

ibm.com/redbooks

MySQL to DB2 UDB B2 UDB
Conversion Guidesion Guide

Whei-Jen Chen
Andreas Blank

Michael Hoeller
Rakesh Midha

Klaus Subtil

Complete guide to migrate MySQL
database and application to DB2 UDB

Application enrichment through
advanced DB2 UDB features

Application migration
with detailed examples

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

MySQL to DB2 UDB Conversion Guide

May 2004

International Technical Support Organization

SG24-7093-00

© Copyright International Business Machines Corporation 2004. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (May 2004)

This edition applies to IBM DB2 UDB Version 8.1 for Linux, UNIX, and Windows, MySQL Version
4.0, SuSE 8.0 and Red Hat 8.0.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xiii.

Contents

Figures . ix

Tables . xi

Notices . xiii
Trademarks . xiv

Preface . xv
The team that wrote this redbook. xvi
Become a published author . xviii
Comments welcome. xviii

Chapter 1. Introduction . 1
1.1 DB2 Universal Database . 2

1.1.1 Product overview. 2
1.1.2 DB2 UDB for Linux, UNIX, and Windows architecture 6
1.1.3 DB2 utilities . 19
1.1.4 DB2 database access . 21

1.2 MySQL database. 28
1.2.1 MySQL architecture . 29
1.2.2 MySQL design and SQL compliance . 32
1.2.3 MySQL utilities . 38
1.2.4 MySQL application programming interfaces (API) 41

Chapter 2. Planning the migration from MySQL to DB2 UDB 45
2.1 Migration project planning overview . 46

2.1.1 Benefits of migrating to DB2 UDB. 47
2.1.2 IBM migration offering . 48
2.1.3 Education . 49

2.2 Application assessment. 49
2.3 System planning . 51

2.3.1 Software . 53
2.3.2 Hardware. 53
2.3.3 Migration tools. 53

2.4 The migration process. 54
2.4.1 Porting preparation and installation. 55
2.4.2 Database structure porting . 55
2.4.3 Data porting. 57
2.4.4 Application porting. 59
© Copyright IBM Corp. 2004. All rights reserved. iii

2.4.5 Basic administration . 60
2.4.6 Testing and tuning. 60

Chapter 3. Migration scenario . 63
3.1 Application description . 64

3.1.1 Steps using the application . 64
3.1.2 Database structure . 71

3.2 System environment . 72

Chapter 4. Installation . 75
4.1 DB2 UDB ESE V8.1.4 on Linux. 76

4.1.1 System requirements . 76
4.1.2 Installation procedure . 78
4.1.3 Instance creation. 81
4.1.4 Client setup on Linux. 82

4.2 Other software product . 83
4.2.1 PHP adjustment for Unified ODBC with DB2 support 83

4.3 MTK installation and usage . 87
4.3.1 MTK prerequisites . 87
4.3.2 MTK installation. 87

Chapter 5. Database porting . 89
5.1 Data type mapping . 90
5.2 Data Definition Language differences . 95

5.2.1 Database manipulation . 96
5.2.2 Table manipulation . 99
5.2.3 Index manipulation . 106

5.3 Other considerations . 107
5.4 Porting database . 111

5.4.1 Automatic conversion using porting tools . 112
5.4.2 Manual porting . 114
5.4.3 Metadata transport . 116

5.5 Sample database migration. 117

Chapter 6. Data porting. 127
6.1 Considerations concerning data porting . 128

6.1.1 Commands and tools supporting data porting 128
6.1.2 Differences in data formats . 134
6.1.3 Differences in the user account management. 138

6.2 Sample project: Doing the data porting . 146
6.2.1 Export user data from MySQL. 147
6.2.2 Map MySQL user data to DB2 user data . 147
6.2.3 Create DB2 user . 148
6.2.4 Export MySQL application data. 149
iv MySQL to DB2 UDB Conversion Guide

6.2.5 Convert MySQL application data to DB2 format 149
6.2.6 Import application data into DB2 UDB . 150
6.2.7 Basic data checking . 150

Chapter 7. Application porting. 155
7.1 Differences and similarities in Data Manipulation Language. 156

7.1.1 SELECT syntax. 156
7.1.2 JOIN syntax. 157
7.1.3 UNION Syntax. 158
7.1.4 Subquery syntax . 159
7.1.5 Grouping, having, and ordering. 159
7.1.6 Strings . 161
7.1.7 Implicit casting of data types . 163
7.1.8 String concatenation and NULL values. 166
7.1.9 Record deletion . 167
7.1.10 Built-in functions and operators. 168

7.2 Application source conversion. 173
7.2.1 Converting MySQL Perl applications to DB2 UDB 174
7.2.2 Converting MySQL PHP applications to DB2 UDB. 177
7.2.3 Converting MySQL Java applications to DB2 UDB. 188
7.2.4 Converting MySQL C/C++ applications to DB2 UDB 199
7.2.5 Converting MyODBC applications to DB2 UDB 211
7.2.6 Condition handling in DB2. 213
7.2.7 Special conversions . 221

7.3 Additional application considerations . 226
7.3.1 What is the purpose of locking? . 226
7.3.2 Concurrency control and transaction isolation 227
7.3.3 DB2 isolation levels. 227
7.3.4 Locking . 229
7.3.5 Specifying the isolation level in DB2 . 230

Chapter 8. Database administration . 235
8.1 Database recovery . 236

8.1.1 MySQL recovery . 236
8.1.2 DB2 UDB database recovery . 237

8.2 Database replication . 240
8.3 Data movement . 241

8.3.1 MySQL data movement . 242
8.3.2 DB2 UDB data movement. 242

8.4 High availability . 246
8.5 Automated tasks/jobs . 248
8.6 Database configuration . 249

8.6.1 MySQL configuration. 249
 Contents v

8.6.2 DB2 UDB configuration . 250
8.7 Database management tools . 254

8.7.1 MySQL phpMyAdmin and Control Center. 256
8.7.2 DB2 UDB Control Center . 258
8.7.3 DB2 UDB Web Command Center. 260

Chapter 9. Testing and tuning . 263
9.1 Test planning. 264

9.1.1 Principles of software tests . 264
9.1.2 Test documentation. 264
9.1.3 Test phases. 267
9.1.4 Time planning and time exposure . 269

9.2 Data checking techniques . 270
9.2.1 IMPORT/LOAD messages . 270
9.2.2 Data checking . 273

9.3 Code and application testing . 275
9.3.1 Application code check . 275
9.3.2 Security testing . 276
9.3.3 Tools for testing and problem tracking . 276

9.4 Troubleshooting. 277
9.4.1 Interpreting DB2 informational messages . 277
9.4.2 DB2 diagnostic logs . 278
9.4.3 DB2 support information . 282
9.4.4 Problem determination tools . 285

9.5 Initial tuning . 296
9.5.1 Table spaces. 297
9.5.2 Physical placement of database objects . 298
9.5.3 Buffer pools . 301
9.5.4 Large transactions. 303
9.5.5 SQL execution plan. 308
9.5.6 Configuration Advisor . 311
9.5.7 Index Advisor . 314

Chapter 10. Advanced DB2 UDB features . 317
10.1 Views. 318
10.2 Stored procedures. 320
10.3 Trigger . 324
10.4 User-defined data types (UDT) . 324
10.5 User-defined functions . 327
10.6 Materialized query tables (MQT) . 328
10.7 Multidimensional clustering (MDC) . 331

Appendix A. Sample code for user defined functions 335
A.1 Sample code for BIT_AND . 336
vi MySQL to DB2 UDB Conversion Guide

A.2 Sample code for FORMAT function . 337
A.3 Sample code for RPAD and LPAD functions . 339
A.4 Sample code for GREATEST function . 346
A.5 Sample code for LEAST . 353
A.6 Sample code for BIT_COUNT . 359
A.7 Sample code for SUBSTRING_INDEX. 360

Related publications . 363
IBM Redbooks . 363
Other publications . 363
Online resources . 364
How to get IBM Redbooks . 366
Help from IBM . 366

Index . 367
 Contents vii

viii MySQL to DB2 UDB Conversion Guide

Figures

0-1 The team, left to right: Andreas, Whei-Jen, Rakesh, Klaus, Michael . . xvii
1-1 DB2 product overview . 3
1-2 DB2 architecture overview . 7
1-3 DB2 processes. 8
1-4 DB2 Objects relationship . 11
1-5 Relationship between instances, databases, and tables 12
1-6 Database partition groups in a database . 13
1-7 Relationship between tables and views . 15
1-8 Relationship between indexes and tables . 16
1-9 Relationship between table space and containers. 17
1-10 DB2 directory structure . 18
1-11 Application connections to DB2 UDB. 24
1-12 Conceptual MySQL architecture . 29
1-13 MySQL directory structure . 33
1-14 MySQL Application Programming Interfaces . 41
2-1 Sample migration scenarios. 52
2-2 Steps of the migration process . 55
2-3 Database structure porting process . 56
2-4 Data porting process . 57
3-1 Flow diagram of the sample application. 65
3-2 Start page of the Web application . 66
3-3 Registration form . 67
3-4 Registration information sent to the vendor . 67
3-5 Shop or catalog view . 68
3-6 Detail item view . 69
3-7 Shopping cart view. 70
3-8 Request/Order information sent to the vendor . 71
3-9 ERD - Diagram. 72
4-1 DB2 custom installation with Application Development tools selected . 79
4-2 Db2setup command options . 80
4-3 Instance creation option. 81
4-4 Graphical user interface for db2isetup . 81
4-5 PHP Configuration options. 85
4-6 MTK initial screen . 88
5-1 MySQL data types . 90
5-2 DB2 UDB data types . 91
5-3 MySQL table types. 100
5-4 Typical DB2 UDB setup . 108
© Copyright IBM Corp. 2004. All rights reserved. ix

5-5 MySQL Application with multiple DBs instead of multiple schemas. . . 109
5-6 MTK startup window . 118
5-7 MTK Message window. 119
5-8 MTK success message . 119
6-1 Hierarchy of authorities . 142
7-1 DB2 type 2 JDBC Driver . 190
7-2 DB2 JDBC type 3 driver . 191
7-3 JDBC Universal Driver . 191
7-4 DB2 CLI activities. 202
7-5 DB2 Query processing. 206
7-6 ODBC application conversion from MyODBC to DB2 ODBC Driver . . 212
8-1 Incremental backup . 238
8-2 DB2 UDB roll forward restore . 240
8-3 DB2 replication center console . 241
8-4 Export using control centre . 244
8-5 Import using control center . 245
8-6 The Task Center console. 249
8-7 Configuration parameter files . 252
8-8 DB2 Configuration Assistant . 253
8-9 phpMyAdmin console. 257
8-10 MySQL control center console. 258
8-11 DB2 control center . 259
8-12 DB2 Web command center console . 260
9-1 Test phases during a migration project . 269
9-2 Table definition for Example 9-1 . 271
9-3 Data file for Example 9-1 . 271
9-4 Sample db2level output . 283
9-5 A Visual Explain access plan graph. 296
9-6 Explaining logical log . 299
9-7 Visualizing CHNGPGS_THRESH parameter 303
9-8 Maximum number of locks available for default settings on Linux. . . . 304
9-9 Explaining lock snapshot information. 306
9-10 Running RUNSTATS on multiple tables . 309
9-11 Selecting tables for RUNSTATS command . 310
9-12 RUNSTATS command options . 311
9-13 Scheduling Configuration Advisor recommendations 312
9-14 Configuration Advisor recommendations . 313
9-15 The Design Advisor . 316
10-1 Creating stored procedures . 322
10-2 User defined data types . 326
10-3 One clustering index . 331
10-4 MDC table and indexes . 332
x MySQL to DB2 UDB Conversion Guide

Tables

1-1 DB2 commands list . 19
1-2 Multi-tier configuration examples . 23
1-3 Permission information stored in tables . 33
4-1 Currently supported Linux distributions, kernels, and libraries 76
4-2 DB2 installation methods . 78
5-1 Default data type mapping . 94
5-2 MySQL to DB2 UDB conversion of list information statement 110
6-1 Mapping of MySQL to DB2 privileges . 145
7-1 Differences in DB2 and MySQL grouping, having and ordering 160
7-2 MySQL and DB2 UDB string related function 162
7-3 SQL 92 functions . 168
7-4 ODBC 3.0 functions . 169
7-5 MySQL and DB2 UDB operator comparison . 170
7-6 Date and Time related functions . 170
7-7 Other functions. 171
7-8 MySQL data type mapping to Java data type 197
7-9 DB2 UDB data types mapping to Java types. 197
7-10 DB2 isolation level . 227
7-11 MySQL and DB2 table comparison . 229
8-1 MySQL options files . 250
9-1 Aggregations for data migration verification. 275
9-2 List of monitor switches and related DBM parameters 287
9-3 Common snapshot table functions. 291
9-4 Parameters for the autoconfigure command . 314
© Copyright IBM Corp. 2004. All rights reserved. xi

xii MySQL to DB2 UDB Conversion Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.
© Copyright IBM Corp. 2004. All rights reserved. xiii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

ibm.com®
iSeries™
pSeries®
zSeries®
AIX®
CICS®
Distributed Relational Database
Architecture™
DB2 Connect™
DB2 Extenders™
DB2 Universal Database™

DB2®
DRDA®
Everyplace®
Informix®
Intelligent Miner™
IBM®
IMS™
Multiprise®
Net.Data®
PartnerWorld®
POWER™

Rational Rose®
Rational Suite®
Rational®
Redbooks™
S/390®
TestStudio®
Tivoli®
VisualAge®
WebSphere®
1-2-3®
Redbooks (logo) ™

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.
xiv MySQL to DB2 UDB Conversion Guide

Preface

This IBM Redbook is an informative guide that describes how to migrate the
database system from MySQL to DB2® UDB Version 8.1 on Linux, and how to
convert applications to use DB2 UDB instead of MySQL.

This guide presents the best practices in migration strategy and planning,
migration tools, porting steps, and practical migration examples. It is intended for
technical staff involved in a MySQL to DB2 UDB conversion project.

This redbook is organized as follows:

� Chapter 1 gives an introduction to the DB2 UDB and MySQL database
systems.

� Chapter 2 talks about the planning of a migration project from MySQL to DB2
UDB and considerations, which have to be made before migrating.

� Chapter 3 introduces our sample project, which is used as an example for the
migration steps throughout the rest of the redbook.

� Chapter 4 guides through the installation of DB2 UDB and other software
needed for the migration project.

� Chapter 5 discusses the porting of the database structure and differences in
data types in detail.

� Chapter 6 provides information about porting the data from MySQL to DB2
UDB and how to set up the DB2 database security according to the MySQL
user account management.

� Chapter 7 gives detailed information about porting applications. SQL
differences are discussed as well as porting considerations for different
programming languages such as Perl, PHP, Java™, and C/C++.

� Chapter 8 talks about DB2 database administration.

� Chapter 9 details steps for testing and tuning of your migrated application
and database system.

� Chapter 10 introduces advanced DB2 UDB features that can be used in order
to enhance ported applications.
© Copyright IBM Corp. 2004. All rights reserved. xv

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, San Jose Center.

Whei-Jen Chen is a Project Leader at the International Technical Support
Organization, San Jose Center. She has extensive experience in application
development, database design and modeling, and DB2 system administration.
Whei-Jen is an IBM® Certified Solutions Expert in Database Administration and
Application Development as well as an IBM Certified IT Specialist.

Andreas Blank is the CEO of LIS Logos InformationsSysteme GmbH
(www.lis.de), an IBM Business Partner in Germany. He is trainer at LIS AG
(www.lis-ag.ch), an IBM enabled Education Center (ECIS) in Switzerland, which
provides classroom and on-site courses in Data Management, Tivoli®, and
WebSphere. He has 12 years of IT experience in application development as
well as database design, implementation, and administration of different
databases on Linux, OS2, and Windows®. He holds a master’s degree in
Engineering from the Technical University of Darmstadt and is certified for DB2
UDB.

Michael Hoeller is an IT Specialist for DB2 UDB and WebSphere® in IBM
Global Services, Austria. He has 12 years of experience in application
architecture and development, and database design. He is an IBM Certified
e-business Solution Technologist and has worked at IBM for 6 years. His areas
of expertise include application development in Java and WebSphere Application
Server, WebSphere Commerce and Business Intelligence solution
implementation. He holds a master’s degree in Business and Computer Science
from the J. Kepler University, Linz.

Rakesh Midha is a Software Engineer with IBM Software Labs, Bangalore. He is
currently working on IBM WebSphere Business Components development. He
has 5 years of technical experience in Java and C++ server-side programming
on multiple platforms and various relational database systems like DB2 UDB,
Oracle, MySQL, and Microsoft® SQL Server. His area of expertise include
designing and development of stand-alone to n-tier distributed applications in the
field of banking, finance, catalog industry, and order and warehouse
management systems. He holds a bachelor's degree in Electronics Engineering
from the Punjab University, Chandigarh.

Klaus Subtil is an IT Specialist within the IBM DB2 Business Partner Technical
Enablement team. He has more than 15 years experience in the IT industry
focusing on relational database technology and application development. Klaus
is an IBM Certified Solutions Expert on Universal Database 8.1 Database
administration, and holds a master’s degree in Business at the Open University
xvi MySQL to DB2 UDB Conversion Guide

Business School, Milton Keynes, UK. In his current position at Klaus enables
independent software vendors and system integrators for IBM’s information
management software. In addition, he also certifies students for DB2 at
universities participating in IBM’s Scholars Program.

Figure 0-1 The team, left to right: Andreas, Whei-Jen, Rakesh, Klaus, Michael

The team would like to thank the following people for their contributions to this
project:

Vicki Martin Petruch
IBM WW Brand Manager - DB2 on Linux

Jean-Jacques Daudenarde
IBM DB2 Migration and Everyplace® Tools, Silicon Valley Laboratory

Wilhelm Friesen
LIS Logos InformationsSysteme GmbH, Germany

Stefan Hummel
IBM Software Group Financial Services Sector Technical Sales, IBM Germany
 Preface xvii

Glen Johnson
IBM Linux Technology Center, Austin

Art Sammartino, Burt Vialpando
IBM Software Migration Project Office

Takashi Tokunaga
IBM Data Management Technical Support, IBM Japan

Albert Wong
IBM Global Service Open Source Community

Emma Jacobs
Maritza M. Dubec
International Technical Support Organization, San Jose Center

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com
xviii MySQL to DB2 UDB Conversion Guide

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099
 Preface xix

xx MySQL to DB2 UDB Conversion Guide

Chapter 1. Introduction

In recent years the popularity of the MySQL relational database management
system (RDMS) has soared due to its close association with the Linux, Apache,
and PHP projects (LAMP). These open source projects have mutually benefited
from the need to develop scriptable database-driven Web applications. The
Apache PHP module allows the program logic of a Web application to access a
MySQL backend database and render dynamic Web content. An organization
that has deployed MySQL may find that due to its limited features there is a need
to migrate to a more robust RDMS such as the IBM DB2 UDB. In this redbook we
describe in detail how such a migration to IBM DB2 UDB can be accomplished in
a facile manner.

Switching database platforms from one to another however is often a big
challenge for database administrator and developer. Complexity, total cost, and
the risk of downtime are reasons that often restrain IT decision makers to start
such a project. The primary goal of this book therefore is to show that migration
from MySQL to DB2 is feasible, and to provide help in planning and
implementing data migration from MySQL to DB2 UDB. This migration guide
refers to the last general available versions of MySQL and DB2 UDB, which is
MySQL 4.0 and DB2 UDB 8.1.

Confronted with this demand, a certain level of knowledge in both environments
is required to start with the migration process.

1

© Copyright IBM Corp. 2004. All rights reserved. 1

The goal of this chapter is to introduce the architecture and design of both
database engines: MySQL and DB2 Universal Database™ (DB2 UDB). This
chapter includes the following points:

� DB2 UDB 8.1

– DB2 family
– DB2 architecture
– DB2 utilities
– DB2 client access

� MySQL database

– MySQL architecture
– MySQL design and SQL compliance
– MySQL utilities
– MySQL client application programming interfaces (API)

1.1 DB2 Universal Database
DB2 UDB is a high scalable database, developed to meet even the highest
demands that a most critical database application can have. DB2 UDB however
is also an easy installable and manageable RDBMS. The goal of this section is to
give an idea about DB2 UDB, its architecture, tools, and client connectivity.

