WebSphere V3.5 Handbook

Find out what makes the WebSphere
programming model so compelling

Explore the new features,
including Servlet 2.2 and JSP 1.1

—~ .
Learn from the experience
of product experts

Ken Ueno
Larry Brown
Larry Clark
David Artus Chris Gerken
Ashok lyengar Geoff Hambrick
Simon Kapadia Stacy Joines
Mohamed Ramdani Sung-lk Son
James Roca Lorrie Tomek
Chenxi Zhang Jim VanOosten

ibm.com/redbooks REd bOOkS

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

SG24-6161-00

International Technical Support Organization

WebSphere V3.5 Handbook

January 2001

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix H, “Special notices” on page 1131.

First Edition (January 2001)

This edition applies to:
* IBM WebSphere Application Server Standard and Advanced Editions V3.5.2 for AIX and Windows
e IBM HTTP Server V1.3.6.12 for AlX and Windows
* IBM Java Development Kit V1.2.2 for AIX and Windows
e IBM DB2 UDB V7.1 FP1 for AIX and Windows
* Lotus Domino R5.0.4 for AIX
e Oracle 8i (8.1.6) for AIX and Windows
e Sybase 12 for AIX

for use with the AIX V4.3.3, Windows NT 4.0 SP6a and Windows 2000 operating systems.

Comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678

P.O. Box 12195

Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2001. All rights reserved.
Note to U.S Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Preface. Xix
The team that wrote thisredbook. Xix
Comments Welcome. e xxiii
Chapter 1. Overview of WebSphere Application Server V3.5 1
1.1 What is WebSphere Application Server? 1
1.2 WebSphere Application Server architecture overview. 1
1.2.1 Administrationserver 2
1.2.2 Application server. 2
1.2.3 Administrativedatabase L L. 3
1.2.4 Administrativeconsole 3
1.3 Standard Edition. 3
1.4 Advanced Edition. 4
1.4.10 Naming. 4
1.4.2 SeCurity 4
1.4.3 Transactions. 5
1.4.4 Workload management. i 5
1.5 Openstandards 5
Chapter 2. What’s new in WebSphere V3.5?. 7
2.1 Installation 7
2.2 InfoCenter 8
2.3 Migration 10
2.4 Java 2 SUPPOIt . . . o 10
2.5 SECUIMY . o 11
2.6 New and improved administrationtools 11
2.6.1 WebSphere Administrative Console 11
2.6.2 WSCP . .. 12
2.6.3 XMLCONfig . . oot 13
2.6.4 Webconsole. 13
2.7 New and improved connectionpooling. 13
2.8 New Resource Analyzer. 14
2.9 New Log Analyzer 14
2.10 New platform support 15
2.11 New database support 15
2.12 New Web Serversupport 15
213 Conclusion 15
Chapter 3. WebSphere programming model. 17
3.1 Analysis of an example application. 17
3.1.1 Business process modelforanOrder. 18

© Copyright IBM Corp. 2001 iii

3.1.2 Architectures supported by WebSphere 24

3.1.3 Features of a programming model driven design 30
3.2 Application components 31
3.2.1 Browser-hosted components 31
3.2.2 Web application server hosted components 42
3.2.3 Distributed object server-hosted components. 63
3.3 Control flow mechanisms 80
3.3.1 Browser component initiated control flow 80
3.3.2 Web application server component initiated control flow. 85
3.4 Dataflow SOUICeS. i 90
3.4.1 Browser-maintained data flow sources 90
3.4.2 Web application server maintained data flow sources. 94
3.4.3 Enterprise server-maintained data sources. 101
3.5 Chapter summary. 104
3.5.1 Summary of programming model aspects. 104
3.5.2 Applying the programming model to our sample application . . . 107
3.5.3 Meeting the challenges. 112
Chapter 4. WebSphere components 115
4.1 WebSphere Administrative Server 115
4.1.1 WebSphere administrative services 116
4.1.2 Starting the administrative server. 118
4.1.3 Stopping the administrative server 118
4.1.4 Running WebSphere servers as a non-rootuser 119
4.2 Application server. 122
4.2.1 The application server hierarchy. 122
422 TheDefault Server. i 123
4.2.3 Create a new applicationserver........................ 126
4.2.4 Virtual hosts 130
4.3 What is an enterprise application? 134
4.4 WebSphere administrative interfaces 134
Chapter 5. Servietsupport. 137
5.1 Whatisaservlet?. 137
5.2 How servlets work 137
5.2.1 Servletprocessflow...... 138
5.2.2 Thedava Servlet APl 139
5.2.3 Theservletlifecycle. 140
5.3 WebSphere andservlets 143
5.3.1 Theservletengine 143
5.3.2 Web applications 144
5.3.83 Servlets 144
5.4 Writing a simple servletexample, 144

WebSphere V3.5 Handbook

5.4.1 The HelloWorldServlet 145

5.4.2 Basic servletstructure 145
5.4.3 Compilingtheservlet 146
5.5 Deploying the example servlet under WebSphere 147
5.5.1 Define a new applicationserver 148
5.5.2 Defineaservletengine. 150
5.5.3 Create aWeb application. 155
5.5.4 Deployingtheservlet 160
5.5.5 Invoking the deployedservlet. 166
5.6 Internal servlets 167
5.6.1 Adding the internal servlets to your Web application. 167
5.6.2 Theinvokerservlet. 170
5.6.3 Thefileservlet 173
5.6.4 JSP compilers 176
5.6.5 Thechainerservlet. 177
5.6.6 The ErrorReporterservlet. 183
Chapter 6. JSP support 189
6.1 Using JSP to present dynamic content. 189
6.2 The collaboration between form, servlet,and JSP 190
6.2.1 Abeanascontract........... 191
6.2.2 Build the static portionofthe JSP. 191
6.2.3 Coding the dynamic portion of the JSP. 191
6.3 Rapid developmentusingJdSP 193
6.3.1 JSP asscrapbook. 193
6.3.2 JSP asinspector 193
6.3.3 JSP as configurationquery. 194
6.3.4 Testing the servlet/JSP collaboration 194
6.4 JSPlifecycle 194
6.4.1 Java source generation and compilation. 195
6.4.2 Request processingot 196
6.4.3 Termination 196
6.5 Administering JSP files. 196
6.5.1 Enable JSP handling at the Web application level 196
6.5.2 JSP ProCessOrso u i 197
6.5.3 JSP-enabled Web applications look at all JSP requests 198
6.5.4 Place JSP files and configure Web applications to find them .. 198
6.5.5 JSPreloading. 199
6.6 Batch compiling JSPfiles. 200
B.7 JSP 1.1 200
6.7.1 Customtags. 201
6.7.2 The custom tag environment 201
6.7.3 Buildingacustomtag.......... i 207

6.8 Configuring and runningyourJSPs 212

6.8.1 Configuring WebSphere fordSP1.1....... 213
6.8.2 Deploying application components 221
6.8.3 Startthe Web application 224
6.8.4 Invokingthe JSP 225
6.9 Customtagexamples. i 228
Chapter 7. Sessionsupport. 245
7.1 V3.02.xVvs. V3.5 0Verview 246
7.2 Session feature overview 246
721 COOKIES . oo 246
7.2.2 URLrewritingot 251
7.2.3 Session APl 254
7.2.4 Local SesSSioNS 258
7.2.5 Persistence 260
7.2.6 IBMextensions. 265
7.2.7 Sessionclustering 276
7.3 Session performance considerations 287
7.3.1 SesSioN Size. 287
7.3.2 Multirow persistent session management 290
7.3.3 Managing your session connection pool 291
7.4 Alternatives to session support: cookies., 292
Chapter 8. Serviet V2.2 in WebSphere V3.5.2. 295
8.1 WebSphere support for Servlet APIV2.2 295
8.2 Selecting Servlet V2.2 support. 297
8.3 Comparison of the Servlet APl versions 298
8.3.1 New interfaces in Servlet APIV2.2. 298
8.3.2 Optional Servlet APIs notsupported. 300
8.3.3 Semantic differences 301
8.3.4 HTTP Session sCope. v it e 301
8.3.5 Session Cookie Names 308
8.3.6 Web Path mapping (request mapping) 313
8.3.7 Other APl differences 314
8.4 Multiple error pages oottt 314
8.4.1 Properties introduction 315
8.4.2 Testcaseforerrorpages 316
8.5 Welcomefilelists 321
8.6 The Web Application Archive (WAR) 323
8.6.1 Create a directory structure 324
8.6.2 Place any static content in the main hierarchy 324
8.6.3 Place any Java class files in the WEB-INF/ classes directory . . 324
8.6.4 Place any JAR files in WEB-INF/lib 325

Vi WebSphere V3.5 Handbook

8.6.5 Create the deployment descriptor in the WEB-INF directory . . . 325

8.6.6 Createthe WARile 326
8.7 Deploying an application from a WARfile. 328
8.7.1 Obtaining the example WARfile. 328
8.7.2 Preparation. 330
8.7.3 Deployment 332
8.7.4 Resulting configuration. oL 338
8.7.5 Command line deployment. 342
8.7.6 Execution. 345
Chapter 9. Using JNDItoaccessLDAP 347
9.1 Whatis JNDI? 348
9.2 Naming CoONCEePLS o it e 349
9.3 JNDI specifications. 351
9.3.1 UNDIpackages 351
9.3.2 JNDI standard environment properties 352
9.4 JNDI sample application. 353
9.4.1 Sample applicationdesign 354
9.4.2 Running the JNDI sample application. 355
9.4.3 Sample LDAP access implementation 364
Chapter 10. JDBC 2.0 support. 371
10.1 JDBC 2.0 Core APl 371
10.1.1 Scrollable ResultSets L. 373
10.1.2 Batchupdate 374
10.1.3 Fetchsize. 374
10.1.4 Advanced datatypes..........., 374
10.2 JDBC 2.0 Optional Extension API. 374
10.2.1 JNDI for naming databases 376
10.2.2 Connectionpooling. i 376
10.2.3 Distributed transaction support (JTA support). 378
10.2.4 RowSets. 378
10.2.5 IBM JDBC 2.0 extensions. 378
10.3 Administration of datasources L. 379
10.3.1 datasources.xml property file 383
10.4 Best practices for JDBC 2.0 data access with WebSphere 383
10.4.1 Select database manager/driver capabilities. 384
10.4.2 Use connection pooling forJDBC access 385
10.4.3 Configure connection poolsizes. 385
10.4.4 Configure connection pool timeouts 385
10.4.5 Specify database attributes at deploymenttime 386
10.4.6 Perform expensive JNDI lookups once per data source 386

10.4.7 Use proper try/catch/finally logic to release JDBC resources . 388

vii

10.4.8 Configure PreparedStatement cache size................ 389

10.5 Recovery from DB failures 389
10.6 Reference information 391
Chapter 11. Enterprise Java Services. 393
11.1 Configuring Enterprise Java Services. 393
11.1.1 Creatingacontainer. 394
11.1.2 Removingacontainer. 399
11.2 Installingan EJBintoacontainer. 400
11.2.1 Creating the deployment descriptor 402
11.2.2 Generating stubs and skeletons 402
11.2.3 Create EJBinacontainer. 402
11.2.4 Creating the deployment descriptor using jetace........... 402
11.2.5 Create an enterprisebean 411
11.2.6 Creating a deployed JAR using VisualAge forJdava 421
11.3 Stateless sessionbeans. i, 427
11.3.1 The life cycle of a stateless sessionbean................ 427
11.3.2 Stateless session beans instancepool 437
11.4 Stateful sessionbeans......... i, 439
11.4.1 The life cycle of the stateful sessionbeans. 439
11.4.2 Stateful session beans instancepool 447
11.4.3 Stateful session beans passivation/activation. 450
11.4.4 Understanding EJBObjecthandles 453
11.5 Container managed persistence (CMP) entity beans 459
11.5.1 Entity beanslifecycle. 459
11.5.2 Understanding the entity beans persistence 464
11.5.3 Understanding the entity beans lifecycle 466
11.5.4 Understanding CMP commit option A, C caching 467
11.6 WebSphere EJB security 472
11.6.1 WebSphere EJS security service 473
11.6.2 Delegation in WebSphere. 474
11.6.3 Configure EJB security. 476
11.6.4 Verify EJB security 492
Chapter 12. Transactions. 503
12.1 Transactionbasics 503
12.2 Java andtransactions, 506
12.2.1 UDBC . . . 506
12.2.2 WebSphere JDBC support 509
12.3 Enterprise JavaBeans distributed transaction support 511
12.3.1 Update databaseswithEJBs 511
12.3.2 Transactiondemarcation 513
12.3.3 Transactional specifiers 516

viii WebSphere V3.5 Handbook

12.3.4 Transaction attributes. 517

12.3.5 Transaction isolation attribute. 521
12.4 EJB concurrency control. 525
12.4.1 Setting read-only method with VisualAge forJava 526
12.4.2 Setting read-only method with administrative console. 526
12.4.3 Database lockingwithEJB 528
12.5 SettingsbasedonEJBusage. 529
12.6 Transaction exceptionhandling 533
12.6.1 The preliminaries 533
12.6.2 Whatyoucanassume uiuiuiinnnennnn 534
12.6.3 What an applicationcando. 534
12.6.4 Whata containerwilldo 535
12.6.5 TransactionRolledbackException 535
12.6.6 Dos and don’ts (EJB 1.0, WebSphere V3.5 specific). 535
12.7 WebSphere family interoperability 537
12.8 CONCIUSION . . . Lo 537
Chapter 13. XML and WebSphere 539
13.1 XML overview. 539
13.2 Using XML in WebSphere i, 540
13.2.1 XML versions supported. 542
13.3 An XML example 543
13.4 XML basiCs.o 544
13.4.1 Document Type Definitions (DTDs). 546
13.4.2 DTDcatalogst 549
13.4.3 XML namespaces.ottt 549
13.4.4 Anoverview of XML parsing. 550
13.5 XML and Web browsers: XSLand CSS 552
13.5.1 Stylesheet processing instruction 554
13.5.2 XSLoverview 555
13.5.3 An XSL stylesheetexample 556
13.5.4 A CSS stylesheetexample 558
13.5.5 XSLand CSS comparison 560
13.6 Programming with XML 561
13.6.1 Obtaining the CD catalogdata 561
13.6.2 Dynamic XML formatted with XSL. 562
13.6.3 Dynamic XML formatted with CSS 562
13.6.4 Dynamic XML formatted on the server with LotusXSL. 563
13.6.5 Supportingadavaclient......... 566
13.7 SuUMMaAry . .o 571
Chapter 14. Application deployment. 573
14.1 Sampleswe used. 573

14.2 Before configuration. 574

14.3 Create avirtualhost. 576
14.4 Create a JDBC driverand datasource...................... 579
14.4.1 CreateaJDBC driver. 579
14.4.2 InstallaJDBC driver. 582
14.4.3 Createadatasource 585
14.5 Create an application server and other basic resources 587
14.5.1 Types of resources. i 588
14.5.2 Application server properties, 589
14.5.3 Application Server Start Option. 590
14.5.4 Node selection 591
14.5.5 Add enterprisebeans 592
14.5.6 EJBContainer properties. i 592
14.5.7 Selectavirtualhost 593
14.5.8 Servlet Engine properties o 594
14.5.9 Web application properties 594
14.5.10 Specify systemservlets 596
14.6 Placing sourcefiles 598
14.7 Add Servlet 601
14.8 Create enterprisebeans. i 606
14.9 Verification of theservletandEJB 613
14.10 Create an enterprise application. 615
14.11 Verification of an enterprise application 620
14.12 Deploymentandclasspaths 621
14.12.1 Classpaths andclassloaders 622
14.12.2 The application server classpath. 629
14.12.3 The classloadereffect. 632
14.12.4 Servlet accessingalocalEJB. 636
14.12.5 ServletaccesstoaremoteEJB 640
14.12.6 EJBs with shared implementation helper classes 642
14.12.7 EJBs with shared interfaceclasses. 642
14.12.8 Summary of JARs andclasspaths 650
Chapter 15. WebSpheresecurity. 651
15.1 Application security 651
15.1.1 Authentication. 651
15.1.2 Authorization 651
15.1.3 Delegation 652
15.1.4 Trust. .. .o 652
15.2 WebSphere security model. L. 652
15.2.1 WebSphere security architecture 652
15.2.2 WebSphere security authentication 655
15.2.3 WebSphere security authorization 657

X WebSphere V3.5 Handbook

15.3 What's new in WebSphere V3.5 security 658

15.4 Using client certificate based authentication with WebSphere 658
15.4.1 Web client security flow with certificates. 659
15.4.2 Using IBM SecureWay Directory. 660
15.4.3 Managing certificates 667
15.4.4 Configuring the IBM HTTP Server to support HTTPS 709
15.4.5 Securing a WebSphere application using certificates 726
15.4.6 Testing the secured application 749

15.5 WebSphere and LDAP servers. 752
15.5.1 Netscape Directory Server 752
15.5.2 Domino 5.0.ot 760
15.5.3 Microsoft Active Directory. i 762

15.6 Customchallenge. 769

Chapter 16. Topologies selection 771

16.1 Topology selectioncriteria 771
16.1.1 Security 771
16.1.2 Performance. 771
16.1.3 Throughput. 772
16.1.4 Availability 772
16.1.5 Maintainability 773
16.1.6 Sessionstate 773
16.1.7 Topology selection summary 773

16.2 Vertical scaling with WebSphere workload management 774

16.3 HTTP server separation from the application server............ 775
16.3.1 OSERemote 776
16.3.2 Thick Servlet Redirector. 777
16.3.3 Thick Servlet Redirector administrative server agent 779
16.3.4 Thin Servlet Redirector. 780
16.3.5 Reverse proxy / IP forwarding. 781
16.3.6 HTTP server separation selection criteria. 783

16.4 Scaling WebSphere in a three-tier environment 783

16.5 Horizontally scaling Web servers with WebSphere 785

16.6 One WebSpheredomainvs.many 785

16.7 Multiple applications within one node vs. one application per node. 788

16.8 Closing thoughts on topologies. 789

Chapter 17. Workload management 791

171 Cloning. 791
17.1.1 Vertical and horizontal cloning 793
17.1.2 Secure cloned resources 794

17.2 WLM 795
17.2.1 WLMruntime 796

Xi

17.2.2 WLM load balancingoptions. 805

17.2.3 WLM runtime exception handling 806
17.2.4 WLM for administrative servers 809
Chapter 18. Administrativeconsole 811
18.1 About WebSphere Administrative Console 811
18.1.1 Starting the administrative console. 811
18.1.2 Stopping the administrative console 812
18.1.3 WebSphere Administrative Console features 813
18.1.4 WebSphere Administrative Console functionality 818
18.1.5 Thecommontasks.......... 829
18.2 Inconclusion e 842
Chapter 19. Webconsole. 843
19.1 AboutWebconsole 843
19.1.1 Starting the Web administrative console. 844
19.1.2 Stoppingthe Webconsole 846
19.2 Web console functionality. 847
19.2.1 Creatinganobject i 847
19.3 Inconclusion 853
Chapter 20. The WebSphere Control Program (WSCP) 855
20.1 Command line administration. 856
20.1.1 Whatis WSCP? 856
20.1.2 Whatis TCl? ... 857
20.2 Tcllanguage fundamentals. 857
20.2.1 BasicTelsyntax 857
20.2.2 Variables 858
20.2.3 Command substitution 858
20.2.4 QUOLING. . . . oo 859
20.2.5 Procedures. 859
20.3 Invoking WSCP 859
20.3.1 Command-lineoptions 860
20.3.2 The propertiesfile. 860
20.4 Command syntax of WSCP 862
20.4.1 Online help. 865
20.4.2 Status and errorinformation. oL 867
20.4.3 Samplecommands. 868
20.5 Example WSCP procedures 868
20.5.1 Sample procedures: statusToString, checkStatus. 869
20.5.2 Advanced sample procedures: getAttrs, setAttrs. 869
20.5.3 Advanced sample procedure: modEnv 871
20.6 Interactive administration with WSCP. 872
20.6.1 Keepingtrack of the container 873

Xii WebSphere V3.5 Handbook

20.6.2 Commandlineediting. 874

20.7 Troubleshootingwith WSCP. 874
20.7.1 Enablingtrace 874
20.8 Limitations and additional information. 876
20.8.1 Security objects are notsupported 876
20.8.2 Aggregate tasks are notprovided 876
20.8.3 Concurrent use of clients may require coordination 876
20.9 Additional resources. 876
Chapter 21. XMLConfig 877
21.1 Introduction to XML and XMLConfig. 877
21.2 XMLConfigcomponents 878
21.3 XMLConfignew features 879
21.4 XML: a suitable markup language for WebSphere 880
21.5 Customizing XML for the WebSphere XMLConfigtool 881
21.5.1 XMLConfigelements 882
21.5.2 XMLConfigactions 883
21.6 XMLConfig examplesanduses 884
21.6.1 Starting and stopping an application server 884
21.6.2 Creatinganew JDBCdriver, 885
21.6.3 Creatinganew DataSource 886
21.6.4 Creating a new applicationserver. 886
21.6.5 Creatinganew EJBcontainer 888
21.6.6 Creating anew servletengine 889
21.6.7 Creating a new Web application 890
21.6.8 Supporting Servlet2.2andJSP1.1APIs 891
21.6.9 Creatinganewservlet 892
21.6.10 CreatinganewEJB 893
21.6.11 XMLConfig variable substitution 894
21.6.12 XMLConfig model and clone support 895
21.6.13 XMLConfigand security 899
21.6.14 Starting point for generating XML for use with XMLConfig . . 904
Chapter 22. WebSphere sample programs 907
22.1 How to obtain the samples? 907
22.2 WebSphere samplesmatrix 908
22.3 WebSphere samples installation. 909
22.4 WebSphere samples location. 911
22.5 WebSphere WSsamplesDB2_app Web application 912
22.6 Database configuration. 912
22.6.1 Checking database connectivity 913
22.6.2 Defininga JDBC driver. 914
22.6.3 Creatingadatasource........... 916

xiii

Xiv

22.6.4 Installingthedriver. 917

22.7 WSsamplesDB2_app User Profile sample 919
22.8 Sample Enterprise JavaBeans configuration 919
22.9 WebSphere Standard Editionsamples 925
22.10 Sample InstantDB configuration 926
22.11 Standard and Advanced Edition samples listing 927
22.11.1 The examples Web application. 927
22.11.2 The WSsamplesIDB_app Web application 928
22.11.3 The WSsampleDB2_app Web application. 929
Chapter 23. Problem determination 933
23.1 The problem determination process 933
23.1.1 Messages, logsandtraces............... 933
283.2 MESSaQES. . . o i 934
23.3 The formatoflogand tracefiles............ 935
23.4 WebSpherelogfiles. 936
23.4.1 Sample outputof logfiles. 938
23.5 Thetrace facility. 941
23.5.1 Tracebasics. 941
23.5.2 Tracestringformat. 943
23.5.3 Enabling a trace for the administrative console. 943
23.5.4 Enabling trace for the administrative server 944
23.5.5 Setting trace as an application server property 945
23.5.6 Using the Trace Administrative Console 946
23.5.7 Setting trace as a command line option 952
23.5.8 Importanttrace packages. 952
23.5.9 Trace examples 953
23.5.10 Nannytracet 955
23.5.11 Using DrAdmin 956
23.6 Object level trace (OLT) and the IBM distributed debugger. 958
23.6.1 Installing OLT and the distributed debugger 958
23.6.2 Running OLT 959
23.6.3 Object level trace - tracingaserviet 963
23.6.4 Setting method breakpoints onthetrace................. 967
23.6.5 Running the debugger from OLT 968
23.6.6 Platforms supported for OLT and Distributed Debugger 973
Chapter 24. Log Analyzer 975
24.1 Log Analyzer overview« .ot 975
24.2 Downloading and installing the Log Analyzer 977
24.3 Using the Log Analyzer to view the activity.log................ 977
24.4 Using showlog to view the activity.log. 979
24.5 Configuring the activity.log. 983

WebSphere V3.5 Handbook

24.5.1 Specify the size of activity.log. 983

24.5.2 Specify the port on which the logging service is listening 983
24.6 Display log entries in different groupings 984
24.6.1 Sorting by ServerName 986
24.6.2 Sortingby Processld 989
24.7 Analyze action 992
24.8 Using the Log Analyzer to view the ring bufferdump 996
24.9 Updating the symptom database 999
2410 Savinglogsasan XMLfile...... 1001
Chapter 25. Resource Analyzer. 1009
25.1 About Resource Analyzer. 1009
25.1.1 Performance data organization. 1010
25.2 What is collected and analyzed? 1010
25.3 Resource Analyzer functionality L. 1012
25.4 Levelsofdatacollection........... 1013
25.4.1 Using the EPM specification property 1013
25.4.2 Using the Performance dialog. 1015
25.5 Resource Analyzer requirements 1016
25.6 Starting the Resource Analyzer 1017
25.7 Working with the analyzer 1019
25.7.1 Starting the analysisofaresource 1020
25.7.2 Settingthe RefreshRate 1021
25.7.3 Settingthe Table Size 1022
25.7.4 Viewing the analysesinchartform.................... 1022
25.7.5 Logging function inthe analyzer...................... 1023
25.8 Resource Analyzer with WebSphere V3.5.2................. 1026
25.9 Resource Analyzer documentation. 1032
Chapter 26. Migration., 1033
26.1 About the Migration Assistant. 1033
26.2 Main steps in WebSphere migration. 1034
26.3 Migration Assistantpanels 1034
26.4 Files that are saved during migration 1045
26.5 Whatislefttobedone? 1046
26.6 Migration of WebSphere V2.0.3.x to WebSphere V3.5 1046
26.7 Migration Assistant documentation. 1048
Appendix A. Installationsteps. 1049
A Planning e 1049
A.1.1 Webserverlocation 1049
A.1.2 Database serverlocation 1049
A.1.3 Java GUI installation or native installation 1050
A.2 Installation stepsoverview 1052

XV

XVi

A.2.1 Configure operatingsystem 1052

A22 Install Webserver. 1053
A.2.3 Install DB server and create an administrative database 1054
A.2.4 WebSphereinstallation. 1063
A.2.5 Postconfiguration. 1075
A.2.6 Fix Packinstallation 1080
A.3 Uninstallation of WebSphere Application Server 1081
Appendix B. Remote Sybase connectivity...................... 1083
B.1 Sybase jConnectClient. 1083
B.1.1 Remote WebSphere V3.5 installation with Sybase ASE 1084
B.1.2 Checking Sybase jConnect connectivity with jConnect4.2 1085
Appendix C. XML sample programs 1087

C.1 Instructions for setting up and running the XML demo: Web Client . . . 1087
C.2 Instructions for setting up and running the XML demo: Java Client . .. 1101

Appendix D. JNDI sample programs. 1105
D.1 UJNDIsamplefiles 1105
D.2 Deploy JNDI sample program to default_app. 1106

D.2.1 Copy HTML filesand JSPfiles. 1106

D.2.2 Copyjavafiles 1106

D.2.3 Add servletstodefault_app L. 1107
D.3 RunthedNDIsample e 1108
Appendix E. Big3 application. oL 1111
E.1 Big3 - small insurance application 1111
E.2 Objectinteractiondiagram 1113
E3 Install Big3 1113
E.4 Testtheconfiguration....... i 1114
E.5 Big3 application directory structure., 1115
Appendix F. The admin.config file definitions. 1123
Appendix G. Using the additional material 1129
G.1 Usingthe CD-ROM. e 1129

G.1.1 Howtousethe CD-ROM, 1129
G.2 Locating the additional material on the Internet 1129
G.3 Usingthe Web material 1130

G.3.1 How to use the Webmaterial 1130
Appendix H. Specialnhotices 1131
Appendix I. Related publications. 1135
.1 IBMRedboOKS e 1135

WebSphere V3.5 Handbook

.2 IBM Redbooks collections 1135

.3 OtherresSoUrCeSsottt e e e e e e e 1136
.4 Referenced Web sites 1136
How to get IBM Redbooks 1137
IBM Redbooks fax orderform 1138
IndexX e 1139
IBM Redbooks review 1155

xvii

xvili WebSphere V3.5 Handbook

Preface

WebSphere Application Server V3.5 is the latest version of the IBM open
standards-based e-business application deployment environment. This
redbook will show you how to install and use the product. It provides detailed
insights into the product’s architecture and gives a wealth of practical advice
about how best to exploit the features of WebSphere.

At the heart of the book are detailed step-by-step descriptions of the tasks
you will carry out to deploy and execute your applications. These descriptions
include not only the use of the improved V3.5 GUI administration console but
also examples of how to exploit the new command line administration
facilities.

The redbook places these task descriptions in a broader context by providing
discussions of possible application architectures, deployment topologies, best
practices and problem determination when using WebSphere Application
Server.

These discussions are founded on clear descriptions of concepts and
technologies that provide the framework for WebSphere Application Server.
These include the Servlet, JSP and EJB APIs, security, transactions, JDBC,
and JNDI.

The redbook also contains details of the support for the Servlet API V2.2 and
JSP V1.1 APIs introduced by WebSphere V3.5 Fix Pack 2 and examples of
using these new facilities.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Ken Ueno is an Advisory IT Specialist in the WebSphere Performance
group, which is a part of WebSphere development in RTP. Previously, he
managed residencies and produced Redbooks, which included WebSphere
V3 Performance Tuning Guide and WebSphere Scalability: WLM and
Clustering at the International Technical Support Organization, Raleigh
Center. Before joining the ITSO, he worked in Internet Systems, IBM Japan
' Systems Engineering Co., Ltd. in Japan as an IT Specialist.

© Copyright IBM Corp. 2001 Xix

XX

2 David Artus is a Consulting IT Specialist in the London Solutions Group,

part of IBM EMEA Software Services. He has 20 years of experience in IT,
most recently specializing in consulting for the WebSphere product family.
His areas of expertise include object technologies and transaction
processing.

Larry Brown is a Senior Software Engineer for IBM in the USA. He has
over 15 years of experience in the computing field including development,
customer consulting, and teaching. His areas of expertise include
distributed systems, transaction processing, and fault-tolerant systems.

Larry Clark is an Advisory Software Engineer and a member of the
WebSphere Enablement Team in Research Triangle Park, NC, USA. His
various development roles have included programming, project management,
advanced design, strategy, and architecture.

Chris Gerken is a Senior Programmer for IBM based in the USA. He has
nine years of experience in object-oriented programming and design. He
represented IBM in the discussions leading to the JSP 1.0 and JSP 1.1
specifications and has since developed workshops on the design and use of
JSP custom tags.

Geoff Hambrick is an Executive Consultant on the IBM WebSphere

Enablement Team in Austin, Texas. His areas of expertise include
object-oriented analysis and design methodologies specializing in

distributed object and Web-based applications.

Ashok lyengar is an Advisory Software Engineer at the IBM Transarc Lab’s
Customer Solutions Center in San Diego, USA. He has 18 years of IT
experience mainly in software development and has worked exclusively with
the WebSphere platform for the past couple of years.

{ Stacy Joines is an IBM Senior Software Engineer at Research Triangle

Park, NC. She has four years of experience in WebSphere and the Web

% application field. She assists customers with proof of concepts regarding

WebSphere Application Server, with a focus on WebSphere performance
engagements.

WebSphere V3.5 Handbook

Simon Kapadia is an Advisory IT Specialist at the London Solutions Group,
part of IBM EMEA Software Services (North Region). His work involves going
out to customer sites and implementing solutions, specializing in WebSphere
Application Server and Edge Server. He has 10 years of UNIX experience.

Mohamed Ramdani is an IBM IT Specialist in France. He has two years’
experience in WebSphere-related technologies. He has worked on a
number of projects concerning the design and architecture of an application
based on WebSphere and VisualAge for Java using EJB.

James Roca is an IBM-certified AlX Technical Expert working at the UK
RS/6000 Technical Support Center. His areas of expertise include
multi-vendor UNIX support, AIX network tuning, and firewall (VPN)
consulting.

i Sung-lk Son is an Advisory Software Engineer at IBM, Raleigh. He has 14
years of experience in system and application software development. His

- current areas of expertise are enabling and consulting for WebSphere
products.

Lorrie Tomek is an IBM WebSphere consultant in Research Triangle Park,
North Carolina. Her areas of expertise include architecture, design,
performance and reliability analysis, and object-oriented programming.

Jim VanOosten is a Senior Software Engineer at the IBM Rochester Lab.
He has over eight years of experience in object-oriented system design and
has worked on the WebSphere Solutions Integration Team for the past year.

Chenxi Zhang is an IBM IT specialist in China. She has four years of
experience in the IT field. She currently provides level 1 support for
WebSphere in China, helping customers with Web solutions.

XXi

Thanks to the following people for their invaluable contributions to this project:

Chris Pentleton, Pentleton Consulting Inc.
Vess Ivanov, Pentleton Consulting Inc.

Thanks to the following IBM employees:

Jerry Cuomo, Manager, WebSphere Development, Raleigh
Jason R McGee, WebSphere Architect, Raleigh

Michael Fraenkel, WebSphere Architect, Raleigh

Michael Morton, WebSphere Architect, Raleigh

Raj Nagratnam, WebSphere Development, Raleigh

Jamison Wilfred, WebSphere Development, Raleigh

Gabe Montero, WebSphere Development, Raleigh

Subodh Vinchurkar, WebSphere Development, Raleigh

JJ Kahrs, WebSphere Development, Raleigh

Chris Mitchell, WebSphere Development, Raleigh

Thomas Bitoni, WebSphere Development, Raleigh

Richard Bachouse, WebSphere Development, Raleigh

Nabeel Abdallah, WebSphere Development, Raleigh

Scott Johnson, WebSphere Development, Raleigh

Eric Jenney, Manager, WebSphere Development, Rochester
Pete Schommer, WebSphere Development, Rochester

Deb Erickson, WebSphere Development, Rochester

Ken Lawrence, WebSphere Development, Rochester

Russ Newcombe, WebSphere Naming Architect, Austin
Stephen Cocks, WebSphere ORB Architect, Austin

Fred Stock, Manager, WebSphere Development, IBM Transarc Lab
Tim Burt, WebSphere Development, IBM Transarc Lab

Amber Roy-Chowdhury, WebSphere Development, IBM Transarc Lab
Mike Young, WebSphere Development, IBM Transarc Lab
Samar Choudhary, WebSphere Development, IBM Transarc Lab
Dongfeng Li, WebSphere Development, IBM Transarc Lab
Daniel Julin, Websphere Development, IBM Transarc Lab

Hany Salem, WebSphere Serviceability Architect, Austin

Eric Labadie, Object Level Trace Architect, IBM Toronto Lab
Kris Kobylinski, Object Level Trace Development, IBM Toronto Lab
Xing Xue, Object Level Trace Development, IBM Toronto Lab
Ron Bostick, WebSphere Performance, Raleigh

Steve Roma, WebSphere Test, Raleigh

Laura Yen, WebSphere Test, Raleigh

Loc Dang, WebSphere Test, Raleigh

Venu Rao, WebSphere Test, Raleigh

xxil WebSphere V3.5 Handbook

Trish York, WebSphere Documentation, Raleigh

Jim Stetor, Manager, Websphere Solutions Integration

Dave Cai, Websphere Solutions Integration

Melissa Modjeski, Websphere Solutions Integration

Barbara Ballard, Websphere Solutions Integration

Ken McCauley, Manager, Websphere Enablement Team, Raleigh
Ken Hygh, Websphere Enablement Team, Raleigh

Keys Botzum, WebSphere Consulting Services

Kyle Brown, WebSphere Consulting Services

Lisa Tomita, WebSphere Consulting Services

Jeff Blight, EMEA Technical Sales

Kenji Kojima, IBM Japan

Alexander Koutsoumbos, IBM Australia

Ken Klingensmith, Worldwide WebSphere Technical Sales Support
Gail Christensen, ITSO Raleigh Center

Margaret Ticknor, ITSO Raleigh Center

John Ganci, ITSO Raleigh Center

Bill Moore, ITSO Raleigh Center

Tetsuya Shirai, ITSO San Jose Center

Uei Wahli, ITSO San Jose Center

and especially...
Tom Alcott, Worldwide WebSphere Technical Sales Support

Comments welcome
Your comments are important to us!
We want our Redbooks to be as helpful as possible. Please send us your
comments about this or other Redbooks in one of the following ways:

* Fax the evaluation form found in “IBM Redbooks review” on page 1155 to
the fax number shown on the form.

