, we would likely want a
create(sku, description) method on a Product entity EJB to initialize all the
data in a single call.

• Custom finders. These are designed to return a subset of the entity EJBs
associated with the underlying data store, usually by passing in various
properties that are used to form a query. For example, we would want to
provide a findItemsForOrder(orderID) on the OrderLineItem entity to return
all the OrderLineItems associated with an Order and prevent us from
having to iterate through the entire set, looking at those matching the
orderID.

• Copy helpers. These are get and set methods that use data structure Java
Beans to return or pass a number of properties at once. For example, we
would probably want to provide a getOrderData() copy helper on the Order
to return the orderID and status in a single call.

• Custom updates. These are designed to do some update function and
return a result in a single call. An example is an incrementQuantity(int)
method on a LineItem entity EJB that adds an additional quantity to the
current value and returns it in a single call instead of having the client do
something like the following:

OrderLineItem item = lineItemHome.find(orderID, productID);
int currentQty = item.getQuantity();
item.setQuantity(currentQty + additionalQty);

As a general rule, you can design entity EJBs such that you do at most a
single call to them after a find for a given unit of work. This “single call”
includes the create if necessary, as the following example shows:

try {
lineItemHome.find(orderID, productID).setQuantity(quantity);

}
catch (FinderException e) {

lineItemHome.create(orderID, productID, quantity);
}

Of course, exceptions to this rule do exist, such as when the entity is to be
deleted based on the method result (an entity EJB doesn’t “remove itself”
very well):

OrderLineItem item = lineItemHome.find(orderID, productID);
int newQuantity = item.incrementQuantity(quantity);
if (newQuantity <= 0) {

item.remove();
}

76 WebSphere V3.5 Handbook

Following this rule will insure that the application can be distributed as
painlessly as possible (although it is usually best to co-deploy client and
server, unless the logic executed on the server side is expensive enough to
warrant load balancing).

Where entity EJBs are used, you will usually end up with the following:

• <Entity>Key, a data structure Java bean that holds the key properties

• <Entity>Data, a data structure Java bean that holds both key and data
properties of the entity. Some go as far as to create a <Entity>DataOnly
that holds only the non-key properties to minimize the marshalling
overhead for the gets and sets.

• <Entity>Home, the Home interface for finding/creating the EJB, usually
with the following methods:

- <Entity> create(<Entity>Data) creates a new entity and initializes all
the properties

- <Entity> findByPrimaryKey(<Entity>Key) finds based on the key

- Enumeration find<Entity>sFor<RelEntity>(<RelEntity>Key key) returns
those entity EJBs associated with the related entity

• <Entity>, the EJB remote interface with at least the following methods:

- <Entity>Data get<Entity>Data() returns the data structure Java Bean
representing the data

- void set<Entity>Data(<Entity>Data data) sets the non-key properties
from the data

• <Entity>Impl implements the business logic methods specified in the
<Entity> interface above

Of course, there are numerous approaches that can be used. For example,
many like to include methods that have individual properties passed in rather
than forcing the use of a data structure Java Bean.

Also, many will add methods on the entity EJBs to aid in navigation across
associations between objects. Of course, the implementations of these
navigation methods ultimately use the custom finders described above.

Pros
The primary benefit of CMP entity EJBs is that persistence and transactions
are completely transparent to the business logic methods. When we used
session EJBs, the only way to get similar functionality was to implement the
session synchronization interface and use the methods to load or store the
state from a backing store.
Chapter 3. WebSphere programming model 77

This advantage is key from an evolutionary perspective. Let’s say our early
iterations used PB behind the business object access beans and thus
required session synchronization in the stateless session EJB associated
with the Entry business logic access bean. Later, we migrate the business
object access beans to use entity EJBs. Once all the access beans are
converted, we could reimplement the stateless session bean to drop session
synchronization without having to touch the business logic. The transaction
started by the stateless session bean propagates through to each entity so
that any changes are all or nothing.

Cons
As with all EJBs, the downside to CMP entities shows how having a rich set of
object services can be a double-edged sword: the overhead associated with
managing distribution, security, and transactions can be very expensive. CMP
entity EJBs require the developer to trust the container implementation to
provide persistence in an efficient manner.

Currently, there are numerous deployment choices available within
WebSphere Application Server V3.5 for entity EJBs. While this is not a
problem for the programming model, and should be considered to be an
advantage, it does complicate the decision whether or not to use entity EJBs
in the first place.

At the same time that there are a large number of choices, there are never
enough. Some would like CMP containers for CICS VSAM files, or IMS DL/I.
Others are fine with relational databases, but would like even more bells and
whistles, such as preloading of related objects.

Alternatives
There are at least three alternatives to CMP entities when our current
container implementations do not seem to meet your requirements:

1. Client access beans. This option may make sense if you cannot afford the
remote method call overhead associated with EJBs, even if they are
co-deployed with the client and no-local copies is specified.

2. Session EJBs. This option may make sense if you need a thin client tier or
must isolate the business logic from the client for integrity or
load-balancing purposes, and otherwise cannot afford the extra object
services overhead.

3. BMP entity EJBs. This option may make sense if having a simplified
programming model for the business logic is the biggest requirement, but
you have database requirements not met by our current container
implementations.
78 WebSphere V3.5 Handbook

The first two options have already been discussed in detail in this section. All
three options can be used together effectively: business logic access beans
passing through to session EJBs, which use business object access beans
passing through to BMP entity EJBs. We will discuss BMP entities next.

3.2.3.5 BMP entity EJBs
A BMP is simply an entity EJB where the developer manually implements the
service methods, most notably ejbLoad() to load the persistent state from the
backing store and ejbStore() to store it.

Role in the architecture
We recommend that all entity EJBs be implemented as if they were CMP for
the business logic programming model. That is, business logic methods
should assume that all instance variables are loaded prior to the method
executing, and that they will be stored if needed when the method completes.
The BMP methods to load and store the persistent instance variables should
be implemented as part of the deployment process when the characteristics
of the data store are known. This approach is very much the same as what
we suggested for session synchronization methods on session EJBs.

In short, the ability to develop BMP methods expands the applicability of
entity EJBs to situations where tighter control of the underlying data store is
required. This requirement can occur when WebSphere does not support a
legacy database. It can also occur when performance considerations
preclude using the “vanilla” code generated for CMP entities.

Pros
This approach not only makes the business object logic much simpler to
write, but also much easier to migrate to CMPs later, if the required container
options eventually become available. Following this approach means that the
BMP method implementations can be discarded and the entity EJBs can
simply be redeployed, without having to change either the business logic
methods or the client code.

Cons
The downside is that the persistence logic can be relatively complicated to
implement efficiently. For example, in custom finders, you almost always need
to cache the results of the query so that the iterative calls to the ejbLoad() for
each instance merely retrieve the data from the cache. In short, it can be very
difficult to minimize the number of transactions and back-end accesses.
Chapter 3. WebSphere programming model 79

Alternatives
The alternatives have already been discussed in the previous section: mainly,
directly accessing the back end in a business logic access bean or session
EJB.

As with CMP entity EJBs, it is almost always a better practice to use a
session EJB of some type as a wrapper, hiding the entity from the client. The
advantage is that the session EJB can coordinate the transaction across
multiple EJBs.

3.3 Control flow mechanisms

If you have designed anything other than a monolithic component architecture
(where all the application functions are controlled by a single program
component) then you will need to understand the mechanisms by which you
will transfer control from one component (the source) to another (the target).

Like the components themselves, the mechanisms vary by the tier upon
which the source component executes at runtime. We will likewise divide this
section up accordingly and have a subsection devoted to control flow
mechanisms that can be initiated from:

• Browser-based components, such as HTML

• Web application server-based components, such as servlets

We deliberately do not include the enterprise tier, not because there are no
mechanisms by which control flow is affected, but because they are pure Java
method calls.

We will discuss the control flow mechanisms for each of the above in turn.

3.3.1 Browser component initiated control flow
As we discovered in the previous section, all browser-hosted components
eventually are converted into HTML (or DHTML and JavaScript). And while
there are lots of specific ways to transfer control between Web pages, they
boil down to two that we will consider in this section:

• Those that issue HTTP GET requests.

• Those that issue HTTP POST requests.

3.3.1.1 HTTP GETs
An HTTP GET request can be effected in a number of ways:

1. An HREF tag associated with text or an image.
80 WebSphere V3.5 Handbook

2. Image maps, that allow specific areas of an image to target a given URL
when clicked.

3. JavaScript onclick=’location=<URL>’ associated with a visible and
clickable DOM object.

4. A FORM with ACTION=GET and an associated SUBMIT invoked either
through an associated INPUT TYPE=SUBMIT button, or a JavaScript
submit() action associated with a browser event.

Once the link is established by any of these mechanisms, a user can click the
link to transfer control to the next state.

Role in the architecture
HTTP GETs are used when the source state can directly transfer control to
another because there are no update side effects, and where a small amount
of data needs to be passed to the target. In our online buying application, the
following navigations are best handled by HTTP GET requests:

• From the Customer Home to ProductCatalog, OrderDetails and
OrderStatus

• From OrderStatus to OrderDetails (a specific order is selected and
passed)

• From AlreadyOpen to OrderDetails (also passes the open order)

The online buying application flow STD has been updated to show the HTTP
GET transitions graphically. It also shows where the target state is controlled
by pure HTML, a JavaServer Pages or a servlet. See Figure 24 on page 82.
Chapter 3. WebSphere programming model 81

Figure 24. Online buying application STD extended to show transitions controlled by JavaScript
and HTTP GET

Pros
Since there is no side effect involved, using HTTP GETs is the most efficient
way to transfer control from one state to the next, especially where the next
state is pure HTML that may be already cached by the browser.

Pages invoked with an HTTP GET can be easily bookmarked to return to the
same page with the same data where dynamic content is involved.

Cons
When using HTTP GETs, the ability to transfer data to the target state is
limited to the URL query string (more on this in the next section), which has
definite size limitations (often dependent on the Web server handling the
request). Also, the location includes the data passed, which can be really
distracting.

Alternatives
There is no good substitute for an HTTP GET to transfer control with no side
effects, since there is no need to involve an “intermediate” Web application
component such as a servlet or JSP. However, you should remember that
updating most of the data flow sources can be considered to be a side effect,
which may be best handled by some other HTTP request type (such as a
POST).

DHTMLHTML
Servlet
doPost

add to order
{add item

(product, quantity)}

Order
Details

Confirm
Submit

submit

ok

cancel

Order
Status

Confirm
Cancel

open

[already open]

Customer
Home

Product
Catalog

Action
Result

{create new order}

edit line item

ok

{submit order}
{cancel order}

{modify item
(product,
quantity)}

Already
Open

[open ok]

Key: JSP JSP+Bean
+doGet

GET
Java
Script

(order)

(order)

(order)
(order)
82 WebSphere V3.5 Handbook

3.3.1.2 HTTP POST (and other method types except for GET)
Unlike HTTP GETs, HTTP POST (and other types) can only be invoked from
within a FORM with METHOD=POST. However, once a FORM context has
been established, there are two primary mechanisms by which control is
actually transferred:

1. Clicking an INPUT TYPE=SUBMIT button associated with the FORM

2. The JavaScript <FORM>.submit() function, usually associated with a
button or other clickable type

Once the link is established, triggering the associated event (such as clicking
the link) will cause the POST request to be issued to the Web server. Usually,
POST requests must be handled by a Web application component, such as a
servlet or JSP.

Role in the architecture
HTTP POSTs are best invoked when update side effects are associated with
the transition to the next state in the application flow model. In the online
buying application flow, the following transitions have update side effects, and
thus are best handled by an HTTP POST request:

• Add to order from ProductCatalog to ActionResult

• Cancel from OrderDetails to ActionResult

• Submit from OrderDetails to ActionResult

• Open from OrderStatus to OrderDetails or AlreadyOpen (depends on the
result of the open)

The transitions of the online-buying application STD shown in Figure 25 on
page 84 have been annotated to show how they are being handled.
Chapter 3. WebSphere programming model 83

Figure 25. Online buying application STD extended to show transitions controlled by HTTP
POST

Pros
One advantage of an HTTP POST is that there are no absolute limits to the
amount of data that can be passed to the Web server as part of the request.
Also, the data passed does not appear on the location line of the browser.

Another advantage of an HTTP POST is that the browser will warn the user if
the request needs to be reinvoked (such as through a resize, back, forward or
other browser event that needs the page to be reloaded).

Cons
However, some browsers display a rather ugly message if an HTTP POST
request needs to be reinvoked due to a browser event, telling the user to
reload the page.

Also, an update side effect is usually expensive, so HTTP POST requests
should be minimized by handling as many confirmations and validations as
possible on the client side.

Another disadvantage of a POST request is that it cannot be bookmarked
because the associated data is not available in the URL query string as
mentioned above (more on this in 3.4, “Data flow sources” on page 90). Also,
if a servlet receives a POST request, it cannot use the forward mechanism

DHTMLHTML
Servlet
doPost

add to order
{add item

(product, quantity)}

Order
Details

Confirm
Submit

submit

ok

cancel

Order
Status

Confirm
Cancel

open

[already open]

Customer
Home

Product
Catalog

Action
Result

{create new order}

edit line item

ok

{submit order}
{cancel order}

{modify item
(product,
quantity)}

Already
Open

[open ok]

Key: JSP JSP+Bean
+doGet

GET
Java
Script POST

(order)

(order)

(order)
(order)
84 WebSphere V3.5 Handbook

(discussed in the 3.3.2, “Web application server component initiated control
flow” on page 85) to transfer control to a static HTML file.

Alternatives
There is really no substitute for an HTTP POST to attempt a transition with an
update side effect. However, some transitions that may seem to have a side
effect can actually be handled with an HTTP GET.

For example, if a source page has a form to gather query parameters, it is
possible to use an HTTP GET to transfer control to the servlet associated
with the next state, which takes the parameters and reads the data to display.
The reason that a GET is reasonable is that the action is read only and the
amount of query data is usually relatively small.

3.3.2 Web application server component initiated control flow
Just as all browser-based components reduce to HTML or DHTML and
JavaScript, all Web application server components eventually compile to a
servlet and use the Servlet APIs.

We will briefly explore three mechanisms by which servlets can invoke other
Web application components:

1. RequestDispatcher forward

2. RequestDispatcher include

3. HttpServletResponse sendRedirect

3.3.2.1 RequestDispatcher forward
The RequestDispatcher is an object that can be obtained from the
HttpServlet’s context (through the getServletContext() method). The
RequestDispatcher allows a target Web application component (HttpServlets
and JSPs) to be invoked from a source component in two ways: forward() and
include(). We will discuss forward() in this section and include() in the next
section.

Role in the architecture
The forward() method is best used when the HttpServlet completely
delegates the generation of the response to a JavaServer Page. In our online
buying application, the doGet() methods of the ProductCatalog, OrderDetails,
and OrderStatus servlets gather the data and forward to the associated JSP
to generate the HTML.
Chapter 3. WebSphere programming model 85

Pros
When the forward() call is used, the target has complete freedom to generate
the response. For example, it can write headers, or forward() or include() to
other Web application components as it sees fit.

This freedom for the target makes programming the source component much
simpler: it does not need to generate any headers or set up prior to
delegating to the forwarded component.

Cons
A source component that invokes a target cannot generate any response
prior to the forward() call. Nor can it generate any response after the call
returns. This restriction means you cannot compose pages with forward().

A source component that was itself invoked by an include() call (see 3.3.2.2,
“RequestDispatcher include” on page 86) cannot use the forward() call. This
restriction means a source component (one that will transfer control to
another) has to know how it is being used.

The target component must be a Web application component, requiring that
targets of forward() calls must be converted to JSPs, even if they contain
purely static HTML.

Alternatives
The most viable alternative to forward() is for a servlet to set up the headers
and enclosing HTML tags, then use the include() mechanism (discussed
next). This approach provides the ability to compose the response from
multiple JSP components with as few changes as possible.

This alternative also simplifies the JSPs involved, since they do not need to
generate headers and enclosing HTML tags.

3.3.2.2 RequestDispatcher include
The include() method on the RequestDispatcher neither opens nor closes the
response, nor does it write any headers, which means that multiple
components can be included in the context of a single request.

Role in the architecture
Rather than use forward() in the ProductCatalog, OrderDetails and
OrderStatus servlets doGet() method to transfer control to the associated
JSP, it may make sense to include() the associated JSP instead.
86 WebSphere V3.5 Handbook

Pros
One reason to consider this approach is that the included components are
much simpler to code, since they do not need to generate the <HTML>,
<HEADER>, and <BODY> tags. For JSPs, the calling servlet can handle the
code often required to prevent caching, simplifying them even further.

The included components can often be reused in multiple places. For
example, if we were not able to use framesets in our application due to
restrictions on the browser, we could convert the CustomerHome.html to a
JSP and compose the pages in the servlets:

• The ProductCatalogServlet doGet() would compose CustomerHome.jsp,
ActionResult.jsp, and ProductCatalog.jsp

• The OrderDetailsServlet doGet() would compose CustomerHome.jsp,
ActionResult.jsp, and OrderDetails.jsp

• The OrderStatusServlet doGet() would compose CustomerHome.jsp,
ActionResult.jsp, and OrderStatus.jsp

The components can be included by a superclass HttpServlet to provide a
common look and feel across all states in the application. For example, the
doGet() method of the OnlineBuyingServlet would include CustomerHome.jsp
and ActionResult.jsp, and then call the doGetOnlineBuying() method of the
subclass HttpServlet to include the “main area”, specifically the JSPs for
ProductCatalog, OrderDetails and OrderStatus.

In future versions of WebSphere, included components can be cached,
making it much more efficient to compose pages from multiple states. The
ability to more easily exploit this feature when it becomes available is another
good reason to consider including components.

Cons
Included components cannot write to the header or close out the response.
Therefore, these actions must be done by the source component.

Included components cannot be static Web pages (or fragments), requiring
that they be converted to JSPs.

Alternatives
When pages need to be composed, there is no really good alternative to
include() except to use framesets or named windows (see 3.2.1.3,
“Framesets and named windows” on page 37).
Chapter 3. WebSphere programming model 87

3.3.2.3 HttpServletResponse sendRedirect
The sendRedirect() method is implemented on the HttpServletResponse
object that is passed in on the service methods associated with an
HttpServlet. It generates a special response that is essentially code telling
the browser that the requested URL has temporarily moved to another
location (the target URL). No other response is generated by the source
component.

The browser intercepts the response and invokes an HTTP GET request to
the URL returned as part of the response, effectively causing a transition to
the next state.

Role in the architecture
The sendRedirect() method is best used in a servlet after actions that cause
update side effects to cause transition to the next state. In our online buying
application, the following transitions in the application flow model trigger
transitions on the Entry state in the underlying business process model:

• The add to order transition out of the ProductCatalog state triggers the
add line item transition on the Customer’s open order, completing with a
sendRedirect to the ActionResult state to display the result.

• The submit and cancel transitions out of the OrderDetails state trigger the
corresponding transaction on the Customer’s open order, completing with
a sendRedirect to the ActionResult state to display the result.

• The edit line item transition out of OrderDetails triggers the modify line
item transition on the Customer’s open order, completing with a
sendRedirect to the ActionResult state to display the result.

• The open transition out of the OrderStatus state triggers the create new
order transition, completing with a sendRedirect to the OrderDetails state
for the new order to be successfully created, or to the AlreadyOpen state if
an open order already exists for the Customer.

These actions are handled by the doPost() method of the associated servlets,
as illustrated in Figure 26 on page 89
88 WebSphere V3.5 Handbook

Figure 26. Online buying application STD extended to show dispatches and redirects

Pros
One benefit of using sendRedirect() is that it prevents inadvertent
re-execution of the side effects based on such browser events as forward,
back, resize, print, view source, or reload among others (this unfortunate
effect is sometimes called the reload problem).

The reason sendRedirect() solves this problem is another advantage: the
URL for the update never appears in the browser’s location line or history.
The effect is that only the URLs of the “states” in the application flow model
appear in the location and history, which is exactly the behavior desired.

Cons
The one disadvantage of sendRedirect() is that it causes an extra round-trip
between the browser and Web application server. Luckily, this extra round-trip
only occurs during major transitions in the application flow model, and is well
worth it, since sendRedirect() solves a major source of data integrity errors in
Web applications.

Alternatives
There are no good alternatives to using a sendRedirect() after processing
requests in servlets that require update side effects..

DHTMLHTML
Servlet
doPost

add to order
{add item

(product, quantity)}

Order
Details

Confirm
Submit

submit

ok

cancel

Order
Status

Confirm
Cancel

open

[already open]

Customer
Home

Product
Catalog

Action
Result

{create new order}

edit line item

ok

{submit order}
{cancel order}

{modify item
(product,
quantity)}

Already
Open

[open ok]

Key: JSP JSP+Bean
+doGet

GET +
dispatch

Java
Script

POST +
redirect

(order)

(order)

(order)
(order)
Chapter 3. WebSphere programming model 89

3.4 Data flow sources

Whenever two components must interact, whether they are separately
developed components, or whether a single component is iteratively executed
over time, it is likely that there will be a need to flow data from one to the
other.

Like the first two sections, this section is divided into subsections describing
data sources associated with each of the three tiers:

• Browser

• Web application server

• Enterprise servers

And as with control flow mechanisms, we show how the choice of data source
can have a huge impact on the overall performance and integrity of the
application.

3.4.1 Browser-maintained data flow sources
There are a number of browser-maintained data sources that we will discuss
in this section:

• URL query string

• POST data

• Cookies

All of these sources provide the best scalability characteristics (since the data
is maintained on the client), but with a trade-off that they may not be
completely reliable (since the user has control over the data source).

The discussion in this section will address the details of these and other
trade-offs.

3.4.1.1 URL query string
Whenever an HTTP GET is invoked, data can be passed in the query string
part of the target URL. This includes FORM data (hidden or otherwise) when
METHOD=GET.

In any event, the query string syntax is:

?<name>=<value>{&<name>=<value>}

Neither the names nor values can have embedded spaces; instead spaces
and other special characters must be encoded.
90 WebSphere V3.5 Handbook

The values can be retrieved through various methods associated with the
HttpServletRequest object, most notably getParameter(), which returns the
value for a given name.

Role in the architecture
The most obvious place to use the query string in the online-buying
application flow model is where data is being passed from one state to the
next along a transition without side effects. For example an order ID is
passed:

• From OrderStatus to OrderDetails when an order is selected

• From AlreadyOpen to OrderDetails, for the button providing navigation

But another place to use the query string is in the various sendRedirect()
calls after update side effects:

• To flow the order number from OrderStatus to OrderDetails when open
action is successful

• To flow the order number from OrderStatus to AlreadyOpen when the open
fails because one is already open

• To flow the result message from ProductCatalog or OrderDetails to
ActionResult to show the result of the action

Another use for a URL query string is URL encoding of the session ID for
HttpSession on the Web server (see 3.4.2.2, “HttpSession state” on page 96)
instead of cookies (discussed later in this section).

Pros
The benefit of using the query string is that it is very simple to retrieve the
associated data.

Cons
There are some downsides to using the query string to pass data from the
browser to Web application components:

• Encoding the URL query string in sendRedirect() calls and generated
HREFs can be quite complicated

• Only a small amount of data can be passed

• The query string is visible on the location line, and can sometimes be very
long and confusing to look at

• This visibility in the query string extends to hidden fields in forms (when
METHOD=GET)
Chapter 3. WebSphere programming model 91

Alternatives
There is no good substitute for the URL query string to send a few small key
values to the target component. However, where the data is common across
most states in the application flow, it may be better to use cookies or HTTP
sessions (both discussed later) to make the data flow transparent to the
programs.

3.4.1.2 POST data
When an HTTP POST is invoked from an HTML FORM with METHOD=POST,
the input fields in the form are passed as part of an encoded input stream to
the HttpServlet. The HttpServletRequest can be used to access the fields in
two ways: directly from the stream, or through the getParameter() methods as
if they were part of the URL query string (even though they are not).

Role in the architecture
Where we will use POST data in the online buying application flow model is to
pass data to the HttpServlet handling an action. Specifically, we will use
POST data to pass:

• ProductID and quantity, for the add to order transition out of
ProductCatalog

• Order, to the submit and cancel transitions out of OrderDetails

• Order, product and quantity, to the edit line item transition out of
OrderDetails

Pros
As with the URL query string, one benefit to using POST data is that it is easy
to retrieve, either by name or iteratively.

However, unlike the URL query string, the main benefit to using POST data is
that there is no absolute limit to the amount of data that can be sent.

Finally, the data passed does not clutter up the URL, so hidden fields remain
hidden to the casual user, and the encoding of the data is transparent to the
source component.

Alternatives
As with the URL query string, there is no good substitute to POST data to
provide the input parameters to actions with update side effects. However,
where hidden fields are used to provide common data across the entire
browser session, it may be wise to consider using cookies or HTTP sessions.
92 WebSphere V3.5 Handbook

3.4.1.3 Cookies
Cookies are data maintained on the client by the browser on behalf of the
server. Cookies can be made to persist within or across browser sessions.
Cookies are passed to the Web server in the header of the request. Any
updates are passed back on the header in the response.

Within the Servlet API, there are methods that allow you to get and set
cookies.

Role in the architecture
Cookies are the preferred way to pass a HttpSession ID, if any, to the Web
application server. The same approach can be used for other data that is
constant across the Web application. For example, in our online buying
application it might make sense to store the customer ID in a cookie to
eliminate having to use URL encoding or hidden fields.

Cookies are an excellent way to store a small amount of user preference
data. For example, it may be desirable to tailor the ProductCatalog list by
Customer based on the past history of visits to the site. In this case, we might
maintain a persistent cookie with the last query used to select products.

Pros
Cookies are automatically passed in the header, and thus do not require
explicitly coding hidden fields or URL query strings in the HTML and JSPs.
This feature of cookies makes the application much simpler to develop, test,
and maintain.

The ability to maintain persistent cookies means that the client machines can
be enlisted to help share the cost of running the application. In an e-business
application with millions of users, not having to maintain often used
preference data for each one can be a significant savings in both space
needed to store it and time needed to retrieve it.

Cons
Passing cookies back and forth can be relatively expensive. Further, the
amount of data that can be maintained per server may be limited by the
browser. The effect is that cookies should be used sparingly.

Another problem is that not all browsers or levels of browsers support
cookies. Even if they are supported, users can turn cookies off as a security
or privacy measure, which means that either:

• Your Web application will need to be coded for the case where cookies are
not available, and use alternative techniques (discussed below); or,
Chapter 3. WebSphere programming model 93

• You must make an explicit decision to support only users with browsers
having cookies enabled.

Also, other HTTP-based clients, such as applets, may have trouble dealing
with cookies, restricting the servlets that they may invoke.

Alternatives
URL encoding techniques can be used to put the equivalent data in the URL
query string rather than relying on cookies.

3.4.2 Web application server maintained data flow sources
There are three main sources of data maintained by the WebSphere:

• HttpServletRequest attributes

• HttpSession state

• ServletContext attributes

All these sources share a characteristic not associated with the other ones:
only a Web application component (servlet or JSP) can store or retrieve data
using them.

We discuss the advantages and disadvantages of each in the context of the
role that source should play in the architecture. We also discuss any
alternatives.

3.4.2.1 HttpServletRequest attributes
HttpServletRequest attributes (or more simply, request attributes) are
maintained by the Web application server for the duration of the request in
what amounts to an internal Hashtable.

The HttpServletRequest interface has methods to set and get the attribute
values by name. You can also retrieve a list (Enumeration) of all the attribute
names currently maintained in the request.

A JSP can use the expression syntax or Java escape tags to get request
attributes using the Servlet API, or it can use a bean tag scoped to the
request (the default) with introspection to automatically load attributes whose
names match the bean properties.

Role in the architecture
The most prevalent purpose of request attributes is for maintaining the data
bean passed to a JSP by the servlet doGet() method handling the display of a
state. Specifically:
94 WebSphere V3.5 Handbook

• ProductCatalogServlet loads ProductCatalogData, sets it into the
“ProductCatalog” request attribute, and dispatches to the
ProductCatalog.jsp, which uses the bean tag to access the
ProductCatalogData during generation of the response

• OrderDetailsServlet loads OrderDetailsData, sets it into the “OrderDetails”
request attribute, and dispatches to the OrderDetails.jsp, which uses the
bean tag to access the OrderDetailsData during generation of the
response

• OrderStatusServlet loads OrderStatusData, sets it into the “OrderStatus”
request attribute, and dispatches to the OrderStatus.jsp, which uses the
bean tag to access the OrderStatusData during generation of the
response

The point here is that by having a systematic naming convention, the contract
between the servlet and JSP developer roles is very clear.

Pros
Of all the data sources, whether maintained by the browser, Web application
server, or enterprise servers, HttpRequestAttributes are the second most
efficient (behind passing the data directly in parameters of a method or in a
shared variable).

Since its scope is limited to the request, there is no need to write logic to
“clean up” the data.

Cons
Setting too many objects into request attributes can cause problems with:

• The contract between the source and target component developers. For
example, what do you name the attributes? What is their type? Our sample
application servlets never set more than one attribute with a well-defined
name and type (based on the state name “root”).

• Performance, because each set is a Hashtable put and each get is a
Hashtable lookup. Our sample application does only one put and lookup of
a Java Bean, after which it employs much more efficient property
operators.

The HttpServletRequest object does not persist across calls, so it cannot be
used to hold data between states in the application flow model. The net effect
is that request attributes can be passed only to targets using forward(0 and
include(). Request attributes cannot be passed to targets invoked through
sendRedirect().
Chapter 3. WebSphere programming model 95

Alternatives
When using forward() or include() to dispatch to an associated JSP, a
controlling servlet can pass data through HttpSession and ServletContext.

When invoking a JSP or servlet through the sendRedirect(), data can be
passed using cookies or the URL query string.

3.4.2.2 HttpSession state
An HTTP session is a short term (transient) relationship established between
a client browser and a Web application server through which data can be
maintained. It “lives” as long as both the client and the server maintain the
reference to the relationship.

HttpSession state (in this section simply session state) is maintained by the
Web application server for the lifetime of the session in what is basically a
Hashtable of Hashtables, the “outer” one keyed by the session ID (the
session Hashtable) and the “inner” one keyed by the state variable name (the
state Hashtable).

When the session is created, the ID is passed back and forth to the browser
through a cookie (the preferred approach) or URL encoding.

The session is effective as long as both:

• The browser stays up to maintain the session ID cookie (or the pages with
the ID encoded in the URLs), and

• WebSphere maintains the state Hashtable for the session

The outer session Hashtable can be lost if the Web application server goes
down (and the session is not backed up). The inner state Hashtable can be
lost on a timeout or through explicit application events (the remove() method,
for example).

The HttpServletRequest interface has methods to get the session (optionally
causing it to create a new one if none exists), which returns a reference to the
HttpSession object. Once you have a reference to the session, you can get
and set state values by name. You can also retrieve a list (Enumeration) of all
the state names currently maintained in the session.

A JSP can use the expression syntax or Java escape tags to get session
state using the Servlet API, or it can use a Bean tag scoped to session with
introspection to automatically load states whose names match the bean
properties.
96 WebSphere V3.5 Handbook

Role in the architecture
Many Web applications handle login explicitly as part of the application flow,
rather than use the security mechanism provided by the Web Apoplication
Server.

In this case it is customary to store some sort of “login” token into the session
state. The session state maintained could be as simple as a customerID, or it
could be a complex object that includes additional data common to all the
states in the application flow, such as open order. This extra data could be
used as a default in the following cases to eliminate the need to access the
back end:

• In the add to order transition of the ProductCatalog state, the order ID
defaults to the open Order (creating a new one if none exists)

• Even though the transitions from OrderStatus and AlreadyOpen to
OrderDetails pass the selected order ID to display, the transition from the
CustomerHome state does not, defaulting to the open order

The data gathered in each of the three “main” states (ProductCatalog,
OrderDetails and OrderStatus) could be stored in session state so that
repeated reloads of that page for such browser events as resize do not cause
the back-end access to read the data again (see the discussion about the
reload problem in 3.3.2.3, “HttpServletResponse sendRedirect” on page 88).

Pros
Session state is rather easy to use in the program (especially if a data
structure Java Bean is stored instead of individual values). The Web
application server manages it at runtime based on configuration parameters,
making it easy to tune non-functional characteristics such as failover and
performance. This ease of use makes it tempting to store some application
flow data (the current open order for example) in the session state rather than
in a database that has to be explicitly administered.

When the data is already being stored in the back end, and when accesses
are expensive, the performance gains of using session state to cache the
data can be significant.

Cons
Session state suffers from the same problems that request attributes do if you
store too many objects in them in the course of a single request: there is a
name and type contract problem with the target component, and a
performance penalty with every additional Hashtable put and lookup.

Session state has some additional disadvantages:
Chapter 3. WebSphere programming model 97

1. Timeout. A session can time out when you least expect, making it risky to
store significant application flow data. How would the user react if the line
items in an open order were lost because of a bathroom break during the
session? Usually you end up explicitly modeling and programming “save”
and “load” type flows to make the problem less acute.

2. Server failure. Even if you have an infinitely long timeout (and expect
servlets to programmatically invalidate the session state), the server can
fail, causing the data to be lost. Specifying that a session state be backed
up in a database gets around this, and provides for failover.

3. Cache consistency. When a session state is used to cache back-end data,
how do you make sure the session state is in synch with the data stored in
the back-end system, for example when a new order is selected or when
there are update transitions that affect the cached data? To provide for
cache consistency means adding code to the doGet() methods to check
the key of the data in a session state with that in the request, and adding
code to the doPost() methods to remove the affected session states.

4. Cluster consistency. It is likely that you will want to scale the Web site by
adding a cluster of WebSphere application servers. Even if you add all of
the extra logic to manage cache consistency from the previous item, you
must either force client/server affinity (see 3.2.3.2, “Stateful session EJBs”
on page 68) and lose failover support, or back the session up in a shared
database and impact performance.

Of course, the memory resources required for session state should be taken
into consideration. Indiscriminate use of HttpSession can use up vast
amounts of data. For example, if there were 1000 active user sessions each
needing to maintain a megabyte of data, your application would use up a
gigabyte of memory for the session state alone.

Alternatives
When a session state is used to cache data stored in back-end servers, a
viable alternative is to delegate caching to access beans or even EJBs,
keeping the application flow logic in the servlet clean and simple. Another
advantage to this approach is that the access beans are best able to keep the
cache consistent because of their knowledge of the business logic.

If you use WebSphere security so that the getRemoteUser() method on the
HttpServletRequest returns an authenticated user ID, you can avoid the use
of HttpSession altogether by keying explicitly modeled business objects with
this user ID. The development costs of explicitly modeling session as a
business object may be worth it in the ability to use that data by other types of
applications (client server or distributed object as the case may be). Of
98 WebSphere V3.5 Handbook

course the primary benefit of eliminating the use of session state is that the
application will scale much better, since client-server affinity is not required
between the browser and Web application server.

If security is not turned on (maybe the application does not require it), and
there is only a small amount of data to be stored, you can use cookies as
described above, with the advantage that the client maintains the data.

However, there is no good substitute for HttpSession in scenarios with
relatively small amounts of data that are relatively stable and must be
maintained on the Web application server for security purposes, such as a
login token.

3.4.2.3 Servlet context cache
The Web application server provides a context within which properties can be
shared by all servlets and JSPs within that scope. This context is commonly
called the “servlet context” and is accessible through the getServletContext()
method on the Servlet API.

Servlet context is used to obtain a RequestDispatcher through which
forward() and include() can be invoked to flow control from one component to
another (see 3.3.2, “Web application server component initiated control flow”
on page 85).

Like request attributes and session state, servlet context also maintains an
object that is the equivalent of a Hashtable, providing methods to get and set
attributes by name as well as list the names stored within.

Unlike request attributes, which are scoped to a request, and session state,
which is scoped to a session, servlet context is scoped by a Web application.

And unlike HttpSession, the current specification explicitly states that sharing
of servlet context in a cluster is unsupported.

Role in the architecture
One possible use of servlet context in our online-buying application is to store
the ProductCatalog data, since it is stable and read-only in this application,
and the same data can be used by all Customers.

Another interesting use of servlet context in our application is to cache
references to business logic access beans (even if they are singleton
wrappers).

If used for either purpose, we would likely set attributes into the servlet context
as part of the init() method in the ProductCatalogServlet and
Chapter 3. WebSphere programming model 99

OrderDetailsServlet, which would allow both servlets to use the catalog for
validation of product IDs and display without having to access the back end.

Pros
Proper use of servlet context can greatly reduce both the amount of session
state data and the number of back-end accesses required to load it. For
example, if the product catalog data were stored in a session state, there
would be one copy of the catalog per user, with a back-end access required
for each user to load the data.

As with session state, servlet context is very easy to deal with, and can
eliminate the need to explicitly model extra business objects.

Since servlet context attributes cannot be shared in a cluster, there is no
requirement that data stored therein be serializable. This allows servlet
context to be used to store very complex objects, such as access beans
(preferred) or EJB references.

Also, storing singleton references in a servlet context can prevent them from
being garbage collected, since the reference is maintained for the life of the
Web application server.

Cons
Also as with session state (and request attributes), you should minimize the
number of attributes stored, and make sure that there is a systematic name
and type convention in place.

Unlike HttpSession, the specification prohibits sharing of servlet context in a
cluster, primarily to force its use as a true cache. This limitation is not really a
disadvantage when servlet context is used as a cache for stable read-only
data, since each application server will perform better having its own copy of
the data in memory.

If for some reason there is a requirement to store common data, yet allow
updates to it, then client/server affinity must be used to prevent cluster
consistency issues. Of course, this means that the updates have to be
associated with a specific user. Also, since the servlet context is shared by
the entire Web application, you have to be careful to manage the code
carefully, since multiple servlet threads could be accessing the same
attributes simultaneously.

Alternatives
Where servlet context is being used to store data from the back end to avoid
extraneous accesses (a caching pattern), an alternative is to delegate
100 WebSphere V3.5 Handbook

caching the data to the business logic access bean. This alternative was also
discussed in 3.4.2.2, “HttpSession state” on page 96.

Where the default servlet context is accessed (the parameterless version of
the API), then a viable alternative is to use the singleton pattern.

These alternatives do not supersede the advantages of storing business logic
access beans or connection objects in a servlet context to hold a reference
and prevent garbage collection.

3.4.3 Enterprise server-maintained data sources
Of course, there are many enterprise server-maintained data flow sources
provided by and fully supported by IBM, such as CICS, IMS, and MQ. But in a
discussion of the WebSphere programming model, we are only concerned
with those that use standard Java APIs to provide access to the data or
function maintained:

• Java Naming and Directory Interface (JNDI)

• JDBC

What separates these data sources from the others is that they can be used
outside the context of a Web application server.

3.4.3.1 Java Naming and Directory Interface (JNDI)
JNDI provides a name value pair oriented interface very much like the Web
application server-maintained data flow sources (request attributes, session
state and servlet context cache).

The primary difference is that the JNDI name context is managed by a
distributed name server, which allows the names and values to be shared
across requests, sessions, application servers, and a cluster.

There are three types of objects that can be maintained in JNDI:

• Simple serializable Java Beans.

• Distributed object references, such as EJB homes and remote interfaces.

• Common object services, such as transaction contexts.

The JNDI implementation provided in WebSphere Application Server V3.5
caches home references after lookup, providing for additional scalability in a
multi-user distributed environment.
Chapter 3. WebSphere programming model 101

Role in the architecture
One common use of JNDI in an application is to maintain user preference
data, including credentials that aid in authentication.

In our Web application, JNDI would be used by business logic and business
object access beans to get access to the Home for the OrderEntry session
EJB, and the Customer, Order, OrderLineItem and Product entity EJBs.

Pros
The benefit to using JNDI is that is designed for storing small to medium
amounts of relatively stable data per name, without requiring the involvement
of a database administrator to create and maintain a new table.

The fact that JNDI is distributable, sharable, and persistable makes it
applicable in Web application scenarios where the other data flow sources
cannot be used.

Cons
JNDI accesses are relatively expensive even with the automated caching
support provided by WebSphere Application Server V3.5. Therefore, calls to
them should be limited using the techniques discussed in 3.2.3.1, “Stateless
session EJBs” on page 64. This approach will make it easier to port to
competitive products without having to worry about their implementation.

Updates are even more expensive, so only relatively stable data should be
stored in JNDI name contexts. The pattern is write once, read many. For
example, User preference data fits into this category, but Customer data, with
its reference to the currently open order, does not.

Alternatives
You can always explicitly model the data stored in JNDI as a business object
and use either JDBC or EJBs (preferably behind an access bean).

3.4.3.2 JDBC
JDBC provides a Java interface to relational databases, allowing dynamic
SQL statements to be created, prepared, and executed against pooled
database connections.

Any database that supports relational semantics can be wrapped with the
JDBC interfaces and provide a “driver” for use in the client application or
creating a data source.
102 WebSphere V3.5 Handbook

Role in the architecture
In our online buying application, we would use JDBC to implement the
business object access beans in cases where performance is crucial. For
example, the submit method needs to take the line items associated from the
specified order in the entry table and copy them into the fulfillment table (with
a zero shipped quantity).

Another example of when we might use JDBC is in loading the product
catalog into the cache (distributed object overhead may be considered to be
excessive for the benefits achieved).

Pros
JDBC provides all the benefits of relational databases to Java applications in
an implementation-independent manner.

Directly using JDBC in a client application will likely provide the most efficient
implementation of the application, especially if connection pooling of data
sources is used.

Cons
JDBC client code can be rather complicated to develop properly. Minimizing
the number of statements executed in the course of a unit of work is key.

Also, explicitly managing the transaction context can be complicated. If auto
commit is turned off, care must be taken in the program code to commit or
rollback the transaction as appropriate. If auto commit is left on, care must be
taken when there are multiple statements in a single unit of work: each
statement is a separate transaction, which can cause significant extra
overhead and complicate error handling logic.

Directly using JDBC locks your application into relational technology,
although wrapping it within a business object access bean can help insulate
the client application code, and make it easier to migrate later.

Even if wrappers are used, JDBC requires that a JDBC driver be installed on
the application server, potentially making it a “thicker” client that it would be if
EJBs were used.

Alternatives
The best standards-based alternative to JDBC is to use EJBs, which makes
persistency transparent to the business object programming model, and
allows the client to be “thinner”.
Chapter 3. WebSphere programming model 103

Of course, you can use non-standard connector-based technology such as
CICS, MQ, and IMS. But whether behind wrappers or not, these connectors
make the client even thicker by requiring additional software to be installed.

3.5 Chapter summary

We showed how dividing the programming model into its three fundamental
features makes it easier to understand the issues that you will face when
developing a WebSphere V3.5-based application. We will summarize these
aspects in this section.

Throughout this chapter, we applied the programming model aspects to an
online buying application to provide a concrete example. We will briefly
summarize the mapping in this section as well, and show how the WebSphere
programming model meets the challenges outlined in the chapter
introduction.

3.5.1 Summary of programming model aspects
Table 2 shows the various features of the WebSphere programming model at
a glance.

Table 2. WebSphere programming model features

Browser Web Application Server Enterprise Server

Component HTML, DHTML and
JavaScripts, XML,
framesets

Servlets, JavaServer
Pages, Java Beans

Session and Entity
Enterprise JavaBeans

Control flow
mechanism

HTTP (GET & POST) Java (forward, include,
sendRedirect)

Java (RMI/IIOP)

Data flow
source

URL query string, POST
data, cookies

Request attributes,
session state, servlet
context

JNDI, JDBC
104 WebSphere V3.5 Handbook

Table 3, Table 4 on page 106, and Table 5 on page 106 summarize the details
of the components, control flow mechanisms and data flow sources.

Table 3. Programming model components

Component Tiers Role in architecture

HTML Browser Specifies page content associated with a given state in the
application flow model

DHTML and
JavaScript

Browser Handles client-side validations, confirmations, cascading menus,
list processing and so on to minimize requests to Web server

Frameset and
Named Windows

Browser Groups related states on a single page to allow for smaller, more
parallel requests and minimize need for explicit navigations

XML, DTD, and
XSL

Browser Allows request results to consist of data only and provide client
control of display format

Servlet Web
application

Controls application flow for a given state;
Inherits common look and feel from superclass HttpServlet

JavaServer
Pages

Web
application

Handles generation of HTML/DHTML/XML for a given state in an
application flow model

Data structure
Java Bean

Java
application

Serializable data passed between the other components such as
servlets and JSPs/access beans, EJBs and copy helpers, etc.

Business logic
access bean

Java
application

Wrapper encapsulating units of work (can be equated with
transitions in the business process model); can be stateless or
stateful

Business object
access bean

Java
application

Wrapper encapsulating persistent business objects (can be
identified by object model associated with states in the business
process model)

Stateless
session EJB

Enterprise
Java server

Distributable implementation of stateless units of work (analogous
to business logic access bean)

Stateful session
EJB

Enterprise
Java server

Distributable implementation of stateful units of work that cache
resources or data on behalf of a user for the duration of a session

Session
synchronization

Enterprise
Java server

Methods added at deployment time to allow session EJBs to
support transparent transactional semantics in business methods

CMP entity EJB Enterprise
Java server

Distributable implementation of persistence layer and associated
business logic (analogous to business object access bean)

BMP entity EJB Enterprise
Java server

Methods added at deployment time to allow entity EJBs to control
quality of persistence service
Chapter 3. WebSphere programming model 105

Table 4. Control flow mechanisms

Table 5. Data flow sources

Mechanism Source
Components

Target
Components

Role in architecture

HTTP GET HTML or
DHTML

Any URL Directly invoke the target URL associated with
the next state, invoking a servlet or JSP for
dynamic content

HTTP POST HTML FORM Servlet Invokes the target servlet indicated in the
ACTION to handle update side effects

Dispatcher
forward

Servlet
doGet()

JSP Delegate the generation of the HTTP response to
the target JSP

Dispatcher
include

Servlet
doGet()

JSP Compose the response from one or more target
JSPs that generate response fragments

Response
sendRedirect

Servlet
doPost()

Any URL Transfer control to the target URL representing
the next state based on the ACTION result

Data flow
source

Managed by Control flow
mechanism

Role in architecture

URL query string Browser HTTP GET
sendRedirect

Pass small amounts of “key” data used to drive
queries in doGet of the servlet associated with
the target state

POST data Browser HTTP POST Pass input data used to drive updates in the
doPost of the servlet associated with the current
state

Cookie Browser Any Maintain data common to the user or session
used to drive queries or updates in any state

HttpRequest
attribute

Web
application
server
(WebSphere)

Dispatcher
forward and
include

Pass data representing the dynamic content
between the controlling servlet and the
associated JSP used to generate the response

HttpSession
state

Web
application
server
(WebSphere)

Any Maintain stable data common to the session used
to drive queries or updates in any state where
cookies are not feasible

ServletContext
cache

Web
application
server
(WebSphere)

Any Maintain a cache of stable read-only data
accessible for all requests on a single server to
drive queries or updates in any state
106 WebSphere V3.5 Handbook

3.5.2 Applying the programming model to our sample application
Taking the business process flow model of our online buying application from
the introduction, here is a reasonable mapping of the Order Entry state and
associated static objects to the programming model components, control flow
mechanisms and data sources summarized above.

3.5.2.1 Order Entry
This state has the following components:

1. OrderEntryAccess, a singleton business logic access bean whose
methods pass through to an OrderEntry created by an OrderEntryHome
cached in the constructor, and removed when the method is complete.

2. OrderEntryHome, an EJB home allowing an OrderEntry session EJB to be
created.

3. OrderEntry, a stateless session EJB with the following methods:

- createOrder(customerID), which uses CustomerAccess to get an
orderID, for the customerID, and if not already open, uses OrderAccess
to create a new one with status set to “Opened” for the customerID and
return the order ID

- addLineItem(customerID, productID, quantity), which uses
CustomerAccess to get the open order for the customerID (creating
one if necessary), and LineItemAccess to increment the quantity of the
productID specified (creating a new one if necessary)

- modifyLineItem(customerID, orderID, productID, quantity), which uses
OrderAccess to check that the resulting order is “Opened”, and
LineItemAccess to set the quantity of the productID specified (creating
a new one if necessary)

- submit(customerID, orderID), which uses OrderAccess to set the status
of the order specified to “Submitted” if still “Opened”

- cancel(customerID, orderID), which uses OrderAccess to set the status
of the order specified to “Cancelled” if still “Opened”

JNDI Name server
(WebSphere)

Any Maintain small amounts stable data accessible to
all servers

JDBC Database
server

Any Maintain any amount of any type of data
accessible for any request

Data flow
source

Managed by Control flow
mechanism

Role in architecture
Chapter 3. WebSphere programming model 107

- getProducts(customerID), which uses ProductAccess to get a
ProductData array, the list of products that may be ordered by the
customer

- getOrders(customerID), which uses OrderAccess to get OrderData, the
list of orders associated with the customer

- getOrderDetails(customerID, orderID), which uses:

• CustomerAccess, if no order is passed in, to get the open order for
the customer

• OrderAccess to get the status of the resulting order

• LineItemAccess to get LineItemData, the list of line items
associated with the order, returning an OrderDetailsData

Figure 27 shows this description graphically.

Figure 27. Business logic access beans and stateless session EJBs derived from business
process model

Note: add Customer and Order to every transition to derive method
signatures.

The details of the read-only methods and business object related
components described above are shown graphically in Figure 28 on page
109.

Entry Fulfillment

Completed

submit()
ship (shipper)

create()

[all items
shipped]

purge
modify line

item
(product,
quantity)

cancel()

Customer Shipping
Marketing

add line item
(product,
quantity)

[not all items
shipped]pack line item

(product, quantity)
108 WebSphere V3.5 Handbook

Figure 28. Static object model of Order in Entry state driving read-only calls

Taking the application flow model from the introduction, here is a reasonable
mapping of the states to the programming model components, control flow
mechanisms and data sources summarized above associated with the
browser and Web application server tiers.

3.5.2.2 Customer Home
This state maps to a CustomerHome.html, with buttons linking to
ProductCatalogServlet, OrderDetailsServlet and OrderStatusServlet.

3.5.2.3 Product Catalog
This state maps to the following three components:

• ProductCatalogServlet, with the following methods:

- doGet():

• Loads ProductCatalogData from OrderEntryAccess

• Sets it as “ProductCatalog” into the request

• Includes ProductCatalog.jsp

- doPost(), with a branch looking for the action add to order that:

• Gets the productID and quantity parameters from the request,

• Adds the specified quantity of the product to the open order using
OrderEntryAccess, and

• Does a sendRedirect to the ActionResult.jsp with the result of the
add passed in the URL query string

0..n
L ine Item

quantity

O rder

orderID
status

Product

sku
description

Custom er

custom erID

0 ..n custom er

openO rder

product 0..1
Chapter 3. WebSphere programming model 109

• ProductCatalogData, which has a products property, which is an array of
ProductData (with sku and description properties)

• ProductCatalog.jsp, which generates the table of ProductData (and a
modifiable quantity input field) from the products property in
ProductCatalogData accessed using the bean tags

3.5.2.4 Order Details
This state maps to the following three components:

• OrderDetailsServlet, with methods:

- doGet():

• Gets the order from the request (if specified)

• Loads OrderDetailsData for the order from OrderEntryAccess

• Sets it as “OrderDetails” into the request

• Includes OrderDetails.jsp

- doPost(), with branches looking for the action:

• modify line item that:

a.Gets the order, productID and quantity parameters from the
request

b.Modifies the line item in the specified order to have the specified
quantity of the product using OrderEntryAccess

c.Does a sendRedirect to the ActionResult.jsp with the result of the
modify passed in the URL query string

• submit that:

a.Gets the order parameter from the request

b.Submits the specified order using OrderEntryAccess

c.Does a sendRedirect to the ActionResult.jsp with the result of the
modify passed in the URL query string

• cancel that:

a.Gets the order parameter from the request

b.Cancels the specified order using OrderEntryAccess

c.Does a sendRedirect to the ActionResult.jsp with the result of the
modify passed in the URL query string

• OrderDetailsData, which has an items property which is an array of
LineItemData (with productID, description and quantity properties)
110 WebSphere V3.5 Handbook

• OrderDetails.jsp, which generates the table of LineItemData from the
items property in OrderDetailsData (with quantity as a modifiable field
defaulted from the data) accessed using the bean tags

3.5.2.5 Order Status
This state maps to the following three components:

• OrderStatusServlet, with methods:

- doGet():

• Gets the customer from the request

• Loads OrderStatusData for the customer from OrderEntryAccess

• Sets it as “OrderStatus” into the request

• Includes OrderStatus.jsp

- doPost(), with a branch looking for the action open that:

• Gets the customer from the request

• Opens a new order using OrderEntryAccess

• Does a sendRedirect to the OrderDetailsServlet with the order
returned by the open if successful, or AlreadyOpen.jsp with the
order returned by open if already open; in either case, the order is
passed in the URL query string

• OrderStatusData, which has an orders property, an array of OrderData
(with orderID and status properties)

• OrderStatus.jsp, which generates the table of OrderData from the orders
property in OrderStatusData accessed using the bean tags with buttons
referencing OrderDetailsServlet with the selected order in the URL query
string

3.5.2.6 Already Open
This state maps to AlreadyOpen.jsp, which displays a message indicating
that the order found in the request parameters is already open, and provides
a button referencing OrderDetailsServlet with the selected order in the URL
query string.

3.5.2.7 Action Result
This state maps to ActionResult.jsp, which simply displays the result found in
the request parameters.

Figure 29 on page 112 shows this mapping graphically:
Chapter 3. WebSphere programming model 111

Figure 29. Online buying application STD extended to show programming mode features

The details of the data structure Java Beans described above are shown
graphically in Figure 30.

Figure 30. Data structure Java Beans derived from application flow static object model

3.5.3 Meeting the challenges
The WebSphere programming model is compelling because with it you can
meet all the challenges associated with developing a quality application that
we identified in the chapter introduction:

DHTMLHTML
Servlet
doPost

add to order
{add item

(product, quantity)}

Order
Details

Confirm
Submit

submit

ok

cancel

Order
Status

Confirm
Cancel

open

[already open]

Customer
Home

Product
Catalog

Action
Result

{create new order}

edit line item

ok

{submit order}
{cancel order}

{modify item
(product,
quantity)}

Already
Open

[open ok]

Key: JSP JSP+Bean
+doGet

GET +
dispatch

Java
Script

POST +
redirect

(order)

(order)

(order)
(order)

0 . .n 0 . .n

L in e I te m

p ro d u c t ID
d e s c r ip t io n
q u a n t it y

O r d e r

o rd e r ID
s ta tu s

P r o d u c t

p ro d u c t ID
d e s c r ip t io n

O r d e r
D e t a i ls

c u s to m e r ID
o r d e r ID
s ta tu s

O r d e r
S ta tu s

c u s to m e r ID

P r o d u c t
C a ta lo g

0 . .n

P r o d u c t
C a ta lo g

p ro d u c ts i te m s o r d e r s
112 WebSphere V3.5 Handbook

• Functional - the WebSphere programming model features support
everything you need to develop Web-enabled and distributed object
applications

• Reliable - by following the approaches discussed in this chapter, you can
change the deployment characteristics of WebSphere hosted applications
to handle different operational environments without changing the
programs

• Usable - the programming model supports the development of
components customized to handle specific client requests for application
functions that are automatically launched by the WebSphere Application
Server

• Efficient - the programming model features have clearly defined trade-offs
that govern when they best apply to maximize use of system resources

• Maintainable - the programming model supports a separation of concerns
that make it easy to independently develop, test, and modify components

• Portable - the features of the programming model are based on Java
standards that make it easy to deploy application components on different
platforms without change

Furthermore, the programming model helps you meet the challenges
associated with defining an optimal development process:

• Repeatable - analysis, architecture and design, relatively standard steps
found in many development processes can be followed to develop quality
WebSphere-based applications.

• Measurable - following the analysis, architecture and design steps results
in a well defined number of servlets, JSPs, Java Beans and Enterprise
JavaBeans.

• Toolable - the systematic mapping from business process models to Java
Bean and Enterprise JavaBeans, and from application flow models to
servlets, JavaServer Pages and Java Beans has made it possible to use a
number of wizards, IDE and WYSIWYG tools.

• Predictable - given specific skill levels and tool choices, a team should be
able to make and correct productivity estimates that can be used to drive
project plans.

• Scalable - the ability to exploit a separation of concerns with well-defined
contract objects not only makes an application easy to maintain, but also
enables small or large teams of Java programmers and HTML page
designers to work together on projects of any size with minimal amounts of
coordination required.
Chapter 3. WebSphere programming model 113

• Flexible - separation of concerns also enables a team to use an iterative
and incremental development process driven from the top, bottom, or
middle in order to focus attention on high-risk items as early as possible.

If you develop your applications according to these principles, you will have
an application that is not only functional, efficient, maintainable and portable,
but also is able to exploit the deployment options best suited to your
operational environment. Many of these options are discussed in more detail
in the remaining chapters of this book.
114 WebSphere V3.5 Handbook

Chapter 4. WebSphere components

This chapter takes a look at the major components within WebSphere, such
as the administrative server, application server, servlet engine, and the EJB
container.

We talk about the WebSphere administrative server and all the services that it
provides. Then there is a discussion about the application servers. Virtual
hosts and enterprise applications are briefly touched upon.

The servlet engine is covered in detail in Chapter 5, “Servlet support” on
page 137. The EJB container is discussed in Chapter 11, “Enterprise Java
Services” on page 393.

4.1 WebSphere Administrative Server

The administrative server tracks the contents and activities of a WebSphere
administrative domain by maintaining the administrative database. The
administrative database is the database of information about all WebSphere
resources. All administration takes place through the manipulation of objects
in the administrative database.

The WebSphere administrative server provides administrators with a single
system view of applications and resources, such as servlets and EJBs, that
are typically deployed across multiple machines in a distributed environment.
An administrator can just as easily administer resources on a remote
machine.

In the WebSphere administrative model as depicted in Figure 31 on page
116:

• An administrative domain is a set of one or more nodes and has a shared
database.

• A node is a physical machine running an administrative server.

• Each administrative server stores its administrative data in a repository,
which is the shared database.

• The WebSphere resources on a node are represented as administrative
resources in the administrative domain. An administrative resource, such
as a servlet, holds configuration information about the WebSphere
resource, such as a servlet file on a node. It provides a way to start, stop,
and manage the WebSphere resource.
© Copyright IBM Corp. 2001 115

Figure 31. WebSphere administrative model

4.1.1 WebSphere administrative services
The administrative server provides the services that are used to control
resources and perform tasks on the administrative database. In addition to
the server start/stop/restart functionality and monitoring capabilities, the
administrative server also provides shared services for:

• Naming

• Transaction monitoring

• Security

administrative
database

administrative
console

application
server

application
server

application
server

administrative
server

Node Node

Node

DB

administrative domain

administrative
server

administrative
console

administrative
server

Web admin
console

HTTP
IIOP
116 WebSphere V3.5 Handbook

Figure 32. WebSphere V3.5 administrative services

There is a bootstrap service needed by the CosNaming service which listens,
by default, on port 900. The WebSphere administrative console connects to
the administrative server on port 900.

The JNDI namespace is kept locally by the administrative server. The JNDI
naming service is a persistent naming service provided through the CORBA
CosNaming API implemented as EJBs. The other Naming Service
component, Location Service Daemon (LSD), uses its own Object Request
Broker (ORB) and is needed for persistent object references. LSD listens on
port 9000.

Every administrative server has a security service that handles authorization
and authentication.

Finally, there is a nanny process whose job is to keep the administrative
server alive.

Administrative
Repository

Application Server

Administrative
Console

nanny process

Administrative
Server

Bootstrap
Service

Naming
Service

Security
Service

Port 900 Port 9000

Servlet
Engine

EJB
Container
Chapter 4. WebSphere components 117

4.1.2 Starting the administrative server
On UNIX platforms

a. Go to the bin directory under the WebSphere install directory.

cd <WAS_HOME>/bin

b. Run the startup server script:

./startupServer.sh

Where:

- <WAS_HOME> is the WebSphere V3.5 installation directory

On Windows platforms
Go to the Windows Services panel, select the service named IBM WS
AdminServer, and click Start.

or at a command prompt, type:

net start “IBM WS AdminServer”

In WebSphere V3.5 you can also start the administrative server from the
Windows Start menu: Start -> Programs -> IBM WebSphere -> Application
Server V3.5 -> Start Admin Server.

Figure 33. Menu path to start WebSphere V3.5 Administrative Server

4.1.3 Stopping the administrative server
On UNIX platforms

• Find the adminserver via the ps -aef UNIX command and get the process
ID (pid)

• Issue the UNIX kill <pid> command (or kill -15 <pid>)

On Windows platforms
Go to the Windows Services panel, select the service named IBM WS
AdminServer, and click Stop.
118 WebSphere V3.5 Handbook

or at a command prompt, type:

net stop “IBM WS AdminServer”

4.1.4 Running WebSphere servers as a non-root user
On UNIX platforms, you do not have to be a root user to run the WebSphere
Administrative Server, the WebSphere Administrative Console, or any
application server.

4.1.4.1 Administrative server as non-root user
WebSphere is installed as "root". To allow the administrative server to be run
as a non-root user, there are three things that need to be done:

1. Change the permissions to the installation directories. There are two
options for granting non-root user access permissions:

• Option1

- Change the owner of all files and directories in the WebSphere install
directory to the user/group that you desire to "run-as".

• Option 2

- Change the owner of the following specific files and directories to the
user/group that you desire to "run-as".

• <WAS_INSTALL_DIR>/logs/*

• <WAS_INSTALL_DIR>/properties/*

• <WAS_INSTALL_DIR>/tranlog/*

• <WAS_INSTALL_DIR>/temp/*

• <WAS_INSTALL_DIR>/bin/admin.config

2. Remove any temporary files that might have been created by previous
executions of the application server when it was "run-as" a user different
from the user that is going to be used. These files will be of the form:

/tmp/.asXXXXXX

where, XXXXX is a communications queue name used by WebSphere. For
example:

/tmp/.asibmappserve1

/tmp/.asibmoselink1

3. To run as a non-root user, the administrative server must use a bootstrap
port of 1024 or higher. To override the default value of 900, update the
Chapter 4. WebSphere components 119

<WAS_INSTALL_DIR>/bin/admin.config file. Add the following directive to
specify a new bootstrap port:

com.ibm.ejs.sm.adminServer.bootstrapPort=NNNN

where NNNN is greater than or equal to 1024

The WebSphere Administrative Server is now ready to be started with the
newly configured user/group setting.

4.1.4.2 Administrative console as non-root user
WebSphere is installed as "root". To allow the administrative console to be
run as a non-root user there are two things that need to be done:

1. Change the owner permissions to the user/group that you want to allow
access to run as in the <WAS_INSTALL_DIR>/bin directory.

2. Change the owner permissions of the following file to the same user/group
that you want to allow access to run as:

<WAS_INSTALL_DIR>/properties/sas.client.props

The WebSphere Administrative Console can now be started with the newly
configured user/group setting.

4.1.4.3 An application server as non-root user
To allow an application server to be run as a non-root user there are four
things that need to be done:

1. Start the WebSphere Administrative Server as “root”.

2. Bring up the WebSphere Administrative Console. In the Topology tab,
select the application server in the navigation pane, and go to the
Advanced tab in the workspace pane. Modify the User ID and Group ID
fields to the user/group setting that you want to run as.

If the WebSphere Administrative Server is configured to run on a port other
than the default port of 900, remember to invoke the WebSphere
administrative client using the “new” port:

./adminclient.sh <HOST_NAME> <BOOTSTRAP_PORT>

Note
120 WebSphere V3.5 Handbook

Figure 34. Application Server Advanced tab: User ID and Group ID attributes

3. In the General tab of that same application server, specify the paths for
Standard output and Standard error to a directory location that the
user/group has permission to write to.

4. Remove any temporary files that might have been created by previous
executions of the application server when it was "run-as" a user different
from the user that is going to be used. These files will be of the form:

/tmp/.asXXXXXX

where XXXXX is a communications queue name used by WebSphere. For
example:

/tmp/.asibmappserve1

/tmp/.asibmoselink1

The application server can now be started with the newly configured
user/group setting.
Chapter 4. WebSphere components 121

4.2 Application server

In the Standard Edition, the application server contains a servlet engine that
is basically a Java program handling servlet and JSP requests. In the
Advanced Edition the application server also contains an EJB container.

4.2.1 The application server hierarchy
An application server, EJB server, servlet engine, and its corresponding Web
applications are organized in a hierarchy. The application server contains the
EJB server and servlet engine, and the servlet engine in turn contains Web
applications.

Figure 35. The application server hierarchy

This is true in all cases, including the default application server and its
subcomponents as described above, and we can see this hierarchy in a
number of ways; here we will examine it using the administrative console.

The administrative console hierarchy is shown in Figure 36 on page 123.

If WebSphere security is to be enabled when running the administrative
server as a non-root user, then the local operating system cannot be used
as the authentication mechanism. You have to use LTPA in connection with
LDAP.

Note

Application Server

EJB Container Servlet Engine

EJB

EJB

EJB

Web Application

Servlet Servlet
122 WebSphere V3.5 Handbook

Figure 36. Default application server

The Session Manager components will be covered in Chapter 7, “Session
support” on page 245.

It is clear from the figure above that, say, the “default_app” Web application is
contained within the “Default Servlet Engine” servlet engine, which in turn is
contained within the “Default Server” application server instance.

4.2.2 The Default Server
A default application server, appropriately named “Default Server”, can be
automatically configured during WebSphere Application Server installation,
by choosing the configure default server and web application option.

Figure 37. Installation option to configure default server and web application
Chapter 4. WebSphere components 123

This will create an application server instance called “Default Server” as
shown in Figure 38 on page 124.

Figure 38. Default Server

4.2.2.1 The Default Container
You get an EJB container called “Default Container” inside Default Server.
Note that the “Default Container” entry is for an Enterprise JavaBeans
container; WebSphere Application Server uses the term “servlet engine” for
the container in which servlets run, to avoid confusion.

4.2.2.2 The Default Servlet Engine
Inside Default Server, there is also a servlet engine, named Default Servlet
Engine.

Under the Default Servlet Engine, there will be four Web applications. Each of
these Web applications contain some of the internal servlets provided by
WebSphere Application Server, as described in 5.6, “Internal servlets” on
page 167, as well as some example servlets. Web applications are discussed
in more detail in 5.3.2, “Web applications” on page 144.

The default_app Web application
The default_app Web application can be used to deploy simple servlets for
testing. It has been designed to ease the migration of servlets and
applications from WebSphere Application Server Version 2. You can also use
the default_app as a template for your own Web applications. The
default_app Web application contains two example servlets, snoop and hello,
as shown in Figure 39 on page 125. Both of these have been well
documented elsewhere in this redbook. It also contains three internal
124 WebSphere V3.5 Handbook

servlets, ErrorReporter, invoker and jsp10, which are documented in 5.6,
“Internal servlets” on page 167.

Figure 39. The default_app application

The admin Web application
The admin Web application is used by WebSphere Application Server to
install the administrative console and run the Web based administration tool.
Note that, as seen in Figure 40, the admin Web application is part of an
Enterprise Applications.

Figure 40. The admin Web application

The examples Web application
The examples Web application, as shown in Figure 41 on page 126, contains
a few sample servlets that you can run from day one to test your environment
and give you an idea of some basic designs. You can invoke these samples
using the URL:

http://yourHostName/webapp/examples/
Chapter 4. WebSphere components 125

Figure 41. The examples application

The WSsampleDB2_app Web application
The WSsamplesDB2_app application, as shown in Figure 42, contains a
sample Web application called YourCo. Take a look at it via the URL:

http://yourHostName/WebSphereSamples/YourCo

Figure 42. WSsamplesDB2_app application

4.2.3 Create a new application server
Any application server other than the default server has to be created.
WebSphere provides more than one way to create a new application server.
One way is via the tasks option in the administrative console. Select the node
where the application server is to run, click the right mouse button, select
Create, and highlight Application Server as shown in Figure 43 on page
127.
126 WebSphere V3.5 Handbook

Figure 43. Create an application server

The General properties tab is displayed, as shown in Figure 44 on page 128.
The Advanced properties tab is shown in Figure 45 on page 128. And the
Debug properties tab is shown in Figure 46 on page 129. There are a lot of
options that can be specified, but the application server name is the only
required item. Enter the name of the application server and click OK.
Chapter 4. WebSphere components 127

Figure 44. Create Application Server: General tab

Figure 45. Create Application Server: Advanced tab
128 WebSphere V3.5 Handbook

Figure 46. Create Application Server: Debug tab

If everything goes well, a message showing the successful creation of the
application server will be displayed.

Upon refreshing the view in the WebSphere Administrative Console, the
newly created application server will be seen. See Figure 47 on page 130.

Now you can continue with the creation of a servlet engine, an EJB container,
and other resources as needed.
Chapter 4. WebSphere components 129

Figure 47. WebSphere Administrative Console displaying the “new” application server

The other way to create an application server is via the Create Application
Server menu option in the WebSphere Wizards menu. This wizard asks all
the information up front and creates the application server with all the
resources in a single step.

4.2.4 Virtual hosts
A virtual host is a configuration enabling a single host machine to resemble
multiple host machines. It allows a single physical machine to support several
independently configured and administered applications.

Each virtual host has a logical name and a list of one or more DNS aliases by
which it is known. A DNS alias is the TCP/IP host name and port number
used to request the servlet, for example yourHostName:80. When no port
number is specified, 80 is assumed.
130 WebSphere V3.5 Handbook

When a servlet request is made, the server name and port number entered
into the browser are compared to a list of all known aliases in an effort to
locate the correct virtual host and serve the servlet. If no match is found, an
error is returned to the browser.

The WebSphere Application Server provides a default virtual host with some
common aliases, such as the machine's IP address, short host name, and
fully qualified host name. The alias comprises the first part of the path for
accessing a resource such as a servlet. For example, it is localhost:80 in the
request http://localhost:80/myServlet.

A virtual host is not associated with a particular node (machine). It is a
configuration, rather than a "live object," explaining why it can be created, but
not started or stopped. For many users, virtual host creation will be
unnecessary because the default_host is provided.

Virtual hosts allow the administrator to isolate, and independently manage,
multiple sets of resources on the same physical machine.

Suppose an Internet service provider (ISP) has two customers whose
Internet sites it would like to host on the same machine. The ISP would like to
keep the two sites isolated from one another, despite their sharing a machine.

The ISP could associate the resources of the first company with VirtualHost1
and the resources of the second company with VirtualHost2. Now suppose
both companies' sites offer the same servlet. Each site has its own instances
of the servlet, which are unaware of the other site's instances.

If the company whose site is organized on VirtualHost2 is past due in paying
its account with the ISP, the ISP can refuse all servlet requests that are
routed to VirtualHost2. Even though the same servlet is available on
VirtualHost1, the requests directed at VirtualHost2 will not be routed there.

The servlets on one virtual host do not share their context with the servlets on
the other virtual host. Requests for the servlet on VirtualHost1 can continue
as usual, even though VirtualHost2 is refusing to fill requests for the same
servlet.

The administrator can associate the Web paths of resources, such as
servlets, Web pages, and JavaServer Pages (JSP) files, with virtual hosts. It
is common to say that the resources are "on" the virtual host, even though the
virtual host is a configuration, not a physical machine that can hold files.

The Web path of a resource, such as a servlet, is a path by which users can
request the resource. For example, an administrator might specify two Web
Chapter 4. WebSphere components 131

paths for a servlet class named Animals. This allows users to specify either
http://www.companyname.com/Animals or http://www.companyname.com/AnimalsToo
to request the servlet.

Because the administrator associates the Web path of a resource, and not
the resource itself, with a virtual host, the administrator can associate one
Web path of a servlet with one virtual host, and another Web path of the
servlet with a different virtual host. WebSphere provides the flexibility to set
up virtual hosting in the way that best suits your needs.

4.2.4.1 The default virtual host
The product provides a default virtual host (named default_host). The default
uses port 80. The default_host has these aliases:

The IP address of the local machine (yourIPAddress:80)
The "localhost" alias, meaning the local machine (localhost:80)
The DNS name (such as software:80)
The fully qualified host name (such as www.software.ibm.com:80)
The loopback address (127.0.0.1:80)

Once in a while, the fully qualified name cannot be constructed. If several
paths containing the fully qualified name do not seem to be working, use the
WebSphere Administrative Console to check the virtual host's aliases
property to ensure the fully qualified name is registered as an alias.

Unless the administrator specifically wants to isolate resources from one
another on the same node (physical machine), he or she probably does not
need any virtual hosts in addition to the default host.

When a user requests a resource, WebSphere tries to map the request to an
alias of a defined virtual host. The mapping is case insensitive, but the match
must be alphabetically exact. Also, different port numbers are treated as
different aliases.
132 WebSphere V3.5 Handbook

Figure 48. The default_host

For example, the request:

http://www.myhost.com/myservlet

maps successfully to:

http://WWW.MYHOST.COM/MYSERVLET

and to:

http://Www.Myhost.Com/Myservlet

But it does not map successfully to:

http://myhost/myservlet

or to:

http://myhost:9876/myservlet
Chapter 4. WebSphere components 133

If a user requests a resource using an alias that cannot be mapped to an alias
of a defined virtual host, the user will receive a 404 error in the browser used
to issue the request. A message will state that the virtual host could not be
found.

4.3 What is an enterprise application?

An enterprise application is a combination of resources (building blocks) that
work together to perform a business logic function. The resources can
include:

• HTML files

• XML files

• JSP files

• Servlets

• Enterprise JavaBeans

• Graphical elements

Although they have the same contents, an enterprise application differs from
a Web application in that it involves security and may also contain Enterprise
JavaBeans.

An enterprise application, like a Web application, can be managed by the
administrator as a single logical unit. A step-by-step configuration is found in
Chapter 14, “Application deployment” on page 573.

WebSphere V3.x security is based on the concept of an enterprise
application called the AdminApplication. The key to WebSphere security
architecture is this central security application running in the WebSphere
Administrative Server.

4.4 WebSphere administrative interfaces

The WebSphere Administrative Server provides the services that are used to
control resources and perform tasks on the administrative database. The
monitoring and configuring of administrative resources are facilitated by four
interfaces, as shown in Figure 49 on page 135.
134 WebSphere V3.5 Handbook

Figure 49. WebSphere V3.5 Administrative Services block diagram

The Java client or the WebSphere Administrative Console, the Web console,
the WebSphere Control Program (WSCP), and the XMLConfig program can
all be used by administrators to access the administrative server on nodes in
the administrative domain, thus enabling the administrator to administer the
WebSphere domain resources.

They complement each other, but there are certain scenarios where one is
more useful than the other. The graphical clients, for example, provide a view
of the domain topology.

Chapter 18, “Administrative console” on page 811 discusses the Java
administrative console. Chapter 19, “Web console” on page 843 talks about
the HTTP or Web administrative console. Both of the command line
interfaces, XMLConfig and WSCP, are covered in detail in this redbook.
Chapter 20, “The WebSphere Control Program (WSCP)” on page 855 talks
about WSCP and XMLConfig is covered in Chapter 21, “XMLConfig” on page
877.

Web
Admininstrative

Console

WS Admin
Server

Java
Administrative

Console

XMLConfig
Tool

WebSphere Administrative Services

graphical interfaces command line interfaces

WebSphere
AppServer

.

 .

 .

WebSphere
AppServer

administrative
database

WebSphere
Control

Program
Chapter 4. WebSphere components 135

136 WebSphere V3.5 Handbook

Chapter 5. Servlet support

The aim of this chapter is to explain how you will use a servlet with the
WebSphere Application Server, from an administrative and architectural point
of view. We do not try to explain in detail how to write servlets; for that
information, please see Servlet and JSP Programming with IBM WebSphere
Studio and VisualAge for Java, SG24-5755.

We provide an overview of the servlet concept, and a short summary of how
servlets work, discussing in brief the process flow, the API, and the life cycle.
This has been kept to a minimum; the aforementioned redbook on servlets
has a far more in-depth explanation for those readers who are interested.

We discuss how the WebSphere Application Server treats servlets, and
where they fit within the application server hierarchy. We then give an
example of a very simple servlet for the purpose of demonstrating how you
will use the administration environment that comes with WebSphere
Application Server to configure your servlet engine and deploy servlets.
Finally, we talk about some of the internal servlets that WebSphere
Application Server provides, and where and how you would use them.

We recognize that there is an abundance of both online and printed
documentation on the topic of servlets, and recommend that you refer to the
Sun Java Servlet API Specification, found at
http://java.sun.com/products/servlet/.

5.1 What is a servlet?

According to the Java Servlet Specification (Version 2.2):

A servlet is a Web component, managed by a container, that generates
dynamic content. Servlets are small, platform-independent Java classes
compiled to an architecture-neutral bytecode that can be loaded
dynamically into and run by a Web server.

So, a servlet is a server-side software component written in Java, which is
loaded and executed within the Java Virtual Machine (JVM) of any
Java-enabled application server such as the WebSphere Application Server.

5.2 How servlets work

In order to understand how WebSphere works with servlets, we have to know
how servlets themselves work. In the following subsections, we briefly
© Copyright IBM Corp. 2001 137

http://java.sun.com/products/servlet/

examine the servlet process flow, skim through the Java Servlet API, and
discuss the servlet life cycle.

5.2.1 Servlet process flow
Servlets implement a common request/response paradigm for the handling of the
messaging between the client and the server. The Java Servlet API defines a
standard interface for the handling of these request and response messages
between the client and server.

Figure 50 shows a high-level client-to-servlet process flow:

1. The client sends a request to the server.

2. The server sends the request information to the servlet.

3. The servlet builds a response and passes it to the server. That response is
dynamically built, and the content of the response usually depends on the
client’s request. External resources may also be used.

4. The server sends the response back to the client.

Figure 50. High-level client-to-servlet process flow

Written in Java, servlets have access to the full set of Java APIs, such as JDBC
for accessing enterprise databases.

Servlets resemble Common Gateway Interface (CGI) programs in terms of
functionality. As in CGI programs, servlets can respond to user events from
an HTML request, and then dynamically construct an HTML response that is
sent back to the client. Servlets, however, have the following advantages over
traditional CGI programs:

• Portability and platform independence

Servlets are written in Java, making them portable across platforms and
across different Web servers, because the Java Servlet API defines a
standard interface between a servlet and a Web server. Of course,

Client

WebSphere

Request

Response

Servlet
Resources

eg. JDBC
RMI/IIOP

eg. UDB
EJB
138 WebSphere V3.5 Handbook

servlets inherit all of the benefits of the Java language, including a
strong-typed system, object orientation, and modularity, to name a few.

• Persistence and performance

A servlet is loaded once by a Web server/application server, and then
invoked for each client request, possibly more than once at the same time
using threads. This means that the servlet can maintain system resources,
such as a database connection, between requests. Servlets don’t incur the
overhead of instantiating a new servlet with each request. CGI processes
typically must be loaded with each invocation.

5.2.2 The Java Servlet API
The Java Servlet API is a Standard Java Extension API, meaning that it is not
part of the core Java framework, but rather is available as an add-on set of
packages; it is a set of Java classes that define standard interfaces between a
Web client and a Web servlet and between the servlet and the environment in
which it runs.

WebSphere V3.5.2 supports Java Servlet API V2.2 (and the related
JavaServer Pages API 1.1). Previous versions of WebSphere, V3.5 and
V3.5.1, supported earlier versions of those APIs with some extensions.
WebSphere V3.5.2 can also be configured to support applications coded to
those earlier versions. When you configure a servlet engine you choose
which version of the servlet API is to be used. All Web applications deployed
in that servlet engine will use the chosen version. We discuss the differences
between the two versions in Chapter 8, “Servlet V2.2 in WebSphere V3.5.2”
on page 295.

You can choose the version of the Servlet API independently for each servlet
engine in the same WebSphere domain. However there is some potential for
unexpected behaviors; see 8.3.5, “Session Cookie Names” on page 308.

The API, in both V2.1and V2.2, is composed of two packages:

• javax.servlet

• javax.servlet.http

The javax.servlet package contains classes to support generic
protocol-independent servlets. The javax.servlet.http package extends the
functionality of the base package to include specific support for the HTTP
protocol. In this chapter, for the sake of simplicity, we will concentrate on the
classes in the javax.servlet.http package.
Chapter 5. Servlet support 139

The Servlet interface class defines the methods that servlets must
implement, including a service() method for the handling of requests. To write
an HTTP servlet, we will use a class called HttpServlet, which implements the
servlet interface. HttpServlet provides additional methods for the processing
of HTTP requests such as GET (doGet() method) and POST (doPost()
method). Although our servlets may implement a service() method, in most
cases we will implement the HTTP-specific request handling methods.

5.2.3 The servlet life cycle
A Web client does not usually communicate directly with a servlet, but
requests the servlet’s services through a server, such as the WebSphere
Application Server, that invokes the servlet. The server’s role is to manage
the loading and initialization of the servlet, the servicing of the request, and
the unloading or destroying of the servlet.

5.2.3.1 How the life cycle functions
There is one instance of a particular servlet object at a time in the application
servers’ environment. Each client request to the servlet is handled via a new
thread against the original instance object. This is the underlying principle of
the persistence of the servlet. The application server is responsible for:

1. Handling the initialization of the servlet when the servlet is first loaded,
where it remains active for the life of the servlet

2. Creating the new threads to handle the requests

3. The unloading or reloading of the servlets

WebSphere will unload a servlet when the Web application is brought down,
and it will reload all of the classes in the application classpath whenever one
of the loaded classes in that class path has been changed. See 5.5.3, “Create
a Web application” on page 155 for detailed information about auto reload.

Figure 51 on page 141 shows a basic client-to-servlet interaction:

• Servlet1 is initially loaded by the WebSphere. Instance variables are
initialized, and remain active (persistent) for the life of the servlet.

• Two Web clients have requested the services of Servlet1 via the HTTPD. A
handler thread is spawned by the application server to handle each
request. Each thread has access to the originally loaded instance
variables that were initialized when the servlet was loaded.

• Each thread handles its own requests, and responses are sent back to the
calling client.
140 WebSphere V3.5 Handbook

Figure 51. Basic client-to-server interaction

The life cycle of a servlet is expressed in the Java Servlet API in the init(),
service() (doGet() or doPost()), and destroy() methods of the Servlet
interface. We will discuss the functions of these methods in more detail and
the objects that they manipulate. Figure 52 is a visual diagram of the life cycle
of an individual servlet.

Figure 52. Servlet life cycle

The WebSphere administrator can set an application and its servlets to be
unavailable for service (see 5.5.4, “Deploying the servlet” on page 160 for
details). In such cases, the application and servlets remain unavailable until
the administrator changes them to available.

W ebSphere Application Server

Servlet1
Thread1

Servlet1
Thread2

Client1

Client2

Servlet1 Instance
* loaded before

first request

HTTPD

Create Initialize

Available
for

service

Unavailable
for

service

Servicing
requests Destroy Unload

(Initialization failed)

(Unavailable
exception
thrown)
Chapter 5. Servlet support 141

5.2.3.2 Understanding the life cycle
This section describes in detail some of the important servlet life cycle
methods of the Java Servlet API.

Servlet initialization: init() method
Servlets can be dynamically loaded and instantiated when their services are
first requested, or WebSphere can be configured so that specific servlets are
loaded and instantiated when WebSphere initializes.

In either case, the init() method performs any necessary servlet initialization,
and is guaranteed to be called once for each servlet instance, before any
requests are handled. An example of a task that may be performed in the
init() method is the loading of default data parameters or database
connections.

At initialization time, the servlet author can access a ServletConfig object.
This interface object allows the servlet to access name/value pairs of
initialization parameters that are specific to that servlet. The ServletConfig
object also gives us access to the ServletContext object that describes
information about our servlet environment.

Servlet request handling
Once the servlet has been initialized, it may handle requests (although it is
possible that a loaded servlet may get no requests, for instance if the servlet
is set to start when the application server starts, but no requests are made for
that servlet). Each request is represented by a ServletRequest object, and
the corresponding response by a ServletResponse object. Since we will be
dealing with HttpServlets, we will deal exclusively with the more specialized
HttpServletRequest and HttpServletResponse objects.

The service() method is declared abstract in the basic GenericServlet class,
and so subclasses, such as HttpServlet, must override it. The HttpServlet
service() method accepts two parameters, HttpServletRequest and
HttpServletResponse. In any subclass of HttpServlet, the service() method
must be implemented according to the signature defined in HttpServlet,
namely, that it accepts HttpServletRequest and HttpServletResponse
arguments.

The HttpServletRequest object encapsulates information about the client
request, including information about the client’s environment and any data
that may have been sent from the client to the servlet. The
HttpServletRequest class contains methods for extracting this information
from the request object.
142 WebSphere V3.5 Handbook

The HttpServletResponse is often the dynamically generated response, for
instance, an HTML page that is sent back to the client. It is often built with
data from the HttpServletRequest object. In addition to an HTML page, a
response object may also be an HTTP error response, or a redirection to
another URL, servlet, or JavaServer Pages. JavaServer Pages and
interactions with servlets will be discussed in Chapter 6, “JSP support” on
page 189.

Other servlet methods worth mentioning
• destroy(): The destroy() method is called when WebSphere unloads the

servlet. A subclass of HttpServlet only needs to implement this method if it
needs to perform cleanup operations, such as releasing database
connections or closing files.

• getServletConfig(): The getServletConfig() method returns a
ServletConfig instance that can be used to return the initialization
parameters and the ServletContext object.

• getServletInfo(): The getServletInfo() method is a method that can provide
information about the servlet, such as its author, version, and copyright.
This method is generally overwritten to have it return a meaningful value
for your application. By default, it returns an empty string.

5.3 WebSphere and servlets

A servlet requires a servlet container, called a servlet engine in the
WebSphere terminology, in which to run. From the Servlet Specification 2.2:

A servlet container can either be built into a host Web server or installed
as an add-on component to a Web server via that server’s native
extension API. Servlet containers can also be built into or possibly
installed into Web-enabled application servers.

A servlet engine in WebSphere is a Java program that runs inside an
application server instance Java Virtual Machine (JVM) configuration.

5.3.1 The servlet engine
A servlet engine is a program that handles the requests for servlets and
JavaServer Pages (JSP). The servlet engine is responsible for creating
instances of servlets, initializing them, acting as a request dispatcher, and
maintaining servlet contexts for use by your Web applications.

WebSphere supports only one servlet engine per application server. For the
purposes of the examples in this chapter, we shall create a new application
Chapter 5. Servlet support 143

server instance to house our servlet engine; this will be discussed in 5.5,
“Deploying the example servlet under WebSphere” on page 147. We could
also have used the default servlet engine described above, however for
completeness we will demonstrate how to create a new servlet engine and all
of its components.

5.3.2 Web applications
A Web application represents a grouping of servlets, JSPs, and their related
resources. Managing these elements as a unit allows you to stop and start
servlets in a single step. You can also define a separate document root and
class path at the Web application level, thus allowing you to keep different
Web applications in separate directories in the file system. A Web application
definition is contained within a servlet engine definition.

Servlets that are running within a Web application share the same servlet
context with others in the same application, allowing them to communicate
with each other.

5.3.3 Servlets
The servlets themselves are the innermost level of the hierarchy. They are
deployed into the servlet engine and grouped into Web applications.

5.4 Writing a simple servlet example

In this section, we describe a very simple servlet, the HelloWorldServlet. For a
detailed discussion of servlets and how they function, please see Servlet and
JSP Programming with IBM WebSphere Studio and VisualAge for Java,
SG24-5755. We are more interested here in how to deploy a servlet under
WebSphere V3.5. In 5.5, “Deploying the example servlet under WebSphere” on
page 147, we explain how to deploy this servlet in WebSphere.
144 WebSphere V3.5 Handbook

5.4.1 The HelloWorldServlet
Figure 53 shows the full HelloWorldServlet code:

Figure 53. The HelloWorldServlet

HelloWorldServlet is a very simple HTTP servlet that accepts a request and
writes a response. Let’s break out the components of this servlet so we can
discuss them individually.

5.4.2 Basic servlet structure
Figure 54 shows the import statements used to give us access to other Java
packages. The import of java.io is so that we have access to some standard
IO classes. More importantly, the javax.servlet.* and javax.servlet.http.*
import statements give us access to the Java Servlet API set of classes and
interfaces.

Figure 54. HelloWorldServlet import statements

Figure 55 on page 146 shows the HelloWorldServlet class declaration. We
extend the HttpServlet class (javax.servlet.http.HttpServlet) to make our class
an HTTP protocol servlet.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorldServlet extends HttpServlet {
protected void service(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<HTML><TITLE>Hello World</TITLE><BODY>");
out.println("<H2>Hello, World</H2><HR>");
out.println("</BODY></HTML>");
out.close();

}
}

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
Chapter 5. Servlet support 145

Figure 55. The HelloWorldServlet class declaration

Figure 56 is the heart of this servlet, the implementation of the service()
method for the handling of the request and response objects of the servlet.

Figure 56. HelloWorldServlet service() method

5.4.3 Compiling the servlet
In order for our servlet to run in WebSphere, it has to be compiled into
bytecode form and stored as a .class file. For the compile to be successful,
we need to have access to the classes we are extending (the HttpServlet),
which is stored in the servlet.jar file in the WebSphere lib directory. Thus, this
jar file must be added to the classpath when compiling. The easiest way to do
this is by using the -classpath option of the javac compiler, as shown in Figure
57 on page 147.

Before the compile, we only have the HelloWorldServlet.java file as shown in
Figure 53 on page 145. We invoke the javac compiler on the
HelloWorldServlet.java file, specifying that it should add the servlet.jar file to
its classpath. After the compile is complete, we see that there is also a
HelloWorldServlet.class file that can now be deployed to WebSphere.

public class HelloWorldServlet extends HttpServlet {

protected void service(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<HTML><TITLE>Hello World</TITLE><BODY>");
out.println("<H2>Hello, World</H2><HR>");
out.println("</BODY></HTML>");
out.close();

}

146 WebSphere V3.5 Handbook

Figure 57. Compiling the HelloWorldServlet

5.5 Deploying the example servlet under WebSphere

For the purposes of this chapter, we will define a new servlet engine and Web
application, and deploy our example HelloServlet servlet as part of this Web
application.

In order to deploy the example servlet above under WebSphere V3.5, we
have to carry out the following tasks:

1. Define a new application server.

2. Define a servlet engine.

3. Create a Web application.

4. Deploy the servlet.

We shall demonstrate how to carry out each of these tasks using two modes:
the administrative console and the WSCP command line. Chapter 20, “The

C:\WebSphere\AppServer\Hello>dir
Volume in drive C is WINDOWS2000
Volume Serial Number is 0A72-0FE1

Directory of C:\WebSphere\AppServer\Hello

13/09/2000 09:39 <DIR> .
13/09/2000 09:39 <DIR> ..
13/09/2000 09:40 506 HelloWorldServlet.java

1 File(s) 506 bytes
2 Dir(s) 7,084,376,064 bytes free

C:\WebSphere\AppServer\Hello>javac -classpath c:\WebSphere\AppServer\lib\servlet.jar
HelloWorldServlet.java

C:\WebSphere\AppServer\Hello>dir
Volume in drive C is WINDOWS2000
Volume Serial Number is 0A72-0FE1

Directory of C:\WebSphere\AppServer\Hello

13/09/2000 09:39 <DIR> .
13/09/2000 09:39 <DIR> ..
13/09/2000 09:40 506 HelloWorldServlet.java
19/09/2000 18:47 810 HelloWorldServlet.class

2 File(s) 1,316 bytes
2 Dir(s) 7,084,359,680 bytes free

C:\WebSphere\AppServer\Hello>
Chapter 5. Servlet support 147

WebSphere Control Program (WSCP)” on page 855 discusses the WSCP
command line in detail.

5.5.1 Define a new application server
In this chapter, we are not really interested in the advanced options available
when defining a new application server; the creation of an application server
is described in detail in Chapter 4, “WebSphere components” on page 115.
We will create a new server and accept the defaults for all of the options.

5.5.1.1 Define a new application server via the console
Right click the node on which you want to create the application server, and
choose Create -> Application Server from the resulting menu, as shown in
Figure 58.

Figure 58. Create a new application server

This will bring up the Create Application Server dialog box, which contains
three separate tabs entitled General, Advanced and Debug. For our
148 WebSphere V3.5 Handbook

purposes, the default settings for everything will be fine; see Chapter 4,
“WebSphere components” on page 115 for details on the various options
available when defining an application server.

Type in the name of your application server and click OK. We have used the
name HelloAppServer for our application server, as can be seen in Figure 59.

Figure 59. Create Application Server: General tab

Then you will get the Information dialog that says Command “EJBServer.create”

completed successfully and click OK.
Chapter 5. Servlet support 149

5.5.1.2 Define a new application server via the WSCP
Creation of the application server via WSCP is done by calling the create
method of the ApplicationServer command object. In the example in Figure
60, we are creating the same application server instance as above, called
HelloAppServer, on the node entitled “SZYMON-Laptop”. (The example
shows output from Windows 2000, but the syntax is the same on other
platforms, such as UNIX).

Figure 60. Creation of the HelloAppServer application server instance

5.5.2 Define a servlet engine
Creation of the servlet engine is very similar to the creation of an application
server. We shall demonstrate using both the administrative console and
WSCP.

5.5.2.1 Define a servlet engine via the console
Right-click the application server in which you want to create the servlet
engine (in our case, HelloAppServer), and choose Create -> Servlet Engine
from the resulting menu, as in Figure 61 on page 151.

After a few seconds, you should see an information dialog box saying that
the EJBServer.create command completed successfully. This is somewhat
misleading, as we have created an application server which we are not
going to use to serve EJBs - we will only serve servlets (unless we are
planning on using the thin Servlet Redirector; more on this later). However,
this is WebSphere internal terminology for an application server instance;
the messages means simply that the application server has been defined
successfully.

Note

C:\WebSphere\AppServer\bin>wscp
wscp> ApplicationServer create /Node:SZYMON-Laptop/ApplicationServer:HelloAppServer/
wscp> exit

C:\WebSphere\AppServer\bin>
150 WebSphere V3.5 Handbook

Figure 61. Create a new servlet engine

This will bring up the Create Servlet Engine dialog box, which has two tabs:
General and Advanced. In the General tab, fill in the name you would like to
use for your servlet engine; in the example we have used the name
HelloServletEngine. From the drop-down box, choose the application server
where you would like the servlet engine to run; the example depicted in
Figure 62 on page 152 shows the HelloAppServer application server defined
above being used.

In WebSphere V3.5.2, you can select the Servlet Engine Mode. We describe
this in detail in Chapter 8, “Servlet V2.2 in WebSphere V3.5.2” on page 295.
For this chapter, we selected the WebSphere V3.5 Compatibility Mode.
Chapter 5. Servlet support 151

Figure 62. Create Servlet Engine: General tab

Click the Advanced tab. Although we will not change any of the settings for
our simple example it is useful to know what they all mean. Figure 63 on page
153 shows the Advanced tab of the Create Servlet Engine dialog box, with all
of the options. An explanation of the options is given below.
152 WebSphere V3.5 Handbook

Figure 63. Create Servlet Engine: Advanced tab

Clicking the Queue Type drop-down menu brings up three options. The
queue type options should be used as follows:

OSE - Used for routing requests locally and for remote OSE
HTTP - Not recommended at this time
None - For use with the Servlet Redirector

Remote OSE and Servlet Redirectors are not within the scope of this
redbook; please see WebSphere Scalability: WLM and Clustering using
WebSphere Application Server Advanced, SG24-6153 for details.

The port option specifies the port that the servlet engine will listen on for
servlet requests from the Web server; leave it to the default -1 to specify an
ephemeral port. Max connections defaults to 25 and is the maximum number
of concurrent resource requests.

Clicking the Settings button brings up another dialog box, which deals with
the transport mechanisms used by the servlet engine. Click the Transport
Types drop-down box to choose between the following using Local Pipes,
INET Sockets and JAVA TCP/IP. Local Pipes are generally faster and should
Chapter 5. Servlet support 153

be used on Windows and AIX; on Solaris you can only use INET sockets. The
JAVA TCP/IP option is a pure Java implementation of INET sockets; this
should be used only for debugging.

Then click OK.

You will get the Information dialog that says Command “ServletEngine.create”

completed successfully. Then click OK.

After you create a servlet engine successfully, you can see it (in our case,
HelloServletEngine) on the administrative console as shown in Figure 64.

Figure 64. A newly created servlet engine

5.5.2.2 Define a servlet engine via the WSCP
Creation of the servlet engine via WSCP is done by calling the create method
of the ServletEngine command object. In the example in Figure 65 on page
155, we are creating the same servlet engine as created above with the
administrative console called HelloServletEngine, on the node entitled
“SZYMON-Laptop”, in the appserver called HelloAppServer. (Again, this
example shows output from Windows 2000, but the Tcl syntax is the same on
other platforms such as UNIX).
154 WebSphere V3.5 Handbook

Figure 65. Creation of the HelloServletEngine servlet engine

5.5.2.3 The RemoteSRP EJB
You will notice that, when you create a servlet engine in an application server
instance, an EJB container entitled Default Container will automatically be
created and an EJB called RemoteSRP will be deployed inside it.

The RemoteSRP enterprise bean, when using the Servlet Redirector, is used
when you want to have WebSphere on a different machine from your Web
server (HTTPD). The Servlet Redirector is an EJB client of the RemoteSRP
bean. An overview of separating your Servlet Redirector from your application
server is given in Chapter 16, “Topologies selection” on page 771, but for
detailed information (including instructions on how to do this), see
WebSphere Scalability: WLM and Clustering using WebSphere Application
Server Advanced, SG24-6153.

5.5.3 Create a Web application
We show how to create a Web application via the administrative console, and
by using WSCP. XMLConfig and the Web console could also be used for this
purpose; for more information on these utilities, please refer to Chapter 21,
“XMLConfig” on page 877 and Chapter 19, “Web console” on page 843.

5.5.3.1 Create a Web application via the console
Right-click the servlet engine in which you want to create your Web
application (in our case, HelloServletEngine), and choose Create -> Web
Application from the menu, as shown in Figure 66 on page 156.

C:\WebSphere\AppServer\bin>wscp
wscp> ServletEngine create /Node:SZYMON-Laptop/ApplicationServer:HelloAppServer/
ServletEngine:HelloServletEngine
wscp> exit

C:\WebSphere\AppServer\bin>
Chapter 5. Servlet support 155

Figure 66. Create a new Web application

This will bring up the Create Web Application dialog box, which contains two
tabs - General and Advanced, as shown in Figure 67 on page 157.

On the General tab, fill in the name you want to give to your Web application;
in the example, we have used the name HelloWebApp.

From the drop-down dialog box, choose the virtual host on which you would
like the Web application to run. We will just choose the default_host for our
example; see the 4.2.4, “Virtual hosts” on page 130 for more details of virtual
hosts.

Choose a path for your Web application; this will be the first “directory” in the
URL. This will default to a prefix of /webapp/ and then whatever you type in as
the Web application name (in our case, /webapp/HelloWebApp).

Finally, write a description for the Web application. When you have filled in
the compulsory fields, click the Advanced tab.
156 WebSphere V3.5 Handbook

Figure 67. Create Web Application: General tab

Figure 68 on page 159 shows the Advanced tab.

The Document Root is the root directory for HTTP documents in this Web
application.

The Classpath defines the application classpath; this should be set to the
directory or directories where the class files for your servlets are stored on
the local file system.

There are two properties for error page setting: Default Error Page field and
Error Pages list.

In the Error Pages list, you may specify a special Web page when a special
status code or exceptions occurs. For example, you may specify different Web
pages to display when a status 404 and 500 occurs, or you may specify
different Web pages to display when exception javax.servlet.ServletException
and java.io.IOException are thrown. If a request causes both a status code to
be generated and an exception to be thrown, and both these errors have
specified error pages, then WebSphere uses the error page configured for the
status code. If an error occurs that is not included in the list of error pages, a
Chapter 5. Servlet support 157

default error page will be displayed. See Chapter 8, “Servlet V2.2 in
WebSphere V3.5.2” on page 295 for detailed information.

The ErrorReporter servlet, described in 5.6.6, “The ErrorReporter servlet” on
page 183, may be used here.

The reload settings are at the Web application level. There are two settings
for reload: Reload Interval and Auto Reload.

If you set Auto Reload to True, the classpath of the Web application is
monitored and all components (JAR or class files) are reloaded whenever it is
automatically detected that a component has been updated. It is of great
benefit in developing or testing your environment. You may set it to False in a
production environment in order to improve performance. A reload Interval is
the interval between reloads of the Web application when Auto Reload is set
to True. It is set in seconds.

For the MIME table property, specify mappings between extensions and
MIME types. The MIME table consists of:

• Extension: Text string describing an extension, such as .txt

• Type: The defined MIME type associated with the extension, such as
text/plain

You can also specify MIME table properties at the virtual host level, but the
MIME table properties you specify for a Web application take precedence
(local scope). In other word, the MIME table of the Web application is
searched first. If a match is not found, then the MIME table configured for the
virtual host is searched.

Then click OK. You will see the Information dialog that says Command

“ServletGroup.create” completed successfully. Then click OK.
158 WebSphere V3.5 Handbook

Figure 68. Create Web Application: Advanced tab
Chapter 5. Servlet support 159

5.5.3.2 Create a Web application via the WSCP
The Web application is created in WSCP by calling the create method of the
WebApplication command object.

In the example in Figure 69, we are creating the same Web application as
created above with the administrative console, called HelloWebApplication,
on the node entitled “SZYMON-Laptop”, in the servlet engine called
HelloServletEngine, within the appserver called HelloAppServer.

Note that this command is more complex than those for creating the
application server and servlet engine. This is because for the application
server and servlet engine, we simply accepted all of the default options, and
the only required option for those objects is the name.

For a Web application, however, it is required to give the classpath for the
application, the document root and the Web path; these are the Classpath,
DocRoot and URIPath attributes of the WebApplication object in WSCP, and
therefore the creation command must specify them using the -attribute option.

Once again, although we show output from Windows 2000, the Tcl syntax is
the same on other platforms, such as UNIX.

Figure 69. Creating a Web application via WSCP

5.5.4 Deploying the servlet
We demonstrate deploying the servlet using the administrative console and
WSCP; it is also possible to deploy using XMLConfig.

C:\WebSphere\AppServer\bin>wscp
wscp> WebApplication create /Node:SZYMON-Laptop/ApplicationServer:HelloAppServer
/ServletEngine:HelloServletEngine/WebApplication:HelloWebApplication/ -attribute
{{Classpath C:\WebSphere\AppServer\hosts\default_host\HelloWebApp\servlets} {Do
cRoot C:\WebSphere\AppServer\hosts\default_host\HelloWebApp\web} {URIPath defaul
t_host/webapp/HelloWebApp}}
wscp>exit

C:\WebSphere\AppServer\bin>

Via the administrative console, there is a separate option to specify the
virtual host name; however, in WSCP the virtual host is specified as the
start of the URIPath attribute, as part of the Web path.

Note
160 WebSphere V3.5 Handbook

5.5.4.1 Deploying the servlet via the console
Right-click the Web application in which you want to deploy your servlet, and
choose Create -> Servlet from the menu, as shown in Figure 70. This will
bring up the Create Servlet dialog box, which contains two tabs - General and
Advanced.

Figure 70. Create Servlet

The General tab of the Create Servlet dialog box is shown in Figure 71 on
page 162. There are three mandatory fields: Servlet Name, Web Application
and Servlet Class Name.

The Servlet Name field should be used to give your servlet a short descriptive
name; this name will be used to refer to this instance of the servlet in the
administrative database, so it will show up in the administrative console and
WSCP.

The Web Applications drop-down list is by default set to the Web application
you are deploying the servlet in, but be warned that the list includes all of the
Web applications on the node (even those in other application servers on the
same node).
Chapter 5. Servlet support 161

Figure 71. Create Servlet: General tab

The final mandatory field is the Servlet Class Name field; this should contain
the full name of the class, such as HelloWorldServlet.

The servlet Web path is the part of the URL after the host, which will be used
to access this servlet. It defaults to the Web application Web path (in the
example this is /webapp/HelloWebApp), and you should give a name under
that path for the servlet to be called. The full URL to access the HelloWorld
servlet as shown in the example will be:

<hostname>/webapp/HelloWebApp/Hello

Then click OK on the Add Web Path to Servlet window.

You will see the Servlet Web Path which you specified, as shown in Figure 72
on page 163.
162 WebSphere V3.5 Handbook

Figure 72. Servlet Web Path List

Click the Advanced tab to show the advanced options of the Create Servlet
dialog box, as shown in Figure 73 on page 164.

The initial parameters for the servlet can be set here. You can also turn on
debug mode, which is discussed in 23.6, “Object level trace (OLT) and the
IBM distributed debugger” on page 958.

Finally, you can force the servlet to be loaded at startup (rather than the first
time the servlet is accessed).

Then click OK.

You will get the Information dialog that says Command “Servlet.create”

completed successfully. then click OK.
Chapter 5. Servlet support 163

Figure 73. Create Servlet: Advanced tab

After you create a servlet successfully, you will see it (in our case, Hello) on
the administrative console as shown in Figure 74 on page 165.
164 WebSphere V3.5 Handbook

Figure 74. A newly created servlet

5.5.4.2 Deploying the servlet via the WSCP
To deploy the servlet using WSCP, as usual we call the create method of the
command object “Servlet”.

In the example in Figure 75 on page 166, we are deploying our
HelloWorldServlet in the HelloWebApplication Web application, on the
SZYMON-Laptop node, in the HelloServletEngine servlet engine, within the
HelloAppServer appserver.

Again, this command is slightly more complex than the commands used to
create the application server and servlet engine, because instead of
accepting all of the default options and only specifying the name, we have a
number of required attributes.
Chapter 5. Servlet support 165

We must specify the name of the class and the full Web path of the servlet, as
the Code and URIPaths attributes of the servlet object in WSCP.

Figure 75. Deploying a servlet via WSCP

5.5.5 Invoking the deployed servlet

We could invoke this servlet with either a GET or POST form action method;
the service() method will execute for either. Since a URL forces the Web
browser to send the request using GET, similar to the way a standard HTML
page is requested, the simplest way to invoke the servlet would be by
specifying the URL in a Web browser. The example servlet could be invoked
from the Web browser with the URL:

http://<host>/webapp/HelloWebApp/Hello

The output of the servlet is shown in Figure 76 on page 167.

C:\WebSphere\AppServer\bin>wscp
wscp> Servlet create /Node:SZYMON-Laptop/ApplicationServer:HelloAppServer/Servle
tEngine:HelloServletEngine/WebApplication:HelloWebApplication/Servlet:Hello/ -at
tribute {{Code HelloWorldServlet} {URIPaths default_host/webapp/HelloWebApp/Hell
o}}
wscp> exit

C:\WebSphere\AppServer\bin>

Note that here as well there is no separate option to specify the virtual host
name, but rather it is specified as part of the URIPath attribute. Also note
that the URIPaths attribute can contain more than one path; if this is
desired, they should be presented in braces as a Tcl list.

Note
166 WebSphere V3.5 Handbook

Figure 76. The output of the HelloWorldServlet

5.6 Internal servlets

A number of servlets are supplied by WebSphere in the default_app

application, and you can also use them as part of your own Web application
where appropriate. This includes servlets that allow file serving from
WebSphere directories and which add functionality to compile JSPs.

5.6.1 Adding the internal servlets to your Web application
These internal servlets can be added to an existing Web application using the
Console -> Tasks -> Add a Servlet task, as shown in Figure 77 on page
168.
Chapter 5. Servlet support 167

Figure 77. Add a Servlet task

The first dialog box of the Add a Servlet task, shown in Figure 78, asks
whether you wish to add servlets from an existing JAR file or directory.
Choose No to create a new servlet, and click Next.
168 WebSphere V3.5 Handbook

Figure 78. Add a Servlet: Servlet window #1

The next dialog box asks you to choose a Web application in which to add the
servlet. Navigate down to the Web application you wish to use (in our case,
HelloWebApp), as in Figure 79, and click Next.

Figure 79. Add a Servlet: Servlet window #2

Finally we come to the dialog box that gives a list of the internal servlets that
you can use, as shown in Figure 80.
Chapter 5. Servlet support 169

Figure 80. Add a Servlet: Servlet window #3

Choose which servlet you wish to add, and click Finish. Note that the chainer
servlet creation process has one more dialog box, which will be described in
5.6.5, “The chainer servlet” on page 177.

5.6.2 The invoker servlet
The invoker servlet can be used to invoke servlets by class or code names.
Note that it is a security risk to invoke by class in production; this should be
seen as more of a development tool.

Follow the instructions in 5.6.1, “Adding the internal servlets to your Web
application” on page 167, then select Enable Serving Servlet by
Classname and click Finish as shown in Figure 81.
170 WebSphere V3.5 Handbook

Figure 81. Add the invoker servlet

Then you will see the Information dialog that says Command “Servlet.create”

completed successfully. and click OK.

Now you can use it to invoke other servlets by using the URL of the invoker
servlet and adding the name of the class or the short name of the servlet (as
held in the administrative database) at the end.

The default setting for the Web path of the invoker servlet is the Web
application Web path plus the word “servlet”; this can be seen in Figure 82.
Chapter 5. Servlet support 171

Figure 82. The Web path of the invoker servlet

We can now call our HelloWorldServlet by using two extra URLs:

http://localhost/webapp/HelloWorldApp/servlet/Hello

http://localhost/webapp/HelloWorldApp/servlet/HelloWorldServlet

The first of these is the short name for the servlet; this is in addition to the
normal short name invocation via the Web path. The second URL invokes the
servlet using the class name. Note that it is possible to completely delete the
actual servlet Web path for the Hello servlet, and still access it via the Invoker
servlet.
172 WebSphere V3.5 Handbook

Using the Invoker servlet is considered a security exposure that can be
avoided by performing certain administrative tasks. In addition to invoking the
servlet by the servlet Web paths configured via the administrative console,
the Invoker servlet enables you to invoke servlets by their class names.

Anyone enabling the Invoker servlet to serve servlets by their class names
must take steps to avoid potential security risks. The administrator should
remain aware of each and every servlet class placed in the classpath of an
application, even if the servlets are to be invoked by their classnames. A
summary of the steps is provided here.

To protect each servlet, the administrator needs to:

1. Configure a Web resource based on the servlet class name, such as:

/servlet/SnoopServlet

for SnoopServlet.class

2. Add the Web resource to the Web Path list of the Invoker servlet in the
Web application to which the servlet belongs.

3. Use the Configure Resource Security wizard in the administrative console
to secure the Web resource.

Also, the administrator needs to secure the Invoker servlet itself. More details
for this procedure can be found in the InfoCenter for WebSphere V3.5.

5.6.3 The file servlet
The file servlet (or file-serving servlet or file serving enabler) can serve HTML
or other files in the Web application document root without extra configuration
steps. This servlet will simply serve up any file that is placed in the document
root of the Web application.
Chapter 5. Servlet support 173

You follow the instructions as described in 5.6.1, “Adding the internal servlets
to your Web application” on page 167, then select Create File Serving
Servlet and click Finish as shown in Figure 83.

Figure 83. Create File-Serving Servlet

You will see the Information dialog that says Command “Servlet.create”

completed successfully. and click OK.

When dealing with static HTML pages, you can choose to have the pages
be served by WebSphere or just have them served by the Web Server itself
by putting them in the Web Server's document root. In both cases, you can
protect the pages using WebSphere security.

For the case were HTML pages are served by the Web Server, as opposed
to being served by the WebSphere, there may be an increase in
performance since the Web Server is serving the pages directly. Although,
when dealing with multiple Web applications, where each has its own
document root, using the WebSphere file serving servlet has the
advantage of keeping your static pages organized and better encapsulated
with the rest of your application.

Note
174 WebSphere V3.5 Handbook

After you create the file servlet successfully, you will see it on the
administrative console as shown in Figure 84.

Figure 84. A newly created File-Serving servlet

As an example, after installing the file servlet we placed a file called
myzipfile.zip into the document root of our Web application:

C:\WebSphere\AppServer\hosts\default_host\HelloWebApp\web

We then connected with a Web browser to the following URL:

http://localhost/webapp/HelloWebServer/myzipfile.zip

The Web browser offered to download the file, as shown in Figure 85 on page
176.
Chapter 5. Servlet support 175

Figure 85. The File-Serving servlet serves a file

5.6.4 JSP compilers
The 1.0 JSP compiler is com.sun.jsp.runtime.JspServlet, and the 0.91 JSP
compiler is com.ibm.servlet.jsp.http.pagecompile.PageCompileServlet. These
servlets enable the JSP 0.91 or 1.0 page compiler to allow the Web
application to handle JSP files. Adding a JSP processor to an application is
required if the Web application contains JSP files.

The JSP processor creates and compiles a servlet from each JSP file. The
processor produces two files for each JSP file:

• .java file, which contains the Java language code for the servlet

• .class file, which is the compiled servlet

The JSP processor puts the .java and the .class file in a path specific to the
processor, <app_document_root>\pagecompile for the JSP 0.91 processor or
176 WebSphere V3.5 Handbook

<WAS_install_root>\temp\servlet_host_name\app_name for the JSP 1.0
processor.

The .java and the .class file have the same filename. The processor uses a
naming convention that includes adding underscore characters and a suffix to
the JSP filename. For example, if the JSP filename is simple.jsp, the
generated files are _simple_xjsp.java and _simple_xjsp.class.

Like all servlets, a servlet generated from a JSP file extends
javax.servlet.http.HttpServlet. The servlet Java code contains import
statements for the necessary classes and a package statement, if the servlet
class is part of a package.

If the JSP file contains JSP syntax (such as directives and scriptlets), the JSP
processor converts the JSP syntax to the equivalent Java code. If the JSP file
contains HTML tags, the processor adds Java code so that the servlet
outputs the HTML character by character.

JSPs will be covered in detail in Chapter 6, “JSP support” on page 189.

5.6.5 The chainer servlet
The chainer servlet enables a servlet chain, in which servlets forward output
and responses to other servlets for processing. In servlet chaining, multiple
servlets are called for a single client HTTP request, each servlet providing
part of the HTML output. Each servlet receives the original client HTTP
request as input, and each servlet produces its own output independently.
Figure 86 shows the servlet chaining process flow in WebSphere.

Figure 86. Servlet chaining process flow

WebSphere Application Server

Composite
Response

Browser

ChainerServlet Servlet1

Servlet2HTTPD
Chapter 5. Servlet support 177

The chainer servlet is specified on the original request, and multiple servlets
are specified in an initialization parameter as the target. Servlet chaining has
the advantage of allowing the Web developer to create modular servlets that
can, for example, output standard HTML headers and footers or provide
common dynamic content for pages. Each servlet is called in the order
specified in the chainer definition, and the output HTML is made up of the
output from all of the servlets.

5.6.5.1 Chainer servlet example
The FooterServlet
As an example, let us chain another servlet to our HelloWorldServlet
example. This new servlet, called FooterServlet, will add a copyright
message to the bottom of the HTML page generated.

Figure 87. The FooterServlet adds a copyright message to HTML pages

This servlet also extends HttpServlet. Examining the differences between the
FooterServlet and the HelloWorldServlet, we see the following:

1. The response.setContentType uses request.getContentType() as its
argument, to make sure that we set the content type to whatever the
content type of the original servlet was.

2. We create a BufferedReader, which gets a reader object from the original
servlet, and then do out.println for every line that we read from the
original servlet output. This replicates exactly the output of the original
servlet.

3. Finally, we add our own HTML to the end of the output.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class FooterServlet extends HttpServlet {
protected void service(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

response.setContentType(request.getContentType());
PrintWriter out = response.getWriter();
BufferedReader in = request.getReader();
String line;
while((line = in.readLine()) != null)

out.println(line);
out.println("<P>(c)Copyright IBM Corporation 2000");
out.println("</BODY></HTML>");
out.close();

}
}

178 WebSphere V3.5 Handbook

For purposes of HTML, we have to remove the line out.println("</BODY></HTML>");

from the HelloWorldServlet, so that it is only output one time.

Deploying the FooterServlet
Since we already have a node, application server, servlet engine and Web
application, we can quickly use WSCP to deploy the FooterServlet servlet, as
shown in Figure 88.

Figure 88. Deploy the FooterServlet using the wscp command

We also need to compile the Java code and copy the resulting
FooterServlet.class file into the servlets directory of the Web application:

Figure 89. Compile and install the FooterServlet code

The FooterServlet is now ready to go.

Create the chainer servlet
To create the chainer servlet, go to the third dialog box of the Add a Servlet
task, as discussed in 5.6.1, “Adding the internal servlets to your Web
application” on page 167. Select the Create Chaining Servlet option and
click Next as shown in Figure 90 on page 180. A further dialog box will
appear.

Because we are reading and then printing the output of the original servlet
in point 2, it is possible to modify it before printing. This would be filtering
the output, rather than just chaining more HTML to the original output.

Note

C:\>wscp
wscp> Servlet create
/Node:SZYMON-Laptop/ApplicationServer:HelloAppServer/ServletEngine:HelloServletEngine/
WebApplication:HelloWebApplication/Servlet:Footer/ -attribute {{Code FooterServlet} {U
RIPaths default_host/webapp/HelloWebApp/Footer}}
wscp>

C:\WebSphere\AppServer\Hello>javac -classpath c:\websphere\appserver\lib\servlet.jar
FooterServlet.java
C:\WebSphere\AppServer\Hello>copy FooterServlet.class C:\WebSphere\AppServer\hosts\de
fault_host\HelloWebApp\Servlets
C:\WebSphere\AppServer\Hello>
Chapter 5. Servlet support 179

Figure 90. Create the chainer servlet

Fill in the dialog box as in Figure 91 on page 181. The name of the servlet is
the short name that WebSphere will store in the administrative database to
refer to this servlet; we have called ours hifoot (Hello with a Footer).

The value for the initialization parameter chainer.pathlist should be a list of all
of the servlets that this servlet is to chain together, separated by spaces. In
our case, we are chaining /Hello and /Footer (both names are relative to the
Web path of the Web application), so the value of chainter.pathlist should be
set to “/Hello /Footer”.

Finally, we need to specify the Web path list, relative to the Web path of the
Web application.

Click Finish.
180 WebSphere V3.5 Handbook

Figure 91. The chaining attributes of the servlet

Then you will get an Information dialog box that says, Command
“Servlet.create” completed successfully. and click OK.

You will see the chaining servlet (in our case, hifoot servlet) on the
administrative console as shown in Figure 92 on page 182. The chaining
servlet, hifoot, is now ready to go.
Chapter 5. Servlet support 181

Figure 92. A newly created chaining servlet

Test the chaining servlet
Pointing a Web browser to the URL:

http://localhost/webapp/HelloWebApp/hifoot

verifies that both servlets are being used, as seen in Figure 93 on page 183.
182 WebSphere V3.5 Handbook

Figure 93. The output of the chaining servlet hifoot

5.6.6 The ErrorReporter servlet
The ErrorReporter servlet enables error reporting through an error page,
without having to write your own error page. This servlet is a special case as
far as creation of internal servlets is concerned, in that there is no option for it
on the Add a Servlet task.

Instead you must choose the Create User-Defined Servlet option as shown
in Figure 94 and click Next.

Figure 94. Create the Error Reporter servlet
Chapter 5. Servlet support 183

Then you fill in the fields as in Figure 95.

The class name for the ErrorReporter is
com.ibm.servlet.engine.webapp.DefaultErrorReporter.

Add the Servlet Web Path and click Next.

Figure 95. Add the ErrorReporter servlet

Then you will see the Information dialog box that says Command

“Servlet.create” completed successfully. and click OK.

You will see the ErrorReporter servlet on the administrative console as shown
in Figure 96 on page 185.
184 WebSphere V3.5 Handbook

Figure 96. A newly created Error Reporter servlet

You will also need to set the Default Error Page attribute of your Web
application to /ErrorReporter on the Advanced tab as shown in Figure 97 on
page 186; this will automatically use the version of ErrorReporter in the Web
path for the Web application.
Chapter 5. Servlet support 185

Figure 97. Default Error Page setting

In order to test how the ErrorReporter works, we had to break something.

We therefore deleted the HelloWorldServlet.class file from the hard disk. This
broke the Hello servlet in a fairly substantial way.

Without the ErrorReporter servlet, we did not get an error; as you can see in
Figure 98 on page 187, we get a message from the Web browser that the
document contained no data.

Once the ErrorReporter servlet has been added, however, we do get an error
message, as seen in Figure 99 on page 187.
186 WebSphere V3.5 Handbook

Figure 98. Without the ErrorReporter servlet

Figure 99. With the ErrorReporter servlet
Chapter 5. Servlet support 187

188 WebSphere V3.5 Handbook

Chapter 6. JSP support

Chapter 3, “WebSphere programming model” on page 17 discussed how
JavaServer Pages (JSPs) fit into a Web application. This chapter shows how
to build JSPs within that framework. Several other redbooks show how to use
such products as WebSphere Studio to build and test JSPs. This chapter
discusses the basic relationship between a JSP and its calling servlet.

This chapter also shows several techniques in which JSPs can be used to
develop and debug Web applications. These JSPs would never appear in a
production system, but rather would exist temporarily to quickly debug the
collaboration between a servlet and JSP or to debug Java code that must run
within the servlet runtime environment.

Finally, with the introduction of JSP 1.1 support, JSP authors can make use of
libraries of custom tags. The design, development, configuration and use of
these custom tags is described in some detail.

6.1 Using JSP to present dynamic content

The JSP syntax is essentially an enhanced template language. In general, a
Web developer authors an HTML file containing layout, static HTML and
placeholders for dynamic content. These placeholders are JSP tags, or
actions, and describe the dynamic content.

These actions can express the Java code (JSP scriptlets or expressions) that
produces the dynamic content. They can be directives that set options that in
turn affect the generation of the dynamic content. JSP actions can also be in
the form of special JSP tags that perform common tasks: specification of an
SQL statement, iteration over a database result set, or retrieval of a bean's
property.

The JSP syntax and capabilities are so general in nature that it is possible to
write the entire Web application within a single JSP. The JSP would describe
not only the presentation of dynamic content, but also the business logic that
creates the dynamic content, the logic that responds to errors, and the logic
that controls overall application flow. Such a monolithic JSP would be harder
to develop, debug, and maintain.

Our best practices recommend instead that there be one JSP per Web page
seen by the user and that there be a single servlet associated with that JSP.
That servlet has the job of processing user input, invoking business logic, and
marshalling the results into a small number of beans. These beans are
© Copyright IBM Corp. 2001 189

passed to the JSP as attributes on the request object. All the JSP has to do is
insert the different bean properties in the appropriate places in the static
HTML.

Figure 100. A single servlet associated with that JSP

This recommended use of JSP limits the complexity of individual JSPs and
does not exploit the complete set of JSP functionality. It is, however, the most
effective use in terms of end-to-end Web application life cycle.

6.2 The collaboration between form, servlet, and JSP

As mentioned above, a servlet processes user input, invokes enterprise
business logic and places the results in a single bean. That bean gets passed
to a JSP as an attribute of the request object and the JSP inserts the
appropriate properties into the appropriate places in the output HTML.

It’s quite likely that the HTML being produced contains a form with the
expectation that the same sort of servlet and JSP processing will occur again
as a result of the form posting its data. Another possible execution path
involves the detection of an error in the user-supplied data from the form. In
this scenario the servlet will re-invoke the original JSP and will pass to that
JSP the data from the posted form. This is an important usability feature: it’s
very frustrating to spend a lot of time filling in a form, have the form be reset
(cleared of what you typed), and be told that there was an error in the
information you typed in. A related scenario lets users move back and forth
among a series of forms while displaying the information that the user has
already typed in.

business
logic

servlet

beanJSP

browser
190 WebSphere V3.5 Handbook

6.2.1 A bean as contract
So that the data typed in by the user can be easily managed in all of these
basic flow scenarios, it is recommended that the application implementation
assign a unique bean to each JSP that may be displayed. The bean contains
properties for the data retrieved by the preceding servlet as well as properties
for each of the fields on each of the forms. This bean can be kept in the HTTP
session and retrieved by the JSP at any time.

Once the collaborating servlet and JSP have been identified by the
architectural best practices, the next step in the development of the
application is the creation of the bean that not only transports data between
the servlet and JSP but also holds user-supplied data in case the JSP ever
needs to be redisplayed. The beans properties are a union of the set of form
fields into which the user enters data and the set of data to be presented by
the JSP on behalf of the servlet. The bean can be built with any Java tool
once these properties have been identified.

6.2.2 Build the static portion of the JSP
Building the static portion of the JSP is straightforward. It’s also outside the
scope of this chapter. Any HTML tool (including vi and Notepad) can be used
to author the Web page. Dummy text can be used as placeholders for data to
be presented by the servlet, while form elements should be set to the desired
default values.

6.2.3 Coding the dynamic portion of the JSP
Once the static portion, or template, of the JSP has been developed, the
dynamic areas of the JSP can be defined. There are tools, most notably
WebSphere Studio, that can assist with the describing of the dynamic content
in a JSP. However, to better describe the interactions between servlets, JSPs
and beans, this section describes the manual steps necessary to complete
the development of a JSP.

Describing a JSP’s dynamic content generally requires two steps. The first is
the declaration of any beans that are passed from the servlet to the JSP. The
second involves specifying which properties of which beans are presented at
which location within the Web page.

The bean declaration task requires that a useBean tag be inserted near the
top of the JSP source for each bean being accessed by the JSP:

<jsp:useBean id="name" scope="request" class=”ClassName” />
Chapter 6. JSP support 191

The name of the bean is the attribute name with which the bean was stored in
the request or session by the servlet. The scope indicates whether the bean
was stored in the request or session and the class is the Java type of the
bean.

The task involving the specification of dynamic content involves replacing
each dummy text placeholder with a JSP action that writes the dynamic
content at that location. There are two approaches. One approach uses the
getProperty action and the other uses embedded Java in either expressions
or scriptlets.

The getProperty action is straightforward and uses a simple syntax:

<jsp:getProperty name=”name” property=”prop” />

The action writes a single property value out at the current location. The
name attribute takes the same value as the id attribute of the useBean tag
that declared the bean near the beginning of the JSP source. The property
attribute is, of course, the name of the property to be written.

The getProperty action is easy to use but is limited to the retrieval of single
properties. A more general, albeit more complex, approach uses JSP
scriptlets and expressions. A scriptlet is a tag containing a syntactically
correctly block of Java code. The expectation is that the execution of that
code will result in the output of dynamic content to the Web page at that point.
An expression is very much like a scriptlet except that the contained Java
code is in the form of a Java expression whose value is to be written out (by
the underlying JSP code) to the Web page.

Scriptlets are of the form:

<% ... block of Java code goes here ... %>

Expressions are of the form:

<%= ... Java expression goes here ... %>

As soon as developers start embedding Java code into JSPs, the potential for
error increases dramatically. Compile errors aren’t caught until the JSP is
requested and even then it’s difficult to match up a compile error with the
original line of Java code embedded in the JSP. However, even with the added
complexity of using expressions and scriptlets, the added flexibility and
capabilities of the Java language make the use of expressions and scriptlets
appropriate for the specification of any dynamic content more complex than
simple properties.
192 WebSphere V3.5 Handbook

6.3 Rapid development using JSP

The techniques described in this chapter are not intended to be used in JSPs
that run in production-level systems. Rather, these techniques can be used to
speed the development of Web applications using JSPs.

Of course, to develop and debug Java code you generally need an
industrial-strength Java IDE such as VisualAge for Java which has many
useful capabilities including a scrapbook and object inspectors. Most of the
time you’re better off using VisualAge for Java’s functionality to develop and
test your Web application. There will be times, however, that JSP can take on
the role of inspector, scrapbook and general debugger.

6.3.1 JSP as scrapbook
The scrapbook window in VisualAge for Java is one of the most powerful
development tools in that IDE. Code can be entered into a window, selected
and executed. The final evaluation can be written to the window at the end of
the selected code or the evaluation can be displayed in a separate inspector
window.