1.1.1 Product overview
DB2 UDB on Linux, UNIX®, and Windows span the spectrum and range all the
way from products on handheld devices to large clusters and mainframes (see
Figure 1-1). More detail information can be found at:
http://www-306.ibm.com/software/data/db2/udb/
2 MySQL to DB2 UDB Conversion Guide

http://www-306.ibm.com/software/data/db2/udb/

Figure 1-1 DB2 product overview

DB2 UDB editions for the production environment
DB2 provides different packages for users based on their business need. This
section introduces the various DB2 packages:

� DB2 UDB Personal Edition

The DB2 UDB Personal Edition provides a single-user database engine that
can be deployed on Linux or Windows based systems. It will not accept
remote database requests, however, and it contains DB2 UDB client
components and will serve as a remote client to a DB2 Server. The DB2 UDB
Personal Edition can also be used for connecting and managing other
databases servers on the network. This makes it the perfect choice for
deployment in occasionally connected or remote office implementations that
do not require multi-user capability.

� DB2 UDB Workgroup Server Edition

The DB2 UDB Workgroup Server Edition is the database server designed for
deployment in a departmental or small business environment. It has a user
based licensing model designed to provide an attractive price point for smaller
installations while still providing a full function database server. DB2 UDB

Personal
Linux
Windows

Everyplace
Linux
Windows
PalmOS
EPOC-32
Neutrino

Hosts
DB2 Linux OS/390
DB2 zOS
DB2 OS/400

Workgroup
Linux
Windows
AIX
Solaris
HP-UX

DB2 Express Edition
Win NT/2000
Linux
AIX
Solaris
HP-UX

Enterprise
Linux 32-bit (Intel, AMD)
Linux 64-bit Intel
Linux i,pSeries
Windows
Windows 64-bit
AIX
HP-UX
Solaris DB2 Connect

Linux
Windows
HP-UK
Solaris
 Chapter 1. Introduction 3

Workgroup Server Edition can be deployed on systems with up to 4 CPUs on
Linux, Windows, and UNIX servers.

� DB2 UDB Workgroup Server Unlimited Edition

The DB2 UDB Workgroup Server Unlimited Edition offers a simplified per
processor licensing model for deployment in a departmental or small business
environment that has Internet users or number of users, which makes per
processor licensing more attractive than the DB2 UDB Workgroup Server
Edition licensing model. The DB2 UDB Workgroup Server Unlimited Edition is
also for use on Linux, UNIX, and Windows systems with up to 4 CPUs.

� DB2 UDB Express

The DB2 UDB Express is a specifically tailored database offering for small
and medium businesses (SMBs). The key features include simplified
deployment, autonomic management capabilities, and application
development support. It is designed for independent software vendors who
need an easy to install database integrated into their application software
solution. It is a multi-user version that supports local and remote applications
in stand alone and local area network (LAN) environments.

� DB2 UDB Enterprise Server Edition

The DB2 UDB Enterprise Server Edition meets the database server needs of
mid size to large businesses. This product is the ideal foundation for building
data warehouses, transaction processing, or Web-based solutions, as well as
a back-end for packaged solutions like ERP, CRM, and SCM. In addition, the
DB2 UDB Enterprise Server Edition offers connectivity and integration for
other enterprise DB2 and Informix® data sources. This version also provides
the ability to create partitioned databases or to run on cluster. The DB2
Database Partitioning Feature (DPF) capability provides the customer with
multiple benefits including scalability to support very large databases or
complex workloads, and increased parallelism for administration tasks. The
DPF is a chargeable licensing option of DB2 UDB Enterprise Server Edition.

� DB2 UDB Data Warehouse Standard Edition

The DB2 Data Warehouse Standard Edition is a powerful platform building
Business Intelligence (BI) solutions. It is a complete datamart infrastructure
product that includes DB2 UDB Workgroup Edition and other features. It can
be deployed on Linux, UNIX, and Windows servers.

� DB2 UDB Data Warehouse Enterprise Edition

The DB2 UDB Data Warehouse Enterprise Edition is IBM’s complete
enterprise level offering for customers building the most demanding Business
Intelligence solutions, and is part of the IBM DB2 UDB framework for BI. It
includes DB2 UDB Enterprise Server Edition and other features.

� Other DB2 editions
4 MySQL to DB2 UDB Conversion Guide

There are also DB2 UDB versions for iSeries™, pSeries®, and zSeries®
available. For details, please see:
http://www-306.ibm.com/software/data/db2/

Products for accessing legacy and host data
With the following DB2 products, you can extend your enterprise system to
access the legacy system:

� DB2 Connect™ Personal Edition

The DB2 Connect Personal Edition provides the application programming
interface (API) drivers and connectivity infrastructure to enable direct
connectivity from desktop applications to zSeries and iSeries database
servers. This product is specifically designed and is licensed for enabling
two-tier, client-server applications running on individual workstations, and as
such is not appropriate for use on servers.

� DB2 Connect Enterprise Edition

The DB2 Connect Enterprise Edition addresses the needs of organizations
that require robust connectivity from a variety of desktop systems to zSeries
and iSeries database servers. DB2 client software is deployed on desktop
systems, and provides drivers that connect client-server applications running
on these desktop systems to a DB2 Connect server (gateway) that accesses
host data. The licensing model for this product is user based.

� DB2 Connect Application Server Edition

The DB2 Connect Application Server Edition product is identical to the DB2
Connect Enterprise Server in its technology. However, its licensing terms and
conditions are meant to address specific needs of multi-tier, client-server
applications, as well as applications that utilize Web technologies. DB2
Connect Application Server Edition license charges are based on the size and
number of processors available to the application servers where the
application is running.

� DB2 Connect Unlimited Edition

The DB2 Connect Unlimited Edition product is ideal for organizations with
extensive usage of DB2 Connect, especially where multiple applications are
involved. This product provides program code of the DB2 Connect Personal
Edition as well as program code identical to the DB2 Connect Application
Server Edition for unlimited deployment throughout an organization.

DB2 for application developers
DB2 provides two packages for application development:

� DB2 UDB Personal Developer's Edition
 Chapter 1. Introduction 5

http://www-306.ibm.com/software/data/db2/

DB2 UDB Personal Developer’s Edition enables a developer to design and
build single user desktop applications. This offering comes with Linux and
Windows versions of the DB2 UDB Personal Developer’s Edition products as
well as the DB2 UDB Extenders.

� DB2 UDB Universal Developer’s Edition

DB2 UDB Universal Developer’s Edition offers a low-cost package for a single
application developer to design, build, or prototype applications for
deployment of any of the DB2 client or server platforms. It includes client and
server DB2 editions for all Linux, UNIX, and Windows supported platforms,
DB2 Connect, DB2 Extenders™, and Intelligent Miner™. The software in this
package cannot be used for production systems.

DB2 for pervasive platforms
The last, but not the least, the DB2 offering is:

� DB2 Everyplace

DB2 Everyplace is a relational database and enterprise synchronization
server that enables enterprise applications and enterprise data to be
extended to mobile devices such as personal digital assistants (PDAs) and
smart phones. DB2 Everyplace can also be embedded into devices and
appliances to increase their functionality and market appeal. The product can
be used as a local independent database on a mobile device, or query
information on remote servers when a connection is available.

Additional DB2 UDB features
In addtion to the product offerings for Linux, UNIX, Windows, and accessing
legacy and host data, DB2 also offers a great variety of features, which partly are
included in some DB2 UDB packages. Information about additional DB2 features
and products can be found at:
http://www-306.ibm.com/software/data/db2/relatedproducts.html

1.1.2 DB2 UDB for Linux, UNIX, and Windows architecture
Figure 1-2 shows the DB2 UDB architecture overview. DB2 UDB implements a
dedicated process architecture.
6 MySQL to DB2 UDB Conversion Guide

http://www-306.ibm.com/software/data/db2/relatedproducts.html

Figure 1-2 DB2 architecture overview

From a client-server view, the client code and the server code are separated into
different address spaces. The application code runs in the client process, while
the server code runs in separate processes. The client process can run on the
same machine as the database server or a different one, accessing the database
server through a programming interface. The memory units are allocated for the
database managers, database, and application.

Load

Relational Data Services

Access
 Plan

 Manager
SQL Compiler

Catalog
 Services

Runstats

Run-time Interpreter

Sort

Data Management Services

Index Manager
Long and Large

Object
Manager

Table Manager

Buffer Pool Manager

Operating System Services

code page conversion
file i/o
latching

memory management
message queues
semaphores

TCP/IP
trace
wait post

Utilities

Base Support Utilities

Import
Export

Load

Backup
Restore
Rollforward

Data
Protection
Services

Locks

Transaction
Management

Logging

Common Services

System
Monitor

Configuration
Services

Data
Services

Backup & Restore db2agent Deadlock Detector

prefetchers page cleaners

Fast Communication
Manager

Operating System

Linux UNIX Windows

Storage

Server Shared Libraries (Node 1 - n)

DRDA application server

communication layer

Network

shared memory
named pipes
internode communication

TCP/IP
Netbios
SNA

communication layer

DRDA DRDA application requester

Application shared libraries

JDBC type 2, SQLJ
embedded SQL
CLI, APIs
ADO ODBC/OLE DB

JDBC type 4

Client

Database Server

relational operations
aggregation
group by
hash join
UDF
etc..

Logger
 Chapter 1. Introduction 7

To enable access to a special database, the DB2 instance process responsible
for the database must be running on the DB2 server. When an instance process
is started, several processes are created and interact with each other to maintain
connected applications and the database. There are several background
processes in DB2 that are pre-started, others start on a need-only basis. This
section explains some of the important background processes.

DB2 UDB processes
The DB2 UDB server activities are performed by Engine Dispatchable Units
(EDU) that are defined as background processes on Linux systems.

Some DB2 background processes are started with the instance, and others are
initialized when the database is activated by a connection. Figure 1-3 shows the
necessary background processors of the DB2 UDB server at the instance,
application, and database level. In the following sections, we discuss some of the
important processes on the respective level.

Figure 1-3 DB2 processes

db2pclnrdb2pfchr

db2loggr db2loggw

Per Database

db2ipccm

db2tcpcm

db2agent

db2agent

db2agent

Per Application

db2gds db2sysc db2wdog db2fmtlg db2syslog

Per Instance

db2ipccm

db2tcpcm

db2agent

db2agent

db2agent

Per Application

db2dlock

db2pclnrdb2pfchr

db2loggr db2loggw

Per Database

db2dlock
8 MySQL to DB2 UDB Conversion Guide

Instance level processes
The following background processes will start as soon as the DB2 UDB server is
started with the db2start command.

� DB2 daemon spawner (db2gds):

This is a global daemon processor started for each instance. This process
starts all the EDUs as UNIX processes.

� DB2 system controller (db2sysc):

This is the system controller processor. Without this process the instance
cannot function properly.

� DB2 watchdog (db2wdog):

This process is required only in UNIX platforms. It is the parent process for all
other processes.

� DB2 format log (db2fmtlg):

Pre-allocates log files in the log path when the LOGRETAIN database
configuration parameter is enabled, and the USEREXIT is disabled.

� DB2 system logger (db2syslog):

This is the system logger process responsible for the writing operating system
error log.

Database level processes
The following background processes are started when a connection activates the
database:

� DB2 log reader (db2loggr):

This process reads the log files during transaction rollback, restart recovery,
and roll forward operations.

� DB2 log writer (db2logw):

This is the log writer process that flushes the database log from the log buffer
to the transaction log files on disk.

� DB2 page cleaner (db2pclnr):

Asynchronous process to make room in the buffer pool by writing changed
pages to disk, before prefetchers read pages on disk storage and move into
the buffer pool.

� DB2 prefetcher (db2pfchr):

This process retrieves data from disk asynchronously, and moves it into the
buffer pool before the application requests the data.
 Chapter 1. Introduction 9

� DB2 deadlock detector (db2dlock):

This is the database deadlock detector process. It scans the lock list (the lock
information memory structure of DB2) and looks for deadlock situations.

Application level processes
These processes are started for each application connecting to the database:

� DB2 communication manager (db2ipccm):

This is the inter-process communication (IPC) process started for each
application connecting locally. This process communicates with the
coordinating agent to perform the database tasks.

� DB2 TCP manager (db2tcpcm):

This is the TCP communication manager process. This process is started
when the remote client or applications connect to the database using TCP/IP
communication. This process communicates with the coordinating agent to
perform database tasks.

� DB2 coordinating agent (db2agent):

This process handles requests from applications. It performs all database
requests on behalf of the application. There will be one db2agent per
application unless the connection concentrator is established. If intra-partition
parallelism is enabled, the db2agent will call DB2 subagents to perform the
work.

� DB2 subagent (db2agnta):

The subagent, which works with the db2agent process when intra-partition
parallelism is enabled.

� Active subagent (db2agntp):

This is the active subagent that is currently performing work. This process is
used when enabling SMP parallelism, which means having more processes
achieving the same task. In order to enable this feature in DB2, we must set
the intra-parallelism database parameter to YES.

DB2 database objects
In this section, DB2 objects and their relationship to each other are introduced.
Figure 1-4 shows the basic DB2 database objects.
10 MySQL to DB2 UDB Conversion Guide

Figure 1-4 DB2 Objects relationship

� Instances

An instance is DB2 code that manages data. It controls what can be done to
the data, and manages system resources assigned to it. Each instance is a
complete, fairly independent environment. It contains all the database
partitions defined for a given parallel database system. An instance has its
own databases (which other instances cannot access directly), and all its
database partitions share the same system directories. It also has separate
security from other instances on the same machine (system), allowing for
example both production and development environments to be run on the
same machine under separate DB2 instances without interfering with each
other.

� Databases

A relational database presents data as a collection of tables. Each database
includes a set of system catalog tables that describe the logical and physical
structure of the object in the database, a configuration file containing the
parameter values configured for the database, and a recovery log. An

 Tab
 Tab

 Tab

DB Partition(s)

Database(s)

Instance(s)

System

 Tab

Table space(s)
tables

index(es)

long data
 Chapter 1. Introduction 11

application or a user connects to a specified database to read or manipulate
data in tables.

Figure 1-5 shows the relationship between instances, databases, and tables.

Figure 1-5 Relationship between instances, databases, and tables

� Database partition groups

A database partition group is a set of one or more database partitions
(Figure 1-6). Before creating tables for the database, you first need to create
the database partition group where the table spaces will be stored, and then
create the table space where the tables will be stored. If a partition group is
not specified, there is a default group where table spaces are allocated. In
earlier versions of DB2, database partition groups were known as
nodegroups. In a non-partitioned environment, all the data resides in a single
partition, therefore it is not necessary to worry about partition groups.

Server system

InstanceInstance

Databases

Tables

Database Manager
Instances

...

...

...

User,
Application

connect to

...

...... InstanceInstance
12 MySQL to DB2 UDB Conversion Guide

Figure 1-6 Database partition groups in a database

� System catalog tables

Each database includes a set of system catalog tables, which describe the
logical and physical structure of the data. DB2 UDB creates and maintains an
extensive set of system catalog tables for each database. These tables
contain information about the definitions of database objects such as user
tables, views, and indexes, as well as security information about the privilege
that users have on these objects. Catalog tables are created when the
database is created, and are updated during the course of normal operation.
You cannot explicitly create or drop them, but you can query and view their
contents using the catalog views.

� Table spaces

A database is organized into subdivided table spaces. A table space is a
place to store data. When creating a table, you can decide to have certain
objects such as indexes and large object (LOB) data kept separately from the
rest of the table data. A table space can also be spread over one or more
physical storage devices.

Database
Partition

Database
Partition

Database
Partition

Database
Partition

Database
Partition

Database

Database
Partion Group 1

Database
Partion Group 2

Database
Partion Group 3
 Chapter 1. Introduction 13

Table spaces reside in database partition groups if they were created. Table
space definitions and attributes are maintained in the database system
catalog. Containers are assigned to table spaces. A container is an allocation
of physical storage (such as a file or a device).

A table space can be either system managed space (SMS), or database
managed space (DMS). For an SMS table space, each container is a
directory in the file system of the operating system, and the operating
system's file manager controls the storage space. For a DMS table space,
each container is either a fixed size pre-allocated file, or a physical device
such as a disk, and the database manager controls the storage space.

� Schemas

A schema is an identifier, by default the user ID, which qualifies tables and
other database objects. A schema can be owned by an individual, and the
owner can control access to the data and the objects within it. A schema
name is used as the first part of a two-part object name. For example, a
schema named Smith might qualify a table named SMITH.PAYROLL.

� Tables

A relational database presents data as a collection of tables. Data in a table
are arranged in columns and rows. The data in the table is logically related,
and relationships can be defined between tables. Table data is accessed
through Structured Query Language (SQL), a standardized language for
defining and manipulating data in a relational database. A query is used in
applications or by users to retrieve data from a database. The query uses
SQL to create a statement in the form of:

SELECT <data_name> FROM <table_name>

� Views

A view provides a different way of looking at data in one or more tables; it is a
named specification of a result table. The specification is a SELECT
statement that runs whenever the view is referenced in a SQL statement. A
view has columns and rows just like a base table. All views can be used just
like base tables for data retrieval. Figure 1-7 shows the relationship between
tables and views.
14 MySQL to DB2 UDB Conversion Guide

Figure 1-7 Relationship between tables and views

� Indexes

An index is a set of keys, each pointing to rows in a table. For example,
table A has an index based on the first column in the table (Figure 1-8). This
key value provides a pointer to the rows in the table: value 19 points to record
KMP. An index allows efficient access when selecting a subset of rows in a
table by creating a direct path to the data through pointers.

The DB2 SQL Optimizer chooses the most efficient way to access data in
tables. The optimizer takes indexes into consideration when determining the
fastest access path.

47
17
85
81
93
87
19 KMP

DJS

CJP

MLI

FCP

QRS

ABC

Table A Table B

CREATE VIEW A
AS SELECT ...

FROM TABLE A
WHERE ...

CREATE VIEW AB
AS SELECT ...

FROM TABLE A, TABLE B
WHERE ...

View A View AB
 Chapter 1. Introduction 15

Figure 1-8 Relationship between indexes and tables

� Containers

A container is a physical storage device. It can be identified by a directory
name, a device name, or a file name. A container is assigned to a table
space. A single table space can span many containers, but each container
can belong to only one table space as shown in Figure 1-9.

17
19
47
81
85
87
93

47
17
85
81
93
87
19 KMP

DJS

CJP

MLI

FCP

QRS

ABC

Index Table A
16 MySQL to DB2 UDB Conversion Guide

Figure 1-9 Relationship between table space and containers

� Buffer pools

A buffer pool is the amount of memory allocated to cache table and index data
pages. The purpose of the buffer pool is to improve system performance.
Data can be accessed much faster from memory than from disk; therefore,
the fewer times the database manager needs to read from or write to a disk
(I/O) synchronously, the better the performance of the application. The size of
the buffer pool is the single most important performance tuning area, because
you can reduce the delay caused by synchronous I/O.

DB2 directory structure
On Linux systems the default installation path for DB2UD V8.1 is
/opt/IBM/db2/V8.1. $DB2DIR is the environment variable for the DB2 installation
directory. Figure 1-10 shows the default directory structure for a simple CREATE
DATABASE command with no table space options specified. By default DB2
creates SMS table space containers in the specified database directory. The
three default table spaces created are system catalog, system temporary, and
user table space. For the log files, DB2 creates a directory called sqllogdir. On a
Linux system a sqllib directory will be created under the instance home directory,
which has a symbolic link to the DB2 installation directory.