¢ Use the online evaluation form found at ibm.com/redbooks

e Send your comments in an Internet note to redbookeus. ibm.com

xxiii

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

XXiv WebSphere V3.5 Handbook

Chapter 1.

Overview of WebSphere Application Server V3.5

This redbook is a detailed exploration of WebSphere Application Server V3.5,
Standard Edition and WebSphere Application Server V3.5, Advanced Edition.
In this introductory chapter we give an overview of the purpose of these two
products and the differences between them.

You should note that in this redbook we will not address, WebSphere
Application Server, Enterprise Edition. Enterprise Edition builds on the
Advanced Edition by including two further products, Component Broker and
TXSeries.

1.1 What is WebSphere Application Server?

IBM WebSphere Application Server provides a scalable, industrial-strength
deployment platform for your e-business applications.

The Standard Edition supports the standard Java APIs that you can use for
developing dynamic Web content: Servlets, JavaServer Pages (JSP) and
eXtensible Markup Language (XML).

The Advanced Edition adds support for presenting your business logic as

Enterprise JavaBeans (EJB) components. It also provides the capability to
scale your application by distributing it across multiple physical machines,
and the administrative tools you need to manage your distributed site.

By using WebSphere and its supported technologies you can rapidly build
sophisticated applications that are well structured and hence maintainable
and extensible at e-business space. This redbook shows you how to use
WebSphere facilities and also gives practical advice on how best to exploit
them.

1.2 WebSphere Application Server architecture overview

© Copyright IBM Corp. 2001

When you install and run either Standard or Advanced editions of WebSphere
on a single machine you will see certain key processes running. In this

section we give a brief introduction to these processes and their purpose. In
later chapters we will give more details and describe other optional facilities.

Figure 1 gives a high-level overview of the major components that comprise a
WebSphere instance.

application . _
server(s) administrative
A console

administration
server administrative
database

Figure 1. WebSphere components

The following sections describe the components shown in this figure.

1.2.1 Administration server

The administrative server is the systems management runtime component of
WebSphere. The administrative server is responsible for runtime
management, security, transaction coordination, and workload management.
In most cases (exceptions will be outlined later), the administrative server
runs on all nodes in a WebSphere administrative domain and controls the
interaction between each node and application server process in the domain.

1.2.2 Application server

Your code, servlets, JSPs, EJBs and their supporting classes run in an
application server. You can define multiple application servers, each of which
has its own Java Virtual Machine (JVM).

2 WebSphere V3.5 Handbook

You decide which of your servlets, JSPs and EJBs run in which of your
application servers.

1.2.3 Administrative database

WebSphere stores all runtime configuration information for a domain in a
single persistent repository. In Standard Edition this repository can be stored
in InstantDB (which ships with the Standard Edition), DB2 or Oracle.
Advanced Edition supports DB2, Oracle and Sybase. In all cases you need to
check the WebSphere release notes for exactly which versions of your
chosen database you should use.

In our diagram we show a single node running all processes, and this is
common in small-scale development situations. It is entirely reasonable to
configure the database on a remote server, and in production environments
we recommend that you do so.

1.2.4 Administrative console

The administrative console is the graphical user interface used for
administration of a WebSphere administrative domain. The administrative
console can run on one of the nodes that the administrative server is running
on, or it can be a remote node that attaches to a running administrative
server.

1.3 Standard Edition

WebSphere Standard Edition is a single system, extremely easy-to-use Web
Application Server. You can use Standard Edition for applications producing
both static and dynamic Web pages containing:

e Static HTML (HTML, .gif, .wav, etc.)
* HTML with imbedded client-side scripts, for example JavaScript

You can develop applications producing dynamic content with servlets and
JSPs.

WebSphere Standard Edition’s objective is to be a simple, easy-to-use but
complete solution for building an active Web site and basic Web applications
that integrate with databases.

WebSphere Standard Edition does not provide the workload management
(WLM) functionality that is available in WebSphere Advanced Edition, but
does allow for multiple JVMs on a single physical server. WebSphere

Chapter 1. Overview of WebSphere Application Server V3.5 3

Standard Edition is also limited to a single node/machine unlike WebSphere
Advanced Edition. These JVMs can be mapped to multiple virtual hosts on a
single HTTP server to provide support for hosting multiple Web sites on a
single application server.

1.4 Advanced Edition

WebSphere Advanced Edition extends the WebSphere Standard Edition’s
functions across multiple machines to provide complete support for
developing new high-performance, scalable and available, transactional
Web-driven applications. WebSphere Advanced Edition focuses on new
applications (JSPs and EJBs) that access relational databases for persistent
state data.

WebSphere Advanced Edition also supports distributed system management
across the nodes in your distributed WebSphere Advanced Edition systems.
The set of nodes that are administered collectively comprise a WebSphere
administrative domain. You can administer an entire WebSphere domain from
a single administrative console.

The distributed WebSphere Advanced Edition architecture also requires other
fundamental services. We briefly outline their purpose in the following
sections.

1.4.1 Naming

In an object-oriented distributed computing environment, clients must have a
mechanism to locate and identify the objects as if the clients and objects
were all on the same machine. A naming service provides this mechanism.
WebSphere uses the Java Naming and Directory Interface (JNDI) to provide a
common front end to the naming service. We describe these features, and the
underlying use of Lightweight Directory Access Protocol (LDAP) in Chapter 9,
“Using JNDI to access LDAP” on page 347.

1.4.2 Security

4

WebSphere Advanced Edition allows you to control access to Web resources
such as HTML pages and JSPs, and also to control access to EJBs and the
business methods they provide. Authorization to access a resource is
permission-based. You can grant access permissions to users/groups and
control which users/groups can access the resource.

We describe the WebSphere security architecture in Chapter 15,
“WebSphere security” on page 651.

WebSphere V3.5 Handbook

1.4.3 Transactions

A transaction is a set of operations that transforms data from one consistent
state to another. Any realistic business application will have operations that
require several updates be made to a database, and that either all these
operations should complete or none should complete. For example, a money
transfer should debit one bank account and credit another; it would be a
serious error if only one of the two updates were to occur.

Traditional implementations of such business process would require the
programmer to place explicit transaction BEGIN and COMMIT statements in
the application code. One benefit of the EJB programming model is that you
specify your transactional requirements when you configure the EJB, not in
the code. So the code is much simpler to write.

WebSphere Advanced Edition in supporting EJBs provides full transactional
capabilities. These are implemented using the mechanism defined in the
Java Transaction API (JTA).

In Chapter 12, “Transactions” on page 503 gives a detailed explanation of
transactions, their support in WebSphere and implementation considerations
that developers need to take into account.

1.4.4 Workload management

The workload management (WLM) functionality in WebSphere Advanced
Edition introduces the notion of modelling of application server processes.
Clones, which are instances of a model, can be created either on a single
machine or across multiple machines in a cluster. In either case the
WebSphere Advanced Edition WLM provides workload distribution and
failover.

We describe these features in Chapter 17, “Workload management” on page
791.

1.5 Open standards

Both WebSphere Standard and Advanced are based on and support key
open-industry standards such as HyperText Transfer Protocol (HTTP),
HyperText Markup Language (HTML), eXtensible Markup Language (XML),
Secure Sockets Layer (SSL), Java, JavaBeans, Common Object Request
Broker Architecture (CORBA), Lightweight Directory Access Protocol (LDAP),
and most importantly the following Enterprise Java APIs:

Chapter 1. Overview of WebSphere Application Server V3.5 5

6

* Enterprise JavaBeans (EJB) technology is a reusable Java component for

connectivity and transactions (EJB support is provided only in the
Advanced Edition).

JavaServer Pages (JSP) represent inline Java code scripted within Web
pages.

Java Servlets are used in building and deploying server-side Java
applications.

Java Interface Definition Language (JIDL) supports objects whose
interfaces are defined in CORBA IDL.

JDBC is for connections to relational databases. WebSphere supports
JDBC within its connection manager and within EJBs, for distributed
database interactions and transactions.

Java Messaging Service (JMS) is to be supported via MQSeries for
asynchronous messaging and queuing and for providing an interface.

Java Transaction Service (JTS) and Java Transaction API (JTA) are
low-level APIs for interacting with transaction-capable resources such as
relational databases. WebSphere uses these within EJBs for supporting
distributed transactions.

Java Naming and Directory Interface (JNDI) is for communicating with
directories and naming systems and is used in WebSphere Application
Server to look up existing EJBs and interact with directories.

Java Remote Method Invocation over Internet Inter-ORB Protocol
(RMI/IIOP) is for communicating with Java objects in remote application
servers.

WebSphere V3.5 Handbook

Chapter 2. What’s new in WebSphere V3.5?

This chapter describes in brief the improvements and additions to IBM
WebSphere Application Server V3.5 from the previous release, namely
V3.0.2.x. Some changes are very obvious, such as the new look and feel of
the WebSphere Administrative Console. Other changes are subtle and affect
the runtime, such as performance enhancements to connection manager.
The list of new/improved features in WebSphere V3.5.x includes:
Installation

InfoCenter (Documentation)

Migration

JDK1.2

Security

Administration Tools

Connection Pooling

© N o O kb=

Resource Analyzer

9. Log Analyzer

10.New Platform support
11.New Database support
12.New Web Server support

The above feature list is based on WebSphere V3.5 PTF 2 (V3.5.2) and will
be discussed in the following sections.

2.1 Installation

The popular GUI installation has three options - Quick, Full, Custom. In
addition to that, there is a native installer. This command line feature has two
modes - silent (or non-interactive) and interactive. This is useful for remote
and multi-node installations.

© Copyright IBM Corp. 2001 7

Other installation enhancements:
- Enhanced prerequisite checking for Custom Installation option

- Quick Installation option installs prerequisites (Web server, database,
JDK, etc.)

- Increased support for granting read/write authorities for deployment
directories during installation

- Intelligent starting and stopping of services (on Windows-based
systems)

- Easier Web downloads of installation image
- Support for organization-wide roll-outs of custom installs

For various installation scenarios and details, please see Appendix A,
“Installation steps” on page 1049.

2.2 InfoCenter

8

Complementing the Help file, ReadMe file, Getting Started Guide, and the
Release Notes is a preview version of InfoCenter. It provides a single point of
search and navigation among the many pieces of information available for the
WebSphere product. From one interface, the user has access to planning and
configuration information, installation guides, softcopy books, help files,
documentation articles, and other technical supplements.

The Information Center basically replaces the Documentation Center, help
frame set, and the Troubleshooter.

WebSphere V3.5 ships with a starter version of InfoCenter. It is normally
installed under <WAS_HOME>/web. View it in a browser by pointing to the
following file: .../WebSphere/AppServer/web/InfoCenter/index.html.

Note

The complete InfoCenter can be viewed at or downloaded from:

http://www.ibm.com/software/webservers/appserv/infocenter.html

WebSphere V3.5 Handbook

BM WebSphere Application Server Version 3.5 - Netzcape

File Edit Wiew [Go Communicator Help

v v YT Vv wvTVwvwTw

N —
= =0 |

wtv Bookmarks J‘ Location |lile:.-".-"a’CL-"WebSDheref’AppServen’web.-’lnfoEenter.-"index.htm\

m o 4

w Application Server

Samples

0 Introduction

1 Flan a salutian

2 Install the product

3 Migrate applications
4 Develop applications
4 Secure applications

6 Administer application:

7 Distribute and load bal
& Tune and troubleshoat

nfoCenter

site map search

Welcome to the IBM WebSphere™ Application Server Version 3.5 Advanced

Edition InfoCenter

Why WebSphere Application
Server?

Learn how to perform a quick trial
installation of the product and
hecome acguainted with the
product features through samples
and light reading at the solutions
level.

Planning and Installation

Solidify yvour goals for integrating
WehSphere Application Server
into yaur test and production
environments. Formulate and
implement a plan for installing
product campanents, referring to
case-specific Installation Guides
for detailed instructions,
verification steps, and
troubleshooting.

Systems Administration

Learn how to configure the
product, and other components in

waur environment that interact with

Building blocks...
T HTML

T XML

*usp

* Senvlet

*ElB

Data access

|Document: Done

x| @57 what's Fielated m

i
T AP FE 2| s

Figure 2. Top-level window of WebSphere V3.5 InfoCenter

Other documentation level enhancements:

New, all-inclusive InfoCenter with search and print capabilities

Expanded step-by-step installation and configuration documentation

New planning documentation for single and multiple machine topologies

Expanded and better organized migration documentation

New sections devoted to security and workload management (Advanced

Edition)

Excellent problem determination documentation

Chapter 2. What's new in WebSphere V3.5?

9

2.3 Migration

WebSphere V3.5 comes with a migration assistant. This GUI-based tool is
helpful in migrating WebSphere V3.0.2 installations to WebSphere V3.5. The
Migration Assistant leads users through the upgrade process. During
installation of WebSphere V3.5 on the Windows NT platform, if there is an
existing WebSphere V3.0.2 installation, the Migration Assistant automatically
detects it and runs. On UNIX platforms it has to be manually started.

The Migration Assistant backs up existing configuration files and all the user
files. Only EJBs need to be redeployed and package name changes related to
transaction and datasource need to be manually configured.

There are other tools also available that allow database migration. There is
also an easier migration facility to migrate from InstantDB to a production
level database such as DB2, and JDK migration.

WebSphere migration is discussed in detail in Chapter 26, “Migration” on
page 1033.

2.4 Java 2 support

With support for JDK 1.2.2 (Java 2 SE) the following Java APIs are supported
with WebSphere Advanced Edition (AE) V3.5 (specific support that exists
only in the Enterprise Edition (EE) is noted):

e EJB 1.0 (plus extensions to support RMI/IIOP, transactions, and CMP)
» Java Servlet Specification 2.2

- WAR files support for deployment

- Multiple error page support

- Request dispatchers by name and by relative path
» JavaServer Pages (JSP) 1.1 including Tag Library support
 JDBC 2.0
» Java Naming and Directory Interface (JNDI)1.2
* RMI/IIOP 1.0
» Java Transaction Service (JTS)/Java Transaction API (JTA)1.0
e Java Messaging Service (JMS)1.0 (in conjunction with MQSeries)
» JavalDL and CORBA (EE only)

10 WebSphere V3.5 Handbook

2.5 Security

Performance is significantly improved when security is enabled in WebSphere
V3.5. One of the new features within security is Client Certificate based
authentication.

Microsoft’s Active Directory is now supported along with other LDAP servers
such as IBM SecureWay, iPlanet, Domino, and Novell Directory Services.
Other security enhancements:

* A Custom Login option

* The ability to enable Domino Single Sign On

* GSKIT 4.0 GUI-based key generation tool

For a detailed discussion on WebSphere Security please see Chapter 15,
“WebSphere security” on page 651.

2.6 New and improved administration tools

WebSphere V3.5 improved the administration tools: the WebSphere
Administrative Console, the WebSphere Control Program (WSCP),
XMLConfig, and Web console.

2.6.1 WebSphere Administrative Console
New functionality has been added while some old confusing functionality has
been deleted. The top level console menu has been consolidated and
simplified. A couple of new icons were added to the console tool bar.
Context-sensitive actions menus are displayed upon right-clicking items.
Other enhancements with administration:
e Enhanced Java console performance
* Improved user interface conventions
- Eliminated need to explicitly start and stop wizards
- Standardized wizards, toolbars, and property dialogs

- Provided toggle between topology and types views

Improved progress indicators

Chapter 2. What's new in WebSphere V3.5? 11

¥ WebSphere Advanced Administrative Console

Console Yiew Help

9|EHB| ~
EES

T Adminapplication " Vg :

(= m23bkegy | - e - in 2 \\
&4 JDBC Driver - 3 iR IBM We

=1 Default Server T 4T B A

=@ Default Container : e _ g Systems Management

2, HitCount Bean - i) & 4

%, BeenThere Bean '

&, RemoteSRP

= Default Serdet Engine
[H-#5] default_app

admin

examples

WSsamplesDB2 _app

154 User Profile Manager

B SBession Manager

--[F) Remote Servlet Redirector

-4 Default DataSource

H-E Adrin DB Driver

[T default_hast

ySphere

Tt

Console Messages

9/5/00 5:59 PM : Console Ready.

Figure 3. WebSphere V3.5 Advanced administrative console

The Help menu has been improved upon with better context-sensitive topics.

New wizards walk you through the tasks of creating a data source, deploying
EJBs, and setting security.

For more details, please see Chapter 18, “Administrative console” on page
811.

2.6.2 WSCP

12

The WebSphere Control Program, WSCP, is a command-line and scripting
interface for administering resources in WebSphere AE. It is based on Tcl
(tool command language). Tcl is a portable command language that provides
programming facilities, such as variables, procedures, and list-processing
functions. The WSCP interface extends Tcl by providing a set of commands
for manipulating WebSphere objects.

Among other things, WSCP allows you to:

* Define, configure, and manage repository objects from any node

* Import and export configuration data

WebSphere V3.5 Handbook

* Perform diagnostic operations such as enabling trace

For more details, please see Chapter 20, “The WebSphere Control Program
(WSCP)” on page 855.

2.6.3 XMLConfig

XMLConfig which was technology previewed in WebSphere V3.0.2 is now
fully functional. It is very useful for exporting and importing WebSphere
configurations. The tool enables batch and command-line updates.

XML Configuration tool is discussed in Chapter 21, “XMLConfig” on page
877.

2.6.4 Web console

HTTPAdmin runs as a Web application (WebApp) under the Default Server in
a WebSphere Administration domain. It basically uses XMLConfig as the
underlying tool. Since it uses HyperText Transfer Protocol (HTTP), it works
through firewalls and is especially good for managing WebSphere that runs
within a DMZ (the secure area between two Internet firewalls).

See Chapter 19, “Web console” on page 843 for a discussion on Web
console.

2.7 New and improved connection pooling

The connection manager has been optimized for faster performance. It can
handle broken connections, for example. When the database goes down
WebSphere does not have to be restarted.

From a coding perspective Table 1 shows you the differences between
WebSphere V3.02 and V3.5:

Table 1. Code changes related to the connection manager

WebSphere V3.02 WebSphere V3.5

import package/s com.ibm.ejs.dbm.jdbcext.”; com.ibm.ejs.cm.”;
com.ibm.ejs.cm.pool.*;

Exception ConnectionTimeoutException | ConnectionWaitTimeoutEx
ception

(ConnectionPreemptedEx
ception is not supported)

Chapter 2. What's new in WebSphere V3.5? 13

WebSphere V3.02 WebSphere V3.5

DataSource Indexed by database URL + Indexed by name.
user name + passwd.
DataSource name

One pool for every unique corresponds to database
combination of URL.
URL+user+passwd.

One connection pool
associated with one
DataSource.

A pool can have
connections for different
database users/password.

Recovery from DB Mark connection stale and Destroy the connection.
failure destroy on application's
connection.close().

2.8 New Resource Analyzer

Resource Analyzer is now a separate tool replacing the old one. It is a
stand-alone Java client that monitors the performance of WebSphere
Application Server, Standard and Advanced Edition. The Resource Analyzer
can be invoked via the command line and has a GUI to retrieve and view data
in a table or chart form. The new version of Resource Analyzer is a
technology preview.

Resource Analyzer is discussed in detail in Chapter 25, “Resource Analyzer”
on page 1009.

2.9 New Log Analyzer

14

A new problem determination tool, the Log Analyzer, is available from the
product Web site as a Technical Preview. This GUI-based tool permits the
customer to view a log file, named activity.log. It also logs errors which can be
filtered based on severity, process ID, thread ID, etc. More importantly, this
tool stores all the log information in a simple XML database which permits the
customer to analyze the errors and offers additional information such as why
the error occurred and how to recover from it.

Details about Log Analyzer can be found in Chapter 24, “Log Analyzer” on
page 975.

WebSphere V3.5 Handbook

2.10 New platform support
e HP-UX
WebSphere V3.5 can be installed on the HP-UX operating system V11.0.
National Language Support (NLS) has been added to Solaris and HP-UX.
* Windows 2000

WebSphere V3.5 can easily be installed on the Windows 2000 server
platform in a manner similar to that on Windows NT.

2.11 New database support
e Sybase

Sybase’s Adaptive Server Enterprise Edition R12.0 can now be used as
the WebSphere administrative database and with container-managed
persistence (CMP) EJBs. This support is available of the AIX, Solaris, and
Windows NT platforms.

* Oracle 8.1.6
Additionally Oracle 8.1.6, both thin and thick JDBC drivers, are supported.

WebSphere V3.5 also supports Distributed Transaction Support for
Sybase and Oracle.

2.12 New Web Server support

There is now support for the iPlanet Web Server Enterprise Edition 4.0. The
iPlanet Server is a product of Sun and Netscape’s alliance. WebSphere
continues to support Netscape Server 4.0.

2.13 Conclusion

The latest release of WebSphere has definitely raised the bar on Web
application servers. With all the new features it is no wonder that WebSphere
is the most popular application server in the world.

Some other new/improved features in WebSphere V3.5.x are:

e Updated samples for use on all supported databases and respective
platforms

* New Session Affinity algorithm maximizes session caching

Chapter 2. What's new in WebSphere V3.5? 15

* Client device detection support for pervasive computing

e Domino DSAPI plug-in support

16 WebSphere V3.5 Handbook

Chapter 3. WebSphere programming model

This chapter outlines the programming model used to develop applications
targeted for the IBM WebSphere Application Server Advanced Edition V3.5.

For a programming model to be compelling, we must be able to use it to
develop applications that exhibit the following qualities1:

* Functional - satisfies user requirements

Reliable - performs under changing conditions

Usable - enables easy access to application functions

Efficient - uses system resources wisely

Maintainable - can be modified easily

Portable - can be moved from one environment to another

Further more, the programming model must support a development process
that has the following characteristics:

* Repeatable - has well-defined steps

Measurable - has well-defined work products that result

Toolable - has well-defined mapping of inputs to outputs

Predictable - can make reliable estimates of task times

Scalable - works with varying project sizes

Flexible - can be varied to minimize risks

The challenge is to balance both sets of requirements while developing an
application.

To help make the discussion of the programming model more meaningful and
concrete, we will trace the development of an example application from
analysis through architecture and design. During the process of developing
an application to support order entry (“online buying”), you will see first-hand
how the programming model can be employed to meet the challenges
outlined above.

3.1 Analysis of an example application

It is not within the scope of this section to describe (or endorse) a specific
analysis method, because the WebSphere programming model can be used

! These characteristics are derived from ISO 9126 Software Quality Characteristics, now out of print.

© Copyright IBM Corp. 2001 17

with any method. However, we are partial to the Unified Modeling Language
(UML) as a notation to describe important analysis work products.

We recommend capturing both the static and dynamic requirements of the
system into models, where static models describe the data and dynamic
models describe the behaviors.

For the static model we will use a UML class diagram that shows objects and
associated properties, as well as relationships between them. The
relationships are augmented to show such characteristics as role and
cardinality.

For the dynamic model we will use a UML state-transition diagram that shows
the life cycle states of an object and the events, conditions and actions that
cause a transition (or flow of control) to the specified next state.

A complete model of the system takes into account the life cycle of important
business objects (a business process model), as well as how a given user
can access important system functions (an application flow model).

The business process model can be developed first, followed by an
application flow model to provide access to the functions defined. This
approach is sometimes called “enterprise out”. Conversely, the application
flow model can be developed first with the actions and data defined driven
into the business process model. This approach is sometimes called
“application in” (or when applied to Web applications: “Web up”).

For purposes of our sample online-buying application, we will use the
enterprise out approach and analyze the requirements of the business
process first, then focus on those of the application flow.

3.1.1 Business process model for an Order

18

Probably the hardest part of business process analysis is knowing where to
start. There are many approaches, but one that works reasonably well is to
identify an object that represents the relationship between user and system
roles.

In our example, two major roles are the company that makes products
available for sale and the customer that orders them. An order represents the
relationship between the two. The life cycle we define for an order will
describe the business process that governs the way customers and
employees (and possibly agents) of the company interact.

WebSphere V3.5 Handbook

For the purposes of our simple example, we will say that an Order has three
states in its business process life cycle:

1. Entry, where a Customer (or a Customer agent) can create an order, add
or modify line items, and finally, submit or cancel it.

2. Fulfillment, where a person from the Shipping department can pack one or
more of the order’s line items and ship them to the customer. Packing and
shipping continues until all the items are shipped.

3. Completed, where a representative from Marketing can perform various
data mining queries on the orders in the system until they no longer find
the data useful, in which case, they purge it from the system.

Figure 11 shows this life cycle in a graphical form known in the Unified
Modeling Language (UML) as a state-transition diagram (STD). In a STD, the
nodes show the life cycle states of the associated object and the directed
edges show transitions (events, actions and conditions) that cause a flow of
control from one life cycle state to the next. The transitions describe the units
of work that are accessible from a given state by a given role. We have made
a minor extension to the STD notation to show the role that owns the order in
that state.

create()

add line item

(product, % i
anti .

) . Customer Shipping

- ship (shipper)
[all items
shipped]

Marketing

submit

modify line
item cancel()
(product, [not all items
quantity) shipped]

pack line item
(product, quantity)

Figure 4. Online buying business process state-transition diagram

After the dynamic model for a given object is completed, the next step is to
develop the static model that holds in the context of each life cycle state. A
static model shows a given object, its properties, and relationships to other
objects.

One way to develop a static model is to infer the objects and specific
characteristics of the relationships (typically role and cardinality) from the

Chapter 3. WebSphere programming model 19

20

descriptions of the units of work associated with the transitions in the
dynamic model. Another approach is to reverse engineer existing data
sources.

Our focus for this example will be the Customer role, so we will only specify
the relationships that hold between various objects associated with an order
in the Entry state:

* A Customer is associated with all the Orders that they have opened; only
one Order may be in the opened status for a Customer at any given time,
although a given Customer may have no associated open Order.

* An Order has an ID and a status indicating whether it is open, submitted or
cancelled. An Order is also associated with the Customer that created it.
Further, an Order is associated with zero or more Line ltems.

* A Line Item indicates the ID of the product with which it is associated and
the quantity of that Product to be associated with the Order within which it
is contained.

* A Product has a number called a “sku” which serves as the ID, and an
associated description. Of course, a real order entry system would have
price, discounts and other associated attributes that we omit here for
simplicity.

Figure 5 on page 21 shows these static relationships between objects in a
graphical fashion known in UML as a class diagram. In a class diagram, the
boxes represent the objects with associated attributes. Lines connect the
object to those with which it is associated, with containment, labels and
cardinalities listed to help clarify the relationships. The labels closest to an
object describe the role of the object on the far end of the relationship. The
numbers closest to an object describe the cardinality of that object with
respect to that on the far end of the relationship.

WebSphere V3.5 Handbook

Product Customer

sku customerlD
description

openOrder

product 0..n| O0..1|customer
Line Item ~ Order

- 0..n
quantity orderlD

status

Figure 5. Class diagram of an order in entry state

For example, Figure 5 on page 21 shows that a Customer can have up to one
Order, its role being labeled “openOrder”.

A complete analysis of the business process requirements would repeat this
process for the static models associated with the Fulfillment and Completed
states. It would also likely analyze dynamic models for how a Product is
moved into and out of inventory, and how Customers are registered and rated
(possibly depending on their past behavior and credit history), among other
business process models.

However, using object technology makes it easy to develop an application
incrementally and iteratively, beginning architecture and design after a set of
end-to-end functions (often called use cases) are defined.

The business process model describes the back end of the end-to-end flow,
while the application flow model discussed next describes the front end.

3.1.1.1 Application flow model for Customer
An application flow model describes how a given user role invokes functions
of the business process model to which they have access.

Like a business process model, an application flow model has static and
dynamic aspects. In this case, however, the static model describes the data
visible to the user, and the dynamic model describes the events that a user
can trigger. For this reason, class and state-transition diagrams are also ideal
for capturing the requirements of a given application flow model.

Depending on the client display technology, the states in a STD can represent
pages, screens, windows, panels, forms, pop-ups, pull-downs, and dialogs
among other possibilities, while the transitions can represent clicking buttons

Chapter 3. WebSphere programming model 21

22

or links, pressing various keys, and selecting menu items using a
touch-screen stylus.

This close mapping to display technologies makes it relatively easy to
develop the application flow model from prototypes or by examination of
existing applications.

It should be noted, however, that a well-designed application flow model is
abstract, and can be applied to any number of specific display technologies.
For this reason, use-case analysis is another approach to developing an
application flow model.

Still another “top down” approach is to take the states associated with various
business process models for a given user role and add “usability” states and
transitions, such as confirmations, validations, selections, and helps among
others.

In any event, we have chosen for our sample system a rather simple
application flow to provide a Customer access to the functions associated
with an order in the Entry state. It includes the following states:

1. Customer Home, which is basically a menu providing access to the
Product Catalog, Order Status and Order Details states.

2. Product Catalog, which shows a list of products available for purchase,
allowing the Customer to add a specified quantity of a selected product to
the open order associated with the Customer (opening a new one if
necessary).

3. Order Status, which shows the orders opened by the Customer, allowing
them to view the details (and possibly modify them, if the order is open).
From this state, a Customer can also open a new order, if none is already
open.

4. Order Details, which shows the line items associated with a given order,
defaulting to the open order associated with the Customer if none is
specified. From this state the Customer can modify the line item quantities
if the order is open. A Customer can also submit or cancel an open order.

5. Already Open, which occurs when a Customer attempts to open an order
when one is already open. It provides the ability for the Customer to view
the details of the opened order.

6. Action Result, which displays the result of adding or modifying a line item,
or submitting or cancelling an order.

WebSphere V3.5 Handbook

7. Confirm Submit or Cancel, which provides the Customer with the ability to
verify that he or she really wants to submit or cancel the open order, as the
case may be.

Figure 6 shows this application flow graphically, also using a UML
state-transition diagram, where the nodes show the states of the application
life cycle, and the arcs show application events that trigger flow of control
between states.

Order

Status

Order [already open]
y p

Figure 6. Customer application flow model state-transition diagram

Given the states and transitions described above, we would then do an
analysis of the data visible to the Customer role in each state. Figure 7 shows
a UML class diagram with the results of this analysis.

Chapter 3. WebSphere programming model 23

Product Order Order Customer Already
Catalog Details Status Home Open
customerID customerlD customerlD
orderlD orderID
status
0..n 0..n 0..n
Line ltem Order Action Confirm
oele! e e Result Action
productiD productlD orderID message orderID
description description status action
quantity

Figure 7. Class diagram showing the object model of states in application flow STD

A complete application flow requirements analysis would repeat this process
for the Shipper and Marketing roles. However, as for the business process
model, development can proceed in an incremental and iterative fashion
rather than a traditional “waterfall” approach.

In any event, the sections to follow will first show how components associated
with these models will be distributed across the “tiers” of an application
architecture (high-level design). Then we will see how these components are
mapped to the features of the WebSphere programming model, depending on
the architecture chosen (detailed design).

3.1.2 Architectures supported by WebSphere

24

Once we have the functional requirements broken into static and dynamic
aspects of business process and application flow models, the next step is to
determine the application architecture. WebSphere Application Server V3.5
supports three basic application architectures: Web-enabled client/server,
distributed object-based, and Web-enabled distributed object-based.

We will discuss each in terms of its features, along with advantages and
disadvantages to consider when making a decision about which pattern is
most appropriate for your application. Of course, any large system will likely
use all of the patterns discussed here, so understanding the trade-offs and
when that pattern best applies is key to choosing the application architecture.

3.1.2.1 Web-based client/server applications
Web-based client/server applications have a “thin” client tier where a Web
browser executes, a “middle” tier that runs the Web application server (such

WebSphere V3.5 Handbook

as WebSphere), and a “back-end” tier that hosts servers accessible to the
entire enterprise, such as databases, and global directories.

The primary purpose of the Web browser is to display data generated by the
Web application server components and then trigger application events on
behalf of the user through HTTP requests. The data roughly corresponds to
the static model associated with the application flow model states.

The Web application server’s purpose is likewise twofold: it controls the
application flow in response to HTTP requests sent by the client. As noted in
the previous section, transitions on the application flow model will trigger
transitions on an underlying business process model. The business logic
associated with the business process model (BPM) transition may access
data and functions from enterprise servers.

An enterprise server's main purpose is to provide access to the data
associated with BPM transitions. In some cases, business process functions
may be delegated to enterprise servers (such as CICS transactions). The
protocol used will depend on the back end.

Figure 8 on page 26 shows the relationship between these three tiers in a
graphical fashion, indicating the system components normally hosted on that
tier along with the primary protocol by which it communicates with the other
tiers (the ‘???’ label on the connection indicates that there are possibly many
different ones depending on the system).

Chapter 3. WebSphere programming model 25

Browser HTTP Web 27 Enterprise
Application 7 Server
S SE— erver

Product Customer

sku
description

o Loeten

product on | o.1| customer

Line Item Order

Figure 8. Web--enabled client/server application architecture showing where model components are hosted

Some advantages of a Web-enabled client/server application are as follows:

1. There is no need to install anything specific on the client tier, since the
pages are rendered by a Web server or Web application server and
passed back as part of a request.

2. The end-to-end path length is relatively short (compared to the other
supported architectures), since the Web application server components
have direct access to the enterprise servers.

3. HTTP connections are stateless, making it possible to scale to large
numbers of clients, especially when load-balancing routers are employed.
However, we should note here that a common function provided by Web
application servers is to provide “state” for the application. Utilizing this
function can reduce the benefits of statelessness (more on this point
later).

Some disadvantages include:

1. Controlling the application flow in the Web application server rather than in
the client will have an impact on response time, making it crucial to
minimize the number of HTTP requests from the browser.

26 WebSphere V3.5 Handbook

2. Components controlling the business process model must be installed on
the Web application server as well as client code to the enterprise servers
upon which these components depend, which makes maintenance much
more difficult (especially if a number of servers are needed to handle the
HTTP traffic).

3. Having both the application flow and business process logic executing in
the same Web application server can increase the processor and memory
requirements of the host machines, which may impact throughput.

4. Having the business process logic executing in the same tier as the Web
application server can be considered a security risk, especially if the Web
application is within the “demilitarized zone” (servers outside of the
firewall).

5. Also, having both the application flow and business process logic
executing in the same Web application server makes it difficult to share
the business logic with non-Web-enabled clients.