The ability to type some code, to quickly run the code, to review the results
and then to rapidly iterate through that process until the code works as
designed makes for very quick experimentation. JSPs can provide the same
rapid iteration for code that must run in a servlet runtime environment.

Simply create a JSP whose source consists of the required header followed
by a single JSP scriptlet. Enter the code to be run inside the scriptlet and
request the JSP. Don’t forget to save the JSP. Instrumentation can be added
to the code to verify execution results or to display variable data. By writing to
a Java variable named “out” (treat it like a Writer), the code can generate
HTML text to be displayed in the requesting Web browser.

When you’ve reviewed the results of the execution, you can modify the Java
code in the JSP scriptlet again, save the source, and request the JSP again
from your browser. Iterating over these steps will let you quickly develop and
test segments of Java code. Once the code works as designed, it can be
copied to a Java class in a Java IDE for “proper” deployment to the servlet
runtime.

6.3.2 JSP as inspector
The same techniques can be applied to the specific problem of configuring
the contents of a bean or other server-side object in the servlet runtime
environment.
Chapter 6. JSP support 193

Simply insert a JSP scriptlet into a JSP and insert Java code to navigate to
and to render the properties of interesting server-side objects. Once the
contents are understood and the application has been debugged, remove the
scriptlet before moving the JSP to production.

6.3.3 JSP as configuration query
A specific use of the inspector technique provides administrators with a view
of the WebSphere administration configuration. This includes but is not
limited to information about which servlets have been defined under which
Web applications and with which attributes, which application servers are
running on which nodes (as perceived by the administrative database), and
what URLs are recognized by both the application server and the Web server
plug-in.

This technique relies on the program interface provided by the XMLConfig
class. XMLConfig can return a complete representation of the current
WebSphere configuration in a DOM representation. By traversing and relating
the information found in different parts of the tree, different JSPs can be built
to report on various aspects of the WebSphere configuration.

6.3.4 Testing the servlet/JSP collaboration
The initial design of servlet and its presentation JSP probably involved the
specification of named properties that were presented dynamically in the JSP
and which were either created or retrieved by the servlet or input originally by
the user. There is a contract in the form of a small number of beans and
single attributes that are sent from the servlet to the JSP via the request
object. It may be hard to believe, but there are times when a typographical or
capitalization error in the name of an attribute results in the failure of the JSP
to properly present one or more dynamic property values.

Given that the attribute names in both the servlet source and the JSP source
must agree, it can be difficult to find the problem. One technique is a
modification of the inspection technique using a scriptlet that writes to the out
writer the entire contents of the request (or session) object. There would be
one row for each attribute and a column each for attribute name, value and
value type. An enumeration over the complete set of attribute names can be
requested from the request object.

6.4 JSP life cycle

JSP files are compiled into servlets. After a JSP is compiled, its life cycle is
similar to the servlet life cycle as shown in Figure 101 on page 195.
194 WebSphere V3.5 Handbook

Figure 101. JSP life cycle

6.4.1 Java source generation and compilation
When a servlet engine receives a request for a JSP file, it passes the request
to the JSP processor.

If this is the first time the JSP file has been requested or if the compiled copy
of the JSP file is not found, the JSP compiler (JSP processor) generates and
compiles a Java source file for the JSP file. The JSP processor puts the Java
source and class file in the JSP processor directory (see 6.5.2, “JSP
processors” on page 197 for detailed information).

Figure 102. Java source generation and compilation

Create Initialize

Available
for

service

Unavailable
for

service

Servicing
requests Destroy Unload

(Initialization failed)

(Unavailable
exception
thrown)

xxx.jsp

compile

generate
Java

source

request to xxx.jsp

xxx.class
(servlet)response

xxx.java
(servlet)

Is xxx.class
existing?

No
Chapter 6. JSP support 195

By default, the JSP syntax in a JSP file is converted to Java code that is
added to the service() method of the generated class file. If you need to
specify initialization parameters for the servlet or other initialization
information, add the method directive set to the value init.

6.4.2 Request processing
After the JSP processor places the servlet class file in the JSP processor
directory (see 6.5.2, “JSP processors” on page 197), the servlet engine
creates an instance of the servlet and calls the servlet service() method in
response to the request. All subsequent requests for the JSP are handled by
that instance of the servlet.

When the servlet engine receives a request for a JSP file, the engine checks
to determine whether the JSP file (.jsp) has changed since it was loaded. If it
has changed, the servlet engine reloads the updated JSP file (that is,
generates an updated Java source and class file for the JSP). The newly
loaded servlet instance receives the client request.

6.4.3 Termination
When the servlet engine no longer needs the servlet or a new instance of the
servlet is being reloaded, the servlet engine invokes the servlet's destroy()
method. The servlet engine can also call the destroy() method if the engine
needs to conserve resources or a pending call to a servlet service() method
exceeds the timeout. The JVM performs garbage collection after the destroy.

6.5 Administering JSP files

The WebSphere administrator should know the following about administering
JSP files.

6.5.1 Enable JSP handling at the Web application level
• The ability of the product to serve JSP files is controlled at the Web

application level. It is quite simple: if a Web application contains a JSP
enabler servlet, the Web application can handle requests for JSP files. We
also call this servlet JSP Processor (or JSP compiler or JSP container).

• WebSphere provides the JSP enabler servlets. There is one for each
supported JSP specification level. See the following section for detailed
information.

• The administrator is responsible for permanently adding a JSP processor
to Web applications requiring the ability to handle JSP requests:
196 WebSphere V3.5 Handbook

- A Web application can contain zero or one JSP enablers.

- A Web application cannot contain more than one JSP enabler.

- A Web application that does not need to serve JSP files can contain
zero JSP enablers.

6.5.2 JSP processors
WebSphere V3.5.2 provides a JSP processor for each supported level of the
JSP specification, .91, 1.0 and 1.1. Each JSP processor is a servlet that you
can add to a Web application to handle all JSP requests pertaining to the
Web application.

When you install WebSphere on a Web server, the Web server configuration
is set to pass HTTP requests for JSP files (files with the extension .jsp) to
WebSphere.

By specifying either a .91, 1.0 or 1.1 JSP Enabler (JSP processor) for each
Web application containing JSP files, you configure Web applications to pass
JSP files in the Web application folder to the JSP processor corresponding to
the JSP specification level of the JSP files.

The JSP processor creates and compiles a servlet from each JSP file. The
processor produces three files for each JSP file:

• .java file, which contains the Java language code for the servlet

• .class file, which is the compiled servlet

• .dat file, which contains the static content of the JSP

Note: The JSP 1.0 processor deletes the .java file after it is compiled into the
.class file. However, you can configure to keep the .java file. To do that, from
the administrative console, select WebSphere node -> application server ->
servlet engine -> Web application -> JSP 1.0 Processor -> Advanced tab
then specify keepgenerated in the InitParm Name field and true in the
InitParm Value field of the Init Parametrs entry. However, the JSP 0.91 and
1.1 processors have a different behavior: generated code is always kept and
a keepgenerated init parameter is not accepted.

The JSP processor puts the .java (if you specify keepgenerated as we
described before with JSP 1.0 processor), the .class, and the .dat files in a
path specific to the processor. The .java, the .class, and the .dat files have the
same file name.

For JSP 1.1 processor:
Chapter 6. JSP support 197

• Processor servlet name: JspServlet

• Class name and location: org.apache.jasper.runtime.JspServlet in
ibmwebas.jar

• Where processor puts output:

<WAS_HOME>\temp\servlet_host_name\app_name\

For example, if the JSP file is in:

c:\WebSphere\AppServer\hosts\default_host\examples\web

the .java (if you specify keepgenerated as described before), .dat and
.class files are put in:

c:\WebSphere\AppServer\temp\default_host\examples\

Like all servlets, a servlet generated from a JSP file extends the
javax.servlet.http.HttpServlet. The servlet Java code contains import
statements for the necessary classes and a package statement, if the servlet
class is part of a package.

If the JSP file contains JSP syntax (such as directives and scriptlets), the JSP
processor converts the JSP syntax to the equivalent Java code. If the JSP file
contains HTML tags, the processor adds Java code so that the servlet
outputs the HTML character by character.

6.5.3 JSP-enabled Web applications look at all JSP requests
By default, JSP enablers allow a Web application to consider all JSP requests
(*.jsp) directed to the particular Web application.

To restrict the attention of the Web application only to particular JSP files
(instead of *.jsp), the administrator can remove the Web application Web path
specifying *.jsp and replace it with Web paths specifying particular JSP files
by name.

6.5.4 Place JSP files and configure Web applications to find them
• For the Web application to fulfill a JSP request, the requested JSP file

must be in the document root of the Web application, or in a subdirectory
of the document root, allowing the Web application to find it. See 6.8.1,
“Configuring WebSphere for JSP 1.1” on page 213 for related information.

• If a JSP file depends on other files, such as servlets, JavaBeans, or the
like, the files must reside in directories specified in the classpath setting of
the Web application.
198 WebSphere V3.5 Handbook

Alternatively, the resources can be specified in a more general classpath,
such as that of the administrative server pertaining to the domain
containing the Web application.

6.5.5 JSP reloading
You can configure how often JSP 1.0 processor will look for revised JSP files
that need to be recompiled. By default, the JSP 1.0 processor will check for
the presence of a class file every time a JSP is called, and compile the class
file if one doesn't already exist. For performance purposes, you may wish to
disable this check entirely or only after the JSP is called for the first time.
Additionally, you may wish to configure the amount of time between checks.
Two init parameters of JSP 1.0 processor (servlet) are used to specify how
you want this done for each Web application. Note that these don’t work with
the JSP 0.91 processor or the JSP 1.1 processor.

Figure 103. JSP reloading

6.5.5.1 checkjspfiles
This init parameter has three possible values:

• "true" (or "always") - this will cause the application server to check for the
presence of a class file each time the JSP is called or each X number of
milliseconds specified in the reload interval below.

• "firsttime" - the application server will check for the presence of the class
file only once: when it is called for the first time.

xxx.jsp
generate

Java
source

request to xxx.jsp

compile
xxx.class
(servlet)response

xxx.java
(servlet)

Is xxx.class
existing?

Yes

Has xxx.jsp
updated?

No
Chapter 6. JSP support 199

• "false" (or "never") - the JSP 1.0 processor will never check for the class
file (you must ensure that a class file already exists for the JSP to work
properly).

6.5.5.2 reloadinterval
The reloadinterval is the number of milliseconds between each check. This
variable only works when you have selected "true" (or "always") as the value
for checkjspfiles above.

6.6 Batch compiling JSP files

As an IBM enhancement to JSP support, WebSphere V3.5 provides a batch
JSP compiler. Use this function to batch compile your JSP files and thereby
enable faster responses to the initial client requests for the JSP files on your
production Web server.

It is best to batch compile all of the JSP files associated with an application.
Batch compiling saves system resources and provides security on the
application server by specifying if and/or when the server is to check for a
class file or recompile a JSP file. Unless you have configured the Web
application as described the above section, the application server will monitor
the compiled JSP file for changes, and will automatically recompile and
reload the JSP file whenever the application server detects that the JSP file
has changed. By modifying this process, you can eliminate time- and
resource-consuming compilations and ensure that you have control over the
compilation of your JSP files. It is also useful as a fast way to resynchronize
all of the JSP files for an application.

The process of batch compiling JSP files is different for JSP 0.91 files and
JSP 1.0 files and does not exist at all for JSP 1.1 files. Consult the page
corresponding to the JSP level for your files. See InfoCenter for detailed
information.

6.7 JSP 1.1

While the best practice of splitting application logic and data presentation into
servlets and JSPs provides a number of benefits to Web application
developers, the practice does have one drawback. In practice, JSPs tend to
fill up with embedded Java code, which makes that logic harder to edit and
debug than if it were entered into a Java IDE. The Java code tends to be
simple code for controlling which sections of the JSP source get processed,
iterating over a bean’s indexed property, or for interacting with system,
200 WebSphere V3.5 Handbook

runtime, or other business objects. While the Java code seems to be common
across many JSPs and fits into a small number of simple patterns, it still
significantly raises the level of skills required to author a JSP.

JSP 1.1 provides a simple solution to the problems caused by embedded
Java code in JSPs. The JSP 1.1 specification describes an interface with
which custom tags can be built to perform the same function as the
embedded Java code. JSP authors can then use the tags to author JSPs
without any embedded Java code.

This section describes how to design, build and debug JSP 1.1 custom tags
in WebSphere.

6.7.1 Custom tags
Custom tags, as specified by the JSP 1.1 specification, can perform a number
of tasks that fall into several categories:

a. Conditional inclusion or iteration over sections of JSP source

b. Creation of, reference to, and invocation of application objects

c. Invocation of system or application functions such as logging or e-mail

The kinds of tasks performed by a specific custom tag determine the best way
to implement that tag. A cookbook approach to implementing custom tags is
described below.

6.7.2 The custom tag environment
There are a number of files and objects that get involved in the execution of a
JSP with custom tags and it’s important to understand how they define and
affect the execution of these custom tags.

6.7.2.1 The JSP container
JSP authors and Web application developers working with WebSphere have
understood what happens within the JspServlet as the JSP compiler (or JSP
processor) responds to a request for a JSP page. The JSP 1.1 specification
now defines that system behavior in terms of a JSP container.

The JSP container manages all resources necessary for the interpretation
and invocation of the JSPs in a Web application. The container accepts a
request for a JSP, invokes the JSP, interacts with any custom tags in that JSP
and finally returns the result of that JSP execution to the client.

Custom tags have a life cycle defined in terms of methods that are called
before, during and after the custom tag is encountered in a JSP. The JSP
Chapter 6. JSP support 201

container invokes those methods and ensures that references are available to
all of the information and objects needed by each custom tag.

6.7.2.2 The JSP source
The source of the JSP is the place where JSP authors use custom tags. The
way in which each tag is used varies by tag. The tag designer can allow
information to be specified either as attributes of the custom tag, as the
content (the section of the JSP source between the begin and end tags) of
the custom tag or as a combination of the two. Custom tags can also
reference and cooperate with other custom tags and that collaboration is
specified in terms of referencing ID’s as attribute values or in terms of the way
the custom tags are nested.

Figure 104. months.jsp

In the above example, the <tst:months> tag can be used by a JSP author to
repeat a section of the JSP source (including the processing of any nested
tags) once for each month in the year.

6.7.2.3 Tag handlers
The primary benefit of custom tags is the ability to define very complex JSPs
that do not contain any embedded Java. Of course, the Java is still there. It’s
just been moved to a place where the JSP author doesn’t have to deal with it.
That place is in a set of classes called tag handlers. These tag handlers are
the application classes (from WebSphere’s perspective) that are invoked
whenever a custom tag is encountered during JSP processing.

There are a number of interfaces and convenience superclasses that
describe exactly what a tag handler should look like and how it should

<%@ taglib uri="test.tld" prefix="tst" %>
<%@ page import="com.ibm.itso.*" language="java" %>

<p>This section appears only once in the browser.</p>

<tst:months beanName="mb" >
<p>This section of the JSP will be repeated once for
each month. The month for this iteration is
<%= mb.getMonthName() %> </p>

</tst:months>

<p>This section appears only once in the browser.</p>
202 WebSphere V3.5 Handbook

behave. A large percentage of the effort required to implement a set of
custom tags is related to the building of these tag handlers.

6.7.2.4 Bean Info classes for the tag handlers
The JSP container expects tag handlers to be Java beans so that inspection
can reveal the setter methods to be used by the container. The JSP container
uses that information to call the appropriate setter methods for any attributes
found in the custom tag’s begin tag. While not absolutely necessary, it is
recommended that bean info classes be provided for the tag handlers so that
the introspection is quick and correct.

6.7.2.5 Tag libraries
A tag library (or taglib) is a collection of tag handlers. Since the only objects
that interact with the tag handlers are specified completely by various
components of the J2EE specification, a taglib should be portable across
different implementations of the J2EE specification (for example Web
application servers from different vendors). The portability will also depend on
the portability of business and other system objects used by the tag handlers.

6.7.2.6 Tag library definition
In order for the JSP container to find custom tags in a JSP source and to then
invoke the corresponding tag handlers correctly, the JSP container has to
know what it’s looking for. That information is provided as part of the tag
library in an XML file called the tag definition library (TLD).

The TLD content provides most, but not all, of the information necessary for
the JSP container to interact with the custom tags in that taglib. The rest of
the necessary information is provided at runtime on a tag instance by tag
instance basis.

Of the tags used in the TLD, some are not completely obvious:

<tag> - describes one custom tag in the taglib.

<name> - provides the name of the tag as it appears in the JSP source.

<tagclass> - the name of the tag handler class.

<teiclass> - the name of a TagExtraInfo class for the custom tag. At
runtime this class will provide any necessary
information specific to each instance of the custom tag.

<attribute> - provides the name of a single attribute of the custom tag and
indicates whether this attribute is required.

<bodycontent> - describes how the JSP container is supposed to process
any content provided for an instance of the custom tag.
Chapter 6. JSP support 203

The sample TLD (Figure 105) contains definitions for three tags. One of those
tags, the months tag, is described as having com.ibm.itso.jsp11.MonthsTag
as its tag handler. Class com.ibm.itso.jsp11.MonthsTEI will provide additional
runtime attribute verification and will describe the objects referenced or
created by each instance of the tag. The body of the tag can contain JSP
source and there is a single (required) attribute named beanName.
204 WebSphere V3.5 Handbook

Figure 105. Test.tld (1/2)

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib

PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
"web-jsptaglib_1_1.dtd">

<!-- This TEI describes an example custom tag library -->

<taglib>
<!-- after this the default space is
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd"
-->

<tlibversion>1.0</tlibversion>
<jspversion>1.1</jspversion>
<shortname>simple</shortname>
<info>
A simple tab library for the examples
</info>

<!-- called tag -->
<tag>
<name>called</name>
<tagclass>com.ibm.itso.jsp11.CalledTag</tagclass>
<teiclass>com.ibm.itso.jsp11.CalledTagTEI</teiclass>
<bodycontent>empty</bodycontent>
<info>
This tag is referred to by the CallerTag.
</info>

<attribute>
<name>id</name>
<required>true</required>
</attribute>
<attribute>
<name>color</name>
<required>true</required>
</attribute>

</tag>
Chapter 6. JSP support 205

Figure 106. Test.tld (2/2)

<!-- caller tag -->
<tag>
<name>caller</name>
<tagclass>com.ibm.itso.jsp11.CallerTag</tagclass>
<teiclass>com.ibm.itso.jsp11.CallerTagTEI</teiclass>
<bodycontent>empty</bodycontent>
<info>
This tag refers to called tags.
</info>

<attribute>
<name>id</name>
<required>true</required>
</attribute>
<attribute>
<name>shape</name>
<required>true</required>
</attribute>
<attribute>
<name>refId</name>
<required>true</required>
</attribute>

</tag>

<tag>
<name>months</name>
<tagclass>com.ibm.itso.jsp11.MonthsTag</tagclass>
<teiclass>com.ibm.itso.jsp11.MonthsTEI</teiclass>
<bodycontent>JSP</bodycontent>
<info>
This tag iterates over the months.
</info>

<attribute>
<name>beanName</name>
<required>true</required>
</attribute>

</tag>

</taglib>
206 WebSphere V3.5 Handbook

The XML file containing the TDL is named in the URI attribute of the taglib
directive in the JSP source. When the JSP Container encounters this
directive, it uses the information in the TLD to update its list of custom tags to
look for.

6.7.2.7 The TEI class
There are custom tags that are difficult to describe using only XML. Some of
these tags have complex rules about which combinations of attributes are
valid. Other custom tags create or refer to objects whose names appear in the
tags’ attributes. For these tags, it is much easier to implement in Java code
both the description of which attribute combinations are valid and the list of
objects that are created or referenced by the custom tags. This logic is coded
in a class called a TagExtraInfo (TEI) class. The name of the class is provided
as part of the tag definition in the TLD.

6.7.2.8 The PageContext
During execution of the tag handler for a given custom tag, the tag handler
instance has access to all of the well-known servlet runtime objects (request,
response, out, servlet config, servlet context, etc.) as well as access to other
lesser page compile objects of interest. All of these objects are accessible
through the page context.

When a custom tag is encountered in JSP source, a new instance of the tag
handler is constructed. Once constructed, the tag handler is automatically
given a reference to the pageContext as well as to attribute values specified
on that tag.

6.7.3 Building a custom tag
A single custom tag can perform a number of tasks, including conditionally
processing its contents and interacting with other custom tags. This section
lists the possible behaviors of a custom tag and describes the implementation
specifics for each behavior.

These behaviors are all gathered in a tag handler class. There are several
ways to define the class depending on whether or not the tag handler needs
to access the contents of the custom tag. If the tag handler does not need to
access the contents of the custom tag, the tag handler class should
implement the javax.servlet.jsp.tagext.Tag interface. A convenience class,
javax.servlet.jsp.tagext.TagSupport, provides default implementations of each
method in the Tag interface. If the tag handler needs to access the custom
tag’s content then the tag handler should implement the
javax.servlet.jsp.tagext.TagBody interface instead. A convenience class,
javax.servlet.jsp.tagext.TagBodySupport, is also provided.
Chapter 6. JSP support 207

Although there are a number of methods you could override, there are four
methods (appropriately stubbed in the convenience classes) in which you
provide the behaviors, described in Table 6, that process the custom tag.

Table 6. Methods for the custom tag

6.7.3.1 Accessing the tag’s attribute values
The JSP container assumes that the tag handler is a bean with a property for
each possible attribute (as defined in the TLD). When the container
encounters a custom tag in the JSP source, an instance of the corresponding
tag handler is constructed and the appropriate setter is invoked for each
attribute present in that instance of the tag, At any point in the processing, the
tag handler instance can access the provided attribute values simply by
accessing its properties.

In the months.jsp example, the tst:months tag has a single attribute,
beanName. When the processing reaches that specific tag instance, the
setter method for the beanName property will be invoked with the value of the
attribute (“mb”, in this case).

Note that the JSP container will also invoke the setters for parent and
pageContext when a custom tag is encountered.

6.7.3.2 Ensuring the tag is empty
There will be custom tags for which nested content (text between begin and
end tags) has no meaning. If you want the JSP container to ensure that no
content is provided for a custom tag, specify a value of “empty” for the
bodycontent tag in the TLD.

In the sample TLD, for example, the bodycontent for both the caller and called
custom tags is “empty”.

Methods Description

doStartTag() Invoked once when the JSP container encounters the
begin tag

doInitBody() Invoked once before the JSP container begins to process
the custom tag’s content

doAfterBody() Invoked by the JSP container after each time the custom
tag content is processed (could be multiple times)

doEndTag() Invoked once when the JSP container encounters the end
tag
208 WebSphere V3.5 Handbook

6.7.3.3 Taking some action for a tag
By implementing the logic necessary to take some action in one or more of
the appropriate Tag or TagBody methods, you can cause that action to take
place at the correct point in the custom tag processing. The method in which
you implement your logic is usually dependent on the kind of action.

If you want to take some action that requires only the tag attributes, you could
implement your logic in the doStartTag() method. The logic would be invoked
whenever the begin tag is encountered during JSP processing, For example,
the processing required for the caller tag requires only the values of the caller
tag’s attributes. That processing is implemented in the doStartTag().

If you want to take some action that requires knowledge of what happened in
a single processing pass of a custom tag’s content, override the
doAfterBody() method. This method has access to the buffer containing the
results of processing the tag’s content. In the months tag, for example, the tag
handler has to increment the current month after each pass through the tag’s
contents. This behavior goes into the doAfterBody() method since that
method will be invoked once afte0.0296 Tc
9(e)0.3eh pass through the tag’s content.

If you want to take some action that requires knowledge gained from
potentially multiple processing passes of a custom tag’s content (for example,
for an iterative custom tag), override the doEndTag() method.

6.7.3.4 Accessing the tag contents
In the simplest cases, the contents of a custom tag are processed without the
custom tag builder having to do anything. These tags don’t reference their
content in any way. In the more complex custom tags that do need to refer or
Chapter 6. JSP support 209

those scripting and custom tags. This is a useful technique for scripting
tag-dependent content. If a tag were to contain a valid SQL statement, for
example, a user could use JSP scriptlets and expressions to fill in data that
changes from jsp invocation to JSP invocation.

A value of “tagdependent” suspends any tag processing in the custom tag’s
content and the source of any scripting or custom tags would appear in the
results returned by the BodyContent.

6.7.3.5 Deciding whether to process the tag contents
In addition to whatever behavior you implement as part of the doStartTag()
method (the one that’s invoked when the begin tag is encountered), the
method must return an integer value that tells the JSP container whether or
not to process the custom tag’s contents.

A return value of SKIP_BODY causes the JSP container to bypass any
content in the custom tag. Nothing is processed and if there are custom tags
nested in that content, their corresponding tag handlers are not invoked.

A return value of EVAL_BODY_INCLUDE indicates that the content is to be
processed and that the results of that processing should be written directly to
the output stream. This value is only appropriate for tag handlers that
implement the Tag interface or subclass the TagSupport class.

If the doStartTag() returns EVAL_BODY_TAG, the content will be processed
with the expectation that the tag handler will request the results in the
doAfterBody() method. This return value is appropriate only for implementers
of the TagBody interface or for subclasses of TagBodySupport.

6.7.3.6 Deciding whether to process the tag contents again
Just as the return value of the doStartTag() method controls whether a first
pass is made over a custom tag’s content, the return value of the
doAfterBody() method controls subsequent passes over that same content. If
logic in the doAfterBody() method determines that no further passes should
be made, the method should return SKIP_BODY. On the other hand, a return
value of EVAL_BODY_TAG forces another single pass over the content
followed by another invocation of the doAfterBody() method. The loop
continues until the doAfterBody() method returns SKIP_BODY.

In the months tag example, the doAfterBody() method returns
EVAL_BODY_TAG unless the current month number is 13. When the current
month number is 13, the iteration is complete and the method returns
SKIP_BODY.
210 WebSphere V3.5 Handbook

6.7.3.7 Deciding whether to process the rest of the page
The return value of the doEndTag() method controls whether the JSP
container continues processing or whether the overall page processing
should stop (in case of an error). A return value of SKIP_PAGE tells the JSP
container that no further processing should be performed on this page for this
request while a return value of EVAL_PAGE indicates that processing should
continue.

6.7.3.8 Writing something to the response
In earlier versions of JSP, Java code wrote text to local variable out which was
always declared to be some form of Writer. In JSP 1.1, tag handlers must get
a Writer by sending the getOut() method to the pageContext (a local
variable). The Writer returned by the getOut() method is an instance of
BodyContent, a subclass of Writer that’s able to answer back (as a Reader or
String) what was written to it. See the caller tag source to see how text can be
written to the current out.

The JSP container manages a stack of BodyContent instances that map to
nested BodyTag tag handlers. For BodyTag tag handlers, the JSP container
will create a new BodyContent and push it on the stack before continuing to
process the tag’s contents. Once the contents have been processed, the
Bodycontent will be popped off of the stack and discarded. It is up to the tag
handler’s doAfterBody() method to get what was written to the current
BodyContent and write that string to the second BodyContent in the stack.

See the doStartTag() method in the sample class CallerTag for an example of
writing a simple string to the JSP output. The doAfterBody() method of the
MonthsTag class gives an example of saving the results of a single pass
through a BodyTag tag’s contents.

6.7.3.9 Accessing another tag handler by name
At runtime, a tag handler for one custom tag can get a reference to the tag
handler for another custom tag. This is useful for taglibs in which one tag
initializes resources (for example, obtains a database connection) and the
other tags refer back to that tag in order to access those resources.

For a tag handler (or any object created by that tag handler) to be accessed
by another tag handler, a TagExtraInfo (TEI) class must be built for the
referenced tag. The TEI has a getVariableInfo() method that accepts
information about the attributes and values specified for an instance of the
custom tag and returns an array of VariableInfo objects. For each object that
the tag handler will export (make available for access by other tag handlers)
there should be an element in the returned VariableInfo array describing the
Chapter 6. JSP support 211

name by which the object will be accessed, whether the object is being
created by this tag handler, the type of the object, and the scope of the object.

The scope of an object refers to the portion of the JSP source in which that
object can be referenced. There are three possible values.

Table 7. Possible values of the scope of the object

When the TEI for a custom tag reports that objects will be created, the tag
handler for that custom tag must make those objects available by using the
setAttribute() method on the pageContext for each object. The called tag
demonstrates how a tag handler can put itself into the pageContext so that
other tag handlers can access the tag’s attribute values. The months tag
show how beans other than the tag handler can be put into the pageContext.

As long as another custom tag is within the declared scope of an exported
object, that tag can get a reference to the object by calling the getAttribute()
method on PageContext.

6.7.3.10 Determining the containing tag
The nesting of custom tags is a special case of one tag handler referring to
another. When one custom tag only makes sense when nested within another
custom tag, it is likely that the nested tag handler will need to access context
information held by the other tag handler.

This is coded in the nested tag handler. A call to the nested tag handler’s own
findAncestorWithClass() method returns the other tag handler. The
arguments to the method are the nested tag handler itself and the class of the
nesting tag handler.

6.8 Configuring and running your JSPs

Before you run JSPs with custom tags, you need to configure the WebSphere
Application Server for JSP 1.1 and you need to deploy your application
components to the correct directories.

Values Description

AT_BEGIN The object can be referenced at any point after the start tag

AT_END The object can be referenced at any point after the end tag

NESTED The object can only be referenced between the start and end tags
212 WebSphere V3.5 Handbook

6.8.1 Configuring WebSphere for JSP 1.1
Most of the configuration for JSP 1.1 is handled by the administrative console.

In Version 3.5.2 of WebSphere Application Server, the JSP support for a Web
application defaults to JSP 1.0. The easiest way to configure JSP 1.1 support
is to create a new application server. From the Wizards icon on the
administrative console, choose the Create Application Server item as
shown in Figure 107.

Figure 107. Create a new application server

The first page in the Create Application Wizard is the Types of Resources
window as shown in Figure 108 on page 214. Make sure the Web
Applications box is checked and click the Next button.
Chapter 6. JSP support 213

Figure 108. Types of Resources

The next page asks for general information about the application server to be
created. Choose a short name for your application server name (in our case,
ITSO was entered as shown in Figure 109 on page 215) and enter two fully
qualified file names for standard out and standard error. These files are very
important because many of the errors and debug information you need will be
written only there. If the default names are used, you run the risk of different
application servers overwriting the same log files; a better choice would be to
uniquely identify these using the file names such as “jspout.txt” and
“jsperr.txt”. A good directory for these two files is the logs directory in the
WebSphere install directory (in our case, C:\WebSphere\AppServer\logs
directory). Then click Next.
214 WebSphere V3.5 Handbook

Figure 109. Application Server Properties

The next page (Application Server Start Option) asks you whether you want
to start the new Application Server automatically after its creation. For our
example, we leave it at the default setting, which means do not start the
server. Then click Next.

On the next page (Node Selection), you need to select the node on which the
new WebSphere Application Server will run. Select the node (in our case,
kenueno) then click Next.

On the next page (Add Enterprise Beans), if you want to add enterprise
beans, do so. For our example, we don’t need to do it. Therefore, we click
Next without adding enterprise beans.

On the next page (EJBContainer Properties), you specify the EJBContainer
Name. In our case, we specify ITSOContainer and then click Next.

The next page (Select Virtual Host) asks you to specify (or select) a Virtual
Host name. In our case, we selected default_host and click Next.
Chapter 6. JSP support 215

The next page (Servlet Engine Properties) we choose to run in Servlet 2.2
and JSP 1.1 Full Compliance Mode as shown in Figure 110. You must
choose this option if you want to run JSP 1.1. This is also why you have to
create a new application server in order to run JSP 1.1; the existing
application servers were probably created without this option. Then click
Next.

Figure 110. Servlet Engine Properties: General tab

When you create an application server you also create a Web application.
The wizard presents you with a default name and Web path, but the default
names are generally too long (remember that the Web path becomes part of
every URL). Enter names that are long enough to be descriptive yet are not
too verbose, as shown in Figure 111 on page 217. Then click Next.
216 WebSphere V3.5 Handbook

Figure 111. Web Application properties

The final page lets you choose which version of JSP runs in the new Web
application. Choose Enable JSP 1.1 as shown in Figure 112 on page 218.
Chapter 6. JSP support 217

Figure 112. Specify System Servlets

When you click Finish, you will get the Information dialog as shown in Figure
113.

Figure 113. Information dialog

Click OK, and the application server and Web application will be created.

It is recommended that you verify the configuration of the WebSphere
domain. Fully expand the nodes (see Figure 114 on page 219) for the
application server you just created (in our case, ITSO) and select the new
Web application (in our case, ITSO) under the servlet engine (in our case,
ITSOServletEngine). Click the Advanced tab to see the Documentation Root
218 WebSphere V3.5 Handbook

for the Web application. All HTML and JSP files need to go in this directory or
one of its subdirectories. You can change the directory to use if you wish.

Figure 114. Web Application: Advanced tab
Chapter 6. JSP support 219

Figure 115. JSP 1.1 Processor: General tab

Note that under the ITSO Web application, there is a servlet called JSP 1.1
Processor. That is the JSP processor (or JSP enabler) that we discussed in
6.5.2, “JSP processors” on page 197. The servlet Java source and class files
that are generated by this JSP Processor are stored in the
<WAS_HOME>/temp/default_host/ITSO directory in our case as shown in
Figure 116 on page 221.
220 WebSphere V3.5 Handbook

Figure 116. Servlet Java source and class files generated by the JSP container

In WebSphere V3.5.2, the Jasper JSP processor developed by Apache.org is
used. You can see it in the Servlet Class Name entry on the General tab of
the JSP 1.1 processor, as shown in Figure 115 on page 220.

6.8.2 Deploying application components
The JSP source, taglibs and TLDs all must be deployed to the correct
directories before the JSP processor can locate them.

6.8.2.1 JSP source
JSP source, like HTML files, is placed in the web directory for the Web
application. This is the directory name displayed in the Document root
attribute on the Advanced tab for the Web application (see Figure 114 on
page 219).
Chapter 6. JSP support 221

6.8.2.2 The TLD
The TLD can be placed almost anywhere since its location is specified as a
URL in the JSP source. It’s a good idea, though, to put the TLD in the same
directory as the JSP source and to reference the file using a relative file
name. See the sample JSP source files for examples. In our case, we placed
the sample JSP source file and TLD the
<WAS_HOME>/hosts/default_host/ITSO/web directory, as shown in Figure
117.

Figure 117. The location of the JSP source files and TLD

6.8.2.3 The custom tag handlers
The custom tag handler classes, their bean info classes and their
corresponding TEI classes should be put into a JAR file. The JAR file’s fully
qualified file name needs to be entered as one of the classpath entries for the
Web application (it’s on the Advanced tab along with the document root
attribute). While the JAR can be placed anywhere, it’s a good idea to put the
JAR into the Web application’s servlets path (see Figure 118 on page 223) or,
if the tag library will be shared by several Web applications, into the general
servlets directory for WebSphere. In our case, we created jsp11tag.jar as
shown in Figure 119 on page 223 and placed it in the
<WAS_HOME>/hosts/default_host/ITSO/servlets directory as shown in
Figure 120 on page 224.
222 WebSphere V3.5 Handbook

Figure 118. Web application classpath

Figure 119. jsp11tag.jar
Chapter 6. JSP support 223

Figure 120. The location of the custom tag handlers

6.8.3 Start the Web application
Once you’ve made sure that the JSP source, the tag handlers and the TLD
are all correctly deployed, you can now start the application server. On the
administrative console, right click your application server (in our case, ITSO)
and click Start as shown in Figure 121 on page 225.
224 WebSphere V3.5 Handbook

Figure 121. Start the application server

6.8.4 Invoking the JSP
Now, you can determine the URL with which to invoke the JSP.

The JSP’s URL is made up of several names. The host name (which must be
one of the virtual host names) is optional but is followed by the Web path of
the Web application (as shown on the General tab). The Web application’s
Web path is the relative path of the JSP with respect to the root web directory.

For example, in the examples shown elsewhere in this chapter, the call.jsp
would be invoked using the following URI.

http://<server_name>/webapp/ITSO/call.jsp

Figure 122 on page 226 shows you the result of invoking the call.jsp.
Chapter 6. JSP support 225

Figure 122. Invoking the call.jsp

The other example, the months.jsp, would be invoked using the following URI:

http://<server_name>/webapp/ITSO/months.jsp

Figure 123 on page 227 shows you the result of invoking the months.jsp.
226 WebSphere V3.5 Handbook

Figure 123. Invoking the months.jsp

Several problems are common when trying to request a JSP for the first time.
If you get an Internal Server Error, it’s quite possible that the URL was
recognized but that the Web application’s application server was not yet
started. A 404 error indicates that the URL wasn’t put together properly. A
generic error message usually indicates that a compile error prevented the
JSP from processing to completion. Check the standard output and standard
error files defined for the application server hosting the JSP 1.1 processor
(the names were entered as part of the configuration step) for more
informative error messages.
Chapter 6. JSP support 227

6.9 Custom tag examples

This section describes a set of overly simple custom tags that demonstrate
the techniques in the section on building custom tags. The TLD defines the
three tags (called, caller and months), and source code is provided for the tag
handler and TagExtraInfo class for each of the tags.

The caller and called tags demonstrate how one tag handler can reference
the tag handler for another tag. The tag handler for a called tag will put itself
into the page context using the specified id attribute value as a key. The tag
handler for the caller tag will ask the page context for the object saved with an
id equal to the value of the refId attribute. If the object is found, the caller tag
handler will write out a message containing attributes from both tags. If no
object is found, the tag handler will write out an error message.

The months tag is a simple iteration example. The contents of the months tag
is processed once for each month of the year. During any one iteration, the
months tag handler will put into the page context a bean representing the
month for the iteration. This bean is named with the beanName attribute and
can be referenced by that name in embedded Java code in the JSP.
228 WebSphere V3.5 Handbook

Figure 124. test.tld (1/2)

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib

PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
"web-jsptaglib_1_1.dtd">

<!-- This TEI describes an example custom tag library -->

<taglib>
<!-- after this the default space is
"http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd"
-->

<tlibversion>1.0</tlibversion>
<jspversion>1.1</jspversion>
<shortname>simple</shortname>
<info>
A simple tab library for the examples
</info>

<!-- called tag -->
<tag>
<name>called</name>
<tagclass>com.ibm.itso.jsp11.CalledTag</tagclass>
<teiclass>com.ibm.itso.jsp11.CalledTagTEI</teiclass>
<bodycontent>empty</bodycontent>
<info>
This tag is referred to by the CallerTag.
</info>

<attribute>
<name>id</name>
<required>true</required>
</attribute>
<attribute>
<name>color</name>
<required>true</required>
</attribute>

</tag>
Chapter 6. JSP support 229

Figure 125. test.tld (2/2)

<!-- caller tag -->
<tag>
<name>caller</name>
<tagclass>com.ibm.itso.jsp11.CallerTag</tagclass>
<teiclass>com.ibm.itso.jsp11.CallerTagTEI</teiclass>
<bodycontent>empty</bodycontent>
<info>
This tag refers to called tags.
</info>

<attribute>
<name>id</name>
<required>true</required>
</attribute>
<attribute>
<name>shape</name>
<required>true</required>
</attribute>
<attribute>
<name>refId</name>
<required>true</required>
</attribute>

</tag>

<tag>
<name>months</name>
<tagclass>com.ibm.itso.jsp11.MonthsTag</tagclass>
<teiclass>com.ibm.itso.jsp11.MonthsTEI</teiclass>
<bodycontent>JSP</bodycontent>
<info>
This tag iterates over the months.
</info>

<attribute>
<name>beanName</name>
<required>true</required>
</attribute>

</tag>

</taglib>
230 WebSphere V3.5 Handbook

Figure 126. CalledTag.java (1/2)

package com.ibm.itso.jsp11;

import javax.servlet.jsp.tagext.*;
import javax.servlet.jsp.*;
import java.io.*;
/**
* The CalledTag class is the tag handler for the
* called custom tag. The id attribute is used by
* the caller custom tag to refer to a specific
* instance of the called tag. The color attribute
* is simply a value to be accessed by the caller tag.
* @author: Chris Gerken
*/
public class CalledTag extends TagSupport {

private String id;
private String color;

/**
* CalledTag constructor comment.
*/
public CalledTag() {

super();
}
public int doStartTag() throws JspException {

// So that this tag handler can be referenced by other
// tag handlers, we need to put this object into the
// page context. The value of this tag's id attribute
// is used as the key.

pageContext.setAttribute(getId(),this);

// We're through wih processing for this tag.

return SKIP_BODY;
}
/**
* Return this object's color.
* @return java.lang.String
*/
public java.lang.String getColor() {

return color;
}

Chapter 6. JSP support 231

Figure 127. CalledTag.java (2/2)

/**
* Return this object's id.
* @return java.lang.String
*/
public java.lang.String getId() {

return id;
}
/**
* Set this object's color.
* @param newColor java.lang.String
*/
public void setColor(java.lang.String newColor) {

color = newColor;
}
/**
* Set this object's id.
* @param newId java.lang.String
*/
public void setId(java.lang.String newId) {

id = newId;
}
}

232 WebSphere V3.5 Handbook

Figure 128. CalledTEI.java

package com.ibm.itso.jsp11;

import javax.servlet.jsp.tagext.*;

/**
* This TagExtraInfo subclass describes
* the called tag and the object it creates.
* The tag is expected to have an id
* attribute which holds the name of the
* created object.
* @author: Chris Gerken
*/

public class CalledTEI extends TagExtraInfo {

public CalledTEI() {
super();

}

public VariableInfo[] getVariableInfo(TagData data) {
String idValue = data.getId();

if (idValue == null) {
return new VariableInfo[0];

} else {
VariableInfo idInfo = new VariableInfo(

idValue,
"gerken.jsp11.tag.CalledTag",
true,
VariableInfo.AT_BEGIN);

VariableInfo[] list = { idInfo } ;
return list;

}
}

public boolean isValid(TagData data) {
return true;

}

}

Chapter 6. JSP support 233

Figure 129. CallerTag.java (1/3)

package com.ibm.itso.jsp11;

import javax.servlet.jsp.tagext.*;
import javax.servlet.jsp.*;
import java.io.*;
/**
* The CallerTag class is the tag handler
* for the caller custom tag. The refId
* attribute is used by the caller custom
* tag to refer to a specific instance of
* the called tag.
* @author: Chris Gerken
*/
public class CallerTag extends TagSupport {

private String id;
private String shape;
private String refId;

/**
* Caller constructor comment.
*/
public CallerTag() {

super();
}
public int doStartTag() throws JspException {

try {

// Request the tag handler for the instance of
// the called tag whose id attribute equals this
// tag handler's refId value.

CalledTag called = (CalledTag)
pageContext.getAttribute(getRefId());

if (called == null) {

// If no tag handler was found, write a suitable
// error message to the response object.

pageContext.getOut().println(
"<p>Failed to find tag with id="+getRefId()+"</p>"
);

} else {
234 WebSphere V3.5 Handbook

Figure 130. CallerTag.java (2/3)

// If a tag handler was found, write out this
// tag's shape attribute and that tag's color
// attribute.

pageContext.getOut().println(
"<p>Matching "+getShape()+
" with "+called.getColor()+
"</p>"
);

}
} catch (Throwable t) {}

// There's no more tag processing.

return SKIP_BODY;
}
/**
* Return the id.
* @return java.lang.String
*/
public java.lang.String getId() {

return id;
}
/**
* Return the referenced id.
* @return java.lang.String
*/
public java.lang.String getRefId() {

return refId;
}
/**
* Return the shape.
* @return java.lang.String
*/
public java.lang.String getShape() {

return shape;
}
/**
* Set the id.
* @param newId java.lang.String
*/
Chapter 6. JSP support 235

Figure 131. CallerTag.java (3/3)

public void setId(java.lang.String newId) {
id = newId;

}
/**
* Set the reference id.
* @param newRefId java.lang.String
*/
public void setRefId(java.lang.String newRefId) {

refId = newRefId;
}
/**
* Set the shape.
* @param newShape java.lang.String
*/
public void setShape(java.lang.String newShape) {

shape = newShape;
}
}

236 WebSphere V3.5 Handbook

Figure 132. CallerTEI.java

Figure 133. call.jsp

package com.ibm.itso.jsp11;

import javax.servlet.jsp.tagext.*;

/**
* This TagExtraInfo subclass describes
* the caller tag. It doesn't create any
* objects and performs no additional
* attribute validation.
* @author: Chris Gerken
*/
public class CallerTEI extends TagExtraInfo {
public CallerTEI() {

super();
}

public VariableInfo[] getVariableInfo(TagData data) {
return new VariableInfo[0];

}

public boolean isValid(TagData data) {
return true;

}

}

<%@ taglib uri="test.tld" prefix="ttl" %>

<ttl:called id="1" color="green" />
<ttl:called id="2" color="red" />
<ttl:called id="3" color="white" />

<ttl:caller id="a" shape="square" refId="2" />
<ttl:caller id="b" shape="circle" refId="1" />
<ttl:caller id="c" shape="triangle" refId="4" />
Chapter 6. JSP support 237

Figure 134. MonthsTag.java (1/3)

package com.ibm.itso.jsp11;

import javax.servlet.jsp.tagext.*;
import javax.servlet.jsp.*;
import java.io.*;
/**
* The MonthsTag is the tag handler for the
* months tag which processes its contents (the
* JSP source between the months begin tag and
* the months end tag) once for each month of
* the year. A bean representing the current
* month of the iteration is made available to
* tag handlers of nested tags.
*/
public class MonthsTag extends BodyTagSupport {

private String beanName;
private intcurrent;

/**
* MonthsTag constructor comment.
*/
public MonthsTag() {

super();
}
public int doAfterBody() throws JspException {

// By default, we plan to stop iterating unless we
// determine that there are more months.

int result = SKIP_BODY;

try {

// Since the body of the tag was just processed,
// we need to write the processing results to
// the output stream.

BodyContent body = getBodyContent();
body.writeOut(getPreviousOut());
body.clearBody();

} catch (IOException ex) {
String msg = "Months error: "+ex.getMessage();
throw new JspTagException(msg);

}

238 WebSphere V3.5 Handbook

Figure 135. MonthsTag.java (2/3)

// Increment the month counter.If there's another
// month, store a new bean into the page context
// to represent the next month and return
// EVAL_BODY_TAG to indicate to the JSP container
// that the body of this tag needs to be
// processed again.

current = current + 1;
if (current < 13) {

setMonth();
result = EVAL_BODY_TAG;

}

return result;
}
public int doStartTag() throws JspException {

// Initialize the iteration.

current = 1;

// Store a bean representing the iteration
// state into the page context.

setMonth();

// Return EVAL_BODY_Tag to indicate to the
// JSP container that the body of this tag
// needs to be processed.

return EVAL_BODY_TAG;

}
/**
* Return the name of the bean that holds
* the state of the iteration. Tag handlers
* for nested tags can use this name to
* request the Month bean that gives the
* current month for an iteration over
* this tag's content.
* @return java.lang.String
*/
Chapter 6. JSP support 239

Figure 136. MonthsTag.java (3/3)

public java.lang.String getBeanName() {
return beanName;

}
/**
* Sets the name to use when writing the
* Month bean to the page context.
* @param newBeanName java.lang.String
*/
public void setBeanName(java.lang.String newBeanName) {

beanName = newBeanName;
}
/**
* Write out a Month bean that holds the
* state of the current tag's iteration.
*/
private void setMonth() {

// Create a new Month bean.

Month currentMonth = new Month();

// Store the current month into the bean.

currentMonth.setMonthNumber(current);

// Write the bean to the page context.

pageContext.setAttribute(getBeanName(),currentMonth);

}
}

240 WebSphere V3.5 Handbook

Figure 137. MonthsTEI.java

package com.ibm.itso.jsp11;

import javax.servlet.jsp.tagext.*;

/**
* This TagExtraInfo subclass describes the months tag and
* the bean it creates to describe the state of its iteration..
* The tag is expected to have an beanName attribute which
* holds the name of the created object.
* @author: Chris Gerken
*/
public class MonthsTEI extends TagExtraInfo {

public MonthsTEI() {
super();

}

public VariableInfo[] getVariableInfo(TagData data) {

// Get the value of the beanName attribute

String bname = data.getAttributeString("beanName");

// Create and return an array indicating that
// processing this tag will result in the creation
// of a single object of type Month. The object
// will only be available to other tags nested
// within this Months tag.

VariableInfo info = new VariableInfo(
bname,
"com.ibm.itso.jsp11.Month",
true,
VariableInfo.NESTED);

VariableInfo[] list = { info } ;
return list;

}

public boolean isValid(TagData data) {
return true;

}
}

Chapter 6. JSP support 241

Figure 138. Month.java (1/2)

package com.ibm.itso.jsp11;

/**
* The Month bean represents the state of the
* iteration provided by the months tag.
* @author: Chris Gerken
*/
public class Month {

private intmonthNumber;
private String monthName;
private static String[] months = {

"January", "February", "March",
"April", "May", "June", "July",
"August", "September", "October",
"November", "December" };

/**
* Month constructor comment.
*/
public Month() {

super();
}
/**
* Return the month's name
* @return java.lang.String
*/
public String getMonthName() {

return monthName;
}
/**
* Return the month's index.
* @return int
*/
public int getMonthNumber() {

return monthNumber;
}
/**
* Set the month's name.
* @param newMonthName String
*/
public void setMonthName(String newMonthName) {

monthName = newMonthName;
}

242 WebSphere V3.5 Handbook

Figure 139. Month.java (2/2)

Figure 140. months.jsp

/**
* Set the month's index.
* @param newMonthNumber int
*/
public void setMonthNumber(int newMonthNumber) {

monthNumber = newMonthNumber;
monthName = months[newMonthNumber-1];

}
}

<%@ taglib uri="test.tld" prefix="tst" %>
<%@ page import="com.ibm.itso.jsp11.*" language="java" %>

<p>This section appears only once in the browser.</p>

<tst:months beanName="mb" >
<p>This section of the JSP will be repeated once for
each month. The month for this iteration is
<%= mb.getMonthName() %> </p>

</tst:months>

<p>This section appears only once in the browser.</p>
Chapter 6. JSP support 243

244 WebSphere V3.5 Handbook

Chapter 7. Session support

This chapter discusses session support in the WebSphere Application Server
V3.5. Session support allows a Web application developer to maintain state
information regarding a user’s visit.

Web applications require more information than their static, "brochure-ware"
predecessors. In a true Web application, a user dynamically builds a course
through the site based on a series of selections at each page. Where the user
goes next, and what the application displays as the user's next page (or next
choice, or next advertisement) may depend on what the user has chosen
previously from the site. (For example, if the user clicks the Checkout button
on our site, the next page must contain the user's shopping selections from
this visit.)

Therefore, a Web application needs a mechanism to hold the user's state
information over a period of time (typically known as a visit). However, HTTP
alone doesn't recognize or maintain a user's state. HTTP treats each user
request as a discrete, independent entity.

The Java Servlet specification provides a mechanism for servlet applications
to maintain a user’s state information, and this mechanism addresses some
of the problems of more traditional strategies such as a pure cookie solution.
This mechanism, known as a session, allows a Web application developer to
maintain all user state information at the host, while passing minimal
information back to the user via cookies or another technique known as URL
encoding.

This chapter discusses the following aspects of the session specification:

• Differences in WebSphere V3.5 and V3.02 session state

• Session state enabling techniques (cookies and URL rewriting)

• Servlet 2.1 Session API

• Storing the HttpSession object (local and persistent session storage)

• IBM Servlet API extensions

• Session clustering

• Session performance considerations
© Copyright IBM Corp. 2001 245

7.1 V3.02.x vs. V3.5 overview

The session support in WebSphere Application Server V3.5.1 remains very
consistent with the WebSphere V3.0x implementations, including V3.02x.
WebSphere Application Server 3.5.2 allows the Web developer to use the
Servlet 2.2 specification.

WebSphere V3.5 (and V3.02x) in combination with e-fix PQ42166 eliminates
session locking, and allows concurrent session access. Due to this change,
the WebSphere forces the use of the session cache (regardless of the setting
in the administrator console) when the e-fix is applied.

7.2 Session feature overview

This section covers the major features of WebSphere Application Server
session support. These features include classes for the Web application
developer, as well as administrative options for the WebSphere Application
Server administrator.

7.2.1 Cookies
WebSphere Application Server supports cookies as one mechanism for
transferring a user’s session ID between the user’s browser and the Web
application.

7.2.1.1 Cookie session support overview
WebSphere session support keeps the user session information at the server.
The WebSphere passes the user an identifier known as a session ID either in
a cookie, or in encoded URL links on the retuned page. The session ID
correlates an incoming user with a session object maintained at the server.

Many sites choose cookie support to pass the user’s identifier between
WebSphere and the visiting user. WebSphere Application Server session
support generates a unique session ID for each visitor, and returns this ID to
the visitor’s browser via a cookie.

(A cookie consists of information embedded as part of the headers in the
HTML stream passed between the server and the browser. The browser
holds the cookie, and returns it to the server when the user makes a
subsequent request. By default, WebSphere defines its cookies so they are
destroyed if the browser is closed.)

The cookie passes between WebSphere and the visitor’s browser on each
subsequent request to the Web site. This cookie holds only an identifier and a
246 WebSphere V3.5 Handbook

timestamp (used by the WebSphere for determining the “freshness” of
session objects held in cache). The remainder of the visitor’s session
information resides at the server.

Figure 141. Cookie session support

At the server, WebSphere manages the cookie for the Web application
transparently. The Web application developer never manipulates the session
identifier or timestamp in the cookie directly. In fact, the Web application
never needs to know the identifier assigned to a particular user to obtain their
session information.

The Web application developer uses the HTTPRequest object standard
interface to obtain the session:

HTTPSession session = request.getSession(true);

The WebSphere places the visitor’s identifier in the outbound cookie
whenever the servlet completes its execution, and the HTML response
stream returns to the end user. Again, neither the cookie nor the session ID
within it require any direct manipulation by the Web application. The Web
application only sees the contents of the session.

7.2.1.2 Cookie disadvantages
Cookies provide a transparent means for passing the session identifier
between the user and the WebSphere instance. However, not all browsers
and user installations support cookies.

Session ID: 123
Time: 102320001100
Counter: 5
Age: 35
Salary:

Session ID: 123
Time: 102320001100

Browser's Cookie List

Session Cache

WebSphere Application ServerUser

Session ID: 123
Time: 102320001100

Session ID: 123
Time: 102320001100
Chapter 7. Session support 247

Some users, either by choice or mandate, cannot receive cookies from Web
sites. Most browsers also allow users to turn off the ability to receive cookies.
If a site supports large numbers of users who cannot or will not receive
cookies, WebSphere supports an alternative technique known as URL
encoding for passing user session IDs between the user and the Web
application server instance.

However, URL encoding requires specific actions on the part of the Web
developer to function. Also, URL encoding imposes restrictions on site flow
not present in cookie-based session management. Because of these
limitations, many sites require users to permit cookie passing if they want to
use site features requiring WebSphere session support.

7.2.1.3 Enabling cookie support
The WebSphere defaults to session support with cookies (Enable
Cookies=Yes) as shown in Figure 142.

Figure 142. Default session enablement settings
248 WebSphere V3.5 Handbook

Control for session state management resides at the servlet engine level. All
changes for a given servlet engine apply to all Web applications running in
that engine.

7.2.1.4 Session sample
WebSphere, as stated earlier, handles all of the session state cookie
processing required by the Web applications. The Web developer uses
Servlet standard interfaces to retrieve the session information for a user. The
WebSphere retrieves the user’s session ID from the cookie, and finds the
corresponding session data associated with the user. The Web application
developer never needs to handle the identifier directly.

Here’s an example of maintaining a counter in the user’s session information
using cookie-based session ID passing:

/*
* @(#)MyCount.java
*
*/
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.sun.server.http.*;
import java.util.*;

public class MyCount extends HttpServlet
{

public void init(ServletConfig config) throws ServletException
{

super.init(config);

}

public void service (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{

In WebSphere Application Server V3.5.2, the WebSphere Application
Server allows the administrator to override the session timeout value on a
per Web application basis. This allows the administrator to tailor session
support to better fit the requirements of each Web application. The value
entered at the Web application level overrides the values set at the Session
Manager in the servlet engine where the Web application resides.

Note
Chapter 7. Session support 249

ServletOutputStream out;
String count = null;
StringBuffer outBuff = new StringBuffer();

out = res.getOutputStream();

outBuff.append("<html><head><title>MyCount Session
Example</title></head><body bgcolor='#ffffff'>");

outBuff.append("<H1>Counter Value: </H1>");
outBuff.append("<p>");

// Increment session state, creating if necessary
HttpSession session = req.getSession(true);
if (session == null)

outBuff.append("Cannot create session as expected!");
else
{

Integer value = (Integer)session.getValue("MyCount.COUNTER");
if (value == null)
{

value = new Integer(1);
outBuff.append("1 (from new session)");

}
else
{

value = new Integer(value.intValue() + 1);
outBuff.append(value + " (from existing session)");

}
session.putValue(“MyCount.COUNTER", value);

}
outBuff.append("</body></html>");
out.println(outBuff.toString());

}
}

In this very simple example, the servlet places a counter value in the user’s
session object, and updates this counter on subsequent requests by the user.
This example points out the simplicity of cookie-based session state
management for the Web application developer. The application accesses the
session information through the HttpRequest object. After the method
completes, the WebSphere saves the updated (or new) session information
for the application. The WebSphere stores the information without an explicit
command from the application. This is known as automatic update mode, and
is the default for WebSphere.
250 WebSphere V3.5 Handbook

7.2.2 URL rewriting
WebSphere also provides URL encoding for session ID passing. While
session management is transparent to the Web application, URL encoding
requires the developer to use special encoding APIs, and to set up the site
page flow to avoid losing the encoded information.

URL encoding works by actually storing the session identifier in the page
returned to the user. WebSphere encodes the session identifier as a
parameter on any link or form the user may submit from the page. For
example:

In this example, when the user clicks this link to move to the store/catalog
page, the session identifier passes into the request as a parameter.

URL encoding requires explicit action by the Web application developer. If the
servlet returns HTML directly to the requester (without using a JavaServer
Page (JSP)), the servlet calls the following API to encode the returning
content:

out.println("<a href=\"");
out.println(response.encodeURL ("/store/catalog"));
out.println("\">catalog");

Even pages using redirection (a common practice, particularly with
servlet/JSP combinations) must encode the session ID as part of the redirect:

response.sendRedirect(response.encodeRedirectURL("http://myhost/store/cata
log"));

When JavaServer Pages (JSPs) use URL encoding, the JSP calls a similar
interface to encode the session ID:

<% response.encodeURL ("/store/catalog"); %>

URL encoding limits the flow of site pages exclusively to dynamically
generated pages (such as pages generated by servlets or JSPs). WebSphere
inserts the session ID into dynamic pages, but cannot insert the user’s
session ID into static pages (.htm or .html pages).

Therefore, after the application creates the user’s session data, the user must
visit dynamically generated pages exclusively until they finish with the portion
of the site requiring sessions. URL encoding forces the site designer to plan
the user’s flow in the site to avoid losing their session ID.
Chapter 7. Session support 251

7.2.2.1 Enabling URL rewriting
The WebSphere administrator enables URL rewriting from the Session
Manager as shown in Figure 143. This change applies to every Web
application assoicated with the Session Manager’s servlet engine.

Figure 143. Enabling URL rewriting

7.2.2.2 Using URL rewriting
As mentioned earlier, URL rewriting requires some action from the Web
application developer to function properly. Here is a simple example using
URL rewriting:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.sun.server.http.*;
import java.util.*;

public class MyLinkCount extends HttpServlet
{

public void init(ServletConfig config) throws ServletException
{

252 WebSphere V3.5 Handbook

super.init(config);

}

public void service (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
ServletOutputStream out;
String count = null;
StringBuffer outBuff = new StringBuffer();
String nextLink =

"/webapp/TestApp/MyLinkCount";

out = res.getOutputStream();

outBuff.append("<html><head><title>MyCount Session
Example</title></head><body bgcolor='#ffffff'>");

outBuff.append("<H1>Counter Value: </H1>");
outBuff.append("<p>");

// Increment session state, creating if necessary
HttpSession session = req.getSession(true);
if (session == null)

outBuff.append("Cannot create session as expected!");
else
{

Integer value = (Integer)session.getValue("MyLinkCount.COUNTER");
if (value == null)
{

value = new Integer(1);
outBuff.append("1 (from new session)");

}
else
{

value = new Integer(value.intValue() + 1);
outBuff.append(value + " (from existing session)");

}
session.putValue("MyLinkCount.COUNTER", value);

}

outBuff.append("

");
outBuff.append("<a href=");
outBuff.append(res.encodeURL(nextLink));
outBuff.append(">Next!");
outBuff.append("</body></html>");
out.println(outBuff.toString());

}

Chapter 7. Session support 253

}

In this example, the servlet provides a convenient link to the counting servlet.
The Web developer passes the link (in this case,
/webapp/TestApp/MyLinkCount) to the HttpServletResponse object for URL
encoding.

The application retrieves the session object in the same manner as a servlet
interacting with cookie-based servlet support. However, the application must
encode any links on the outbound HTML with the user’s session ID. The
servlet uses the encodeURL() method for encoding the session ID onto the
link.

If this WebSphere uses URL Rewriting to pass session IDs, the result from
the encodeURL() method contains the link URL and the session ID (as a
parameter). For example:

/webapp/TestApp/MyLinkCount;$sessionid$IACYYOYAAAAAACJFGDU31UI

If this WebSphere does not use URL rewriting, the call to the encodeURL()
method returns the same text it received. It does not add the session ID to the
URL.

WebSphere allows the administrator to enable both URL rewriting and cookie
support. In this case, the call to encodeURL() returns a URL encoded with the
session ID. However, the WebSphere also returns a cookie containing the
session ID. Such a configuration may prove useful for applications serving
mixed audiences, or if the administrator must support some applications that
are using URL rewriting, and others that are not, within the same servlet
engine.

7.2.3 Session API
This section covers the Session API defined by the Servlet specification. See
7.2.6, “IBM extensions” on page 265 for more details on IBM extensions to
the servlet specification.

7.2.3.1 Obtaining the session
The Servlet specification defines the operation and interfaces for session
data. An application obtains the user’s session through the request object:

javax.servlet.http.HTTPRequest req;
javax.servlet.http.HTTPSession session = req.getSession(true);

The API supports getting a session only if one already exists, or providing a
new session if this user doesn’t have one yet. By passing true to the
254 WebSphere V3.5 Handbook

getSession() method, the application receives the user’s existing session, if
one exists, or the WebSphere creates a session if the user does not have
one. Likewise, by passing false to the getSession() method, the application
receives a session only if one was previously created for the user.
(getSession() without a parameter defaults to the getSession(true) case.)

(Some applications use the presence or absence of session data to monitor
the flow of the user’s site visit. A user without a session, for example, may
have not completed a logon process. The application may use redirection to
force the user to the logon page rather than letting him continue with
shopping.)

7.2.3.2 Storing and Retrieving session data
The javax.servlet.http.HTTPSession class functions much like the
java.util.Dictionary class. Applications store information associated with a
key:

session.putValue(“mydata”,”information”);

Retrieving information works similarly:

String myValue = (String)session.getValue(“mydata”);

Session data management requires some planning on the part of the Web
developer. On many sites, several servlets (and in some cases, several Web
applications) share the same session data for a given user. Applications
storing information in the session may overwrite each other’s entries. A
naming scheme to ensure uniqueness helps.

For example, two shopping applications on the same Web site share a user’s
session data. Both applications use the value TOTAL, which they store in the
user’s session. Obviously, these applications need a naming scheme, or the
value of TOTAL will be overwritten whenever the user moves between the
applications.

Persistent session management requires that all objects stored in the
session be serializable.

Note

The Session 2.2 API deprecates getValue() and putValue(), and replaces
them with getAttribute() and putAttribute().

Note
Chapter 7. Session support 255

So, the sporting goods site application uses the following prefix for its entries
in the user’s session data:

session.putValue(“bobs.sports.TOTAL”,110);

The cooking site application uses this prefix for its session entries:

session.putValue(“happychef.TOTAL”,434);

This naming scheme allows both applications to share the user’s session data
without overwriting each other’s data.

Use a naming scheme even if the session data isn’t currently shared between
applications. A naming scheme, implemented early, allows the site to grow
without collisions between new and existing applications.

7.2.3.3 Sessions and classpath
If multiple Web applications share a session, the objects placed in the
session must be in the classpath of all the Web applications. If this is not
possible, the administrator may use multi-row persistent session
management to avoid loading objects in the session outside the scope of their
Web application. See 7.3.2, “Multirow persistent session management” on
page 290 for more details.

7.2.3.4 Saving session information
WebSphere saves any new or updated session information after the servlet or
JSP call completes. Alternatively, IBM provides an extension to the Servlet
specification that allows the application to specify when session contents
should be saved. See 7.2.6, “IBM extensions” on page 265 for more details.

7.2.3.5 Invalidating sessions
If the user no longer requires a session object, the application removes the
session through the invalidate() method.

session.invalidate();

Multi-row persistent session management eliminates the need for a
naming scheme for differentiating values between Web applications. See
7.3.2, “Multirow persistent session management” on page 290 for more
details.

Note
256 WebSphere V3.5 Handbook

The invalidate() method requires great care from the application not to
destroy sessions in use by other applications. See 7.3.1.5, “Invalidate
unneeded sessions” on page 289 for a more detailed discussion.

7.2.3.6 Changing a session’s timeout
The administrator defines the default timeout values for session objects in a
particular application server. However, some applications may require longer
or shorter timeouts based on the application the user visits, or the class of
service for which the user qualifies.

For example, a portal site might give users checking their internet mail
accounts 30-minute session intervals. This gives them time to read a
message, or compose a lengthy reply without fear of losing their sessions.
However, users visiting the weather site might only get a 10-minute timeout,
which should be plenty of time for them to quickly check a forecast.

Set the interval using the setMaxInactiveInterval() method. The method
expects the interval in seconds. So, to set the interval for 10 minutes, issue
the following:

session.setMaxInactiveInterval(600);

Again, be aware of setting this interval when the other applications may be
sharing the user’s session object. Also, using this interface limits the
administrator’s ability to control session timeout intervals. For future site
growth and scaling, the Web developer may want to consider placing these
timeouts in a resource file where they can be adjusted by the administrator, if
necessary. See 7.3, “Session performance considerations” on page 287 for
details on how sessions may impact site performance.

7.2.3.7 Session listeners
Before terminating a session, WebSphere notifies session objects
implementing this interface:

javax.servlet.http.HttpSessionBindingListener

In the Servlet 2.1 specification, session context (that is, the scope of
sessions visible to a given application) is per virtual host. In Servlet 2.2, the
session context is per Web application. See Chapter 8, “Servlet V2.2 in
WebSphere V3.5.2” on page 295 for a more detailed discussion of this
topic.

Note
Chapter 7. Session support 257

Sessions timeout (even persistent sessions) so this interface allows the
application to manage session information before the session timeout
completes and the session data is destroyed. The object provides this logic;
WebSphere only provides the notification via the HttpSessionBindingListener
interface.

If multiple Web applications share session objects, the objects referenced
defined as listeners must be in the classpath of any Web application in which
they may be invoked.

For example, Web application A defines a listener for the terminate event.
However, the terminate event actually occurs later while Web application B is
processing the session object. In this case, Web application B also needs the
listener defined by Web application A in its classpath in order to run the
listener properly.

7.2.4 Local sessions
Most Web application developers use the simplest form of session
management while developing their applications: the in-memory, local
session cache. The local session cache keeps session information in memory
and local to the machine and Web application server instance where the
session information was first created.

Local session management doesn’t share user session information with other
clustered machines. Users only obtain their session information if they return
to the machine and Web application server instance holding their session
information on subsequent accesses to the Web site.

Most importantly, local session management lacks a persistent store for the
sessions it manages. A server failure takes down not only the WebSphere
instances running on the server, but also destroys any sessions managed by
those instances.

WebSphere allows the administrator to define a limit on the number of
sessions held in the in-memory cache via the administrative console settings
on the Session Manager as shown in Figure 144 on page 259. This prevents
the sessions from acquiring too much memory in the Java Virtual Machine
associated with the WebSphere instance.

The Session Manager also allows the administrator to permit an unlimited
number of sessions in memory. If the administrator enables the Allow
Overflow setting on the Session Manager via the administrative console (see
Figure 144 on page 259), the Session Manager permits two in-memory
caches for session objects. The first cache contains only enough entries to
258 WebSphere V3.5 Handbook

accommodate the session limit defined to the Session Manager (1000 by
default). The second cache, known as the overflow cache, holds any sessions
the first cache cannot accommodate, and is limited in size only by available
memory. The Session Manager builds the first cache for optimized retrieval,
while a regular, unoptimized hashtable contains the overflow cache. For best
performance, define a primary cache of sufficient size to hold the normal
working set of sessions for a given WebSphere instance.

Figure 144. Session Manager: Tuning tab

Also, note that with overflow enabled, the Session Manager permits an
unlimited number of sessions in memory. Without limits, the session caches
may consume all available memory in the WebSphere instance’s heap,
leaving no room to execute Web applications. This scenarios arises if:
Chapter 7. Session support 259

• The site receives greater traffic than anticipated, generating a large
number of sessions held in memory.

• A malicious attack occurs against the site where a user deliberately
manipulates their browser so the application creates a new session
repeatedly for the same user.

7.2.5 Persistence
By default, WebSphere places session objects in memory. However, the
administrator has the option of enabling persistent session management,
which instructs the WebSphere to place session objects in a database.

Administrators enable persistent session management when:

• Multiple WebSphere instances need to share session objects (also known
as clustering).

• The user’s session data becomes too valuable to lose through unexpected
failure at the WebSphere node.

• The administrator desires better control of the session cache memory
footprint. By sending cache overflow to a persistent session database, the
administrator controls the number of sessions allowed in memory at any
given time.

All information stored in a persistent session database must be serializable.
All of the objects held by a session must implement java.io.Serializable if the
session might be stored in a persistent session database.

In general, consider making all objects held by a session serializable, even if
immediate plans do not call for the use of persistent session management. If
the Web site grows, and persistent session management becomes
necessary, the transition between local vs. persistent management occurs
transparently to the application if the sessions hold serializable objects. If not,
a switch to persistent session management requires coding changes to make
the session contents serializable.

Persistent session management does not impact the Session API, and Web
applications require no API changes to support persistent session
management. However, as mentioned above, applications storing
unserializable objects in their sessions require modification before switching
to persistent session management.

7.2.5.1 Enabling session persistence
The WebSphere administrator enables session persistence using the
administrative console by selecting WebSphere node (kenueno) ->
260 WebSphere V3.5 Handbook

Application Server (Test) -> Servlet Engine (MyServletEngine) ->
Session Manager as shown in Figure 145.

Figure 145. Enable persistent sessions

The administrator indicates a directodb connection by selecting WebSphere
node (kenueno) -> Application Server (Test) -> Servlet Engine
(MyServletEngine) -> Session Manager -> Persistence as shown in Figure
146 on page 262.
Chapter 7. Session support 261

Figure 146. Session Manager: Persistence tab

Select a datasource for the Session Manager to use by clicking Change - >
Datasource (SessionDS) -> Ok as shown in Figure 147.

Figure 147. Select a Datasource
262 WebSphere V3.5 Handbook

The administrator also provides the user ID and password required to access
the database associated with the datasource as shown in Figure 148.

Figure 148. Session Manager: Persistence tab

After defining the persistent datastore, the administrator may choose
additional tuning parameters for the persistent sessions, as shown in Figure
149 on page 264.
Chapter 7. Session support 263

Figure 149. Session Manager: Tuning tab

Using multirow sessions becomes important if the size of the session object
exceeds the size for a row, as permitted by the database vendor. If the
administrator requests multirow session support, the WebSphere Session
Manager breaks the session data across multiple rows as needed. This
allows WebSphere to support large session objects. Also, this provides a
more efficient mechanism for retrieving session contents under certain
circumstances. See 7.3.2, “Multirow persistent session management” on
page 290 for information on this feature.

Using cache lets the Session Manager maintain a cache of most recently
used sessions in memory. Retrieving a user session from the cache
eliminates a more expensive retrieval from the persistent database. The
264 WebSphere V3.5 Handbook

Session Manager uses a “least recently used” scheme for removing objects
from the cache. If the cache overflows, the Session Manager stores the
overflow sessions in the persistent session database. (Without persistent
session management activated, overflow sessions reside in an overflow
cache in memory, if overflow is permitted. See 7.2.4, “Local sessions” on
page 258 for more details.)

The Base Memory Size field defines the maximum number of sessions
permitted in memory. In essence, base memory size defines the size of the
in-memory session cache when using persistent sessions. Notice, this
attribute only concerns itself with the number of session objects in the cache.
Applications using extremely large session objects can overflow the available
memory before they overflow the cache.

7.2.6 IBM extensions
WebSphere provides extensions to the standard HTTPSession APIs. Using
these functions impacts the portability of the Web application to non-IBM
environments implementing the Servlet standard. Web application developers
must weigh the functional advantages of these APIs against the likelihood of
porting the application to a non-IBM servlet runtime environment.

7.2.6.1 Locking and releasing session transactions
WebSphere Application Server 3.5 supports the traditional locking strategy
used in Version 3.02. Also, WebSphere Application Server supports a new,
open locking strategy through applying e-fix PQ42166, or upgrading the
installation to PTF 3. The following sections describe both strategies in more
detail.

Traditional session locking strategy
Sometimes, particularly with persistent session management, the Web
application developer wants better control of locking and releasing sessions.
Normally, WebSphere locks a session as a result of the
HTTPRequest.getSession() method. Likewise, the session unlocks when the
HTTPSession service() method completes, and (if session persistence is
enabled) the Session Manager writes the updated session data to the
datastore.

Persistent session management sends sessions directly to the persistent
data store if the session cache overflows. Therefore, the Use Overflow
setting does not apply in persistent session management.

Note
Chapter 7. Session support 265

This class:

com.ibm.websphere.servlet.session.IBMSession

allows the Web application developer to release the session lock before the
service() methods completes. The application calls the sync() method to
release the lock. (If the application needs the lock again, it calls the
HTTPRequest.getSession() method again.)

Locking with e-fix PQ42166 or V3.5 PTF 3
With e-fix PQ42166 or planned WebSphere V3.5 PTF3, the Session Manager
no longer locks the session object in the persistent session store for exclusive
access by a servlet. Instead, the Session Manager retrieves the desired
session, releases the lock, and returns to the calling servlet. The session
object resides in the common session cache for a given WebSphere instance.

This change allows WebSphere to better support Servlet standard 2.2.
However, the change poses greater risk to Web applications accessing the
same session information concurrently. The most likely scenario for
contention involves multiple JSPs or servlets called from a frame set. In this
case, multiple threads within the Web site may attempt to access the user’s
session information on behalf of different servlets or JSPs.

Also, because of the concurrency change, WebSphere forces the enablement
of the session cache. The WebSphere instance uses a session cache
regardless of the setting on the Session Manager in the administrative
console.

7.2.6.2 Manual session update
WebSphere also supports a manual mode for session writing. Manual mode
allows the application to decide when a session should be stored persistently
(normally, WebSphere stores modified data after the servlet’s service()
method completes). In manual mode, the Session Manager only sends
changes to the persistent data store if the application explicitly requests a
save of the session information.

Manual mode requires that an application developer use the IBMSession
class for managing sessions. When the application invokes the sync()
method, the Session Manager writes the session information to the persistent
session database. If the servlet or JSP terminates without invoking the sync()
method, the Session Manager saves the contents of the session object into
the session cache (if caching is enabled), but does not update the session
object in the session database.
266 WebSphere V3.5 Handbook

This interface gives the Web application developer additional control of when
(and if) session objects go to the persistent data store. If the application does
not invoke the sync() method, and manual update mode is specified, the
session updates go only to the local session cache, not the persistent data
store. Web developers use this interface to reduce unnecessary writes to the
session database, and thereby to improve overall application performance.

All servlets in the application must perform their own session management in
manual mode.

7.2.6.3 Manual session update example
The following servlet, MyManualCount, drives the manual session update
example:

Figure 150. MyManualCount.java (1/3)

/*
* @(#)MyManualCount.java
*
*/
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.sun.server.http.*;
import java.util.*;

public class MyManualCount extends HttpServlet
{

public void init(ServletConfig config) throws ServletException
{

super.init(config);

}

public void service (HttpServletRequest req, HttpServletResponse
res) throws ServletException, IOException

{
ServletOutputStream out;
String count = null;
StringBuffer outBuff = new StringBuffer();
String saveLink =

"/webapp/TestApp/MyManualCount?MODE=SAVE";
String dropLink =

"/webapp/TestApp/MyManualCount?MODE=DROP";
Chapter 7. Session support 267

Figure 151. MyManualCount.java (2/3)

out = res.getOutputStream();

outBuff.append("<html><head><title>MyManualCount Session
Example</title></head><body bgcolor='#ffffff'>");

outBuff.append("<H1>Counter Value: </H1>");
outBuff.append("<p>");

String mode = req.getParameter("MODE");
// Use the IBM Session to hold the session information

// We need the IBM Session object because it has the manual
update method sync()

com.ibm.websphere.servlet.session.IBMSession session =
(com.ibm.websphere.servlet.session.IBMSession)req.getSession(true);

if (session == null)
outBuff.append("Cannot create session as expected!");

else {

//Check for existing counter value in the session object
Integer value =

(Integer)session.getValue("MyManualCount.COUNTER");
if (value == null){

value = new Integer(1);
outBuff.append("1 (from new session)");

}
else{

value = new Integer(value.intValue() + 1);
outBuff.append(value + " (from existing session)");

}

//Update the in-memory session stored in the cache
session.putValue("MyManualCount.COUNTER", value);

//The servlet saves the session if:
// 1) It's our first time in the servlet
// 2) We click the "Increment and Save" link on subsequent

requests
if ((mode==null) || (mode.equals("SAVE"))) {

System.out.println("Saving Session!");
session.sync();

}
}

268 WebSphere V3.5 Handbook

Figure 152. MyManualCount.java (3/3)

In this example, the servlet MyManualCount updates a counter kept in the
user’s session object. However, in this case, the user decides when to send
the updated count to the session database.

The WebSphere administrator must set up the Web application to use session
persistence, as described earlier in this chapter. The administrator must also
enable the Manual Update field on the Session Manager as shown in Figure
153 on page 270.

outBuff.append("

");
outBuff.append("<a href=");
outBuff.append(saveLink);
outBuff.append(">Increment and Save!");
outBuff.append("

");
outBuff.append("<a href=");
outBuff.append(dropLink);
outBuff.append(">Increment Only!");
outBuff.append("</body></html>");

out.println(outBuff.toString());
}

}

Chapter 7. Session support 269

Figure 153. Session Manager: Using Manual Update

Also, for the purposes of this example, the administrator should enable the
Using Cache feature (this feature is enabled by default).

In this example, the servlet only writes the user’s session information to the
persistent store if:

• The counter did not exist previously (the first time this user entered this
servlet). The initial value of the counter (1) is always saved to the
persistent session database.

• The user explicitly requests the counter to be saved to the persistent
session database by clicking the Increment and Save link from the HTML
page.
270 WebSphere V3.5 Handbook

The first time the user accesses the servlet by requesting the URL, and the
resulting HTML returns to the user:

Figure 154. Initial result from MyManualCount

If the user then selects the Increment Only! link from this page, the following
HTML returns:

Figure 155. Result of first Increment Only! request

If the user selects the Increment Only! link once again, the following HTML
returns:
Chapter 7. Session support 271

Figure 156. Result of second Increment Only! request

This result seems surprising at first. Even though the user has not requested
the session object be saved to the persistent session database, the counter
still increments. Keep in mind the session object remains in the session
cache (assuming the cache is enabled) even though its current state is not
represented in the persistent session database.

So how can the user be certain WebSphere saves the data when the
com.ibm.websphere.servlet.session.IBMSession sync() method is invoked?
In order to show this function, the user in this scenario makes three additional
requests to the servlet:

• Increment and Save!, which advances the counter to 4, and saves the
resulting session object to the persistent data store.
272 WebSphere V3.5 Handbook

Figure 157. Result of Increment and Save!

• Increment Only!, which advances the counter to 5 without saving to the
persistent data store.

Figure 158. Result of Increment Only! #1

• Increment Only!, which advances the counter to 6 without saving to the
persistent data store.
Chapter 7. Session support 273

Figure 159. Result of Increment Only! #2

The WebSphere administrator now stops and starts the application server in
which the servlet resides, and the user does not stop their browser (this
allows the browser to keep the session cookie with the user’s session ID
intact).

Figure 160. Stopping the application server
274 WebSphere V3.5 Handbook

Figure 161. Starting the application server

After stop and starting the application server, if the user does an Increment
Only! from their existing browser window, the following HTML returns from the
servlet:

Figure 162. Result of Increment Only! after restarting
Chapter 7. Session support 275

The user receives “5” back from the servlet because the last value saved to
the datastore was “4”. The subsequent updates the user made resided only in
the session cache, and did not survive the recycling of the application server.

7.2.6.4 Troubleshooting this example
Users may experience different results when using this example if:

• Session persistence is incorrectly enabled.

• The cookie timeout is set low (the cookie may timeout before the
application server starts, thus losing the session ID), or the example is
interrupted for a period of time exceeding the session timeout (the default
timeout is 30 minutes).

• The example is used in conjunction with clones.

• The user stopped and restarted the browser after starting the example,
and tried to continue. Stopping the browser, by default, destroys the
WebSphere cookie. Therefore, the user can no longer retrieve his session
information. Start the sample again to build new session data.

The servlet writes a message to the stdout file (if defined) every time the
servlet tries to save the session information.

7.2.7 Session clustering
Persistent session management also gives the site the ability to cluster
session data. Clustering allows a group of application server instances to
share sessions among themselves. So, regardless of which instance handles
the user’s request, that instance has access to the previous session update
for that user.

These instances share session objects by sharing a common persistent
session database. For all application server instances wanting to share
sessions, they must:

• Enable persistent session management for each instance.

• Each instance must use the same database table for storing sessions
(defined in the datasource object).

Cloning provides an easy way to create a cluster of application server
instances. After defining the initial application server to use persistent
session management, the administrator defines a model based on the
application server. All clones based on this model share the same session
database.
276 WebSphere V3.5 Handbook

7.2.7.1 Affinity routing and session clustering
Although several clustered instances may share a user’s session information
through a shared session database, many sites achieve better performance
by routing a user repeatedly to the same instance for all the user’s requests.
This technique is known as affinity routing, and, in conjunction with session
caching at each instance, may improve site performance (sometimes
dramatically).

Caching allows the instance to maintain the most current copy of the user’s
session object in memory, as well as storing it to the persistent store. If the
user returns to the same instance repeatedly, the instance does not need to
retrieve the user’s information from the database. The data already resides in
the in-memory cache. This eliminates unnecessary database interaction.

Of course, if the instance’s cache reaches its limit, the user’s session object
may be bumped from the cache. If the user’s session object no longer resides
in the cache, affinity routing no longer provides a performance benefit for the
user.

WebSphere provides affinity routing through the WebSphere HTTP server
plug-in, and uses affinity routing by default.

7.2.7.2 Failover and clustering
Clustering also provides a solution for instance failure. By definition, clustered
WebSphere Application Servers share a common persistent session
database. Therefore, instances in the cluster have the ability to see any
user’s session saved to persistent storage. If one of the instances fails, the
user may continue to use their session information with other instances in the
cluster. This is known as failover. Failover works regardless of whether the
nodes reside on the same machine or several machines.

After a failure, WebSphere redirects the user to another instance, and the
user’s affinity switches to this replacement instance as well. After the initial
read from the database, the replacement instance places the user’s session
object in the in-memory cache (assuming the cache has available entries).

In WebSphere V3.5.2 and later, applications using the Servlet 2.2 APIs
cannot participate in affinity routing with applications using Servlet 2.1
APIs.

Note
Chapter 7. Session support 277

Figure 163. Failover with session affinity routing enabled

7.2.7.3 Clustering and failover example
This example uses the servlet from the previous example on manual servlet
update. Note that caching and failover do not require the manual servlet
update mode to function, but the example uses manual update as a
convenient way to demonstrate clustering and failover.

The example also requires the WebSphere administrator to:

User A SessionSession
Database

User A

Affinity
Routing

Session
Cache

User A
User C
User Z

User D
User E
User K

User A SessionSession
Database

User A

New
Affinity
Routing

Session
Retrieved

and
Cached

User D
User E
User K
User A
278 WebSphere V3.5 Handbook

• Create an application server using persistent session management and
manual update mode, as described earlier

• Define the MyManualCount servlet to the application server, as in the
previous example

• Create a model of this application server (See WebSphere Scalability:
WLM and Clustering using WebSphere Application Server Advanced,
SG24-6153)

• Create a clone based on this model (See WebSphere Scalability: WLM
and Clustering using WebSphere Application Server Advanced,
SG24-6153).

The final result should look something like this:

Figure 164. Administrative console with two application servers

Two identical application servers, Test (on which the model for the clone was
created), and MyTestClone, an identical clone of the Test Application Server,
Chapter 7. Session support 279

exist on the same node. Again, both use persistent session management
because the administrator defined these settings for the Test application
server before creating a model based on it. The clone, created from the
model, picks up the attributes of the original Test application server.

Now, start the model. This should cause both Test and MyTestClone to start.

Figure 165. Administrative console after starting the model

Now, stop MyTestClone.

After stopping the clone, the administrative console looks like this:
280 WebSphere V3.5 Handbook

Figure 166. Administrative console after stopping the clone

Now from the browser, request the MyManualCount servlet as in the previous
example, which displays this HTML:

Figure 167. Result of first request to MyManualCount
Chapter 7. Session support 281

Now, make the following series of requests to the servlet via the HTML page:

• Increment and Save! which moves the count to “2” and saves it to the
persistent session database.

Figure 168. Result of Increment and Save!

• Increment Only! which increments the count to “3”, but does not save it to
the persistent session database.

Figure 169. Result of Increment Only!

• Increment Only! which increments the count to “4”, but does not save it to
the persistent session database.

The HTML returned for the last step should look like this:
282 WebSphere V3.5 Handbook

Figure 170. Result after second Increment Only! request

Now, stop the Test application server as shown in Figure 171.

Figure 171. Stopping the Test application server
Chapter 7. Session support 283

After the Test application server stops, start the MyTestClone clone as shown
in Figure 172.

Figure 172. Starting the MyTestClone

The administrative console should look like this after stopping the Test
application server, and starting the clone:
284 WebSphere V3.5 Handbook

Figure 173. Administrative console after completing stop/start

Now, select Increment Only! from the browser. The following HTML returns:

Figure 174. Result of Increment Only! after stop/start procedure
Chapter 7. Session support 285

The servlet returns “3”. This indicates the user’s request went to the
MyTestClone instance when the Test instance was no longer available. The
servlet in the MyTestClone instance requested the user’s session data from
the shared persistent store. The session object contained “2” for its counter,
and the servlet running in MyTestClone incremented this value and returned it
to the user.

If the user selects Increment Only! again, the count increases as shown in
Figure 175.

Figure 175. Result of additional Increment Only!

This shows the instance MyTestClone has an entry in the session cache for
this user now. Of course, if the user selects Increment and Save!, the servlet
running in MyTestClone increments the counter, and saves the session object
to the persistent session database.

7.2.7.4 Debugging the example
The same debugging tips expressed in the manual update section also apply
to this example. Also, double-check the following:

• The administrator must complete the application server setup before
creating the model.

• The administrator must stop and start the servers involved in the correct
order as specified in the example.

This example requires fix PQ42166 to function properly.

Note
286 WebSphere V3.5 Handbook

7.3 Session performance considerations

This section includes guidance for developing and administering scalable,
high-performance Web applications using WebSphere Application Server
Session support.

7.3.1 Session size
Large session objects pose several problems for a Web application. If the site
uses session caching, large sessions reduce the memory available in the
WebSphere instance for other tasks, such as application execution.

For example, assume a given application stores 1 MB of information per user
session object. If 100 users arrive over the course of 30 minutes, and the
session timeout remains at 30 minutes, the WebSphere Application Server
instance must allocate 100 MB just to accommodate the newly arrived users
in the session cache. (Note this number does not include previously allocated
sessions not yet timed out. The actual memory required by the session cache
could be considerably higher than 100 MB.)

1 MB per user Session * 100 users = 100 MB

Web developers and administrators have several options for reducing the
memory footprint of the session cache:

• Reduce the size of the session object

• Reduce the size of the session cache

• Add additional instances

• Increase the memory available

• Invalidate unneeded sessions

• Reduce the session timeout interval

7.3.1.1 Reduce session object size
To implement the first option, Web developers must carefully consider the
information kept by the session object. Removing information easily obtained
or easily derived helps keep the session object small. Also, rigorous removal
of unnecessary, unneeded, or obsolete data from the session also reduces
the size of the memory footprint.

7.3.1.2 Reduce session cache size
As discussed earlier in this chapter, the Session Manager allows
administrators to define a smaller session cache to reduce the cache’s
memory footprint. By default, the session cache holds 1000 session objects.
Chapter 7. Session support 287

By lowering the number of session objects in the cache, the administrator
reduces the memory required by the cache.

However, if the user’s session is not in the cache, the WebSphere must
retrieve it from either the overflow (for local caching), or the session database
(for persistent sessions). If the Session Manager must retrieve persistent
sessions frequently, the retrievals may impact overall application
performance.

WebSphere maintains overflowed local sessions in memory, as discussed in
7.2.4, “Local sessions” on page 258. Local session management with cache
overflow enabled allows an “unlimited” number of sessions in memory. In
order to limit the cache footprint to the number of entries specified in Session
Manager, the administrator should use persistent session management, or
disable the overflow.

7.3.1.3 Add additional instances
WebSphere also gives the administrator the option of creating additional
instances (clones). Creating additional instances spreads the demand for
memory across more JVMs, thus reducing the memory burden on any
particular instance. Depending on the memory and CPU capacity of the
machines involved, the administrator may add additional instances within the
same machine. Alternatively, the administrator may add additional machines
to form a hardware cluster, and spread the instances across this cluster.

7.3.1.4 Increase available memory
The WebSphere allows the administrator to increase an instance’s heap size.
By default, WebSphere allocates 128 MB as the maximum heap size.
Increasing this value allows the instance to obtain more memory from the
system, and thus hold a larger session cache.

When using local session management without specifying the Allow
Overflow property, a full cache will result in the loss of user session objects.

Note

When configuring a session cluster, affinity routing provides the most
efficient strategy for user distribution within the cluster, even with session
persistence enabled. With clones, the WebSphere plug-in provides affinity
routing among clone instances.

Note
288 WebSphere V3.5 Handbook

A practical limit exists, however, for an instance’s heap size. The machine
memory containing the instance needs to support the heap size requested.
Also, if the heap size grows too large, the length of the garbage collection
cycle with the JVM may impact overall application performance (sometimes
quite dramatically).

7.3.1.5 Invalidate unneeded sessions
If the user no longer needs the session object (if they went through the logoff
process for the site, for example), the session becomes an excellent
candidate for invalidation. Invalidating a session removes it from the session
cache, as well as from the session database.

If multiple applications share the same session context, and the opportunity
exists for multiple applications to share the same users, invalidating a session
object may impact other applications still using data contained in the session
object.

A safer strategy calls for applications to remove their data from the session
object and leave the object to time out. This minimizes the session object
footprint, and leaves the session object in case other applications are actively
using it.

7.3.1.6 Reduce the session timeout interval
By default, each user receives a 30-minute interval between requests before
the Session Manager invalidates the user’s session. Not every site requires a
session timeout interval this generous. By reducing this interval to match the
requirements of the average site user, the Session Manager purges the
session from the cache (and the persistent store, if enabled) more quickly.

Avoid setting this parameter too low and frustrating users. The administrator
must take into account a reasonable time for an average user to interact with
the site (read returned data, fill out forms, etc.) when setting the interval.
Also, the interval must represent any increased response time during peak
times on the site (such as heavy trading days on a brokerage site, for
example).

Finally, in some cases where the persistent session database table contains a
large number of entries, frequent execution of the timeout scanner reduces
overall performance. In cases where the database contains many session
entries, avoid setting the session timeout so low it triggers frequent,
expensive scans of the persistent session database for timed-out sessions.
Chapter 7. Session support 289

7.3.2 Multirow persistent session management
When multiple Web applications share sessions, or when a session contains
multiple objects accessed by different servlets/JSPs in the same Web
application, multirow session support provides a mechanism for improving
performance. Multirow session support stores session data in the persistent
session database by Web application and value. Table 8 shows a simplified
representation of a multi-row database table.

Table 8. Simplified multirow session representation

In this example, if the user visits the ShoeStore application, and the servlet
involved needs her first name, the servlet retrieves this information through
the Session API. The Session Manager brings into the session cache only the
value requested. Thus the ShoeStore.Big.String item remains in the
persistent session database until the servlet requests it. Likewise, the entries
for the AirTravel Web application remain in the persistent session data store if
the user confines her visit to the ShoeStore application. This saves time both
in reducing the serialization overhead for data the application does not use,
as well as retrieving unnecessary information.

After the Session Manager retrieves the items from the persistent session
database, these items remain in the in-memory session cache. The cache
accumulates the values from the persistent session database over time as the
various servlets and Web applications request them. With session affinity
routing enabled, the user returns to this same cached session instance
repeatedly. This reduces the number of reads against the persistent session
database, and gives the Web application better performance.

Likewise, if a servlet or JSP modifies values in a session, the Session
Manager only writes out the individual values changed rather than the entire
session (this is true for both manual and automatic update modes). The

Session ID Web
application

Property Small
value

Large
value

DA32242SSGE2 ShoeStore ShoeStore.First.Name “Alice”

DA32242SSGE2 ShoeStore ShoeStore.Last.Name “Smith”

DA32242SSGE2 ShoeStore ShoeStore.Big.String “A big
string....”

DA32242SSGE2 AirTravel AirTravel.Frequent.Flyer
.ID

“1234”

DA32242SSGE2 AirTravel AirTravel.Big.String “Another big
string....”
290 WebSphere V3.5 Handbook

servlet or JSP must use putValue() to save the modified value in the session.
Otherwise the Session Manager does not save modifications made after a
getValue() without a corresponding putValue().

Even with multirow session support, Web applications perform best if the
overall contents of the session objects remain small. Large values in session
objects require more time to retrieve from the persistent session database,
generate more network traffic in transit, and occupy more space in the
session cache after retrieval.

Multirow session support provides a good compromise for Web applications
requiring larger sessions, or shared sessions. However, single-row persistent
session management remains the best choice for Web applications with small
session objects. Single-row persistent session management requires less
storage in the database, and requires fewer database interactions to retrieve
a session’s contents (all of the values in the session are written or read in one
operation). This keeps the session object’s memory footprint small, as well as
reducing the frequency of network traffic between the WebSphere and the
persistent session database.

7.3.3 Managing your session connection pool
When using persistent session management, the Session Manager interacts
with the defined database through a WebSphere Application Server
datasource. As described in a previous example, the administrator defines
the datasource to the Session Manager for use in storing sessions
persistently.

Each datasource controls a set of database connections known as a
connection pool. By default, the datastore opens a pool of no more than 10
connections. The maximum pool size represents the number of simultaneous
accesses to the persistent session database available to the Session
Manager.

For high-volume Web sites, the default settings for the persistent session
datasource may not be sufficient. If the number of concurrent session
database accesses exceeds the connection pool size, the datasource queues

Avoid circular references within sessions if using multirow session support.
The multirow session support does not preserve circular references in
retrieved sessions.

Note
Chapter 7. Session support 291

the excess requests until a connection becomes available. Datasource
queueing can impact the overall performance of the Web application
(sometimes dramatically).

For best performance, match the connection pool size with the maximum
need of the Session Manager. If at peak times the Session Manager handles
40 simultaneous database requests for session objects, set the connection
pool maximum to support this.

However, large connection pools do not necessarily improve application
performance. Each connection represents memory overhead. A large pool
decreases the memory available for WebSphere to execute applications.
Also, if database connections are limited because of database licensing
issues, the administrator must share a limited number of connections among
other Web applications requiring database access as well.

As discussed above, affinity routing combined with session caching reduces
database read activity for session persistence. Likewise, manual session
update and multi-row persistent session management reduce unnecessary
writes to the persistent database. Incorporating these techniques may also
reduce the size of the connection pool required to support session
persistence for a given Web application.

7.4 Alternatives to session support: cookies

A cookie, as discussed earlier, is a piece of data passed between a Web
server and a Web browser. The Web server sends a cookie that contains data
it requires the next time the browser accesses the server. This is one way to
maintain state between a browser and a server.

Sites sometimes use cookies when mixed applications reside at the site (for
instance, servlets and CGI scripts). However, storing all of a user’s state
information in a cookie raises concerns about securing the cookie (if sensitive
information is stored inside), and the size of the data returned (since the data
travels roundtrip between the browser and server, the size of the cookie can
impact the user’s perceived response time. Large cookies can also cause

The persistent session database performs best if it is not shared with other
databases, such as the WebSphere administrative database. This
eliminates contention for resources, such as connections, which impacts
performance.

Note
292 WebSphere V3.5 Handbook

network congestion). Also, this solution presents problems if the user does
not, for whatever reason, accept cookies.

WebSphere best practices recommend the use of sessions as defined by the
session standard. (For further information on cookie management, refer to
Servlet and JSP Programming with IBM WebSphere Studio and VisualAge for
Java, SG24-5755.)
Chapter 7. Session support 293

294 WebSphere V3.5 Handbook

Chapter 8. Servlet V2.2 in WebSphere V3.5.2

WebSphere V3.5.2 introduced support for Servlet API V2.2. In this chapter
we describe the new features and behaviors introduced in that version. In
summary these new features are:

1. You can now configure a servlet engine to offer either compliance with the
Servlet API V2.2 standard or compatibility with the API as offered in
WebSphere V3.5.

2. WebSphere V3.5.2 introduces additional configuration options that arise
from support for the Servlet API V2.2.

3. The Servlet API V2.2 defines a Web Application Archive (WAR) file format.
WAR files contain the set of artifacts (for example HTML files, Java
classes and libraries) that comprise an application along with a
deployment descriptor that defines how the application is to be configured.
WebSphere will configure a Web application from the contents of a WAR
files.

In the following sections we describe these new features and their
implications.

8.1 WebSphere support for Servlet API V2.2

From the coder’s perspective the Servlet API V2.2 may seem to be a
relatively minor extension of the API offered by WebSphere V3.5. (In contrast
the JavaServer Pages API V1.1 also enabled by WebSphere V3.5.2 has very
significant new functionality.) The V2.2 API does have some useful additional
functionality and overall the V2.2 specification is more complete than the V2.1
specification, and V2.2 provides many important clarifications of behavior.

WebSphere V3.5.2 allows you to configure servlet engines to operate in
either of two modes: WebSphere V3.5 Compatibility Mode and Servlet
2.2/JSP 1.1 Full Compliance Mode. For brevity we will refer to these modes
as Compliance Mode and Compatibility Mode respectively.

The interface of the Compliance Mode API is as defined by the Servlet API
V2.2, with some exceptions discussed later. It is a super-set of that offered in
WebSphere V3.5 and 3.5.1; it has additional methods, but all V3.5 methods
are still available.

At first sight you might then expect that a V3.5 application would function
correctly in Compliance Mode. However, there are some differences in
© Copyright IBM Corp. 2001 295

semantics between the V3.5 and Compliance Mode APIs. These differences
are explained in 8.3.3, “Semantic differences” on page 301.

These semantic differences explain the need for Compatibility Mode. In this
mode the existing V3.5 behavior is provided and hence applications coded in
a WebSphere V3.5 environment will be deployable in V3.5.2 provided that
you use a servlet engine running in Compatibility Mode.

You should also note that although the configuration options of Compliance
Mode and Compatibility Mode are the same there are some differences
between the meaning between the two modes. All Compatibility Mode options
that were available in V3.5 will behave as V3.5 did.

A servlet engine running in Compatibility Mode will behave like V3.5 for all
existing API calls. However, the additional methods offered in Compliance
Mode are also available. Hence programs coded to the new API will deploy
successfully in a servlet engine in either mode.

Table 9 and Table 10 give examples of these differences. More detailed
explanations of the meanings of the specific differences are given in the
following sections.

Table 9. API differences

Table 10. Behaivior differences

Method Compatibility Mode Compliance Mode

getCharacterEncoding() If the client request did not
send any character
encoding data, the default
encoding of the server
JVM is returned.

If the client request did not
send any character
encoding data, null is
returned.

getMimeType() If the file extension does
not map to a valid MIME
type, the MIME type
“www/unknown” is
returned.

If the file extension does
not map to a valid MIME
type, null is returned.

Function Compatibility Mode Compliance Mode

Default content type on
response buffer reset

On response buffer reset,
the content type of the
request is reset to
“text/html”.

On response buffer reset,
the content type is cleared
and not set to a default
value.
296 WebSphere V3.5 Handbook

8.2 Selecting Servlet V2.2 support

When you create a servlet engine you select either Compatibility or
Compliance Mode. See 5.5.2, “Define a servlet engine” on page 150 for more
details. You can determine the mode of a particular servlet engine by
selecting it in the Topology tab, and then clicking the General tab as shown in
Figure 176. The default is Compatibility Mode.

Figure 176. Servlet engine modes

HTTP session scoping Values placed in the HTTP
session object have global
scope across all Web
applications.

Values placed in the HTTP
session object have a
scope limited to the Web
application that created the
value.

Function Compatibility Mode Compliance Mode
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 297

You can change the configuration of an existing servlet engine by selecting
the appropriate mode, clicking Apply and then restarting the application
server. However you should note that there are significant differences
between the two modes. In general you will need to adjust the configuration of
an application that runs correctly in Compliance Mode before it will run
correctly in Compatibility Mode, and vice versa. Depending upon which
portions of the Servlet API your application uses, you may also need to make
code changes.

The configuration changes required in moving between the two modes are
described in 8.3.3, “Semantic differences” on page 301. The servlet V2.2 API
changes are discussed in 8.3, “Comparison of the Servlet API versions” on
page 298 and this section also describes those APIs whose behaviors
change between the two modes.

8.3 Comparison of the Servlet API versions

The following sections describe the new interfaces available in Compliance
Mode and the semantic differences between the two modes.

8.3.1 New interfaces in Servlet API V2.2
We describe new API features in the following sections. You should notice
that in a few cases new interfaces specified in the Servlet API V2.2 are
intended to replace existing interfaces. In those cases existing methods are
marked as deprecated in the specification and you should plan to migrate to
the new methods specified in the standard.

8.3.1.1 Response buffering
The ServletReponse interface now includes the methods getBufferSize(),
setBufferSize(), flushBuffer(), isCommitted() and reset(). These allow control
of the buffering of responses from servlets and you may be able to exploit
these facilities to improve the efficiency of your application.

In WebSphere V3.5.x, WebSphere provided response buffering control,
through a very similar interface in the WebAppDispatcherResponse class.
You should plan to migrate any application code that uses this class to the
new, standard interface.

8.3.1.2 Getting a RequestDispatcher
Compliance Mode offers two new methods for obtaining a RequestDispatcher
in addition to the getRequestDispatcher() method of the ServletContext. That
method required an absolute URL as the argument.
298 WebSphere V3.5 Handbook

The RequestDispatcher can be specified as URL relative to the servlet by
calling the new getRequestDispatcher() method offered by the
ServletRequest.

A RequestDispatcher can also be obtained by name by using the new
getNamedDispatcher() method of the ServletContext.

8.3.1.3 Application level initialization parameters
Compliance Mode permits servlet initialization parameters to be specified at
the Web application level. You will therefore no longer need to duplicate the
specification of commonly used parameters.

Servlets access these parameters by using the new ServletContext methods
getInitParameter() and getInitParameterNames().

In WebSphere, the ServletContext Init parameters are handled as Web
Application Group Attributes. Therefore, in the administrative console, Web
Application Init Parameters are set in the Group Attributes table. The Servlet
2.2 API specification refers to these initialization parameters as a
<context.param> in the WAR DTD.

8.3.1.4 Attribute access naming change
The getValue() family of methods for accessing attributes in an HttpSession
are now replaced by the more consistent getAttribute() family. The old
methods are still present in the API but are deprecated. Applications should
plan to migrate from getValue(), getValueNames() and setValue() to
getAttribute(), getAttributeNames() and setAttribute() respectively. The new
method removeAttribute() is also now available.

8.3.1.5 Additional Request functionality
Additional methods are provided for requests in the HttpServletRequest
interface or its parent the ServletRequest.

HttpServletRequest now offers the method getRequestHeaders() that returns
an enumeration of all headers matching a specified name. The Servlet API
V2.2 specification gives Cache-Control as a plausible example of a header
element that might be duplicated.

HttpServletRequest also offers two additional convenience methods,
getIntHeader() and getDateHeader() for accessing commonly used non-string
header types.
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 299

You can use the getContextPath() method of the HttpServletRequest interface
offers to obtain the Web application Web path for a servlet. For example, a
Web application might have a Web path of:

/webapp/itso

and a servlet configured in that Web application might be associated with the
servlet Web path:

/webapp/itso/request/resign

The HttpServletRequest API allows you to extract the various portions of the
request as shown in Table 11.

Table 11. HttpServletRequest request APIs

ServletRequest now offers the getLocale() method allowing the retrieval of
the client, locale and the isSecure() method to indicate whether or not the
request was transmitted via a secure transport such as HTTPS.

8.3.1.6 Response Headers
The HttpSerlvetResponse interface offers the new method addHeader()
allowing you to create of multiple headers with the same name. Also you can
use convenience methods addIntHeader(), and addDateHeader() for
non-String headers.

8.3.1.7 Servlet Name
The ServletConfig interface now offers the method getServletName()
interface to allow a servlet to obtain the name by which it is known to the
system.

8.3.2 Optional Servlet APIs not supported
Some optional Java Servlet API V2.2 features are not supported. The
unsupported features are:

• Role-based security, including the HttpServletRequest methods
isUserInRole() and getUserPrinciple().

• JNDI-based access to configuration information in the servlet
environment.

Method Result New in Servlet V2.2?

getRequestURI() /webapp/itso/request/resign No

getServletPath() /request/resign No

getContextPath() /webapp/itso Yes
300 WebSphere V3.5 Handbook

8.3.3 Semantic differences
There is one major difference in operation between the two modes. This
concerns the scope of an HttpSession. There are also some minor
differences that you can accommodate by correctly configuring WebSphere.
We mention these configuration changes here, in a section that is largely
considering the specifics of coding APIs, because faulty configuration will
probably result in symptoms that appear similar to those caused by coding
defects.

8.3.4 HTTP session scope
HttpSessions are described in detail in Chapter 7, “Session support” on page
245. For the purposes of the current discussion we can simply note that if a
user browses a Web site and visits the URLs of the following two servlets:

http://ahost/webapp/myapp/servlet1

and

http://ahost/webapp/myapp/servlet2

then servlet1 can place a value in the HttpSession using the setAttribute()
API method and servlet 2 will be able to retrieve that value using the
getAttribute(). A contrived example of this would be servlet1 responding to a
request to puchase an item by adding a value to a Shopping Cart object
stored in the HttpSession and servlet2 computing the value of the purchases
found in that object.

You should note that the user might well have visited many other servlet
pages between the calls to servlet2 and servlet2. The differences we are
discussing here concern the scope of the session; which of those other
servlets can access the data prepared by servlet1?

We are thinking about only requests directed to the same WebSphere
domain. To demonstrate some of the issues we constructed a single
WebSphere domain with one node. We created two virtual hosts and three
application servers, each with a servlet engine. We ran two servlet engines in
Compatibility Mode and one in Compliance Mode. We created two Web
applications in each servlet engine and deployed a servlet into each Web
application. This configuration is summarized in Table 12.

Table 12. Test configuration

Host Servlet
Engine Mode

Web Application
Name

Servlet Name

HostOne Compatibility HostOneAppOne servlet1
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 301

We then could invoke the servlets using URLs such as:

http://HostOne/webapp/hostOneAppOne/servlet1
http://HostTwo/webapp/hostTwoAppFour/servlet6

to invoke servlet1 and servlet6 respectively.

We put code to display and update some session state in the body of all the
servlets. The code we used is shown in Figure 177 on page 303.

HostOneAppTwo servlet2

HostTwo Compatibility HostTwoAppOne sevlet3

hostTwoAppTwo servlet4

HostTwo Compliance hostTwoAppThree servlet5

hostTwoAppFour servlet6

Host Servlet
Engine Mode

Web Application
Name

Servlet Name
302 WebSphere V3.5 Handbook

Figure 177. Code for HttpSession data update and display

The code shown in Figure 177 attempts to retrieve a value from the session. If
no value exists then it prints a message and creates a new value in the
session. If a value does exist, the servlet displays it and updates the session
with a modified value.

8.3.4.1 Compatibility Mode behavior
Using this code we could see that in Compatibility Mode servlets in different
Web applications on the same host could access each other’s session data.
That is, servlet1 would see servlet2’s updates, and vice versa. You can see
this in effect in Figure 178 on page 304. The value stored by serlvet1 is seen
and updated by serlvet2; the result is then visible in serlvet1.

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html");
PrintWriter os = res.getWriter();
os.println("<html>");
os.println("<head><title>Session Tester</title></head>");
os.println("<body>");

HttpSession session = req.getSession(true);
Integer value = (Integer)session.getAttribute("Value");

String time = DateFormat.getTimeInstance().format(new Date());

if (value == null) {

session.setAttribute("Value", new Integer(0));
os.println("Time = " + time + ", Created new session value
");

} else {
os.println("Time = " + time + ", Value was " + value + "
");

value = new Integer(value.intValue() + 1);

session.setAttribute("Value", value);
}

os.println("</body></html>");
}

Chapter 8. Servlet V2.2 in WebSphere V3.5.2 303

Figure 178. Compatibility Mode - session maintained across Web applications

Web app:
HostOneAppOne

Servlet:
servlet1

Web app:
HostOneAppOne

Servlet:
servlet1

Web app:
HostOneAppOne

Servlet:
servlet1

Web app:
hostOneAppTwo

Servlet:
servlet2

Web app:
HostOneAppOne

Servlet:
servlet1
304 WebSphere V3.5 Handbook

We see the same behavior for our other pair of Compatibility Mode Web
applications; that is, servlet3 and servlet4 also shared a common state.

However, servlets on different virtual hosts did not share session state, so,
the servlet1/servlet2 pairing and the servlet3/servlet4 pairing were
independent. We show this in Figure 178 on page 304.

In Figure 179 on page 306 you can see the sessions used by serlvet1 and
servlet4 updating independently.

To summarize: in Compatibility Mode the scope of session data is not
confined to a single Web application, but rather to a virtual host.
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 305

Figure 179. Compatibility Mode - sessions are not shared across virtual hosts

Virtual Host:
HostTwo
Web app:
HostTwoAppTwo
Servlet:
servlet4

Virtual Host:
HostOne
Web app:
HostOneAppOne
Servlet:
servlet1

Virtual Host:
HostTwo
Web app:
HostTwoAppTwo
Servlet:
servlet4

Virtual Host:
HostOne
Web app:
HostOneAppOne
Servlet:
servlet1

Virtual Host:
HostTwo
Web app:
HostTwoAppTwo
Servlet:
servlet4
306 WebSphere V3.5 Handbook

8.3.4.2 Compliance Mode behavior
The Servlet API V2.2 specifically requires that session scope should be
limited to the Web application. WebSphere complies with that requirement
and so servlet5 and servlet6 did not access each other’s state, as shown in
Figure 180.

Figure 180. Compliance Mode - sessions are not shared between Web applications

Web app:
HostTwoAppThree

Servlet:
servlet5

Servlet:

Web app:
HostTwoAppFour

Servlet:
servlet6

Web app:
HostTwoAppFour

servlet6

Web app:
HostTwoAppThree

Servlet:
servlet5
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 307

We speculate that users of WebSphere in versions prior to V3.5.2 may have
taken a fine-grained approach to deploying their systems and used
HttpSession state to communicate between code running in different Web
applications. In such a situation significant changes in deployment practice or
in code would be required due to the Servlet API 2.2 specification.

8.3.5 Session Cookie Names
We discovered an unexpected interaction between servlet engines running in
Compliance Mode and servlet engines running in Compatibility Mode on the
same virtual host, for example between servlet4 and servlet5 in Table 12.

Servlet 5 is running in a Compliance Mode servlet engine and so its session
scope is limited to its Web application. So as expected servlet4, running in a
different Web application, cannot see servlet5’s session data, and vice versa.

Figure 181 on page 309 shows the unexpected effect. You see servlet5
displaying an already established session value. The figure then goes on to
show how the two servlets’ sessions interact.
308 WebSphere V3.5 Handbook

Figure 181. Session interference between Compatibility Mode and Compliance Mode

ServletEngineMode:
Compatibility
Web app:
HostTwoAppTwo
Servlet:
servlet4

ServletEngineMode:
Compliance
Web app:
HostTwoAppThree
Servlet:
servlet5

ServletEngineMode:
Compliance
Web app:
HostTwoAppThree
Servlet:
servlet5

ServletEngineMode:
Compatibility
Web app:
HostTwoAppTwo
Servlet:
servlet4

ServletEngineMode:
Compliance
Web app:
HostTwoAppThree
Servlet:
servlet5
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 309

The unexpected effect was that when serlvet4 created its session data
servlet5s session data was destroyed. The same effect occurred when
servlet5 created its session data, servlet4’s data was destroyed.

We avoided this problem by changing the value of the cookie name used by
the Session Manager for the servlet engine: Session Manager->Cookies
->Cookie Name as shown in Figure 182.

Figure 182. Session Manager: Cookie Name

Now when the session is established different cookie names are used by the
two servlet engines for session management. We can verify this enabling the
browser capability to display cookie values.

Figure 183 on page 311, shows the browser receiving two different cookie
IDs, sessionid from one and se3sessionid from the other.
310 WebSphere V3.5 Handbook

Figure 183. Different cookie names from different servlet engines

Once we had ensured that the cookie names were unique our servlets ran as
expected. You can see the effect in Figure 184 on page 312. You can see the
two sets of session data being modified independently.

This interaction of the sessions is troublesome because you can trigger it
simply by creating servlet engines with default values. All servlet engines will
use the same default value, sessionid, unless you explicitly change it in the
Session Manager configuration.

ServletEngineMode:
Compatibility

Web app:
HostTwoAppTwo

CookieName:
sessionid

ServletEngineMode:
Complience

Web app:
HostTwoAppThree

CookieName:
se3sessionid
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 311

Figure 184. After setting cookie names, Compliance and Compatibility Modes operate independently

ServletEngineMode:
Compatibility

Web app:
HostTwoAppTwo
Servlet:
servlet4

ServletEngineMode:
Compliance

Web app:
HostTwoAppThree
Servlet:
servlet5

ServletEngineMode:
Compliance

Web app:
HostTwoAppThree
Servlet:
servlet5

ServletEngineMode:
Compatibility

Web app:
HostTwoAppTwo
Servlet:
servlet4

ServletEngineMode:
Compliance

Web app:
HostTwoAppThree
Servlet:
servlet5
312 WebSphere V3.5 Handbook

8.3.6 Web Path mapping (request mapping)
Servlet 2.2 clarifies exactly how requests for resources are to be mapped to
the appropriate resource. Request mapping is to proceed in the following
manner:

1. Exact match

2. Longest wildcard match

3. Matching extension

4. Default servlet (defined by /URL)

To specify the URL, the Servlet 2.2 specification allows the following syntax:

1. A string beginning with ‘/’ and ending with ‘/*’ specifies a wild card match.

2. A string beginning with ‘*.’ specifies an extension mapping.

3. All other strings are used as exact matches.

4. A string containing only the ‘/’ character indicates the default servlet for
the Web application.

When you define a servlet in a servlet engine you specify one or more Web
paths by which it will be invoked. For example we used

http://HostOne/webapp/hostOneAppOne/servlet1

to invoke servlet1 in the example 8.3.4, “HTTP session scope” on page 301.
We are aware of a common idiom of setting up a dispatcher servlet. Such a
servlet might be configured to respond to all requests of the form:

http://HostOne/webapp/hostOneAppOne/dispatcher/aRequest

where the last portion of the URL is used by the dispatcher to determine the
required processing.

When you specify such a mapping of a set of requests to a single servlet you
use a different specification format in Compliance Mode from the one you use
in Compatibility Mode. The difference is minor and obvious but we labor the
point in the hope of sparing some teams a little grief.

In Compliance Mode you must specify an explicit wildcard character at the
end of the mapping string, whereas in Compatibility Mode the wildcard is
implicit. So in your Servlet -> General -> Servlet Web Path List, you specify
the path in Compliance Mode as webapp/hostOneAppOne/dispatcher/* as shown
in Figure 185 on page 314.
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 313

Figure 185. Web path mapping

Whereas in Compatibility Mode (and existing V3.5 installations), it will be
simply be webapp/hostOneAppOne/dispatcher/ with no explicit * wildcard
specification.

8.3.7 Other API differences
There are three other minor differences between Compatibility Mode and
Compliance Mode:

1. The HttpResponse method getCharacterEncoding() will return a default
value in Compatibility Mode and a null in Compliance Mode.

2. In Compliance Mode a reset() of the response buffer clears the content
type. In Compatibility Mode it sets it to a default of text/null.

3. The MimeFilterInfo method getMimeType() returns a default of
“www/unknown” in Compatibility Mode and a null in Compliance Mode.

8.4 Multiple error pages

The Servlet API V2.2 defines facilities to let you specify error handling for
each Web application. You can specify:
314 WebSphere V3.5 Handbook

1. A default error page, and

2. Specific error pages for error conditions, for example an error page to be
displayed when a particular status code is produced, or a particular Java
exception is thrown.

8.4.1 Properties introduction
You may configure the error pages in the WebSphere Administrative Console
on the Advanced tab of the Web Application properties panel. Default Error
Page is a field and Error Pages is a list.

Both properties should specify the fully qualified URL of the Web page to
display when in the following cases:

• sendError()

• sendRedirect()

• Uncaught exception thrown by servlet

The Web page should be a servlet or JSP file. It is possible that your error
page has only static content and so you might expect to create a file of type
HTML, with extension .html. It will be preferable to give your file an extension
of .jsp. There are two reasons for this:

1. Often, production sites will have all HTML files served by the Web Server,
they do not enable the File Serving servlet in the application server and so
WebSphere cannot serve .html files. For clarity it may be preferable to
maintain this separation of concerns.

2. The file serving servlet does not handle all types of HTTP requests.

In the error pages properties list, you may specify special Web pages when a
special status code or exception occurs. For example, you may specify
different Web pages to display when statuses 404 and 500 occur, or you may
specify different Web pages to display when exceptions such as
javax.servlet.ServletException and java.io.IOException are thrown.

If a request causes both a status code to be generated and an exception to
be thrown, and both these errors have specified error pages, then
WebSphere uses the error page configured for the status code.

If an error occurs that is not included in the list of error pages, the default
error page will be displayed.
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 315

8.4.2 Test case for error pages
In this section we describe the test case we produced to explore the error
page facilities.

8.4.2.1 Scenario of the test case
In this test case, we will use the Web application default_app, which is
included in the default configuration of WebSphere. We will configure
default_app to handle different errors with different error pages as shown in
Table 13.

Table 13. Error pages setting

We have a servlet named TestServlet to produce the different error
conditions. We select the error code by specifying a value for a parameter “e“,
as shown in Figure 186 on page 317. We need three JSP files to handle the
different errors we specified. Any other errors are handled by ErrorReporter.
This is an internal servlet that is added to default_app by default.

Error(Status Code or Exception) Error Page

404 /error/err404.jsp

java.io.IOException /error/errIOException.jsp

javax.servlet.ServletException /error/errServletException.jsp

other /ErrorReporter
316 WebSphere V3.5 Handbook

Figure 186. Source code of servlet TestServlet

8.4.2.2 Configuration for the test case
On the Advanced tab of properties panel of default_app, verify the setting of
Default Error Page. It should be /ErrorReporter as shown in Figure 187 on
page 318.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class TestServlet extends HttpServlet {
public void service(ServletRequest req, ServletResponse res) throws
ServletException,IOException
{

String eType = req.getParameter("e");
if (eType == null) {

PrintWriter out=res.getWriter();
res.setContentType("text/html");
out.println("<html><head></head><body><h2>This the TestServlet

for Error Pages.
 Please specify the Exception
Type.
</h2></body></html>");

out.close();return;
}

if (eType.equals("ioe")) {
System.out.println("Exception Type == IOException");
IOException ioe = new IOException();
throw ioe;

} else if (eType.equals("se")) {
System.out.println("Exception Type == ServletException");
ServletException se = new ServletException();
throw se;

} else {
System.out.println("Other Exception");
EOFException e = new EOFException();
throw e;

}
}
}

Chapter 8. Servlet V2.2 in WebSphere V3.5.2 317

Figure 187. Default Error Page setting

Also on the Advanced tab, we configured the error pages list containing three
rows as shown in Figure 188.

Figure 188. Error Pages setting
318 WebSphere V3.5 Handbook

We entered the values shown in the previous figure and clicked Apply. Then
we right-clicked default_app in the Topology tree and selected Restart Web
App to make the setting active.

We then installed the servlet code and the Error Page JSPs. We copied the
TestServlet.class to the classpath of default_app. In our installation this was:

C:\WebSphere\Appserver\hosts\default_host\default_app\servlets

We then created a directory named error in the document root of default_app:

C:\WebSphere\Appserver\hosts\default_host\default_app\web

and copied the three JSP files into the error directory.

8.4.2.3 Testing
We verified the error page configuration by using a browser to request
specific URLs intended to produce the different error conditions.

Handle 404 error with /error/err404.jsp
We requested a URL for a file that does not exist.

http://<hostname>/x.jsp

A missing file should generate a 404 status code and WebSphere should then
use /error/err404.jsp according to the configuration of property error pages.

We saw the result of err404.jsp displayed in a browser, as shown in Figure
189.

Figure 189. Handling 404 error with /error/err404.jsp

Handle IOException with /error/errIOException.jsp
We used our test servlet to generate an IOException. We requested the URL:

http://<hostname>/servlet/TestServlet?e=ioe

The TestServlet code interprets the e=ioe parameter and throws a
java.io.IOException. WebSphere is configured to handle IOException with the
error page /error/errIOException.jsp.
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 319

We saw the expected output from errIOException.jsp displayed in the browser
as shown in Figure 190.

Figure 190. Handling java.io.IOException with /error/errIOException.jsp

Handle ServletException with /error/errServletException.jsp
We again used the test servlet to generate the exception we needed. We
requested the URL:

http://<hostname>/servlet/TestServlet?e=se

The TestServlet throws javax.servlet.ServletException in response to the
parameter e=se.

WebSphere then uses the configured error page,
/error/errServletException.jsp, The result of errServletException.jsp was
displayed in the browser as shown in Figure 191.

Figure 191. Handling javax.servlet.ServletException with /error/errServletException.jsp

Handle other errors with /ErrorReporter
We used the test servlet to generate an exception for which no error page
was configured. We requested the URL

http://<hostname>/servlet/TestServlet?e=e

The TestServlet throws a java.io.EOFException in response to parameter e=e.
No specific error page is configured for that exception so WebSphere uses
the default error page and invokes the /ErrorReporter servlet. We saw the
result of /ErrorReporter in a browser as shown in Figure 192 on page 321.
320 WebSphere V3.5 Handbook

Figure 192. Handing other errors with /ErrorReporter

8.5 Welcome file lists

The Servlet API V2.2 defines facilities for specifying a list of welcome files for
Web applications. Welcome files define the response to requests without a
specific file name. For example a request URL such as

http://myHost/webapp/myApp

A Web application may specify that when errors occur, other resources in
the application are used. These resources are specified in the deployment
descriptor. If the location of the error handler is a servlet or a JSP, the
following request attributes can be set:

• javax.servlet.error.status_code

• javax.servlet.error.exception_type

• javax.servlet.error.message

These attributes allow the servlet to generate specialized content
depending on the status code, exception type and message of the error.

Custom error handling
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 321

which simply gives the Web path of the Web application.

In WebSphere the welcome fIle list is specified on Advanced tab of the Web
Application properties panel. Welcome files are only effective when the Web
application enables the file serving enabler as described in 5.6.3, “The file
servlet” on page 173.

WebSphere will search the list of welcome files and return the first file in the
list that is actually present on disk. If none of the specified welcome files can
be found, then WebSphere looks for the default, index.html.

You also can set the init parameter for the file serving servlet of default.page
to configure the default page desired.

The following sections show one sequence of tests demonstrating the feature
of welcome file lists.

We create a Web application with a file serving enabler and whose Web path
is /webapp/test. We configure its welcome files as index1.html and index2.jsp
as shown in Figure 193.

Figure 193. Configuring welcome files
322 WebSphere V3.5 Handbook

We clicked Apply then right-clicked Web application in the topology tree and
selected Restart Web App to activate the setting.

We put files named index1.html and index2.jsp into the document root of this
Web application.

We then used a browser to request the URL:

http://myHost/webapp/test

Both welcome files exist, and WebSphere returned index1.html, as shown in
Figure 194, because it is ahead of index2.jsp in the list of welcome files.

Figure 194. The first welcome file returned

We then deleted the file named index1.html and kept the file named
index2.jsp in the document root. The we resubmitted the same request.
Because the first welcome file now did not exist, WebSphere returned the
second file in the list, index2.jsp as shown in Figure 195.

Figure 195. The welcome file returned when the first welcome file doesn’t exist

8.6 The Web Application Archive (WAR)

The Servlet API V2.2 specification introduced a valuable new facility to aid
deployment of applications. This is the Web Application Archive (WAR). A
WAR file contains both the deployable components of a Web application
(servlet code, HTML pages and JavaServer Pages) along with a deployment
descriptor that specifies how these elements are to be installed.
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 323

In this section we discuss the contents of a WAR file and in the following
section we explain how to use one.

A WAR files holds three categories of content:

• Static data that should be installed in the document root of the Web
application. These are items such as HTML files, JSP files and images.

• Executable code such as Java class files for servlets and JAR files
containing Java libraries.

• A deployment descriptor that determines how the Web application is to be
configured.

A WAR file is simply a standard JAR file that contains the above elements.
There is no requirement that you produce the file in the way we describe in
the following sections. However, some structured process is clearly desirable.

8.6.1 Create a directory structure
Choose or create an empty directory. In the following sections we term this
directory the WAR-ROOT. Create a directory called WEB-INF in WAR-ROOT.

8.6.2 Place any static content in the main hierarchy
Copy your hierarchy of static content to WAR-ROOT. The exact hierarchy you
create will be deployed in the document root of your Web application. You
may have previously prepared your content in some structure under a “web”
directory (for example in the VisualAge for Java WebSphere Test
Environment). Ensure that when you copy such a structure you copy the
contents of “web” and not “web” itself.

8.6.3 Place any Java class files in the WEB-INF/ classes directory
If you have any Java classes, for example servlet files, create a classes
subdirectory of WAR-ROOT/WEB-INF and copy all your class files into that
directory. You must use the correct package hierarchy. So for a class
MyServlet in package com.mycompany you need to create com and
mycompany directories giving a class file in a directory structure of

WAR-ROOT/WEB-INF/classes/com/myCompany/MySerlvet.class

If you are using VisualAge for Java, then a directory export to
WAR-ROOT/WEB-INF/classes will give the effect you need.
324 WebSphere V3.5 Handbook

8.6.4 Place any JAR files in WEB-INF/ lib
If you have any JAR files to deploy, create a lib subdirectory of
WAR-ROOT/WEB-INF (that is, create WAR-ROOT/WEB-INF/lib) and copy all
your JAR files directly to that directory.

You should note that when the WAR file is deployed both your classes and
your JAR files will be added to the Web application classpath. There is some
cost to placing large numbers of classes in this classpath. Depending upon
your application structure and its relationship with other Web applications you
may prefer to add dependent JAR files to the application server classpath.