/dev1/dbase1

/dev2/dbase1

/dev3/dbase1

/dev4/dbase1

Table1 Table2 Table3

Database 1

Tablespace

container 0

container 1

container 2

container 3

 Chapter 1. Introduction 17

Figure 1-10 DB2 directory structure

DB2 catalog
In DB2 UDB, the metadata is stored in a set of base tables and views called the
catalog. The catalog contains information about the logical and physical structure
of the database objects, object privileges, integrity information, etc.

The catalog is automatically created with the database. The base tables are
owned by the SYSIBM schema and stored in the SYSCATSPACE table space. On
top of the base tables, the SYSCAT and SYSSTAT views are created. SYSCAT
views are the read-only views that contain the object information and are found in
the SYSCAT schema. SYSSTAT views are updateable views containing statistical
information that are found in the SYSTAT schema. The complete DB2 UDB

Database
Directory

DB2 Instance
Name

NODE0000

SQL00001

SQLT00000.0

The partition number of the db, 0 for a non partitioned database

The db id starts at 1 and increases for all subsequent databases

The directory for default log files

The SMS container for catalog tablespace

The SMS container for default temporary tablespace

The SMS container for default User tablespace

SQLLIB

SQLOGDIR

SQLT00000.1

SQLT00000.2

...

symbolic link

DB2 installation path

adm

adsm

bin

bnd

cfg

conv
18 MySQL to DB2 UDB Conversion Guide

catalog views can be found in DB2 UDB SQL Reference Volume 1 and 2,
SC09-4484 and SC09-4485.

1.1.3 DB2 utilities
All DB2 system commands are installed in the sqllib/bin directory by the
installation procedure. Some of the most important commands in DB2 UDB are
listed in Table 1-1. For a more detail description of the DB2 administration GUI
tools, see Chapter 8., “Database administration” on page 235.

Table 1-1 DB2 commands list

Command Command description

dasauto Autostart DB2 Administration Server

dascrt Create a DB2 Administration Server

dasdrop Remove a DB2 Administration Server

dasmigr Migrate a DB2 Administration Server

db2 Command Line Processor invocation

db2admin DB2 Administration Server

db2advis DB2 Index Advisor

db2cap CLI/ODBC Static Package Binding Tool

db2cc Start Control Center

db2cfexp Connectivity configuration export tool

db2cfimp Connectivity configuration import tool

db2cidmg Remote database migration

db2ckbkp Check backup

db2cli DB2 interactive CLI

db2cmd Open DB2 command window

db2dart Database analysis and reporting tool

db2empfa Enable multipage file allocation

db2eva Event analyzer

db2evmon Event monitor productivity tool
 Chapter 1. Introduction 19

db2evtbl Generate event monitor target table definitions

db2exfmt explain table-format tool

db2expln DB2 SQL explain tool

db2gncol Update generated column values

db2gov DB2 governor

db2govlg DB2 governor log query

db2hc Start Health Center

db2icrt Create instance

db2idrop Remove instance

db2ilist List instances

db2imigr Migrate instance

db2isetup Start instance creation interface (UNIX)

db2iupdt Update instances

db2jdbcbind DB2 JDBC package binder

db2level Show DB2 service level

db2look DB2 statistics and DDL extraction tool

db2move Database movement tool

db2relocatedb Relocate database

db2sampl Create sample database

db2set DB2 profile registry command

db2setup Install DB2

db2sql92 SQL92 compliant SQL statement processor

db2sqljbind DB2 SQLJ profile binder

db2sqljcustomize DB2 SQLJ profile customizer

db2sqljprint DB2 SQLJ profile printer

db2start Start DB2

Command Command description
20 MySQL to DB2 UDB Conversion Guide

1.1.4 DB2 database access
In this section the following topics are discussed:

� DB2 clients
� Application access
� DB2 application programming interfaces

DB2 clients
To access a DB2 UDB database, a DB2 client has to be installed on the client
system. IBM offers three types of DB2 clients:

� Run-time Client

This client provides you access to DB2 UDB servers with application
interfaces such as JDBC, SQLJ, ODBC, CLI, and OLE DB. This client can be
used if no DB2 server administration has to be done from this client.

� Administration Client

The Administration Client has all features of the DB2 Run-Time Client plus
tools to administer a DB2 Server.

� Application Development Client

This client provides a collection of graphical and non-graphical tools for
developing applications. It includes all components of the DB2 Administration
Client.

For client-server communication, DB2 supports several communication protocols
like TCP/IP, APPC, NPIPE, NetBIOS, etc. Most protocols are automatically
detected and configured during an instance creation. The DB2COMM registry
variable identifies the protocol detected in a server. To enable a specific protocol,
the db2set DB2COMM command must be executed. For TCP/IP, a unique port
address has to be specified in the database manager configuration. This port is
registered in the services file. To reserve port 50000 with the service name
db2cidb2, for example, the entry in services file is:

db2icdb2 50000/tcp

db2stop Stop DB2

db2updv8 Update database to Version 8 current level

sqlj DB2 SQLJ translator

dynexpln Explain dynamic SQL (deprecated)

Command Command description
 Chapter 1. Introduction 21

For update this information in the database manager following command is used:

db2 UPDATE DBM CFG USING SVCENAME db2icdb2

These tasks can also be performed using the DB2 Configuration Assistant utility.
At the client, the database information is configured using either the CATALOG
command or using the Configuration Assistant. The databases are configured
under a node, which describes the host information like protocol, port, etc. To
configure a remote TCP/IP node following command is used:

db2 CATALOG TCPIP NODE node-name REMOTE host-name SERVER service-name

The service name registered in the server or the port number can be specified in
the SERVER option. To catalog a database under this node, the command used
is:

db2 CATALOG DATABASE database-name AS alias-name AT NODE node-name

When using the Configuration Assistant GUI tool to add a database connection,
a database discovery can be started to find the desired database.

Application access
When deploying applications with DB2 UDB different methods can be used:

� Single-tier

In this configuration the application and the database reside on the same
system. In enterprise environments, it may be rare to see such a
configuration, because remote access to a database server is typically
required. Nonetheless, this is quite common for developing applications that
can later be deployed transparently in a multi-tier DB2 environment without
any changes or batch applications.

� Client/Server or 2-tier

The application and the database reside on separate systems. The machines
where the application runs typically have a DB2 client installed, which
communicates over the network to a database server. For the application, the
physical location of the data is transparent. The application communicates
with the DB2 client using a standard interface (for example, ODBC) and the
DB2 client takes over the task of accessing the data over the network. In
some cases, such as browser or Java based access, it is not necessary to
have the DB2 client running on the same machine where the application
executes.

Note: DB2 Discovery method is enabled at the instance level using the
DISCOVER_INST parameter, and at database level using DISCOVER_DB
parameter.
22 MySQL to DB2 UDB Conversion Guide

DB2 provides exceptional flexibility for mixing and matching client and server
platforms in a heterogeneous environment. DB2 client and server code is
available for a wide variety of platforms. For example, the application can
execute on a Windows based machine with a DB2 client for Windows, which
can then access a DB2 database on a Linux server. Likewise, the Linux
machine can act as a client and access data from UNIX servers or
mainframes.

� Multi-tier

In a multi-tier configuration, the application, DB2 client, and the data source
typically reside on separate systems. Examples of such configuration
scenarios are illustrated in Table 1-2 below.

Table 1-2 Multi-tier configuration examples

IBM recognizes that in many cases there may be a need for accessing data from
a variety of distributed data sources rather than one centralized database. The
data sources can be from IBM, such as DB2 or Informix, or non-IBM databases,
such as Oracle, or even non-relational data, such as files or spreadsheets. As
illustrated in the last scenario in the Table 1-2, IBM offers the most
comprehensive business integration solution by allowing federated access to a
variety of distributed data sources.

DB2 application programming interfaces (APIs)
In order to access or manage DB2 objects, several different programming
interfaces can be used as seen in Figure 1-11.

Client Middle-tier Server

Web-browser Web server
DB2 Client

DB2 database server

Application client Application server
DB2 client

DB2 database server 1
DB2 database server 2

Application
DB2 client

DB2 connect gateway zSeries, iSeries

Application
DB2 client

DB2 server Secondary Data Sources
(for example, Mainframe
DB2, Non-DB2,
non-relational)
 Chapter 1. Introduction 23

Figure 1-11 Application connections to DB2 UDB

DB2 administrative API
DB2 provides numerous administrative APIs, which allow applications perform
database administration tasks available in DB2 UDB Control Center; for
example, import and export data, creating, activating, backing up, or restoring a
database. These calls can be included within embedded SQL and DB2 CLI
applications. Examples of API programs can be found in the DB2 home directory
sqllib/sample/ for different progaramming languages. For additional information
refer to DB2 Administrative API Reference, SC09-4824.

Embedded SQL statements in applications
Two different kind of SQL statements have to be distinguished:

� Static SQL statements

With static SQL statements, you know before compile time that the SQL
statement type and the table and column names. The only unknowns are the
specific data values the statement is searching for or updating. This values
can be represented in host language variables.

DB2 Server

CLI/ODBC
Driver

Adminstrative
Application

JDBC
Driver

ODBC
Application

Perl
Application

OLEDB
Application

JDBC
Application

SQLJ
Application

CLI
Application

Embed. SQL
Application

DB2 APIs PerlOLEDB
Driver

Type
3,4

Type
2

24 MySQL to DB2 UDB Conversion Guide

Before compiling and linking the program, precompiling and binding of the
embedded SQL statements has to be done. Precompiling converts
embedded SQL statements into DB2 run-time API calls that a host compiler
can process, and then creates a bind file. The bind command creates a
package in the database. This package then contains the SQL operation and
the access plan that DB2 will use to perform the operation.

� Dynamic SQL

Dynamic SQL statements in an application are built and executed at runtime.
For a dynamically prepared SQL statement, the syntax has to be checked and
an access plan has to be generated during the program execution.

Examples of embedded static and dynamic SQL can be found in the DB2
home directory: sqllib/samples/.

DB2 Call Level Interface (DB2 CLI)
DB2 CLI is a programming interface that can be used from C and C++
applications to access DB2 databases. DB2 CLI is based on the Microsoft Open
Database Connectivity (ODBC) specification, and the ISO CLI standard. The
DB2 CLI library can be loaded as an ODBC driver by an ODBC driver manager.
DB2 CLI includes support for many ODBC and ISO SQL/CLI functions, as well as
DB2 specific functions.

When using DB2 CLI, the application passes dynamic SQL statements as
function arguments to the database manager for processing. Because of this,
applications use common access packages provided with DB2, DB2 CLI
applications do not need to be precompiled or bind. Only compiling and linking of
the application is needed. Before DB2 CLI or ODBC applications can access
DB2 databases, the DB2 CLI binds files that come with the DB2 Application
Development Client to each DB2 database that will be accessed. This occurs
automatically with the execution of the first statement.

Typically, when building an ODBC application, an ODBC driver manager is
needed, which are normally provided by platform vendors like Microsoft or
others. There is also an ODBC driver manager for Linux available, which can be
found at http://www.unixodbc.org/. However, in environments without an
ODBC driver manager, DB2 CLI is a self sufficient driver, which supports a
subset of the functions provided by the ODBC driver. Examples of C programs
using CLI calls can be found in the DB2 home directory: sqllib/samples/cli For
additional information regarding CLI, refer to Call Level Interface Guide and
Reference, Volume 1 and Volume 2, SC09-4849 and SC09-4850.

Java Database Connectivity application (JDBC)
DB2’s Java support includes JDBC, a vendor-neutral dynamic SQL interface that
provides data access to the application through standardized Java methods.
 Chapter 1. Introduction 25

http://www.unixodbc.org/

Similar to DB2 CLI, you do not have to precompile or bind a JDBC program. As a
vendor-neutral standard, JDBC applications offer increased portability. The
JDBC API, which is similar to the CLI/ODBC API, provides a standard way to
access databases from Java code. The Java code passes SQL statements to the
DB2 JDBC driver, which handles the JDBC API calls. Java’s portability enables
the delivery of DB2 access to clients on multiple platforms, requiring only a
Java-enabled Web browser, or a Java runtime environment.

DB2 Version 8 offers different ways of creating Java applications, either using a
type 2, type 3, or type 4 JDBC driver:

� Type 2 driver:

With a type 2 driver, calls to the JDBC application driver are translated to
Java native methods. The Java applications that use this driver must run on a
DB2 client, through which JDBC requests flow to the DB2 server. This is
typically how DB2 is accessed by WebSphere Application Server.

� Type 3 driver:

The DB2 JDBC type 3 driver, also known as the applet or net driver, consists
of a JDBC client and a JDBC server. The DB2 JDBC applet driver can be
loaded by the Web browser along with the applet. Another way is to use the
applet driver in standalone Java applications. When the applet requests a
connection to a DB2 database, the applet driver opens a TCP/IP socket to the
DB2 JDBC applet server, which is the machine where the Web server
resides. After a connection is set up, the applet driver sends each of the
subsequent database access requests from the applet to the JDBC server
through the TCP/IP connection. The JDBC server then makes corresponding
DB2 calls to perform the task. Upon completion, the JDBC server sends the
results back to the JDBC client through the connection. The use of the type 3
driver is being deprecated with DB2 Version 8 because of the new type 4
driver.

� Type 4 driver:

The JDBC type 4 driver, which is new for Version 8, can be used to create
both Java applications and applets. To run an applet that is based on the type
4 driver, only a Java enabled browser is required, which downloads the applet
and the JDBC driver (db2jcc.jar). To run a DB2 application with a type 4
driver, only an entry for the JDBC driver in the class path and no DB2 client is
required. This type 4 driver provides the initial implementation of the new

Tip: If you want to prototype CLI calls before placing them in a program,
you can use the db2cli.exe (Windows) or db2cli (Linux) file in the
sqllib/samples/cli directory. There is also a document called INTCLI.DOC,
which advises you about how to use the utility.
26 MySQL to DB2 UDB Conversion Guide

JDBC driver architecture known as the IBM DB2 JDBC Universal Driver.
The Universal Driver is architected as an abstract JDBC processor that is
independent of driver-type connectivity or target platform. Examples of JDBC
calls can be found in sqllib/samplesjava/jdbc. For detailed information on the
Java support provided by DB2 Version 8, we strongly recommend the
whitepaper Developing Enterprise Java Applications Using DB2 Version 8:
http://www.ibm.com/developerworks/db2/library/techarticle/0209hutchison/020
9hutchison.html

Embedded SQL for Java (SQLj)
DB2 Java embedded SQL (SQLj) support is provided by the DB2 AD Client. With
DB2 SQLj support, in addition to DB2 JDBC support, SQLj applets, applications
and stored procedures can be built to contain static SQL and use embedded
SQL statements that are bound to a DB2 database.

SQLj applications use JDBC as a foundation for tasks such as connecting to
databases and handling SQL errors, but also contain embedded static SQL
statements in separate SQLj source files. Unlike the other languages that can
contain embedded SQL (COBOL, C, C++) the Java code is not precompiled,
instead the SQLj translator converts SQLj clauses into JDBC statements. As
SQLj shares its underlying connection with that of JDBC, applications, it can
connect to DB2 using either type 2, type 3, or type 4 drivers.

Examples of SQLj calls can be found in sqllib/samplesjava/sqlj. More detailed
information can also be found in article “Developing Enterprise Java Applications
Using DB2 Version at:
http://www-106.ibm.com/developerworks/db2/library/techarticle/0209hutch
ison/0209hutchison.html

ActiveX Data Objects and Remote Data Objects (Windows only)
DB2 supports ActiveX Data Object (ADO) applications that use the Microsoft
OLE DB to ODBC bridge. ActiveX Data Objects (ADO) allows you to write
applications to access and manipulate data in a database server through an
OLEDB provider.

When installing the client version of DB2 Version 8.1 for Windows, optionally
IBMDADB2, the IBM OLE DB 2.0 compliant provider for DB2 can also be
installed. With this driver the DB2 database does not have to be cataloged as an
ODBC data source.

Remote Data Objects (RDO) provide an information model for accessing remote
data sources through ODBC. RDO offers a set of objects that make it easy to
connect to a database, execute queries and stored procedures, manipulate
results, and commit changes to the server. As RDO implements a thin code layer
 Chapter 1. Introduction 27

http://www-106.ibm.com/developerworks/db2/library/techarticle/0209hutchison/0209hutchison.html
http://www-106.ibm.com/developerworks/db2/library/techarticle/0209hutchison/0209hutchison.html

over the ODBC API, it requires an ODBC data source to be created for the DB2
database that you are connecting to.

ADO.NET
DB2 UDB supports Microsoft’s ADO.NET programming interface through a
native managed provider. High-performing WinForm, WebForm, and mobile
WebForm applications can be developed using the ADO.NET API. When used in
conjunction with stored procedures and the federated database capabilities of
DB2 UDB and DB2 Connect servers, this data access can be extended to
include a wide variety of other data sources, including non-DB2 mainframe data
(such as VSAM, CICS®®, IMS™™), Informix® Dynamic Server (IDS), Microsoft
SQL Server, Sybase and Oracle databases as well as any data source that has
an OLE DB Provider available. The IBM DB2 .NET Data Provider is native
provider written in managed C# code to deliver high-performing, secure access
to DB2 data.

Perl DBI
DB2 supports the Perl Database Interface (DBI) specification for data access
through the DBD::DB2 driver. The Perl DBI module uses an interface that is
similar to the CLI and JDBC interfaces, which makes it easy to port Perl
prototypes to CLI and JDBC. More information according Perl DBI can be found
at:
http://www-306.ibm.com/software/data/db2/perl/

1.2 MySQL database
MySQL is a common Open Source SQL database management system. It is
developed and distributed by MySQL AB (http://www.mysql.com), a company,
which builds its business by providing services around MySQL.

MySQL first was developed for UNIX and Linux applications. It became popular
when Internet Service Provider (ISV) discovered that MySQL could be offered
free of charge to their Internet customers providing all storage and retrieval
functionality a dynamic Web application needs. It was also advantageous that
ISVs mostly use Linux or UNIX in combination with APACHE as their favorite
Web server environment. However, MySQL nowadays also is in use as
integrated database or embedded database in various applications on almost
every platform architecture.
28 MySQL to DB2 UDB Conversion Guide

http://ibm.com/db2/linux
http://www-306.ibm.com/software/data/db2/perl/

1.2.1 MySQL architecture
MySQL is a client-server architecture based on TCP/IP. The MySQL server,
which can be installed on a Windows, UNIX, Linux, or Mac platform, waits for
connection on a specified port and responds to SQL statements from a client.

The conceptual architecture of the MySQL database is illustrated in Figure 1-12.
In the next pages the functionality of the integrated components is discussed in
more detail.

Figure 1-12 Conceptual MySQL architecture

Applications and Interfaces

Query Processing

Transaction Management

Concurrency -
Control Manager

Transaction
Manager

Recovery Management

Concurrency -
Control Manager

Transaction
Manager Log Manager Recovery

Manager

Storage Management

Concurrency -
Control

Manager

Storage Manager Memory Manager Resource Manager

Physical Disk /
Secondary

Storage

Main and
Virtual Memory

(includes all buffer)

Da
ta

ba
se

 C
lie

nt
Da

ta
ba

se
 S

er
ve

r
Ph

ys
ic

al
 re

so
ur

ce
r

Embedded
DML

Precompiler
Query

Preprocessor

Application
Interface and

Utilities
Query Interface

Execution
Engine

DDL
Compiler

Administrative
Interface and

Utilities
 Chapter 1. Introduction 29

Database client
The client layer represents the interface between the user and the database.
MySQL clients include the:

� Administrative interface and utilities
� Application interface and utilities
� Query interface

This is the front end with which users interact. This component represents three
kinds of users that interact with the RDBMS:

� Administrators

Use the administrative interface and utilities, such as mysqladmin for creating
or dropping databases and shutting down the MySQL server; isamchk,
myisamchk for table analysis, optimization, and crash recovery; mysqldump
for backing up databases or copying to other server.

� Applications

Communicate with the RDBMS through MySQL APIs available for various
programming languages such as C++, PHP, Java, Perl, etc.

� Query users

Interact with the RDBMS through a query interface called mysql, which allows
the user to issue SQL statements and view the results returned from the
server.