3.1.2.2 Distributed object-based applications
Distributed object-based applications supported by WebSphere are
characterized by:

* An application client tier that controls both the application flow and
associated data display.

* One or more servers that host distributed objects encapsulating the logic
associated with the business process model.

* One or more back-end enterprise servers that maintain the data
associated with the business process model.

* Communication between the client and distributed object server tiers is
achieved through the Internet Inter-ORB Protocol (11OP).

Figure 9 on page 28 shows a graphical view of a distributed object-based
application architecture.

Chapter 3. WebSphere programming model 27

Apglication Distributed Enterprise
lient liop Object Server 722 Server

N—/]

Product Customer

o customerlD

Line Item Order

‘quantity orderlD
status

Pro TepE e S o ome. pr
T T T e a0

Figure 9. N-tier distributed object-based application architecture showing where model components are hosted

Distributed object-based applications are considered to have “n” logical tiers
because distributed objects can actually be clients of other distributed
objects. The tiers are logical because the distributed objects can be
co-deployed on the same physical tier.

Advantages of a distributed object-based application include:

1. Controlling the application flow on the client tier usually makes for
snappier response time, especially where heavily used data is cached
locally.

2. The business logic is separated from the application client, providing for
better security and maintainability.

3. Having the business logic separated means that it can be shared by
multiple clients.

4. ltis also possible to load balance across multiple distributed object
servers to get higher throughput and system availability.

5. The application clients need not install the client code associated with
enterprise servers.

Disadvantages include:

28 WebSphere V3.5 Handbook

1.

2.

Application programs must be explicitly installed on the client tier, making
maintenance a consideration. This can also increase the processor and
memory requirements of the client machines.

There is extra path length incurred by adding a distributed object server
between the client, which will have an impact on response time.

3.1.2.3 Web-enabled distributed object applications

A powerful feature of the WebSphere programming model is that these two
styles can be used together in a single application architecture, such as one
where the Web application server components make use of distributed
objects that encapsulate the business process logic. This style of architecture
can be considered to be a Web-enabled distributed object-based application,
as shown in Figure 10.

Browser

Web - .
icati Distributed Enterprise
Ap@gfﬁ?" iject Server Server

Product Customer

customerlD

product on| o.1

Line Item Order

customer

orderlD
status

Figure 10. Web-enabled distributed object application architecture showing where model components are hosted

This approach gets the advantages of both, including:

1.

There is no need to install anything specific on the client tier, since the
pages are rendered by a Web server or Web application server and
passed back as part of a request.

HTTP connections are stateless, making it possible to scale to large
numbers of clients, especially when load balancing routers are employed.

The business logic is separated from the application client, providing for
better security and maintainability.

. Having the business logic separated means that it can be shared by

multiple clients.

It is also possible to load balance across multiple distributed object
servers to get higher throughput and system availability.

The Web application servers need not install the client code associated
with enterprise servers.

Chapter 3. WebSphere programming model 29

A Web-enabled distributed object application has relatively few of the
disadvantages of either:

1. Controlling the application flow in the Web application server rather than in
the client will have an impact on response time, making it crucial to
minimize the number of HTTP requests from the browser.

2. There is extra path length incurred by adding a distributed object server
between the client, which will have an additional impact on response time.
This impact makes it crucial to minimize the number of distributed object
requests from the Web application server.

We will look at our sample application in terms of this hybrid architecture,
since it will cover all the features of the programming model by WebSphere
Application Server V3.5.

3.1.3 Features of a programming model driven design

30

Once we have the candidate architecture identified, the next step is design,
where we map the requirements specified in the analysis phase to
programming model features associated with the architectural tiers.

All programming models, regardless of the architectural tier, have three
distinct features that are key to developing an application:
* The components that embody application functions.
* Control flow mechanisms used to invoke one component from another.
» Data flow sources that you can use to pass information from one
component to another.
Each of these features will be discussed in a separate section with the
following information:
* A basic definition of the component or mechanism

* The role it plays in the architecture, especially with respect to the example
application described above

e Some pros and cons as to its usage

* Alternative approaches, if any exist

Together these sections provide an end-to-end overview of how the
components and mechanisms (services) can be used together effectively to
develop a WebSphere V3.5-based application. Individual chapters that follow
will get further into the details of how WebSphere supports the various APls
(which will drive the code phase), and what you can do at deployment time to
exploit the WebSphere V3.5 platform.

WebSphere V3.5 Handbook

3.2 Application components

Application components are those that a developer will actually have to
program, whether manually or with the aid of tools. The other features of the
programming model represent services that the developer can use when
coding an application component. The language used to develop a given
application component will depend in large part upon the “tier” where the
component will be executed at runtime.

For example, browser-based components will tend to use tag and
script-oriented languages, while Web application server components will tend
towards Java. Enterprise server components may use a variety of languages
other than just Java, such as C, C++, COBOL and the like, so we will focus on
the distributed object server, which tends towards Java as the language of
choice.

Because the language differences tend to divide along tier boundaries, we
will divide this section into three separate subsections as we describe the
components you develop that are hosted by browsers, Web application
servers, and distributed object servers.

We will discuss the components for each tier in turn.

3.2.1 Browser-hosted components

While a browser is not provided by WebSphere V3.5 Advanced Edition,
browser-hosted components make up a large part of any Web-enabled
application. The reason, of course, is that the browser serves as the runtime
engine for the user interface of a Web application.

The browser-hosted components that are most relevant to the WebSphere
programming model include:
e HTML
e DHTML and JavaScript
* Framesets and Named Windows
» eXtensible Markup Language (XML), XML Style Language (XSL) and
Document Type Definition (DTD)

We will discuss each in turn.

Chapter 3. WebSphere programming model 31

32

3.2.1.1 HTML

HyperText Markup Language (HTML) is the basic “programming language” of
the browser. With HTML, you can direct the browser to display text, lists,
tables, forms, images, and just about everything else you can think of.

Role in the architecture

Every state in our example application flow model, from the Product Catalog
to the Action Result, will ultimately result in an HTML page or dialog of some
sort, However, we need to draw the distinction between static and dynamic
content in an HTML page.

In this example, the HTML associated with the Customer Home state is
"static". It does not change based on application events, but merely provides
access to other states of the application like a menu.

At the other extreme, the HTML associated with the Action Result state is
"dynamic" because it needs to display a message specific to the result of the
action. For example, the result of adding a line item from the Product Catalog
state is to indicate how many of that product are currently ordered.

In the “grey” area are pages associated with states such as Product Catalog.
Some companies with small, stable product lines may develop static product
catalog pages. Other companies may have large, constantly changing
product lines that would require generating the Product Catalog page
dynamically from a database.

The reason that this distinction is important is that static HTML pages do not
require that the content be generated by programmatic means, such as Web
application components hosted within WebSphere (servlets and JSPs).
These components will be discussed in the next section.

For our example online buying application, only Customer Home is assumed
to be handled by static HTML as shown in Figure 11 on page 33.

WebSphere V3.5 Handbook

Order
Status

o
submit order}

Result
Figure 11. Online buying application flow model showing Customer Home state as static HTML

Pros

The main advantage of using static HTML for Web pages is that they are not
generated by Web application components, such as servlets and JSPs. Their
static nature means that they can be cached by either the browser or proxy
servers.

On the development side, they can be created and maintained with a
WYSIWYG (what-you-see-is-what-you-get) editor.

Cons

The downside of using static HTML is that they cannot be customized on the
fly based on customer preferences or application events. Even pages that
may seem to be “naturally” static, such as the Customer Home, might actually
benefit from being generated dynamically. For example, you might limit the
functions that a Customer sees based on the class of service for which they
are registered.

Alternatives

As mentioned above, the “programming language” of the browser is mainly
HTML (with DHTML and JavaScript being the primary exception as described
next). However, an XML-enabled browser can be used to generate the HTML
on the client side.

Finally, you should consider creating dynamic components for every “top
level” (non-dialog state), even if it appears to be static. This approach not only

Chapter 3. WebSphere programming model 33

34

makes it easier to add dynamic content later, but also makes it easier to
compose into other pages. Future versions of WebSphere Application Server
will provide support for caching dynamic page fragments, which will make
composing pages much more efficient. We will discuss this alternative in later
sections of this chapter.

3.2.1.2 DHTML and JavaScript

Dynamic HyperText Markup Language (DHTML) is an extension to HTML
wherein all the components of the HTML page are considered to be objects.
Together these objects make up the Document Object Model (DOM) of the

page.

Each object in the DOM has a set of associated attributes and events,
depending on the type of object. For example, most objects have attributes
describing their background and foreground colors, default font, and whether
they are visible or not. Most have an event that is triggered when the object is
loaded into the DOM or displayed. An object, such as a button, has attributes
that describe the label and events that fire when it has been pressed.

Events are special because they can be associated with a program that
executes when the event is triggered. One language that can be used for the
program is JavaScript, which is basically a simplified form of Java. JavaScript
can be used to change the attributes of objects in the DOM, thereby providing
limited control of the application flow by the browser.

Role in the architecture

This ability makes DHTML/JavaScript perfect for handling confirmations, data
validations, cascading menus, and certain types of list processing on the
browser side without invoking an HTTP request to the Web application server.

Where validations are concerned, it is important to draw the distinction
between those that are merely syntactic from those that are more semantic in
nature.

Syntactic validations include checks on individual fields of an input form. For
example, is the entry a minimum length? Is it alpha or numeric? Does it have
the right format for a date, phone number or social security number? These
simple types of syntactic validations should be done on the client.

Semantic validations are those that ultimately require access to business
process logic and data. For example, is an order or product number valid?
Will the change in quantity make the resulting line item quantity less than
zero? Is the requested price within 10 percent of the current average?
Semantic validations belong on the server side.

WebSphere V3.5 Handbook

In the middle ground are more complex syntactic validations that involve
multiple fields or begin to incorporate business process policies. For example,
is the start date less than the end date? Does the date requested fall on a
weekend or holiday? There are arguments both for and against handling
complex syntactic validations on the client side. The most forceful arguments
against are that it introduces extra complexity and redundancy in the DHTML,
and can cause a maintenance problem as policies change.

In our online buying example, we would suggest handling confirmation of the
submit or cancel actions in JavaScript rather than bringing up a separate
HTML page as shown in Figure 12.

add\to order
{add item K
(product, quantity)} £Cenfirm, .
wEangely (prodluct, Zoontiom
N quantity)} Submity
e
submit order}

Key: D T’V“-
Figure 12. Online buying application flow STD showing states handled by DHTML and
JavaScript

This approach effectively “collapses” the two confirmation states into
substates of the OrderDetails state.

Although not shown explicitly on the application flow diagram, we also would
suggest using JavaScript on the add line item action to validate that the
quantity specified is non-zero.

Although it was not required in our example, we have seen cases where
developers used sophisticated JavaScript programs to build multiple entry
input dialogs where the list of choices appears on one side, with the items
chosen on the other. Items can be selected on either side of the list and the
appropriate directional arrow button chosen to “move” it to the other side.

Chapter 3. WebSphere programming model 35

36

Pros

Hopefully, the benefit of using DHTML and JavaScript in these scenarios is
obvious: one or more round trips to the Web application server are
eliminated, making the application both more efficient and more usable
(mainly because the response time is much snappier).

In the case of the Confirm Cancel or Confirm Submit states, it is likely that the
associated page would be generated dynamically showing the current state of
the Order so that the user knows exactly what they are confirming. With a
JavaScript pop-up, the order is still visible in the browser window. The trip to
the Web server is eliminated along with a query to get the current state of the
order, reducing contention for back-end system resources as well.

Cons

One disadvantage to using DHTML/JavaScript is that developing application
control flow, whether it is on the client or server side, requires programming
skill. Pages that rely on DHTML and JavaScript are more complicated to
develop and test. You cannot use WYSIWYG editors for the code.

Another disadvantage to using DHTML and JavaScript is that there are
differences among the browsers in the details of the functions supported. To
avoid a browser dependency for the Web application, programmers are forced
to either:

e Stay within a common subset of functions supported by all the major
browsers.

e Put branching logic that has a case for each browser with code optimized
for the version of JavaScript supported by that browser

When syntactic validations (either simple or complex) are handled in DHTML
and JavaScript, you will still need to revalidate on the server side for each
request just in case the client circumvents the input forms. This leads to
redundancy of code on the client and server.

Alternatives

Really, there is no good alternative to DHTML and JavaScript for handling
confirmations, validations, menus, and lists. The complexity for the HTML
developer can be managed somewhat by having a separate programming
group develop a set of common functions that encapsulate the differences
between the browsers and have every page designer include this set of
functions within their HTML.

WebSphere V3.5 Handbook

3.2.1.3 Framesets and named windows

Framesets and named windows are specialized HTML extensions that break
up a page into separate frames (for framesets) or windows (for named
windows). Each frame or window can be further subdivided as a frameset as
well.

Various browser-initiated control flow actions (described in 3.3.1, “Browser
component initiated control flow” on page 80) can be targeted to a given
frame or window, leaving the other frames and windows untouched.

The main difference between framesets and named windows is that
framesets tile the various frames within a single browser window, while
named windows have a separate window for each unique name. Frames in a
frameset can have various attributes that define behaviors such as whether
they are resizable, scrolling, or have borders. Separate named windows can
be cascaded or manually tiled by the user as they see fit.

From a targeting perspective, there is no difference between framesets or
named windows. In fact, they can be used together. If no frame or window
with a given name is open already, one will be opened by the browser to
receive the result of the request. The opened windows can be resized and
tiled manually to achieve an effect very similar to framesets.

Role in the architecture

Framesets are an excellent way to group related states in the application flow
model. For example, the online buying application Web page could be
implemented as a frameset that includes the following three frames (or
windows):

* Navigation, an area that is populated with the Customer Home navigation
links

* Main, an area that is populated with the Product Catalog, Order Status or
Order Details data, depending on the link selected in the Navigation frame.
This area would also be the target of an “open new order” action in the
Order Status state, so it would possibly be populated with the Already
Open page.

* Result, an area that displays the result of an add to order, modify line item,
submit, or cancel operation.

Figure 13 on page 38 shows a stylized view of how this page might look using
framesets.

Chapter 3. WebSphere programming model 37

38

Navigation Main Area

displays Product Catalog,
Order Status or Order Details,

simply the depending on selection
Customer

Home
navigation adding to order, editing
bar where quantity, cancelling or
selections submitting targets result area
target main

area

Action Result

Figure 13. Stylized view of online buying application frameset

Although not explored in any more detail here, a frameset makes it easy to
mingle Web publishing and business applications together. In this approach,
you provide visual interest such as images, advertisements, news, and such
in the “surrounding” frames, and keep the frames associated with the
business of the application clean, simple, and most importantly fast (since
they can be mostly text based).

Pros
The advantages of a properly defined frameset to the application flow are
many:

1. Simplifies navigation. By having the Customer Home state always visible,
reliance on the browser “back” button (or explicit navigations coded into
each state) is eliminated.

2. Maximizes visibility of the important data and functions. The main displays
for the Catalog, Status and Details pages consist of a list of items
(products, orders and line items, respectively). This area can be returned
as a frameset, with the unchanging data and functions and table headers
in the top frame, and the table rows in the bottom area. This approach
allows a large list of items to be scrolled without losing access to the
action buttons and header information. For example, when viewing an
open order on the Order Details page, the Order number, Submit and
Cancel buttons will always be visible.

WebSphere V3.5 Handbook

3. Minimizes the size of an individual request. Only the data required for the
target area is returned from a given request. For example, when an add,
modify, submit or cancel action is invoked, only the result message need
be returned to the browser. The main area still has the previous contents
and need not be rerendered. The Navigation area need never be
rerendered.

4. Improves the application flow and efficiency when errors occur. This
advantage is related to #3 above. If an application error occurs, such as
trying to submit or cancel an unopened order, or entering an invalid
product ID or quantity, the form data is still visible and can be referred to in
the result message. It is even possible to use JavaScript to highlight the
erroneous fields in the form.

5. Parallelizes requests. When a frameset is rendered, each frame is issued
as an individual request, allowing them to be handled and displayed
separately. This can have a dramatic effect on usability, as the “static”
areas (like the navigation and header areas) will likely come back very
quickly, providing cues to the user that the server is processing the
request. An example where this is an extremely useful feature is in a
“portal” application where user preference data drives individual queries to
various back-end services, such as stock quotes, hot news items of
interest, etc. The initial request to the user’s portal page could return a
frameset that has individual frames for the various services selected. Each
frame would be a separate request, providing the user with information as
it becomes available rather than after the entire page is rendered.

6. Hides “ugly” URLs. The URLs for the individual frames in the frameset do
not display in the browser’s location line. This is a nice feature especially
for some Web applications where the URL has rather lengthy and ugly
encoded strings to hold various IDs (see 3.4.1, “Browser-maintained data
flow sources” on page 90 for a discussion of browser-maintained data).
When using framesets, the URL is usually very “clean”.

Cons

There are some disadvantages to using framesets. Improperly designed, the
navigation can be confusing. Also, if more than one frame accesses shared
system resources, such as HttpSession state or databases, it can cause
contention problems that affect performance, and may even cause deadlocks.
The design we suggested above does not suffer from these problems.

But beyond this, framesets have some behaviors that are hard to get used to.

Chapter 3. WebSphere programming model 39

For example, when printing within a frameset, only the “active” frame (usually
where the cursor is located when the print is requested) is printed. This can
be disconcerting when you expect the whole frameset to be printed.

Bookmarking a frameset uses the browser location line, and not the specific
content frame URLs. In our example, this means that OnlineBuying.html
would be bookmarked, and the “default” page would come up. It wouldn’t
matter that we had selected the Order Details for order 12345, or had
browsed the Product Catalog down to the raincoats.

Another disadvantage is that the browser back and forward functions work a
frame at a time. This can be somewhat disconcerting. Let us examine the
situation that occurs when the customer is viewing the Product Catalog, adds
an item to the open order, switches to see the Order Details, then modifies
the quantity. Pressing back will first redisplay the result area from adding the
item to the order. The next back will return to the Product Catalog display.

Probably the most serious disadvantage is that not all browsers support
framesets, so a non-frame version must be provided if the application is
designed to be browser independent.

Alternatives
Before we abandon framesets because of the disadvantages mentioned
above, there are some workarounds to consider:

* Printing. Many developers provide an explicit print function that returns a
page suitable for printing. Others like the fact that it prints only the area
selected, and consider that a feature (assuming that the user can use the
print screen function to get the window contents).

* Bookmarking. Some developers maintain the details of the last page
viewed in a customer database, so that those values can be used as
defaults. In this manner, the application-level bookmark works nicely and
still has an easy-to-read-and-remember URL.

* Back and Forward. Many developers disable the back and forward buttons
on the browser, especially when they provide a navigation area like the
one we provided in the example.

* Browser support. Many browsers that do not support framesets provide
named windows, allowing the basic flow to remain unchanged. The
frameset pages take advantage of the “no frameset” tag to open the main
windows instead.

If these workarounds cannot be used in your Web application, the only real
alternative to framesets is to compose the pages representing the individual

40 WebSphere V3.5 Handbook

states, and pay the cost of rerendering the entire page on every request. In
this case we would recommend that each state be handled by dynamic Web
application components (HttpServlets and JSPs) in order to take advantage
of caching that will be supported in future versions of WebSphere Application
Server.

3.2.1.4 XML, DTD and XSL

XML provides a means by which documents can be encoded as a set of tags
describing the associated values. The tag language is expressive enough that
tags can be nested and can repeat, so that complex data structures can be
encoded in a form that is both human and machine readable.

An XML document can be associated with a DTD, which is a special XML file
that defines the tags and their structure. A DTD can be used by an XML
parser to validate that the XML is not just well formed syntactically, but is also
semantically legal with respect to the DTD.

Finally, more and more browsers are becoming XML enabled. XML-enabled
browsers can handle XML documents returned from the Web server in
response to a request. The XML document can refer to an associated
stylesheet coded in XSL. The stylesheet is used by the browser to map the
XML tags to the HTML that is ultimately displayed. If no stylesheet is
specified, the browser will use a default format that takes advantage of the
tag names.

Role in the architecture

As we will see in later sections, XML can play a role in every tier of the
application architecture. For a Web-enabled browser tier, the response to a
given request can be an XML document containing only the data to be
displayed. For example, we could build XML documents representing the data
described for each state as shown in Figure 7 on page 24, then provide a
default stylesheet in XSL mapping this data to HTML tables and forms.

Pros

One advantage of using XML rather than HTML is that the stylesheet can be
modified to change the look and feel without having to change the Web
application components (described later) that generate the data.

Another advantage is that the size of the result will be smaller than the
resulting HTML in many cases.

Yet another advantage is that the same XML document may be usable in
other contexts than a Web browser, making it possible to reuse the Web
application components.

Chapter 3. WebSphere programming model 41

Cons
The main disadvantage is that XML-enabled browsers are not yet available
every where, although they are rapidly becoming so.

Another disadvantage is that XSL-based stylesheets can be quite complex to
code and difficult to debug. WYSIWYG editors for XML/XSL are not yet widely
available either.

Alternatives

One alternative is to have the Web application components check the browser
type and either generate HTML for non-XML-enabled browsers or return the
raw XML for XML-enabled browsers. The next subsection will discuss this
idea further.

3.2.2 Web application server hosted components

42

In the previous section, we discussed how HTML is the ultimate programming
language for the browser tier, but drew a sharp distinction between static and
dynamic content for Web pages.

We also discussed how a browser is not specifically provided by the
WebSphere V3.5 platform. This is not the case for the Web server and Web
application server. WebSphere provides the IBM HTTP Server as a Web
server that can be used to serve up static pages, but can be configured to use
other popular Web servers from Microsoft and Netscape, among others.

Of course, the focus of this section is the WebSphere Application Server V3.5
used to serve up dynamic pages.

By discussing HTML, DHTML, JavaScript, framesets and XML, we have
already covered the static components of the programming model. The Web
application server components hosted by WebSphere that are most useful in
generating dynamic content include:

* Servlets
e JavaServer Pages (JSPs)
While no special support is provided by WebSphere Application Server, there

are two other components that are useful for clients (including Web
applications) of business logic and data hosted on back-end servers:

e Data Structure Java Beans

* Business Logic Access Beans

WebSphere V3.5 Handbook

Together these components provide the basis for a very effective
Model-View-Controller (MVC) architecture, where data structure and access
beans represent the business process model (Model), servlets control the
application flow (Controller), and JSPs handle the layout (View).

An MVC architecture is effective because of the ability to independently
develop, test, deploy and modify the various components.

We will discuss each of these four components in the context of an MVC
architecture in the subsections to follow.

3.2.2.1 Servlets

The details of Servlets are discussed in more depth in Chapter 5, “Servlet
support” on page 137. For purposes of understanding the programming
model, we will say here that you develop HttpServlets to encapsulate Web
application flow of control logic on the server side (when it cannot be handled
by DHTML on the client side).

An HttpServlet is a subclass of a generic Java servlet. Most people mean
HttpServlet when they say servlet, but there is a difference. An HttpServlet is
specifically designed to handle HTTP requests from a client.

However, in this redbook, we call it “servlet” unless we need to distinguish
them.

The HttpServlet Java class from which you will inherit (extend) has a number
of methods that you can implement that are invoked at specific points in the
life cycle. The most important ones are:

* init(), executed once when the HttpServlet is loaded
* doGet(), executed in response to an HTTP GET request
» doPost(), executed in response to an HTTP PUT request

* service(), executed in response to a request if a doXXX() method
associated with the request type is not implemented

* destroy(), executed once when the HttpServlet is unloaded

The service type methods (for example, doGet() and doPost()) are passed
two parameters: an HttpServietRequest and HttpServletResponse, which are
Java classes that encapsulate the differences among various Web servers in
how they expect you to get parameters and generate the resulting reply back
to the client.

Chapter 3. WebSphere programming model 43

44

Role in the architecture

HttpServlets are designed from the ground up to handle dynamic requests
from an HTTP client. In an MVC architecture, HttpServlets represent the
Controller component.

However, there is a question of granularity that needs to be addressed. That
is, how many servlets are required to control a Web application?

At one extreme, there are those that create only one servlet to control the
entire application (or worse, they may only build one servlet, ever). The
doGet(), doPost() or service() methods use a parameter from the
HttpServletRequest to determine the action to take, given the current state.
We do not recommend this extreme because it is:

* Unmaintainable, when implemented as a large case statement (only one
programmer can safely work on the code at a given time).

* Redundant with other approaches described next, when implemented by
forwarding to an action-specific servlet or JavaServer Pages (you might as
well route the request directly to the appropriate servlet).

* Redundant with the servlet APIs themselves, when implemented by
loading an action-specific functional class (the class loaded and invoked
will need to look just like a servlet, with request and response analogues
passed in on the service type methods).

» Security for a given function must be manually coded rather than use per
servlet security provided by the WebSphere administration tools.

At the other extreme of the granularity spectrum is one servlet per action.
This is a much better approach than a single servlet per application, because
you can assign different servlets to different developers without fear that they
will step on each other’s toes. However, there are some minor issues with this
approach as well:

e Servlet names can get really long to insure uniqueness across the
application.

* It is more difficult to take advantage of commonality between related
actions without creating auxiliary classes or using inheritance schemes.

In the middle is to develop a single servlet per state in the application flow
model that has dynamic content or actions. This approach resolves the issues
associated with the approaches described above.

For example, it leads to a “natural” naming convention for a servlet:
StateServilet. The doGet() method is used to gather and display the data for a
given state, while the doPost() method is used to handle the transitions out of

WebSphere V3.5 Handbook

the state with update side effects. Ownership can be assigned by state.
Further, commonality tends to occur most often within a given state and
service method type (doGet() or doPost()).

Using this approach in our example, we would develop the following servlets:

* ProductCatalogServlet, whose init method can read the current list of
products into a cache, whose doGet() method reads the cached catalog
for display, and whose doPost() handles the add item transition.

e OrderStatusServlet, whose doGet() method reads the list of orders for a
given customer to display their current status, and whose doPost() handles
the open order transition.

e OrderDetailsServlet, whose doGet() method reads the line items for a
given order for display, and whose doPost() handles the modify, submit
and cancel transitions.

See Figure 14 for a graphical view, with the STD of the online buying
application flow model extended to show where servlets would be used to
control transitions, with side effects triggering events on the underlying
business process model.

Qrder
Status
LLEEZF

Order [already open]
cancel
add\to order (order L .
{add item edit ling i
(product, quantity)} Confirms, o

wCancel:’ (product, St
G duamyy CSobmit

ok
submit order}

{cancehtarder}

Result
Figure 14. Online buying application flow STD showing states controlled by servlets

Regardless of the approach used, another use for servlets in an application
architecture is to develop an inheritance hierarchy to handle the common look
and feel of the Web application. For example, we might want to build an

Chapter 3. WebSphere programming model 45

46

OnlineBuyingServlet that provides common parsing functions, and whose
doGet method:

e Checks authentication (routing to a login state if necessary)

* Calls the abstract method doGetOnlineBuying() implemented by the
subclass to get the content

* Handles any errors in a common manner

The inherited doPost() method would:

» Attempt to authenticate for login, if shunted there from a previous call
(routing back to the original state for display if OK)

* If not authorized, or login failed, reroute to a login state with an
appropriate message

e If authorized, call the abstract doPostOnlineBuying() to handle the
state-specific action

* Handle errors if any
We will discuss some extensions to this superclass servlet in later sections.

Pros

Before the Servlet APl became available, each Web application component
(usually a CGl program) had to code to a Web server-specific API (such as
Netscape API, otherwise known as NSAPI). By being based on Java, servlets
are very portable and can be used with the leading Web servers.

Also, servlets stay resident once they are initialized and can handle multiple
requests. CGls generally start a new process for each request.

Servlets can be multi-threaded, making them very scalable. For example, the
Web application server can create new instances or threads as needed to
handle the load from the clients.

Since servlets are Java programs, they can be developed with an IDE, such
as VisualAge for Java.

Using an inherited servlet to provide a common look and feel and common
functions provides all of the benefits of a single servlet approach with none of
the disadvantages.

Cons
A minor disadvantage to HttpServlets is that they require explicit compiling
and deployment into an application server (see the Chapter 5, “Servlet

WebSphere V3.5 Handbook

support” on page 137 for more details on how to deploy servlets into
WebSphere).

Alternatives

Although we are strong proponents of using servlets as the controller in an
MVC architecture, an alternative is to develop monolithic servlets that handle
both the application flow logic and generate HTML (through the PrintWriter
accessible from the HttpServletResponse object). Some even go to the
extreme of handling business process logic directly within the servlet. The
only advantage of this approach is that the end-to-end path length is shorter.

The problem with monolithic servlets is that the layout cannot be developed
with a WYSIWYG editor, nor can the business logic be reused in other client
types, such as Java applications.

Further, it makes it much more difficult to move the application to alternate
output media, such as WAP and WML.

JavaServer Pages, to be discussed next, are considered by some to be a
viable alternative to servlets, since they are functionally equivalent.

3.2.2.2 JavaServer Pages
JavaServer Pages (JSPs) are a standard extension to HTML that provide
escapes so that values can be dynamically inserted.

There are numerous tags that allow the developer to do such things as import
Java classes, and declare common functions and variables. The most
important ones used by a JSP developer to generate dynamic content are:

* java code block (<% code %>), usually used to insert logic blocks such as
loops for tables, selection lists, options, and so on

* expressions (<%=expression%>), usually used to insert substitute variable
values into the HTML.

* bean tag (<jsp:bean>), used to get a reference to a Java Bean scoped to
various sources, such as the request, session, or context.

* property tag (<jsp:beanproperty>) is a special-purpose version of the
expression tag that substitutes a specified property from a bean (loaded
with the bean tag).

There is also a standard tag extension mechanism in JSP that allows the
developer to make up new tags and associate them with code that can either
convert the tag into HTML or control subsequent parsing (depending on the
type of tag created). This feature would allow a developer (or third-party

Chapter 3. WebSphere programming model 47

providers) to build tags that eliminate the need to explicitly code expressions
and java code blocks, making the JSP code look more HTML-like and less
Java like. See Chapter 6, “JSP support” on page 189 for more details.
Custom tags can make it very easy for non-programmers to develop
JavaServer Pages (those with Java skills can develop specialized tags to
generate tables, option lists, and such).

In any event, a JSP is compiled at runtime by WebSphere into a servlet that
executes to generate the resulting dynamic HTML. Subsequent calls to the
same JSP simply execute the compiled servlet. In Chapter 6, “JSP support”
on page 189, we discuss the performance benefits of precompiling JSPs
(JSP 1.0 only).

Role in the architecture

JSPs are best used to handle the display of data associated with a given
state having dynamic content. This role represents the view in an MVC
architecture and contrasts with that of the servlet that represents the
controller. The way they work together is that the servlet gathers the data or
handles the transition action, and then routes flow of control to the associated
JSP to generate the response.

For our example application, this approach would result in the following JSPs
being developed, with the naming convention being State.jsp:

* ProductCatalog.jsp, which takes the catalog data provided by the
corresponding HttpServlet and primarily formats an HTML table displaying
the product IDs and descriptions, along with a form allowing a Customer to
specify a quantity to add to the order.

* OrderStatus.jsp, which takes the order data provided by
OrderStatusServlet and primarily formats an HTML table displaying the
order IDs and current status, along with a button allowing a Customer to
view the selected order.

* OrderDetails.jsp, which takes the line items associated with an order
provided by the OrderDetailsServlet and formats a table showing the
product ID, description, and quantity, along with a form allowing a
Customer to specify a modified quantity.

* AlreadyOpen.jsp, which simply formats a page showing the order number
that is already open.

* ActionResult.jsp, which simply displays a message describing the result of
a given action.

Figure 15 on page 49 shows the online buying application STD extended to
show these JSPs.

48 WebSphere V3.5 Handbook

Order
Status

quantity)} Conflrm
Cancel

(product

(0]

{cancetorder} ok

Result

Figure 15. Online buying application STD extended to show display controlled by JSPs

We would likely want to develop specialized tags to handle generating a table
by iterating through indexed Java Bean properties. This tag would be used to
generate the tables associated with the ProductCatalog, OrderDetails and
OrderStatus states. As an example of the differences, here is a fragment of
the ProductCatalog JSP with embedded Java:

<TABLE BORDER=0 CELLPADDING=2 WIDTH="90%" HEIGHT=25>
<TR BGCOLOR="blue">
<TH WIDTH="10%" ALIGN=CENTER>
Product ID
<TH WIDTH="64%" ALIGN=LEFT>
Description
<TH WIDTH="16%" ALIGN=CENTER>
Action
</TR>
<%
int sku = 0;
String description = null;
online.buying.data.ProductData d[] = v.getCatalog() ;
for (int i=0; i < d.length; i++)
{
sku = d[i] .getsSku() ;
description = d[i] .getDescription();

oe
\%

Chapter 3. WebSphere programming model 49

50

<TR>
<TD WIDTH="10%" ALIGN=CENTER>
<%=sku%>
<TD WIDTH="64%" ALIGN=LEFT>
<%=description%>
<TD WIDTH="16%" ALIGN=CENTER>
<FORM METHOD=POST
ACTION="/servlet/online.buying.servlets.ProductCatalogServlet">
<INPUT TYPE=HIDDEN N ="productID"
VALUE="<7jsp:beanproperty name=product property=sku/>">
<INPUT TYPE=TEXT NAME="quantity" VALUE=1 SIZE=3 MAXLENGTH=3>
<INPUT TYPE=SUBMIT NAME="action" VALUE="Add to Order">
</FORM>
</TD>
</TR>

)
<3

o
5>

</TABLE>

Here is how the same JSP fragment might look using custom tags:

<TABLE BORDER=0 CELLPADDING=2 WIDTH="90%" HEIGHT=25>
<TR BGCOLOR="blue">
<TH WIDTH="10%" ALIGN=CENTER>
Product ID
<TH WIDTH="64%" ALIGN=LEFT>
Description
<TH WIDTH="16%" ALIGN=CENTER>
Action
</TR>
<onlineBuying: indexedProperty
beanName=v property=catalog
value=product
type=online.buying.data.ProductData
>
<TR>
<TD WIDTH="10%" ALIGN=CENTER>

<jsp:beanproperty name=product property=sku/>

<TD WIDTH="64%" ALIGN=LEFT>

<jsp:beanproperty name=product property=description/>

<TD WIDTH="16%" ALIGN=CENTER>

WebSphere V3.5 Handbook

<FORM METHOD=POST
ACTION="/servlet/online.buying.servlets.ProductCatalogServlet">
<INPUT TYPE=HIDDEN NAME="productID"
VALUE="<7jsp:beanproperty name=product property=sku/>">
<INPUT TYPE=TEXT NAME="quantity" VALUE=1 SIZE=3 MAXLENGTH=3>
<INPUT TYPE=SUBMIT NAME="action" VALUE="Add to Order">
</FORM>
</TD>
</TR>
</onlinebuying:indexedProperty>
</TABLE>

The example shows that there is no Java required at all when using custom
tags.

Whether extended tags are used or not, we recommend developing JSPs
such that multiple states can be composed within a single page (see 3.2.1.1,
“HTML” on page 32 and 3.2.1.3, “Framesets and named windows” on page 37
for more details on page composition). This approach actually simplifies the
individual JSPs since they need not worry about setting headers or the
<HTML><BODY> and other enclosing tags. The associated HttpServlet can
handle this setup, or can delegate it to an inherited servlet as discussed in
the previous section. This approach will also make it easier to exploit dynamic
caching that will be supported in later versions of WebSphere Application
Server.