8.6.5 Create the deployment descriptor in the WEB-INF directory
The deployment descriptor is in the form of an XML file. The DTD for
descriptor is specified in the Servlet API V2.2. You should note that the
portions of the DTD relating to J2EE specific constructs such as roles are not
used by WebSphere V3.5.2.

We will show a minimal descriptor sufficient to deploy one servlet.

Our sample consisted of a few HTML and JSP files in a conventional directory
structure and one servlet class MyServlet in package com.myCompany. We
copied those files into our WAR-ROOT as shown in Figure 196.

Figure 196. Contents of WAR-ROOT

We constructed the deployment descriptor as shown in Figure 197 on page
326.

index.html
Tournament/Player.html
Tournament/Player.jsp
Tournament/PlayerDetails.html
Tournament/PlayerDetails.jsp
WEB-INF/classes/com/myCompany/MyServlet.class
WEB-INF/web.xml
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 325

Figure 197. WAR descriptor example

The entries in the descriptor define the Web application that will be created.
In our case we simply need a definition for the one servlet that is to be
created. The static content is installed in the document root implicitly.

The <servlet> entry defines the name and class for the servlet. Note that the
name is entirely arbitrary and that the classname is fully qualified.

Our <servlet-mapping> specifies a name that must correspond to the
<servlet-name> in the previous entry, and a URL pattern. At deployment time
WebSphere combines the URL pattern with the Web application Web path to
produce the URL by which you can invoke the servlet.

8.6.6 Create the WAR file
You can create WAR files using the standard JDK JAR file utility. We created
the directory C:\BuildWar for our WAR-ROOT and created an empty directory
c:\TargetWar. Figure 198 on page 327 shows these two directories.

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>
<display-name>ITSO</display-name>
<servlet>

<servlet-name>MyServlet</servlet-name>
<servlet-class>com.myCompany.MyServlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>MyServlet</servlet-name>
<url-pattern>/runMyServlet</url-pattern>

</servlet-mapping>
</web-app>
326 WebSphere V3.5 Handbook

Figure 198. Directory structure for WAR file creation

We used the following command. It must be issued from the build directory.

jar -cvf C:\TargetDir\myApp.war .

The f option for jar specifies the name and directory for the output file and we
simply specified the current directory, using ., the location of WAR-ROOT as
the source of the JAR contents.

We did not create the WAR file in WAR-ROOT because, unless we remember
to remove an old version of the WAR when creating a new one, there is a
danger of accidently attempting to include the old file inside the new one.
Such an attempt fails with a generic error message that may be diffcult to
interpret.

Figure 199 on page 328 shows the execution of the jar command and the
creation of the WAR file.

C:\>dir /s TargetWar
Directory of C:\TargetWar

10/13/2000 02:31p <DIR> .
10/13/2000 02:31p <DIR> ..

0 File(s) 0 bytes

Total Files Listed:
0 File(s) 0 bytes
2 Dir(s) 10,764,271,616 bytes free

C:\>dir /s BuildWar /A -d /B
C:\BuildWar\Tournament
C:\BuildWar\WEB-INF
C:\BuildWar\asimple.jsp
C:\BuildWar\index.html
C:\BuildWar\Tournament\PlayerDetails.jsp
C:\BuildWar\Tournament\Player.jsp
C:\BuildWar\Tournament\PlayerDetails.html
C:\BuildWar\Tournament\Player.html
C:\BuildWar\WEB-INF\web.xml
C:\BuildWar\WEB-INF\classes
C:\BuildWar\WEB-INF\classes\com
C:\BuildWar\WEB-INF\classes\com\myCompany
C:\BuildWar\WEB-INF\classes\com\myCompany\MyServlet.class
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 327

Figure 199. WAR file creation

Once you have created a WAR file you have a portable image of your Web
application that you can deploy into any WebSphere V3.5.2 instance. We
describe how to do that in the next section.

8.7 Deploying an application from a WAR file

As part of our exploration of the Servlet V2.2 facilities we obtained some
example WAR files from the JavaSoft Web site. These files deployed
successfully and we will describe the deployment procedure and its effects by
referring to one of these example files.

8.7.1 Obtaining the example WAR file
We chose to use the WAR file template.war. This file is in the archive
referenced by the URL:

C:\>cd BuildWar
C:\BuildWar>
:\BuildWar> c:/websphere/appserver/jdk/bin/jar -cvf c:/TargetWar/myapp.war .
added manifest
adding: Tournament/(in = 0) (out= 0)(stored 0%)
adding: Tournament/PlayerDetails.jsp(in = 1230) (out= 540)(deflated 56%)
adding: Tournament/Player.jsp(in = 211) (out= 153)(deflated 27%)
adding: Tournament/PlayerDetails.html(in = 994) (out= 439)(deflated 55%)
adding: Tournament/Player.html(in = 612) (out= 351)(deflated 42%)
adding: WEB-INF/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/web.xml(in = 1092) (out= 306)(deflated 71%)
adding: WEB-INF/classes/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/com/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/com/myCompany/(in = 0) (out= 0)(stored 0%)
adding: WEB-INF/classes/com/myCompany/MyServlet.class(in = 5822) (out= 2638)(de
flated 54%)
adding: asimple.jsp(in = 107) (out= 69)(deflated 35%)
adding: index.html(in = 237) (out= 168)(deflated 29%)

C:\>dir /s C:\TargetWar
Volume in drive C is WINDOWS2000
Volume Serial Number is 0A72-0FE1

Directory of C:\TargetWar

10/13/2000 02:31p <DIR> .
10/13/2000 02:31p <DIR> ..
10/13/2000 02:46p 6,916 myapp.war

1 File(s) 6,916 bytes

Total Files Listed:
1 File(s) 6,916 bytes
328 WebSphere V3.5 Handbook

http://java.sun.com/products/jsp/tutorial/examples/examples.zip

The WAR file contains the expected combination of static content and Java
classes as shown in Figure 200:

Figure 200. Contents of template.war file

Figure 201 on page 330 shows the deployment descriptor for the application.
It is very similar to our example in the previous section.
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 329

Figure 201. The template example deployment descriptor

The one additional section defines the tag library, a JSP 1.1 feature, used by
some of the JSPs in the application. This section is giving instructions to
install the tag library descriptor file taglib.tld and to associate it with the URI
/tlt. You may wish to observe in 8.7.4, “Resulting configuration” on page
338 how the resulting Web application fulfills these requirements.

8.7.2 Preparation
WebSphere uses a WAR file to define a Web application. It extracts the
contents of the WAR file and uses information from the deployment descriptor
to create and configure a Web application, copying the static content to the
document root and the executable code to the classpath.

So, in order to deploy the WAR file we need to determine the following pieces
of information.

8.7.2.1 The servlet engine
We selected one of our existing engines, se3 running in application server
as3. Alternatively we could have chosen to create a new engine.

In general WAR files can be deployed into servlet engines running in either
mode, but it is possible the application may require one mode or the other.

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
Application 2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>
<display-name>template</display-name>
<servlet>
<servlet-name>dispatcher</servlet-name>
<servlet-class>Dispatcher</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>dispatcher</servlet-name>
<url-pattern>/example/*</url-pattern>

</servlet-mapping>
<taglib>
<taglib-uri>/tlt</taglib-uri>
<taglib-location>/WEB-INF/taglib.tld</taglib-location>

</taglib>
</web-app>
330 WebSphere V3.5 Handbook

8.7.2.2 Virtual host
We selected our existing virtual host v2. It would have been possible to set up
a new virtual host dedicated to the new application.

8.7.2.3 Web application details
When you deploy a WAR file you need to specify a Web application name and
its Web path.

With some care, you can deploy two compatible WAR files into the same Web
application. However this would be both contrary to the meaning of WAR files
and dangerously error prone.

So we selected a new name, newTemplate, and a new Web path
/webapp/newTemplate for our Web application.

8.7.2.4 Directory location
The deployment process will create a document root and Web application
classpath for the Web application. When you request WebSphere to deploy a
WAR file it requires that you supply a directory. WebSphere will create a
directory whose name matches the name of the WAR file in the location you
specify, and then creates web and servlet directories in that directory.

So, if you are deploying template.war and supply C:\deployHere, then
WebSphere creates the following three directories:

• C:\deployHere\template

• C:\deployHere\template\web for document root

• C:\deployHere\template\servlets for classpath

There are two considerations here:

1. If you deploy the same WAR file twice, into two separate Web applications
and select the same directory location, then your two Web applications will
share the same document root and classpath. This may well not be what
you intend, in which case you need to plan a different directory structure.

2. In understanding how WAR files are deployed, you can make the best
choice of directory for compliance with your current standards and
practices.
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 331

8.7.2.5 Summary
Our deployment decisions are summarized in Table 14:

Table 14. Administrative console deployment data

8.7.3 Deployment
You can deploy a WAR file either through the administrative console or by
using command line scripts. We anticipate that the script approach will be
widely used when repetitive deployments are needed.

We first describe the use of the administrative console. This allows us to both
explain the data to be input in detail and also gives a convenient mechanism
for seeing the effects of deployment. We describe deployment using the
command line in 8.7.5, “Command line deployment” on page 342.

Before deploying the template.war, our initial situation was as follows. We had
placed all our WAR files in directory c:\TargetWar and we had created a
plausible directory structure for the deployment directory. We intended to
deploy into the directory c:\DeployedWar\as3\se3.

Figure 202 on page 333 shows the initial situation.

Item Chosen Value

Servlet Engine se3 in as3

Virtual Host vh2

Web Path /webapp/newTemplate

Web Application newTemplate

Deployment Directory c:\deployedWar\as3\se3
332 WebSphere V3.5 Handbook

Figure 202. The initial situation before deploying a WAR file

Our application server and servlet engine were configured and started. You
will see from Figure 203 that the servlet engine had an existing Web
application already installed and running. Deploying the WAR file did not
interfere with the existing Web application provided that we chose distinct
values for the deployment directory and Web path values.

Figure 203. Configuration before WAR deployment

C:\>dir /s TargetWar /A -d /B
C:\TargetWar\myapp.war
C:\TargetWar\iteration.war
C:\TargetWar\template.war

C:\>dir /s DeployedWar\as3\se3
Directory of C:\DeployedWar\as3\se3

10/13/2000 09:31p <DIR> .
10/13/2000 09:31p <DIR> ..

0 File(s) 0 bytes

Total Files Listed:
0 File(s) 0 bytes
2 Dir(s) 10,759,094,272 bytes free
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 333

8.7.3.1 Initiating the deployment
We clicked Wizard -> Convert a War File as shown in Figure 204.

Figure 204. Convert War File

This brings up the WAR deployment task as shown in Figure 205.

Figure 205. Convert War File window: Select Servlet Engine #1
334 WebSphere V3.5 Handbook

We then moved through the steps described in the following sections.

8.7.3.2 Selecting servlet engine and virtual host
We expanded the tree to find our servlet engine se3, selected it and clicked
Next as shown in Figure 206.

Figure 206. Convert War File window: Select Servlet Engine #2

This brought up the virtual host selection step as shown in Figure 207. We
selected our chosen host v2 and again clicked Next.

Figure 207. Convert War File window: Select Virtual Host
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 335

8.7.3.3 Selecting the WAR file
We selected the WAR file by clicking Browse as shown in Figure 208.

Figure 208. Convert War File window: Select War File to Convert

We navigated to c:\TargetWar. We selected template.war as shown in Figure
209, clicked Open and then Next.

Figure 209. Convert War File window: Select template.war file

8.7.3.4 Selecting the deployment directory
We now specified the directory for the document root and classpath. We
clicked Browse as shown in Figure 210 on page 337.
336 WebSphere V3.5 Handbook

Figure 210. Convert War File window: Select Destination Directory

Then we navigated to c:\DeployedWar\as3\se3 and clicked Open followed by
Next as shown in Figure 211.

Figure 211. Select a directory

8.7.3.5 Specifying the Web path and application aame
FInally we entered the Web application path, /webapp/newTemplate and the
Web application name, newTemplate as shown in Figure 212 on page 338. We
then clicked Finish.
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 337

Figure 212. Specifying the Web path and application name

Deployment took a little time but eventually a confirmation dialog box
appeared. The following section describes the results of the deployment.

8.7.4 Resulting configuration
You can see the effects of deploying the WAR file in two places: the physical
files and directories created, and in changes to the WebSphere configuration.

8.7.4.1 Files and directories
We specified the directory c:\deployedWar\as3\se3 for the deployment of our
WAR file. As expected, the deployment process created a directory called
template corresponding to our WAR file name in the deployment directory,
and subdirectories for the document root and classpath.

The document root
The document root directory for our Web application is the directory:

c:\deployedWar\as3\se3\template\web

Figure 213 on page 339 shows the contents of this directory.
338 WebSphere V3.5 Handbook

Figure 213. Files deployed into document root of Web application

In the document root we see the JSP files for the application. There happen
to be no HTML files or images in this particular WAR file. In the WEB-INF
directory we see the WAR file deployment descriptor and also the tag library
descriptor. The location of the latter is important. You will see it referenced in
the next section.

8.7.4.2 WebSphere configuration
Figure 214 on page 340 shows that the WebSphere configuration now
contains the Web application whose name we specified, newTemplate.

In Figure 214 on page 340 we can see the Web application name, virtual host
and Web path that we specified when deploying the WAR file.

We can also see that three servlets were created:

1. The default ErrorReporting servlet.

2. The servlet to enable JSP V1.1.

3. The dispatcher servlet; this was the only servlet defined in the WAR
file.

C:\>dir /s DeployedWar\as3\se3\template\web

Directory of C:\DeployedWar\as3\se3\template\web

10/13/2000 10:59p <DIR> .
10/13/2000 10:59p <DIR> ..
10/13/2000 10:59p <DIR> WEB-INF
10/13/2000 10:59p 189 first.jsp
10/13/2000 10:59p 236 home.jsp
10/13/2000 10:59p 190 second.jsp
10/13/2000 10:59p 1,473 main.jsp
10/13/2000 10:59p 184 banner.jsp

5 File(s) 2,272 bytes

Directory of C:\DeployedWar\as3\se3\template\web\WEB-INF

10/13/2000 10:59p <DIR> .
10/13/2000 10:59p <DIR> ..
10/13/2000 10:59p 1,881 taglib.tld
10/13/2000 10:59p 570 web.xml

2 File(s) 2,451 bytes

Total Files Listed:
7 File(s) 4,723 bytes
5 Dir(s) 10,753,966,080 bytes free
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 339

Figure 214. New Web application

When we move to the Advanced tab, as shown in Figure 215 on page 341 we
can see the configuration of document root and classpath. You will notice that
these match the physical directories described in 8.7.4.1, “Files and
directories” on page 338.

If we had been deploying this application by hand, without using a WAR file,
then we would have been responsible for ensuring this consistency. The WAR
file approach is less error prone and can save much effort when repeatedly
deploying applications. If you are repeatedly deploying WAR files then you
may find the command line deployment facilities useful. We describe those in
8.7.5, “Command line deployment” on page 342.

Another configuration item inserted when deploying the WAR file was the
default error page. Figure 215 on page 341 also shows that the ErrorReporter
servlet has been configured for that purpose.
340 WebSphere V3.5 Handbook

Figure 215. Web Application - Advanced tab

The Advanced tab displays two other features worth noting. First, the reload
interval controls how frequently the servlet engine checks to determine
whether any servlet files should be reloaded. In WebSphere V3.5.2, the
default value for this is 9000 seconds. You should adjust this value to
appropriate values for your development and production systems. You are
able to change the <WAS_HOME>/properties/xmlconfig.xsl file to control this
default value.

Figure 216 on page 342 shows the configuration of the JSP 1.1 Tag Library
we mentioned in 8.7.1, “Obtaining the example WAR file” on page 328.
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 341

Figure 216. Web Application Advanced tab: Tag Libraries

Having examined these configuration features we started the resulting Web
application by right-clicking it in the Topology tab, and clicking Restart Web
App.

8.7.5 Command line deployment
You can deploy a WAR file from the command line using the procedure we
describe below. You still need to prepare for deployment in the way we
described in 8.7.2, “Preparation” on page 330. In addition you also need to
ensure that you have the WebSphere bin directory on your path.

Figure 217. Example path including WebSphere bin directory

The bin directory location will depend on your choice of installation directory
for WebSphere. You will be executing the command wartoxmlconfig and you
may wish to check that this is in the bin directory you added to your path.

C:\work>path
PATH=C:\WINNT\system32;C:\WINNT;C:\WINNT\System32\Wbem;
C:\Lotus\Notes;c:\websphere\appserver\bin
342 WebSphere V3.5 Handbook

The command requires parameters whose meaning is equivalent to the
values we entered in the administrative console in the previous sections.
However, they are specified in a slightly different way. The following table lists
the parameters, all of which are compulsory, their meaning, and the value we
entered. You may wish to compare these with the table of values we used for
the administrative console deployment in Table 14 on page 332.

Table 15. Command line deployment parameters

Parameter 3 determines the location of the administrative Server that will
perform the required configuration. We did not experiment with specifying
different values for parameters 3 and 4.

We issued the command:

wartoxmlconfig c:\TargetWar\template.war c:\DeployedWar\as3\se3 myHost
myhost as3 se3 v2 /webapp/newTemplate newTemplate

and the deployment ran successfully producing identical effects to those
produced by the administrative console deployment. Figure 218 on page 344
shows the output produced by the command.

Parameter Meaning Our Value

1 Path of WAR file to be deployed c:\TargetWar\template.war

2 Deployment directory c:\DeployedWar\as3\se3

3 Administrative server node,
explained later

myhost

4 Node for Servlet Engine myhost

5 Application server in that node as3

6 Servlet engine se3

7 Virtual host v2

8 Web application path /webapp/newTemplate

9 Web application name newTemplate
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 343

Figure 218. Command line WAR deployment

C:\work>wartoxmlconfig c:\TargetWar\template.war c:\DeployedWar\as3\se3
myhost myhost as3 se3 v2 /webapp/newTemplate newTemplate
Buildfile: C:\WebSphere\AppServer\properties\convertwar.xml

init:

unpack.war:
[unzip] Expanding: C:\TargetWar\template.war into C:\WebSphere\AppServer\bin

\template

copyto.webapp:
[mkdir] Created dir: C:\DeployedWar\as3\se3\template
[mkdir] Created dir: C:\DeployedWar\as3\se3\template\web
[mkdir] Created dir: C:\DeployedWar\as3\se3\template\web\WEB-INF
[mkdir] Created dir: C:\DeployedWar\as3\se3\template\servlets

[copydir] Copying 5 files to C:\DeployedWar\as3\se3\template\web
[copydir] Copying 2 files to C:\DeployedWar\as3\se3\template\web\WEB-INF

copy.war.classes:
[copydir] Copying 2 files to C:\DeployedWar\as3\se3\template\servlets

copy.war.lib:
[copydir] Copying 15 files to C:\DeployedWar\as3\se3\template\servlets

transform.to.xmlconfig:
[deltree] Deleting: C:\WebSphere\AppServer\bin\template

run.xmlconfig:
[wasjava] [00.10.16 15:27:13:189 GMT+01:00] 5375f61d NodeConfig A Importing
Node : IBM-KBXO9A99IBG
[wasjava] [00.10.16 15:27:13:439 GMT+01:00] 5375f61d ApplicationSe A Importing
ApplicationServer : as3
[wasjava] [00.10.16 15:27:13:689 GMT+01:00] 5375f61d ServletEngine A Importing
ServletEngine : se3
[wasjava] [00.10.16 15:27:13:920 GMT+01:00] 5375f61d WebApplicatio A Importing
WebApplication : newTemplate
[wasjava] [00.10.16 15:27:14:911 GMT+01:00] 5375f61d ServletConfig A Importing
Servlet : dispatcher
[wasjava] [00.10.16 15:27:15:612 GMT+01:00] 5375f61d ServletConfig A Importing
Servlet : ErrorReporter
[wasjava] [00.10.16 15:27:16:123 GMT+01:00] 5375f61d ServletConfig A Importing
Servlet : jsp11
[wasjava] [00.10.16 15:27:16:714 GMT+01:00] 5375f61d ServletConfig A Importing
Servlet : file
[delete] Deleting: C:\WebSphere\AppServer\bin\template.xml

BUILD SUCCESSFUL

Total time: 15 seconds
344 WebSphere V3.5 Handbook

8.7.6 Execution
The servlet for the template is called dispatcher. You can see the
configuration for dispatcher in the administrative console in Figure 219.

Figure 219. Web path for the servlet

We note that the servlet is invoked by any URL beginning:

http://v2/webapp/newTemplate/example

We note that the path is specified correctly for Servlet API V2.2 with a trailing
wildcard character. The documentation for this sample application explains
that the initial URL we should use is:

http://v2/webapp/newTemplate/example/home

We invoked the application from our browser using the Web path specified
during deployment. Figure 220 on page 346 shows the results of requesting
that URL in our browser, and then clicking the “first” link.
Chapter 8. Servlet V2.2 in WebSphere V3.5.2 345

Figure 220. Executing the deployed application #1

The displayed data was produced by JSPs using the tag library that we
mentioned earlier.

Figure 221. Executing the deployed application #2

The application ran correctly in most of our test environments. However, on
a small number of machines we saw a failure to compile Java code. The
code that was failing to compile was the Java sources of the tag library.

This code was supplied in the WAR file for educational purposes and does
not constitute part of the application proper; the compiled code is delivered
in a JAR file. On the machines where we saw the problem we simply
removed the .java files and our application ran successfully.

Java compilation problem
346 WebSphere V3.5 Handbook

Chapter 9. Using JNDI to access LDAP

In an object-oriented distributed computing environment, clients must have a
mechanism to locate objects providing the services they require. A naming
service is such a mechanism. It allows object to register their locations under
chosen names and clients to access the objects by those names. Client code
is expressed in terms of names of objects rather than in terms of the physical
hosts or network addresses where the objects are located.

The naming service allows clients to access distributed objects in a
location-transparent manner; the client code does not change if you decide to
re-locate the objects providing certain services. This flexibility is essential if
you intend to build scalable, resilient systems.

The Java Naming and Directory Interface (JNDI) sits in the middle, between
someone using a naming or directory service and the actual naming or
directory service. It provides a common interface, but some aspects of the
underlying naming or directory service show through the JNDI interface. So it
doesn't totally isolate the user from knowing about the underlying system.
Also, the interface for naming is a subset of directory. WebSphere provides an
implementation of JNDI that uses the JNDI naming support (Context
interface) and it is layered over a CosNaming Name Server. The names that a
user of this JNDI use look like this:

"hosts/xyz.austin.ibm.com/resources/homes/PolicyHome".

WebSphere implements this implementation of the JNDI Context interface.
Also WebSphere ships an implementation of JNDI that uses the JNDI
directory support (DirContext interface) and it is layered over an LDAP server.
The names that a user of this JNDI use look like this:

"cn=russ newcombe, ou=websphere, ou=austin development, o=ibm, c=us".

There are three major usage of the JNDI with WebSphere:

• WebSphere uses the JNDI Naming framework to provide JNDI support
that satisfies the Naming needs for EJBs and applications using EJBs.

• WebSphere security used LDAP for some aspects of security, and for this
they use the JNDI directory framework.

• You can write your own Java application programs or servlets which
access LDAP server.

We discuss the JNDI overview and specifications. Also we provide sample
programs which use the JNDI directory support over LDAP. However, we don’t
© Copyright IBM Corp. 2001 347

address neither JNDI as used by the EJBs nor administering security with
LDAP in a WebSphere environment.

9.1 What is JNDI?

JNDI, as defined by Sun Microsystems, provides naming and directory
functions to Java programs. JNDI is an API independent of any specific
directory service implementation.

The definition prevents, by design, the appearance of any
implementation-specific artifacts in the API. The API is designed to cover the
common case. JNDI was developed as part of the Java Enterprise API set
that also includes Enterprise JavaBeans (EJB) and JDBC. The EJB
specification has a special relationship with JNDI, because EJB clients use
this mechanism to find entity beans or Session beans.

JNDI provides a generalized naming and directory service interface. For
example, JNDI could be used to retrieve files from a file system. The file
system acts as a naming service. JNDI could also be used to retrieve an
X509 public key certificate from an LDAP directory service, or to get the IP
address of a host name using the DNS as a naming service.

The JDNI API has several classes that can be used by developers to retrieve
entries or attributes of a Naming Service. JNDI provides a Service Provider
Interface (SPI) that enables access to the particular underlying directory
service. The SPI is usually written by the vendor of the underlying naming
and directory service and is supplied as a Java class library.

Figure 222 on page 349 shows the JNDI architecture from Sun’s JNDI
specifications (found at http://java.sun.com/products/jndi/).
348 WebSphere V3.5 Handbook

Figure 222. JNDI API and SPI interfaces

Java clients use JNDI to communicate with different types of naming services.

9.2 Naming concepts

A naming service is an entity that associates names with objects. In the
following we describe some of the basic concepts used in JNDI.

Atomic: An atomic name is a simple, basic, indivisible component of a name.
For example in the string C:\Winnt\Profiles, Winnt and Profiles are atomic
names.

Compound: A compound name is a sequence of zero or more atomic names
composed according to naming conventions. For example, the entire string
C:\Winnt\Profiles is a compound name.

Binding: A binding is the association of a name with an object. For example,
the file name config.sys on the Windows operating system has a binding to a
file on the hard disk. Note that a compound name such as C:\Winnt\Profiles
consists of multiple bindings, one to Winnt and one to Profiles.

Context: A context is an object that contains zero or more bindings. For
example, a folder named /MyFolder that contains two files, file1 and file2 on a
file system, is a Context that contains two bindings, one for file1 and another
for file2 as shown in Figure 223 on page 350.

NDS LDAP
File

System
.....

Java Application

JNDI API

JNDI SPI
Chapter 9. Using JNDI to access LDAP 349

Figure 223. MyFolder is a context containing two binding

SubContext: Let’s consider a folder C:\Winnt with subfolders
C:\Winnt\Profiles and C:\Winnt\system32. Here, C:\Winnt is a context that
contains the atomic names Profiles and system32. Subfolders are called
subcontexts, each with its own name-object binding similar files or subfolders.
A subcontext is a context within a context.

Naming system: A naming system is a connected set of contexts, for
example, a folder tree in a file system.

Name space: A name space is all the names contained within a naming
system.

InitialContext factory: JNDI performs all naming operations relative to a
context. To assist in finding a place to start, the JNDI specification defines an
InitialContext class. This class is instantiated with properties that define the
type of naming service in use. This class also provides the ID and password
to use when connecting for the naming services that provide security.

Directory objects: A directory object is a particular type of object that is
used to represent the variety of information in a computing environment.
Directory objects are usually associated with attributes. An attribute has an
identifier and a set of values.

Binding with

name

"file1"

Binding with

name

"file2"

Binding with the name
"MyFolder"
also a context that
contains the binding.
350 WebSphere V3.5 Handbook

Figure 224 illustrates some of the concepts described above.

Figure 224. A Composite name space

9.3 JNDI specifications

This section discusses some important JNDI specifications.

9.3.1 JNDI packages
The JNDI packages that are provided are:

• javax.naming: Contains classes and interfaces for accessing naming
services.

• javax.naming.directory: Extends the core javax.naming package to provide
access to directories.

• javax.naming.event: Contains classes and interfaces for supporting event
notification in naming and directory services.

JNDI Client
code

NDS
LDAP

DNS

File
System

Printer
Service

InitialContext

User information
- user ID
- password
- e-mail

Files Printers
Chapter 9. Using JNDI to access LDAP 351

• javax.naming.ldap: Contains classes and interfaces for supporting LDAP
V3 extensions and controls.

• javax.naming.spi: Contains classes and interfaces that allow various
naming and directory service providers to be dynamically plugged in
beneath the JNDI API.

9.3.2 JNDI standard environment properties
The JNDI standard environment properties are described in Table 16.

Table 16. JNDI properties and their definitions

To use the LDAP V3 classes, one of the these two properties must be passed
to the InitialDirContext constructor:

1. java.naming.factor.initial: This must be set to
"com.ibm.jndi.LDAPCtxFactory" if you are going to use the context factory
non-URL syntax.

2. java.naming.factor.url.pkgs: This property must be set to "com.ibm.jndi" if
you are going to use the LDAP URL syntax.

Environment property Use

java.naming.factory.initial Specifies the SPI

java.naming.provider.url LDAP URL that specifies the LDAP server

java.naming.ldap.version Specifies the LDAP version to use

java.naming.ldap.noBind Specifies whether the client should bind to
the server

java.naming.referall Specifies if referral should be followed,
ignored, or thrown an exception

java.naming.security.principal Identity of user to authenticate

java.naming.security.credentials Password or other security credential

java.naming.security.sasl Class name of the SASL plug-in used to
bind

java.naming.factory.url.pkgs Colon-separated list of package prefixes
to use when loading URL context factories

java.naming.dns.url Specifies the DNS host and domain
names

java.naming.batchsize Specifies the preferred batch size to use
when returning data via the services
protocol
352 WebSphere V3.5 Handbook

9.4 JNDI sample application

LDAP servers are widely used in enterprise systems to store data such as
users, profiles, and permissions.

Java programs can use JNDI to communicate with LDAP servers in the same
way that they do to communicate with other naming systems such as
WebSphere name server. There are some LDAP specific APIs provided by
LDAP vendors, but the mechanism used to communicate between a Java
program and an LDAP server is almost the same whether this program is
communicating with an LDAP server or another naming server (such as
WebSphere naming server). First we have to create an Initial Context, and
then use it to connect and interact with the name server.

The JNDI code used by WebSphere to talk to LDAP servers is in a file called
ibmjndi.jar. This JNDI implementation will work with the IBM SecureWay
LDAP server and also works with other LDAP servers, such as Netscape
Directory Server. Therefore, you don’t need to install any LDAP server on the
WebSphere node.

The following sample application describes how we can use JNDI to retrieve
LDAP information in a WebSphere environment. This application allows a
user to create a new entry in the LDAP server from an HTML page and also
allows him to retrieve information from the LDAP server in a browser. Users
must also authenticate before using the application. Figure 225 shows our
test environment and Figure 226 on page 354 shows the architecture of our
application.

Figure 225. LdapSample test configuration

- WebSphere V3.5 PTF2
- IBM HTTP Server 1.3.12
- AIX 4.3.3

- IBM SecureWay
Directory 3.1.1.5

- DB2 UDB 6.1 FP4
- AIX 4.3.2

riscwas2 rs600012

HTTP LDAP
Chapter 9. Using JNDI to access LDAP 353

Figure 226. LdapSample architecture

9.4.1 Sample application design
In this sample application, all LDAP access is delegated to the class
LDAPACCESS.

This class provides all the methods for authenticating users, retrieving
information and adding new entries to the LDAP server.

Below is a description of this class’s methods:

• authenticateUser(userId, password):

Authenticates a user by trying to access the LDAP server using userId and
password. Throws authenticationException if user is not allowed.

• addAttribute(userId,password,mail,firstName,LastName):

Adds a new entry to the LDAP server. Parameters are passed as
arguments to the method.

• retreiveAttribute(userID):

LoginServlet

LDAPAccess

LDAP
Directory
Server

DB

Menu.jsp

Error.jsp

O.K.

N.G.

Please input your ID
and password then
click the Send button.
User ID: ken
Password: xyz

Send

Sorry.
Your ID and password
are not correct.

RegistrationServlet

LDAPAccess

SearchServlet

LDAPAccess

Please input last
name to retrieve
information.
Then click Send.
Last name: Raquin

Send

Please input
your first name,
last name, user ID,
password, and
phone number.
Then click the Send
button.

Send
354 WebSphere V3.5 Handbook

Retrieves information from the LDAP server by submitting a search on the
userId supplied.

This class also stores information about LdapServer name,
LdapRootName, ldapRootPassword and InitialContextFactory to use as
instance variables. They are initialized from a properties file.

The application contains the following servlets:

• LoginServlet:

Servlet for authenticating users. Invokes
LdapAccess.authenticateUser(userId,password) for authentication.

• RegisrationServlet:

Servlet for registering a user, that is adding a new entry to the LDAP
server. Invokes LDAPAccess.addAttribute(userId, password,..).

• SearchServlet:

Servlet for searching an entry in the LDAP server. Invokes
LDAPAccess.searchAttribute(String userId).

9.4.2 Running the JNDI sample application
In the following, we demonstrate our sample JNDI application.

9.4.2.1 Adding a new entry
Before we register a new user using our sample program, there is only one
entry under ou=ITSO, c=us in the LDAP server. Figure 227 on page 356
shows entries in the LDAP server before registration.
Chapter 9. Using JNDI to access LDAP 355

Figure 227. Entries in LDAP before registering a new user

We will add a new entry to the LDAP server using the HTML form
(LdapLogin.html) as shown in Figure 228 on page 357. When the user clicks
the Submit button, the Registration servlet is called with the parameters
specified in the form. In our test case, we specified mohamed for the user ID
and Ramdani for the last name. Note the last name Ramdani will be used
later to retrieve detailed information about this user.
356 WebSphere V3.5 Handbook

Figure 228. Welcome page for our sample

A new entry will be added to the LDAP server using the LDAPAccess class.

If the RegistrationServlet executes successfully (without any exception), a
confirmation page will be sent to the browser as shown in Figure 229 on page
358.
Chapter 9. Using JNDI to access LDAP 357

Figure 229. Successful registration

A new entry (in our case, cn=mohamed) was added to the LDAP server as
shown in Figure 230.

Figure 230. New entry added to LDAP server
358 WebSphere V3.5 Handbook

Figure 231 shows you detailed information about the new registered user.

Figure 231. New registered user

9.4.2.2 Authenticating a user
The user has to authenticate first to access the search functionality of our
application. The user ID and password provided in the HTML form
(LdapLogin.html) as shown in Figure 232 on page 360 will be used to check if
this user is declared and allowed to access the LDAP server.
Chapter 9. Using JNDI to access LDAP 359

Figure 232. Authenticating a user

After clicking the Submit button, the LoginServlet servlet is called with the
parameters UserId and password. The method
authenticateUser(UserId,password) of the LDAPAccess class is called to
check if this user is allowed to access LDAP.

9.4.2.3 Searching an entry
If the user authenticates successfully, the search information page is sent to
the browser as shown in Figure 233 on page 361.
360 WebSphere V3.5 Handbook

Figure 233. Searching an entry in LDAP

The last name provided in the HTML form will be used by the SearchServlet
servlet to search LDAP for detailed information about the entry corresponding
to sn=xxx (in our case, sn=Ramdani).

If an entry is found, all information is sent back to the browser as shown in
Figure 234 on page 362.
Chapter 9. Using JNDI to access LDAP 361

Figure 234. Retrieving information from LDAP

Information returned to the browser corresponds to the entry in the LDAP
server illustrated in Figure 231 on page 359.

9.4.2.4 Authenticating with wrong user ID/password
If the user ID and password provided in the HTML form (LdapLogin.html)
doesn’t match an existing entry in the LDAP server (in our case, the correct
password of mohamed has 8 characters but we specified 3 characters only,
as shown in Figure 235) an error page will be sent to the browser as shown in
Figure 236 on page 363.
362 WebSphere V3.5 Handbook

Figure 235. Log in with a wrong password

Figure 236. Error page

9.4.2.5 Searching a non-existing entry
If the last name provided in the HTML form does not exist in the LDAP server
(in our case, user Kapadia is not registered), an error page will be sent to the
browser as shown in Figure 238 on page 364.
Chapter 9. Using JNDI to access LDAP 363

Figure 237. Searching a non-existing entry

Figure 238. Error page

9.4.3 Sample LDAP access implementation
The following is the sample code for the class LDAPAccess. We describe the
methods for authenticating, adding, and searching an entry from our LDAP
server.
364 WebSphere V3.5 Handbook

9.4.3.1 Authenticating to LDAP using user ID and password

Figure 239. Authenticating a user

In the environment properties we specify the Initial Context Factory and
provider url as shown in Figure 240. These are general parameters that has
to be specified.

Figure 240. initialContextFactory and provider url

The java.naming.security.principal specifies the distinguished name to bind
with, and the java.naming.security.credentials specifies the password for the
distinguished name used for authentication as shown in Figure 241.

Figure 241. Security principal and credentials

We authenticate by creating a new InitialDirContext using the properties
specified before as shown in Figure 242 on page 366.

public void authenticateUser(String userID, String password) throws
NamingException {

// initialize environment variables
Properties env = new Properties() ;
env.put("java.naming.factory.initial",initialContextFactory);
env.put("java.naming.provider.url","ldap://"+LDAPServerName);
// The following parameters are used for authentication

env.put("java.naming.security.principal","cn="+userID+",ou=itso,o=IBM,c
=us") ;

env.put("java.naming.security.credentials",password) ;
// connect to LDAP server using parameters specified above
DirContext ctx = new InitialDirContext(env) ;
return;
}

env.put("java.naming.factory.initial",initialContextFactory);
env.put("java.naming.provider.url","ldap://"+LDAPServerName);

env.put("java.naming.security.principal","cn="+userID+",ou=itso,o=IBM,c
=us") ;

env.put("java.naming.security.credentials",password) ;
Chapter 9. Using JNDI to access LDAP 365

Figure 242. Creating a DirContext

If the user is not declared on the LDAP server, a naming exception is thrown.
It is caught by the LoginServlet servlet as shown in Figure 243.

Figure 243. Naming exception

DirContext ctx = new InitialDirContext(env) ;

public void authenticateUser(String userID, String password) throws
NamingException {
366 WebSphere V3.5 Handbook

9.4.3.2 Adding an entry to the LDAP server

Figure 244. Adding an entry to LDAP server

public void addAttribute(
String firstName,
String lastName,
String mail,
String uid,
String password) {
// set up properties to connet to ldap server
Properties env = new Properties();
env.put("java.naming.factory.initial",

"com.ibm.jndi.LDAPCtxFactory");
env.put("java.naming.provider.url", "ldap://"+LDAPServerName);
env.put("java.naming.security.principal", "cn="+LDAPRoot);
env.put("java.naming.security.credentials", LDAPRootpassword);
try {

DirContext ctx = new InitialDirContext(env);
String dn = "cn=" + uid + ",ou=ITSO,o=IBM,c=US";
Attributes atrs = new BasicAttributes();
Attribute objclasses = new BasicAttribute("objectclass");
objclasses.add("top");
objclasses.add("person");
objclasses.add("organizationalPerson");
objclasses.add("inetOrgPerson");
objclasses.add("ePerson");
atrs.put(objclasses);
Attribute cn = new BasicAttribute("cn", firstName);
Attribute sn = new BasicAttribute("sn", lastName);
Attribute pwd = new BasicAttribute("userPassword", password);
Attribute mail1 = new BasicAttribute("mail", mail);
Attribute uid1 = new BasicAttribute("uid", uid);
atrs.put(cn);
atrs.put(sn);
atrs.put(pwd);
atrs.put(mail1);
atrs.put(uid1);
ctx.createSubcontext(dn, atrs);

}
catch (Exception e) { // we catch all exceptions here

System.out.println("Error add attribute ");
e.printStackTrace();

}
}

Chapter 9. Using JNDI to access LDAP 367

Before adding an entry to the LDAP server, we need to authenticate using a
distinguished name and a password. This user must have write access to add
an entry. In our example we used Root for authentication as shown in Figure
245.

Figure 245. Setting properties to connect to the LDAP server

We create all the attributes using BasicAttribute and BasicAttributes classes
as shown in Figure 246.

Figure 246. Creating attributes

We finally add the entry by calling the createSubContext on the DirContext
object as shown in Figure 247 on page 369.

Properties env = new Properties();
env.put("java.naming.factory.initial",

"com.ibm.jndi.LDAPCtxFactory");
env.put("java.naming.provider.url", "ldap://"+LDAPServerName);
env.put("java.naming.security.principal", "cn="+LDAPRoot);
env.put("java.naming.security.credentials", LDAPRootpassword);

Attributes atrs = new BasicAttributes();
Attribute objclasses = new BasicAttribute("objectclass");
objclasses.add("top");
objclasses.add("person");
objclasses.add("organizationalPerson");
objclasses.add("inetOrgPerson");
objclasses.add("ePerson");
atrs.put(objclasses);
Attribute cn = new BasicAttribute("cn", firstName);
Attribute sn = new BasicAttribute("sn", lastName);
Attribute pwd = new BasicAttribute("userPassword", password);
Attribute mail1 = new BasicAttribute("mail", mail);
Attribute uid1 = new BasicAttribute("uid", uid);
atrs.put(cn);
atrs.put(sn);
atrs.put(pwd);
atrs.put(mail1);
atrs.put(uid1);
368 WebSphere V3.5 Handbook

Figure 247. Adding an entry

9.4.3.3 Searching information

Figure 248. Searching for an entry in LDAP server

For searching information, we need to set up the JNDI properties as shown in
Figure 249 on page 370.

ctx.createSubcontext(dn, atrs);

public NamingEnumeration searchAttribute(String uid) {
Properties env = new Properties() ;
env.put("java.naming.factory.initial",initialContextFactory) ;
// we use root and root password for authentication. The user has

already authenticated
env.put("java.naming.provider.url","ldap://"+LDAPServerName);
env.put("java.naming.security.principal","cn="+LDAPRoot) ;
env.put("java.naming.security.credentials",LDAPRootpassword) ;
// we explicitly specify the base and the filter for the search
String base = "ou=ITSO,o=IBM,c=US";
String filter ="sn="+uid;
NamingEnumeration results=null;
SearchControls constraints = new SearchControls();
constraints.setSearchScope(SearchControls.SUBTREE_SCOPE);

try
{

DirContext ctx = new InitialDirContext(env) ;
results = ctx.search(base,filter,constraints) ;

} catch (Exception e) {
System.out.println("Error accessing LDAP Server");
e.printStackTrace();

}
return results;

}

Chapter 9. Using JNDI to access LDAP 369

Figure 249. JNDI properties

Then we need to authenticate. We explicitly specify a base and a filter for the
search as shown in Figure 250.

Figure 250. Specifying the base, the filter and the search scope

We then call the search method with those parameters on the DirContext
object as shown in Figure 251.

Figure 251. Connecting to the LDAP server and executing the search

The return result is a NamingEnumeration object that we need to parse to get
each attribute as shown in Figure 252.

Figure 252. Returning a NamingEnumeration

See LDAP V3 Client for Java Programing Guide that comes with IBM
SecureWay for detailed information.

Properties env = new Properties() ;
env.put("java.naming.factory.initial",initialContextFactory) ;
// we use root and root password for authentication. The user has

already authenticated
env.put("java.naming.provider.url","ldap://"+LDAPServerName);
env.put("java.naming.security.principal","cn="+LDAPRoot) ;
env.put("java.naming.security.credentials",LDAPRootpassword) ;

String base = "ou=ITSO,o=IBM,c=US";
String filter ="sn="+uid;
NamingEnumeration results=null;
SearchControls constraints = new SearchControls();
constraints.setSearchScope(SearchControls.SUBTREE_SCOPE);

DirContext ctx = new InitialDirContext(env) ;
results = ctx.search(base,filter,constraints) ;

NamingEnumeration results=null;
370 WebSphere V3.5 Handbook

Chapter 10. JDBC 2.0 support

The JDBC API was designed to provide a Java application programming
interface to data access of relational databases. JDBC 1.0 provided the basic
functionality for this access. JDBC 2.0 API extends the JDBC 1.0 API to
provide additional functionality, simplify coding, and increase performance.

WebSphere V3.5 supports the JDBC 2.0 API.

This section discusses the explicit coding to the JDBC API. The following
topics are covered:

• The JDBC 2.0 Core API

• The JDBC 2.0 Extension API

• Administration of data sources

• Best practices for JDBC data access

In this chapter, we describe explicit coding to the JDBC API for data access.
The JDBC API can be used for data access using Java beans, servlets, or
bean-managed persistence (BMP) EJBs. Container-managed persistence
(CMP) EJBs can also be used for data access, but they do not require explicit
coding to the JDBC API. EJBs are discussed in Chapter 11, “Enterprise Java
Services” on page 393. JSPs can also access data using special tags that are
provided in WebSphere’s JSP support.

10.1 JDBC 2.0 Core API

The JDBC API provides data access through three basic steps:

• Establish a connection with a data source

• Send queries or update (SQL) statements to the DBMS

• Process the results

The code fragment in Figure 253 on page 372 shows a simple example of
accessing the table sample in the data source employees. The code creates a
connection using the DriverManager interface (JDBC 1.0), creates an SQL
query statement to obtain three fields (the employee number, the employee
first name, and the employee last name), and then iterates through the
ResultSet.
© Copyright IBM Corp. 2001 371

Figure 253. Sample program using the DriverManager interface

The JDBC 2.0 API includes new features to simplify application design and
development, and to improve performance. JDBC 2.0 is divided into JDBC 2.0
Core API and JDBC 2.0 Optional Extension API. The JDBC 2.0 Core API is a
superset of JDBC 1.0. New features supported include scrollable result sets,
batch updates, programmatic insert, delete, and update, and SQL 3 data type
support. These are discussed in this section.

The JDBC 2.0 Core API is defined by the classes and interfaces in the
java.sql.* package. Table 17 and Table 18 on page 373 show the javadoc for
the classes and interfaces of the java.sql.* package.

Table 17. java.sql.* class summary

Class name Description

Date A thin wrapper around a millisecond value that allows JDBC to
identify this as a SQL DATE.

DriverManager The basic service for managing a set of JBDC drivers.

DriverPropertyInfo Driver properties for making a connection.

Time A thin wrapper around java.util.Date that allows JDBC to
identify this as a SQL TIMESTAMP value.

Timestamp This class is a thin wrapper around java.util.Date that allows
JDBC to identify this as a SQL TIMESTAMP value.

Types The class that defines constants that are used to identify
generic SQL types, called JDBC types.

try {
Connection conn =
DriverManager.getConnection(dbDriver,userid,password);
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(“SELECT EMPNO, FIRSTNME, LASTNAME FROM SAMPLE”);
while (rs.next()) {
String empno = rs.getString(“EMPNO”);
String firstnme = rs.getString(“FIRSTNME”);
String lastname = rs.getString(“LASTNAME”);
}
}
catch (Exception theException) {
// Handle Exception
}

372 WebSphere V3.5 Handbook

Table 18. java.sql.* Interface summary

10.1.1 Scrollable ResultSets
A ResultSet is an enumeration of rows of information that are returned from
SQL queries. JDBC 1.0 supported forward-only ResultSets. This provided the
ability to scroll forward through a ResultSet processing each row.

JDBC 2.0 supports forward-only, scroll-insensitive, or scroll-sensitive
ResultSets. A scroll-insensitive or scroll-sensitive ReultSet allows rows to be

Interface name Description

Array Array.

Blob Binary Large Object.

CallableStatement The interface used to execute SQL stored procedures.

Clob Character Large Object.

Connection A connection (session) with a specific database.

DatabaseMetaData Comprehensive information about the database as a whole.

Driver The interface that every driver class must implement.

PreparedStatement An object that represents a precompiled SQL statement.

Ref A reference to an SQL structured type value in the database.

ResultSet A ResultSet provides access to a table of data.

ResultSetMetaData An object that can be used to find out about the types and
properties of the columns in a ResultSet.

SQLData The interface used for the custom mapping of SQL
user-defined types.

SQLInput An input stream that contains a stream of values
representing an instance of an SQL structured or distinct
type.

SQLOutput The output stream for writing the attributes of a user-defined
type back to the database.

Statement The object used for executing a static SQL statement and
obtaining the results produced by it.

Struct Structure.
Chapter 10. JDBC 2.0 support 373

examined by scrolling forward (first to last), backward (last to first) or
positioning at an absolute row position.

A scroll-insensitive ResultSet is unaware of changes made to the underlying
database while it is open. A scroll-sensitive ResultSet is aware of the
underlying database updates.

10.1.2 Batch update
Batch update allows multiple update SQL requests to be specified with a
single Statement object and submitted at one time to the DBMS. JDBC 1.0
required that each SQL Statement would request one action. Multiple actions
required multiple requests issued to the DBMS.

Batch update allows multiple requests (for updates, not queries) to be issued
to the DBMS at one time. Batch Update can be requested using a Statement
object, a PreparedStatement object, or a CallableStatement object. (A
Statement is a fully specified SQL statement without variables. A
PreparedStatement is an SQL statement that contains parameters that are
specified prior to executing the statement. A CallableStatement is a macro
that requests a pre-specified set of SQL statements that are known to the
DBMS.)

10.1.3 Fetch size
The fetch size is the number of rows retrieved from a database query. JDBC
2.0 allows the fetch size to be specified, thus allowing performance tuning of
the size of the results obtained from the DBMS.

10.1.4 Advanced datatypes
Advanced datatypes defined as part of SQL3 are supported in JDBC 2.0.
These include two new built-in types called Binary Large Objects (BLOB) and
Character Large Objects (CLOB), SQL3 structured types (structures of
built-in types and other structures), constructed types (including arrays), and
locator types (which are logical pointers to DBMS data).

10.2 JDBC 2.0 Optional Extension API

The JDBC 2.0 Optional Extension API is an extension of the Core API. The
optional extension supports integration with new Java standards including
JNDI (Java Naming and Directory Interface), Java Beans, JTA (Java
Transaction API), and EJBs (Enterprise JavaBeans).
374 WebSphere V3.5 Handbook

The Optional Extension API is specified in the javax.sql.* package. Table 19
and Table 20 show the classes and interfaces of the javax.sql.* package.

Table 19. javax.sql.* Class summary

Table 20. javax.sql.* Interface summary

Class name Description

ConnectionEvent The ConnectionEvent class provides information about the
source of a connection-related event.

RowSetEvent A RowSetEvent is generated when something important
happens in the life of a RowSet, such as when a column value
changes.

Interface name Description

ConnectionEventListener A ConnectionEventListener is an object that registers
to receive events generated by a PooledConnection.

ConnectionPoolDataSource A ConnectionPoolDataSource object is a factory for
PooledConnection objects.

DataSource A DataSource object is a factory for Connection
objects.

PooledConnection A PooledConnection object is a Connection object that
provides hooks for the connection pool manager.

RowSet The RowSet interface adds support to the JDBC API for
the JavaBeans component model.

RowSetInternal A rowset object presents itself to a reader or writer as
an instance of RowSetInternal.

RowSetListener The RowSetListener interface is implemented by a
component that wants to be notified when a significant
event happens in the life of a RowSet.

RowSetMetaData The RowSetMetaData interface extends
ResultSetMetaData with methods that allow a
metadata object to be initialized.

RowSetReader An object implementing the RowSetReader interface
may be registered with a RowSet object that supports
the reader/writer paradigm.

RowSetWriter An object that implements the RowSetWriter interface
may be registered with a RowSet object that supports
the reader/writer paradigm.
Chapter 10. JDBC 2.0 support 375

10.2.1 JNDI for naming databases
In JDBC 1.0, the DriverManager interface was used exclusively to obtain a
connection to a data source. The database driver, user ID, and password for
the data source were specified explicitly in the getConnection request. A
single connection (not a connection in the connection pool, see 10.2.2,
“Connection pooling” on page 376) would be provided using the following
method:

Connection conn = DriverManager.getConnection(dbDriver,userid,password);

In JDBC 2.0, a Naming Service locates the data source. An initial naming
context is obtained, and then the data source is located by doing a lookup.
The data source “name” provided on the ctx.lookup(name) is not the physical
name of the data source, but is the logical name for the data source that has
been defined administratively. This allows change to the JDBC driver to be
updated administratively rather than by code compilation.

try {
java.util.Hashtable env= new java.util.Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.ejs.ns.jndi.CNInitialContextFactory");

// Create the Initial Naming Context.
ctx = new InitialContext(env);

// Perform a naming service lookup to get a DataSource object.
ds = (javax.sql.DataSource) ctx.lookup(dbJndi);

}
catch (Throwable theException) {

// Handle Exception
theException.printStackTrace();

}

10.2.2 Connection pooling
Each Web request that requires access to a database must connect to that
database (generally via a TCP/IP connection). The overhead to acquire a new
connection, maintain it, and release it often far surpasses the time to perform
the actual database query. There is significant performance gain from pooling

XAConnection An XAConnection object provides support for
distributed transactions.

XADataSource A factory for XAConnection objects.

Interface name Description
376 WebSphere V3.5 Handbook

connections so that connections are only acquired and released when
necessary.

The Optional Extension API allows (optionally) connection pooling using the
javax.sql.DataSource object as a factory for these connections. The
DataSource object acquires a pool of connections and manages those
connections. Applications then acquire a connection and release a
connection to/from the pool of connections respectively.

In the code fragment in Figure 254, a connection is obtained from the
connection pool using the DataSource factory using getConnection(). The
connection is returned to the connection pool using close().

Figure 254. Sample program using the connection pool

In Version 2.0x of WebSphere, the JDBC 2.0 API was not available. There
was no standard means of providing connection pooling. WebSphere V2.0x
provided a proprietary means for applications to achieve connection pooling
through the IBM Connection Manager API. The IBM Connection Manager
APIs are still supported in WebSphere V3.5x; however, this support is
deprecated. It is strongly recommended that applications migrate to the new
JDBC 2.0 connection pooling standard; it is the JDBC 2.0 connection pooling
that is discussed in this chapter.

try
{

// Get a Connection from DataSource Factory
// Get a Connection object conn using the DataSource factory.

conn = ds.getConnection(dbAttr.userid, dbAttr.pwd);
// execute query
// process results
}

catch (Exception theException)
{

// Handle Exception
}

finally {
if(conn!=null) conn.close();

// other cleanup
}

Chapter 10. JDBC 2.0 support 377

10.2.3 Distributed transaction support (JTA support)
Distributed transactions are transactions where commands are sent to
multiple databases (on single node or multiple nodes). The Java Transaction
API (JTA) specifies the Java interfaces between a transaction manager and
the parties involved in a distributed transaction system. These parties include
the application, the resource manager, and the application server.

The key object in JTA is the javax.transaction.UserTransaction. Developers
can use a UserTransaction to begin, commit, or roll back transactions. The
UserTransaction interface can be used in WebSphere for Java clients
including servlets, JSPs, and stand-alone programs. JTA is described in detail
in Chapter 12, “Transactions” on page 503.

10.2.4 RowSets
A RowSet object is a JavaBean component that can be used to represent
tabular data on top of JDBC. Such objects can be transmitted across the
network, and thus simplify distributed applications.

10.2.5 IBM JDBC 2.0 extensions
In addition to the JDBC 2.0 extensions provided in javax.sql.* package as
described above, IBM also provides some extensions to JDBC 2.0. Further
information on these is contained in the WebSphere InfoCenter but in brief:

• Access DataSourceFactory.createJDBCDataSource(.....) and
createJTADataSource(......), bindDataSource , rebindDataSource etc, is
provided from the package:

import com.ibm.websphere.appserver.cm.factory.*;

• To Access ConnectionWaitTimeoutException and
IllegalIsolationLevelChangeException the following package is required:

import com.ibm.ejs.cm.pool.*;

• Support for StaleConnectionException (discussed futher in 10.5,
“Recovery from DB failures” on page 389) is provided by:

import com.ibm.ejs.cm.portability.*;
378 WebSphere V3.5 Handbook

10.3 Administration of data sources

Administration of a data source requires creating a DataSource via the
WebSphere Administrative Console or via XMLConfig. Creation of a data
source requires specification of a DataSource name (the logical JNDI name),
the name of the underlying datasource (DBMS name) as well as the database
driver to be utilized.

From the administrative console, select Topology view -> WebSphere
Administrative Domain, then right click and select Create -> DataSource as
shown in Figure 255 on page 380.

In WebSphere V3.02, data sources are indexed by database URL, user
name and password in use. Therefore, a pool is created for every unique
combination of URL, user, password. In V3.5 the data source
implementation was rewritten to index the data source by the DataSource
name, which corresponds to the database URL. Hence, a single connection
pool is created with one DataSource, and the pool can have connections
for different database users/passwords.

Consider the following example:

Two servlets use the same data source with different user IDs and each
servlet is only invoked once. Assuming that the maximum connection pool
size for the data source is at least two (or greater), then you will observe
two connections for the data source in the WebSphere Resource Analyzer.

This is because it is not possible to change the user ID/password on an
existing connection. You'll not observe reuse of a connection until a user
needs a connection and finds one already in the pool for his user ID. If
there is not one in the pool for his user ID, then the connection manager will
create a new one. If the connection pool maximum is hit, and the
connection manager cannot find a connection in the free pool for a given
user, but there are connections in the freepool, the connection manager will
destroy one of the free connections and allocate a new one on behalf of the
requesting user ID.

WebSphere data sources
Chapter 10. JDBC 2.0 support 379

Figure 255. Create DataSource from Topology view

Then you will get the Create a DataSource window as shown in Figure 256 on
page 381.

On the General tab, you need to specify data source name, database name
and driver name. In this example, we use the sample database that is
provided with DB2, and the administrative database driver.
380 WebSphere V3.5 Handbook

Figure 256. Create a DataSource: General tab

On the Advanced tab, there are several parameters that can be configured for
a data source as shown in Figure 257 on page 382.

The minimum connection pool size is the initial number of connections
established (even without requests).

The maximum connection pool size is the maximum number of connections
that can be established.

There are three timeouts that are specified:

1. The connection timeout is the maximum amount of time in seconds that a
request for a connection will wait if all connections in the pool are in use.

2. The idle timeout is the maximum amount of time in seconds that an idle
(not utilized) connection remains in the connection pool before being
freed.
Chapter 10. JDBC 2.0 support 381

3. The orphan timeout is the maximum amount of time in seconds that an
allocated connection remains before being returned to the pool (taken
away from the object to which it was allocated).

Figure 257. Create a DataSource: Advanced tab

Then click OK.

You will get the confirmation dialog and click OK as shown in Figure 258.

Figure 258. DataSource creation confirmation dialog
382 WebSphere V3.5 Handbook

10.3.1 datasources.xml property file
The datasources.xml property file can be used to further configure
DataSources. The datasources.xml property file can be created in
<WAS_HOME>/properties directory (c:\WebSphere\AppServer\properties by
default on Windows) to reflect the additional configuration settings.

The only property in the datasources.xml file that WebSphere supports for all
databases is the PreparedStatementCache size. This is the number of
precompiled PreparedStatement objects held in an in-memory WebSphere
cache. The default value for this cache size (in the absence of
datasources.xml information) is 100. Guidelines for sizing of the cache are
discussed in WebSphere V3 Performance Tuning Guide, SG24-5657.

In addition to the PreparedStatementCache size, other database properties,
such as a defaultRowPrefetch, can be specified. If the database supports
further properties on a connection, then WebSphere passes those properties
to the database when a connection is obtained; it is solely the responsibility of
the database/JDBC driver as to which additional properties can be specified.
Review the online manual (InfoCenter) for their database/JDBC drivers to
determine which properties may be set.

Figure 259 is a sample datasources.xml property file that specifies the
PreparedStatement cache size (a property used by WebSphere) and the
default row prefetch size (a property passed to the database driver for
processing).

Figure 259. datasources.xml property file

10.4 Best practices for JDBC 2.0 data access with WebSphere

There are a variety of best practices for application coding and configuration
of data access using JDBC 2.0 with WebSphere. These are described below.

<data-sources>
<data-source name="sample">

<attribute name="statementCacheSize" value="150" />
<attribute name="defaultRowPrefetch" value="25" />

</data-source>
</data-sources>
Chapter 10. JDBC 2.0 support 383

10.4.1 Select database manager/driver capabilities
WebSphere V3.5x provides generic support for both the JDBC 2.0 Core API
and Optional Extensions API. However, some advanced features (specifically
of the Optional Extensions API) are supported only by some database
drivers.

Several database drivers have been tested with WebSphere. The database
drivers that have been tested are those that can be chosen for the
WebSphere administrative database. All of the database drivers tested (which
are suitable for the WebSphere administrative database) support connection
pooling. The support for two-phase commit (and JTA) are detailed in the
tables below. Table 21 shows the DB2 support, Table 22 shows the Oracle
support, and Table 23 shows the Sybase support. New drivers are added to
the supported list periodically. Please refer to the IBM WebSphere Web site to
obtain the latest information.

Table 21. DB2 support

Table 22. Oracle support

*Oracle does not support xa_recover and xa_forget. See
http://technet.oracle.com.

Table 23. Sybase support

DB 2 Support 2PC/JTA DB2 6.1 [FP 4/5] DB2 7.1 [FP 1]

AIX Yes Yes

Solaris Yes Yes

HP-UX No No

Windows NT/x86 and 2000 Yes Yes

Oracle Support 2PC/JTA Oracle 8.1.6 (Thin and Thick) and Oracle 1241123

AIX No (Oracle Limitation*)

Solaris No (Oracle Limitation*)

HP-UX No (Oracle Limitation*)

Windows NT/x86 and 2000 No (Oracle Limitation*)

Sybase Support Sybase ASE 12.0 Sybase 11.9/11.5
WebSphere V3.5.1 Required

AIX Yes Yes (with jConnect 5.2)

Solaris Yes Yes (with jConnect 5.2)
384 WebSphere V3.5 Handbook

10.4.2 Use connection pooling for JDBC access
Connection pooling makes a significant impact on application performance. If
a JDBC driver is selected that supports connection pooling, and a
DataSource object is used to acquire connections, then connection pooling is
used without requiring significant application coding.

Initializing the data source via JNDI rather than using the DriverManager
interface allows for the database driver to be specified administratively, rather
than hard-coded.

10.4.3 Configure connection pool sizes
There are five parameters configured via the WebSphere Administrative
Console for connection pools: minimum (or starting) connection pool size,
maximum connection pool size, connection timeout, idle timeout, and orphan
timeout.

The maximum connection pool size should be large enough to provide a high
probability that a new request has access to an open connection. The size of
the pool needs to be balanced against the performance impact of creating too
large a pool and the delay incurred when a request has to wait for an open
connection. The specifics for any environment should be made through
performance experiments prior to production deployment, and confirmed
using the Resource Analyzer during production. The maximum connection
pool size should also ensure that the maximum number of connections does
not exceed the available database licenses or network infrastructure
capability.

The minimum connection pool size should be sufficiently large to address the
startup performance penalty that can occur when the connection pool grows
in response to an increase in load.

10.4.4 Configure connection pool timeouts
The connection timeout is the maximum amount of time in seconds that a
request for a connection (a getConnection() request) will wait if all
connections in the pool are in use. In general, the connection timeout should
be less than the expected browser timeout value. This allows the connection

Windows NT/x86
(WebSphereV3.5.1)

Yes Yes (with jConnect 5.2)

Sybase Support Sybase ASE 12.0 Sybase 11.9/11.5
WebSphere V3.5.1 Required
Chapter 10. JDBC 2.0 support 385

timeout to occur, the exception to be caught by the application, and
user-friendly error page (such as server busy, please retry) to be displayed to
the user, rather than a browser timeout error page. In addition, in a system
whose database or database connections are overloaded, a sufficiently small
connection timeout value would prevent the database query from being
performed when the results would (of necessity) be discarded by the
application due to a browser timeout. The connection timeout should be large
enough to allow for reasonable queueing delays to the database server.

The idle timeout is the maximum amount of time in seconds that an idle (not
utilized) connection remains in the connection pool before being freed. The
idle timeout should be configured to allow reasonable sharing of connection
resources between the WebSphere processes and any other processes using
the same database.

The orphan timeout is the maximum amount of time in seconds that an
allocated connection remains before it is deemed orphaned, and returned to
the pool (taken away from the object to which it was allocated). The orphan
timeout is a provision to handle an application’s failure to release connections
or other similar failures. The orphan timeout should be large enough to
ensure that all database requests made upon obtaining the connection can
be completed (including queueing delays) in non-failure situations. The
orphan timeout should be small enough so that it permits reasonable
recovery time in the event of failures.

10.4.5 Specify database attributes at deployment time
The database attributes such as the user ID, password, JNDI name, etc.
should be modifiable administratively without requiring code changes. This
simplies the process of migrating from a staging environment to a production
environment. This can be accomplished by including these parameters as
InitParameters for a servlet or by reading these parameters from a properties
file or resource bundle.

10.4.6 Perform expensive JNDI lookups once per data source
JNDI lookups are expensive from a performance perspective. The JNDI
lookup should be performed once. It can be performed in an init method or by
initializing the class variable to null, and then performing the lookup only if it is
still null. The data source when obtained can be stored as a private variable.
Once it is obtained, it is used during each request without requiring an
additional JNDI lookup.
386 WebSphere V3.5 Handbook

The following code sample illustrates the initialization of a DataSource using
JNDI:

// Initializes the DataSource via JNDI.
public void initDataSource(String dbJndi) {

Context ctx = null;

try {
java.util.Hashtable env= new java.util.Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.ejs.ns.jndi.CNInitialContextFactory");

// Create the Initial Naming Context.
ctx = new InitialContext(env);

// Perform a naming service lookup to get a DataSource object.
// The DataSource object is a factory used to request
// individual connections.
// The dbJndi is the JNDI name or logical name of the database.

ds = (javax.sql.DataSource) ctx.lookup(dbJndi);
}
catch (Throwable theException) {

// Handle Exception
theException.printStackTrace();

}
finally {

try {
if(ctx!=null)

ctx.close();
}
catch (Exception e) {

// Handle Exception
}

}

}

WebSphere V3.5.2 includes an enhancement to provide support for caching
the JNDI results within the WebSphere Application Server. This substantially
reduces the performance penalty associated with failure to cache JNDI
lookups; it is still a good programming practice to cache JNDI lookups.
Chapter 10. JDBC 2.0 support 387

10.4.7 Use proper try/catch/finally logic to release JDBC resources
The process of performing a data access task (such as a database query or
update) should be structured using judicious try/catch/finally logic. The
process of obtaining a connection, creating a statement, executing the query
and processing the results of the query should be within a try block. A catch
block handles exceptions that occur within the try block. The finally block is
the appropriate place to ensure that all JDBC resources are released. The
JDBC resources to release include the Connection (released back to the
connection pool), the Statement (or CallableStatement or
PreparedStatement), and the ResultSet.

Structuring the application using a try/catch/finally block substantially reduces
the possibility of leaking JDBC resources. Failure to release these resources
can result in out-of-resource conditions for long-running applications.

// Perform a Data Access Task
public void performTask()
{

Connection conn = null;
PreparedStatement pStmt = null;
ResultSet rs = null;

try
{

// Get a Connection from DataSource Factory
// Get a Connection object conn using the DataSource factory.

conn = ds.getConnection(dbAttr.userid, dbAttr.pwd);

// Execute SQL Statement, e.g, query
String employeeInfo = null;
conn = ds.getConnection(dbuser,dbpwd);
pStmt = conn.prepareStatement("SELECT EMPNO, FIRSTNME, LASTNAME FROM

EMPLOYEE",
ResultSet.TYPE_SCROLL_SENSITIVE,ResultSet.CONCUR_READ_ONLY);

rs = pStmt.executeQuery();
// Generate a View

if(rs!=null) {
while(rs.next()) {

// obtain results from ResultSet
}

}
}

catch (Exception theException)
{

// Handle Exception
388 WebSphere V3.5 Handbook

}
// Release JDBC Resources

finally
{
// Clean up all resources, regardless of failure/success
// of JDBC request

try {
// release ResultSet
if(rs!=null)

rs.close();
}
catch (Exception theException) {

// Handle Exception
}

try {
// release PreparedStatement
if(pStmt!=null)

pStmt.close();
}
catch (Exception theException) {

// Handle Exception
}

try {
// release Connection
if(conn!=null)

conn.close();
}
catch (Exception theException) {

// Handle Exception
}

10.4.8 Configure PreparedStatement cache size
WebSphere maintains a cache of precompiled PreparedStatement objects.
The default cache size for PreparedStatement objects is 100. If the
application uses more than 100 different PreparedStatements, the cache size
can be modified using the datasource.xml file (as discussed in 10.3.1,
“datasources.xml property file” on page 383).

10.5 Recovery from DB failures

A connection pool is a cache of database connections. This cache could be
rendered stale/invalid in the following cases:
Chapter 10. JDBC 2.0 support 389

• Scheduled database shutdowns

• Database administrative actions such as issuing the command force

applications all has been issued with DB2 or shutdown with Oracle

• Network problems

WebSphere provides a solution to this problem that functions in the following
manner:

1. Catch SQLException on database operations

2. Examine the exception for SQLSTATE string, error codes

3. Compare with list of known state strings and error codes

4. Destroy the connection

In your application program, you will need to write a catch block which can
catch SQLException called “StaleConnectionException” as shown in Figure
260.

Figure 260. StaleConnectionException

try {
boolean retry = true;
while(retry) {

try {
Connection conn1 = ds1.getConnection();
Statement stmt1 = conn1.createStatement();

// assume that the connection becomes stale here somehow.
// eg. force application all.

// the following call will fail.
ResultSet res = stmt1.executeQuery(stmtString);
.......
// if all the database work was successful.
retry = false;
............

} catch (StaleConnectionException ex) {
conn1.close();
retry = true;

}
}

} catch(Exception ex) {
}

390 WebSphere V3.5 Handbook

Table 24 is the list of the state strings and error codes that WebSphere can
handle.

Table 24. List of state strings and error codes

10.6 Reference information

• JDBC API Tutorial and Reference, Second Edition, by White, Fisher,
Cattell, Hamilton, and Hapner.

• “JDBC 2.0 API”, by Seth White and Mark Hapner. Version 1.0. June 4,
1998, available at http://www.javasoft.com.

• Servlet and JSP Programming with IBM WebSphere Studio and VisualAge
for Java, SG24-5755

• WebSphere V3 Performance Tuning Guide, SG24-5657

SQLSTATE Error code Messages

DB2 55032, 08001, 08003,
40003, S1000

-1015, -1034, -1035,
-6036, -3008, -1224,
-1229, -30081

Oracle 55032, 08001, 08003,
40003, S1000

17002, 1089, 1034,
1033, 3113, 3114, 1012

Connection reset
by peer

Sybase 55032, 08001, 08003,
40003, S1000
Chapter 10. JDBC 2.0 support 391

392 WebSphere V3.5 Handbook

Chapter 11. Enterprise Java Services

Enterprise JavaBeans (EJB) allow developers to focus on writing the
business logic necessary to support their applications without having to deal
with the intricacies of the underlying middleware.

EJB containers insulate the enterprise beans from the underlying EJB server
and provide a standard application programming interface (API) between the
beans and the container. The EJB Specification defines this API. The EJB
container provide crucial services such as transactions, security, naming, and
persistence.

Enterprise Java Services (EJS) is the WebSphere component that allows the
deployment and management of Enterprise JavaBeans in EJB containers.

In this chapter we discuss:

• How to prepare WebSphere so that you can deploy your EJBs.

• How to deploy your EJBs into a WebSphere container.

• Some example EJBs that explore key behaviors you will see when your
EJBs execute in WebSphere.

• EJB security.

We will not discuss how to develop EJBs or EJB clients. This is beyond the
scope of this redbook. For detailed information, refer to Developing
Enterprise JavaBeans with VisualAge for Java, SG24-5429 and Design and
Implement Servlets, JSPs, and EJBs for IBM WebSphere Application Server,
SG24-5754.

11.1 Configuring Enterprise Java Services

In order to run EJBs in WebSphere V3.5. you need to create an EJB
container. Any application server can hold an EJB container. When you
create the application server called “Default Server”, an EJB container is
automatically created. See 14.5, “Create an application server and other
basic resources” on page 587 for details on how to set up an application
server.

In this chapter we will cover the specific of creating an EJB container in more
detail.

If you are creating EJBs that access databases, for example a
container-managed entity bean, then you will also need to create one or more
© Copyright IBM Corp. 2001 393

JDBC drivers and data sources. You can find details on how to do this in 14.4,
“Create a JDBC driver and data source” on page 579.

11.1.1 Creating a container
In order to create a container, from the administrative console, select the
application server you want to create the container in.

Right click and select Create -> EJBContainer as depicted in Figure 261.

Figure 261. Creating a container

A new window, Create EJBContainer, will pop up. This window contains three
tabs. The General tab is shown in Figure 262 on page 395.
394 WebSphere V3.5 Handbook

Figure 262. Create EJBContainer: General tab

You need to enter a name for your EJB container on the General tab. The
default value offered will normally be acceptable. Click the Advanced tab.
This is shown in Figure 263 on page 396.
Chapter 11. Enterprise Java Services 395

Figure 263. Create EJBContainer: Advanced tab

The fields on the Advanced tab fall into two categories. First there are four
fields that define EJB cache management. These are used in performance
tuning. It is unlikely that you will need to adjust these fields in a development
situation. Refer to the WebSphere V3 Performance Tuning Guide, SG24-5657
for information related to tuning these parameters in a production
environment.

In addition to the four cache management parameters, there is one parameter
that allows you to specify the passivation directory. This directory is used for
passivation of stateful session EJBs. The EJB container may choose to
remove an EJB from the cache in order to utilize the cache for other requests.
This is known as passivation and involves the serialization of state
396 WebSphere V3.5 Handbook

information as a means of temporarily saving the EJBs, when the cache is
full.

If you are using stateful session EJBs you will probably find it easier to
manage your system if you create a suitable directory and specify its location
in this field.

If you click the DataSource tab you will see that you can specify a default
data source for your EJBs. This is shown in Figure 264. You do not have to
specify values here. You can instead specify them separately on each EJB as
you create it.

Figure 264. Create EJBContainer: DataSource

If you do want to specify the data source, click Change to bring up the Data
Source selection tab shown in Figure 265 on page 398.
Chapter 11. Enterprise Java Services 397

Figure 265. Select a DataSource

You can then select a data source and click OK. Then fill in the appropriate
user name and password as shown in Figure 266

Figure 266. EJB data source selected
398 WebSphere V3.5 Handbook

When you click OK the EJB container will be created and you will see a
confirmation dialog. Your administrative console will now show your new EJB
container as shown in Figure 267.

Figure 267. New EJB container

11.1.2 Removing a container
If you should wish to remove a container, you have to stop it first. Then right
click and select Remove as depicted in Figure 268 on page 400.
Chapter 11. Enterprise Java Services 399

Figure 268. Removing a container

11.2 Installing an EJB into a container

After you have developed your Enterprise JavaBeans, they need to be
installed into an EJB container so that you can run them. Words such as
“install” and “deploy” have very similar connotations in everyday speech. In
the context of EJBs in WebSphere, “deploy” has a specific meaning that we
will explain as we examine the installation process.

We assume that we are starting with an EJB JAR file, which contains only the
EJB home and remote interfaces and the EJB implementation class.

Figure 269 on page 401 shows the three steps in the installation process.
400 WebSphere V3.5 Handbook

Figure 269. EJB deployment process

The figure also shows that it is possible both to install an EJB using only
WebSphere tools and also to use VisualAge for Java to perform some of the
tasks.

We will first briefly describe the three steps and then give detailed
explanations of how to use the WebSphere tools and how to use the
alternative of the VisualAge for Java facilities.

enterprise
bean

Container

- Counter.class
- CounterHome.class
- CounterBean.class
- Counter.ser
- Manifest.mf

- _Counter_BaseStub.class
- _Counter_Stub.class
- _CounterHome_BaseStub.class
- _CounterHome_Stub.class

- _EJSRemoteCounter_Tie.class
- _EJSRemoteCounterHome_Tie.class
- EJSCounterHomeBean.class
- EJSRemoteCounter.class
- EJSRemoteCounterHome.class

deployed
EJB JAR

- Counter.class
- CounterHome.class
- CounterBean.class
- Counter.ser
- Manifest.mf

deployable
EJB JAR

- Counter.class
- CounterHome.class
- CounterBean.class

EJB JAR

create .ser file &
manifest file

create stubs &
skeletons

deploy into
container

jetace

administrative console
(WSCP, XMLConfig)

VisualAge
for Java

Export
EJB JAR

Export
Deployed JAR

administrative console
(WSCP, XMLConfig)
Chapter 11. Enterprise Java Services 401

11.2.1 Creating the deployment descriptor
The deployment descriptor defines the EJBs run-time configuration. You can
specify items such as the transactional requirements of the EJB and whether
individual methods of an entity bean are read-only.

The deployment descriptor is added to the EJB JAR in the form of a
serializable object on a file with extension .ser.

An EJB JAR with deployment descriptor is sometimes referred to as
“deployable”.

11.2.2 Generating stubs and skeletons
An EJBs clients access the EJB using RMI/IIOP. We therefore need code to
manage the RMI interactions for each EJB. This code is in a set of stub and
skeleton classes generated by WebSphere and added to the EJB JAR.

This code is WebSphere specific. If you took your deployable EJB JAR to a
different vendor’s EJB container you might see a similar set of classes
generated, but there is no expectation that the generated code would be the
same.

An EJB JAR containing the stub and skeleton code is termed Deployed. As
we will show later, VisualAge for Java can deliver a JAR file that contains both
deployment descriptor and generated code; it can deliver a deployed JAR file.

11.2.3 Create EJB in a container
WebSphere will add an EJB to an EJB container. This is an administrative
process and the result is that your EJB becomes visible in the administrative
console and can be stopped and started.

You normally create an EJB from a deployed JAR file. However, the
administration process will accept a deployable JAR file and will perform the
code generation before adding the EJB to the container.

This section will describe two different ways to perform this installation.

You can deploy an EJB in WebSphere V3.5 using VisualAge for Java or the
JETACE tool, which is a component of WebSphere V3.5.

11.2.4 Creating the deployment descriptor using jetace
Jetace is a tool used to create a deployable EJB JAR file, one that contains a
deployment descriptor.
402 WebSphere V3.5 Handbook

The input is a JAR, zip, or directory containing the classes for one or more
EJBs.

Output is a deployable EJB JAR file that contains:

• EJB class files

• Deployment descriptor file

• EJB-compliant manifest file

Jetace is in your standard WebSphere installation at:

<WAS_install_dir>/bin/jetace

11.2.4.1 Running the JETACE tool
We will show you how to deploy a sample bean (Counter CMP EJBs) using
the JETACE tool.

To deploy this EJB we need to perform the following steps:

1. Create a JAR file

2. Launch jetace

3. Load the JAR file

4. Set up the properties for the EJB

5. Save it as the deployable JAR file (this JAR file now contains the
deployment descriptor)

From the <WebSphere_install_dir>/bin directory, issue the command jetace.

If you are using associations or inheritance between your EJBs with
VisualAge for Java, before launching jetace, you need to add a JAR file to
the system’s classpath. For our tests, we exported the Project IBM EJB
Tools to a JAR file (we called ejbruntime35.jar) and we added this JAR to
the system’s classpath by issuing the following command:

set classpath=%classpath%;D:/Mohamed/EJBs/ejbruntime35.jar

Note
Chapter 11. Enterprise Java Services 403

Figure 270. Invoking jetace

You will have a jetace GUI as shown in Figure 271.

Figure 271. jetace initial window

Select File -> Load as depicted in Figure 272 on page 405.

C:\WebSphere\AppServer\bin>jetace
404 WebSphere V3.5 Handbook

Figure 272. Loading the EJB JAR file

Browse to the directory where you created your EJB JAR file and select your
EJB JAR file (in our case, CounterCMPNonDeployed.jar) and click Open as
shown in Figure 273.

Figure 273. Select your EJB JAR file
Chapter 11. Enterprise Java Services 405

Now we need to create the deployment descriptor.

Click New in the jetace window as shown in Figure 274.

Figure 274. Finished reading the input file

You will be ready to start editing a deployment descriptor.

In the Basic tab, we need to specify:

• Deployed name (name of the deployment descriptor)

• EJB class name

• Home interface name

• Remote interface name

• JNDI name

In our case, we specified:

• Deployed Name: Counter.ser

• Enterprise Bean Class:
com.ibm.itso.websphere35.ejb.cmp.CounterCMPBean
406 WebSphere V3.5 Handbook

• Home Interface: com.ibm.itso.websphere35.ejb.cmp.CounterCMPHome

• Remote Interface: com.ibm.itso.websphere35.ejb.cmp.CounterCMP

• JNDI Home Name: Counter

These are shown in Figure 275.

Figure 275. jetace: Basic tab

In the Entity tab, we specify:

• Primary key class: com.ibm.itso.websphere35.ejb.cmp.CounterCMPKey

• Container managed fields: select both cunterKey_ and theCount_ as
shown in Figure 276 on page 408.
Chapter 11. Enterprise Java Services 407

Figure 276. Entity attributes

In the Transactions tab, we must specify the following attributes:

• Transaction attribute. We specify TX_REQUIRED. This means that the
counter bean either must be invoked with the context of an existing
transaction or the container will create a new transaction when invoking
this EJB.

• Isolation level: we keep the default value (READ_COMMITTED)
408 WebSphere V3.5 Handbook

Figure 277. jetace: Transactions tab

To save the current configuration to an EJB JAR file:

1. Click File--> Save As...
Chapter 11. Enterprise Java Services 409

Figure 278. Saving a configuration of an EJB JAR file

2. In the Save To File window, specify the directory (or folder) and the JAR
file name (in our case,
C:\WebSphere\AppServer\deployableEJBs\CounterCMPNonDeployed.jar)
and then click Save.

Figure 279. Save deployable EJBs
410 WebSphere V3.5 Handbook

Then you will see Finished saving the output file message in the Status
line as shown in Figure 280.

Figure 280. Finished saving the output file

Now, we exit from jetace by clicking File -> Exit.

Now that we have created the deployment descriptor (Counter.ser) and our
EJB JAR file (we specified CounterCMPDeployable.jar), we are ready to
deploy our EJB in WebSphere.

11.2.5 Create an enterprise bean
You can create an enterprise bean with the administrative console as
described in the following:

1. With the administrative console, select a container, right click and select
Create-> EnterpriseBean as depicted in Figure 294 on page 423.
Chapter 11. Enterprise Java Services 411

Figure 281. Create an enterprise bean

Then you will get the Create EnterpriseBean window as shown in Figure 282
on page 413.
412 WebSphere V3.5 Handbook

Figure 282. Creating an enterprise bean using the administrative console

If you know the JNDI name, you can specify it in the Name field (this is the
Bean properties for those using VisualAge for Java). If you don’t know it,
click Browse...

In the Open window, locate the respective JAR file as depicted in Figure 283
on page 414. Then double click the JAR file (in our case,
CounterCMPDeployable.jar).
Chapter 11. Enterprise Java Services 413

Figure 283. Select CounterCMPDeployable.JAR

Then you will see the .ser file that you created before. Choose it (in our case,
Counter.ser) and click Select as shown in Figure 284

Figure 284. Select Counter.ser

You will get the Confirm dialog window. Click Yes and WebSphere will bring
up a new confirm dialog window asking if you want to enable WLM on this
bean as depicted in Figure 285 on page 415. Choose Yes or No, depending
on whether you are planning to use WebSphere WLM. In our case, we clicked
Deploy Only.
414 WebSphere V3.5 Handbook

Figure 285. Confirm dialog

WebSphere will deploy your enterprise bean.

Figure 286. Deploying enterprise bean

When deployment is finished, you will see the Information dialog saying
Command “Deply JarFile” completed successfully. Then click OK.

Then we come back to the Create EnterpriseBean window. Every field is now
filled in as shown in Figure 287 on page 416.
Chapter 11. Enterprise Java Services 415

Figure 287. Create EnterpriseBean: General tab

In the Advanced tab, you can specify the instance pool size.
416 WebSphere V3.5 Handbook

Figure 288. Create EnterpriseBean: Advanced tab

You can change these value after you create an EnterpriseBean from the
administrative console. Therefore, it’s not necessary to update these values
now. We will describe these parameters later in this chapter.

In the DataSource tab, you can specify DataSource for the EnterpriseBean
that you are creating. Note that the data source does not need to be specified
for session beans.
Chapter 11. Enterprise Java Services 417

Figure 289. Create EnterpriseBean: DataSource tab

By clicking the Change button, you will get the Datasource window. Select an
appropriate data source as shown in Figure 290 on page 419. In our case, we
selected DS for CMP.
418 WebSphere V3.5 Handbook

Figure 290. Select a Datasource window

Returning to the DataSource tab, you then specify the user ID and password
for the database (or table), which is defined by the DataSource that you
selected. Also, if you need to create a table now, check the Create Table
check box as shown in Figure 291 on page 420. Note that even if the box is
checked, the table will not be created immediately, but on the first start of the
bean.
Chapter 11. Enterprise Java Services 419

Figure 291. Create EnterpriseBean: DataSource, user ID, and password

Click OK to finish creating your EJB.

WebSphere brings up a new information dialog saying that the creation of the
EJB has completed successfully. Click OK to finish the creation of the EJB.

Now we go back to the administrative console, and make sure our EJB
(CounterCMPHome) has been created successfully, as depicted in Figure
292 on page 421.
420 WebSphere V3.5 Handbook

Figure 292. Newly created enterprise bean

You can check the bean properties and modify them if you wish by editing the
deployment descriptor.

11.2.6 Creating a deployed JAR using VisualAge for Java
You can also create a deployed EJB JAR directly from VisualAge for Java.

1. Select the bean you want to deploy and right click.

2. Select Export-> Deployed JAR as shown in Figure 293 on page 422.

3. Export the deployed code to a directory.

4. Now that the JAR file is exported from VisualAge for Java. You need to
copy the JAR file to the WebSphere server.
Chapter 11. Enterprise Java Services 421

Figure 293. Deploying from VisualAge for Java

You can create the EJB with the administrative console as described in the
following:

1. With the administrative console, select a container, right click and select
Create-> Enterprise Bean. You will get the Create EnterpriseBean
window as depicted in Figure 294 on page 423.
422 WebSphere V3.5 Handbook

Figure 294. Creating an enterprise bean using the administrative console

2. If the JNDI name is known it can be specified in the Name field, which
corresponds to the Bean Properties in VisualAge for Java. Alternatively,
click Browse and locate the respective JAR file as depicted in Figure 295
on page 424.
Chapter 11. Enterprise Java Services 423

Figure 295. Selecting the exported EJB deployed JAR file

3. Choose the exported JAR file and click Select. WebSphere detects the
deployed bean in the JAR file and brings up a confirm dialog window as
depicted in Figure 296. Then click Yes.

Figure 296. Deploying the customer EJB

Note that in WebSphere V3.5.2, you will get a new confirm dialog window
asking if you want to enable WLM on this bean as depicted in Figure 297.
Choose Yes or No, depending on whether you are planning to use
WebSphere WLM. If you are using VisualAge for Java, you will not get this
dialog window in WebSphere V3.5.3.

Figure 297. Click Yes if you are planning to use WLM
424 WebSphere V3.5 Handbook

If the deployment succeeds, an Information dialog window appears as
depicted in Figure 298. Click OK to finish deploying your EJB.

Figure 298. Deployment succeeds

Then we come back to the Create EnterpriseBean window. The fields Name
and JAR file are now filled in.

It’s not necessary to configure several parameters in the Advanced and
DataSource tabs. Therefore, we don’t specify them now. Click OK to finish
creating your EJB as depicted in Figure 299 on page 426.
Chapter 11. Enterprise Java Services 425

Figure 299. Click OK to create your EJB

WebSphere brings up a new information dialog saying that the creation of the
EJB has completed successfully. Click OK to finish the creation of the EJB.
426 WebSphere V3.5 Handbook

Now we go back to the administrative console, and make sure our EJB
(CustomerHome) has been created successfully as depicted in Figure 300.

Figure 300. Newly created enterprise bean

You can check the bean properties and modify them if you wish by editing the
deployment descriptor.

11.3 Stateless session beans

Now that we have been able to install our EJBs into WebSphere we can
explore how they behave at run time.

In this section we show you the behavior of EJB stateless session beans in
WebSphere V3.5. In the following sections we examine stateful session
beans and entity beans.

Our tests emphasize the fact that we cannot use stateless session beans to
maintain client state across calls to multiple business methods.

11.3.1 The life cycle of a stateless session bean
The stateless session bean’s life cycle has two states:
Chapter 11. Enterprise Java Services 427

• The does-not-exist state.

• The method-ready pool state.

When a bean instance is in the does-not-exist state, this means that it has not
yet been instantiated.

When a bean instance is instantiated by the container and is ready to serve
client requests, it is in the method-ready pool state. The container moves a
stateless session beans from the does-not-exist state to the method-ready
pool state by performing the following three operations:

• Invoke the Class.newInstance() method on the stateless bean class.

• Invoke the SessionBean.setSessionContext(SessionContext context)
method on the bean instance.

• ejbCreate() method is invoked on the bean instance.

A stateless session bean only has one ejbCreate() method, which takes no
arguments.

Note
428 WebSphere V3.5 Handbook

Figure 301. Stateless session bean life cycle

11.3.1.1 Sample stateless session bean application
We developed a sample application to illustrate the stateless session beans
life cycle and the instance pool associated with these beans.

The application is composed of a servlet (CounterStatelessServlet) and a
stateless session bean CounterBean.

The CounterBean class contains only one instance variable (theCount_) that
represents the number of times the bean is being accessed.

does not exist

method-ready
pool

ejbRemove()

1. newInstance()
2. setSessionContext(sc)
3. ejbCreate()

container
initiated

container
initiated

business
method

client
initiated
Chapter 11. Enterprise Java Services 429

Figure 302. Sample application for stateless session bean

11.3.1.2 The Counter stateless session bean
The remote interface contains only one business method addValue() that
increments the the_Count variable. Clients never call this method directly.
They call it through the EJBObject implemented by the container. We added
trace facilities to track the methods called in the CounterBean. We created
and used the class from the com.ibm.itso.trace packages. Note that we will
not describe this class.

The CounterBean class is defined as shown in Figure 303.

Figure 303. CounterBean class

doGet(HttpServletRequest, HttpServletResponse):void

doPost(HttpServletRequest, HttpServletResponse):void

CounterServlet CounterEJB

TheCount_:int

addValue():void

getValue():int

import java.util.Properties;
import javax.ejb.*;
import com.ibm.itso.trace.*;
/**
* This is a Session Bean Class
*/
public class CounterBean implements SessionBean {

private javax.ejb.SessionContext mySessionCtx = null;
private int theCount_;
// we use a TraceComponent for tracing
private static final TraceComponent tc =

Tr.register(CounterBean.class);

final static long serialVersionUID = 3206093459760846163L;
}

430 WebSphere V3.5 Handbook

In order to trace all the methods called by the container during the life cycle of
the CounterBean, a trace method was added to EJB implementation.

Other important methods are defined as follows:

• setSessionContext(SessionContext ctx):

This method is called by the EJBContainer to associate a new
CounterBean instance with a session context.

Figure 304. setSessionContext() method

• ejbCreate():

The EJB client never calls this method directly. It is called via the create()
method defined in the home interface. In our example, we set the
theCount_ variable to 0 each time a new instance of a CounterBean is
created.

Figure 305. ejbCreate() method

/**
* setSessionContext method comment
* @param ctx javax.ejb.SessionContext
* @exception java.rmi.RemoteException The exception description.
*/
public void setSessionContext(javax.ejb.SessionContext ctx) throws
java.rmi.RemoteException {

mySessionCtx = ctx;
if (tc.isEntryEnabled()) Tr.event(tc,"called setEntityContext()

method with ctx="+ctx.toString());
}

/**
* ejbCreate method comment
* @exception javax.ejb.CreateException The exception description.
* @exception java.rmi.RemoteException The exception description.
*/
public void ejbCreate() throws javax.ejb.CreateException,
java.rmi.RemoteException {

this.theCount_=0;
if (tc.isEntryEnabled()) Tr.event(tc,"called ejbCreate() method

with ctx="+mySessionCtx.toString());

}

Chapter 11. Enterprise Java Services 431

• ejbActivate():

This method is called when the container activates a passivated EJB. It
does not apply to stateless session beans but applies to stateful and entity
EJBs. We defined this method and added tracing to it in order to validate
that it is never called by the container because our Counter EJB is
stateless.

Figure 306. ejbActivate() method

• ejbPassivate():

This method is called when there are too many instances of stateful
session beans or entity beans. To passivate an EJB, the container writes
the instance to the file system using the serialization mechanism. This
method does not apply for a stateless session bean. We defined this
method and added tracing to it in order to validate that it is never called by
the container because our Counter EJB is stateless.

Figure 307. ejbPassivate() method

• ejbRemove():

When the EJBContainer removes an EJB instance, it invokes the
ejbRemove() method. We added code to this method to insure that
resources such as sockets or JDBC connections are freed.

/**
* ejbActivate method comment
* @exception java.rmi.RemoteException The exception description.
*/
public void ejbActivate() throws java.rmi.RemoteException {

if (tc.isEntryEnabled()) Tr.event(tc,"called ejbActivate() method
with ctx="+mySessionCtx.toString());

}

/**
* ejbPassivate method comment
* @exception java.rmi.RemoteException The exception description.
*/
public void ejbPassivate() throws java.rmi.RemoteException {

if (tc.isEntryEnabled()) Tr.event(tc,"called ejbPassivate() method
with ctx="+mySessionCtx.toString());

}

432 WebSphere V3.5 Handbook

Figure 308. ejbRemove() method

• addValue():

This is the only business method exposed in the remote interface of our
stateless session bean.

Figure 309. addValue() method

11.3.1.3 CounterStatelessServlet servlet
We developed a CounterServlet servlet to access our CounterBean EJB. The
WebSphere programming model suggests accessing EJBs always through
servlets. See Chapter 3, “WebSphere programming model” on page 17 for
more information.

The home interface of a Counter EJB is stored as an instance variable of
CounterServlet servlet. It is initialized at the init of the servlet. In this way, we
guarantee that the lookup() on the home interface of the Counter EJB is done
only once, since the servlet is a new instance. Lookup() calls can be very
expensive in terms of performance. In our case, if we configure the
CounterServlet servlet to be loaded at the startup of our server, the lookup on
the home interface is done at the startup of the server, and our application is
much more performable.

The init(ServletConfig) method of the CounterServlet is defined as Figure 310
on page 434.

/**
* ejbRemove method comment
* @exception java.rmi.RemoteException The exception description.
*/
public void ejbRemove() throws java.rmi.RemoteException {

if (tc.isEntryEnabled()) Tr.event(tc,"called ejbRemove() method with
ctx="+mySessionCtx.toString());

}

public int addValue() throws java.rmi.RemoteException {
theCount_++;
return theCount_;

}

Chapter 11. Enterprise Java Services 433

Figure 310. init(ServletConfig) of CounterServlet servlet

/**
* Initializes the servlet.
*/
public void init(ServletConfig config) throws ServletException {

//
super.init(config);
try {

// create initial naming context
Hashtable params = new Hashtable();

params.put(Context.INITIAL_CONTEXT_FACTORY,"com.ibm.ejs.ns.jndi.CNIniti
alContextFactory");

Context ctx = new InitialContext(params);
home_ = (CounterHome)

javax.rmi.PortableRemoteObject.narrow(ctx.lookup("Counter"),CounterHome
.class);

} catch(Exception e) {
System.out.println("Servlet Init() exception: " +

e.getMessage());
e.printStackTrace();

}

}

For deploying our sample application, we must configure the classpath of
the server running the servlet to contain the deployed EJB-JAR. This is
because the CounterServlet servlet, which is the EJB client in this case,
needs the stub classes included in the deployed EJB-JAR. When the client
(the servlet in our example) is in the same JVM (WebSphere Application
Server) as the EJB, then no explicit actions are required, since all required
classes are in scope for the application server classloader. When the client
and the EJB are not in the same JVM, then the deployed EJB client classes
(JAR file) will need to be added to the classpath for the application server
running the servlet.

Note
434 WebSphere V3.5 Handbook

11.3.1.4 Verification of stateless session bean state
In our tests, we access the CounterStatelessServlet servlet from different
clients. We see that each time we access it, we have a different count result.
A stateless session is an instance that contains a conversation state and
which spans a single method invocation. Our CounterBean is stateless, so it
does not maintain the state (theCount_) spanning multiple method calls.
Therefore, a client will get an irregular increment value per method call when
the EJBContainer dispatches requests to another CounterBean instance in a
pool.

Figure 311. The EJBObject does not always use the same instance

Accessing from browser A
The first time we access the CounterStatelessServlet, we see the output
shown in Figure 312 on page 436.

count = 1

count = 1

Bean Instance

add() count = 2

add() count = 1

Bean Instance

add() count = 1

Bean Instance

Stateless
Instance Pool

count = 2

count = 1

CounterStateless
Servlet :EJBClient

Container

servlet

1
2

3

4

add()

EJBObject

add()

EJBObject

add()

EJBObject

add()

EJBObject

1

2

4

3

1

2

3

4

Chapter 11. Enterprise Java Services 435

Figure 312. First access to the CounterStatelessServlet servlet

When access the CounterServlet several times from the same browser, the
count increments correctly. When we access the CounterStatelessServlet
from different browsers, we never get a regular count. The CounterBean does
not maintain state between different method calls as shown in Figure 313.

Figure 313. Accessing the CounterServlet from a different browser

When accessing the CounterStatelessServlet from multiple clients, we always
get an irregular value as shown in Figure 314 on page 437.
436 WebSphere V3.5 Handbook

Figure 314. Output after accessing the CounterServlet from multiple clients

11.3.2 Stateless session beans instance pool
In this section we show how stateless session beans can be reused or shared
by many clients without destroying or creating an instance per client unlike
stateful session beans. We do this by checking that the number of stateless
session beans in the container is smaller than the number of clients using our
application simultaneously. We also show that stateless session beans are
pooled by tracking the ejbCreate() and ejbRemove() methods.

Figure 315 on page 438 shows how stateless session beans are reused
among multiple clients.
Chapter 11. Enterprise Java Services 437

Figure 315. Stateless session beans instances pool

11.3.2.1 Test results
We want to verify that the number of instances in the pool is less than the
number of concurrent clients accessing our CounterStatelessServlet servlet.

Simulating multiple concurrent accesses
We used a Web client’s load simulation tool to generate multiple concurrent
requests on our sample application. We then collected the trace to check the
number of instantiated CounterBeans, the number of ejbRemove() methods
and the number of the business method addValue() invoked.

Our load simulation tool was configured to generate 20 concurrent clients,
executing each 10 requests, so that we have 200 requests overall.

Bean Instance

add() count = 2

add() count = 3

Bean Instance

Stateless
Instance Pool

Container

CounterStateless
Servlet :EJBClient

servlet

add()

EJBObject

add()

EJBObject

add()

EJBObject

add()

EJBObject

add()

EJBObject

ejbCreate()

ejbRemote()

reused

reused

home.create()

home.create()

home.create()

home.create()

home.create()

1

2

3

4

5

2

1

3

4

5

1

2

3

4

5

438 WebSphere V3.5 Handbook

Test results
Our test results are summarized in Table 25.

Table 25. Life cycle of CounterBean

Reusing instances
The business method add() has been called 200 times. The number of
ejbCreate() instances is smaller that the number of concurrent access clients.
We can see that the same bean can service different client requests, and that
bean instances are reused.

The ejbRemove() was called 13 times. Therefore, there were two instances in
the instance pool. This number is specified as the Minimum pool size on the
Advanced tab of the EnterpriseBean. The container will automatically remove
unused instances response to changes in container workload.

11.4 Stateful session beans

In this section we will illustrate the basics of stateful session beans. The
stateful session bean life cycle is explained together with a sample
application that shows that stateful session beans retain the state across the
calls spanning multiple business methods.

Unlike stateless session beans, stateful session beans are not shared among
multiple clients. Furthermore, stateful beans are not pooled. A stateful
session bean is dedicated to one client for the life cycle of the bean instance.
Once a stateful session bean is instantiated, it is dedicated to an EJBObject
for its whole life cycle. This allowd us to retain state in instance variables of
stateful session beans for the life of the instance.

11.4.1 The life cycle of the stateful session beans
Stateful session beans are neither shared nor reused among multiple clients.
Unlike stateless session beans and entity beans, they are not pooled.

method Times called by the
container

CounterBean() 31

setSessionContext(Context) 15

ejbCreate() 15

add() 200

ejbRemove() 13
Chapter 11. Enterprise Java Services 439

The life cycle of a stateful session bean has three states. Figure 316 shows
the different states for a stateful session bean.

Figure 316. Stateful session beans life cycle

• Does-not-exist state

This is the same for stateless session beans and entity beans. In this
state, the bean has not been instantiated yet and it does not exist in
memory.

• Method-Ready state

When a client needs to work with a stateful session bean instance, it
invokes the create() method on the EJBHome object provided by the
container. To achieve this, the container instantiates a new bean and
assigns it to the EJBObject. The instance bean is then ready to service
client requests. Since each instance is assigned to an EJBObject, stateful
session beans consume much more resources than stateless session
beans.

• Passivated state

does not exist

method-ready
pool

1. newInstance()
2. setSessionContext(sc)
3. ejbCreate()

container
initiated

non-tx
business
method

client
initiated

passive
ejbPassivate()

ejbActivate()

create()

ejbRemove()

remove()

client
initiated

business
method

timeout

timeout

instance throws system
exception from any method

client
initiated
440 WebSphere V3.5 Handbook

When a stateful session bean is not actively used (not servicing client
requests) the container may decide to passivate it. The container saves its
state to the passivation directory specified at the container level
properties.

11.4.1.1 Verifying stateful session beans life cycle
In order to verify how the WebSphere EJS runtime manages the life cycle of
stateful session beans, we will run our previous sample application (for
stateless session beans).

Figure 317. Stateful session beans sample application

However, in this case, we redeploy the CounterBean and declare it as a
stateful session bean as depicted in Figure 318 on page 442.

count = 1

Bean Instance

add()

add() count = 2

Bean Instance

Stateful
Instance Pool

count = 2

count = 2

CounterStateful
Servlet :EJBClient

Container

servlet

add()

EJBObject1

3

4

add()

EJBObject

count = 2

2count = 1

1

2
3

41

4

2
3

Chapter 11. Enterprise Java Services 441

Figure 318. Redeploying CounterBean as stateful session bean with jetace

The CounterStatefulServlet servlet, the EJB Client in this case, now accesses
a stateful session bean.

The first time the servlet has a reference to the EJBObject, this reference is
stored in the HttpSession Object. The next time the servlet wants to invoke
the Counter EJB, it gets the EJBObject from the HttpSession object, and then
invokes methods on it. However, since the Counter EJB is now stateful, the
EJBObject will always talk to the same CounterBean instance. The state
(theCount_ value) is now maintained across multiple method calls.

Figure 319 on page 443 shows the flow of our sample stateful session bean
application.
442 WebSphere V3.5 Handbook

Figure 319. Stateful session beans with HttpSession

The doGet() method of CounterStatefulServlet as depicted in Figure 320 on
page 444.

CounterStateful
Servlet (EJB Client)

Container

SessionID:
489w75t

count

Counter
Bean

Instance

count

Counter
Bean

Instance

always talks to the
same instance

Key Value

ejb object EJBObject2

HttpSession Object
SessionID:
489w75t

EJBObject1

<<Counter>>

EJBObject2

<<Counter>>

Key Value

ejb object EJBObject1

HttpSession Object
SessionID:
432s34x

SessionID:
432s34x
Chapter 11. Enterprise Java Services 443

Figure 320. doGet() method of our CounterStatefulServlet

public void doGet(HttpServletRequest request, HttpServletResponse
response) {
long time = System.currentTimeMillis();

PrintWriter out=null;
String title = "Stateful Session Bean Output";
String msg = " process succeeded";
int result;
Counter counter;
try {

// get the session and the EJB Object
HttpSession session = request.getSession(false);
if (session== null) {

session = request.getSession(true);
counter = (Counter)home_.create();
session.putValue("ejbObject",counter);

}
else {

counter = (Counter) session.getValue("ejbObject");
}

result = counter.addValue();
response.setContentType("text/html");
out = response.getWriter();
out.println("<HTML><HEAD><TITLE>");
out.println(title);
out.println("</TITLE></HEAD><BODY>");
out.println("<H1>"+title + "</H1>");
out.println("<P>"+"The counter is " + result+"</P>");
out.println("<P>"+"Current time is " + time+"</P>");
}

catch(Throwable e)
{

e.printStackTrace(System.err);
msg = "error" + e.getMessage();
response.sendError(500,msg);

}
out.println("</p>"+msg+"</P>");
out.println("</P>");
out.println("</BODY></HTML>");
out.close();
444 WebSphere V3.5 Handbook

We also use a timestamp to track each time that the servlet is called.

When accessing our CounterStatefulServlet servlet for the first time we
observed the result shown in Figure 321.

Figure 321. Accessing the CounterStatefulServlet servlet the first time

We have a regular count value when accessing the CounterStatefulServlet a
second (and subsequent) time(s). Our Counter EJB is stateful as shown in
Figure 322 on page 446.
Chapter 11. Enterprise Java Services 445

Figure 322. Accessing the CounterStatefulServlet

We always have a regular count value since our Counter EJB is now stateful.
The second browser (Internet Explorer) gets 1 as count value since it’s
accessing the CounterStatefulServlet for the first time, which in turn will result
in an new EJB instance be associated with this request. This is shown in
Figure 323 on page 447.
446 WebSphere V3.5 Handbook

Figure 323. Accessing the CounterStatefulServlet from a different browser

11.4.2 Stateful session beans instance pool
When a stateful session bean is created, it is dedicated to an EJBObject for
its whole life cycle. So the number of instances in the container at a certain
time should be equal to the number of client, unless the container has
passivated the bean instance in response to a long period of inactivity or in
response to container workload.
Chapter 11. Enterprise Java Services 447

Figure 324. Stateful session beans instance pool

11.4.2.1 Verifying stateful session beans instance pooling
To verify that the number of EJBObjects and stateful session beans are
always the same (so that each instance is dedicated to an EJBObject for its
whole life cycle), we run a Web client’s load simulation tool.

We configured 30 concurrent clients each accessing 10 times our
CounterStatefulServlet so that we have a total of 300 requests.

The results are depicted in Table 26.

Table 26. Stateful session bean instance pooling

We can see that the methods CounterBean() and ejbCreate() were called 30
times by the container, which is equal to the number of clients simulated by a

method Times called by the container

CounterBean() 30

setSessionContext(SessionContext ctx) 30

ejbCreate() 30

add() 300

ejbRemove() 0

count = 1

Bean Instance

add()

add() count = 2

Bean Instance

Stateful
Instance Pool

count = 2

count = 2

CounterStateful
Servlet :EJBClient

Container

servlet

add()

EJBObject1

3

4

add()

EJBObject

count = 2

2count = 1

1

2
3

41

4

2
3

ejbRemove()

ejbCreate()

ejbCreate()
ejbRemove()
448 WebSphere V3.5 Handbook

tool. The number of ejbCreate() instances is equivalent to the number of
concurrent access clients. This means that requests for a stateful session
bean require more system resources (depending on the number of maximum
concurrent access clients) than a corresponding number of requests for a
stateless session bean.

The business method add() is called 300 times, which is equal to the number
of page requests.

The ejbRemove() method is never called. Therefore, 30 instances are in the
stateful session bean pool.

When we access our CounterServlet with a browser after having run the Web
client load generation tool, we always have a regular count.
Chapter 11. Enterprise Java Services 449

Figure 325. Stateful session beans maintain the state

11.4.3 Stateful session beans passivation/activation
If an instance of a stateful session bean is not used for a long period of time,
or when the EJBContainer has reached the limit of instantiated EJBs (the
Cache preferred limit), the bean will serialize the conversational state and
write the state out to the file system directory that we specified as a
passivation directory. The passivation directory can be specified from the
container properties as shown in Figure 326 on page 451.
450 WebSphere V3.5 Handbook

Figure 326. Passivation directory location

When the stateful session bean has been successfully passivated, the
instance is removed from memory, allowing the container to preserve
resources. When an instance bean is passivated, its ejbPassivate() method is
called. At this time the bean has to free all the resources, such as JDBC
connections and sockets, and set all nontransient, nonserializable fields to
null.
Chapter 11. Enterprise Java Services 451

Figure 327. EJB passivation/activation

To verify this mechanism in WebSphere V3.5:

1. We decreased the property “Cache preferred limit” to be equal to 50 as
shown in Figure 326 on page 451.

2. We ran a Web client load generation tool with 70 concurrent clients each
accessing the CounterStatefulServlet 10 times.

Test results
Our test results are summarized in Table 27.

Table 27. Stateful session bean passivation/activation

method Times called by the
container

ejbCreate() 70

add() 700

ejbRemove() 0

ejbPassivate() 94

Stateful
Instance Pool

Container

CounterStateful
Servlet :EJBClient

servlet

add()

EJBObject

add()

EJBObject

add()

EJBObject

add()

EJBObject

Passivate/
Activate
Directory

1

2

3

4

add() count = 1

Bean Instance

Bean Instance

add() count = 1

add() count = 1

Bean Instance

add() count = 1

Bean Instance

1

2

3

4

ejbPassivate()

ejbActivate()

55
5

1

2
5

3

4

452 WebSphere V3.5 Handbook

After collecting the trace, the number of ejbCreate() instances is equivalent to
the number of concurrent access requests.

The number of calling a business method (in our case, the add() method) is
the same as the number of total page requests.

The ejbPassivate() method has been called 94 times by the container.

The number of calling ejbPassivate() (in our case, 94) minus the number of
ejbActivate() (in our case, 73) equals 21. There are 21 instances in the
passivate state, which can be verified by looking at the passivation directory
as shown in Figure 328.

Figure 328. Passivate objects in the passivation directory

11.4.4 Understanding EJBObject handles
EJBObject handles are mainly persistent references to EJBObjects. If for
some reason a client needs to disconnect from an EJBObject but needs to
use it later without losing the state, it can use a handle to store the EJBObject
in permanent storage and read it later to resume execution.

ejbActivate() 73

method Times called by the
container
Chapter 11. Enterprise Java Services 453

We show you a sample application that stores a stateful session bean
EJBObject handle into an HttpSession persistence database, and then
reestablishes access to the original stateful session bean instance using that
EJBObject handle.

Figure 329. Using handles

11.4.4.1 Sample application for EJBObject handles
We modify the CounterServlet servlet described earlier to store an EJBObject
handle in a persistent database session.

For configuring persistent sessions in WebSphere V3.5, see Chapter 7,
“Session support” on page 245.

The doGet(HttpServletRequest,HttpServletResponse) method of our new
CounterStatulServlet is described in Figure 330 on page 455.

count = 2

Stateful
Instance Pool

Container

CounterStateful
Servlet :EJBClient

servlet

add()

EJBObject

Bean Instance

add() count = 2

HttpSession
Persistence

DB

handle.getEJBObject()

ejbobject.getHandle()

2

1

1

2

1

2

454 WebSphere V3.5 Handbook

Figure 330. CounterServlet using handles

public void doGet(HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException {
PrintWriter out=null;

String title = "Statelful Session Bean EJBObject Handle Output";
String msg = " process succeeded";
int result;
Counter counter;
Handle counterHandle;
try {

// get the session and the EJB Object
HttpSession session = request.getSession(false);
if (session== null) {

session = request.getSession(true);
counter = (Counter)home_.create();
counterHandle = counter.getHandle();
session.putValue("handle",counterHandle);
}

else {
counterHandle = (Handle) session.getValue("handle");
counter = (Counter)counterHandle.getEJBObject();

}
result = counter.addValue();

response.setContentType("text/html");
out = response.getWriter();
out.println("<HTML><HEAD><TITLE>");
out.println(title);
out.println("</TITLE></HEAD><BODY>");
out.println("<H1>"+title + "</H1>");
out.println("<P>"+"The counter is " + result+"</P>");
}

catch(Throwable e)
{

e.printStackTrace(System.err);
msg = "error" + e.getMessage();
response.sendError(500,msg);

}
out.println("</p>"+msg+"</P>");
out.println("</P>");
out.println("</BODY></HTML>");
out.close();
Chapter 11. Enterprise Java Services 455

The doGet(HttpServletRequest, HttpServletResponse) method initially
obtains a stateful session bean serializable handle and puts into a
HttpSession Object as described in Figure 331. The HttpSession Manager
stores it in a persistent database (DB2) in our case.

Figure 331. Getting an EJBObject handle

To recreate the EJBObject, we obtain the handle from the HttpSession Object
and we re-create the reference to the original stateful session object instance
as described in Figure 332.

Figure 332. Recreating the EJBObject from the handle

Test procedure and result
The following procedures demonstrate re-connection of the original stateful
session bean instance after re-starting a servlet engine.

1. Access the CounterStatefulServlet.

Figure 333. Access the CounterStatefulServlet

counterHandle = counter.getHandle();
session.putValue("handle",counterHandle);

counterHandle = (Handle) session.getValue("handle");
counter = (Counter)counterHandle.getEJBObject();
456 WebSphere V3.5 Handbook

The counter number is “1”.

2. Stop the application server that contains the CounterStatefulServlet.

Figure 334. Stop the application server

The CounterStatefulServlet and HttpSession instance are destroyed by
stopping the application server.

3. Restart the application server that contains the CounterStatefulServlet.
Chapter 11. Enterprise Java Services 457

Figure 335. Restart the application server

4. Re-access the CounterStatefulServlet from the same browser.

Figure 336. Re-access the CounterStatefulServlet
458 WebSphere V3.5 Handbook

The counter number is “2”.

You connected the original stateful session bean instance after restarting
the application server.

11.5 Container managed persistence (CMP) entity beans

A container-managed persistence (CMP) bean is an entity bean for which the
container handles the interactions between the enterprise bean and the data
source. The container is responsible for synchronization of instance fields with
the persistent store. When you develop a container-managed persistence bean,
the application is insulated from the details of the persistence mechanism.

11.5.1 Entity beans life cycle
Once an enterprise bean is deployed into a container, clients can create and use
instances of that bean as required. Within the container, instances of an
enterprise bean go through a defined life cycle. The events in an enterprise
bean’s life cycle are derived from actions initiated by either the client or the
container.

The life cycle of entity beans has three states:

• Does-not-exist state

At this stage, no instances of the bean exist.

An entity bean instance’s life cycle begins when the container creates that
instance. After creating a new entity bean instance, the container invokes
the instance’s setEntityContext() method. This method passes to the bean
instance a reference to an entity context interface that can be used by the
instance to obtain container services and to retrieve information about the
caller of the client-invoked method.

• Pooled state

Once an entity bean instance is created, it is placed in a pool of available
instances of the specified entity bean class. While the instance is in this
pool, it is not associated with a specific EJBObject. Every instance of the
same enterprise bean class in this pool is identical. While an instance is in
this pooled state, the container can use it to invoke any of the bean’s finder
methods.

• Ready state

When a client needs to work with a specific entity bean instance, the
container picks an instance from the pool and associates it with the
EJBObject initialized by the client. An entity bean instance is moved from
Chapter 11. Enterprise Java Services 459

the pooled to the ready state if there are no available instances in the
ready state.

There are two events that cause an entity bean instance to be moved from
the pooled state to the ready state:

- When a client invokes the create() method in the bean’s home interface
to create a new and unique entity of the entity bean class (and a new
record in the data source). As a result of this method invocation, the
container calls the bean instance’s ejbCreate() and ejbPostCreate()
methods and the new EJBObject is associated with the bean instance.

- When a client invokes a finder method to manipulate an existing
instance of the entity bean class (associated with an existing record in
the data source). In this case, the container calls the bean instance’s
ejbActivate() method to associate the bean instance with the existing
EJBObject.

When an enterprise bean instance is in the ready state, the container can
invoke the instance’s ejbLoad() and ejbStore() methods to synchronize the
data in the instance with the corresponding data in the data source. In
addition, the client can invoke the bean instance’s business methods when
the instance is in this state. All interactions required to handle an entity
bean instance’s business methods in the appropriate transactional (or
non-transactional) manner are handled by the container, unless the EJB
developer has decided to handle these interactions.

When a container determines that an entity bean instance in the ready
state is no longer required, it moves the instance to the pooled state. This
transition to the pooled state results from either of the following events:

- When the container invokes the ejbPassivate() method.

- When the client invokes a remove() method on the EJBObject
associated with the bean instance or on the EJB home object. When
the remove() method is called, the underlying entity is removed
permanently from the data source.

The diagram in Figure 337 on page 461 illustrates the entity bean life cycle.
460 WebSphere V3.5 Handbook

Figure 337. Entity beans life cycle

11.5.1.1 Sample application for entity beans
We use a sample application to understand how WebSphere V3.5 manages
multiple EJBClients accessing the same container-managed persistence EJB
(Counter EJB). We also use a trace facility which we created to track when
the container calls the ejbActivate(), ejbLoad(), ejbStore() and ejbPassivate()
method.

We developed a sample container-managed persistence EJB Counter having
only one CMP field, theCount_, and two business methods, addValue() and
getValue().

does not exist

pooled

1. newInstance()
2. setEntityContext(ec)

container
initiated

client
initiated

ejbPassivate()create()

1. unsetEntityContext()

ejbRemove()

instance throws system
exception from any method

ejbCreate()
ejbPostCreate()

ready

remove()

client
initiated

business
method

ejbStore()

ejbLoad()
container
initiated

ejbActivate()

container
initiated

ejbFind<METHOD>()
Chapter 11. Enterprise Java Services 461

Figure 338. Counter CMP

We also developed a servlet that uses this EJB. The doGet() method of this
servlet is described in Figure 339 on page 463.

CounterServlet
EJBClient

servlet

add()

EJBObject

add()

EJBObject

add()

Bean Instance

Bean Instance

add()

Instance
Pool

Container

Persistent
DB

Bean Instance

add()

ejbStore()

ejbLoad()

ejbActivate()

ejbPassivate()
462 WebSphere V3.5 Handbook

Figure 339. doGet() method of the CounterCMPServlet

public void doGet(HttpServletRequest request, HttpServletResponse response)
{
PrintWriter out=null;

String title = "Container Managed Persistence Bean Output";
String msg = " process succeeded";
int result;
CounterCMP counter;
Handle counterHandle;
try {

// get the session and the EJB Object
HttpSession session = request.getSession(false);
if (session== null) {

session = request.getSession(true);
CounterCMPKey cmpkey = new CounterCMPKey();
try {

counter = (CounterCMP)home_.findByPrimaryKey(cmpkey);
} catch (ObjectNotFoundException e) {

counter = home_.create(cmpkey.counterKey_);
}
counterHandle = counter.getHandle();
session.putValue("handle",counterHandle);

}
else {

counterHandle = (Handle) session.getValue("handle");
counter = (CounterCMP)counterHandle.getEJBObject();

}
result = counter.incrementTheCount();
response.setContentType("text/html");
out = response.getWriter();
out.println("<HTML><HEAD><TITLE>");
out.println(title);
out.println("</TITLE></HEAD><BODY>");
out.println("<H1>"+title + "</H1>");
out.println("<P>"+"The counter is " + result+"</P>");
}

catch(Throwable e)
{

e.printStackTrace(System.err);
msg = "error" + e.getMessage();
response.sendError(500,msg);

}
out.println("</p>"+msg+"</P>");
out.println("</P>");
out.println("</BODY></HTML>");
out.close();

}

Chapter 11. Enterprise Java Services 463

The servlet does the lookup on the home interface of the CounterCMP EJB in
its init, and it stores it as an instance variable.

To access an instance of the CounterCMP EJB, we first construct a
CounterCMPKey object, and we call the findByPrimaryKey() method on the
home interface to get a reference on the remote interface as depicted in
Figure 340.

Figure 340. Finding an instance of CounterCMP

The findByPrimaryKey() method can throw an ObjectNotFound Exception, if
an instance of the corresponding entity bean is not found. In this case, we
create a new instance, by calling the create() method on the home interface.

When we have a reference to an entity bean, we store a handle to it in the
HttpSession object associated with servlet request. This is similar to what we
did for the stateful session bean.

11.5.2 Understanding the entity beans persistence
Entity beans are persisted to a database. Each bean instance represents a
row in a table from the database. In this test scenario we will show that data
of bean instances is synchronized with corresponding rows in the database.

Before accessing our CounterCMPServlet servlet, the CounterCMP table is
empty as depicted in Figure 341.

Figure 341. CounterCMP table before accessing CounterCMPServlet

CounterCMPKey cmpkey = new CounterCMPKey();
try {

counter = (CounterCMP)home_.findByPrimaryKey(cmpkey);
} catch (ObjectNotFoundException e) {
counter = home_.create(cmpkey.counterKey_);
}

db2 => select * from countercmp

THECOUNT_ COUNTERKEY_
----------- ------------------------------

0 record(s) selected.

db2 =>
464 WebSphere V3.5 Handbook

We access our CounterCMPServlet servlet for the first time. The result is
depicted in Figure 342.

Figure 342. Accessing CounterCMPServlet servlet

The CounterCMP table in the counter database now has one row as depicted
in Figure 343.

Figure 343. CounterCMP table contents after first accessing

We connect our CounterCMPServlet servlet a second time. The result is
depicted in Figure 344 on page 466.

db2 => select * from countercmp

THECOUNT_ COUNTERKEY_
----------- ------------------------------

1 CMPCounterRecord

1 record(s) selected.

db2 =>
Chapter 11. Enterprise Java Services 465

Figure 344. Accessing CounterCMPServlet for the second time

The counter has been incremented and the primary key is always
CMPCounterRecord as depicted in Figure 345.

Figure 345. CounterCMP table contents after second accessing

11.5.3 Understanding the entity beans life cycle
In order to verify an entity bean’s life cycle under EJS runtime, we executed a
Web client generation tool with 20 clients, each executing 10 requests,
resulting in a total of 200 requests.

The results in the trace file obtained are depicted in Table 28.

Table 28. Entity beans life cycle

method times called

setEntityContext() 20

unsetEntityContext() 0

ejbCreate() 0

business method: IncrementCounter() 200

db2 => select * from countercmp

THECOUNT_ COUNTERKEY_
----------- ------------------------------

2 CMPCounterRecord

1 record(s) selected.

db2 =>
466 WebSphere V3.5 Handbook

The ejbCreate() is never called. The servlet never calls the home.create()
method.

We had 200 requests each calling a business method, thus we have 200
method calls.

The ejbStore() method is called 200 times, with each client updating the
counter, so we can validate that there is an access to the database
corresponding to each ejbStore() method.

11.5.4 Understanding CMP commit option A, C caching
In this section we examine the difference between commit (caching) options
A and C as described in section 9.1.10 of the EJB Specification.

When specifying option A caching, WebSphere imposes a significant
restriction in that the bean instance must be the only updater of data in an
underlying persistent store. WebSphere does not enforce this restriction, so it
is the bean deployer’s responsibility to ensure that this restriction is satisfied.
This means that the beans utilizing this option will only be used within a
single container, and it is thus the responsibility of all clients of that bean to
always direct their requests to the one bean instance within that specific
container. This means you cannot use option A caching with WLM-enabled
servers or with a database that is shared among multiple applications that are
trying to modify the data.

With option C caching, on the other hand, the bean is always reloaded from
the database at the beginning of each transaction. To understand this,
consider two sequential transactions that touch bean A. The first transaction
loads the bean into the cache, does its work, commits, and removes the bean.
The second transaction then has to reload the bean and repeat. Therefore, it is
acceptable for a client to attempt to access the bean and start a new
transaction on any container that has been configured to host that bean. The

ejbRemove() 0

ejbPassivate() 240

ejbActivate() 240

ejbLoad() 240

ejbStore() 200

method times called
Chapter 11. Enterprise Java Services 467

shared state is maintained in a shared database, and can be accessed from
any server when required.

We will use our entity bean sample application to examine the behavior of the
WebSphere EJS runtime with commit options A and C.

Figure 346. Commit option A caching

Container

Persistent
DB

add()

Bean Instance Instance
Pool

CounterServlet
EJBClient

servlet

1
2

add()

EJBObject

add()

EJBObject

1-2

1-3
add()

Bean Instance ejbLoad()

ejbStore()

2-2
ejbStore()2

1

2

1

468 WebSphere V3.5 Handbook

Figure 347. Commit option C caching

11.5.4.1 Commit option A
To configure commit option A on CounterCMP, select it and on the General
tab select Exclusive in the Database access field as depicted in Figure 348
on page 470.

Bean Instance

add()

Instance
Pool

Container

Persistent
DB

CounterServlet
EJBClient

servlet
1

2

add()

EJBObject

add()

EJBObject

Bean Instance

add()

1-2

1
1-3

1-4

1-5

2

2

ejbPassivate()

ejbActivate()

ejbLoad()

ejbStore()

1

2-3
ejbLoad()

2-4ejbStore()

2-2

2-5
Chapter 11. Enterprise Java Services 469

Figure 348. Configuring commit option A (Exclusive)

We restart our application server (we call it sg246161) to invalidate
HttpSession, then we called the CounterCMPServlet twice.

Figure 349 shows the trace file when we configured the commit option A.

Figure 349. Trace with commit option A

We can see that the EJB container doesn’t call the ejbPassivate() method
after committing a transaction.

1c9585f1 CounterCMPBea E called setEntityContext() method
1c9585f1 CounterCMPBea E called ejbActivate() method
1c9585f1 CounterCMPBea E called ejbLoad() method
1c9585f1 CounterCMPBea E called incrementTheCount() method
1c9585f1 CounterCMPBea E called ejbStore() method
284485f1 CounterCMPBea E called incrementTheCount() method
284485f1 CounterCMPBea E called ejbStore() method
470 WebSphere V3.5 Handbook

We also see that the EJB container doesn’t invoke the ejbActivate() and
ejbLoad() methods before calling a business method, because it keeps
cached the latest EJB instance data.

11.5.4.2 Commit option C
To configure commit option C on CounterCMP, select it and on the General
tab select Shared in the Database access field.

We restart our application server (sg246161) to invalidate HttpSession, then
we called the CounterCMPServlet twice.

Figure 350 shows the trace file when we configured the commit option C.

Figure 350. Trace with commit option C

With commit option C, the EJB container always calls the ejbPassivate()
method after each business method called.

Table 29 is the comparison of the commit protocols.

Table 29. Commit option A vs. option C

Option A Option C

First access

setEntityContext() setEntityContext()

findByPrimaryKey() ejbActivate() ejbActivate()

19360073 CounterCMPBea E called setEntityContext() method
19360073 CounterCMPBea E called ejbActivate() method
19360073 CounterCMPBea E called ejbLoad() method
19360073 CounterCMPBea E called ejbPassivate() method
19360073 CounterCMPBea E called ejbActivate() method
19360073 CounterCMPBea E called ejbLoad() method
19360073 CounterCMPBea E called incrementTheCount() method
19360073 CounterCMPBea E called ejbStore() method
19360073 CounterCMPBea E called ejbPassivate() method
19560073 CounterCMPBea E called ejbActivate() method
19560073 CounterCMPBea E called ejbLoad() method
19560073 CounterCMPBea E called ejbPassivate() method
19560073 CounterCMPBea E called ejbActivate() method
19560073 CounterCMPBea E called ejbLoad() method
19560073 CounterCMPBea E called incrementTheCount() method
19560073 CounterCMPBea E called ejbStore() method
19560073 CounterCMPBea E called ejbPassivate() method
Chapter 11. Enterprise Java Services 471

11.6 WebSphere EJB security

The EJB server and container components provide or give access to many
services for the enterprise beans that are deployed into it. The security
service is a part of them.

Here, we will describe the WebSphere EJS security service and EJB
delegation. Also we will describe how to configure EJB security and
demonstrate the delegation situations with our sample program Big3, which
you may find in more detail in Appendix E, “Big3 application” on page 1111.

ejbLoad() ejbLoad()

ejbPassivate()

ejbActivate()

ejbLoad()

incrementTheCount() incrementTheCount() incrementTheCount()

ejbStore() ejbStore()

ejbPassivate()

Second access

ejbActivate()

ejbLoad()

ejbPassivate()

ejbActivate()

ejbLoad()

incrementTheCount() incrementTheCount() incrementTheCount()

ejbStore() ejbStore()

ejbPassivate()

Option A Option C
472 WebSphere V3.5 Handbook

11.6.1 WebSphere EJS security service
EJBs can only be used by EJB clients. There are two general types of EJB
clients:

• HTTP-based clients that interact with the EJB server by using either Java
servlets or JavaServer Pages (JSP) by way of the Hypertext Transfer
Protocol (HTTP).

• Java applications that interact directly with the EJB server by using Java
remote method invocation over the Internet Inter-ORB Protocol
(RMI/IIOP).