Database server
Database server represents the core functionality of the database architecture.
The following four main components can be found in MySQL:

� Query processing
� Transaction management
� Recovery management
� Storage management

Query processing
The Query Processor receives all the SQL commands from MySQL application
or on-line users, parses the SQL code, executes the code, and sends the user
the response.

Requests received from an administrative interface are processed by the Data
Definition Language (DDL) compiler. The DDLs are compiled for direct
interaction with the database, and are passed to Execution Engine for execution.

When a request is submitted from an application, the Embedded Data
Manipulation Language (DML) Precompiler extracts the relevant SQL
30 MySQL to DB2 UDB Conversion Guide

statements or translates the client commands written in programming languages
like Perl or C++ into SQL statements. The embedded DML precompiler is
responsible for translating requests into a format that MySQL understands.

The Query Processor analyses the SQL statements from the embedded DML
precompiler or user interface, and creates a parse tree structure to validate the
SQL query syntax.

If the query is deemed to be valid, the Query Processor then performs the
security checking. It checks the access permissions and makes sure that tables
and records are accessed only by the authorized users.

After security checking, the query is analyzed and optimized in order to raise
performance of the query process. The MySQL optimizer uses the most
restrictive index first in order to eliminate as many rows as possible to proceed
with less restrictive index optimization.

The last step in query processing is the execution of the SQL statement in the
Execution Engine. Specific tasks such as repair, backup, and recovery, which
are started by the database administrator and processed from the DDL compiler
are executed in the execution engine.

Transaction management
The Transaction Manager is responsible for making sure that transactions are
logged and executed automatically in a safe and stable way. Resolving deadlock
situations and issuing the commit or roll back commands to ensure database
stability are done through the aid of the Log Manager and Concurrency
Manager.

The Concurrency-Control Manager ensures that transactions are executed
separately and independently by acquiring locks from the locking table, on
appropriate data in the database from the Resource Manager. Once the lock is
acquired, only operations in one transaction can manipulate the data. If a
different transaction tries to manipulate the same data, the request is rejected by
the Concurrency-Control Manager until the first transaction is complete.

Recovery management
The Log Manager is the module that is responsible for logging the operations
executed in the database. The log is stored on the disk. In case of a system
crash, executing each command in the log will bring the database back to its last
stable state. This is done by the Recovery Manager.

Resource Management
The Resource Management is responsible for memory allocation and retrieving
data from physical disks, and writing data to physical disks.
 Chapter 1. Introduction 31

This component consists of three modules: the Resource Manager, Memory
Manager, and the Storage Manager. When the Resource Manager receives and
accepts a request from the Execution Engine, this request is forwarded to the
Memory Manager. The Memory Manager allocates memory resources to meet
the demand for the request, and returns the references of the requested data
within memory to the Resource Manager, which then forwards the data to the
Execution Engine. The role of the Storage Manager is to mediate between the
Memory Manager and the secondary storage.

Physical resource
This layer is the bottom layer of the RDBMS architecture, and represents the
main and virtual memory, and the secondary storage or physical disk. This layer
is accessed through the storage management to store or retrieve data. Data
stored in a RDBMS is usually:

� Data files (user data)
� Data dictionary (metadata)
� Indices
� Log information
� Statistical data

1.2.2 MySQL design and SQL compliance
In this section, the following topics are discussed:

� MySQL directory structure
� MySQL table types
� MySQL standard SQL compliance

MySQL directory structure
MySQL can be installed as one or more database within one server. For each
database, MySQL creates a directory that holds data and indexes. Figure 1-13
shows the directory structure for a binary installation on SuSE Linux. Red Hat
has similar directory structure.
32 MySQL to DB2 UDB Conversion Guide

Figure 1-13 MySQL directory structure

In our example, the installed databases are mysql, which by default holds the
security information and our sample database itsodb. For each database there is
a directory that contains three files per table. Files with the ‘MYD’ extension
contains the table data. Files with the ‘MYI’ extension contains the table’s
indexes. Files with the frm extension contain the table’s structure definition
known as the schema. All these tables are MyISAM type tables. Log files per
default are created in the data directory. The security information data tables are
in the directory /data/mysql.Table 1-3 lists the security information data tables.

Table 1-3 Permission information stored in tables

File Description

columns_priv.MYD

columns_priv.MYI Permission for individual columns within a table

columns_priv.frm

db.MYD

db.MYI Permission for individual tables

db.frm

func.MYD

func.MYI Permission for user defined functions

func.frm

mysql home
 directory

bin

data

mysql
itsodb
 ...

docs

include

lib

man

scripts
 ...

installed
databases
 Chapter 1. Introduction 33

MySQL table types
MySQL supports two different types of table:

� Not transaction-safe tables which are:

– ISAM
– MyISAM
– HEAP
– MERGE

� Transaction-safe tables which are:

– InnoDB
– BDB

Database systems that support simultaneous users must ensure that changes to
the database cannot corrupt the database or leave it in an inconsistent state.
Most RDBMS can bundle multiple updates (adds, changes, or deletes) together
into transactions; see Example 1-1. Transactions have four important features
usually referred to as the ACID properties:

� Atomic:
Transactions either completely succeed or completely fail. If the system
crashes before the transaction completes the database’s state does not
change.

host.MYD

host.MYI General permission by host

host.frm

tables.MYD

tables.MYI Permission for individual tables within a database

tables.frm

user.MYD

user.MYI General Permission by user

user.frm

File Description

columns_priv.MYD

columns_priv.MYI Permission for individual columns within a table

columns_priv.frm
34 MySQL to DB2 UDB Conversion Guide

� Consistent:
Transactions preserve database consistency. A transaction transforms the
database from a consistent state to another consistent state.

� Isolated:
A transaction's updates do not interfere with other transactions or other users
of the database. Until a transaction completely succeeds, the database
system conceals the individual updates from other transactions.

� Durable:
Once a transaction completes (commits), the updates survive in the
database.

MySQL supports transactions with the InnoDB and BDB transactional storage
engines. InnoDB provides full ACID compliance.

Example 1-1 Transactional Operation

BEGIN
INSERT INTO table1 ...
DELETE FROM table2 ...
COMMIT

SAM tables
This table type uses the Index Sequential Access Method (ISAM) with a B-tree
index to “navigate” through the table. The index is stored in a file with the .ISM
extension, and the data is stored in a file with the .ISD extension.

ISAM tables have the following properties:

� Compressed and fixed-length keys
� Fixed and dynamic record length
� 16 keys with 16 key parts per key
� Max key length 256
� Data is stored in machine format; therefore, machine or OS dependent

ISAM tables have some major disadvantages:

� Not binary portable across OS/platforms
� Only table sizes < 4 G supported

MyISAM tables
The MyISAM table type, based on ISAM code, was enhanced to overcome the
disadvantages of the ISAM table, and to provide some more useful extensions.
MyISAM is the default table type of MySQL since version 3.23. The index is
stored in a file with the .MYI extension, and the data is stored in a file with the
.MYD extension.
 Chapter 1. Introduction 35

MyISAM supports three different table types:

� Static tables
Have a fixed length and are the default format MyISAM uses if no VARCHAR,
BLOB or TEXT columns are used.

� Dynamic tables
Are used as default if VARCHAR, BLOB or TEXT columns are defined in the
table.

� Compressed tables
Are read only tables. Static and dynamic tables can be compressed to use
very little disk space. To write data to a compressed table, the table has to be
uncompressed first.

Heap tables
Heap tables use hashed indexes and can only be held in memory. Therefore,
they are mostly used as temporary tables.

InnoDB tables
In MySQL 4.0 InnoDB is enabled by default. The InnoDB engine is a complete
separate database back-end produced by a finish company called Innobase Oy
(http://wwww.innodb.com) and placed under MySQL. InnoDB tables are
transaction safe (ACID compliant) and provide commit, rollback, and crash
recovery capabilities. It also provides locking on row level and a consistent
non-locking read in SELECT statements. Furthermore, it supports foreign key
constraints. Tables and indexes are stored in a table space consisting of several
files or even raw disk partitions. InnoDB uses B-tree indexes to locate data in the
tables. MyISAM tables can be converted to InnoDB tables by using the ALTER
TABLE ...TYPE=INNODB command.

BerkeleyDB (BDB) tables
In MySQL 4.0 BDB table support is provided but not activated by default.
BerkeleyDB is also a transaction-safe storage engine, but has some
disadvantages compared to InnoDB. BDB supports table locking and locking on
page level. BDB tables are stored in files with the extension .db. More
information regarding BerkeleyDB can be found at:
http://www.sleepycat.com

MySQL standard SQL compliance
Up to version 4.0 MySQL meets only the entry-level SQL-92 and ODBC level
0-3.51 standard. But MySQL AB aims toward to support the full SQL-99 standard
in the next versions. The most important missing compatibilities of MySQL
default table MyISAM toward the ANSI-SQL-92 standard refers to:

� Transactions:
36 MySQL to DB2 UDB Conversion Guide

http://wwww.innodb.com
http://www.sleepycat.com

The MySQL default storage engine MyISAM does not support transactions. In
this table type the developer of MySQL followed another paradigm for data
integrity called “atomic operations”, as shown in Example 1-2. Changes
produced by individual statements are committed to the database
immediately as soon as they execute. In other words, a COMMIT statement
implicitly follows each statement. To ensure database integrity code has to be
provided in the application if required.

MySQL supports transactions with the InnoDB and BDB transactional storage
engines. InnoDB provides full ACID compliance.

Example 1-2 Atomic operation

INSERT INTO table1 ...
COMMIT
DELETE FROM table2 ...
COMMIT

� Referential integrity

Referential integrity ensures that relationships between tables remain
consistent. When one table has a foreign key to another table, the concept of
referential integrity states that it is not allowed to add a record to the table that
contains the foreign key unless there is a corresponding record in the linked
table. In MySQL Server, MyISAM tables do not support foreign key
constraints. MySQL only parses the FOREIGN KEY syntax in CREATE TABLE
commands, but does not use or store this information. Only InnoDB tables
support checking of foreign key constraints including ON DELETE CASCADE and
ON UPDATE CASCADE.

� Views

A view is a definition for a “virtual table” (virtual because there is no
permanent allocation of storage space) which is assembled at reference time
from selected rows and columns of one or more real tables.

Views are useful for two main reasons:

– They enable users to see data, from a generalized database design, in the
form most convenient for their needs.

– They may be used to secure the database by restricting users to just that
data they need to know.

MySQL does not support views.

� Subqueries

Subqueries are nested queries in a SQL statement (Example 1-3). They are
not supported in MySQL 4.0.
 Chapter 1. Introduction 37

Example 1-3 Subquery

SELECT FirstName, LastName, ZipCode
FROM customers
WHERE ZipCode =

(SELECT ZipCode
FROM customers
WHERE FirstName = 'Wayne' AND LastName = 'John');

� Stored procedures and Trigger

A stored procedure is a set of SQL commands that can be compiled and
stored in the server. If this is done, clients do not have to process the same
set of SQL commands, but can refer to the stored procedure.

A trigger is a one or a set of SQL statements, which is invoked automatically
when a particular event occurs.

Neither stored procedures nor triggers are supported in MySQL 4.0.

1.2.3 MySQL utilities
MySQL is distributed with a set of support utilities. The Internet however provides
a quite lager set of third party tools to manage MySQL databases. In this section,
we attempt to give a brief overview of the MySQL distributed set of supported
tools.

Overview of the MySQL server-side scripts and utilities
This section introduces the distributed set of server-side tools included in the
MySQL package:

� mysqld

Is the server SQL daemon, which has to run on the server. To use client
programs, this program must be running, because clients gain access to
databases by connecting the server.

� mysqld_safe

Is a wrapper script, which adds some more safety features to the SQL
daemon such as restarting the server when an error occurs, and logging
run-time information.

� mysqld_multi

Is a program for managing multiple MySQL server. This startup script can
start or stop multiple servers installed on the system.

� mysqld-max

Is an extended mysqld server that includes additional features
38 MySQL to DB2 UDB Conversion Guide

� isamchk

Is a utility to describe, check, optimize, and repair ISAM tables, or to unpack a
packed ISAM table

� myisamchk

Is a utility to describe, check, optimize, and repair MyISAM tables or to
unpack a packed MyISAM table

� mysql_install_db

Creates the MySQL grant tables with default privileges. Normally, it is
executed only once when first installing MySQL on a system.

� mysql_fix_privilege_tables

This script is used after an upgrade install operation to update the grant
tables with any changes that were made in newer versions of MySQL.

� make_binary_distribution

Is a program that makes a binary release of a compiled MySQL version in
order to distribute it

� mysqlbug

Is a bug reporting script. It can be used to send a bug reports to the MySQL
list.

� myisampack

Is a pack utility to compress MyISAM tables

� packisam

Is a pack utility to compress ISAM tables

Overview of the MySQL client-side scripts and utilities
In this section, the distributed set of client-side tools provided by MySQL AB are
introduced.

� msql2mysql

Is a script that converts mSQL programs to MySQL.

� mysql

Is a simple SQL shell for interactively entering queries or executing queries
from file. It supports interactive and non-interactive use.

� mysqlcc

Is the MySQL Control Center that provides a graphical user interface (GUI) to
the MySQL database server. It provides database and table management
and, allows server administration.
 Chapter 1. Introduction 39

� mysqlaccess

Is a script that checks the access privileges for a host, user, and database
combination

� mysqladmin

Is a utility for performing administrative operations, such as creating and
dropping databases, flushing tables to disk, reloading the grant tables, and
managing log files

� mysqlbinlog

Is a utility to execute queries from a binary log file; this is used to recover from
a crash using an old backup.

� mysqlcheck

Is used for table maintenance and crash recovery. In comparison to
myisamchk, it can be used when mysqld is running. For mysqlchk, mysqld
has to be stopped.

� mysqldump

Is a utility to dump a database for backup or for transferring data to another
server. The dump contains SQL statements to create the tables and to
populate the tables.

� mysqlhotcopy

Is a PERL script that is used to quickly make a backup of a database. It only
can be used on UNIX to back up MyISAM and ISAM tables.

� mysqlimport

Provides a command-line interface to import data from text files

� mysqlshow

Is a utility that can be used to look at which databases exist, their tables, and
also the columns in the tables

� mysql_config

Provides information on how to compile a MySQL client and connect it to
MySQL

� replace

Changes strings in place in files or on the standard input

� perror

Can be used to display a description for a system error code
40 MySQL to DB2 UDB Conversion Guide

1.2.4 MySQL application programming interfaces (API)
The MySQL API is an interface by which an application program communicates
with the MySQL database.

This section gives an overview of which APIs are available for MySQL.

Generally speaking there are three main approaches to connect to MySQL
database as shown in Figure 1-14:

� JDBC with Java Connector
� ODBC with MyODBC
� Other APIs with C Library

Figure 1-14 MySQL Application Programming Interfaces

The first approach is to connect the Java application using JDBC and the
Connector/J, which is provided by MySQL AB.

The second approach is to either use ODBC directly from the application or
utilize an application language like VB, Delphi, .NET, or ADO to access ODBC.

MySQL Server

MyODBC

ODBC Driver
Manager

Application

JDBC

Java Connector

C Library
PH

P
AP

I

Pe
rl

AP
I

Py
th

on
 A

PI

VB/VBA, Delphi, ASP,
ADO, .NET

 Chapter 1. Introduction 41

The third approach is to use the APIs provided by the programming languages
like PHP, Perl, or Python.

There are several APIs available in MySQL:

� C API

The C API code is distributed with MySQL and is included in the mysqlclient
library. It allows C programs to access a MySQL database.

� C++ API

The MySQL Connector/C++ is also distributed by MySQL AB. Information can
be found at:
http://www.mysql.com/products/mysql++/

� JDBC API

The Connector/J is provided by MySQL AB and is used as a plugin in JDBC
to allow Java applications to connect to MySQL server. Information about
Connector/J can be found at:
http://www.mysql.com/products/connector-j/

� ODBC API

Open Database Connectivity (ODBC) is an API, which is based on the
Call-Level Interface (CLI) specifications. The Connector/ODBC is provided by
MySQL AB and is called MyODBC. Additional Information can be found:
http://www.mysql.com/products/myodbc/

� PHP API

PHP contains support for accessing several databases including MySQL.
Information about MySQL access can be found in the PHP documentation,
which can be downloaded at:
http://www.php.net/download-docs.php.

� PERL API

The Perl API consists of a generic Perl interface and a special database
driver. The generic interface in Perl is called Database Interface (DBI) and for
MySQL the driver is called DBD::mysql. This driver however does not support
transactions. For transactions (see 1.2.2, “MySQL design and SQL
compliance” on page 32) another driver, called DBD-myslq is needed.
Information according DBI can be found at:
http://dbi.perl.org/

� Python API

The API to connect to MySQL for Python is call MySQLdb, and can be found
at
http://sourceforgel.net/projects/mysql-python/

� Tcl API
42 MySQL to DB2 UDB Conversion Guide

http://www.mysql.com/products/mysql++/
http://www.mysql.com/products/connector-j/
http://www.mysql.com/products/connector-j/
http://www.php.net/download-docs.php
http://dbi.perl.org/
http://sourceforgel.net/projects/mysql-python/

MySQLtcl is an API for accessing MySQL server from the Tcl programming
language. It can be found at:
http://www.xdobry.de/mysqltcl/

� Eifel API

This interface is used from the Eiffel programming language, and can be
found at:
http://efsa.sourceforge.net/archive/ravits/mysql.htm
 Chapter 1. Introduction 43

http://www.xdobry.de/mysqltcl/
http://efsa.sourceforge.net/archive/ravits/mysql.htm

44 MySQL to DB2 UDB Conversion Guide

Chapter 2. Planning the migration from
MySQL to DB2 UDB

As proper planning influences the success of a project significantly, this chapter
discusses the overall migration project planning including the considerations
before porting, assessment, and porting steps. The migration process, which are
discussed in detail in the following chapters, are as follows:

� Project planning

� Application assessment and system planning

� The migration process

– Porting preparation and installation
– Database structure porting
– Data porting
– Application porting
– Basic administration
– Testing and tuning

This chapter informs you about how IBM migration specialists can support you in
your migration project in any of the steps. The available migration tools such as
the IBM DB2 Migration Toolkit (MTK) are also discussed.

2

© Copyright IBM Corp. 2004. All rights reserved. 45

2.1 Migration project planning overview
A migration project starts with a migration assessment to understand what needs
to be done and how long it will take. A systematic and organized analysis
provides a detailed picture of the full project. The assessment requires good
knowledge of the application to be migrated, and the products to be used.

To assess the application you want to port, you should create an application
profile that describes the application architecture, technologies used, application
functions, application interface, application environment characteristics,
database detail, and application size, etc.

Based on the application profile, you can then plan the software and hardware
needed for the target system. The planning stage is also a good time to consider
the rich DB2 functions and features of the DB2 UDB product family, which can
increase your productivity and reduce the maintenance cost.

You also need to understand the skills required and the available resources for
the migration project. IBM also provides a variety of DB2 courses to help IBM
customers learn DB2 UDB quickly.

Migration assessment provides you the overall picture of the migration tasks and
effort needed. A migration project plan can be created based on the migration
assessment to manage each migration steps.

Tools can help you saving time in your migration project. Support for the typical
migration steps is provided by various available tools. IBM offers the free
migration tool IBM DB2 Migration Toolkit (MTK) for migrating from various
relational database systems to DB2 UDB.

The process of database and application migration consists of the following main
steps, which are discussed in detail later:

� Porting preparation and installation
� Database structure porting
� Data porting
� Application porting
� Basic administration
� Testing and tuning
� User education

Experienced IBM specialists can support you in during any phase of the
migration project. Special migration offerings are provided by IBM Worldwide.
46 MySQL to DB2 UDB Conversion Guide

2.1.1 Benefits of migrating to DB2 UDB
DB2 UDB is number one in performance and number one in market share, with
more than one million user licenses world wide. DB2 UDB offers open,
industrial-strength database management for e-business, business intelligence,
transaction processing, and a broad range of applications.