Pros

One huge advantage of JSPs is that they are mostly HTML with a few special
tags here and there to fill in the blanks from data variables. The standard
extension mechanism allows new tags to be developed that eliminate the
need to use the Java escape tags at all.

Further, JSPs require none of the “printin” syntax required in an equivalent
servlet. This tag-oriented focus makes them relatively easy to WYSIWYG edit
with tools such as WebSphere Studio Page Designer. This focus also makes
it easier to assign the task of building JSPs to developers more skilled in
graphic design than programming.

JSPs can be used to provide meaningful error indicators on the same page as
the input fields, including specific messages and highlighting. Static HTML
does not provide this capability.

Another advantage is that JSPs do not require an explicit compile step,
making them easy to develop and test in rapid prototyping cycles. This
feature tempts some developers to use JSPs instead of servlets to handle the

Chapter 3. WebSphere programming model 51

52

data gathering and update-transition functions, logic that is traditionally
associated with the controller component of an MVC architecture.

Cons
There are some good reasons not to give in to the temptation and use JSPs
to control the application flow:

1.

Current JSP tools do not provide IDE functions for code blocks. For
example, method completion and hierarchy exploration are not available
during edit, incremental compile, test and debug facilities are not available
in preview mode (usually the logic blocks and escapes show up as strange
symbols on the window).

While there is no conceptual reason that prevents a JSP tool from
providing a “dual mode” capability, combining the two concepts makes it
impossible for one developer to handle the control flow of an application
and another to handle the layout.

Combining application flow and layout logic in a JSP has the same
disadvantage as combining them in a servlet: it is much more difficult to
migrate the application to use different output media.

. Finally, JSP 1.0 and beyond have eliminated the ability to override an

abstract method defined by a superclass, such as doGetOnlineBuying().
All HTML tags are compiled into the HttpServlet service() method. This
makes inheritance of common look-and-feel behaviors in JSPs much more
difficult and error prone.

Regardless of whether they are used to control application flow or not, there
are some minor issues associated with using JSPs.

1.

JSPs compile on the first invocation, which usually causes a noticeable
response time delay while the compile, load and init take place. To avoid
this delay in production environments, use a batch JSP precompiler if
available (see Chapter 6, “JSP support” on page 189 for more details).

Communication between the JSP and servlet creates a name, type and
data flow source convention issue. In other words, how do you pass data
elements between a servlet and the corresponding JSP? The next section
discusses using a Java Bean to encapsulate the data needed by a JSP.

Alternatives
If you insist on using JSPs to control the application flow, we recommend
building two per state:

1.

StateServlet.jsp, playing the role of an HttpServlet with nothing but a script
tag implementing doGet() and doPost() type methods, It can safely inherit
from a superclass HttpServlet as described in the previous section.

WebSphere V3.5 Handbook

2. State.jsp, playing the role of a JSP as described in this section.

This approach allows you to take advantage of the quick prototyping
capability of JSPs early in the development cycle (no compile or deploy step
needed). Later on you could convert the “serviet” JSP to a real servlet (to
avoid the need to precompile the JSPs as described above).

However, we should say here that such tools as VisualAge for Java Enterprise
Edition with its embedded WebSphere Test Environment provide the ability to
rapidly develop and test servlets as easily as JSPs, minimizing the
development cycle-time advantage described above that might motivate the
use of JSPs for application flow control.

Finally, XML actually provides a viable alternative to JSP in some situations. It
is possible to have the servlet for a given state return XML directly to an
XML-enabled browser, using an XML parser-generator. Even if a user’s
browser does not support XML, the servlet could use the associated
stylesheet to generate the corresponding HTML without using a JSP. We will
discuss this possibility further in the next section, where Java Beans can be
employed to simplify this process.

3.2.2.3 Data structure Java Beans (data beans)

A Java Bean is a class that follows strictly specified conventions for naming
properties, events and methods. An auxiliary class, called a Beanlnfo class,
contains additional descriptive information that can be used by tools to
provide, among other things, extra levels of documentation and runtime
support to edit property values.

A data structure Java Bean is usually nothing but a simple set of properties,
with no need for events or methods (beyond gets and sets of the associated
properties).

Data structure Java Beans are sometimes made “immutable”. That is, all
properties are private and only get methods are provided to prevent the data
from being updated. Also, data structure Java Beans sometimes are
associated with a separate key subcomponent that encapsulates those
properties that uniquely identify the associated data.

Immutable or not, key or not, a data structure Java Bean should implement
the serializable interface that enables it to be passed remotely and stored in
various files and databases. An implication of being serializable is that the
object properties must be simple types or strings, or that any contained
objects must be serializable.

Chapter 3. WebSphere programming model 53

54

Strictly speaking, WebSphere Application Server V3.5 has no special support
for Java Beans. However, data structure Java Beans fill so many useful roles
in the end-to-end architecture that we feel required to include them in a
discussion about the programming model.

Role in the architecture

In an MVC architecture, data structure Java Beans can be considered to
represent the static properties associated with objects in the model. This
makes them useful to maintain data reads from back-end systems, or results
from executing back-end business functions (more on this in the next section
on business logic access beans).

For purposes of the Web application server tier, we also see them used to
maintain the data passed between the servlet and other middle-tier
components, especially JavaServer Pages (described in the 3.2.2.2,
“JavaServer Pages” on page 47) when there is more than one property
involved. They may represent data from the model as it is transformed for a
specific view associated with a JSP, or as occurs in many cases, it may be
that the model object does not need transforming and can be passed to the
JSP as is.

Our example online buying application has three servlets that pass complex
data to an associated JSP: ProductCatalogServlet, OrderStatusServlet and
OrderDetailsServlet. This association leads us to suggest developing three
data structure Java Beans, named ProductCatalogData, OrderStatusData
and OrderDetailsData, respectively. Figure 16 shows the online buying
application STD extended to show where data structure Java Beans are being
used to model the contract between the servlet and JSP.

WebSphere V3.5 Handbook

é)rtdelr [alréady open]
etails
{add item : i

(product, quantity)} :,.-"Eonfirr}{--._\ fy item = U mon
“Gancely

o quantity

ok

Serylet USRS
. (JSP+Bean
Key: @ d6Post S

Figure 16. Online buying application STD extended to show data structure Java Beans that
encapsulate the dynamic content

Some developers build a data structure Java Bean for every JSP whether it
has more than one property or not, and whether or it is associated with a
servlet or not. They may also make these data structure Java Beans
immutable, as described above, to make them easier to deal with in
WYSIWYG editors (only get methods would show in the palette of functions
available).

In any event, the properties associated with these data structure Java Beans
can be derived directly from the more complex objects in static models
associated with the application flow model as shown in Figure 17.

Chapter 3. WebSphere programming model 55

56

Plroduct Qrdes Qe
Clatalog Dietails Statws
customerlD customerlD
orderlD
status
0..n 0..n O..nv
Piroiduct Linesitem Ordet
productliD productliD orderlD
description description status
quantity

Figure 17. Data structure Java Beans derived from application flow static object model

Pros
Either approach using a data structure Java Bean to contain JSP data has
enormous advantages:

1.

The data structure Java Bean represents a formal contract between the
servlet and JSP developer roles involved.

Adding properties to the contract is easy because the servlets already
create, populate, and pass the associated Java Bean, while the JSPs
already use the bean and property tags. You can independently modify the
programs to use the new properties. Also, the new properties can be
optional with a default assigned as part of the constructor.

Removing a property from the contract without modifying the associated
servlets and JSPs that use them will cause errors to be caught at compile
rather than runtime.

It allows the servlet developer for a given state to focus entirely on Java to
control the application control and data flow, while the JSP developer can
focus entirely on HTML or XML-like tags that control the layout.

Many tools are available that take advantage of Java Bean introspection
for such varied functions as providing command completion and selection
of properties from a palette at development time, to populating from and
generating XML at runtime.

Setting properties into a data structure Java Bean, and then setting the
whole data structure into a data flow source (such as HttpServietRequest
attributes to be discussed in 3.4.2.1, “HttpServletRequest attributes” on
page 94) is much more efficient than setting individual properties into that
source one at a time.

WebSphere V3.5 Handbook

7. Conversely, getting a single data structure Java Bean from that same
source, and then getting its properties locally, is much more efficient than
getting multiple properties directly from the source.

8. The same data structure Java Beans are likely to be used as contracts
with other components because of their simplicity, providing a high degree
of reuse (more on this advantage in the next section).

Cons

There are no serious disadvantages to using data structure Java Beans. The
only issue is that they can be rather expensive to create, and may cause extra
garbage collection cycles as memory is used. To circumvent this problem,
some developers use pooling techniques, where a number of pre-constructed
Java Beans wait to be requested, used, and then released back to the pool.

Alternatives

Some XML enthusiasts propose XML as a dynamic substitute for explicitly
coded Java Beans (see 3.2.1.4, “XML, DTD and XSL” on page 41). With this
approach, a single XML string is passed or stored rather than a data structure
Java Bean. The receiving component then uses the XML parser to retrieve
the data.

While we are strong proponents of XML, and see its merits as a possible
serialized format of a data structure Java Bean, we would not recommend
using XML-encoded strings as a substitute, especially in situations where the
data structure is known at design time.

The extra overhead of generating and parsing the XML strings, plus the
storing, retrieving and transmitting of all the extra tags, makes them very
expensive with respect to the equivalent data structure Java Bean. For
example, it will take only few bytes to serialize a Java Bean such as
LineltemData containing a simple string for the description and couple of
integers for the productIiD and quantity. Using XML could take many, many
more bytes, depending on how the tags are specified and how much white
space is encoded:

<LineItemDatas>
<productID>1111</productID>
<description>Cat food bowl</description>
<quantitys>l</quantity>

</LineltemDatas>

An alternate XML design might be a little more conservative of space, but still
is much more expensive than the equivalent serialized data structure Java
Bean:

Chapter 3. WebSphere programming model 57

58

<LineItemData productID=1111 description=“Cat food bowl” quantity=1/>

Don’t forget that neither of these fragments include the surrounding tags that
make it a well-formed XML document.

In summary, there is honestly no good alternative to using data structure Java
Beans as the formal contract between components in the architecture. And,
as we will see in the following sections, data structure Java Beans are used
just about everywhere, making them well worth the investment.

3.2.2.4 Business logic access beans

We noted in the previous subsection on data structure Java Beans that they
represent the static properties of the model. In the same vein, a business
logic access bean can be thought of as encapsulating the dynamic behavior
of the model.

A business logic access bean is a Java class whose methods encapsulate a
unit of work needed by any type of application, be it for the Web or a
distributed client/server. In other words, a business logic access bean is
intended to be user interface independent.

Note

Access bean as it is used here is intended to be a generic Java wrapper,
and not to be confused with the specific kind of access beans generated by
VisualAge for Java Enterprise Edition.

The other primary purpose of the business logic access bean is to insulate
the client from various technology dependencies that may be required to
implement the business logic.

Business logic access beans will almost always make use of data structure
Java Beans and associated keys in the input and output parameters. Further,
any data cached within an access bean is likely to be in terms of data
structure Java Beans and associated keys, so the two concepts go hand in
hand.

Like data structure Java Beans, WebSphere Application Server V3.5 has no
special support for business logic access beans, However, they are so useful
in the end-to-end architecture that we feel required to include them in this
discussion as well.

WebSphere V3.5 Handbook

Role in the architecture

We noted in the previous subsection that data structure Java Beans represent
the static properties of the model in an MVC architecture. In the same vein, a
business logic access bean can be thought of as encapsulating the dynamic
behavior of the model.

There are numerous approaches to developing business logic access beans,
covering many different aspects that may be useful in a given application. We
touch on a few of them here, but it is not within the scope of this book to
discuss all the different patterns that may be used (see Design Patterns:
Elements of Reusable Object-Oriented Software, by Erich Gamma, et al).

The first aspect we consider is whether the business logic is stateless or
stateful:

» Stateless access beans have methods whose input parameters include all
the data necessary to complete the unit of work and whose return values
have the complete result. Stateless access beans retain no memory of
what a given client program has done between invocations. However,
“statelessness” does not mean that the access bean cannot cache data,
just that any data cached must be accessible using parameters passed in
a given method signature.

 Stateful access beans have methods that may rely on the result of
previous methods, thus having an implied “state” model. Statefulness can
be exploited to simplify the method signatures, since parameters or results
of previous calls can be cached so that fewer parameters are needed in
subsequent method signatures. Stateful access beans must have a
one-to-one association with the client so that two different clients in two
different “states” do not interfere with each other. This association is often
called client/server affinity, and it can make stateful access beans less
scalable than an equivalent stateless one by limiting the ability to
arbitrarily load balance method calls.

* You can sometimes simulate a stateful access bean with a stateless one
by including extra parameters that either identify the client or contain the
current state data.

The identity is used in the first approach to look up state data cached in
the access bean. If the second approach is used, the current state data is
used in the called method and a new current state is returned to the client
(as a data structure Java Bean, as described in the 3.2.2.3, “Data
structure Java Beans (data beans)” on page 53) to keep until the next call.

Chapter 3. WebSphere programming model 59

60

Another aspect to consider is granularity. Like servlets described in 3.2.2.1,
“Servlets” on page 43, there is a continuum of granularity that could be
considered when developing a business logic access bean:

* On the one extreme, there could be a single business logic access bean

per unit of work.

* On the other, all units of work for the business process could be

represented by methods on a single business logic access bean.

* In the middle, all the methods needed for the transitions in a given state in

the application flow model could be grouped into a single business logic
access bean.

* Also in the middle (but coarser grained), all the transitions associated with

a state in the business process model could be represented by methods
on a single business logic access bean.

Some of you may be familiar with the following types of business logic access
beans:

* A command bean is a fine-grained stateful business logic access bean

that encapsulates a single unit of work. The programming model for a
command bean is to create it (or get one from a pool), set properties (its
state) that represent the input parameters, perform the unit of work, and
finally get the properties representing the return parameters (also part of
the state). See Design and Implement Servlet, JSPs, and EJBs,
SG24-5754 for more details.

A business logic access bean that is stateful and holds the data returned
from a query result is sometimes called a rowset. A rowset can be
considered to be a specialized form of command bean. Its programming
model is to set parameters representing a query, perform the query, then
iterate through the results in the rowset.

By way of an example, if we decided to use a stateless approach with a
business logic access bean per state in the online buying business process
model, we might end up with the following:

. EntryAccess, with the following stateless methods:

- OrderKey create(CustomerKey), where a new order is created on
behalf of the customer and the key is returned

- void addLineltem(CustomerKey, ProductKey, quantity), where the
specified quantity of a product is added to the open order for the
specified customer. If no order is open, a new one is opened.

WebSphere V3.5 Handbook

- void modifyLineltem(CustomerKey, ProductKey, quantity), where an
existing line item on an order is modified.

- void submit(CustomerKey), where the open order associated with the
customer is submitted to the Shipping department for Fulfillment.

- void cancel(CustomerKey), where the open order associated with the
customer is cancelled and moved to the Completed state for data
mining by the Marketing.

2. FulfillmentAccess, with the following stateless methods:

- void packLineltem(Shipper, OrderKey, ProductKey, quantity), where the
specified quantity of product up to the line item quantity is added to a
shipment associated with the order. If no shipment is open, a new one
is created.

- void ship(Shipper, OrderKey), where the shipment associated with an
order is shipped. If all line items associated with the order have been
shipped, then the order is moved to the Completed state.

3. CompletedAccess, with the following stateless methods:
- void purge(Marketer, OrderKey), where the order is finally deleted from
the system after all data mining activities have been exhausted.

Figure 18 shows the business process model from which these access beans
and associated methods were derived.

add line item
(product, % %
create() :
quantity) .
.- Customer /Shlpplng

- ship (shipper)
[all items
shipped]

Marketing

modify line
item
(prodqct, [not all items
quantity) shipped]

pack line item
(product, quantity)

Figure 18. Online buying business process model driving the business logic access beans

These descriptions only show the update methods associated with the
business logic access beans. The assumption is that there would be
read-only methods that provide access to data associated with the static

Chapter 3. WebSphere programming model 61

62

model underlying the business process state. For the OrderEntry state we
might see the following read-only methods:

e ProductData[] getProducts(), which returns the current list of products in
the catalog.

e OrderDetails getOpenOrderDetails(CustomerKey), which returns the
details of the open order associated with the customer passed in (or null if
no order is open).

* OrderDetails getOrderDetails(OrderKey), which returns the details for the
order passed in (or null if the order does not exist).

e OrderData[] getOrders(CustomerKey), which returns the list of orders
associated with the customer.

The OrderDetails class derived from the application flow static object model is
used to pass data for the getOpenOrderDetails() and getOrderDetails()
methods, while the ProductData and OrderData classes used to return data
from the getProducts() and getOrders() methods are derived from the static
object model associated with the business process OrderEntry state as
shown in Figure 19.

Product Customer
sku customerID
description
openOrder

product 0..n| 0..1|customer
Lineftem:| | Order

: 0..n
quantity orderlD

status

Figure 19. Static object model of Order in Entry state driving read-only calls

It often makes sense to wrap the business objects used by the business logic
access beans with access beans as well, to provide the ability for each to be
maintained in a separate data store transparent to the business logic. In this
case, we would have a business object access bean for Product, Customer,
Order, and Lineltem respectively (named ProductAccess, CustomerAccess,
OrderAccess and LineltemAccess).

WebSphere V3.5 Handbook

Pros

One big advantage of wrapping the business logic associated with the
business process model is that wrappers provide an encapsulating layer that
hides the details of where and how the business logic gets invoked from the
client. This insulation will make it possible to evolve the technology used by
the application over time. For example, in early stages, the code may make
direct calls to JDBC, and then over time migrate to use Enterprise JavaBeans,
all without having to recompile the client applications.

Another big advantage is that once the method signatures are defined, it is
possible to build the client applications in parallel with the back-end business
logic, and speed the overall development process. Testing becomes simpler
too, since the logic controlling the application flow is cleanly separated from
the logic controlling the business process, minimizing the number of code
segments that need to be tested.

Cons

There is absolutely no downside to wrapping business logic in objects
separate from the client, even in cases where there is little or no opportunity
to reuse the business logic in other applications.

Alternatives

That said, there is an alternative to wrapping business logic into “vanilla” Java
classes, and that is to directly use Enterprise JavaBeans in the client code. In
the next section, we discuss the various types and applications in the next
section that we feel make this a viable alternative.

3.2.3 Distributed object server-hosted components

The WebSphere programming model provides support for Java-based
distributed objects called Enterprise JavaBeans (EJBs). EJBs can be thought
of as a standard mechanism to wrapper enterprise business logic and data
(usually hosted on some enterprise server) that can take advantage of the
following object services:

* Distribution, the ability for the server to be remote from the client

¢ Persistence, maintenance of the essential data associated with the
component

e Transactions, providing ACID characteristics for the units of work

Security, control of the roles that can access the objects and associated
methods

Trace and monitoring, configurable instrumentation for debugging and
performance tuning

Chapter 3. WebSphere programming model 63

64

There are two main types of EJBs that can be developed as part of the
programming model: session and entity. In a nutshell, session EJBs are those
that have a very short life cycle that lasts only as long as both the client and
server maintain a reference to the session. This reference can be lost if the
client explicitly removes the session, or if the server goes down or “times out”
the session.

An entity EJB is one that once created (either explictly or implicitly) can be
subsequently found with a “key” for use by a client application. It persists until
the remove() operation is invoked by a client application or until the data is
explicitly removed from the underlying store.

Within a session EJB there are three implementation types to choose from
(stateless, stateful, and stateful with session synchronization). Within an
entity EJB there are two implementation types depending on how persistence
is managed: container-managed persistence (CMP), and bean-managed
persistence (BMP).

This section will discuss each implementation choice at a high level with
respect to their role in the architecture, what the pros and cons of each type
are, and alternatives to each. Details of how to deploy EJBs are found in
Chapter 11, “Enterprise Java Services” on page 393.

3.2.3.1 Stateless session EJBs

Stateless session EJBs are those whose method signatures have all the
parameters needed to complete the associated unit of work; they return the
complete result in the method return value (or exceptions that may be
thrown).

The effect of being stateless is that any active instance of a stateless session
EJB can service a request from any client in any sequence. This feature
makes stateless session EJBs the most scalable.

There is no guarantee that two calls to the same stateless session EJB will be
services by the same instance on the server. Because of this feature (good
for scalability), there is a common misconception that stateless session EJBs
cannot have instance variables and thus maintain “state”. They can, as long
as the values can be used by any client, and in any sequence. For example,
many applications cache connections to back-end resources and frequently
used stable read-only data in stateless session EJBs.

WebSphere V3.5 Handbook

Role in the architecture

Stateless session EJBs are ideal for implementing the business logic
associated with the business process model, as we described in see 3.2.2.4,
“Business logic access beans” on page 58.

You could use the stateless session EJBs directly by the client program, or
have the business logic access bean wrapper calls to the stateless session
bean. In either case, the method signatures of the stateless session EJBs
would look exactly like those described in 3.2.2.4. The method signatures for
the Entry stateless session bean derived from the online-buying business
process model as shown in Figure 20 on page 65 are:

* OrderKey createOrder(CustomerKey), where a new order is created on
behalf of the customer and the key is returned.

* void addLineltem(CustomerKey, ProductKey, quantity), where the
specified quantity of a product is added to the open order for the specified
customer. If no order is open, a new one is opened.

¢ void modifyLineltem(CustomerKey, ProductKey, quantity), where an
existing line item on the open order associated with the customer is
modified.

 void submitOrder(CustomerKey), where the open order associated with
the customer is submitted to the Shipping department for Fulfillment.

* void cancelOrder(CustomerKey), where the open order associated with
the customer is cancelled and moved to the Completed state for data
mining by the Marketing department.

add line item
(product, i %
create() -
quantity) .
. Customer ,.,Shlpplng

- ship (shipper)
[all items
shipped]

Marketing

modify line
item
(product,

. [not all items
quantity)

shipped]

pack line item
(product, quantity)

Figure 20. Stateless session EJBs derived from business process model

Note: add a CustomerKey to every transition to derive method signatures.

Chapter 3. WebSphere programming model 65

66

The implementations of the methods can be exactly the same as those
provided for the business logic access beans, or they can take advantage of
the features of stateless session EJBs.

For example, if the code manually manages a connection pool for a relatively
expensive resource, you can cache the connection in the stateless session
EJB (as long as it is not client specific). This approach effectively lets the EJB
container act as the pooling mechanism, and makes getting the connection
transparent to the business logic, which can simply use the connection.

As another example, if the methods managed standard JTA (Java Transaction
API) transactions at the beginning and end of the business logic to provide
ACID properties, this code could be removed, since it is provided
automatically by the container.

Pros

Besides simplifying the code to handle connection pooling, transactions and
security, a key advantage gained when using stateless session EJBs is that
the business logic can be moved out of (distributed from) the client tier
without having to reprogram the client or server components. This ability can
be important for security purposes.

For example, we may be happy to have the Web server and servlets within
the DMZ (since the application flow can be inferred by navigating the Web site
anyway), but we would probably want to host the business logic behind the
inner firewall of the DMZ to protect it from direct access by hackers. In other
cases we may want to co-deploy the business logic with the application flow
logic, but put both behind the DMZ (using WebSphere’s OSE Remote
deployment option).

Another advantage of using stateless session EJBs is that it is possible to
efficiently load balance them across multiple application servers and achieve
a high degree of scalability.

Distributing the business logic out of the client tier can make the client much
“thinner” since there is no need to install (possibly very expensive)
connectivity options. Only the Enterprise Java Servers would need to
maintain the connectivity to the back-end systems. It can communicate with
the client, with the client-side ORB providing RMI/IIOP connectivity. In large
Web application server farms, or Java applets, having a thin middle tier can
be a very attractive advantage.

WebSphere V3.5 Handbook

Finally, distributing the business logic out of the client means that it can be
reused in multiple application types, not just Web applications, as we show in
the introduction (3.1.2.2, “Distributed object-based applications” on page 27).

Cons

One disadvantage to using EJBs in general is that the overhead (distributed
calls, security checks and transaction management) can be quite expensive
even when the client and server are co-deployed. For this reason, you must
take care to design the EJBs to minimize the number of calls required per unit
of work (our design requires only one call per unit of work after the EJB is
created).

The second disadvantage to using EJBs is that the need to find a Home in the
JNDI context, narrow it to the specific home interface type, and create the
remote interface prior to using it adds complexity to the client programming
model.

Still a third disadvantage when using EJBs is the increased complexity in
testing, debugging, deployment, and administration.

Specific to stateless session EJBs, a disadvantage with respect to other EJB
types is the need to pass in extra parameters on the call, and receive all the
data on the return value. This requirement can significantly increase the data
transmission costs, if the objects are not carefully designed.

Also, expensive computations may be repeated (if the EJB is called more
than once in the logical session), because a stateless session EJB retains no
memory of previous calls.

Alternatives

If, for example, all the logic is handled by back-end CICS transactions, or all
the data is maintained in a single DB2 database using precompiled SQLJ
queries, then a simple business logic access bean that directly accesses
these back-end systems may be the preferred approach.

Rather than look up the home in the JNDI context, narrow it, and create the
session over and over again for each request, you can create the session
once and cache it in the client (either the servlet or, preferably, the business
logic access bean). This approach should be considered a “best practice”
even though the IBM implementation of the JNDI context in WebSphere
Application Server V3.5.2 automatically caches homes to provide a high
degree of scalability.

Also, it is a common practice to cache stable read-only data in a stateless
session EJB (or in an associated singleton object) to minimize repeating

Chapter 3. WebSphere programming model 67

68

expensive computations. For example, we may want to cache the product
catalog data within a singleton referenced by the stateless session bean.

3.2.3.2 Stateful session EJBs

Stateful session EJBs have a complex life cycle model that allows methods to
maintain state between calls. The effect is that a given task can span multiple
invocations.

Unlike stateless session EJBs, stateful session beans can support a custom
create that takes parameters useful in initializing the state. This feature can
be very useful in simplifying the other method signatures, since they can
assume that the state of the session EJB includes those parameters useful
for the lifetime of the session.

Role in the architecture

Since the “business logic” of our example application only allows a single
order to be open for a customer at a given time, we could have designed a
stateful session EJB for the OrderEntry state in the online buying business
process model as follows:

e OrderEntry ejbCreate(CustomerKey), where the session is created and
the current open order for the customer (if any) is cached. This method
would appear on the OrderEntryHome as a custom create.

* void addLineltem(ProductKey, quantity), where the specified quantity of a
product is added to the open order for the stored customer. If no order is
open, a new one is opened.

* void modifyLineltem(ProductKey, quantity), where an existing line item on
the open order associated with the session is modified.

* void submitOrder(), where the open order is submitted to the Shipping
department for Fulfillment.

* void cancelOrder(), where the open order is cancelled and moved to the
Completed state for data mining by the Marketing department.

Figure 21 shows how the OrderEntry stateful session EJB methods were
derived more directly from the associated business process model state
(customer was added only as a parameter to the create method).

WebSphere V3.5 Handbook

add line item
(product, i %
create() -
quantity) .

. Customer ,/Shlpplng
: . ship (shipper)
[all items

Marketing

modify line
item
(prodgct, [not all items
quantity) shipped]

pack line item
(product, quantity)

Figure 21. The business process model from which stateful session EJB methods were derived

Pros

One benefit of using stateful session EJBs is that the methods map more
closely to the transitions associated with the business process model than
those of the stateless session EJB (or business logic access bean) described
previously. Also, the fewer number of parameters means that there is less
data to marshal and demarshal in a remote method invocation.

Another benefit of a stateful session EJB is that it can reduce the number of
calls to the back end by caching frequently used data as part of its state. In
our example, caching the open order associated with the customer eliminates
the need to keep reading the database to retrieve it, as would be required in
just about every method associated with the “equivalent” stateless session
EJB.

Taking this idea to an extreme, stateful session EJBs can cache data
considered to be work-in-progress, eliminating all calls to the back end until
specific “checkpoint” type transitions. This can be especially advantageous in
situations where application events may terminate the processing before its
logical conclusion.

For example, we could have opted to cache the order line item data in the
OrderEntry stateful session EJB until the submit or cancel is invoked. Only on
the submit would it access the back-end system to move the cached data to a
persistent store.

A middle of the road approach would both cache the state in the EJB, and
store it persistently on the back end. Any update methods on the stateful
session EJB (such as addLineltem) would write to the persistent store, and if

Chapter 3. WebSphere programming model 69

70

successful, would update the cache to reflect the results. Read-only methods
(such as getOrderLineltems) on the EJB would simply use the data in the
cache.

Whatever you decide to cache using stateful session EJBs, the “state” is
managed automatically by the container rather than by explicit programming.
All the programmer need do is specify the instance variables as non transient,
and they are considered to be part of the state that gets managed. If memory
gets overloaded with sessions, the container will passivate one (probably one
that is least recently used, or LRU), reactivating it later if necessary.

Also, a properly designed stateful session EJB makes these caching
decisions transparent to the client.

Cons

The primary disadvantage to using stateful session EJBs is that there are
very few quality of service guarantees with respect to the ACID properties you
might expect when working with components:

1. For example, the container is not obligated by the specification to provide
for failover of stateful sessions by backing up the nontransient instance
variables in a shared file or database; so in general, if the server hosting
the stateless session EJB goes down, the state is lost.

2. Further, even if failover of stateful sessions was provided for by a shared
database (which WebSphere does not support), the session may time out
due to inactivity. Timeout always causes the state to be lost.

Both of these cases would probably be considered to be disastrous in the
example where line item data was only maintained as state within the stateful
session EJB, since a significant amount of work by the Customer would be
lost. However, a stateful session can be coded to manually back up the data
in a persistent store. In this case timeout or failover would only require
reinitialization of the session during the ejbCreate() method.

Another disadvantage related to the quality of service guaranteed for stateful
session EJBs is that the container does not roll back the state if the overall
transaction fails. For example, if the client application made multiple
addLineltem() calls to the Entry stateful session in the context of a single
transaction that subsequently fails, the state data would be incorrect. The
backing store may be in an inconsistent state as well.

Still another disadvantage to using stateful session EJBs is that scalability is
affected, since (unlike stateless sessions) a client must be attached to the
server hosting the specific stateful session EJB that is referenced. This

WebSphere V3.5 Handbook

requirement for client/server affinity limits the ability to balance the workload
among multiple servers. If the clients are not able to share the reference to
the EJB (either through a serialized handle or some other mechanism), then
client/server affinity must “ripple” all the way back to the client. This ripple
effect can greatly affect the scalability, performance, and failover
characteristics of the application.

Finally, another downside is that the mapping of data from the non-transient
variables to the backing store (file or database) during passivation/activation
is through the serialization mechanism. In short, the data is stored as a Blob
(Binary Large Object). The effect is that you cannot index or retrieve the data
using complex queries, as you could if you explicitly mapped the data to
specific columns.

Alternatives

There are alternatives to using stateful session EJBs. For example, any of the
approaches for converting a stateful to stateless access bean described in
3.2.2.4, “Business logic access beans” on page 58 can be used. These same
approaches could be used to convert a stateful session EJB into a stateless
one, especially in situations where the data is stable and read only, or if
client/server affinity is already being used.

In either of these cases, a singleton memory cache can be shared by all
instances of a stateless session EJB within the same JVM to maintain data. It
is also possible to cache this data in the client or Web application server (see
3.4, “Data flow sources” on page 90 for details).

Another alternative to stateful session EJBs when failover and ACID
properties are required is to use an entity EJB (discussed in detail below). In
this case, the “pseudo session” life cycle would be explicitly managed by the
application, but its state data would be immune to timeout as well as server
and transaction failures.

3.2.3.3 Session EJBs with session synchronization

Session beans can support the session synchronization interface, which lets
them participate in the container’s transaction processing. The session
synchronization interface includes methods that signal when a transaction
has been started, when it is being prepared for commit, and when it is finally
completed, either with a commit or a rollback.

The effect is that the same session EJB can be called one or more times in
the context of a single transaction, and the container (in conjunction with the
transaction controller) manages the calls required to close out the transaction
without an explicit call from the business logic methods.

Chapter 3. WebSphere programming model 71

72

Session synchronization requires that the session EJB be stateful, since it
adds life cycle states associated with transactional semantics. However, you
should think of it as “converting” either a stateless or a stateful session EJB to
support synchronization. The reason this is important is that the advantages
and disadvantages of the underlying session EJB type tend to dominate.
Also, from a programming model perspective, this characterization associates
the choice of session synchronization with deployment rather than with the
business logic itself.

Role in the architecture

Let’s say that in our online buying application, we decided to cache the Entry
data in a stateful session bean because going to the database for each
update was too expensive. We initially felt comfortable in this decision
because it was determined that timeout of stateful sessions was actually
desirable, and that client/server affinity and lack of failover support were not
issues. However, we realized that many of the business logic methods could
fail after partially updating the cached data, and the programming required to
restore the data to its previous state was more or less complex depending on
the business logic.

One way to reduce the complexity is to support the session synchronization
interface on the Entry stateful session. The afterBegin() implementation
would simply make a backup copy of the current state, and hold it in an
instance variable. The beforeCompletion() implementation could simply
return true, since there is no need to do anything. Finally, the
afterCompletion() implementation would restore the current state to the
previous copy, if the input parameter indicates that a rollback is required.

The business logic methods can throw a system exception or set a flag to
cause a rollback; they can throw application exceptions or exit normally to
cause a commit.

Another situation where session synchronization may apply is in situations
where data is backed up in a resource with a non-JTA-based transaction
model. For example, Persistence Builder (PB) is a VisualAge for Java feature
that provides advanced object model to relational mappings, such as preload
caching of related objects, that are not yet available in our CMP entity EJB
implementations. Unfortunately, PB has its own transactional model that must
be followed.

Let’s say that in our online buying application the Entry stateless session was
coded to use a number of “business object” access beans that wrappered
individual PB object types for Product, Customer, Order and OrderLineltem
(Figure 22 on page 73).

WebSphere V3.5 Handbook

Product Customer

sku customerlD
description
openOrder
product 0..n| 0..1|jcustomer
Lineftem: | [~ Order
: 0..n
quantity orderlD

status

Figure 22. Static object model of Order in Entry state driving business object access beans

The problem is that a given business object access bean is written to be
independent of the others. It cannot safely start a PB transaction since it does
not know if the client (stateless session EJB) will call another one in the
context of the same transaction. We certainly do not want multiple PB
transactions to run under a single unit of work, nor do we want to clutter up
the business logic with PB specific calls.

In this case, we would consider making the Entry support session
synchronization, where the afterBegin() starts the PB transaction, the
beforeCompletion() simply returns true (since PB transactions do not support
a prepare state - otherwise we would call the appropriate method and return
its result), and the afterCompletion() does a commit or a rollback on the PB
transaction depending on the input parameter (commit on true or rollback on
false, respectively).

Pros

The nice thing about session synchronization is that the business logic of the
session no longer needs to be concerned with managing transactions and
cached state. Instead, business logic methods need only throw an exception
when an error occurs to cause a rollback, or return successfully to cause a
commit. In either case, the associated state is properly managed. If the code
needs to cause a rollback without throwing an exception (say for read-only
methods), it can explicitly invoke a setRollbackOnly() on its EJB transaction
retrieved from the context.