Figure 351. EJB clients

EJB clients that access an EJB server over HTTP encounter the following two
layers of security:

1. Universal Resource Locator (URL) security enforced by the WebSphere
Application Server Security Plug-in attached to the Web server in
collaboration with the security service.

2. Enterprise bean security enforced at the server working with the security
service.

When the user of an HTTP-based EJB client attempts to access an enterprise
bean, the user may be authenticated as description in 15.2, “WebSphere
security model” on page 652.

All EJB clients that access an EJB server by using IIOP encounter the second
security layer only. Like HTTP-based EJB clients, these EJB clients must
authenticate with the security service.

application server

servlet EJBHTTP

administrative
server

HTTP
server

Java
client

Web
client

RMI/IIOP
EJB

application server
Chapter 11. Enterprise Java Services 473

Once an EJB client is authenticated, it can attempt to invoke methods on the
enterprise beans that it manipulates. A method is successfully invoked if the
principal associated with the method invocation has the required permissions
to invoke the method. These permissions can be set at the application level
and at the method group level. An application can contain multiple method
groups.

EJBs are protected by default when security is enabled, contrary to that
servlets, JSPs and other Web resources are not protected by default. So
when security is enabled, we must configure the EJBs’ security to give some
users or groups permission to access them, and we should configure other
resources’ security to make them be protected.

11.6.2 Delegation in WebSphere
Delegation comes into play when a client uses an intermediary (such as an
EJB) to invoke a method on a target resource. It allows an enterprise bean
method to execute under another identity.

Depending on the active delegation policy, the intermediary invokes a method
under a certain identity:

• The client identity

The bean method will run with the identity of the client requesting the
method invocation as shown in Figure 352.

Figure 352. Client identity

• The system identity

The bean method will run with the identity of the server hosting the
intermediary resource that will invoke the method on the target object as
shown in Figure 353 on page 475.

Resource
A

Resource
B

Resource
C

UserA UserA

Server ID: ServerB
474 WebSphere V3.5 Handbook

Figure 353. System identity

• The specified identity

The bean method will run with the Run As Identity, as specified explicitly in
the delegation policy as shown in Figure 354.

Figure 354. Specified identity

The application environment determines whether a client, system or specified
identity is most appropriate. To summarize, delegation is the process of
forwarding a principal’s credentials along with the requests that occur within
the context of work that the principal either originated or is having performed
on its behalf.

You may configure the Run-As Mode for each enterprise bean in “Configure
Resource Security Wizard“ as shown in Figure 355 on page 476. The detailed
configuration steps may refer to 11.6.3.4, “Configure Resource Security
wizard” on page 485.

Resource
A

Resource
B

Resource
C

UserA ServerB

Server ID: ServerB

Resource
A

Resource
B

Resource
C

UserA UserSpecified

Server ID: ServerB

Run as: UserSpecified
Chapter 11. Enterprise Java Services 475

Figure 355. Delegation configuration

The delegation settings you specify here will override any run-as information
in the deployment descriptor of the enterprise bean.

11.6.3 Configure EJB security
We will use sample program Big3 to describe how to configure EJB security
and demonstrate the delegation situation.

The Big3 program is shown in Figure 356 on page 477.
476 WebSphere V3.5 Handbook

Figure 356. Big3 scenario

We configured an enterprise application named Big3App to comprise the two
servlets and three EJBs, as shown in Figure 357.

Figure 357. Enterprise application Big3App

processClaim

verifyClaim

getter
and

setter

Client: Servlet
Session Bean:

ProcessClaim

Entity Bean:
Claim
Policy

ProcessClaimServlet

VerifyClaimServlet

getters
and

setters
Chapter 11. Enterprise Java Services 477

In this test case, we registered three users in the local operating system,
which are wassecurity, wasadmin and wasuser. We will configure the security
server ID as wassecurity, and the enterprise application Big3App identity as
wasadmin. We will only allow wasadmin to access the getters and setters of
the entity beans. The user wasuser represents all other registered user on
this machine.

In order to demonstrate the EJB security delegation, we will configure the
security as shown in Figure 358.

Figure 358. Big3 security configuration

In order to verify the delegation configuration, we will create a new Method
Group named myMG to protect the getters and setters of the entity beans,
and we will only grant its permission to user wasadmin.

Because most of the configuration steps are the same as configuring a
servlet, we will only pay attention to the fields and steps related to EJB
security. Now, we begin to configure. There are five steps:

1. Configure global security settings

2. Configure application security

3. Configure security method groups

4. Configure resource security

5. Configure security permissions

processClaim

verifyClaim

getter
and

setter

Client: Servlet
Session Bean:

ProcessClaim

Entity Bean:
Claim
Policy

ProcessClaimServlet

VerifyClaimServlet

getters
and

setters

(Run-As mode: CLIENT)

(Run-As mode: SYSTEM)

Server ID: wassecurity

UserA

UserA

UserA

wassecurity
478 WebSphere V3.5 Handbook

11.6.3.1 Configure Global Security Settings wizard
In the administrative console, by clicking the Wizards button and selecting
Configure Global Security Setting.

On the General tab, we need to check Enable Security as shown in Figure
359. Then click Next (or click Application Defaults tab).

Figure 359. Set Global Security Wizard: General tab

On the Application Defaults tab, we keep the default setting. We choose the
Basic (User ID and Password) challenge type as shown in Figure 360 on
page 480.
Chapter 11. Enterprise Java Services 479

Figure 360. Set Global Security Wizard: Application Defaults tab

On the Authentication Mechanism tab, we keep the default setting too. We
choose Local Operating System as the authentication mechanism as shown
in Figure 361. Then click Next (or User Registry tab).

Figure 361. Set Global Security Wizard: Authentication Mechanism tab
480 WebSphere V3.5 Handbook

On the User Registry tab, we specify wassecurity as the security server ID as
shown in Figure 362. This ID is the identity that the bean methods will run
with when the Run-As Mode is specified as SYSTEM.

Figure 362. Set Global Security Wizard: User Registry tab

Click the Finish button to complete the global security configuration. Restart
WebSphere Administrative Server to activate the change.

11.6.3.2 Configure Application Security wizard
Start the Configure Application Security wizard by clicking the Wizards button
and selecting Configure Application Security.

Expand the Enterprise Applications folder and put the cursor on Big3App as
shown in Figure 363 on page 482. Click the Next button to continue.
Chapter 11. Enterprise Java Services 481

Figure 363. Configure Application Security wizard: Enterprise Applications

You will get the Realm and Challenge Type window. You keep default setting
of Realm and Challenge Type as shown in Figure 364, then click Next to
continue.

Figure 364. Configure Application Security wizard: Realm and Challenge Type
482 WebSphere V3.5 Handbook

Then you will get the Application Identity window as shown in Figure 365. The
application identity is the possible delegation identity for enterprise beans in
this application when the Run-As Mode is selected as SPECIFIED.

Figure 365. Configure Application Security wizard: Application Identity

Click the Change button for User ID. A Search window will display.

Figure 366. Search window
Chapter 11. Enterprise Java Services 483

Input the user name into the Search Filter field and click the Search button.
The user following the host name will be listed in the Search Results pane as
shown in Figure 366 on page 483. Put the cursor on it and click OK to return
to the Configure Application Security Wizard. We use wasadmin (M23FF457
is the host name) as the user here.

Figure 367. Configure Application Security wizard: Application Identity with password

Input the password as shown in Figure 367 and click the Finish button to
complete the application security setting.

11.6.3.3 Configure Security Method Groups wizard
Start the Configure Security Method Groups wizard by clicking the Wizards
button.

We only need to add a new method group named myMG as depicted in
Figure 368 on page 485.
484 WebSphere V3.5 Handbook

Figure 368. Work With Method Groups wizard: Edit Method Groups

11.6.3.4 Configure Resource Security wizard
Start the Configure Resource Security wizard by clicking Wizards button. We
will configure session bean (ProcessClaim), entity beans (Claim and Policy)
and servlets (ProcessClaimServlet and VerifyClaimServlet) in turn.

Configure session bean (ProcessClaim)
Expand the EnterpriseBeans folder and put the cursor on ProcessClaim as
shown in Figure 369 on page 486.
Chapter 11. Enterprise Java Services 485

Figure 369. Configuring Resource Security wizard: Resources

Click Next to proceed. A prompt asks whether you want to use the default
method groups. Click Yes as shown in Figure 370.

Figure 370. Use default method groups

The next panel (in Figure 371 on page 487) shows how WebSphere
Application Server has grouped the methods of the ProcessClaim bean into
method groups for protection.
486 WebSphere V3.5 Handbook

Figure 371. Configuring Resource Security Wizard: Methods Groups

You keep the default setting and click Next to continue. The panel of the
delegation setting displays.

To configure the delegation of this bean, first we will set the default Run-As
Mode for all methods, then override it for the method processClaim, and we
will verify the inheritance setting of another method, verifyClaim.

1. Configuring the default Run-As Mode to SYSTEM for EJB methods

The top half of the task panel (Defalults pane) is for specifying the default
identity under which bean methods will execute. If you select SPECIFIED,
you must map the delegation ID to an application identity established
using the Configure Application Security wizard. We keep the default
Run-AS Mode as SYSTEM here.

The bottom half of the task panel (Specified Methods: field) is used to
select a particular method for which you want to override the default
Run-AS Mode. Click the method, then select SYSTEM, CLIENT, or
SPECIFIED in the Run-As Mode field. If you select SPECIFIED, map the
application identity. The default setting is (not set), as shown in Figure 372
on page 488.
Chapter 11. Enterprise Java Services 487

Figure 372. The default Run-AS Mode

2. Overriding Run-As Mode to CLIENT for method processClaim

In the Specified Methods pane, select the method processClaim and
select CLIENT as the Run-As Mode, as shown in Figure 373 on page 488.
The Run-As Mode of method processClaim will override the default setting
and be set to CLIENT.

Figure 373. Configure the delegation of method processClaim
488 WebSphere V3.5 Handbook

3. Inheriting Run-As Mode as SYSTEM for method verifyClaim

In the Specified Methods pane, select the method verifyClaim and verify
the Run-As Mode is (not set) as deputized in Figure 374 on page 489. The
Run-As Mode of method verifyClaim will inherit the default setting in the
Defaults pane, where the value is SYSTEM.

Figure 374. Configure the delegation of method verifyClaim

Click Finish to complete the security setting of EJB ProcessClaim.

Configure entity beans (Claim and Policy)
To configure the two entity beans, the steps are similar to the above, except
we need to change the method groups that protected the getters and setters
for them.

The default method group for getters is named Read Methods and it for
setters is Write Methods as shown in Figure 375 on page 490.
Chapter 11. Enterprise Java Services 489

Figure 375. Default method groups of getters and setters

We may remove the default method groups and add myMG to protect the
getters and setters, showing as Figure 376.

Figure 376. Using method group myMG to protect getters and setters
490 WebSphere V3.5 Handbook

On the delegation setting panel, keep the setting of defaults and all methods
that were configured in the deployment descriptor because we don’t want
them for both entity beans in this test case.

Configure servlets (ProcessClaimServlet and VerifyClaimServlet)
To configure the servlets security, expand the Virtual Hosts folder then
default_host folder, select Web resources
/Big3/servlet/big3.servlet.ProcessClaim and
/Big3/servlet/big3.servlet.VerifyClaim in turn and configure their security.
There is no delegation concept for servlets, so there is no configuration step
for delegation when you configure security for the servlets. You may accept
the default method groups to protect the servlets.

11.6.3.5 Configure Security Permissions wizard
Start Configure Security Permissions wizard by clicking Wizards button. We
will grant myMG’s permission only to user wasadmin, and give other
permissions to All Authenticated Users, as depicted in Figure 377.

Figure 377. Permissions in enterprise application Big3App

Click the Finish button. Now, the EJB security configuration is finished. We
need to restart the application server hosting Big3 to enable the security
setting. Then we may begin to verify the security setting.
Chapter 11. Enterprise Java Services 491

11.6.4 Verify EJB security
We will verify the delegation types respectively.

Access the Big3 Home Page (http://hostname/big3/) as depicted in Figure
378. If you click the link Process a claim in the left frame and click the
Submit button, the servlet ProcessClaimServlet will be invoked. If you click
the link Verify a claim then submit, the servlet VerifyClaimServlet will be
invoked.

Remember, only user wasadmin can access the getters and setters of the two
entity beans (Claim and Policy) in the above configuration.

Figure 378. Big3 Home Page
492 WebSphere V3.5 Handbook

11.6.4.1 Verify delegation type CLIENT
We configured the Run-As Mode of method processClaim of session bean
ProcessClaim to CLIENT previously. In this verification, we need to invoke
servlet ProcessClaimServlet by clicking the link Process a claim in the left
frame.

After clicking the Submit button, a challenge window will appear to require a
user name and password. This is the result of the “Basic“ challenge type
configured in enterprise application Big3App as shown in Figure 379.

Figure 379. Challenge window

Accessing with valid user and password
Input user wasadmin with its password. Then click OK to proceed. You will
see the successfully running result in the browser as shown in Figure 380 on
page 494 and there is no error message in the WebSphere Administrative
Console.
Chapter 11. Enterprise Java Services 493

Figure 380. Successfully running result in browser

Accessing with invalid user and password
Close all browser windows then restart them, repeating the last steps. Input
user wasuser with its password this time. You will see the unsuccessfully
running result in the browser as depicted in Figure 381 on page 495.
494 WebSphere V3.5 Handbook

Figure 381. Unsuccessfully running result in browser

You will also see the message Authorization failed for M23FF457/wasuser

while invoking (Bean)big3/ejb/Policy getAmount in the administrative console
as shown in Figure 382 on page 496.
Chapter 11. Enterprise Java Services 495

Figure 382. Auhorization failed message in the administrative console

In fact, if you are repeating the steps and inputting different registered users,
only user wasadmin can run successfully. All other users will fail with an
Authorization failed message in the administrative console, and the failed
user is consistent with what you input. This result can prove that the method
processClaim runs with the client identity, that is to say, its Run-As Mode is
CLIENT as depicted in Figure 383 on page 497.
496 WebSphere V3.5 Handbook

Figure 383. Run-As Mode: CLIENT

11.6.4.2 Verify delegation type SYSTEM
We configured the Run-As Mode of method verifyClaim of session bean
ProcessClaim to SYSTEM previously. In this verification, we need to invoke
servlet VerifyClaimServlet by clicking the link Verify a claim in the left frame
in the Big3 Home Page.

You will get a challenge window. No matter who the registered user which you
input into the challenge window is, you always will see the message of
Authorization failed for the user “M23FF457/wassecurity“ in the
administrative console as shown in Figure 385 on page 499. Remember, we
configure the Security Server ID as wassecurity in the Set Global Security
wizard (see Figure 362 on page 481). This result can prove that the method
verifyClaim runs with the server identity, that is to say, its Run-As Mode is
SYSTEM as shown in Figure 384 on page 498.

Client: Servlet Session Bean:
ProcessClaim

Entity Bean:
Claim
Policy

getter
and

setter

getters
and

setters

wasadmin

ProcessClaimServlet processClaim

Run-As Mode:
CLIENT

wasadmin

wasuser wasuser

only wasadmin
can invoke

these methods
Chapter 11. Enterprise Java Services 497

Figure 384. Run-As Mode: SYSTEM

For configuration in a production environment, you must configure according
to the real requirements. The objective of the configuration here is only to
help you understand the delegation clearly.

Client: Servlet Session Bean:
ProcessClaim

Entity Bean:
Claim
Policy

getter
and

setter

getters
and

setters

Server ID:
wassecurity

any
registered

user wassecurity
verifyClaim

Run-As mode:
SYSTEM

VerifyClaimServlet

only wasadmin
can invoke

these methods
498 WebSphere V3.5 Handbook

Figure 385. Authorization failed message in the administrative console

11.6.4.3 Verify delegation type SPECIFIED
We did not configure the Run-As Mode of any methods to SPECIFIED
previously, so we need to change the Run-As Mode of method processClaim
to SPECIFIED.

On the delegation setting panel of the Configure Resource Security wizard for
session bean ProcessClaim, specify the method processClaim, change the
Run-As Mode to SPECIFIED, and map the Application Identity by selecting
M23FF457/wasadmin, which is established on the Application Identity panel
of the Configure Application Security wizard as shown in Figure 386 on page
500. Click the Finish button to complete the setting. Restart the application
server hosting the Big3 to activate the change.
Chapter 11. Enterprise Java Services 499

Figure 386. Change Run-As Mode to SPECIFIED

In this verification, we need to invoke servlet ProcessClaimServlet by click the
link “Process a claim” in the left frame on the Big3 Home Page.

You will get the challenge window. No matter the registered user which you
input into the challenge window is the invocation will success. Remember,
only wasadmin can access the getters and setters of the two entity beans
(see Figure 377 on page 491). This result can prove that the method
processClaim runs with the wasadmin identity, that is to say, its Run-As Mode
is SPECIFIED to wasadmin as shown in Figure 387 on page 501.
500 WebSphere V3.5 Handbook

Figure 387. Run-As Mode: SPECIFIED

Client: Servlet Session Bean:
ProcessClaim

Entity Bean:
Claim
Policy

getter
and

setter

getters
and

setters

wasadmin
ProcessClaimServlet processClaim

Run-As mode:
SPECIFIED

any
registered

user

Mapped Application Identity:
wasadmin

only wasadmin
can invoke

these methods
Chapter 11. Enterprise Java Services 501

502 WebSphere V3.5 Handbook

Chapter 12. Transactions

This chapter provides an overview of transaction support in Java 2 Enterprise
Edition (J2EE) and describes some of the best practices for leveraging that
support in WebSphere. One of the key components of the J2EE architecture
is the Enterprise JavaBeans (EJB). A prominent feature of EJBs is support for
distributed transactions. EJBs execute within WebSphere’s EJB container.
WebSphere also supports servlets and JSPs that run in a Web container
often referred to as the servlet engine. Both containers provide a standard set
of services to the application components. Services that are relevant to this
chapter include the Java Transaction API (JTA), which provides declarative
transaction management, and JDBC, which provides connectivity with
database systems.

In this chapter we discuss the following topics:

• Transaction basics

• The Java support for transactions and WebSphere implementation details

• The transaction support provided by EJBs

• Some additional EJB concurrency control mechanisms provided by
WebSphere

• Guidelines for selecting EJB and WebSphere settings based on the
intended read/update usage of an EJB

• The necessary settings to enable transaction propagation between
WebSphere Advanced and Enterprise Editions

12.1 Transaction basics

Transactions are used to assure that data or the objects that encapsulate
data remain in a coherent state after undergoing a set of changes known as
the unit of work. A transaction has the following characteristics:

• Atomic: all changes are done (committed) unless interrupted by failure, in
which case all changes are undone (rolled back).

• Consistent: effects of a transaction preserve the invariant properties of the
data. The data won’t be in a partially invalid state.

• Isolated: intermediate states are transparent to other transactions;
transactions appear to execute serially.

• Durable: effects of a completed transaction are persistent and never lost.
© Copyright IBM Corp. 2001 503

These properties are commonly referred to by their acronym as the ACID
properties.

The Object Management Group, Inc. (OMG) developed a specification for
Object Transaction Service (OTS) that established common definitions for
participants in a transaction in a distributed object environment.

A transactional client is an arbitrary program that can invoke operations on
many transactional objects in a single transaction.

A transaction manager takes care of manages transactions behind the
scenes.

A resource manager manages the transaction for a single resource.

A transactional object is an object whose behavior is affected by being
invoked within the scope of a transaction. EJBs are a examples of an object
that can be transactional.

Figure 388. Transaction service

A transaction context represents the transaction shared by participating
transactional objects. The context is automatically propagated (usually) to
transactional objects as they are used. This allows synchronization of
affected transaction objects when changes are committed or rolled back.

Resource
Manager

EJB

Transaction Manager

Application
Server

XAResource
UserTransaction

JDBC

TransactionManager
Transaction
504 WebSphere V3.5 Handbook

A transaction that involves a single resource manager is commonly referred
to as a local transaction. Transactions involving multiple resource managers
are called distributed transactions. Distributed transactions are more complex
than local ones. In a distributed transaction, you must not only ensure the
ACID properties for a single process, but you must ensure them across a set
of processes on a network. In a local transaction, the only component that
can fail is the process itself. In a distributed transaction, any one of the
processes or the network connecting them can fail.

Distributed transactions use a two-phase commit protocol to determine the
transactions outcome among the multiple resources as shown in Figure 389.

Figure 389. Distributed transaction - two-phase commit

In Phase I, the coordinator (transaction manager) sends a message to each
participant (resource manager) to prepare to commit. In Phase II, the
coordinator tallies the responses. If all participants and the coordinator are
prepared to commit, the transaction commits; otherwise, the transaction is
rolled back. The WebSphere EJB container provides the infrastructure for
EJBs to participate in a distributed transaction.

Transaction
Manager

Resource Manager
A

Resource Manager
B

1. prepare 1. prepare

2 I'm prepared 2. I'm prepared

Transaction
Manager

Resource Manager
A

Resource Manager
B

1. commit
or abort

1. commit
or abort

2 OK 2. OK

Phase I

The Prepare Phase

Phase II

The Resolution

Phase
Chapter 12. Transactions 505

12.2 Java and transactions

There are two Java APIs related to transactions. The Java Transaction API
(JTA) specifies local Java interfaces between a transaction manager and the
parties involved in a distributed transaction system (application, resource
manager and application server). It is the high-level interface that your
applications use to control transactions.

The key object in JTA is the javax.transaction.UserTransaction. Developers
can use a UserTransaction to begin, commit, or roll back transactions.

The EJB 1.1 specification requires that the javax.transaction.UserTransaction
interface be made available by the EJB container for session EJBs with
bean-managed transaction demarcation.

WebSphere also makes the UserTransaction interface available to Java
clients including servlets, JSPs, and standalone programs.

Another API related to transactions is the Java Transaction Service (JTS).
JTS implements the Java mapping of OMG’s Transaction Service. JTS is a
lower-level interface that can be used by the EJB container to facilitate
interoperability. It is not required by EJB specification and is typically not used
by application developers.

12.2.1 JDBC
Data that is updated during transactions is usually stored in a relational
database. JDBC is an API that lets you access virtually any relational data
source from the Java programming language. It provides cross-database
management system connectivity to a wide range of SQL databases. The
JDBC API allows developers to take advantage of the Java platform's "Write
Once, Run Anywhere" capabilities for industrial strength, cross-platform
applications that require access to enterprise data. With a JDBC
technology-enabled driver, a developer can connect all corporate data even in
a heterogeneous environment. JDBC API makes it possible to do three
things:

• Establish a connection with a database or access any relational data
source

• Send SQL statements

• Process the results

JDBC Version 2.0 provides a standard two-phase commit API for multiple
databases and a mechanism to look up data sources via the Java Naming
506 WebSphere V3.5 Handbook

and Directory Interface (JNDI). The javax.sql.DataSource interface that is
defined in the JDBC 2.0 extension specification is a factory for JDBC
connections. WebSphere’s implementation of the data source object also
provides connection pooling to boost performance. A data source is
configured via the WebSphere Administrative Console (see 10.3,
“Administration of data sources” on page 379 for more information). The
application accesses the data source by looking it up using JNDI.

The following code fragment shows a servlet updating records from two
different JTA-enabled data sources and bracketing the work with a user
transaction. Some of the code details are removed (“...”) to keep the sample
small.

public class UserTranServlet extends javax.servlet.http.HttpServlet
{

private static javax.sql.DataSource policyDS = null;
private static String policyDSUser = null;
private static String policyDSPassword = null;
Context policyCtx = null;

private static javax.sql.DataSource claimDS = null;
private static String claimDSUser = null;
private static String claimDSPassword = null;
Context claimCtx = null;

...

public void doGet(
javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

throws javax.servlet.ServletException, java.io.IOException
{

...

// Local Variables
Connection policyConn = null;
Connection claimConn = null;
ResultSet rs = null;
UserTransaction ut = null;
try
{

...
// Lookup the UserTransaction - could use either ctx

ut = (UserTransaction) policyCtx.lookup("jta/usertransaction");
Chapter 12. Transactions 507

// Begin Transaction
ut.begin();

// Begin SQLs
psSelectPolicy =

policyConn.prepareStatement(selectPolicySqlString);
psSelectPolicy.setInt(1, policyNumber);
rs = psSelectPolicy.executeQuery();

...
{

psUpdatePolicy =
policyConn.prepareStatement(updatePolicySqlString);

psUpdatePolicy.setDouble(1, amount);
psUpdatePolicy.setDouble(2, premium);
psUpdatePolicy.setInt(3, policyNumber);
psUpdatePolicy.executeUpdate();
out.println("
UPDATE Policy SET amount = " + amount +

", premium = " + premium + " WHERE policyNo = " +
policyNumber);
}

psSelectClaim = claimConn.prepareStatement(selectClaimSqlString);
psSelectClaim.setInt(1, claimNumber);
rs = psSelectClaim.executeQuery();

...
{

psUpdateClaim =
claimConn.prepareStatement(updateClaimSqlString);

psUpdateClaim.setDouble(1, amount);
psUpdateClaim.setInt(2, state);
psUpdateClaim.setInt(3, claimNumber);
psUpdateClaim.executeUpdate();
out.println("
UPDATE Claim SET amount = " + amount +

", state = " + state + " WHERE claimNo = " +
claimNumber);
}

ut.commit();
...
}

catch (Exception e)
{

...}
}
}

508 WebSphere V3.5 Handbook

Using the UserTransaction assures that updates to both data sources
complete (commit case) or none of the updates complete (rollback case).

Although this example showed the relational database updates could be
orchestrated within a servlet, it is not considered best practice. 12.3,
“Enterprise JavaBeans distributed transaction support” on page 511 outlines
a simpler approach using Enterprise JavaBeans with container-managed
persistence (CMP) and container-managed transactions (CMT).

12.2.2 WebSphere JDBC support
Table 30 shows the class names of the JDBC drivers that are supported by
WebSphere:

Table 30. Database driver class

Data sources that use these drivers can be accessed and used within Java
programs. For example, a developer can use a data source to control the
persistence of an EJB with bean-managed persistence (BMP) or access data
directly from a servlet as shown in the previous example. These drivers are
considered fully supported because they can be used as repositories for the
WebSphere configuration information and as the backing store for entity EJBs
with CMP. The developer does not have to write the JDBC code for those
cases. Other databases with JDBC drivers can be used by servlets and for
EJB BMP but not for EJB CMP or as an administrative database. New drivers
can be added to the supported list periodically. You should refer to the online
product documentation to see the most up-to-date list.

Distributed database transactions are supported across homogeneous DB2
servers or Oracle servers. Table 31 on page 510, Table 32 on page 510, and

DB Class URL Prefix JTA 2PC

DB2 6.1/7.1 COM.ibm.db2.jdbc.app.DB2Driver jdbc:jta:db2 true yes

Oracle 8i
(8.1.6)

oracle.jdbc.driver.OracleDriver jdbc:oracle:thin:@<db_hostname>:
<port_number>

false no

Sybase 12 com.sybase.jdbc2.jdbc.SybDriver jdbc:sybase:Tds:<db_hostname>:<
port_number>

true yes
Chapter 12. Transactions 509

Table 33 on page 510 show the database capabilities on each platform that
WebSphere supports:

Table 31. DB2 6.1 support

Please note that OS/390 and AS/400 have product-specific release
structuring for DB2.

Table 32. Oracle support

Table 33. Sybase 11 support

DB2 6.1 JTA/2PC Persistence
(CMP/BMP)

Administrative
database support

AIX Yes Yes Yes

Solaris Yes Yes Yes

HP-UX No Yes Yes

Windows NT/2000 Yes Yes Yes

OS/390 Yes (DB2 Connect) BMP only No

OS/400 Yes Yes Yes

Oracle 8.1.6 JTA/2PC Persistence
(CMP/BMP

Administrative
database support

AIX No (Oracle limitation) Yes Yes

Solaris No (Oracle limitation) Yes Yes

HP-UX No (Oracle limitation) Yes Yes

Windows NT/2000 No (Oracle limitation) Yes Yes

OS/390 No (Oracle limitation) No No

Sybase ASE11 JTA/2PC Persistence
(CMP/BMP

Administrative
database support

AIX Yes Yes Yes

Solaris Yes Yes Yes

HP-UX No No No

Windows NT/2000 No No No
510 WebSphere V3.5 Handbook

Refer to the online WebSphere documentation to learn the database Fix Pack
level recommended for WebSphere.

12.3 Enterprise JavaBeans distributed transaction support

A key feature of Enterprise JavaBeans (EJBs) is support for distributed
transactions. EJBs are transactional objects.

12.3.1 Update databases with EJBs
One of the distributed transaction capabilities of the Enterprise JavaBeans is
updating multiple database in a single transaction. This section describes two
scenarios.

12.3.1.1 Update of multiple databases
Enterprise JavaBeans makes it possible for an application program to update
data in multiple databases in a single transaction.

Figure 390 on page 512 depicts multiple databases being updated within the
same transaction by two enterprise beans. A request from a client results in
two enterprise beans being invoked within the same transaction. Enterprise
bean X updates data in two databases, A and B. Then enterprise Bean X
calls enterprise bean Y, which updates data in database C. The Enterprise
JavaBeans perform the database updates through the JDBC API, and the
EJB server manages the database connections. When the transaction
completes, the EJB server and the underlying DBMS(s) perform a two-phase
commit to ensure atomic update across all databases involved in the
transaction. The EJB developer does not have to be concerned about the
transactional (ACID) properties of the transaction.
Chapter 12. Transactions 511

Figure 390. Update multiple databases in a single transaction

12.3.1.2 Update of databases via multiple EJB servers
Enterprise JavaBeans makes it possible for enterprise Beans to update
databases across multiple EJB servers within the same transaction. The EJB
servers can be network connected and located at different sites. This
capability is illustrated in Figure 391.

A client invokes the enterprise bean X. X updates data in database A, and
then calls another enterprise bean Y, which updates data in database C on
another EJB server. The EJB servers are located on different systems that
are connected through a network.

The two EJB servers propagate the transaction context from enterprise bean
X to enterprise bean Y. When the transaction completes, the two servers use
a distributed two-phase commit protocol to ensure the atomic property of the
transaction. The propagation of transaction context, as well as other ACID
properties of the transaction, are transparent to the EJB developer.

Transaction
Manager

Resource
Manager

Database
C

Database
A

Resource
Manager

EJB
X

EJB
Y

EJB Server

Database
B

512 WebSphere V3.5 Handbook

Figure 391. Update multiple databases via multiple EJB servers

12.3.2 Transaction demarcation
The EJB model offers a variety of ways to make use of transactional services.
Transaction demarcation determines who is responsible for starting and
completing a transaction. Developers have two choices:

• Using programmatic transaction demarcation, where they write the code to
begin and commit transactions using the
javax.transaction.UserTransaction interface.

• Using a declarative transaction demarcation where they specify a
transaction attribute during deployment and the container handles the
transaction demarcation automatically.

The declarative approach is recommended because it reduces the code that
must be maintained and offers more flexibility, since attributes can be
changed at deployment time without changing the code.

Container demarcation is available for entity beans and session beans. The
application assembler or deployer uses the deployment descriptor to specify
(declare) the required transaction semantics. The container provides the
necessary support code.

Transaction
Manager

Resource
Manager

Database
C

Database
A

EJB
Y

EJB Server

EJB
X

Resource
Manager

Transaction
Manager

EJB Server
Chapter 12. Transactions 513

Client demarcation is explicit transaction management. Developers use the
JTA UserTransaction API directly in the code.

Bean demarcation is similar to client demarcation with the explicit transaction
management occurring with a session bean method. The following figures
show the different options available.

12.3.2.1 Container demarcation
The declarative approach as shown in Figure 392 is recommended because
of flexibility and lower code maintenance.

Figure 392. The declarative scenario for container-managed transactions

12.3.2.2 Bean demarcation
The bean-managed demarcation is possible with session EJBs that are
deployed with a transaction attribute set to TX_BEAN_MANAGED as shown
in Figure 393 on page 515.

Client EJB

business method

Each method is a
transaction (implicit)

Implicit using
declare

specification
514 WebSphere V3.5 Handbook

Figure 393. Bean-managed scenario

For this case, the UserTransaction is acquired from the SessionContext.

javax.transaction.UserTransaction = sessionCtx.getUserTransaction();

For stateless session beans, a method that starts a transaction is not allowed
to return if the transaction is still active. This is good because it favors
short-lived transactions.

For stateful session beans, a method can start a transaction and return,
leaving the transaction active. This capability can lead to long-running
transactions that hold critical system resources like database locks.

Stateful session beans can implement the javax.ejb.SessionSynchronization
interface to receive callbacks for transaction life cycle events afterBegin,
beforeCompletion, and afterCompletion.

12.3.2.3 Client demarcation
In the client demarcation scenario, as shown in Figure 394 on page 516, the
client acquires a UserTransaction through a JNDI lookup:

InitialContext ic = new InitialContext(properties);
javax.transaction.UserTransaction = ic.lookup(jta/usertransaction");

Client Session Bean User
Transaction

EJB

business method begin()

business method

commit()

Session bean
delineates
TXN begin
and end
(explicit,
TX_BEAN_
MANAGED)

Bean-Managed
Demarcation
Chapter 12. Transactions 515

Figure 394. Client demarcation scenario

The client begins a transaction that results in a new transaction context being
associated with a client’s thread of execution. The client calls methods on
EJBs and EJBs become implicitly associated with a client’s transaction. When
the client issues a commit, the EJBs changes are committed. Use of
client-demarcated transactions are not recommended for several reasons.
They require more code to be written and maintained. They move the
management of transactions from the robust system layer that has
traditionally been responsible for this function. They create the possibility of
long-running transactions.

12.3.3 Transactional specifiers
For container-managed transactions, a bean indicates its requirements
through two attributes: the transaction attribute and the isolation attribute.

The transaction attribute defines the transactional requirements and can be
set for the bean or for individual methods.

The transaction-isolation attribute determines how transactional reads are
isolated and can be set for the bean or for individual methods.

These two transactional specifiers are set in the deployment descriptor. When
the bean is deployed, the container generates the necessary
transaction-support code. The values chosen for these specifiers give the
container the information it needs to provide that support code. The
transaction attribute indicates the transactional requirements for beans. The
isolation attribute simply affects how database locks are held for reads that

User
Transaction

Client EJB

begin()

business method

commit()

The client
delineates the
TXN start and
end. (explicit)

Client
demarcation
516 WebSphere V3.5 Handbook

occur within transactions. This provides the ability to sacrifice accuracy of
reads in favor of greater concurrency at the database. It does not affect
updates.

12.3.4 Transaction attributes
This section describes in simple terms what is meant by each of the EJB
transactional attributes (WebSphere V3.5 follows the EJB 1.0 specification)
that can be assigned to an EJB or EJB method. It also indicates what
transactional context (if any) is passed to downstream beans.

This attribute determines if and how transactions are needed. The values can
be:

• TX_MANDATORY

• TX_REQUIRED

• TX_REQUIRES_NEW

• TX_SUPPORTS

• TX_NOT_SUPPORTED

• TX_BEAN_MANAGED

The first five possible values indicate container-managed transactions, and
these can be applied to an entire bean or to individual methods within a bean.

TX_MANDATORY: The container must call methods from the transactional
context established by the client. If the client has a transaction context, it is
propagated to the bean. If the client does not have a transaction context, the
container throws a TransactionRequiredException. Consider using
TX_MANDATORY with entities to assure a transaction is active before the
entity is called.

TX_REQUIRED: The container must invoke methods within a transactional
context. If the client has a transaction context, it is propagated to the bean. If
not, the container starts a transaction. Consider using TX_REQUIRED with
session beans.

TX_REQUIRES_NEW: The container must start a new transaction for the
method. If the client has a transaction context, it is suspended for the
duration, and a new one is started. If not, the container starts a transaction.

TX_SUPPORTS: The container must use a client's context for the
transaction. If the client has a transaction context, it is propagated to the
Chapter 12. Transactions 517

bean. If not, the method is run under what the EJB specification calls the
unspecified transaction context.

TX_NOT_SUPPORTED: The container must not invoke methods
transactionally. If the client has a transaction context, it is suspended for the
duration. If not, the method is run under what the EJB specification calls the
unspecified transaction context.

The TX_BEAN_MANAGED value indicates that the bean itself, rather than
the container, assumes responsibility for starting and ending transactions.
Only session beans can request bean-managed transactions. This value
applies to the entire bean, and cannot be specified for individual bean
methods. Using bean-managed transactions will require you to write and
maintain more code and will limit your options at deployment time. However, it
does provide you with an opportunity to develop sophisticated exception
recovery that your bean users would have difficulty duplicating.

The following section indicates what is passed to any downstream beans.

Some terminology used in this section:

• The term called bean refers to the application EJB bean that has the
transactional attribute being discussed.

• Downstream bean refers to the application EJB bean that is called from
the called bean.

• Upstream bean refers to an application EJB bean or client application that
invokes the called bean.

Figure 395. Relation between the upstream bean, called bean and downstream bean

An Upstream bean's transactional context (if one exists) is always passed to
the calling bean by the container. It is up to the called bean's container to do
one of the following with the transactional context. The called bean’s
container can:

Upstream
Bean

Called
Bean

Downstream
Bean

Transactional
Context

Container
518 WebSphere V3.5 Handbook

• Retain the context in the case where the bean’s transaction attribute is
TX_REQUIRED, TX_SUPPORTS, or TX_MANDATORY

• Suspend the callers transactional context in the case where the bean’s
transaction attribute is TX_REQUIRES_NEW, or TX_NOT_SUPPORTED.
The callers transactional context is resumed when the call returns.

• Create a new transactional context in the case where the bean’s
transaction attribute is TX_REQUIRES_NEW – the callers transactional
context is suspended until the bean returns.

In the situation where the upstream bean has no transaction context, the
called beans container will:

• Create a new transactional context in the case where the bean’s
transaction attribute is TX_REQUIRED or TX_REQUIRES_NEW

• Continue without a transaction context where the bean’s transaction
attribute is TX_NOT_SUPPORTED, or TX_SUPPORTS

• Reject the transactional context in the case where the bean’s transaction
attribute is TX_MANDATORY

Table 34 summarizes the transaction context used by a bean based on the
transaction attribute setting and whether the client has a transaction context
established.

Table 34. Transaction attribute summary

Transaction attribute Client transaction context Bean transaction context

TX_MANDATORY No transaction Not allowed

Client transaction Client transaction

TX_NOT_SUPPORTED No transaction No transaction

Client transaction No transaction

TX_REQUIRES_NEW No transaction New transaction

Client transaction New transaction

TX_REQUIRED No transaction New transaction

Client transaction Client transaction

TX_SUPPORTS No transaction No transaction

Client transaction Client transaction
Chapter 12. Transactions 519

12.3.4.1 Transactional attribute considerations
You need to consider a number of things when developing transaction-aware
beans. For example, what will happen when your transaction context is
passed and used by a downstream EJB. Do you want another bean to be part
of your transaction? Are you prepared for it to potentially cause a rollback? If
the bean you are calling will suspend your transaction, will that cause a
deadlock? Consider the following:

• If the downstream bean uses your transaction context and throws a
non-application exception, it may cause the transaction you are in to be
marked for rollback by the downstream container and there will be nothing
you can do about it.

• If the downstream bean marks the transaction for RollbackOnly, there is
nothing you can do about it either. There is no unsetRollbackOnly()
method. The transaction (that you may have started) will be rolled back.

Even if your transaction may have been marked for rollback, it is still possible
for your bean to perform some processing under the following conditions:

• You can continue to execute code within your bean so long as you do not
attempt to call any other bean.

• If you attempt to call another bean, it will fail with a RollbackException
indicating that it was improperly started.

• If you attempt to call JNDI, it will fail with an
org.omg.CORBA.ROLLEDBACK_EXCEPTION as well.

In WebSphere V3.0.2, you were allowed to make a call to a bean marked as
TX_NOT_SUPPORTED. In WebSphere V3.5, this is no longer the case. The
calling bean's container simply refuses to pass a rolled-back transaction
context to a downstream bean, in anticipation that it will be of no use and the
call will eventually fail. The EJB specification does not make it clear how
these situations should be handled. So expect that other EJB
implementations may handle these situations differently (even between
releases).

If you do not wish the transaction you are in (or that you started) to be
affected by a downstream call, you have the following options:

• Ensure that any downstream bean you call directly has a transaction
attribute of TX_REQUIRES_NEW, or TX_NOT_SUPPORTED. By doing
this your transaction will be suspended and not be affected directly by the
downstream call.

• Start an explicit transaction from your EJB (your bean must be
TX_BEAN_MANAGED to do this) and call the downstream bean in with a
520 WebSphere V3.5 Handbook

transaction context you explicitly created. This way the transaction context
is associated with the bean that started it, and not with the calling thread,
and it will not be managed by the (downstream, or any) container.

• Use a non-EJB class to perform explicit client-demarcated transactions.
Note that the client here means a non-EJB caller of an Enterprise
JavaBean, not user or client application.

The bottom line: if you are marked for rollback you have little choice except to
clean up and let the rollback occur. Only the calling client (that is, a non-EJB
client or bean in a different transaction scope) can do something about the
situation.

We discourage the use of TX_SUPPORTS and TX_NOT_SUPPORTED
because if your application accesses multiple entities with
container-managed persistence in a single high-level operation, such as a
servlet invocation, you may see unexpected results. The bean methods for
these cases are run under “an unspecified transaction context” where the
container determines the semantics. In the absence of a transaction, the
current implementation of the container executes the database accesses in a
local transaction. If those local transactions use different connections to the
same database, deadlocks can occur. This is true regardless of whether there
is a single or multiple application servers, and whether JTA is enabled.

You can reduce project risk by selecting the options where the semantics are
clearly defined. Use TX_REQUIRED or TX_REQUIRES_NEW in you session
beans to assure a transaction is started. Use TX_MANDATORY in your CMP
entity beans to assure the changes are part of a bigger transaction being
coordinated by the session bean.

12.3.5 Transaction isolation attribute
The transaction isolation attribute tells the container how to limit concurrent
reads in a database. The EJB 1.1 specification removed the guidelines for
managing transaction isolation levels for beans with container-managed
transaction demarcation. But since bean deployers still require mechanisms
to govern EJB concurrency, WebSphere continues to support it along with
other mechanisms discussed in the next section.

12.3.5.1 Transaction isolation levels
Transaction isolation levels provides a trade-off between accuracy of reads
versus concurrent readers. The levels can best be described by the types of
read anomalies they permit and forbid. Consider the read anomalies that can
occur with two concurrent transactions, T1 and T2:
Chapter 12. Transactions 521

• Dirty read: T1 reads data that has been modified by T2, before T2
commits.

• Non-repeatable read: this is caused by fine-grained locks.

- T1 reads a record and drops its lock.

- T2 updates; T1 rereads different data.

• Phantom read: A non-repeatable read involving a range of data and
inserts or deletes on the range.

- T1 reads a set of records that match some criterion.

- T2 inserts a record that matches the criterion.

- T1 continues processing the set, which now includes records that were
not part of the original matching set.

There are four possible values for the transaction isolation attribute.

TRANSACTION_READ_UNCOMMITTED: Permits all the read anomalies
including dirty reads, non-repeatable reads, and phantom reads.

TRANSACTION_READ_COMMITTED: Permits non-repeatable and phantom
reads and forbids dirty reads.

TRANSACTION_REPEATABLE_READ: Permits phantom reads and forbids
both dirty and unrepeatable reads.

TRANSACTION_SERIALIZABLE: Forbids all the read anomalies.

The container applies isolation attribute as follows:

• For entity beans with CMP: The container generates code that assures the
desired level of isolation for each database access.

• For session beans and BMP entity beans: The container sets the isolation
level at the start of each transaction, for each database connection.

The transaction isolation level is tied to a database connection, and the
connection will use the isolation level specified in the first bean that uses the
connection. If the connection is used by another bean method that has a
different isolation level, the container will throw an
IsolationLevelChangeException.
522 WebSphere V3.5 Handbook

A database may not support all isolation levels, as Table 35 shows.

Table 35. Database support for various transaction isolation attributes

For the current set of database drivers being used, Oracle does not support
read uncommitted or repeatable read isolation, and Sybase does not support
repeatable reads. To learn more, refer to the documentation provided by the
database product.

The DB2 definitions for isolation levels follow the naming conventions used in
Jim Gray's classic book on transaction processing,Transaction Processing:
Concepts and Techniques. Table 36 shows a map between EJB and DB2
isolation levels.

Table 36. EJB to DB2 isolation level names

The bean behavior for a given isolation level can vary with databases. For
example, the behaviors of DB2 and Oracle are considerably different with
TRANSACTION_READ_COMMITTED isolation. Oracle holds a read lock
until the transaction commits. DB2 holds the lock as long as a cursor is
positioned on the row.

The current implementation of the container closes the result set used to load
the bean prior to invoking the business method. As a result, this causes the
DB2 cursor to close and release the row read lock. Therefore we recommend
you specify TRANSACTION_REPEATABLE_READ or greater for cases
where container-managed EJBs are mapped to DB2 and those EJBs can
experience concurrent client updates. This will provide DB2’s read stability
isolation level. The level works best when there is an index defined over the
field being scanned. That is the normal case when the field is the primary key.

Read
Uncommitted

Read
Committed

Repeatable
Read

Serializable

DB2 � � � �

Oracle � �

Sybase � � �

EJB Isolation Level DB2 Isolation Level

TRANSACTION_SERIALIZABLE Repeatable Read

TRANSACTION_REPEATABLE_READ Read Stability

TRANSACTION_READ_COMMITTED Cursor Stability

TRANSACTION_READ_UNCOMMITTED Uncommitted Read
Chapter 12. Transactions 523

12.3.5.2 Setting the isolation level with VisualAge for Java
If developing your EJBs in VisualAge for Java (VAJ), you can set the isolation
level in the bean’s property sheet. To open the property window, right-click
the EJB in the Enterprise Bean pane and select Properties. The Properties
window like that shown in Figure 396 on page 524 will appear.

Figure 396. Entity property sheet from VisualAge for Java

12.3.5.3 Setting the isolation level with JETACE tool
You can also change the isolation level using the stand-alone JETACE tool.
Start jetace on Windows in a command window, for example, by typing jetace

in the <WAS_HOME>\bin directory, where <WAS_HOME> is the WebSphere
installation directory such as c:\WebSphere\AppServer.

Load the EJB JAR of interest by using the File -> Load... menu option.
Highlight the EJB you want to edit and click the Edit button.

Select the Transactions tab to change the transaction attribute or isolation
level as shown in Figure 397 on page 525.
524 WebSphere V3.5 Handbook

Figure 397. Jetace transaction panel

12.4 EJB concurrency control

In addition to the transaction isolation level, WebSphere supports the ability
to specify which entity methods are read-only and should not result in
changes to persistent data. Bean deployers can also specify whether an
entity retrieved via its primary key is likely to be updated. Both mechanism
can affect the database locking behavior.

VisualAge for Java offers more capabilities for deployment, including the
ability to specify read-only methods on an entity bean. That information can
be lost if you use JETACE tool to update the deployment JAR exported
from VisualAge for Java.

Note
Chapter 12. Transactions 525

12.4.1 Setting read-only method with VisualAge for Java
Use VisualAge for Java to indicate which entity methods are read-only.

The container can use this information to optimize database operations. For
example, if all methods executed on an entity during a transaction are marked
as read-only, the container can skip the ejbStore() operation at the end of the
transaction.

This avoid possible read to write lock promotions and improving performance
by omitting the database write that can result in exceptions caused by
conflicts.

To indicate an entity method is read-only, right-click the method within the
member pane of the bean, then select EJB Method Attributes -> Read-only
Method as shown in Figure 398.

Figure 398. Setting an entity bean method to be read-only within VisualAge for Java

12.4.2 Setting read-only method with administrative console
Another way to set the read-only method indications is to use the WebSphere
Administrative Console.

To do that, stop the application server and select the enterprise bean node on
domain tree.
526 WebSphere V3.5 Handbook

Click the Edit button associated with the deployment descriptor on the
General tab.

That brings up the Deployment Properties wizard shown in Figure 399.

Figure 399. Deployment Properties: Transaction Attribute Read-Only

After checking the Read-Only boxes click the Set and OK buttons followed by
the Apply button at the bottom of the bean’s General tab.

The Deployment Properties wizard also shows the transaction attribute and
isolation levels (on the Isolation tab). At the time of this writing the property
wizard allowed the transaction attributes and isolation levels to be changed
on the remote business methods but not the methods defined on the Home
such as create and findByPrimaryKey. Changing only some of the method
properties could cause isolation level mismatch problems. A WebSphere
V3.5 fix is being developed that will allow the Home methods to be updated
from the Deployment Properties wizard. That fix will make the wizard the
most convenient way to update the transaction attributes and isolation
levels.

Note
Chapter 12. Transactions 527

12.4.3 Database locking with EJB
Deadlocks occur when two concurrent transactions place a shared lock on
the same resource (table or row) when they read it then attempt to update the
information at commit time. This can happen when the same EJB is accessed
and updated by two or more clients at the same time. When using DB2, a
deadlock like this would result in one of the clients getting a rollback
exception.

You can verify when this is happening by activating an application server
trace on the com.ibm.ejs.cm.portability component.

Figure 400 is a sample of trace data that shows the DB2 exception details:

Figure 400. WebSphere Trace output showing a deadlock condition

Unfortunately, the recovery from exceptions due to conflicts can be
non-trivial. What is needed is a way to indicate that the bean is being
accessed with the intent to update it so the deadlock conditions can be
avoided. That is exactly what the Find for update option does. This option can
be found on an entity bean’s Advanced tab on the WebSphere Administrative
Console as shown in Figure 401 on page 529.

[00.10.09 11:15:35:959 CDT] 50b052fd PortabilityLa > translateException
COM.ibm.db2.jdbc.DB2Exception: [IBM][CLI Driver][DB2/NT]

SQL0911N The current transaction has been rolled back because of a deadlock or
timeout.
Reason code "2". SQLSTATE=40001

at java.sql.SQLException.<init>(SQLException.java:45)
at COM.ibm.db2.jdbc.DB2Exception.<init>(DB2Exception.java:71)
528 WebSphere V3.5 Handbook

Figure 401. Find for update check box for entity beans in the administrative console

When this option is enabled, an entity found via the findByPrimaryKey()
method is accessed with a write intent or write lock, resulting in multiple
concurrent client requests being serialized. The result is deadlock avoidance.

12.5 Settings based on EJB usage

Now that you understand what choices you can make for the EJB deployment
settings we are going to do testing to determine which choices work the best
for various EJB usage patterns. The patterns include:

• Read only - multiple clients get data from an entity bean but do not update
that bean. The rows in the database associated with the bean have
populated before running the application.

• Read mostly - multiple clients get data from an entity and occasionally
update that bean.

• Update often - multiple clients often update an entity bean.

In order to test these patterns we developed a Java client for the big3
application where the percentage of read-only operations is an input
parameter of the application. We then executed two clients accessing the
same EJBs with the same usage pattern (read-only, read-mostly, and update
often). See the \floppy.35\big3\client\MainRetry.java code for details. The
batch file used to start the test is called RunClientWithRetry.bat. Here is an
example of the command:

RunClientWithRetry 100 1113 2224 10 95 lakemichigan
Chapter 12. Transactions 529

Here is the associated output for that command:

---------------- Run Big3 java Client ------------------
- Repetitions = 100
- Policy number = 1113
- Claim number = 2224
- Amount = 10.0
- Create first = false
- ProcessClaim Context = com.ibm.ejs.ns.jndi.CNInitialContextFactory
- ProcessClaim URL = iiop://lakemichigan/
- Policy Context = com.ibm.ejs.ns.jndi.CNInitialContextFactory
- Policy URL = iiop://lakemichigan/
- Claim Context = com.ibm.ejs.ns.jndi.CNInitialContextFactory
- Claim URL = iiop://lakemichigan/
- PercentReads = 95
-
- Geting initial context...
- Lookup ProcessClaimHome...
<< create ProcessClaim object >>
<< calling the ProcessClaim object
rrrrrrrrrrrrrrrrrrrwrrrrrrrrrrrrrrrrrrrwrrrrr
rrr >>
<< remove ProcessClaim object >>
---------------- Execution Results ---------------------
- Reps = 100
- Total time = 1703 milliSeconds
- Average time = 17
- Reads = 98
- Writes = 2
- Retries = 0
--

For our testing, the error recovery performed in the client test is simple.
Exceptions resulting from commit failures are retried forever. We expect a
production application would require more sophisticated recovery.

The DB2 database was used for these tests and the EJB database access set
to shared mode. This is consistent with option C caching defined in the EJB
specification. This is the required setting when multiple WebSphere
processes or processes outside WebSphere’s control are accessing the same
bean data. The isolation level was set to REPEATABLE_READ.

The test results are shown in Table 37 on page 531 and Table 38 on page
532. The first table is the baseline results for a single client. The second table
shows the result when two clients are running.
530 WebSphere V3.5 Handbook

Both tables have the same format, where the first column indicates whether
the getter methods on entity beans were marked as read-only.

The second column indicates the state of the Find for update check box for
the entity beans.

The third column indicates which percentage of the operations were
read-only versus update.

The fourth column shows the number of retries for the client(s) required to
execute 1000 successful operations.

The fifth column shows the average time for each operation for the client(s).

Table 37. EJB read/write single client test results

The single client test showed the average response time for the 100% read
case was about 10-35% better then the mostly write case.

The Resource Analyzer for WebSphere was used to verify that the ejbLoad()
and ejbStore() were happening when expected.

Read-only
methods set

Find For
Update
check box

% Reads Retries Avg Time
(ms)

yes false 100 0 14

yes false 95 0 15

yes false 10 0 19

no false 100 0 16

no false 95 0 16

no false 10 0 20

yes true 100 0 17

yes true 95 0 18

yes true 10 0 19

no true 100 0 17

no true 95 0/0 18

no true 10 0/0 19
Chapter 12. Transactions 531

A read test loop count of 1000 resulted in 3000 bean method calls, 2000
entity activations, 2000 entity loads, and 2000 entity passivations.

The write test calls an additional bean method so a 100% write test resulted
in 4000 bean method calls, 2000 entity activations, 2000 entity loads, 2000
entity stores, and 2000 entity passivations.

Table 38. EJB read/write multi client test results

The best response times for the multi-client case were recorded when both
clients were calling read-only methods that had been marked as read-only
within VisualAge for Java. Lock conflicts were avoided because the container
did not have to call ejbStore() for the entities. The Find for update check box
was not checked (false). These are good settings for entities used in a
read-only fashion.

The worst response times were observed when the clients had to recover
from exceptions. Those occur when the Find for update check box was not
checked (false) and write operations are involved. That included the cases
where the clients only called read methods but those methods were not
flagged as read-only using VisualAge for Java.

Read-only
methods set

Find For
Update
check box

% Reads Retries Avg Time
(ms)

yes false 100 0/0 31/29

yes false 95 7/4 156/156

yes false 10 72/54 361/355

no false 100 50/57 296/299

no false 95 67/68 349/357

no false 10 81/83 415/412

yes true 100 0/0 33/30

yes true 95 0/0 34/32

yes true 10 0/0 40/38

no true 100 0/0 34/36

no true 95 0/0 34/35

no true 10 0 39/38
532 WebSphere V3.5 Handbook

Even the read-mostly case (95% reads) showed a dramatic increase in
response time. It was five times worse then the case with 100% reads. We
also observed varying and erratic recovery times for failed operations.
Sometimes an operation had to be retried as much as ten times to recover.

The best all-around times were observed when the Find for update check box
was set to true. No exceptions were observed in this mode and the execution
of request appeared fair. This was the best setting for the read-mostly and
update-often cases.

For cases where finer grained locking is needed, for example, you want to
read a EJB in one transaction and update in another, you can develop EJB
finders to return the lock you need. For example, the read case would use a
findByPrimaryKey() method while the write case could use a findForUpdate
ByPrimaryKey().

See Vesselin Ivanov’s article titled EJBs and Transaction Management in
WebSphere Advanced Edition on the VisualAge Developer Domain Web site
(http://www.software.ibm.com/vadd) for details of this design pattern.

12.6 Transaction exception handling

In this section, we describe how exceptions are handled with transactions.

12.6.1 The preliminaries
What are the types of exceptions available?

An exception is unchecked if it extends RuntimeException or Error.
Unchecked exceptions do not need to be specified in the throws clause of a
method.

An exception is checked if it is specified in the throws clause of a method.

An application level exception is an exception that is checked and extends
Exception. It cannot extend RuntimeException, Error, or RemoteException.
CreateException, RemoveException and FinderException are application
exceptions.

A system level exception is any exception other than an application level
exception; it includes all unchecked exceptions.

The application exception handling has been changed in WebSphere V3.5 to
match the EJB 1.1 specification. More on this will be given in the next
sections.
Chapter 12. Transactions 533

12.6.2 What you can assume
If you catch an exception (any exception) and do not pass it to the container
(by throwing it again and returning from the bean), it is up to you to handle the
situation correctly. Note that an EJB cannot catch all exceptions, since
exceptions may be thrown by the infrastructure that is between the EJB and
its caller, and which is invoked before and after the EJB method.

The EJB developer can assume that the container will pass all application
level exceptions to the caller unchanged (this is an EJB 1.1 specification that
has been implemented in WebSphere V3.5). If the container is the initiator of
the transaction, the transaction will be committed first before the exception is
thrown. The EJB developer must call the setRollBackOnly() method explicitly
if he or she wants the transaction to be marked for rollback. In previous
releases all application exceptions would cause a transaction to be marked
for rollback.

Only the container that initiated the transaction will initiate a rollback.
Intermediate containers that catch system exceptions only mark the
transaction for rollback. The container that initiated the transaction after
rolling back will throw a RemoteException to the upstream caller.

12.6.3 What an application can do
An EJB can instruct the container to roll back by calling the method
EJBContext.setRollbackOnly(). A downstream bean which
inherits/assumes/continues with the transaction from the upstream bean can
cause that transaction to roll back using that same mechanism.

An application can detect if the current transaction (the transaction it is a part
of) is or will be rolled back by calling the method
EJBContext.getRollbackOnly().

If an application receives a RemoteException it cannot automatically know
that the call was successful or not.

• A RemoteException can be thrown if there was a communication error

• A RemoteException can be thrown if the called beans container detected
an unchecked exception

• A RemoteException can be thrown if the called beans container detected
a System Exception or another RemoteException

• A RemoteException can be thrown if the called bean started its own
transaction, failed and was rolled back
534 WebSphere V3.5 Handbook

If an application receives a TransactionRolledbackException it can assume
that the transaction it is a member of will be rolled back and it is fruitless to
continue processing. A bean can continue limited processing in this state.

12.6.4 What a container will do
If a container receives an unchecked (runtime) exception and is participating
in a transaction (not necessarily the initiator of the transaction), it will mark it
for rollback. The caller will be thrown a TransactionRolledbackException. If
the container is the initiator, a RemoteException will be thrown. In both cases
the rollback will occur.

If the container receives a RemoteException it will rethrow the
RemoteException or a subclass of it. If the container initiated the transaction,
it will cause a rollback and throw a RemoteException.

If an application wants to throw a serious non-application exception and
cause a rollback, it should continue to throw subclasses of RemoteException.
The EJB 1.1 specification provides another exception (EJBException)
specifically for this situation. However, the EJBException defined in
WebSphere V3.5 is not compliant with the EJB 1.1 specification and should
not be used. Continue to use RemoteException in WebSphere V3.5 to throw
non-application level exceptions.

12.6.5 TransactionRolledbackException
The EJB specification (1.0 and 1.1) prescribes that a container must throw a
javax.transaction.TransactionRolledBackException when it has marked a
transaction for rollback that it did not start. However, in WebSphere V3.5 you
can receive different exceptions under different circumstances.

• org.omg.CORBA.ROLLEDBACK_Exception (extends RuntimeException)

• javax.transaction.TransactionRolledbackException (extends
RemoteException)

You can count on the fact that the getEJBContext().getRollbackOnly() will
return true if the transaction has been marked for rollback in either case.

For now, applications should catch both exceptions and treat them the same.

12.6.6 Dos and don’ts (EJB 1.0, WebSphere V3.5 specific)
Here are some guidelines to follow.

• Application beans should explicitly make the decision to cause a rollback
and not leave it to the container.
Chapter 12. Transactions 535

They can do this by calling the EJBContext.setRollbackOnly() method.
Remember, application exceptions result in a commit unless you explicitly
call the setRollbackOnly() method.

• When calls are returned from downstream EJBs, application beans should
check if their transaction has been marked for rollback using the
EJBContext.getRollbackOnly() method call, and act accordingly. They
should not just rely on getting this notification as a result of a rollback
exception.

• An application can setRollbackonly() without necessarily throwing an
exception, although this should be avoided.

• Application exceptions should follow the EJB 1.1 specification and no
longer extend RuntimeException or RemoteException or any of its
subclasses.

• Application beans should throw an exception that extends
RuntimeException if it wants to cause a rollback and indicate a system
level error. In the EJB 1.1 specification, the application would have been
required to throw an EJBException, but this has not yet been implemented
in WebSphere V3.5.

• When a call to a bean results in a thrown RemoteException, you cannot
know that the target bean rolled back, or was even called. In this case
(unless you really know what you are doing) you should call
EJBContext.setRollbackOnly() and throw an appropriate application or
RemoteException and cause the entire transaction to roll back. Leave it to
the next level up to retry the transaction if desired.

• If an application bean wants to report a system type problem and cause a
rollback, it should continue to throw a RemoteException until WebSphere
fully supports EJB 1.1.

• If an Application bean wants to ensure that its work is committed
regardless of the outcome of calls to other downstream beans, the
downstream bean's transaction attribute should be marked as
TX_REQUIRES_NEW or TX_NOT_SUPPORTED, or the calling bean
should manage its own transaction (TX_BEAN_MANAGED). This will
cause the caller's transaction to be suspended when the downstream
bean is called.

• Note that a transactional attribute of TX_REQUIRES_NEW can set the
stage for a deadlock, if the new and the suspended transactions try to use
the same resources, depending on their transaction isolation levels.

It is generally stated in EJB books and articles that bean-demarcated
transaction management should be avoided. While this is true in most
536 WebSphere V3.5 Handbook

cases, it should not be dismissed as a bad thing. In the case where a session
bean is coordinating a complex process or set of activities, it may be more
practical to use bean-demarcated transactions. This will allow you to split the
processing into multiple transactions, recover from downstream beans that
cause rollback, and explicitly ensure that a downstream bean will not affect
your processing. If you find yourself fighting transaction problems, consider
using bean-demarcated transactions in your main session bean. Alternatively,
instead of a session bean, you can resort to a non-EJB caller that will
demarcate transactions explicitly, but that requires writing even more code.

12.7 WebSphere family interoperability

The next generation of the EJB specification includes focus on interoperability
between Web application servers. Interoperability can be achieved using the
RMI over IIOP support and its capabilities to propagate transaction and
security contextes. WebSphere is well on its way to providing this function by
supporting distributed transactions involving EJBs running in both the
Enterprise Edition/Component Broker (EE/CB) server and the Advanced
Edition (AE) server. To enable the interoperability, set the following flags in an
AE server’s command line arguments:

"-Dcom.ibm.ejs.jts.jts.ControlSet.nativeOnly=false"

"-Dcom.ibm.ejs.jts.jts.ControlSet.interoperabilityOnly=true"

To set the arguments with the administrative console, select the application
server node in the administrative domain tree, then add them to the
Command line arguments field in the General tab.

12.8 Conclusion

The J2EE and EJB specifications have eased the development of portable,
n-tier, enterprise applications. More than ever, developers can focus on
developing the application’s business logic and leverage the common
plumbing provided by J2EE application servers. One area the specifications
can improve on is standardization of concurrency control mechanisms like
isolation levels, read-only methods, and the update intent associated with an
entity access. The requirement for these types of mechanism will grow as
application throughput demands grow.
Chapter 12. Transactions 537

538 WebSphere V3.5 Handbook

Chapter 13. XML and WebSphere

The eXtensible Markup Language (XML) is a specification for creating
markup languages that are used to represent information in the form of
documents. XML allows documents to be easily exchanged between
organizations and allows programs to intelligently process documents without
human intervention.

WebSphere V3.5 includes support for generating, parsing, and manipulating
XML documents. A discussion of the details and nuances of XML and XML
support in WebSphere could fill an entire book. This chapter provides a brief
but in-depth overview of the commonly used features of XML. Much of the
discussion is illustrated by examples rather than formal syntax diagrams. This
chapter shows how data in XML format can be used at various points in a
WebSphere application.

13.1 XML overview

XML is a simplified subset of SGML (Standard Generalized Markup
Language). SGML has been in use successfully for many years at large
corporations and government agencies, but it was too complex and resource
intensive to become widespread. XML eliminates some of the less used but
complicating features and is becoming very widespread, especially as more
documents are being interchanged via the Internet and World Wide Web.

XML is a markup language. Markup languages add tags to the content of a
document to describe the document. For example, in HTML a <p> tag
indicates a paragraph, but the <p> is not part of the document itself. Markup
languages such as HTML or word processors specify how to format or display
information (bold, 14 point) but not what it is (a chapter heading, the title of a
song). This makes it difficult for a computer program to understand what the
document means. A document, when understood, can have real-world
effects. For example a purchase order might cause a factory to produce and
ship goods.

XML, in addition to being a markup language, is a metalanguage. A
metalanguage can be used to define other languages. What this essentially
means is that new tags can be created to describe the contents of a
document. In HTML one is limited to a predefined set of tags such as <p> or
<table>. In XML one can create an <artist> tag to describe the artist that
performed a song.
© Copyright IBM Corp. 2001 539

With the freedom to create tags XML markup can structure a document in a
semantically significant way. For example, it might describe a purchase order
as having a list of items purchased, a shipping address, and so on. Although
an artificial intelligence program could use character recognition to scan a
printed purchase order and understand what to do with it, such programs in
reality are not practical. XML markup makes it easier for a program to
understand how to process a document.

XML by itself does not specify how to display a document. Extensible
Stylesheet Language (XSL) and Cascading Style Sheet (CSS) stylesheets
(see 13.5, “XML and Web browsers: XSL and CSS” on page 552) can be
associated with an XML document to specify how it should be displayed. XML
itself only specifies the content of the document. The receiver of a document
can do anything they want with the document such as:

• Automatically process the document and based on the contents cause
other actions to take place, such as shipping goods.

• Transform the document into HTML for display in a browser or into speech
for audio display.

• Intelligently search the document for songs containing “stone” so that the
song “Like a Rolling Stone” is found while the artist “Rolling Stones” is not
found.

13.2 Using XML in WebSphere

Depending on the application and the capabilities of the different software
components involved, XML can be used at various points in the application
data flow as shown in Figure 402 on page 541.
540 WebSphere V3.5 Handbook

Figure 402. Possible flows of XML data in a WebSphere application

A browser can browse static files. These files can be HTML as usual, or XML.
XSL and CSS stylesheets can be associated with the XML document to
instruct the browser how to display the document.

A servlet can dynamically generate XML documents in various ways. The
servlet might communicate with EJBs, a database, or some other back-end
system such as CICS or MQ to obtain some data. This data could be in any
non-XML format, or it could be returned as XML. Depending on how the data
is returned the servlet could then parse it, manipulate it, and/or generate an
XML document. The XML could be sent to a browser. Since some browsers
do not support XML the servlet might need to first convert the XML into
HTML. Alternatively, the servlet could package the data in a Java Bean and
forward the request to a JSP, which could generate the XML or HTML.

In addition, a Java client can interact with the servlet. The servlet could return
XML (as characters) or as a serialized object representation of the XML
called a DOM (Document Object Model) (see 13.4.4, “An overview of XML
parsing” on page 550). The client could then parse, manipulate, generate, or
display the XML data as it wished.

These concepts will be discussed in detail in the sections that follow. It is
clear that XML can be used and manipulated at almost any point in the

Browser
(Display)
Browser
(Display)

Servlet
(Generate,

Parse,
Manipulate)

Static Files

JSP
(Generate)

EJB,
Database,

or Other
Backend
System

HTML or
XML (+ XSL/CSS)

XML or raw data

Java Bean

HTML or
XML (+ XSL/CSS)

HTML or
XML (+ XSL/CSS)

Java Client
(Generate,

Parse,
Manipulate,

Display)

XML or Serialized DOM
Chapter 13. XML and WebSphere 541

application data flow. The best way to use XML in any particular situation
depends on the specific application requirements.

13.2.1 XML versions supported
XML is a rapidly evolving area so it is difficult to keep up with the latest
versions of the various specifications and APIs. For example XSL is relatively
new, and the only browser that currently supports it is Microsoft Internet
Explorer 5.5.

There are two groups of programming APIs: parsing APIs and XSL
Transformation APIs. IBM originally implemented the parsing APIs in the XML
for Java (XML4J) toolkit available on the alphaWorks Web site. The early
versions of XML4J that were used in WebSphere V2.x contained a version of
the parser API called the TX parser. WebSphere V3.5 still supports the TX
compatibility classes, but any new code should not use them. The TX
compatibility classes will not be discussed further.

WebSphere V3.5 includes XML4J 2.0.15. This supports parsing APIs known
as SAX level 1 and DOM level 1. IBM has donated XML4J to Apache where it
is known as Xerces. IBM continues to develop XML4J to keep up with and to
contribute to Xerces. The newer Xerces and XML4J 3.0.1 now support SAX 2
and DOM 2 APIs, but the specifications for these APIs is not completely
finalized. Code developed today with the SAX 1 and DOM 1 APIs will soon be
deprecated. However, migrating to the newer APIs should be fairly
straightforward; some object and method names have changed, but the basic
flows and concepts are the same.

The XSL Transformation APIs allow an XSL stylesheet to be applied to an
XML document to convert the XML into another format, such as HTML. XSL
Transformations are discussed in detail in 13.6.4, “Dynamic XML formatted
on the server with LotusXSL” on page 563. Lotus created the LotusXSL
Processor and associated APIs to perform these transformations. LotusXSL
is also available on the IBM alphaWorks Web site. LotusXSL was also
donated to Apache, where it is known as Xalan.

Newer versions of LotusXSL and Xalan will also become available. However,
the basic API for LotusXSL is very simple. The LotusXSL processor relies on
an XML parser to help it apply the XSL transformation. The LotusXSL
processor shipped with WebSphere V3.5 defaults to a newer version of a
parser than is shipped with WebSphere V3.5. But the LotusXSL processor
can be configured to use an older version of the parser.
542 WebSphere V3.5 Handbook

Although newer versions of the XML parsing and XSL Transformation APIs
are available, they are not supported by WebSphere. Only the versions
shipped with WebSphere should be used. Trying to replace the versions of
the XML APIs shipped with WebSphere with other versions can cause
problems with WebSphere startup and administration, which use the XML
APIs shipped with WebSphere. Future WebSphere releases and fixpacks will
upgrade to support newer XML versions.

13.3 An XML example

Throughout this chapter, a document describing a list or catalog of music CDs
will be used to illustrate XML concepts. Several XML and XML-related files
will be discussed and a servlet and Java client that process XML data will be
developed. The instructions needed to run the example can be found in
Appendix C, “XML sample programs” on page 1087 and the source code and
files are also available on the CD-ROM along with the class files.

Each CD in the list has information such as the CD title, the artist, and so on.
A CD can also have multiple tracks or songs. The tracks have titles, running
times, and so on.

The behavior of various browsers is discussed below. However, browsers are
constantly changing so the results observed with different releases of
browsers might be different. The examples to be discussed are reached from
the HTML form shown in Figure 403 on page 544.
Chapter 13. XML and WebSphere 543

Figure 403. HTML form for the CD Catalog example

The second part of the form links to static files that are discussed below. The
radio buttons and Go button send requests to the servlet, which returns the
CD Catalog in various formats. In addition a Java client is developed that
communicates with the servlet to retrieve the catalog.

13.4 XML basics

To begin, examine the file cdlist1.xml shown in Figure 404 on page 545. This
is a simple XML file that contains a list of CDs. The entire XML document
forms a tree structure. There is always one root element in an XML
document, in this case <cdlist>. The children of cdlist are CDs. Each CD is a
node that has children, such as title and artist. These nodes have leaf nodes
with text values such as “Steely Dan”. XML parsers read through an XML file
transforming it into a tree structure called a Document Object Model (DOM)
that can be manipulated in different ways. For example, the CD nodes could
544 WebSphere V3.5 Handbook

be reordered (conceptually from left to right under their cdlist parent) to sort
them by title or by artist.

Figure 404. cdlist1.xml (partial)

A node in the DOM tree corresponds to an element in the XML document.
Each element is defined by a tag and its associated end tag: <tag>text</tag>.
Elements with no text still need to be closed like this <tag/> or this
<tag></tag>. The tag structure defines an element or node in the tree.
Elements can contain other elements properly nested (<a>, not
<a>) thus forming a parent-child relationship in the document
tree. Elements can also have attributes defined within their start tag (<tag
myattr=”text”>) to further describe the element. Documents that follow rules
such as this are syntactically correct and are said to be well-formed.
However, nonsensical tags that says, for example, that a CD has a hat size
could still be added to the document. To define what tags are allowed in a

<?xml version='1.0' encoding='UTF-8' standalone="yes"?>
<!-- A list of CDs -->
<cdlist>
<!-- The 1st CD. -->
<cd>
<id>1</id>
<title>Pretzel Logic</title>
<artist>Steely Dan</artist>
<category>Rock</category>
<label>MCA</label>
<producer>Gary Katz</producer>
<date>1974</date>
<track cd-id="1">

<track-number>1</track-number>
<track-title>Riki Don't Lose That Number</track-title>
<running-time>4:30</running-time>

</track>
<track>

<track-number>2</track-number>
<track-title>Night By Night</track-title>
<running-time>3:36</running-time>

</track>
<track>

<track-number>3</track-number>
<track-title>Any Major Dude Will Tell You</track-title>
<running-time>3:05</running-time>

</track>
</cd>
Chapter 13. XML and WebSphere 545

document, a Document Type Definition (DTD) is used. Documents that are
well-formed and follow a DTD are said to be valid.

13.4.1 Document Type Definitions (DTDs)
Notice that cdlist1.xml does not specify a Document Type Definition (DTD).
That means any elements or attributes can be put into the XML file as long as
they are well-formed. For simple XML files used within a small application,
this is probably sufficient and makes XML very simple and flexible. But if
documents are exchanged with other organizations or applications the
formality of a DTD is useful. A DTD defines what is and is not allowed in the
document. There are DTDs that describe HTML, electronic components,
Mathematical Markup Language, Vcards, etc.

Cdlist.dtd, a DTD for CD catalog documents, is shown in Figure 405 on page
547. The DTD defines what attributes and other elements an element must or
can contain. (#PCDATA) means an element contains parsed character data,
which is essentially any text. The special characters following element names
indicate how many times the element can occur.

none The element must occur exactly once.

+ The element can occur one or more times.

* The element can occur zero or more times.

? The element can occur zero or one times.
546 WebSphere V3.5 Handbook

Figure 405. cdlist.dtd

The next example file, cdlist2.xml, is the same as cdlist1.xml except for the
first two lines, which specify that this document must adhere to the cdlist
DTD.

<?xml version='1.0' encoding='UTF-8' standalone="no"?>
<!DOCTYPE cdlist SYSTEM "cdlist.dtd">

Figure 406 on page 548 shows a part of cdlist2.xml.

<!-- cdlist.dtd -->

<!-- A cdlist consists of 0 or more cds. -->
<!ELEMENT cdlist (cd*)>

<!-- A cd has an id, a tittle, ... Label and producer are optional (0 or
1). There can be 0 or more tracks. -->
<!ELEMENT cd (id, title, artist, category, label?, producer?, date,
track*)>

<!-- The elements of a cd are parsed character data. -->
<!ELEMENT id (#PCDATA)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT artist (#PCDATA)>
<!ELEMENT category (#PCDATA)>
<!ELEMENT label (#PCDATA)>
<!ELEMENT producer (#PCDATA)>
<!ELEMENT date (#PCDATA)>

<!-- Description of a track. -->
<!ELEMENT track (track-number, track-title, running-time)>

<!-- Just to show an attribute as opposed to an element, a track can
have an optional CD_id. It is a matter of choice to make data an
element or an attribute. We could have make track-number, track-title,
and running-time attributes instead of elements if we wanted. -->
<!ATTLIST track cd-id CDATA #IMPLIED>

<!ELEMENT track-number (#PCDATA)>
<!ELEMENT track-title (#PCDATA)>
<!ELEMENT running-time (#PCDATA)>
Chapter 13. XML and WebSphere 547

Figure 406. cdlist2.xml (partial)

The DOCTYPE tag indicates that the DTD is on the local system and is in the
same directory as the XML document. The DTD could be specified as a URL
and retrieved across the network and/or could be registered as a publicly
available DTD:

<!DOCTYPE cdlist PUBLIC "-//Society of CDCollectors//DTD"
"http://www.cdcollectors.org/cdlist.dtd">

Figure 407. The DTD could be specified as a URL

<?xml version='1.0' encoding='UTF-8' standalone="no"?>
<!DOCTYPE cdlist SYSTEM "cdlist.dtd">

<!-- A list of CDs -->
<cdlist>
<!-- The 1st CD. -->
<cd>
<id>1</id>
<title>Pretzel Logic</title>
<artist>Steely Dan</artist>
<category>Rock</category>

......

......

<?xml version='1.0' encoding='UTF-8'
standalone="no"?>
<!DOCTYPE cdlist PUBLIC "-//Society of
CDCollectors//DTD"
"http://www.cdcollectors.org/cdlist.dtd">
<!-- A list of CDs -->
<cdlist>

<!-- The 1st CD. -->

cdlist1.xml

http://ibm.com/cdlist1.xml

<!-- cdlist.dtd>
<!-- A cdlist consists of 0 or mode cds. -->
<!ELEMENT cdlist (cd*)>
<!-- A cd has an id, a tittle, ... Label and producer
are
optional (0 or 1). There can be 0 or more tracks.
-->
<!ELEMENT cd (id, title, artist, category, label?,
producer?, data, track*)>

cdlist.dtdhttp://www.cdcollectors.org/cdlist.dtd
548 WebSphere V3.5 Handbook

Any software could now check the validity of the document. So in addition to
the need to be well-formed, a CD cannot have a hat size.

13.4.2 DTD catalogs
When an industry group develops a DTD, they register a public identifier to
identify the DTD. For example the Mathematical Markup Language is defined
by a DTD with the public identifier “-//W3C//DTD MathML 1.0//EN”. Instead of
going to an organization’s Web site to retrieve the DTD every time it is
needed, local copies of the DTD can exist. A DTD catalog associates public
identifiers with URLs for the DTDs themselves. The DTDs can be local or
remote. A parser can be told to use a particular DTD catalog to look up any
DTDs it needs when validating documents.

Copies of some standard DTDs are supplied with WebSphere in the directory
installation_root/web/xml/grammar/dtd. The catalog standard itself is
undergoing change. The catalog dtd.cat is supplied with WebSphere. This
style of catalog is for an older version of parser APIs. The newer parser APIs
support the XML catalog standard, which is still not finalized. The DTD for this
new style of catalog is provided in the xmlcatalog subdirectory.

13.4.3 XML namespaces
Sometimes an XML document needs to use tags that were developed by
different organizations. For example an XML document might need to use
tags describing both electronic components and mathematical equations. The
element tags and attribute names from these different sources could
potentially have the same names and conflict with each other.

Name conflicts do not always arise when using tags from different
organizations. In the CD catalog we could have used a title tag for both a CD
title and a track title. In this case we could create a namespace for the CD title
and a different namespace for the track title.

XML namespaces solve name conflicts by qualifying element and attribute
names by associating them with namespaces identified by URI references.

The XSL stylesheet discussed in 13.5.3, “An XSL stylesheet example” on
page 556 uses tags from the XSL namespace. The XSL stylesheet specifies
that it uses the XSL namespace (xmlns:xsl) as follows.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl" version="1.0">

The XSL tags are qualified with “xsl:”. If the document already used the
stylesheet tag for some other purpose, it would not be confused with the
xsl:stylesheet tag.
Chapter 13. XML and WebSphere 549

13.4.4 An overview of XML parsing
An XML parser reads an XML document and extracts the elements and
structures in the document. For example parsing a CD catalog XML
document would identify a CD element, its associated tittle, tracks, and so on.
An XML document must be well-formed to be parsed. Otherwise, a parsing
error similar to a syntax error in a programming language will be generated.
Parsers can also check the XML document against a DTD and report errors if
the XML document is not valid. Such parsers are called validating parsers.
Parsers that do not validate a document even if a DTD is available are called
non-validating parsers.

There are two standard APIs for XML parsing. The SAX API (Simple API for
XML) and the DOM API (Document Object Model). A SAX parser is used with
the SAX APIs and a DOM parser is used with the DOM APIs. Either type of
parser can be validating or non-validating. Validation against a DTD requires
more time and resources from the parser. If one is confident that the
document to be parsed is valid (it is from a trusted source or was generated
dynamically by a trusted program) a non-validating parser is appropriate.
Otherwise, a validating parser is appropriate.

SAX is an event-driven API. A program instantiates a SAX parser, gives it a
document, and instructs the parser to parse the document. As the document
is parsed and tags, attributes, text, and comments are encountered, the
parser generates events or callbacks to the program. These callbacks
indicate events such as “beginning of document encountered”, “beginning of
element <cd> encountered, “text 'Steely Dan' encountered”, “error
encountered”, and so on. The program handles these callbacks by
implementing the interfaces DocumentHandler, DTDHandler, and/or
ErrorHandler, depending on which events are of interest. Or as a
simplification the program can extend the (subclass) HandlerBase which
provides null implementations of all these interfaces. Then the program can
override the methods for the events of interest.

The DOM represents a complete document in its tree structure. For the CD
catalog the cdlist element is the root, CDs are its children, the children of a
CD are its title, artist, and so on. To use a DOM parser the program
instantiates a DOM parser, gives it a document, and instructs the parser to
parse the document. The parser returns a DOM object of type Document.
Using the DOM APIs the program can traverse this document, reorder the
nodes in the document, delete nodes from the document, add new nodes,
etc. For example, some of the APIs are getNodeValue(), setNodeValue(),
getFirstChild(), getNextSibling(), getParentNode(), and so on.
550 WebSphere V3.5 Handbook

The SAX and DOM APIs each have advantages and disadvantages.

The SAX API does not keep the entire document in memory, so very large
documents can be processed with fewer resources. For tasks that require the
serial processing of a document the SAX API is a good choice. Examples
include printing a document, searching for songs with the word “stone” in their
title, or rewriting a document and omitting all home phone numbers.

The DOM represents the entire document as an object that is held in memory.
For large documents this can be costly. On the other hand, DOM allows
documents to be manipulated based on their surrounding structure (for
example, sorting the CDs alphabetically by artist). Another advantage of
DOM is that the DOM structure can be shared with other programs in memory
or serialized and transferred across a network. Instead of passing the XML
document itself and requiring another program to again parse the document,
the already parsed DOM object is passed to the other program.

Figure 408. The SAX and DOM APIs

<?xml version='1.0' encoding='UTF-8' standalone="yes"?>
<cdlist>
<cd>
<id>1</id>
<title>Pretzel Logic</title>
<artist>Steely Dan</artist>
<category>Rock</category>
<label>MCA</label>
<producer>Gary Katz</producer>
<date>1974</date>
<track cd-id="1">

<track-number>1</track-number>
<track-title>Riki Don't Lose That Number</track-title>
<running-time>4:30</running-time>

</track>
</cd>

cdlist

cd

.......id title track

track-number track-title running-time

startElement: cdlist
startElement: cd
startElement: id
characters: 1
endElement: id
.......
startElement: track-title
characters: Riki Don't Lose That
Number
endElement: track-title
startElement: running-time
characters: 4:30
endElement: running-time
endElement: track
endElement: cd
endElement: cdlist

DOM SAX

Parsing
Chapter 13. XML and WebSphere 551

13.5 XML and Web browsers: XSL and CSS

One common use of XML documents is displaying them in a Web browser.
XML does not specify how the document should be displayed. Some
browsers just display whatever PCDATA they find between tags. Try browsing
cdlist2.xml. There is no difference between browsing cdlist1.xml and
cdlist2.xml since the only difference is that one includes a DTD. If the Web
browser does not understand XML it might offer to save the file to disk
(Navigator 4.7). Opera 4.01 and Netscape 6 (preview release 2) will just
display all the PCDATA in the elements as shown in Figure 409 on page 552.

Figure 409. cdlist2.xml displayed in the Opera browser

Display of an XML document is a common operation, and standards are
evolving to control it. Stylesheets contain display formatting instructions that
can be associated with an XML document. There are two types of
stylesheets: CSS (Cascading Style Sheet) and XSL (eXtensible Stylesheet
Language) stylesheets. Cdlist2.xml does not use a stylesheet. However, as
shown in Figure 410 on page 553, when cdlist2.xml is displayed in Microsoft
Internet Explorer 5.5 (IE) it looks quite different.
552 WebSphere V3.5 Handbook

Figure 410. cdlist2.xml displayed in IE 5.5

In IE the tree structure of the elements is displayed through indentation.
Nodes can be collapsed or expanded by clicking the +/- symbols. Several
nodes in the figure have been collapsed. The reason IE displays the XML
differently from the other browsers is because as of this writing IE is the only
browser that supports XSL stylesheets. When IE displays an XML document
that does not have a stylesheet, it uses a default XSL stylesheet that gives
the expanding/collapsing node view shown above. This default XSL
stylesheet transforms the XML document into HTML that includes JavaScript
to enable the expanding of nodes.
Chapter 13. XML and WebSphere 553

13.5.1 Stylesheet processing instruction
A processing instruction (PI) can be placed in the XML (cdlist2.xml does not
contain a PI) instructing a display engine to use a stylesheet written in CSS or
XSL to format the document for display.

Cdlist3.xml (shown in Figure 411) contains one more line than cdlist2.xml.
This is the PI that specifies what stylesheet to use:

<?xml-stylesheet href="cdlist.xsl" type="text/xsl"?>

The PI must appear before the first tag. The href is the location of the
stylesheet relative to the document being displayed and can be a URL.

Figure 411. cdlist3.xml (partial)

When cdlist3.xml is displayed in IE, the stylesheet cdlist.xsl is used to format
the document as shown in Figure 412 on page 555.

<?xml version='1.0' encoding='UTF-8' standalone="no"?>
<!DOCTYPE cdlist SYSTEM "cdlist.dtd">
<?xml-stylesheet href="cdlist.xsl" type="text/xsl"?>

<!-- A list of CDs -->
<cdlist>
<!-- The 1st CD. -->
<cd>
<id>1</id>
<title>Pretzel Logic</title>

......
554 WebSphere V3.5 Handbook

Figure 412. cdlist3.xml displayed in IE with an XSL stylesheet

13.5.2 XSL overview
XSL consists of two parts. Formatting objects (FOs) specify how to display an
object. Formatting objects can specify very complex layouts and are not
implemented by any XSL processors yet. But the second part of XSL, XSL
Transformations (XSLT), is implemented by IE 5.5 and the LotusXSL/Xalan
Chapter 13. XML and WebSphere 555

processor. XSLT is a transformation language based on the idea of matching
nodes in a document tree structure against a template and transforming the
nodes that match. For example a transformation could specify that when a CD
element is encountered, output the HTML to draw a horizontal rule, then
output the CD information. Thus, the input document or source tree is
transformed into an output document or result tree.

Converting XML to HTML for display on a browser is a common
transformation that is well suited to XSLT. XSLT could also be used to convert
an XML document containing a personnel list to an XML document containing
the same personnel list with home phone numbers omitted or with the names
sorted by postal code. A Java program using parsing and DOM APIs could
accomplish the same task. But in some cases it might be simpler to use XSLT,
just as in some cases it makes more sense to use a high-level scripting
language rather than to write a program in Java or C.

The IE support for XSL is not completely up-to-date, but it is pretty complete.
There are also some Microsoft extensions that are not yet standardized, such
as XML schema and XML data islands. There are some small differences
between XSL stylesheets used by IE and LotusXSL/Xalan.

13.5.3 An XSL stylesheet example
The cdlist.xsl stylesheet used to format cdlist3.xml in Figure 412 on page 555
is shown in Figure 413 on page 557. Processing begins at the document root
(“/”) and the HTML for the title is output. The statement
<xsl:apply-templates/> looks through the document trying to find nodes that
match other templates defined in the stylesheet. The template for CD,
<xsl:template match="cd">, matches each CD and causes the HTML to be
output that displays the CD information.
556 WebSphere V3.5 Handbook

Figure 413. The XSL stylesheet cdlist.xsl (partial)

A for-each loop is used to output the tracks in the order they occur in the
document, which happens to be by track number. There is a sort specification
that can be placed in the for-each loop:

<xsl:sort select="track-number" data-type="number" order="ascending"/>

but IE does not support it yet. Instead IE uses a non-standard
order-by=”track-number” clause, because the sort specification was not
finalized when IE 5.5 was being developed.

Note that the HTML tags in the stylesheet must be well-formed since they are
part of an XML document (the stylesheet is an XML document). In HTML it is
not required to include end tags such as </p>. Such tags as <hr> have no end
tags. But in an XSL stylesheet <hr> must be written <hr/> or <hr></hr> or the
browser will generate an error when parsing the stylesheet.

The stylesheet shows that XSL transforms XML (into HTML in this case).
Template matching is used to find nodes within the document and then output
them in whole or in part, decorated with extra HTML as desired to create

<?xml version="1.0"?>
<!-- The cdlist XSL stylesheet is an XML document itself. -->

<xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl" version="1.0">

<!-- Start at the document root "/", the cdlist element. Output the
HTML title and the body. -->
<xsl:template select=".">

<html>
<head>

<title>CD Catalog</title>
</head>
<body>

<!-- Apply templates will recursively process the children of
cdlist. Any templates that are applicable will be applied as they are
encountered. -->

<xsl:apply-templates/>
</body>

</html>
</xsl:template>
.....
.....
Chapter 13. XML and WebSphere 557

tables and so on. The looping and conditional constructs can be used to
process the XML in a very general way.

The for-each loop in the example could be replaced by another
<xsl:apply-templates/> statement and a template for a track. Then a recursive
application of template matching would be used rather than iterating through
a loop. It could be argued that such a template matching approach is more
desirable than the for-each approach and is a more typical way to write a
stylesheet. The for-each approach was used only to illustrate more of the
language constructs available in XSL.

13.5.4 A CSS stylesheet example
Many newer browsers support XML formatted with CSS. Cdlist4.xml includes
the PI <?xml-stylesheet href="cdlist.css" type="text/css"?> to reference a
CSS stylesheet as shown in Figure 414.

Figure 414. cdlist4.xml (partial)

Figure 415 on page 559 shows cdlist4.xml viewed with Netscape Navigator 6.

<?xml version='1.0' encoding='UTF-8' standalone="no"?>
<!DOCTYPE cdlist SYSTEM "cdlist.dtd">
<?xml-stylesheet href="cdlist.css" type="text/css"?>

<!-- A list of CDs -->
<cdlist>
<!-- The 1st CD. -->
<cd>
<id>1</id>
<title>Pretzel Logic</title>
<artist>Steely Dan</artist>
<category>Rock</category>

.......
558 WebSphere V3.5 Handbook

Figure 415. dlist4.xml displayed in Netscape with a CSS stylesheet

The CSS stylesheet cdlist1.css is shown in Figure 416 on page 560. The
stylesheet controls the format used to display each element type.
Chapter 13. XML and WebSphere 559

Figure 416. The CSS stylesheet cdlist.css

13.5.5 XSL and CSS comparison
Perhaps a more sophisticated CSS stylesheet could be written, but CSS and
XSL do have different capabilities. CSS is HTML technology that has been
extended to XML. It is used to decorate HTML/XML. CSS can indicate that
paragraphs should be blue, Gothic, and 10 point; that list items should be
indented 3cm; or that CD titles should be bold. But CSS can only decorate
what is there in the order in which it appears. It cannot add extra text (such as
labels like “Title:”). It cannot add tags (for example to create a table). HTML
tags such as <table> can be added to the XML document itself using the
HTML namespace qualifier, but this requires modification of the XML with
display instructions. Elements cannot be reordered or displayed multiple
times (the date is at the end of the CD information). Information stored in
attributes cannot be accessed (though not used here, this would be the
CD-ID of the track). In some documents a large amount of information is
stored in attributes).

XSL on the other hand is a general transformation language. The document
can be processed in any order, and arbitrary text and tags can be added to

/* A CSS stylesheet to display a catalog of CDs */

cdlist { display: block; }

/* Display CD info each on its own line. */
cd { display: block; }
id { display: none; } /* id is not displayed */
title { display: block;

font-weight: bold;
margin-top: .5cm; }

artist { display: block; }
date { display: block; }
label { display: block; }
producer { display: block; }
category { display: block; }

/* Display each track on a single line. */
track { display: block;

text-indent: .5cm; }
track-title { display: inline; }
running-time { display: inline;

font-style: italic; }
560 WebSphere V3.5 Handbook

change the XML into HTML or any other format. However, XSL is more
expensive and is not currently widely supported by browsers. CSS decorates
documents and XSL transforms them. XML/XSL can either be sent to a
browser that supports it, or it can be transformed on the server into HTML
and then sent to the browser. XSL and CSS can be used together by
transforming XML into HTML that includes (or references) a CSS stylesheet.
This is especially useful since formatting objects (FOs) are not yet supported
in XSL.

13.6 Programming with XML

To illustrate how a Web application can generate, parse, and manipulate XML
data, a servlet, the CDOXMLServlet, was developed for the CD Organizer
example. The complete source code is included on the CD-ROM provided
with this book. The CDOXMLServlet generates and returns XML data in
various ways depending on the value of the catalog type (cattype) parameter
in the HTTP request. The general coding of the servlet will not be discussed.
Only the code specific to XML will be discussed.

The CDOXMLServlet builds the CD catalog and then based on the value of
the HTTP request parameter cattype (catalog type) calls a method to return
the catalog in some XML-related form. The following sections discuss the
processing preformed by these methods.

13.6.1 Obtaining the CD catalog data
The servlet must first obtain the CD catalog data. A real application could
construct catalogs containing only CDs in a certain category (Rock, Jazz, ...)
or by a certain artist. This data could be retrieved from EJBs directly from a
database using JDBC or from any number of back-end systems. The data
could even be returned in XML format from these sources. Or if the data is
returned in a non-XML format it could be stored in a JavaBean so other parts
of the program could process it easily.

In this example the CDListJBean JavaBean is used to store the list of CDs.
Each CD in the list is represented by a CDJBean, and each track of a CD is
represented by a TrackJBean. To keep this example simple the data used to
populate the CDListJBean is not retrieved from a back-end system but is hard
coded. The CDListJBean constructor assigns constant data to the CD
Catalog. This allows the example to be set up without configuring a database
or EJB to retrieve the data, although the CD Catalog is always the same.
Chapter 13. XML and WebSphere 561

13.6.2 Dynamic XML formatted with XSL
The servlet’s catalogXSL() method returns XML that includes a PI referencing
an XSL stylesheet. It does this by passing the CDListJBean representing the
catalog to the XMLCatalog JSP. The JSP does all the work. It loops through
the CDs and tracks and instead of printing HTML tags it prints XML tags
describing the CD. The result is XML that looks like the static file cdlist3.xml.

Notice that the JSP begins with

<?xml version='1.0' encoding='UTF-8' standalone="no"?>
<?xml-stylesheet href="cdlist.xsl" type="text/xsl"?>

The first line specifies that this is an XML document and the second line is the
PI that specifies the stylesheet. Then in addition to disabling caching for the
page, the content type is set to text/xml rather than text/html.

response.setHeader("Content-Type", "text/xml");

The JSP then prints the tag to define the root element <cdlist>. Notice at the
end of the JSP this tag is closed with </cdlist>. The JSP loops through the
CDs printing information about each CD enclosed in the appropriate tags. For
example, the line to print information about the title of the CD is:

<title><%= catalog.getCd(i).getTitle() %></title>

An inner loop then prints information about the tracks of the CD using
statements like:

<running-time>
<%= catalog.getCd(i).getTrackList().getTrack(j).getRunningTime() %>
</running-time>

Producing XML from a JSP is exactly like producing HTML. Remember that
XML is a metalanguage that describes other languages. Here we have a
language that describes CD Catalogs. HTML is a language that also has an
XML definition. The JSP is just writing characters to an output stream. It does
not matter what the characters mean.

13.6.3 Dynamic XML formatted with CSS
The servlet’s catalogCSS() method produces XML that refers to a CSS
stylesheet. Except for the PI referring to the stylesheet, this is no different
from producing XML that refers to an XSL stylesheet. A JSP could be used
just as in the catalogXSL() method in 13.6.2, “Dynamic XML formatted with
XSL” on page 562. However, in order to illustrate a different programming
technique catalogCSS() writes its own output directly to the response stream.

// Set the headers for no caching and content type XML.
562 WebSphere V3.5 Handbook

res.setHeader("Pragma", "No-Cache");
res.setDateHeader("Expires", 0);
res.setHeader("Cache-Control", "no-Cache");
res.setHeader("Content-Type", "text/xml");
PrintWriter out = res.getWriter();
out.println(

"<?xml version='1.0' encoding='UTF-8' standalone=\"yes\"?>" +
"<?xml-stylesheet href=\"cdlist.css\" type=\"text/css\"?>" +
catalog.getXMLString());

After disabling caching of the page, the content type is set to text/xml. The
XML document header and PI for the CSS stylesheet are then printed. Then
the CD catalog is printed as an XML string. The work of converting the
catalog to an XML string is done by the CDListJBean, which returns a
representation of itself as a string of XML.

The logic of the CDListJBean's getXMLString() method is just like the logic of
the XMLCatalog JSP. The getXMLString() method puts all the text it is
producing into a StringBuffer using statements like:

sb.append("<title>" + getCd(i).getTitle() + "</title>");

and:

sb.append("<running-time>" +
getCd(i).getTrackList().getTrack(j).getRunningTime() +
"</running-time>");

The StringBuffer is then converted to a String and returned.

IE 5.5 was able to display the dynamically generated XML formatted with CSS
correctly. The other browsers did not display this page correctly even though
they did display the CSS formatted static page cdlist4.xml correctly.

13.6.4 Dynamic XML formatted on the server with LotusXSL
As discussed in 13.5, “XML and Web browsers: XSL and CSS” on page 552
not all browsers are capable of displaying XML formatted with XSL. The
servlet could determine what type of browser is being used. If the browser
does not support XML/XSL the servlet can convert the XML/XSL to HTML
and send the HTML to the browser. The CDOXMLServlet’s catalogLotusXSL()
method converts XML with an XSL stylesheet to HTML. However, to keep the
example simple it does not first check what type of browser is being used.

The LotusXSL processor which is included with WebSphere V3.5 accepts an
XML document and an XSL stylesheet and produces a transformed
document. In this case the document is transformed into HTML. If the XML
Chapter 13. XML and WebSphere 563

document already has a PI that refers to a stylesheet, the LotusXSL
processor will use that stylesheet.

// Set the headers for no caching and content type HTML.
res.setHeader("Pragma", "No-Cache");
res.setDateHeader("Expires", 0);
res.setHeader("Cache-Control", "no-Cache");
res.setHeader("Content-Type", "text/html");
PrintWriter out = res.getWriter();
String doc =

"<?xml version='1.0' encoding='UTF-8' standalone=\"yes\"?>"
+ catalog.getXMLString();

// Have the XSLTProcessorFactory obtain a interface to a new
// XSLTProcessor object. Set up a liaison so the XSLTProcessor
// interfaces to an older parser instead of the default parser.
try {

XSLTProcessor processor =
XSLTProcessorFactory.getProcessorUsingLiaisonName(

"com.lotus.xml.xml4j2dom.XML4JLiaison4dom");

// Have the XSLTProcessor processor object transform the XML doc
// using the cdlist1.xsl stylesheet.
// The transformed document (which is HTML) is sent to out.
String path =

getServletConfig().getServletContext().getRealPath("/");
processor.process(

new XSLTInputSource(new StringReader(doc)),
new XSLTInputSource(path + "/cdlist1.xsl"),
new XSLTResultTarget(out));

} catch (org.xml.sax.SAXException e) {
throw new java.rmi.RemoteException(

"SAXException in catalogLotusXSL: " + e.getMessage());
}

The XSL processor defaults to a new version of the parser. The XSL
processor can be told to use an intermediate liaison object to interface with
older parsers. In the code above the XSLTProcessor object is created by the
XSLTProcessorFactory using a liaison to the version of the parser used by
WebSphere V3.5.

Notice that the content type of the response is text/html since the servlet
returns HTML. The XSLTProcessor.process() method performs the
conversion. The XML document and stylesheet are input as XSLTInputSource
objects. These input sources can be strings, files, or DOM nodes (an internal
564 WebSphere V3.5 Handbook

object representation of a document). The output of the XSLTProcessor is
sent to the response output stream.

Notice that the cdlist1.xsl stylesheet is slightly different from the cdlist.xsl
stylesheet used when browsing static pages with IE. LotusXSL and IE
support slightly different levels of XSL. The namespace declaration is
different, and the selection of the root node is different. See comments in
cdlist1.xsl for details as shown in Figure 417.

Figure 417. cdlist1.xsl used with LotusXSL

<?xml version="1.0"?>
<!-- The cdlist XSL stylesheet is an XML document itself. -->
<!-- The LotusXSL processor supports a slightly different version of
XSL. The next statement and the first xsl:template below are changed.
The statements that work with IE 5.5 are commented out for reference.
-->
<!--xsl:stylesheet xmlns:xsl="http://www.w3.org/TR/WD-xsl" -->
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
<!-- Start at the document root "/", the cdlist element. Output the
HTML title and the body. -->
<xsl:template match="cdlist">
<!--xsl:template select="."-->
<style type="text/css">

th {background-color : blue;
color : YELLOW;}

td {background-color : silver;
color : black;}

</style>

<html>
<head>

<title>CD Catalog</title>
</head>
<body>

<!-- Apply templates will recursively process the children of
cdlist. Any templates that are applicable will be applied as they are
encountered. -->

<xsl:apply-templates/>
</body>

</html>
</xsl:template>
Chapter 13. XML and WebSphere 565

Hopefully, as the standards and implementations mature, such differences
will disappear. IE5.5 has been updated to use the actual 1.0 version of the
XSL Transform specification, rather than the version based on the working
draft which was released with IE4.

Also notice that a CSS style tag was added in cdlist1.xsl to add color to the
table of tracks. This has nothing to do with XSL versions or implementation
compatibility. It is simply meant to illustrate how CSS styles can be included
in an XSL transformation.

13.6.5 Supporting a Java client
There are two more methods in the servlet to discuss: catalogPlainText() and
catalogDOM(). These methods were written to support a Java client named
CDOXMLClient. The CDOXMLClient communicates with the servlet over
HTTP. The communication is handled by a URLConnection object. See the
client code (as shown in Appendix C, “XML sample programs” on page 1087)
for details of this standard communication method.

The client illustrates SAX parsing of an XML document and traversal of a
DOM tree. The client presents a menu that allows the user to choose one of
two actions. The client can retrieve the CD Catalog from the servlet as a
string of XML and then use a SAX parser to parse and print the catalog. Or
the client can retrieve the CD Catalog as a serialized DOM object and then
traverse the DOM object and print the catalog. Since the DOM object is
already parsed a DOM parser is not used. The output of both options looks
the same, a print out of the CD Catalog.

A sample run of the client is shown below. An optional command line
parameter that defaults to localhost specifies where the servlet is running.

C:\WebSphere\AppServer\hosts\default_host\XMLDemo\client>CDOXMLClientSetup
C:\WebSphere\AppServer\hosts\default_host\XMLDemo\client>runCDOXMLClient
Retrieve and display CD Catalog using
S - SAX
D - DOM

===>s

CD Catalog

CD
===========================
id: 1
title: Pretzel Logic
566 WebSphere V3.5 Handbook

artist: Steely Dan
category: Rock
label: MCA
producer: Gary Katz
date: 1974
track-number: 1
track-title: Riki Don't Lose That Number
running-time: 4:30
track-number: 2
track-title: Night By Night
running-time: 3:36
track-number: 3
track-title: Any Major Dude Will Tell You
running-time: 3:05

CD
===========================
id: 100
title: John Coltrane and Johnny Hartman
artist: Coltrane and Hartman
...
... remaining output not shown
...
***** End of CD Catalog *****

13.6.5.1 XML text string/SAX parsing
When option S is chosen, the servlet returns a string containing the CD
Catalog as an XML document. The client then uses the SAXCatalogPrint
class to parse and print the catalog:

SAXCatalogPrint cp = new SAXCatalogPrint(catalog);

Often the CDOXMLClient class itself would extend HandlerBase to allow it to
handle SAX events as the document is parsed. However, to illustrate a slightly
different approach, a separate class, SAXCatalogPrint, was created. This is
also more modular in the case of the CDOXML client that uses both SAX and
DOM.

public class SAXCatalogPrint extends HandlerBase {

All the work of parsing and printing the catalog is done in the
SAXCatalogPrint constructor, which sets up the SAX parser and starts
parsing the document.

public SAXCatalogPrint(String catalog) {
try {

// Create a non-validating SAX parser and use this class
Chapter 13. XML and WebSphere 567

// to handle document parsing and error events. We do not
// override any error event handlers though.
SAXParser parser = new SAXParser();
parser.setDocumentHandler(this);
parser.setErrorHandler(this);

// Parse the document.
parser.parse(new InputSource(new StringReader(catalog)));

} catch (Exception e) {
// If there was a problem, print a stacktrace and exit.
e.printStackTrace();
System.exit(1);

}
}

A number of event handlers are implemented by SAXCatalogPrint to handle
events generated by the SAX parser. These event handlers print out the
various parts of the document. For example at the beginning of the document
a header is printed:

public void startDocument() {
System.out.println("\n**********\nCD Catalog\n**********");

}

When an element tag such as <cd> or <artist> is encountered it is either
ignored, a heading is printed, or its name is printed as a label.

/**
* Called when a new element is being parsed.
* Based on the name of the element we either ignore it,
* print a heading, or just print it's name as a label.
* You could get as fancy as you want, but this illustrates
* the basics of what you can do.
* @param name java.lang.String
* @param attrs org.xml.sax.AttributeList
*/
public void startElement(String name, AttributeList attrs) {

if ("cdlist".equals(name) || "track".equals(name)) {
return;

} else if ("cd".equals(name)) {
System.out.println("\nCD\n===========================");

} else {
System.out.print(name + ": ");

}
}

When character data is encountered, it is printed. This prints the text inside
elements, such as “Steely Dan”.
568 WebSphere V3.5 Handbook

public void characters(char[] ch, int start, int length) {
System.out.println(new String(ch, start, length));
}

By the time the document is parsed these event handlers have been called for
all the elements in the CD Catalog and the formatted document is printed.
When the SAXCatalogPrint constructor returns the catalog has been printed,
and there is nothing else for the SAXCatalogPrint object to do.

13.6.5.2 DOM object creation and traversal
When option D is chosen from the CDOXMLClient’s menu the servlet returns
a serialized DOM object which represents the already parsed document as a
tree structure. The client then traverses and prints the DOM tree.

The servlet could generate the DOM object by first generating the XML
representation of the CD Catalog, instantiating a DOM parser, and then
parsing the XML. The DOM parser would return the DOM object. This would
be very simple to program since a method to turn the CD Catalog into XML
already exists. However, it might make more sense, and it is probably more
efficient, to build the DOM tree directly, perhaps as data is collected from
back-end systems.

The work of turning the CD catalog into a DOM tree occurs in the
CDListJBean's getDOM() method. First getDOM() creates an empty DOM
document object:

Document doc =
(Document)Class.forName("com.ibm.xml.dom.DocumentImpl").newInstance();

Then it creates an element to represent the root of the document, which is a
<cdlist> element:

Element root = doc.createElement("cdlist");

At this point the cdlist element is empty. Also, it is not part of the DOM tree. It
is attached to the document as follows:

doc.appendChild(root);

Then a loop works through the CD list creating CD elements.

Element cd = doc.createElement("cd");

The CD element then has the various fields and tracks appended to it as
children. For example the artist element is added as follows:

Element artist = doc.createElement("artist");
artist.appendChild(doc.createTextNode(getCd(i).getArtist()));
Chapter 13. XML and WebSphere 569

cd.appendChild(artist);

Then the cd is attached to the cdlist:

root.appendChild(cd);

In this way the DOM tree is built up by creating nodes and attaching them to
the tree as each piece of data in the CDListJBean is processed.

After the DOM is returned the client uses the printDOM() method to traverse
and print the tree. PrintDOM() is a recursive function which takes a node as a
parameter. It prints the node and then recursively prints all the children of the
node. A node can be a document (the top level node that represents the
whole DOM), an element such as <cd> or <artist>, or text such as “Steely
Dan”. Based on the type of node printDOM() prints out headings or the value
of the node. The children of each element node are processed using a for
loop to loop through all the children. When the top level call to printDOM()
returns, the entire catalog has been printed.

/**
* Print the DOM node. Called initially with the top level document node.
* Calls itself recursively to handle all the nodes. We assume the document
* is of the structure we expect.
*/
public void printDOM(Node node) {

// Determine the node type and handle it accordingly.
switch (node.getNodeType()) {

case node.DOCUMENT_NODE :
// The top level document. Print a heading and process the
// root node (the cdlist).
System.out.println("\n**********\nCD Catalog\n**********");
printDOM(((Document) node).getDocumentElement());
break;

case node.ELEMENT_NODE :
// For an element, see what element it is and handle
// accordingly.
String name = node.getNodeName();
if ("cd".equals(name)) {

// Print a heading for a CD.
System.out.println(

"\nCD\n===========================");
} else if ("track".equals(name) || "cdlist".equals(name)) {

// Print nothing for a track or cdlist.
} else {

// Print the element name. This will give us labels
// like "artist: ", "running-time: ", etc.
System.out.print(name + ": ");
570 WebSphere V3.5 Handbook

}
// For any kind of Element loop through all children.
for (Node child = node.getFirstChild();

child != null;
child = child.getNextSibling()) {
printDOM(child);

}
break;

case Node.TEXT_NODE :
// Print text of a node. This will print text like
// "Steely Dan" under an artist element.
System.out.println(node.getNodeValue());
break;

}
}

13.7 Summary

This chapter illustrated the basic features of XML and concentrated on how
XML can be used in a WebSphere application. XSL, a powerful
transformation language, can be used to convert XML into HTML for display
by a browser. Data can be gathered from EJBs, a database, or any back-end
system and then converted into XML. The XML can be parsed and
manipulated at various points in the application data flow by servlets, JSPs,
and clients.

XML-related standards are rapidly evolving, and it is difficult to keep up with
the latest versions. Many products such as browsers only support XML
partially. As XML matures the specifications should become more stable and
more products will implement XML-related technologies at compatible levels.
Even so, XML is ready for production use today.
Chapter 13. XML and WebSphere 571

572 WebSphere V3.5 Handbook

Chapter 14. Application deployment

As an administrator, you have to consider how to organize and administer the
files in the WebSphere administrative domain. There are two important
factors to consider when creating an application: availability and security. In
this chapter, we focus on availability, not security.

We describe how to deploy your application using the administrative console
step by step. We will relate how to create virtual hosts, JDBC drivers, data
sources,application servers, EJBContainer, servlet engines, Web
applications, servlets, enterprise beans and enterprise applications. We do
not refer to security because information relating to the subject can be found
in Chapter 15, “WebSphere security” on page 651.

You may find information about the administrative console in Chapter 18,
“Administrative console” on page 811, such as how to start and stop the
administrative console, and the features of the administrative console.

Many configurations could be set according to your real requirements,
although we accept most default settings in this chapter. You could get
context-sensitive help for “What is it?“, “How do I?“ and “Property Help“ from
the help menu of the administrative console.

For the newest update, please visit the Web site:
http://www.ibm.com/software/webservers/appserv/infocenter.html

Finally in this chapter, we discuss the various WebSphere classpaths and
how to use them when deploying larger applications, for example where to
locate classes that are used in the interface to several different EJBs in
several different deployable JAR files.

14.1 Samples we used

Shipped with WebSphere is a classic servlet sample named
HelloWorldServlet, together with a simple entity bean sample named
Increment. In this chapter, we use the two samples to describe how to deploy
these resources.

• HelloWorldServlet servlet sample

This sample will return one line: “Hello World“

Resource:

<WebSphere install_root>\servlets\HelloWorldServlet.class
© Copyright IBM Corp. 2001 573

<WebSphere install_root>\servlets\HelloWorldServlet.java

• Increment EJB samples

This is the next-to-simplest sample enterprise bean. The sample has:

- An input form to invoke the servlet

<WebSphere
install_root>\hosts\default_host\WSsamples_app\web\Increment\increme
nt.html

- A Java servlet, VisitIncrementSite, that accesses the Increment
enterprise bean and returns the formatted HTML

<WebSphere
install_root>\hosts\default_host\WSsamples_app\servlets\WebSphereSam
ples\Increment\

- An enterprise bean, Increment, that adds 1 to a counter and returns the
value of the counter.

<WebSphere install_root>\deployableEJBs\Increment.jar

For this sample, we will use a sample database of DB2 called “sample” as
its persistent database.

14.2 Before configuration

If the Configure Default Server and Web application option is chosen when
installing WebSphere Application Server, an application server named
“Default Server” and some resources will be configured automatically when
WebSphere is started for the first time, as shown in Figure 418 on page 575.
Refer to 4.2.2, “The Default Server” on page 123 to get detailed information
about the Default Server and its resources.
574 WebSphere V3.5 Handbook

Figure 418. Default Server on the administrative console

We use an empty configuration (see Figure 419 on page 576) for our
application deployment in this chapter. We will follow the steps:

1. Creating a virtual host

2. Creating a JDBC driver and data source

3. Creating an application server together with EJBcontainer, servlet engine
and Web application

4. Placing source files

5. Adding a servlet

6. Creating enterprise beans

7. Creating enterprise applications
Chapter 14. Application deployment 575

Figure 419. The empty configuration

14.3 Create a virtual host

For a description of a virtual host, please refer to 4.2.4, “Virtual hosts” on
page 130.

Even if we do not create the Default Server, a virtual host named default_host
will be created automatically. If you need more than one virtual host, you may
start creating it by clicking Wizards-->Create a Virtual Host as shown in
Figure 420 on page 577.
576 WebSphere V3.5 Handbook

Figure 420. Creating a virtual host

You will get the Create Virtual Host window. Indicate the name of the virtual
host for the Virtual Host Name entry, then click Next. In our case, we
specified ITSO Virtual Host.

In the next window (Virtual Host), specify the MIME types to recognize and
DNS host aliases for the virtual host to be known by, then click Finish as
shown in Figure 421 on page 578. Because we only need one virtual host, we
will skip this step and use default_host. Let us check the configuration of
default_host.
Chapter 14. Application deployment 577

Figure 421. Creating a virtual host: Virtual Host

Click default_host in the topology tree as shown in Figure 422 on page 579.
The properties will be displayed on the right side of the administrative
console. Pay attention to the Aliases on the Advanced tag. The default
includes “localhost“ and the loopback address “127.0.0.1“, because it
represents the local machine, and also includes the host name and IP
address of the machine (for example, “m23m1800“ and “9.24.106.250“). It
should include the fully qualified name of the machine but it may not be
constructed sometimes. All aliases should be added by which the virtual host
will be known to the list. For example, add the fully qualified name,
“m23m1800.itso.ral.ibm.com“. Then click Apply. The virtual host will be
known as listening on port 80 by default. If you want it to listen on other ports,
for example, if you enable the HTTPS protocol whose default port is 443, you
need to add the aliases followed by the port to the list.

If you change the configuration of the virtual host after creating application
servers, you will need to restart all application servers working on this virtual
host to activate the change.
578 WebSphere V3.5 Handbook

Figure 422. The default setting of default_host

14.4 Create a JDBC driver and data source

We will now configure the resources for database support. This is necessary
for any resource that needs to access the database. For example, entity
beans and other servlets need such access. (In this test environment, we use
DB2 as the application database, so we will principally describe the
configuration steps related to DB2.)

We will follow the steps:

1. Create a JDBC driver

2. Install a JDBC diver

3. Create a data source

14.4.1 Create a JDBC driver
To create a JDBC driver, switch to Type View. Right-click JDBC Drivers and
select Create... option as shown in Figure 423 on page 580.
Chapter 14. Application deployment 579

Figure 423. Creating a JDBC driver

The JDBC driver properties dialog box will appear as shown in Figure 424 on
page 581. Specify the properties for the JDBC driver:

• Name

This is the name by which to administer the driver. Any value can be used.

Specify DB2 JDBC Driver as the name.

• Class Name

This is the implementation class of the driver code.

Specify the DB2 driver choice as com.ibm.db2.jdbc.app.DB2Driver.

• URL prefix

This is the URL prefix with which this driver is associated. The URL prefix
is comprised of the protocol and subprotocol, separated by a colon (":"). It
is followed by the database name of the data source to compose the full
JDBC URL of the database.

Accept the default jdbc:db2.

• JTA Enable

JTA is a transaction API for Java applications. This property specifies
whether the driver can handle Java-based two-phase commit transactions.
If not performing distributed transactions, set this value to False.

For WebSphere Application Server V3.0x, if JTA Enabled is selected as
True, the URL prefix has to be set to jdbc:jta:db2. But for WebSphere V3.5,
selecting JTA Enabled is sufficient, since the URL Prefix value is
independent of whether JTA is enabled.
580 WebSphere V3.5 Handbook

Figure 424. Create a JDBC Driver: General tab

If you want to create a JDBC driver for other databases, you will need to
specify the proper implementation class name and the URL prefix.

WebSphere provides four more choices for Class Name. When you select
one, the URL prefix will be changed automatically as shown in Figure 425 on
page 582. For example, if you choose oracle.jdbc.driver.OracleDriver, the
URL prefix will be set as jdbc:oracle:thin:@hostname:1521 at the same time,
you will need to change “hostname” to the real host name (Oracle Server).
Chapter 14. Application deployment 581

Figure 425. Create a JDBC Driver: the choices for class name

After you specify all information, click OK to create JDBC Driver. An
information dialog box will show that the command was completed
successfully.

14.4.2 Install a JDBC driver
To install a JDBC driver means specifying the location of the Java code for the
driver. To perform the function, switch to the Topology view. Put the cursor on
the DB2 JDBC driver previously created under the WebSphere administrative
domain. The properties are displayed on the right side of the administrative
console. Right-click DB2 JDBC Driver then click Install... as shown in Figure
426 on page 583.
582 WebSphere V3.5 Handbook

Figure 426. Installing a JDBC driver

The Install Driver dialog box is displayed as shown in Figure 427. Select the
node on which you want to install the driver. The Browser button will then
become active. In our environment, it is m23m1800.

Figure 427. Installing driver #1

Click the Browse button for the DB2 JDBC driver code. On the Windows
platform, it should be <db2 install directory>\java\db2java.zip, On AIX, it
should be <DB2 instance home>\sqllib\java12\db2java.zip.
Chapter 14. Application deployment 583

Figure 428. Installing a JDBC driver: Open window

When you locate the db2java.zip file, select it and click the Open button to
return to the driver installation dialog. It will be displayed in the JAR file field
as shown in Figure 428.

Figure 429. Installing driver #2

Click the Install button as shown in Figure 429. An information dialog box
informs you that the command completed successfully.

Note: This operation does not change the location of the db2java.zip file. It
simply specifies the location of the file to the WebSphere Administrative
584 WebSphere V3.5 Handbook

Server. Indeed we could install the JDBC driver on any node when it is
running in the administrative domain.

14.4.3 Create a data source
Click Wizards-->Create a Data Source to start as shown in Figure 430.

Figure 430. Creating a data source

The Create Data Source Wizard window will be displayed as depicted in
Figure 431 on page 586. Select Use an already installed JDBC Driver. If
you didn’t do the steps in 14.4.1, “Create a JDBC driver” on page 579 and
14.4.2 to create and install a JDBC driver before, you could select option
Create and install a new JDBC Driver to do it now.
Chapter 14. Application deployment 585

Figure 431. Creating a data source: JDBC driver options

Click Next and the panel shown in Figure 432 on page 587 displays. Specify
the properties for data source. For an Increment entity bean, we will use a
database called sample as be persistent database.

• Data Source Name

This is the name by which you will administer the data source. You can
make up any value you like for this property.

It is recommended that you enter a name that is suggestive of the
database you will use.

Specify “sample“ as the name. The JNDI lookup for such a data source
would be “jdbc/sample”.

• Database name

This specifies the name of the database used.

Enter “sample“. This would make the data source point to
jdbc:db2:sample.

• Driver

This specifies the name of the JDBC driver that this data source is using.

Select DB2 JDBC Driver configured recently.
586 WebSphere V3.5 Handbook

Figure 432. Creating Data Source: Data Source properties

After inputting values in the fields, the Finish button will become active. Click
it and an information dialog will inform you that the command completed
successfully.

Next, we complete the configuration for database access.

14.5 Create an application server and other basic resources

In this step, we will use the Create Application Server wizard to create an
application server, together with an EJBcontainer, a servlet engine and a Web
application at the same time. You may create them individually. For example,
you may create Web applications using the Create a Web Application wizard.

An application server is the basic resource in WebSphere. It provides a JVM.
In one application server, there could be one or more EJBContainers.
Together, the container and server provide the EJB runtime environment. In
one application server, there could be only one servlet engine, which handles
requests for servlets, JSP files, and other types of server-side coding.
Servlets and other files can belong to a Web application (servlet group).
Indeed, every servlet in the administrative domain must belong to a Web
application whose classpath specifies where to find the servlet class file.

Click Wizards-->Create Application Server as shown in Figure 433 on page
588, and the wizard will then display.
Chapter 14. Application deployment 587

Figure 433. Creating an application server

14.5.1 Types of resources
In the Advanced Edition, there are two check boxes: Enterprise Beans and
Web Applications, as shown in Figure 434 on page 589. In the Standard
Edition, there is only one check box - Web Applications.

Check the resource types you want to add to the Application Server. There
are various choices:

• Check Enterprise Beans to configure the application server, a container,
and enterprise beans.

• Check Web Applications to configure the application server, a servlet
engine, Web applications, and servlets.

• Check both options to configure all of the above.

• Check neither option to configure just the application server.

Both check boxes are checked by default. Accept it and click Next.
588 WebSphere V3.5 Handbook

Figure 434. Creating an application server: types of resources

14.5.2 Application server properties
We need to specify some properties of the application server, as shown in
Figure 435 on page 590.

Required is the Application Server Name. This is the name by which to
administer the application server. Any value you like may be used for this
property. We specify the name as “ITSOAppServer“.

You may keep the default values of other properties, which are optional. Here,
we will change the standard output and standard error as follows:

Standard output: <WAS_HOME>\logs\itsoappserv_stdout.txt

Standard err: <WAS_HOME>\logs\itsoappserv_stderr.txt

Click Next to continue.
Chapter 14. Application deployment 589

Figure 435. Creating an application server: application server properties

14.5.3 Application Server Start Option
Choose the default Do not start the server automatically after creating it,
as shown in Figure 436 on page 591. Click Next. We could start it in the
Topology view manually after completing the configuration.
590 WebSphere V3.5 Handbook

Figure 436. Creating an application server: application server start option

14.5.4 Node selection
Select the node on which the application server will run on. We select
m23m1800 as shown in Figure 437 on page 592, and the Next button will
now become active. Click Next to continue.
Chapter 14. Application deployment 591

Figure 437. Creating an application server: node selection

14.5.5 Add enterprise beans
You could click the Browse button to start adding EJBs. However we will skip
this step now and describe it in 14.8, “Create enterprise beans” on page 606.
On the Add Enterprise Beans window, we clicked Next to continue.

14.5.6 EJBContainer properties
The EJBContainer Name is required. This is the name by which the
EJBContainer is administered. You may keep the default name or make up
any value you like for this property. We will accept the default name,
ITSOAppServerContainer as shown in Figure 438 on page 593.

You could switch to the DataSource tag to configure the data source used by
this EJBContainer, including data source, user ID and password. We will skip
this step and configure the data source for the EJB when we create it.

Click Next to continue.
592 WebSphere V3.5 Handbook

Figure 438. Creating an application server: EJBContainer properties

14.5.7 Select a virtual host
Select a virtual host, and the Next button will become active. Click it to
continue. We use default_host as shown in Figure 439.

Figure 439. Creating an application server: select virtual host
Chapter 14. Application deployment 593

14.5.8 Servlet Engine properties
The servlet engine name is required. This is the name by which the servlet
engine is administered. You may keep the default name or use any value you
like for this property. We will accept the default name,
ITSOAppServerServletEngine, as shown in Figure 440. We will keep the
default servlet engine mode, which is WebSphere 3.5 Compatibility Mode.

Click the Next button. We will begin to create a Web application.

Figure 440. Creating an application server: servlet engine properties

14.5.9 Web application properties
We need to specify the properties of the Web application, as shown in Figure
441 on page 595.

• Web Application Name

This is the name by which to administer the Web application, and part of
the default value of the Web application Web path.

Keep the default, ITSOAppServerWebApp.

• Virtual Host

Select default_host from the list.

• Web Application Web Path
594 WebSphere V3.5 Handbook

The default value is “/webapp/ITSOAppServerWebApp“. We change it to
“/“.

The virtual host and the Web path indicate a path for accessing the Web
application from a browser.

If we keep the default value of the Web path, it should be:

http://Valid_host_Alias/webapp/ITSOAppServerWebApp

After we change the Web path to “/“, it should be:

http://Valid_host_Alias/

where Valid_host_Alias is any valid alias for the virtual host which we
specified.

Figure 441. Creating an application server: Web application properties General tab

Switch to the Advanced tag in order to see more properties of the Web
application, as shown in Figure 442 on page 596. These properties are very
notable, especially for placing files when deploying the application.

The default values are:

Document Root: <WAS_HOME>\hosts\default_host\ITSOAppServerWebApp\web

Classpath: <WAS_HOME>\hosts\default_host\ITSOAppServerWebApp\servlets
Chapter 14. Application deployment 595

Figure 442. Creating an application server: Web application properties Advanced tab

Accept the default values and click Next to continue.

14.5.10 Specify system servlets
WebSphere V3.5 provides internal (built-in) WebSphere servlets that we can
add to Web applications to enable optional functions. In this panel, we may
add some to the Web application, as shown in Figure 443 on page 597.

• Enable File Servlet

Check this servlet.

This enables Web pages to be served from the Web application document
root just specified.

It will add a servlet named “File Serving Enabler“ to the Web application
whose implementation class is
com.ibm.servlet.engine.webapp.SimpleFileServlet.

In addition to selecting this check box, make sure the Web server
configuration file does not contain any pass rules that will override the
Web application document root.

• Serve Servlets By Classname
596 WebSphere V3.5 Handbook

Check this servlet.

This enables servlets to be invoked by class or code names in the servlets
directory specified in the Web application classpath.

It will add a servlet named “Auto-Invoker“ to the Web application whose
implementation class is com.ibm.servlet.engine.webapp.InvokerServlet.

• Select JSP version to be used

Select Enable JSP 1.0.

This specifies that the JSP enabler servlet supporting the 1.0 level of the
JavaServer Pages (JSP) specification will be included.

It will add a servlet named “JSP 1.0 Processor“ to the Web application
whose implementation class is com.sun.jsp.runtime.JspServlet.

You could remove any of them from the Topology tree, or add them by clicking
Wizards-->Create a Servlet again.

Figure 443. Creating an application server: specify system servlets

Click the Finish button to complete creating the Application Server Wizard.
Chapter 14. Application deployment 597

The administrative console will then show the application server that you
created, as shown in Figure 444 on page 598.

Figure 444. A newly created application server

14.6 Placing source files

When deploying servlets, Web applications, and Enterprise JavaBean
applications, ensure that the component files are in the correct directories.
WebSphere Application Server does not provide any tools for managing files
and directories. This means that you must plan how your applications will be
structured and copy the files and directories to the correct locations on each
node.