Some primary motivators for migration are:

� Multi platform support
DB2 UDB is a true cross-platform database management system (DBMS),
running on a wide variety of systems including Linux, Windows
98/NT/2000/XP, Solaris, HP-UX, and AIX®.

� Improved performance
DB2 UDB has leading performance across a broad range of application and
industry benchmarks on a range of hardware and software platforms. To have
a look at some current performance measurements, please visit:
http://www.ibm.com

� Industrial reliability and high availability support
DB2 UDB provides superior availability with customer proven results.

� Industrial scalability
DB2 UDB has the best scalability. Only DB2 UDB does transaction
processing and business intelligence scaling to 1000 nodes. For more
information about scalability see:
http://www.ibm.com

� Integrated support for native environments
DB2 UDB conforms to many standards including the operating system it
supports. It maps closely onto internal resources for performance and
scalability. All these considerations make it more reliable and integrate it to
the operating system.

� Integrated system management tools
DB2 UDB Version 8 introduced a number of new tools like the Health
Monitor, the Health Center, the Replication Center, and the Storage
Management tool. In addition it includes major improvements to existing tools
like the Configuration Assistant, the Control Center, and the Development
Center.

� Self-managing and resource tuning capability
DB2 UDB also has included self-managing and resource tuning database
technology that lets database administrators choose to configure, tune, and
manage their databases with enhanced automation. The innovative database
manageability means administrators spend less time managing routine tasks,
and more time focusing on tasks that help enterprises gain and maintain a
sustainable competitive advantage.
 Chapter 2. Planning the migration from MySQL to DB2 UDB 47

http://www-306.ibm.com/software/data/db2/benchmarks/
http://www-306.ibm.com/software/data/highlights/scalability.html

� Data replication service
DB2 UDB includes a replication solution that ensures timely, reliable, and
consistent data across an enterprise.

� Information integration
DB2 UDB provides a full family of information integration technologies. These
products provide a robust infrastructure for storing, searching, federating,
caching, transforming, and replicating diverse and distributed information. For
more information about Information Integration, please visit:

http://www.ibm.com

� Integrated Web access
DB2 UDB provides Web access to enterprise data on DB2 databases through
native support for Java/JDBC, embedded SQL for Java (SQLJ) and
Net.Data®.

� Web services applications
DB2 UDB can be accessed as a Web service provider, and it is usually
teamed with the IBM WebSphere family products to provide a complete Web
services framework.

� Basic data warehousing functionality
DB2 UDB offers the Data Warehouse Center, a component that automates
data warehouse processing.

� IBM program for assistance to developers
PartnerWorld® for Developers is an IBM program that provides business,
technical, and marketing services to partners in order to help them in
developing and marketing applications. Please visit
http://www.developer.ibm.com for more information.

2.1.2 IBM migration offering
IBM migration specialists around the world have advised customers on migration
projects to DB2 UDB in more than 3500 cases. Why shouldn’t you use their
experience in your migration project? Before starting the assessment phase, you
should contact the Software Migration Project Office (SMPO) for no charge,
porting estimates as well as access to a team of migration experts.

A proven methodology is used by the IBM migration team, which helps you
reduce costs and risks associated with a migration while addressing its major
components, the applications, the database design and the data.

IBM’s consultants can advise your organization regarding a phased migration
approach. This approach includes:

� Assessment of the database conversion effort
� System planning and database design
48 MySQL to DB2 UDB Conversion Guide

http://www.ibm.com
http://www.developer.ibm.com

� DB2 migration assessment
� Installation of DB2 UDB and other required products
� Pilot migration
� Full migration of data and applications

IBM services are available for assistance in any of the migration phases.

If you have a migration project in mind, please contact one of the following
addresses:

� In North America and Latin America: mailto:db2mig@us.ibm.com
� In UK, Europe, Middle East and Africa: mailto:emeadbct@uk.ibm.com
� In Japan, India and Asia Pacific: mailto:APDB2@nz1.ibm.com

You can find up to date details about current offerings, success stories, literature,
and other information on the DB2 Migrate Now! Web site:

http://www-306.ibm.com/software/data/db2/migration/

More information about the DB2 migration team can be found at the Software
Migration Project Office (SMPO) Web site:

http://www-306.ibm.com/software/solutions/softwaremigration/dbmigteam.html

2.1.3 Education
DB2 UDB provides an easy to use feature rich environment. It is important that
those individuals involved in the migration be appropriately trained, so that the
full advantages of those features are realized.

There is a lot of training material available like self studying guides and
redbooks. IBM also offers a variety of DB2 courses; a very useful one is the
course for experienced database administrators that are new to DB2 UDB.

For further information regarding DB2 UDB training, please visit the DB2 Web
site at:
http://www-306.ibm.com/software/data/education/

2.2 Application assessment
An application assessment is the first step in the migration planning. The
assessment will help you understand the scope of the migration project and
prepare the detail migration project plan to design the target system.
 Chapter 2. Planning the migration from MySQL to DB2 UDB 49

mailto:db2mig@us.ibm.com
mailto:emeadbct@uk.ibm.com
http://www-306.ibm.com/software/data/db2/migration/
http://www-306.ibm.com/software/solutions/softwaremigration/dbmigteam.html
mailto:APDB2@nz1.ibm.com
http://www-306.ibm.com/software/data/education/

You need to understand how your application works and what resources are
needed. There are probably a lot of characteristics of your application that
influence your system planning and the scope of the migration effort.

The main information for collection during the application assessment incudes:

� Application architecture

– Standalone
– Client/server
– Tier architecture

� Database architecture

– Number of databases
– Number of tables
– Number of indexes
– Users, access rights and privileges

� Size of data stored in the database

– Bytes stored in system tables (users)
– Bytes stored in tables
– Bytes stored in indexes
– Log file size

� Source code language

– PHP
– Perl
– Java
– C/C++
– any other programming language

� Database interface

– Direct database access through API
– Database access layer like ODBC/JDBC

� Operating system

– Linux
– AIX, UNIX
– Windows
– any other operating system

� Used hardware

– CPU
– Memory
– Hard disk
50 MySQL to DB2 UDB Conversion Guide

In a client/server-environment be sure to describe the application in both the
client and server environment.

2.3 System planning
Based on your application profile created during the application assessment, you
should be able to plan your target system properly.

As DB2 UDB supports different hardware platforms and multiple operating
systems like Linux, Windows, and AIX etc., you are not limited in one platform to
migrate your databases to. You can select on which system the migrated
application should run based on the application nature and future enhancement
requirements.

As shown in Figure 2-1, the target system can be the same system as the source
system, or a different one with a different operating system and hardware. You
might even want to make your database server a separate machine from the
machine your application runs on (two-tier architecture).
 Chapter 2. Planning the migration from MySQL to DB2 UDB 51

Figure 2-1 Sample migration scenarios

If you decide to use a new machine for the migrated program, you need to plan
what kind of hardware you want to use, and which operating system you want to
install on it.

In either case you should check if the hardware of your target system meets the
minimum requirements of the following:

� Operating system
� DB2 UDB
� Application
� Data
� Migration tools (if used)

DB2

New App

New App

DB2

Migration to
two different

machines
(2-tier)

MySQL

Old App

Old App

MySQL

Migration to
one different

machine

Migration to
the same
machine

SourceSystemSourceSystem TargetSystemTargetSystem

DB2MySQL

New AppOld App
52 MySQL to DB2 UDB Conversion Guide

2.3.1 Software
You must determine which software must be installed on your target system.
This can include the following:

� Operating system (Linux, AIX, UNIX, Windows, others)

� DB2 UDB version

� Application to be ported

� Migration tools (if used and installed on target system)

� Any software that you have on your source system, which is required by your
application to run properly. This can be:

– HTTP-server
– Web application server
– Development environment
– Additional software (like LDAP or others)

Be sure to have the latest versions and fix packs of the planned products. Please
check if the chosen software is supported on the chosen operating system.

2.3.2 Hardware
When starting the migration process it is important to have a target platform that
meets the minimum requirements of all the software that will be installed on it.
Please check the supported hardware platforms depending on the chosen
software.

Your application also requires hardware resources. Be sure to have enough disk
space for your application and to hold the data to be transformed.

IBM provides a variety of hardware systems especially designed to meet your
business needs. For information about IBM eServers please check the IBM Web
site at:
http://www.ibm.com/eservers/

2.3.3 Migration tools
There are free and commercial tools available to assist you migrating your
application from MySQL to DB2 UDB. The tools offer a variety of functions and
are available on a different set of operating system. IBM offers the free IBM DB2
Migration Toolkit (MTK).

If you decide to use a tool, be sure that it fulfills the requirements you have and
that you have an appropriate platform to run the tool.
 Chapter 2. Planning the migration from MySQL to DB2 UDB 53

http://www.ibm.com/eservers/

IBM DB2 Migration Toolkit (MTK)
MTK helps you to migrate from relational database systems like MySQL, Oracle
and Microsoft SQL Server to DB2 UDB.

The tool can be used to generate Data Definition Language (DDL) scripts to
create a database, tables, indexes and primary keys in DB2 UDB based on an
existing MySQL database.

It also supports you retrieving data out of a MySQL database and importing the
data into the created DB2 UDB database.

In our sample project we used MTK on the following steps:

� Extract DDL from our MySQL sample database
� Convert DDL to DB2 UDB syntax
� Create the DB2 database
� Create the DB2 database structure
� Export MySQL data
� Import data into DB2 UDB

If you want to download MTK or get more information about it, please refer to:
http://www.ibm.com/software/data/db2/migration/mtk/

Other available migration tools
Some other tools can be found on the Internet including the following (among
others). These tools and services are not provided by IBM, nor does IBM make
guarantees about the usage of these tools:

� SQLPorter
A commercial software by RealSoftStudio Inc. for Windows operating system.
For further details see http://www.realsoftstudio.com

� SQLWays
A commercial tool by Ispirer Systems for Windows operating system. For
more details see http://www.inspirer.com

2.4 The migration process
For accurate planning it is important to understand the steps to complete the
migration project. To estimate the project effort correctly and migrate the
database and application successfully, each of the steps should be planned.
Figure 2-2 shows the basic migration process steps.
54 MySQL to DB2 UDB Conversion Guide

http://www-306.ibm.com/software/data/db2/migration/mtk/
http://www.realsoftstudio.com
http://www.inspirer.com

Figure 2-2 Steps of the migration process

2.4.1 Porting preparation and installation
After deciding which target system you want to use, you can set up the following:
Install the hardware, the operating system with users and access rights, the
network connections, any used software, and finally the DB2 UDB version of
your choice.

2.4.2 Database structure porting
Once the DB2 UDB is installed in the target, you can port the database structure
from the source MySQL database to DB2 UDB.

The database structure is usually described by Database Definition Language
(DDL) statements. DDL scripts include the creation of tables, keys, and indexes.
Since the DDL syntax for MySQL and DB2 UDB is different, a converting process
is required. Using a tool to port database structure can save time and effort.
Figure 2-3 shows the database structure porting the basic steps.

Porting
preparation

and
installation

Database
structure
porting

Data
porting

Application
porting

Basic
administration

Testing
and

tuning
 Chapter 2. Planning the migration from MySQL to DB2 UDB 55

Figure 2-3 Database structure porting process

Export DDL from MySQL databases
You have to retrieve the information about tables, keys, and indexes from your
source MySQL database.

Tools like MTK can do most parts of this task automatically. You should check
the results of the output of the tool you use. Of course you can also do this step
manually, but be aware to cover all the database objects.

Convert DDL to DB2 syntax
As the DDL used by MySQL is a little different from the DDL used by DB2 UDB,
the DDL used to create MySQL database and objects have to be converted to
DB2 UDB syntax.

This part is also supported by tools like MTK; again, you can do it manually. In
this case be aware of the different data types that MySQL and DB2 UDB use.

If you plan to change the logical model of your database structure to enhance
your application and take advantage of the DB2 UDB’s functions and features,
the DDL should be modified in this step.

DB2
database

DB2
DDL

script

MySQL
DDL

script

MySQL
database

Export DDL
(mysqldump/MTK)

Convert DDL
(MTK)

Create database
run DB2 DDL

(MTK)
56 MySQL to DB2 UDB Conversion Guide

Create DB2 database structure
Once you have the DDL scripts in DB2 syntax, you should create your DB2 UDB
database and run the DDL scripts to create the database structure.

This part is again supported by tools like MTK. Be sure to check the success of
the creation of all database objects like tables, keys, and indexes.

2.4.3 Data porting
With the database installed on your new system and the structure of your
database created, you should migrate the data from the source to the target
system.

Databases usually provide mechanisms for exporting (dumping) and importing
(loading) data. We categorized the MySQL data into:

� User data: Data about users, access rights, and privileges
� Application data: Data that is created and used by an application

Figure 2-4 shows the basic steps of data porting.

Figure 2-4 Data porting process

DB2
database

MySQL
application

data

DB2
script

Basic
data

checking

MySQL
user
data

MySQL
database

Import application dataExport application data
(db2load/MTK)(mysqldump/MTK)

Export user data
(mysqldump)

Convert to
DB2 commands

Run DB2 script
 Chapter 2. Planning the migration from MySQL to DB2 UDB 57

Export MySQL user data
MySQL and DB2 UDB use different database security mechanisms. The
database object access privileges are stored in the MySQL database. You need
to understand what MySQL access rights your application has and how you can
map them to DB2 UDB. Depending on your application you probably have to
export user data from the MySQL database.

Map MySQL user data to DB2 user data
As in DB2 UDB users, access rights and privileges are maintained in a different
way, you have to convert the MySQL user data to DB2 commands for granting
privileges and using operation system’s user ID management functions to create
user ids.

In this step, you create scripts to create users and to grant them the DB2 UDB
database and objects access privileges based on the MySQL user data.

Create DB2 user data
Once you have mapped your MySQL user data to DB2 user data, your users
must be created in the DB2 UDB system and the necessary privileges must be
granted to them.

The scripts with the DB2 commands for creating users and granting privileges
should be run.

Export MySQL application data
You have to dump the application data out of the MySQL database. This step is
supported by MTK or you can do it manually. Be aware of the differences in the
format of DATE, TIME and other data types.

Convert MySQL application data to DB2 format
If your MySQL application supports data types that cannot be transformed by
MTK automatically (like the BLOB data type), you have to do this manually.

Import application data into DB2 UDB
The exported (and maybe converted) data must finally be loaded into the DB2
UDB tables. MTK also supports this step, and of course data can be loaded into
DB2 UDB manually.

Basic data checking
Once you have loaded all data into your database, you should do basic data
checking. You should check for the correct number of rows per table and the
correct representation of the field-values.
58 MySQL to DB2 UDB Conversion Guide

Also, be sure that you have all the users created in your DB2 UDB system.

2.4.4 Application porting
The porting of the database structure, and the data can be supported by tools
quite easily. The porting of the application, however, requires manual
conversion. A few tools exist that can support you in some tasks such as syntax
highlighting, but in most cases the main conversion must be done manually.

The extent to which you have to change the application code depends on the
database interface that is used in the source application. When a database
access layer is used, the adoption is not that complicated, otherwise, the effort to
port the application will probably be much higher.

Application source code changes
As there are some differences in the Data Manipulation Language (DML) of
MySQL and DB2 UDB, you may have to change SQL statements in your
application code directly.

You might find things that are not natively supported in DB2 UDB that you used
in MySQL, so a workaround must be established to have the application behave
as before the migration.

Database interface
Whatever interface between application and database is used by your
application, the access to the database must be changed because the database
has been changed.

If standardized interfaces like ODBC or JDBC are used, the changes will be less
than if an application uses the native API of a database product.

Condition handling
Depending on the implementation of your application, there might be some
changes in the condition handling part of the application.

Additional considerations
DB2 UDB offers rich, robust functions, which you can take advantage of in your
applications.
 Chapter 2. Planning the migration from MySQL to DB2 UDB 59

You should consider modifying your application to use some of these features,
which are different to MySQL:

� Concurrency
� Locking
� Isolation level
� Transactions
� Logging
� National language support

2.4.5 Basic administration
There are regular maintenance works the database administrator performs.
These administration issues should be considered during migration planning.

Every database has its own way for backup and recovery, as these are vital
tasks in database administration. The database should be backed up regularly,
and the data retention period should be defined based on the business
requirements.

If you have backup and recovery tasks defined on the source system, you
probably want to migrate these tasks as well. Be sure to port any existing scripts
for backup tasks to support DB2 UDB.

Both the database backup and recovery functions should be tested to ensure a
safe environment to your application.

Log files
DB2 UDB logs differently than MySQL, so database administrators should be
aware of the logging level that can be set, where log information is stored, and
how to read these logs.

Find more information in Chapter 8, “Database administration” on page 235.

2.4.6 Testing and tuning
Once your new system is up and running, you have to verify that data and
application functionality have been ported completely, and that system behavior
has not changed in a way you do not want.

If you succeed with this step, you might tune your database in order to speed up
your application.
60 MySQL to DB2 UDB Conversion Guide

Data checking
Beside the basic data checks that should be done when exporting and importing
the data, you should also check if the application handles your data correctly and
that manipulations on the databases like inserts, updates, or deletes do not lead
to unexpected results.

You can perform this checking manually, or you can also write some scripts to
have your data checked.

Code and application testing
It is very important that the behavior of your application has not changed.
Interactions between components of your application must be tested as well as
each module of the application. A code review of all changed code is
recommended as well.

Troubleshooting
Whenever the migration leads to a problem, like wrong data or wrong application
behavior, you have to determine what the problem is in order to have it fixed.

You should understand error messages from the application as well as DB2 error
messages. The troubleshooting process includes studying the DB2 log files.

See the DB2 technical support Web site for help with specific problems:
http://www-306.ibm.com/software/data/support/

Basic tuning
Once your new system is working perfectly, you might want to tune it for an even
better performance. With the correct database configuration, and some hints
from DB2 tuning tools, you can speed up your queries quite easily.

DB2 UDB provides tools like Performance Monitor or Index Advisor to support
you in speeding up your DB2 UDB system.
 Chapter 2. Planning the migration from MySQL to DB2 UDB 61

http://www-306.ibm.com/software/data/support/

62 MySQL to DB2 UDB Conversion Guide

Chapter 3. Migration scenario

In order to describe how migration can be done from MySQL to DB2 UDB in
practice, our migration scenario provides a small but real world Web application
written in PHP based on a MySQL 4.0 database. When choosing an application
to show the migration process, the intention was not to find an optimal written
application with all the possible tricks a genius programmer would use to set up
the database structure or to do the programming, but to use a real application
sample as is. Although the application we use for demonstrating the migration is
written in PHP, 7.2, “Application source conversion” on page 173 also provides
samples in other popular programming languages like Perl, Java, and C/C++.

The following topics are discussed in detail:

� Application description
� System environment

3

© Copyright IBM Corp. 2004. All rights reserved. 63

3.1 Application description
The application we use is a Web based shop and online catalog. The customer
can either request information such as availability about provided items, or order
parts in the shop. In this catalog or shop the fictive vendor (BHMS) offers
reproduced radiators for different cars and manufacturers.

3.1.1 Steps using the application
The flow diagram (Figure 3-1) describes the application flow and function at a
high level.
64 MySQL to DB2 UDB Conversion Guide

Figure 3-1 Flow diagram of the sample application

When a customer enters the Web site, the start page (Figure 3-2) provides three
functions:

� Request for user access: To log in as an already registered user
� Log in to shop: To register as a new user
� You have forgotten your password?: To request the password if it was lost

Login Page
For:
1. Registered user
2. New user registration
3. Forgot password

Registration Page

New user enters
registration information

Password Request

Password is sent to
provided e-mail address

Shop/Catalog
Search items
Select items in shopping cart

Shop Cart
View and edit shopping cart entries

1. Delete entries
2. Back to catalog
3. Send entries to vendor

END

START

Selection

Selection
2. New user
 registration

3. Forgot
 password

1. Registered user

 2. Back to catalog 1. Delete entries

3. Send entries to vendor (request/order)
 Chapter 3. Migration scenario 65

Figure 3-2 Start page of the Web application

In Login to Shop, the customer uses his user ID and password to log in. The
customer is able not only to request information, but also to order parts in the
shop. To order parts, the customer also has to enter the customer number.