In cases where the session EJB was originally stateless and only added
session synchronization (and state) to hold a transaction, then failover and

Chapter 3. WebSphere programming model 73

74

timeout is definitely not an issue, since the client (HttpSession or business
logic access bean) will create one as needed anyway.

Cons

Except for the simple cases described above, the session synchronization
interface can be very difficult code to implement, especially if the underlying
resource does not provide support.

Also, the code to manage transactions must apply to all methods on the
session that require a transaction. For example, there is no way to process
the backup/restore differently based on the method(s) invoked without
involving the methods themselves. In this case, it may be best to handle the
compensation in the methods themselves.

Implementing the session synchronization interface cannot be considered to
support true two-phase commit. The reason is that the transaction
coordinator is not obligated to resurrect the session and complete the
transaction if there is a failure between phases. The net effect is that there is
a window of opportunity where resources can become out of synch.

Finally, session synchronization is relatively expensive to achieve at runtime,
because it adds an additional set of methods that must be called to manage a
transaction. There should never be more than one or two per unit of work
(either of our designs above have only one).

Alternatives

If a stateful session EJB is being converted to use session synchronization
simply to provide transactional semantics of the cached data, then consider
using a CMP entity EJB. The advantage would be transparent transactional
semantics on the persistent properties.

In other cases, the best alternative is to defer session synchronization
implementation to the deployer role and have the business logic developer
code the session methods to be as independent of transactional semantics as
possible. This alternative takes session synchronization out of the “normal”
programming model and makes it a deployment responsibility.

3.2.3.4 Container-managed persistence entity EJBs

While a session EJB represents an object with a transient identity lasting only
as long as the client and server both maintain a reference to it, an entity EJB
represents an object with a persistent identity that lasts until the object is
actually removed from the container. Because of this difference, entity EJBs
have an associated key, and the home supports methods to find references in
various ways:

WebSphere V3.5 Handbook

* Find methods that return a single EJB reference based on the primary key
or a set of properties that uniquely identify an entity

* Find methods that return multiple EJB references based on zero or more
properties that identify a subset of all entities in the container

An entity has a set of properties, including those that make up the key, which
are considered to be part of its persistent state. The associated business
logic methods operate upon these properties without regard to how they are
loaded and stored.

In a CMP entity EJB, the container manages the persistent properties. When
bean-managed persistence (BMP) is specified, the developer explicitly codes
well-defined methods invoked by the container to manage the persistent
properties.

Role in the architecture

In our online buying application, the business objects associated with the
various states in the business process model are the most natural fit for CMP
entity EJBs, whether we wrap these business objects with access beans or
not (see Figure 23 on page 75).

Product Customer
sku customerlD
description
openOrder

product 0..n| 0..1|customer
Lineltem: | p==Order

: 0..n
quantity orderlD

status

Figure 23. Static object model of Order in Entry state driving CMP entity EJBs

As with all EJBs, care must be taken to minimize the interactions between the
client and server, even if the two will be co-deployed (as when the client is a
session EJB). For entity EJBs, we recommend the use of the following
approaches:

» Custom creates. These are designed to create the object and initialize its
properties in a single call, rather than the default create that takes just the

Chapter 3. WebSphere programming model 75

76

key properties followed by individual sets (or a call to a copy helper
method as described below). For example, we would likely want a
create(sku, description) method on a Product entity EJB to initialize all the
data in a single call.

» Custom finders. These are designed to return a subset of the entity EJBs
associated with the underlying data store, usually by passing in various
properties that are used to form a query. For example, we would want to
provide a findltemsForOrder(orderID) on the OrderLineltem entity to return
all the OrderLineltems associated with an Order and prevent us from
having to iterate through the entire set, looking at those matching the
orderlD.

* Copy helpers. These are get and set methods that use data structure Java
Beans to return or pass a number of properties at once. For example, we
would probably want to provide a getOrderData() copy helper on the Order
to return the orderID and status in a single call.

e Custom updates. These are designed to do some update function and
return a result in a single call. An example is an incrementQuantity(int)
method on a Lineltem entity EJB that adds an additional quantity to the
current value and returns it in a single call instead of having the client do
something like the following:

OrderLineltem item = lineItemHome.find (orderID, productID);
int currentQty = item.getQuantity();
item.setQuantity (currentQty + additionalQty) ;

As a general rule, you can design entity EJBs such that you do at most a
single call to them after a find for a given unit of work. This “single call”
includes the create if necessary, as the following example shows:

try {
lineItemHome. find (orderID, productID) .setQuantity (quantity);

}

catch (FinderException e) {
lineItemHome.create (orderID, productID, quantity);

}

Of course, exceptions to this rule do exist, such as when the entity is to be
deleted based on the method result (an entity EJB doesn’t “remove itself’
very well):

OrderLineltem item = lineItemHome.find (orderID, productID);
int newQuantity = item.incrementQuantity (quantity) ;
if (newQuantity <= 0) {

item.remove () ;

}

WebSphere V3.5 Handbook

Following this rule will insure that the application can be distributed as
painlessly as possible (although it is usually best to co-deploy client and
server, unless the logic executed on the server side is expensive enough to
warrant load balancing).

Where entity EJBs are used, you will usually end up with the following:
* <Entity>Key, a data structure Java bean that holds the key properties

* <Entity>Data, a data structure Java bean that holds both key and data
properties of the entity. Some go as far as to create a <Entity>DataOnly
that holds only the non-key properties to minimize the marshalling
overhead for the gets and sets.

* <Entity>Home, the Home interface for finding/creating the EJB, usually
with the following methods:

- <Entity> create(<Entity>Data) creates a new entity and initializes all
the properties

- <Entity> findByPrimaryKey(<Entity>Key) finds based on the key

- Enumeration find<Entity>sFor<RelEntity>(<RelEntity>Key key) returns
those entity EJBs associated with the related entity

e <Entity>, the EJB remote interface with at least the following methods:

- <Entity>Data get<Entity>Data() returns the data structure Java Bean
representing the data

- void set<Entity>Data(<Entity>Data data) sets the non-key properties
from the data

* <Entity>Impl implements the business logic methods specified in the
<Entity> interface above

Of course, there are numerous approaches that can be used. For example,
many like to include methods that have individual properties passed in rather
than forcing the use of a data structure Java Bean.

Also, many will add methods on the entity EJBs to aid in navigation across
associations between objects. Of course, the implementations of these
navigation methods ultimately use the custom finders described above.

Pros

The primary benefit of CMP entity EJBs is that persistence and transactions
are completely transparent to the business logic methods. When we used
session EJBs, the only way to get similar functionality was to implement the
session synchronization interface and use the methods to load or store the
state from a backing store.

Chapter 3. WebSphere programming model 77

78

This advantage is key from an evolutionary perspective. Let’s say our early
iterations used PB behind the business object access beans and thus
required session synchronization in the stateless session EJB associated
with the Entry business logic access bean. Later, we migrate the business
object access beans to use entity EJBs. Once all the access beans are
converted, we could reimplement the stateless session bean to drop session
synchronization without having to touch the business logic. The transaction
started by the stateless session bean propagates through to each entity so
that any changes are all or nothing.

Cons

As with all EJBs, the downside to CMP entities shows how having a rich set of
object services can be a double-edged sword: the overhead associated with
managing distribution, security, and transactions can be very expensive. CMP
entity EJBs require the developer to trust the container implementation to
provide persistence in an efficient manner.

Currently, there are numerous deployment choices available within
WebSphere Application Server V3.5 for entity EJBs. While this is not a
problem for the programming model, and should be considered to be an
advantage, it does complicate the decision whether or not to use entity EJBs
in the first place.

At the same time that there are a large number of choices, there are never
enough. Some would like CMP containers for CICS VSAM files, or IMS DL/I.
Others are fine with relational databases, but would like even more bells and
whistles, such as preloading of related objects.

Alternatives
There are at least three alternatives to CMP entities when our current
container implementations do not seem to meet your requirements:

1. Client access beans. This option may make sense if you cannot afford the
remote method call overhead associated with EJBs, even if they are
co-deployed with the client and no-local copies is specified.

2. Session EJBs. This option may make sense if you need a thin client tier or
must isolate the business logic from the client for integrity or
load-balancing purposes, and otherwise cannot afford the extra object
services overhead.

3. BMP entity EJBs. This option may make sense if having a simplified
programming model for the business logic is the biggest requirement, but
you have database requirements not met by our current container
implementations.

WebSphere V3.5 Handbook

The first two options have already been discussed in detail in this section. All
three options can be used together effectively: business logic access beans
passing through to session EJBs, which use business object access beans
passing through to BMP entity EJBs. We will discuss BMP entities next.

3.2.3.5 BMP entity EJBs

A BMP is simply an entity EJB where the developer manually implements the
service methods, most notably ejbLoad() to load the persistent state from the
backing store and ejbStore() to store it.

Role in the architecture

We recommend that all entity EJBs be implemented as if they were CMP for
the business logic programming model. That is, business logic methods
should assume that all instance variables are loaded prior to the method
executing, and that they will be stored if needed when the method completes.
The BMP methods to load and store the persistent instance variables should
be implemented as part of the deployment process when the characteristics
of the data store are known. This approach is very much the same as what
we suggested for session synchronization methods on session EJBs.

In short, the ability to develop BMP methods expands the applicability of
entity EJBs to situations where tighter control of the underlying data store is
required. This requirement can occur when WebSphere does not support a
legacy database. It can also occur when performance considerations
preclude using the “vanilla” code generated for CMP entities.

Pros

This approach not only makes the business object logic much simpler to
write, but also much easier to migrate to CMPs later, if the required container
options eventually become available. Following this approach means that the
BMP method implementations can be discarded and the entity EJBs can
simply be redeployed, without having to change either the business logic
methods or the client code.

Cons

The downside is that the persistence logic can be relatively complicated to
implement efficiently. For example, in custom finders, you almost always need
to cache the results of the query so that the iterative calls to the ejbLoad() for
each instance merely retrieve the data from the cache. In short, it can be very
difficult to minimize the number of transactions and back-end accesses.

Chapter 3. WebSphere programming model 79

Alternatives

The alternatives have already been discussed in the previous section: mainly,
directly accessing the back end in a business logic access bean or session
EJB.

As with CMP entity EJBs, it is almost always a better practice to use a
session EJB of some type as a wrapper, hiding the entity from the client. The
advantage is that the session EJB can coordinate the transaction across
multiple EJBs.

3.3 Control flow mechanisms

If you have designed anything other than a monolithic component architecture
(where all the application functions are controlled by a single program
component) then you will need to understand the mechanisms by which you
will transfer control from one component (the source) to another (the target).

Like the components themselves, the mechanisms vary by the tier upon
which the source component executes at runtime. We will likewise divide this
section up accordingly and have a subsection devoted to control flow
mechanisms that can be initiated from:

* Browser-based components, such as HTML
* Web application server-based components, such as servlets
We deliberately do not include the enterprise tier, not because there are no

mechanisms by which control flow is affected, but because they are pure Java
method calls.

We will discuss the control flow mechanisms for each of the above in turn.

3.3.1 Browser component initiated control flow

80

As we discovered in the previous section, all browser-hosted components
eventually are converted into HTML (or DHTML and JavaScript). And while
there are lots of specific ways to transfer control between Web pages, they
boil down to two that we will consider in this section:

* Those that issue HTTP GET requests.
e Those that issue HTTP POST requests.

3.3.1.1 HTTP GETs
An HTTP GET request can be effected in a number of ways:

1. An HREF tag associated with text or an image.

WebSphere V3.5 Handbook

2. Image maps, that allow specific areas of an image to target a given URL
when clicked.

3. JavaScript onclick="location=<URL>’ associated with a visible and
clickable DOM object.

4. A FORM with ACTION=GET and an associated SUBMIT invoked either
through an associated INPUT TYPE=SUBMIT button, or a JavaScript
submit() action associated with a browser event.

Once the link is established by any of these mechanisms, a user can click the
link to transfer control to the next state.

Role in the architecture

HTTP GETs are used when the source state can directly transfer control to
another because there are no update side effects, and where a small amount
of data needs to be passed to the target. In our online buying application, the
following navigations are best handled by HTTP GET requests:

* From the Customer Home to ProductCatalog, OrderDetails and
OrderStatus

* From OrderStatus to OrderDetails (a specific order is selected and
passed)

* From AlreadyOpen to OrderDetails (also passes the open order)

The online buying application flow STD has been updated to show the HTTP
GET transitions graphically. It also shows where the target state is controlled
by pure HTML, a JavaServer Pages or a servlet. See Figure 24 on page 82.

Chapter 3. WebSphere programming model 81

82

Order [already open]
Detailgs—....

cancel .-
to order (order)..-~
{add item SRS ™
(product, quantity)} <Confirm, ‘ e
“Cancel:
RS

LR Sewitet Java
. L PDHTMES; (JSP+Beéan .
Key @ ’ d.OPOSt £Ige - St - GET—

Figure 24. Online buying application STD extended to show transitions controlled by JavaScript
and HTTP GET

Pros

Since there is no side effect involved, using HTTP GETs is the most efficient
way to transfer control from one state to the next, especially where the next
state is pure HTML that may be already cached by the browser.

Pages invoked with an HTTP GET can be easily bookmarked to return to the
same page with the same data where dynamic content is involved.

Cons

When using HTTP GETSs, the ability to transfer data to the target state is
limited to the URL query string (more on this in the next section), which has
definite size limitations (often dependent on the Web server handling the
request). Also, the location includes the data passed, which can be really
distracting.

Alternatives

There is no good substitute for an HTTP GET to transfer control with no side
effects, since there is no need to involve an “intermediate” Web application
component such as a servlet or JSP. However, you should remember that
updating most of the data flow sources can be considered to be a side effect,
which may be best handled by some other HTTP request type (such as a
POST).

WebSphere V3.5 Handbook

3.3.1.2 HTTP POST (and other method types except for GET)

Unlike HTTP GETs, HTTP POST (and other types) can only be invoked from
within a FORM with METHOD=POST. However, once a FORM context has
been established, there are two primary mechanisms by which control is
actually transferred:

1. Clicking an INPUT TYPE=SUBMIT button associated with the FORM

2. The JavaScript <FORM->.submit() function, usually associated with a
button or other clickable type

Once the link is established, triggering the associated event (such as clicking
the link) will cause the POST request to be issued to the Web server. Usually,
POST requests must be handled by a Web application component, such as a
servlet or JSP.

Role in the architecture

HTTP POSTs are best invoked when update side effects are associated with
the transition to the next state in the application flow model. In the online
buying application flow, the following transitions have update side effects, and
thus are best handled by an HTTP POST request:

* Add to order from ProductCatalog to ActionResult

* Cancel from OrderDetails to ActionResult

e Submit from OrderDetails to ActionResult

* Open from OrderStatus to OrderDetails or AlreadyOpen (depends on the
result of the open)

The transitions of the online-buying application STD shown in Figure 25 on
page 84 have been annotated to show how they are being handled.

Chapter 3. WebSphere programming model 83

84

Order
Details

cancel .-

uct, Eonfir;i
quantity)} ’=___.Submit_.__s'

o
submit order}

2
{cancetorder}

Result

L8 Serylef Java
. FDHTEME (JSP+Bean /
Key: @ e g St GET _ POST_

Figure 25. Online buying application STD extended to show transitions controlled by HTTP
POST

Pros

One advantage of an HTTP POST is that there are no absolute limits to the
amount of data that can be passed to the Web server as part of the request.
Also, the data passed does not appear on the location line of the browser.

Another advantage of an HTTP POST is that the browser will warn the user if
the request needs to be reinvoked (such as through a resize, back, forward or
other browser event that needs the page to be reloaded).

Cons

However, some browsers display a rather ugly message if an HTTP POST
request needs to be reinvoked due to a browser event, telling the user to
reload the page.

Also, an update side effect is usually expensive, so HTTP POST requests
should be minimized by handling as many confirmations and validations as
possible on the client side.

Another disadvantage of a POST request is that it cannot be bookmarked
because the associated data is not available in the URL query string as
mentioned above (more on this in 3.4, “Data flow sources” on page 90). Also,
if a servlet receives a POST request, it cannot use the forward mechanism

WebSphere V3.5 Handbook

(discussed in the 3.3.2, “Web application server component initiated control
flow” on page 85) to transfer control to a static HTML file.

Alternatives

There is really no substitute for an HTTP POST to attempt a transition with an
update side effect. However, some transitions that may seem to have a side
effect can actually be handled with an HTTP GET.

For example, if a source page has a form to gather query parameters, it is
possible to use an HTTP GET to transfer control to the servlet associated
with the next state, which takes the parameters and reads the data to display.
The reason that a GET is reasonable is that the action is read only and the
amount of query data is usually relatively small.

3.3.2 Web application server component initiated control flow

Just as all browser-based components reduce to HTML or DHTML and
JavaScript, all Web application server components eventually compile to a
servlet and use the Servlet APls.

We will briefly explore three mechanisms by which servlets can invoke other
Web application components:

1. RequestDispatcher forward
2. RequestDispatcher include

3. HttpServietResponse sendRedirect

3.3.2.1 RequestDispatcher forward

The RequestDispatcher is an object that can be obtained from the
HttpServlet’'s context (through the getServietContext() method). The
RequestDispatcher allows a target Web application component (HttpServlets
and JSPs) to be invoked from a source component in two ways: forward() and
include(). We will discuss forward() in this section and include() in the next
section.

Role in the architecture

The forward() method is best used when the HttpServlet completely
delegates the generation of the response to a JavaServer Page. In our online
buying application, the doGet() methods of the ProductCatalog, OrderDetails,
and OrderStatus servlets gather the data and forward to the associated JSP
to generate the HTML.

Chapter 3. WebSphere programming model 85

86

Pros

When the forward() call is used, the target has complete freedom to generate
the response. For example, it can write headers, or forward() or include() to
other Web application components as it sees fit.

This freedom for the target makes programming the source component much
simpler: it does not need to generate any headers or set up prior to
delegating to the forwarded component.

Cons

A source component that invokes a target cannot generate any response
prior to the forward() call. Nor can it generate any response after the call

returns. This restriction means you cannot compose pages with forward().

A source component that was itself invoked by an include() call (see 3.3.2.2,
“RequestDispatcher include” on page 86) cannot use the forward() call. This
restriction means a source component (one that will transfer control to
another) has to know how it is being used.

The target component must be a Web application component, requiring that
targets of forward() calls must be converted to JSPs, even if they contain
purely static HTML.

Alternatives

The most viable alternative to forward() is for a servlet to set up the headers
and enclosing HTML tags, then use the include() mechanism (discussed
next). This approach provides the ability to compose the response from
multiple JSP components with as few changes as possible.

This alternative also simplifies the JSPs involved, since they do not need to
generate headers and enclosing HTML tags.

3.3.2.2 RequestDispatcher include

The include() method on the RequestDispatcher neither opens nor closes the
response, nor does it write any headers, which means that multiple
components can be included in the context of a single request.

Role in the architecture

Rather than use forward() in the ProductCatalog, OrderDetails and
OrderStatus servlets doGet() method to transfer control to the associated
JSP, it may make sense to include() the associated JSP instead.

WebSphere V3.5 Handbook

Pros

One reason to consider this approach is that the included components are
much simpler to code, since they do not need to generate the <HTML>,
<HEADER>, and <BODY> tags. For JSPs, the calling servlet can handle the
code often required to prevent caching, simplifying them even further.

The included components can often be reused in multiple places. For
example, if we were not able to use framesets in our application due to
restrictions on the browser, we could convert the CustomerHome.html to a
JSP and compose the pages in the servlets:

* The ProductCatalogServlet doGet() would compose CustomerHome.jsp,
ActionResult.jsp, and ProductCatalog.jsp

* The OrderDetailsServiet doGet() would compose CustomerHome.jsp,
ActionResult.jsp, and OrderDetails.jsp

e The OrderStatusServlet doGet() would compose CustomerHome.jsp,
ActionResult.jsp, and OrderStatus.jsp

The components can be included by a superclass HttpServlet to provide a
common look and feel across all states in the application. For example, the
doGet() method of the OnlineBuyingServlet would include CustomerHome.jsp
and ActionResult.jsp, and then call the doGetOnlineBuying() method of the
subclass HttpServlet to include the “main area”, specifically the JSPs for
ProductCatalog, OrderDetails and OrderStatus.

In future versions of WebSphere, included components can be cached,
making it much more efficient to compose pages from multiple states. The
ability to more easily exploit this feature when it becomes available is another
good reason to consider including components.

Cons
Included components cannot write to the header or close out the response.
Therefore, these actions must be done by the source component.

Included components cannot be static Web pages (or fragments), requiring
that they be converted to JSPs.

Alternatives

When pages need to be composed, there is no really good alternative to
include() except to use framesets or named windows (see 3.2.1.3,
“Framesets and named windows” on page 37).

Chapter 3. WebSphere programming model 87

88

3.3.2.3 HttpServietResponse sendRedirect

The sendRedirect() method is implemented on the HttpServletResponse
object that is passed in on the service methods associated with an
HttpServlet. It generates a special response that is essentially code telling
the browser that the requested URL has temporarily moved to another
location (the target URL). No other response is generated by the source
component.

The browser intercepts the response and invokes an HTTP GET request to
the URL returned as part of the response, effectively causing a transition to
the next state.

Role in the architecture

The sendRedirect() method is best used in a servlet after actions that cause
update side effects to cause transition to the next state. In our online buying
application, the following transitions in the application flow model trigger
transitions on the Entry state in the underlying business process model:

* The add to order transition out of the ProductCatalog state triggers the
add line item transition on the Customer’s open order, completing with a
sendRedirect to the ActionResult state to display the result.

* The submit and cancel transitions out of the OrderDetails state trigger the
corresponding transaction on the Customer’s open order, completing with
a sendRedirect to the ActionResult state to display the result.

* The edit line item transition out of OrderDetails triggers the modify line
item transition on the Customer’s open order, completing with a
sendRedirect to the ActionResult state to display the result.

e The open transition out of the OrderStatus state triggers the create new
order transition, completing with a sendRedirect to the OrderDetails state
for the new order to be successfully created, or to the AlreadyOpen state if
an open order already exists for the Customer.

These actions are handled by the doPost() method of the associated servlets,
as illustrated in Figure 26 on page 89

WebSphere V3.5 Handbook

Order [already open]
Detailss ...

cancel _-
iR . (Order)
~_(orden. it link item ~Submit
) . il (order)
|, quantity)} ZConfirm, {modify item .
“Cancel (prodluct, 2Confirm,
R S quantity)} Submity

o
submit order}

{cancetorder}

Result

S8 et Java GET+ POST+
Key: X DRTMLS doPost (JSP+Bean Script dispatch redirect
% 5 oGty ..TTTL B el

Figure 26. Online buying application STD extended to show dispatches and redirects

Pros

One benefit of using sendRedirect() is that it prevents inadvertent
re-execution of the side effects based on such browser events as forward,
back, resize, print, view source, or reload among others (this unfortunate
effect is sometimes called the reload problem).

The reason sendRedirect() solves this problem is another advantage: the
URL for the update never appears in the browser’s location line or history.
The effect is that only the URLs of the “states” in the application flow model
appear in the location and history, which is exactly the behavior desired.

Cons

The one disadvantage of sendRedirect() is that it causes an extra round-trip
between the browser and Web application server. Luckily, this extra round-trip
only occurs during major transitions in the application flow model, and is well
worth it, since sendRedirect() solves a major source of data integrity errors in
Web applications.

Alternatives
There are no good alternatives to using a sendRedirect() after processing
requests in servlets that require update side effects..

Chapter 3. WebSphere programming model 89

3.4 Data flow sources

Whenever two components must interact, whether they are separately
developed components, or whether a single component is iteratively executed
over time, it is likely that there will be a need to flow data from one to the
other.

Like the first two sections, this section is divided into subsections describing
data sources associated with each of the three tiers:

* Browser

* Web application server

* Enterprise servers
And as with control flow mechanisms, we show how the choice of data source

can have a huge impact on the overall performance and integrity of the
application.

3.4.1 Browser-maintained data flow sources

90

There are a number of browser-maintained data sources that we will discuss
in this section:

* URL query string
e POST data
* Cookies
All of these sources provide the best scalability characteristics (since the data

is maintained on the client), but with a trade-off that they may not be
completely reliable (since the user has control over the data source).

The discussion in this section will address the details of these and other
trade-offs.

3.4.1.1 URL query string

Whenever an HTTP GET is invoked, data can be passed in the query string
part of the target URL. This includes FORM data (hidden or otherwise) when
METHOD=GET.

In any event, the query string syntax is:

?<name>=<value>{&<name>=<values>}

Neither the names nor values can have embedded spaces; instead spaces
and other special characters must be encoded.

WebSphere V3.5 Handbook

The values can be retrieved through various methods associated with the
HttpServletRequest object, most notably getParameter(), which returns the
value for a given name.

Role in the architecture

The most obvious place to use the query string in the online-buying
application flow model is where data is being passed from one state to the
next along a transition without side effects. For example an order ID is
passed:

* From OrderStatus to OrderDetails when an order is selected

* From AlreadyOpen to OrderDetails, for the button providing navigation
But another place to use the query string is in the various sendRedirect()
calls after update side effects:

* To flow the order number from OrderStatus to OrderDetails when open
action is successful

* To flow the order number from OrderStatus to AlreadyOpen when the open
fails because one is already open

* To flow the result message from ProductCatalog or OrderDetails to
ActionResult to show the result of the action

Another use for a URL query string is URL encoding of the session ID for
HttpSession on the Web server (see 3.4.2.2, “HttpSession state” on page 96)
instead of cookies (discussed later in this section).

Pros
The benefit of using the query string is that it is very simple to retrieve the
associated data.

Cons
There are some downsides to using the query string to pass data from the
browser to Web application components:

* Encoding the URL query string in sendRedirect() calls and generated
HREFs can be quite complicated

* Only a small amount of data can be passed

* The query string is visible on the location line, and can sometimes be very
long and confusing to look at

* This visibility in the query string extends to hidden fields in forms (when
METHOD=GET)

Chapter 3. WebSphere programming model 91

92

Alternatives

There is no good substitute for the URL query string to send a few small key
values to the target component. However, where the data is common across
most states in the application flow, it may be better to use cookies or HTTP
sessions (both discussed later) to make the data flow transparent to the
programs.

3.4.1.2 POST data

When an HTTP POST is invoked from an HTML FORM with METHOD=POST,
the input fields in the form are passed as part of an encoded input stream to
the HttpServilet. The HttpServietRequest can be used to access the fields in
two ways: directly from the stream, or through the getParameter() methods as
if they were part of the URL query string (even though they are not).

Role in the architecture

Where we will use POST data in the online buying application flow model is to
pass data to the HttpServlet handling an action. Specifically, we will use
POST data to pass:

* ProductlD and quantity, for the add to order transition out of
ProductCatalog

¢ Order, to the submit and cancel transitions out of OrderDetails

e Order, product and quantity, to the edit line item transition out of
OrderDetails

Pros
As with the URL query string, one benefit to using POST data is that it is easy
to retrieve, either by name or iteratively.

However, unlike the URL query string, the main benefit to using POST data is
that there is no absolute limit to the amount of data that can be sent.

Finally, the data passed does not clutter up the URL, so hidden fields remain
hidden to the casual user, and the encoding of the data is transparent to the
source component.

Alternatives

As with the URL query string, there is no good substitute to POST data to
provide the input parameters to actions with update side effects. However,
where hidden fields are used to provide common data across the entire
browser session, it may be wise to consider using cookies or HTTP sessions.

WebSphere V3.5 Handbook

3.4.1.3 Cookies

Cookies are data maintained on the client by the browser on behalf of the
server. Cookies can be made to persist within or across browser sessions.
Cookies are passed to the Web server in the header of the request. Any
updates are passed back on the header in the response.

Within the Servlet API, there are methods that allow you to get and set
cookies.

Role in the architecture

Cookies are the preferred way to pass a HttpSession ID, if any, to the Web
application server. The same approach can be used for other data that is
constant across the Web application. For example, in our online buying
application it might make sense to store the customer ID in a cookie to
eliminate having to use URL encoding or hidden fields.

Cookies are an excellent way to store a small amount of user preference
data. For example, it may be desirable to tailor the ProductCatalog list by
Customer based on the past history of visits to the site. In this case, we might
maintain a persistent cookie with the last query used to select products.

Pros

Cookies are automatically passed in the header, and thus do not require
explicitly coding hidden fields or URL query strings in the HTML and JSPs.
This feature of cookies makes the application much simpler to develop, test,
and maintain.

The ability to maintain persistent cookies means that the client machines can
be enlisted to help share the cost of running the application. In an e-business
application with millions of users, not having to maintain often used
preference data for each one can be a significant savings in both space
needed to store it and time needed to retrieve it.

Cons

Passing cookies back and forth can be relatively expensive. Further, the
amount of data that can be maintained per server may be limited by the
browser. The effect is that cookies should be used sparingly.

Another problem is that not all browsers or levels of browsers support
cookies. Even if they are supported, users can turn cookies off as a security
or privacy measure, which means that either:

* Your Web application will need to be coded for the case where cookies are
not available, and use alternative techniques (discussed below); or,

Chapter 3. WebSphere programming model 93

* You must make an explicit decision to support only users with browsers
having cookies enabled.

Also, other HTTP-based clients, such as applets, may have trouble dealing
with cookies, restricting the servlets that they may invoke.

Alternatives
URL encoding techniques can be used to put the equivalent data in the URL
query string rather than relying on cookies.

3.4.2 Web application server maintained data flow sources

94

There are three main sources of data maintained by the WebSphere:
* HttpServletRequest attributes
* HttpSession state

¢ ServletContext attributes

All these sources share a characteristic not associated with the other ones:
only a Web application component (servlet or JSP) can store or retrieve data
using them.

We discuss the advantages and disadvantages of each in the context of the
role that source should play in the architecture. We also discuss any
alternatives.

3.4.2.1 HttpServietRequest attributes

HttpServletRequest attributes (or more simply, request attributes) are
maintained by the Web application server for the duration of the request in
what amounts to an internal Hashtable.

The HttpServletRequest interface has methods to set and get the attribute
values by name. You can also retrieve a list (Enumeration) of all the attribute
names currently maintained in the request.

A JSP can use the expression syntax or Java escape tags to get request
attributes using the Servlet API, or it can use a bean tag scoped to the
request (the default) with introspection to automatically load attributes whose
names match the bean properties.

Role in the architecture

The most prevalent purpose of request attributes is for maintaining the data
bean passed to a JSP by the servlet doGet() method handling the display of a
state. Specifically:

WebSphere V3.5 Handbook

* ProductCatalogServlet loads ProductCatalogData, sets it into the
“ProductCatalog” request attribute, and dispatches to the
ProductCatalog.jsp, which uses the bean tag to access the
ProductCatalogData during generation of the response

* OrderDetailsServlet loads OrderDetailsData, sets it into the “OrderDetails”
request attribute, and dispatches to the OrderDetails.jsp, which uses the
bean tag to access the OrderDetailsData during generation of the
response

* OrderStatusServlet loads OrderStatusData, sets it into the “OrderStatus”
request attribute, and dispatches to the OrderStatus.jsp, which uses the
bean tag to access the OrderStatusData during generation of the
response

The point here is that by having a systematic naming convention, the contract
between the servlet and JSP developer roles is very clear.

Pros

Of all the data sources, whether maintained by the browser, Web application
server, or enterprise servers, HttpRequestAttributes are the second most
efficient (behind passing the data directly in parameters of a method or in a
shared variable).

Since its scope is limited to the request, there is no need to write logic to
“clean up” the data.

Cons
Setting too many objects into request attributes can cause problems with:

* The contract between the source and target component developers. For
example, what do you name the attributes? What is their type? Our sample
application servlets never set more than one attribute with a well-defined
name and type (based on the state name “root”).

* Performance, because each set is a Hashtable put and each getis a
Hashtable lookup. Our sample application does only one put and lookup of
a Java Bean, after which it employs much more efficient property
operators.

The HttpServletRequest object does not persist across calls, so it cannot be
used to hold data between states in the application flow model. The net effect
is that request attributes can be passed only to targets using forward(0 and
include(). Request attributes cannot be passed to targets invoked through
sendRedirect().

Chapter 3. WebSphere programming model 95

96

Alternatives
When using forward() or include() to dispatch to an associated JSP, a
controlling servlet can pass data through HttpSession and ServletContext.

When invoking a JSP or servlet through the sendRedirect(), data can be
passed using cookies or the URL query string.

3.4.2.2 HttpSession state

An HTTP session is a short term (transient) relationship established between
a client browser and a Web application server through which data can be
maintained. It “lives” as long as both the client and the server maintain the
reference to the relationship.

HttpSession state (in this section simply session state) is maintained by the
Web application server for the lifetime of the session in what is basically a
Hashtable of Hashtables, the “outer” one keyed by the session ID (the
session Hashtable) and the “inner” one keyed by the state variable name (the
state Hashtable).

When the session is created, the ID is passed back and forth to the browser
through a cookie (the preferred approach) or URL encoding.

The session is effective as long as both:

* The browser stays up to maintain the session ID cookie (or the pages with
the ID encoded in the URLs), and

* WebSphere maintains the state Hashtable for the session

The outer session Hashtable can be lost if the Web application server goes
down (and the session is not backed up). The inner state Hashtable can be
lost on a timeout or through explicit application events (the remove() method,
for example).

The HttpServletRequest interface has methods to get the session (optionally
causing it to create a new one if none exists), which returns a reference to the
HttpSession object. Once you have a reference to the session, you can get
and set state values by name. You can also retrieve a list (Enumeration) of all
the state names currently maintained in the session.

A JSP can use the expression syntax or Java escape tags to get session
state using the Servilet API, or it can use a Bean tag scoped to session with
introspection to automatically load states whose names match the bean
properties.

WebSphere V3.5 Handbook

Role in the architecture

Many Web applications handle login explicitly as part of the application flow,
rather than use the security mechanism provided by the Web Apoplication
Server.

In this case it is customary to store some sort of “login” token into the session
state. The session state maintained could be as simple as a customerlD, or it
could be a complex object that includes additional data common to all the
states in the application flow, such as open order. This extra data could be
used as a default in the following cases to eliminate the need to access the
back end:

* In the add to order transition of the ProductCatalog state, the order ID
defaults to the open Order (creating a new one if none exists)

e Even though the transitions from OrderStatus and AlreadyOpen to
OrderDetails pass the selected order ID to display, the transition from the
CustomerHome state does not, defaulting to the open order

The data gathered in each of the three “main” states (ProductCatalog,
OrderDetails and OrderStatus) could be stored in session state so that
repeated reloads of that page for such browser events as resize do not cause
the back-end access to read the data again (see the discussion about the
reload problem in 3.3.2.3, “HttpServletResponse sendRedirect’” on page 88).

Pros

Session state is rather easy to use in the program (especially if a data
structure Java Bean is stored instead of individual values). The Web
application server manages it at runtime based on configuration parameters,
making it easy to tune non-functional characteristics such as failover and
performance. This ease of use makes it tempting to store some application
flow data (the current open order for example) in the session state rather than
in a database that has to be explicitly administered.

When the data is already being stored in the back end, and when accesses
are expensive, the performance gains of using session state to cache the
data can be significant.