Table 39 is a quick reference for this task:

Table 39. Placing files reference

File description File extension Directory path

HTML documents and
related static files

.html, .shtml, .jhtml, .gif,

.au, and so on
These can be either served
by the Web server, or
placed in the Web
application document root
with the WebSphere file
servlet enabled.
598 WebSphere V3.5 Handbook

JavaServer Pages files .jsp Web application document
root

Servlets that are to be
reloaded

.class or .jar Web application classpath.
If the servlets are in a
package and using class
files instead of JAR files,
mirror the package
structure as subdirectories
under the Web application
classpath.

Servlet that are not to be
reloaded

.class or .jar Application server
classpath

Servlet configuration file .servlet Directory that contains the
servlet

Enterprise bean .jar Application server
deployable EJBs directory

JavaBean (not an
enterprise bean) or other
object to be reloaded

.ser or .jar Web application classpath

JavaBean (not an
enterprise bean) or other
object not to be reloaded,
such as serialized objects
and servlets that use Java
Native Interface methods

.ser or .jar Application server
classpath

File description File extension Directory path
Chapter 14. Application deployment 599

For the Web application ITSOAppServerWebApp, the document root is
“<WAS_HOME>\hosts\default_host\ITSOAppServerWebApp\web“, and the
classpath is
“<WAS_HOME>\hosts\default_host\ITSOAppServerWebApp\servlets“.

First, we need to create the corresponding directory under
<WAS_HOME>\hosts\default_host\.

Then, we need to copy files to the correct directory:

• For servlet sample HelloWorldServlet

Copy HelloWorldServlet.class to directory “servlets“

• For EJB sample Increment

(Note: Because we change the URL of this sample, we need to modify the
source code to enable it to run correctly.)

- Copy increment.html to directory “web“.

We need to modify this file to let it invoke the servlet correctly.

Java objects added to a
session

.class, .jar, or .ser Application server
classpath

This requirement applies to
non-EJB objects in either
of the following conditions:
1)Session persistence is
enabled (the default
setting).
2)The application server is
part of a session cluster.

In a session cluster, be
sure to place the objects in
the application server
classpath on each cluster
host and cluster client.
An object in the application
server classpath is not
reloaded when its source
file changes.

Objects passed as
arguments for remote calls

Application server
classpath

File description File extension Directory path
600 WebSphere V3.5 Handbook

Open it with a text editor, and find
“/WebSphereSamples/servlet/WebSphereSamples.Increment.VisitIncr
ementSite“. Change it to
“/servlet/WebSphereSamples.Increment.VisitIncrementSite"

- Make directory WebSphereSamples\Increment under directory
“servlets”, then copy all files in directory
<WAS_HOME>\hosts\default_host\WSsamples_app\servlets\WebSph
ereSamples\Increment\ to it.

We need to modify the VisitIncrementSite.java and compile it in order to
let the servlet return the correct HTML.

Open it with a text editor, find
“/WebSphereSamples/servlet/WebSphereSamples.Increment.VisitIncr
ementSite“ and change it to
“/servlet/WebSphereSamples.Increment.VisitIncrementSite"

Then compile it in the command line with:

<WAS_HOME>\jdk\bin\javac -classpath <WebSphere
install_root>\hosts\default_host\ITSOAppServerWebApp\servlets;<WebSp
here install_root>\lib\servlet.jar;<WebSphere
install_root>\lib\ujc.jar <WebSphere
install_root>\hosts\default_host\ITSOAppServerWebApp\servlets\WebSph
ereSamples\Increment\VisitIncrementSite.java

- We do not have to move the Increment.jar. It has been configured "in
place."

14.7 Add Servlet

Now we begin to configure the servlet HelloWorldServlet.

Click Wizards-->Add a Servlet. The wizard will then display as shown in
Figure 445 on page 602.
Chapter 14. Application deployment 601

Figure 445. Adding a servlet #1

On the next window, specify whether to add servlets from an existing servlet
JAR file or directory. Keep the default “No“, then click Next to continue.

We need to specify a Web application to contain this servlet. Select
ITSOAppServerWebApp as shown in Figure 446 on page 603. The Next
button will then become active. Click it to proceed.
602 WebSphere V3.5 Handbook

Figure 446. Adding a servlet #2

We can now select the type of servlet we want to configure, including a
system servlet and user-defined servlet. If the system servlet was not
configured correctly at the time of the Web application creation, there is now
another entry to modify the configuration. We will configure our own servlet,
so select Create User-Defined Servlet as shown in Figure 447, then click
Next to continue.
Chapter 14. Application deployment 603

Figure 447. Adding a servlet #3

We need to specify part properties of this servlet, as shown in Figure 448 on
page 605.

• Servlet Name

This is the name of the servlet. You may use any value you like.

Specify “hello“.

• Web Application

This is the Web application with which the servlet is associated.

Keep the default value “ITSOAppServerWebApp“.

• Servlet Class Name

This is the servlet implementation class name. Specify the package, but
do not include the .class extension.

Specify “HelloWorldServlet“

• Servlet Web Path List

We could specify one or more Uniform Resource Identifiers (URIs) by
which this servlet can be located and invoked.
604 WebSphere V3.5 Handbook

Click the Add button and a dialog displays. Specify “servlet/hello“ following
the Web Application Web Path “/“, then click OK to return to the wizard.

Figure 448. Adding a servlet #4

Click Next to continue. You may see other properties as shown in Figure 449
on page 606. However keep the default and click the Finish button. An
information dialog will inform you that the command completed successfully.
Chapter 14. Application deployment 605

Figure 449. Adding a servlet #5

14.8 Create enterprise beans

Now we begin to create the EJB Increment. To use EJBs with an EJB server,
they must be deployed. Increment.jar is a deployable file. WebSphere will
automatically deploy it when creating the EJB in the administrative console.

Right-click the ITSOAppServerContainer then select
Create-->EnterpriseBean to begin as shown in Figure 450 on page 607.
606 WebSphere V3.5 Handbook

Figure 450. Creating EnterpriseBean

On the General tag, specify the name and JAR file. Click the Browse button
to select the JAR file as shown in Figure 451 on page 608.
Chapter 14. Application deployment 607

Figure 451. Creating EnterpriseBean: General tab #1

Switch to the directory deployableEJBs, and put the cursor on the
Increment.jar file as shown in Figure 452 on page 609.

Don’t select the JAR file and click the Select button because all beans in
the JAR file will be deployed with default values. This may not be
appropriate in all cases.

Note
608 WebSphere V3.5 Handbook

Figure 452. Creating EnterpriseBean: Opening a file

Double-click the JAR file. It will be opened and the deployment descriptors
(.ser file) will be listed as shown in Figure 453. You may select a single one to
deploy it.

Figure 453. Creating EnterpriseBean: Selecting a file
Chapter 14. Application deployment 609

Select the DeploymentDescriptor.ser file you need, then click the Select
button. A confirm dialog box will display. Click Deploy and Enable WLM or
Deploy Only to continue according to your actual environment, as shown in
Figure 454.

Figure 454. Creating EnterpriseBean: confirmation dialog #1

If the confirmation dialog box displays instead as shown in Figure 455, the
deployment descriptor must not be selected. Click No to return to the browse
dialog. Make sure you click the .ser file before clicking the Select button.

Figure 455. Creating EnterpriseBean: confirmation dialog #2

The deployment may take a while. Wait for the message Command completed

successfully. Click OK to return to the Create EnterpriseBean window. The
properties in the General tag will be filled in, as shown in Figure 456 on page
611. In the directory <WAS_HOME>\deployedEJBs, a new JAR file should
have been created. If you click Deploy and Enable WLM to continue to the
last step, it will be the _wlm_DeployedIncrement.jar file, and if you click
Deploy Only, it will be DeployedIncrement.jar.
610 WebSphere V3.5 Handbook

Figure 456. Creating EnterpriseBean: General tab #2

You may click Edit to change the deployment properties. In that case, you will
get the Deployment Properties window as shown in Figure 457 on page 612.
Keep the original values here.
Chapter 14. Application deployment 611

Figure 457. Deployment Properties window

Switch to the DataSource tag, specify the DataSource information that the
EJB will use as shown in Figure 458 on page 613. Note that, if the EJB is a
session bean, this tag will be inactive.

• DataSource

Click Change to select the DataSource that has been created. We will use
the sample DataSource.

• User ID and Password

Specify the user ID and password to access the database that is
represented by the data source.

• Create Table

Make sure the check box is checked. This means the table for this entity
bean will be created when it starts, and the property will be changed to
unchecked after it starts successfully.
612 WebSphere V3.5 Handbook

Figure 458. Creating EnterpriseBean: DataSource tab

Click OK to complete creating the EJB. You will see a message that Command
completed successfully.

14.9 Verification of the servlet and EJB

These resources could now in fact already run separately.

In the Topology view, we could right-click the IncrementHome then select
Start to start this EJB, and right-click ITSOAppServerWebApp, then select
Restart Web App to start Web application.

To make sure of the running status of resources, you may need click the
ITSOAppServer in the Topology viewer, then click the Refresh selected
subtree button.
Chapter 14. Application deployment 613

Start the HTTP Server if it is not running. You may input URLs into the
browser to verify that the resources are working.

• For servlet HelloWorldServlet

http://Valid_host_Alias/servlet/hello

(This URL can verify that the configuration of the user-defined servlet
“hello“ is working.)

http://Valid_host_Alias/servlet/HelloWorldServlet

(This URL can verify that the configuration of system servlet
“Auto-Invoker“ is working.)

• For EJB Increment

http://Valid_host_Alias/increment.html

(This URL can verify that the configuration of system servlet “File Serving
Enabler“ is working.)

Figure 459. Increment EJB #1

Then click Visit and you will get the number of visits to the Increment site as
shown in Figure 460 on page 615. This can verify the EJB Increment is
working.
614 WebSphere V3.5 Handbook

Figure 460. Increment EJB #2

14.10 Create an enterprise application

An enterprise application (often referred to as just an application) combines
many kinds of resources into one named entity that can be managed as a
unit.

In this section, we will in essence "wrap" the Web application with an
application and add the Increment Bean to the application. This is necessary
because security is applied to enterprise applications, not to Web
applications.

After using the administrative console to configure an enterprise application,
we can start and stop the resources in the application together by starting
and stopping the application.

(Stop ITSOAppServer by clicking ITSOAppServer then selecting Stop before
the next steps.)

Start the Configure a new Application task by clicking Wizards-->Create
Enterprise Application as shown in Figure 461 on page 616.
Chapter 14. Application deployment 615

Figure 461. Creating an enterprise application

Specify ITSOApplication as the Enterprise Application Name as shown in
Figure 462. Click Next to continue.
616 WebSphere V3.5 Handbook

Figure 462. Creating an enterprise application: application details

Then we need to add one or more resources to the application in the next
window, shown in Figure 463.

• Expand the EnterpriseBeans tree, put the cursor on the IncrementHome
then click Add button.

• Expand the Web Applications tree, put the cursor on the
ITSOAppServerWebApp then click Add button.

You may see the message command “Application.addResource“ completed

successfully in the administrative console.

After adding all the needed resources to the application, click Next to
proceed.
Chapter 14. Application deployment 617

Figure 463. Creating an enterprise application: application resources #1

It is now possible to review those resources added to the application as
shown in Figure 464 on page 619. If any resources are missing, click the
Back button to return to the last panel. Equally, if any resources are not
wanted, it is possible to remove them on this panel.
618 WebSphere V3.5 Handbook

Figure 464. Creating an enterprise application: application resources #2

Click the Finish button to complete creating an enterprise application. After
the message command completed successfully, you will see Enterprise
Application “ITSOApplication” on the administrative console as shown in
Figure 465 on page 620.
Chapter 14. Application deployment 619

Figure 465. A newly created enterprise application

In the same administrative domain, we can add multiple resources into one
application regardless if they are on different application servers or different
nodes. However, it should be configured with the resources that must be
available together and be used by a common set of users. In terms of
security, there are security settings that apply to the whole application. All
resources in the same application must use the same security settings, such
as the challenge type. The administrator, therefore, must pay attention to how
to organize the resources.

14.11 Verification of an enterprise application

To verify that an enterprise application works, right-click the ITSOApplication
in the Topology viewer, then select Start as shown in Figure 466 on page 621.
An information dialog box will inform you that the command completed
successfully.
620 WebSphere V3.5 Handbook

Figure 466. Starting an enterprise application

You may need to refresh the ITSOAppServer subtree to check if the
resources in this enterprise application are running.

You could use the URLs in Verification 1 to check if the resources are
working.

14.12 Deployment and classpaths

Now that we have seen how to deploy combinations of servlets and EJBs, we
can consider a more complex deployment. Our intention is to explore the
WebSphere classpaths using some concrete examples. We want to consider
some special cases, each of which demonstrates a feature of the classpaths.
The cases we will consider are:

1. Suppose that a servlet wishes to access an EJB running in the same
application server. What classpath specifications are needed?

2. Suppose a servlet running in a different application server wants to access
that same EJB. How does it access the classes it needs?
Chapter 14. Application deployment 621

3. Suppose two EJBs, produced by two different development groups wish,
as part of their implementation, to reference a common class. Where
should that code be placed?

4. Suppose the same EJBs wish to reference the same class in their
interface. What additional problems arise?

14.12.1 Classpaths and classloaders
Before considering our examples, here is a brief overview of the classpaths
and classloaders we will encounter. You can find a more detailed explanation
in the WebSphere InfoCenter.

14.12.1.1 The classpath test code
In order to illustrate the situation, we developed one interface and three
classes.

The Messenger interface defines one interface method, doMessage(). The
intent is that implementors of this interface should write out the supplied
argument. This interface is shown in Figure 467.

Figure 467. The Messenger interface

The first class, SimpleMessage implements an interface, Messenger. The
doMessage() method is implemented to print a message using our own
message logging class.

We use the logging class because it displays messages with date and time
stamps and also gives an easy way to display the name of the class that is
requesting the log to be written. The reason why we want to see this last
piece of information will become apparent later.

The code for SimpleMessage is shown in Figure 468 on page 623. We will not
go into detailed about how the logging classes work, it is sufficient to note
that the call log.Info(“a string”) will display a suitably labelled string to
standard out.

package com.myCompany;

public interface Messenger {

void doMessage(String message);

}

622 WebSphere V3.5 Handbook

Figure 468. The SimpleMessage class

The second class is the DynamicCaller. This class has one method that loads
a specified class by name, creates an object of that class, casting it to type
Messenger. It then calls the doMessage() method of the resulting object
reference.

The purpose of the class is allow us to execute an application and verify the
presence or absence of the desired class at run time. This allows us to
demonstrate more clearly the classpaths and classloaders used by
WebSphere.

The code for the DynamicCaller class is shown in Figure 469 on page 624.
Note that the DynamicCaller traps any exception thrown by the attempt to
create the requested class, so if the class cannot be found on the classpath
we get a clear error message.

package com.myCompany;

import com.ibm.swservices.log.*;
public class SimpleMessage implements Messenger {

private ILoggerFactory m_logFactory =
Log.getLoggerFactory(getClass());

public void doMessage(String label)
{

LocalLogger log = m_logFactory.getLocalLogger("doMessage");

log.info("Message is " + label);

}
}

Chapter 14. Application deployment 623

Figure 469. The DynamicCaller class

Finally we developed a servlet whose doGet() method makes an instance of
SimpleMessage and calls its doMessage() method, and then makes an
instance of DynamicCaller and requests that DynamicCaller make an
instance of SimpleMessage and also invoke the doMessage() method.

Figure 470 on page 625 shows the code for the servlet doGet() method.

package com.myCompany;

import com.ibm.swservices.log.*;
public class DynamicCaller {

private ILoggerFactory m_logFactory =
Log.getLoggerFactory(getClass());

public void doCall(String className)
{

LocalLogger log = m_logFactory.getLocalLogger("doCall");

log.entry("className = " + className);

try {
Class messengerClass = Class.forName(className);
Messenger messenger = (Messenger)messengerClass.newInstance();
messenger.doMessage("From dynamic caller");

} catch (Exception problem) {
log.exception("Problem calling messenger", problem);

}
}
}

624 WebSphere V3.5 Handbook

Figure 470. The servlet doGet() method

14.12.1.2 The Web application classpath
We created a Web application whose classpath was

C:\aFolderForWebApps\as4\se6\servlets

We enabled the Auto-Invoker servlet so that servlets classes would be loaded
by name. We copied just the servlet code to the classpath, creating the
necessary package subdirectories.

Figure 471. Servlet class installed

We attempted to run this servlet by using a browser to request the URL:

http://localhost/webapp/wa8/servlet/com.myCompany.servlet.MyServlet

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html");

PrintWriter os = res.getWriter();
os.println("<html>");
os.println("<head><title>Demonstrating classpath</title></head>");
os.println("<body>");

os.println("In MyServlet");

SimpleMessage theMessage = new SimpleMessage();
theMessage.doMessage("From Servlet");

DynamicCaller theCaller = new com.myCompany.DynamicCaller();
theCaller.doCall("com.myCompany.SimpleMessage");

os.println("</body></html>");
}

C:\aFolderForWebApps\as4\se6\servlets>dir /s /a-d

Directory of C:\aFolderForWebApps\as4\se6\servlets\com\myCompany\servlet

10/17/2000 11:05p 1,299 MyServlet.class
1 File(s) 1,299 bytes
Chapter 14. Application deployment 625

As expected this failed. We had not installed the other two classes or the
logging library. The standard out log for the servlet engine showed the
following error message:

Figure 472. Error message for missing class

You will notice that the error message does not indicate which class cannot
be found. In the current situation we actually know the missing classes but
usually we need to diagnose the problem.

To determine the missing class you can turn on verbose tracing for the JVM.
To do this select the application server in the Topology tab and add the value
-verbose to the command line arguments as shown in Figure 473 on page
627. Then click Apply and restart the application server to make the change
effective.

"com.myCompany.servlet.MyServlet"

"Failed to load servlet"
javax.servlet.ServletException: Servlet

[com.myCompany.servlet.MyServlet]: com.myCompany.servlet.MyServlet
was found, but is missing another required class.
This error typically implies that the servlet was originally compiled
with a classes which cannot be located by the server.
Check your classpath to ensure that all classes required by the servlet
are present.
626 WebSphere V3.5 Handbook

Figure 473. Setting verbose flag for an application server

After restarting the application server and resubmitting our request from the
browser we now see additional information in the standard error file of the
application server.

The verbose flag is well named. A great deal of output is produced. However,
searching for the string NoClassDefFoundError quickly yielded the diagnostic
we needed. Figure 474 shows the information that the missing class is

com.myCompany.SimpleMessage

Figure 474. Missing class identification in standard error

We now needed to add the missing classes to the classpath. As a first step
we created two JAR files, one containing our own classes, the other

[Signaling in VM: java/lang/NoClassDefFoundError, message:
com/myCompany/SimpleMessage]

at com.myCompany.servlet.MyServlet.doGet(MyServlet.java)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:740)
at javax.servlet.http.HttpServlet.service(HttpServlet.java:853)
Chapter 14. Application deployment 627

containing the logging library. We simply copied these two JAR files to the
servlets directory of the Web application.

You should note two things about this procedure:

1. It is not necessary to adjust the classpath for the Web application. All JAR
files placed in any directory in the Web application classpath are
automatically added to the classpath.

Furthermore, as Auto-loading is enabled, we do not even need to restart
the Web application. The Web application classpath is special in these
respects. Other classpaths we will discuss later do not have these special
facilities.

2. This dynamic approach to deployment is very useful in development
situations. However, we do not recommend this approach as a production
deployment technique.

First, because classes such as the logging library will probably be used by
many Web applications, they should be placed in some shared classpath,
rather than in a classpath specific to one Web application.

Secondly, auto-loading is probably inappropriate for a controlled
production environment where it should be unusual to deploy new classes
in a gradual manner.

Having deployed all the required classes, we resubmitted the request from
the browser and got the expected response in the browser as shown in Figure
475.

Figure 475. Response to servlet request

More interesting is the output that appears in the Application Server standard
out. This is shown in Figure 476 on page 629.
628 WebSphere V3.5 Handbook

Figure 476. Application server standard out

Each entry in the output has three parts: the timestamp, the class and
method producing the entry, and the text of the entry itself. In the figure each
of these three elements appears on a separate line.

As expected we see three messages:

1. The SimpleMessage class producing text in response to the Servlet’s
request.

2. The DynamicCaller stating which class is to be instantiated by name, in
this case another instance of SimpleMessage.

3. The second SimpleMessage object producing the message at the request
of the dynamic caller.

So far the behavior is unsurprising but we will now begin to show how minor
adjustments to the classpath will produce less obvious results.

14.12.2 The application server classpath
We noted earlier that we do not recommend that you should place all classes
on the Web application classpath. Instead we want to put them on the
classpath for the application server. We do this by adding a classpath
command line argument to the application server.

First we created a suitable directory for these non-servlet “helper” classes,
and then removed the logging library and our application JARs from the Web
application servlets directory and placed them in the new directory. Figure
477 on page 630 shows the directory contents.

Tue Oct 17 22:56:32 GMT+01:00 2000
com.myCompany.SimpleMessage doMessage()
Message is From Servlet

Tue Oct 17 22:56:32 GMT+01:00 2000
com.myCompany.DynamicCaller doCall()
className = com.myCompany.SimpleMessage

Tue Oct 17 22:56:32 GMT+01:00 2000
com.myCompany.SimpleMessage doMessage()
Message is From dynamic caller
Chapter 14. Application deployment 629

Figure 477. Application server helper class JARs

We then used to the administrative console to set the classpath by selecting
the application server and entering the classpath as shown in Figure 478.

Figure 478. Setting the application server classpath

Unlike when adding JARs to the Web application classpath, we need to
explicitly reference the two JARs we want to add. The string that we need to
type is long and the area available is small, so editing is troublesome. We find
it easier to assemble long command line arguments in a text editor and then
cut and paste into the entry field.

The value we entered is shown in Figure 479 on page 631.

C:\aFolderForWebApps\as4>dir /s /-a d lib

Directory of C:\aFolderForWebApps\as4\lib

10/17/2000 11:33p <DIR> .
10/17/2000 11:33p <DIR> ..
10/15/2000 10:23p 99,302 SwServices.jar
10/17/2000 11:44p 1,848 myCompany.jar

2 File(s) 101,150 bytes

Total Files Listed:
2 File(s) 101,150 bytes
2 Dir(s) 10,501,046,272 bytes free
630 WebSphere V3.5 Handbook

Figure 479. Creating the command line arguments in Notepad

You should note that we split actual command line into three separate lines so
that it could be seen completely in the figure. Before cutting and pasting we
reassembled it into one long line.

Also notice that when assembling the classpaths we did not leave any spaces
between the semi-colon (;) separator and the surrounding paths. If you do
leave such a space you will see the error symptom shown in Figure 480.

Figure 480. Symptom of syntactic error in classpath

The exception StaleActiveObjectInvocationException may not be immediately
suggestive of your having left a space in your command line options.

Having updated the text field we then clicked Apply and restarted the
application server. We then resubmitted our request and, as expected our
application ran as before producing the same successful output we saw in
Figure 475 on page 628 and Figure 476 on page 629.
Chapter 14. Application deployment 631

14.12.3 The classloader effect
Now we made one small change and our application ceased to function.

Suppose that your application were more substantial than our cut-down
example. It is quite possible that one development team might deliver the
interface definition Messenger and the class DynamicCaller that can operate
on any class implementing the interface. A completely different team might
deliver the SimpleMessage implementation of Messenger.

We simulated such a scenario by creating a version of our MyCompany.jar
that contained only the Messenger and DynamicCaller classes. We replaced
our previously installed, complete JAR with this reduced version.

Now when we attempt to execute our servlet we get the expected error due to
the missing SimpleMessage class.

So now we want to deploy the SimpleMessage class. We copied the class file
to the correct package structure in the Web Application classpath.

Figure 481. Helper class in the Web application classpath

You can seen the two class files in the Web application classpath in Figure
481.

Now when we attempt to run the servlet it does appear to work, the browser
shows a successful execution as in Figure 475 on page 628. However when

C:\aFolderForWebApps\as4\se6\servlets>dir /s /-a d
.
D
Directory of C:\aFolderForWebApps\as4\se6\servlets\com\myCompany

10/17/2000 11:05p <DIR> .
10/17/2000 11:05p <DIR> ..
10/17/2000 11:05p <DIR> servlet
10/18/2000 03:02p 915 SimpleMessage.class

1 File(s) 915 bytes

Directory of C:\aFolderForWebApps\as4\se6\servlets\com\myCompany\servlet

10/17/2000 11:05p <DIR> .
10/17/2000 11:05p <DIR> ..
10/17/2000 11:05p 1,299 MyServlet.class

1 File(s) 1,299 bytes

Total Files Listed:
2 File(s) 2,214 bytes
11 Dir(s) 10,481,795,072 bytes free
632 WebSphere V3.5 Handbook

we examine the standard out file we see a problem. Compare the result we
got from a successful execution as shown in Figure 476 on page 629 with the
output shown in Figure 482.

Figure 482. Unexpected ClassNotFound Exception

In the new figure we see, as expected, the servlet create an instance of
SimpleMessage and the instance generates the required output. However, we
then see the DynamicCaller, running in the same JVM, fail to instantiate a
second instance of the same class, with a ClassNotFoundException.

14.12.3.1 The classloader hierarchy
To understand this seemingly inconsistent behavior we need consider not
only the classpaths we have configured but also the class loaders used by
WebSphere.

We have already mentioned that the classpaths for the application server and
Web application behave differently. The former is static, and we specify JAR
files explicitly. The latter can auto-reload changed classes and will use any
JAR file in the specified directory. Behind the scenes WebSphere achieves
this effect by using different classloaders.

Before we discuss the WebSphere classloader, we describe the J2SE
classloader. When the JVM needs to load a new class for an application, it
searches for and loads the class in the following locations, in order:

1. Bootstrap classes: Classes that comprise the Java platform, including the
classes in <JAVA_HOME>/jre/lib/rt.jar and i18n.jar.

2. Extension classes: Classes that use the Java Extension mechanism.
These are bundled as .jar files located in the extensions directory.

Tue Oct 17 23:45:53 GMT+01:00 2000
com.myCompany.SimpleMessage doMessage
Message is From Servlet

Tue Oct 17 23:45:53 GMT+01:00 2000
com.myCompany.DynamicCaller doCall
className = com.myCompany.SimpleMessage

Tue Oct 17 23:45:53 GMT+01:00 2000
com.myCompany.DynamicCaller doCall
Exception: Problem calling messenger java.lang.ClassNotFoundException:
com.myCompany.SimpleMessage
Chapter 14. Application deployment 633

3. User classes: Classes defined by developers and third parties such as
WebSphere that do not take advantage of the extension mechanism.

Figure 483. Hierarchy of J2SE classloaders

There are three types of WebSphere classloader:

1. The primordial classloader uses the application server classpath. (Note
that this classpath contains both the directories and JAR files you specify
as command line arguments and some more that we will discuss later.)

2. The EJB JAR classloader. We have yet to bring EJBs into this discussion,
but it might be expected that the EJB JARs would need special treatment
because you are able to add an EJB without restarting the application
server.

3. The Web application classloader, this is sometimes called the Power
classloader. This classloader uses the Web application classpath. So if
your application server has more than one Web application you have more
one Power classloader for each Web application.

Bootstrap classloader
for

Bootstrap classpath

Extensions classloader
for

Extenstions classpath

Application (user) classloader
for

Application (user) classpath

rt.jar
i18n.jar

JAVA_HOME

bin lib jre

libbin

jndi.jar
::::

JAVA_HOME

bin lib jre

libbin

ext

WebSphere
classloader
634 WebSphere V3.5 Handbook

These classloaders are arranged in a hierarchy, as shown in Figure 484.

Figure 484. Hierarchy of WebSphere classloaders

14.12.3.2 The problem explained
This hierarchy has several important effects:

1. Each class we load is loaded by one classloader. Any class can use only
classes loaded by its own classloader or its classloader’s parents. For
example, a class loaded by an EJB classloader cannot see classes loaded
by the Web application classloaders.

2. Each classloader will always ask its parent for classes that should be
loaded, and they in turn will ask their parents. Only if a class is not
available to a parent classloader will the classloader itself load the class.

This treatment ensures that system classes loaded by the JVM
classloader cannot be replaced or hidden by newer versions introduced
higher up the hierarchy.

3. Each Web application is insulated from the others. Classes loaded by the
classloader in one Web application are not available to other Web
applications.

Primordial
ClassLoader

for application server
(JVM) classpath

Jar ClassLoader
for EJB JAR

classpath

PowerClassLoader
for Web application

classpath

PowerClassLoader
for Web application

classpath

PowerClassLoader
for Web application

classpath
Chapter 14. Application deployment 635

We can now understand why our application failed.

• The servlet is in the Web application classpath and so was loaded by a
Powerloader.

• The servlet needed the SimpleMessage class and so the Powerloader
asked its parents for it. No parent had SimpleMessage available, so the
Powerloader found it in its classpath and loaded it.

• The servlet needed the DynamicCaller class and so the Powerloader
asked its parents. The JVM loader had DynamicCaller available and so
loaded this class, making it available to all its children.

• The DynamicCaller needed the SimpleMessage class and asked the JVM
loader for it. The JVM loader does not have SimpleMessage in its
classpath and cannot ask its children. So we get the ClassNotFound
message.

14.12.3.3 Conclusions
It is important to understand that this simple example represents the kinds of
problems that occur in realistic situations. The crucial element of the problem
is the dependencies between the classes. The problem was caused by
installing classes in classloaders in a way that did not reflect the class
dependencies.

The loading of classes by name was introduced only to make the problem
occur at run time; it is not the cause of the problem.

The conclusion is that we need to take considerable care in deciding which
classes are deployed in which JAR files. As a rule of thumb we prefer to keep
our servlet and EJB JARs small and move helper classes to separate JARs
that we deploy on the application server classpath using the JVM loader.

We will see how this general approach applies to our deployment scenarios in
the following sections.

14.12.4 Servlet accessing a local EJB
We constructed a simple stateless session EJB and a servlet to act as a
client of the EJB.

14.12.4.1 The test code
The EJB was named MyFirst. It has a single method in its remote interface:
getMessage(). We show the interface and implementation in Figure 485 on
page 637 and Figure 486 on page 637 respectively.
636 WebSphere V3.5 Handbook

Figure 485. EJB remote interface

Figure 486. EJB method implementation

The MyEjbInvoker servlet accesses the EJB using a VisualAge for
Java-generated Access Bean. Although the use of Access Beans is not
mandatory we believe that they save unnecessary work, and since they are
used widely we want to describe the classpath issues that arise when you use
them.

Figure 487 on page 638 shows the code for the servlet’s doGet() method.

package com.myCompany.ejb;

public interface MyFirst extends javax.ejb.EJBObject {

java.lang.String getMessage() throws java.rmi.RemoteException;

}

public String getMessage() {
return "A string from the EJB";

}

Chapter 14. Application deployment 637

Figure 487. The doGet() method for the MyEjbInvoker servlet

We created a JAR file for the EJB and add it to the EJB container as
described earlier in this chapter. Then we copied the servlet class file to the
Web application classpath.

14.12.4.2 Classpath adjustment
Our servlet needs three things on its classpath in order to execute.

The EJB clients stubs
The stubs are generated when the EJB is deployed. If you examine the JAR
file you will find class files such as _MyFirst_Stub.class. These classes are
immediately available to our servlet because the EJB classloader has loaded
the EJB JAR when we added the EJB to the container. You will recall from
Figure 484 on page 635 that the Web application classloader will request
classes from its parent the EJB loader.

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html");

PrintWriter os = res.getWriter();
os.println("<html>");
os.println("<head><title>Demonstrating nothing</title></head>");
os.println("<body>");

try {

com.myCompany.ejb.MyFirstAccessBean ab
= new com.myCompany.ejb.MyFirstAccessBean();

String theMessage = ab.getMessage();

os.println("The invoker got this message: "
+ theMessage + "
");

} catch (Exception e) {
os.println("Exception
" + e + "
");

}

os.println("</body></html>");
}

638 WebSphere V3.5 Handbook

The MyFirstAccessBean code
The Access Bean class is generated by VisualAge for Java. It seems clear
that, because any Web application might wish to use the Access Bean, then
code should not be placed in any one Web application classpath.

We also note that if the EJB interface were to change, then the Access Bean
will also need to be regenerated and re-released. We therefore decided to put
the Access Bean into the EJB JAR. By default, when exporting an EJB
deployable JAR, VisualAge for Java does not include the Access Bean. It is a
trivial matter to add this extra class when exporting the EJB.

Figure 488 shows the contents of our JAR file.

Figure 488. EJB JAR contents, with Access Bean

The generic Access Bean classes
Our EJB-specific Access Bean, MyFirstAccessBean, uses some generic code
provided by VisualAge for Java. The WebSphere installation includes this
code in the JAR file:

C:\WebSphereAppServer\lib\ivjejb35.jar

We need to add this JAR to a suitable class path.
Chapter 14. Application deployment 639

It should be clear that this needs to be added to a classpath whose
classloader is accessible to the EJB loader. So we choose to add the JAR to
the application server classpath. We do this by adjusting the command line
arguments for the application server JVM in the way we described in 14.12.2,
“The application server classpath” on page 629.

For this example we are using only this one new JAR file and so we set the
command line argument to

-classpath C:\WebSphereAppServer\lib\ivjejb35.jar

14.12.4.3 Execution
We used a browser to request the URL:

http://localhost/webapp/wa8/servlet/com.myCompany.servlet.MyEjbInvoker

The result is shown in Figure 489.

Figure 489. Invoking the EJB

14.12.5 Servlet access to a remote EJB
WebSphere has optimizations to improve performance when EJBs and their
client servlets are co-located in the same application server. However, it is
likely that there will be situations where the EJBs and servlets must be in
separate locations.

For example responsibility for developing and deploying some EJBs may be
partitioned on departmental lines. It could still be entirely reasonable for
servlets running in one department’s environment to use an EJB provided by
another. We consider that kind of situation in this section.

14.12.5.1 Test scenario
We created a second application server similar to the first. It differed in two
respects:

1. We set the Web application Web path to /webapp/client.
640 WebSphere V3.5 Handbook

2. We did not deploy our EJB into this application server.

We copied the MyEjbInvoker servlet to the Web application classpath. Then,
immediately, before making any class path adjustments, we attempted to run
the servlet.

As expected this failed, because the Access Bean class could not be loaded.

14.12.5.2 The client JAR
We have already established that the deployed EJB JAR file, when enriched
with the Access Bean, would provide everything the client needs. However, it
does not seem desirable that the client of the EJB should have access to
implementation details.

For this reason we suggest using an EJBClient JAR. If you are using
VisualAge for Java then there are facilities to export a client JAR, and by
default the client JAR does include the Access Bean. If you are not using
VisualAge for Java, these are the classes we need in a client JAR:

• MyFirstAccessBean.class

• MyFirst.class

• MyFirstHome.class

• _MyFIrst_BaseStub.class

• _MyFIrst_Stub.class

• _MyFIrstHome_BaseStub.class

• _MyFIrstHome_Stub.class

In addition to the AccessBean, we see the interfaces for the bean and its
home and the local stubs for the bean and home.

14.12.5.3 Classpath
We set the classpath for the application server to include the client JAR and
the generic access bean JAR that we used earlier. We did this by setting the
application server command line arguments to include the string

-classpath C:\WebSphereAppServer\lib\ivjejb35.jar;
C:\mylib\MyEjbClient.jar

Note that this string is entered unbroken, with no spaces around the
semi-colon (;) as described in 14.12.1.2, “The Web application classpath” on
page 625.
Chapter 14. Application deployment 641

14.12.5.4 Execution
We used a browser to request the URL:

http://localhost/webapp/client/servlet/com.myCompany.servlet.MyEjbInvoker

The result was exactly as before, as shown in Figure 489 on page 640.

14.12.6 EJBs with shared implementation helper classes
It is very likely that you will factor out implementation code for your EJBs into
separate classes. We will refer to these classes as “helper classes”.

In small-scale development, where a single team produces a single JAR
containing all EJBs, it may seem natural to include the helper classes in the
EJB JAR. This will work, and makes for very simple deployment.

However, when the same helper classes are needed in more than one EJB
JAR then a different approach is needed. It seems unwise to create
dependencies between EJB JAR files, so that EJBs in one JAR file require
implementation classes from another. Such an approach does not lend itself
to flexible deployment; it is difficult to deploy chosen sub-sets of EJBs to
different servers. It also creates configuration management problems if
different teams are producing different JAR files.

Our approach is to factor out the helper classes into one or more JAR files
and add these JARs to the application server classpath. The EJB JAR
contains only the EJBs themselves and the classes created when deploying
the EJB; the same set of classes are shown in Figure 488 on page 639.

14.12.7 EJBs with shared interface classes
Finally, we consider the case of classes that appear in the interface of your
EJBs. For example, it is quite common for a remote method of an EJB to take
as an argument an instance of a JavaBean.

14.12.7.1 The test scenario
Suppose that we define a JavaBean that represents the state of a Person. As
a simplified example, consider the Bean shown in Figure 490 on page 643.
642 WebSphere V3.5 Handbook

Figure 490. Example JavaBean

It may be reasonable to express the interface to an EJB in terms of such a
bean. Arguably, it is preferable to have a coarse-grained method operating on
a bean then fine-grain methods operating on individual data items. This is
because each EJB method call is potentially a remote call, and for good
performance we should aim to reduce the number of remote method calls.

So we add a method operating on a MyPersonBean object to our EJB. This
method is shown in Figure 491 on page 644.

package com.myCompany;

public class MyPersonBean implements java.io.Serializable{
private java.lang.String fieldName = new String();
private int fieldGrade = 0;

public MyPersonBean() {
super();

}

public int getGrade() {
return fieldGrade;

}

public java.lang.String getName() {
return fieldName;

}

public void setGrade(int grade) {
fieldGrade = grade;

}

public void setName(java.lang.String name) {
fieldName = name;

}

}

Chapter 14. Application deployment 643

Figure 491. EJB Method with JavaBean as parameter

We adjusted our servlet to use this method, as shown in Figure 492.

Figure 492. Servlet invoking EJB with JavaBean parameter

In order to prove that the EJB and servlet work correctly we redeployed them
to our application server. We created a new deployed EJB JAR containing the
EJB classes and, as before, the Access Bean class. We also included the
JavaBean class for MyPersonBean.

public String tellPerson(MyPersonBean who) {
return who.getName();

}

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

res.setContentType("text/html");

PrintWriter os = res.getWriter();
os.println("<html>");
os.println("<head><title>Demonstrating nothing</title></head>");
os.println("<body>");

try {
com.myCompany.ejb.MyFirstAccessBean ab

= new com.myCompany.ejb.MyFirstAccessBean();

MyPersonBean person = new MyPersonBean();
person.setName("Shusaku");
person.setGrade(9);

String theMessage = ab.tellPerson(person);

os.println("The invoker got this message: "
+ theMessage + "
");

} catch (Exception e) {
os.println("Exception
" + e + "
");

}

os.println("</body></html>");
}

644 WebSphere V3.5 Handbook

It should be clear that this “all-in-one” approach to deploying the EJB is not
our recommended approach for realistic applications. Figure 493 shows the
contents of the JAR. The JavaBean is the first entry.

Figure 493. EJB JAR including interface class

We deployed the JAR and servlet class as before and then used a browser to
invoke the servlet. The servlet ran successfully, obtaining the MyPersonBean
class from the EJB JAR, and produced the output shown in Figure 494.

Figure 494. Invoking the EJB using a JavaBean

14.12.7.2 Separating the interface classes
Now we can consider a preferred location for the MyPersonBean class. It
seems likely that a JavaBean such as this would be used by more than one
Chapter 14. Application deployment 645

EJB. By the same argument that we used in 14.12.6, “EJBs with shared
implementation helper classes” on page 642, it seems best to move the
implementation class to a separate JAR file. It will then be available to any
EJBs that need it and can be deployed independently of any specific EJB.

So, we create a new JAR file. We will call it MyInterface.jar, and in this JAR
we have just the MyPersonBean.class. You can see the contents in Figure
495.

Figure 495. Interface JAR containing MyPersonBean.class

We also recreate the EJB JAR file so that it no longer contained the
MyPersonBean class; so it now is reverted to the state shown in Figure 488
on page 639.

We add the interface JAR to the application server classpath. You can see the
classpath option we needed in Figure 496. Again, we have broken the line of
text for clarity in the figure; when pasting into the administrative console we
reassemble the line.

Figure 496. Application server classpath with EJB interface JAR

14.12.7.3 Creating the EJB
We remove the EJB from our EJB container because we want to explore the
various steps in deploying the EJB.
646 WebSphere V3.5 Handbook

So we use the administrative console to take the EJB JAR and create the EJB
in our container. We select our EJB container and right-click Create EJB then
we click Browse and select our JAR.

This gives an error as shown in Figure 497.

Figure 497. Failure to create EJB with dependent class in interface

The error message indicates that the MyPersonBean is not found. And yet we
have already added it to the application server classpath.
Chapter 14. Application deployment 647

14.12.7.4 The node dependent class path
The reason for this error is that it is not the application server that is actually
performing the EJB creation we are requesting. It is, in fact, the administrative
server. Remember that the administrative console is a client of the
administrative server. At EJB creation time the administrative server needs to
see all classes in the EJB interface. So we need to make MyInterface.jar
available to the administrative server. We do this by setting the dependent
classpath.

This classpath is set, through the administrative console, by selecting the
node on which you intend to create the EJB. You will then see the data entry
field for the classpath as shown in Figure 498.

Figure 498. Setting the dependent classpath

We enter the full path of the MyInterface.jar JAR file and clicked Apply. It is
not necessary to restart the node.

We can now create the EJB and our application executed correctly as before.

14.12.7.5 Dependent classpath or application server classpath
We now have found that we can put the MyInterface.jar file onto two different
classpaths: the dependent classpath and the application server classpath.
648 WebSphere V3.5 Handbook

This begs the question: under what conditions should we use these
classpaths?

It turns out that there is no entirely satisfactory answer to the question. We
find:

• Classes on the dependent classpath are visible to all Web applications. So
our EJBs can use MyInterface.jar, but so can all other EJBs in all other
application servers.

• The dependent classes are loaded into the application server by the EJB
loader. So only classes loaded by the EJB loader (for example the EJB)
and the Powerloader (for example servlets) can use them.

These two facts present problems if we attempt to use interface classes from
the dependent classpath. Table 40 shows three application servers, all
running in one WebSphere administrative domain in the same node.

Table 40. Class loader problem

The two problems are:

1. The EJB client JARs loaded by the JVM loader cannot access the
interface classes loaded by the EJB loader.

2. The third application server attempts to load a different version of the
same EJB, or an EJB that needs a different version of the same interface.
As the dependent classpath is common to all application servers, there is
a clash because we cannot load two different versions of the same class.

We therefore have adopted the practice of temporarily placing the interface
classes on the dependent classpath just while we create the EJB. Then we
remove the interface class from the dependent class path and add it to each
application server classpath as needed.

Loaded by App Server 1 App Server 2 App Server 3

Power loader Servlet Servlet Servlet

EJB loader EJB EJB V2

Interface JAR Interface JAR Interface JAR V2
problem: cannot
co-exist with
other version

JVM loader Helper JAR EJB Client JAR
Problem: cannot
access interface
Chapter 14. Application deployment 649

14.12.8 Summary of JARs and classpaths
We can now summarize the various JAR files that might be produced by a
large-scale development, and the classpaths to which they should be added.

Table 41. JAR files and deployment

We then have three common deployment patterns shown in Table 42.

Table 42. Deployable combinations

From this we can deduce possible deliverable packages from different
development teams.

JAR Type Contents Deployment

EJB JAR EJB implementation, deployment
generated code, Access Beans

Added by EJB creation process

Servlet JAR Servlet code only Copy to Web application
classpath

EJB Client
JAR

EJB interface and stubs, Access
Bean

Add to application server
classpath if EJB not to be run in
Server

Helper JAR Shared implementation classes Add to application server
classpath

Interface JAR Shared EJB interface classes Temporarily added to dependent
classpath at EJB creation time,
then application server
classpaths

EJB and client servlet EJB Server Client

EJB JAR Yes Yes

Servlet JAR Yes Yes

EJB Client JAR Yes

Helper JAR Yes Yes

Interface JAR Yes Yes Yes
650 WebSphere V3.5 Handbook

Chapter 15. WebSphere security

Security is a very important, complex and broad subject. This statement is
true not only in the general sense, but also as it applies to WebSphere
Application Server. Due to space, time and resource considerations, it is
impossible to provide a complete discussion of WebSphere security in this
redbook. Instead, we present some introductory topics needed to establish a
baseline for understanding WebSphere security, followed by a detailed
discussion of a single specific topic selected due to its importance relative to
WebSphere V3.5.

This chapter begins with a short overview of the WebSphere security
architecture and implementation. The overview is followed by a discussion of
what is new in WebSphere Version 3.5. One of the items that is essentially
new with WebSphere V3.5 is certificate-based authentication. This is the item
that is discussed in detail. The discussion includes the use of the IBM
SecureWay Directory as the LDAP server, includes a section on certificate
management and, finally, includes a detailed description of how to specify the
use of certificates to WebSphere.

15.1 Application security

For the purposes of the discussion in this section, the term application means
a collection of Web resources (HTML, images, JSPs, servlets, EJBs, etc.)
that provides some function for a client request. Application security refers to
the policies that support access to those resources by potential users.
Application security does not include such topics as network security
(firewalls), intrusion detection and computer viruses; hence those topics will
not be addressed in this document.

15.1.1 Authentication
Authentication is a component of an application security policy. It is the
process of determining that a user (or process) really is who they say they
are. This is usually done with some sort of user ID/password lookup scheme
or a certificate.

15.1.2 Authorization
Authorization is also a component of an application security policy. It is the
process of determining if a user has rights to use a secured resource in some
way. For example, the right to invoke a method on an EJB or access a
particular HTML page, servlet or JSP.
© Copyright IBM Corp. 2001 651

15.1.3 Delegation
Delegation is another component of an application security policy. It is the
process of forwarding a user’s credentials along with the cascaded
downstream requests that occur within the context of work that the user either
originated or is having performed on his/her behalf.

15.1.4 Trust
Decisions on who or what to trust also help make up an application security
policy. Ultimately, in a security policy, something must be judged to be
trustworthy, be it a user registry that contains user names and passwords or a
Certificate Authority that issues certificates.

15.2 WebSphere security model

The WebSphere security model incorporates all the components of
application security discussed in 15.1, “Application security” on page 651.
Our overview discussion of WebSphere security in this redbook will
concentrate on the authentication and authorization components. For
additional information on these and the other components of the WebSphere
Security Model, see the white paper titled IBM WebSphere Standard and
Advanced Edition, V3.5 Security Overview available on the WebSphere public
Web site:
http://www-4.ibm.com/software/webservers/appserv/whitepapers.html.

15.2.1 WebSphere security architecture
Let us start with the basics. The goal of WebSphere security to is make sure
that only desired users have access to the resources that make up an
application. If we look at Figure 499 on page 653, the bubbles on the right
identify the application resources. The bubble on the top identifies resources
under the control of and served by the Web server. The bubble on the bottom
identifies resources under the control of and served by WebSphere.

15.2.1.1 WebSphere security administration
Before getting into security architecture, it will be good to understand how
security is specified for the application resources. WebSphere supports two
means to define security, the administrative console, and the XMLConfig tool.
Both means support the full range of security specifications. The majority of
the security specifications are kept in the administrative database, with a few
kept in property files.
652 WebSphere V3.5 Handbook

Figure 499. WebSphere security architecture

Security Administration was unified starting with WebSphere V3.0. By unified,
we mean that all the application resources, be they controlled by the Web
server or by WebSphere, can be administered by the same tool using the
same techniques.

The first task when implementing WebSphere security is to define an
enterprise application. An enterprise application is comprised of Web
applications and Enterprise JavaBeans. A Web application is a WebSphere
administrative construct that allows servlets within the same context to be
grouped. Authentication and authorization policies are defined relative to an
Enterprise Application, and apply to the Web applications and EJBs that
make it up.

Even though security policies are specified at the enterprise application level,
user permissions to access a resource are specified at the method level.
Security administration provides for the specification of method groups to
make method level specification easier. The administrator groups methods
based on which methods a user or group of users is allowed to have access.
For instance, a bank has an Account resource that has several query type

Security
Collaborator

Web client

Stand-alone
Java client
or Applet

EJS
EJS

EJS

Application Server

Security Plug-in

HTTP

EJS

Administrative
Server

Web Server

Web server
resources

HTML
Images
CGIs

Access
Control

IIOP

Security
Application

WebSphere
resources

EJBs
Servlets

JSPs

Access
Control
Chapter 15. WebSphere security 653

methods and several update type methods. It also has a user group called
Customers and a user group called Bank Account Executives. An Account
Query method group has been defined that contains all the query type
methods. Similarly, an Account Update method group exists that contains all
the update type methods. Now, a security policy can be defined to allow the
user group Customers access only to the methods contained in the Account
Query method group and allow the user group Bank Account Executives
access to the methods contained in both the Account Query and Account
Update method groups.

15.2.1.2 Security application
As can be seen in Figure 499 on page 653, the security application resides
within the WebSphere Administrative Server. It supports both the
administrative aspects of WebSphere security discussed in 15.2.1.1,
“WebSphere security administration” on page 652 and the runtime aspects.
At runtime, the security application has access to the authentication and
authorization policy information. By providing APIs, it collaborates with the
WebSphere security runtime components to make authentication and
authorization decisions.

15.2.1.3 Security plug-in
The security plug-in, along with the security collaborator, make up the
WebSphere security runtime componentry. As can be seen in Figure 499 on
page 653, the security plug-in is attached to the Web server. Essentially, the
plug-in provides the interface between the Web server and the security
application that has access to the authentication and authorization
information.

15.2.1.4 Security collaborator
The security collaborator, along with the security plug-in, make up the
WebSphere security runtime componentry. As can be seen in Figure 499 on
page 653, the security collaborator is attached to the application servers.
Essentially, the collaborator provides the interface between the application
server and the security application that has access to the authentication and
authorization information.

15.2.1.5 Client types
As can be seen in Figure 499 on page 653, WebSphere supports two types of
clients, the Web (browser) type client and the stand-alone Java application or
applet. The stand-alone Java client can go directly to an EJB under the
control of an application server using the IIOP protocol. Both client types can
take advantage of WebSphere security.
654 WebSphere V3.5 Handbook

15.2.1.6 Security scenario
Now we will examine a more detailed security flow for a request coming from
a browser (Web client) user. In our scenario, the request is for a servlet. The
flow is as follows:

• The request for a servlet comes from the browser user to the Web server.

• The Web server determines that it does not control the servlet, so passes
the request on the application server.

• The application server determines that it controls the servlet and, through
the security collaborator, determines that the servlet is secure.

• The application server flows back a challenge to the browser user. In this
scenario, the challenge is for the user to enter a user ID and password.

• The user enters a valid user ID and password and flows the information
back through the Web server to the application server.

• Using the security collaborator, which in turn works with the security
application, the application server authenticates the user ID and
password.

• Using the security collaborator, the application server determines that the
user is authorized to access the servlet being requested.

• The application server invokes the servlet for the user.

15.2.2 WebSphere security authentication
Authentication is the process of determining if a user is who the user claims
to be. WebSphere security authenticates a user in two steps. First,
authentication data in the form of a user ID and password or a certificate are
obtained for the user. Second, the authentication data is validated against
information contained in a user registry.

15.2.2.1 Authentication types
WebSphere supports four types of authentication:

• None

The user is not challenged. If the resource being requested is secure, then
it is not served for the user.

• Basic

The user is challenged to enter a user ID and password.

• Certificate (X.509 certificate)

A challenge is made for the client to supply a certificate.
Chapter 15. WebSphere security 655

• Custom

Custom is used when there is a desire to supply an HTML form for a
challenge instead of the normal basic challenge.

Figure 500. Authentication types

15.2.2.2 Authentication mechanisms
An authentication mechanism validates the authentication information against
a user registry. WebSphere supports two mechanisms for authentication:

• Local operating system

Authentication is based on the user registry of the underlying operating
system calling native routines to authenticate the given data. Local
operating system supports the basic challenge type.

• Lightweight Third Party Authentication (LTPA)

Authentication is done using a trusted third-party Lightweight Directory
Access Protocol (LDAP) server. LTPA causes a search to be performed
against the LDAP directory. LTPA supports both the basic and certificate
challenge type.
656 WebSphere V3.5 Handbook

Figure 501. Authentication mechanisms

15.2.3 WebSphere security authorization
Authorization was discussed previously in 15.2.1.1, “WebSphere security
administration” on page 652. A user is authorized to access a resource by
having permissions granted. User permissions to access a resource are
specified at the method level. Security administration provides for the
specification of method groups to make method level specification easier. The
administrator groups methods based on which methods a user or group of
users is allowed to have access.

If WebSphere security is to be enabled when running the administrative
server as a non-root user, then the local operating system cannot be used
as the authentication mechanism. You have to use LTPA in connection with
LDAP.

Note
Chapter 15. WebSphere security 657

15.3 What’s new in WebSphere V3.5 security

The underlying WebSphere security architecture and model are virtually
unchanged from V3.02. However, there have been some enhancements in
V3.5 that are of interest:

• Performance has been improved from the previous version. In a
development benchmark, application performance was degraded only
10%-12% with security enabled. While this is only a single data point and
results will certainly vary depending on application characteristics and
security specifications, it does give evidence that security overhead has
been reduced. Two performance enhancements worth mentioning are:

- LTPA/LDAP authentication information is now cached by WebSphere.

- An unnecessary security check was eliminated. The check was being
made by the Web server when the resource was controlled by the
application server.

• Stability has been improved.

• Security specifications are now fully supported by the XMLConfig tool.
See Chapter 21, “XMLConfig” on page 877 for detailed information.

• Certificate-based authentication is now supported.

• To go along with certificate based authentication, a GUI-based key
generation/management tool is provided.

• The Custom login authentication type now supports redirection to the
originally requested resource.

• The “SSOToken” has been deprecated. Now, only the “LTPA Token” is
used to support Single Sign On (SSO).

15.4 Using client certificate based authentication with WebSphere

One of the important improvements in WebSphere V3.5 is the ability to do
certificate-based authentication. In this section we discuss certificates,
technologies related to certificates and provide an example of using
certificates with WebSphere.

Certificate-based authentication requires the specification of LTPA as the
WebSphere authentication mechanism. LTPA provides the means for the
WebSphere Application Server to access an LDAP directory that contains the
authentication information. For our certificate-based authentication example,
we will be using the IBM SecureWay Directory, which is an LDAP conforming
registry.
658 WebSphere V3.5 Handbook

In our example, the following products are used:

• WebSphere V3.5.2 on Windows NT

• IBM HTTP Server V1.3.12 on Windows NT

• IBM SecureWay Directory V3.1.1.5 on AIX

• DB2 Enterprise Edition V6.1 Fix Pak 4 on Windows NT for WebSphere

• DB2 Enterprise Edition V6.1 Fix Pak 4 on AIX for IBM SecureWay
Directory

• Microsoft Internet Explorer V5

Our example assumes that WebSphere, IBM HTTP Server, DB2 (on both
Windows NT and AIX) and Internet Explorer have all been previously
installed. It also assumes that the default server and Web application are
available in WebSphere (that is, Configure default server and Web
application was selected during WebSphere installation).

15.4.1 Web client security flow with certificates
We start our discussion with a scenario that describes the flow of
certificate-based authentication in a WebSphere environment. The basic flow
is shown graphically in Figure 502 on page 660 and is as follows:

1. The request for the IncServlet servlet comes from the browser user to the
Web server.

2. The Web server determines that it does not control the servlet, so passes
the request on to the application server.

3. The application server determines that it controls the servlet and, through
the security collaborator, determines that the servlet is secure.

4. The application server, through the security collaborator, determines that
certificates are to be used for the challenge type.

5. The application server flows back a challenge to the browser. In this
scenario, the challenge is for the browser to return a certificate.

6. The browser recognizes the request and returns the certificate. The
certificate flows back through the Web server to the application server.

7. Using the security collaborator, which in turn works with the security
application, the application server authenticates the certificate. The LTPA
server component of the security application works with the LDAP server
to perform a credential mapping of the certificate to the contents of the
LDAP directory.
Chapter 15. WebSphere security 659

8. Using the security collaborator, the application server determines that the
user is authorized to access the servlet being requested.

9. The application server invokes the servlet for the user.

Figure 502. WebSphere security flow using client certificates

15.4.2 Using IBM SecureWay Directory
IBM SecureWay Directory is an LDAP conforming directory and will be used
to support WebSphere authentication in our example.

15.4.2.1 Installing IBM SecureWay Directory
This section will guide you through the steps required to install the IBM
SecureWay Directory Server V3.1.1.5 for AIX. Installation will be done from a
downloaded TAR file using SMIT.

1. Log in to AIX as user root and start an AIX terminal session.

2. Make the directory containing the SecureWay Directory TAR file current. In
our example, cd /downloads/IBMDirectory.

3. Untar the file. In our example, tar -xvf ldap3115aix.tar.

4. Invoke SMIT by entering smit install_all.

Web client

EJS

EJS

Application
Server

Security Plug-in

EJS

Administrative
Server

Web Server

Security
Application LTPA Server

Servlet Engine

IncServlet

1
6

5

2

5

6

Security
Collaborator

WebSphere
Repository

8743

LDAP
Server

7

9

660 WebSphere V3.5 Handbook

5. In the INPUT device/directory for software entry field, type the directory
containing the SecureWay Directory filesets and click OK. In our example
the directory entered would be /downloads/IBMDirectory.

6. Click the List button associated with the SOFTWARE to install entry field.

7. In the resulting list, select (click) the following:

- gskrf301

- gskru301

- ldap.client

- ldap.html.en_US

- ldap.max_crypto_client

- ldap.max_crypto_server

- ldap.msg.en_US

- ldap.server

8. When selection from the list is complete, click OK.

9. Now, back in the Install and Update from ALL Available Software window,
click OK. Then, click OK in response to ARE YOU SURE?

10.Check the installation summary at the end of the output to verify
successful installation.

15.4.2.2 Configuring IBM SecureWay Directory
This section provides instructions for configuring IBM SecureWay Directory.
We will start by running a configuration utility.

1. Log in to AIX as user root and start an AIX terminal session.

2. To start the configuration utility, type ldapxcfg and press Enter.

If the installation of the ldap.server.xxx filesets fails and the installation of
the ldap.max_crypto_server.xxx filesets is cancelled with a series of
messages similar to:

• sysck: 3001-037 The name ldap is not a known user for file

• sysck: 3001-003 A value must be specified for owner for entry ...

Just try re-installing the ldap.server.xxx and ldap.max_crypto_server.xxx
filesets.

Note
Chapter 15. WebSphere security 661

3. The IBM SecureWay Directory Configuration window appears. Select all
three configuration choices listed below and click Next.

- Set the directory administrator name and password.

- Create the directory DB2 database.

- Configure a Web server for directory administration.

4. To set the directory administrator name and password, type the
administrator Distinguished Name (DN) or accept the default (cn=root).
Then, type the password and re-type to confirm. Click Next. In our case,
we will accept the default DN as cn=root.

5. To create the directory DB2 database:

- Select to either create the default LDAPDB2 database or to use your
own. Click Next. In our case, we choose to create the default LDAPDB2
database.

- If prompted for the default DB2 database code page, select either
Create the default DB2 database or Create the default UCS-2 DB2
database (UTF-8). Click Next. In our case, we selected Create the
default DB2 database.

- To specify the location for the directory, type the directory path or
accept the default(/home/ldapdb2). Click Next. On our case, we
accepted the default.

6. To configure the Web server for directory administration:

- Select the Web server you want to use for directory administration.
Click Next. In our case, we selected the IBM HTTP Web server. All
subsequent steps for Web server configuration are those for the IBM
HTTP Web server.

- Enter the full path name of the Web server configuration file. For IBM
HTTP Server V1.3.12, type /usr/HTTPServer/conf/httpd.conf. Click
Next.

7. The Configuration Summary is displayed. Review the summary, then click
Configure.

8. On the Directory configuration complete window, check for successful
completion, then click OK.

9. Restart the configured Web server. For the IBM HTTP Server, type the
following:

cd /usr/HTTPServer/bin

./apachectl restart
662 WebSphere V3.5 Handbook

15.4.2.3 Populating IBM SecureWay Directory
This section provides instructions for starting the SecureWay Directory
administration server, creating an initial suffix and adding entries into the
directory.

To start the administration server:

1. Start the SecureWay Directory Administration GUI by going to a Web
browser and entering URL: http://<hostname>/ldap, where hostname is the
host name of the machine where the directory is installed.

2. The SecureWay Directory Administration logon window appears. Enter
the administrator name as the user ID and the administrator password.
Click Logon. In our case, enter cn=root along with the password.

3. In the left navigation frame, expand the Server folder and select
Startup/Shutdown. Then, click the Startup button.

4. Wait until the The directory server is starting... message changes to
The directory server is running.... This may take several minutes.

A suffix specifies the Distinguished Name (DN) for the root of a directory in
the local database and must be defined before adding user entries. To define
a suffix:

1. Make sure the administration server is running.

2. In the left navigation frame, expand the Suffixes folder and click Add a
suffix.

3. Type the DN to be used as the suffix. Click the Add a new suffix button.
In our case, type o=ibm, c=us as the DN as shown in Figure 503 on page
664.

4. Once the suffix has been successfully added, the administrative server
must be restarted. From the left navigation frame, select
Server->Startup/Shutdown->Shutdown.

5. After the server was successfully shut down message appears, click the
Startup button to restart the server. Then, wait for the directory server

is running... message.
Chapter 15. WebSphere security 663

Figure 503. IBM SecureWay Directory Administration GUI - adding a new suffix

There are two methods of adding entries to the directory database:

• An LDIF (LDAP Data Interchange Format) data file using the administrator
GUI.

• The Directory Management Tool (DMT).

LDIF is a standard format for representing LDAP entries in text form and is
used to import entries into the database. The DMT provides a GUI to add
entries to the database. In our case, we will be using the LDIF method.

To make testing of WebSphere certificate-based authentication a little easier,
we will create two users in our directory database. One user will eventually be
granted permission to access secure resources, the other will not (see
15.4.5.6, “Configuring security permissions” on page 743). The LDIF file that
will be used to create the two users is named itsocert.ldif with contents as
shown in Figure 505 on page 666. To import the file do the following:

1. Make sure the administrative server is running.

2. In the left navigation frame, select Database->Add entries.

3. Type the path and file name of the LDIF file and click Add entries to
database. In our case, the file name is /usr/ldap/examples/itsocert.ldif.
664 WebSphere V3.5 Handbook

Figure 504. IBM SecureWay Directory Administration GUI - adding new entries via LDIF

4. Wait for a message to appear in Progress Messages that indicates four
entries have been successfully added out of four attempts.
Chapter 15. WebSphere security 665

Figure 505. IBM SecureWay Directory - sample itsocert.ldif file

A sample LDIF file named sample.ldif is shipped with the SecureWay
Directory product. If you choose to use the sample file, note the following:

• The contents of the sample file as shipped will not work with WebSphere
V3.5. WebSphere requires the LDAP attribute uid, which is not used in the
sample entries.

• The sample file expects the o=ibm, c=us suffix to be already defined.

SecureWay Directory itsocert LDIF file
#
The suffix "o=IBM, c=US" should be defined before attempting to
load this data.

version: 1

dn: o=IBM, c=US
objectclass: top
objectclass: organization
o: IBM

dn: ou=Raleigh, o=IBM, c=US
ou: Raleigh
objectclass: organizationalUnit

dn: cn=Mary Burnnet, ou=Raleigh, o=IBM, c=US
objectclass: inetOrgPerson
objectclass: organizationalPerson
objectclass: person
objectclass: ePerson
cn: Mary Burnnet
sn: Burnnet
uid: MBurnnet

dn: cn=Bob Garcia, ou=Raleigh, o=IBM, c=US
objectclass: inetOrgPerson
objectclass: organizationalPerson
objectclass: person
objectclass: ePerson
cn: Bob Garcia
sn: Garcia
uid: BGarcia
666 WebSphere V3.5 Handbook

The DMT tool can be used to verify that the contents of the itsocert.ldif file
were imported successfully. To use the DMT tool, do the following:

1. From the AIX terminal command line, type the following and press Enter:

dmt

2. When the introductory DMT panel appears, from the left navigation frame
select Tree->Browse tree.

3. In the Browse directory tree frame, expand o=ibm,c=us.

4. In the Browse directory tree frame, expand ou=Raleigh. The result of the
expanded tree is shown in Figure 506.

5. At this point, DMT can be used to view, edit, add and delete entries.

Figure 506. IBM SecureWay Directory Management Tool (DMT) - Browse directory tree

15.4.3 Managing certificates
In our example, we are going to be using certificates for two purposes: first, to
allow an SSL connection to be established between the browser client and
the Web server and second to support WebSphere authentication of the
browser client. We are going to be dealing with a signer certificate from a
Chapter 15. WebSphere security 667

trusted Certificate Authority (CA), a personal certificate that identifies the
server, and a personal certificate that identifies the client.

A key database file located on the WebSphere server machine is created and
holds the certificates needed by the server. The server needs:

• The signer certificate of the trusted CA.

• A server certificate signed by the trusted CA.

• A client certificate signed by the trusted CA.

The browser security specifications will also need to be updated to contain
the signer certificate of the trusted CA and the client certificate.

WebSphere provides two means to manage certificates:

• A graphical tool called iKeyman, the IBM Key Management tool.

• A package of Java command-line tools, com.ibm.cfwk.tools (CFWK tools).

The CFWK tools support scripting of certificate management, which is useful
for administrators who do a lot of this work or who want to automate the work.
The iKeyman tool is much easier to use for small tasks, so that is what we will
be using for our example.

In our example, we will be using a Windows NT machine for both WebSphere
and the IBM HTTP Server.

15.4.3.1 Create a key database for the server
We will create the key database file using the iKeyman tool. To use the
iKeyman tool, you must put the necessary files at the front of your classpath.
Three of the files, gsk4cls.jar, cfwk.zip and cfwk.sec, are included as part of
WebSphere (in the AppServer/lib directory). The fourth, swingall.jar, is part of
Java itself. For example, on Windows NT, set the CLASSPATH variable as
shown:

set classpath=<WS-install>\AppServer\lib\cfwk.zip;

<WS-install>\AppServer\lib\gsk4cls.jar;

<JdkDir>\lib\swingall.jar;

<WS-install>\AppServer\lib;%CLASSPATH%

To start the iKeyman tool, use this command:

java -Dkeyman.javaOnly=true com.ibm.gsk.ikeyman.Ikeyman
668 WebSphere V3.5 Handbook

A sample Windows NT .bat file used for invoking iKeyman is shown in Figure
507.

Figure 507. Sample .bat file for invoking the iKeyman tool

To create the key database file, do the following:

1. Create a working directory in the Windows NT machine to be used during
certificate creation and management (in our example F:\ServerCerts). If
you choose to use a .bat file to invoke iKeyman, copy it into the newly
created directory.

2. Invoke iKeyman.

@echo off

SET WAS_HOME=F:\WebSphere\AppServer
SET JAVA_HOME=F:\WebSphere\AppServer\jdk

set
PATH=%JAVA_HOME%\bin;%JAVA_HOME%\jre\bin;%JAVA_HOME%\jre\bin\classic;%P
ATH%
set CLASSPATH=%WAS_HOME%\lib\swingall.jar;%CLASSPATH%
set
CLASSPATH=%WAS_HOME%\lib\cfwk.zip;%WAS_HOME%\lib\gsk4cls.jar;%CLASSPATH
%

%JAVA_HOME%\bin\java -Dkeyman.javaOnly=true com.ibm.gsk.ikeyman.Ikeyman
Chapter 15. WebSphere security 669

Figure 508. iKeyman initial panel

From the menu bar, select Key Database File->New....
670 WebSphere V3.5 Handbook

Figure 509. Creating a new key database #1

In the New window:

• Keep the Key database type as CMS key database file.

• Type a file name for the key database (in our case, Serverkey.kdb).

• Make the Location the working directory (in our case, F:\ServerCerts\).

• Click OK.

Figure 510. Creating a new key database #2
Chapter 15. WebSphere security 671

3. In the Password Prompt window:

• Type a password and confirm the password used to access the key
database. In our case, the password used was WebAS.

• Check the Stash the password to a file? box.

• Click OK.

Figure 511. Password Prompt window

• In the Information window, click OK.

Figure 512. Information window

The key database has now been created.
672 WebSphere V3.5 Handbook

Figure 513. The key database has been created

15.4.3.2 Obtain a signer certificate of a trusted CA
When iKeyman creates a key database, it automatically includes signer
certificates from some well-known CAs. You can view the list of CAs by
selecting signer certificates from the drop-down list in the Key database
content area of the main iKeyman window.

Since we were unable to find a free and easy way to obtain test client and
server certificates from these CAs, we choose to use another CA. So, the first
thing to do is obtain a new signer certificate.

Certificates will be obtained using a set of Web-based services provided by
MicroSoft. To obtain a new CA signer certificate do the following:

1. From a browser, go to URL http://marting.develop.com/certsrv/. In our
case, we are using Microsoft Internet Explorer.

2. From the Welcome page, select Retrieve the CA certificate or
certificate revocation list and click Next.
Chapter 15. WebSphere security 673

Figure 514. Retrieve the CA certificate

3. Select Base 64 encoded.

4. Click Download CA certificate.
674 WebSphere V3.5 Handbook

Figure 515. Download CA certificate

5. In the File Download window, make sure that Save this file to disk is
selected, then click OK.

6. Specify a directory to save in and a file name. Then click Save. In our case
the directory is ServerCerts and file name is CAcertnew.cer.
Chapter 15. WebSphere security 675

Figure 516. Save CA certificate

Now, add the CA certificate to the key database. Using iKeyman, do the
following:

1. From the main iKeyman window, select signer certificates from the
drop-down list in the Key database content area.

2. Click the Add... button.
676 WebSphere V3.5 Handbook

Figure 517. Add a signer certificate

3. In the Add CA’s Certificate from a File window:

• Leave the Data type as Base64-encoded ASCII data.

• Type the Certificate file name. In our case, the name is CAcertnew.cer.

• Type the Location. In our case, it is f:\ServerCerts\.

• Click OK.
Chapter 15. WebSphere security 677

Figure 518. Add CA’s Certificate from a File

4. In the Enter a Label window, type the name to be used to identify the
certificate as it is listed in iKeyman. In our case, the label is MS Test CA.

Figure 519. Enter a label for the certificate

The iKeyman main window with signer certificates selected should now
include the MS Test CA in the certificate list as shown in Figure 520 on page
679.
678 WebSphere V3.5 Handbook

Figure 520. iKeyman - signer certificates list

15.4.3.3 Obtain a server certificate
The first step to obtaining a server certificate is to create a certificate request
using iKeyman. That request will then be sent on to the Web-based certificate
services, which will return a server certificate signed by our new CA. To
create the certificate request, do the following:

1. From the main iKeyman window, select personal certificate requests from
the drop-down list in the Key database content area.
Chapter 15. WebSphere security 679

Figure 521. Select personal certificate requests

2. Click New....
680 WebSphere V3.5 Handbook

Figure 522. Create new personal certificate requests

3. In the Create New Key and Certificate Request window, enter the
appropriate values and click OK. In our case, we are using the following
values:

• For Key Label - Server. The Key Label is used to identify the certificate in
an iKeyman list.

• For Key Size - 1024.

• For Common Name - kenueno.itso.ral.ibm.com. The common name is the
host name of the server.

• For Organization - ibm.

• For Organization Unit - Raleigh.

• For Country - US.

• For the name of a file in which to store the certificate request -
F:\ServerCerts\certreq.arm.
Chapter 15. WebSphere security 681

Figure 523. iKeyman - create a request for a new certificate

4. Click OK in the Information window.

The Web-based services will now be used to obtain the server certificate. To
obtain a new server certificate do the following:

1. From a browser, go to URL http://marting.develop.com/certsrv/. In our
case, we are using Microsoft Internet Explorer.

2. From the Welcome page, select Request a certificate and click Next.
682 WebSphere V3.5 Handbook

Figure 524. Request a certificate

3. Select Advanced request and click Next.
Chapter 15. WebSphere security 683

Figure 525. Advanced request

4. Select Submit a certificate request using a base64 encoded PKCS #10
file... and click Next.
684 WebSphere V3.5 Handbook

Figure 526. Submit a certificate request using a base 64 encoded PCKS #10 file

5. From a Windows NT DOS prompt window, use Notepad to edit the newly
created certificate request file (certreq.arm). Use the Notepad edit
functions to copy the entire contents of the file to the clipboard.

Figure 527. Copy the entire contents of the cretificate request file
Chapter 15. WebSphere security 685

6. Back in the certificate services page, paste the clipboard contents into the
Saved Request edit box. The results should look something like those
shown in Figure 528.

Figure 528. Microsoft Certificate Services - submit a request for a new certificate

7. Click the Submit button.

8. In the Certificate Issued page, select Base 64 encoded then click
Download CA certificate.
686 WebSphere V3.5 Handbook

Figure 529. Download CA cerftificate

9. In the File Download window, make sure that Save this file to disk is
selected, then click OK.

10.Specify a directory to save in and a file name, then click Save. In our case
the directory is ServerCerts and file name is Srvcertnew.cer.

Now, iKeyman will be used to receive the newly obtained server certificate
into the server key database. To receive the certificate, do the following:

1. From the main iKeyman window, select personal certificates from the
drop-down list in the Key database content area.

2. Click Receive....
Chapter 15. WebSphere security 687

Figure 530. Receive a new personal certificate

3. In the Receive Certificate from File window:

• Leave the data type as Base64-encoded ASCII data.

• Type the Certificate file name. In our case, the name is Srvcertnew.cer.

• Type the Location. In our case, it is f:\ServerCerts\.

• Click OK.

Figure 531. Receive Certificate from a File window
688 WebSphere V3.5 Handbook

4. You should now see a single entry in the Personal Certificates list called
Server.

Figure 532. The server’s certificate in the Personal Certificates list

15.4.3.4 Obtain a client certificate
The client certificate will be obtained using the same basic process that was
used to obtain the server certificate. To obtain the client certificate, do the
following:

1. From the main iKeyman window, select personal certificate requests from
the drop-down list in the Key database content area.

2. Click New....
Chapter 15. WebSphere security 689

Figure 533. Create a new personal certificate request

3. In the Create New Key and Certificate Request window, enter the
appropriate values and click OK. In our case, we are using the following
values:

• For Key Label - Bob Garcia. The Key Label is used to identify the
certificate in an iKeyman list.

• For Key Size - 1024.

• For Common Name - Bob Garcia. The common name must match that of
the LDAP user entry. See “Using Certificate Mapping Filters” on page 734
for detailed information.

• For Organization - ibm.

• For Organization Unit - Raleigh.

• For Country - US.
690 WebSphere V3.5 Handbook

• For the name of a file in which to store the certificate request -
F:\ServerCerts\certreq.arm.

Figure 534. Create New Key and Certificate Request

4. Click OK on the Information window.

The Web-based services will now be used to obtain the client certificate. To
obtain a new client certificate do the following:

1. From a browser, go to URL http://marting.develop.com/certsrv/. In our
case, we are using Microsoft Internet Explorer.

2. From the Welcome page, select Request a certificate and click Next.

3. Select Advanced request and click Next.

4. Select Submit a certificate request using a base64 encoded PKCS #10
file... and click Next.

5. From a Windows NT DOS prompt window, use Notepad to edit the newly
created certificate request file (certreq.arm). Use the Notepad edit
functions to copy the entire contents of the file to the clipboard.

6. Back in the certificate services page, paste the clipboard contents into the
Saved Request edit box.

7. Click the Submit button.
Chapter 15. WebSphere security 691

8. In the Certificate Issued page, select Base 64 encoded then click
Download CA certificate.

9. In the File Download window, make sure that Save this file to disk is
selected, then click OK.

10.Specify a directory to save in and a file name, then click Save. In our case
the directory is ServerCerts and file name is BGcertnew.cer.

Now, iKeyman will be used to receive the newly obtained Bob Garcia client
certificate into the server key database. To receive the certificate, do the
following:

1. From the main iKeyman window, select personal certificates from the
drop-down list in the Key database content area.

2. Click Receive....

Figure 535. Receive a new Personal Certificate
692 WebSphere V3.5 Handbook

3. In the Receive Certificate from File window:

• Leave the data type as Base64-encoded ASCII data.

• Type the Certificate file name. In our case, the name is BGcertnew.cer.

• Type the Location. In our case, it is f:\ServerCerts\.

• Click OK.

Figure 536. Receive Certificate from a File

• Click No in the Confirm window. Do not set this as the default type for the
key database.

Figure 537. Confirm window

4. You should now see two entries in the Personal Certificates list, one for the
server and one for Bob Garcia.
Chapter 15. WebSphere security 693

Figure 538. The new client certificate in the Personal Certificates list

15.4.3.5 Update the browser for certificate authentication
The CA signer certificate and the Bob Garcia client certificate need to be
imported into the Web browser. In our case, the browser will be located on the
same machine as WebSphere, so the certificate files we need to import are
already local. We will be using Internet Explorer (IE) V5 in our example.

To import the CA signer certificate into the browser, do the following:

1. From the IE menu bar, select Tools ->Internet Options....

2. Click the Content tab.

3. Click the Certificates button.
694 WebSphere V3.5 Handbook

Figure 539. Internet Options in Internet Explorer

4. Click the Import... button.
Chapter 15. WebSphere security 695

Figure 540. Import the CA signer certificate

5. In the Certificate Manager Import Wizard, click Next.

6. Type or browse for the file to import and click Next. The file to import is the
CA signer certificate. In our case the file name is
F:\ServerCerts\CAcertnew.cer.
696 WebSphere V3.5 Handbook

Figure 541. Select File to Import

7. In the Select a Certificate Store window, select Place all certificates into
the following store.
Chapter 15. WebSphere security 697

Figure 542. Select a Certificate Store

Then, click the Browse... button, select Trusted Root Certificate
Authorities and click OK.

Figure 543. Select a Certificate Store for the Trusted Root Certification Authorities
698 WebSphere V3.5 Handbook

Back in the Select a Certificate Store window, you will see that the
certificate which you will store will be considered one from a trusted root
Certification Authority. Then click Next.

Figure 544. Select a Certificate Store

8. On the Completing the Certificate Manager Import Wizard window, click
Finish.
Chapter 15. WebSphere security 699

Figure 545. Completing the Certificate Manager Import Wizard

9. Click Yes to the Do you want to ADD the following certificate to the Root
Store question.

Figure 546. Adding the certificate to the Root Store

10.Click OK to The import was successful message.
700 WebSphere V3.5 Handbook

11.Back in the Certificate Manager main window, make sure the Trusted Root
Certification Authorities tab is active, then scroll down to the
marting.develop.com entry. That is the newly imported certificate. You
should see something similar to what is shown in Figure 547.

Figure 547. Microsoft IE Certificate Manager - Trusted Root CA list

To import the Bob Garcia client certificate into the browser, we first need to
export it from iKeyman into a form that is acceptable to IE. IE does not directly
accept the BGcertnew.cer created from the Web-based certificate services.
To export the certificate in an acceptable form, do the following:

1. From the main iKeyman window, select personal certificates from the
drop-down list in the Key database content area.

2. Select Bob Garcia from the certificate list and click Export/Import....
Chapter 15. WebSphere security 701

Figure 548. Select the client certificate to export

3. In the Export/Import Key window, do the following:

• Leave the Action Type as Export Key.

• Leave the Key file type as PKCS12 file.

• Type the file name of the resulting exported file, keeping the file type of
p12. In our case, the name is BGcertnew.p12.

• Type the Location. In our case, it is f:\ServerCerts\.

• Click OK.
702 WebSphere V3.5 Handbook

Figure 549. Export/Import Key

4. In the Password Prompt window, type and confirm a password for the
exported file and click OK.

Figure 550. Password Prompt window

5. In the Select Encryption Type window, leave the selection as Strong and
click OK.
Chapter 15. WebSphere security 703

Figure 551. Select Encryption Type

To import the Bob Garcia client certificate into the browser, do the following:

1. From the IE menu bar, select Tools -> Internet Options....

2. Click the Content tab.

3. Click the Certificates button.

4. Click the Import... button.

5. In the Certificate Manger Import Wizard, click Next.

6. Type or browse for the file to import and click Next. The file to import is the
file just exported from iKeyman. In our case the File name is
F:\ServerCerts\BGcertnew.p12.
704 WebSphere V3.5 Handbook

Figure 552. Select File to Import

7. In the Password Protection for Private Keys window, enter the password
for the file to import and click Next.
Chapter 15. WebSphere security 705

Figure 553. Password Protection for Private Keys

8. In the Select a Certificate Store window, select Place all certificates into
the following store.
706 WebSphere V3.5 Handbook

Figure 554. Select a Certificate Store

Then click the Browse... button, select Personal and click OK.

Figure 555. Select a certificate store for the Personal certificate
Chapter 15. WebSphere security 707

Then back in the Select a Certificate Store window, click Next.

Figure 556. Select a Certificate Store

9. In the Certificate Manager Import Wizard window, click Finish.

10.Click OK to The import was successful message.

Back in the Certificate Manager main window, make sure the Personal tab is
active. There should be an entry in the list for Bob Garcia. We have now
completed the process for creation of our user Bob Garcia certificate.
708 WebSphere V3.5 Handbook

Figure 557. The client certificate in the IE

For testing purposes you may want to create a second client certificate to
match the user Mary Burnnet entry in our LDAP directory. Follow the same
process used to create and deploy the user Bob Garcia certificate.

15.4.4 Configuring the IBM HTTP Server to support HTTPS
An SSL link must be established in order for the browser and server to
exchange certificates. The IBM HTTP server must be configured to allow SSL
communications.

To enable SSL for the IBM HTTP Server (IHS), do the following:

1. Make sure that the IBM HTTP Server and the IBM HTTP Administration
Server are running.

2. Also make sure that the IHS Administration user ID and password have
been set. If not, use the HTPASSWD utility shipped with the product to set
the ID and password.
Chapter 15. WebSphere security 709

3. Using a browser, access the IHS welcome page by specifying
http://hostname as the URL and substitute the host name of your machine.
In our case, the URL is http://localhost.

Figure 558. IBM HTTP Server (IHS) welcome page

4. Click Configure server. Then, type the IHS Administration user name
(user ID) and password and click OK. You should come up in the IHS
Administration GUI. Be patient. It may take several seconds for the left
navigation frame to appear.
710 WebSphere V3.5 Handbook

Figure 559. IHS - authorization for server configuration

5. To configure the security module:

• In the left navigation frame, expand Basic Settings.
Chapter 15. WebSphere security 711

Figure 560. IHS - selecting the Module Sequence function

• Select Module Sequence.
712 WebSphere V3.5 Handbook

Figure 561. IHS - adding a module to the module sequence

• Make sure the Scope is GLOBAL. If the value to the right of the Scope:
button is not <GLOBAL>, click the button and select <GLOBAL>.

• In the Module Sequence frame, click the Add button.

• Select Select a module to add: and open the drop-down list. Scroll to
near the bottom of the list and select ibm_ssl (IBMModuleSSL128.ddl).
The Module DLL will be placed to the right.
Chapter 15. WebSphere security 713

Figure 562. IHS - selecting a module to add to the module sequence

• Click the Apply button.
714 WebSphere V3.5 Handbook

Figure 563. IHS - Apply button for adding to the module sequence

• Click the Close button.
Chapter 15. WebSphere security 715

Figure 564. IHS - Close button for adding to the module sequence

• Click the Submit button.
716 WebSphere V3.5 Handbook

Figure 565. IHS - Submit button for adding to the module sequence

6. To set up the secure host IP and an additional port for the secure server,
do the following:

• In the left navigation frame, under Basic Settings, select Advanced
Properties. Then, make sure the Scope is GLOBAL.

• Click the Add button for the Specify additional ports and IP addresses
field. Leave the IP address field empty and enter 443 in the port field.
Chapter 15. WebSphere security 717

Figure 566. IHS - adding the SSL port
718 WebSphere V3.5 Handbook

Figure 567. IHS - Apply button for adding the SSL port

• Click the Apply button. Click the Close button. Click the Submit button.
Chapter 15. WebSphere security 719

Figure 568. IHS - Submit button for adding the SSL port

7. To set up the virtual host structure for the secure server, do the following:

• In the left navigation frame, expand Configuration Structure.

• Select Create Scope. Then, make sure the Scope is GLOBAL. In this
case, <Global> in the tree structure in the right panel should be
highlighted.

• Select VirtualHost in the Select a valid scope to insert within the scope
selected in the right panel field.
720 WebSphere V3.5 Handbook

Figure 569. IHS - creating a virtual host

• Type the virtual host IP address or fully qualified domain name. In our
case, the value is kenueno.itso.ral.ibm.com.

• Type the virtual host port value as 443.

• Type the server name. In our case, the name is kenueno.itso.ral.ibm.com.

• Leave the alternate name(s) for host blank.

• Click the Submit button.
Chapter 15. WebSphere security 721

Figure 570. IHS - virtual host specification values

8. To set up the virtual host document root for the secure server, do the
following:

• In the left navigation frame, under Basic Settings, select Core Settings.

• Make sure the Scope is set to the virtualhost you are now working with. In
our case, click the Scope button, then select <VirtualHost
kenueno.itso.ral.ibm.com:443>.

• Type the Server name as a fully qualified domain name. In our case, the
name is kenueno.itso.ral.ibm.com.

• Type the Document root directory name. In our case, the name is f:\IBM
HTTP Server\htdocs.

• Click the Submit button.
722 WebSphere V3.5 Handbook

Figure 571. IHS - setting the virtual host document root

9. To set the keyfile and the SSL timeout values for the secure server, do the
following:

• In the left navigation frame, expand Security.

• Select Server Security. Make sure the Scope is GLOBAL.

• Select No for Enable SSL. This will disable SSL globally, but we will soon
enable SSL for the virtual host we are working with.

• Type the path and file name for the keyfile. In our case, the value is
f:\ServerCerts\Serverkey.kdb.

• Type a Timeout value for SSL Version 2 session IDs (100 secs).

• Type a Timeout value for SSL Version 3 session IDs (1000 secs).

• Click the Submit button.
Chapter 15. WebSphere security 723

Figure 572. IHS - setting Global security values

10.To enable SSL and set the mode of operation of client authorization for the
virtual host, do the following:

• In the left navigation frame, under Security, select Host Authorization.

• Make sure the Scope is set to the virtual host you are working with. To do
this, click the Scope button and select the virtual host. In our case, the
Scope is <VirtualHost kenueno.itso.ral.ibm.com:443>.

• Select Yes for Enable SSL.

• Select Required for the mode of client authentication to be used. This will
require a certificate exchange to be made between the browser and the
Web server.

• Click the Submit button.
724 WebSphere V3.5 Handbook

Figure 573. IHS - setting security values for the virtual host

11.Restart the server.

In some cases there may be a problem loading modules on the restart after
the IHS configuration changes have been made on Windows NT. You may
see the following messages:

Could not start the IBM HTTP Server service on \\...
Error 1067. The process terminated unexpectedly.

You can try to circumvent the problem by commenting out the following line
in the IHS httpd.conf file:

ClearModuleList

Note
Chapter 15. WebSphere security 725

15.4.5 Securing a WebSphere application using certificates
The final step in our installation/configuration process is to specify security for
the WebSphere application. We will do this by using the WebSphere
Administrative Console. A brief overview of security administration concepts
can be found in 15.2.1.1, “WebSphere security administration” on page 652.

In 15.4.3, “Managing certificates” on page 667, we created certificates for
users Bob Garcia and, optionally, Mary Burnnet. In this chapter we will secure
the showCfg servlet and allow it to be accessed by user Bob Garcia, but not
by user Mary Burnnet.

15.4.5.1 Defining an enterprise application
The enterprise application will be defined to contain only the Web application
that contains the showCfg servlet. To define the enterprise application, do the
following:

1. Make sure that the WebSphere Administrative Server and Administrative
Console are up and running.

2. Using the administrative console, on the main menu bar, select Wizards
-> Create Enterprise Application.

Figure 574. WebSphere Administrative Console - creating an enterprise application
726 WebSphere V3.5 Handbook

3. On the Application Details window, enter the application name as
MyEnterpriseApp and click Next.

Figure 575. WebSphere Administrative Console - entering the enterprise application name

4. On the Application Resources window, expand the Web Applications
folder, select examples (the showCfg servlet is in the examples Web
application) and click Add.
Chapter 15. WebSphere security 727

Figure 576. WebSphere Administrative Console - adding resources to an enterprise application

5. After this completes successfully, click Next. Click Finish.

Figure 577. WebSphere Administrative Console - Finish button for adding a resource
728 WebSphere V3.5 Handbook

6. Click OK when you get the Command “Application create” completed

successfully message.

15.4.5.2 Configuring Global Settings
The Global Setting will be set to use certificate-based authentication. To
specify the Global Settings, do the following:

1. Using the administrative console, on the main menu bar, select Wizards
-> Configure Global Settings.

Figure 578. WebSphere security - configuring global settings

2. Make sure the General tab page is active and check the Enable Security
box.
Chapter 15. WebSphere security 729

Figure 579. WebSphere security - global settings General page

3. Click the Application Defaults tab and specify the following:

• Leave the Realm Name as Default.

• Select Certificate as the Challenge Type.

• Check the Use SSL to connect client and Web server box.
730 WebSphere V3.5 Handbook

Figure 580. WebSphere security - global settings Application Defaults page

4. Click the Authentication Mechanism tab and specify the following:

• Select Lightweight Third Party Authentication (LTPA) as the
authentication mechanism.

Note that when Lightweight Third Party Authentication (LTPA) is selected,
the Generate Keys button becomes active. You can use the Generate Keys
button to cause new LTPA keys to be generated. These keys are used to
encrypt data passed between the client and server. Due to the possibility
of offline attacks where the data may fall into the hands of the attacker, it is
recommended that new key generation be performed periodically. When
the Generate Keys button is clicked, you will be prompted to enter an
LTPA password. The password you supply will be used by the underlying
key generation mechanism.

• Check the Enable Single Sign On (SSO) box.

SSO is limited to a single domain. In the Domain field, type in the name of
the domain in which SSO will be enabled. In our case, the name is
itso.ral.ibm.com.
Chapter 15. WebSphere security 731

Figure 581. WebSphere security - global settings Authentication Mechanism page

5. Click the User Registry tab and specify the following:

• For the security server ID, specify the directory administrator name used
when configuring the LDAP directory in 15.4.2.2, “Configuring IBM
SecureWay Directory” on page 661. In our case, the ID is cn=root. After
enabling WebSphere security, you will need to use this ID and its
associated password the next time you start up the administrative console.

• For the security server password, type the password for the security server
ID.

• For the directory type, specify SecureWay. Note that during subsequent
security operations or specifications, WebSphere may automatically
change this value to Custom. This change does not appear to affect the
function of WebSphere security at runtime.

• For the host, specify the machine name where the IBM SecureWay
Directory is installed. In our case, the name is rs600012.

• For the port, specify 389.

• For the base distinguished name, specify o=ibm, c=US.

The example User Registry specifications are shown in Figure 582.
732 WebSphere V3.5 Handbook

Figure 582. WebSphere security - User Registry specification

6. Click Finish.

Note that the first time you configure WebSphere security to use LTPA as
the authentication mechanism, after you click Finish, you will be prompted
to enter an LTPA password. The value you enter here will be used by
WebSphere to automatically generate encryption keys. The value used in
our example was WebAS.

7. Then click OK.

Figure 583. WebSphere security - LTPA password for encryption key generation

8. Click OK when you get the Changes will not take effect until the server

is restarted message.
Chapter 15. WebSphere security 733

9. Exit the administrative console. Stop, then restart the administrative
server.

10.Restart the administrative console. In the Login at the Target Server
window, type the security server ID and password. Click OK. In our case
the ID is cn=root.

Figure 584. WebSphere Administrative Console - login after security enabled

Using Certificate Mapping Filters
In our example, we want authentication to succeed if the Distinguished Name
value in the client certificate exactly matches a Distinguished Name in the
LDAP registry. This is the default Certificate Mapping technique used by
WebSphere. However, there may be some cases where you want
authentication to succeed based on other comparisons. You can do this by
specification of a Certificate Filter.

Suppose you want authentication to succeed if the value of the Common
Name (CN) in the certificate matches (maps to) the value of the uid attribute
in the LDAP registry. To define the certificate filter to make this happen, do
the following:

1. From the User Registry page of the Set Global Security Wizard, click the
Advanced... button.

2. In the Certificate Mapping field, select Certificate Filter from the
drop-down menu (the default value is Exact Distinguished Name).

3. In the Certificate Filter field, type in the filter value. In our case, the filter
value is uid=$(SubjectCN). This specification will cause WebSphere
authentication to “map” the uid attribute in the LDAP directory to the CN
value in the certificate. Figure 585 on page 735 shows the specification
values. For other properties that can be used as filter values, see User
Registry settings of the Configure Global Settings task in the WebSphere
InfoCenter. Note that the syntax described in the InfoCenter
(...$(Subject:cn)) did not work for our case when the syntax shown above
(...$(SubjectCN)) did work.
734 WebSphere V3.5 Handbook

4. Click the OK button.

5. Then, back in the User Registry panel, click the Finish button.

If you choose to try out using filters, do so after you have completed the
specifications for our main example that uses Exact Distinguished Name
mapping and have completed the example testing as described in 15.4.6,
“Testing the secured application” on page 749.

Figure 585. LDAP Advanced Properties window

To test the filter specification described above, create a new entry in the
LDAP directory with a uid value of Bob Garcia. To accomplish this, do the
following:

1. From the AIX terminal command line, type the following and press Enter:

dmt

2. We want to make sure that we have proper authority to make additions to
the directory, so first we need to rebind to the LDAP server with our
directory administrator ID. When the introductory DMT panel appears,
from the left navigation frame select Rebind.

3. In the Rebind to server frame, select Authenticated, type in the User DN
value as cn=root and type in the administrator password. Click OK.

4. In the Browse directory tree frame, expand o=ibm,c=us.

5. In the Browse directory tree frame, expand ou=Raleigh. The result of the
expanded tree is shown in Figure 506 on page 667.

6. Select ou=Raleigh, then click the Add button.
Chapter 15. WebSphere security 735

7. In the Create an LDAP Entry window, type in cn=Robert Garcia as the value
for the Entry RDN field as shown in Figure 586. Click Next.

Figure 586. Adding an LDAP entry

8. In the Create an LDAP User window, type in Robert Garcia as the Common
Name and Garcia as the Last Name.

9. Click the Other tab and scroll down until you get to the uid attribute. Type
in Bob Garcia as the value for uid. The contents of the Create an LDAP
User window can be seen in Figure 587 on page 737.

10.Click the Create button.
736 WebSphere V3.5 Handbook

Figure 587. Adding an LDAP user

The new user has now been created in the LDAP directory.

Next, using the WebSphere Administrative Console, run the Configure
Security Permissions task as described in 15.4.5.6, “Configuring security
permissions” on page 743, only this time select All Authenticated Users
instead of Selection. Then, complete the task as described.

Now, run the test as described in 15.4.6, “Testing the secured application” on
page 749 using the same “Bob Garcia” client certificate. This time,
WebSphere will do a mapping between the certificate CN value (Bob Garcia)
and the uid attribute value of the entries in the LDAP directory. A match will
be found for LDAP user Robert Garcia and he will pass authentication.
Because we have now specified that all authenticated users have permission
to access our secured resource, the resource will be served to the browser.
Chapter 15. WebSphere security 737

15.4.5.3 Configuring Application Security
Click Configure Application Security to specify security settings for a
specific enterprise application that differ from the global security settings. To
configure application security, from the administrative console main menu,
select Wizards -> Configure Application Security. In our example, we will
be using the same values for our enterprise application as those specified for
global security. Therefore, there is no need to perform this task.

Figure 588. WebSphere security - configuring application security

15.4.5.4 Configuring Security Method Groups
Click Configure Security Method Groups to add new or remove existing
method groups. To configure security method groups, from the administrative
console main menu, select Wizards -> Configure Security Method Groups.
In our example, we will be using the default method groups. Therefore, there
is no need to perform this task.
738 WebSphere V3.5 Handbook

Figure 589. WebSphere security - configuring method groups

15.4.5.5 Configuring Resource Security
Click Configure Resource Security to identify the application resources that
are to be secure. In our example, we want to secure only the showCfg servlet
resource. To secure showCfg, do the following:

1. Using the administrative console, on the main menu bar, select Wizards
-> Configure Resource Security.
Chapter 15. WebSphere security 739

Figure 590. WebSphere security - configuring resource security

2. On the Resources window, expand the Virtual Hosts folder. Then, expand
default_host.
740 WebSphere V3.5 Handbook

Figure 591. WebSphere security - resources list

3. Scroll down until you see /webapp/examples/showCfg in the list.

4. Select /webapp/examples/showCfg and click Next.
Chapter 15. WebSphere security 741

Figure 592. WebSphere security - selecting a resource to secure

5. Click Yes in response to Use default method groups?.

Figure 593. WebSphere security - assigning the default method groups

6. On the Method Groups window, select all the top level (unexpanded)
entries in the list then click Finish. Note that multiple selections are made
Ctrl + left mouse button.

WebSphere uses a capability-based model for security. In WebSphere,
individual resources are collected into applications and methods are
collected into method groups. Each user has a set of (application,
method-group) pairs, which indicates the methods within an application on
which the user has rights. Each (application, method-group) pair is called
742 WebSphere V3.5 Handbook

a permission. For additional information on method groups see the
WebSphere InfoCenter.

Figure 594. WebSphere security - selecting method groups

15.4.5.6 Configuring security permissions
Choose Configure Security Permissions to identify which users are allowed to
access a secure resource. In our case, we are only going to allow access by
user Bob Garcia. To configure permissions, do the following:

1. Using the administrative console, on the main menu bar, select Wizards
-> Configure Security Permissions.
Chapter 15. WebSphere security 743

Figure 595. WebSphere security - assigning permissions

2. On the Enterprise Applications window, expand the Enterprise
Applications folder. Select MyEnterpriseApp then click Next.
744 WebSphere V3.5 Handbook

Figure 596. WebSphere security - selecting the enterprise application

3. On the Permissions window, select all the entries in the list, then click
Next.
Chapter 15. WebSphere security 745

Figure 597. WebSphere security - selecting permissions to configure

4. In the Grant Permissions window, select Selection.

5. In the Search For dropdown, select User.

6. In the Search Filter entry field, type an * then click the Search button. This
should return a list of all users defined in our LDAP directory. In our
example, the results of the search are shown in Figure 598 on page 747.
Note that the name used in the list is the value of the uid attribute as
specified for the user in the LDAP directory.
746 WebSphere V3.5 Handbook

Figure 598. WebSphere security - granting permissions

7. Select the users to be granted access to the secure resource(s) and click
Next. In our case, select BGarcia.

8. On the Remove Permissions window, click Finish.
Chapter 15. WebSphere security 747

Figure 599. WebSphere security - removing permissions

WebSphere security configuration work is now complete.

15.4.5.7 Defining a virtual host alias for the SSL connection
We need to define a virtual host alias for our SSL connection. To do this, do
the following:

1. Make sure that the WebSphere Administrative Server and Administrative
Console are up and running.

2. Using the administrative console, in the topology view, select
default_host. Default_host is the virtual host defined for our example Web
application.

3. Click the Advanced tab.

4. Type in the alias name in the Host Aliases list, being sure to append the
SSL port number. In our case, the alias name is
kenueno.itso.ral.ibm.com:443.

5. Click the Apply button.
748 WebSphere V3.5 Handbook

Figure 600. Add virtual host aliases

15.4.6 Testing the secured application
We will now be using our Internet Explorer browser to try to access the
secure resource(s). To test our security specifications, do the following:

1. Make sure that the following are all up and running:

• DB2 on the AIX machine that has our IBM SecureWay Directory

• IBM SecureWay Directory on the AIX machine

• DB2 on the Windows NT machine that has our IBM HTTP Server and
WebSphere

• IBM HTTP Server on the Windows NT machine

• WebSphere Administrative Server on the Windows NT machine

• WebSphere Administrative Console on the Windows NT machine

2. Using the administrative console, expand WebSphere administrative
domain.

3. Expand the node. In our case, the node name is kenueno.

4. Start the application server named Default Server. Do this by selecting
Default Server and clicking the Start icon (�) in the tool bar. Wait until
you receive the Command “Default Server start” completed successfully

message and click OK.
Chapter 15. WebSphere security 749

5. Start the enterprise application. Do this by selecting the name of the
enterprise application (it is an entry in topology under WebSphere
administrative domain) and clicking the Start icon in the toolbar. Wait until
you receive the start completed message and click OK. In our case the
message will read Command “MyEnterpriseApp start” completed

successfully.

Figure 601. Enterprise application started successfully

6. Start up the Internet Explorer browser and specify the URL to access the
showCfg servlet. Don’t forget to specify https as the protocol. In our case
the URL is https://kenueno.itso.ral.ibm.com/webapp/examples/showCfg.

7. If you receive a Security Alert message from the browser, click OK.

8. On the Client Authentication window, select the Bob Garcia certificate and
click OK. The output of the showCfg servlet should now appear in the
browser. The output of showCfg can be seen in Figure 602.

Figure 602. Output from successful showCfg servlet access

User Bob Garcia is now authenticated for the browser session and is
authorized to access all secure resources that belong to the enterprise
750 WebSphere V3.5 Handbook

application without any additional browser prompts for security (certificate)
information.

Suppose a second enterprise application has been defined that does not
grant access permissions to user Bob Garcia. If, after being authenticated
and authorized to access a secure resource belonging to the first enterprise
application, an attempt is made to access a secure resource belonging to the
second enterprise application, user Bob Garcia will be denied access and will
receive a message as shown in Figure 603.

If you chose to create a certificate for user Mary Burnnet, now is a good time
to see what happens if access is attempted with that certificate. Start up
another IE browser instance, enter the showCfg URL and on the Client
Authentication window, select the Mary Burnnet certificate. You should
receive a message indicating that user Mary Burnnet is not authorized to
access that resource as shown in Figure 603.

Figure 603. Result of certificate authorization failure
Chapter 15. WebSphere security 751

15.5 WebSphere and LDAP servers

WebSphere V3.5 Security Server supports the following LDAP servers for
LTPA:

• IBM Secure Way Directory

• Netscape Directory Server

• Lotus Domino 4.6 and 5.0

• Microsoft Active Directory

• Novell Directory Services (NDS)

• Custom

Installation of these LDAP servers is better explained in the respective
product installation guides. We only highlight some setup issues. The
discussion primarily centers on getting WebSphere security working with the
above-mentioned LDAP servers for authentication purposes.

Any changes to the advanced properties of LDAP servers (which can be
accessible using the Advanced.. button) gets termed as Custom, and
WebSphere automatically changes the Directory type to Custom whenever
changes are made.

15.5.1 Netscape Directory Server
After installing Netscape Directory Server 4.1 on a UNIX system, bring up the
directory server console. This is found in the installation root directory.

Go to that <NETSCAPE_HOME> directory and execute startconsole.

Before the console is displayed you will be challenged. Enter the password for
the top level administrator (cn=root), and click OK as shown in Figure 604 on
page 753. This top level user and password is set up during installation.

cd /usr/netscape/server4
./startconsole
752 WebSphere V3.5 Handbook

Figure 604. Netscape Console login window

The Netscape Console is then displayed as shown in Figure 605. Note the
User Directory Subtree, (o=ibm.com), because that will be used in the
WebSphere global security setting.

Figure 605. Console tab of the Netscape Console

Users and groups are added, edited, and deleted from the Users and Groups
tab. To create a new organizational unit named itso, click the Users and
Groups tab. See Figure 606 on page 754. From the drop-down list in the
Chapter 15. WebSphere security 753

bottom right hand corner select New Organizational Unit. Then click the
Create... button.

Figure 606. Netscape Console window to create users and groups

In the ensuing window select Base DN as the directory in which to create the
new organizational unit (OU) and click OK.

In the OU properties window, enter the name itso, and click OK. Other
properties are optional.

Follow a similar procedure to create a new user wherein you select New User
from the drop-down list shown in Figure 606 and click the Create... button.
The difference is on the ensuing window. Since we want to add users to the
itso OU, select itso as the directory subtree as shown in Figure 607 on page
755 and click the OK button.
754 WebSphere V3.5 Handbook

Figure 607. OU selection list

Fill in all the fields in the Create User properties page (See Figure 608 on
page 756) especially the ones marked with an asterisk. Note the User ID
field, (mohamed), because that will be used in the WebSphere security
settings. For the purposes of this redbook, the system-generated common
name(s) and user ID values were not used.

Then click OK.
Chapter 15. WebSphere security 755

Figure 608. New user creation window within Netscape Console

You can also view the contents of the LDAP directory. On the Netscape
Console, click the Console tab. In the left pane highlight the Directory Server
(rs600013), then click Open in the right pane as shown in Figure 609 on page
757.
756 WebSphere V3.5 Handbook

Figure 609. Netscape Console showing the details of a selected directory server

The Netscape Directory Server 4.1 Console will pop up in a new window. Go
to the Directory tab. Expand the ibm.com folder to see its contents as shown
in Figure 610 on page 758. If you highlight the itso organization unit in the
Directory tab, you will see the users belonging to that organizational unit.
Notice the user Mohamed that we just created.
Chapter 15. WebSphere security 757

Figure 610. Netscape directory tree showing the contents of the itso organization unit

Now that we have set things up on the Netscape Directory Server, we are
ready to enable WebSphere global security.

Bring up the Configure Global Security Settings wizard in the WebSphere
Administrative Console. In the User Registry tab, enter details for user
Mohamed as shown in Figure 611 on page 759. Note the addition of
ou=itso,o=ibm.com for Base Distinguished Name. Port number 389 is optional
because it is the default port that is used by LDAP.
758 WebSphere V3.5 Handbook

Figure 611. Global security user registry window with Netscape Server details

After you click Finish, close the console and restart the WebSphere
Administrative Server. When you bring up the administrative console, you will
be challenged. At this point enter the user name Mohamed and the given
password as shown in Figure 612.

Figure 612. WebSphere Administrative Console login window

Click OK to enable the WebSphere Administrative Console.
Chapter 15. WebSphere security 759

15.5.2 Domino 5.0
Refer to Domino and WebSphere Together, SG24-5955, for detailed
instructions on setup and configuration of the Domino Server.

Bring up the Lotus Domino Administration client program. Ensure that you are
logged in as a user with administrative privileges.

• Select the server where Domino is installed.

• Go to the People and Groups tab.

• Add a new user as shown in Figure 613.

Note the User name attribute because that will be used in the WebSphere
Administrative Console. This User name field is a multi-value field, but
WebSphere uses only the first name (for example, the first entered name in
the User name field). For the purposes of this redbook, we modified the User
name to be ken.

Figure 613. Domino administrator window showing the creation of a new user
760 WebSphere V3.5 Handbook

Properties on the other tabs are optional. Save and close the new user
window.

Now that we have set things up on the Domino Server, we are ready to enable
WebSphere global security.

Bring up the Configure Global Security Settings wizard in the WebSphere
Administrative Console. In the User Registry tab, enter details for user ken as
shown in Figure 614. Note the Base Distinguished Name field is left blank.
Port number 389 is optional because it is the default port that is used by
LDAP.

Figure 614. Global security user registry window with Domino Server details

After you click Finish, close the console and restart the WebSphere
Administrative Server. When you bring up the administrative console, you will
be challenged. At this point enter the user name ken and the given password,
as shown in Figure 612 on page 759.
Chapter 15. WebSphere security 761

Figure 615. WebSphere Administrative Console login window

Click OK to enable the WebSphere Administrative Console.

15.5.3 Microsoft Active Directory
Active Directory is the new directory service that has been integrated into the
operating system of the Windows 2000 Server platform. It has a lot of
features, one of which is synchronization support through LDAP-based
interfaces. LDAP Version 3 is the primary access protocol for Active Directory.

The tools for working with Active Directory remotely come with the Windows
2000 Resource Kit that is contained in the support tools on the Windows 2000
installation CD.

Bring up one of the Active Directory Administrator programs from the
Windows program menu, clicking Start -> Programs -> Administrative
Tools -> Active Directory Users and Computers.
762 WebSphere V3.5 Handbook

Figure 616. Active Directory Users and Computers window

Create a new organizational unit (OU) named itso in the top level directory.
Highlight the top level directory, click the right mouse button, select New ->
Organizational Unit as shown in Figure 617 on page 764.
Chapter 15. WebSphere security 763

Figure 617. Menu path to create a new organization unit in Active Directory

When the organizational unit property window is displayed, enter the name
itso, and click OK.

Although this is similar to the procedure to create a new user, but we want to
create users in the newly created organizational unit. Highlight itso, click the
right mouse button, select New -> User. Create a new user, simon, with the
details shown in Figure 618 on page 765.

Notice the Full Name field. For the purposes of this redbook, the
system-generated full name was not used. Enter a user logon name and
remember it because that should be used in the WebSphere security settings.
764 WebSphere V3.5 Handbook

Figure 618. New user property window #1

When you click Next, a password entry window is displayed. Enter the
password and click Next as shown in Figure 619 on page 766.
Chapter 15. WebSphere security 765

Figure 619. New user property window #2

In the ensuing confirmation window, click Finish.

To view the newly added user, refresh the administrative interface and
highlight itso. The newly created user, Simon, will be displayed along with any
other users in that container as shown in Figure 620 on page 767.
766 WebSphere V3.5 Handbook

Figure 620. Active Directory Users and Computers window

Now that we have set things up in Active Directory, we are ready to enable
WebSphere global security.

Bring up the Configure Global Security Settings wizard in the WebSphere
Administrative Console. In the User Registry tab, enter details for user simon
as shown in Figure 621 on page 768. Note the Base Distinguished Name field
is left blank. Port number 389 is optional because it is the default port that is
used by LDAP.

In our test, we could not connect to the Active Directory Server with a short
name or uid. The full common name along with the domain name was used
instead.

Note
Chapter 15. WebSphere security 767

Figure 621. Global security user registry window with Active Directory details

After you click Finish, close the console and restart the WebSphere
Administrative Server. When you bring up the administrative console, you will
be challenged. At this point, type in the fully qualified common name for user
simon (CN=Simon,OU=itso,DC=itso,DC=ral,DC=ibm,DC=com) and the given
password, as shown in Figure 622.

Figure 622. WebSphere Administrative Console login window
768 WebSphere V3.5 Handbook

15.6 Custom challenge

Challenge types range from no challenge, a user ID and password, a digital
certificate, or a custom challenge using Web pages. One of the new features
in WebSphere V3.5 security is the custom challenge feature. This feature
specifies that clients will log in using servlet-generated Web pages specified
by the administrator in the Login URL and Relogin URL fields. These fields
are visible when enabling WebSphere global security as shown in Figure 623.

Figure 623. Global security settings wizard window showing Custom Login feature

Currently, the administrator needs to enter the same URL in each of the two
fields. The URL is intended to reference a Web page containing an
HTML-based login form, but the administrator can enter the URL of any Web
page, whether or not it offers a login form. For example, the field could
contain the URL http://host.name.com/login/deny.html for a Web page
created to deny access to users without allowing the users an opportunity to
log in.

The Login URL field specifies the fullyqualified path to the Web page to be
presented for users to log on to. The administrator should complete this field
if he or she specified the custom challenge type. Currently, this field must
Chapter 15. WebSphere security 769

match the Relogin URL. The product does not validate this field or the
Relogin URL.

The Relogin URL filed specifies the fully-qualified path to the Web page to be
presented when the connection is released and a user must log on again.
Complete this field if you specified the custom challenge type. Currently, this
field must match the Login URL.

Furthermore, SSL can be chosen. If SSL is also turned on, then requests that
do not arrive over SSL will be refused.
770 WebSphere V3.5 Handbook

Chapter 16. Topologies selection

This chapter describes various topologies which WebSphere V3.5 supports.
In addition, options regarding the use of multiple clones, multiple WebSphere
domains, vertical and horizontal scaling as well as multiple tiers (separating
the servlet and EJB servers) will be covered. For detailed information
including step-by-step configuration, see WebSphere Scalability: WLM and
Clustering using WebSphere Application Server Advanced, SG24-6153.

16.1 Topology selection criteria

While a variety of factors come into play when considering the appropriate
topology for a WebSphere deployment, the primary factors to plan for typically
include:

• Security

• Performance

• Throughput

• Availability

• Maintainability

• Session state

16.1.1 Security
Security concerns usually require physical separation of the HTTP (Web)
server from the application server processes, typically across one or more
firewalls.

16.1.2 Performance
Performance involves minimizing the response time for a given transaction
load. While a number of factors relating to the application design can affect
this, adding additional resources in the following two manners, or a
combination of both, can be used to good effect:

Enterprise beans and their clones have separate identities. Therefore, you
must explicitly protect each and every bean by configuring resource
security for the bean and including it in a secured enterprise application.

EJB security reminder
© Copyright IBM Corp. 2001 771

- Vertical scaling, which involves creating additional application server
processes on a single physical machine in order to provide multiple
thread pools, each corresponding to the JVM associated with each
application server process.

- Horizontal scaling, which involves creating additional application server
processes across multiple physical machines.

16.1.3 Throughput
Throughput while related to performance, more precisely involves the
creation of some number of application server instances (clones) in order to
increase the number of concurrent transactions that can be accommodated.
As with performance the application server instances can be added through
vertical and/or horizontal scaling.

16.1.4 Availability
Availability requires that the topology provide some degree of process
redundancy in order to eliminate single points of failure. While vertical
scalability can provide this by creating multiple processes, the physical
machine then becomes a single point of failure. For this reason a high
availability topology typically involves horizontal scaling across multiple
machines.

16.1.4.1 Hardware-based high availability
By providing both vertical and horizontal scalability, the WebSphere
Application Server runtime architecture eliminates a given application server
process as a single point of failure. In WebSphere V3.5, the capability to
manage the workload of the administrative server process further reduces the
potential that a single process failure can disrupt processing on a given node.
In fact the only single point of failure in a WebSphere domain/cluster is the
database server where the WebSphere administrative database resides. It is
on the database server that any hardware-based high availability (HA)
solutions such as HACMP, Sun Cluster, or MC/ServiceGuard should be
configured. There is very little to be gained from trying to configure
WebSphere Advanced to work in conjunction with a hardware-based HA
product; moreover it is not a supported configuration as of this writing. The
only case where a hardware-based HA solution would provide value is where
WebSphere Advanced was serving as the coordinator of a distributed
(two-phase commit) transaction. If a WebSphere node were to go down, then
any in-doubt transaction (after prepare, before commit) could not be resolved
automatically until the node was restored to service. Again, this is not a
supported configuration at this time.
772 WebSphere V3.5 Handbook

16.1.5 Maintainability
While maintainability is somewhat related to availability, there are specific
issues that need to be considered when deploying a topology that is
maintainable. In fact some maintainability factors are at cross purposes to
availability. For instance, ease of maintainability would dictate that one
minimize the number of application server instances in order to facilitate
online software upgrades. Taken to the extreme, this would result in a single
application server instance, which of course would not provide a high
availability solution. In many cases it is also possible that a single application
server instance would not provide the required throughput or performance. In
deciding on the degree of vertical and horizontal scaling that one needs to
incorporate in a topology, you should also consider the matter of hardware
upgrades (for example, adding CPUs, memory, or upgrading to faster CPUs).
As we will see below, one alternative topology for maintainability involves
creating more than one WebSphere domain.

16.1.6 Session state
Unless you have only a single application server or your application is
completely stateless, then maintaining session state between HTTP client
requests will also play a factor in determining your topology. In WebSphere
V3.5 the only way to share sessions between multiple application server
processes (clones) is to persist the session to a database. Additionally, the
configuration of an HTTP splayer such as the Network Dispatcher component
of WebSphere Edge Server needs to be considered when session state is
important.

16.1.7 Topology selection summary
Table 43 is a summary of topology selection.

Table 43. Topology selection summary

Security Perfor-
mance

Through-
put

Maintain-
ability

Availability Session

Vertical
Clones

Improved
throughput
on large
SMP
servers

Limited to
resources
on a single
machine

Easiest to
maintain

Process
isolation

Required

Horizontal
Clones

Best in
general

Best in
general

Code
migration to
multiple
nodes

Process and
hardware
redundancy

Required
Chapter 16. Topologies selection 773

16.2 Vertical scaling with WebSphere workload management

In the simplest case, one can configure many application server clones on a
single machine, and this single machine also runs the HTTP server process.
This configuration is depicted in Figure 624.

Figure 624. Vertical scaling with clones

At first glance this would appear to be the simplest to configure. However, as
we’ll see later on, separating the HTTP server(s) from the application server

HTTP
Separate

Allow for
firewalls/
DMZs

Usually
better than
local

Usually
better than
local

Three Tiers Most
options for
firewalls

Typically
slower than
single JVM

Additional
clones may
improve
throughput

One
Domain

Ease of
maintenance

Multiple
Domains

Harder to
maintain than
single
domain

Process,
hardware
and software
redundancy

Security Perfor-
mance

Through-
put

Maintain-
ability

Availability Session

administrative
server

Plug-in

HTTP
Server

AppServ 1
Clone X

AppServ 1
Clone 3

AppServ 1
Clone 2

AppServ 1
Clone 1

administrative
database

Appl
DB

HTTP
Requests

DB2
Client

OSE

DB ServerWeb Server & WebSphere

Machine A Machine B
774 WebSphere V3.5 Handbook

processes on separate physical machines is not significantly harder with
WebSphere than the simple case depicted here. Though one is limited to the
resources available on a single machine as well as the availability risk when
using a single machine, this configuration does provide for process isolation
and improved throughput over a configuration where only a single application
server process is running. This assumes of course that sufficient CPU and
memory are available on the machine.

You will notice that even in the simple “single machine” configuration depicted
above, the WebSphere configuration repository resides on a remote database
server. There are several reasons why this represents a good practice.

First, most enterprises have already invested in a high availability solution for
their database server, and the configuration repository represents a single
point of failure in WebSphere, so it pays to make this highly available.

Secondly, the database that houses the configuration repository should be
backed up on a regular basis, just as application data is. Housing the
repository on the same server as the application data, usually simplifies this
task, since appropriate DBA procedures such as database backup processes
are already defined for this machine.

Additionally, the database server is typically sized and tuned for database
performance, which may differ from the optimal configuration for the
application server (in fact on many UNIX servers, installing the database
involves modification of the OS kernel).

Lastly, if both the database and application server are placed on the same
machine, then under high-load you have two processes: the application
server and the database server, competing for increasingly scarce resources
(CPU and memory), so in general you can expect significantly better
performance by separating the application server from the database server.

16.3 HTTP server separation from the application server

WebSphere provides four different alternatives for physically separating the
HTTP server from the application server:

• OSE Remote

• Thick Servlet Redirector

• Thick Servlet Redirector administrative server agent

• Thin Servlet Redirector

• Reverse Proxy / IP Forwarding
Chapter 16. Topologies selection 775

When compared to a configuration where the application server and the
HTTP server are co-located on a single physical server, each of these
alternatives can be utilized to provide varying degrees of improvement in:

• Performance

• Process isolation

• Security

16.3.1 OSE Remote
OSE Remote extends the OSE protocol “off box” to allow for physical
separation of the HTTP server and the servlet engine(s). OSE supports
clustering and workload management of application servers. This means that
the HTTP server can send requests that require intensive processing to
multiple application server machines, freeing up the HTTP server machine to
process more requests. This option provides for both vertical (as depicted in
Figure 625) and horizontal scaling of the WebSphere environment.

Figure 625. OSE Remote

The OSE link does not, however, support data encryption between the HTTP
server and the application server, though it does not preclude use of HTTPS
between the browser and the HTTP server. Thus where all data traffic, even that
in a DMZ, must be encrypted, OSE Remote is not sufficient, even when
WebSphere security is enabled. Recall that all WebSphere Application Server
internal IIOP traffic implicitly uses SSL when security enabled. This is not true for
OSE. In environments that require that all network communication be encrypted,
the Servlet Redirector should be used instead of OSE Remote.

administrative
server

DB2
Client

*OSE

Web Server WebSphere DB Server

administrative
database

Appl
DBPlug-in

HTTP
Server

HTTP
Requests

OSE AppServer1
Clone2

AppServer1
Clone1

Machine A Machine B Machine C
* If WebSphere security is being used to secure the static files on the Web server,
the plug-in will also connect to an administrative server
776 WebSphere V3.5 Handbook

OSE Remote also provides better performance than the Servlet Redirector.
Throughput with the Servlet Redirector is typically 15-30% slower than OSE
running local. OSE Remote on the other hand performs nearly as well (within
a few percent) as OSE local and in some configurations may perform better
than OSE local by virtue of separation of the HTTP and application server
processes.

In summary the benefits of OSE Remote are:

• Better performance than the Redirector

• Supports WebSphere security

• Does not need database access through a firewall

• Support for NAT firewalls

While the disadvantages to OSE Remote are:

• Manual configuration and administration of the HTTP server plug-in files
when changes are made to the application server.

• OSE communication is not SSL encrypted, although one might wish to use
a virtual private network (VPN) solution such as IPSec (IP Security) for
communication security.

16.3.2 Thick Servlet Redirector
The Servlet Redirector runs as a process on the same server as the HTTP
server, intercepts the OSE protocol messages, and forwards each servlet
request over IIOP (or IIOP/SSL) to an appropriate servlet engine. The first of
the Servlet Redirector configuration options is the thick configuration. In this
configuration a WebSphere Administrative Server runs in the same box as the
Redirector and takes care of process configuration management. In addition,
this topology requires configuration of the appropriate database server client
software on the HTTP server machine, which may not be prudent in a secure
environment as discussed below.
Chapter 16. Topologies selection 777

Figure 626. Thick Servlet Redirector

With the thick Servlet Redirector each WebSphere Administrative Server
connects directly to the WebSphere administrative database. This requires
that either the database be installed locally or that the appropriate database
drivers be installed and configured on the machine. More importantly from a
security standpoint, a database user ID and password must be stored on the
machine for use by the database processes. And also the administrative
server on the HTTP server machine requires a TCP connection to the remote
database. Therefore you must open a port in the firewall to pass DB traffic. In
topologies where security is a concern, such as a server running outside a
firewall, this may not be acceptable.

In summary the benefits of a thick Servlet Redirector are:

• Ease of configuration and administration.

- Automated update of HTTP server plug-in files when changes are
made to the application server.

- Ability to start and stop the Servlet Redirector from the administrative
console.

• Supports WebSphere security for servlets/EJBs.

• Encryption of the communications protocol between the Servlet Redirector
and the application server.

While the disadvantages to the thick Redirector are:

• Requires access to the database through the firewall.

• Requirement for database principal identity and password to exist outside
the firewall.

administrative
server

DB2
Client

Plug-in

HTTP
Server

HTTP
Requests

Web Server WebSphere DB Server

administrative
database

Appl
DB

Servlet
Redirector

administrative
server

DB2
Client

OSE

IIOP

AppServer1
Clone2

AppServer1
Clone1

Machine CMachine BMachine A
778 WebSphere V3.5 Handbook

• Does not support NAT firewalls.

• When used in conjunction with a firewall, the firewall must support IIOP
traffic.

16.3.3 Thick Servlet Redirector administrative server agent
An alternative to configuring the database client software on the same
machine as the HTTP server is the administrative server agent. In this
alternative the administrative server on the HTTP server is configured to run
as an agent to an administrative server running on another server. As such
the administrative server agent is the recipient of configuration and
administration information from the administrative server running on the other
node. The administrative server on the other node is responsible for
communication with the WebSphere administrative database.

Figure 627. Thick Servlet Redirector administrative server agent

An alternative to the normal administrative server is to configure an
administrative server to run in agent mode. In agent mode the administrative
server processes on one machine attach to the administrative server process
on another machine, and use the remote administrative server to connect to
the WebSphere administrative database. Doing so obviates the need to
configure the required database components on a machine and also reduces
the number of ports that must be opened through a firewall by eliminating the
need to open a port or ports for database connections. This also reduces the
number of processes running on a machine (for example, DB2 UDB Server or
a DB2 client) and helps to improve performance.

In summary the benefits of a thick Redirector in conjunction with an
administrative server agent are:

administrative
server

DB2
Client

Plug-in

HTTP
Server

HTTP
Requests

Web Server WebSphere DB Server

administrative
database

Appl
DB

Servlet
Redirector

administrative
server agent

OSE

IIOP

IIOP

AppServer1
Clone2

AppServer1
Clone1

Machine CMachine BMachine A
Chapter 16. Topologies selection 779

• Supports WebSphere security.

• Encryption of the communications protocol between the Servlet Redirector
and the application server.

• Automated update of HTTP server plug-in files when changes are made to
the application server.

• Does not need database access through a firewall.

• Database clients and passwords need not be present outside a firewall.

• Ability to start and stop the Servlet Redirector from the administrative
console.

While the disadvantages to the thick Redirector administrative server agent
are:

• Does not support NAT firewalls.

• When used in conjunction with a firewall, the firewall must support IIOP
traffic.

16.3.4 Thin Servlet Redirector
The thin Servlet Redirector provides an alternative to running a WebSphere
Administrative Server on the same machine as the HTTP server. Since an
Administrative Server is not running on the HTTP server, one must run a
script to configure the HTTP server plug-in files as well as a script to start and
stop the Redirector. These functions are normally provided by the
Administrative Server.

Figure 628. Thin Servlet Redirector

administrative
server

DB2
Client

Plug-in

HTTP
Server

HTTP
Requests

Web Server WebSphere DB Server

administrative
database

Appl
DB

Servlet
Redirector

OSE

IIOP

AppServer1
Clone2

AppServer1
Clone1

Machine CMachine BMachine A
780 WebSphere V3.5 Handbook

The thin Servlet Redirector provides SSL encryption of the IIOP protocol, but
it requires that the HTTP server plug-in files be manually generated and that
the Servlet Redirector be started and stopped via a script and not from the
administrative console. Additionally by virtue of not running an administrative
server process on the HTTP server, more of the processing power available
on the box may be used to service HTTP requests.

In summary the benefits of a thin Servlet Redirector are:

• Encryption of the communications protocol between the Servlet Redirector
and the application server.

• Minimum process overhead on the HTTP server by virtue of eliminating
the need for an administrative server process.

• Does not need database access through a firewall.

While the disadvantages to the thin Redirector are:

• Manual configuration and administration.

- Manual update of HTTP server plug-in files when changes are made to
the application server.

- Start and stop of the Servlet Redirector by scripts.

• Does not support NAT firewalls.

• When used in conjunction with a firewall, the firewall must support IIOP
traffic.

16.3.5 Reverse proxy / IP forwarding
No additional WebSphere administration is required when setting up a
reverse proxy configuration; the implementation specifics are determined by
the reverse proxy server being used. In this configuration a reverse proxy that
resides in the DMZ listens for incoming HTTP(s) requests and then forwards
those requests to an HTTP server that resides on the same machine as
WebSphere. The requests are then fulfilled and passed back through the
reverse proxy to the client, hiding the originating Web server.
Chapter 16. Topologies selection 781

Figure 629. Reverse proxy/IP forwarding

In summary the benefits of the reverse proxy are:

• Does not require database access through firewall.

• Supports WebSphere security.

• Works with NAT.

• The basic reverse proxy configuration is well known and tested in the
industry, resulting in less customer confusion.

• Uses HTTP.

• Well-known, dependable format.

• Uses only one HTTP port for requests and responses.

Note: This is also a disadvantage in some environments where policies
prohibit the same port or protocol being used for inbound and outbound
traffic across a firewall.

While the disadvantages to the reverse proxy are:

• No WebSphere WLM “awareness”.