From Request for user access, a new user can be registered. Providing a
complete address information in the registration form (Figure 3-3) creates a new
user in the application.
66 MySQL to DB2 UDB Conversion Guide

Figure 3-3 Registration form

The application will then inform the new user to the vendor by e-mail (Figure 3-4).
The entered user ID and password can be used right away to log in.

Figure 3-4 Registration information sent to the vendor

Dear Sir or Madam,

a new user has registered in the Product Catalog of your Homepage.
Please send him his customer number as soon as possible.

Title :Mrs.
First/last name :Kathy Smith
Company :ITSO
Address :650 Harry Rd.
Zip code, city :San Jose Ca
e-mail :kathy@yahoo.com
Phone :408-927-3633
Fax :
Userid :kathy
Password :testpw
 Chapter 3. Migration scenario 67

Using the You have forgotten your password? link, a forgotten password can
be requested and the password will be sent by the application to the provided
e-mail address entered in the form.

When you successfully log in, the shop or product catalog view is presented to
the customer as shown in Figure 3-5.

Figure 3-5 Shop or catalog view

In this provided form the user can sort, search, and select items for their
shopping cart. One may also switch to a detail item view (Figure 3-6) by clicking
on the highlighted item number.
68 MySQL to DB2 UDB Conversion Guide

Figure 3-6 Detail item view

When selecting the items is finished, the customer will be taken to the shopping
cart view (Figure 3-7). The customer can enter the quantity of items for request
or order, or one can even delete entries from the shopping cart.
 Chapter 3. Migration scenario 69

Figure 3-7 Shopping cart view

After adding the purchase order quantity to each item, the order or request is
submitted by clicking Send shopping cart entries. In consequence, the
customer information and the selected item information is sent to the vendor by
e-mail (Figure 3-8).
70 MySQL to DB2 UDB Conversion Guide

Figure 3-8 Request/Order information sent to the vendor

3.1.2 Database structure
The database used by the application consists of four tables as described below:

� The table USERS contains the whole customer registration information.

� The table CATALOG contains the item information.

� OENUMER is a table, which holds manufacturer item numbers.

� SHOPPING_CART is the shopping cart table, which holds the items and user
information during the order transaction. After the order or request is
submitted, and an e-mail is sent to the vendor, the information is deleted.

For detailed table information see Figure 3-9.

Dear Sir or Madam,

the following Request/Order was submitted from the Product Catalog Webpage:

Title :Mrs.
First/last name :Kathy Smith
Company :ITSO
Address :650 Harry Rd.
Zip code, City :San Jose Ca
e-mail :kathy@yahoo.com
Phone :408-927-3633
Fax :
Customer No. :

Item no. Manufacturer Model Quantity

16272 AUDI 80 Avant (8C, B4) 1
16633 VW PASSAT (3B2) 3
951041 VW POLO (6N1) 1

Note: These tables only use CHAR, VARCHAR, and INTEGER data types. In
Chapter 5, “Database porting” on page 89, data type conversion between
MySQL and DB2 UDB is discussed in detail.
 Chapter 3. Migration scenario 71

Figure 3-9 ERD - Diagram

3.2 System environment
In this section, the hardware and software environment used in our migration
scenario for application porting is described.

The hardware used for porting the application sample in our scenario is an IBM
Netvista Workstation:

� Intel® Pentium® 4 CPU, 2,4 GHz
� 1 GB Ram
� 39 GB IDE hard disk drive.

id
firstname
lastname
email
company
street
zip
city
status
solutation
loginname
password
telephone
fax
customer_no

integer NN (PK)
varchar(30)
varchar(30)
varchar(100)
varchar(50)
varchar(40)
varchar(12)
varchar(40)
integer
varchar(12)
varchar(10)
varchar(10)
varchar(30)
varchar(40)
varchar(12)

USERS

sc_id
user_id
cnt
cat_id
status

ingegerNN (PK)
integer
ineger
ineger
varchar(10)

SHOPPING_CART

id
sku
oe_no

integer NN (PK)
char(8)
char(15)

OENUMBER

manufacturer
model
type
year_from
year_to
kw
hp
ccm
cyl_capacity
motor_code
prodgroup
sku
dimension
ac
transmission
hint
stock
id

char(14)
char(25)
char(25)
char(7)
char(7)
char(3)
char(3)
char(4)
char(2)
char(60)
char(2)
char(8)
char(12)
char(3)
char(3)
char(60)
integer
integer NN (PK)

CATALOG

Note: We recommend that you allocate a minimum of 256 MB of RAM for DB2
ESE. Additional memory should be allocated for other software and
communication products.
72 MySQL to DB2 UDB Conversion Guide

Although MySQL is becoming more and more popular with Microsoft Windows
installations, it is mostly a part of LAMP (Linux, Apache, MySQL,
PHP/Perl/Python), an open source enterprise software stack.

The “LAMP” software stack and additional software we use in our migration
scenario is as follows:

� SuSE Linux 8.1 e
� Apache 1.3.26 (included in SuSE Linux)
� MySQL Standard 4.0.17 (MySQL AB)
� PHP 4.2.2
� DB2 UDB Enterprise Server Edition 8.1
� IBM DB2 Migration Toolkit (MTK)

DB2 for Linux can be downloaded from the Web site http://ibm.com/db2/v8.
Further information on installing and maintaining DB2 for Linux can be found on
the Web site:
http://ibm.com/db2/linux

IBM DB2 Migration Toolkit (MTK) is available free of charge from IBM at the
following URL: http://www.ibm.com/software/data/db2/migration/mtk and is
used to simplify and improve the migration from MySQL to DB2 Universal
Database (UDB).

With MTK, the conversion of database objects such as tables and data types,
and the migration of data can be done automatically into equivalent DB2
database objects.

The installation and configuration of DB2 UDB and the MTK is covered in
Chapter 4, “Installation” on page 75.
 Chapter 3. Migration scenario 73

http://ibm.com/db2/v8
http://ibm.com/db2/linux
http://www.ibm.com/software/data/db2/migration/mtk

74 MySQL to DB2 UDB Conversion Guide

Chapter 4. Installation

This chapter discusses the target system environment setup. For the database
server, we guide you through the installation process for DB2 UDB Version 8.1
for Linux including the hardware and software prerequisites. The application
server has to be examined to ensure that the exiting software has proper DB2
support. If this is a completed new system setup, make sure that all the required
software are included in the installation list. Furthermore, we describe the
download and steps to deploy the IBM DB2 Migration Toolkit for MySQL.

4

© Copyright IBM Corp. 2004. All rights reserved. 75

4.1 DB2 UDB ESE V8.1.4 on Linux
Regardless of the platform and the environment used for your migration project
verification of the hardware and software requirements is the starting block.

4.1.1 System requirements
This section provides supported Linux distribution information, hardware,
software, and communication requirements of DB2 UDB on Linux environment.

Linux distributions supported by DB2
Table 4-1 lists some IBM DB2 validated Linux distributions at the time of writing
this book. For the most recent, all-supported Linux distributions that have gone
successfully through the IBM DB2 for Linux validation program, check:

http://www.ibm.com/software/data/db2/linux/validate/

Table 4-1 Currently supported Linux distributions, kernels, and libraries

To learn more about the IBM DB2 UDB for Linux validation program go to:

http://www.ibm.com/software/data/db2/linux/validate/progdesc.html

Hardware requirements
IBM hardware is supported for DB2 UDB Workgroup Server Edition and DB2
UDB Workgroup Server Unlimited Edition:

Platform Distribution Kernel Library Comment

x86 Red Hat Enterprise
Linux 2.1 AS/ES/WS

2.4.9-e16 glibc 2.2.4

Red Hat 8.0 2.4.18-14 glibc 2.2.93-5

Red Hat Enterprise
Linux (RHEL) 3
AS/ES/WS

2.4.21-4.EL glibc-2.3.2-95
.3

Not yet
supported for
production use.

SuSE Pro 8.0 2.4.18 glibc 2.2.5

SuSE Pro 8.1 2.4.19 glibc 2.2.5

SuSE Linux Enterprise
Server (SLES) 7

2.4.7 2.4.7

SuSE Linux Enterprise
Server (SLES) 8

2.4.19 glibc 2.2.5 Validated up to
SuSE Service
Pack 2 level
76 MySQL to DB2 UDB Conversion Guide

http://www.ibm.com/software/data/db2/linux/validate/progdesc.html
http://www.ibm.com/software/data/db2/linux/validate/

� Intel 32-bit
� IBM eServer iSeries that support Linux
� IBM eServer pSeries that support Linux

DB2 UDB Enterprise Server Edition is supported on:

� Intel 32-bit
� Intel 64-bit
� AMD 64-bit
� S/390® 9672 Generation 5 or later, Multiprise® 3000 or eServer zSeries
� IBM eServer iSeries that support Linux
� IBM eServer pSeries that support Linux

Disk requirements for DB2 UDB servers
The disk space required for DB2 UDB depends on the type of installation you
choose:

� Typical: Requires 450 to 500 MB

With Typical installation type, DB2 is installed with most features and
functionality, including graphical tools such as the Control Center and
Configuration Assistant

� Compact: Requires 350 to 400 MB

With Compact installation type, only basic DB2 features and functions are
installed, graphical tools are not included.

� Custom: Requires 350 to 700 MB

With Custom installation type, you can select the features you want to install.
The disk space needed varies based on the selected features.

When you install DB2 Enterprise Server Edition or Workgroup Server Edition
using the DB2 set up wizard, size estimates are dynamically provided by the
installation program based on installation type and component selection.

If the space required for the installation type and components exceeds the space
found in the path specified, the setup program issues a warning about the
insufficient space. The installation can continue. If the space for the files being
installed is in fact insufficient, installation will stop, and the setup program needs
to be stopped if additional space cannot be provided.

Remember to include disk space allowance for required software,
communication products, and documentation. In DB2 UDB Version 8, HTML,
and PDF documentation is provided on separate CD-ROMs.
 Chapter 4. Installation 77

Memory requirements for servers
At a minimum, a DB2 UDB server installation requires 256 MB of RAM.
Additional memory may be required. However, when determining memory
requirements, be aware of the following:

� Additional memory may be required for non-DB2 software that may be
running on your system.

� Additional memory is required to support database clients.

� Specific performance requirements may determine the amount of memory
needed.

� Memory requirements will be affected by the size and complexity of your
database system.

� Memory requirements will be affected by the extent of database activity and
the number of clients accessing your system.

Communication requirements
When using TCP/IP as the communication protocol, no additional software is
needed for connectivity. For more supported communication protocols, please
refer to DB2 UDB manual Quick Beginnings for DB2 Servers V8, GC09-4836 or
log on to IBM’s Infocenter for DB2 at:
http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

4.1.2 Installation procedure
Table 4-2 shows the four installation methods in which DB2 UDB can be
installed. For completeness we have provided the information for supported
Linux, UNIX, and Windows operating systems. Each of the methods listed has its
own pros and cons, and depends on the environment. For a discussion on the
preferred method, please refer to the IBM redbook Up and running with DB2 for
Linux, SG24-6899.

Table 4-2 DB2 installation methods

For our project, and for a conversion project in general, the DB2 UDB
Application Development Client is required. It provides libraries for application

Installation method Linux UNIX Windows

DB2 setup wizard yes yes yes

db2_install yes yes no

Response file installation yes yes yes

Native installation tool e.g. RPM yes no
78 MySQL to DB2 UDB Conversion Guide

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp

development. If the application server and the database server are to be placed
at same system, you can install both DB2 UDB server and Application
Development Client in one step by selecting Custom installation type.

In our project we followed the following steps for the install of DB2 UDB V8.1 on
Linux:

� Log on to Linux as root user.

� Mount the CD-ROM using mount /cdrom

� Change to the CD-ROM directory cd /cdrom

� Launch DB2 Setup wizard with d2setup

� Choose Install Products once the DB2 Launchpad opens.

� On the Select installation type panel click Custom.

� On the Select the features panel make your choices. We make sure
Application Development tools is selected as shown in Figure 4-1. Our
sample application uses PHP, which needs the library in Application
Development tools.

Figure 4-1 DB2 custom installation with Application Development tools selected

� For DAS user, we chose the default dasusr1.

� In Instance setup, we let DB2 create the instance for us by choosing Create a
DB2 instance.

� We do not require the partitioning capability of DB2 in our sample application,
so we chose Single-partition instance in Instance use.

� In Instance-owing user, we let DB2 create the instance owner ID and use all
the default settings.

� In Fenced user, we also let DB2 create the ID for us.
 Chapter 4. Installation 79

� For Tools catalog, we create a local tools catalog by selecting Use a local
database. We also use the default local database TOOLSDB.

� For the administration contact list, we selected to use a local contact list.

� At the end, the setup wizard will provide you a summary of the installation
options you have selected. Review it and click Finish to start the installation.

Fix pack installation
We recommend you install the latest DB2 UDB FixPak.

� Download FixPak from:
http://ibm.com/software/data/db2/udb/support.html

� Change to the directory in which the installation image is located.

� Enter the installFixPak command to launch the installation.

� Update instances to run against the new code with db2iupd.

� Update DB2 Administration Server (DAS) using dasupdt.

db2setup command options
DB2setup command provides options for you to specify the locations of the log
files, trace file, or response file created during installation (see Figure 4-2). Log
files are useful in verifying the installation status and tracing the problem if
installation failed. By default db2setup starts the graphical user interface (GUI)
and picks up the language flag from the operating systems settings.

Figure 4-2 Db2setup command options

If the log file option is not specified, the db2setup.log and db2setup.err are stored
in the /tmp directory of the Linux operating system. Example 4-1 shows an
example of the db2setup.log.

Example 4-1 DB2setup log file

DB2 Setup log file started at: Thu 19 Feb 2004 01:26:00 PM PST PST
==

Operating system information: Linux 2.4.19-4GB.#1 Fri Sep 13 13:14:56 UTC 2002
i686
80 MySQL to DB2 UDB Conversion Guide

http://ibm.com/software/data/db2/udb/support.html

DB2 Setup log file finished at: Thu 19 Feb 2004 02:19:06 PM PST PST
==

4.1.3 Instance creation
For our project we let DB2 UDB create the DB2 instance automatically during
installation.

While this is default, you can turn automatic instance creation off during
installation as shown in Figure 4-3, and create instances and databases
manually after the installation has completed.

Figure 4-3 Instance creation option

DB2 UDB provides two methods to manually create instances:

� The db2isetup command starts a graphical tool for creating and configuring
instances as shown in Figure 4-4. It allows you to specify all the required
configuration parameters such as the instance owner and communication
protocol in an easy and guided fashion. The command can be found in
/opt/IBM/db2/V8.1/instance.

Figure 4-4 Graphical user interface for db2isetup

� The db2icrt command creates an instance, for example:

db2icrt u db2fenc1 db2inst1
 Chapter 4. Installation 81

As part of the instance creation, the installer creates three users identified as
db2inst1, db2fenc1, and dasadm1. If you do not want to use the default user IDs,
you can create the user IDs and groups ahead of time and use the IDs during
creating the instance. The installer will also add the following entry to the
/etc/services file in order to allow communication from DB2 clients:

db2c_db2inst1 50000

Where db2c_db2inst1 indicates the service name, and 50000 indicates the port
number. Subsequent instances may be created on the same server simply by
using one of the methods introduced above.

4.1.4 Client setup on Linux
This section discusses installation and configuration of DB2 UDB clients to
access a remote DB2 UDB server. DB2 UDB provides three types of clients free
of charge:

� The Run-Time Client
� The Administration Client
� The Application Development Client

All clients are supported on Linux, AIX, HP-UX, Solaris, and Windows operating
systems.

To access a remote DB2 UDB database, you can either run the easy to use
graphical tool Configuration Assistant or use the catalog commands to provide
entries for the following three directories:

� NODE directory: A list of remote DB2 instances
� ADMIN NODE directory: A list of remote DB2 Administration servers
� DATABASE directory: A list of databases

To access a remote DB2 UDB database, you first catalog the DB2 UDB node,
which is the server where the database resides, then catalog the database. See
Example 4-2.

Example 4-2 Cataloging node and database

--
-- catalog database node
--

Note: Typically, for a production environment, DB2 clients are installed on
physically separate machines from the DB2 server machine. However, for an
application development environment, it may be useful to have everything
such as the DB2 database server plus the clients on the same machine.
82 MySQL to DB2 UDB Conversion Guide

CATALOG TCPIP NODE lochness REMOTE lochness SERVER 50000 WITH 'Redbook system'
--
-- catalog database
--

CATALOG DATABASE itsodb AS itsodb AT NODE lochness WITH 'Redbook sample
database'

After installing your DB2 Administration Client, you should configure it to access
a remote DB2 server using the Configuration Assistant. Start the graphical
interface through the DB2 Control Center or by using the command db2cc. For
more detailed information, please refer to the IBM DB2 UDB manual Quick
Beginnings for DB2 Clients V8, GC09-4832.

4.2 Other software product
Environment setup includes all the software used in the target system. In the
migration planning, all the required software has been identified. All the identified
software should be installed and configured.

The sample application used in this book is written in PHP. Therefore, we prepare
the target system for the PHP application.

4.2.1 PHP adjustment for Unified ODBC with DB2 support
When migrating a PHP application from MySQL to DB2 on Linux, some
preparations and verifications have to be accomplished first for unified ODBC
with DB2 support. If a precompiled package of PHP is used, by default only a
predefined set of functions and database support is integrated. In order to use
the IBM DB2 libraries, PHP has to be recompiled using the --with-ibm-db2
configuration option.

Adjustment steps:

1. Backup php.ini and httpd.conf:

To ensure the configuration files of PHP and Apache are not lost when
installing the new PHP version, we recommend backing up the /etc/php.ini
and /etc/httpd/httpd.conf files.

Note: All commands and procedure descriptions provided in this section
refers to SuSE Linux 8.1. This can vary for other versions or Linux
distributions.
 Chapter 4. Installation 83

2. Downloading PHP package:

The source code for PHP is available at: http://www.php.net/downloads.php

In our migration scenario we used Version 4.3.4 of PHP, and the package we
downloaded was php-4.3.4.tar.gz.

3. Decompressing source package:

The following command decompresses the contents of the sources package
in to a directory called php-4.3.4:

bash$ tar xzf php-4.3.4

4. Changing the working directory:

Use the cd command to make the newly created directory your working
directory.

bash$ cd php-4.3.4

5. Specifying the configuration options for the PHP source

A list of the possible configuration options can be seen by issuing the
following command:

bash$ configure --help

To see which configuration options are included in the previous installed PHP
version, the PHP function phpinfo() can be invoked out of a Web page file. In
the third section of the PHP information, the included configuration
commands are listed as shown in Figure 4-5. To include all these commands,
copy and paste them into the configure command and add the
--with-ibm-db2 option. Also include the --with-apxs option if not present yet.
84 MySQL to DB2 UDB Conversion Guide

http://www.php.net/downloads.php

Figure 4-5 PHP Configuration options

For our purposes we specified only four options for the configure command:

bash$ configure --with-ibm-db2=/home/db2inst1/sqllib \
--with-mysql \
--with-apxs=/usr/sbin/apxs \
--with-config-file-path=/etc

where the --with-ibm-db2 option specifies the location of the DB2 Application
Development Client1 instance on the machine, and the --with-apxs option
specifies the Apache’s apxs tool, which allows you to build extension modules
to add to Apache’s functionality.

1 The Application Development Client or support can be installed as an option with the DB2 Server.
For instructions see Section 4.1.2, “Installation procedure” on page 78.
 Chapter 4. Installation 85

6. Compiling PHP

After configuring the source files, the compile process is started using the
make command. We piped the output to a log file in order to check for failure
afterwards:

bash$ make > make.out

7. Installing PHP

Once PHP has compiled successfully, it can be installed as the root user:

bash$ su root
Password>
bash$ make install

8. Configuring Apache

As Apache already was configured for the PHP used in our case, only some
changes have to be made. As part of the installation process PHP
automatically modifies Apache’s configuration file /etc/httpd/httpd.conf by
inserting two lines. It has to be checked if the installer placed this two lines in
the right section, and if the provided path to the modules matches the path
definition of the other modules in this section (see Example 4-3).