Cons

Session state suffers from the same problems that request attributes do if you
store too many objects in them in the course of a single request: there is a
name and type contract problem with the target component, and a
performance penalty with every additional Hashtable put and lookup.

Session state has some additional disadvantages:

Chapter 3. WebSphere programming model 97

1. Timeout. A session can time out when you least expect, making it risky to
store significant application flow data. How would the user react if the line
items in an open order were lost because of a bathroom break during the
session? Usually you end up explicitly modeling and programming “save”
and “load” type flows to make the problem less acute.

2. Server failure. Even if you have an infinitely long timeout (and expect
servlets to programmatically invalidate the session state), the server can
fail, causing the data to be lost. Specifying that a session state be backed
up in a database gets around this, and provides for failover.

3. Cache consistency. When a session state is used to cache back-end data,
how do you make sure the session state is in synch with the data stored in
the back-end system, for example when a new order is selected or when
there are update transitions that affect the cached data? To provide for
cache consistency means adding code to the doGet() methods to check
the key of the data in a session state with that in the request, and adding
code to the doPost() methods to remove the affected session states.

4. Cluster consistency. It is likely that you will want to scale the Web site by
adding a cluster of WebSphere application servers. Even if you add all of
the extra logic to manage cache consistency from the previous item, you
must either force client/server affinity (see 3.2.3.2, “Stateful session EJBS”
on page 68) and lose failover support, or back the session up in a shared
database and impact performance.

Of course, the memory resources required for session state should be taken
into consideration. Indiscriminate use of HttpSession can use up vast
amounts of data. For example, if there were 1000 active user sessions each
needing to maintain a megabyte of data, your application would use up a
gigabyte of memory for the session state alone.

Alternatives

When a session state is used to cache data stored in back-end servers, a
viable alternative is to delegate caching to access beans or even EJBs,
keeping the application flow logic in the servlet clean and simple. Another
advantage to this approach is that the access beans are best able to keep the
cache consistent because of their knowledge of the business logic.

If you use WebSphere security so that the getRemoteUser() method on the
HttpServiletRequest returns an authenticated user ID, you can avoid the use
of HttpSession altogether by keying explicitly modeled business objects with
this user ID. The development costs of explicitly modeling session as a
business object may be worth it in the ability to use that data by other types of
applications (client server or distributed object as the case may be). Of

98 WebSphere V3.5 Handbook

course the primary benefit of eliminating the use of session state is that the
application will scale much better, since client-server affinity is not required
between the browser and Web application server.

If security is not turned on (maybe the application does not require it), and
there is only a small amount of data to be stored, you can use cookies as
described above, with the advantage that the client maintains the data.

However, there is no good substitute for HttpSession in scenarios with
relatively small amounts of data that are relatively stable and must be
maintained on the Web application server for security purposes, such as a
login token.

3.4.2.3 Servlet context cache

The Web application server provides a context within which properties can be
shared by all servlets and JSPs within that scope. This context is commonly
called the “servlet context” and is accessible through the getServietContext()
method on the Servlet API.

Servlet context is used to obtain a RequestDispatcher through which
forward() and include() can be invoked to flow control from one component to
another (see 3.3.2, “Web application server component initiated control flow”
on page 85).

Like request attributes and session state, servlet context also maintains an
object that is the equivalent of a Hashtable, providing methods to get and set
attributes by name as well as list the names stored within.

Unlike request attributes, which are scoped to a request, and session state,
which is scoped to a session, servlet context is scoped by a Web application.

And unlike HttpSession, the current specification explicitly states that sharing
of servlet context in a cluster is unsupported.

Role in the architecture

One possible use of servlet context in our online-buying application is to store
the ProductCatalog data, since it is stable and read-only in this application,
and the same data can be used by all Customers.

Another interesting use of servlet context in our application is to cache
references to business logic access beans (even if they are singleton
wrappers).

If used for either purpose, we would likely set attributes into the servlet context
as part of the init() method in the ProductCatalogServlet and

Chapter 3. WebSphere programming model 99

100

OrderDetailsServlet, which would allow both servlets to use the catalog for
validation of product IDs and display without having to access the back end.

Pros

Proper use of servlet context can greatly reduce both the amount of session
state data and the number of back-end accesses required to load it. For
example, if the product catalog data were stored in a session state, there
would be one copy of the catalog per user, with a back-end access required
for each user to load the data.

As with session state, servlet context is very easy to deal with, and can
eliminate the need to explicitly model extra business objects.

Since servlet context attributes cannot be shared in a cluster, there is no
requirement that data stored therein be serializable. This allows servlet
context to be used to store very complex objects, such as access beans
(preferred) or EJB references.

Also, storing singleton references in a servlet context can prevent them from
being garbage collected, since the reference is maintained for the life of the
Web application server.

Cons

Also as with session state (and request attributes), you should minimize the
number of attributes stored, and make sure that there is a systematic name
and type convention in place.

Unlike HttpSession, the specification prohibits sharing of servlet context in a
cluster, primarily to force its use as a true cache. This limitation is not really a
disadvantage when servlet context is used as a cache for stable read-only
data, since each application server will perform better having its own copy of
the data in memory.

If for some reason there is a requirement to store common data, yet allow
updates to it, then client/server affinity must be used to prevent cluster
consistency issues. Of course, this means that the updates have to be
associated with a specific user. Also, since the servlet context is shared by
the entire Web application, you have to be careful to manage the code
carefully, since multiple servlet threads could be accessing the same
attributes simultaneously.

Alternatives
Where servlet context is being used to store data from the back end to avoid
extraneous accesses (a caching pattern), an alternative is to delegate

WebSphere V3.5 Handbook

caching the data to the business logic access bean. This alternative was also
discussed in 3.4.2.2, “HttpSession state” on page 96.

Where the default servlet context is accessed (the parameterless version of
the API), then a viable alternative is to use the singleton pattern.

These alternatives do not supersede the advantages of storing business logic
access beans or connection objects in a servlet context to hold a reference
and prevent garbage collection.

3.4.3 Enterprise server-maintained data sources

Of course, there are many enterprise server-maintained data flow sources
provided by and fully supported by IBM, such as CICS, IMS, and MQ. But in a
discussion of the WebSphere programming model, we are only concerned
with those that use standard Java APIs to provide access to the data or
function maintained:

* Java Naming and Directory Interface (JNDI)
* JDBC

What separates these data sources from the others is that they can be used
outside the context of a Web application server.

3.4.3.1 Java Naming and Directory Interface (JNDI)

JNDI provides a name value pair oriented interface very much like the Web
application server-maintained data flow sources (request attributes, session
state and servlet context cache).

The primary difference is that the JNDI name context is managed by a
distributed name server, which allows the names and values to be shared
across requests, sessions, application servers, and a cluster.
There are three types of objects that can be maintained in JNDI:
* Simple serializable Java Beans.
* Distributed object references, such as EJB homes and remote interfaces.
e Common object services, such as transaction contexts.
The JNDI implementation provided in WebSphere Application Server V3.5

caches home references after lookup, providing for additional scalability in a
multi-user distributed environment.

Chapter 3. WebSphere programming model 101

102

Role in the architecture
One common use of JNDI in an application is to maintain user preference
data, including credentials that aid in authentication.

In our Web application, JNDI would be used by business logic and business
object access beans to get access to the Home for the OrderEntry session
EJB, and the Customer, Order, OrderLineltem and Product entity EJBs.

Pros

The benefit to using JNDI is that is designed for storing small to medium
amounts of relatively stable data per name, without requiring the involvement
of a database administrator to create and maintain a new table.

The fact that JNDI is distributable, sharable, and persistable makes it
applicable in Web application scenarios where the other data flow sources
cannot be used.

Cons

JNDI accesses are relatively expensive even with the automated caching
support provided by WebSphere Application Server V3.5. Therefore, calls to
them should be limited using the techniques discussed in 3.2.3.1, “Stateless
session EJBsS” on page 64. This approach will make it easier to port to
competitive products without having to worry about their implementation.

Updates are even more expensive, so only relatively stable data should be
stored in JNDI name contexts. The pattern is write once, read many. For
example, User preference data fits into this category, but Customer data, with
its reference to the currently open order, does not.

Alternatives
You can always explicitly model the data stored in JNDI as a business object
and use either JDBC or EJBs (preferably behind an access bean).

3.4.3.2 JDBC

JDBC provides a Java interface to relational databases, allowing dynamic
SQL statements to be created, prepared, and executed against pooled
database connections.

Any database that supports relational semantics can be wrapped with the
JDBC interfaces and provide a “driver” for use in the client application or
creating a data source.

WebSphere V3.5 Handbook

Role in the architecture

In our online buying application, we would use JDBC to implement the
business object access beans in cases where performance is crucial. For
example, the submit method needs to take the line items associated from the
specified order in the entry table and copy them into the fulfillment table (with
a zero shipped quantity).

Another example of when we might use JDBC is in loading the product
catalog into the cache (distributed object overhead may be considered to be
excessive for the benefits achieved).

Pros
JDBC provides all the benefits of relational databases to Java applications in
an implementation-independent manner.

Directly using JDBC in a client application will likely provide the most efficient
implementation of the application, especially if connection pooling of data
sources is used.

Cons
JDBC client code can be rather complicated to develop properly. Minimizing
the number of statements executed in the course of a unit of work is key.

Also, explicitly managing the transaction context can be complicated. If auto
commit is turned off, care must be taken in the program code to commit or
rollback the transaction as appropriate. If auto commit is left on, care must be
taken when there are multiple statements in a single unit of work: each
statement is a separate transaction, which can cause significant extra
overhead and complicate error handling logic.

Directly using JDBC locks your application into relational technology,
although wrapping it within a business object access bean can help insulate
the client application code, and make it easier to migrate later.

Even if wrappers are used, JDBC requires that a JDBC driver be installed on
the application server, potentially making it a “thicker” client that it would be if
EJBs were used.

Alternatives

The best standards-based alternative to JDBC is to use EJBs, which makes
persistency transparent to the business object programming model, and
allows the client to be “thinner”.

Chapter 3. WebSphere programming model 103

Of course, you can use non-standard connector-based technology such as
CICS, MQ, and IMS. But whether behind wrappers or not, these connectors
make the client even thicker by requiring additional software to be installed.

3.5 Chapter summary

We showed how dividing the programming model into its three fundamental
features makes it easier to understand the issues that you will face when
developing a WebSphere V3.5-based application. We will summarize these

aspects in this section.

Throughout this chapter, we applied the programming model aspects to an
online buying application to provide a concrete example. We will briefly
summarize the mapping in this section as well, and show how the WebSphere
programming model meets the challenges outlined in the chapter

introduction.

3.5.1 Summary of programming model aspects
Table 2 shows the various features of the WebSphere programming model at

Table 2. WebSphere programming model features

a glance.

Browser Web Application Server | Enterprise Server
Component HTML, DHTML and Servlets, JavaServer Session and Entity
JavaScripts, XML, Pages, Java Beans Enterprise JavaBeans
framesets
Control flow HTTP (GET & POST) Java (forward, include, Java (RMI/IIOP)
mechanism sendRedirect)
Data flow URL query string, POST Request attributes, JNDI, JDBC
source data, cookies session state, servlet
context
104 WebSphere V3.5 Handbook

Table 3, Table 4 on page 106, and Table 5 on page 106 summarize the details
of the components, control flow mechanisms and data flow sources.

Table 3. Programming model components

Component Tiers Role in architecture
HTML Browser Specifies page content associated with a given state in the
application flow model
DHTML and Browser Handles client-side validations, confirmations, cascading menus,
JavaScript list processing and so on to minimize requests to Web server
Frameset and Browser Groups related states on a single page to allow for smaller, more
Named Windows parallel requests and minimize need for explicit navigations
XML, DTD, and Browser Allows request results to consist of data only and provide client
XSL control of display format
Servlet Web Controls application flow for a given state;
application Inherits common look and feel from superclass HttpServlet
JavaServer Web Handles generation of HTML/DHTML/XML for a given state in an
Pages application application flow model
Data structure Java Serializable data passed between the other components such as
Java Bean application servlets and JSPs/access beans, EJBs and copy helpers, etc.
Business logic Java Wrapper encapsulating units of work (can be equated with
access bean application transitions in the business process model); can be stateless or
stateful
Business object | Java Wrapper encapsulating persistent business objects (can be
access bean application identified by object model associated with states in the business
process model)
Stateless Enterprise Distributable implementation of stateless units of work (analogous
session EJB Java server to business logic access bean)

Stateful session
EJB

Enterprise
Java server

Distributable implementation of stateful units of work that cache
resources or data on behalf of a user for the duration of a session

Session
synchronization

Enterprise
Java server

Methods added at deployment time to allow session EJBs to
support transparent transactional semantics in business methods

CMP entity EJB

Enterprise
Java server

Distributable implementation of persistence layer and associated
business logic (analogous to business object access bean)

BMP entity EJB

Enterprise
Java server

Methods added at deployment time to allow entity EJBs to control
quality of persistence service

Chapter 3. WebSphere programming model 105

Table 4. Control flow mechanisms

Mechanism Source Target Role in architecture
Components | Components
HTTP GET HTML or Any URL Directly invoke the target URL associated with
DHTML the next state, invoking a servlet or JSP for
dynamic content
HTTP POST HTML FORM Servlet Invokes the target servlet indicated in the
ACTION to handle update side effects
Dispatcher Servlet JSP Delegate the generation of the HTTP response to
forward doGet() the target JSP
Dispatcher Servlet JSP Compose the response from one or more target
include doGet() JSPs that generate response fragments
Response Servlet Any URL Transfer control to the target URL representing
sendRedirect doPost() the next state based on the ACTION result

Table 5. Data flow sources

Data flow Managed by Control flow Role in architecture
source mechanism
URL query string | Browser HTTP GET Pass small amounts of “key” data used to drive
sendRedirect queries in doGet of the servlet associated with
the target state
POST data Browser HTTP POST Pass input data used to drive updates in the
doPost of the servlet associated with the current
state
Cookie Browser Any Maintain data common to the user or session
used to drive queries or updates in any state
HttpRequest Web Dispatcher Pass data representing the dynamic content
attribute application forward and between the controlling servlet and the
server include associated JSP used to generate the response
(WebSphere)
HttpSession Web Any Maintain stable data common to the session used
state application to drive queries or updates in any state where
server cookies are not feasible
(WebSphere)
ServletContext Web Any Maintain a cache of stable read-only data
cache application accessible for all requests on a single server to
server drive queries or updates in any state
(WebSphere)

106

WebSphere V3.5 Handbook

Data flow Managed by Control flow Role in architecture

source mechanism

JNDI Name server Any Maintain small amounts stable data accessible to
(WebSphere) all servers

JDBC Database Any Maintain any amount of any type of data
server accessible for any request

3.5.2 Applying the programming model to our sample application

Taking the business process flow model of our online buying application from
the introduction, here is a reasonable mapping of the Order Entry state and
associated static objects to the programming model components, control flow
mechanisms and data sources summarized above.

3.5.2.1 Order Entry
This state has the following components:

1. OrderEntryAccess, a singleton business logic access bean whose
methods pass through to an OrderEntry created by an OrderEntryHome
cached in the constructor, and removed when the method is complete.

2. OrderEntryHome, an EJB home allowing an OrderEntry session EJB to be
created.

3. OrderEntry, a stateless session EJB with the following methods:

createOrder(customerID), which uses CustomerAccess to get an
orderlD, for the customerID, and if not already open, uses OrderAccess
to create a new one with status set to “Opened” for the customerID and
return the order ID

addLineltem(customerID, productID, quantity), which uses
CustomerAccess to get the open order for the customerID (creating
one if necessary), and LineltemAccess to increment the quantity of the
productID specified (creating a new one if necessary)

modifyLineltem(customerlD, orderlD, productID, quantity), which uses
OrderAccess to check that the resulting order is “Opened”, and
LineltemAccess to set the quantity of the productID specified (creating
a new one if necessary)

submit(customerlID, orderID), which uses OrderAccess to set the status
of the order specified to “Submitted” if still “Opened”

cancel(customerlD, orderID), which uses OrderAccess to set the status
of the order specified to “Cancelled” if still “Opened”

Chapter 3. WebSphere programming model 107

- getProducts(customerlID), which uses ProductAccess to get a
ProductData array, the list of products that may be ordered by the
customer

- getOrders(customerlID), which uses OrderAccess to get OrderData, the
list of orders associated with the customer

- getOrderDetails(customerID, orderID), which uses:

e CustomerAccess, if no order is passed in, to get the open order for
the customer

* OrderAccess to get the status of the resulting order

* LineltemAccess to get LineltemData, the list of line items
associated with the order, returning an OrderDetailsData

Figure 27 shows this description graphically.

add line item
(product, i %
create() -
quantity) .
. Customer ,.,Shlpplng

- ship (shipper)
[all items
shipped]

Marketing

modify line
item
(product,

. [not all items
quantity)

shipped]

pack line item
(product, quantity)

Figure 27. Business logic access beans and stateless session EJBs derived from business
process model

Note: add Customer and Order to every transition to derive method
signatures.

The details of the read-only methods and business object related
components described above are shown graphically in Figure 28 on page
109.

108 WebSphere V3.5 Handbook

Product Customer

sku customerlID
description
openOrder
product 0..n| 0..1|customer
Lineltem:| = Order
: 0..n
quantity orderID
status

Figure 28. Static object model of Order in Entry state driving read-only calls

Taking the application flow model from the introduction, here is a reasonable
mapping of the states to the programming model components, control flow
mechanisms and data sources summarized above associated with the
browser and Web application server tiers.

3.5.2.2 Customer Home
This state maps to a CustomerHome.html, with buttons linking to
ProductCatalogServlet, OrderDetailsServlet and OrderStatusServlet.

3.5.2.3 Product Catalog
This state maps to the following three components:

* ProductCatalogServlet, with the following methods:
- doGet():
* Loads ProductCatalogData from OrderEntryAccess
* Sets it as “ProductCatalog” into the request
* Includes ProductCatalog.jsp
- doPost(), with a branch looking for the action add to order that:
e Gets the productlD and quantity parameters from the request,

* Adds the specified quantity of the product to the open order using
OrderEntryAccess, and

* Does a sendRedirect to the ActionResult.jsp with the result of the
add passed in the URL query string

Chapter 3. WebSphere programming model 109

110

* ProductCatalogData, which has a products property, which is an array of
ProductData (with sku and description properties)

* ProductCatalog.jsp, which generates the table of ProductData (and a
modifiable quantity input field) from the products property in
ProductCatalogData accessed using the bean tags

3.5.2.4 Order Details
This state maps to the following three components:

* OrderDetailsServlet, with methods:

- doGet():
* Gets the order from the request (if specified)
e Loads OrderDetailsData for the order from OrderEntryAccess
* Sets it as “OrderDetails” into the request
* Includes OrderDetails.jsp

- doPost(), with branches looking for the action:
* modify line item that:

a.Gets the order, productlD and quantity parameters from the
request

b.Modifies the line item in the specified order to have the specified
quantity of the product using OrderEntryAccess

c.Does a sendRedirect to the ActionResult.jsp with the result of the
modify passed in the URL query string

¢ submit that:
a.Gets the order parameter from the request
b.Submits the specified order using OrderEntryAccess

c.Does a sendRedirect to the ActionResult.jsp with the result of the
modify passed in the URL query string

¢ cancel that:
a.Gets the order parameter from the request
b.Cancels the specified order using OrderEntryAccess

c.Does a sendRedirect to the ActionResult.jsp with the result of the
modify passed in the URL query string

* OrderDetailsData, which has an items property which is an array of
LineltemData (with productID, description and quantity properties)

WebSphere V3.5 Handbook

* OrderDetails.jsp, which generates the table of LineltemData from the
items property in OrderDetailsData (with quantity as a modifiable field
defaulted from the data) accessed using the bean tags

3.5.2.5 Order Status
This state maps to the following three components:

* OrderStatusServlet, with methods:

- doGet():
* Gets the customer from the request
e Loads OrderStatusData for the customer from OrderEntryAccess
» Sets it as “OrderStatus” into the request
* Includes OrderStatus.jsp

- doPost(), with a branch looking for the action open that:
* Gets the customer from the request
* Opens a new order using OrderEntryAccess

* Does a sendRedirect to the OrderDetailsServlet with the order
returned by the open if successful, or AlreadyOpen.jsp with the
order returned by open if already open; in either case, the order is
passed in the URL query string

* OrderStatusData, which has an orders property, an array of OrderData
(with orderID and status properties)

e OrderStatus.jsp, which generates the table of OrderData from the orders
property in OrderStatusData accessed using the bean tags with buttons
referencing OrderDetailsServlet with the selected order in the URL query
string

3.5.2.6 Already Open

This state maps to AlreadyOpen.jsp, which displays a message indicating
that the order found in the request parameters is already open, and provides
a button referencing OrderDetailsServiet with the selected order in the URL
query string.

3.5.2.7 Action Result

This state maps to ActionResult.jsp, which simply displays the result found in
the request parameters.

Figure 29 on page 112 shows this mapping graphically:

Chapter 3. WebSphere programming model 111

Order
Details

add to order cancel e
{add item (order) edit ling item ‘Slﬂ?g}ger)
(product, quantity)} sConfirms, {modiy item "\ e
wGancel (prodluct, SConfirms.
e quantity)} . Submit

{cancetorder}

Resuilt
ST Java GET POST
Key: XRRIMIS (sPiBean) Scrpt dispatch redirect
HRRRRRE” LS xdoGets . TITL B i e
Figure 29. Online buying application STD extended to show programming mode features

The details of the data structure Java Beans described above are shown
graphically in Figure 30.

Piroducct rckes Qrder:
Clatalog Dretails Stadus
customerlD customerlD
orderlD
status
products items orders
0..n 0..n 0..n
Rrosdyct Linesltem Qxrder
productlD productiD orderlD
description description status
quantity

Figure 30. Data structure Java Beans derived from application flow static object model

3.5.3 Meeting the challenges

The WebSphere programming model is compelling because with it you can
meet all the challenges associated with developing a quality application that
we identified in the chapter introduction:

112 WebSphere V3.5 Handbook

* Functional - the WebSphere programming model features support
everything you need to develop Web-enabled and distributed object
applications

* Reliable - by following the approaches discussed in this chapter, you can
change the deployment characteristics of WebSphere hosted applications
to handle different operational environments without changing the
programs

* Usable - the programming model supports the development of
components customized to handle specific client requests for application
functions that are automatically launched by the WebSphere Application
Server

* Efficient - the programming model features have clearly defined trade-offs
that govern when they best apply to maximize use of system resources

* Maintainable - the programming model supports a separation of concerns
that make it easy to independently develop, test, and modify components

* Portable - the features of the programming model are based on Java
standards that make it easy to deploy application components on different
platforms without change

Furthermore, the programming model helps you meet the challenges
associated with defining an optimal development process:

* Repeatable - analysis, architecture and design, relatively standard steps
found in many development processes can be followed to develop quality
WebSphere-based applications.

* Measurable - following the analysis, architecture and design steps results
in a well defined number of servlets, JSPs, Java Beans and Enterprise
JavaBeans.

* Toolable - the systematic mapping from business process models to Java
Bean and Enterprise JavaBeans, and from application flow models to
servlets, JavaServer Pages and Java Beans has made it possible to use a
number of wizards, IDE and WYSIWYG tools.

* Predictable - given specific skill levels and tool choices, a team should be
able to make and correct productivity estimates that can be used to drive
project plans.

* Scalable - the ability to exploit a separation of concerns with well-defined
contract objects not only makes an application easy to maintain, but also
enables small or large teams of Java programmers and HTML page
designers to work together on projects of any size with minimal amounts of
coordination required.

Chapter 3. WebSphere programming model 113

* Flexible - separation of concerns also enables a team to use an iterative
and incremental development process driven from the top, bottom, or
middle in order to focus attention on high-risk items as early as possible.

If you develop your applications according to these principles, you will have
an application that is not only functional, efficient, maintainable and portable,
but also is able to exploit the deployment options best suited to your
operational environment. Many of these options are discussed in more detail
in the remaining chapters of this book.

114 WebSphere V3.5 Handbook

Chapter 4. WebSphere components

This chapter takes a look at the major components within WebSphere, such
as the administrative server, application server, servlet engine, and the EJB
container.

We talk about the WebSphere administrative server and all the services that it
provides. Then there is a discussion about the application servers. Virtual
hosts and enterprise applications are briefly touched upon.

The servlet engine is covered in detail in Chapter 5, “Servlet support” on
page 137. The EJB container is discussed in Chapter 11, “Enterprise Java
Services” on page 393.

4.1 WebSphere Administrative Server

The administrative server tracks the contents and activities of a WebSphere
administrative domain by maintaining the administrative database. The
administrative database is the database of information about all WebSphere
resources. All administration takes place through the manipulation of objects
in the administrative database.

The WebSphere administrative server provides administrators with a single
system view of applications and resources, such as servlets and EJBs, that
are typically deployed across multiple machines in a distributed environment.
An administrator can just as easily administer resources on a remote
machine.

In the WebSphere administrative model as depicted in Figure 31 on page
116:

¢ An administrative domain is a set of one or more nodes and has a shared
database.

* A node is a physical machine running an administrative server.

* Each administrative server stores its administrative data in a repository,
which is the shared database.

* The WebSphere resources on a node are represented as administrative
resources in the administrative domain. An administrative resource, such
as a servlet, holds configuration information about the WebSphere
resource, such as a servlet file on a node. It provides a way to start, stop,
and manage the WebSphere resource.

© Copyright IBM Corp. 2001 115

administrative domain

administrative administrative
console database

administrative
server

application
server I

administrative
server

application -t .
server administrative
server

application
server
Web admin — -
administrative
console
console

Figure 31. WebSphere administrative model

4.1.1 WebSphere administrative services

The administrative server provides the services that are used to control
resources and perform tasks on the administrative database. In addition to
the server start/stop/restart functionality and monitoring capabilities, the
administrative server also provides shared services for:

* Naming
* Transaction monitoring

e Security

116 WebSphere V3.5 Handbook

Application Server

‘ Servlet ‘ EJB
Engine Container))
Port 900 | Port 9000
Administrative ; _{ Bootstrap || Naming
Console Service Service

Administrative
Server

Service
= =
nanny process |

Administrative
Repository

Figure 32. WebSphere V3.5 administrative services

There is a bootstrap service needed by the CosNaming service which listens,
by default, on port 900. The WebSphere administrative console connects to
the administrative server on port 900.

The JNDI namespace is kept locally by the administrative server. The JNDI
naming service is a persistent naming service provided through the CORBA
CosNaming API implemented as EJBs. The other Naming Service
component, Location Service Daemon (LSD), uses its own Object Request
Broker (ORB) and is needed for persistent object references. LSD listens on
port 9000.

Every administrative server has a security service that handles authorization
and authentication.

Finally, there is a nanny process whose job is to keep the administrative
server alive.

Chapter 4. WebSphere components 117

4.1.2 Starting the administrative server

On UNIX platforms
a. Go to the bin directory under the WebSphere install directory.

cd <WAS HOME>/bin

b. Run the startup server script:

. /startupServer.sh

Where:

- <WAS HOME> is the WebSphere V3.5 installation directory

On Windows platforms
Go to the Windows Services panel, select the service named IBM WS
AdminServer, and click Start.
or at a command prompt, type:

net start “IBM WS AdminServer”
In WebSphere V3.5 you can also start the administrative server from the

Windows Start menu: Start -> Programs -> IBM WebSphere -> Application
Server V3.5 -> Start Admin Server.

f5 1BM webSphers F5 Application Server Va5 » Administrator's Console
- = 1TS0 Frametaker Taoalkit 4 B Docs
Wingip Metzcape Communicator L4 ﬁ README
_'E.. Metzcape Enterprise Server 4.0 # B’ﬁ Samples
[ﬂgl Hetscape Smartllpdate Martan Antivirs » Bl Start Admin Server
r_g'.. Startup r ﬁ Uninstall ‘WebSphere Application Server
FE Programs 4 WirZip b

Figure 33. Menu path to start WebSphere V3.5 Administrative Server

4.1.3 Stopping the administrative server

On UNIX platforms
* Find the adminserver via the ps -aef UNIX command and get the process
ID (pid)

* Issue the UNIX kill <pid> command (or kill -15 <pid>)

On Windows platforms
Go to the Windows Services panel, select the service named IBM WS
AdminServer, and click Stop.

118 WebSphere V3.5 Handbook

or at a command prompt, type:

net stop “IBM WS AdminServer”

4.1.4 Running WebSphere servers as a non-root user

On UNIX platforms, you do not have to be a root user to run the WebSphere
Administrative Server, the WebSphere Administrative Console, or any
application server.

4.1.4.1 Administrative server as non-root user
WebSphere is installed as "root". To allow the administrative server to be run
as a non-root user, there are three things that need to be done:

1. Change the permissions to the installation directories. There are two
options for granting non-root user access permissions:

* Option1

- Change the owner of all files and directories in the WebSphere install
directory to the user/group that you desire to "run-as".

* Option 2

- Change the owner of the following specific files and directories to the
user/group that you desire to "run-as".

e <WAS_INSTALL_DIR>/logs/*

* <WAS_INSTALL_DIR>/properties/*

e <WAS_INSTALL_DIR>/tranlog/*

e <WAS_INSTALL_DIR>/temp/*

* <WAS_INSTALL_DIR>/bin/fadmin.config

2. Remove any temporary files that might have been created by previous
executions of the application server when it was "run-as" a user different
from the user that is going to be used. These files will be of the form:

/tmp/.asXXXXXX
where, XXXXX is a communications queue name used by WebSphere. For
example:

/tmp/.asibmappserve1

/tmp/.asibmoselink1

3. To run as a non-root user, the administrative server must use a bootstrap
port of 1024 or higher. To override the default value of 900, update the

Chapter 4. WebSphere components 119

<WAS_INSTALL_DIR>/bin/admin.config file. Add the following directive to
specify a new bootstrap port:

com.ibm.ejs.sm.adminServer.bootstrapPort=NNNN
where NNNN is greater than or equal to 1024

The WebSphere Administrative Server is now ready to be started with the
newly configured user/group setting.

4.1.4.2 Administrative console as non-root user
WebSphere is installed as "root". To allow the administrative console to be
run as a non-root user there are two things that need to be done:

1. Change the owner permissions to the user/group that you want to allow
access to run as in the <WAS_INSTALL_DIR>/bin directory.

2. Change the owner permissions of the following file to the same user/group
that you want to allow access to run as:

<WAS_INSTALL_DIR>/properties/sas.client.props

The WebSphere Administrative Console can now be started with the newly
configured user/group setting.

— Note

If the WebSphere Administrative Server is configured to run on a port other
than the default port of 900, remember to invoke the WebSphere
administrative client using the “new” port:

./adminclient.sh <HOST NAME> <BOOTSTRAP PORT>

4.1.4.3 An application server as non-root user
To allow an application server to be run as a non-root user there are four
things that need to be done:

1. Start the WebSphere Administrative Server as “root”.

2. Bring up the WebSphere Administrative Console. In the Topology tab,
select the application server in the navigation pane, and go to the
Advanced tab in the workspace pane. Modify the User ID and Group ID
fields to the user/group setting that you want to run as.

120 WebSphere V3.5 Handbook

¥ WebSphere Advanced Administrative Console

Console Wiew Help
©| PSP || i
[=-%5 WiabSphere Administrative Domain | [Application Server:itso Server
ks] —
AdminApplication General Advanced | pebug|
=L itsoApplication
i g Web Resources ‘Workload management selection policy: |Ruund Rabin Prefer Local =] A
{ﬁ] Web Applications . .
=% m23bkasg Transaction timeout: Jizo
- JDBC Driver Transaction inactivity tirneout; J60000
Fa Default Server
[Remote Servlet Redirectar Trace specification: |
55 50248181 Trace specification in use:
Default DataSource Trace oulput file: |
50246161 DataSource T ot 5 —
admin DB Driver tace output file in use:
F-E% default_host EPM specificatinn [
—
User [D: jivengar @
User D in uge:
& GrwpiD itso > =
Apply | Reset |
Console Messages
/17700 2:19 PM : Command "m23bk68g.Createferver”™ running ... ;I
9/17/00 9:19 PM : Command "m23bké8g.Createlerver” completed succeasfully.
-
[

Figure 34. Application Server Advanced tab: User ID and Group ID attributes

3. In the General tab of that same application server, specify the paths for

Standard output and Standard error to a directory location that the

user/group has permission to write to.

4. Remove any temporary files that might have been created by previous
executions of the application server when it was "run-as" a user different
from the user that is going to be used. These files will be of the form:

/tmp/.asXXXXXX

where XXXXX is a communications queue name used by WebSphere. For

example:

/tmp/.asibmappserve1

/tmp/.asibmoselink1

The application server can now be started with the newly configured

user/group setting.

Chapter 4. WebSphere components

121

Note

If WebSphere security is to be enabled when running the administrative
server as a non-root user, then the local operating system cannot be used
as the authentication mechanism. You have to use LTPA in connection with
LDAP.

4.2 Application server

In the Standard Edition, the application server contains a servlet engine that
is basically a Java program handling servlet and JSP requests. In the
Advanced Edition the application server also contains an EJB container.

4.2.1 The application server hierarchy
An application server, EJB server, servlet engine, and its corresponding Web
applications are organized in a hierarchy. The application server contains the
EJB server and servlet engine, and the servlet engine in turn contains Web
applications.

Application Server
EJB Container Servlet Engine

’ Web Application ‘

Figure 35. The application server hierarchy

This is true in all cases, including the default application server and its
subcomponents as described above, and we can see this hierarchy in a
number of ways; here we will examine it using the administrative console.

The administrative console hierarchy is shown in Figure 36 on page 123.

122 WebSphere V3.5 Handbook

=[5 Default Server

+-{gh Default Container

=} Default Servlet Engine
default_app

adrmin

_ examples

= wissamplesDBZ_app
i) User Profile Manager
2} Session Manager

Figure 36. Default application server

The Session Manager components will be covered in Chapter 7, “Session
support” on page 245.

It is clear from the figure above that, say, the “default_app” Web application is
contained within the “Default Servlet Engine” servlet engine, which in turn is
contained within the “Default Server” application server instance.

4.2.2 The Default Server

A default application server, appropriately named “Default Server”, can be
automatically configured during WebSphere Application Server installation,
by choosing the configure default server and web application option.

Choose Application Server Components 5'

Select the components you want to install, clear the components you do nat
wank o irstall.

250 K

Application and Administrs
Admiristrator's Conzale
Samplez 488K,
‘wieb Server Pluging 4K
IBM JDK 1.2.2 MO15EK
IBM HTTP Serve

onfigure default server and web application,

Component Description

Ingtallz the production application zerver runtime for hosting applications.

< Back | Mest > | Cancel I

Figure 37. Installation option to configure default server and web application

Chapter 4. WebSphere components 123

124

This will create an application server instance called “Default Server” as
shown in Figure 38 on page 124.

=53

E} &) Default Container
-y HitCount Bean

----- % BeenThere Bean
----- ¥, RemoteSRP

E} = Default Serviet Engine

ITl

=} default_app
=Y admin
=} examples

1l

WaaamplesDEE_app

Figure 38. Default Server

4.2.2.1 The Default Container

You get an EJB container called “Default Container” inside Default Server.
Note that the “Default Container” entry is for an Enterprise JavaBeans
container; WebSphere Application Server uses the term “servlet engine” for
the container in which servlets run, to avoid confusion.