• Requires more hardware and software.

• Customers may not want a reverse proxy in the DMZ.

HTTP
Requests

Reverse
Proxy Server

DB Server

Reverse
Proxy
Server

HTTP

Application Server

AppServer

servlet
engine

DB2
Client

administrative
server

HTTP
Server

Plug-in
Appl
DB

administrative
database
782 WebSphere V3.5 Handbook

16.3.6 HTTP server separation selection criteria
The following table is a summary of HTTP server separation selection criteria.

Table 44. HTTP server separation selection criteria

16.4 Scaling WebSphere in a three-tier environment

Partitoning your application server processes into servlet application servers
and EJB application servers as depicted below can provide some advantages
from a security perspective as well as some possible advantages from a
performance perspective.

In this topology the EJB layer is closer to the application data, which an entity
EJB provides a representation for. When running in an environment where
two firewalls are employed, this allows one to provide the same level of
security for entity EJBs as is provided for application data.

Alternative SSL DB Password
Required

WLM NAT Performance Administration

OSE Remote No No Yes Yes High Manual

Thick Servlet
Redirector

Yes Yes Yes No Medium Automated

Thick Servlet
Redirector -
Admin Agent

Yes No Yes No Medium Automated

Thin Servlet
Redirector

Yes No Yes No Medium Manual

Reverse Proxy Yes No No Yes High Manual
Chapter 16. Topologies selection 783

Figure 630. 3-tier environment

In terms of performance this topology allows one to replicate different
numbers of application servers (for example, two servlet engines and file EJB
servers or vice versa), which may provide better performance. In general,
however, elimination of the local JVM optimizations that occur when both the
servlet (client) and the EJB (server) are resident in the same application
server (JVM) as well as the network latency introduced with the topology will
tend to negate any possible performance improvement brought about by
virtue of the separate thread pools in each JVM and the additional processing
power afforded by a separate physical server.

While providing more redundancy for application server processes, this
topology also introduces more possible points of failure. In addition to more
application server processes, this means that you’ll have more to manage as
well.

OSE

Web Server

administrative
server

DB2
Client

WebSphere: Servlet

DB Server

administrative
database

Appl
DB

Plug-in

HTTP
Server

HTTP
Requests

OSE

DB2
Client

AppServer2
Clone2

administrative
server

WebSphere:EJB

AppServer2
Clone1AppServer1

Clone2

AppServer1
Clone1

Machine CMachine BMachine A

Machine D

IIOP
784 WebSphere V3.5 Handbook

16.5 Horizontally scaling Web servers with WebSphere

Figure 631. WebSphere with Network Dispatcher

Adding a mechanism for distributing HTTP requests, such as the Network
Dispatcher component of WebSphere Edge Server as depicted above,
provides the following advantages:

• Network Dispatcher allows for increased number of connected users.

• Network Dispatcher eliminates the HTTP Server as a single point of failure
and can be used in combination with WebSphere WLM to eliminate the
application server as a single point of failure.

• Increased throughput by virtue of adding multiple servers and CPUs to
servicing the workload.

16.6 One WebSphere domain vs. many

While there are no “hard” limits on the number of nodes that can be clustered
in a WebSphere domain, one may want to consider creating multiple
WebSphere domains for a variety of reasons:

• Two (or more) domains can be employed to provide not only hardware
failure isolation, but software isolation as well. This can come into play in a
variety of situations:

Plug-in

administrative
server

HTTP
Server

AppServ 1
Clone 1

Machine A

Plug-in

administrative
server

HTTP
Server

AppServ 1
Clone 2

Machine B

ND

Machine C

Machine D

DB Server

DB2
Client

DB2
Client

administrative
database

Session
DB

Appl
DB
Chapter 16. Topologies selection 785

- Deployment of a new version of WebSphere. Note that nodes running
WebSphere V3.02.x and V3.5 in the same domain is not supported.

- Application of an e-fix or patch.

- Roll out of a new application of revision to an existing application.

• In cases where an unforeseen problem occurs with the new software,
multiple domains prevent a catastrophic total outage to an entire site. A
roll-back to the previous software version can also be accomplished more
quickly. Of course, multiple domains imply the software has to be deployed
more than once, as would be the case with a single domain.

• Multiple smaller domains may provide better performance than a single
large domain, since there will be less interprocess communication in a
smaller domain.

Of course, multiple domains will require more effort for day-to-day operations,
since administration must be performed on each domain, although this can be
mitigated through the use of scripts employing WSCP and XMLConfig.
Multiple domains also mean multiple administrative databases, which means
multiple backups here as well.

In order to distribute requests across multiple domains as depicted in Figure
633 on page 787, you’ll need a mechanism, such as Network Dispatcher for
spraying your HTTP requests across the HTTP servers associated with each
domain.
786 WebSphere V3.5 Handbook

Figure 632. One WebSphere domain

Figure 633. Multiple WebSphere domains

ND

Machine C

Machine D

DB Server

Plug-in

administrative
server

HTTP
Server

AppServ 1
Clone 2

AppServ 1
Clone 1

Machine A

DB2
Client

Plug-in

administrative
server

HTTP
Server

AppServ 1
Clone 2

AppServ 1
Clone 1

Machine B

DB2
Client

administrative
database

Appl
DB

ND

Machine C

Machine D

DB Server

Plug-in

administrative
server

HTTP
Server

AppServ 1
Clone 2

AppServ 1
Clone 1

Machine A: Domain A

DB2
Client

Plug-in

administrative
server

HTTP
Server

AppServ 1
Clone 2

AppServ 1
Clone 1

Machine B: Domain B

DB2
Client

administrative
database

Appl
DB

administrative
database
Chapter 16. Topologies selection 787

16.7 Multiple applications within one node vs. one application per node

When deciding how to deploy your application, one decision point is whether
to deploy clones of an application server across all nodes in a cluster as
depicted in Figure 634, or to place all clones of a given application server on
a single node as depicted in Figure 635 on page 789.

As discussed previously, horizontal cloning, as depicted in Figure 634
provides:

• Process isolation

• Application software failover

• Hardware failover

Figure 634. Multiple application servers within one server

As with horizontal cloning, vertical cloning as depicted in Figure 635 on page
789 provides for process isolation and application software failover, but

Web Server DB Server

administrative
database

Appl
DB

Plug-in

HTTP
Server

HTTP
Requests

Machine A

administrative
server

DB2
Client

WebSphere

AppServer2
Clone1

AppServer1
Clone1

Machine B

Machine D

administrative
server

DB2
Client

WebSphere

AppServer2
Clone2

AppServer1
Clone2

Machine C
788 WebSphere V3.5 Handbook

obviously does not provide for any sort of hardware high availability. The
primary advantage to vertical cloning is that the executables for a given
application have to be distributed to only a single machine. Horizontal cloning
on the other hand requires that your application executables be distributed
across multiple machines in a cluster. Use of a file system, such as NFS or
AFS, that provides a common file mount point for all nodes can ease the
distribution of code across multiple nodes.

Figure 635. One application server per node

16.8 Closing thoughts on topologies

Whatever topology you decide on, a best practice is to partition your
production acceptance environment exactly the same as your production
environment. This avoids surprises when deploying your application into
production.

Another consideration, when practical for your application architecture, is to
create a number of smaller application servers, rather than a single large one.

Web Server DB Server

administrative
database

Appl
DB

Plug-in

HTTP
Server

HTTP
Requests

Machine A

administrative
server

DB2
Client

WebSphere

AppServer1
Clone2

AppServer1
Clone1

Machine B

Machine D

administrative
server

DB2
Client

WebSphere

AppServer1
Clone2

AppServer2
Clone1

Machine C
Chapter 16. Topologies selection 789

This has at least two advantages:

- The plug-in config files can be smaller (less complexity of URIs), which
leads to better startup performance and possibly better execution
performance.

- At least during the development phase, it takes less time to cycle a
smaller application server to pickup various configuration changes.

Of course, creation of multiple application servers in this manner should be
carefully balanced against the increased complexity of doing so and the
potential increase in response time due to inter-process RMI/IIOP calls and
network latency.
790 WebSphere V3.5 Handbook

Chapter 17. Workload management

WebSphere provides a number of tools and techniques that come into play
when implementing configurations that provide scalability, load-balancing and
failover. We summarize each of them in turn here, then provide in-depth
descriptions in subsequent chapters, and finally show how these tools and
techniques are combined to create real-life system configurations. For
detailed information, including step-by-step configuration, see WebSphere
Scalability: WLM and Clustering using WebSphere Application Server
Advanced, SG24-6153.

17.1 Cloning

Cloning is a mechanism provided by the WebSphere administration system
that allows for the creation of multiple copies of an object such as an
application server. Cloning is the process of taking a server that you’ve set up
and creating a model based upon that setup. Once you have a model made,
you can then create clones of that server. With extra clones running you can
improve the performance of your server. There is a point of diminishing
returns, a point where the more clones that you add will actually slow you
down with the extra maintenance and traffic generated by the clones and the
management of them. Since cloning is part of the core of workload
management, this is demonstrated in detail throughout this book.

In brief, the system administrator creates a model for an application server,
and from this model may create any number of copies or clones. The model is
a logical representation of the application server that exists only as
information managed by the WebSphere administration system. It has the
same structure and attributes as a real application server: it may contain
servlet engines, EJB containers, servlets, EJBs, etc. and allows the
administrator to view and modify any properties of these logical objects. But it
is not associated with any node, and does not correspond to any real server
process running on any node. The clones created from this model, on the
other hand, represent real application server processes running on real
nodes. They are identical in every way to the model from which they were
created except for some clone-specific attributes which must be set on a
per-clone basis. Furthermore, if the system administrator makes changes to
the model, these changes will be automatically reflected to all the clones.
Several clones from the same model may be instantiated on multiple nodes,
and it is also possible to instantiate multiple clones on the same node.
© Copyright IBM Corp. 2001 791

In a typical scenario, a system administrator might create a model of an
application server, populate it with all the objects necessary for the
implementation of his target application, fine-tune the properties of these
objects, and finally, when he is ready to deploy the application, create and
start a number of clones that will begin to execute the application.

Figure 636 shows an example of a possible configuration that includes
clones. Model 1 has two clones on node A, and three clones on node B.
Model 2, which is completely independent of model 1, has two clones on
node B only. Finally, node A also contains a free-standing application server
that is not a clone of any model.

In the example and the discussion above, we only considered the creation
of models and clones for entire application servers, which in turn contain
servlet engines, EJB containers, etc. In truth, the WebSphere
administration system supports the creation of models and clones for
objects at any level of the containment hierarchy. For example, it is possible
to model and clone an individual EJB, without cloning either the application
server or the EJB container in which it has been deployed. Although this
capability is very important internally for the implementation of the overall
model/clone facility in WebSphere, for the purposes of scalability, we will
only consider the cloning of entire application servers. Moreover in terms of
a best (or recommended) practice, you should only clone entire application
servers, which facilitates the administration of models/clones.

Note
792 WebSphere V3.5 Handbook

Figure 636. Models and clones

In practice, cloning provides two important benefits:

• It is a way to simplify system administration: clones can be used to quickly
create and maintain identical copies of a server configuration.

• It is a way to organize workload distribution for several mechanisms (such
as OSE Remote, WLM, and Servlet Redirector) provided with WebSphere.
The set of all the clones of one model of an application server constitutes
a logical group called a server group or cluster. The various workload
distribution mechanisms use this abstraction of a server group to define
the set of application servers among which they are to distribute the client
requests. Since by definition all the clones are identical, the workload
distribution mechanisms can safely assume that any one of the clones is
equally capable of servicing any request.

In subsequent sections, we will see how this notion of clones and server
groups is used to control workload distribution with the OSE transport, with
the WLM tool for EJBs, and with the Servlet Redirector.

17.1.1 Vertical and horizontal cloning
In practice, we will see scalability used in two distinct contexts within the
WebSphere Application Server runtime:

Model 1

Model 2

Node A Node B

Server
group 2

Server
group 1

administrative
server

administrative
server

WAS APPSERVER

SE EJB

APP SERVER

SE EJB

APP SERVER

SE EJB

APP SERVER

SE EJB

APP SERVER

SE EJB
WAS APPSERVER

SE EJB

APP SERVER

SE EJB
WAS APPSERVER

SE EJB

WAS APPSERVER

SE EJB

APP SERVER

SE EJB
Chapter 17. Workload management 793

Vertical cloning refers to the practice of defining multiple clones of an
application server on the same physical machine. Experience has shown that
a single application server, which is implemented by a single JVM process,
cannot always fully utilize the CPU power of a large machine and drive the
load up to 100%. This is particularly true on large multiprocessor machines,
because of inherent concurrency limitations within a single JVM. Vertical
cloning provides a straightforward mechanism to create multiple JVM
processes, which together can fully utilize all the processing power available.

Horizontal cloning refers to the more traditional practice of defining clones
of an application server on multiple physical machines, thereby allowing a
single WebSphere application to span several machines while presenting a
single system image. Horizontal cloning can provide both increased
throughput and failover.

17.1.2 Secure cloned resources
WebSphere V3.5 can be applied with security to cloned resources.
WebSphere V3.5 has different steps for protecting cloned enterprise beans
and cloned servlets.

17.1.2.1 Protecting cloned enterprise beans
Enterprise beans and their clones have separate identities. Therefore, you
must explicitly protect each and every bean by configuring resource security
for the bean and including it in a secured enterprise application.

For example, the “BeanThere” and “BeanThereClone” are considered to be
two different enterprise beans, although they might be treated as clones in a
WLM environment. To protect the beans, the administrator must configure
resource security for each bean. Each bean must be explicitly included in a
secured enterprise application, such as “BeanThereApplication.”

17.1.2.2 Protecting cloned servlets
In contrast to its approach to enterprise bean clones, WebSphere security
does not treat a servlet and its clones as separate resources -- if the original
servlet is protected, its clones are too, with no additional steps required by
the administrator.

To secure a servlet, add its “Web resource” configuration (URI) to a secured
enterprise application.
794 WebSphere V3.5 Handbook

17.2 WLM

Workload Management (WLM) is the primary mechanism for load-distribution
of requests directed at EJBs. In a simple, non-load-balanced EJB in
WebSphere, each client of the bean holds a stub that contains a CORBA
reference to the corresponding bean on the server. Whenever the client
invokes an operation on that bean, the request is simply forwarded to the
server object associated with that CORBA reference. Note that the client can
be a stand-alone Java program using RMI/IIOP, a servlet operating within a
WebSphere servlet engine, or another EJB.

When using the WLM facility, the simple client stub is augmented by a smart
stub that contains a collection of CORBA references to multiple instances of
the same bean in different servers. Whenever the client invokes an operation
on the bean, the smart stub automatically and transparently forwards the
request to any one of the available server objects, thereby achieving both
load-balancing and failover when appropriate. The smart stubs transparently
communicate with the WebSphere EJS runtime to keep track of which servers
and EJB instances are available at any given time.

The WLM facility is enabled through one of three alternatives:

1. EJBs developed and deployed from VisualAge for Java are automatically
WLM-enabled.

2. EJBs developed and deployed outside of Visual Age for Java must first be
deployed inside the WebSphere runtime, then the WLMjar processor (a
.bat file on NT, a .sh file on UNIX) must be executed against the deployed
EJB with WebSphere V3.02x.

3. With WebSphere V3.5, when you deploy a bean inside the WebSphere
runtime, you can specify that the bean is to be WLM-enabled.

All three options generate the smart stubs and other classes required for
WLM. These smart stubs behave as outlined above and look exactly the
same as simple stubs as far as the client is concerned; there is no need for
any change in the client code to take advantage of the WLM facility.

As with other load-distribution facilities in WebSphere, the set of EJB
instances that are available for load-distribution through WLM is defined by
the set of available clones of any given object. Currently, the WLM facility
provides load-distribution among:

• All clones of the home of a session (stateful or stateless) or entity bean
(thereby allowing bean instances to be created in different servers)
Chapter 17. Workload management 795

• All the clones of an instance of a given stateless session bean or the
instance of a given entity bean

In fact, the only type of EJB reference not subject to load-distribution through
WLM are the instances of a given stateful session bean. This is because
stateful session beans cannot be replicated or are not shared between
multiple servers.

17.2.1 WLM runtime
The preceding discussion has provided an outline of the WebSphere WLM
runtime. The following will provide a more detailed explanation of how the
WLM runtime actually works.

The first two steps are depicted in Figure 637.

- During the initial call from an EJB client the underlying WLM client
runtime (the “smart stubs” discussed previously) contacts the
WebSphere Administrative Server to obtain information about the
server group. Note that since the clones that comprise a server group
can be distributed across multiple nodes, some of this information may
be obtained from the administrative database for all nodes in the
cluster.

- In turn the administrative server returns the requested information to
the EJB client.

Figure 637. WLM client initial access: steps 1 and 2

The information returned regarding the server group and the currently active
clones is in turn used to populate an array of proxy stubs, each one
representing an active clone. In the simple case depicted in Figure 638 on
page 797, there are two active clones, so two corresponding proxy stubs
(labeled Proxy1 and Proxy2) are created.

administrative
database

administrative
server

EJB client
796 WebSphere V3.5 Handbook

Figure 638. WLM client initial access: step 3

Lastly, as depicted in Figure 639, the WLM runtime proxy manager directs the
request to a clone based on the WLM policy in effect at the time.

Figure 639. WLM client initial access: step 4

Unless a refresh of the WLM runtime client cache is required, subsequent
requests utilize the existing proxies for each active server (we will discuss the
refresh mechanisms in detail below). Assuming that there has not been a
change in the state of the model server group, the second request is either

WLM client

administrative
database

administrative
server

SERVER CLONE1

EJB

SERVER CLONE2

EJB

Bean
Clone1

Bean
Clone2

Proxy1

Proxy2

WLM client

administrative
database

administrative
server

SERVER CLONE1

EJB

SERVER CLONE2

EJB

Bean
Clone1

Bean
Clone2

Proxy1

Proxy2
Chapter 17. Workload management 797

dispatched to the same clone, if the call is in context of a transaction, or to
another clone in the server group as depicted below in Figure 640.

Figure 640. WLM client, subsequent requests

Of course the above would be fine if changes never occurred in the state of
the EJB servers. As we all know it is necessary to stop and start servers for
maintenance. The runtime also has to be capable of reacting to hardware and
software failures.

Let’s assume that instead of succeeding that the second client request failed.
In this case the WLM client runtime will attempt to determine if more recent
information exists for the server model group. If more recent information is not
available and it is safe to retry (as discussed below in 17.2.3, “WLM runtime
exception handling” on page 806), then a retry is attempted to the same
clone, if the clone is still unavailable then the clone is marked as unusable as
depicted below in Figure 641 on page 799 and it will remain in that state for a
prescribed time interval (UnusableInterval) after which the WLM client
runtime will attempt to use the clone again. In the interim the WLM client
runtime will direct requests to surviving servers in the server model group as
depicted in Figure 641 on page 799.

WLM client

administrative
database

administrative
server

SERVER CLONE1

EJB

SERVER CLONE2

EJB

Bean
Clone1

Bean
Clone2

Proxy1

Proxy2
798 WebSphere V3.5 Handbook

Figure 641. WLM client request to a failed server

If requests to subsequent servers in the model server group are
unsuccessful, these exceptions will be handled as described above for all the
servers in model server group until a request succeeds or all servers are
marked as unusable. In this case the WLM client runtime will contact the
administrative server for new model server group information as depicted in
Figure 642 on page 799.

Figure 642. WLM client request failed to all servers

WLM client

administrative
database

administrative
server

SERVER CLONE1

EJB

SERVER CLONE2

EJB

Bean
Clone1

Bean
Clone2

Proxy1

Proxy2

WLM client

administrative
database

administrative
server

SERVER CLONE1

EJB

SERVER CLONE2

EJB

Bean
Clone1

Bean
Clone2

Proxy1

Proxy2
Chapter 17. Workload management 799

17.2.1.1 WLM runtime refresh mechanisms
As noted above, it is necessary to propagate changes in WLM runtime state
to other nodes within a WebSphere domain as well as to clients that may be
making requests of servers running on those nodes. There are two
components to this: one for the servers and one for the clients.

First let’s consider the WLM server refresh that occurs when a change is
made to a model server group. As an example, consider the case where a
new clone is added to a model. In our example a third clone (Server Clone 3)
has been added to the model, and a start for the third clone has been issued
from the administrative console as depicted in Figure 643 on page 800 (note
that alternatively the server start could be issued from the command line with
XMLConfig or WSCP). After the start has been issued from the administrative
console, the change in runtime state is sent to the administrative database
from the administrative server.

Figure 643. WLM server refresh, the administrative database update

Once the change in runtime state has been issued to the administrative
database, the actual start command is issued to the server clone (Server
Clone 3 in our example) as depicted in Figure 644 on page 801.

WLM client

administrative
database

administrative
server

SERVER CLONE1

EJB

EJB

Bean
Clone1

Bean
Clone2

Proxy1

Proxy2

SERVER CLONE2

SERVER CLONE3

Bean
Clone3 EJB

administrative
console

1. Issue Clone 3
start

2. Update
state
800 WebSphere V3.5 Handbook

Figure 644. WLM server refresh, server start

The final steps in the process are to propagate the change in the state of the
model server group to other clones running on the same machine and then to
the administrative servers for other nodes in the WebSphere domain. This is
depicted in Figure 645 on page 802. The remote administrative servers will in
turn propagate the change in state to any clones for the model server group
running on remote nodes.

WLM client

administrative
database

administrative
server

SERVER CLONE1

EJB

EJB

Bean
Clone1

Bean
Clone2

Proxy1

Proxy2

SERVER CLONE2

SERVER CLONE3

Bean
Clone3 EJB

administrative
console

The propagation of runtime state changes to clones by the administrative
server is not instantaneous; it can take up to one minute. Changes in state
from the server down are in turn propagated as prescribed by the refresh
interval property (-Dcom.ibm.ejs.wlm.RefreshInterval=xxx) which by default
is 300 seconds.

Note
Chapter 17. Workload management 801

Figure 645. WLM server refresh, servers and nodes

As far as changes propagating to the WLM client, this occurs as part of
normal request processing. As depicted in Figure 646 on page 803 a WLM
client makes a request, and the request is directed to a known clone based
on affinity or WLM selection policy (as appropriate). In this example the
request is directed to Server Clone 2.

WLM client

administrative
database

administrative
server

SERVER CLONE1

EJB

EJB

Bean
Clone1

Bean
Clone2

Proxy1

Proxy2

SERVER CLONE2

SERVER CLONE3

Bean
Clone3 EJB

administrative
console

administrative
server(s)
802 WebSphere V3.5 Handbook

Figure 646. WLM client refresh, client request

Upon receiving the request, the WLM server runtime makes use of an epoch
number that is changed each time there is a change to the state of the model
server group. A comparison is made between the epoch number received
with the client request with that on the server. In this example, the server
detects that the client cache is stale (old) since the epoch numbers do not
match. As part of the request reply packet to the client, the new WLM state is
sent as depicted in Figure 647 on page 804.

WLM client

administrative
database

administrative
server

SERVER CLONE1

EJB

EJB

Bean
Clone1

Bean
Clone2

Proxy1

Proxy2

SERVER CLONE2

SERVER CLONE3

Bean
Clone3 EJB

administrative
console
Chapter 17. Workload management 803

Figure 647. WLM client refresh, client reply

The last step in the process is depicted in Figure 648 on page 805. Once the
client receives the request reply, the WLM runtime client is updated to reflect
the changes in the model server group. In this case a third proxy is added,
corresponding to Server Clone 3.

WLM client

administrative
database

administrative
server

SERVER CLONE1

EJB

EJB

Bean
Clone1

Bean
Clone2

Proxy1

Proxy2

SERVER CLONE2

SERVER CLONE3

Bean
Clone3 EJB

administrative
console
804 WebSphere V3.5 Handbook

Figure 648. WLM client refresh, updated client runtime

17.2.2 WLM load balancing options
The actual selection of a particular object instance among all available clones
of that object is controlled by a load-balancing policy (workload management
selection policy) attribute associated with the application server group that
contains this object, according to the following rules:

1. If the client that is issuing a request is located within the same JVM
(typically an application server) that also contains an available instance of
the target object, the WLM facility is bypassed, and the request is always
dispatched to that local object instance.

2. If the request is associated with a transaction, and a previous request
within the same transaction has already been dispatched to a given
instance of a given object, then the new request is also dispatched to that
same instance. This implements the transaction affinity property described
earlier.

3. If the server group’s load-balancing policy (workload management
selection policy) is set to random-prefer-local, and there exists one or
more available instances of the target object inside an application server
that is executing on the same machine as the client (but not in the same

WLM client

administrative
database

administrative
server

SERVER CLONE1

EJB

EJB

Bean
Clone1

Bean
Clone2

Proxy1

Proxy2

SERVER CLONE2

SERVER CLONE3

Bean
Clone3 EJB

administrative
console

Proxy3
Chapter 17. Workload management 805

application server, or else rule 1 would apply), the request is dispatched to
one of those application servers on the same machine, selected at
random. If there are no available instances on the same machine, the
request is dispatched to any available instance at random, regardless of
which machine the application server is running on.

4. If the server group’s load-balancing policy (workload management
selection policy) is set to round-robin-prefer-local, and there exists one or
more available instances of the target object inside an application server
that is executing on the same machine as the client (but not in the same
application server, or else rule 1 would apply), the request is dispatched to
one of those application servers on the same machine, selected in
round-robin fashion. If there are no available instances on the same
machine, the request is dispatched to any available instance in
round-robin fashion, regardless of which machine the application server is
running on.

5. If the server group’s load-balancing policy (workload management
selection policy) is set to random, the request is dispatched to any
available instance at random, regardless of which machine the application
server is running on.

6. If the server group’s load-balancing policy (workload management
selection policy) is set to round-robin, the request is dispatched to any
available instance in round-robin fashion, regardless of which machine the
application server is running on.

17.2.3 WLM runtime exception handling
In general, if an object instance is found to be unavailable due to a crash or
for other reasons, the request will be retried with another available instance,
thereby providing automatic failover. Automatic failover does not take place
when a CORBA COMM_FAILURE exception or a CORBA NO_RESPONSE
exception is thrown with "MAYBE" COMPLETION_STATUS, which maps to a
java.rmi.RemoteException. This is because WLM cannot know if the
operation partially completed or not. In these cases, the application has to
expect possible failures and initiate a retry, if appropriate. WLM will then try to
find a surviving server and dispatch the request. WLM also does not retry in
the case of an application exception, again because WLM cannot know if it is
appropriate to do so. Automatic failover will take place when a
"COMPLETED_NO" COMPLETION_STATUS is received, since it is safe to do
so. Of course, no retry is required with COMPLETED_YES.

A simple example of the application code is depicted in Figure 649 on page
807 for instances of a “MAYBE” COMPLETION_STATUS minor code. In
806 WebSphere V3.5 Handbook

practice, additional code would be required to determine the outcome of the
attempted operation. As a matter of course, this type of failure is extremely
rare, usually corresponding to network outages (most typically the result of
pulling a network cable during a test of WebSphere WLM).

Figure 649. Example application retry code

Figure 650 on page 808 shows an example of a WLM-enabled EJB client
dispatching requests to two cloned application servers.

success = false;
noRetries = 2; // or some small positive number.
for (i = 0; i < noRetries; i++) {
// We may get back exceptions from the WLM runtime.
// Catch these and retry.

try {
serverName = tester.invoke(); //tester represents the remote object
success = true;
} catch (RemoteException e) {
Tr.warning(tc, "tester.invoke() threw Exception", e);
//Or, do whatever cleanup you want
}
if (success) break;//no need to retry.

}

Chapter 17. Workload management 807

Figure 650. WLM-enabled client

It should be noted that the round-robin selection policy implemented by the
smart stubs is in effect independent for each client and each corresponding
instance of a smart stub. So, strictly speaking, one should not expect this
mechanism to provide a strict round-robin distribution of all incoming requests
from all clients, as perceived from the point of view of the servers. However,
the main goal, to provide a statistically fair distribution of the load across all
servers, is achieved by this implementation. With a large number of
independent clients, this approach further approximates a random
distribution, without resorting to an explicit randomizing function.

It should also be noted that, for both the random and round-robin policies,
each server instance is considered equal to all other instances, and there is
no way to cause the system to favor some servers over others (for example
servers on different machines, or subject to different background loads).
Future versions of WebSphere may provide extensions such a weights
associated with each server, or various schemes to use dynamic measures of
the load on each server to influence the selection policy.

With the current available selection policies, one way to ensure that one
machine receives a larger proportion of the requests than another machine is
to use vertical cloning to define a greater number of application servers on
the larger machine.

E JB c lien t

A pp l
D B

ad m in is tra tive
d a ta ba se

A PP SE R V E R

EJB

ad m in is tra tive
serve r

S erv er A

A PP S E R V E R

E JB

ad m in is tra t ive
se rve r

S e rv er B

B e an

B ea n
808 WebSphere V3.5 Handbook

17.2.4 WLM for administrative servers
Administrative servers can participate in workload management. Currently,
the primary benefit is that it provides failover capability for administrative
servers, improving the availability of administrative and naming services
(since the administrative server process also provides naming services).

Workload Management must be enabled (or disabled) for all administrative
servers in a domain.

When an administrative server participates in Workload Management, an
exception is thrown if the server fails during an administrative task.
Subsequent requests are redirected to the other servers in the domain,
minimizing the disruption to administrative operations.

For example, a command issued through the WebSphere Administrative
Console can fail if a server becomes unavailable while the command is being
executed. However, if workload management is enabled, any subsequent
attempts to execute the command are redirected to another administrative
server. This allows the command to be successfully reissued, with only a
slight delay for the initial redirection. (The original administrative server will
pick up its share of administrative requests when it comes back online.)

To enabling Workload Management, start all administrative servers in the
domain with Workload Management enabled. WebSphere Administrative
Server provides two ways to enable Workload Management for administrative
servers:

• By setting the following property in the admin.config file:

com.ibm.ejs.sm.AdminServer.wlm

This enables Workload Management for all administrative servers that are
started using this configuration file.

• By specifying the -wlm argument when starting an administrative server
from the command line. For instance:

java com.ibm.ejs.sm.server.AdminServer -wlm ...

where . . . represents any other arguments that are specified when starting
the server.

Enabling Workload Management through the admin.config file is
recommended because it is easier to administer than enabling it through the
command line.
Chapter 17. Workload management 809

810 WebSphere V3.5 Handbook

Chapter 18. Administrative console

Some of the most noticeable changes in WebSphere V3.5 have been made to
the administrative console. A lot of the changes are in the look and feel of the
GUI but there are also functional improvements, changes in the
administrative console toolbar, and improved context-sensitive help. There is
a new tasks wizard, menu options to import/export configuration in XML, and
a commands history feature.

Enterprise beans can now be redeployed from the administrative console
without having to restart the administrative server. Remote JAR file browsing
works across heterogeneous platforms. That means, if you have a JAR file
containing the beans on a Windows machine and you want to deploy the
beans on a UNIX box, this can be done from within WebSphere.

This chapter highlights those new and improved features of the WebSphere
Administrative Console. The features that existed in WebSphere V3.02.x,
such as deploying enterprise beans, creating an application server, creating a
servlet engine, etc., are discussed in detail in their respective chapters in this
redbook.

The Resource Analyzer is now a separate tool and is covered in Chapter 25,
“Resource Analyzer” on page 1009.

18.1 About WebSphere Administrative Console

The WebSphere Administrative Console is a graphical, Java-based client that
connects to the WebSphere Administrative Server using Internet Inter-ORB
Protocol (IIOP) which is a standard communication protocol. The console
supports the full range of administrative activities via a console menu and a
set of icons. But first, how do we start and stop the administrative console?

18.1.1 Starting the administrative console
The WebSphere Administrative Server must be running before you start the
WebSphere Administrative Console.

1. Start the administrative server (or ensure that it is already running)

2. Start the administrative console:

• On UNIX platforms

a. Go to the bin directory under the WebSphere install directory

cd <WAS_HOME>/bin
© Copyright IBM Corp. 2001 811

Make sure the DISPLAY environment variable is set correctly before
invoking the WebSphere Administrative Console.

b. Run the administrative console script:

./adminclient.sh [<host> [<port>]]

• On Windows platforms

From the Windows Start menu click Programs -> IBM WebSphere ->
Application Server 3.5 -> Administrator’s Console

or type

<WAS_HOME>\bin\adminclient.bat [<host> [<port>]]

Where:

- <WAS_HOME> is the WebSphere V3.5 installation directory

- <host> is the host name or IP address of the WebSphere Administrative
Server

- <port> is the port number on which the WebSphere Administrative
Server is listening

By default, the WebSphere Administrative Server running on port 900 on
the local node is used.

18.1.2 Stopping the administrative console
To stop the console, on all platforms, click Console -> Exit in the main menu
as shown in Figure 651 on page 813.

A WebSphere V3.0.2.x Administrative Console cannot connect to a
WebSphere V3.5 Administrative Server.

Note
812 WebSphere V3.5 Handbook

Figure 651. The Console menu option

18.1.3 WebSphere Administrative Console features
The administrative console looks the same on both the Standard and
Advanced Editions. There is more functionality available via the Advanced
Edition Console because of EJBs and WLM support within the Advanced
Edition.

First, we introduce the items in the main menu - Console, View, and Help. We
then talk about the new icons in the toolbar. The functionality within menu
items Console and View are discussed. And finally we cover the functionality
available in the Wizards icon.

Exiting the WebSphere Administrative Console does not stop the
WebSphere Administrative Server.

Note
Chapter 18. Administrative console 813

Figure 652. The WebSphere Administrative Console

Console
The console menu allows you to choose administrative tasks, turn on tracing
for problem determination, import and export files, view command history,
and exit the console.

Figure 653. Console menu

The sub-menu under the Tasks option is the same as the sub-menu under the
Wizards icon. It is shown in the Wizards section in Figure 661 on page 820.
814 WebSphere V3.5 Handbook

View
The administrative console offers the administrator two views. The Topology
and Type tree views are meant for surveying and manipulating resources in
the WebSphere domain. The corresponding view icons are visible on the icon
bar.

Figure 654. View menu

In the Topology view, which is the default, all resource instances within the
administrative domain are displayed. It includes Nodes, Data Sources, Virtual
Hosts, Models, and Enterprise Applications.

The administrative server is represented by the node that is shown as the
machine name. For each node, the hierarchy of existing resources associated
with that node, such as application servers and JDBC drivers, are displayed.
Chapter 18. Administrative console 815

Figure 655. WebSphere V3.5 Standard Edition Administrative Console

The Type view on the other hand shows:

• Items that can be configured in the administrative domain and how many
of each exist

• The default properties for each type of resource and the option to edit
them

• The relationships among objects in the administrative domain

- The object types are displayed according to their containment hierarchy
which shows the order in which you must configure instances. For
example, an EJB container must exist before you can configure an EJB
that will reside in that container.

The Type view is shown in Figure 656 on page 817.
816 WebSphere V3.5 Handbook

Figure 656. WebSphere V3.5 Advanced Edition Administrative Console

Help
The Help menu has links to the online help.

Figure 657. The Help menu

WebSphere V3.5 features a very robust context-sensitive help.
Context-sensitive menus are available by clicking the right-mouse button over
an object in the Topology or Type view.

In the Topology view, the context-sensitive menus depend on the object
selected but mainly include creating, removing, starting, stopping, and
pinging resources.

Whereas in the Type view, you can create, remove, and display the default
properties of an instance.
Chapter 18. Administrative console 817

WebSphere V3.5 installation contains a “starter” InfoCenter, which is a set of
detailed help files. The full InfoCenter can be downloaded from the
WebSphere Web site library page:

http://www.ibm.com/software/webservers/appserv/library.html

18.1.4 WebSphere Administrative Console functionality
The icons on the WebSphere V3.5 Administrative Console toolbar have a new
more compact look. The icons shown in Figure 658 pop up when clicked on a
resource, such as an application server, is clicked in the Navigation pane.

Figure 658. The icons in the WebSphere Administrative Console toolbar

The two most often used icons are the green-colored sideways triangle, which
is the Start icon, and the red square, which is the Stop icon.

There are icons for Topology and Type views. There is a Refresh icon at the
far left and the new Wizards icon on the far right, which sports a drop-down
menu.

18.1.4.1 Refresh
In some instances the changes to the administrative domain are not promptly
reflected in the console, specially in the Topology view. When that happens,
click the Refresh icon.

Figure 659. The refresh icon

A refresh can be done at any time and at any level of the tree. The selected
subtree is typically refreshed. Watch for the refresh completion message in
the console messages area.
818 WebSphere V3.5 Handbook

18.1.4.2 Wizards
One of the new features in WebSphere V3.5 is the Wizards icon. Task
wizards are provided to lead administrators through the configuration and
protection of new resources, such as servlets, applications and application
servers. This wizards option basically replaces the old Tasks tab and is
always visible on the console.

Figure 660. The Wizards menu option

Wizards make common tasks, such as creating and configuring resources, a
lot easier. These tasks, as shown in Figure 661 on page 820, are discussed in
18.1.5, “The common tasks” on page 829. These tasks, as mentioned earlier
are also available from the main menu by clicking Console-->Tasks. Notice
the demarcation of the security tasks.
Chapter 18. Administrative console 819

Figure 661. The Wizards menu

Let us defer the common tasks to later and talk about the other functions in
the Console menu.

18.1.4.3 Trace
The Trace menu item reflects the command-line trace option for “Enabled”
followed by the trace string.

Figure 662. The Trace menu item highlighted in the Console menu list

The Trace -> Enabled item is a toggle. When set, a check mark appears next
to the Enabled menu item as shown in Figure 663 on page 821. Re-selecting
the Enabled option disables Trace.
820 WebSphere V3.5 Handbook

Figure 663. Trace enabled within WebSphere

Trace Settings
Clicking the Trace Settings... menu item brings up a window displaying the
trace string shown in Figure 664. Click Apply to collect trace information for
the specified class.

Trace string supports the same format as -traceString, while also preserving
backward compatibility.

Figure 664. Trace settings window

Event Viewer
Event Viewer used to be named Serious Events. There is now the capability
to clear old messages from the event viewer under the Preferences tab.

To bring up the Event Viewer click Console -> Trace -> Event Viewer...
Chapter 18. Administrative console 821

Figure 665. The History tab in the Event Viewer

Under the Preferences tab you can set the tracing interval for serious events,
the general level of tracing, and the size of the log file. There are three levels
of tracing available: FATALS, WARNINGS, and AUDIT as shown in Figure 666
on page 823.
822 WebSphere V3.5 Handbook

Figure 666. The preferences tab in the Event Viewer

If you want to discard all old trace messages, click the Clear button.

18.1.4.4 Exporting a configuration
WebSphere V3.5 offers the option to Import and Export a configuration using
XML files. Administrators can use this as a backup feature to save production
configurations.

To export, from the main menu, click Console -> Export...
Chapter 18. Administrative console 823

Figure 667. Export option highlighted in the Console menu

Choose the directory or folder where you want the file saved. Type in the file
name. By default there is no extension given to the file name. The
recommendation is to give a .xml extension as shown in Figure 668.

When you click Save the file will be saved on the local machine.

Figure 668. Name and location of XML file to be exported

18.1.4.5 Importing a configuration
Administrators can use this either to restore or replicate a WebSphere
configuration.
824 WebSphere V3.5 Handbook

To export, from the main menu, click Console -> Import... as shown in Figure
669.

Figure 669. Import option highlighted in the Console menu

In the Open window, select the directory or folder and choose the XML file
containing a WebSphere configuration that you want to import. Choose the
file that was just exported, as shown in Figure 670. Then click Open.

Figure 670. The import XML window
Chapter 18. Administrative console 825

The Console messages screen shows the status of the import. Some of the
warnings, like those shown below, can be benign.

After the import is complete, refresh the administrative console to view the
configuration.

18.1.4.6 Command History
The Command History lists all the previous commands used via the
WebSphere V3.5 Administrative Console. Clicking Console -> Command
History... brings up a separate window listing all the commands for the
current session as shown in Figure 671 on page 827.

Depending on the complexity of the configuration, this step can take a long
time.

Note

9/15/00 9:58 AM : Command "m23bk68g.import" running ...
9/15/00 10:00 AM : WARNING [m23bk68g/__adminServer]: Encountered an exception:
com.ibm.ejs.sm.exception.DuplicateRelationInstanceException

/15/00 10:00 AM : WARNING [m23bk68g/__adminServer]: Encountered an exception:
com.ibm.ejs.sm.exception.DuplicateRelationInstanceException

/15/00 10:00 AM : WARNING [m23bk68g/__adminServer]: Encountered an exception:
com.ibm.ejs.sm.exception.DuplicateRelationInstanceException

/15/00 10:00 AM : WARNING [m23bk68g/__adminServer]: Encountered an exception:
com.ibm.ejs.sm.exception.DuplicateRelationInstanceException

/15/00 10:00 AM : Command "m23bk68g.import" completed successfully.
826 WebSphere V3.5 Handbook

Figure 671. Command History

There is a View Error button on the Commands History window that is
inactive. If you highlight a command that does not have a Success Status or a
Normal Return code, then the View Error button becomes active as
evidenced in Figure 672 on page 828.

The Command History stores all the commands for that console session. If
you exit the administrative console, the commands are cleared.

Note
Chapter 18. Administrative console 827

Figure 672. View Error button in Command History window

Clicking on that View Error button pops up a separate stack trace window for
that error condition as shown in Figure 673.

Figure 673. The stack trace for the failed command
828 WebSphere V3.5 Handbook

18.1.5 The common tasks
The new functions within WebSphere 3.5 tasks wizard are covered in this
section. The other common tasks are explained in detail in the relevant
chapters in this redbook. For example, the security-related tasks can be
found in Chapter 15, “WebSphere security” on page 651.

The common tasks are:

Figure 674. List of common tasks

18.1.5.1 Creating a Data Source
Bring up the Tasks menu and click Create Data Source. The initial window
has two options: to use an existing JDBC driver and to create a new JDBC
driver. That is shown in Figure 675 on page 830.

By creating a new JDBC driver
Select Create and install a new JDBC driver and click the Next button.
Chapter 18. Administrative console 829

Figure 675. Initial window for creating a data source

On the JDBC properties window shown in Figure 676 on page 831, enter a
name for the driver, and from the drop-down list choose the class
corresponding to the database to be used. Then enter the driver URL, which
usually takes the form:

jdbc:<database>:<driver_type>:@<node_name>:<port_number>

If the driver supports the Java Transaction API (JTA), select True from the
drop-down list. Otherwise, leave it as False, which is the default condition.

Click Next.

In addition to DB2 and Oracle, WebSphere V3.5 supports the Sybase
JDBC driver.

Note
830 WebSphere V3.5 Handbook

Figure 676. JDBC driver properties window

In the next node selection window as depicted in Figure 677 on page 832,
select the node to install the JDBC driver on. More importantly, click the JAR
file Browse button and select the appropriate JAR or ZIP file containing the
classes for the database.

The JAR/ZIP file names for each database are:

<DB2_INSTANCE_HOME>/sqllib/java/db2java.zip (JDBC 1.0)

<DB2_INSTANCE_HOME>/sqllib/java12/db2java.zip (JDBC 2.0)

<ORACLE_HOME>/jdbc/lib/classes12.zip

<SYBASE_HOME>/jConnect-5_2/classes/jconn2.jar

Note
Chapter 18. Administrative console 831

Figure 677. Choose a node to install the JDBC direver on

Specify the appropriate JAR/ZIP file that comes with the database installation
and click Finish.

By using an existing JDBC driver
In the second option, in the JDBC Driver Options window select Use an
already installed JDBC driver and click the Next button as shown in Figure
678 on page 833.
832 WebSphere V3.5 Handbook

Figure 678. JDBC driver options

Enter a data source name; select the database you want to use; select the
JDBC driver from the drop-down list; click Finish as shown in Figure 679 on
page 834.
Chapter 18. Administrative console 833

Figure 679. The data source properties window for an existing JDBC driver

When the data source is successfully created, the status window will pop up.
The newly created data source should show up in the administrative console
as shown in Figure 680 on page 835.
834 WebSphere V3.5 Handbook

Figure 680. The newly created driver

18.1.5.2 Creating an enterprise application
Bring up the tasks menu and click Create Enterprise Application.

Figure 681. Common tasks menu with Create Enterprise Application highlighted
Chapter 18. Administrative console 835

Enter a name for the application and click Next.

Figure 682. Create enterprise application window

In the following window as depicted in Figure 683 on page 837, you can add
one or more resources to the application. Select an existing resource and
click Add or select a folder and create a new resource by clicking the New
button.
836 WebSphere V3.5 Handbook

Figure 683. Add resources to enterprise application
Chapter 18. Administrative console 837

The next window gives you an opportunity to remove any of the added
resources. Highlight the resource and click the Remove button.

Otherwise, click Finish to create the application as seen in Figure 684 on
page 839.

There are no Enterprise Beans in WebSphere Standard Edition.

Difference in Standard Edition
838 WebSphere V3.5 Handbook

Figure 684. Remove resources from enterprise application

By default, the newly created application is not running as seen in the
WebSphere Administrative Console in Figure 685 on page 840.

To start the enterprise application, highlight it, and click the Start icon or
press the right-mouse button and select Start.

In this sequence no resources were added. But normally, an enterprise
application will contain more than one resource.
Chapter 18. Administrative console 839

Figure 685. The newly added enterprise application

18.1.5.3 Editing an enterprise application
Bring up the Tasks menu and click Edit Enterprise Application.

Figure 686. Common tasks menu with Edit Enterprise Application highlighted

In the initial window expand the Enterprise Applications folder, select an
application and click Next as shown in Figure 687 on page 841.
840 WebSphere V3.5 Handbook

Figure 687. Edit enterprise application

Then the window to add resources and remove resources will come up as we
talked about in Chapter 18.1.5.2, “Creating an enterprise application” on page
835.

When you have finished editing the properties of the enterprise application
you should see the status window.

Figure 688. Asuccessful edit of an enterprise application
Chapter 18. Administrative console 841

18.2 In conclusion

The WebSphere Administrative Console is the interface that most
administrators will use to easily manage and administer their WebSphere
configuration. This console works well in heterogeneous platforms.
842 WebSphere V3.5 Handbook

Chapter 19. Web console

The Web administrative console (Web console) is a lightweight client that
runs in a Web browser. You can use it to work with a subset of the resources
in the WebSphere administrative domain. It provides the opportunity to work
with property files encoded in eXtensible Markup Language (XML). This
chapter describes the functionality available by using that graphical interface.

19.1 About Web console

The Web console can be run from any browser while communicating with the
WebSphere Administrative Server locally or on a remote machine. It is useful
in situations where there is a need to view the WebSphere topology through a
firewall.

Two main kinds of tasks can be performed using the Web administrative
console:

• Creating objects and configuring them

• Exporting the workspace to XML

Figure 689. Web administrative console flow diagram

Web
Admin
Client WebSphere

Admin
Application

.

 .

 .

Web
Admin
Client

Web
Admin

Console

WAS
DB

XMLConfig

Web Browser App Server Repository

memorysubmit commit
© Copyright IBM Corp. 2001 843

19.1.1 Starting the Web administrative console
The Web administrative console is available on machines where the
WebSphere Administrative Server is running via a Web browser. You can
even access remote machines.

Before starting the Web administrative console, ensure that the following
processes have been started:

• WebSphere Administrative Server

• Default Server

• AdminApplication within the WebSphere administrative domain

• Web server

Figure 690. Start the AdminApplication

To bring up the console of the Web console:

1. In a Web browser type the following URL:

http://<HOST_NAME>/admin
844 WebSphere V3.5 Handbook

where <HOST_NAME> is the local host if you are starting the Web console on the
same machine that is running the WebSphere Administrative Server.

If the Web console is being started on a remote machine, enter the short or
fully qualified host name of the machine running the administrative server.

Figure 691. WebSphere V3.5 Web Administration Home Page

2. In the WebSphere Administration Home Page, select XML Web
Administration Tool.

Then wait for the console to load all the information into the browser.

If you use Microsoft’s Internet Explorer you will be prompted to load the
Microsoft Virtual Machine.

Note
Chapter 19. Web console 845

When the loading is complete, the familiar looking two-paned WebSphere
console is displayed. There is the navigation area in the left pane and the
work area on the right.

If you click the arrow adjoining the Tasks menu item, the two tasks - Create
Objects and Export Workspace to XML - will be displayed. And clicking the
arrow next to the Resources shows, among other things, the node that it is
connected to.

Figure 692 on page 846 shows the Web console on a Windows 2000 machine
while connected to a WebSphere Administrative Server running on an AIX
node named riscwas2 (9.24.104.233).

Figure 692. Initial window of the Web administrative console

19.1.2 Stopping the Web console
To stop the Web console simply close the Web browser.
846 WebSphere V3.5 Handbook

Before you close your console, make sure you have submitted your changes,
if any, and either exported them to XML or committed them. Otherwise, the
changes will be lost.

19.2 Web console functionality

As mentioned before you can use the Web console to work with a subset of
the resources in the WebSphere administrative domain such as create, view,
and configure the most common resources.

Additions or changes to the property sheet are made and then submitted.
This saves everything in local memory. When ready, you can commit the
changes accumulated in the local workspace. Committing the changes to the
administrative database makes the administrative domain aware of the
changes. If changes are not committed, the changes will be discarded when
the browser is closed.

Instead of, or in addition to, committing the modifications, you can save them
to an XML file. Later, any other WebSphere Administrative Console can be
used to import the file into the WebSphere administrative domain.

19.2.1 Creating an object
There are basically six steps to create any object via the Web console:

1. Expand Tasks

2. Expand Create Objects

3. Select a “Create” task to display the property form

4. Specify properties in the form

5. Submit the form to save the information on local machine

6. Commit all modifications to apply the changes to administrative domain

While most of the properties are similar to what you see in the WebSphere
Administrative Console, there are some that are not available or differ in their
names.

You cannot start or stop application servers or restart Web applications
from the Web console.

Note
Chapter 19. Web console 847

19.2.1.1 Steps to create an application server
1. Expand Tasks by clicking the arrow adjoining it

2. Expand the Create Objects option

3. Click Create Server to view the property sheet in the work area

4. Enter name of server; specify where the stdout and stderr log files should
go and the number of restart attempts.

5. Click Submit Modifications

A snapshot of the steps enumerated above is shown in Figure 693.

Figure 693. Property sheet for new application server

When the modifications are submitted, they are stored locally in memory and
a window displays the said information.
848 WebSphere V3.5 Handbook

Figure 694. The create application server window after submitting the modifications

You can create or modify another resource at this point or click Commit All
Modifications in the Navigation pane. The commit choice is displayed in the
right pane. When you click Commit the console transfers all the information
to the WebSphere administrative database and returns with a status.
Chapter 19. Web console 849

Figure 695. Window showing a successful commit of the modifications

All changes should be viewable in the WebSphere Administrative Console.

Verify the same by bringing up the WebSphere Administrative Console and
viewing the topology as seen in Figure 696 on page 851.

Some modifications, such as the addition of an application server, were not
displayed in the WebSphere Administrative Console even after a view
refresh. The resource showed up only after the WebSphere Administrative
Console was exited and restarted.

Note
850 WebSphere V3.5 Handbook

Figure 696. The newly added application server

19.2.1.2 Steps to export workspace in XML
Starting in the navigation pane:

• Expand Tasks by clicking the arrow adjoining it.

• Select Export Workspace to XML.

• In the resulting form on the right side of the console, specify the name of
the file to store the generated XML.
Chapter 19. Web console 851

Figure 697. Export workspace to XML property page

A fully qualified file name with a .xml extension is recommended.

When the XML file is successfully exported, the window displays the said
message and the generated XML is also displayed as shown in Figure 698 on
page 853.

If you simply type a file name:

• On Windows NT and Windows 2000, the file is saved in the
\winnt\system32 directory.

• On AIX, the file is saved in <WAS_HOME>/bin.

Note
852 WebSphere V3.5 Handbook

Figure 698. A successful XML export window

19.3 In conclusion

XMLConfig is the underlying tool used by the Web console. The Web
application named “admin” supports the Web console and runs under the
application server named “Default Server”. Hence, both the Default Server
and the enterprise application named “AdminApplication” have to be running
before you can bring up the Web console.
Chapter 19. Web console 853

854 WebSphere V3.5 Handbook

Chapter 20. The WebSphere Control Program (WSCP)

This chapter describes WSCP, the WebSphere Control Program. We will
introduce Tcl and WSCP, and describe the syntax and usage of both. We go
on to present some sample commands and procedures, and explain how
WSCP can be used to administer the WebSphere Application Server. Finally,
we discuss troubleshooting with WSCP, and the limitations of the tool as it
currently stands.

Currently only available for WebSphere Advanced Edition, a version of
WSCP is planned for release with WebSphere Standard, but at the time of
writing there was no further information available on this. The wscp.bat
script from the Advanced edition will work with the Standard Edition, but
you must put the property:

wscp.qualifyHomeName=false

in your properties file. Here is the wscp.bat file, for those who do not have
access to the Advanced Edition:

@echo off
call setupCmdLine.bat
set WAS_CP=%WAS_HOME%\lib\jacl.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\tcljava.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\ibmwebas.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\ejscp.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\xml4j.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\ujc.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\ejs.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\console.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\admin.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\repository.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\tasks.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\servlet.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\sslight.jar
set WAS_CP=%WAS_CP%;%WAS_HOME%\properties
set WAS_CP=%WAS_CP%;%JAVA_HOME%\lib\classes.zip
set WAS_CP=%WAS_CP%;%JAVA_HOME%\lib\tools.jar
set EXT=-x com.ibm.ejs.sm.ejscp.RemoteExtension
set EXT=%EXT% -x com.ibm.ejs.sm.ejscp.ContextExtension
set EXT=%EXT% -x com.ibm.ejs.sm.ejscp.DrAdminExtension
set EXT=%EXT% -x com.ibm.ejs.sm.ejscp.EjscpExtension
%JAVA_HOME%\bin\java -classpath %WAS_CP% -Dserver.root=%WAS_HOME%

com.ibm.ejs.sm.ejscp.WscpShell %EXT% %*

Note
© Copyright IBM Corp. 2001 855

20.1 Command line administration

In WebSphere Application Server, the administrative server tracks the
contents and activities of a domain by maintaining an administrative database
- a database of information about all resources in a domain. The
administrative database allows the administration of a domain from any
machine, and all information is stored in a central location. The administrative
database contains descriptive information about the applications that are
configured to run in the domain. For example, it contains the names of all
application servers, EJB containers, servlet engines, servlets and enterprise
beans, and their current state (running, defined, or stopped).

All administration takes place through the manipulation of objects in the
administrative database. Each resource in a domain corresponds to an object
in the administrative database. For example, when you create an application
server, a corresponding application server object is created in the
administrative database.

The command line WSCP interface and the administrative console are
compatible. The results of actions performed with WSCP are reflected in the
console interface, and vice versa, although an explicit refresh is required to
display the changes. Both the administrative console and WSCP can be used
to do the following:

• Define, configure, and manage application servers, servlets, and other
WebSphere Advanced resources from any node in the network.

• Build applications (by using wizards in the administrative console and
scripts in WSCP).

• Perform daily administrative operations, such as starting and stopping
enterprise beans and making changes to their configuration.

• Replicate objects to improve performance or availability or to simplify
administration tasks (by defining and managing models and clones).

• Track the occurrence of specific events by setting and enabling tracing.

20.1.1 What is WSCP?
The WebSphere Control Program is a command line administrative tool for
WebSphere. Using WSCP, one can define, configure, and manage
administrative database objects from any node, import or export configuration
data, and perform diagnostic operations such as enabling a trace.

The command-line program WSCP has an interactive mode, and is
particularly useful for scripting. It is based on a standard scripting language,
856 WebSphere V3.5 Handbook

Tcl (tool command language). You can use WSCP to administer the
resources in a domain. It modifies the administrative database in response to
user commands, and reflects any changes to the configuration and status of
the domain. An administrator will manipulate objects in the administrative
database by executing wscp commands or scripts.

20.1.2 What is Tcl?
Tcl stands for Tool Command Language. It was originally developed by John
Ousterhout, and is now distributed by Ajuba Solutions, formerly named
Scriptics. Tcl is open source and therefore free of any licensing fees. There is
also a pure-Java implementation of Tcl called JACL, Version 1.2.5; it is this
version of Tcl on which WSCP is actually based. In addition to the benefits of
using Java rather than platform-specific code, this enables easy invoking of
Java methods in scripts using the java:: package.

The Tcl language has a simple and programmable syntax, and it can be used
standalone or embedded in other applications. It is extensible, and indeed
hundreds of extensions already exist; WSCP extends Tcl by providing a set of
commands for manipulating WebSphere objects.

20.2 Tcl language fundamentals

Before learning about WSCP, the user has to have at least a basic idea about
Tcl scripting. In this section, we give a very basic summary of the
fundamentals of the language. This should be enough for those who know
other programming or scripting languages, but have not used Tcl before, to
understand the example wscp commands presented in this chapter.

Note that this really is just a brief introduction to Tcl syntax. There are many
good books available for those who wish to learn Tcl; this introduction is
included for those who want a “quick start” to understanding the examples in
this book.

20.2.1 Basic Tcl syntax
Tcl is a scripting language. Commands are separated by new lines or
semicolons; words are separated by spaces. The following example uses the
expr command, a simple command that treats the concatenation of its
arguments as an arithmetic expression and returns the result as a string.

expr 1 + 2
Chapter 20. The WebSphere Control Program (WSCP) 857

The above command consists of four words. It will return the result of the
arithmetic expression. All Tcl commands will return a result, even just an
empty string.

20.2.2 Variables
Variables in Tcl do not need to be declared; they are created as necessary.
The set command is used to read and write variables. The syntax is:

set <variablename> <value>

and the command will return the value that the variable has been set to. For
instance:

set x 123

will set the value of the variable x to “123”, and the command will return the
value “123”. You can use:

set <variablename>

or

$<variablename>

to just return the value of the variable. For instance, assume that the variable
x is set to “abc”. Both of the following:

set y $x

set y [set x]

will set the variable y to “abc”, the value of variable x.

Variable substitution can be used as part of a word; if the name of the
variable should be enclosed in braces to establish a single interpretation, as
follows:

set x abc

set y ${x}def

This will set the variable y to “abcdef”.

20.2.3 Command substitution
Tcl command substitution enables the use of the result of one command as
an argument for another. For example:

set x [expr 1 + 2]
858 WebSphere V3.5 Handbook

This results in the variable x being set to the value “3” - the return value of the
expr 1 + 2 command. Everything between [and the matching] is evaluated as
a nested Tcl command, with the result substituted into the outer command.

20.2.4 Quoting
Words in Tcl are separated by spaces unless quoting is used.

Double-quote characters can be used to surround a word. When this is done,
command and variable substitutions are performed inside the quotes, and the
quotes themselves are not passed to the command. For instance:

set a 1

set b 2

set x "$a + $b == [expr $a + $b]"

This results in the variable x being set to the value “1 + 2 == 3”. The variables
a and b are evaluated throughout the quoted section, and the command
substitution inside the square brackets is evaluated. This kind of quoting is
called deferred substitution because the unevaluated string is often evaluated
later in another context (such as in a procedure).

Braces (the { } characters) can also be used to surround a word. However, no
substitution is performed (the braces themselves are still not passed to the
command).

set x {$a + $b == [expr $a + $b]}

This results in the variable x being set to "$a + $b == [expr $a + $b]".

20.2.5 Procedures
The Tcl proc command is used to create a Tcl procedure. The syntax is:

proc name {argument list} {script}

Here is an example procedure, called “sum”. It takes two arguments, and
returns their sum:

proc sum {a b} {

set return [expr $a + $b]

}

20.3 Invoking WSCP

The WebSphere Control Program is started from the command line, by
running the wscp.bat batch file (Windows NT and 2000) or the wscp.sh shell
Chapter 20. The WebSphere Control Program (WSCP) 859

script (UNIX), which is in the bin subdirectory of the application server home
directory.

20.3.1 Command-line options
The following command-line options are accepted by WSCP, explained below:

Usage: wscp [-h] [-c command] [-f Tcl_file_name]
[-p properties_file_name] [-x extension_class]
[[--] options]

The -h option displays the above usage information
The -c option specifies a Tcl command to be executed
The -f option specifies a file containing Tcl commands to be executed
The -p option specifies a Java properties file to be loaded

(.wscprc file in the user's home directory is loaded by default)
The -x option specifies a Tcl extension to be loaded

The [--] options are used to set the Tcl argc/argv variables.

The -c, -f -p and -x options may be repeated on the command line.

If no -c or -f options are specified, an interactive shell is invoked, which is
terminated by the exit command. Most of the examples in this chapter are
shown using the interactive shell.

20.3.2 The properties file
On startup, WSCP reads a Java properties file as specified by the -p option
on the command line. If no properties file is specified, the .wscprc file in the
user’s home directory is loaded.

At a minimum, the wscp.hostName property should be specified in the
properties file to point to the administrative server host. The default is set to
localhost, which should work. However, it is generally preferable to explicitly
specify this value. Any WebSphere property values can be added to this file,
such as tracing, CORBA properties, and so on.

20.3.2.1 Connecting to local and remote nodes
By default, WSCP connects to the administrative server running on the local
machine.

Use the wscp.hostName property to specify a different host, and the
wscp.hostPort property to specify a port other than the default port 900. For
example if your administrative server is running on machine
860 WebSphere V3.5 Handbook

riscwas1.itso.ral.ibm.com and on port 1350, add the following to your
properties file:

wscp.hostName=riscwas1.itso.ral.ibm.com

wscp.hostPort=1350

Figure 699. Connecting to local and remote node

20.3.2.2 Authenticating to the administrative server
If security is enabled on the administrative server (as should always be the
case in a production system), you have to authenticate in order to use WSCP
with that server.

In order to authenticate to the administrative server, you will need to create a
properties file with the following properties:

com.ibm.CORBA.loginSource=properties
com.ibm.CORBA.loginUserid=<user_id>
com.ibm.CORBA.principalName=<identifier>
com.ibm.CORBA.loginPassword=<password>
com.ibm.CORBA.securityEnabled=true

For digital certificates, also include these properties:

com.ibm.CORBA.SSLKeyRing=<key_ring>
com.ibm.CORBA.SSLKeyRingPassword=<password>

You then need to add the following property to the properties file that you use:
either the .wscprc properties file, or another file which you specify with the -p
command line option:

com.ibm.CORBA.ConfigURL=<URL of properties file>

Note that local operating security should be used to protect the security
properties file.

WSCP

App
Server

Admin
Server

WSCP

Admin
Server

riscwas1.itso.ral.ibm.comrs60008.itso.ral.ibm.com

IIOP/RMI
Chapter 20. The WebSphere Control Program (WSCP) 861

20.4 Command syntax of WSCP

In WSCP, each object in the administrative database, such as an application
server, EJB container, servlet engine, Web application and so on, is
controlled by a Tcl command with the same name as the corresponding
administrative database object. Actions are defined to perform operations on
them, such as create, show, modify, list, start, stop and so on.

The basic wscp command syntax for operating on objects is as follows:

<command> <operation> [<object_name>] -<option> <[value]>

Where:

command is the name of an object type (for example, ApplicationServer)
operation is the action to be performed (for example, show)
object_name is the name of the object instance
option varies by operation
value applies to some options that may require values

One important option that is often used is -attribute. This is an option that
takes a list of attributes or attribute-value pairs as its option value, for
example

-attribute {{ConnTimeout 300} {DatabaseName WAS} {IdleTimeout 1800}

{JDBCDriver /JDBCDriver:DB2Driver/} {MaxPoolSize 30} {MinPoolSize 1}

{OrphanTimeout 1800}}

Each object has a number of attributes; these are the same attributes that are
visible via the properties dialog box of the administrative console. Figure 700
on page 863 shows the properties of the SZYMON-Laptop node as seen via
the administrative console.
862 WebSphere V3.5 Handbook

Figure 700. The properties of the WebSphere node via the administrative console

Figure 701 shows the attributes of the same node via WSCP.

Figure 701. The attributes of the SZYMON-Laptop node using WSCP

wscp> Node show /Node:SZYMON-Laptop/
{FullName /Node:SZYMON-Laptop/} {Name SZYMON-Laptop} {CurrentState Running} {Des
iredState Running} {StartTime 969123055710} {DependentClasspath {}} {DeployedJar
Directory {C:\WebSphere\AppServer\deployedEJBs}} {HostName SZYMON-Laptop} {HostS
ystemType x86} {InstallRoot {C:\WebSphere\AppServer}} {ProcessId 1564}
wscp>
Chapter 20. The WebSphere Control Program (WSCP) 863

It is possible to list all of the valid attributes of a command object by using the
attributes operation. It is also possible to list only the required attributes,
which are required in order to create the object, and the read-only attributes,
which cannot be changed.

Figure 702 on page 864 shows the attributes, required attributes and
read-only attributes of the ApplicationServer object.

Figure 702. The attributes of the ApplicationServer command object

It is important to note that everything in WSCP is case-sensitive; for instance,
ITSOApplicationServer is a different object from ItsoApplicationServer.

Objects are referred to using the syntax:

/<type>:<object_name>/

So to refer to a node called BasilBrush, we would write:

/Node:BasilBrush/

The above example deliberately portrays a node, the highest level in the
administrative database hierarchy. Instances must always be named using
their fully qualified names; that is, to name an object, one must name it in
relation to all of the objects above it in the hierarchy.

So the application server called ITSOApplicationServer must be named

wscp> ApplicationServer attributes
FullName Name CurrentState DesiredState StartTime CommandLineArgs CommandLineArg
sActive Environment EnvironmentActive Executable ExecutableActive GroupId GroupI
dActive MaxStartupAttempts PingInitialTimeout PingInterval PingTimeout ProcessId
ProcessPriority ProcessPriorityActive SelectionPolicy ServerId ServerInstance S
tderr StderrActive Stdin StdinActive Stdout StdoutActive Umask UmaskActive UserI
d UserIdActive WorkingDirectory WorkingDirectoryActive AdminAgentIOR DebugEnable
d DebugEnabledActive EpmSpec LogFileSpec LogFileSpecActive OLTEnabled OLTEnabled
Active OLTServerHost OLTServerHostActive OLTServerPort OLTServerPortActive Secur
ityEnabled SecurityEnabledActive SourcePath SourcePathActive SystemProperties Sy
stemPropertiesActive ThreadPoolSize TraceOutput TraceOutputActive TraceSpec Trac
eSpecActive TranInactivityTimeout TranTimeout
wscp> ApplicationServer attributes -required
Name
wscp> ApplicationServer attributes -readOnly
FullName CurrentState DesiredState StartTime CommandLineArgsActive EnvironmentAc
tive Executable ExecutableActive GroupIdActive ProcessId ProcessPriorityActive S
erverId ServerInstance StderrActive StdinActive StdoutActive UmaskActive UserIdA
ctive WorkingDirectoryActive AdminAgentIOR DebugEnabledActive LogFileSpecActive
OLTEnabledActive OLTServerHostActive OLTServerPortActive SecurityEnabledActive S
ourcePathActive SystemPropertiesActive TraceOutputActive TraceSpecActive
wscp>
864 WebSphere V3.5 Handbook

/Node:BasilBrush/ApplicationServer:ITSOApplicationServer/

In WSCP, we call this hierarchy the containment hierarchy. You can use the
WSCP containment operation if you are unsure of the containment hierarchy
of a given object. For instance, to see the containment hierarchy of a servlet,
issue the Servlet containment command as shown in Figure 703.

Figure 703. The containment hierarchy of a servlet

Spaces may be embedded in an object name, but the name must then be
quoted using either quotes or braces:

{/Node:BasilBrush/ApplicationServer:Another ITSO AppServer/}

The naming syntax precludes the use of colons in object names. Objects with
a colon in the name cannot be accessed via WSCP, even though it is possible
to create an object containing a colon via the administrative console, and this
object will show up in a list via WSCP.

20.4.1 Online help
A Help command is built into WSCP. It provides general help on the objects
available within the tool. Each object also supports a help operation, which
can also give verbose operation information with the -verbose option.

20.4.1.1 The Help command

wscp> Servlet containment
Node ApplicationServer ServletEngine WebApplication Servlet
wscp>

Because the Help command in WSCP is implemented as a Tcl object, and
because WSCP is case sensitive, it must always be referred to as Help, not
help. This can be confusing at first, when typing help returns the phrase
invalid command name “help”. It is possible to change the name of the Help

command to help by using the Tcl rename command:

rename Help help

or by defining a procedure so that either form can be used:

proc help { args } { Help $args }

Note
Chapter 20. The WebSphere Control Program (WSCP) 865

Figure 704 shows the Help command.

Figure 704. The Help object in WSCP

20.4.1.2 Command help
Each command supports a help operation, which gives information about the
operations available for that command. A short description is also given of
each operation.

Also, more detailed information on any of the operations possible on a given
command object can be gained by specifying the name of the operation after
the help operation.

Finally, there is a -verbose option that will give the highest level of detail
available for any given operation; this will also list all of the options available
for that operation.

wscp> Help

The general format of all wscp actions is:
<object-type> <action> [name] [options]

The following is a list of the supported objects:

ApplicationServer
Context
DataSource
DrAdmin
EJBContainer
EnterpriseApplication
EnterpriseBean
GenericServer
Help
JDBCDriver
Model
Node
Remote
Servlet
ServletEngine
ServletRedirector
SessionManager
UserProfile
VirtualHost
WebApplication
WebResource
XMLConfig

To list all actions an object supports: <object> help
To list all the options for an action: <object> help <action>
For verbose information on an action: <object> help <action> -verbose

wscp>
866 WebSphere V3.5 Handbook

Figure 705 shows the output of the help operation of the ApplicationServer
command object, as well as the more detailed description of the show
operation and the output with the -verbose flag.

Figure 705. The help operation of the ApplicationServer command object

20.4.2 Status and error information
If a wscp command returns success, a result string of the command is
returned. This result string may contain a single value, a list of values, or be
empty. The interactive wscp shell will display non-empty results.

If a wscp command fails, three things happen.

1. A TclException is raised. This may be caught using the Tcl catch
command. If the exception is not caught, execution of the current
procedure or command substitution is terminated.

2. The Tcl variable errorCode is set. This will contain status values and
statusToString provided by the WscpStatus class. This variable is reset
prior to each WSCP-specific command.

wscp> ApplicationServer help
The following actions are available for ApplicationServer

attributes Display the attributes of the object
containment Display the containment hierarchy for the object
create Create the specified object
defaults Display or set attribute defaults
help Display this help message
list Display all the instances of this type
modify Modify the attributes of the specified object
operations List all the actions available on the object type
remove Remove the specified object
show Display the attributes of specified object
start Start the specified object
stop Stop the specified object

wscp> ApplicationServer help show

ApplicationServer show <name> [-all] [-attribute <attribute list>]

wscp> ApplicationServer help show -verbose

ApplicationServer show <name>

The following options are available for show

[-all] Also display unset attributes
[-attribute <attribute list>] Display only the specified attributes

wscp>
Chapter 20. The WebSphere Control Program (WSCP) 867

3. The Tcl variable errorInfo is set if WSCP caught an exception. This will
contain one or more stack traces of the exception(s). The variable
contents persist until explicitly set by the next exception. They can be
displayed in the same way as variables that you set yourself; set errorInfo

will display the contents of the errorInfo variable, for instance.

20.4.3 Sample commands
Here are three sample commands; to create, modify and remove an
application server. Table 45 shows the syntax for the create, modify and
remove operations:

Table 45. The syntax for the create, modify and remove operations

Figure 706 shows the commands to create, modify and remove an application
server. The server is to be called NoddyAppServer, and it will be created on
the SZYMON-Laptop node.

• The first command creates the server and sets the PingTimeout attribute
to 400 and the ThreadPoolSize to 40.

• The second command modifies the application server to increase the size
of the PingTimeout to 600 and the ThreadPoolSize to 60.

• Finally, the third command removes the application server.

Figure 706. Creation, modification and removal of an application server

20.5 Example WSCP procedures

This section contains a number of sample procedures, which you should feel
free to use and modify for your own purposes.

Command Syntax

create <objectType> create <name> -attribute <attrList>

modify <objectType> modify <name> -attribute <attrList>

remove <objectType> remove <name>

wscp> ApplicationServer create /Node:SZYMON-Laptop/ApplicationServer:NoddyAppSer
ver/ -attribute {{PingTimeout 400} {ThreadPoolSize 40}}
wscp> ApplicationServer modify /Node:SZYMON-Laptop/ApplicationServer:NoddyAppSer
ver/ -attribute {{PingTimeout 600} {ThreadPoolSize 60}}
wscp> ApplicationServer remove /Node:SZYMON-Laptop/ApplicationServer:NoddyAppSer
ver/
wscp>
868 WebSphere V3.5 Handbook

20.5.1 Sample procedures: statusToString, checkStatus
Figure 707 shows two example procedures that may be useful when working
with WebSphere.

The first one, statusToString, will convert a WscpStatus to its corresponding
string translation. It uses a java::call command, part of the Tcl and Java
integration, to call an Java method, also called statusToString, of the
WscpStatus class. This redbook does not go into detail on the Tcl Java
integration; see the resources at the end of this chapter for more information.
The default value of -1 in the statusToString procedure makes the argument
optional. If no argument is specified, the procedure will translate the current
value of the global variable, errorCode.

The second procedure, checkStatus, tests whether the errorCode matches
the expected status value. It simply compares the value of the errorCode
variable with the parameter passed to it.

Figure 707. Two example procedures

20.5.2 Advanced sample procedures: getAttrs, setAttrs
These example procedures, shown in Figure 708 on page 871, allow for the
manipulation of an array of attributes from the named object. The explanation
given here may be difficult to understand for those who do not have a
knowledge of Tcl.

The getAttrs procedure takes three parameters: name, array and args. The
name parameter should be given as a fully qualified object name, such as

#
Converts a WscpStatus to its corresponding string translation
#
proc statusToString {{status -1}} {

global errorCode
if {$status == -1 && $errorCode != "NONE"} {

set status $errorCode
}

java::call com.ibm.ejs.sm.ejscp.WscpStatus statusToString $status
}

#
Tests whether errorCode matches the expected status value
#
proc checkStatus {expectedStatus} {

global STATUS errorCode
if {$errorCode == $STATUS($expectedStatus)} {return 1} {return 0}

}

Chapter 20. The WebSphere Control Program (WSCP) 869

/Node:SZYMON-Laptop/ApplicationServer:HelloAppServer/

The array is the name of the array variable used to store the attribute names
and their values; this can be any name, and the array keys will be the attribute
names with the corresponding value being the attribute value. Finally, the
args option specifies one or more attributes to be stored into the array from
the specified object.

The first line of the procedure uses an upvar command to create a local
variable, a, which is a link to the array variable passed in as the second
parameter. The procedure then uses a regular expression to extract the type
of object from the name passed in as the first parameter. It then puts that type
into a variable type, and then runs the show operation on the name, with the
args variable, the final parameter, being passed as the list of attributes. This
is inside a foreach loop, used to set the entries in the array to the
attribute-value pairs returned.

The setAttrs procedure takes just two parameters: a name that has to be a
fully qualified object name, and an array that contains a set of attributes. It
uses a similar mechanism to the getAttrs procedure described above to
create a local string in the format acceptable to the -attribute option of the
modify operation; that is, it surrounds the attribute-value pairs with the correct
number of braces for the command. Finally, it runs the modify command.

The name args is special to Tcl, and means that a call to the procedure
may contain more actual arguments than the procedure has formals. All of
the actual arguments starting at the one that would be assigned to args are
combined into a list (as if the list command had been used); this combined
value is assigned to the local variable args.

Note
870 WebSphere V3.5 Handbook

Figure 708. The getAttrs and setAttrs procedures

20.5.3 Advanced sample procedure: modEnv
The modEnv procedure makes use of both getAttrs and setAttrs in order to
modify the Environment attribute of a server, to either add or change an
environment variable. It should be called with the fully qualified name of the
server as the first parameter, the name of the environment variable as the
second, and the value to which the variable should be set as the final
parameter. Figure 709 shows the modEnv procedure.

#
Get/Set an array of attributes for the specified object
#
proc getAttrs {name array args} {

upvar $array a
regexp {.*/([:̂]*):} $name unused type
foreach attr [$type show $name -attribute $args] {array set a $attr}

}

proc setAttrs {name array} {
upvar $array a
regexp {.*/([:̂]*):} $name unused type
foreach key [array names a] {append attrs "{$key {$a($key)}}"}
$type modify $name -attribute $attrs

}

Chapter 20. The WebSphere Control Program (WSCP) 871

Figure 709. The modEnv sample procedure

20.6 Interactive administration with WSCP

The WebSphere Control Program was principally designed for writing scripts
to control the WebSphere Application Server. However, it can be used for
interactive administration, and indeed may in some situations be the preferred
tool - for instance, if you are separated from your application server machines
via a firewall which only allows Telnet traffic through. In this situation, when
you cannot connect using a remote administrative console, and you cannot
set the GUI to display on your local X server (UNIX), WSCP on the remote
server would be the choice.

#
modEnv - procedure for modifying the Environment attribute of a server.
The specified environment variable is modified (or added if it is not present),
and the values of other environment variables are retained.
#
Arguments:
#
server - the fully qualified name of the server to be modified.
#
variable - the name of the environment variable to modify.
#
value - the new value of the environment variable.
#
To modify the Environment attribute of multiple servers, use the Tcl foreach command,
for example:
#
wscp> foreach server [ApplicationServer list] {modEnv $server TEST_VARIABLE 3.5}
#
proc modEnv {server variable value} {

getAttrs $server attr Environment
if {[info exists attr(Environment)]} {

set oldEnv $attr(Environment)
} else {

set oldEnv {}
}

append to environment if variable not found; replace it if found
set i [lsearch -regexp $oldEnv ^$variable=]
if {$i == -1} {

set newEnv [lappend oldEnv "$variable=$value"]
} else {

set newEnv [lreplace $oldEnv $i $i "$variable=$value"]
}

set attr(Environment) $newEnv
setAttrs $server attr

}

872 WebSphere V3.5 Handbook

The following hints are provided to make interactive work with WSCP faster
and more efficient from the user’s point of view.

20.6.1 Keeping track of the container
One of the least user friendly features of WSCP is the fact that in order to
work with any object, a fully qualified reference to that object has to be given.
Having to refer to, say, a servlet called HelloWorldServlet, as

/Node:SZYMON-Laptop/ApplicationServer:Default
Server/ServletEngine:Default Servlet Engine/WebApplication:default_app/

in every command can make for a lot of typing or cutting and pasting! The
solution is to use Tcl variables, as shown in Figure 710.

Figure 710. Use of the container variable with a servlet object

Clearly, ${container}Servlet:snoop/ is far easier to type than the fully qualified
name of the servlet object. Note that, because there are spaces in the
container definition, we have enclosed the whole definition in braces.
However, the actual command cannot be in braces because variables are not
expanded inside braces. If you do need to quote in the command (because
say, your servlet name contains a space), you have to use quotes rather than
braces. This can be seen in Figure 711, where we set our container to the
Default Server application server, in order to work with the Default Servlet
Engine; the name of the servlet engine has to be quoted, because it contains
spaces.

wscp> set container {/Node:SZYMON-Laptop/ApplicationServer:Default Server/Servle
tEngine:Default Servlet Engine/WebApplication:default_app/}
/Node:SZYMON-Laptop/ApplicationServer:Default Server/ServletEngine:Default Servl
et Engine/WebApplication:default_app/
wscp> Servlet show ${container}Servlet:snoop/
{FullName {/Node:SZYMON-Laptop/ApplicationServer:Default Server/ServletEngine:De
fault Servlet Engine/WebApplication:default_app/Servlet:snoop/}} {Name snoop} {C
urrentState Running} {DesiredState Running} {StartTime 969123086715} {Code Snoop
Servlet} {CodeActive SnoopServlet} {DebugMode 0} {Description {Snoop servlet}} {
DescriptionActive {Snoop servlet}} {Enabled True} {EnabledActive True} {InitPara
ms {{param1 test-value1}}} {InitParamsActive {{param1 test-value1}}} {LoadAtStar
tup False} {LoadAtStartupActive False} {URIPaths {default_host/servlet/snoop def
ault_host/servlet/snoop2}} {URIPathsActive {default_host/servlet/snoop default_h
ost/servlet/snoop2}} {UserServlet True} {UserServletActive True}
wscp>
Chapter 20. The WebSphere Control Program (WSCP) 873

Figure 711. Use of the container variable with the Default Servlet Engine

It may also be useful to create variables for the separate parts of the
container, for instance

set node {/Node:SZYMON-Laptop/}
set server "${node}ApplicationServer:Default Server/"
set engine "${server}ServletEngine:Default Servlet Engine/"
set webapp "${engine}WebApplication:default_app/"

20.6.2 Command line editing
The Tcl interactive mode provides support for scrolling back and editing
previous commands. Simply use the arrow keys, Insert, Delete, Home, End
and Backspace keys as you would expect.

20.7 Troubleshooting with WSCP

The WSCP tool can be used to manipulate trace for troubleshooting
purposes.

20.7.1 Enabling trace
The WebSphere Control Program can be used to manipulate trace in two
primary ways - statically, by modifying the TraceSpec attribute of a server and
restarting the server, or dynamically, by using the DrAdmin command.

20.7.1.1 Modifying trace specifications
Servers contain a TraceSpec attribute. You can use WSCP to modify this
attribute to set a certain trace specification, as follows:

wcsp> ApplicationServer modify
/Node:SZYMON-Laptop/ApplicationServer:HelloAppServer/ -attribute
{{TraceSpec com.ibm.ejs.container.*=all=enabled}}

wscp> set container {/Node:SZYMON-Laptop/ApplicationServer:Default Server/}
/Node:SZYMON-Laptop/ApplicationServer:Default Server/
wscp> ServletEngine show "${container}ServletEngine:Default Servlet Engine/"
{FullName {/Node:SZYMON-Laptop/ApplicationServer:Default Server/ServletEngine:De
fault Servlet Engine/}} {Name {Default Servlet Engine}} {CurrentState Running} {
DesiredState Running} {StartTime 969123090029} {MaxCon 25} {MaxConActive 25} {Tr
ansportAttributes {{linkType 0}{logFile native.log}{cloneIndex 1}{logFileMask 8}
{queueName ibmoselink}}} {TransportAttributesActive {{linkType 0}{cloneIndex 1}{
logFile native.log}{logFileMask 8}{queueName ibmoselink}}} {TransportPort 8993}
{TransportPortActive 8993} {TransportType 0} {TransportTypeActive 0}
wscp>
874 WebSphere V3.5 Handbook

This examples sets trace specification of the HelloAppServer application
server to com.ibm.ejs.container.*=all=enabled. Notice that the application
server is referred to by the fully qualified name. Setting the trace specification
of a server via WSCP is equivalent to setting the trace specification of a
server via the administrative console.

The wscp command itself can also be debugged by setting a trace
specification, except that this time the initial WSCP trace specification is set
via a WSCP property, as follows:

wscp.traceString=com.ibm.ejs.sm.ejscp.*=all=enabled

20.7.1.2 The DrAdmin command
The DrAdmin command can be used can be used to affect the local WSCP
instance or to affect a remote server instance.

Tracing can be enabled dynamically on the local WSCP by using the DrAdmin

local command as follows:

DrAdmin local -setTrace com.ibm.ejs.sm.ejscp.*=all=enabled

In order to connect to a remote DrAdmin server, we need to know what port
that server is listening on. The output from the server at startup will contain
something like:

DrAdminServer A DrAdmin available on port 1,086

The command would then be:

DrAdmin remote 1086 -setTrace com.ibm.ejs.container.*=all=enabled

Figure 712 shows the options for the DrAdmin remote command:

Figure 712. The syntax of the DrAdmin remote command

wscp> DrAdmin help remote -verbose
DrAdmin remote <server port>
The following options are available for remote
[-serverHost <string>] Server host name
[-setTrace <string>] Process the trace specification
[-setRingBufferSize <string>] Set number of ringbuffer entries in K
[-dumpRingBuffer <string>] Dump ring buffer to the specified file
[-dumpState <string>] Process the dump specification
[-stopServer] Stop the server
[-stopNode] Stop the node
[-dumpThreads] Dump the server threads
Chapter 20. The WebSphere Control Program (WSCP) 875

20.8 Limitations and additional information

The wscp command as it currently stands has a number of limitations. These
are described below.

20.8.1 Security objects are not supported
Security objects are not supported by WSCP at this time. These objects must
be manipulated outside of WSCP, such as by using the administrative
console. Note that XMLConfig import/export does include these objects.

20.8.2 Aggregate tasks are not provided
There is no WSCP equivalent for the administrative console wizards. The
reader is encouraged to create Tcl procedures to implement higher-level
tasks.

20.8.3 Concurrent use of clients may require coordination
Changes to the administrative database made by WSCP will require a
console refresh in the administrative console in order to be visible.

In the same way, a wscp list command may be necessary to update the
WSCP cache in order to reflect changes made via the administrative console.
The only identified area of concern in WSCP is when the administrative
console is used to delete an object for which WSCP has a cached reference.
That cached reference could lead to an exception if you then try to manipulate
the (now non-existent) object via WSCP, but no real harm is done and most
commands are unaffected.

The point is just to recognize that concurrent updates have implications for
other instances. There is certainly absolutely no reason to not use any
combination of consoles and/or WSCP instances for read-only operations.
Even insertions and updates are completely benign from the WSCP
perspective (and in the console just implies the need to manually refresh
instances).

20.9 Additional resources

• Tcl and the Tk Toolkit by John K. Ousterhout, published by
Addison-Wesley

• Developer Web site: dev.scriptics.com
• JACL Web site: dev.scriptics.com/software/java/
876 WebSphere V3.5 Handbook

Chapter 21. XMLConfig

This chapter describes the XMLConfig command-line utility that ships with
WebSphere V3.5. We specifically look at the options available and focus on
several scenarios where XMLConfig can be used as an alternative to the
administrative console. The tool is also a convenient method for extracting
administrative database configuration data, both in backup and problem
determination situations.

In this chapter, we will discuss:

• Introduction to XML and XMLConfig

• XMLConfig components

• XMLConfig - new feature in WebSphere V3.5

• XML: a suitable markup language for WebSphere

• Customizing XML for the WebSphere XMLConfig tool

• XML elements and actions for XMLConfig

• XMLConfig examples and uses

- Stopping and starting an application server

- Application servers and associated components

- Models and cloning

- Enterprise application security

21.1 Introduction to XML and XMLConfig

The XMLConfig tool offers the WebSphere administrator the ability to interact
with the administrative respository, possibly modifying or extracting
configuration data. XMLConfig makes full use of the eXtensible Markup
Language (XML), adhering to grammar and hierarchical conventions.

With XML documents coded to the WebSphere Application Server
Configuration Markup Language syntax (WASCML), it is possible to invoke an
action on a specified resource. Starting or stopping an application server is a
common example.

As grammar and structure are of concern when coding XML documents, over
100 Document Type Definitions (DTDs) are cataloged within WebSphere.
These are typically referenced at the start of any XML document with the
inclusion of the <!DOCTYPE> tag.
© Copyright IBM Corp. 2001 877

21.2 XMLConfig components

Whilst the XMLConfig tool is actually a Java class it is seldomly invoked
directly. Rather, located under the <WAS_HOME>/bin directory, either
XMLConfig.bat or XMLConfig.sh are available for Windows and UNIX platforms
respectively. Both these files share the same function of exporting the
classpath prior to invoking the Java class.

The com.ibm.websphere.xmlconfig.XMLConfig java class arguments are as
follows:

com.ibm.websphere.xmlconfig.XMLConfig { (-import <xml data file>)
|| [(-export <xml output file> [-partial <xml data file>]) }
-adminNodeName <primary node name> [-nameServiceHost <host name> [
-nameServicePort <port number>] [-traceString <trace spec>
[-traceFile <file name>]] [-substitute
<"key1=value1[;key2=value2;[...]]">]}

The <WAS_HOME>/bin/xmlconfig.dtd Document Type Definition (DTD) file
contains the XML specifications that must be adhered to when invoking
XMLConfig. These specifications ensure that XML import data meets the
WebSphere WASCML syntax. If an element or attribute is incorrectly defined
in an XML import file, an exception / error will occur. However, as XMLConfig
import XML can contain nested elements, it is possible that the foremost
objects will be created before the error is reached.

Additional Document Type Definition (DTD) catalogs can be found under the
<WAS_HOME>/web/xml/grammar/dtd subdirectories. These are provided not
for XMLConfig, but for generic XML support within WebSphere.

Typically, XMLConfig.bat/sh is invoked on the command line against the
WebSphere administrative primary node. The import option can be
substituted for either export or partial (export), prior to specifying the actual
XML file.

The following example imports the createappserver.xml file on node itsonode:

./XMLConfig.sh -adminNodeName itsonode -import createappserver.xml

WebSphere administrators are also given the opportunity to import and
export XML configuration data via the drop-down menu in the administrative
console, as shown in Figure 734 on page 905. Both input and output are the
same as if executed with the XMLConfig command.
878 WebSphere V3.5 Handbook

21.3 XMLConfig new features

Prior to WebSphere V3.5, XMLConfig shipped only as a technology preview.
Now, XMLConfig ships supporting several new features, offering the
administrator an alternative method for configuring and managing both
WebSphere Standard and Advanced Editions. In contrast to the WebSphere
Administrative Console and the WebSphere Control Program (WSCP),
XMLConfig is biased towards configuration. Similarly, XMLConfig is not an
interactive tool and cannot be used to retrieve status information from
WebSphere. However, the overhead of rigorously editing detailed XML, is
worth it when variable substitution is used, enabling multiple servlets or EJBs
to be quickly deployed.

The new XMLConfig features supported with WebSphere V3.5 are:

1. Model/clone support

Now supported are the createclone, associateclone and disassociate
XMLConfig actions. As demonstrated in Figure 725 on page 896,
cloning is achievable only once a WebSphere model is established.

2. Security

Implementing WebSphere general security is now possible with the
XMLConfig tool. In addition, method group creation, EJB or URI
method group mapping and method group permissions are all possible.

3. Enterprise applications

Administrators can quickly create an enterprise application, shown in
Figure 728 on page 899, for implementing security on a specific
application server and associated elements.

4. StopForRestart

Applicable to WebSphere node objects only. Effectively stops a node,
as the XMLConfig action suggests, for a restart.

5. Command line and programmatic variable substitution support

Allows users to quickly substitute variables from the XMLConfig
command line to a specified XML file. Extremely useful for deploying
multiple servlets or EJBs.

6. JDBC driver install/uninstall support

Provides a one-step method for configuring and installing additional
JDBC drivers, as required.
Chapter 21. XMLConfig 879

21.4 XML: a suitable markup language for WebSphere

Those not familiar with XML should recognize that it considerably contrasts
with other markup languages, such as HTML. XML offers the user the scope
to expand or enhance the actual markup tags of a document. Unlike HTML,
where a fixed set of standardized function tags are employed, this
enhancement or design freedom does not lie with the simple creation of an
XML document. Rather, it requires the design and construction of a
Document Type Definition (DTD) file to actually specify the underlying XML
syntax and structure. Subsequent XML documents can then be coded,
adhering to the constraints and validity set forth in the DTD specification.

As XML is fast emerging as a Web-based technology for transferring data
prior to presentation at the client, WebSphere now ships with over 100 DTD
catalogs. However, with XMLConfig we are only concerned with the
xmlconfig.dtd DTD found in the <WAS_HOME>/bin directory. It is this file that
maintains the XML specifications, governing structure and syntax when
invoking XMLConfig functions on the WebSphere administrative database.

XML in part is a hierarchical based metalanguage, embracing elements,
entities and attributes in a logical fashion. This is also true of WebSphere,
which utilizes the concept of an object for each resource found under the
administrative domain. Visually, the WebSphere Administrative Console best
demonstrates this concept, with the WebSphere administrative domain being
at the top of the hierarchy and the individual servlets at the lowermost points.

Using the WebSphere Administrative Console in the Topology quickly enables
the administrator to recognize the differing elements and attributes that
constitute the component parts of WebSphere. Familiarization with this
structure or hierarchy is paramount when editing XML documents, as it
enables the WebSphere administrator to quickly identify an object and
understand the corresponding attributes.

In conclusion, XMLConfig offers an alternative method for configuring and
administrating WebSphere. However, it does not directly replace the
administrative console or the WebSphere Control Program (WSCP). With the
use of variable substitution, XMLConfig is a powerful tool for deploying
multiple EJBs and servlets, avoiding the lengthy menu-driven configuration
necessary with the administrative console for each EJB or servlet.
880 WebSphere V3.5 Handbook

21.5 Customizing XML for the WebSphere XMLConfig tool

Common to all XML is the schema or syntax that adheres to the
specifications defined in the DTD. WebSphere XML is no exception to this
rule, only being valid if it adheres to the constraints stipulated in the
xmlconfig.dtd file.

At the simplest level, XML elements are constructed in a hierarchical or
tree-like structure. Indeed, each element is defined by a tag and associated
end tag. This concept is further extended since elements can be nested,
forming the various branches of a tree. Each element can also have an
associated attribute, which in turn, further describes the element.

<websphere-sa-config>
<parent name="pname" action="valid-action">

<child name="cname" action="valid-action"/>
</parent>

</websphere-sa-config>

It is not surprising that the XML representation of the WebSphere topology
tree is similar to that experienced with the navigation of the administrative
console topology tree. This is evident in the following excerpt, which performs
a create action on the web-application “ITSO2_web_app”, but only after first
locating the respective node, application-server, and servlet-engine.

<websphere-sa-config>
<node name="riscwas2" action="locate">
<application-server name="Default Server" action="locate">
<servlet-engine name="Default Servlet Engine" action="locate">
<web-application name="ITSO2_web_app" action="create">
...
...
</web-application>

</servlet-engine>
</application-server>

</node>
</websphere-sa-config>

The locate action is used to select the specified element and effectively
serves to guide us to the next nested object. Once the servlet-engine named
“Default Servlet Engine” is located, we can create a web-application called
“ITSO2_web_app”. The actual creation details have been omitted.
Chapter 21. XMLConfig 881

21.5.1 XMLConfig elements
Throughout the examples provided in this chapter you will see two common
elements that never change:

<?xml version="1.0"?>
<!DOCTYPE websphere-sa-config
SYSTEM"$XMLConfigDTDLocation$$dsepbindsep$xmlconfig.dtd">

Here, the first line specifies the XML version and the second line the
Document Type Definition (DTD) file that governs the XML syntax and
structural validity of any following XML markup. Since WebSphere is a
cross-platform product, variable substitution will automatically supplement the
correct values for the $XMLConfigDTDLocation$ the <WAS_HOME>, $dsep$
the directory separator and $psep$ the path delimiter.

XML elements are defined with the use of tags. Each element has a start and
end tag, with the end tag being prefixed with a “/” forward slash. Figure 713
highlights the validity of nested tags, only creating a web-application once the
node, application-server and servlet-engine are correctly located. The actual
web-application specifics have been omitted in this case.

Figure 713. Nested XML tags

Each element requires a unique name to distinguish itself from any peers at
the same level in the topology tree. However, as each branch of the topology
tree is independent, the uniqueness towards the ends of the branches is not
so critical. For example, using the administrative console wizard to create a
full-blown application server with servlet engine and EJB container will always
set the name of the EJB container to Default Container.

<websphere-sa-config>
<node name="riscwas2" action="locate">
<application-server name="ITSO App Server" action="locate">
<servlet-engine name="ITSO Servlet Engine" action="locate">
<web-application name="ITSO Web Application" action="create">

...

...
</web-application>

</servlet-engine>
</application-server>

</node>
</websphere-sa-config>
882 WebSphere V3.5 Handbook

21.5.2 XMLConfig actions
Figure 713 on page 882 also introduces the concept of element actions, with
locate and create being briefly introduced to configure a new Web application
under an existing servlet engine, shown in bold type.

Valid element actions are: create | update | delete | locate | export | start |
stop | ping | createclone | associateclone | disassociateclone | enable |
disable | restart | StopForRestart. As expected the resulting function from
each is as their name suggests. However, update is typically specified in
preference to create, as it will default to the create action if the element
specified does not already exist. If the element does however exist, the
attributes will be updated.

Not all actions are valid for all types of elements.

There are two possible ways to determine which attributes are valid for each
respective element or what elements are valid at the various levels in the XML
hierarchy:

1. Consulting the xmlconfig.dtd DTD found in the <WAS_HOME>/bin
directory will provide the definitive answer, although the xmlconfig.dtd file
is a complex document and not that user-friendly. For example, valid
attributes for a DataSource are:

<!ELEMENT data-source (database-name? , jdbc-driver-name? ,
minimum-pool-size? , maximum-pool-size? , connection-timeout? ,
idle-timeout? , orphan-timeout?)*>

2. If a similar element or object in WebSphere terminology already exists in
your WebSphere configuration, an XMLConfig export can be consulted.
However, if an object attribute is null, the element attribute name is not
necessarily exported. An example is the <data-source name=””/> found in
an EJB Container; see in Figure 719 on page 888.

It is important to note that element names in XML are both case-sensitive
and white-space-sensitive; for example, “ITSO App Server” is not the same
as “itso app server”, nor is “ITSO App Server” the same as
“ITSOAppServer”.

In the examples that follow in this chapter, new lines start with a “<“ and
terminate with a carriage return only after a “>” or “/>”.

Note
Chapter 21. XMLConfig 883

21.6 XMLConfig examples and uses

The following section details the most common XMLConfig examples.

21.6.1 Starting and stopping an application server
The first example provided, as shown in Figure 714, demonstrates how to
start the “Default Server” application server that resides on a node named
“riscwas2”. You will have to modify both the application-server name and the
node name values to perform this action on your system. Then run:

XMLConfig.sh -adminNodeName riscwas2 -import itsoStartDefault.xml

Figure 714. itsoStartDefault.xml

Figure 715 shows with a simple change of the application-server action
keyword characteristic that the itsoStartDefault.xml file can easily be modified
to produce the itsoStopDefault.xml file. Then run:

XMLConfig.sh -adminNodeName riscwas2 -import itsoStopDefault.xml

Figure 715. itsoStopDefault.xml

<?xml version="1.0"?>
<!DOCTYPE websphere-sa-config SYSTEM
"$XMLConfigDTDLocation$$dsepbindsep$xmlconfig.dtd">

<websphere-sa-config>
<node name="riscwas2" action="update">
<application-server name="Default Server" action="start">
</application-server>

</node>
</websphere-sa-config>

<?xml version="1.0"?>
<!DOCTYPE websphere-sa-config SYSTEM
"$XMLConfigDTDLocation$$dsepbindsep$xmlconfig.dtd">

<websphere-sa-config>
<node name="riscwas2" action="update">
<application-server name="Default Server" action="stop">
</application-server>

</node>
</websphere-sa-config>
884 WebSphere V3.5 Handbook

21.6.2 Creating a new JDBC driver
With XMLConfig it is possible to quickly configure and install a new JDBC
driver. In Figure 716 we create a new DB2 JDBC 2.0 driver called
“anotherJDBCDriver”. Those familiar with the WebSphere Administrative
Console topology tree will recall that JDBC drivers reside under the
WebSphere administrative domain. For that reason, the jdbc-driver creation
takes place immediately after the <websphere-sa-config> tag.

Figure 716. itsoJDBCDriver.xml

Users may choose any arbitrary name that does not already exist within the
WebSphere administrative database for the jdbc-driver name. The
implementation class and the url-prefix need to reflect that used by the
selected database. Currently DB2, Oracle, Sybase and InstantDB are
supported by WebSphere V3.5.

The XML provided in Figure 716 also performs the action of installing the
JDBC driver, starting at line <install-info>. Users will have to customize these
values for their respective systems.

Install the JDBC driver with:

XMLConfig.sh -adminNodeName riscwas2 -import itsoJDBCDriver.xml

<?xml version="1.0"?>
<!DOCTYPE websphere-sa-config SYSTEM
"$XMLConfigDTDLocation$$dsepbindsep$xmlconfig.dtd">

<websphere-sa-config>
<jdbc-driver name="anotherJDBCDriver" action="create">

<implementation-class>com.ibm.db2.jdbc.app.DB2Driver
</implementation-class>
<url-prefix>jdbc:db2</url-prefix>
<jta-enabled>false</jta-enabled>
<install-info>
<node-name>riscwas2</node-name>
<jdbc-zipfile-location>/home/db2inst1/sqllib/java12/db2java.zip
</jdbc-zipfile-location>

</install-info>
</jdbc-driver>

</websphere-sa-config>
Chapter 21. XMLConfig 885

21.6.3 Creating a new DataSource
Once a suitable JDBC driver has been installed, a DataSource can be
configured to use that driver. This is demonstrated in Figure 717. As the
location of the DataSource is similar to that of the JDBC driver, underneath
the WebSphere administrative domain, the data-source create action is
implemented directly after the <websphere-sa-config> tag. Figure 717
creates a data-source named “ITSO DataSource”, where the actual database
name is “itso”, using the jdbc-driver-name from Figure 716 on page 885. All
other values are the defaults.

Create the DataSource with:

XMLConfig.sh -adminNodeName riscwas2 -import itsoDataSource.xml

Figure 717. itsoDataSource.xml

21.6.4 Creating a new application server
Figure 718 on page 887 creates a new application server named “ITSO App
Server”. Since the application server exists under a node, we first specify the
locate action on the node element. This locates the node called “riscwas2”
before creating our application server.

You will recall that it is valid to specify the update action, rather than the
create action, as update will revert to create if the object does not yet exist in
the administrative database.

<?xml version="1.0"?>
<!DOCTYPE websphere-sa-config SYSTEM
"$XMLConfigDTDLocation$$dsepbindsep$xmlconfig.dtd">

<websphere-sa-config>
<data-source name="ITSO DataSource" action="create">

<database-name>itso</database-name>
<jdbc-driver-name>anotherJDBCDriver</jdbc-driver-name>
<minimum-pool-size>1</minimum-pool-size>
<maximum-pool-size>10</maximum-pool-size>
<connection-timeout>120000</connection-timeout>
<idle-timeout>180000</idle-timeout>
<orphan-timeout>1800000</orphan-timeout>

</data-source>
</websphere-sa-config
886 WebSphere V3.5 Handbook

Figure 718. itsoAS.xml

When using XMLConfig in Figure 718, the only values you need to alter are
the parent node name, the application-server name and the stdout and stderr
log file names. All the other elements can be further customized, but are
provided here with their default values.

<?xml version="1.0"?>
<!DOCTYPE websphere-sa-config SYSTEM
"$XMLConfigDTDLocation$$dsepbindsep$xmlconfig.dtd">

<websphere-sa-config>
<node name="riscwas2" action="locate">
<application-server name="ITSO App Server" action="update">
<executable>java</executable>
<command-line-arguments/>
<environment/>
<user-id></user-id>
<group-id></group-id>
<working-directory></working-directory>
<umask>18</umask>
<stdin></stdin>
<stdout>/usr/WebSphere/AppServer/logs/ITSOASstdout.log</stdout>
<stderr>/usr/WebSphere/AppServer/logs/ITSOASstderr.log</stderr>
<process-priority>20</process-priority>
<maximum-startup-attempts>2</maximum-startup-attempts>
<ping-interval>60</ping-interval>
<ping-timeout>200</ping-timeout>
<ping-initial-timeout>300</ping-initial-timeout>
<trace-specification></trace-specification>
<trace-output></trace-output>
<transaction-log-file></transaction-log-file>
<olt-enabled>false</olt-enabled>
<system-properties/>
<debug-enabled>false</debug-enabled>
<transaction-timeout>120</transaction-timeout>

<transaction-inactivity-timeout>60000</transaction-inactivity-timeout>
<thread-pool-size>20</thread-pool-size>
<security-enabled>false</security-enabled>

</application-server>
</node>

</websphere-sa-config>
Chapter 21. XMLConfig 887

21.6.5 Creating a new EJB container
Extending an application server to accommodate an EJB container is a
necessary action if you are going to deploy enterprise beans. Figure 719
creates an EJB container named “ITSO Container”, only after first locating the
node named “riscwas2” and the application-server named “ITSO App Server”.

With an EJB container it is possible to set the DataSource and user ID and
password on the container object itself. EJBs then deployed in the container
will then inherit these values, unless they have their own DataSource and
user ID and password defined.

Figure 719. itsoCon.xml

If you choose not to set the user ID and password, then replace
<user-id>itso</user-id> with <user-id></user-id> and
<password>itsoitso</password> with <password></password>.

If you choose not to configure the DataSource on the container then drop the
<data-source name=”ITSO DataSource”/> line entirely.

<?xml version="1.0"?>
<!DOCTYPE websphere-sa-config SYSTEM
"$XMLConfigDTDLocation$$dsepbindsep$xmlconfig.dtd">

<websphere-sa-config>
<node name="riscwas2" action="locate">
<application-server name="ITSO App Server" action="locate">
<container name="ITSO Container" action="update">
<user-id>itso</user-id>
<password>itsoitso</password>
<cache-config>
<size>2047</size>
<soft-limit>2000</soft-limit>
<hard-limit>2047</hard-limit>
<sweep-interval>1000</sweep-interval>
<passivation-directory></passivation-directory>

</cache-config>
<data-source name="ITSO DataSource"/>

</container>
</application-server>

</node>
</websphere-sa-config>
888 WebSphere V3.5 Handbook

21.6.6 Creating a new servlet engine
Shown in Figure 720 is the XML necessary to create a servlet engine beneath
the newly created application server “ITSO App Server”. As the XML
implements an OSE transport queue for the servlet engine, it is imperative
that -1 is specified for the transport-port element. This will enable WebSphere
to choose the next available free port for the protocol. Alternatively, if a port
number is known to be free, it can be substituted here. It is also necessary to
specify a unique queue-name for the servlet engine. This can be checked
against the current values in use, found in the queues.properties file under
<WAS_HOME>/temp directory.

Figure 720. itsoSE.xml

Creating a servlet engine with the XML provided in Figure 720 will also
automatically generate a User Profile Manager and Session Manager under
the servlet engine and a RemoteSRP bean under the associated EJB
container, as created in Figure 719 on page 888.

Note that if you use Servlet 2.2/JSP 1.1 support, see 21.6.8.1, “Creating a
new servlet engine for Servlet 2.2/JSP 1.1” on page 891.

<?xml version="1.0"?>
<!DOCTYPE websphere-sa-config SYSTEM
"$XMLConfigDTDLocation$$dsepbindsep$xmlconfig.dtd">
<websphere-sa-config>
<node name="riscwas2" action="locate">
<application-server name="ITSO App Server" action="locate">
<servlet-engine name="ITSO Servlet Engine" action="update">
<maximum-connections>25</maximum-connections>
<transport-port>-1</transport-port>
<transport-type name="ose">
<ose-transport>

<link-type>local</link-type>
<log-file-mask trace="false" inform="false" warning="false"
error="true"/>
<queue-name>ibmoselink2</queue-name>
<clone-index>1</clone-index>
<native-log-file>native.log</native-log-file>

</ose-transport>
</transport-type>
</servlet-engine>

</application-server>
</node>

</websphere-sa-config>
Chapter 21. XMLConfig 889

21.6.7 Creating a new Web application
The XML provided in Figure 721 constructs a Web application called “ITSO
Web Application” below the parent servlet engine object “ITSO Servlet
Engine”. The document root and classpath correlate directly with the location
of the web and servlet directories on the local operating system.
Configuration of the Web application path is achieved by setting the root-uri.
Any values here needs to be prefixed by the virtual host name.

Figure 721. itsoWebApp.xml

Note that if you use Servlet 2.2/JSP 1.1 support, see 21.6.8.2, “Creating a
new Web application for servlet 2.2/JSP 1.1” on page 891.

<?xml version="1.0"?>
<!DOCTYPE websphere-sa-config SYSTEM
"$XMLConfigDTDLocation$$dsepbindsep$xmlconfig.dtd">

<websphere-sa-config>
<node name="riscwas2" action="locate">
<application-server name="ITSO App Server" action="locate">
<servlet-engine name="ITSO Servlet Engine" action="locate">
<web-application name="ITSO Web Application" action="update">

<description>ITSO Web Application</description>
<document-root>/usr/WebSphere/AppServer/hosts/default_host/IT
SOWebApp/web</document-root>
<classpath>
<pathvalue=""/>
</classpath>
<error-page></error-page>
<filter-list/>
<group-attributes/>
<auto-reload>true</auto-reload>
<reload-interval>9000</reload-interval>
<enabled>true</enabled>
<root-uri>default_host/webapp/ITSOWebApp</root-uri>
<shared-context>false</shared-context>
<shared-context-jndi-name>SrdSrvltCtxHome</shared-context-jnd
i-name>

</web-application>
</servlet-engine>

</application-server>
</node>

</websphere-sa-config>
890 WebSphere V3.5 Handbook

21.6.8 Supporting Servlet 2.2 and JSP 1.1 APIs
Since WebSphere V3.5.2 supports Servlet 2.2/JSP 1.1, additional attributes
needs to added in <servlet-engine> and <web-application> for
Servlet2.2/JSP1.1 support.

21.6.8.1 Creating a new servlet engine for Servlet 2.2/JSP 1.1
To create a new servlet engine for Servlet 2.2/JSP1.1 support, you need to
specify <servlet-mode>, for example,

<servlet-engine>
<servlet-mode> [compliance or compatibility mode] </servlet-mode>
<!-- servlet-mode takes an integer, please specify 0 for
JSP1.1/Servlet2.2 compliance and 1 for WebSphere 3.5 Compatibility mode
-->

</servlet-engine>

21.6.8.2 Creating a new Web application for servlet 2.2/JSP 1.1
To create a new Web application for Servlet 2.2/JSP1.1 support, you need to
specify <error-page-j2ee>, <mime-mapping>, <welcome-file-list>, and
<tag-lib>, for example,

<web-application>
<error-page-j2ee>

<error-code/> | <exception-type/>
<location>

</error-page-j2ee>
<mime-mapping>

<extension/>
<mime-type/>

</mime-mapping>
<welcome-file-list>

<welcome-file/>
<welcome-file/>
......

</welcome-file-list>
<tag-lib>

<tag-lib-uri/>
<tag-lib-location/>

</tag-lib>
</web-application>
Chapter 21. XMLConfig 891

21.6.9 Creating a new servlet
XMLConfig is a convenient method for deploying servlets under a Web
application in WebSphere. Figure 722 demonstrates the addition of the JSP
1.0 processor servlet to the Web application “ITSO Web Application”. For
each subsequent servlet to be deployed under the ITSO Web Application, the
code between the <servlet></servlet> tags needs only to differ. The uri-paths
inherit the root-uri prefix as defined on the parent Web application object.

Servlets that you may choose or indeed need to add, in addition to your own,
include the Error Reporting Facility servlet, the File Serving Enabler, the
Auto-Invoker and the JSP 1.0 Processor.

Install the servlet with:

XMLConfig.sh -adminNodeName riscwas2 -import itsoServlet2a.xml

Figure 722. itsoServlet2a.xml

<?xml version="1.0"?>
<!DOCTYPE websphere-sa-config SYSTEM
"$XMLConfigDTDLocation$$dsepbindsep$xmlconfig.dtd">

<websphere-sa-config>
<node name="riscwas2" action="locate">
<application-server name="ITSO App Server" action="locate">
<servlet-engine name="ITSO Servlet Engine" action="locate">
<web-application name="ITSO Web Application" action="locate">
<servlet name="jsp10" action="update">
<description>JSP 1.0 support servlet</description>
<code>com.sun.jsp.runtime.JspServlet</code>
<init-parameters/>
<load-at-startup>true</load-at-startup>
<debug-mode>false</debug-mode>
<uri-paths>
<uri value="*.jsp"/>
<uri value="*.jsv"/>
<uri value="*.jsw"/>

</uri-paths>
<enabled>true</enabled>

</servlet>
</web-application>

</servlet-engine>
</application-server>

</node>
</websphere-sa-config>
892 WebSphere V3.5 Handbook

21.6.10 Creating a new EJB
XMLConfig allows users to quickly install both deployed and deployable EJBs
into a selected EJB container. WebSphere will first convert any deployable
EJBs to the deployed state, before their installation to the selected container.
The XML for this scenario is shown in Figure 723. Compared to EJB
deployment with the administrative console, XMLConfig EJB deployment is a
one-step process. Since XMLConfig will handle the deployment of a
deployable EJB, it is necessary to specify the location for the resulting
deployed EJB. This location is configured with the use of the
<deployed-jar-directory> tags. This line can remain when the jar-file specified
is a deployed EJB. It is, however, imperative that the correct JNDI home name
is set for both deployed and deployable EJBs under the <home-name>
element.

Figure 723. itsoDeployableEJB.xml

<?xml version="1.0"?>
<!DOCTYPE websphere-sa-config SYSTEM
"$XMLConfigDTDLocation$$dsepbindsep$xmlconfig.dtd">

<websphere-sa-config>
<node name="riscwas2" action="update">
<deployed-jar-directory>/usr/WebSphere/AppServer/deployedEJBs</deplo
yed-jar-directory>
<application-server name="ITSO App Server" action="locate">
<container name="ITSO Container" action="locate">
<ejb name="Counter" action="update">
<jar-file>/usr/WebSphere/AppServer/deployableEJBs/Counter.jar
</jar-file>
<home-name>Counter</home-name>
<user-id></user-id>
<password></password>
<create-db-table>false</create-db-table>
<find-for-update>true</find-for-update>
<minimum-pool-size>5</minimum-pool-size>
<maximum-pool-size>500</maximum-pool-size>
<primary-key-check>true</primary-key-check>
<db-exclusive-access>false</db-exclusive-access>

</ejb>
</container>

</application-server>
</node>

</websphere-sa-config
Chapter 21. XMLConfig 893

21.6.11 XMLConfig variable substitution
With variable substitution it is possible to quickly supplement a value into an
otherwise static XML document when invoking the actual XMLConfig
command. This has two practical uses:

1. With the creation a generic XML document, such as the EJB deployment
example in Figure 723 on page 893, it would be convenient to specify the
EJB WebSphere object name, the JNDI home name and the associated
JAR file at the time of executing the XMLConfig command. This way,
multiple EJBs could be deployed without editing the XML document each
time.

2. It offers the WebSphere administrator the ability to archive XML exports,
without the security risk of publishing an unencrypted WebSphere
password. Variable substitution is actioned on the server-password, the
ltpa-password, ldap-bindpwd and on each enterprise application where
security has been enabled.

To convert the itsoEJB.xml file as provided in Figure 723 on page 893 to use
variable substitution, simply replace the following lines:

<ejb name="Counter" action="update">

for

<ejb name="$ejbname$" action="update">

<jar-file>/usr/WebSphere/AppServer/deployableEJBs/Counter.jar</jar-file>

for

<jar-file>/usr/WebSphere/AppServer/deployableEJBs/$jarfile$</jar-file>

<home-name>Counter</home-name>

for

<home-name>$homename$</home-name>

XMLConfig can now be invoked specifying differing EJB WebSphere object
names, EJB JAR files and JNDI home names.

./XMLConfig.sh -adminNodeName riscwas2 -import itsoEJB3.xml -substitute

"ejbname=Container;jarfile=Container.jar;homename=Container”
894 WebSphere V3.5 Handbook

21.6.12 XMLConfig model and clone support
WebSphere V3.5 XMLConfig now supports the createclone, associateclone
and disassociateclone actions. Administrators will recall that cloning only
supersedes the action of first creating a model reference. With the
administrative console it is possible to recursively convert an application
server to a model and then create an initial clone from the Model Properties
menu.

Although the application server specifics have been omitted in Figure 724,
the XML demonstrates the effective encapsulation of the application-server
between the model <attributes> and </attributes> tags. As the XML will be
used to create a model application server, rather than an actual application
server, the create action is only performed on the <model> element. Finally,
the <mode-full-name> specifies a reference that subsequent clones will use
to locate their respective model counterparts. This is a hierarchical value that
concatenates each sub-element name to the previous parent
model-full-name.

Figure 724. itsoModel.xml

Models, similar to JDBC drivers and DataSources, are positioned beneath the
WebSphere administrative domain. For this reason model creation takes
place immediately after the <websphere-sa-config> tag. WebSphere V3.5
PTF 2 extends XMLConfig support, allowing users to create a model with

<?xml version="1.0"?>
<!DOCTYPE websphere-sa-config SYSTEM
"$XMLConfigDTDLocation$$dsepbindsep$xmlconfig.dtd">

<websphere-sa-config>
<model name="ITSO2ASModel" action="create">
<type>Application Server</type>
<attributes>
<application-server name="ITSO2 App Server">
...
...

</application-server>
</attributes>
<model-full-name>/ModelHome:ITSO2ASModel/</model-full-name>
...

</model>
</websphere-sa-config>
Chapter 21. XMLConfig 895

numerous EJBs deployed per EJB container. Similarly, PTF 2 supports
XMLConfig export and import options, when models contain deployed EJBs.

21.6.12.1 Creating a new clone
The newly supported createclone action is demonstrated in Figure 726. Here,
a cloned application server named “ITSO AS Clone3”, is created under the
node “riscwas2”. The various subelements of the application server are also
cloned in the XML, with the cloned servlet engine, cloned Web application,
and cloned servlet directly lifted to form Figure 726 on page 897.

Figure 725. itsoClone.xml

The attribute values for each cloned element are obtained from the original
model reference with the use of the <model-full-name> tags, as shown in
Figure 725. The exception to this rule is the servlet engine, which by virtue of
the function that it provides in WebSphere, needs to be configured listening
on a different OSE port number from that of any peer.

<?xml version="1.0"?>
<!DOCTYPE websphere-sa-config SYSTEM
"$XMLConfigDTDLocation$$dsepbindsep$xmlconfig.dtd">

<websphere-sa-config>
<node name="riscwas2" action="update">

<application-server name="ITSO AS Clone3" action="createclone">
<model-full-name>/ModelHome:ITSOModel/</model-full-name>

<container name="ITSO Container Clone3" action="createclone">
<model-full-name>/ModelHome:ITSOModel/ModelHome:ITSOContainer
/</model-full-name>

<ejb name="Counter" action="createclone">
<model-full-name>/ModelHome:ITSOModel/ModelHome:ITSOContainer
/ModelHome:Counter/</model-full-name>
</ejb>
</container>
...

(see Figure 726 on page 897 for this section)

...
</application-server>

</node>
</websphere-sa-config>
896 WebSphere V3.5 Handbook

When cloning a servlet engine it is vital that the OSE transport port is
modified to the next available free port number, as shown in Figure 726.
Similarly, the queue-name and clone-index values must be incremented in
order to avoid clashing with any existing parameters found in the
<WAS_HOME>/temp/queues.properties file. After XMLConfig is used to
create a clone, it is necessary to stop and start the parent model to update
this file.

Figure 726. itsoClone.xml: servlet engine, Web application and servlet

The cloned session manager, user profile manager, and remoteSRP bean
have been omitted from Figure 725 on page 896 and Figure 726.

<servlet-engine name="ITSO Servlet Engine Clone3" action="createclone">
<model-full-name>/ModelHome:ITSOModel/ModelHome:ITSO Servlet
Engine/</model-full-name>
<maximum-connections>25</maximum-connections>
<transport-port>8995</transport-port>
<transport-type name="ose">

<ose-transport>
<link-type>local</link-type>
<log-file-mask trace="false" inform="false" warning="false"
error="true"/>
<queue-name>ibmoselink3</queue-name>
<clone-index>3</clone-index>
<native-log-file>/usr/WebSphere/AppServer/logs/ITSOServletEngineC
lone3.244_native.log</native-log-file>
</ose-transport>

</transport-type>

<web-application name="ITSO Web Application Clone3"
action="createclone">
<model-full-name>/ModelHome:ITSOModel/ModelHome:ITSO Servlet
Engine/ModelHome:ITSO Web Application/</model-full-name>

<servlet name="file" action="createclone">
<model-full-name>/ModelHome:ITSOModel/ModelHome:ITSO Servlet
Engine/ModelHome:ITSO Web
Application/ModelHome:file/</model-full-name>
</servlet>

</web-application>
</servlet-engine>
Chapter 21. XMLConfig 897

21.6.12.2 Clone disassociation and association
Disassociating a clone from a model is the action of creating an independent
application server, void of any control from the model. This is potentially
useful if an administrator wishes to delete a model and associated clones, but
wishes to keep one application server with associated elements for further
use. Clone association is the reverse of disassociation, and can be used to
affiliate the stand-alone application server back with the model.

Figure 727 demonstrates the disassociation of an application server clone
named “ITSO App Server Clone4” from the model “ITSOModel”. For each of
the elements that constitute the application server, such as the EJB container
and EJB, it is necessary to specify the model reference with the use of the
<model-full-name> tags. This will generate a free-standing application server,
again void of any control from the model.

Figure 727. itsoDisClone.xml

<?xml version="1.0"?>
<!DOCTYPE websphere-sa-config SYSTEM
"$XMLConfigDTDLocation$$dsepbindsep$xmlconfig.dtd">

<websphere-sa-config>
<node name="riscwas2" action="update">

<application-server name="ITSO App Server Clone4”
action="disassociateclone">
<model-full-name>/ModelHome:ITSOModel/</model-full-name>

<container name="ITSO Container Clone4"
action="disassociateclone">
<model-full-name>/ModelHome:ITSOModel/ModelHome:ITSO
Container/</model-full-name>

<ejb name="Counter" action="disassociateclone">
<model-full-name>/ModelHome:ITSOModel/ModelHome:ITSO
Container/ModelHome:Counter/</model-full-name>
</ejb>

</container>
...
...

</application-server>
</node>
</websphere-sa-config>
898 WebSphere V3.5 Handbook

21.6.13 XMLConfig and security
XMLConfig now ships supporting the creation of enterprise applications, thus
allowing the WebSphere administrator to provide security on a previously
defined application server. The figures that follow in this section highlight the
XML necessary to implement security on one such application server. Not
discussed here is the enablement of WebSphere general security, which must
be undertaken prior to creating the enterprise application example.

The following steps are required: 1. Enterprise application creation; 2. New
method group creation; 3. EJB and URI method group mapping; and finally 4.
Method group permission assignment.

In Figure 728, an enterprise application named “ITSO Ent App” is created in
the WebSphere administrative domain. For each EJB or URI object that exists
under the previously defined “ITSO Web Application” Web application, an
element needs to be created. The latter can be a servlet, JSP or HMTL file. In
this case, the URI /webapp/ITSOWebApp will satisfy HTTP requests for the
file serving servlet.

Figure 728. itsoEntApp.xml

It is also possible to configure WebSphere security so that applications run
with the effective authentication credentials of a specific user. This, if used,
would be configured under the <enterprise-application-security> tag.

<?xml version="1.0"?>
<!DOCTYPE websphere-sa-config SYSTEM
"$XMLConfigDTDLocation$$dsep$xmlconfig.dtd">

<websphere-sa-config>
<enterprise-application name="ITSO Ent App" action="create">
<ejb name="Counter"/>
<uri name="/webapp/ITSOWebApp"/>
<web-application name="ITSO Web Application"/>

</enterprise-application>
<enterprise-application-security action="update">
<enterprise-application name="ITSO Ent App"/>
<realm-name>ITSO</realm-name>
<challenge-type ssl-enabled="false">
<basic-challenge/>

</challenge-type>
</enterprise-application-security>

</websphere-sa-config>
Chapter 21. XMLConfig 899

21.6.13.1 Creating a new method-group
Method-groups are used by WebSphere to associate an individual or
collection of EJB methods / HTTP actions to a specific permission directive.
For example, one method-group can hold read permissions, while another
can write permissions and both can contain any number of objects.

The XML in Figure 729 was used to create an additional method-group called
“ITSOMethods”.

Figure 729. itsoMethodG.xml

21.6.13.2 EJB method group mapping
Next, if security is to be implement on an EJB, it is necessary to associate
each EJB method with a WebSphere method group. Users can specify
methods exactly what EJB methods are defined on the EJB object prior to
using XMLConfig. Figure 730 shows the association between the EJB method
“ejbCount” and the “ITSOMethods” method-group.

Figure 730. itsoEJBMeth.xml

<?xml version="1.0"?>
<!DOCTYPE websphere-sa-config SYSTEM
"$XMLConfigDTDLocation$$dsepbindsep$xmlconfig.dtd">
<websphere-sa-config>

<method-group>ITSOMethods</method-group>
</websphere-sa-config>

<?xml version="1.0"?>
<!DOCTYPE websphere-sa-config SYSTEM
"$XMLConfigDTDLocation$$dsep$xmlconfig.dtd">

<websphere-sa-config>
<ejb-security>
<ejb name="Counter"/>
<method-group-mapping method="ejbCount"
method-group="ITSOMethods"/>
...
...
...
<run-as-mode-mapping method="*" run-as-mode="system"/>

</ejb-security>
</websphere-sa-config>
900 WebSphere V3.5 Handbook

In WebSphere V3.5.2, users also can specify all the methods which should
belong to a particular method group. This would not require the users to know
(or specify) all the EJB methods in advance if users want to add al the
methods to a mehod-group. Figure 731 shows the association between the
“Counter” enterprise bean and the “ITSOMethodsAll” method-group.

Figure 731. tsoEJBMethAll.xml

21.6.13.3 URI method group mapping
WebSphere provides a set of predefined methods for dealing with HTTP
requests, reflecting the possible actions that can be performed by any Web
browser. Similarly, a set of predefined method-groups are configured to
manage these HTTP methods. Figure 732 on page 902 shows the correlation
between such HTTP method-group maps being applied to the URI objects:
“/webapp/ITSOWebApp/” and “/webapp/ITSOWebApp/*.jsp”.

The URI names in Figure 732 on page 902 reflect the URI a client will enter
into their Web browser. The URI can be more specific than that shown in the
example, thus limiting the URI requests down to individual servlets, JSPs or
HTML pages.

<?xml version="1.0"?>
<!DOCTYPE websphere-sa-config SYSTEM
"$XMLConfigDTDLocation$$dsep$xmlconfig.dtd">

<websphere-sa-config>
<ejb-security>
<ejb name="Counter"/>
<method-group-mapping-all method-group="ITSOMethodsAll"/>
...
...
...
<run-as-mode-mapping method="*" run-as-mode="system"/>

</ejb-security>
</websphere-sa-config>
Chapter 21. XMLConfig 901

Figure 732. itsoUri.xml

21.6.13.4 Method group permissions
The final step when configuring WebSphere enterprise application security is
to actually specify the permissions on each method-group. Once established,
the permissions will hold for each member of the method-group, be it an EJB
method or a URI method (HTTP action).

<?xml version="1.0"?>
<!DOCTYPE websphere-sa-config SYSTEM
"$XMLConfigDTDLocation$$dsep$xmlconfig.dtd">

<websphere-sa-config>
<uri-security>

<uri name="/webapp/ITSOWebApp/"/>
<method-group-mapping method="HTTP_GET"
method-group="ReadMethods"/>
<method-group-mapping method="HTTP_POST"
method-group="ReadMethods"/>
<method-group-mapping method="HTTP_PUT"
method-group="WriteMethods"/>
<method-group-mapping method="HTTP_DELETE"
method-group="RemoveMethods"/>

</uri-security>
<uri-security>

<uri name="/webapp/ITSOWebApp/*.jsp"/>
<method-group-mapping method="HTTP_GET"
method-group="ReadMethods"/>
<method-group-mapping method="HTTP_POST"
method-group="ReadMethods"/>
<method-group-mapping method="HTTP_PUT"
method-group="WriteMethods"/>
<method-group-mapping method="HTTP_DELETE"
method-group="RemoveMethods"/>

</uri-security>
</websphere-sa-config>
902 WebSphere V3.5 Handbook

Figure 733. itsoPermiss.xml

In Figure 733, the security permissions for each method-group are defined,
based on the authentication mechanism defined under the WebSphere
general security policy. Each method-group shown in the example has been
set to allow all authenticated users permission to access the underlying EJB
or URI methods. Alternatively, method groups can grant permission to
specific users or groups, or waive authentication entirely.