Example 4-3 Correct section for the libphp4.so and mod_php4.c

Dynamic Shared Object (DSO) Support
Example:
LoadModule foo_module libexec/mod_foo.so
loadModule ...
.
.
loadModule php4_module /usr/lib/apache/libphp4.so
.
.
Reconstruction of the complete module list from all available modules
(static and shared ones) to achieve correct module execution order.
[WHENEVER YOU CHANGE THE LOADMODULE SECTION ABOVE UPDATE THIS, TOO]
ClearModuleList
.
.
AddModule mod_php4.c

9. Checking for php.ini.

Note: If Apache’s apxs tool is not installed yet, the tool has to be installed
before compiling PHP. In SuSE Linux, this package is called apache-devel.
86 MySQL to DB2 UDB Conversion Guide

Either copy php.ini-dist in the Configuration File Path (see Figure 4-5) of PHP
and rename it to php.ini, or if your PHP version is the same as before copy
the version that was saved in step 1 back in this directory.

10.Starting Apache httpd server:

Apache has to be restarted to use the configuration changes:

bash$ /etc/init.d/apache restart

4.3 MTK installation and usage
The IBM DB2 Migration Toolkit (MTK) for MySQL is an ingenuous tool that
accepts as input the arguments of the MySQL database, and the results in a new
DB2 database containing the corresponding database objects.

For a free download of MTK for MYSQL log on to
http://www.ibm.com/software/data/db2/migration/mtk/

4.3.1 MTK prerequisites
The following prerequisites are required to successfully deploy MTK for MySQL:

� Java JDK 1.4.0 or higher. Java JDK 1.4.0 is included in the Mysql2db2.tar.GZ
installation image.

� MySQL 3.23.48-Max-log or higher: Ensure MySQL is running, usually you
can start the daemon with the command safe_mysqld & from an account with
root permissions.

� DB2 v7.2 or higher. Use the command db2start to make sure the DB2 Server
is up and running.

Furthermore, MTK for MySQL requires the Korn shell to be installed on the
system. In case Korn shell is not installed, run the following command ln -sf
ksh bash to link the Korn shell to the Bourne shell.

For the purpose of this document we have used MTK for MySQL with DB2 UDB
Version 8.1 with FixPak 4 and MySQL Version 4.0.17. Although it did not make a
difference for our project, we recommend to install and run the MTK for MySQL
on the source machine.

4.3.2 MTK installation
Installing MTK is simple and straight forward:

� Copy the Mysql2db2.tar.GZ installation image into a newly created directory.
 Chapter 4. Installation 87

http://www.ibm.com/software/data/db2/migration/mtk/

� Expand the compressed package using:

tar zxvf Mysql2db2.tar.GZ

The package includes a jar file for Mysql2db2 Java classes, a shell script to start
the program, as well as the IBM JRE 1.4.0 needed by the program.

To launch the MTK for MySQL execute command Mysql2db2 to start the
program's user interface (see Figure 4-6).

Mysql2db2 also accept the input and output database as command parameters
like:

Mysql2db2 --indb=<MYSQL_DB_NAME> --outdb=<DB2_DB_NAME>

Figure 4-6 MTK initial screen
88 MySQL to DB2 UDB Conversion Guide

Chapter 5. Database porting

After the migration planning, and software and hardware setup, the next main
task is to migrate the source MySQL database structure onto DB2 UDB.

In this chapter we discuss process of porting the database structure from Mysql
4.0.1 server to DB2 UDB V8.1 server. Before doing this we need to look into the
difference between the MySQL and DB2 UDB structure.

In the first section we discuss the data type mapping, followed by DDL
differences. The DDL difference section provides a basic syntax difference
between MySQL and DB2 UDB.

In the succeeding section we provide additional considerations required to keep
in mind while porting the database schema from MySQL to DB2 UDB.

The last section provides detailed information of the database schema porting
steps using three different approaches:

� Porting using MTK
� Manual porting
� Metadata transform

5

© Copyright IBM Corp. 2004. All rights reserved. 89

5.1 Data type mapping
This section compares MySQL and DB2 UDB data types. In general, DB2 UDB
has data types equivalent to all the existing data types in MySQL.

Every column in database tables has a data type and this data type determines
the value that column can contain in it. DB2 UDB has built-in data types and
supports user defined data type (UDT) whereas MySQL has only built-in data
types support.

Figure 5-1 shows built-in data type of MySQL.

Figure 5-1 MySQL data types

Figure 5-2 shows built-in data types supported by DB2 UDB.

MySQL
data
types

Numeric
Types

Date and
Time

String
Type

Float Real Double

MediumInt BigIntTinyInt

Integer Small
INTNumeric Decimal

CHAR BLOB ENUMVARCHAR SET

TinyBLOB MediumBLOB

TinyTEXT MediumTEXT

TEXT

ApproximateExact

DateTime Date Time YearTimeStamp
90 MySQL to DB2 UDB Conversion Guide

Figure 5-2 DB2 UDB data types

MySQL data types are grouped into three categories, and can be converted to
DB2 UDB data types following the rules suggested below:

� Numeric type

– TINYINT

This is a single byte integer, DB2 UDB does not have built-in single byte
integer but SMALLINT is used for all the similar functionality.

– SMALLINT

A small integer is a two-byte integer with a precision of five digits. This can
be replaced by DB2 UDB SMALLINT.

– BIT/BOOL/BOOLEAN

These are synonyms for TINYINT(1), In DB2 UDB we use SMALLINT with
check constraint instead of BIT/BOOL/BOOLEAN.
 Chapter 5. Database porting 91

– MEDIUMINT

This is a medium-size integer with a signed range of -8388608 to
8388607. In DB2 UDB we use an integer instead of this.

– INTEGER/INT

An integer is 4-byte integer for both MySQL and DB2 UDB.

– BIGINT

A big integer is an 8-byte integer for both MySQL and DB2 UDB.

– FLOAT

A float in MySQL is single precision floating point number ranging from
-3.402823466E+38 to -1.175494351E-38, 0, and 1.175494351E-38 to
3.402823466E+38. Whereas in DB2 UDB it is a double-precision
floating-point number ranging from -1.79769E+308 to -2.225E-307, or
from 2.225E-307 to 1.79769E+308. So, a float in MySQL can directly be
mapped to real or float in DB2 UDB.

– DOUBLE

A double is a double precision floating point number for both DB2 UDB
and MySQL.

– REAL

This is synonym for double in MySQL.

– DECIMAL/NUMERIC/FIXED

A decimal in MySQL is mapped to a decimal in DB2 UDB. Although
MySQL and DB2 UDB implement decimals in a different way, externally
they behave same.

� Data and time type

– DATE

A date in MySQL is mapped to DB2 UDB date and both use 4 bytes (first
two for year, third for month, and last for day). The range of the MySQL
date is year 1000-9999, whereas DB2 UDB supports date from
0001-9999.

– DATETIME

A date and time combination in MySQL is displayed as YYYY-MM-DD
HH:MM:SS ranging from year 1000 to 9999. In DB2 UDB, the timestamp
is used for a similar purpose, which is a seven part value (year, month,
day, hour, minute, second, and microsecond).

– TIMESTAMP
92 MySQL to DB2 UDB Conversion Guide

A timestamp in MySQL is date time combination with range of 1970-01-01
00:00:00 to the year 2037. It automatically set to the date and time of the
most recent operation if you do not give it a valid value. This is same as
timestamp in DB2 UDB except for its range.

– TIME

MySQL time represents a clock ranging from -838:59:59 to 838:59:59. It is
mapped to DB2 UDB time, which is a 24 hour clock.

– YEAR

A year in two or four-digit format representing the year from 1901 to 2155.
It is mapped to SMALLINT in DB2.

� String/character types

– CHAR

A fixed length string in MySQL is represented with the same name in DB2
UDB, It can be mapped to CHAR in DB2.

– VARCHAR

A variable-length string is also same as DB2 UDB VARCHAR for its range,
which is 0-255 characters in MySQL and 0-32672 bytes in DB2.

– TINYBLOB

MySQL tinyblob is a binary large object column with a maximum length of
255. This is mapped to DB2 BLOB(255).

– TINYTEXT

MySQL tinytext is a character stream of maximum length 255. It is mapped
to DB2 CLOB(255).

– BLOB

MySQL blob is a binary data column with a maximum length of 65535.
This is mapped to DB2 BLOB(65K).

– TEXT

This is a text column with a maximum length of 65535 and is mapped to
DB2 CLOB(65K).

– MEDIUMBLOB

MySQL mediumblob is a blob column with a maximum length of
16777215. This can be mapped to DB2 BLOB(16M).

– MEDIUMTEXT

MySQL mediumtext is a text column with a maximum length of 16777215.
This can be mapped to DB2 CLOB(16M).

– LONGBLOB
 Chapter 5. Database porting 93

MySQL longblob is very large blob column with a maximum length of
4294967295. It is generally mapped to DB2 BLOB(4G) not logged.

– LONGTEXT RAW

MySQL longtext is text column with a maximum length of 4294967295 is
generally mapped to DB2 CLOB(4G) not logged.

– ENUM VARCHAR2

MySQL has a special type enumeration, which is a string object that can
have only one value chosen from the list of values ‘value1’, 'value2',...,
NULL. This is implemented in DB2 UDB using VARCHAR() with check
constraints.

– SET VARCHAR2

Another MySQL special type set. It is a string object that can have zero or
more values, which must be chosen from the list of values 'value1',
'value2',... This is implemented in DB2 UDB using VARCHAR() with check
constraints.

Table 5-1 shows the default data type mappings between two databases used by
MTK and the sample application.

Table 5-1 Default data type mapping

MySQL 4.1 DB2 UDB 8.1

TINYINT SMALLINT

SMALLINT SMALLINT

MEDIUMINT INTEGER

INT INTEGER

INTEGER INTEGER

BIGINT BIGINT

FLOAT FLOAT

DOUBLE DOUBLE

REAL REAL

DECIMAL DECIMAL

NUMERIC NUMERIC

DATE DATE

DATETIME TIMESTAMP
94 MySQL to DB2 UDB Conversion Guide

5.2 Data Definition Language differences
In this section we address the Data Definition Language (DDL) syntax difference
between MySQL and DB2 DDL statements, and provide the DB2 UDB
conversion. These differences can be syntactical, semantic, or functional.

Both MySQL and DB2 UDB follows structured query language (SQL),
standardized language used to access databases, and is defined by the
ANSI/ISO.

The data definition language is a subset of SQL, which serves to create or delete
a database and its structure (tables, views, and indexes); to grant or revoke user
privileges; and to define referential integrity rules.

TIMESTAMP TIMESTAMP

TIME TIME

YEAR SMALLINT with check constraint

CHAR CHAR

VARCHAR VARCHAR

TINYBLOB BLOB(255)

TINYTEXT CLOB(255)

BLOB BLOB(65K)

TEXT VARCHAR2, CLOB(65K)

MEDIUMBLOB BLOB(16M)

MEDIUMTEXT CLOB(16M)

LONGBLOB BLOB(2G) NOT LOGGED

LONGTEXT RAW, CLOB(2G) NOT LOGGED

ENUM VARCHAR2, VARCHAR() with check constraints

SET VARCHAR2, VARCHAR() with check constraints

MySQL 4.1 DB2 UDB 8.1
 Chapter 5. Database porting 95

5.2.1 Database manipulation
MySQL database objects are always stored in one directory. This gives
advantage of simplicity but with a big performance bottleneck because of slow
disk seek, slow search, and non-indexing of data. MySQL depends on the
operating system’s capabilities for distributing its data across disks. It uses
symbolic links to different disks for different databases, and for database and
table distributing.

On Linux machines MySQL also uses file system mounting options but most of
the time MySQL uses symbolic link. This can be done by creating a directory
where you have an extra space:

bash>cd <file system with space>
bash>mkdir mysqldata

then creates a symbolic link to the newly created directory using:

bash>cd /usr/local/mysql
bash>ln -sf <file system with space>/mysqldata data

Now you can create a database from MySQL mysql prompt using:

mysql>create database itsodb

MySQL users can distribute tables using symbolic linking or the data and index
directory options of create table.

MySQL does not provide anything for logically dividing the database into different
nodes or distributing tables onto different table spaces except for the optional
InnoDB table, which supports multiple table space distributed in different files.
Also, MySQL does not give any options for distributing tables into different
segments according to usage or the user. We discuss this in 5.3, “Other
considerations” on page 107.

DB2 UDB uses a better approach for the logical and physical distribution of the
database and the database elements in different sectors. While migrating the
database from MySQL to DB2 UDB, you can use these features for the
performance enhancement of your application.

Instance
A DB2 UDB server can have more then one instance. One instance can have
multiple databases. One instance per application database has the advantage
that the application and database support do not have to coordinate with others
for activities that need to take database or instance off-line. For migration
purposes, you can create one instance for your database application
environment. It can be created easily using the db2icrt command:
96 MySQL to DB2 UDB Conversion Guide

bash>db2icrt itso

Database partition group/node group
As the name implies it represents a container for set of partitions where the table
space resides. This can be used if you want to spread your DB2 UDB database
across multiple servers in a cluster or multiple nodes. There are no database
partition group design considerations if you are using a non-partitioned
database. The nodegroup can be created within a database using:

db2>create nodegroup itsospecial on all nodes

Database
A database represents your data as a collection of data in structured fashion. It
includes a set of system catalog tables that describe the logical and the physical
structure of the data, a configuration file containing environment parameter
values used by the database, and a recovery log with ongoing and archivable
transactions.

Creating a database
The database in DB2 UDB can be created simply by using:

db2>create database itsodb

This command initializes a new database with a default path, and table spaces. It
creates three initial table spaces and the system tables, and allocates the
recovery log.

You can use the create database statement with options to personalize the
database as shown in Example 5-1.

Example 5-1 Create database

db2>create database itsodb
catalog tablespace managed by system using

('/home/itsodb/database/catalog')
extentsize 16 prefetchsize 16
user tablespace managed by system using ('/home/itsodb/database/user4K')
extentsize 16 prefetchsize 16
temporary tablespace managed by system using

('/home/itsodb/database/temp')

Dropping a database
In MySQL you can drop the database using:

mysql>drop database [if exists] itsodb
 Chapter 5. Database porting 97

This will remove all the database files (.BAK, .DAT, .HSH, .ISD,.ISM, .ISM, .MRG,
.MYD,.MYI, .db, .frm) from your filesystem.

DB2 UDB has a similar command:

db2>drop database itsodb [at node]

This command deletes the database contents and all log files for the database,
uncatalogs the database, and deletes the database subdirectory.

Alter database
MySQL alter database allows you to change the overall characteristics of a
database. For example, the character set clause changes the database
character set, and the collation clause changes the database collation. The basic
syntax for altering the database is:

mysql>alter database itsodb CHARACTER SET charset_name COLLATE
collation_name

In DB2 UDB you can use UPDATE DATABASE CONFIGURATION and UPDATE
DATABASE MANAGER CONFIGURATION to set the database and database manager
configuration parameters. Using this you can change a lot of configuration
parameters like the log file size, log file path, heap size, cache size, etc.

db2> update database manager configuration using diaglevel 3
db2> update database configuration for itsodb2 using logfilsiz 8

You can also change the physical and logical portioning by allocating the table
space and paging for the database.

Table space
A table space is a storage structure containing tables, indexes, large objects, and
long data. Table spaces reside in database partition groups. They allow you to
assign the location of database and table data directly onto containers. DB2 UDB
allows for two types of table spaces: System Managed Space (SMS), which is
maintained by the system, and Data Managed Space (DMS), which is
maintained by the DB2 UDB administrator.

The DB2 UDB database should have at least three table spaces:

� One catalog table space, which contains system catalog tables
� One or more user table space, which contains user defined tables
� One or more temporary table space, which contains temporary tables

It can be created using:

db2> create regular tablespace itsodb8k pagesize 8192 managed by system
using ('/home/itso/database/user8K') extentsize 8 prefetchsize 8 bufferpool
itsodb8k
98 MySQL to DB2 UDB Conversion Guide

Schema
A schema is an identifier such as a user ID that helps group tables and other
database objects. A schema can be owned by an individual, and the owner can
control access to the data and the objects within it. A schema is also an object in
the database. It may be created automatically when the first object in a schema is
created. We can create a schema using:

db2>create schema itsoschema authorization itso

5.2.2 Table manipulation
Tables are logical structures maintained by the database manager. Tables are
made up of columns and rows.

MySQL tables
As shown in Figure 5-3, MySQL supports two types of tables: transaction-safe
table and non transaction-safe table. Transaction-safe tables (InnoDB and BDB)
are crash safe and can take part in transactions; they provide the concurrency
feature and allow commit and rollback. On the other hand, non transaction-safe
tables (HEAP, ISAM, MERGE, and MyISAM) are much faster, and consume less
space and memory.
 Chapter 5. Database porting 99

Figure 5-3 MySQL table types

The following tables are the basic storage elements in MySQL:

� InnoDB table

InnoDB is transaction safe storage engine with commit, rollback, and crash
recovery capabilities. It provides locking on row level and also provides
consistent non-locking read-in select statements for better concurrency and
performance.

InnoDB is a complete database service placed under MySQL. It has its own
buffer pool for caching data and indexes in main memory. It supports multiple
table spaces. It can be created using the statement:

mysql>create table itsoinnodb (i int ,f float) type=innodb;

� BDB table

Another type of transaction safe table in MySQL is BerkeleyDB (BDB). It
supports page level locking, supports the commit and rollback features of the
transaction, and is more stable while MySQL is in crash. It can be configured
and created using the following commands:

MySQL Table Types

Non Transaction-Safe
Tables

BDB

MyISAMMergeHEAP ISAM

Transaction-Safe
Tables

INNODB

Default
Table

CompressedDynamic Stable
100 MySQL to DB2 UDB Conversion Guide

bash>./configure --with-berkeley-db
mysql>create table itsobdb (i int ,f float) type=bdb;

� MyISAM table

MyISAM is the default table type in MySQL. It is based on the ISAM code, and
supports crash recovery, concurrent insert, big files on operating
system/filesystem that support big files, better indexing, and index
compression and table compression.

MyISAM files are smaller than ISAM files, but it needs more CPU time for
inserting and accessing data from compressed tables and indexes.

MyISAM is a default MySQL table so it can be created either with specifying
type=myisam or not specifying any type:

mysql>create table itsomyisam (i int ,f float);

� ISAM table

ISAM is an older implementation of the MySQL tables, and is quite similar to
MyISAM, and it is deprecated now. It allows compressed and fixed length
keys, fixed and dynamic record length, machine/OS format data and max key
length of 256. It can be created with the same create table statement with
type=isam:

bash>create table itsoisam (i int ,f float) type=isam;

DB2 UDB conversion of MySQL table types
In DB2 UDB all the tables take part in the transaction. So MySQL InnoDB, BDB,
MyISAM and ISAM tables can all be converted to a DB2 UDB regular table. A
DB2 UDB regular table is a general purpose table.

A regular table is created with the CREATE TABLE statement and is used to hold
persistent user data.

Create table syntax
In this section we give you a high level overview of the difference in the create
table syntax of MySQL and DB2 UDB. MySQL create table statements are quite
simple with few exceptions. Example 5-2 shows the creating of MySQL InnoDB.
Figure 5-3 shows the DB2 conversion, no major change required.

Example 5-2 creating MySQL InnoDB table

mysql>create table itosinno(col1 int, col2 char(10)) type=InnoDB ;

Example 5-3 DB2 conversion of creating MySQL InnoDB table

db2>create table itsoinno(col1 int, col2 char(10))
 Chapter 5. Database porting 101

Example 5-4 is a MySQL MyISAM table creation example. Example 5-5 is the
DB2 conversion. The main changes include:

� Changes in the data type according to data type mapping
� Instead of auto_increment, generated by default as identity is used.