4.2.2.2 The Default Serviet Engine
Inside Default Server, there is also a servlet engine, named Default Servlet
Engine.

Under the Default Servlet Engine, there will be four Web applications. Each of
these Web applications contain some of the internal servlets provided by
WebSphere Application Server, as described in 5.6, “Internal servlets” on
page 167, as well as some example servlets. Web applications are discussed
in more detail in 5.3.2, “Web applications” on page 144.

The default_app Web application

The default_app Web application can be used to deploy simple servlets for
testing. It has been designed to ease the migration of servlets and
applications from WebSphere Application Server Version 2. You can also use
the default_app as a template for your own Web applications. The
default_app Web application contains two example servlets, snoop and hello,
as shown in Figure 39 on page 125. Both of these have been well
documented elsewhere in this redbook. It also contains three internal

WebSphere V3.5 Handbook

servlets, ErrorReporter, invoker and jsp10, which are documented in 5.6,
“Internal servlets” on page 167.

= Default Serviet Engine
= @ T

Figure 39. The default_app application

The admin Web application

The admin Web application is used by WebSphere Application Server to
install the administrative console and run the Web based administration tool.
Note that, as seen in Figure 40, the admin Web application is part of an
Enterprise Applications.

E—]@ adrin

Figure 40. The admin Web application

The examples Web application

The examples Web application, as shown in Figure 41 on page 126, contains
a few sample servlets that you can run from day one to test your environment
and give you an idea of some basic designs. You can invoke these samples
using the URL.:

http://yourHostName/webapp/examples/

Chapter 4. WebSphere components 125

== examples
[y simpleJSP
[error
- SourceCodeviewer
[BhowConfig
[y HitCount
[jsp10

[file
~ [HelloPervasive

[StockQuote
~[*fh BeenThere

Figure 41. The examples application

The WSsampleDB2_app Web application
The WSsamplesDB2_app application, as shown in Figure 42, contains a
sample Web application called YourCo. Take a look at it via the URL.:

http://yourHostName /WebSphereSamples/YourCo

E}@ WisamplesDBZ_app
[} Errar Reporting Facility

Figure 42. WSsamplesDB2_app application

4.2.3 Create a new application server

Any application server other than the default server has to be created.
WebSphere provides more than one way to create a new application server.
One way is via the tasks option in the administrative console. Select the node
where the application server is to run, click the right mouse button, select
Create, and highlight Application Server as shown in Figure 43 on page
127.

126 WebSphere V3.5 Handbook

¥ WebSphere Advanced Administrative Console

Console Wiew Help

9 = e [EE

[] 45 WehSphere Administrative Domain |[Node:kenueno

G

[AdmmApp.Iication General |
: hityEnterpriseApp
% Stop
P Defaul Mode name: Jrenueno
2y Admin Force Stop
- defaul Ping Current State: Running
Rermoye Desired State: Runnirng
Restart Start Time: Oct 25, 2000 2:58:26 PM
Stop for restart
— | Host name: kenueno
Properties
Transactions Host systerm type 86
Trace Install root: ClwebSphere\dppnSenver

Ap hcess [D: 189

Generic Server Ynloyed JAR directory: [CwivebSpheretdppServerideployedEJBs
Sendet Redirector

Dependent classpath: |

Annly Reset

Console Messages
Wepopnere SeCUrlty LIEdENT1Aals are 1nvalld. -

10725700 3:56 FPM ; AUDIT [kenueno,Default Serwer]: Z000.10.25 15:56:42.54Z CredentialsImpl refreshferwverCred
IBM WebSphere 3ecurity Mable to refresh the serwver's credentials, reset to minimum expiration time.

Figure 43. Create an application server

The General properties tab is displayed, as shown in Figure 44 on page 128.
The Advanced properties tab is shown in Figure 45 on page 128. And the
Debug properties tab is shown in Figure 46 on page 129. There are a lot of
options that can be specified, but the application server name is the only
required item. Enter the name of the application server and click OK.

Chapter 4. WebSphere components 127

128

*Application Serer Mame:

| Create Application Server

General |Advanced| Dehugl

[rourdppSerer

Command line arguments: |

Environmment:

Wiiarking directory:

Standard input:
Standard output:

Standard error:

|En\rimnment...

Jstdout bt

[stderr bt

Maximum starttup attempts: |2

* - Indicates a required field.

Cancel

Clear

ol

Warkload managerment selection policy: |Round Rohin Prefer Local ;I

Figure 44. Create Application Server: General tab

Transaction tirneout: J1z20
Transaction inactivity timeout: |BDDDD
Trace specification: |
Trace output file; |
EPM specification: |
User ID: |
Group 1D; |
Ping interal: J50
Ping timeout: J200
Fing initial timeout: |SDD
Umask: Jnzz
Process priotity; J20
Thread pool size; J20
Ok |: I Cancel | Clear |

WebSphere V3.5 Handbook

Figure 45. Create Application Server: Advanced tab

. ¥ Create Application Server
General | Advanced Debug |

Object Level Tracing enabled [

OLT Server Host Jlocalhost

OLT Server Port: [2102

Source Path: |

0K %I Cancel Clear

Figure 46. Create Application Server: Debug tab

If everything goes well, a message showing the successful creation of the
application server will be displayed.

Upon refreshing the view in the WebSphere Administrative Console, the
newly created application server will be seen. See Figure 47 on page 130.

Now you can continue with the creation of a servlet engine, an EJB container,
and other resources as needed.

Chapter 4. WebSphere components 129

- ¥ WebSphere Advanced Administrative Console
Console View Help

e v

@ » =@ a | [HE

=145 WebSphere Administrative Domain | [Application Server:YourAppServer

-- AdminApplication G

1 eneral

P WyErterprisoanp | acvanced| Debug |

E}% kenuena Application Server Name: I‘(DurAppSer\rer =
-4 JDBC Driver Ly

E Default Server Current State: Stopped

jﬂ Remote Servlet Redirector Desired State: Stopped
P4 Default DataSource S T -

Sy Admin DB Driver Executable in use: java
-5 default_hast

Command line arguments: |

Environment: |Envir0nment...

Process ID: 0 —

Working directary: |

Standard input; |
Standard input in use; Ll

Anply Beset |

Console Messages

o Y B B L L T R T TR Y R T
LI

10425400 4:40 PM : Command "EJESerwer.create” running ...

10425700 4:40 PM @ Command "EJESerwer.create” completed successtully. -

Figure 47. WebSphere Administrative Console displaying the “new” application server

The other way to create an application server is via the Create Application
Server menu option in the WebSphere Wizards menu. This wizard asks all
the information up front and creates the application server with all the
resources in a single step.

4.2.4 Virtual hosts

130

A virtual host is a configuration enabling a single host machine to resemble
multiple host machines. It allows a single physical machine to support several
independently configured and administered applications.

Each virtual host has a logical name and a list of one or more DNS aliases by
which it is known. A DNS alias is the TCP/IP host name and port number
used to request the servlet, for example yourHostName:80. When no port
number is specified, 80 is assumed.

WebSphere V3.5 Handbook

When a servlet request is made, the server name and port number entered
into the browser are compared to a list of all known aliases in an effort to
locate the correct virtual host and serve the servlet. If no match is found, an
error is returned to the browser.

The WebSphere Application Server provides a default virtual host with some
common aliases, such as the machine's IP address, short host name, and
fully qualified host name. The alias comprises the first part of the path for
accessing a resource such as a servlet. For example, it is localhost:80 in the
request http://localhost:80/myServlet.

A virtual host is not associated with a particular node (machine). It is a
configuration, rather than a "live object," explaining why it can be created, but
not started or stopped. For many users, virtual host creation will be
unnecessary because the default_host is provided.

Virtual hosts allow the administrator to isolate, and independently manage,
multiple sets of resources on the same physical machine.

Suppose an Internet service provider (ISP) has two customers whose
Internet sites it would like to host on the same machine. The ISP would like to
keep the two sites isolated from one another, despite their sharing a machine.

The ISP could associate the resources of the first company with VirtualHost1
and the resources of the second company with VirtualHost2. Now suppose
both companies' sites offer the same servlet. Each site has its own instances
of the servlet, which are unaware of the other site's instances.

If the company whose site is organized on VirtualHost2 is past due in paying
its account with the ISP, the ISP can refuse all servlet requests that are
routed to VirtualHost2. Even though the same servlet is available on
VirtualHost1, the requests directed at VirtualHost2 will not be routed there.

The servlets on one virtual host do not share their context with the servlets on
the other virtual host. Requests for the servlet on VirtualHost1 can continue
as usual, even though VirtualHost2 is refusing to fill requests for the same
servlet.

The administrator can associate the Web paths of resources, such as
servlets, Web pages, and JavaServer Pages (JSP) files, with virtual hosts. It
is common to say that the resources are "on" the virtual host, even though the
virtual host is a configuration, not a physical machine that can hold files.

The Web path of a resource, such as a servlet, is a path by which users can
request the resource. For example, an administrator might specify two Web

Chapter 4. WebSphere components 131

132

paths for a servlet class named Animals. This allows users to specify either
http://www.companyname . com/Animals OF http://www.companyname . com/AnimalsToo
to request the servlet.

Because the administrator associates the Web path of a resource, and not
the resource itself, with a virtual host, the administrator can associate one
Web path of a servlet with one virtual host, and another Web path of the
servlet with a different virtual host. WebSphere provides the flexibility to set
up virtual hosting in the way that best suits your needs.

4.2.4.1 The default virtual host
The product provides a default virtual host (hamed default_host). The default
uses port 80. The default_host has these aliases:

The IP address of the local machine (yourlPAddress:80)

The "localhost" alias, meaning the local machine (localhost:80)
The DNS name (such as software:80)

The fully qualified host name (such as www.software.ibm.com:80)
The loopback address (127.0.0.1:80)

Once in a while, the fully qualified name cannot be constructed. If several
paths containing the fully qualified name do not seem to be working, use the
WebSphere Administrative Console to check the virtual host's aliases
property to ensure the fully qualified name is registered as an alias.

Unless the administrator specifically wants to isolate resources from one
another on the same node (physical machine), he or she probably does not
need any virtual hosts in addition to the default host.

When a user requests a resource, WebSphere tries to map the request to an
alias of a defined virtual host. The mapping is case insensitive, but the match
must be alphabetically exact. Also, different port numbers are treated as
different aliases.

WebSphere V3.5 Handbook

- ¥ WebSphere Advanced Administrative Console

Zonsole View Help

@» = v a|[EEB

‘ .

(=85 WehSphere Adrministrative Dornain
-3 Adminapplication

=6 kenueno

- F IDBC Driver

=R Default Server

=g Default Container

Q. HitZount Bean

‘%, BeenThere Bean

Wirtual Host: default_host

General Advanced |

P RemoteSRP Wirme Table Parameters: Extension Mirrie Type
==} Default Servet Engine wekd applicationind. lotus-1-2-3 |«
G-y defaylt_app ief imagelief
til admin aiff audiobeaiff =l
Al examples
=l wssamplesDB2_app || Aliases: Host Aliases
i7h User Profile Manager localhost =
I3} Session Manager 127.0.04
- [#), Remate Serviet Redirectar kenﬁénﬁ -
- Default DataSource =~
-8 Adrmin DB Driver
H-E
Apply Reset |
Console Messages
1049400 Z:26 PH : Loading ... ;I
1049400 Z:26 PM : Console Ready. -
Figure 48. The default_host
For example, the request:
http://www.myhost . com/myservlet
maps successfully to:
http://WWW.MYHOST . COM/MYSERVLET
and to:
http://Www.Myhost . Com/Myservlet
But it does not map successfully to:
http://myhost /myservlet
or to:
http://myhost :9876/myservlet
Chapter 4. WebSphere components 133

If a user requests a resource using an alias that cannot be mapped to an alias
of a defined virtual host, the user will receive a 404 error in the browser used
to issue the request. A message will state that the virtual host could not be
found.

4.3 What is an enterprise application?

An enterprise application is a combination of resources (building blocks) that
work together to perform a business logic function. The resources can
include:

e HTML files
e XML files
» JSP files
* Servlets
* Enterprise JavaBeans
e Graphical elements
Although they have the same contents, an enterprise application differs from

a Web application in that it involves security and may also contain Enterprise
JavaBeans.

An enterprise application, like a Web application, can be managed by the
administrator as a single logical unit. A step-by-step configuration is found in
Chapter 14, “Application deployment” on page 573.

WebSphere V3.x security is based on the concept of an enterprise
application called the AdminApplication. The key to WebSphere security
architecture is this central security application running in the WebSphere
Administrative Server.

4.4 WebSphere administrative interfaces

134

The WebSphere Administrative Server provides the services that are used to
control resources and perform tasks on the administrative database. The
monitoring and configuring of administrative resources are facilitated by four
interfaces, as shown in Figure 49 on page 135.

WebSphere V3.5 Handbook

graphical interfaces command line interfaces

Web Java) WebSphere
Admininstrative Administrative | XM_II__Colnflg Control
Console Console 00 Program

| WebSphere Administrative Services |

administrative
database

WS Admin

ebSphere

W
AppServer l
". | WebSphere
“| AppServer

Figure 49. WebSphere V3.5 Administrative Services block diagram

The Java client or the WebSphere Administrative Console, the Web console,
the WebSphere Control Program (WSCP), and the XMLConfig program can
all be used by administrators to access the administrative server on nodes in
the administrative domain, thus enabling the administrator to administer the
WebSphere domain resources.

They complement each other, but there are certain scenarios where one is
more useful than the other. The graphical clients, for example, provide a view
of the domain topology.

Chapter 18, “Administrative console” on page 811 discusses the Java
administrative console. Chapter 19, “Web console” on page 843 talks about
the HTTP or Web administrative console. Both of the command line
interfaces, XMLConfig and WSCP, are covered in detail in this redbook.
Chapter 20, “The WebSphere Control Program (WSCP)” on page 855 talks
about WSCP and XMLConfig is covered in Chapter 21, “XMLConfig” on page
877.

Chapter 4. WebSphere components 135

136 WebSphere V3.5 Handbook

Chapter 5. Servlet support

The aim of this chapter is to explain how you will use a servlet with the
WebSphere Application Server, from an administrative and architectural point
of view. We do not try to explain in detail how to write servlets; for that
information, please see Serviet and JSP Programming with IBM WebSphere
Studio and VisualAge for Java, SG24-5755.

We provide an overview of the servlet concept, and a short summary of how
servlets work, discussing in brief the process flow, the API, and the life cycle.
This has been kept to a minimum; the aforementioned redbook on servlets
has a far more in-depth explanation for those readers who are interested.

We discuss how the WebSphere Application Server treats servlets, and
where they fit within the application server hierarchy. We then give an
example of a very simple servlet for the purpose of demonstrating how you
will use the administration environment that comes with WebSphere
Application Server to configure your servlet engine and deploy servlets.
Finally, we talk about some of the internal servlets that WebSphere
Application Server provides, and where and how you would use them.

We recognize that there is an abundance of both online and printed
documentation on the topic of servlets, and recommend that you refer to the
Sun Java Servlet API Specification, found at
http://java.sun.com/products/servlet/.

5.1 What is a servlet?
According to the Java Servlet Specification (Version 2.2):

A servlet is a Web component, managed by a container, that generates
dynamic content. Servlets are small, platform-independent Java classes
compiled to an architecture-neutral bytecode that can be loaded
dynamically into and run by a Web server.

So, a servlet is a server-side software component written in Java, which is
loaded and executed within the Java Virtual Machine (JVM) of any
Java-enabled application server such as the WebSphere Application Server.

5.2 How servlets work

In order to understand how WebSphere works with servlets, we have to know
how servlets themselves work. In the following subsections, we briefly

© Copyright IBM Corp. 2001 137

http://java.sun.com/products/servlet/

examine the servlet process flow, skim through the Java Servlet API, and
discuss the servlet life cycle.

5.2.1 Servlet process flow

138

Servlets implement a common request/response paradigm for the handling of the
messaging between the client and the server. The Java Servlet API defines a
standard interface for the handling of these request and response messages
between the client and server.

Figure 50 shows a high-level client-to-servlet process flow:

1. The client sends a request to the server.

2. The server sends the request information to the servlet.

3. The servlet builds a response and passes it to the server. That response is
dynamically built, and the content of the response usually depends on the
client’s request. External resources may also be used.

4. The server sends the response back to the client.

Request eg. JDBC
 Request o Serviet RMIIIOP
Client <— Resources
Response eg. UDB
WebSphere EJB

Figure 50. High-level client-to-serviet process flow

Written in Java, servlets have access to the full set of Java APls, such as JDBC
for accessing enterprise databases.

Servlets resemble Common Gateway Interface (CGl) programs in terms of
functionality. As in CGl programs, servlets can respond to user events from
an HTML request, and then dynamically construct an HTML response that is
sent back to the client. Servlets, however, have the following advantages over
traditional CGl programs:

* Portability and platform independence

Servlets are written in Java, making them portable across platforms and
across different Web servers, because the Java Servlet API defines a
standard interface between a servlet and a Web server. Of course,

WebSphere V3.5 Handbook

servlets inherit all of the benefits of the Java language, including a
strong-typed system, object orientation, and modularity, to name a few.

* Persistence and performance

A servlet is loaded once by a Web server/application server, and then
invoked for each client request, possibly more than once at the same time
using threads. This means that the servlet can maintain system resources,
such as a database connection, between requests. Servlets don’t incur the
overhead of instantiating a new servlet with each request. CGl processes
typically must be loaded with each invocation.

5.2.2 The Java Servliet API

The Java Servlet APl is a Standard Java Extension API, meaning that it is not
part of the core Java framework, but rather is available as an add-on set of
packages; it is a set of Java classes that define standard interfaces between a
Web client and a Web servlet and between the servlet and the environment in
which it runs.

WebSphere V3.5.2 supports Java Servlet APl V2.2 (and the related
JavaServer Pages API 1.1). Previous versions of WebSphere, V3.5 and
V3.5.1, supported earlier versions of those APls with some extensions.
WebSphere V3.5.2 can also be configured to support applications coded to
those earlier versions. When you configure a servlet engine you choose
which version of the servlet APl is to be used. All Web applications deployed
in that servlet engine will use the chosen version. We discuss the differences
between the two versions in Chapter 8, “Servlet V2.2 in WebSphere V3.5.2”
on page 295.

You can choose the version of the Servlet APl independently for each servlet
engine in the same WebSphere domain. However there is some potential for
unexpected behaviors; see 8.3.5, “Session Cookie Names” on page 308.

The API, in both V2.1and V2.2, is composed of two packages:

* javax.servlet

* javax.servlet.http
The javax.servlet package contains classes to support generic
protocol-independent servlets. The javax.servlet.http package extends the
functionality of the base package to include specific support for the HTTP

protocol. In this chapter, for the sake of simplicity, we will concentrate on the
classes in the javax.servlet.http package.

Chapter 5. Servlet support 139

The Servlet interface class defines the methods that serviets must
implement, including a service() method for the handling of requests. To write
an HTTP servlet, we will use a class called HttpServlet, which implements the
servlet interface. HttpServlet provides additional methods for the processing
of HTTP requests such as GET (doGet() method) and POST (doPost()
method). Although our servlets may implement a service() method, in most
cases we will implement the HTTP-specific request handling methods.

5.2.3 The servlet life cycle

A Web client does not usually communicate directly with a servlet, but
requests the servlet’s services through a server, such as the WebSphere
Application Server, that invokes the servlet. The server’s role is to manage
the loading and initialization of the servlet, the servicing of the request, and
the unloading or destroying of the servlet.

5.2.3.1 How the life cycle functions

There is one instance of a particular servlet object at a time in the application
servers’ environment. Each client request to the servlet is handled via a new
thread against the original instance object. This is the underlying principle of
the persistence of the servlet. The application server is responsible for:

1. Handling the initialization of the servlet when the servlet is first loaded,
where it remains active for the life of the servlet

2. Creating the new threads to handle the requests

3. The unloading or reloading of the servlets

WebSphere will unload a servliet when the Web application is brought down,
and it will reload all of the classes in the application classpath whenever one
of the loaded classes in that class path has been changed. See 5.5.3, “Create
a Web application” on page 155 for detailed information about auto reload.
Figure 51 on page 141 shows a basic client-to-servlet interaction:

e Servlet1 is initially loaded by the WebSphere. Instance variables are
initialized, and remain active (persistent) for the life of the servlet.

* Two Web clients have requested the services of Servlet1 viathe HTTPD. A
handler thread is spawned by the application server to handle each
request. Each thread has access to the originally loaded instance
variables that were initialized when the servlet was loaded.

* Each thread handles its own requests, and responses are sent back to the
calling client.

140 WebSphere V3.5 Handbook

Client1 Servleti
Thread2
Servlett ’
HTTPD Thread1

L *loaded before

/ Servlet1 Instance first request
Client2

WebSphere Application Server

Figure 51. Basic client-to-server interaction

The life cycle of a servlet is expressed in the Java Servlet API in the init(),
service() (doGet() or doPost()), and destroy() methods of the Servlet
interface. We will discuss the functions of these methods in more detail and
the objects that they manipulate. Figure 52 is a visual diagram of the life cycle
of an individual servlet.

e

Available
for
service

(Initialization failed)

Unavailable
for
service

(Unavailable
exception
thrown)

Servicing
requests

Figure 52. Servlet life cycle

The WebSphere administrator can set an application and its servlets to be
unavailable for service (see 5.5.4, “Deploying the servlet” on page 160 for
details). In such cases, the application and servlets remain unavailable until
the administrator changes them to available.

Chapter 5. Servlet support 141

142

5.2.3.2 Understanding the life cycle
This section describes in detail some of the important servlet life cycle
methods of the Java Servlet API.

Servlet initialization: init() method

Servlets can be dynamically loaded and instantiated when their services are
first requested, or WebSphere can be configured so that specific servlets are
loaded and instantiated when WebSphere initializes.

In either case, the init() method performs any necessary servlet initialization,
and is guaranteed to be called once for each servlet instance, before any
requests are handled. An example of a task that may be performed in the
init() method is the loading of default data parameters or database
connections.

At initialization time, the servlet author can access a ServletConfig object.
This interface object allows the servlet to access name/value pairs of
initialization parameters that are specific to that servlet. The ServletConfig
object also gives us access to the ServletContext object that describes
information about our servlet environment.

Serviet request handling

Once the serviet has been initialized, it may handle requests (although it is
possible that a loaded servlet may get no requests, for instance if the servlet
is set to start when the application server starts, but no requests are made for
that servlet). Each request is represented by a ServletRequest object, and
the corresponding response by a ServietResponse object. Since we will be
dealing with HttpServlets, we will deal exclusively with the more specialized
HttpServletRequest and HttpServietResponse objects.

The service() method is declared abstract in the basic GenericServlet class,
and so subclasses, such as HttpServlet, must override it. The HttpServiet
service() method accepts two parameters, HitpServletRequest and
HttpServletResponse. In any subclass of HttpServlet, the service() method
must be implemented according to the signature defined in HitpServlet,
namely, that it accepts HttpServletRequest and HttpServietResponse
arguments.

The HttpServletRequest object encapsulates information about the client
request, including information about the client’s environment and any data
that may have been sent from the client to the servlet. The
HttpServletRequest class contains methods for extracting this information
from the request object.

WebSphere V3.5 Handbook

The HttpServietResponse is often the dynamically generated response, for
instance, an HTML page that is sent back to the client. It is often built with
data from the HttpServietRequest object. In addition to an HTML page, a
response object may also be an HTTP error response, or a redirection to
another URL, servlet, or JavaServer Pages. JavaServer Pages and
interactions with servlets will be discussed in Chapter 6, “JSP support” on
page 189.

Other servlet methods worth mentioning
e destroy(): The destroy() method is called when WebSphere unloads the
servlet. A subclass of HttpServlet only needs to implement this method if it
needs to perform cleanup operations, such as releasing database
connections or closing files.

* getServletConfig(): The getServletConfig() method returns a
ServletConfig instance that can be used to return the initialization
parameters and the ServletContext object.

» getServletinfo(): The getServletinfo() method is a method that can provide
information about the servlet, such as its author, version, and copyright.
This method is generally overwritten to have it return a meaningful value
for your application. By default, it returns an empty string.

5.3 WebSphere and serviets

A servlet requires a servlet container, called a servlet engine in the
WebSphere terminology, in which to run. From the Servlet Specification 2.2:

A servlet container can either be built into a host Web server or installed
as an add-on component to a Web server via that server’s native
extension API. Servlet containers can also be built into or possibly
installed into Web-enabled application servers.

A servlet engine in WebSphere is a Java program that runs inside an
application server instance Java Virtual Machine (JVM) configuration.

5.3.1 The serviet engine

A servlet engine is a program that handles the requests for servlets and
JavaServer Pages (JSP). The servlet engine is responsible for creating
instances of servlets, initializing them, acting as a request dispatcher, and
maintaining servlet contexts for use by your Web applications.

WebSphere supports only one servlet engine per application server. For the
purposes of the examples in this chapter, we shall create a new application

Chapter 5. Servlet support 143

server instance to house our servlet engine; this will be discussed in 5.5,
“Deploying the example servlet under WebSphere” on page 147. We could
also have used the default servlet engine described above, however for
completeness we will demonstrate how to create a new servlet engine and all
of its components.

5.3.2 Web applications

A Web application represents a grouping of servlets, JSPs, and their related
resources. Managing these elements as a unit allows you to stop and start
servlets in a single step. You can also define a separate document root and
class path at the Web application level, thus allowing you to keep different
Web applications in separate directories in the file system. A Web application
definition is contained within a servlet engine definition.

Servlets that are running within a Web application share the same servlet
context with others in the same application, allowing them to communicate
with each other.

5.3.3 Servlets

The servlets themselves are the innermost level of the hierarchy. They are
deployed into the servlet engine and grouped into Web applications.

5.4 Writing a simple serviet example

144

In this section, we describe a very simple servlet, the HelloWorldServlet. For a
detailed discussion of servlets and how they function, please see Servlet and
JSP Programming with IBM WebSphere Studio and VisualAge for Java,
SG24-5755. We are more interested here in how to deploy a servlet under
WebSphere V3.5. In 5.5, “Deploying the example servlet under WebSphere” on
page 147, we explain how to deploy this servlet in WebSphere.

WebSphere V3.5 Handbook

5.4.1 The HelloWorldServlet
Figure 53 shows the full HelloWorldServlet code:

4 N
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorldServlet extends HttpServlet {
protected void service (HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException f{

response . setContentType ("text /html") ;

PrintWriter out = response.getWriter() ;

out .println ("<HIML><TITLE>Hello World</TITLE><BODY>") ;

out .println ("<H2>Hello, World</H2><HR>");

out .println ("</BODY></HIML>") ;

out.close() ;

}
N J

Figure 53. The HelloWorldServiet

HelloWorldServlet is a very simple HTTP servlet that accepts a request and
writes a response. Let’s break out the components of this servlet so we can
discuss them individually.

5.4.2 Basic servlet structure

Figure 54 shows the import statements used to give us access to other Java
packages. The import of java.io is so that we have access to some standard
IO classes. More importantly, the javax.servlet.” and javax.servlet.http.”
import statements give us access to the Java Servlet API set of classes and
interfaces.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

Figure 54. HelloWorldServiet import statements

Figure 55 on page 146 shows the HelloWorldServlet class declaration. We
extend the HttpServlet class (javax.servlet.http.HttpServiet) to make our class
an HTTP protocol servlet.

Chapter 5. Servlet support 145

[public class HelloWorldServlet extends HttpServlet {]

Figure 55. The HelloWorldServlet class declaration

Figure 56 is the heart of this servlet, the implementation of the service()
method for the handling of the request and response objects of the servlet.

protected void service (HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException f{

response . setContentType ("text /html") ;

PrintWriter out = response.getWriter() ;

out .println ("<HIML><TITLE>Hello World</TITLE><BODY>") ;

out .println ("<H2>Hello, World</H2><HR>");

out .println ("</BODY></HIML>") ;

out.close() ;

! y,
Figure 56. HelloWorldServlet service() method

5.4.3 Compiling the servlet

146

In order for our servlet to run in WebSphere, it has to be compiled into
bytecode form and stored as a .class file. For the compile to be successful,
we need to have access to the classes we are extending (the HttpServlet),
which is stored in the servlet.jar file in the WebSphere lib directory. Thus, this
jar file must be added to the classpath when compiling. The easiest way to do
this is by using the -classpath option of the javac compiler, as shown in Figure
57 on page 147.

Before the compile, we only have the HelloWorldServlet.java file as shown in
Figure 53 on page 145. We invoke the javac compiler on the
HelloWorldServlet.java file, specifying that it should add the servlet.jar file to
its classpath. After the compile is complete, we see that there is also a
HelloWorldServlet.class file that can now be deployed to WebSphere.

WebSphere V3.5 Handbook

-
C: \WebSphere\AppServer\Hello>dir

Volume in drive C is WINDOWS2000

Volume Serial Number is O0A72-0FEL

Directory of C:\WebSphere\AppServer\Hello

13/09/2000 09:39 <DIR>

13/09/2000 09:39 <DIR> ..

13/09/2000 09:40 506 HelloWorldServlet.java
1 File(s) 506 bytes

2 Dir(s) 7,084,376,064 bytes free

C: \WebSphere\AppServer\Hello>javac -classpath c:\WebSphere\AppServer\lib\servlet.jar
HelloWorldServlet.java

C: \WebSphere\AppServer\Hello>dir
Volume in drive C is WINDOWS2000
Volume Serial Number is O0A72-0FEL

Directory of C:\WebSphere\AppServer\Hello

13/09/2000 09:39 <DIR>

13/09/2000 09:39 <DIR> ..

13/09/2000 09:40 506 HelloWorldServlet.java

19/09/2000 18:47 810 HelloWorldServlet.class
2 File(s) 1,316 bytes

2 Dir(s) 7,084,359,680 bytes free

C: \WebSphere\AppServer\Hello>
N\ J

Figure 57. Compiling the HelloWorldServiet

5.5 Deploying the example serviet under WebSphere

For the purposes of this chapter, we will define a new servlet engine and Web
application, and deploy our example HelloServlet servlet as part of this Web
application.

In order to deploy the example servlet above under WebSphere V3.5, we
have to carry out the following tasks:

1. Define a new application server.

2. Define a servlet engine.

3. Create a Web application.

4. Deploy the servlet.

We shall demonstrate how to carry out each of these tasks using two modes:
the administrative console and the WSCP command line. Chapter 20, “The

Chapter 5. Servlet support 147

WebSphere Control Program (WSCP)” on page 855 discusses the WSCP
command line in detail.

5.5.1 Define a new application server

In this chapter, we are not really interested in the advanced options available
when defining a new application server; the creation of an application server
is described in detail in Chapter 4, “WebSphere components” on page 115.
We will create a new server and accept the defaults for all of the options.

5.5.1.1 Define a new application server via the console

Right click the node on which you want to create the application server, and
choose Create -> Application Server from the resulting menu, as shown in
Figure 58.

i WebSphere Advanced Administrative Console

Console Wiew Help
S ® @ I ‘.;g_.

wehSphere Administrative Domain | Node:kenueno

m Adminfpplication e |
Stop
Force Stop Mode name: kenueno
=y Rem Ping
% Defaultl mopnve Current State: Running
‘r-'!'-'% Admin D Desired State: Running
[+-E default_| |
_____ ? _t_D_EJ__f_D__r_[_Ef_t_&l[’E____ Start Time: Oct 18, 2000 4:25:39 PM
Froperties Hast name: keriueno
Transactions. .. | Hist syatern tye: wOE
Trace...

Il root: CWebSpheretfppServer
2ss ID: 504

Application Server
Generic Server
Serviet Redirector

i

oved JAR directory; [CWvebSpherewtppServendeplovedEJBs

Dependent classpath; |

Consale Messages

Figure 58. Create a new application server

This will bring up the Create Application Server dialog box, which contains
three separate tabs entitled General, Advanced and Debug. For our

148 WebSphere V3.5 Handbook

purposes, the default settings for everything will be fine; see Chapter 4,
“WebSphere components” on page 115 for details on the various options
available when defining an application server.

Type in the name of your application server and click OK. We have used the
name HelloAppServer for our application server, as can be seen in Figure 59.

:__-_'!Ereate Application Server

General |Advanced1 Debugl

*Application Server Mame: |HeIInAppSer\rer

Cammand line arguments: |

Environtment: | Environrment. .

wWorking directory: |

Standard input; |

Standard output: Jstdout b

Standard errar: Jstderrba

Maximum startup attermpts: |2

* - Indicates a required field.

Ok i Cancel Clear

Figure 59. Create Application Server: General tab

Then you will get the Information dialog that says command “EJBServer.create”
completed successfully and click OK.

Chapter 5. Servlet support 149

— Note

After a few seconds, you should see an information dialog box saying that
the EJBServer.create command completed successfully. This is somewhat
misleading, as we have created an application server which we are not
going to use to serve EJBs - we will only serve servlets (unless we are
planning on using the thin Servlet Redirector; more on this later). However,
this is WebSphere internal terminology for an application server instance;
the messages means simply that the application server has been defined
successfully.

5.5.1.2 Define a new application server via the WSCP

Creation of the application server via WSCP is done by calling the create
method of the ApplicationServer command object. In the example in Figure
60, we are creating the same application server instance as above, called
HelloAppServer, on the node entitled “SZYMON-Laptop”. (The example
shows output from Windows 2000, but the syntax is the same on other
platforms, such as UNIX).

C: \WebSphere\AppServer\bin>wscp
wscp> ApplicationServer create /Node:SZYMON-Laptop/ApplicationServer:HelloAppServer/
wscp> exit

C: \WebSphere\AppServer\bin>

Figure 60. Creation of the HelloAppServer application server instance

5.5.2 Define a servlet engine

150

Creation of the servlet engine is very similar to the creation of an application
server. We shall demonstrate using both the administrative console and
WSCP.

5.5.2.1 Define a servlet engine via the console

Right-click the application server in which you want to create the servlet
engine (in our case, HelloAppServer), and choose Create -> Servlet Engine
from the resulting menu, as in Figure 61 on page 151.

WebSphere V3.5 Handbook

___-_'!WebSphere Advanced Administrative Console
Console Yiew Help

@ »=pE@E

o v

=
1=

g5 WebSphere Administrative Domain | Application Server:HelloAppServer
fﬂ Adminzrplicaiion || General | advanced | Debug |

Application Server Mame: |HeIIOAppServer =

7 Remote Serviet Redirectar | Current State: Stapped
; Desired Gtate Stopped
Start B
P Default DataSo i s
&5 Admin DB Drive

Force Stop Executable inuse: java

! Command line arguments: |
Remove e O A OO
B Environment: |Enviranment..

Process ID: 0

Warking directory |

EJBContainer ik I

Jard input in use:

=

Apply Reset |

OO e A B S ol il el e o

T — — — —,—,—,—,,,—,—— :J
10/18/00 4:39 PN : Command "EJBServer.create” running ... |
10418700 4:35 PM : Command "EJEServer.create” completed successfully. j
-

Figure 61. Create a new servlet engine

This will bring up the Create Servlet Engine dialog box, which has two tabs:
General and Advanced. In the General tab, fill in the name you would like to
use for your servlet engine; in the example we have used the name
HelloServletEngine. From the drop-down box, choose the application server
where you would like the servlet engine to run; the example depicted in
Figure 62 on page 152 shows the HelloAppServer application server defined
above being used.