<?xml version="1.0"?
<!DOCTYPE websphere-sa-config SYSTEM
"$XMLConfigDTDLocation$$dsep$xmlconfig.dtd">

<websphere-sa-config>
<permission app-name="ITSO Ent App" method-group="ITSOMethods">
<access-id>*AllUsers</access-id>

</permission>
<permission app-name="ITSO Ent App" method-group="ReadMethods">
<access-id>*AllUsers</access-id>

</permission>
<permission app-name="ITSO Ent App" method-group="WriteMethods">
<access-id>*AllUsers</access-id>

</permission>
<permission app-name="ITSO Ent App" method-group="RemoveMethods">
<access-id>*AllUsers</access-id>

</permission>
<permission app-name="ITSO Ent App" method-group="CreateMethods">
<access-id>*AllUsers</access-id>

</permission>
</websphere-sa-config>
Chapter 21. XMLConfig 903

21.6.14 Starting point for generating XML for use with XMLConfig
Because the majority of the examples provided in this chapter can be
replicated using the administrative console, a suggested starting point when
in doubt is to create a like object via the administrative console. Take a full
XML export before and after issuing the command, as shown in Figure 734 on
page 905, or with XMLConfig.

Enabling WebSphere general security will prompt users with a GUI login
box for the server-password each time the XMLConfig command is run.

One possible workaround for disabling the GUI login challenge box when
executing XMLConfig commands is to edit the sas.client.props file, found
under the <WAS_HOME>/properties directory. Change
com.ibm.CORBA.loginSource from prompt to properties and modify the
loginUserid / loginPassword respectively.

Note
904 WebSphere V3.5 Handbook

Figure 734. Administrative console XML export
Chapter 21. XMLConfig 905

906 WebSphere V3.5 Handbook

Chapter 22. WebSphere sample programs

WebSphere V3.5 now ships with a full suite of samples that offer the
WebSphere administrator a starting point upon which to build. For new
administrators, deploying the samples will provide familiarization with the
necessary configuration steps, and a template or topology hierarchy against
which custom application servers and associated elements can be compared.

These samples cover JSPs, servlets, and JavaBeans and are available on all
platforms. WebSphere Advanced Edition, except when deployed on Linux,
offers an additional set of EJB samples. Finally, WebSphere V3.5 PTF 2
extends sample support beyond the original DB2 prerequisite, to Oracle and
Sybase databases.

22.1 How to obtain the samples?

One guaranteed way of obtaining the samples is to select the Samples option
during the WebSphere Application Server Custom Installation step, as shown
in Figure 735. It is also necessary to select the Configure default server
option, since the samples require such an application server for installation.

Figure 735. Component selection window during custom installation
© Copyright IBM Corp. 2001 907

22.2 WebSphere samples matrix

There are three distinct groups of samples that ship with WebSphere V3.5,
each being deployed under the Default Server application server when
installed. Each has a different Web application name.

The first, the examples Web application, is implemented as an integral part of
the Default Server application server, and includes a number of samples for
initially testing the integrity of the overall WebSphere V3.5 install. The second
Web application, the WSsamplesIDB_app sample set, is based on the
InstantDB database and is available across all supported platforms. Finally,
the WSsamplesDB2_app Web application sample set is available on all
platforms except Linux and can be installed on both the Standard and
Advanced Editions of WebSphere V3.5. The only difference is that
WebSphere Standard Edition will not support the EJB samples.

Table 46. WebSphere V3.5 samples matrix

WebSphere V3.5 PTF2 extends the WSsamplesDB2_app sample set to
support Oracle and Sybase databases. Applying PTF2 as a delta install,
however, does not automatically change the WSsamplesDB2_app Web
application name to reflect the new Oracle and Sybase support. Users can,
nevertheless, modify the Web application name manually.

Platform Standard Advanced IDB DB2 DB2
EJB

Oracle Oracle
EJB

Sybase Sybase
EJB

Linux � �

� �

AIX � � � � �

� � � � � � � �

Solaris � � � � �

� � � � � � � �

HP-UX � � � � �

� � � � � � � �

Windows � � � � �

� � � � � � � �
908 WebSphere V3.5 Handbook

22.3 WebSphere samples installation

For most WebSphere administrators the installation of either the
WSsamplesIDB_app Web application or the WSsamplesDB2_app Web
application will appear transparent, being available the first time the
administrative console is launched, as shown in Figure 738 on page 911.

The actual specifications for the Web applications are imported from two
individual XML documents, invoked by a directive in the initial_setup.config
file, found under the <WAS_HOME>/properties directory. The same
initial_setup.config file is also responsible for importing the Default Server
application server specifications into the WebSphere administrative
database.

By default, administrators installing WebSphere V3.5 Advanced Edition and
selecting the samples option will find the WSsamplesDB2_app Web
application in their WebSphere topology, except on Linux. Likewise,
administrators selecting the samples on a WebSphere V3.5 Standard Edition
install will find the WSsamplesIDB_app Web application in their WebSphere
topology.

However, WebSphere V3.5 Advanced Edition users are not restricted to just
installing the WSsamplesDB2_app samples. Nor are Standard Edition users
restricted to just the WSsamplesIDB_app samples. The only exception is
Linux-based installs, where only the WSsamplesIDB_app samples ship
regardless of the WebSphere ddition. Table 46 on page 908 documents the
possible sample set support by platform, with extended support for Oracle
and Sybase databases being applicable only once WebSphere V3.5 PTF2 is
installed.

To enable both the WSsamplesDB2_app and the WSsamplesIDB_app
samples on the same WebSphere V3.5 Advanced Edition install, users need
to edit the initial_setup.config file, found under the <WAS_HOME>/properties
directory. This step needs to be undertaken before the administrative server
is started for the first time. On UNIX-based installs this is the action of
executing the <WAS_HOME>/bin/startupServer.sh script. Locate the line that
starts <!--sample..., and un-comment it, as shown in Figure 736 on page
910. The actual directory structure may, of course, be different from that
shown in the example, depending on the given platform.
Chapter 22. WebSphere sample programs 909

Figure 736. initial_setup.config, before - WebSphere Advanced Edition

Figure 737. initial_setup.config, after - WebSphere Advanced Edition

Enabling the WSsamplesIDB_app samples on WebSphere V3.5 Advanced
Edition also requires that the InstantDB database JAR files are added to the
administrative server classpath. In the admin.config file, found in the
<WAS_HOME>/bin/ directory, locate the
com.ibm.ejs.sm.adminserver.classpath property, and add the following to the
idb.jar file:

...
com.ibm.ejs.sm.adminserver.classpath=/opt/WebSphere/AppServer/lib/idb.j
ar:/opt/WebSphere/AppServer/...
...

For WebSphere V3.5 Standard Edition users wishing to enable the
WSsamplesDB2_app samples, albeit without the EJB support, the principles
of modifying the initial_setup.config file are exactly the same. This time, the
comments are removed from around the WSsamples_app entry.

Once the administrative server, and indeed, the administrative console have
been started, users will have to configure a JDBC driver and data source to
run with the database samples included with the WSsamplesDB2_app Web
application.

...
<config-file>/opt/WebSphere/AppServer/hosts/default_host/WSsamples_app/
WSsamples_app_create.xml</config-file>

<!--sampleIDB<config-file>/opt/WebSphere/AppServer/hosts/default_host/W
SsamplesID_app/WSsamplesIDB_app_create.xml</config-file>sampleIDB -->
...

...
<config-file>/opt/WebSphere/AppServer/hosts/default_host/WSsamples_app/
WSsamples_app_create.xml</config-file>

<config-file>/opt/WebSphere/AppServer/hosts/default_host/WSsamplesID_ap
p/WSsamplesIDB_app_create.xml</config-file>
...
910 WebSphere V3.5 Handbook

22.4 WebSphere samples location

Common to all Web applications is the logical framework of the underlying
operating system directory structure that contains the same JSPs, servlets,
Javabeans, and HTML pages that WebSphere uses:

• For the examples Web application you will find these under:

<WAS_HOME>/hosts/default_host/examples

• For the WSsamplesDB2_app Web application you will find these under:

<WAS_HOME>/hosts/default_host/WSsamples_app

• For the WSsamplesIDB_app Web application you will find these under:

<WAS_HOME>/hosts/default_host/WSsamplesIDB_app

The path is further subdivided between servlet and web directories, which
correlate directly with the classpath and document root used by the Web
application.

Figure 738. WebSphere Advanced Edition - WSsamplesDB2_app Web application
Chapter 22. WebSphere sample programs 911

22.5 WebSphere WSsamplesDB2_app Web application

For WebSphere WSsamplesDB2_app Web application users there is now a
redesigned HTML page that introduces the samples gallery. Here the
samples are logically grouped by type and enable the user to quickly invoke a
sample via a suitable browser.

Where:

http://<your_server>/WSsamples/index.html

There are three distinct categories of samples, with each category being
slightly more complex.

• Level 1 - simple, no database required

• Level 2 - database required

• Level 3a - Enterprise JavaBeans - deployment

• Level 3b - Integrated YourCo example

With the exception of the Level 1 samples, it is necessary to configure a
database and database source within WebSphere. WebSphere V3.5 PTF 2
extends sample support beyond the original DB2 prerequisite, to Oracle and
Sybase databases, see Figure 739 on page 913 for database configuration
details.

As a possible starting point for learning WebSphere programming, you may
choose to modify the sample Java files provided under the
WSsamplesDB2_app Web application home.

All the samples obviously require the Default Server to be operational.

22.6 Database configuration

The majority of the steps necessary to create a database and database
source are documented at the WSsamples Web page
(http://<host_name>/WSsamples/index.html or
http://<host_name>/WSsamplesIDB/indexhtml). However, for added clarity the
following remarks may prove useful.

The WSsamplesDB2_app samples, by default, uses the user ID wsdemo, with
a password of wsdemo1 when accessing DB2. It is therefore necessary to
create a user account and password on the system where the DB2 server is
installed. Those not familiar with DB2 should note that authentication is
performed against local operating system credentials.
912 WebSphere V3.5 Handbook

With WebSphere V3.5 PTF2 and extended support for Oracle and Sybase
databases. Part of the setup now includes creating a user ID of wsdemo with
a password of wsdemo1 with sufficient authority, but no more, to populate the
SAMPLE database, (or tablespace on Oracle).

Figure 739. Sample database support ships with WebSphere V3.5.2

22.6.1 Checking database connectivity
It is a good practice to check database connectivity prior to configuring any
WebSphere JDBC driver and data source.
Chapter 22. WebSphere sample programs 913

22.6.2 Defining a JDBC driver
The initial step in configuring database connectivity is to define the JDBC
driver in WebSphere. This is achieved by changing the topology view to Type,
selecting JDBC Drivers and with a right-click of the mouse button choosing
Create, as shown in Figure 740.

Figure 740. Defining a JDBC driver

Figure 740 also shows any previously configured JDBC drivers. Here, the two
JDBC drivers, Admin DB Driver and anotherJDBCDriver, are both configured
using the same DB2 JDBC implementation class.

#su - db2inst1
$db2
db2 =>connect to SAMPLE user wsdemo using wsdemo1
Database Connection Information

Database server = DB2/6000 7.1.0
SQL authorization ID = WSDEMO
Local database alias = SAMPLE

db2 =>
914 WebSphere V3.5 Handbook

Other options available here when defining an additional JDBC driver are
Oracle, Sybase and InstantDB. Implementation classes are:

• com.ibm.db2.jdbc.app.DB2Driver

• oracle.jdbc.driver.OracleDriver

• com.ibm.as400.access.AS400JDBCDriver

• com.sybase.jdbc2.jdbc.SybDriver

• jdbc.idbDriver

Figure 741. Creating a JDBC driver for the WSsamplesDB2_app

After selecting an arbitrary name for the JDBC driver and
com.ibm.db2.jdbc.app.DB2Driver for the implementation class, click OK as
shown in Figure 741. This action will update the JDBC Drivers window, where
Chapter 22. WebSphere sample programs 915

the newly created driver will be seen alongside the driver for the WebSphere
administration database, albeit with a different name.

22.6.3 Creating a data source
With WebSphere V3.5 the preferred manner for interacting with a database is
via a JDBC 2.0 data source. This is a shift away from using the Connection
Manager APIs, which will be removed in future releases. However, the use of
data sources enables connection pooling utilizing the IBM implementation of
the class.

To create the necessary data source for the WSsamplesDB2_app Web
application, change the Topology view to tree in the administrative console
and select DataSources. With a right-click of the mouse button choose
Create and proceed by defining the various fields. This is demonstrated in
Figure 742.

Figure 742. Creating a data source for the WSsamplesDB2_app
916 WebSphere V3.5 Handbook

The database name should reflect the actual name of the database within
DB2. The DB2 command list database directory can be used to verify valid
databases. For other databases please refer to the vendor-specific
commands.

The Driver filed is obviously the JDBC Driver as configured in 22.6.2,
“Defining a JDBC driver” on page 914.

When selected the Advanced tab, offers the user the opportunity to vary
some of the connection pool attributes when required. For the
WSsamplesDB2_app sample set, these values can be left unchanged.

22.6.4 Installing the driver
The final step in configuring database connectivity for the
WSsamplesDB2_app Web application is to actually install the driver. This is
achieved by selecting the JDBC driver, as created in Figure 741 on page 915,
from the WebSphere Administrative Console Topology view and right-clicking
the mouse button choosing the Install option. This will launch the
configuration window as shown in Figure 743 on page 918.

Ensure that the data source name configured here is indeed “sample”,
since all of the compiled Java class samples have been hard coded with
jdbc/sample.

Note
Chapter 22. WebSphere sample programs 917

Figure 743. JDBC driver installation for the WSsampleDB2_app samples

Proceed by selecting the node on which the driver is to be installed. Then
specify the JAR or ZIP file containing the actual classes for the database.
Further documentation on configuring JDBC drivers is provided in Chapter
10, “JDBC 2.0 support” on page 371, but typically with the installation of a
database or database client the respective JDBC classes are simultaneously
installed.

If you followed the database configuration instructions from the HTML gallery
samples page, you simply need to complete step 6 (step 5 if PTF 2 is

It is now necessary to stop and start the Default Server application server.

Note
918 WebSphere V3.5 Handbook

installed) to create the tables within the sample database. Alternatively,
complete step 6 from the following URL:

http://<your_server>/WSsamples/Configuration/Database/DB2/task6.html

Completing step 6 (step 5 if PTF 2 is installed) finally creates the database
tables required for the Level 2 samples.

You are now set to evaluate the WSsamplesDB2_app Web application Level 2
samples.

22.7 WSsamplesDB2_app User Profile sample

The User Profile sample provided with the Level 2 samples requires the
additional configuration of the User Profile Manager. This demonstrates the
WebSphere UserProfile class and the ability to quickly submit user data into a
database.

From the administrative console Topology view, select the User Profile
Manager from under the Default Server application server. Highlight the
DataSource tab and specify the newly created sample DataSource, setting
the user ID to wsdemo and the password to wsdemo1. Finally, check the
Enable tab in the properties window and select Yes for User Profile
enablement.

22.8 Sample Enterprise JavaBeans configuration

The Enterprise JavaBeans samples build upon the database configuration
steps explored with the Level 2 samples. To this end, you must have the
JDBC driver and the sample data source properly configured and functioning
prior to deploying the EJBs in this section. Then, with the successful
deployment of all the EJBs, you will be able to run the YourCo Integrated
Website demonstration from the following URL:

http://<your_server>/WSsamples

The HTML form in step 6 prompts for a DB2 user ID and password with
sufficient privileges to actually create the necessary tables on the SAMPLE
database. The wsdemo user typically does not have these privileges.

Note
Chapter 22. WebSphere sample programs 919

The majority of the steps necessary to successfully deploy the EJBs are
documented under the WSsamples Web page
(http://<host_name>/WSsamples/index.html). However, step-by-step guidance
is provided in the following pages.

The starting point for this section is the configuration of a suitable container,
into which we will deploy the sample EJBs. Fortunately, the Default Server
application server already has an EJB container suitably defined for this use.

From the administrative console Topology view, select the Default Container
EJB container object and highlight the DataSource tab in the properties
window. This is shown in Figure 744. The DataSource filed needs to
reference the data source called “sample” previously configured for the Level
2 samples as shown in Figure 745 on page 921.

Figure 744. EJB Container configuration

With the exception of the Access, Hello, and Transfer beans, the EJBs
provided with this sample utilize container-managed persistence (CMP).
Those familiar with EJBs will also recall that beans themselves can manage
their own persistence, hence bean-managed persistence (BMP).
920 WebSphere V3.5 Handbook

Figure 745. EJB Container data source selection

By specifying the data source on the EJB container object, each individual
EJB deployed within the container will inherit the containers data source
attributes. Alternatively, an individual EJB can override the container
attributes, if the data source, user ID, password or attribute is specifically set
on the bean itself. The HitCount bean within the Default Container is an
example of this.

In which case, set the data source attributes on the Default Container to:

• DataSource: sample

Depending on your database authentication, it may be necessary to specify
an alternative user ID and password in the EJB container DataSource
configuration window.

Note
Chapter 22. WebSphere sample programs 921

• User ID: wsdemo

• Password: wsdemo1

Configuring an individual EJB involves several steps and starts with selecting
the Default Container object, right-clicking the mouse button and choosing
the Create -> EnterpriseBean option as depicted in Figure 746.

Figure 746. Creating an Enterprise Bean

Proceed by using the Browse button to locate the actual deployable JAR file.
It is generally a good idea to leave the Name [classname] field blank, as this
will automatically be updated in the JAR file selection process.

While all the EJBs provided for the WSsamplesDB2_app sample have
already been made deployable, they have yet to be deployed and installed
into the Default Container. In EJB terminology, deployable actually refers to
the various Java classes that constitute an EJB JAR file and the creation of
the ".ser" deployment descriptor. This is typically undertaken in a
development environment, such as VisualAge for Java or with the WebSphere
JETACE tool. However, it is still necessary to deploy the actual deployable
EJBs within WebSphere.
922 WebSphere V3.5 Handbook

During the WebSphere deployment process, additional supporting classes
are added into the respective JAR files, which in turn are renamed and copied
into the deployedEJBs directory found under the <WAS_HOME>/. The
original, unaltered JAR file remains in the deployableEJBs directory, again
found under the <WAS_HOME>/.

The following EJBs need to be deployed for the WSsamplesDB2_app
samples:

Account.jar, Audit.jar, History.jar, Increment.jar, Leave.jar, Access.jar,
Hello.jar and Transfer.jar

In each case the .jar was omitted for the Name [classname] field.

By clicking the Browse option under the General window while creating an
EnterpriseBean, locate the respective JAR file as demonstrated in Figure
747.

Figure 747. Locating the deployable EJB

Select and then double-click the appropriate JAR file (Access.jar). This will
display the various ".ser" deployment descriptor files within the EJB. Figure
748 on page 924 shows the selection of the deployment descriptor.
Chapter 22. WebSphere sample programs 923

Figure 748. Selecting the appropriate EJB deployment descriptor

Finally, double-click the appropriate deployment descriptor (Access.ser)
represented by a virtual bean icon. Users will find that with all the
WSsamplesDB2_app samples there is only one deployment descriptor “.ser”
per EJB.

Immediately the option prompts for the selection of either Deploy and Enable
WLM or Deploy Only, the difference being solely with the inclusion, or not, of
Work Load Management (WLM) support. In the case of the
WSsamplesDB2_app samples it is sufficient to select Deploy Only as shown
in Figure 749.

Figure 749. Confirming the EJB deployment

Deployment will now occur. On completion the user should click OK for both
the window indicating that the bean was deployed successfully and the
window indicating that the EnterpriseBean object was created properly.
924 WebSphere V3.5 Handbook

These steps need to be repeated for all of the EJBs in the
WSsamplesDB2_app sample set. Each time an EJB is successfully deployed,
an object will be created under the Default Container Topology tree.

In order to activate the newly deployed EJBs, you can just stop and start the
Default Container. Alternatively, if the Default Container is already running,
individual EJBs can be started independently of one another.

If you followed the Enterprise Bean Configuration instructions from the HTML
gallery samples page, you simply need to complete step 3 to populate the
EJBLEAVEBEANTBL database table. This will set the starting sick, vacation
and personal leave time for the YourCo Timeout sample. Alternatively,
complete step 3 from the URL below:

http://<your_server>/WSsamples/Configuration/EJBeans/task3.html

You are now set to evaluate the WSsamplesDB2_app Level 3 samples. Here,
four of the deployed EJBs are invoked from under the Enterprise Beans link,
while the remaining four constitute the EJBs deployed within the YourCo
integrated Web site example.

22.9 WebSphere Standard Edition samples

In contrast to the WSsamplesDB2_app sample set, the samples bundled with
the WSsamplesIDB_app Web application require no further configuration
other than ensuring that the Default Server application server is functional for
WebSphere V3.5 Standard Edition users. Users should, however, ensure that
the fully qualified system host name is defined in the host aliases list, under
the default_host virtual host. Omitting this value may impact the servlets’ (not
just those included with the samples) ability to work dependably.

By choosing the samples option at the time the WebSphere V3.5 Standard
Edition is installed, either by default with the Quick Installation option or by
specific selection with the Custom Installation option, a separate Web
application named WSsamplesIDB_app is created under the Default Server
Topology tree.

The actual database tables are created during step 6 of the Level 2
samples implementation. If at any time the sample database is dropped,
you will need to rerun step 6 with the appropriate database privileges prior
to populating the tables with the canned data.

Note
Chapter 22. WebSphere sample programs 925

WebSphere V3.5 Advanced Edition users will recall that they need to edit the
initial_setup.config file and add the InstantDB database idb.jar file to the
administrative server classpath prior to starting the administrative server for
the first time, before running with the WSsamplesIDB_app samples.

The WSsamplesIDB_app samples can be invoked directly or from the
redesigned HTML page (http://<your_server>/WSsamplesIDB/index.html) that
introduces the samples gallery.

22.10 Sample InstantDB configuration

The Level 2 samples provided with WSsamplesIDB_app Web application use
the compact, Java-based relational database InstantDB for demonstrating
WebSphere database connectivity. Unlike the WSsamplesDB2_app Web
application, no further configuration is necessary to evaluate the database
samples, once the Default Server application server is started.

Figure 750. WSsamplesIDB_app Web application - InstantDB URL config
926 WebSphere V3.5 Handbook

Although the InstantDB database is provided mainly for the purpose of
accommodating the administrative database with WebSphere Standard
Edition, it also offers the possibility for demonstrating the WebSphere
Standard Edition database samples. To this end, both the database file
structure and the (.prp) properties file are independent from those used by
the WebSphere administrative database.

The InstantDB sample database is provided for demonstration purposes only.

Details are provided on how to effectively drop the database and restore the
initial data for the WSsamplesIDB_app Web application from the following
URL:

http://<your_server>/WSsamplesIDB/Configuration/Database/DBConfig.html

InstantDB is a compact, Java-based database, based on a pseudo file
structure. To restore the original database content to that found after
WebSphere Standard Edition is initially installed, first locate and recursively
delete the sample directory under:

<WAS_HOME>/hosts/default_host/WSsamplesIDB_app/servlets/WebSphereSamples/Database

Then, unjar the jar_of_sampleIDB.jar file to recreate a new pseudo sample
file structured database.

jar -xvf jar_of_sampleIDB.jar

22.11 Standard and Advanced Edition samples listing

In this section are detailed the various examples and samples that now ship
with WebSphere V3.5 Standard and Advanced Editions.

22.11.1 The examples Web application
Table 47 on page 928 lists the samples provided in the Web application called
“examples”. Users will recall that the examples Web application is installed as
an integral part of the Default Server application server. Included in this listing
are the file and jsp10 servlets, which enable HTML page serving and JSP
support for this Web application respectively. The full Web path URL for each
sample can be found defined under the virtual host default_host tree.
Alternatively, users can invoke the samples from:
Chapter 22. WebSphere sample programs 927

http://<your_server>/webapp/examples/index.html

Table 47. Web application examples

Users should note that the EJB increment demonstration within the HitCount
sample and the BeenThere EJB WLM sample are not supported with
WebSphere V3.5 Standard Edition.

For WebSphere V3.5 Advanced Edition users, the HitCount example ships
with an associated EJB that is automatically installed within the Default
Container EJB container. However, users must first specify either a
datasource on the Default Container or on the EJB itself, before the sample
can be used to store EJB incremental count data. Configuring the Default
DataSource as the data source in this instance is acceptable for
demonstration purposes.

Likewise, the BeenThere example needs further configuration before it can be
evaluated. Users should consult the associated HTML ReadMe page, which
describes the necessary steps involved in creating a model and number of
clones to demonstrate workload management.

22.11.2 The WSsamplesIDB_app Web application
Both WebSphere V3.5 Standard and Advanced Editions support the samples
that ship with the WSsampleIDB_app Web application. The full Web path
URL for each sample can be found defined under the virtual host default_host
tree. Alternatively users can invoke the samples from:

Examples Description

simpleJSP A simple JSP servlet

error Calls the response.sendError() method

ping Base line response time checker

SourceCodeViewer Allows remote viewing of source code residing on the
classpath

ShowConfig Displays the current servlet engine configuration

HitCount HitCount servlet - install verification

jsp10 JSP 1.0 support servlet

file Enables file serving from this Web application

HelloPervasive Hello Pervasive servlet - pervasive computing

StockQuote Stock Quote servlet - pervasive computing
928 WebSphere V3.5 Handbook

http://<your_server>/WSsamplesIDB/index.html

Table 48. WSsamplesIDB_app Web application

Although no EJB support is shipped with WebSphere V3.5 Standard Edition,
the examples depicted with a (db) demonstrate database connectivity.

22.11.3 The WSsampleDB2_app Web application
The WSsampleDB2_app Web application samples consist of servlets, JSPs,
JavaBeans, and when installed on WebSphere V3.5 Advanced Edition, EJBs.

WSsamplesIDB_app Description

Expiring Page A JSP and Java servlet example that uses the callPage
method

Form An HTML form example that uses a Java servlet to store
data in a bean, prior to displaying the output via a JSP

Quote of the Day This example uses a Java servlet to load a bean with
strings from a flat file, prior to randomly displaying the
output via a JSP

Selection Box Similar to the Form example, but the output JSP
presents the data as a selectable menu

Feedback Builds upon the Form example, but has an additional
bean that updates the InstantDB database with input
data, before displaying all the database entries via a
JSP

Page Hit Counter (db) This example uses a JSP and Java servlet to increment
a counter on each invocation, the counter value being
stored in the InstantDB database

Poll (db) With the use of a Java servlet, poll questions are
extracted from InstantDB, stored in a bean and then
displayed via a JSP, and a further servlet and bean
update InstantDB, before displaying the current tally via
a JSP

Survey (db) Similar to the Form example, but an additional Java
servlet and bean update InstantDB, while a final JSP
displays all the database submissions

YourCo (db) The YourCo integrated Website demonstrates all of the
above samples, deploying them collectively in a
fictitious company Web site
Chapter 22. WebSphere sample programs 929

Prior to installing WebSphere V3.5 PTF 2, all of the database-dependent
samples will work only on systems with DB2. WebSphere V3.5 PTF2 extends
the WSsamplesDB2_app sample set to support Oracle and Sybase
databases.

The WSsampleDB2_app Web application is not available on the Linux
platform.

For ease of use, these samples are provided with an associated Web page
from where the samples can be invoked and configured from the following
URL:

http://<your_server>/WSsamples/index.html.

22.11.3.1 Level 1 samples
Use these samples to evaluate the simple principles of servlet, JSP and
JavaBeans technology. No database configuration is required.

Table 49. Level1 samples

22.11.3.2 Level 2 samples
These samples require the additional configuration of a database to work.
Users should refer to necessary steps outlined in this chapter for configuring
a JDBC driver and data source prior to evaluating these samples.

Table 50. Level 2 samples

WSsampleDB2_app Description: Level 1 samples

Expiring Page A JSP and Java servlet example that uses the callPage
method

Form A HTML form example that uses a Java servlet to store
data in a bean, prior to displaying the output via a JSP

Quote of the Day This example uses a Java servlet to load a bean with
strings from a flat file, prior to randomly displaying the
output via a JSP

Selection Box Similar to the Form example, but the output JSP
presents the data as a selectable menu

WSsampleDB2_app Description: Level 2 samples

Connection Pool (db) Demonstrates the integral database connection pooling
mechanism, thus avoiding the overhead of settingup a
new connection for each database request
930 WebSphere V3.5 Handbook

The User Profile sample provided with the Level 2 samples requires the
additional configuration of the User Profile Manager. This demonstrates the
WebSphere UserProfile class and the ability to quickly submit user data into a
database.

22.11.3.3 Level 3 samples
The final, and most complex samples, provided with WebSphere V3.5
Advanced Edition demonstrate EJB technology. Users are required to first
complete the configuration steps necessary for the Level 2 examples, that is,
they must configure a suitable JDBC driver and datasource. Only then may
the EJB samples be deployed within WebSphere and evaluated.

Table 51. Level 3 samples

Feedback (db) Builds upon the Form example, but has an additional
bean that updates the InstantDB database with input
data, before displaying all the database entries via a
JSP

Page Hit Counter (db) With the use of a Java servlet, poll questions are
extracted from InstantDB, stored in a bean and then
displayed via a JSP, and a further servlet and bean
update InstantDB before displaying the current tally via
a JSP

Survey (db) Similar to the Form example, but an additional Java
servlet and bean update InstantDB, while a final JSP
displays all the database submissions

User Profile (db) Demonstrates the possible use of the User Profile
Manager, enabling a Java servlet to quickly store user
information in the database; potentially useful for
creating a customized registration page

WSsampleDB2_app Description: Level 3 samples

Enterprise Bean: Hello A simple EJB sample that uses a Java servlet to access
a stateless session enterprise bean

Enterprise Bean: Increment A simple EJB sample that uses a Java servlet to access
a persistent entity enterprise bean

Enterprise Bean: Account
(db)

Similar to the Increment EJB sample above, but the
persistent data is stored in the database

WSsampleDB2_app Description: Level 2 samples
Chapter 22. WebSphere sample programs 931

Enterprise Bean: Transfer
(db)

Coupled with the Account enterprise bean sample, the
transfer stateless session bean that manipulates the
transfer of funds between accounts, requires database
configuration

YourCo The YourCo integrated Website demonstrates all of the
above samples, deploying them collectively in a
fictitious company Web site; in contrast to the
WebSphere Standard Edition, these samples include
EJB support

WSsampleDB2_app Description: Level 3 samples
932 WebSphere V3.5 Handbook

Chapter 23. Problem determination

This chapter outlines the tools available in WebSphere Application Server
that can be utilized for problem determination. We examine and explain the
log files that WebSphere uses as well as the trace facility provided in
WebSphere. This chapter includes a discussion of which components to trace
in given situations, and examples of using a trace. In addition, as of V3.5.2
WebSphere supports the Log Analyzer, which is useful for problem
determination. See Chapter 24, “Log Analyzer” on page 975 for detailed
information on this tool. Lastly we discuss the Object Level Trace (OLT)
debugging facility and provide examples of its use.

23.1 The problem determination process

In summary the key points to consider in the problem determination process
are as follows:

1. Validate your installation (Validate configuration in the admin.config and
setupCmdLine. Verify you have correct product pre-reqs.)

2. What is your topology? For example, platforms, number of servers,
database, Web server, and setup.

3. What is your application doing? For example, application structure,
application components (servlets/JSPs/EJBs/databeans/connectors etc.),
and back-end systems.

4. Do you have a simple test case to reproduce the problem?
5. Collect server logs and appropriate trace.
6. Collect server configuration through XMLConfig export.
7. Analyze logs, trace, and test case.
8. Isolate to appropriate product component.
9. Collect additional, more targeted, trace as necessary.
10.Identify and correct the problem.

23.1.1 Messages, logs and traces
Messages, logs, and traces are important diagnostic tools for investigating
the behavior of WebSphere Application Server product code, including
application servers and administrative servers. The WebSphere
implementation of these items are defined as follows:

• Messages provide high-level view of important events, such as successful
completions and fatal errors. The performance impact of messages is
minimal to none, and they should always be enabled.
© Copyright IBM Corp. 2001 933

• Logs provide information about administrative and application servers as
they initialize and run. They have a low-to-medium impact on performance,
and should be left enabled; after an error or problem condition occurs, logs
can be reviewed for clues as to what happened.

• Traces are collections of data from trace statements placed throughout the
WebSphere product code. As the code executes, tracing information is
sent to a specified file or stream, so that the administrator and IBM
support personnel can analyze it.

23.2 Messages

Message events are generated by IBM WebSphere Application Server code
in response to system events occurring in the application server environment.
They are always collected. The administrator can decide whether to look at
them.

There are four main types of message, as described in Table 52.

Table 52. Message types

Messages are displayed in the console messages area, and are also written
to a file called “tracefile” in the <WAS_HOME>/logs directory by default. If
desired, you can specify an alternative file necessary by updating the entry
for the “com.ibm.ejs.sm.adminServer.traceFile” property in the
<WAS_HOME>/bin/admin.config file.

WebSphere messages are Java exceptions. These messages are either
errors, such as a virtual machine error, or runtime exceptions such as a
ClassCastException. The messages are issued because a method in a
WebSphere component generated an exception or an error, or because a
called method threw an exception.

Message Explanation

audit Indicates a significant event, for example the starting of a service.

warning Indicates the occurrence of a problem that does not prevent continued
system function, but which none the less should be investigated and
remedied.

terminate Indicates that a process has terminated normally.

fatal Indicates that a process has encountered a fatal error and has
terminated abnormally. When a process terminates in this way, the
trace service writes its internal ring buffer to a local file.
934 WebSphere V3.5 Handbook

23.3 The format of log and trace files

For WebSphere versions prior to 3.5.2, log and trace file entries are formatted
as follows:

[Timestamp] TID COMPONENT LEVEL MESSAGE ARGUMENTS

As of WebSphere V3.5.2, log and trace file entries are written in the following
format:

[Timestamp] TID COMPONENT LEVEL MID MESSAGE ARGUMENTS

[Timestamp] – This is the timestamp of the message, with the elapsed time
since process start and the fully qualified date, time and time
zone, to millisecond precision

TID – Thread ID, the hash code of the thread emitting this message
COMPONENT – The short name of the component emitting this message
LEVEL – Level of the message, one of the following:

> Entry to a method (debug)
< Exit a method (debug)
A Audit
W Warning
X Error
E Event (debug)
D Debug (debug)
T Terminate (exits process)
F Fatal (exits process)

MID - Message ID, with prefix pointing to the component that issued the
message. Message prefix to component table as follows:

ADGU Administrative GUI
ADMS Administrative server
ALRM Alarm
CM20 2.0 Connection Manager
CNTR EJB Container
CONM Connection Manager
DBMN Database Manager
EJSW EJB Workload Management
JSPG JavaServer Pages
NMSV JNDI - Name Services
PLGN Web server Plugins and Native code
SECJ Security Application
SESN Session and User Profiles
SMTL WebSphere Systems Management Utilities
SRVE Servlet Engine
Chapter 23. Problem determination 935

TRAS Tracing Component
WCMD WebSphere Systems Management Commands
WINT Request Interceptors
WJTI Java Transaction Implementation
WJTS Java Transaction Service
WOBA WebSphere Object Adapter
WPRS WebSphere Persistence
WSVR WebSphere Server Runtime
WTRN WebSphere Transactions
WTSK WebSphere Systems Management TASKS
XMLM XML Component

MESSAGE – the text of message
ARGUMENTS – Option message arguments

Here is an example of a warning message in WebSphere V3.5.1:

[00.07.11 22:47:12:191 EDT] 53ccc3c5 ActiveEJBCont W Could not create bean
table

Here is an example of an auditing message in WebSphere V3.5.2:

[00.10.09 14:31:23:000 EDT] f0aef5c2 AdminServer A ADMS0002I:

Initializing WebSphere Administration server

23.4 WebSphere log files

WebSphere keeps logs. Both logs entries and trace entries (discussed in the
next section) have the same format.

WebSphere V3.5 generates runtime log files in the <WAS_HOME>/logs
directory (by default).

Table 53 describes the files. Logs produced when installing WebSphere are
created in platform-specifc locations; these are also described in Table 53. If
you are deploying on HP-UX platforms you should note the special treatment
of installation logs on that platform.

Table 53. Log and trace files

File Name Description

(Windows)wssetup.log It is created during the install process and records
the installation information.
936 WebSphere V3.5 Handbook

(AIX/Solaris)
WebSphere.instl
or
wsas.install.log

It is created during the install process and records
the installation information.
A native install generates the WebSphere.instl and
a Java GUI install generates the wsas.install.log.
Files located in directory /tmp.

(HP-UX) swagent.log The installation information on HP is placed in the
HP system log, swagent.log.
It is located in directory /opt/var/adm/sw.
Note: swagent is the system log instead of
WebSphere log. It will be replaced when installing
another product that needs it.

(Windows)wasdb2.log It is created when running <server
root>\bin\createdb2.bat to configure DB2 database
was. Usually, it will be run when restarting machine
for the first time after installing WebSphere with DB2
as the administrative database.

tracefile Startup message for administrative server

nanny.trace Use the nanny trace to monitor the administrative
server events.

adminserver_stderr.log Error message from administrative server.

stdout.log and stderr.log Created by application servers and Servlet
Redirectors.
When you create a new application server or Servlet
Redirector, the default setting of standard output
and standard error are stdout.log and stderr.log. We
suggest that you specify the file name as a unique
name, such as <application server
name>_stdout.log/stderr.log.
stdout.log contains System.out messages from the
application server or Servlet Redirector and
stderr.log contains System.err messages from it.

File Name Description
Chapter 23. Problem determination 937

There will be additional log files produced by your chosen Web server. You
will need to refer to the product-specific configuration to locate and interpret
those files.

23.4.1 Sample output of log files
Several different outputs from log files are provided below as examples.

23.4.1.1 Sample output of tracefile
The message WebSphere Administration server open for e-business tells you
that the administrative server has started.

[00.10.31 20:54:25:764 EST] d30d6e94 AdminServer A ADMS0002I:
Initializing WebSphere Administration server
[00.10.31 20:54:25:844 EST] e8f46e97 DrAdminServer A SMTL0018I: DrAdmin
available on port 1,195
[00.10.31 20:55:00:514 EST] d30d6e94 AdminServer A ADMS0024I:
WebSphere Administration server open for e-business
[00.10.31 23:48:56:546 EST] b6316e81 ActiveServerP A ADMS0008I: Starting
server: "Test"
[00.10.31 23:48:57:348 EST] b6316e81 ActiveServerP A ADMS0032I: Started
server: "Test" (pid "2440")
[00.11.01 24:05:25:268 EST] b6346e81 ActiveServerP A ADMS0029I: Stopped
server: "Test" (pid "2440")

native log file
(out-of-process logs)

There are two types of out-of-process logs: those
created for administrative server and those created
for application servers.
These logs contain error and informational
messages generated from the native code portion of
the out-of-process engine. This information reflects
server startup and server status change requests
(start/stop/restart).
You may verify the log file setting by clicking Setting
on the Advanced panel of ServletEngine properties.
The physical file name is in the form:
<file name setting>.was-oop.<date>-<time>-<year>

plug-in trace file Contains trace data from the native Web server
plug-in. For example, the file name of the plug-in for
IBM HTTP Server is:
trace.log.ibmhttp.<date>-<time>-<year>

activity.log This log file is new in WebSphere V3.5.2. It is used
by the log analyzer. It is a binary file so you cannot
read it with a text editor.

File Name Description
938 WebSphere V3.5 Handbook

23.4.1.2 Sample output of adminserver_stderr.log
We can see error messages from the administrative server:

Full thread dump Classic VM (J2RE 1.2.2 IBM build cn122-20000725a,
native threads):

"P=312644:O=1:StandardRT=16:LocalPort=1204:RemoteHost=9.24.104.166:Remo
tePort=1203:" (TID:0x140e658, sys_thread_t:0xb327c0, state:R, native
ID:0x163) prio=5

at java.net.SocketInputStream.socketRead(Native Method)
at java.net.SocketInputStream.read(SocketInputStream.java(Compiled

Code))
at com.ibm.rmi.iiop.Message.readFully(Message.java(Compiled Code))
at com.ibm.rmi.iiop.Message.createFromStream(Message.java(Compiled

Code))
at com.ibm.CORBA.iiop.IIOPConnection.createInputStream(Unknown

Source)
at com.ibm.CORBA.iiop.StandardReaderThread.run(Unknown Source)

"P=312644:O=1:StandardRT=15:LocalPort=1063:RemoteHost=kenueno:RemotePor
t=1201:" (TID:0x140e738, sys_thread_t:0xb321d0, state:R, native
ID:0x160) prio=5

at java.net.SocketInputStream.socketRead(Native Method)
at java.net.SocketInputStream.read(SocketInputStream.java(Compiled

Code))
at com.ibm.rmi.iiop.Message.readFully(Message.java(Compiled Code))
at com.ibm.rmi.iiop.Message.createFromStream(Message.java(Compiled

Code))
at com.ibm.CORBA.iiop.IIOPConnection.createInputStream(Unknown

Source)
at com.ibm.CORBA.iiop.StandardReaderThread.run(Unknown Source)

"P=312644:O=1:StandardRT=14:LocalPort=900:RemoteHost=kenueno:RemotePort
=1200:" (TID:0x140e780, sys_thread_t:0xb31bd0, state:R, native ID:0x4c)
prio=5

at java.net.SocketInputStream.socketRead(Native Method)
at java.net.SocketInputStream.read(SocketInputStream.java(Compiled

Code))
at com.ibm.rmi.iiop.Message.readFully(Message.java(Compiled Code))
at com.ibm.rmi.iiop.Message.createFromStream(Message.java(Compiled

Code))
at com.ibm.CORBA.iiop.IIOPConnection.createInputStream(Unknown

Source)
at com.ibm.CORBA.iiop.StandardReaderThread.run(Unknown Source)

"P=312644:O=1:StandardRT=13:LocalPort=1064:RemoteHost=kenueno:RemotePor
t=1199:"
Chapter 23. Problem determination 939

23.4.1.3 Sample output of the default_server_stdout.log
Each application server can specify the stdout log file.

[00.10.16 17:03:10:849 EDT] d1f5d3e3 DrAdminServer A SMTL0018I: DrAdmin
available on port 2,803
[00.10.16 17:03:12:881 EDT] d0e953e3 ServletEngine A IBM WebSphere
Application Server - Web Container. Copyright IBM Corp. 1998-2000
[00.10.16 17:03:13:112 EDT] d0e953e3 ServletEngine A Servlet
Specification Level: 2.2 - WebSphere 3.5 Compatibility Mode
[00.10.16 17:03:13:152 EDT] d0e953e3 ServletEngine A Supported JSP
Specification Levels: 1.1, 1.0, 0.91
[00.10.16 17:03:14:243 EDT] d0e953e3 ServletHost A Loading group:
"default_app"
[00.10.16 17:03:14:844 EDT] d0e953e3 ServletInstan A SRVE0048I: Loading
servlet: "ErrorReporter"
[00.10.16 17:03:15:595 EDT] d0e953e3 WebGroup A SRVE0091I: [Servlet
LOG]: "ErrorReporter: init"
[00.10.16 17:03:15:675 EDT] d0e953e3 ServletInstan A SRVE0130I: Servlet
available for service: "ErrorReporter"
[00.10.16 17:03:15:856 EDT] d0e953e3 ServletInstan A SRVE0048I: Loading
servlet: "invoker"
[00.10.16 17:03:16:046 EDT] d0e953e3 WebGroup A SRVE0091I: [Servlet
LOG]: "invoker: init"
[00.10.16 17:03:16:146 EDT] d0e953e3 ServletInstan A SRVE0130I: Servlet
available for service: "invoker"
[00.10.16 17:03:16:356 EDT] d0e953e3 ServletInstan A SRVE0048I: Loading
servlet: "jsp10"
[00.10.16 17:03:16:527 EDT] d0e953e3 WebGroup A SRVE0091I: [Servlet
LOG]: "jsp10: init"
[00.10.16 17:03:16:797 EDT] d0e953e3 ServletInstan A SRVE0130I: Servlet
available for service: "jsp10"
[00.10.16 17:04:58:313 EDT] b416d3ec ServletInstan A SRVE0048I: Loading
servlet: "snoop"
[00.10.16 17:04:58:503 EDT] b416d3ec WebGroup A SRVE0091I: [Servlet
LOG]: "snoop: init"
[00.10.16 17:04:58:583 EDT] b416d3ec ServletInstan A SRVE0130I: Servlet
available for service: "snoop"

23.4.1.4 Sample output of the default_server_stderr.log
Each application server can specify the stdout log file.

Scratch dir for the JSP engine is:
C:\WebSphere\AppServer\temp\default_host\default_app
IMPORTANT: Do not modify the generated servlets
Scratch dir for the JSP engine is:
C:\WebSphere\AppServer\temp\default_host\admin
IMPORTANT: Do not modify the generated servlets
940 WebSphere V3.5 Handbook

Scratch dir for the JSP engine is:
C:\WebSphere\AppServer\temp\default_host\examples
IMPORTANT: Do not modify the generated servlets
Scratch dir for the JSP engine is:
C:\WebSphere\AppServer\temp\default_host\WSsamplesDB2_app
IMPORTANT: Do not modify the generated servlets

23.4.1.5 Sample output of IBM HTTP Server plugin trace file
You can specify the trace level such as TRACE, INFORM, ERROR, and
WARNING in the <WAS_HOME>/properties/bootstrap.properties file. This log
file is very useful when you have problems configuring OSE Remote.

Tue Oct 24 14:42:35 2000 - 000001d0 000000eb - Error -
sysmgmt_queue_for_uri : Error returned from sysmgmt_vhost_for_aliasport
rc=9
Tue Oct 24 14:42:35 2000 - 000001d0 000000eb - Error -
sysmgmt_is_servlet_uri : failure in sysmgmt_queue_for_uri rc=9

23.5 The trace facility

WebSphere includes a comprehensive trace facility, which allows trace to be
enabled for every Java class in the system. This section describes that facility.

23.5.1 Trace basics
The WebSphere trace facility allows customers or service personnel to follow
the execution of Java code in the application server. It is selected on a Java
component basis. The facility is provided for error reporting and problem
diagnosis.

Trace can be collected from any of the WebSphere processes; an
administrative server, an application server or a client such as the
administrative console or WSCP.

Trace events are stored in a memory buffer called the ring buffer, and can be
dumped to disk at any time. A destination file can also be declared to which
the trace information is written in real time. If you don’t specify a trace output
file, the destination file will contain the ring buffer when dumped. Otherwise,
there is a complete trace and a dump is not needed.

The ring buffer is a circular memory buffer, which means that once the end of
the buffer is reached, trace events at the beginning of the buffer will be
overwritten. The default size of the ring buffer is 8KB. This can be modified on
a per process basis.
Chapter 23. Problem determination 941

Tracing provides a lot of detail, but it can also drain performance. You should
enable tracing only when you have reason to do so.

The trace subsystem does not trace user code (such as servlets or EJB
components) unless System.err.println or System.out.println statements are
added to the code. Output from the println statements then appears either in
the <Application Server>_stdout or <Application Server>_stderr logs.

Since a trace is just another log, a WebSphere Application Server log entry
and a trace entry will have the same format.

The following traces are available in WebSphere Application Server:

• tracefile

• nanny trace (UNIX)

• DrAdmin

View Figure 751 for a description of the log and trace points in Version 3.5
WebSphere:

Figure 751. Logs and traces

Web Server
Web Server

Specific
plug-in DLL

Common
Service DLL

Out of
process

client DLL

App
Server
JVM

Out of
process
Server

DLL
Admin
Server
JVM

Out of
process
Server

DLL

Out of process logs

STDOUT
STDERR
logs

DrAdmin

Nanny trace
DrAdmin

Tracefile
942 WebSphere V3.5 Handbook

23.5.2 Trace string format
A component is selected for tracing by setting a trace string, which contains
the name of one or more components to trace and the level of information
desired. The trace information for that component or components is then
collected by the application server until the trace string is changed.

A trace string is created using the syntax

<component1>=<level>=[enabled|disabled]:<component2>=<level>=[enabled|disa

bled]

The component should contain the full name of the component, such as
com.ibm.servlet.engine.ServletHost. A wildcard can be used to specify all
components with a certain prefix, for instance com.ibm.ejs.* would refer to all
components with a com.ibm.ejs prefix.

There are four possible levels of trace as shown in Table 54.

Table 54. Trace levels

23.5.3 Enabling a trace for the administrative console
You can enable a trace for the administrative console in two different ways.

1. To enable a trace through the GUI, from the WebSphere Administrative
Console, select Console -> Trace.

2. Invoke the script used to start the administrative console:

- adminclient.sh on UNIX

- adminclient.bat on Windows

with the following arguments:

- Debug switch: -v on Windows, debug on UNIX

- Name of the host on which administrative server is running: hostName

- Port used to connect to administrative server: port

Level Meaning

entryExit Entering and exiting functions

event State changes

debug Detailed debugging information

all All of the above
Chapter 23. Problem determination 943

The debug switch sets the following trace string for the administrative
console:

com.ibm.*=all=enabled

Change javaw in the script to java to see trace output in standard out.

23.5.4 Enabling trace for the administrative server
Note: Tracing the administrative server will have a severe impact on
performance.

To trace administrative server startup and shutdown problems on a Windows
platform:

1. Use a text editor to open the file <WAS_HOME>\bin\admin.config.

2. Add these lines:

com.ibm.ejs.sm.adminServer.traceOutput=stdout

com.ibm.ejs.sm.adminServer.traceString=aTraceString

where aTraceString is the string component. An example is:

com.ibm.ejs.sm.*=all=enabled

Note: If you specified that your trace output be sent to a trace file when
the administrative server is started, the trace file will be overridden each
time you retry the startup. To preserve trace output from one retry to the
next, specify that trace output be sent to stdout:

a. Edit the file <WAS_HOME>\bin\admin.config

b. Add the line:

com.ibm.ejs.sm.adminServer.traceOutput=stdout

c. Restart the administrative server. Stdout will append the traceoutput to
the <WAS_HOME>\logs\tracefile.

To trace administrative server problems on UNIX:

1. Use a text editor to open the file <WAS_HOME>/bin/admin.config.

2. Add these lines:

com.ibm.ejs.sm.adminServer.traceOutput=stdout

com.ibm.ejs.sm.adminServer.traceString=aTraceString

where aTraceString is the string component. An example is:

com.ibm.ejs.sm.*=all=enabled
944 WebSphere V3.5 Handbook

23.5.5 Setting trace as an application server property
An application server instance contains a Trace Specification field, into which
a trace string can be typed directly. There is also a Trace Specification in Use
field, which shows the current trace string in use. Figure 752 on page 945
shows an application server that has no current trace, and we are typing in a
trace string to trace all of com.ibm.

Figure 752. Trace property

Click Apply to update the properties, and then stop and restart the
application server. It is important to restart the server; the application server
will only read the Trace Specification field when it starts.

Once the application server has restarted, the Trace Specification in Use field
will show the trace string that was typed in; WebSphere is now storing trace
into the ring buffer according to that trace string.

The application server also has field for Trace output file and Trace output file
in use. This field should contain the name of a file to which the trace output is
written. You may use the names “stderr” and “stdout” to redirect the trace to
the standard error or standard output of the server.
Chapter 23. Problem determination 945

23.5.6 Using the Trace Administrative Console
The Trace Administrative Console enables dynamic setting of trace on a node
(administrative server process) or an application server.

Right-click the server name in the administrative console and choose Trace,
as shown in Figure 753 on page 946.

Figure 753. Configure trace in the administrative console

This will bring up the Trace Administration window, shown in Figure 754 on
page 947.

The Trace Administration window contains fields for setting the size of the ring
buffer and giving a file name to which the buffer is to be dumped.

It also contains white space for displaying component hierarchies. In this
space are two entries, Components and Groups; each of these is the head of
a hierarchy of entries that can be traced.
946 WebSphere V3.5 Handbook

Figure 754. The Trace Administration window

To the left of each entry is a gray box. The gray color of the box means that,
currently, a trace is not being collected for any of the subcomponents of that
entry; if any subcomponent were being traced, the box would be pink.
Double-click the box to the left of the title to open up the hierarchy.

The Components hierarchy includes all of the internal Java classes. The
Groups hierarchy contains groups of components, grouped by the part of
WebSphere that they will give information on. Figure 755 on page 948 shows
a part of the component hierarchy in the Trace Administration window.

Navigate to the entry that represents the component you want to trace, and
left click once to select it, then right click. A menu will appear, giving a choice
of levels of trace to collect from that component.
Chapter 23. Problem determination 947

Figure 755. The component hierarchy

Figure 756 on page 949 shows the menu when right-clicking the
com.ibm.servlet.classloader component. Note that we have opened the
com.ibm.servlet.classloader hierarchy by clicking the plus sign in the
hierarchy.
948 WebSphere V3.5 Handbook

Figure 756. Set the trace level to All

Clicking the All level will highlight the components and subcomponents as
shown in Figure 757 on page 950.
Chapter 23. Problem determination 949

Figure 757. com.ibm.servlet.classloader=all=enabled

The box has now changed as follows:

1. All of the parent components of the trace mask
com.ibm.servlet.classloader, namely com, com.ibm and com.ibm.servlet,
and the Components field itself, have a pink box instead of the grey box, to
show that a subcomponent is being traced.

2. The com.ibm.servlet.classloader component and all of its subcomponents
have boxes split into three colors; blue on the left, yellow in the middle and
red on the right. These colors stand in turn for entryExit level trace, event
level trace, and debug level trace.

Now click the com.ibm.servlet.debug component and right click to bring up
the menu. Select entryExit level trace. The grey box next to the component
will change to contain a blue stripe on the left-hand side, indicating that
entryExit level trace is enabled on this component. The color of the boxes
next to the parent components com, com.ibm and com.ibm.servlet will not
950 WebSphere V3.5 Handbook

change because they are already pink, indicating that subcomponents of
them are already being traced.

Use the same method to turn on event level trace on com.ibm.servlet.engine,
debug level trace on com.ibm.servlet.objectpool, both entryExit and debug
level trace on com.ibm.servlet.personalization and event and debug level
trace on com.ibm.servlet.util. The final view will appear as in Figure 758.

Figure 758. The final view of Trace Administration window

In summary, we have turned on the following trace:

*=all=disabled
com.ibm.servlet.classloader.*=all=enabled
com.ibm.servlet.debug.*=entryExit=enabled
com.ibm.servlet.engine.*=event=enabled
com.ibm.servlet.objectpool.*=debug=enabled
com.ibm.servlet.personalization.*=entryExit=enabled
com.ibm.servlet.personalization.*=event=enabled
Chapter 23. Problem determination 951

com.ibm.servlet.util.*=event=enabled

com.ibm.servlet.util.*=debug=enabled

Click Set to make this the current trace string.

Once a trace string has been set using the Trace Administration window, the
ring buffer can be dumped at any time.

Simply bring up the Trace Administration window again and type a file name
into the Dump File Name box, then click Dump to write the contents of the
ring buffer to that file.

23.5.7 Setting trace as a command line option
Most WebSphere programs support a -traceString option that allows you to
specify the startup trace string.

23.5.8 Important trace packages
The following is a list of components that are commonly traced, and the
information that can be gleaned by tracing that component.

com.ibm.ejs.container.*
EJB Container Runtime
Trace EJB problems
(for example, to determine the root cause of

TransactionRolledBackException, specify
com.ibm.ejs.container.EJSContainer=event=all)

com.ibm.ejs.sm.beans.*
Administrative server repository object trace
Trace Admininistrative server problems

com.ibm.ejs.sm.client.*
Administrative GUI Code
Trace client-side administrative problems

com.ibm.ejs.sm.active.*
Active objects of the admin system

Trace problems transferring configuration from the administrative database to
active server

com.ibm.servlet.engine.*
Servlet Engine
Java Plug-in Code
952 WebSphere V3.5 Handbook

com.ibm.servlet.personalization.*
HTTP Session
User Profile

com.ibm.servlet.classloader.*
Dynamic Classloading for Web applications

com.ibm.servlet.engine.ejs.*
Servlet Redirector

com.ibm.servlet.engine.oselistener.systemsmgmt.*
Automatic configuration of plugin config files (queues, rules, vhosts)

com.ibm.websphere.xmlconfig.*
XMLConfig tool

com.ibm.ejs.persistance.*
EJB Persistance Layer

com.ibm.ejs.security.*
WebSphere Security

com.ibm.ejs.csi.*, com.ibm.websphere.csi.*
Container Server Interface

com.ibm.ejs.cm.*
Connection Pooling Manager
Data Sources

com.ibm.ejs.sm.server.*
Administrative server Process
Managed Server Process

com.ibm.ejs.sm.util.process.*
Process Management Code

com.ibm.ejs.sm.util.db.*
Admin Database Manager
Trace SQL calls to the administrative database

23.5.9 Trace examples
Below are some trace examples.

23.5.9.1 Sample output of trace: com.ibm.ejs.container
We obtained the following trace when we accessed the HitCountBean EJB.
Chapter 23. Problem determination 953

[00.11.01 23:30:38:720 EST] bf20d22b EJSContainer > preInvoke
[00.11.01 23:30:38:750 EST] bf20d22b ContainerTx > enlist

ContainerManagedBeanO(BeanId(IncBean,
com.transarc.jmon.examples.Inc.IncKey@84f11c53), state = CACHED_SHARED)
[00.11.01 23:30:38:750 EST] bf20d22b ContainerTx < enlist

true
[00.11.01 23:30:38:750 EST] bf20d22b EJSContainer < preInvoke
[00.11.01 23:30:38:750 EST] bf20d22b EJSContainer > postInvoke
[00.11.01 23:30:38:750 EST] bf20d22b ContainerTx > beforeCompletion
[00.11.01 23:30:38:760 EST] bf20d22b ContainerTx < beforeCompletion
[00.11.01 23:30:38:780 EST] bf20d22b ContainerTx > afterCompletion

true

com.ibm.ejs.container.ContainerTx@66c2d223
[00.11.01 23:30:38:780 EST] bf20d22b ContainerTx < afterCompletion
[00.11.01 23:30:38:780 EST] bf20d22b EJSContainer < postInvoke

23.5.9.2 Sample output of trace: com.ibm.servlet.engine
We obtained the following trace when we accessed the ping servlet.

[00.11.01 23:44:41:762 EST] bf30d22b SQEventListen D Run in thread
[00.11.01 23:44:41:762 EST] bf30d22b SQEventListen > ServiceRunnable.run
[00.11.01 23:44:41:762 EST] bf30d22b SQEventListen D Event is service
[00.11.01 23:44:41:762 EST] bf30d22b OSEListenerDi > service
[00.11.01 23:44:41:762 EST] bf30d22b SRPConnection > init
[00.11.01 23:44:41:762 EST] bf30d22b SRPConnection D resetting
SRPConnection Object
[00.11.01 23:44:41:762 EST] bf30d22b SRPConnection > resetObject
[00.11.01 23:44:41:762 EST] bf30d22b SRPConnection < resetObject
[00.11.01 23:44:41:762 EST] bf30d22b SRPConnection < init
[00.11.01 23:44:41:762 EST] bf30d22b ServletReques > dispatchByURI

"/webapp/examples/ping"
[00.11.01 23:44:41:762 EST] bf30d22b ServletReques D
Worker#10-RequestProcessor.dispatch():com.ibm.servlet.engine.srp.Servle
tRequestProcessor@af2bd22b
[00.11.01 23:44:41:762 EST] bf30d22b ServletReques D Attempt to locate
cached invocation for: localhost:80/webapp/examples/ping
[00.11.01 23:44:41:762 EST] bf30d22b InvocationCac > get

"localhost:80/webapp/examples/ping"
[00.11.01 23:44:41:762 EST] bf30d22b InvocationCac < get

23.5.9.3 Sample output of trace: com.ibm.ejs.security
The following is the sample output of the WebSphere Security trace.

[00.10.26 08:32:13:131 EDT] b1f603c7 SecurityColla <
performAuthorization
954 WebSphere V3.5 Handbook

[00.10.26 08:32:13:932 EDT] f32883d3 SecurityColla >
SetUnauthenticatedCredIfNeeded
[00.10.26 08:32:13:932 EDT] f32883d3 SecurityColla <
SetUnauthenticatedCredIfNeeded :false
[00.10.26 08:32:13:932 EDT] f32883d3 SecurityColla >
performAuthorization
[00.10.26 08:32:13:932 EDT] f32883d3 SecurityColla D
methodInfo.getMethodName() : dumpRingBuffer
[00.10.26 08:32:13:932 EDT] f32883d3 SecurityColla D
methodInfo.getHomeName() : TraceServiceHome
[00.10.26 08:32:13:932 EDT] f32883d3 SecurityColla D
methodInfo.isHome(): false
[00.10.26 08:32:13:932 EDT] f32883d3 SecurityColla D Resource IS
protected.
[00.10.26 08:32:13:932 EDT] f32883d3 SecurityColla D resolvedMethodName
= dumpRingBuffer
[00.10.26 08:32:13:932 EDT] f32883d3 SecurityColla D invokedCred is
null: true
[00.10.26 08:32:13:932 EDT] f32883d3 SecurityColla D receivedCreds is
null: false
[00.10.26 08:32:13:932 EDT] f32883d3 SecurityColla > check authorization
[00.10.26 08:32:13:932 EDT] f32883d3 SecurityColla D Invoking principal
is System principal; Access allowed
[00.10.26 08:32:13:932 EDT] f32883d3 SecurityColla <
performAuthorization

23.5.10 Nanny trace
On UNIX platforms, the nanny process starts the administrative server. The
nanny.maxtries parameter in the <WAS_HOME>/bin/admin.config file tells the
nanny process how many times it should attempt to restart the administrative
server.

On Windows platforms, the nanny service is part of the IBM WS AdminServer
service that is registered with the operating system. Starting the IBM WS
AdminServer service invokes adminservice.exe. If the service does not start,
verify:

• The service was installed and is available by clicking Start -> Settings ->
Control Panel -> Services

• The user ID under which WebSphere Application Server was installed has
service privileges

If the nanny process fails to start the Admin Server on UNIX or if the IBM WS
AdminServer service does not start on Windows platforms, you can bypass
the nanny function and just start the administrative server:
Chapter 23. Problem determination 955

1. Navigate to the <WAS_HOME>/bin/debug directory.

2. Invoke adminserver.sh on UNIX or adminserver.bat on Windows platforms.

Note: Starting the administrative server without using the nanny function
means that nothing is monitoring the administrative server. If it fails in this
state, nothing will restart it.

A nanny trace is available only on UNIX platforms.

On Windows platforms, use the Event log to view entries related to the
WebSphere nanny service.

1. Select Start -> Programs -> Administrative Tools

2. Select Event Viewer

3. View events related to the WebSphere Application Server

23.5.11 Using DrAdmin
DrAdmin is a TCP/IP service that allows modification of the trace settings of a
running process without using the administrative console. It also allows
modification of the ring buffer size and dumping of the ring buffer, and it
enables you to request a Java stack trace of a remote Java process. DrAdmin
can be very useful when attempting to determine what is ocurring in a
process that appears to be hung or is looping.

As each WebSphere server starts, it dumps its DrAdmin port to standard
output, and reports a line similar to the following:

28/09/00 04:23 : AUDIT [SZYMON-Laptop/__adminServer]: DrAdmin available
on port 3,071

This provides the port number that the DrAdmin service is listening on for that
process. (Use the last occurance in the log.)

You can then use the following commands:

1. To dump the threads to the ringbuffer:

java com.ibm.ejs.sm.util.debug.DrAdmin -serverPort <port number>

-dumpThreads

2. To dump the ringbuffer to a file:

java com.ibm.ejs.sm.util.debug.DrAdmin -serverPort <port number>

-dumpRingBuffer threadDump.txt

Note: When setting the classpath, DrAdmin is in admin.jar.
956 WebSphere V3.5 Handbook

The easiest way to run DrAdmin is to make a copy of your adminserver.bat
(Windows) or adminserver.sh (UNIX) file, called dradmin.bat or dradmin.sh,
and change the following line (the following example is for Windows):

%JAVA_HOME%\bin\java -DDER_DRIVER_PATH=%DER_DRIVER_PATH% -Xmx128m
-Xminf0.15 -Xmaxf0.25 com.ibm.ejs.sm.server.AdminServer -bootFile
%WAS_HOME%\bin\admin.config %restart% %1 %2 %3 %4

to

%JAVA_HOME%\bin\java com.ibm.ejs.sm.util.debug.DrAdmin %1 %2 %3 %4 %5 %6
%7 %8 %9

You can then run the dradmin.bat or dradmin.sh file using the following
syntax:

Usage:

java com.ibm.ejs.sm.util.debug.DrAdmin [options]

where options include:

-help shows this help message

-serverHost <Server host name> [Defaults to localhost]

-serverPort <Server port number> [required]

-setTrace <Trace specification>

-setRingBufferSize <Number of ringBuffer entries in K>

-dumpRingBuffer <File to dump to> [default]

-dumpState <dumpString>

-stopServer

-stopNode

-dumpThreads

The WSCP DrAdmin remote command can also be used to invoke DrAdmin on
a remote server, using the following syntax:

DrAdmin remote <server port>

The following options are available for remote

[-serverHost <string>] Server host name
[-setTrace <string>] Process the trace specification
[-setRingBufferSize <string>] Set number of ringbuffer entries in K
[-dumpRingBuffer <string>] Dump ring buffer to the specified file
[-dumpState <string>] Process the dump specification
[-stopServer] Stop the server
[-stopNode] Stop the node
[-dumpThreads] Dump the server threads
Chapter 23. Problem determination 957

23.6 Object level trace (OLT) and the IBM distributed debugger

Object Level Trace (OLT) is a distributed object tracing and debugging facility.
It allows users to see their object interactions, and allows them to debug
distributed code. OLT/Debugger is distributed in the sense that the trace and
debug GUIs can run on a separate machine on the network from where the
code is running. It is also distributed in the sense that you can trace and
debug objects that exist in different address spaces and invoke each other.

OLT consists of two components: a debugger and a tracing facility. The
debugger works like most debuggers. You can step through source code, set
breakpoints, inspect variables and perform other actions. The trace presented
by Object Level Trace is not like WebSphere’s internal trace facility. The
tracing facility is an object-level view of the interactions between the objects
deployed in your application server. For example, if you traced a servlet that
called another servlet in your application server, in the OLT GUI you would
see a representation of both servlets and arrows between them showing the
method call relationships.

In order to trace or debug a servlet, you must enable the application server
where that servlet is deployed. OLT and debug enablement is done at the
application server level. This means that all servlets and JSPs deployed in
that server will be OLT enabled. The settings on the application server can be
done through WebSphere Administrative Console.

23.6.1 Installing OLT and the distributed debugger
The IBM distributed debugger is not installed by default with WebSphere.
However, it is contained on the CD. Therefore, you can select it when you
install WebSphere. Or navigate to the OLT subdirectory on the disk and run
setup.exe. Ensure that when installing you select the Full Install option to
install all OLT/debugger support, including the OLT GUI and the Debugger
GUI, as shown in Figure 759 on page 959.
958 WebSphere V3.5 Handbook

Figure 759. Choose the full install of OLT

23.6.2 Running OLT
In order to trace or debug Java code running in an application server, the
following steps must be carried out in order.

1. Configure an application server's properties for OLT and debugging, and
start the server

2. Start the OLT executable on the machine where you want to view OLT, or
debug output

3. Request a resource or application deployed in the application server

23.6.2.1 Preparing your application for debugging
Before debugging your code, you must recompile your code with the debug
information (use the -g option). To do so, please use the following command:

javac -g myclass.java
Chapter 23. Problem determination 959

23.6.2.2 Enable OLT for an application server
Before tracing or debugging code running on an application server, you must
enable tracing or debugging on the server.

1. Start the administrative server.
1. Start the WebSphere Administrative Console.
2. Click your application server.
3. Click the Debug tab.
4. To enable debugging, select the Debug enabled option. This starts the

server in a debuggable JVM.
5. To enable OLT, select the Object Level Tracing option.
6. Click Apply to apply the changes.
7. Restart the application server.

Figure 760 shows the application server debug tag with both the debug and
OLT options selected.

Figure 760. The application server: Debug tab

23.6.2.3 Running OLT
OLT creates a graphical trace of your distributed application. You can use this
trace to analyze performance and isolate communication errors. In addition,
you can set method breakpoints on the trace, prior to running OLT in
960 WebSphere V3.5 Handbook

conjunction with the debugger. Even if your ultimate goal is to debug your
application, you should first create a trace by running OLT in trace only mode,
then set method breakpoints and rerun OLT in trace and debug mode.

When you start Object Level Trace, the default settings assume that your
client application is to run on the same workstation as OLT. You may, however,
want to trace a client application that is run from a different workstation. In
that case, follow the steps below to start the OLT components on separate
machines.

23.6.2.4 Running OLT locally
To run OLT on the same machine as your application server, you simply need
to invoke the command. From a command line, enter olt. The Object Level
Trace Viewer window appears as depicted in Figure 761.

Figure 761. The OLT GUI

On Windows NT, do not close the OLT command prompt window until you
have finished tracing and debugging.

Note
Chapter 23. Problem determination 961

23.6.2.5 Running OLT from a remote workstation
Running OLT on a remote workstation is simple. On the machine where you
intend to monitor the trace, invoke the olt command to bring up the OLT
window as shown in Figure 761 on page 961.

Enable the application server for a remote OLT workstation
Before tracing or debugging code running on an application server, you must
enable tracing or debugging on the server.

1. Start the administrative server.

2. Start the WebSphere Administrative Console.

3. Click your application server.

4. Click the Debug tab.

5. To enable debugging, select the Debug enabled option. This starts the
server in a debuggable JVM.

6. To enable OLT, select the Object Level Tracing enabled option.

7. Change the OLT Server Host name to the remote OLT workstation host
name.

8. Click Apply to apply the changes.

9. Restart the application server.

Figure 762 on page 963 shows the application server Debug tab with both the
debug and OLT options selected.
962 WebSphere V3.5 Handbook

Figure 762. The application server: Debug tab

23.6.3 Object level trace - tracing a servlet
Start OLT then run the client that you want to trace as normal (in our case, we
access a servlet with our browser).

When your client calls objects (in our case, we access servlets with our
browser) on the application server (or multiple servers), some trace lines and
event symbols should appear as shown in Figure 763.
Chapter 23. Problem determination 963

Figure 763. The OLT output of the snoop servlet

Even if you have not set the online mode, when your client calls objects, the
OLT Trace tab will appear on the window.

For demonstration purposes, we use the chainer servlet example in Chapter
5, “Servlet support” on page 137. This servlet, called hifoot, is a chainer
servlet that chains two other servlets together, the HelloWorldServlet that
outputs the message “Hello, world”, and the FooterServlet that outputs a
footer containing a copyright message. We will examine the interaction
between the servlets. For this example, we have only turned on tracing, not
debugging.

We call the servlet by typing the URL in our browser window. Figure 764 on
page 965 contains the output of the hifoot chainer servlet.
964 WebSphere V3.5 Handbook

Figure 764. The output of the hifoot servlet

Once the servlet has run, we can see the interaction between the servlets in
the object level trace viewer window. Figure 765 shows the viewer window
after running the servlet.

Figure 765. The OLT output of the hifoot servlet

The OLT Trace tab is split into four sections. The top section shows a slider
with a sequence of events for the currently selected trace line. This slider
enables scrolling the event focus along the trace. In this interaction there are
six visible events. If you want to see the timeline you need to go to the
real-time display by either selecting the hour-glass toolbar or by clicking File
-> Preferences -> OLT -> Display and selecting the Real-time radio button
Chapter 23. Problem determination 965

in the Display style section and clicking the OK button. The middle pane on
the left shows information about the objects being traced, in this case the
servlets. The information is in the format:

HostName:ProcessId:ObjectId:ObjectName

The middle pane on the right shows the interaction between the objects, and
the bottom pane gives information about the selected event. The two middle
panes together represent trace lines: horizontal lines connecting a sequence
of events or method calls running under a single execution thread. Each trace
line represents either an object, servlet or EJB residing on the application
server, or the client application or servlet which initiated the method call.
Figure 766 shows a closeup of the interaction pane.

Figure 766. Interaction between servlets

The circles represent entries into and exits from methods. The filled circles
are those on which breakpoints can be set. The selected event is colored in
green, and this event is represented on the Selected status line at the bottom.

Selecting each of the events in turn, moving left to right and following the
arrows between the trace lines, we can see the interaction between the
servlets. Here is a summary of the events, taken from the status lines when
choosing the events in turn. The format presented is type of call, name of call,
object, event number (for that object).

oneway call “service” com.ibm.websphere.servlet.filter.ChainerServlet #1
call “service” com.ibm.websphere.servlet.filter.ChainerServlet #2
receive call “service” HelloWorldServlet #1
reply “doGet” HelloWorldServlet #2
receive reply “doGet” com.ibm.websphere.servlet.filter.ChainerServlet #3
call “service” com.ibm.websphere.servlet.filter.ChainerServlet #4
receive call “service” FooterServlet #1
reply “doGet” FooterServlet #2
receive reply “doGet” com.ibm.websphere.servlet.filter.ChainerServlet #5
reply “doGet” com.ibm.websphere.servlet.filter.ChainerServlet #6

ChainerServlet

HelloWorldServlet

FooterServlet
966 WebSphere V3.5 Handbook

23.6.4 Setting method breakpoints on the trace
Once the application has finished running, you can use the trace to set
method breakpoints on debuggable events (debuggable events are
represented by filled circles).

You can set a method breakpoint on any debuggable server event. You
cannot set a method breakpoint on an application exception event, or an
event that is waiting for its partner to arrive (these events are represented by
an unfilled circle with an X through it).

To set a method breakpoint, select the filled circle that represents the object
method of servlet, EJB, or JSP that you want to debug. From the circle's
pop-up menu, select Add to Method Breakpoint List as shown in Figure
767.

Figure 767. Add to Method Breakpoint List

Alternatively, you can manually enter breakpoint information using the Create
Method Breakpoints dialog box, by selecting Breakpoints -> Create Method
Breakpoints as shown in Figure 768 on page 968.
Chapter 23. Problem determination 967

Figure 768. Create method breakpoints

Select the Server host name, Object name, and Method name from the
drop-down list as shown in Figure 769. Click Create then click OK.

Figure 769. Create a new method breakpoint

23.6.5 Running the debugger from OLT
You can debug business objects, servlets, or EJBs using Object Level Trace.
You should already have created a trace (by running OLT in "Trace only"
mode) and set method breakpoints on the trace. To run the debugger, you
968 WebSphere V3.5 Handbook

must select Trace and debug from the Execution mode option on the Client
Controller tab of the OLT viewer as shown in Figure 770.

Figure 770. Choose Trace and debug mode

The value of the Debugger hostname determines where the debugger
daemon should be started and where the debugger GUI will open. If the
Debugger hostname points to the localhost, the daemon will be automatically
started on the first client registering with the OLT, which is expected to
execute in the “Trace and debug” or “Debug only” mode. Otherwise, if the
Debugger hostname points to a remote host, the daemon has to be started on
that host manually by executing the following command:

idebug -qdaemon -quiport=8001

To verify if the daemon is started check if the jdebug_sui process is running.

The location of the OLT Debugger Daemon determines where the debugger
interface opens when OLT encounters your first method breakpoint. When
you start OLT, the Debugger Daemon automatically starts on the same
Chapter 23. Problem determination 969

machine (assuming that you have not changed your Remote Debugger
settings to point to another machine).

As your application runs, trace lines and symbols are added to the OLT
Viewer. When OLT encounters a method breakpoint, the debugger
automatically attaches to the process and finds the method on which you set
the breakpoint. At the same time, the debugger interface opens wherever the
OLT Debugger Daemon is running. Figure 771 on page 970 shows the
debugger attached to the HelloWorldServlet.

Figure 771. The debugger

The debugger here is at the beginning of the service method of the
HelloWorldServlet.

Once you have stepped through the object method call, servlet, or EJB, your
application runs until the next method breakpoint, or the end of the program,
is reached. Alternatively, you can step the debugger out of the server-side
function and into your client code. This opens a second debugger pane,
which points to the client code, immediately past the server call. Thus, you
are able to debug both server and client seamlessly, as if they were one
application.
970 WebSphere V3.5 Handbook

Note that when debugging Java classes, make sure that any source files for
your classes are accessible from the system CLASSPATH environment
variable. That is, if the source for my.package.MyClass resides in
x:\source\my\package\MyClass.java, you must add x:\source to the
CLASSPATH. Otherwise, you will not be able to view the source. Even the
snoop servlet is not in the class path; therefore, IBM Distributed Debugger
prompts for the correct source location as shown in Figure 772 on page 971.

Figure 772. Cannot find the SnoopServlet.java source file

If you click Cancel from this window, the debugger will continue debugging
without being able to show the source file.

Click Browse... to locate the source file. Select the source file and click Open
as shown in Figure 773.
Chapter 23. Problem determination 971

Figure 773. Select the SnoopServlet.java

Then go back to the Source Filename window. The source file name and path
are specified as shown in Figure 774 on page 972. Click OK and the
debugger will resume debugging at the first debuggable line of the snoop
servlet.

Figure 774. Location of the snoop servlet source file
972 WebSphere V3.5 Handbook

23.6.6 Platforms supported for OLT and Distributed Debugger
Table 55 shows the current platforms supported for OLT and IBM Distributed
Debugger.

Table 55. Current platforms supported for OLT and IBM Distributed Debugger

AIX AS/400 Solaris Windows HP-UX Linux Linux/390

OLT Tracing
support

� � � � � � �

Java
Debugging
support

� � limited
functionality

limited
functionality
Chapter 23. Problem determination 973

974 WebSphere V3.5 Handbook

Chapter 24. Log Analyzer

WebSphere V3.5.2 provides a new problem determination tool, the Log
Analyzer.

The Log Analyzer is a GUI tool that permits the customer to view an
activity.log file for errors and sort log entries based on severity, process ID,
thread ID, etc. More importantly, this tool has a simple XML database behind
it that permits the customer to analyze errors and offers additional information
such as why the errors occurred and how to recover from them.

This chapter takes an in-depth look at the Log Analyzer. Note that this is a
technology preview product of WebSphere V3.5.2. For this redbook, most of
the Log Analyzer testing was done while using the WebSphere Advanced
Edition.

24.1 Log Analyzer overview

The infrastructure for the Log Analyzer is part of WebSphere V3.5.2.
However, the tool itself is not. The Log Analyzer is available for download.
See 24.2, “Downloading and installing the Log Analyzer” on page 977 for
detailed information.

A new message logging service has been added in WebSphere V3.5.2. This
logging service will log messages to a shared file. This file is a binary file
located in the <WAS_HOME>/logs directory and is named "activity.log".
<WAS_HOME> is the WebSphere Application Server install directory. The
activity.log cannot be easily viewed using a text editor. The preferred tool to
view this file is the Log Analyzer.

The Log Analyzer takes one or more activity or trace logs, merges all the data
and displays the entries in sequence. It analyzes error conditions in the log
entries to provide error message explanations.

As shown in Figure 775 on page 976, the Log Analyzer's main window has
three panes:

• Logs pane (left)

All of the log entries are displayed in the logs pane in hierarchical order.

The background color may help you quickly identify the ones that have
high severity errors. After invoking the Analyzer or Advanced Analyze
actions, an icon appears in front of the log entry to show which kind
information can be obtained.
© Copyright IBM Corp. 2001 975

• Record pane (upper right)

When you select an entry under the unit of work in the Logs pane, you see
detailed information about the entry in the Record pane.

Each entry in the activity log has many fields that you may check on the
record pane.

• Analysis pane (lower right)

In the Analysis pane, the Symptom page is the only one currently
supported.

For the Symptom page, the Log Analyzer provides a database of
information to help you recover from some common errors. As a part of the
Analyze action, if such recovery information is found in the database for
the selected log entry, the information is displayed.

Figure 775. The main window of Log Analyzer

There is a status line at the bottom of the window showing the status of
actions.
976 WebSphere V3.5 Handbook

24.2 Downloading and installing the Log Analyzer

The Log Analyzer for WebSphere Application V3.5.2 technology preview is
available for Web download from the following FTP site:

ftp://ftp.software.ibm.com/software/websphere/info/tools/loganalyzer/

To install the Log Analyzer, download the logbr.zip or logbr.tar.Z file
appropriate for the target platform and unzip/untar it under the directory
<WAS_HOME> where WebSphere Application Server V3.5.2 has been
installed.

24.3 Using the Log Analyzer to view the activity.log

To view the activity log called "activity.log", execute the waslogbr script file
(waslogbr.bat for Windows or waslogbr for UNIX), which is found in the
<WAS_HOME>/bin directory. This starts the Log Analyzer graphical user
interface (GUI) as shown in Figure 776.

Figure 776. Using the Log Analyzer to view the activity.log
Chapter 24. Log Analyzer 977

Then from the GUI, select File->Open as shown in Figure 777.

Figure 777. Open the activity.log #1

Then navigate to the directory containing the activity.log. Select the
activity.log file and then select Open as shown in Figure 778.

Figure 778. Open the activity.log #2
978 WebSphere V3.5 Handbook

Now you will see the UnitOfWorkView folder on the Log Analyzer Logs pane
and in that folder you probably can see a couple of folders (in our case,
2000-12-23 12:50:15.976000000) as shown in Figure 779.

Figure 779. The UnitOfWorkView folder

24.4 Using showlog to view the activity.log

The Log Analyzer cannot be used to view remote files. If the platform on
which you are running WebSphere Application Server does not support the
use of a GUI, you should transfer the file in binary to the system on which you
are running the administrative console and use the Log Analyzer tool there. In
cases where this is not practical or inconvenient, an alternate tool named
"showlog" is provided to view the activity.log.

The showlog script file (showlog.bat for Windows or showlog for UNIX) is found
in the <WAS_HOME>/bin directory. Invoking showlog with no parameters will
display usage instructions.
Chapter 24. Log Analyzer 979

To direct the activity log contents to stdout, use the invocation showlog

activity.log.

C:\>cd \WebSphere\AppServer\bin

C:\WebSphere\AppServer\bin>showlog
This program dumps a Websphere binary log file to standard out or a file.
Usage: showlog binaryFilename [outputFilename]
where:

binaryFilename represents the name of the input binary log file

outputFilename represents the name of the output file

C:\WebSphere\AppServer\bin>
980 WebSphere V3.5 Handbook

C:\WebSphere\AppServer\bin>showlog C:\WebSphere\AppServer\logs\activity.log
$LANG = en_US
$CODESET = Cp1252

ComponentId:
ProcessId: 273
ThreadId: f36a6af0
FunctionName:
ProbeId:
SourceId: com.ibm.ejs.sm.server.AdminServer
Manufacturer: IBM
Product: WebSphere
Version: advanced 3.5.2 ptf2b0041.07
ProcessType:
ServerName: __adminServer
ClientHostName:
ClientUserId:
TimeStamp: 2000-10-19 18:22:29.461000000
UnitOfWork:
Severity: 3
Category: AUDIT
FormatWarning:
PrimaryMessage:
ExtendedMessage: ADMS0002I: Initializing WebSphere Administration server
RawDataLen: 0

ComponentId:
ProcessId: 273
ThreadId: 17e86af1
FunctionName:
ProbeId:
SourceId: com.ibm.ejs.sm.util.debug.DrAdminServer
Manufacturer: IBM
Product: WebSphere
Version: advanced 3.5.2 ptf2b0041.07
ProcessType:
ServerName: __adminServer
ClientHostName:
ClientUserId:
TimeStamp: 2000-10-19 18:22:29.582000000
UnitOfWork:
Severity: 3
Category: AUDIT
FormatWarning:
PrimaryMessage:
ExtendedMessage: SMTL0018I: DrAdmin available on port 1177
RawDataLen: 0

ComponentId:
ProcessId: 273
ThreadId: f36a6af0
FunctionName:
ProbeId:
SourceId: com.ibm.ejs.sm.server.AdminServer
Manufacturer: IBM
Product: WebSphere
Chapter 24. Log Analyzer 981

To dump the activity.log to a text file that can be viewed using a text editor use
the invocation showlog -d3 activity.log textFileName.

C:\WebSphere\AppServer\bin>showlog -d3 C:\WebSphere\AppServer\logs\activity.log C:\log.

C:\WebSphere\AppServer\bin>dir C:\log.txt
Volume in drive C has no label.
Volume Serial Number is 2858-D36D

Directory of C:\

10/19/00 06:37p 1,778 log.txt
1 File(s) 1,778 bytes

47,035,904 bytes free

C:\WebSphere\AppServer\bin>
C:\WebSphere\AppServer\bin>type c:\log.txt
$LANG = en_US
$CODESET = Cp1252

ComponentId:
ProcessId: 273
ThreadId: f36a6af0
FunctionName:
ProbeId:
SourceId: com.ibm.ejs.sm.server.AdminServer
Manufacturer: IBM
Product: WebSphere
Version: advanced 3.5.2 ptf2b0041.07
ProcessType:
ServerName: __adminServer
ClientHostName:
ClientUserId:
TimeStamp: 2000-10-19 18:22:29.461000000
UnitOfWork:
Severity: 3
Category: AUDIT
FormatWarning:
PrimaryMessage:
ExtendedMessage: ADMS0002I: Initializing WebSphere Administration server
RawDataLen: 0

ComponentId:
ProcessId: 273
ThreadId: 17e86af1
FunctionName:
ProbeId:
SourceId: com.ibm.ejs.sm.util.debug.DrAdminServer
Manufacturer: IBM
Product: WebSphere
Version: advanced 3.5.2 ptf2b0041.07
ProcessType:
ServerName: __adminServer
ClientHostName:
ClientUserId:
TimeStamp: 2000-10-19 18:22:29.582000000
982 WebSphere V3.5 Handbook

24.5 Configuring the activity.log

There are four parameters that you can configure for the activity.log: size of
activity.log, port number on which the logging service is listening, enabling
shared logging, and the output format of the ring buffer. The first two are
described in the following sections, and the output format is discussed in
24.8, “Using the Log Analyzer to view the ring buffer dump” on page 996.
Enabling shared logging is not discussed.

24.5.1 Specify the size of activity.log
The activity.log will grow to a predetermined size and then will wrap. The
default size is 1 MB.

A property named "SHARED_LOG_LENGTH" can be specified to change the
size of this log.

To change this property, edit the file named
<WAS_HOME>/properties/logging.properties. The size of the log is specified
in KBytes. For example, to change the log size to 2 MB, enter the line
SHARED_LOG_LENGTH=2048 (without any spaces). If an invalid size is entered, the
default size is used.

Figure 780. SHARED_LOG_LENGTH property in the logging.properties

The size change will take effect at the next server startup.

24.5.2 Specify the port on which the logging service is listening
The logging service starts automatically at server startup. This logging
service requires the use of a dedicated port. The default port used is 1707. If
there are multiple installations or administrative instances of WebSphere on a
physical machine, each instance should use a different port.

A property named SHARED_LOG_LOCK_PORT is provided to change the
port value. To change this property, edit the file named
<WAS_HOME>/properties/logging.properties.

The SHARED_LOG_LENGTH property in Kbytes. Default value is 1 meg.
Following example would set the log length to 2 meg
#SHARED_LOG_LENGTH=2048
Chapter 24. Log Analyzer 983

Figure 781. SHARED_LOG_LOCK_PORT property in the logging.properties

For example to change the port to 1708, add the line
SHARED_LOG_LOCK_PORT=1708.

Note: If the port number is changed, all servers in the affected installation or
instance, including the administrative server, must be cycled for the change to
take effect. The recommended procedure for changing the port for an
installation or instance is to stop all servers including the administrative
server, change the port value and then restart the servers.

If the port is in use by another application, the logging service may not be
able to start or may not function correctly and the activity.log file will not be
created or updated correctly. The command netstat can be used to determine
if another application is using a given port. However, if another application
dynamically binds to, uses and releases the port, this may not be detected by
netstat. In this case the following set of heuristic checks may be performed to
diagnose the port conflict. First check to see if the activity.log file has been
created, and check the timestamp of the file. Also, you can check the
<WAS_HOME>/logs/<server_name>_stderr.log,
<WAS_HOME>/logs/adminserver_stderr.log or <WAS_HOME>/logs/tracefile
for a stack trace that looks like the following:

java.lang.Exception: Unable to obtain Shared Log Lock on port1707
at

com.ibm.ejs.ras.SharedLogBase.acquireHostLock(SharedLogBase.java:187)
at com.ibm.ejs.ras.SharedLogWriter.<init>(SharedLogWriter.java:130)
at

com.ibm.ejs.ras.SharedLogWriter.getInstance(SharedLogWriter.java:100)
at com.ibm.ejs.ras.Tr.initialize(Tr.java:241)
at com.ibm.ejs.sm.server.ManagedServer.main(ManagedServer.java:121)

24.6 Display log entries in different groupings

All of the log entries are displayed in the logs pane in hierarchical order.

The logs pane displays log entries by unit of work (UOW) by default.

To help you quickly identify problems, you can display the log entries in
different groupings by setting the sort fields in the Preferences Logs page. To

The Port used to implement the shared log lock. Default value is 1707
#SHARED_LOG_LOCK_PORT=1708
984 WebSphere V3.5 Handbook

configure the sort fields, from the Log Analyzer window select File ->
Preferences... as shown in Figure 782.

Figure 782. Configure the preferences

Then you will get the Analyzer Preferences windows. You can specify two
filters. By default, UnitOf Work is specified as the Primary sort field as shown
in Figure 783 on page 986.
Chapter 24. Log Analyzer 985

Figure 783. Log filtering

You may change the sorting sequence setting to select the most appropriate
hierarchy for the problem you are solving. We will show you two sorting
examples below.

24.6.1 Sorting by ServerName
For the first example, we set Primary sort field to ServerName on the Logs
page of Analyzer Preferences, as shown in Figure 784 on page 987.
986 WebSphere V3.5 Handbook

Figure 784. Logs page of Log Analyzer’s Preferences

After clicking OK, the Logs pane changed as shown in Figure 785 on page
988.
Chapter 24. Log Analyzer 987

Figure 785. Logs pane after changing the sort field setting

The folders are sorted to show the servers with the latest timestamp at the
top of the list. The entries within each server are listed in the reverse
sequence, that is the first (earliest) entry for that server is displayed at the top
of the list. If you have merged several logs in the Log Analyzer, all the log
entries are merged in timestamp sequence within each server folder, as if
they all came from the same log.

Each folder line has the following format:

Last timestamp + (+ Number of entries +) + Sort field identification name

For example:

2000-12-23 13:19:59.491000000 (292) Default Server

Every log entry is assigned an entry number, Rec_nnnn, when a log is
opened in the Log Analyzer.

If more than one file is opened in the Log Analyzer (merged files), the
Rec_nnnn identification will not be unique because the number is relative to
988 WebSphere V3.5 Handbook

the entry sequence in the original log file and not to the merged data that the
Log Analyzer is displaying.

However, with the concatenation of the class name, it is likely this
identification will be unique. This Rec_nnnn appears in the title and the first
line (RecordId) in the Records pane.

24.6.2 Sorting by ProcessId
As the second example, we specified the ProcessId for the Primary sort field
as shown in Figure 786.

Figure 786. Sorting by process ID

Then click OK. You will see “ProcessIdView” on the Logs pane as shown in
Figure 787 on page 990.
Chapter 24. Log Analyzer 989

Figure 787. ProcessIdView

In Figure 787, you can see many folders under the ProcessIdView folder. That
means that the activity.log includes many processes’ information.

Let us open the ninth folder which has process ID 2432’s information. Click
the folder 2000-11-10 20:33:51.951000000 (33) 2432 to open it. Note that
“2432” indicates the process ID and “(33)” means that there are 33 entries in
it.

You will see the entries on the Logs pane as shown in Figure 788 on page
991.
990 WebSphere V3.5 Handbook

Figure 788. Analyzing by ProcessId #1

On the Logs pane, you can see a couple of entries that have a pink colored
background. It means that it has a severity 1 error. Let us select the entry with
record number 418 (Rec_418).

When we selected the entry the background of the entry became red and
detailed information appeared on the Record pane (in our case, Rec_418) as
shown in Figure 789 on page 992.
Chapter 24. Log Analyzer 991

Figure 789. Analyzing by ProcessId #2

24.7 Analyze action

The Log Analyzer tool has a very powerful Analyze action that retrieves and
displays additional documentation on known errors and error messages in the
Analysis pane.

You can invoke the Analyze action from the root folder, any folder, or any
selected log entry. If you invoke the Analyze function for the root folder, then
all the entries in the log will be analyzed.

From the Logs pane, right click the folder that you want to analyze and click
Analyze as shown in Figure 790 on page 993.
992 WebSphere V3.5 Handbook

Figure 790. The Analyze action

After the Analyze action has been invoked, each log entry that was analyzed
has one icon to indicate the analysis information as shown in Figure 791 on
page 994.
Chapter 24. Log Analyzer 993

Figure 791. Analyzing log entries

Then, select an entry and you will see a description in the Symptom tab as
shown in Figure 792 on page 995.
994 WebSphere V3.5 Handbook

Figure 792. Symptom tab

Four different icons are supported:

indicates that the entry has some analysis information in one or more
pages in the Analysis pane.

indicates that the error has been cascaded and that the real cause for the
error is in the previous or next error record.

indicates that the entry has either a severity 1 or 2 error but no additional
analysis information is available for it.

indicates that the entry has a severity 3 error and it has no analysis
information.
Chapter 24. Log Analyzer 995

Figure 793. Icons indicate different entries

24.8 Using the Log Analyzer to view the ring buffer dump

The ring buffer dump file can be viewed using a text editor, or it can be viewed
using the Log Analyzer.

In order to use the Log Analyzer to read the ring buffer trace file, the file has
to be dumped into the activity log format. To do this, you need to modify the
file <WAS_HOME>\properties\logging.properties before you dump the ring
buffer trace. Uncomment (remove the # sign) in the last line:

#TRACE_OUTPUT_FORMAT=basic

and replace basic with advanced as in the following:

TRACE_OUTPUT_FORMAT=advanced

This will give you the ring buffer trace file in the activity log format.
996 WebSphere V3.5 Handbook

Figure 794. Ring buffer trace file in log analyzer format

$LANG = en_US
$CODESET = Cp1252

ComponentId:
ProcessId: 2072
ThreadId: d3530505
FunctionName:
ProbeId:
SourceId: com.ibm.ejs.sm.server.ManagedServer
Manufacturer: IBM
Product: WebSphere
Version: advanced 3.5.2 q0029.15
ProcessType:
ServerName: Default Server
ClientHostName:
ClientUserId:
TimeStamp: 2001-01-02 13:30:09.692000000
UnitOfWork:
Severity: 3
Category: EVENT
FormatWarning:
PrimaryMessage:
ExtendedMessage: Version : 3.5.2
RawDataLen: 0

ComponentId:
ProcessId: 2072
ThreadId: d3530505
FunctionName:
ProbeId:
SourceId: com.ibm.ejs.sm.server.ManagedServer
Manufacturer: IBM
Product: WebSphere
Version: advanced 3.5.2 q0029.15
ProcessType:
ServerName: Default Server
ClientHostName:
ClientUserId:
TimeStamp: 2001-01-02 13:30:09.692000001
UnitOfWork:
Severity: 3
Category: EVENT
FormatWarning:
Chapter 24. Log Analyzer 997

To view this file using the Log Analyzer, execute the waslogbr script file
(waslogbr.bat or waslogbr), which is found in the <WAS_HOME>/bin
directory. This starts the Log Analyzer GUI.

From the GUI select File->Open, then navigate to the directory containing the
ring buffer dump file (in our case, ringbuffer.dump). Select the file and then
select Open. On the Logs pane, you will see the file name that you selected
(in our case, ringbuffer.dump).

Figure 795. Viewing the ring buffer dump with Log Analyzer

Note that if a tracefile is generated by specifying a trace specification and
trace output file on the Advanced tab for the application server in the
WebSphere Administrative Console, the tracefile generated is not compatible
with the Log Analyzer. Attempting to use the Log Analyzer to display that file
will result in an error.
998 WebSphere V3.5 Handbook

24.9 Updating the symptom database

The symptom database included in the Log Analyzer package that you
downloaded contains entries for some common problems. IBM will make new
versions of the symptom database with additional entries available for
downloading at the FTP site from time to time.

In the <WAS_HOME>/bin/ivblogbr.properties file, there is a line that indicates
the URL of the FTP site. The default setting is as follows:

ftp://ftp.software.ibm.com/software/websphere/info/tools/loganalyzer/sympt
oms/adv/symptomdb.xml

You can update the symptom database either by downloading it from the FTP
site and then replacing the old one
(<WAS_HOME>/symptoms/adv/symptomdb.xml) with it manually or using the
Log Analyzer GUI function. To use the Log Analyzer GUI function, select File
-> Update database -> Adv Symptom Database as shown in Figure 796 on
page 1000.
Chapter 24. Log Analyzer 999

Figure 796. Update the symptom database

If you are trying to update the symptom database using the Log Analyzer GUI
function on a machine behind a firewall, you will need to add the proxy
definition in the command that launches the Log Analyzer.

If your organization uses an FTP proxy server, do the following:

• For Windows NT: Modify the <WAS_HOME>\bin\waslogbr.bat file and add
the text shown in Italics below:

%JAVA_HOME%\bin\java -DIVB_HOME=%USERPROFILE%/logbr ^
......
-Dftp.proxyHost=proxy_host -Dftp.proxyPort=port_number ^
......

• For UNIX: Modify the file <WAS_HOME>/bin/waslogbr and add the text
shown in Italics below:

$JAVA_HOME/bin/java -ms10m -mx255m -DIVB_HOME=$HOME/logbr \
1000 WebSphere V3.5 Handbook

......
-Dftp.proxyHost=proxy_host -Dftp.proxyPort=port_number \
......

If your organization uses a SOCKS proxy server, do the following:

• For Windows NT: Modify the file <WAS_HOME>\bin\waslogbr.bat and add
the text shown in Italics below:

%JAVA_HOME%\bin\java -DIVB_HOME=%USERPROFILE%/logbr ^
......
-DsocksProxyHost=proxy_host -DsocksProxyPort=port_number ^
......

• For UNIX: Modify file <WAS_HOME>/bin/waslogbr and add the text shown
in Italics below:

$JAVA_HOME/bin/java -ms10m -mx255m -DIVB_HOME=$HOME/logbr \
......
-DsocksProxyHost=proxy_host -DsocksProxyPort=port_number \
......

If necessary, ask your system administrator for the name of the FTP or
SOCKS proxy host and its port on your network.

24.10 Saving logs as an XML file

If you intend to look at the same Log Analyzer data again at a later time, you
may want to save the data as an XML file.

From the Log Analyzer window, select File -> Save as depicted in Figure 797
on page 1002.
Chapter 24. Log Analyzer 1001

Figure 797. Saving the log file as an XML file

Then you specify the location and file name to save the log as an XML file or
a text file, as shown in Figure 798 on page 1003, and click Save.
1002 WebSphere V3.5 Handbook

Figure 798. Saving the log file to an XML file or a text file

We specified the XML format to save our log and we can see the file that was
saved as an XML file as shown in Figure 799 on page 1004.
Chapter 24. Log Analyzer 1003

Figure 799. The log file saved as an XML file

Also, you can open the XML log file with the Log Analyzer as shown in Figure
800 on page 1005.
1004 WebSphere V3.5 Handbook

Figure 800. Open the log file that is saved as an XML file

Note that you can save the data in a text format, as shown in Figure 801 on
page 1006.
Chapter 24. Log Analyzer 1005

Figure 801. Can save the log file as a text file

But you cannot open it with the Log Analyzer. You will get the error message
as shown in Figure 802.

Figure 802. Cannot load the log file which was saved as a text file
1006 WebSphere V3.5 Handbook

Any retrieved Symptom information is also saved. If logs are merged in the
Log Analyzer, the saved file contains entries of all the merged logs in the
sequence that is shown in the Logs pane.

You can also do selective saves by making multiple selections of folders
and/or entries in the Logs pane.
Chapter 24. Log Analyzer 1007

1008 WebSphere V3.5 Handbook

Chapter 25. Resource Analyzer

The Resource Analyzer is a stand-alone performance monitor for WebSphere
Application Server Advanced Edition. The Resource Analyzer Console can be
brought up on Windows or UNIX machines, and it can connect across
platforms to the WebSphere Administrative Server running locally or on a
remote machine.

This chapter takes an in-depth look at the new Resource Analyzer. Note that
this is a technology preview product of WebSphere V3.5. For this redbook,
most of the Resource Analyzer testing was done while connected to the
WebSphere Administrative Server Advanced Edition. The version of
Resource Analyzer did not work with Standard Edition when we tested.

25.1 About Resource Analyzer

The Resource Analyzer retrieves performance data by periodically polling the
WebSphere Administrative Server. Data is collected continuously and
retrieved as needed from within the Analyzer. The level of data to collect is
specified by using the WebSphere Administrative Console. The Analyzer’s
graphical user interface is used to retrieve and view the data in a table or a
chart, or to store the data in a log file.

Figure 803. Resource Analyzer V3.5 block diagram

Resource
Analyzer

WS Admin
Server

perf.
data

log
file

Windows/UNIX Windows/UNIX

polling

WebSphere
AppServer

WebSphere
AppServer

WebSphere
AppServer

WS Admin
Server
© Copyright IBM Corp. 2001 1009

25.1.1 Performance data organization
Resource Analyzer organizes performance data in a hierarchy of groups. A
group is a set of statistics, or counters, associated with a particular resource
of the WebSphere. Groups can have subgroups. Counters, which measure an
aspect of the running system, may or may not belong to one or more groups.

For example, the enterprise beans performance category is considered a root
group. Subgroups (descendants) of this group are container instances. Each
container instance represents the set of counters for that container. Counters
for containers include the number of method calls and their average response
time for all enterprise beans in the container. Enterprise beans residing in a
container belong to a subgroup whose name is the remote class name of the
enterprise bean. In Figure 804, the bean 2 group belongs to both the
container 1 and container 2 groups.

Figure 804. Example hierarchy of Enterprise Beans Performance group

When performance data is displayed for a group, the information is organized
and displayed as families. A family is simply a view of all similar objects.
Family tables show multiple resources of the same type and their counters.

25.2 What is collected and analyzed?

The Resource Analyzer provides a wide range of performance data for two
kinds of resources:

• WebSphere resources, which include servlets and enterprise beans

Enterprise
Beans

Bean 1

member of

member ofmember of

Sub
Group

Sub
Group

Root
Group

Bean 2 Bean 3

Container 2

Performance
Category

Container 1

Bean 2
1010 WebSphere V3.5 Handbook

• WebSphere runtime resources, which include the Java Virtual Machine
(JVM) memory, application server thread pools, and database connection
pools

Performance data includes:

• Numerical data

• Statistical data

• Load data

This data is reported for individual resources and aggregated for multiple
resources. Numerical data could be such things as memory size or cache
size. Statistical data are things like response times of an EJB method.
Average size of a database connection pool is an example of load data.

The Analyzer collects and reports performance data for the following
resources of WebSphere Application Server:

• WebSphere runtime

- Reports memory used by a process as reported by the JVM. Examples
are the total memory available and the amount of free memory for the
JVM.

• Object Request Broker (ORB) thread pools

- Reports information about the pool of threads an application server
uses to process remote methods. Examples are the number of threads
created and destroyed, the maximum number of pooled threads
allowed, and the average number of active threads in the pool.

• Database connection pools

- Reports usage information about connection pools for a database.
Examples are the average size of the connection pool (number of
connections), the average number of threads waiting for a connection,
the average wait time in milliseconds for a connection to be granted,
and the average time the connection was in use.

• Enterprise beans

- Reports load values, response times, and lifecycle activities for
enterprise beans. Examples include the average number of active
beans and the average number of methods being processed
concurrently.

• Enterprise bean methods
Chapter 25. Resource Analyzer 1011

- Reports information about an enterprise bean's remote interfaces.
Examples include the number of times a method was called and the
average response time for the method.

• Enterprise bean object pools

- Reports information on the size and usage of a cache of bean objects.
Examples include the number of calls attempting to retrieve an object
from a pool and the number of times an object was found available in
the pool.

• Transactions

- Reports transaction information for the container. Examples include the
average number of active transactions, the average duration of
transactions, and the average number of methods per transaction.

• Servlet engines

- Reports usage information for Web applications, servlets, JavaServer
Pages (JSPs), and HTTP sessions. Examples include the average
number of concurrent requests for a servlet, the amount of time it takes
for a servlet to perform a request, the number of loaded servlets in a
Web application, and the average number of concurrently active HTTP
sessions.

25.3 Resource Analyzer functionality

Depending on what is being measured, the Resource Analyzer can perform
the following functions:

• View performance data in real time

• View performance data over specified time intervals

- Data can be displayed in intervals showing performance during the last
minute, the last 5 minutes, the last 10 minutes, and the last 20 minutes.

• Record current performance data in a log, and replay performance data
from previous sessions

• Compare data for a single resource to an aggregate or group of resources
on a single node

• View the data in chart form, allowing comparisons of one or more
statistical values for a given resource on the same chart

Given all this data, the Resource Analyzer can be used to do the following:

• Monitor real-time performance, such as response times for servlet
requests or enterprise bean methods
1012 WebSphere V3.5 Handbook

• Detect trends by analyzing snapshots of data over time

• Determine the efficiency of the resources within a given configuration

- These resources could be the amount of allocated memory, the size of
database connection pools, and the size of a cache for enterprise bean
objects.

• Gauge the load on application servers

• Gauge the load on servlet engines

25.4 Levels of data collection

Instrumentation levels can be changed by using the WebSphere Advanced
Administrative Console as follows:

• To change levels for a running application server, use the Performance
dialog box.

• To change levels for a stopped application server, use the EPM
specification property.

25.4.1 Using the EPM specification property
The EPM specification input field is visible in the Advanced tab of an
application server’s property sheet. This is shown in Figure 805 on page
1014.

Data collection and reporting will affect the performance of your distributed
applications. Although performance data is automatically collected at all
times, it is not reported by default. You must explicitly enable data-reporting
for those aspects of your system to be monitored.

When data reporting is enabled, the types of data displayed depend on
user-defined instrumentation levels.

Note
Chapter 25. Resource Analyzer 1013

Figure 805. EPM specification

The property value can be one of two formats. The first format sets the
instrumentation level for all performance modules; the second sets the level
for individual modules.

epm=<LEVEL>

epm.module_name=MODULE_NAME

where:

LEVEL is none, low, medium, or high

MODULE_NAME is one of the following: beanData, beanMethodData,
orbThreadPool, connectionMgr, objectPools, transactionData, servletEngine.

Multiple specifications can be separated by a colon as in the following
example:
1014 WebSphere V3.5 Handbook

epm.beanData=medium:epm.transactionData=high

25.4.2 Using the Performance dialog
To view the Performance dialog box, right-click an application server and
select the Performance... option as shown in Figure 806.

Figure 806. Performance option

By default nothing is set in the Performance dialog box and the icon box next
to the Performance modules is pink in color as shown in Figure 807.

Figure 807. Initial setting in the Performance dialog box
Chapter 25. Resource Analyzer 1015

In the Performance dialog box, the instrumentation level can be set for each
performance category and each resource instance. The current
instrumentation level is represented by a small box icon with color stripes as
shown in Figure 808.

Figure 808. Performance dialog box shown with high impact counter setting

The color key is as follows:

• Grey -- No data is being collected.

• Blue -- Counters that have a low impact on performance are being
collected.

• Yellow -- Counters that have a medium impact or lower are being
collected.

• Red -- Counters that have a high impact or lower are being collected.

25.5 Resource Analyzer requirements

Before installing the Resource Analyzer the following software prerequisites
need to be met:

• IBM JDK 1.2

• IBM WebSphere Application Server V3.5

• JCChart classes (included in chart.jar that comes with WebSphere
Application Server V3.5 install)

You will also need an unzip utility because Resource Analyzer is distributed
as a zip file.
1016 WebSphere V3.5 Handbook

25.6 Starting the Resource Analyzer

The Resource Analyzer is a GUI and it looks the same on all platforms. See
Figure 809 on page 1018. To start the resource analyzer:

• On UNIX platforms, invoke the ra.sh shell script.

• On Windows platforms, run the ra.bat batch file.

These files can be found in the directory <RA_HOME>/ra/bin, where
RA_HOME is the Resource Analyzer installation directory.

Before running either script, edit the script to change the environment
variable WAS_HOME to the location of the root directory where WebSphere
is installed.

By default, Resource Analyzer looks for the WebSphere Administrative
Server on the host machine where the Analyzer is started. If the
administrative server is running on another machine, specify that host name
and port number.

The command usage to invoke the Resource Analyzer on Windows NT or
Windows 2000 systems:

ra.bat [host_name [port_number]]

Where:

[host_name] is where the WebSphere Administrative Server is running

[port_number] is the port to connect to the administrative server

The default values are localhost and port 900.
Chapter 25. Resource Analyzer 1017

Figure 809. Resource Analyzer V3.5 GUI on Windows 2000

Due to memory requirements, it is recommended that you run the Resource
Analyzer on a separate machine from the WebSphere Administrative Server.

The Resource Analyzer does not require the WebSphere Administrative
Server to be running. The Analyzer can be run in logging mode to view
data from previously logged sessions.

Note
1018 WebSphere V3.5 Handbook

25.7 Working with the analyzer

When Resource Analyzer is invoked via the ra command, a status window as
seen in Figure 810 pops up displaying the various resources that the
Analyzer is obtaining.

Figure 810. Resource Analyzer V3.5 status window upon startup

When Global Security is set via the WebSphere Administrative Console,
the epm service within Resource Analyzer, by default, does not have the
authority to connect to the administrative server. The following warning is
displayed:

And the WebSphere Administrative Console Messages window displays
the following error message:

9/6/00 9:56 AM : AUDIT [m23bk68g/__adminServer]: Authorization failed for
??? while invoking (Home)EpmServiceHome create

Note
Chapter 25. Resource Analyzer 1019

Eventually the Resource Analyzer Console is displayed. It has the same look
and feel as the WebSphere Administrative Console with a navigation pane on
the left and a workspace pane on the right.

If the WebSphere Administrative Server is running on the node that Resource
Analyzer was launched on, the Resource Analyzer Console comes up without
any warnings. In the navigation frame there will be a green icon next to the
node name, indicating that the administrative server is active on that node. If
the administrative server is inactive, a warning message will be displayed
(Figure 811).

Click OK for the console to be fully displayed. The icon next to the node name
will be red indicating that the administrative server is not running.

Figure 811. A warning message from the Resource Analyzer

The tree structure in the navigation pane of the Resource Analyzer Console
should look quite similar to the tree structure in the WebSphere
Administrative Console. The Resource Analyzer Console looks the same on
Windows NT, Windows 2000 and UNIX platforms.

25.7.1 Starting the analysis of a resource
Select any resource and click the Run icon to start real-time analysis of that
resource as shown in Figure 812 on page 1021.
1020 WebSphere V3.5 Handbook

Figure 812. The Run icon highlighted in the Resource Analyzer console

The values are displayed in tabular or chart form and are refreshed every 10
seconds.

25.7.2 Setting the Refresh Rate
This refresh rate can be modified in the Resource Analyzer Console by
clicking Main Menu-->Options-->Set Refresh Rate.... as shown in Figure
813.

Figure 813. The menu option to set the refresh rate
Chapter 25. Resource Analyzer 1021

25.7.3 Setting the Table Size
The size of the table where the analyzed records are stored can also be
customized. The default table size is 40 rows. To change the table size click
Main Menu-->Options-->Set Table Size.... as shown in Figure 814.

Figure 814. The menu option to set the table size

25.7.4 Viewing the analyses in chart form
The chart shown in Figure 815 on page 1023 was generated by selecting
servlet engine and clicking the Run icon. It shows the initial configuration of
the Default Server as it was set up with a typical WebSphere installation.

The number of loaded servlets = 15 and the number of ReLoads = 4. There
are no concurrent requests or errors to report. Actually there are no requests,
hence the total requests is zero and the total response time is zero.
1022 WebSphere V3.5 Handbook

Figure 815. The resources of the default servlet engine

The sequence of events and time spikes, charted in Figure 815, is as follows:

1. The initial spike in response time to 100 occurred when the snoop servlet
was first invoked in a browser.

2. The second spike to 80 was when the Hello servlet was first invoked.

3. The third spike to 56 was on a reload of the Hello servlet.

4. The snoop servlet was re-invoked via the URL.

5. The fourth spike to 54 was on a reload of the snoop servlet.

And those five servlet requests show up as Total number of Requests. All
these values are captured in the Time Series tab.

25.7.5 Logging function in the analyzer
The Resource Analyzer offers the option to write to a log file. By default
logging is turned OFF. To enable logging, click Main Menu --> Logging -->
Start... as shown in Figure 816 on page 1024.
Chapter 25. Resource Analyzer 1023

Figure 816. To start logging in the Resource Analyzer

When Start... is selected, a Save file window is displayed as shown in Figure
817. Specify the location and name of the log file. Once you click Save,
logging will be turned ON. Resource Analyzer log files are stored as .lra files.

Figure 817. Saving a log file in Resource Analyzer V3.5

These log files cannot be viewed by text editors. They are legible only when
opened via the Resource Analyzer Console.
1024 WebSphere V3.5 Handbook

Click Main Menu --> File --> Open Log File... as shown in Figure 818.

Figure 818. To open a saved Resource Analyzer log file (.lra)

When you select Open Log File... the file selection dialog window pops up.
Specify the .lra file and click Open as shown in Figure 819.

Figure 819. Resource Analyzer log file (.lra) selection dialog

Once the log file is loaded, it can be played. When the end of the log file is
reached a message is displayed (Figure 820 on page 1026) indicating the
same. At this point the log file can be rewound and replayed.
Chapter 25. Resource Analyzer 1025

You do not need the WebSphere Administrative Server running to play these
log files.

Figure 820. Message to rewind Resource Analyzer V3.5 log file

The log files can be replayed at varying speeds. Log speeds can be 1x, 5x,
20x or 60x the normal speed.

25.8 Resource Analyzer with WebSphere V3.5.2

At the time of writing this book, the Resource Analyzer for WebSphere V3.5
failed to collect statistics when using WebSphere V3.5.2. In addition, the EPM
specification level was by default set to none, which is a change from prior
versions of WebSphere. The directions below address both the failure to
collect servlet statistics and the need to explicitly set an EPM specification
level.

The failure to collect servlet statistics manifests itself as the default_host not
being displayed under the servlet engine in two places:

1. From WebSphere Administrative Console, you select application server
(in our case, DefaultServer) and make sure it started. Right click and
select Performance, double-click Performance Modules, and expand
servlet engine.

At this point, you should (but do not) see default_host if you are using the
DefaultServer.

2. From Resource Analyzer GUI, expand DefaultServer -> expand servlet
engine.

At this point, you should (but do not) see default_host.

In this section, we describe the workaround to solve this issue. If you don’t
see the above problem, you may not need to apply the following workaround.
The problem may have been fixed.
1026 WebSphere V3.5 Handbook

To use the Resource Analyzer with WebSphere V3.5.2, do the following
steps:

1. Create a directory for this workaround:

<WAS_HOME>/fixes/com/ibm/servlet/

2. Get the product file appserver.properties:

a. Copy <WAS_HOME>/lib/ibmwebas.jar to a temporary directory, such
as /tmp directory.

b. From that temporary directory, expand the ibmwebas.jar as follows:

<WAS_HOME>/jdk/bin/jar -xvf ibmwebas.jar

c. Change directory:

cd com/ibm/servlet

d. Copy appserver.properties to:

<WAS_HOME>/fixes/com/ibm/servlet/

You can now remove the contents of your /tmp directory.

3. Update appserver.properties:

a. Change directory:

cd <WAS_HOME>/fixes/com/ibm/servlet/

b. Use a text editor to edit appserver.properties:

1. Before any changes, you will see the two lines:

#listeners.application=com.ibm.servlet.engine.EPMApplicationListe
ner com.ibm.servlet.debug.OLTServletManager

listeners.application=

2. Uncomment the first line (remove the "#")

3. Comment out the second line (add a "#")

4. Save the file

4. To enable WebSphere to see the file appserver.properties (directions
below are for Windows NT), edit the <WAS_HOME>/bin/admin.config and
add:

The Resource Analyzer for WebSphere V3.5 is a technology preview.
Therefore, the workaround that we describe in this section is not supported
by IBM.

Note
Chapter 25. Resource Analyzer 1027

<WAS_HOME>/fixes

to the beginning of the com.ibm.ejs.sm.adminserver.classpath.

Note that we recommend that you make a backup before you change the
admin.config file.

If you start WebSphere with <WAS_HOME>\bin\debug\adminserver.bat,
then edit the adminserver.bat file and replace the first classpath line with:

set WAS_CP=%WAS_HOME%\fixes

set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\ibmwebas.jar

5. Start the administrative server.

6. Start the administrative console.

7. Enable EPM. You can do this in the following two ways:

a. Right-click a running application server (in our case, Default Server) in
the administrative console (it must be running): Select Performance..
as shown in Figure 821 on page 1029.

com.ibm.ejs.sm.adminServer.disableEPM=true
com.ibm.ejs.sm.adminServer.jarFile=C\:/WebSphere/AppServer/lib/repository.jar,C\:/WebSph
com.ibm.ejs.sm.adminserver.classpath=C\:/WebSphere/AppServer/fixes;C\:/WebSphere/AppServ
1028 WebSphere V3.5 Handbook

Figure 821. Enabling the EPM

Then you can specify an EPM specification.
Chapter 25. Resource Analyzer 1029

Figure 822. Performance window

If you specify an EPM spec with the dialog as shown in Figure 822,
then stop the application server. This setting is saved in the EPM spec
automatically. (Additional information about setting the EPM
specification level is covered in 25.4, “Levels of data collection” on
page 1013.)

b. Alternatively, you can specify the EPM specification for example,
epm=low, on the Advanced tab for the application server as shown in
Figure 823 on page 1031. Be sure to click Apply to save your change.
1030 WebSphere V3.5 Handbook

Figure 823. Specifying the EPM specification

If the application server has been running, you need to stop and restart
it.

Now, the Resource Analyzer can collect statistics with WebSphere V3.5.2 as
shown in Figure 824 on page 1032.
Chapter 25. Resource Analyzer 1031

Figure 824. The Resource Analyzer is working with WebSphere V3.5.2

25.9 Resource Analyzer documentation

Most of this information can be found in the Resource Analyzer Help files.
Even though there was an older version of the Resource Analyzer, the
WebSphere V3.5 Resource Analyzer is considered a technology preview
product. There is even a feedback option in the Help menu.
1032 WebSphere V3.5 Handbook

Chapter 26. Migration

As new versions of WebSphere are released, there is a need to migrate
existing WebSphere installations. WebSphere V3.5 has a tool called the
Migration Assistant that helps to upgrade from WebSphere V3.0.2.x to
WebSphere V3.5.

What about upgrading an existing WebSphere V3.0.2.x configuration data?
What are the prerequisites for WebSphere V3.5? The Installation Migration
Assistant handles these issues and walks the user through the upgrade
process.

Can a WebSphere V2.0.3.x installation be migrated? What about existing
WebSphere applications? This chapter will take a look at the migration tool in
particular and some general migration issues.

26.1 About the Migration Assistant

On the Windows platform, if the installation program detects Version 3.0.2.x
of WebSphere, it automatically invokes the Migration Assistant. But one may
choose to use XMLConfig or WSCP instead or even skip the migration
process.

Figure 825. Migration paths using the WebSphere 3.5 Migration Assistant

Migration
Assistant

WebSphere
V3.0.2.x

Standard
Edition

Standard
Edition

Standard
Edition

Advanced
Edition

WebSphere
V3.5 install

WebSphere
V3.5

Migration
Assistant

Migration
Assistant

Advanced
Edition

Advanced
Edition
© Copyright IBM Corp. 2001 1033

On AIX and Solaris you have to manually invoke migration.sh. This shell
script is found in <WAS_HOME>/bin.

26.2 Main steps in WebSphere migration

The migration process is interlaced with automated steps, targeted
documentation, and some manual steps. The main steps in the migration
process can be characterized as:

• Back up current configuration and user files

• Uninstall existing WebSphere V3.0.2.x

• Migrate prerequisites

• Install WebSphere V3.5

• Restore configuration and user files

• Post-migration tasks

• Modify/migrate user applications as needed

26.3 Migration Assistant panels

The best advice during the migration process would be to read all the
windows/panels thoroughly. The Welcome window (See Figure 826 on page
1035) even has an option to skip migration entirely and proceed with a new
WebSphere V3.5 installation.

Clicking the Details button brings up the InfoCenter pointing to the Migration
Section. It is advisable to read the InfoCenter documentation.

Migration Assistant does not exist on HP-UX because WebSphere V3.5 is
the premier release on that platform.

Note
1034 WebSphere V3.5 Handbook

Figure 826. Welcome window of Migration Assistant

Before clicking Next, ensure that the WebSphere Administrative Server is
running. If it is not running, start it now and then click Next.

On the following window enter information about the current WebSphere
V3.0.2.x installation as shown in Figure 827 on page 1036 and click Next.
Chapter 26. Migration 1035

Figure 827. Information about existing WebSphere 3.0.2.x installation

Now you get an opportunity to save your WebSphere configuration. Specify
the fully qualified path and filename to save your Backup Directory as shown
in Figure 828 on page 1037.
1036 WebSphere V3.5 Handbook

Figure 828. Window to specify the location of Backup Directory

When you click Next, the Export XML Config window is displayed as shown in
Figure 829. This step could take a while depending on the original
WebSphere configuration.

Figure 829. Export XML status window

After the configuration is exported without any problems, the completion
window is displayed. This completes Step 1. Click Next to start the uninstall
process. The Uninstall window is displayed as shown in Figure 830 on page
1038.
Chapter 26. Migration 1037

Before you click the Uninstall button, remember to stop the WebSphere
Administrative Server.

Do not click Next until after the uninstall process is complete. When the
Uninstall Complete window is displayed, on Windows NT, go ahead and
reboot. The Migration Assistant picks up where it left off. Remember to:

• Back up the WebSphere administrative database and any other related
database

• Drop the WebSphere V3.0.2.x administrative database

Figure 830. WebSphere 3.0.2.x uninstall window

This completes Step 2. You see the Uninstall Complete window as shown in
Figure 831 on page 1039.

WebSphere V3.0.2.x administrative database should be dropped because
it is not compatible with that of WebSphere V3.5.

Note
1038 WebSphere V3.5 Handbook

Figure 831. WebSphere 3.0.2.x uninstall completion window

WebSphere requires verification starts. The JDK and IBM HTTP Server will
be upgraded automatically by the Migration Assistant. Any other Web server
and the database used for the WebSphere administrative database would
have to be manually upgraded.

In the following four windows, make note of the prerequisites and keep
clicking Next. Clicking Details actually tries to bring up the following URL:

http://www.ibm.com/software/webservers/appserv/doc/v35/prereq.html

Upgrade the WebSphere administrative database as required by
WebSphere V3.5 before proceeding with the installation.

Note
Chapter 26. Migration 1039

Figure 832. The operating system prerequisites for WebSphere V3.5

Figure 833. The administrative database prerequisites for WebSphere V3.5
1040 WebSphere V3.5 Handbook

Figure 834. The Web server prerequisites for WebSphere V3.5

This completes Step 3.

The Migration Assistant is set to install WebSphere V3.5. Click the Install
button to launch the installation program as shown in Figure 835 on page
1042.

Do not click Next until the installation is complete.

If you inadvertently click Next and get an error message, just select Cancel
in the error window.

Note
Chapter 26. Migration 1041

Figure 835. Migration Assistant ready to install WebSphere V3.5

Clicking Install launches the normal installation process. Refer to Appendix
A, “Installation steps” on page 1049 for details.

When the Installation Complete window is displayed as shown in Figure 836
on page 1043, start the WebSphere Administrative Server. Then click Next.

If you click Next before starting the WebSphere Administrative Server, do
not worry, the following window also has an option to start the
administrative server.

Note
1042 WebSphere V3.5 Handbook

Figure 836. WebSphere Installation completion window

If the original server configuration was saved, the last thing left to do is to
import the server configuration into the WebSphere V3.5 administrative
database. Make sure the administrative server is running. On the Import
Original Server Configuration window, specify the fully qualified path name of
the new installation directory and click Next as shown in Figure 837 on page
1044.
Chapter 26. Migration 1043

Figure 837. Specify original server configuration details

When you click Next, the Import XML Config window is displayed. The
rotation of the planets goes on for quite some time depending on the original
WebSphere configuration.

If you get an error during restoration of the original configuration, you can
click Back and retry or click Next and fix things manually. View the
migration.log file in the backup directory to get details of the error.

If all goes well, the Migration Assistant completion window is displayed, at
which point you can click Finish as depicted in Figure 838 on page 1045.
1044 WebSphere V3.5 Handbook

Figure 838. WebSphere V3.5 Migration Assistant completion window

Some post-migration things to do:

• Check the migration.log file to make sure there are no errors.

• If the WebSphere Administrative Server is not running, start it.

• Test the new WebSphere configuration by invoking showCfg servlet or
snoop servlet.

• Migrate your applications, starting with re-deployment of your EJBs.

26.4 Files that are saved during migration

As we have seen the WebSphere administrative database information is
saved. This is done behind the scenes using XMLConfig. Along with that the
following user files are saved:

• Servlets

• Hosts

• Java classes
Chapter 26. Migration 1045

• Deployed and deployable EJBs

The following system files are also saved:

• Properties

• admin.config

• setupCmdLine

26.5 What is left to be done?

All EJBs need to be re-deployed because the Migration Assistant does not
know where the source code is.

There are some Java package name changes attributed to the JDK 1.2 in the
area of transaction and data source support. These changes are to
javax.sql.* and javax.transaction.* packages.

26.6 Migration of WebSphere V2.0.3.x to WebSphere V3.5

There have been extensive changes by way of improvements going from
WebSphere V2.0.3.x to WebSphere V3.5. Along with WebSphere Application
Server code changes, there are issues of newer versions of Java APIs
pertaining to JDK 1.2. That precludes solely relying on an automated tool like
Migration Assistant.

In reality there is not a straight migration path from WebSphere V2.0.3.x to
V3.5. The upgrade has to be accomplished in steps and it has to be done
manually. The overall steps remain the same as outlined in 26.2, “Main steps
in WebSphere migration” on page 1034. You can choose one of two paths:

• V2.0.3.x --> V3.0.2.x --> V3.5

- To go from WebSphere V2.0.3.x to V3.0.2.x follow the section entitled
Migration in the WebSphere V3.0.2.x Getting Started Guide.

- Use the WebSphere V3.5 Migration Assistant to upgrade from
WebSphere V3.0.2 to V3.5.

• V2.0.3.x -----> V3.5

- Back up the V2.0.3.x configuration files.

- Uninstall WebSphere V2.0.3.x.

- Install WebSphere V3.5.

- Manually modify/update all application files and configuration settings.
1046 WebSphere V3.5 Handbook

Figure 839. Steps to upgrade from WebSphere V2.0.x to WebSphere V3.5

Review the section on Migration (Article 3.4) in the InfoCenter. One of the
tables from that section is summarized here.

Table 56. WebSphere migration from V2.x and V3.0.2.x to V3.5

All the caveats as indicated by the asterisks are available in the InfoCenter.

Functional Area WebSphere V3.5
support

Need to migrate
from V3.0.2.x?

Need to migrate
from V2.0.x?

EJBs EJB1.0+ No* Yes

Servlets Servlet 2.1 +
IBM extension

No Yes

JSPs JSP 1.0
recommended
JSP .91
supported

See details in
InfoCenter*

See details in
InfoCenter*

XML XML 2.0.x No* No*

JDBC and DB
connection

JDBC 2.0 No Yes

User Profiles IBM user profile
APIs

No Yes

Sessions IBM session APIs No Yes

Security IBM security No No

Transactions Java 1.2 Yes Yes

Back up key
V2.0.x

directories
(classes,
servlets,
realms,

properties,
webserver
document
root,...)