In WebSphere V3.5.2, you can select the Servlet Engine Mode. We describe
this in detail in Chapter 8, “Servlet V2.2 in WebSphere V3.5.2” on page 295.
For this chapter, we selected the WebSphere V3.5 Compatibility Mode.

Chapter 5. Servlet support 151

152

reate Servlet Engine [_ O] =]

* Semlet Engine Mame: IHeIIDServIetEngine

* Application Server: [HelloAppServer 2|
Select Servlet Engine Mode:
WehSphere 3.5 Compatibility Mode: o

Servlet 2 20J5P 1.1 Full Compliance Mode: l"'[%

*- Indicates a required field.

Ok 1 Cancel i Clear

Figure 62. Create Servlet Engine: General tab

Click the Advanced tab. Although we will not change any of the settings for
our simple example it is useful to know what they all mean. Figure 63 on page
153 shows the Advanced tab of the Create Servlet Engine dialog box, with all
of the options. An explanation of the options is given below.

WebSphere V3.5 Handbook

Queule Type: JosE 5|

Max Connections: [25

JosE 5|

HTTP

NONE wg”

Local Pipes

5]

Settings JAgEdit Serviet Engine Transport

Transport Type: (M W=

~Select Log FlleMagk——————————————————
\ [~ Trace [Informational [Warning [Errar

Mative Log File: |

Queue Name: |

Clone Index: [t

oK i Cancel i Clear oK 1 Cancel

Figure 63. Create Servlet Engine: Advanced tab

Clicking the Queue Type drop-down menu brings up three options. The
queue type options should be used as follows:

OSE - Used for routing requests locally and for remote OSE
HTTP - Not recommended at this time
None - For use with the Servlet Redirector

Remote OSE and Servlet Redirectors are not within the scope of this
redbook; please see WebSphere Scalability: WLM and Clustering using
WebSphere Application Server Advanced, SG24-6153 for details.

The port option specifies the port that the servlet engine will listen on for
servlet requests from the Web server; leave it to the default -1 to specify an
ephemeral port. Max connections defaults to 25 and is the maximum number
of concurrent resource requests.

Clicking the Settings button brings up another dialog box, which deals with
the transport mechanisms used by the servlet engine. Click the Transport
Types drop-down box to choose between the following using Local Pipes,
INET Sockets and JAVA TCP/IP. Local Pipes are generally faster and should

Chapter 5. Servlet support 153

154

be used on Windows and AlX; on Solaris you can only use INET sockets. The
JAVA TCP/IP option is a pure Java implementation of INET sockets; this
should be used only for debugging.

Then click OK.

You will get the Information dialog that says command “ServletEngine.create”
completed successfully. Then click OK.

After you create a servlet engine successfully, you can see it (in our case,
HelloServletEngine) on the administrative console as shown in Figure 64.

___-_'!WebSphere Advanced Administrative Console

Console View Help

&)

> = G || o v

[=1-%5 WehSphere Administrative Domain | |Servlet Engine:HelloServietEngine
3 Adminapplication | | Advancedi

kenueno |

4 JDBC Driver |

Default Server |

[Remote Serviet Redirectar |

_ﬁ HelloAppServer | Current State: Stopped

H- | ; S

-5 Default Cortainer [% | Desired State: Stopped

P Default DataSource | Start Time:

s Adrnin DB Driver |

12 default_hnst

Servlet Endine Mame: |He\IuServIetEngine

Application Server |HellofppSerer |

-Select Servet Engine Mode:————————————————
‘WehSphere 3.5 Compatibility Mode: «
Servlet 2.2/J5P 1.1 Full Compliance Mode: €

WebSphere 3.5 Compatibility Mode In Use

Apply Resst |

Console Messages
B T T — B H :J
10/18/00 4:46 PN : Command "ServlietEngine.create™ running ... |
10418700 4:47 PN : Command "ServletEngine.create” completed successfully. j
-

Figure 64. A newly created serviet engine

5.5.2.2 Define a servilet engine via the WSCP

Creation of the servlet engine via WSCP is done by calling the create method
of the ServletEngine command object. In the example in Figure 65 on page
155, we are creating the same servlet engine as created above with the
administrative console called HelloServletEngine, on the node entitled
“SZYMON-Laptop”, in the appserver called HelloAppServer. (Again, this
example shows output from Windows 2000, but the Tcl syntax is the same on
other platforms such as UNIX).

WebSphere V3.5 Handbook

C: \WebSphere\AppServer\binswscp

wscp> ServletEngine create /Node:SZYMON-Laptop/ApplicationServer:HelloRppServer/
ServletEngine:HelloServletEngine

wscp> exit

C: \WebSphere\AppServer\bin>

Figure 65. Creation of the HelloServietEngine servlet engine

5.5.2.3 The RemoteSRP EJB

You will notice that, when you create a servlet engine in an application server
instance, an EJB container entitled Default Container will automatically be
created and an EJB called RemoteSRP will be deployed inside it.

The RemoteSRP enterprise bean, when using the Servlet Redirector, is used
when you want to have WebSphere on a different machine from your Web
server (HTTPD). The Servlet Redirector is an EJB client of the RemoteSRP
bean. An overview of separating your Servlet Redirector from your application
server is given in Chapter 16, “Topologies selection” on page 771, but for
detailed information (including instructions on how to do this), see
WebSphere Scalability: WLM and Clustering using WebSphere Application
Server Advanced, SG24-6153.

5.5.3 Create a Web application
We show how to create a Web application via the administrative console, and
by using WSCP. XMLConfig and the Web console could also be used for this
purpose; for more information on these utilities, please refer to Chapter 21,
“XMLConfig” on page 877 and Chapter 19, “Web console” on page 843.

5.5.3.1 Create a Web application via the console

Right-click the servlet engine in which you want to create your Web
application (in our case, HelloServletEngine), and choose Create -> Web
Application from the menu, as shown in Figure 66 on page 156.

Chapter 5. Servlet support 155

i WebSphere Advanced Administrative Console
Console Wiew Help
@ » » P @E |E | v
=14 WebSphere Administrative Domain | |Servlet Engine:HelloServletEngine
I:_‘m AdminApplication e |Advancedi
-4 kenueng
&4 JDBC Driver
R Default Server | ; . -
: | Servlet Engine Mame: [HelloServietEngine
%) Remate Servlet Redirectar | : I g
3 HelloappServer | Current State: Stopped
= Desired State: Stopped
&.% Default Cantaine g
+-{"% Default DataSource Remaove Start Time:
[#-& Admin DB Driver | e i : =
perties Application Server: HelloAppSemver -
&% default_host e | HES 2
rylet Engine Mode:—— |
here 3.8 Compatihility Made: o
12.2/8P 1.1 Full Compliance Mode: €
WehSphere 3.5 Compatibility Mode In Ulse
Apply Resat |
Consale Messages
[I07I5/Ul 435 P I LOMIATA ~EJGReIVEL. CTEATe COUDLETET SuboRsoTwILY. __-_[
ElDIlB,-’DD 4146 PM @ Command "SerwvletEngine, create” running ... 1
élDflS,-’DD 4:47 PH @ Commahd "ServletEngine.create”™ completed successfully. j
... e
|

Figure 66. Create a new Web application

This will bring up the Create Web Application dialog box, which contains two
tabs - General and Advanced, as shown in Figure 67 on page 157.

On the General tab, fill in the name you want to give to your Web application;
in the example, we have used the name HelloWebApp.

From the drop-down dialog box, choose the virtual host on which you would
like the Web application to run. We will just choose the default_host for our
example; see the 4.2.4, “Virtual hosts” on page 130 for more details of virtual
hosts.

Choose a path for your Web application; this will be the first “directory” in the
URL. This will default to a prefix of /webapp/ and then whatever you type in as
the Web application name (in our case, /webapp/HelloWebApp).

Finally, write a description for the Web application. When you have filled in
the compulsory fields, click the Advanced tab.

156 WebSphere V3.5 Handbook

M Create Web Application H= 3
General | Advanced|

*Weh Application Mame iHeIIDWehApp h

Description i

*\irtual Host [defauit_host =

*Weh Application Weh Path: WebappIHeHUWEbApp

*- Indicates a required field.

Ok 1 Cancel ; Clear

Figure 67. Create Web Application: General tab
Figure 68 on page 159 shows the Advanced tab.

The Document Root is the root directory for HTTP documents in this Web
application.

The Classpath defines the application classpath; this should be set to the
directory or directories where the class files for your servlets are stored on
the local file system.

There are two properties for error page setting: Default Error Page field and
Error Pages list.

In the Error Pages list, you may specify a special Web page when a special
status code or exceptions occurs. For example, you may specify different Web
pages to display when a status 404 and 500 occurs, or you may specify
different Web pages to display when exception javax.servilet.ServietException
and java.io.lOException are thrown. If a request causes both a status code to
be generated and an exception to be thrown, and both these errors have
specified error pages, then WebSphere uses the error page configured for the
status code. If an error occurs that is not included in the list of error pages, a

Chapter 5. Servlet support 157

158

default error page will be displayed. See Chapter 8, “Servlet V2.2 in
WebSphere V3.5.2” on page 295 for detailed information.

The ErrorReporter servlet, described in 5.6.6, “The ErrorReporter servlet” on
page 183, may be used here.

The reload settings are at the Web application level. There are two settings
for reload: Reload Interval and Auto Reload.

If you set Auto Reload to True, the classpath of the Web application is
monitored and all components (JAR or class files) are reloaded whenever it is
automatically detected that a component has been updated. It is of great
benefit in developing or testing your environment. You may set it to False in a
production environment in order to improve performance. A reload Interval is
the interval between reloads of the Web application when Auto Reload is set
to True. It is set in seconds.

For the MIME table property, specify mappings between extensions and
MIME types. The MIME table consists of:

* Extension: Text string describing an extension, such as .txt

* Type: The defined MIME type associated with the extension, such as
text/plain

You can also specify MIME table properties at the virtual host level, but the
MIME table properties you specify for a Web application take precedence
(local scope). In other word, the MIME table of the Web application is
searched first. If a match is not found, then the MIME table configured for the
virtual host is searched.

Then click OK. You will see the Information dialog that says command
“ServletGroup.create” completed successfully. Then click OK.

WebSphere V3.5 Handbook

M Create Web Application

General Advanced

Document Root: vehSpherelippServenhostsidefault_hostiHellaWvebAppieh

;—Classpath

i Claszspath

|| CWeh SpherelAppSenerhostsidefault_hostiHelloWebApplservets Y

|

i

=X

Default Error Page: |

Froperty Mame Froperty VYalue

Attributes: =
[

Reload Interval (secs): [3000

Auto Reload: [True =l

Session Timeout (mins.): |D

Welcome File List

Welcome Files:

Extension Type
MIME Table: -
Status Code or Exception Location
Error Pages: =
URI Location
Tang Likraries: =

rSetup Shared Contest

lJse Shared Context: |False ,I
Shared Context JMDI Mame: |

614 | Cancel | Clear

Figure 68. Create Web Application: Advanced tab

Chapter 5. Servlet support 159

5.5.3.2 Create a Web application via the WSCP
The Web application is created in WSCP by calling the create method of the
WebApplication command object.

In the example in Figure 69, we are creating the same Web application as
created above with the administrative console, called HelloWebApplication,
on the node entitled “SZYMON-Laptop”, in the servlet engine called
HelloServletEngine, within the appserver called HelloAppServer.

Note that this command is more complex than those for creating the
application server and servlet engine. This is because for the application
server and servlet engine, we simply accepted all of the default options, and
the only required option for those objects is the name.

For a Web application, however, it is required to give the classpath for the
application, the document root and the Web path; these are the Classpath,
DocRoot and URIPath attributes of the WebApplication object in WSCP, and
therefore the creation command must specify them using the -attribute option.

Once again, although we show output from Windows 2000, the Tcl syntax is
the same on other platforms, such as UNIX.

4 C: \WebSphere\AppServer\bin>wscp N
wscp> WebApplication create /Node:SZYMON-Laptop/ApplicationServer:HelloAppServer
/ServletEngine:HelloServletEngine/WebApplication:HelloWebApplication/ -attribute

{{Classpath C:\WebSphere\AppServer\hosts\default host\HelloWebApp\servlets} {Do
cRoot C:\WebSphere\AppServer\hosts\default host\HelloWebApp\web} {URIPath defaul
t_host /webapp/HelloWebApp} }
wscp>exit

\C : \WebSphere\AppServer\bin>

Figure 69. Creating a Web application via WSCP

Note

Via the administrative console, there is a separate option to specify the
virtual host name; however, in WSCP the virtual host is specified as the
start of the URIPath attribute, as part of the Web path.

5.5.4 Deploying the serviet

We demonstrate deploying the servlet using the administrative console and
WSCP; it is also possible to deploy using XMLConfig.

160 WebSphere V3.5 Handbook

5.5.4.1 Deploying the servlet via the console

Right-click the Web application in which you want to deploy your servlet, and
choose Create -> Servlet from the menu, as shown in Figure 70. This will
bring up the Create Servlet dialog box, which contains two tabs - General and
Advanced.

___-_'!WebSphere Advanced Administrative Console
Console View Halp

) :
’«'.‘I > W P

(=} WwehSphere Administrative Domain eb Application:HelloWebApp

3 Adminapplication Ern iAdvancedl
-8 kenueno
-2 JDBC Driver

Veh Application Mame: !HelloWebApp
5 Remate Serviet Redirector

E B8, HelloAppServer Current State: Stopped
= %”USQMQ‘E”N”E Desired State: Stopped

User Profile
) SessionMz Remove i
- Default Contair Proparties

P Default DataSource = rqp) 0 !

B Adrmin DB Driver st a

= 8 efault_host ¥
[-8% default_host Resm A i = =l

Eheo

derault_hiost

weh apg_ MO Pt [rehappiHeliowebaon

Full ¥web Path in use: hehapp/HelloWiehApp
‘ Apply Reset |
Console Messages
B T :J
10/18/00 4:54 PN : Command "ServletGroup.create” running ... |
10/18/00 4:54 PM : Command "ServletGroup.create” completed successfully. j
-

Figure 70. Create Servlet

The General tab of the Create Servlet dialog box is shown in Figure 71 on
page 162. There are three mandatory fields: Servlet Name, Web Application
and Servlet Class Name.

The Servlet Name field should be used to give your serviet a short descriptive
name; this name will be used to refer to this instance of the servlet in the
administrative database, so it will show up in the administrative console and
WSCP.

The Web Applications drop-down list is by default set to the Web application
you are deploying the servlet in, but be warned that the list includes all of the
Web applications on the node (even those in other application servers on the
same node).

Chapter 5. Servlet support 161

[[Of x]

M Create Servlet

General | Advancedi

* Servet Name: |Hella

*\Web Application: |HeIIOWebApp

Description: |

* Sendet Class Mame: [HelloiorldServlef %

~Serlet\Weh Path List

Remaove

*- Indicates a required field.

QK Cancel Clear

WiabApp
default_app
admin

examples
WisamplesDB2Z_app

HellaWehApp

Mg add web Path to Servlet

r S o L o e A s e P e

L Virtual Host default_host
| BemletPath: [wehappiHellowebAppiHelo]

Figure 71. Create Servlet: General tab

The final mandatory field is the Servlet Class Name field; this should contain
the full name of the class, such as HelloWorldServlet.

The servlet Web path is the part of the URL after the host, which will be used
to access this servlet. It defaults to the Web application Web path (in the
example this is /webapp/HelloWebApp), and you should give a name under
that path for the servlet to be called. The full URL to access the HelloWorld
servlet as shown in the example will be:

<hostname>/webapp/HelloWebApp/Hello

Then click OK on the Add Web Path to Servilet window.

You will see the Servlet Web Path which you specified, as shown in Figure 72

on page 163.

162 WebSphere V3.5 Handbook

M Create Serviet |_ (O] x|

General | Advanced |

= Senlet Name: [Hello
*\wioh Application; [Hellowebapp 2|
Description: |

*Sendet Class Mame. [HelloWioridSerdet

SerletWeb Path List
|| default_hostwebapp/HelloWebAppiHella

*- Indicates a required field

oK | Cancel ;

Figure 72. Servlet Web Path List

Click the Advanced tab to show the advanced options of the Create Servlet

dialog box, as shown in Figure 73 on page 164.

The initial parameters for the servlet can be set here. You can also turn on

debug mode, which is discussed in 23.6, “Object level trace (OLT) and the

IBM distributed debugger” on page 958.

Finally, you can force the servlet to be loaded at startup (rather than the first

time the servlet is accessed).

Then click OK.

You will get the Information dialog that says Command “Servlet.create”

completed successfully. then click OK.

Chapter 5. Servlet support

163

M Create Servlet =] B3

General Advanced'

Init Parameters: TEE T e Init Parm Yalue |

Debug Mode: [False

[K O R

Load at Startup: iFa|se

Ok [\I Cancel

Figure 73. Create Servlet: Advanced tab

After you create a servlet successfully, you will see it (in our case, Hello) on
the administrative console as shown in Figure 74 on page 165.

164 WebSphere V3.5 Handbook

; ‘Wehﬁphere Advanced Administrative Console

Console Wiew Help

{@E P m Hp

= % WehSphere Administrative Domain | [Servlet:Hello
- :
- m AdminApplication T
= ‘% kenuenn ;Advancedl
&} JDEC Driver Serviet Name: [Heto
E PR Default Server
Remate Servlet Redirector Currant State: Stopped

=

= 3 HelloAppServer Desired State: Stopped
@ HelloServietEngine :
70 Hellowebapp Start Time:
g3 Enahled: Trug
UserProl& Manager Sl : :
Qi Session Manager Weh Application |Hg|=.;._.!\,rg;;,;|3p _'J
= Q Default Container bion |

Default DataSource
Admin DB Driver Servlet Class Mame: |He||anrIdServIet
1 default_host

Servlet Class Name in use HelloWorldSeret
SENlEtWEb Path LlSt ...
default_hostwebapp/HelloWebippiHello |

ServietiWeb Paths Listinugse:
default_hostwehappiHelloWebAppiHello

10418700 5:02 PM : Command "Servlet.create” running ... _‘t
10/18/00 5:02 FM : Command "Jervlet.create” completed successfully.

Figure 74. A newly created serviet

5.5.4.2 Deploying the servlet via the WSCP
To deploy the servlet using WSCP, as usual we call the create method of the
command object “Servlet”.

In the example in Figure 75 on page 166, we are deploying our
HelloWorldServlet in the HelloWebApplication Web application, on the
SZYMON-Laptop node, in the HelloServletEngine servlet engine, within the
HelloAppServer appserver.

Again, this command is slightly more complex than the commands used to
create the application server and servlet engine, because instead of
accepting all of the default options and only specifying the name, we have a
number of required attributes.

Chapter 5. Servlet support 165

We must specify the name of the class and the full Web path of the servlet, as
the Code and URIPaths attributes of the servlet object in WSCP.

4 C: \WebSphere\AppServer\binswscp

wscp> Servlet create /Node:SZYMON-Laptop/ApplicationServer:HelloAppServer/Servle
tEngine:HelloServletEngine/WebApplication:HelloWebApplication/Servlet :Hello/ -at
tribute {{Code HelloWorldServlet} {URIPaths default host/webapp/HelloWebApp/Hell
o}}

wscp> exit

C: \WebSphere\AppServer\bin>

Figure 75. Deploying a servlet via WSCP

Note

Note that here as well there is no separate option to specify the virtual host
name, but rather it is specified as part of the URIPath attribute. Also note
that the URIPaths attribute can contain more than one path; if this is
desired, they should be presented in braces as a Tcl list.

5.5.5 Invoking the deployed servlet

166

We could invoke this servlet with either a GET or POST form action method,;
the service() method will execute for either. Since a URL forces the Web
browser to send the request using GET, similar to the way a standard HTML
page is requested, the simplest way to invoke the servlet would be by
specifying the URL in a Web browser. The example servlet could be invoked
from the Web browser with the URL:

http://<host>/webapp/HelloWebApp/Hello

The output of the servlet is shown in Figure 76 on page 167.

WebSphere V3.5 Handbook

3 http:/ /localhost /webapp/HelloWebApp/Hello - Microsoft I = |EI|1|
J File Edit View Favorites Tools Help ﬁ
J GBack + = - D it | iQhsearch (G Favorites £ #History ||%v ==
JAddress I@ http:/flocalhostfwebapp/HellowebappHello j oGo |JLinks 2
=
Hello World
=
|@ Daone ’_’_ (2 Local intranet 4

Figure 76. The output of the HelloWorldServlet

5.6 Internal serviets

A number of servlets are supplied by WebSphere in the default app
application, and you can also use them as part of your own Web application
where appropriate. This includes servlets that allow file serving from
WebSphere directories and which add functionality to compile JSPs.

5.6.1 Adding the internal serviets to your Web application

These internal servlets can be added to an existing Web application using the
Console -> Tasks -> Add a Servlet task, as shown in Figure 77 on page
168.

Chapter 5. Servlet support 167

168

iWebSphere Advanced Administrative Console

Create Application Server

Trace » Create Data Source
Import... Deploy Enterprise Beans
Export... Create a Servlet Engine I
Command History, Create a Virtual Host |He||o =
Create a Web Application
e t Stopped
Add a JSF File or¥eh Resource Stopped
Add a JSF Enahler -
Create Enterprise Application True
Edit Enterprise Application
o Helloiwebspp -
Convert a ¥ar File I Ak “‘I
i Configure Glabal Security Setings |
[+-{P Default DataSc . i . foid
[Admin DB Driv Configure Application Security o [Hellowiorcge et

-8 default_host Configure Security Method Groups
Configure Regource Security
Canfigure Security Permissions List

||default_hosthwebapp/HelloWWebAppHello

einuse: HelloWyarl

Console Messages

dUfLlosun JoUs FILoo Luundrng AELYIEL.LLEdLE FAFTIT NN JTL R _A‘
10/18/00 5:02 PM : Command "Servlet.create” completed successfully.

Figure 77. Add a Servlet task

The first dialog box of the Add a Servlet task, shown in Figure 78, asks
whether you wish to add servlets from an existing JAR file or directory.
Choose No to create a new servlet, and click Next.

WebSphere V3.5 Handbook

A Add a Serviet [_ O] %]

Serviet
Specify whether to add sendets from an existing servlet JAR file or directory

Do you want to select an existing Sendet jar file or Directory that contains Serviet classes?
 Yag

& Mo

| Mext = [\l Einisty Cancel

Figure 78. Add a Servlet: Servlet window #1

The next dialog box asks you to choose a Web application in which to add the
servlet. Navigate down to the Web application you wish to use (in our case,
HelloWebApp), as in Figure 79, and click Next.

M Add a Servlet M= B

Serviet
SelectaYWeb application to which to add the servlet.

Flease select a Web App to contain this servlet

Elib WehSphere Administrative Domain
| =&} Nodes
- kenueno
R Default Servar
= HelloAppServer
=5 HelloServetEngine

Figure 79. Add a Servlet: Servlet window #2

Finally we come to the dialog box that gives a list of the internal servlets that
you can use, as shown in Figure 80.

Chapter 5. Servlet support 169

M Add a Servlet M= B3
Serviet
Specify the type of servletto canfigure -- a WebSphere systermn servlet such as the File Servlet, ar
your awn (user-defined) servlat.

-Selectthe Type of Servletyou want o configure:

Create File-Sering Serviet:

Create Chaining Servlet:

o e e

Enahle Serving Servlets by Classname:
Create JSP 91 Enabler:
Create JSP 1.0 Enabler:

Create JSP 1.1 Enabler:

e e e

Create User-Defined Servlet:

Figure 80. Add a Servlet: Servlet window #3

Choose which servlet you wish to add, and click Finish. Note that the chainer
servlet creation process has one more dialog box, which will be described in
5.6.5, “The chainer servlet’ on page 177.

5.6.2 The invoker servlet

The invoker servlet can be used to invoke servlets by class or code names.
Note that it is a security risk to invoke by class in production; this should be
seen as more of a development tool.

Follow the instructions in 5.6.1, “Adding the internal servlets to your Web
application” on page 167, then select Enable Serving Servlet by
Classname and click Finish as shown in Figure 81.

170 WebSphere V3.5 Handbook

g add a Servlet

Serviet
Specify the type of serviet to configure -- a'WebSphere system servlet such as the File Servlet, or
waur own (user-defined) serviet.

Select the Type of Servlet you want to configure:

Create File-Semving Serviet: i
Create Chaining Serlet: i
Enahle Seming Serdets by Classname: &
Create JSP 81 Enabler:
Create JSP 1.0 Enabler:

[
~
Create JSF 1.1 Enabler: .
~

Create User-Defined Serviet:

Figure 81. Add the invoker servlet

Then you will see the Information dialog that says conmand “Servlet.create”
completed successfully. and click OK.

Now you can use it to invoke other servlets by using the URL of the invoker
servlet and adding the name of the class or the short name of the servlet (as
held in the administrative database) at the end.

The default setting for the Web path of the invoker servlet is the Web
application Web path plus the word “servlet”; this can be seen in Figure 82.

Chapter 5. Servlet support 171

M WebSphere Advanced Administrative Console
Console View Help

‘ s

& P =
(=5 WebSphere Administrative Domain | [Servlet: Auto-Invoker
o o
3+ m AdminApplication Eorare
= E% kenueno iAd\rancedl
-l JOBG Driver Servet Name: Jputo-Invaker
Fl-E5 Default Server
: Remote Seviet Redirectar Current State: Stopped
5 glloAppSer\fer Desired State: Stopped
L_.> HellaSerletEngine e
& Hellowehapp Start Tirme: =
Hello Enahled: True
=5} User Profile Manager wieh Application: [Helinivebinn =
o -5 Session Manager Description: |puto-Generated - Serves Serviets by Classname
[Default Container
-/ Default DataSource Servlet Class Mame: Jcom.ibm . serviet engine webapp.InvokerServiet
[Admin DB Driver : ; % B R
BB default host Serviet Class Name inuse: com.ibm sendetenginewebapp invokerSendet

~Servlet Web Path List
|| defautt_hosthwebappiHellowe bAppisemet™

Apply Reset |

: Cnnsnle Messages
;lDle,-’DD 5124 PM @ Command "Serwlet.creare™ completed successfully. -‘-E
5|

Figure 82. The Web path of the invoker serviet

We can now call our HelloWorldServlet by using two extra URLs:

http://localhost /webapp/HelloWorldApp/servlet /Hello
http://localhost /webapp/HelloWorldApp/servlet /HelloWorldServlet

The first of these is the short name for the servlet; this is in addition to the
normal short name invocation via the Web path. The second URL invokes the
servlet using the class name. Note that it is possible to completely delete the
actual servlet Web path for the Hello servlet, and still access it via the Invoker
servlet.

172 WebSphere V3.5 Handbook

Using the Invoker servlet is considered a security exposure that can be
avoided by performing certain administrative tasks. In addition to invoking the
servlet by the servlet Web paths configured via the administrative console,
the Invoker servlet enables you to invoke servlets by their class names.

Anyone enabling the Invoker servlet to serve servlets by their class names
must take steps to avoid potential security risks. The administrator should
remain aware of each and every servlet class placed in the classpath of an
application, even if the servlets are to be invoked by their classnames. A
summary of the steps is provided here.

To protect each servlet, the administrator needs to:

1. Configure a Web resource based on the servlet class name, such as:
/servlet/SnoopServlet
for SnoopServlet.class

2. Add the Web resource to the Web Path list of the Invoker servlet in the
Web application to which the servlet belongs.

3. Use the Configure Resource Security wizard in the administrative console
to secure the Web resource.

Also, the administrator needs to secure the Invoker servlet itself. More details
for this procedure can be found in the InfoCenter for WebSphere V3.5.

5.6.3 The file servlet

The file servlet (or file-serving servlet or file serving enabler) can serve HTML
or other files in the Web application document root without extra configuration
steps. This servlet will simply serve up any file that is placed in the document
root of the Web application.

Chapter 5. Servlet support 173

174

—— Note

When dealing with static HTML pages, you can choose to have the pages
be served by WebSphere or just have them served by the Web Server itself
by putting them in the Web Server's document root. In both cases, you can
protect the pages using WebSphere security.

For the case were HTML pages are served by the Web Server, as opposed
to being served by the WebSphere, there may be an increase in
performance since the Web Server is serving the pages directly. Although,
when dealing with multiple Web applications, where each has its own
document root, using the WebSphere file serving servlet has the
advantage of keeping your static pages organized and better encapsulated
with the rest of your application.

You follow the instructions as described in 5.6.1, “Adding the internal servlets
to your Web application” on page 167, then select Create File Serving
Servlet and click Finish as shown in Figure 83.

N Add a Serviet M= E3
Serviet 7
Specify the type of servet to configure -- a WebSphere systerm serviet such as the File Serviet, or
your own {user-defined) servlet.

Selectthe Type of Semwlet you want to configure:

Create File-Serving Servlet: (o
Create Chaining Servlet:

Enahle Serving Sendets by Classname:
Create JSP .31 Enabler:

~
~
~
Create JSF 1.0 Enabler: 9
Create JSF 1.1 Enabler: ("

~

Create User-Defined Senet

Figure 83. Create File-Serving Servlet

You will see the Information dialog that says Command “Servlet.create”
completed successfully. and click OK.

WebSphere V3.5 Handbook

After you create the file servlet successfully, you will see it on the
administrative console as shown in Figure 84.

___-_"WebSphere Advanced Administrative Console

Console Wiew Help

)

> m o o

- |

- WehSphere Administrative Domain | [Servlet:File Serving Enabler
12 s an b |

._tEE AdminApplication || ceneral

E1-88 keneno § | avancea]

m

S JoBC Driver || seriet Name: [File Serving Enabler
-F3 Default Server | :
-~ Remote Senviet Redirector || Curtent State Stapped
B % glloAppSer\rer || Desired State: Stopped
-4 HelloServietEngine
! i g Start Time:

HelloWebApp |
b Hello || Enahled: True

) hifoot || Weh Application: IHFJ”'U\"\'BU."\DFJ ..‘J

i} | Description iAuto-Generated- File Serving Servlet
User Profile Manager [}S

s Qj Session Manager |1 Serlet Class MName:]com.ibm setvlet.enginewebapp. SimpleFileServiet
[H-{Zh Default Container |

F-Fll Default DataSource |
& Admin DB Driver || Sendeteb Path List

;defauIt_hosthebappJHeHuWebAppI

Servlet Class Name in use cam.ibm.serlet enginewebapp.SimpleFileServet

-8 default_host

Console Messages
dusloysun D044 FMOD LULuudria AELWIEL. LLEdLE EAFTITNN JIE R ‘[

10418700 5:42 PM : Command "Servlet.create” completed successfully.

Figure 84. A newly created File-Serving serviet

As an example, after installing the file servlet we placed a file called
myzipfile.zip into the document root of our Web application:

C:\WebSphere\AppServer\hosts\default host\HelloWebApp\web

We then connected with a Web browser to the following URL:

http://localhost/webapp/HelloWebServer/myzipfile.zip

The Web browser offered to download the file, as shown in Figure 85 on page
176.

Chapter 5. Servlet support 175

2 http:/ /localhost /webapp /HelloWebApy

File Edit ‘iew Go Commonicatbor Help

« = 3 2 @ s & B W

=

Blact Faward, Feload H-‘DITIB Search Metscape Frirt Security Shop Stop
' w‘ " Bookmarks \g& (Ef{ed |t / localhostAwebapp/HelloWwebd pp/myzi j i
i L‘i Metwork ['_‘i Search Engines ['_‘i DCE/DFS |’_‘|' Encina L‘i “WebSphere ['_‘i |BM Pages L‘i Persg
Unknown File Type x|
= “‘'ou have started to download a file of type

multipart/x-zip

Click "More Info" ta learn how to extend Mavigator's

capahilities.

tore Info Pick dpp.. Save File.. Cancel

@|=‘D= [E [Connect: Host localhost contacked. Waiting For reply...

Figure 85. The File-Serving servlet serves a file

5.6.4 JSP compilers

The 1.0 JSP compiler is com.sun.jsp.runtime.JspServlet, and the 0.91 JSP
compiler is com. ibm.servlet.jsp.http.pagecompile.PageCompileServiet. These
servlets enable the JSP 0.91 or 1.0 page compiler to allow the Web
application to handle JSP files. Adding a JSP processor to an application is
required if the Web application contains JSP files.

The JSP processor creates and compiles a servlet from each JSP file. The
processor produces two files for each JSP file:

 java file, which contains the Java language code for the servlet

* .class file, which is the compiled servlet

The JSP processor puts the .java and the .class file in a path specific to the
processor, <app document root>\pagecompile for the JSP 0.91 processor or

176 WebSphere V3.5 Handbook

<WAS install root>\temp\servlet host name\app name for the JSP 1.0
processor.

The .java and the .class file have the same filename. The processor uses a
naming convention that includes adding underscore characters and a suffix to
the JSP filename. For example, if the JSP filename is simple.jsp, the
generated files are _simple_xjsp.java and _simple_xjsp.class.

Like all servlets, a servlet generated from a JSP file extends
javax.servlet.http.HttpServlet. The servlet Java code contains import
statements for the necessary classes and a package statement, if the servlet
class is part of a package.

If the JSP file contains JSP syntax (such as directives and scriptlets), the JSP
processor converts the JSP syntax to the equivalent Java code. If the JSP file
contains HTML tags, the processor adds Java code so that the servlet
outputs the HTML character by character.

JSPs will be covered in detail in Chapter 6, “JSP support” on page 189.

5.6.5 The chainer servlet

The chainer servlet enables a servlet chain, in which servlets forward output
and responses to other servlets for processing. In servlet chaining, multiple
servlets are called for a single client HTTP request, each servlet providing
part of the HTML output. Each servlet receives the original client HTTP
request as input, and each servlet produces its own output independently.
Figure 86 shows the servlet chaining process flow in WebSphere.

................... — ChainerServiet [—{ Serviett

Browser 1y | HTTPD . Serviet2
A Composite
e Response

WebSphere Application Server

Figure 86. Servlet chaining process flow

Chapter 5. Servlet support 177

178

The chainer servlet is specified on the original request, and multiple servlets
are specified in an initialization parameter as the target. Servlet chaining has
the advantage of allowing the Web developer to create modular servlets that
can, for example, output standard HTML headers and footers or provide
common dynamic content for pages. Each servlet is called in the order
specified in the chainer definition, and the output HTML is made up of the
output from all of the servlets.

5.6.5.1 Chainer serviet example

The FooterServlet

As an example, let us chain another servlet to our HelloWorldServlet
example. This new servlet, called FooterServlet, will add a copyright
message to the bottom of the HTML page generated.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class FooterServlet extends HttpServlet {
protected void service (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException f{
response . setContentType (request .getContentType ()) ;
PrintWriter out = response.getWriter() ;
BufferedReader in = request.getReader();
String line;
while((line = in.readline()) != null)
out.println(line) ;
out .println ("<P>(c)Copyright IBM Corporation 2000") ;
out .println ("</BODY></HIML>") ;
out.close() ;
}
}
- J
Figure 87. The FooterServlet adds a copyright message to HTML pages