Uninstall
existing

WebSphere

Install
WebSphere

V3.5

Create
webapps,

appservers,
etc. and
update
config

(properties,
etc.)

Copy
contents of

V2.0.x
directories

to V3.5
directories

Make code
changes
Chapter 26. Migration 1047

26.7 Migration Assistant documentation

At the end of the migration process when the Migration Assistant Completion
window is displayed, click the View Instructions button to bring up
WebSphere InfoCenter pointing to the Migrating APIs and Specification
Section. More information can be found in the InfoCenter regarding migration
and interoperability.

WebSphere V3.0.2.x and WebSphere V3.5 ORB Interoperability is
supported.

Note
1048 WebSphere V3.5 Handbook

Appendix A. Installation steps

This chapter provides general information of installation about the
WebSphere Application Server V3.5 with other related products, such as Web
servers and database servers. When you install WebSphere together with
other related products, please refer to the products’ installation manuals.

Since there are many combinations of WebSphere configurations, we chose
the Windows NT platform for this chapter. We describe a simple configuration
(in most cases using the default settings) and do not consider such issues as
security and performance. You could refer to this chapter for your system
development environment but we recommend you consult more detailed
documentation for your production system environment.

IBM will frequently update the information of hardware and software
requirements for WebSphere on the IBM WebSphere Web site, since new
versions of software which WebSphere supports are released every day.
Therefore, we will not discuss them in this chapter. To obtain the most current
information please refer to the IBM WebSphere Web site.

http://www-4.ibm.com/software/webservers/appserv/doc/v35/idx_aas.htm

A.1 Planning

Before you start installing WebSphere, there are several topics to consider.
We assume that you have already decided upon your operating system, Web
server, and DB server products.

A.1.1 Web server location

First, you should consider where you will install your Web server. There are
two choices:

• Install it on the same node as WebSphere will be installed

• Install it on a different node from where WebSphere will be installed

Please refer to Chapter 16, “Topologies selection” on page 771 for detailed
information. In this chapter, we will install the Web server and WebSphere on
the same node.

A.1.2 Database server location

More importantly you need to consider where you will install the DB server for
the WebSphere administrative database (and probably for your EJB
© Copyright IBM Corp. 2001 1049

persistence and HttpSession persistence depending on your application).
There are two choices for database server location as well as Web server
location:

• Install it on the same node as WebSphere will be installed

• Install it on a different node from where WebSphere will be installed

For your production environment, we recommend that the WebSphere
administrative database reside on a remote database server. Even in the
simple “single WebSphere machine” configuration such as no clones, or no
clustering, the WebSphere administrative database resides on a remote
database server. There are several reasons why this represents good
practice.

First, most enterprises have already invested in a high availability solution for
their database server, and the configuration repository represents a single
point of failure in WebSphere, so it pays to make this highly available.

Second, the database that houses the configuration repository should be
backed up on a regular basis, just as application data is. Housing the
repository on the same server as the application data usually simplifies this
task since appropriate DBA procedures such as database backup processes
are already defined for this machine.

Additionally, the database server is typically sized and tuned for database
performance, which may differ from the optimal configuration for the
application server (in fact on many UNIX servers, installing the database
involves modification of the OS kernel).

Lastly, if one places both the database and application server on the same
machine, then under high load you have two processes, the application
server and the database server, competing for increasingly scarce resources
(CPU and memory), so in general one can expect significantly better
performance by separating the application server from the database server.

In this chapter, we will configure the administrative database on a remote
database server that is separate from the WebSphere node.

A.1.3 Java GUI installation or native installation

WebSphere V3.5 supports two different installation procedures. One is a Java
GUI installation and the other is a native installation. The native installation
has two modes: interactive and silent. On the UNIX platform, WebSphere
supports all three installation modes. However, on the Windows platform,
WebSphere doesn’t support the Java GUI installation. Note that the native
1050 WebSphere V3.5 Handbook

installations on UNIX and Windows are slightly different. On UNIX, the native
installation does not mean “GUI” installation. It is a character-based
installation. However, on Windows, the WebSphere installation program uses
the Install Shield with the native installation interactive mode.

Table 57. Java GUI installation and native installation support

A.1.3.1 Java GUI installation
There are three options for Java GUI installation as follows:

• Quick: Everything you need for initial evaluation purposes or for
lightweight “proof of concept” applications intended to run on single node
server configurations, including IBM HTTP Server, InstantDB, and
JDK1.2.2.

• Full: Everything you need to support production level, highly scalable
applications intended to run on server from single node configurations to
complex multi-node configurations, including IBM HTTP Server, DB2 V6.1
Fix Pack 4, and JDK 1.2.2.

• Custom: You may choose to install specific components of the total install
package, or specify the use of other supported databases and Web
servers.

A.1.3.2 Native installation
Instead of using a Java GUI installation program, you can install the
WebSphere Application Server with a native installation. We provide only a
brief description below. Please refer to the online manual for detailed
information.

There are two options for a native installation:

• Interactive: You need to answer several questions while installing
WebSphere.

Note: On the Windows platform, the interactive mode of a native
installation with the Install Shield looks similar to the Java GUI installation.

• Silent (non-interactive): To complete a silent installation, you modify
parameters in a response file and then run the installation program for

UNIX Windows

Java GUI �

Native: Interactive ��

(character based)
��

(Install Shield based)

Native: Silent � �
Appendix A. Installation steps 1051

WebSphere Application Server, supplying the setup or installation file as a
command-line parameter.

On UNIX, with a native installation, there are several benefits:

• Remote installation: You can easily install WebSphere from a remote
machine.

• Multiple-node installations: It’s very easy to install WebSphere on several
nodes that are configured identically.

There are a couple of restrictions with a native installation on UNIX:

• No prerequisite checking: You need to verify the required software level by
yourself before you install WebSphere.

• Cannot use a system management utility, such as SMIT or SAM.

A.2 Installation steps overview

There are four major steps in installing WebSphere Application Server:

• Configure the operating system

• Install the Web server

• Install the database server and create the administrative database

• Install the WebSphere

A.2.1 Configure operating system

Before you install WebSphere and required software, you need to make sure
that you configure your operating system properly. There are a couple of
points which you should verify:

• Configuring network: You need to have at least one network interface
configured. We recommend that you configure and verify network
connectivity, including name resolution.

• Applying required patches: You should apply appropriate patches on your
operating system. Please refer to the IBM WebSphere Web site to obtain
information about the latest required patches.

• Having enough disk space: You should make sure if you have enough disk
space for WebSphere installation.
1052 WebSphere V3.5 Handbook

A.2.2 Install Web server

After you configure the operating system, the next step is the installation of
the Web server. We don’t discuss the installation of Web server here. Please
refer to the product’s manual. After you install the Web server, you should
verify whether it’s working. For example, access the URL (such as
http://<servet_name>/) with a Web browser on the remote machine.

We recommend that if you will be using an SSL (HTTPS) connection, you
should verify the SSL configuration as well. Once you verify HTTP and
HTTPS connections at this point, it will help you when you get any HTTP (or
HTTPS) connection problems after you install the WebSphere.

Figure 840. Verify Web server installation (IBM HTTP Server 1.3.12)
Appendix A. Installation steps 1053

A.2.3 Install DB server and create an administrative database

The third step is the installation of the database server. Please refer to the
database product’s manual to install and configure the database server. The
WebSphere installation manual also gives you detailed information. There are
three steps you should do at this stage:

1. Install the database server software

2. Configure the administrative database

3. Verify the database connectivity

If you will create the administrative database on the remote database server
node (this is the common configuration in the production system environment
as we discussed A.1.2, “Database server location” on page 1049), you should
configure and verify the remote database connectivity. You can find some
information about the remote database connectivity for Sybase in Appendix
B, “Remote Sybase connectivity” on page 1083. If you use DB2, refer to
WebSphere Scalability: WLM and Clustering using WebSphere Application
Server Advanced, SG24-6153.

Database server installation must be done before you install WebSphere
Application Server. Since the database is used for the administrative
database, WebSphere will not function without a database server.

In this chapter, we use DB2 and Oracle as the WebSphere administrative
database.

A.2.3.1 Install DB2 server
Follow these steps to install DB2 UDB on the remote database node.

1. If you have the WebSphere Application Server CDs, find the DB2 UDB
installation files on one of the WebSphere Application Server CDs. Run
setup.exe in the \DB2 subdirectory.

If you have the CD for DB2 UDB, run the setup.exe file.

If you downloaded DB2 UDB, unzip the DB2 zip file to a temporary
directory using an option that recreates the directory structure. Then, run
the setup.exe file from the directory.

2. Select Next, choose the Enterprise Edition, and then select Next.

3. Check Typical installation, keep the default installation directory
(C:\SQLLIB), and click Next.

Note that if you are familiar with DB2, you don’t have to select the Typical
installation and you can specify which installation directory you prefer,
1054 WebSphere V3.5 Handbook

depending on your system environment. For the purposes of this redbook,
we select and configure very simple settings which are not appropriate for
the production system environment.

4. Overwrite the default user name and password with your own user ID and
password. Consider using the same user ID and password specified
during the Web server installation. This will make it the DB2 administration
ID as well. Note that DB2 requires a password of 8 or fewer characters.

5. Select Next, and continue with the installation.

6. After the product installs, restart your system.

Apply Fix Pack

If you installed the DB2 V6.1 from a WebSphere Application Server CD, you
do not need to go further. DB2 V6.1 Fix Pack 4 was installed when you
installed the base UDB product.

If you did not install the DB2 V6.1 from the WebSphere Application Server
CD, download the DB2 V6.1 Fix Pack 4 from the product Web site or obtain a
CD that holds the Fix Pack.

Next, do the following:

1. From the Services panel of the Control Panel, stop the services DB2 - DB2
and DB2 -DB2DAS00. If you have the Netfinity Support Manager or other
monitoring agents you may need to stop these as well, since they can lock
DB2.

2. If necessary, unzip the Fix Pack file into a temporary directory. Delete the
DB2 installation directory if you wish.

3. Run setup.exe.

4. Click Next, then Next again and complete the installation.

When the installation finishes, restart your computer and log in as the user
you have been using to configure the software.

After your system restarts, the DB2 First Steps and Control Center dialogs
may display. At this point, you may create the database called “sample” used
by the WebSphere Application Server samples. To create the database
sample, click Create the SAMPLE database in the DB2 First Steps dialog
and then click Yes in the confirmation dialog.

If you receive an error message stating that the database was not created, go
to the Services dialog accessible from a Control Panel and ensure that the
status for the DB2-DB2 service is Started. The startup type for the DB2-DB2
Appendix A. Installation steps 1055

service should be Automatic and the hardware profile should be Enabled.
Once you start the DB2-DB2 service, try creating the database sample again.

After you finish, close the DB2 dialogs.

Note: DB2 6.1 Fix Pack 4, 5 (not on AIX), and DB2 7.1 Fix Pack 1 are
supported for WebSphere Application Server’s administrative database. In
order to check the Fix Pack level, execute the db2level command from your
window. The following displays DB2 6.1 Fix Pack 5 in Windows NT. “DB2
V6.1.0.27” denotes DB2 V6.1 Fix Pack 5.

Create administrative database
In order for WebSphere to store the administrative configuration, you must
create a database on the database server node. The database name must be
the same one (or alias) as you will use for the JDBC URL entry name during
the WebSphere Application Server installation. If you are using DB2 and not
familiar with its remote connectivity, refer to WebSphere Scalability: WLM and
Clustering using WebSphere Application Server Advanced, SG24-6153.

You can create the database by selecting Start -> Programs -> DB2 for
Windows NT -> Command Line Processor.

• Enter create database was

• Enter update db cfg for was using applheapsz 256

Microsoft(R) Windows NT(TM)
(C) Copyright 1985-1996 Microsoft Corp.

C:\>db2level
DB21085I Instance "DB2" uses DB2 code release "SQL06010" with level identifier

"01060104" and informational tokens "DB2 v6.1.0.27", "s000729" and "WR21202".

C:\>

When using DB2 for the administrative database, WebSphere Application
Server V3.5.2 requires DB2 V6.1 Fix Pack 4 or 5 or DB2 V7.1 Fix Pack 1.
Also WebSphere requires the Enterprise edition of DB2. If you did not
install a supported version of DB2 or you are using the Personal or
WorkgroupEdition, the prereq checker reports that the wrong version of
DB2 is installed and aborts the installation.

DB2 editions and versions
1056 WebSphere V3.5 Handbook

• Enter quit to leave Command Line Processor (CLP)

Please refer to the WebSphere online manual and DB2 command reference
for detailed information.

A.2.3.2 Install and configure DB2 client
In order to access the remote administrative database, you need to install the
DB2 clients on the WebSphere node. After the installation of the DB2 clients,
you need to configure the client to allow DB2 server communication. You can
use the Control Center to configure remote database connections. You can
also configure it by using the Client Configuration Assistant (CCA) in
Windows NT. In this section, we use the Client Configuration Assistant. You
can start the Client Configuration Assistant by selecting Start -> Programs
-> DB2 for Windows NT -> Client Configuration Assistant.

Click Add to configure connections and the Add Database SmartGuide panel
will appear to guide you through the addition of the new database. If you want
to search the network for remote database, select the Search the network
and then click Next.

On the Target Database tab, select the database on the remote server you
want to use (in our case, WAS) and then click Next.

In the Alias tab, enter the database alias name. In our case, we specify WAS.

Click Done to finish the Add Database SmartGuide. You can verify the
connection to your database server.

Click Test Connection button. Enter a user ID and password to access the
remote database.

Figure 841. Verification of the server connection
Appendix A. Installation steps 1057

If everything is successful, you will get the DB2 Message panel as shown in
Figure 842. Click OK.

Figure 842. Successful remote database connection

Note that when you install the WebSphere, you specify the alias which you
configured in the above step as the WebSphere administrative database
database name. If you are not familiar with DB2 remote connectivity, please
refer to the DB2 manual or WebSphere Scalability: WLM and Clustering using
WebSphere Application Server Advanced, SG24-6153.

Figure 843. Database options window
1058 WebSphere V3.5 Handbook

A.2.3.3 Install Oracle server
It is important to note that Oracle 8i 8.1.6 is the only version supported for the
WebSphere administrative database. Oracle 8.0.5 or 8.1.5 is not supported.

These steps cover how to install the Oracle 8i Release 2 (formerly Oracle
8.1.6), then create and configure a database. For detailed information on
installation, see the Oracle documentation and the Oracle Web site.

To install the Oracle 8i:

1. Insert the Oracle CD into your database server machine's CD drive.

2. On the main Oracle dialog, select Install/Deinstall Products.

3. On the Welcome dialog, select Next.

4. On the File Locations dialog, verify the destination for Oracle 8i and click
Next.

5. On the Available Products dialog, select Oracle8i Enterprise Edition
8.1.6.0.0 and click Next.

6. On the Installation Types dialog, select Typical and then Next.

7. On the Database Identification dialog, for the Global Database Name type
in orcl.<hostname> and then select Next.

8. On the Summary dialog, select Install.

9. After installation, on the database Configuration Assistant Alert dialog,
click OK.

10.On the End of Installation dialog, click Exit.

Completing the above steps installs the Oracle 8i code and creates a global
database named orcl.<hostname.domain>.

Configuring an Oracle 8i database
To use an Oracle database with WebSphere Application Server, you must
configure the database:

1. Add the following line to the initialization file: open_cursors = 200

On Windows NT, the initialization file is typically located at
\orant\Database\Initxxx.ora, where xxx is your SID (example, orcl).

2. Using a Services panel, stop and restart the Oracle services
OracleServiceORCL and OracleOraHome81TNSListener.

3. Define a WebSphere administration ID with database authority by entering
the commands below. In the first command, system is the ID and manager is
the default password.
Appendix A. Installation steps 1059

sqlplus system/manager

create user EJSADMIN identified by xxxxxxxx;

grant connect, resource, dba to EJSADMIN;

quit

where xxxxxxxx is the password for EJSADMIN.

4. If needed, define an ID to deploy entity beans:

sqlplus system/manager

create user EJB identified by EJB;

grant connect, resource, dba to EJB;

quit

5. Test access to the new database using the EJSADMIN user ID:

sqlplus ejsadmin/ejsadmin

After a message displays indicating a successful connection, enter exit.

If you are using the Advanced Edition and do not want EJSADMIN to have
DBA authority, do not enter the commands above but, instead, complete
the following two steps.

First, enter the commands:

sqlplus system/manager

create user EJSADMIN identified by EJSADMIN quota 100M on SYSTEM;

create user EJB identified by EJB quota 100M on USERS;

grant connect, resource to EJSADMIN;

grant connect, resource to EJB;

quit

Second, after you start the WebSphere Administrative Console, edit the
data source for the HitCount bean (select Default Server -> Default ->
Container -> HitCount Bean -> DataSource) so the user ID and password

Note
1060 WebSphere V3.5 Handbook

A.2.3.4 Install Oracle client and configure remote access
WebSphere V3.5 supports two Oracle JDBC drivers, thin driver and OCI
driver. For remote database connectivity, you should have one of them on the
WebSphere node.

Using Oracle thin driver
If you want to use Oracle thin JDBC driver, you don’t have to install Oracle
client on the machine to access the remote database.

However, before you start the WebSphere Administrative Server, you need to
have the classes12.zip file on the WebSphere node. You can download the
classes12.zip file (or FTP or copy it from the Oracle server node) in your
system. For example, you can copy the classes12.zip file under your
<was>/lib directory.

If you install Oracle client on the WebSphere node, you can find the
classes12.zip under the <install_drive>:\Oracle\Ora81\jdbc\lib directory.

Note that the place of the classes12.zip is specified in the
<WAS_HOME>/bin/admin.config file. We will discuss this in Appendix A.2.5,
“Post configuration” on page 1075.

Note that WebSphere does not use the Oracle client for the remote database
connectivity. Therefore, you don’t need to install it on the WebSphere node.
However, if you would like to verify the remote database connectivity before
you install the WebSphere, you need to install the Oracle client on the
WebSphere node.

Using the Oracle OCI driver
In order to use the Oracle OCI JDBC driver, you need to install the Oracle
client on the WebSphere node. Then you need to configure tnsnames.ora and
sqlnet.ora files under the <install_drive>:\Oracle\ora81\network\admin
directory on the WebSphere node. You also need to configure the listener.ora
file on the database server node.
Appendix A. Installation steps 1061

Figure 844. tnsnames.ora

Figure 845. sqlnet.ora
1062 WebSphere V3.5 Handbook

Figure 846. listener.ora

A.2.4 WebSphere installation

Now, you are ready to install the WebSphere. This chapter describes general
information of the installation of WebSphere Application Server V3.5. When
you install the WebSphere, please refer to its installation manuals to obtain
step-by-step instructions.

1. If Web server is running on your system, stop the Web server before
proceeding with the following WebSphere installation.

2. Insert the WebSphere Application Server V3.5 CD. Run \nt\setup.exe.
Note that you will need 100 MB free in your temp directory (usually on the
C drive) even if you are installing on another drive, because the installation
shield package unpacks to the temp directory.

3. Select a language and click OK.

4. Click Next to get past the introductory page as shown in Figure 847 on
page 1064.
Appendix A. Installation steps 1063

Figure 847. The introductory window

5. If WebSphere is already installed on your system, the Previous Installation
Detected window appears.

In order to back up and uninstall the existing WebSphere, click Backup
and Uninstall. In order to install the WebSphere in a different directory,
click Next.
1064 WebSphere V3.5 Handbook

Figure 848. Previous Installation Detected window

6. Clicking Quick Installation installs IBM HTTP Server 1.3.12, InstantDB,
and IBM JDK 1.2.2.

Clicking Custom or Full Installation installs IBM HTTP Server 1.3.12,
IBM DB2 Universal Database V6.1 with Fix Pack 4, and IBM JDK 1.2.2.

Select Custom Installation and then click Next.
Appendix A. Installation steps 1065

Figure 849. Installation Options window

7. If you selected Quick Installation or Full Installation, the Security Option
window will appear.
1066 WebSphere V3.5 Handbook

Figure 850. Security Options window

If you selected Custom Installation then the Choose Application Server
Components window will appear. Select components you want. Figure 851
on page 1068 shows the default settings. Since we have already installed
a database and Web server, we unchecked IBM HTTP Server and IBM
Universal Database V6.1. In our case, we also selected Configure
default server and web application, which you cannot see on the
Choose Application Server Components window in Figure 851 on page
1068.
Appendix A. Installation steps 1067

Figure 851. Choose Application Server Components window

Clicking the Other JDK... button displays the Select Java Development Kit
window and will let you select another JDK directory.
1068 WebSphere V3.5 Handbook

Figure 852. Select Java Development Kit window

Click Back to exit the window. Click Next if you specified the other JDK
destination directory.

8. Click Next.

9. On the Choose Web Server Plugins window, select IBM HTTP Server
V1.3.12. WebSphere Application Server V3.5 provides only IBM HTTP
Server 1.3.12. You must separately buy and install the other supported
Web servers. Then click Next.

10.Fill in the entries in the Security Options window. In Windows NT and
Windows 2000, Username must be an existing user ID that has
administrative privileges. If you do not need special key ring files, click
Next.
Appendix A. Installation steps 1069

Figure 853. Security Options window

If you need special key ring files, click Advanced Key Ring Settings,
specify Client Key Ring and Server Key Ring files and passwords, and
then click Next.
1070 WebSphere V3.5 Handbook

Figure 854. Security Options - Key Ring Files option

After the Security Options window reappears, click Next to move to the
Product Directory window.

11.Specify the WebSphere destination directory and click Next.
Appendix A. Installation steps 1071

Figure 855. Product Directory window

12.On the Database Options window:

a. If you use DB2 for the administrative database:

• Select DB2 for Database Type.

• Enter the name of the database for the Database Name. The default
was is pre-written. You should specify the proper database alias for
the administrative database.

• For Path, specify the path of the DB2 clients program.

• For URL, specify the database access URL. jdbc:db2:was is the
default. If you use a different database alias for the administrative
database, switch was to the appropriate alias.

• Enter the database user ID and password. You need to use the user
ID and password that have proper privilege for the administrative
database.

Then click Next.
1072 WebSphere V3.5 Handbook

Figure 856. Database Options window - DB2

b. If you use Oracle as the administrative database:

• Select Oracle for Database Type.

• You should consult with your local database administrator to get the
correct database name. The default database name is orcl.

• For Path, specify the path for the database program.

• For URL, specify the URL for accessing the database. The format is
jdbc:oracle:thin:@<DB server name>:<port number>:<DB name>.
For example, we specify jdbc:oracle:thin:@SONS:1521:orcl.

• For User ID, specify your user name. Note that if you use an invalid
user ID to install the WebSphere, it will not successfully register the
WebSphere Administrative Server to the Windows NT services
database. If you have already installed the Oracle 8i, ensure that
you specify the user name specified when configuring Oracle 8i for
use with WebSphere Application Server (EJSADMIN).
Appendix A. Installation steps 1073

• Enter your password and confirm it. If you have already installed the
Oracle 8i, ensure that you specify the password specified when
installing Oracle 8i.

Then click Next.

Figure 857. Database Options window - Oracle

13.On the Select Program Folder window, specify a new folder name. By
default, IBM WebSphere\Application Server V3.5 is prespecified. Click
Next to begin installation.
1074 WebSphere V3.5 Handbook

Figure 858. Select Program Folder window

14.Click OK and it will finish updating the files and installing.

15.The next page points you to the README and, if you are installing the
samples, states where the samples have been installed. For the most
recent version of the README or release notes, go to Library section of
the product Web site at http://www.ibm.com/software/webservers/appserv/.

Click Finish, and choose to restart.

In Windows NT or Windows 2000, if you have not created DB2 database for
the administrative database, DB2 CLP will automatically start and create a
database for the administrative database after rebooting. However, if you
have not created catalogs on the DB2 client node (WebSphere node), it might
not work.

A.2.5 Post configuration

Post configuration refers to any activities to run WebSphere after the
completion of the installation. You should do the following steps:
Appendix A. Installation steps 1075

1. Start the database server

2. Modify the administrative database configuration on the WebSphere node

3. Start the administrative server

4. Start the administrative console

5. Start Web server

A.2.5.1 Start database server
WebSphere stores its configuration to the database and it is important to start
database server before starting the WebSphere Administrative Server.

DB2
DB2 will automatically start when the machine is rebooted (by default).

Figure 859. DB2 started in Windows NT

Oracle
Oracle will automatically start services (by default). Note that the service
name of Oracle server includes the Oracle database name. For example, in
our case, the database name is ORCL and the service name is
OracleServiceORCL as shown in Figure 860 on page 1077.
1076 WebSphere V3.5 Handbook

Figure 860. Oracle service started in Windows NT

A.2.5.2 Configure remote access for the administrative database
Before you start WebSphere, you should configure remote database
connectivity for the administrative database.

Configuration for using Oracle thin driver
You should modify two files, <WAS_HOME>/bin/admin.config and
startupServer as follows:

• Modify the admin.config, for example:

com.ibm.ejs.sm.adminserver.classpath=.....
...;C\:/WebSphere/AppServer/lib/classes12.zip;
com.ibm.ejs.sm.adminServer.dbUser=EJSADMIN
com.ibm.ejs.sm.adminServer.dbPassword=EJSADMIN
com.ibm.ejs.sm.adminServer.dbUrl=jdbc\:oracle\:thin\:@sons\:1521\:orcl

• Modify the setupCmdLine.bat file, for example:

SET DB2DRIVER=C:\Oracle\Ora81\jdbc\lib\classes12.zip

Configuration for using the Oracle OCI driver
You must modify your <WAS_HOME>/bin/admin.config file which the
following parameter:

com.ibm.ejs.sm.adminServer.dbUrl=jdbc\:oracle\:oci8\:@SONS
Appendix A. Installation steps 1077

A.2.5.3 Start the administrative server
Check if the WebSphere Application Server is already running.

In Windows NT, check Services under your Control Panel to make sure IBM
WS AdminServer is not started and no Java processor is running from the
processor tab of the Windows NT Task Manager.

There are three ways to start the WebSphere Administrative Server:

1. Open the Control Panel and select Services. If you scroll down you should
see IBM WS AdminServer. Start the service by selecting IBM WS
AdminServer and then selecting Start.

Figure 861. Start WebSphere Administrative Server in Windows NT

2. Select Start -> Programs -> IBM WebSphere -> Application Server
V3.5 -> Start Admin Server.

3. Run the <WAS_HOME>/bin/debug/adminserver.bat file. Note that if you
start the administrative server with the adminserver.bat file, you won’t get
the file called tracefile in the <WAS_HOME>/logs directory.

A.2.5.4 Start the administrative console
There are two ways to start the administrative console:

1. Select Start -> Programs -> IBM WebSphere -> Application Server
V3.5 -> Administrator’s Console.

2. Run <WAS_HOME>\bin\adminclient.bat file.
1078 WebSphere V3.5 Handbook

Remote administrative console
You can also start the administrative console of the WebSphere Application
Server remotely. You must do this under the <was>/bin directory. The
following is an example where the server is a remote Solaris machine and the
administrative console is running from a Windows NT machine.

A.2.5.5 Start an application server
You start your application server. When you start the Default Server
application server under your node, you will also start the servlet engine and
EJB container.

Figure 862. Starting the Default Server

Select Default Server under the machine node and then click the Start
button (marked as an arrow on the menu bar).

C:\WebSphere\AppServer\bin>adminclient sungiksun
Remote AdminServer sungiksun will be accessed on the default port (900).

C:\WebSphere\AppServer\bin>
Appendix A. Installation steps 1079

A.2.5.6 Verify if the servers are working
So far we have started the WebSphere Administrative Server and application
server under it. We need to start the Web server to handle HTTP requests
from the client. In some cases, Web server may already be started. To see if
the Web server is started, check the Service panel. If your Web server is not
started, start it.

After the verification that your Web server is running, verify whether the
Default Servlet servlet engine is working by accessing
http://<server_name>/servlet/snoop.

Figure 863. Verification of WebSphere’s servlet engine running

You can also verify whether the Default Container EJB container is working.
We will skip it in this chapter. Please refer to the InfoCenter.

A.2.6 Fix Pack installation

At the time this document is written, Fix Pack 2 is available. You can
download the Fix Pack from the IBM WebSphere Support Web site. Before
installing the Fix Pack, you must stop the Web server and WebSphere.
1080 WebSphere V3.5 Handbook

After downloding the zip file, unzip it to a temporary directory. From the
directory, execute install script file. Then answer any questions which you will
be asked, such as:

• Do you wish to update the WebSphere Application Server samples?

• Enter your Web server’s doc root path.

• Do you wish to update the IBM HTTP Server 1.3.12?

• Enter the directory where the IBM HTTP Server 1.3.12 is installed.

A.3 Uninstallation of WebSphere Application Server

This section describes how to uninstall the product. If you want to migrate
WebSphere V3.02 to V3.5, please refer to Chapter 26, “Migration” on page
1033.

You can uninstall the previously installed the WebSphere Application Server
by selecting Start -> Programs -> IBM WebSphere ->Application Server
V3.5 -> Uninstall WebSphere Application Server. After the completion of
the uninstallation, you need to reboot the machine.
Appendix A. Installation steps 1081

1082 WebSphere V3.5 Handbook

Appendix B. Remote Sybase connectivity

The details in this chapter are specific to the ramifications of installing
WebSphere V3.5 Advanced Edition, when the Sybase ASE database for the
administrative database is located remotely. Not discussed here are the
necessary operating system parameters or possible WebSphere component
selection issues that are more general to WebSphere as a whole. The
WebSphere InfoCenter documentation provides a comprehensive description
for installing WebSphere V3.5 with Sybase V12, albeit all on the same
system.

B.1 Sybase jConnect Client

Remote Sybase connectivity is provided with the Sybase jConnect Client.
Once configured with an appropriately installed Sybase database, jConnect
will support both the WebSphere administrative database and the creation of
subsequent Sybase JDBC datasources.

Sybase V12 supports both jConnect 4.2 and jConnect 5.2, with both versions
available on the Sybase install media. However, users must install jConnect
5.2 for the JDBC 2.0 support required by WebSphere V3.5.

Figure 864. Remote Sybase jConnect connectivity

Steps for installing the Sybase jConnect Client:

1. Create a user called “sybase” and a group called “sybase”.

WebSphere
V3.5

jConnect V5.2

administrative
database

Sybase V12

WebSphere Node Sybase Node

JDBC 2.0

JDBC 1.0

jConnect V4.2

JDK1.2

JDK1.1
© Copyright IBM Corp. 2001 1083

2. Extend or create a suitable file system (in our case, we created
/usr/sybase file system and it was 180 MB).

3. Change the ownership of the newly created file system (in our case, we
changed it to user: sybase, group: sybase).

4. As the user sybase, ensure that the JAVA_HOME environmental variable
is set correctly [JDK 1.1.8 acceptable], and launch the Sybase install
program from the Sybase install media.

5. Selecting a custom install, choose both jConnect 4.2 and jConnect 5.2
components. Note that you don’t have to select jConnect 4.2 for
WebSphere. In B.1.2, “Checking Sybase jConnect connectivity with
jConnect 4.2” on page 1085, we discuss the reason why we installed it in
our environment.

B.1.1 Remote WebSphere V3.5 installation with Sybase ASE

By default the WebSphere installation script, install.sh, located on the
mountable CD-ROM media, calls the installation prerequisite checker to verify
that all required prerequisites are satisfied. This will fail without modification,
as the Sybase ASE database is installed remotely. To overcome this
restriction, copy the prereq.properties file, also located on the mountable
CD-ROM media, to a writeable filesystem such as /tmp. Here, edit the first
stanza, [WAS], changing prereq_checker=1 to prereq_checker=0. To invoke
install.sh using the newly modified prereq.properties file, run:

./install.sh /prereqfile /tmp/prereq.properties

The installation now proceeds no different from that of a regular WebSphere
V3.5 install, with users choosing the desired WebSphere components via the
Custom Installation option menu.

Once the Database options dialog box is reached, the database type should
be set to Sybase. Database name, user ID and password should correspond
with those defined on the Sybase remote ASE database for the WebSphere
administrative database. The DB Home field is the main Sybase installation
directory on the local system. Finally, the database URL should reflect the
remote WebShere Sybase database “was” table / instance.

jdbc:sybase:Tds:<remote_hostname>:<port>/was

Figure 865 on page 1085 shows such an example, with the database URL
taking the form jdbc:sybase:Tds:ken:4100/was.
1084 WebSphere V3.5 Handbook

Figure 865. Database Options: remote Sybase settings

B.1.2 Checking Sybase jConnect connectivity with jConnect 4.2

Note: the following steps are not necessary to install WebSphere 3.5.

For our test environment both versions of jConnect were actually installed.
JDK 1.2 is a prerequisite for jConnect 5.2. However, AIX 4.3.3 does not
include the JDK 1.2.

This way, the native JDK 1.1.8 that ships with AIX 4.3.3 can be used with
jConnect 4.2 to test Sybase remote network connectivity initially before we
install WebSphere.

Then the JDK 1.2 that ships as part of WebSphere V3.5 can effectively be
used, as required, with jConnect 5.2 after we install WebSphere.

In other words, prior to installing WebSphere V3.5, it is possible to check the
Sybase database network connectivity with jConnect 4.2. As previously
mentioned, jConnect 5.2 will not work unless the native operating system JDK
installed is at Version 1.2 or higher.
Appendix B. Remote Sybase connectivity 1085

Change to the user sybase and, if not already exported, export the
environmental variables JDBC_HOME and CLASSPATH, as shown below in
Figure 866.

Figure 866. Environmental variables

Next, invoke the IsqlApp java class, as found under the
<SYBASE_HOME>/jConnect-4_2/classes directory, specifying the user ID,
password, remote host name of the Sybase database, and the remote
Sybase listener port number, as shown in Figure 867.

Figure 867. Sybase jConnect 4.2 IsqlApp.class

In Figure 867 the host name of the remote Sybase database is “itso”. On a
successful connection, the “select @@version” SQL query is issued
requesting the Sybase ASE version details.

#su - sybase
$ export JDBC_HOME=/usr/sybase/jConnect-4_2
$ export CLASSPATH=/usr/jdk_base/lib/classes.zip:$JDBC_HOME/classes

$java IsqlApp -Usa -Psybase -Sjdbc:sybase:Tds:itso:4100

Enter a query:
1 > select @@version

------------------ Result set 1 -----------------------

Columns:
[1] Adaptive Server Enterprise/12.0/P/SWR 8772 ESD 1/RS6000/AIX
4.3.2/1580/32bit/FBO/Tue Dec 7 09:14:03 1999

Enter a query:
1 >
1086 WebSphere V3.5 Handbook

Appendix C. XML sample programs

This appendix contains instructions for setting up and running the CD Catalog
XML example introduced in 13.3, “An XML example” on page 543 and
discussed throughout Chapter 13, “XML and WebSphere” on page 539.
Instructions are presented for configuring the Web application under
WebSphere, running a Web client, and running the Java client.

All the Java source code, XML, XSL, and other files are provided to allow
further study and experimentation with the sample.

C.1 Instructions for setting up and running the XML demo: Web Client

1. Create a Web application by selecting Wizards ->Create a Web
Application as shown in Figure 868.

Figure 868. Creating a Web application for XMLDemo

2. In the Create Web Application window, specify XMLDemo for the Web
Application Name and check Enable File Servlet, Serve Servlets by
Classname, and Enable JSP 1.0 as shown in Figure 869 on page 1088.
© Copyright IBM Corp. 2001 1087

Then click Next.

Figure 869. Create Web application: set Web application name

3. In the next window, choose a servlet engine, for example the Default
Servlet Engine and click Next as shown in Figure 870 on page 1089.
1088 WebSphere V3.5 Handbook

Figure 870. Create Web application: choose a parent servlet engine

4. In the next window, accept “virtual host = default_host” and “Web
Application Path = /webapp/XMLDemo” as shown in Figure 871 on page
1090. Then click Next.
Appendix C. XML sample programs 1089

Figure 871. Create Web application: specify virtual host and Web path

5. In the next window, for our demonstration, you just click Finish as shown
in Figure 872 on page 1091.
1090 WebSphere V3.5 Handbook

Figure 872. Create Web application: specify advanced settings

6. On the administrative console, you will see the XMLDemo Web application
that you created as shown in Figure 873 on page 1092.
Appendix C. XML sample programs 1091

Figure 873. New Web application called XMLDemo

7. Copy the XMLDemo.zip file into the C:\tmp directory (or suitable directory
for your system).

8. Unzip XMLDemo.zip into the <WAS_HOME>/hosts/default_host directory
preserving the paths.

Figure 874. Extract XMLDemo.zip
1092 WebSphere V3.5 Handbook

It will create the XMLDemo directory and three subdirectories, so that files
end up in the following directories:

• XMLDemo\servlets\com\ibm\redbook\SG246161\cdorganizer

(The corresponding Java files end up there too, but they are not needed to
run the example.)

- CDJBean.class

- CDListJBean.class

- CDOXMLServlet.class

- TrackJBean.class

- TrackListJBean.class

Figure 875. \XMLDemo\servlets\com\ibm\redbook\SG246161\cdorganizer directory

• XMLDemo\client\com\ibm\redbook\SG246161\cdorganizer\client

(The corresponding Java files end up there too, but they are not needed to
run the example.)
Appendix C. XML sample programs 1093

- CDOXMLClient.class

- SAXCatalogPrint.class

Figure 876. \XMLDemor\client\com\ibm\redbook\SG246161\cdorganizer\client directory

• XMLDemo\client\

(These are batch files to run the client; you might need to change the
paths inside them for your system.)

- CDOXMLClientSetup.bat

- runCDOXMLClient.bat
1094 WebSphere V3.5 Handbook

Figure 877. \XMLDemo\client directory

• XMLDemo\web

- cdlist-nofor.xsl

- cdlist.css

- cdlist.dtd

- cdlist.xsl

- cdlist1.xml

- cdlist1.xsl

- cdlist2.xml

- cdlist3.xml

- cdlist4.xml

- CDOXML.html

- XMLCatalog.jsp
Appendix C. XML sample programs 1095

Figure 878. \XMLDemo\web directory

9. Start the Web application (in our case, XMLDemo) by selecting XMLDemo
Web Application -> Restart Web App as shown in Figure 879 on page
1097.
1096 WebSphere V3.5 Handbook

Figure 879. Start XMLDemo Web application

10.Start your HTTP Server if is not running.

11.Browse the following URI.

http://localhost/webapp/XMLDemo/XMLDemo.html

Then you will see the CD Catalog XML Example home page as shown in
Figure 880 on page 1098.
Appendix C. XML sample programs 1097

Figure 880. XMLDemo home page

12.Select Dynamic XML formatted with XSL and click Go. Then you will get
the result as shown in Figure 881 on page 1099.
1098 WebSphere V3.5 Handbook

Figure 881. The output of Dynamic XML formatted with XSL

13.Select Dynamic XML formatted with CSS and click Go. Then you will get
the result as shown in Figure 882 on page 1100.
Appendix C. XML sample programs 1099

Figure 882. The output of Dynamic XML formatted with CSS

14.Select Dynamic XML formatted on server with Lotus XSL and click Go.
Then you will get the result as shown in Figure 883 on page 1101.
1100 WebSphere V3.5 Handbook

Figure 883. The output of Dynamic XML formatted with Lotus XSL

C.2 Instructions for setting up and running the XML demo: Java Client

1. To run the client make sure the paths in the CDOXMLClientSetup.bat
batch file is correct for your system.
Appendix C. XML sample programs 1101

Figure 884. CDOXMLClientSetup.bat file

2. Then cd to C:\WebSphere\AppServer\hosts\default_host\XMLDemo\client
(or wherever you put it).

3. Then run CDOXMLClientSetup once to set up the environment.

4. Then issue runCDOXMLClient to run the CDOXMLClient one or more times.

C:\>cd C:\WebSphere\AppServer\hosts\default_host\XMLDemo\client

C:\WebSphere\AppServer\hosts\default_host\XMLDemo\client>CDOXMLClientSetup
1102 WebSphere V3.5 Handbook

C:\WebSphere\AppServer\hosts\default_host\XMLDemo\client>runCDOXMLCli
Retrieve and display CD Catalog using
S - SAX
D - DOM

===>S

CD Catalog

CD
===========================
id: 1
title: Pretzel Logic
artist: Steely Dan
category: Rock
label: MCA
producer: Gary Katz
date: 1974
track-number: 1
track-title: Riki Don't Lose That Number
running-time: 4:30
track-number: 2
track-title: Night By Night
running-time: 3:36
track-number: 3
track-title: Any Major Dude Will Tell You
running-time: 3:05

.............

.............

CD
===========================
id: 2
title: Let it Bleed
artist: Rolling Stones
category: Rock
label: abkco
producer: Jimmy Miller
date: 1969

***** End of CD Catalog *****
C:\WebSphere\AppServer\hosts\default_host\XMLDemo\client>
Appendix C. XML sample programs 1103

C:\WebSphere\AppServer\hosts\default_host\XMLDemo\client>runCDOXMLClient
Retrieve and display CD Catalog using
S - SAX
D - DOM

===>D

CD Catalog

CD
===========================
id: 1
title: Pretzel Logic
artist: Steely Dan
category: Rock
label: MCA
producer: Gary Katz
date: 1974
track-number: 1
track-title: Riki Don't Lose That Number
running-time: 4:30
track-number: 2
track-title: Night By Night
running-time: 3:36
track-number: 3
track-title: Any Major Dude Will Tell You
running-time: 3:05

...............

...............

CD
===========================
id: 2
title: Let it Bleed
artist: Rolling Stones
category: Rock
label: abkco
producer: Jimmy Miller
date: 1969
C:\WebSphere\AppServer\hosts\default_host\XMLDemo\client>
1104 WebSphere V3.5 Handbook

Appendix D. JNDI sample programs

This appendix contains instructions for setting up and running the LDAP
Login JNDI example introduced in 9.4, “JNDI sample application” on page
353 and discussed throughout Chapter 9, “Using JNDI to access LDAP” on
page 347. Instructions are presented for configuring the Web application
under WebSphere, running a Web client.

D.1 JNDI sample files

All the Java source code, JSP, HTML files, and other files are provided to
allow further study and experimentation with the sample.

1. HTML files and JSP files

• LdapLogin.html

• LdapLoginError.jsp

• LdapNoSearchResult.jsp

• LdapRegisterError.jsp

• LdapRegisterResult.jsp

• LdapSearchError.jsp

• LdapSearchMenu.jsp

• UserNotAllowed.jsp

2. Java files

• Java Classes

- com.ibm.itso.websphere.jndi.LDAPAccess

- com.ibm.itso.websphere.jndi.LoginServlet

- com.ibm.itso.websphere.jndi.RegistrationServlet

- com.ibm.itso.websphere.jndi.SearchServlet

• Jar file and property file

- LdapSample.jar

- ldap.properties
© Copyright IBM Corp. 2001 1105

D.2 Deploy JNDI sample program to default_app

To deploy our sample program, you need to copy the Java source code, JSP,
HTML files, and other files.

D.2.1 Copy HTML files and JSP files

Check the document root of default_app.

The default value on Windows NT should be:

<IBM HTTP Server install_root>\htdocs

The default value on AIX should be:

<IBM HTTP Server install_root>/htdocs/en_US

Create directory "ldap" in the document root, and copy *.html and *.jsp to it.

So, it will be:

<Document Root>\ldap\LdapLogin.html

<Document Root>\ldap\LdapLoginError.jsp

<Document Root>\ldap\LdapNoSearchResult.jsp

<Document Root>\ldap\LdapRegisterError.jsp

<Document Root>\ldap\LdapRegisterResult.jsp

<Document Root>\ldap\LdapSearchError.jsp

<Document Root>\ldap\LdapSearchMenu.jsp

<Document Root>\ldap\UserNotAllowed.jsp

D.2.2 Copy java files

Check the classpath of default_app; the default should be:

<WAS_HOME>\hosts\default_host\default_app\servlets

<WAS_HOME>\servlets

Copy LdapSample.jar and ldap.properties to classpath of default_app, for
example, <WAS_HOME>\hosts\default_host\default_app\servlets.

So, it will be:

<WAS_HOME>\hosts\default_host\default_app\servlets\LdapSamples.jar

<WAS_HOME>\hosts\default_host\default_app\servlets\ldap.properties
1106 WebSphere V3.5 Handbook

D.2.3 Add servlets to default_app

1. Start WebSphere Administrative Console

2. Add LoginServlet

Click the Wizards button and select Add a Servlet, then the wizard for
adding a servlet displays. Follow next steps:

a. Do you want to select an existing servlet JAR file or directory that
contains servlet classes?

Select No option and click Next to continue.

b. Please select a Web Application to contain this servlet

Select WebSphere Administrative Domain --> Nodes --> <node
name for local machine> --> Default Server --> Default Servlet
Engine --> default_app

Put cursor to default_app and the Next button becomes active. Click
Next to continue.

c. Select the type of servlet you want to configure:

Select Create User-Defined Servlet then click Next to continue.

d. Specify the properties of the servlet:

Servlet Name: LoginServlet

Web Application: default_app

Servlet Class Name: com.ibm.itso.websphere.jndi.LoginServlet

Servlet Web Path List:

Click Add button

Input /servlet/LoginServlet

Click OK button to return to the wizard

Then click Next to continue.

e. Specify Init Parameters:

Init Parm Name: propertiesFilePath

Init Parm Value:

<WAS_HOME>\hosts\default_host\default_app\servlets\ldap.properties

Then click Finish.

3. Add RegistrationServlet

a. Repeat steps a to c above, refer to step “Add LoginServlet“
Appendix D. JNDI sample programs 1107

b. Specify the properties of the servlet:

Servlet Name: RegistrationServlet

Web Application: default_app

Servlet Class Name: com.ibm.itso.websphere.jndi.RegistrationServlet

Servlet Web Path List:

Click Add button

Input /servlet/RegistrationServlet

Click OK button to return to the wizard

Then click Next to continue.

c. Specify Init Parameters:

Init Parm Name: propertiesFilePath

Init Parm Value:
<WAS_HOME>\hosts\default_host\default_app\servlets\ldap.properties

Then click Finish.

4. Add SearchServlet

a. Repeat steps a to c above, refer to step “Add LoginServlet“

b. Specify the properties of the servlet:

Servlet Name: SearchServlet

Web Application: default_app

Servlet Class Name: com.ibm.itso.websphere.jndi.SearchServlet

Servlet Web Path List:

Click Add button

Input /servlet/SearchServlet

Click OK button to return to the wizard

Then click Next to continue.

Then click Finish.

D.3 Run the JNDI sample

1. Start administrative server.

2. Start the Default Server, make sure that default_app is started.

3. Start a browser and access the following URI:
1108 WebSphere V3.5 Handbook

http://<Valid_default_host_Alias>/ldap/LdapLogin.html

(Where Valid_default_host_Alias is any valid alias for the default host.)

If you have no user ID and password, input your information on the bottom
of the page, then click Submit to register.

If you have a user ID and password, input them on the top of the page,
then click Submit to log in.

If you log in successfully, you may get a page to input your last name to
retrieve the information. Input it, then click Submit.
Appendix D. JNDI sample programs 1109

1110 WebSphere V3.5 Handbook

Appendix E. Big3 application

This chapter contains instructions for setting up and running the Big 3
example introduced in Chapter 11, “Enterprise Java Services” on page 393
and Chapter 12, “Transactions” on page 503. Instructions are presented for
configuring the Web application under WebSphere, running a Web client, and
running the Java client.

All the Java source code, XML, XSL, and other files are provided to allow
further study and experimentation with the sample.

E.1 Big3 - small insurance application

Big3 has a simple presentation and business logic. It also contains enough
components for testing various configurations.

Big3 business logic consists of:

• Three Enterprise JavaBeans:

- processClaim - the session bean

- policy container-managed entity bean - the company's policy holder
information

- claim container-managed entity bean - the list of claims

• Presentation logic:

- Servlet/HTML

- Java client
© Copyright IBM Corp. 2001 1111

Figure 885. Big3 application components

The processClaim session bean can be invoked by a stand-alone Java
application, a servlet, JSP, or HTML. The processClaim session bean creates
the Policy and the Claim enterprise JavaBeans.

The Policy bean holds the customer policy data:

• Policy number (key field)

• Policy amount

• Policy premium

The Claim bean contains customer claim data:

• Claim number

• Amount of claim

• State

When an insurance company employee is using the Big3 application to view
and modify customer information, the ProcessClaim servlet sends a request
to the processClaim bean. This bean manages session information. If the
customer has a claim, the business logic computes a new premium.

Once new claim or policy information is entered and committed, it is written to
the database. In this example, both the policy and the claim data reside in the

Front-tier
Presentation

ProcessClaim
Servlet
or Java
Client

Back-tier
RDB

Session
Bean

Policy no.
Amount
Premium

Claim no.
Amount
State

Database

Policy bean

Claim bean
Keys

Middle-tier
Business Logic

processClaim
1112 WebSphere V3.5 Handbook

same database. It is possible to create separate databases for policy and
claim data. The separate databases may or may not reside on the same
physical node.

The information on Tier 1 and the processClaim bean are not persistent. The
Policy and Claim bean information is persistent.

E.2 Object interaction diagram

Figure 886 shows what is happening inside the Big3 application when the
client requests processClaim.

The client can be either servlet/HTML-based, or a Java client.

Figure 886. Big3 object interaction diagram

E.3 Install Big3

Let’s install the Big3 application, assuming everything is on driver C: (update
drives letters as necessary if your configuration is different):

1. Extract big3.zip to c:\

\big3 to be installed in C: on your computer.

Client
Claim Policy

processClaim

processClaim
setPremium

setAmount
Appendix E. Big3 application 1113

2. Copy c:\big3\big3deployed.jar to c:\WebSphere\AppServer\deployedEJBs
directory.

3. Create c:\WebSphere\AppServer\hosts\default_host\Big3WebApp\servlets
directory.

4. Copy c:\big3\big3servlets.jar to servlets directory created in step 3.

5. Create c:\IBM HTTP Server\htdocs\Big3 directory.

6. Copy c:\big3\html*.html files to the Big3 directory created in step 5.

7. Edit c:\big3\xml\Big3ServerForNTwithDefaultDatasource.xml and change
the node name="lakemichigan" to your host name. Also check if the
transport-port 8993 is used by existent application servers, such as the
default server. If so, you need to change it to the one that is not used. Also,
if the queue name ibmoselink1 is used by existent application servers,
such as the default server, you need to change it to the one that is not
used. We assume that WebSphere is installed on the C: drive. If you
installed it on a different drive, you also need to specify an appropriate
drive. We also assume that DB2 is used for the CMP. Please specify an
appropriate DB URL for the database that you use.

8. Run XMLConfig -import
c:\big3\xml\Big3ServerForNTwithDefaultDatasource.xml
-adminNodeName YOUR_HOSTNAME.

E.4 Test the configuration

After you install the Big3, follow the steps to verify the configuration:

1. Start the Big3Server

2. Test the Java client

a. From the c:\big3 directory, run RunClient 1234 1234 10
YOUR_HOSTNAME

b. From the c:\big3 directory, run RunClientWithRetry 10 1234 1234 100
80 YOUR_HOSTNAME

3. Test the Web client

a. Select location http://YOUR_HOSTNAME/Big3/index.html

b. Click the Submit button

c. The bottom of the output should show the message: Claim Processed

d. You can also select http://YOUR_HOSTNAME/Big3/verify.html for
performance testing.
1114 WebSphere V3.5 Handbook

E.5 Big3 application directory structure

The big3.zip file contains the Big3 sample N-tier EJB application and related
files. After you extract the file, you will see the following the directory
structure.

• C:\big3 - Big3 Application Home Directory

- big3deployed.jar - Deployed EJBs exported from VisualAge for Java

- big3client.jar - EJB client interfaces and stubs exported from
VisualAage for Java

- big3servlet.jar - big3 servlet class files

- RunClient.bat - bat file to execute big3.client.Main on Windows NT

- RunClientWithRetry.bat - bat file to execute big3.client.MainRetry on
Windows NT

- RunWlmClient.bat - bat file to execute big3.client.Main on Windows NT
multiple times for WLM verification

- GetClientClasspath.bat - bat file used be RunClient to set client
classpath
Appendix E. Big3 application 1115

Figure 887. \big3 folder

• C:\big3\ejb - Big3 compiled .class files and Java source files for big3 EJBs

- C:\big3\ejb\Claim.class

- C:\big3\ejb\ClaimBean.class

- C:\big3\ejb\ClaimBeanFinderHelper.class

- C:\big3\ejb\ClaimHome.class

- C:\big3\ejb\ClaimKey.class

- C:\big3\ejb\Policy.class
1116 WebSphere V3.5 Handbook

- C:\big3\ejb\PolicyBean.class

- C:\big3\ejb\PolicyBeanFinderHelper.class

- C:\big3\ejb\PolicyHome.class

- C:\big3\ejb\PolicyKey.class

- C:\big3\ejb\ProcessClaim.class

- C:\big3\ejb\ProcessClaimBean.class

- C:\big3\ejb\ProcessClaimHome.class
Appendix E. Big3 application 1117

Figure 888. \big3\ejb folder
1118 WebSphere V3.5 Handbook

• C:\big3\client - Big3 JavaClient Directory (Java source file and class file for
the big3 main Java client)

Figure 889. \big3\client folder

• C:\big3\html - Big3 .html files directory (Big3 HTML files)

Figure 890. \big3\html folder
Appendix E. Big3 application 1119

• C:\big3\servlet - Big3 servlets (Java source files and class files for the
Big3 servlets)

Figure 891. \big3\servlet folder

• C:\big3\source - Big3 .java files in .zip format (contains source.zip of Big3
EJBs, servlets, util, and client)

Figure 892. \big3\source folder
1120 WebSphere V3.5 Handbook

• C:\big3\util - Big3 NamingContextHelper .class file (Java source file and
class files NamingContextHelper - used to cache InitialContext and EJB
homes)

The NamingContextHelper caches both Initial Contexts and Objects found
in those Initial Contexts. Caching in this way can improve performance.

Figure 893. \big3\util folder

• \xml -XML Config Files to import

Figure 894. \big3\xml folder
Appendix E. Big3 application 1121

1122 WebSphere V3.5 Handbook

Appendix F. The admin.config file definitions

This chapter contains the definitions of the admin.config file. The
admin.config file contains many administrative server properties you can set.
In addition, you might want to pass the administrative server some generic
Java command line arguments.

Directives in the <WAS_HOME>/bin/admin.config file are similar to their
counterparts on the Java command line for the administrative server. The
command line argument name is appended to a standard package name for
the administrative server. For example the command line argument -lsdPort
becomes com.ibm.ejs.sm.adminServer.lsdPort in the admin.config file.

Table 58 on page 1123, Table 59 on page 1126, Table 60 on page 1127, Table
61 on page 1128, Table 62 on page 1128, Table 63 on page 1128, and Table
64 on page 1128 show the list of parameters that you can specify in the
admin.config file. Note that you should only update this file if necessary
before you update it. We recommend that you make a backup to recover from
unexpected results of modification.

Table 58. List of parameters in the admin.config file: com.ibm.ejs.sm.adminServer package

Property Default value Description

agentMode false This property enables the use of an administrative
agent rather than a full service administrative server.
This property has no value and should be specified
as follows:
com.ibm.ejs.sm.adminServer.agentMode=true.
If you later want to run a full service administrative
server, you must comment out this property (or
remove it from the admin.config).

bootstrapHost Host name running the bootstrap service.

bootstrapPort 900 Port number that the ORB is listening on. The
administrative console connects to this port.

classpath Location of WebSphere Application Server libraries
and files. Never edit this except for WebSphere
patches or when updating the classpath to add JDBC
driver to the administrative database.

dbDriver This is the classname of the database JDBC driver.

dbPassword This is the password for logging onto the database
server.
© Copyright IBM Corp. 2001 1123

dbSchema This is the database schema for the administrative
database. Note that this value should ONLY be
modified in the case such as IBM Produce Support
requires.

dbUrl JDBC URL that is used for the administrative
database.

dbUser This is the name of the user logging onto the
database server.

diagThreadPort -1 = next available
port

This property allows you to specify the port on which
the DrAdmin thread listens for the administrative
server. DrAdmin is a tool that allows you to
dynamically enable and disable tracing for the
administrative server or any application server
(without needing to use the administrative console).
Every time you start a server (administrative server or
application server), the DrAdmin thread is started and
the port on which it is listening is output as an Audit
message event to the console and to the standard
output file for the server. The default is to use the next
available port. This property allows you to control the
port and is mainly used in DMZ configurations.

disableAutoServerStart false Disable automatic starting of the application server.
Setting this to true will start the node without starting
any application server(s).

disableEPM true Used by the Resource Analyzer in V3.5. Used to
disable Enterprise Performance Monitoring.

Property Default value Description
1124 WebSphere V3.5 Handbook

initializer Property used for specifying initializer classes. The
value for this property is a comma-delimited list of
package qualified class names. The intiializer classes
must implement
com.ibm.ejs.sm.server.AdminServiceInitializer. This
interface has an initialize method and a terminate
method. Each time the administrative server starts
up, the initialize methods are invoked, and when it
shuts down (gratefully) the terminate methods are
invoked. Invocation of the methods on the classes are
based on the order in which the classes are specified
for the property.
Some examples of initializers are:
com.ibm.ejs.security.Initializer
com.ibm.servlet.engine.ejs.ServletEngineAdminIniti
alizer
com.ibm.servlet.config.InitialSetupInitializer

logFile Path to the log file.

lsdHost Host name running the Location Service Daemon.

lsdPort 9000 Port number that the naming service is listening on.

managedServerClassPath Application server uses this classpath instead of
inheriting from the administrative server.

nameServiceJar Paht of the ame service bean JAR file.

nodeName Node name to use in the WebSphere configuration.
WebSphere will create a default node name equal to
the result of the hostname command. But often (as is
the case with SP nodes) one wants the node name to
resolve a name associated with a NIC other than the
primary. This can be achieved by adding the following
directive to the top of
<WAS_ROOT>/bin/admin.config before starting the
admin server for the first time and populating the
admin repository:
com.ibm.ejs.sm.adminServer.nodeName=someSpe
cificNodeName.

primaryNode Primary node name.

Property Default value Description
Appendix F. The admin.config file definitions 1125

Table 59. List of parameters in the admin.config file: com.ibm.ejs.util.process.Nanny package

seriousEventLogSize 1000 Specifies how many serious event records to keep.
They are stored in the administrative database. If your
database is becoming too full, set this size to the
minimum value that is reasonable for your
environment.

traceFile Path to the admin server trace file.

traceOutput Path to the trace output file.

traceString off Trace is collected on cumulative options in string.

tranInactivityTimeOut This property allows you to set the transaction
inactivity timeout for the administrative server. It is
specified in milliseconds and defaults to 60 seconds.
This property is equivalent to the Transaction
inactivity timeout property for application servers
(found on the Advanced tab of the properties sheet
for the application server in the administrative
console).

tranTimeout 600 seconds Transaction timeout in seconds.

wlm Enable WLM for administrative server.

Property Default value Description

adminServerJVMArgs Java command line arguments.
To learn the acceptable command line arguments for
the administrative server:

1.Open the file adminserver.[bat|sh] in the bin
directory Java command line of the
product_installation_root.

2.Note the Java command for starting the server.
3.At a command prompt, issue the command with

no arguments, or wrong arguments. A syntax
message will be displayed, listing the acceptable
commands.

errtraceFile This is on Windows and not UNIX.

maxtries 3 Number of times the nanny process tries to restart
WebSphere.

path Location of executables in WebSphere Application
Server, HTTP server, and database server

Property Default value Description
1126 WebSphere V3.5 Handbook

Table 60. List of parameters in the admin.config file: com.ibm.CORBA package

traceFile Path to the nanny process tracefile.

Property Default value Description

BootstrapHost Administrative server’s host name.

BootstrapPort Administrative server’s bootstrap port number.

CommTrace true Turns on administrative server communication
tracing.

ConfigURL Path to the security property file for the administrative
server.

ConnTrace Shows connections made by ORB.

Debug Turns on administrative server debug.

EnableApplicationOLT Enable the Object Level Trace.

iiop.noLocalCopies true Toggle to turn on no local copies optimization.
Prevents unnecessary serialization on local JVM.
This parameter should be specified in the
com.ibm.ejs.sm.util.process.Nanny.adminServerJvm
Args line with the UtilClass parameter as follows:
-Djavax.rmi.CORBA.UtilClass=com.ibm.CORBA.iiop
.Util -Dcom.ibm.CORBA.iiop.noLocalCopies=true

ListenerPort Specific port number WebSphere should listen on
rather than a dynamic one. Useful in firewall
configuration. Each app server has its own listening
port, which by default is random, but can be fixed to a
value using the -Dcom.ibm.CORBA.ListenerPort=
property for its JVM. This is an unsecured port.

LocalHost IP Property that tells WebSphere the host name to
reference. Sets the machine name/IP address for the
node.

LSDSSLPort Encrypted port for location service daemon. Used for
security.

OLTApplicationHost The remote OLT workstation host name for this
parameter.

OLTApplicationPort The port number which the remote OLT Server is
listening on.

Property Default value Description
Appendix F. The admin.config file definitions 1127

Table 61. List of parameters in the admin.config file: com.ibm.ejs.wlm package

Table 62. List of parameters in the admin.config file: install.initial package

Table 63. List of parameters in the admin.config file: server package

Table 64. List of the parameters n the admin.config file: com.ibm.ws.jdk package

requestTimeout ORB communication timeout in seconds. Useful to
free WebSphere when transaction times out.

SSLPort 9001 Secure Socket Layer port number.

Property Default value Description

RefreshInterval 300 The number of seconds that elapse between the
administrative server updates of the model/clone
information to the application servers.

Property Default value Description

config false Valid values are true or false. If set to true, the initial
default configuration will be deployed. Once the
default configuration is deployed, the system sets this
to false. If you delete your repository and wish to
redeploy your default configuration, set this value to
true.

config.file This is the path to the XML file for installing the initial
default configuration.

Property Default value Description

root Main path of WebSphere.

Property Default value Description

path Location of JDK used by WebSphere.

Property Default value Description
1128 WebSphere V3.5 Handbook

Appendix G. Using the additional material

This redbook also contains additional material in CD-ROM format and Web
material. See the appropriate section below for instructions on using or
downloading each type of material.

G.1 Using the CD-ROM

The CD-ROM that accompanies this redbook contains the following:

Folder name Description
JSP11Samples Sample programs used in Chapter 6
SessionSamples Sample programs used in Chapter 7
Servlet22Samples Sample programs used in Chapter 8
JNIDSamples Sample programs used in Chapter 9
Big3 Sample programs used in Chapter 11 and 12
XMLSamples Sample programs used in Chapter 13
DeploymentSamples Sample programs used in Chapter 14

G.1.1 How to use the CD-ROM

You can access the contents of the CD-ROM in the CD-ROM root directory.
Alternatively, you can create a subdirectory (folder) on your workstation and
copy the contents of the CD-ROM into this folder.

G.2 Locating the additional material on the Internet

The CD-ROM material associated with this redbook is also available in
softcopy on the Internet from the IBM Redbooks Web server. Point your Web
browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246161

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number.
© Copyright IBM Corp. 2001 1129

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

G.3 Using the Web material

The additional Web material that accompanies this redbook includes the
following:

Folder name Description
JSP11Samples Sample programs used in Chapter 6
SessionSamples Sample programs used in Chapter 7
Servlet22Samples Sample programs used in Chapter 8
JNIDSamples Sample programs used in Chapter 9
Big3 Sample programs used in Chapter 11 and 12
XMLSamples Sample programs used in Chapter 13
DeploymentSamples Sample programs used in Chapter 14

G.3.1 How to use the Web material

Create a subdirectory (folder) on your workstation and copy the contents of
the Web material into this folder.
1130 WebSphere V3.5 Handbook

Appendix H. Special notices

This publication is intended to help IT specialists to design and configure
scalable Web application server using WebSphere Application Server
Standard and Advanced Editions V3.5. The information in this publication is
not intended as the specification of any programming interfaces that are
provided by WebSphere Application Server. See the PUBLICATIONS section
of the IBM Programming Announcement for WebSphere Application Server
for more information about what publications are considered to be product
documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been
reviewed by IBM for accuracy in a specific situation, there is no guarantee
© Copyright IBM Corp. 2001 1131

that the same or similar results will be obtained elsewhere. Customers
attempting to adapt these techniques to their own environments do so at their
own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

Tivoli, Manage. Anything. Anywhere.,The Power To Manage., Anything.
Anywhere.,TME, NetView, Cross-Site, Tivoli Ready, Tivoli Certified, Planet
Tivoli, and Tivoli Enterprise are trademarks or registered trademarks of Tivoli
Systems Inc., an IBM company, in the United States, other countries, or both.
In Denmark, Tivoli is a trademark licensed from Kjøbenhavns Sommer - Tivoli
A/S.

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries

IBM �

WebSphere
VisualAge
Redbooks
RS/6000
AIX
AS/400

DB2
TXSeries
SecureWay
Redbooks Logo
Netfinity
Home Director
1132 WebSphere V3.5 Handbook

licensed exclusively through The Open Group.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks
owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix H. Special notices 1133

1134 WebSphere V3.5 Handbook

Appendix I. Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

I.1 IBM Redbooks

For information on ordering these publications see “How to get IBM
Redbooks” on page 1137.

• The XML Files: Using XML and XSL with IBM WebSphere 3.0, SG24-5479

• Servlet and JSP Programming with IBM WebSphere Studio and VisualAge
for Java, SG24-5755

• WebSphere Scalability: WLM and Clustering using WebSphere
Application Server Advanced, SG24-6153

• Domino and WebSphere Together, SG24-5955

• Developing Enterprise JavaBeans with VisualAge for Java, SG24-5429

• Design and Implement Servlets, JSPs, and EJBs for IBM WebSphere
Application Server, SG24-5754

• WebSphere V3 Performance Tuning Guide, SG24-5657

I.2 IBM Redbooks collections

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at ibm.com/redbooks for information about all the CD-ROMs offered,
updates and formats.

CD-ROM Title Collection Kit
Number

IBM System/390 Redbooks Collection SK2T-2177
IBM Networking Redbooks Collection SK2T-6022
IBM Transaction Processing and Data Management Redbooks Collection SK2T-8038
IBM Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
IBM AS/400 Redbooks Collection SK2T-2849
IBM Netfinity Hardware and Software Redbooks Collection SK2T-8046
IBM RS/6000 Redbooks Collection SK2T-8043
IBM Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2001 1135

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

I.3 Other resources

These publications are also relevant as further information sources:

• Transaction Processing: Concepts and Techniques, by Jim Gray and
Andreas Reuter, Morgan Kaufmann Publishers, 1992, ISBN 1558601902

• Design Patterns: Elements of Reusable Object-Oriented Software, by
Erich Gamma et al, Addison-Wesley, 1995, ISBN 0201633612

• Tcl and the Tk Toolkit, by John K. Ousterhout, Addison-Wesley, 1994,
ISBN 020163337X

I.4 Referenced Web sites

These Web sites are also relevant as further information sources:

• http://www.w3.org/ XML-related specifications

• http://xml.apache.org/ Xerces XML parser and Xalan XSL parser

• http://www.oasis-open.org/ International consortium for industry
specifications based on XML

• http://alphaworks.ibm.com/ XML4J parser and Lotus XML

• http://www.ibm.com/developer/xml/ Articles and information of interest to
XML developers

• http://www-4.ibm.com/software/webservers/appserv/whitepapers.html

WebSphere white paper

• http://www.ibm.com/software/webservers/appserv/library.html

WebSphere documentation

• http://www.ibm.com/software/webservers/appserv/doc/v35/prereq.html

WebSphere V3.5 pre-requirement

• http://www-4.ibm.com/software/webservers/appserv/doc/v35/idx_aas.htm

WebSphere Application Server documentation

• http://www.ibm.com/software/webservers/appserv/ WebSphere
Application Server Web site

• http://dev.scriptics.com/ Tcl developer Web site

• http://dev.scriptics.com/software/java/ JACL Web site
1136 WebSphere V3.5 Handbook

How to get IBM Redbooks

This section explains how both customers and IBM employees can find out about IBM Redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site ibm.com/redbooks

Search for, view, download, or order hardcopy/CD-ROM Redbooks from the Redbooks Web site.
Also read redpieces and download additional materials (code samples or diskette/CD-ROM images)
from this Redbooks site.

Redpieces are Redbooks in progress; not all Redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the IBM Redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the Redbooks Web site.

In United States or Canada
Outside North America

e-mail address
pubscan@us.ibm.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and Redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2001 1137

mailto: pubscan@us.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
http://www.redbooks.ibm.com/
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.redbooks.ibm.com/

IBM Redbooks fax order form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
1138 WebSphere V3.5 Handbook

Index

Symbols
.dat 197
.prp 927
.ser 402, 609
.wscprc 860

Numerics
0.91 JSP compiler 176
1.0 JSP compiler 176
2.0 Connection Manager 935

A
Access Bean 637, 639
Account 931
ACID 504, 511
activation 71
Active Directory 11, 762
active frame 40
activity.log 14, 938, 975
Add Enterprise Beans window 592
addDateHeader() 300
addHeader() 300
addIntHeader() 300
ADGU 935
admin 853
admin.config 120, 809, 933, 1046
AdminApplication 134, 844, 853
adminclient.bat 812
adminclient.sh 812
administrative console 809, 811
administrative database 15, 115, 796
administrative domain 2, 115, 585, 815, 843
Administrative GUI 935
administrative resource 115
administrative server 2, 115, 809, 811, 935, 984
administrative tasks 814
administrative tools 1
adminserver.bat 957
adminserver.sh 957
adminserver_stderr.log 937
ADMS 935
Advanced Edition 1, 813
affinity routing 277
afterBegin() 73, 515
afterCompletion() 73, 515
© Copyright IBM Corp. 2001
AIX 15, 1085
Alarm 935
alias 130, 1056
Allow Overflow 258
alphaWorks 542
ALRM 935
Analysis pane 976
Analyze action 992
Apache 542
Apache.org 221
application classpath 140
application flow model 18, 21
application in 18
application security 478, 651
application security policy 651
application server 115, 811, 815
application server classpath 646
application server process 2
ApplicationServer object 864
ARGUMENTS 936
arithmetic expression 857
Array 373
ASE 1083
associations 403
atomic 349, 503
audit message 934
AUDIT tracing level 822
authentication 117, 651, 655
authentication mechanism 656
authorization 4, 117, 651, 657
Auto Reload 158
Auto-Invoker 597, 625

B
back button 38
back-end tier 25
Base Memory Size 265
base64-encoded 677, 684
batch JSP compiler 200
batch updates 372
bean demarcation 514
Bean Properties 423
bean tag 47
beanData 1014
BeanInfo 53
bean-managed persistence 64, 75, 371, 509, 920
beanMethodData 1014
1139

BeenThere 928
beforeCompletion() 73, 515
BEGIN statement 5
begin transactions 378
bin directory 119
Binary Large Object 71, 373
Binding 349
Blob 71, 373
BMP 64, 75, 371, 920
bodycontent 203, 209
Bookmark 40
bootstrap port 119
bootstrap service 117
bootstrapPort parameter 120
BPM 25
breakpoints 967
browser-based components 31, 80, 85
business logic 1, 25, 68, 393
business logic access bean 42, 60, 74, 101
business methods 4
business objects 18
business process 5
business process life cycle 19
business process model 18, 25

C
C 31
C++ 31
CA 668
Cache preferred limit 450
CallableStatement 373, 388
CallerTag 211
callPage 929
Cascading Style Sheet 540, 552
CCA 1057
certificate 651
Certificate Authority 652, 668
Certificate Filter 734
Certificate Manager 699
Certificate Mapping 734
certificate-based authentication 651, 658
CFWK tools 668
cfwk.sec 668
cfwk.zip 668
CGI 46, 138
chainer servlet 177
Challenge Type 730
Character Large Object 373

checkjspfiles 199
CICS 101, 541
CICS transactions 25
CICS VSAM files 78
ClassCastException 934
classes12.zip 831, 1061
classloader 434, 622, 634
ClassNotFoundException 633
CLASSPATH 1086
classpath 157, 434, 622
ClearModuleList 725
clickable DOM object 81
CLIENT 488
client 4
client authorization 724
Client Certificate based authentication 11
Client Configuration Assistant 1057
client device detection support 16
client identity 474
client JAR 641
client/server affinity 72
client-side scripts 3
Clob 373
clone 5, 279, 791
clone association 898
clone disassociation 898
CLP 1057
cluster 5, 793
CM20 935
CMP 10, 15, 64, 371, 459, 920
CMS key database file 671
CN 734
CNTR 935
COBOL 31
code page 662
Command History 814, 826
command line administrative tool 856
Command Line Processor 1057
command-line trace 820
commands history 811
commit 71
commit option 467
commit option A 469
commit option C 471
COMMIT statement 5
commit transactions 378
Common Gateway Interface 138
Common Name 681, 734
Common Object Request Broker Architecture 5
1140 WebSphere V3.5 Handbook

component 30
Component Broker 1
Compound 349
computer viruses 651
Configure Application Security Wizard 484
Configure Resource Security wizard 499
Configure Security Permissions wizard 491
CONM 935
Connection 373
connection manager 6, 7, 13, 935
Connection Manager APIs 916
connection pool 291, 1011
Connection Pool Level 2 sample 930
connection pooling 7, 507, 916
connection timeout 381, 385
ConnectionEventListener 375
connectionMgr 1014
ConnectionPoolDataSource 375
consistent 503
Console 813
Console menu 820
console messages area 818
container 393
container demarcation 514
container-managed entity bean 393
container-managed persistence 15, 64, 371, 459,
920
container-managed transactions 516
Context 349
context-sensitive help 811, 817
Control Center 1055
control flow mechanisms 30
Control Panel 1055
Controller 43
conversational state 450
cookie 90, 245, 292
cookie timeout 276
coordinator 505
copy helpers 76
CORBA 5, 10, 795
CORBA CosNaming API 117
CosNaming Name Server 347
CosNaming service 117
Country 681
Create Application Server wizard 587
Create Data Source Wizard 585
Create EnterpriseBean window 412
Create Objects 846
create() 431, 460, 464

credentials 652
CSS 540, 552, 558
Custom 656
custom creates 75
custom finders 76
Custom Install 7, 925, 1051, 1065, 1084
Custom login authentication 658
custom login option 11
custom tags 48, 201
custom updates 76

D
data flow sources 30
data source 12, 371
data source name 833
Data Sources resource instance 815
Data Structure Java Beans 42
Database Manager 935
DatabaseMetaData 373
DataSource 375, 379
datasources.xml 383
Date 372
DB Home 1084
DB2 3, 10, 579, 830, 907
DB2 CLP 1075
DB2 database 67
db2java.zip 584, 831
db2level 1056
DBA 1050
DBA authority 1060
DBMN 935
DBMS 371
deadlocks 521
Debug properties tab 127
debuggable events 967
debuggable server event 967
debugger 193
Default Container 124, 922
default error page 157, 315
Default Error Page attribute 185
default page 40
Default Server 13, 123, 574, 844, 853, 908
Default Servlet Engine 123
default_app 123, 124, 167
default_host 132, 156, 491, 576, 740, 927
defaultRowPrefetch 383
delegation 652
delegation setting panel 499
1141

demilitarized zone 27
dependent classpath 648
deployable 402
deployable EJBs 608
deployable JAR 402
deployed EJB 893
deployed EJBs 923
deployed JAR 402
deployer 74
deployment descriptor 323, 402, 476, 516, 609,
922
destroy() 43, 143, 196
developer 31
DHTML 31, 33, 80
DirContext interface 347
Directory Management Tool 664
dirty read 522
DISPLAY environment variable 812
Distinguished Name 662, 734
distributed object based 24
distributed object server 27
distributed object-based application 28
distributed system management 4
Distributed Transaction Support 15
distributed transactions 505
distribution 63
DMT 664, 735
DMZ 13, 66
DN 662
DNS 130, 348
doAfterBody() 209
DocRoot attribute 160
DOCTYPE tag 548
Document Object Model 34, 541, 550
document root 157, 339, 595
Document Type Definition 31, 546, 878
Documentation Center 8
DocumentHandler 550
doEndTag() 209
does-not-exist state 428, 440, 459
doGet() 43, 443
DOM 34, 194, 541, 544
DOM 2 API 542
DOM API 550
DOM level 1 542
domain 2
Domino 11
Domino DSAPI plug-in 16
Domino Server 761

Domino Single Sign On 11
doPost() 43, 88
doStartTag() 209
DrAdmin 956
DrAdmin command 874
Driver 373
driver URL 830
DriverManager 371, 372, 385
DriverPropertyInfo 372
DTD 31, 41, 325, 546, 877
DTDHandler 550
durable 503
dynamic content 3, 189
dynamic model 19
dynamic Web pages 3

E
e-business 1
Efficient 17, 113
EJB 1, 6, 63, 374, 393, 511, 791, 813

cache management 396
delegation 472
home interface 400
loader 638, 649
method group mapping 900
programming model 5
remote interface 400
server 393
Workload Management 935

EJB 1.0 10
EJB container 115, 791, 816, 920, 935
EJB JAR 400, 402
EJB JAR classloader 634
ejbActivate() 432, 460
EJBClient JAR 641
ejbCreate() 428, 460
EJBHome object 440
EJBLEAVEBEANTBL 925
ejbLoad() 79, 460, 531
EJBObject 439
EJBObject handle 453
ejbPassivate() 432, 451, 460
ejbPostCreate() 460
ejbRemove() 432
ejbStore() 79, 460, 526, 531
EJS 393
EJSADMIN 1060, 1073
EJSW 935
1142 WebSphere V3.5 Handbook

Enabled menu 820
encodeURL() 254
end-to-end path length 26
enterprise application 134, 653, 839, 879
Enterprise Applications folder 840
Enterprise Applications resource instance 815
enterprise bean security 473
enterprise beans 393, 811
Enterprise Edition 1, 10
Enterprise Java APIs 5
Enterprise Java Servers 66
Enterprise Java Services 393
Enterprise JavaBeans 1, 6, 63, 374, 393, 511
enterprise out 18
enterprise server components 31
enterprise servers 29
Entity Bean 796
entryExit 943
Enumeration 96
EPM 1013
error 928
error condition 828
error pages 315
error pages list 157
errorCode 867
ErrorHandler 550
ErrorReporter 125
ErrorReporter servlet 158, 183
EVAL_BODY_INCLUDE 210
EVAL_BODY_TAG 210
event 943
Event Viewer 821
examples 927
Expiring Page 929, 930
Export Key 702
Export Workspace to XML 846
expression syntax 96
expressions 47, 189
eXtensible Markup Language 1, 5, 31, 539, 843,
877
eXtensible Stylesheet Language 552

F
failover 5, 791
fatal message 934
FATALS tracing level 822
Feedback 929
Feedback level 2 sample 931

fetch size 374
file 928
file serving enabler 173, 596
file servlet 173
file-serving servlet 173
Find for update 528, 532
findAncestorWithClass() 212
findByPrimaryKey() 464, 529, 533
findForUpdate ByPrimaryKey() 533
firewall 13, 651, 843
First Steps 1055
Flexible 17, 114
flushBuffer() 298
FORM 83
Form example 929
formatting objects 555, 561
forward() 85
FOs 555, 561
frameset 31, 39
full InfoCenter 818
Full Install 7, 1051, 1066
Functional 17, 113

G
garbage collection 101, 196
GenericServlet 142
getAttribute() 212, 255, 299, 301
getAttributeNames() 299
getBufferSize() 298
getCharacterEncoding() 314
getConnection() 385
getContext() 85
getContextPath() 300
getDateHeader() 299
getFirstChild() 550
getInitParameter() 299
getInitParameterNames() 299
getIntHeader() 299
getLocale() 300
getMimeType() 314
getNamedDispatcher() 299
getNextSibling() 550
getNodeValue() 550
getOut() 211
getParameter() 91, 92
getParentNode() 550
getProperty 192
getRemoteUser() 98
1143

getRequestDispatcher() 298
getRequestHeaders() 299
getServletConfig() 143
getServletInfo() 143
getServletName() 300
getSession() 255, 265
getters 489
getUserPrinciple() 300
getValue() 255, 299
getValueNames() 299
getVariableInfo() 211
GLOBAL 713
global directories 25
global security 478
graphical interface 843
graphical user interface 3
gsk4cls.jar 668
GSKIT 4.0 11

H
hackers 66
HACMP 772
HandlerBase 550
Hashtable 95
Hello EJB sample 931
hello servlet 124
HelloPervasive 928
HelloWorldServlet 573
Help 813
Help menu 817
heterogeneous platforms 842
hidden fields 93
HitCount 928
HitCount bean 921, 1060
home interface 67, 406, 464
horizontal cloning 794
horizontal scaling 772
Host Authorization 724
host name 812
HP-UX 15, 1034
HREF tag 80
HREFs 91
HTML 3, 5
HTPASSWD utility 709
HTTP 5, 13, 139

GET request 43, 80
POST request 80
PUT request 43

requests 25
server 4
server plug-in 277
sessions 1012

HTTPAdmin 13
HTTPD 140
HttpRequest 250
HTTPS 300, 578, 1053
HttpServlet 43, 142
HttpServletRequest 43, 142, 299
HttpServletRequest attributes 94
HttpServletResponse 43, 47, 142
HttpServletResponse object 88
HttpServletResponse sendRedirect 85
HttpSession 74, 442, 454
HttpSession state 94
HttpSessionBindingListener 258
HyperText Markup Language 5
HyperText Transfer Protocol 5, 13

I
IBM Distributed Debugger 971
IBM HTTP Administration Server 709
IBM HTTP Server 42, 1039, 1051
IBM Key Management tool 668
IBM SecureWay Directory 651, 658
IBM WS AdminServer 1078
ibm_ssl 713
IBMModuleSSL128.ddl 713
IBMSession class 266
idb.jar 910, 926
IDE 46
idle timeout 381, 385
IIOP 27, 654, 811
iKeyman 668
import/export configuration 811
IMS 101
IMS DL/I 78
include() 86
Increment 573, 931
INET Sockets 153
InfoCenter 7, 8, 818, 1083
inheritance 403
init() 43, 99
initial_setup.config 909
InitialContext factory 350
InitialDirContext constructor 352
inspector 193
1144 WebSphere V3.5 Handbook

installation 7
instance pool 439
InstantDB 3, 10, 910, 926, 1051, 1065
interactive 1051
Internet Inter-ORB Protocol 473, 811
Internet Inter-Orb Protocol 27
Internet service provider 131
intrusion detection 651
invalidate() 256, 257
invoker 125
invoker servlet 170
IP address 812
iPlanet 11
iPlanet Server 15
iPlanet Web Server Enterprise Edition 4.0 15
isCommitted() 298
isolated 503
isolation attribute 516
isolation level 408, 530
IsolationLevelChangeException 522
ISP 131
isSecure() 300
istributed database 6
isUserInRole() 300

J
J2EE 203, 503
JACL 857
JAR 811, 831
Jasper 221
Java

escape tags 94
GUI installation 1050
Interface Definition Language 6
Servlets 6

Java 2 Enterprise Edition 503
Java 2 SE 10
Java APIs 1, 10
Java Bean 53
Java Bean introspection 56
Java Bean properties 49
Java Beans 374
java code block tag 47
Java Development Kit 1068
Java escape tags 51
Java IDE 193
Java Messaging Service 6, 10
Java Naming and Directory Interface 4, 6, 10, 101,

347, 374, 506
Java Remote Method Invocation over Internet In-
ter-ORB Protocol 6
Java Servlet API 138, 139
Java Servlet API V2.2 139
Java Servlet Specification 2.2 10
JAVA TCP/IP 153
Java Transaction API 5, 6, 10, 66, 374, 378, 503,
506, 830
Java Transaction Implementation 936
Java Transaction Service 6, 10, 506, 936
Java Virtual Machine 2, 137, 1011
java.io 145
JAVA_HOME 1084
javac compiler 146
javadoc 372
JavaIDL 10
JavaScript 3, 33
JavaServer Pages 1, 6, 10, 47, 189, 935
JavaServer Pages API V1.1 295
JavaSoft 328
javax.naming 351
javax.naming.directory 351
javax.naming.event 351
javax.naming.ldap 352
javax.naming.spi 352
javax.servlet 139, 145
javax.servlet.http 139, 145
JCChart 1016
jconn2.jar 831
jConnect 385, 1083
jConnect 4.2 1083
jConnect 5.2 1083
JDBC 6, 101
JDBC 1.0 371, 831
JDBC 2.0 10, 371, 831, 1083
JDBC 2.0 Core API 371
JDBC 2.0 Extension API 371
JDBC 2.0 Optional Extension AP 372
JDBC driver 579, 815, 829
JDBC Driver Options window 832
JDBC URL 1056
JDK 10, 1039
JDK 1.1.8 1085
JDK 1.2.2 10
JDK1.2 7
JDK1.2.2 1051
jetace 402, 524
JETACE tool 402, 524, 922
1145

JIDL 6
JMS 6
JMS1.0 10
JND

Name Services 935
JNDI 4, 101, 347, 374, 406, 507

context 67
Context interface 347
environment properties 352
home name 893
lookup 386
namespace 117

JNDI 1.2 10
JNDI name 413
JSP 1, 6, 47, 189

1.0 Processor 597
1.1 10, 189
1.1 processor 197
compiler 195
container 196, 201
enabler servlets 196
processor 195
syntax 189
tags 189

jsp10 125, 928
JSPG 935
JspServlet 198
JTA 5, 6, 374, 378, 503, 580, 830
JTA 1.0 10
JTS 6, 10, 506
JVM 2, 137, 434, 626, 960
JVM loader 636

K
keepgenerated 197
kernel 1050
key database file 668
Key Label 681
Key Ring 1070
Key Size 681
kill command 118

L
LDAP 4, 11, 122, 656
LDAP Data Interchange Format 664
LDAP server 347, 651, 659
LDAP V3 extensions 352
LDAP Version 3 762

ldap-bindpwd 894
LDAPDB2 662
ldapxcfg 661
LDIF 664
least recently used 265
Level 1 samples 912
Level 2 samples 931
level 2 samples 930
Lightweight Directory Access Protocol 4, 656
Lightweight Third Party Authentication 656, 731
Linux 908
listener.ora 1061
Load data 1011
load-balancing 791
Local operating system 656
Local Pipes 153
local session cache 258
localhost 578
Location Service Daemon 117
Log Analyzer 7, 14, 933, 975
logging.properties 983
Login URL 769
logs directory 119
Logs pane 975, 991
lookup() 433
loopback address 578
Lotus Domino 752
Lotus Domino Administration client 760
LotusXSL 542
LSD 117
LTPA 122, 656, 731

password 733
server 659
Token 658

ltpa-password 894

M
Maintainable 17, 113
manifest file 403
manual mode 266
Manual Update 269
markup language 539
marshalling overhead 77
maximum connection pool size 381, 385
maximum heap size 288
Measurable 17, 113
menu options 811
message events 934
1146 WebSphere V3.5 Handbook

Message ID 935
MESSAGE parameter 936
metalanguage 539
method group 489
method group mapping 879
method group permissions 879, 902
method groups 653, 657
method-ready pool state 428
method-ready state 440
methods

destroy 141
doGet 141
doPost 141
init 141, 142
service 141

Microsoft 11, 42
Active Directory 752
Internet Explorer 5.5 552
Virtual Machine 845

MID 935
middle tier 24
middleware 393
migration 7
Migration Assistant 10, 1033
migration.sh 1034
MIME types 577
MimeFilterInfo 314
minimum connection pool size 381, 385
Model 43
model 5, 279, 791
Models resource instance 815
Model-View-Controller 43
Module Sequence 713
MQ 101, 541
MQSeries 6, 10
multiple error page 10
Multi-row persistent session management 256
multirow session 290
MVC 43

N
Name space 350
Named Windows 31
naming 116, 393
naming service 4, 347
Naming system 350
nanny process 117
National Language Support 15

native installation 1050
native log file 938
Navigation area 39
Navigation pane 818
NDS 752
net stop command 119
Netfinity Support Manager 1055
Netscape 15, 42

API 46
Directory Server 752
Navigator 6 558
Server 4.0 15

netstat 984
Network Dispatcher 773
network security 651
newInstance() 428
NLS 15
NMSV 935
Nodes resource instance 815
no-local copies 78
non-JTA-based transaction model 72
non-repeatable read 522
non-root user 119
non-Web-based clients 27
Normal Return code 827
Novell Directory Services 11, 752
NSAPI 46
Numerical data 1011

O
Object Level Trace 933, 958
Object Level Trace Viewer 961
Object Request Broker 117, 1011
Object Transaction Service 504
ObjectNotFound Exception 464
object-oriented distributed computing environment
4
objectPools 1014
objects 4, 816
OCI driver 1061
OLT 933

Debugger Daemon 969
Trace 964
Viewer 970

OLT/Debugger 958
OMG 504
operating system 1049
option A caching 467
1147

option C caching 467, 530
Option message arguments 936
Oracle 3, 15, 581, 830, 907
Oracle 8.1.6 15
Oracle 8i Release 2 1059
ORB 66, 117, 1011
orbThreadPool 1014
Organization 681
Organization Unit 681
orphan timeout 382, 385
OSE Remote 66, 775, 793
OSE transport queue 889
OTS 504
out-of-process logs 938
overflow 288
overflow sessions 265

P
Page Hit Counter 929
Page Hit Counter level 2 sample 931
pageContext 207, 212
participant 505
passivated state 440
passivation 71, 396
passivation directory 396, 441, 450
PB 72
Performance modules 1015
performance monitor 1009
persistence 63, 393
Persistence Builder 72
persistent session 245, 454
persistent session database 265
persistent session management 260, 279
Personal Certificates 689
pervasive computing 16, 928
phantom read 522
PI 554, 562
ping 928
PingTimeout 868
PKCS #10 684
PKCS12 file 702
PLGN 935
plug-in trace file 938
Poll 929
Pooled State 459
PooledConnection 375
port number 812
Portable 17, 113

portal application 39
portal page 39
POST data 90
Powerloader 636, 649
Predictable 17, 113
Preferences Logs 984
Preferences tab 821, 822
prepared for commit 71
PreparedStatement 373, 374, 388, 389
PreparedStatementCache 383
prereq.properties 1084
prereq_checker 1084
primary key 407, 525
primordial classloader 634
println 51
PrintWriter 47
Private Keys 705
process ID 14, 118
ProcessIdView 989
processing instruction 554
programming model 17
proof of concept 1051
properties directory 119
property tag 47
proxy servers 33
ps command 118
PTF 2 7
putAttribute() 255
putValue() 255

Q
Queue Type 153
Quick Install 7, 925, 1051, 1066
Quote of the Day 929, 930
quoting 859

R
ra 1019
ra.bat 1017
ra.sh 1017
Random 806
Random Prefer Local 805
RDN 736
read lock 523
Read Methods 489
READ_COMMITTED 408
read-only 402
Ready State 459
1148 WebSphere V3.5 Handbook

Realm and Challenge Type 482
Realm Name 730
rebind 735
Record pane 976
Ref 373
Refresh icon 818
Release Notes 8
Reliable 17, 113
Reload Interval 158
reloadinterval 199
ReLoads 1022
Relogin URL 769
remote call 643
remote interface 67, 406, 464
RemoteSRP bean 155, 889
remove() 460
removeAttribute() 299
Repeatable 17, 113
REPEATABLE_READ 530
repository 3
request attributes 94, 100
request dispatchers 10
Request Interceptors 936
RequestDispatcher 298
RequestDispatcher forward 85
RequestDispatcher include 85
reset() 298, 314
resize 84
Resource Analyzer 7, 14, 385, 531, 811, 1009
Resource Analyzer Console 1009, 1020
Resource Analyzer log files 1024
resource instances 815
resource manager 378, 504
resource security 478
ResultSet 371, 373
ResultSetMetaData 373
Reverse Proxy 775
Ring and Server Key Ring files 1070
ring buffer 941
RMI 402
RMI over IIOP 537
RMI/IIOP 6, 10, 66, 402, 473, 795
RMI/IIOP 1.0 10
roll back transactions 378
rollback 71
root 119
Round Robin 806
RowSet 375, 378
RowSetInternal 375

RowSetListener 375
RowSetMetaData 375
RowSetReader 375
RowSetWriter 375
Run-As Mode 475, 481
runtime management 2

S
SAM 1052
SAMPLE 913
sample Web application 126
samples 907
sas.client.props 120
SAX 2 542
SAX API 550
SAX level 1 542
scalability 791
Scalable 17, 113
scrapbook 193
scripting language 857
scriptlets 189
SECJ 935
Secure Sockets Layer 5
secured resource 651
SecureWay 11
security 2, 7, 63, 116, 393, 472
Security Application 935
security collaborator 654, 659
security method groups 478
security permissions 478
security plug-in 654
Security Server ID 497
security server ID 478, 732
security server password 732
Selection Box 929, 930
sendError() 315
sendRedirect() 88, 315
serializable handle 456
serializable object 260, 402
serialization 396
serious events 822
server group 793
server-password 894
Service Provider Interface 348
service() 43, 52, 140, 196, 265
servlet 1, 137, 791

chaining 177
container 143
1149

methods 141
process flow 138

Servlet 2.2/JSP 1.1 Full Compliance Mode 295
Servlet API 46, 85
Servlet API V2.2 295
servlet context 99
servlet context attributes 100
servlet engine 115, 143, 195, 791, 811, 935
Servlet Redirector 155, 793, 937
servlet Web path 162
Servlet Web Path List 604
ServletConfig 142, 300
ServletContext 96, 142, 298
ServletContext cache 94
servletEngine 1014
ServletRequest 142, 299
ServletResponse 142
SESN 935
session 245, 373

clustering 245
database 288
ID 246
state 245
synchronization 64
timeout interval 289

Session Affinity 15
Session and User Profiles 935
session Hashtable 96
session ID 91
Session Manager 123, 252, 258, 456, 889
session state 100
session synchronization interface 71
SessionContext 515
Set Global Security wizard 497
setAttribute() 212, 299, 301
setBufferSize() 298
setEntityContext() 459
setMaxInactiveInterval() 257
setNodeValue() 550
setRollbackOnly 73
setSessionContext(SessionContext context) 428
setters 489
setupCmdLine 933, 1046
setValue() 299
SGML 539
shared database 98
SHARED_LOG_LENGTH 983
SHARED_LOG_LOCK_PORT 983
showCfg servlet 726

ShowConfig 928
showlog 979
Silent installation 1051
Simple API for XML 550
simpleJSP 928
single machine 1
Single Sign On 658, 731
single-row persistent session management 291
skeleton 402
SKIP_BODY 210
smart stub 795, 808
SMIT 660, 1052
SMTL 935
snoop 124
Solaris 15, 154
SourceCodeViewer 928
SPECIFIED 483, 487
specified identity 475
SPI 348
SQL 371
SQL 3 372
SQL statement 189, 210
SQL TIMESTAMP 372
SQLData 373
SQLException 390
SQLInput 373
SQLJ 67
sqlnet.ora 1061
SQLOutput 373
SQLSTATE 390
SRVE 935
SSL 5, 667, 709

timeout 723
Version 2 session IDs 723
Version 3 session IDs 723

SSO 658, 731
SSOToken 658
stack trace window 828
StaleActiveObjectInvocationException 631
StaleConnectionException 390
stand-alone Java client 654
Standard Edition 1, 813
standard err 589
Standard Generalized Markup Language 539
standard output 589
Start icon 818, 839
Started Guide 8
startupServer.sh 118
stateful session beans 439
1150 WebSphere V3.5 Handbook

stateful session EJB 70, 396
stateless session bean 796
Statement 373
state-transition diagram 19
static model 18
static Web pages 3
Statistical data 1011
statusToString 867
STD 19, 21, 45
stderr.log 937
stderr.txt 589
stdout log file 940
stdout.log 937
stdout.txt 589
StockQuote 928
Stop icon 818
StopForRestart 883
Struct 373
stub 402, 638
stylesheet 41
SubContext 350
submit() 81
Success Status 827
Sun 15
Sun Microsystems 348
Survey 929
Survey level 2 sample 931
swagent.log 937
swingall.jar 668
Sybase 3, 15, 830, 907, 1083
Sybase jConnect Client 1083
Sybase V12 1083
Sybase’s Adaptive Server Enterprise Edition R12.0
15
symptom database 999
symptom page 976
sync() 266
sysck 661
SYSTEM 481
system identity 474
systems management 2

T
tag definition library 203
tag handler 202, 208
tag library 10, 203
tag library descriptor 339
TagBody 209

TagBodySupport 210
tagclass 203
TagExtraInfo 203, 207, 211, 228
taglib 203, 211, 221
taglib directive 207
taglib.tld 330
Tasks menu 840
tasks wizard 811
Tcl 12, 857
Tcl procedure 859
Tcl syntax 160
TclException 867
TCP/IP 956
Tds 1084
technology preview 975, 1009
TEI 207, 211, 222
teiclass 203
temp directory 119
temporary files 119
terminate message 934
thick JDBC driver 15
thick Servlet Redirector 775
thick Servlet Redirector Administrative-agent 775
thin client 24
thin driver 1061
thin JDBC driver 15
thin Servlet Redirector 150, 775
thread ID 14
ThreadPoolSize 868
Time 372
Timestamp 372
TLD 203, 221
tnsnames.ora 1061
tool command language 12, 857
Toolable 17, 113
toolbar 811, 813
top down approach 22
Topology 815
Trace Administration 946
Trace menu 820
trace string 943
tracefile 934
TraceSpec attribute 874
-traceString 821
Tracing Component 936
tracing levels 822
tranlog directory 119
transaction 5, 503

attribute 408, 516
1151

coordination 2
isolation levels 521
manager 378, 504

transaction monitoring 116
TRANSACTION_READ_COMMITTED 522
TRANSACTION_READ_UNCOMMITTED 522
TRANSACTION_REPEATABLE_READ 522
TRANSACTION_SERIALIZABLE 522
transactional client 504
transactionData 1014
TransactionRequiredException 517
transactions 10, 63, 393
Transfer 932
TRAS 936
Troubleshooter 8
trusted CA 668
trusted root Certification Authority 699
two-phase commit 74, 384, 511, 580
two-phase commit protocol 505
TX parser 542
TX_BEAN_MANAGED 514, 517
TX_MANDATORY 517
TX_NOT_SUPPORTED 517
TX_REQUIRED 408, 517
TX_REQUIRES_NEW 517
TX_SUPPORTS 517
TXSeries 1
Type tree 815
Types 372

U
UCS-2 662
UML 18, 23
Unified Modeling Language 18
Uniform Resource Identifiers 604
unit of work 74, 984
UnitOfWorkView folder 979
Universal Resource Locator 473
UNIX 10, 811
UOW 984
URI method group mapping 901
URIPath attribute 160
URL 473, 1084
URL encoding 91, 93, 245
URL prefix 580
URL query string 90, 92
Usable 17, 113
Use Overflow 265

useBean tag 191, 192
User Profile 919, 931
User Profile Manager 889, 919, 931
user registry 655
user-defined servlet 603
UserTransaction 378, 506, 509
Using Cache 270
UTF-8 662

V
vertical cloning 794
vertical scaling 772
View 43, 813
View Error button 827
virtual hosts 4
Virtual Hosts folder 491
Virtual Hosts resource instance 815
VirtualHost 720
VisualAge for Java 46, 193, 401, 421, 524, 639,
795
VisualAge for Java Enterprise Edition 53

W
WAP 47
WAR 10, 295, 323
WAR file deployment descriptor 339
warning message 934
WARNINGS tracing level 822
WAR-ROOT 324
wartoxmlconfig 342
WASCML 877
wasdb2.log 937
waslogbr 998
waslogbr.bat 998
waterfall 24
WCMD 936
Web Application Archive 295, 323
Web application classloader 634, 638
Web application classpath 629, 638
Web Application Server 3
Web application server 24
Web application server components 31
Web application server-based components 80
Web Application Web Path 594
Web browser 24, 844
Web client 655
Web console 11, 135, 155, 843, 853
Web resources 491, 651, 794
1152 WebSphere V3.5 Handbook

Web server Plugins and Native code 935
Web server-specific API 46
Web up 18
WebAppDispatcherResponse class 298
Web-based client/server 24
Web-enabled client/server application 26
Web-enabled distributed object based 24
Web-enabled distributed object-based application
29
WEB-INF 324
WebSphere 1, 25

3.5 Compatibility Mode 594
Administration Home Page 845
Administrative Console 7, 135, 811
administrative domain 573
administrative model 115
Administrative Server 796, 811, 844
Advanced Edition 975
Application Server Security Plug-in 473
Application Server V3.5 1
classpaths 573
configuration 825, 842
domain 815
Edge Server 773
EJS security service 472
node 1050
Object Adapter 936
Persistence 936
programming model 17, 24, 101
security 347, 651, 794
security architecture 4
Server Runtime 936
Standard Edition 927
Studio 189
Studio Page Designer 51
Systems Management Commands 936
Systems Management TASKS 936
Systems Management Utilities 935
Test Environment 53
Transactions 936
V3.0.2.x 7
V3.5 Compatibility Mode 295
WASCML syntax 878
Wizards menu 130

WebSphere Control Program 11, 135, 855
WebSphere.instl 937
welcome files 321
Windows 811
Windows 2000 15, 762

Windows 2000 Resource Kit 762
Windows NT 10, 15
Windows NT Task Manager 1078
Windows Services panel 118
Windows Start menu 812
WINT 936
Wizards 813, 818
Wizards icon 819
WJTI 936
WJTS 936
WLM 3, 5, 424, 793, 813, 924
wlmjar 795
WML 47
WOBA 936
workload management 2, 928
Workload management selection policy 797, 805
WPRS 936
Write Methods 489
wsas.install.log 937
WSCP 11, 135, 147, 800, 855, 1033
wscp.bat 855
wscp.hostName property 860
wscp.hostPort property 860
WscpStatus class 867
wsdemo 912
wsdemo1 912
WSsamples_app 910
WSsamplesDB2_app 126, 908
WSsamplesIDB_app 908, 926
wssetup.log 936
WSVR 936
WTRN 936
WTSK 936
WYSIWYG 33, 36

X
X.509 certificate 655
X509 public key certificate 348
XAConnection 376
XADataSource 376
Xalan 542
Xerces 542
XML 1, 31, 41, 539, 811, 843, 877

Component 936
database 975

XML file 203
XML for Java 542
XML parser-generator 53
1153

XML Web Administration Tool 845
XML4J 542
XMLConfig 13, 135, 155, 194, 658, 800, 853, 877,
933, 1033
XMLConfig.bat 878
xmlconfig.dtd 878
XMLConfig.sh 878
XML-enabled browser 33, 41
XMLM 936
XSL 31, 41, 540, 552

namespace 549
processor 564
stylesheet 42, 542
Transformation APIs 542
Transformations 555

XSLT 555

Y
YourCo 126, 912, 919, 929, 932

Z
ZIP 831
1154 WebSphere V3.5 Handbook

© Copyright IBM Corp. 2001 1155

IBM Redbooks review

Your feedback is valued by the Redbook authors. In particular we are interested in situations where a
Redbook "made the difference" in a task or problem you encountered. Using one of the following
methods, please review the Redbook, addressing value, subject matter, structure, depth and
quality as appropriate.

• Use the online Contact us review redbook form found at ibm.com/redbooks
• Fax this form to: USA International Access Code + 1 845 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Document Number
Redbook Title

SG24-6161-00
WebSphere V3.5 Handbook

Review

What other subjects would you
like to see IBM Redbooks
address?

Please rate your overall
satisfaction:

O Very Good O Good O Average O Poor

Please identify yourself as
belonging to one of the
following groups:

O Customer O Business Partner O Solution Developer
O IBM, Lotus or Tivoli Employee
O None of the above

Your email address:
The data you provide here may
be used to provide you with
information from IBM or our
business partners about our
products, services or activities.

O Please do not use the information collected here for future
marketing or promotional contacts or other communications beyond
the scope of this transaction.

Questions about IBM’s privacy
policy?

The following link explains how we protect your personal information.
ibm.com/privacy/yourprivacy/

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.ibm.com/privacy/yourprivacy/
http://www.redbooks.ibm.com/
http://www.ibm.com/privacy/yourprivacy/

(2.0” spine)
2.0” <-> 2.498”

1052 <-> 1314 pages

 W
ebSphere V3.5

Handbook

®

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

WebSphere V3.5 Handbook

Find out what
makes the
WebSphere
programming
model so
compelling

Explore the new
features including
Servlet 2.2 and
JSP 1.1

Learn from the
experience of
product experts

WebSphere Application Server V3.5 is the latest version
of the IBM open standards-based e-business
application deployment environment. This redbook
provides detailed insights into the product’s architecture
and a wealth of practical advice about how best to
exploit WebSphere.

At the heart of the book are detailed step-by-step
descriptions of the tasks you carry out to deploy and
execute your applications.

The redbook places these task descriptions in a broader
context by providing discussions of possible application
architectures, deployment topologies, best practices
and problem determination.

These discussions are underpinned by clear
descriptions of concepts and technologies including the
Servlet, JSP and EJB APIs, security, and transactions.

The redbook also contains details of the support for the
Servlet API V2.2 and JSP V1.1 APIs introduced by
WebSphere V3.5 Fix Pack 2.

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Contents
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. Overview of WebSphere Application Server V3.5
	1.1 What is WebSphere Application Server?
	1.2 WebSphere Application Server architecture overview
	1.2.1 Administration server
	1.2.2 Application server
	1.2.3 Administrative database
	1.2.4 Administrative console

	1.3 Standard Edition
	1.4 Advanced Edition
	1.4.1 Naming
	1.4.2 Security
	1.4.3 Transactions
	1.4.4 Workload management

	1.5 Open standards

	Chapter 2. What’s new in WebSphere V3.5?
	2.1 Installation
	2.2 InfoCenter
	2.3 Migration
	2.4 Java 2 support
	2.5 Security
	2.6 New and improved administration tools
	2.6.1 WebSphere Administrative Console
	2.6.2 WSCP
	2.6.3 XMLConfig
	2.6.4 Web console

	2.7 New and improved connection pooling
	2.8 New Resource Analyzer
	2.9 New Log Analyzer
	2.10 New platform support
	2.11 New database support
	2.12 New Web Server support
	2.13 Conclusion

	Chapter 3. WebSphere programming model
	3.1 Analysis of an example application
	3.1.1 Business process model for an Order
	3.1.2 Architectures supported by WebSphere
	3.1.3 Features of a programming model driven design

	3.2 Application components
	3.2.1 Browser-hosted components
	3.2.2 Web application server hosted components
	3.2.3 Distributed object server-hosted components

	3.3 Control flow mechanisms
	3.3.1 Browser component initiated control flow
	3.3.2 Web application server component initiated control flow

	3.4 Data flow sources
	3.4.1 Browser-maintained data flow sources
	3.4.2 Web application server maintained data flow sources
	3.4.3 Enterprise server-maintained data sources

	3.5 Chapter summary
	3.5.1 Summary of programming model aspects
	3.5.2 Applying the programming model to our sample application
	3.5.3 Meeting the challenges

	Chapter 4. WebSphere components
	4.1 WebSphere Administrative Server
	4.1.1 WebSphere administrative services
	4.1.2 Starting the administrative server
	4.1.3 Stopping the administrative server
	4.1.4 Running WebSphere servers as a non-root user

	4.2 Application server
	4.2.1 The application server hierarchy
	4.2.2 The Default Server
	4.2.3 Create a new application server
	4.2.4 Virtual hosts

	4.3 What is an enterprise application?
	4.4 WebSphere administrative interfaces

	Chapter 5. Servlet support
	5.1 What is a servlet?
	5.2 How servlets work
	5.2.1 Servlet process flow
	5.2.2 The Java Servlet API
	5.2.3 The servlet life cycle

	5.3 WebSphere and servlets
	5.3.1 The servlet engine
	5.3.2 Web applications
	5.3.3 Servlets

	5.4 Writing a simple servlet example
	5.4.1 The HelloWorldServlet
	5.4.2 Basic servlet structure
	5.4.3 Compiling the servlet

	5.5 Deploying the example servlet under WebSphere
	5.5.1 Define a new application server
	5.5.2 Define a servlet engine
	5.5.3 Create a Web application
	5.5.4 Deploying the servlet
	5.5.5 Invoking the deployed servlet

	5.6 Internal servlets
	5.6.1 Adding the internal servlets to your Web application
	5.6.2 The invoker servlet
	5.6.3 The file servlet
	5.6.4 JSP compilers
	5.6.5 The chainer servlet
	5.6.6 The ErrorReporter servlet

	Chapter 6. JSP support
	6.1 Using JSP to present dynamic content
	6.2 The collaboration between form, servlet, and JSP
	6.2.1 A bean as contract
	6.2.2 Build the static portion of the JSP
	6.2.3 Coding the dynamic portion of the JSP

	6.3 Rapid development using JSP
	6.3.1 JSP as scrapbook
	6.3.2 JSP as inspector
	6.3.3 JSP as configuration query
	6.3.4 Testing the servlet/JSP collaboration

	6.4 JSP life cycle
	6.4.1 Java source generation and compilation
	6.4.2 Request processing
	6.4.3 Termination

	6.5 Administering JSP files
	6.5.1 Enable JSP handling at the Web application level
	6.5.2 JSP processors
	6.5.3 JSP-enabled Web applications look at all JSP requests
	6.5.4 Place JSP files and configure Web applications to find them
	6.5.5 JSP reloading

	6.6 Batch compiling JSP files
	6.7 JSP 1.1
	6.7.1 Custom tags
	6.7.2 The custom tag environment
	6.7.3 Building a custom tag

	6.8 Configuring and running your JSPs
	6.8.1 Configuring WebSphere for JSP 1.1
	6.8.2 Deploying application components
	6.8.3 Start the Web application
	6.8.4 Invoking the JSP

	6.9 Custom tag examples

	Chapter 7. Session support
	7.1 V3.02.x vs. V3.5 overview
	7.2 Session feature overview
	7.2.1 Cookies
	7.2.2 URL rewriting
	7.2.3 Session API
	7.2.4 Local sessions
	7.2.5 Persistence
	7.2.6 IBM extensions
	7.2.7 Session clustering

	7.3 Session performance considerations
	7.3.1 Session size
	7.3.2 Multirow persistent session management
	7.3.3 Managing your session connection pool

	7.4 Alternatives to session support: cookies

	Chapter 8. Servlet V2.2 in WebSphere V3.5.2
	8.1 WebSphere support for Servlet API V2.2
	8.2 Selecting Servlet V2.2 support
	8.3 Comparison of the Servlet API versions
	8.3.1 New interfaces in Servlet API V2.2
	8.3.2 Optional Servlet APIs not supported
	8.3.3 Semantic differences
	8.3.4 HTTP session scope
	8.3.5 Session Cookie Names
	8.3.6 Web Path mapping (request mapping)
	8.3.7 Other API differences

	8.4 Multiple error pages
	8.4.1 Properties introduction
	8.4.2 Test case for error pages

	8.5 Welcome file lists
	8.6 The Web Application Archive (WAR)
	8.6.1 Create a directory structure
	8.6.2 Place any static content in the main hierarchy
	8.6.3 Place any Java class files in the WEB-INF/ classes directory
	8.6.4 Place any JAR files in WEB-INF/ lib
	8.6.5 Create the deployment descriptor in the WEB-INF directory
	8.6.6 Create the WAR file

	8.7 Deploying an application from a WAR file
	8.7.1 Obtaining the example WAR file
	8.7.2 Preparation
	8.7.3 Deployment
	8.7.4 Resulting configuration
	8.7.5 Command line deployment
	8.7.6 Execution

	Chapter 9. Using JNDI to access LDAP
	9.1 What is JNDI?
	9.2 Naming concepts
	9.3 JNDI specifications
	9.3.1 JNDI packages
	9.3.2 JNDI standard environment properties

	9.4 JNDI sample application
	9.4.1 Sample application design
	9.4.2 Running the JNDI sample application
	9.4.3 Sample LDAP access implementation

	Chapter 10. JDBC 2.0 support
	10.1 JDBC 2.0 Core API
	10.1.1 Scrollable ResultSets
	10.1.2 Batch update
	10.1.3 Fetch size
	10.1.4 Advanced datatypes

	10.2 JDBC 2.0 Optional Extension API
	10.2.1 JNDI for naming databases
	10.2.2 Connection pooling
	10.2.3 Distributed transaction support (JTA support)
	10.2.4 RowSets
	10.2.5 IBM JDBC 2.0 extensions

	10.3 Administration of data sources
	10.3.1 datasources.xml property file

	10.4 Best practices for JDBC 2.0 data access with WebSphere
	10.4.1 Select database manager/driver capabilities
	10.4.2 Use connection pooling for JDBC access
	10.4.3 Configure connection pool sizes
	10.4.4 Configure connection pool timeouts
	10.4.5 Specify database attributes at deployment time
	10.4.6 Perform expensive JNDI lookups once per data source
	10.4.7 Use proper try/catch/finally logic to release JDBC resources
	10.4.8 Configure PreparedStatement cache size

	10.5 Recovery from DB failures
	10.6 Reference information

	Chapter 11. Enterprise Java Services
	11.1 Configuring Enterprise Java Services
	11.1.1 Creating a container
	11.1.2 Removing a container

	11.2 Installing an EJB into a container
	11.2.1 Creating the deployment descriptor
	11.2.2 Generating stubs and skeletons
	11.2.3 Create EJB in a container
	11.2.4 Creating the deployment descriptor using jetace
	11.2.5 Create an enterprise bean
	11.2.6 Creating a deployed JAR using VisualAge for Java

	11.3 Stateless session beans
	11.3.1 The life cycle of a stateless session bean
	11.3.2 Stateless session beans instance pool

	11.4 Stateful session beans
	11.4.1 The life cycle of the stateful session beans
	11.4.2 Stateful session beans instance pool
	11.4.3 Stateful session beans passivation/activation
	11.4.4 Understanding EJBObject handles

	11.5 Container managed persistence (CMP) entity beans
	11.5.1 Entity beans life cycle
	11.5.2 Understanding the entity beans persistence
	11.5.3 Understanding the entity beans life cycle
	11.5.4 Understanding CMP commit option A, C caching

	11.6 WebSphere EJB security
	11.6.1 WebSphere EJS security service
	11.6.2 Delegation in WebSphere
	11.6.3 Configure EJB security
	11.6.4 Verify EJB security

	Chapter 12. Transactions
	12.1 Transaction basics
	12.2 Java and transactions
	12.2.1 JDBC
	12.2.2 WebSphere JDBC support

	12.3 Enterprise JavaBeans distributed transaction support
	12.3.1 Update databases with EJBs
	12.3.2 Transaction demarcation
	12.3.3 Transactional specifiers
	12.3.4 Transaction attributes
	12.3.5 Transaction isolation attribute

	12.4 EJB concurrency control
	12.4.1 Setting read-only method with VisualAge for Java
	12.4.2 Setting read-only method with administrative console
	12.4.3 Database locking with EJB

	12.5 Settings based on EJB usage
	12.6 Transaction exception handling
	12.6.1 The preliminaries
	12.6.2 What you can assume
	12.6.3 What an application can do
	12.6.4 What a container will do
	12.6.5 TransactionRolledbackException
	12.6.6 Dos and don’ts (EJB 1.0, WebSphere V3.5 specific)

	12.7 WebSphere family interoperability
	12.8 Conclusion

	Chapter 13. XML and WebSphere
	13.1 XML overview
	13.2 Using XML in WebSphere
	13.2.1 XML versions supported

	13.3 An XML example
	13.4 XML basics
	13.4.1 Document Type Definitions (DTDs)
	13.4.2 DTD catalogs
	13.4.3 XML namespaces
	13.4.4 An overview of XML parsing

	13.5 XML and Web browsers: XSL and CSS
	13.5.1 Stylesheet processing instruction
	13.5.2 XSL overview
	13.5.3 An XSL stylesheet example
	13.5.4 A CSS stylesheet example
	13.5.5 XSL and CSS comparison

	13.6 Programming with XML
	13.6.1 Obtaining the CD catalog data
	13.6.2 Dynamic XML formatted with XSL
	13.6.3 Dynamic XML formatted with CSS
	13.6.4 Dynamic XML formatted on the server with LotusXSL
	13.6.5 Supporting a Java client

	13.7 Summary

	Chapter 14. Application deployment
	14.1 Samples we used
	14.2 Before configuration
	14.3 Create a virtual host
	14.4 Create a JDBC driver and data source
	14.4.1 Create a JDBC driver
	14.4.2 Install a JDBC driver
	14.4.3 Create a data source

	14.5 Create an application server and other basic resources
	14.5.1 Types of resources
	14.5.2 Application server properties
	14.5.3 Application Server Start Option
	14.5.4 Node selection
	14.5.5 Add enterprise beans
	14.5.6 EJBContainer properties
	14.5.7 Select a virtual host
	14.5.8 Servlet Engine properties
	14.5.9 Web application properties
	14.5.10 Specify system servlets

	14.6 Placing source files
	14.7 Add Servlet
	14.8 Create enterprise beans
	14.9 Verification of the servlet and EJB
	14.10 Create an enterprise application
	14.11 Verification of an enterprise application
	14.12 Deployment and classpaths
	14.12.1 Classpaths and classloaders
	14.12.2 The application server classpath
	14.12.3 The classloader effect
	14.12.4 Servlet accessing a local EJB
	14.12.5 Servlet access to a remote EJB
	14.12.6 EJBs with shared implementation helper classes
	14.12.7 EJBs with shared interface classes
	14.12.8 Summary of JARs and classpaths

	Chapter 15. WebSphere security
	15.1 Application security
	15.1.1 Authentication
	15.1.2 Authorization
	15.1.3 Delegation
	15.1.4 Trust

	15.2 WebSphere security model
	15.2.1 WebSphere security architecture
	15.2.2 WebSphere security authentication
	15.2.3 WebSphere security authorization

	15.3 What’s new in WebSphere V3.5 security
	15.4 Using client certificate based authentication with WebSphere
	15.4.1 Web client security flow with certificates
	15.4.2 Using IBM SecureWay Directory
	15.4.3 Managing certificates
	15.4.4 Configuring the IBM HTTP Server to support HTTPS
	15.4.5 Securing a WebSphere application using certificates
	15.4.6 Testing the secured application

	15.5 WebSphere and LDAP servers
	15.5.1 Netscape Directory Server
	15.5.2 Domino 5.0
	15.5.3 Microsoft Active Directory

	15.6 Custom challenge

	Chapter 16. Topologies selection
	16.1 Topology selection criteria
	16.1.1 Security
	16.1.2 Performance
	16.1.3 Throughput
	16.1.4 Availability
	16.1.5 Maintainability
	16.1.6 Session state
	16.1.7 Topology selection summary

	16.2 Vertical scaling with WebSphere workload management
	16.3 HTTP server separation from the application server
	16.3.1 OSE Remote
	16.3.2 Thick Servlet Redirector
	16.3.3 Thick Servlet Redirector administrative server agent
	16.3.4 Thin Servlet Redirector
	16.3.5 Reverse proxy / IP forwarding
	16.3.6 HTTP server separation selection criteria

	16.4 Scaling WebSphere in a three-tier environment
	16.5 Horizontally scaling Web servers with WebSphere
	16.6 One WebSphere domain vs. many
	16.7 Multiple applications within one node vs. one application per node
	16.8 Closing thoughts on topologies

	Chapter 17. Workload management
	17.1 Cloning
	17.1.1 Vertical and horizontal cloning
	17.1.2 Secure cloned resources

	17.2 WLM
	17.2.1 WLM runtime
	17.2.2 WLM load balancing options
	17.2.3 WLM runtime exception handling
	17.2.4 WLM for administrative servers

	Chapter 18. Administrative console
	18.1 About WebSphere Administrative Console
	18.1.1 Starting the administrative console
	18.1.2 Stopping the administrative console
	18.1.3 WebSphere Administrative Console features
	18.1.4 WebSphere Administrative Console functionality
	18.1.5 The common tasks

	18.2 In conclusion

	Chapter 19. Web console
	19.1 About Web console
	19.1.1 Starting the Web administrative console
	19.1.2 Stopping the Web console

	19.2 Web console functionality
	19.2.1 Creating an object

	19.3 In conclusion

	Chapter 20. The WebSphere Control Program (WSCP)
	20.1 Command line administration
	20.1.1 What is WSCP?
	20.1.2 What is Tcl?

	20.2 Tcl language fundamentals
	20.2.1 Basic Tcl syntax
	20.2.2 Variables
	20.2.3 Command substitution
	20.2.4 Quoting
	20.2.5 Procedures

	20.3 Invoking WSCP
	20.3.1 Command-line options
	20.3.2 The properties file

	20.4 Command syntax of WSCP
	20.4.1 Online help
	20.4.2 Status and error information
	20.4.3 Sample commands

	20.5 Example WSCP procedures
	20.5.1 Sample procedures: statusToString, checkStatus
	20.5.2 Advanced sample procedures: getAttrs, setAttrs
	20.5.3 Advanced sample procedure: modEnv

	20.6 Interactive administration with WSCP
	20.6.1 Keeping track of the container
	20.6.2 Command line editing

	20.7 Troubleshooting with WSCP
	20.7.1 Enabling trace

	20.8 Limitations and additional information
	20.8.1 Security objects are not supported
	20.8.2 Aggregate tasks are not provided
	20.8.3 Concurrent use of clients may require coordination

	20.9 Additional resources

	Chapter 21. XMLConfig
	21.1 Introduction to XML and XMLConfig
	21.2 XMLConfig components
	21.3 XMLConfig new features
	21.4 XML: a suitable markup language for WebSphere
	21.5 Customizing XML for the WebSphere XMLConfig tool
	21.5.1 XMLConfig elements
	21.5.2 XMLConfig actions

	21.6 XMLConfig examples and uses
	21.6.1 Starting and stopping an application server
	21.6.2 Creating a new JDBC driver
	21.6.3 Creating a new DataSource
	21.6.4 Creating a new application server
	21.6.5 Creating a new EJB container
	21.6.6 Creating a new servlet engine
	21.6.7 Creating a new Web application
	21.6.8 Supporting Servlet 2.2 and JSP 1.1 APIs
	21.6.9 Creating a new servlet
	21.6.10 Creating a new EJB
	21.6.11 XMLConfig variable substitution
	21.6.12 XMLConfig model and clone support
	21.6.13 XMLConfig and security
	21.6.14 Starting point for generating XML for use with XMLConfig

	Chapter 22. WebSphere sample programs
	22.1 How to obtain the samples?
	22.2 WebSphere samples matrix
	22.3 WebSphere samples installation
	22.4 WebSphere samples location
	22.5 WebSphere WSsamplesDB2_app Web application
	22.6 Database configuration
	22.6.1 Checking database connectivity
	22.6.2 Defining a JDBC driver
	22.6.3 Creating a data source
	22.6.4 Installing the driver

	22.7 WSsamplesDB2_app User Profile sample
	22.8 Sample Enterprise JavaBeans configuration
	22.9 WebSphere Standard Edition samples
	22.10 Sample InstantDB configuration
	22.11 Standard and Advanced Edition samples listing
	22.11.1 The examples Web application
	22.11.2 The WSsamplesIDB_app Web application
	22.11.3 The WSsampleDB2_app Web application

	Chapter 23. Problem determination
	23.1 The problem determination process
	23.1.1 Messages, logs and traces

	23.2 Messages
	23.3 The format of log and trace files
	23.4 WebSphere log files
	23.4.1 Sample output of log files

	23.5 The trace facility
	23.5.1 Trace basics
	23.5.2 Trace string format
	23.5.3 Enabling a trace for the administrative console
	23.5.4 Enabling trace for the administrative server
	23.5.5 Setting trace as an application server property
	23.5.6 Using the Trace Administrative Console
	23.5.7 Setting trace as a command line option
	23.5.8 Important trace packages
	23.5.9 Trace examples
	23.5.10 Nanny trace
	23.5.11 Using DrAdmin

	23.6 Object level trace (OLT) and the IBM distributed debugger
	23.6.1 Installing OLT and the distributed debugger
	23.6.2 Running OLT
	23.6.3 Object level trace - tracing a servlet
	23.6.4 Setting method breakpoints on the trace
	23.6.5 Running the debugger from OLT
	23.6.6 Platforms supported for OLT and Distributed Debugger

	Chapter 24. Log Analyzer
	24.1 Log Analyzer overview
	24.2 Downloading and installing the Log Analyzer
	24.3 Using the Log Analyzer to view the activity.log
	24.4 Using showlog to view the activity.log
	24.5 Configuring the activity.log
	24.5.1 Specify the size of activity.log
	24.5.2 Specify the port on which the logging service is listening

	24.6 Display log entries in different groupings
	24.6.1 Sorting by ServerName
	24.6.2 Sorting by ProcessId

	24.7 Analyze action
	24.8 Using the Log Analyzer to view the ring buffer dump
	24.9 Updating the symptom database
	24.10 Saving logs as an XML file

	Chapter 25. Resource Analyzer
	25.1 About Resource Analyzer
	25.1.1 Performance data organization

	25.2 What is collected and analyzed?
	25.3 Resource Analyzer functionality
	25.4 Levels of data collection
	25.4.1 Using the EPM specification property
	25.4.2 Using the Performance dialog

	25.5 Resource Analyzer requirements
	25.6 Starting the Resource Analyzer
	25.7 Working with the analyzer
	25.7.1 Starting the analysis of a resource
	25.7.2 Setting the Refresh Rate
	25.7.3 Setting the Table Size
	25.7.4 Viewing the analyses in chart form
	25.7.5 Logging function in the analyzer

	25.8 Resource Analyzer with WebSphere V3.5.2
	25.9 Resource Analyzer documentation

	Chapter 26. Migration
	26.1 About the Migration Assistant
	26.2 Main steps in WebSphere migration
	26.3 Migration Assistant panels
	26.4 Files that are saved during migration
	26.5 What is left to be done?
	26.6 Migration of WebSphere V2.0.3.x to WebSphere V3.5
	26.7 Migration Assistant documentation

	Appendix A. Installation steps
	A.1 Planning
	A.1.1 Web server location
	A.1.2 Database server location
	A.1.3 Java GUI installation or native installation

	A.2 Installation steps overview
	A.2.1 Configure operating system
	A.2.2 Install Web server
	A.2.3 Install DB server and create an administrative database
	A.2.4 WebSphere installation
	A.2.5 Post configuration
	A.2.6 Fix Pack installation

	A.3 Uninstallation of WebSphere Application Server

	Appendix B. Remote Sybase connectivity
	B.1 Sybase jConnect Client
	B.1.1 Remote WebSphere V3.5 installation with Sybase ASE
	B.1.2 Checking Sybase jConnect connectivity with jConnect 4.2

	Appendix C. XML sample programs
	C.1 Instructions for setting up and running the XML demo: Web Client
	C.2 Instructions for setting up and running the XML demo: Java Client

	Appendix D. JNDI sample programs
	D.1 JNDI sample files
	D.2 Deploy JNDI sample program to default_app
	D.2.1 Copy HTML files and JSP files
	D.2.2 Copy java files
	D.2.3 Add servlets to default_app

	D.3 Run the JNDI sample

	Appendix E. Big3 application
	E.1 Big3 - small insurance application
	E.2 Object interaction diagram
	E.3 Install Big3
	E.4 Test the configuration
	E.5 Big3 application directory structure

	Appendix F. The admin.config file definitions
	Appendix G. Using the additional material
	G.1 Using the CD-ROM
	G.1.1 How to use the CD-ROM

	G.2 Locating the additional material on the Internet
	G.3 Using the Web material
	G.3.1 How to use the Web material

	Appendix H. Special notices
	Appendix I. Related publications
	I.1 IBM Redbooks
	I.2 IBM Redbooks collections
	I.3 Other resources
	I.4 Referenced Web sites

	How to get IBM Redbooks
	IBM Redbooks fax order form

	Index
	IBM Redbooks review