Example 5-4 Creating MySQL MyISAM table

mysql>create table itsotest1 (
 wk_id int(11) unsigned NOT NULL auto_increment,
 user_id int(11) unsigned default NULL,
 cnt int(10) unsigned default NULL,
 cat_id int(12) unsigned default NULL,
 status varchar(10) default NULL,
 PRIMARY KEY (wk_id)) type=MyISAM;

Example 5-5 DB2 Conversion of MySQL MyISAM table creation

db2>create table itsotest1(
 wk_id INT NOT NULL GENERATED BY DEFAULT AS IDENTITY,
 user_id INT default NULL,
 cnt INT default NULL,
 cat_id INT default NULL,
 status VARCHAR(10) default NULL,
 PRIMARY KEY (wk_id));

Alter table
Alter table is a statement to change one or more properties of a table. The syntax
of alter table for MySQL and DB2 UDB is quite similar and is shown in
Example 5-6.

Example 5-6 MySQL and DB2 UDB alter table example

mysql>alter table itsotest1 modify status varchar(20);

db2>alter table itsotest1 alter column status set data type varchar(20)

Alter table in DB2 UDB does not support the dropping of columns, but this can be
easily achieved using the temporary table. Scripts for doing this are shown in
Example 5-7.

Example 5-7 DB2 UDB dropping column using temporary table

db2>create temporary table temp as
 (select col1, col2, col4 from itsotable1)
 definition only not logged initially

db2>insert into temp select col1,col2, col3 from itsotable1
102 MySQL to DB2 UDB Conversion Guide

db2>drop table itsotable1

db2>create table itsotable1 as
 (select * from temp)
 definition only not logged initially

db2>insert into itsotable1 select * from temp

db2>drop table temp

Drop table
Tables can easily be deleted from database by issuing drop table statements as
shown below.

For MySQL:

DROP [TEMPORARY] TABLE [IF EXISTS] tbl_name [, tbl_name,...] [RESTRICT |
CASCADE]

For DB2 UDB:

DROP table tbname

Non-persistent storage tables
Apart from the storage engines discussed above MySQL and DB2 support, here
are some temporary or intermediate table types.

� MERGE table

A merge table is a collection of identical MyISAM tables that can be used as
one. You can only select, delete, and update from the collection of the tables,
and dropping the merge table leads to drop the merge specification.

Tables can be merged only if they have identical columns, key information,
and the packing. Example 5-8 shows the statements for merge table in
MySQL.

Example 5-8 Usage of merge table in MySQL

mysql>create table itsotable1
 (col1 int not null auto_increament primary key, col2 char(20));

mysql>create table itsotable2(col1 int not null auto_increament primary key,
col2 char(20));

mysql>create table itsomerge
 (col1 int not null auto_increament, col2 char(20), key(col1));
 TYPE=MERGE UNION=(itsotable1,itsotable2) INSERT_METHOD=LAST;
 Chapter 5. Database porting 103

mysql>insert into itsotable1 (col2) VALUES ("itso1"),("itso2");

mysql>insert into itsotable2 (col2) VALUES ("itso3"),("its04”);

DB2 UDB uses the updateable UNION ALL view to achieve the above
feature. UNION ALL views are commonly used for logically combining different
but semantically related tables. UNION ALL view is also used for unification of
like tables for better performance, manageability, and integrating federated
data sources:

UNION ALL Views are created using:

db2>create view itsounionview as select * from itsotable1 union all
 select * from itsotable2

� HEAP table

A heap table is a hashed index and is always stored in memory. Heap tables
are fast but not crash safe. Data is lost when MySQL crashes.

The MySQL internal HEAP tables use 100% dynamic hashing without
overflow areas. There is no extra space needed for free lists. HEAP tables
also do not have any problem with delete and inserts, which normally is
common with hashed tables. It can be created using

mysql> create table itsoheap type=heap select * from itsotable1;

MySQL HEAP tables can be migrated to a temporary table, materialized
query tables, or indexes depending upon your requirements.

– Temporary table

DB2 UDB temporary tables are tables used for storing data in
non-persistent, in-memory, session-specific tables. Once the session is
over the definition of this table is lost. When your application is using
HEAP table in this fashion, temporary tables can be declared in your
application by calling statements:

• Create user temporary table space if not existing using:

create user temporary tablespace discompose managed by system using
('usertemp1')

• Declare temporary table in the application:

declare global temporary table distemper like itsotable1 on commit
delete rows not logged in discompose

– Materialized query table

A materialized query table (MQT) is a table whose definition is based on
the results of a query, and whose data is in the form of precomputed
results. If the SQL compiler determines that a query will run more
104 MySQL to DB2 UDB Conversion Guide

efficiently against a materialized query table than the base table or tables,
the query executes against the materialized query table:

create table mqtitso as (select * from itsotable1) data initially
deferred refresh deferred

In addition, DB2 UDB also supports tables for supporting clustering and query
performance enhancement. These tables can also be used according to your
requirements:

� Materialized query table (MQT)/summary table

MQT also know as summary table in previous can also be used to improve
the query performance. We discuss MQT in more detail in 10.6, “Materialized
query tables (MQT)” on page 328.

� Multidimensional clustering (MDC) tables

MDC table has a physical cluster on more than one key or dimension at the
same time. The MDC table maintains its clustering over all dimensions
automatically and continuously, thus eliminating the need to reorganize the
table in order to restore the physical order of the data.

If you create multi-dimensional clustering (MDC) tables, the performance of
many queries might improve because the optimizer can apply additional
optimization strategies. Some advantage of MDC tables are quicker and less
scanning because of dimension block, faster lookup, block level index ANDing
and ORing, and faster retrieval.

It can be created using:

db2>create table itsomdc (col1 int, col2 int, col3 int, col4 char(10))
 organize by dimensions(col1,col2,col3)

� Range-clustered tables (RCT)

RCT are implemented as sequential clusters of data that provide fast, direct
access. It is a table layout scheme where each record in the table has a
predetermined offset from the logical start of the table. Some advantages
associated with RCT are direct and fast access, lesser maintenance, lesser
logging, lesser locking, lesser buffer pool size, and lesser indexing. It can be
created using:

db2> create table itsorct
 (col1 int not null, col2 int not null, col3 char(10), col4 float)
 oraganized by key sequence(col1 starting from 1 ending at 10000)
 allow overflow

� Typed table/hierarchy table

Typed tables are tables that are defined with a user-defined structured type.
With typed tables you can establish a hierarchical structure with a defined
 Chapter 5. Database porting 105

relationship between those tables called a table hierarchy. The table
hierarchy is made up of a single root table, supertables, and subtables.

It can be created as shown in Example 5-9.

Example 5-9 Usage of typed/hierarchy table

db2>create table itsotypedtable1 of itsotype(ref is Oid user generated)

db2>create table itsosubtable1 of itsotype2 under itsotypedtable1
 inherit select privileges

db2>create table itsosubtable2 of itsotype2 under itsotypedtable1
 inherit select privileges

� Views

Views are the named specification of a result table. This specification is a
select statement that is run whenever the view is referenced in an SQL
statement. It can be used just like a base table.

A simple view can be created by create statement as shown in Example 5-10.

Example 5-10 View example

db2>create table itsotable1(col1 int, col2 int,
 col3 char(20),col4 float, col5 char(30))

db2>create table itsotable2(col6 int, col7 int, col8 char(20),
 col9 float, col10 char(30))

db2>create view itsoview(col1,sum1,col4,col10) as
 select col1,col1+col6,col4,col10
 from itsotable1,itsotable2
 where col1<10 and col6>10

5.2.3 Index manipulation
An index is an object in the database system, which uses indexing techniques for
faster retrieval of the data from tables. It is an ordered set of pointers to rows of a
base table managed by the database manager directly.

MySQL supports both single column indexes and multi-column indexes. MySQL
can have three types of indexes:

� Primary key
� Unique
� Index
106 MySQL to DB2 UDB Conversion Guide

DB2 UDB supports all the features supported by MySQL with same kind of
terminologies. So, they map directly while migrating.

Create Index
The following is a MySQL create index statement:

CREATE [UNIQUE|FULLTEXT] INDEX index_name [index_type]
ON tbl_name (index_col_name,...)
index_col_name:
col_name [(length)] [ASC | DESC]

Creating an index in DB2 UDB is quite similar. It can be done using:

CREATE [unique] INDEX index-name on tablename (columnnames ASC|DESC)
 SPECIFICATION ONLY INCLUDE(column-name)
 CLUSTER/EXTEND USING index-extension-name (constant-expression)
 PCTFREE 10/PCTFREE integer LEVEL PCTFREE integer MINPCTUSED integer
 ALLOW/DISALLOW REVERSE SCANS
 PAGE SPLIT SYMMETRIC/PAGE SPLIT HIGH/LOW
 COLLECT STATISTICS DETAILED SAMPLED

Drop index
Drop index statement for MySQL and DB2 UDB:

mysql>DROP INDEX index_name ON tbl_name;
db2>DROP INDEX index_name

5.3 Other considerations
Up until now we discussed approaches for converting database elements, which
use similar approaches in two products. In the subsequent sections we discuss
conversion of the database objects, which does not map directly in MySQL and
DB2 UDB. We also discuss server and database placement architecture.

Multiple servers
In some cases multiple MySQL servers are placed on the same machine. It may
be for the reason of user management or testing, or differentiating applications
and keeping them independent. MySQL provides an option to run multiple
servers on same machine using several operating parameters.

There are several ways to configure new server; we used:

bash> /path/to/mysqld --socket=file_name --port=port_number

or you can use:

bash> MYSQL_UNIX_PORT=/tmp/mysqld-new.sock
 Chapter 5. Database porting 107

bash> MYSQL_TCP_PORT=3307
bash> export MYSQL_UNIX_PORT MYSQL_TCP_PORT
bash> mysql

DB2 UDB supports similar functionality using multiple database manager
instances on the same machine; each database manager instance has its own
configuration files, directories, and database. Figure 5-4 shows the typical
scenario.

Figure 5-4 Typical DB2 UDB setup

DB2 UDB on all the UNIX systems support creation of different instances on the
same machine with a different DB2 UDB version.

Multiple databases and schema conversion
In MySQL, tables within a database cannot be logically grouped by a schema or
qualified name based on the application. To fulfill this requirement MySQL tables
are placed in separate database. Application can than access these tables in the
multiple databases.

MySQL supports accessing of the tables in multiple databases using the same
connection. So an application connected to MySQL can use two tables in
different databases in a single statement.
108 MySQL to DB2 UDB Conversion Guide

The queries in Example 5-11 shows how it works

Example 5-11 Multiple database example

mysql>create database itsodb_1;
mysql>create database itsodb_2;
mysql>connect itsodb_1;
mysql>create table itso1(col1 int, col2 char(10));
mysql>insert into itso1 values(1,”itso”);
mysql>connect itsodb_2;
mysql>create table itso2(col1 int, col2 char(10));
mysql>insert into itso2 values(1,”itso1”);
mysql>select * from itso2,itsodb_1.itso1;

This works in MySQL and give result

+------+-------+------+------+
| col1 | col2 | col1 | col2 |
+------+-------+------+------+
| 1 | itso1 | 1 | itso |
| 1 | itso1 | 2 | itso |
+------+-------+------+------+

Figure 5-5 shows the architecture of multiple MySQL databases accessed by
single application using same connection.

Figure 5-5 MySQL Application with multiple DBs instead of multiple schemas

DB2 UDB supports multiple database access with database links in a federated
system. For a none federated system, DB2 UDB application uses more logical
technique by using multiple schemas in place of multiple database used in same
application. Each database can have multiple schemas and each table belongs
to a particular schema.

When migrating the MySQL applications using multiple databases, all the
databases used in the applications can be placed under one DB2 UDB database.

MySQL
Database1

MySQL
Database2

Application1 Connection 1

MySQLMySQL
ServerServer

Access Tables
using

Qualified Name
 Chapter 5. Database porting 109

Each MySQL database is now represented by a DB2 UDB schema to hold the
tables under that database. All the tables can be accessed by the application
using single connection. The DBA only need to manage one database.

DB2 UDB schema can be created using

db2>create schema itsoschema1 authorization itsoschema1

The tables created in the particular schema can be accessed using the full table
qualifier table schema.table name.

Table placement
MySQL does not support table space for managing physical location and page
size or distributing tables onto the different table spaces except for optional
InnoDB which supports multiple table space distributed in different files.

DB2 UDB supports table spaces to establish the relationship between the
physical storage devices used by your database system and the logical
containers used to store data. Table spaces reside in database partition groups.
They allow you to assign the location of table data directly onto containers.

Before migration of database structure you should create a proper table space of
different sizes in DB2 UDB, so that when you create tables they are placed into
the table spaces which will give best performance.

List information
MySQL provides a show command to list the information about databases, tables,
columns, or status information about the server.

DB2 UDB provide commands for getting the instances, database, table space,
etc. information. The DB2 UDB system catalogues contain all the information
about table, column, and index etc. You can use describe command to display
table structure or use select statement to get the details of the table definition.

Table 5-2 shows examples of MySQL and corresponding DB2 UDB
statements/commends to list database or table related information.

Table 5-2 MySQL to DB2 UDB conversion of list information statement

MySQL DB2 UDB

show databases ist database directory

show table select tabname from syscat.tables

show columns from tablename describe select * from tablename
110 MySQL to DB2 UDB Conversion Guide

Referential integrity
Referential integrity is the constraints defined on the table and its columns, which
helps you to control the relationship of data in different tables. Essentially, it
involves primary keys, foriegn keys, and unique keys.

Primary keys and unique keys are treated similarly in MySQL and DB2 UDB
whereas MySQL currently only parses foreign keys syntax in create table
statement, but does not use/store the information about foriegn keys except in
InnoDB tables which support checking of foreign key constraints, including
CASCADE, ON DELETE, and ON UPDATE.

DB2 UDB provide full support for foreign keys. With the full referential integrity
functionality from DB2 UDB, your application can be released from the job of
taking care of the data integrity issue. Example 5-12 shows creation and usage
of foreign key constraint in DB2 UDB.

Example 5-12 Foriegn key constraint usage

db2> alter table itsotable1 add constraint foreign1 foreign key (id)
 references itsotable2 on delete set null

We discuss more about foriegn keys creation in Section 5.5, “Sample database
migration” on page 117

5.4 Porting database
Now you have understand MySQL database structure/schema relative to
different types of DB2 UDB objects, such as database, tables, views, indexes and
referential integrity, in this section we give you details of the database
structure/schema conversion from existing MySQL database to DB2 UDB.

Database schema conversion can be done in various ways but most common
approaches are:

� Automatic conversion using porting tools
� Manual porting
� Metadata transport

In general all the above approaches take existing MySQL database as input and
pass it through following functional engine:

show index from tablename select indname from syscat.indexes where
tabname=tablename

MySQL DB2 UDB
 Chapter 5. Database porting 111

� Capture the database schema information from MySQL.
� Modify schema information for DB2 UDB.
� Create the database in DB2 UDB with structure.

5.4.1 Automatic conversion using porting tools
Using porting tool is the most common and easiest of all the approaches. The
IBM DB2 Migration Toolkit (MTK) simplify your migration to DB2 UDB. There are
a number of third party migration tools available in market which can be used but
IBM does not guarantee the correct functionality of these tools.

MTK for MySQL
IBM DB2 Migration Toolkit (MTK) for MySQL is a simple migration tool that takes
the MySQL database to be migrated and the new DB2 UDB database to be
created as input parameters. With MTK, you can automatically convert data
types, tables, columns, views and indexes into equivalent DB2 UDB database
elements. MTK provides database administrators (DBAs) and application
programmers the functionality needed to automate the migration task. You can
reduce the downtime, eliminate human error, and cut back on person hours and
other resources associated with the database migration by using the following
features found in the MTK:

� Extract database metadata from source DDL statements using direct source
database access or imported SQL scripts.

� Automate the conversion of database object definitions.

� Generate and run data movement scripts

� Track the status of object conversions and data movement, including error
messages, error location, and DDL change reports, using the migration log.

Download, installation and usage instructions for MTK are available in Chapter 4,
Section 4.3, “MTK installation and usage” on page 87.

The database structure migeration process using MTK is as follow:

� The MTK will first connect to MySQL database using the specified user and
password (the current user if none is specified) and dump all the DDL and
data using the mysqldump utility. It will store this DDL output in a file in the
current directory with the name
<MYSQL_DATABASE_NAME>.mysql.create.<CURRENT_TIME>. It stores MySQL
load files for all the data in the tables in the current directory with the names
<TABLENAME>.txt. mysql:daemon needs full write permission to the directory
stores these files During migration, you can use chmod 777 <dirname>
command to give the write access and then change it back later.
112 MySQL to DB2 UDB Conversion Guide

� The tool will then parse this myqsldump file to make it DB2 UDB compatible.
This new file will also be stored in the current directory with the name
<DB2_DATABASE_NAME>.db2.create.<CURRENT_TIME>

� The tool will then create the structure of the database in DB2 UDB by using
this parsed file.

� A log of all DB2 UDB commands with associated output is stored in a file in
the current directory by the name
<DB2_DATABASE_NAME>.db2.log.<CURRENT_TIME>. Examine this log
for any errors that might occur.

� When database conversion is finished, you can migrate your data,
applications and other components which uses DB2 UDB. It is very important
that you verify the migrated data after running the tool.

There are a few limitation in the current version of MTK

� MTK does not support the conversion of BLOB data type, so manual
conversion is required for this.

� MTK may not work properly for a timestamp because of different date time
formats, so manual conversion is required for this.

� MTK may not work properly for very complex databases. So extra care has to
be taken while converting very complex databases.

� Data type mapping in MTK are fixed and cannot be changed, so manual
change in script is required if you want to change the mapping.

Other migration tools
There are other migration tools which can be used to port MySQL database to
DB2 UDB.

� SQLWays

SQLWays 3.6 is an advanced migration tool from Ispirer Systems Ltd. that
ensures quick and easy transfer of database structures and data from MySQL
to DB2 UDB. SQLWays runs only on Microsoft Windows 9x/NT/2000/XP

� SqlPorter

The SQLPorter Migration Toolkit is a tool from RealSoftStudio Inc. that
simplifies the process of migrating data and databases across different
databases on different platforms. The SQLPorter Migration Toolkit allows you
to migrate an entire database (data and schema) in an integrated, visual
environment. The SQLPorter Migration Toolkit employs an intuitive user
interface and a series of wizards to simplify the migration process. All
components of the Migration Workbench are written in C++. It is supported
both on Windows and Linux system.
 Chapter 5. Database porting 113

5.4.2 Manual porting
In the previous section we discuss migration using MTK. Sometime it is required
to follow more personalized manual process to migrate database instead of the
standard tool. For those few cases we describe manual conversion process, with
a focus on converting MySQL objects and features which are not automatically
converted by MTK.

In Section 5.1, “Data type mapping” on page 90 and Section 5.2, “Data Definition
Language differences” on page 95, we demonstrate syntax and semitic
differences between MySQL and DB2 UDB, which can be used for manual
conversion. We already talked about creation, deletion, and altering of various
database objects like database, tables, index, views etc., and how they are
mapped while converting from MySQL and DB2 UDB. The manual process
involves following steps:

� Capturing the database schema information from MySQL

MySQL offer a utility mysqldump that extract the database structure and
deposit it into a text file. The structure is represented in DDL, and can be used
to recreate the database elements in DB2 UDB server. Syntax for mysqldump
is as shown below:

bash> mysqldump -u itso itsodb > mysqlobjects.ddl

If you are dumping very large database it is recommended to use --quick or
--opt option. Without these options mysqldump loads whole result set into
memory before dumping the result.

For further information on this utility refer MySQL Technical Reference.

� Modify schema information for DB2 UDB

Now that you have captured the source MySQL database structure using
mysqldump utility, it is time to modify schema information and make it work for
DB2 UDB. These manual changes can be

• DDL changes

First step in schema modification is the conversion of the create
statement for various database objects like database, tables, views,
indexes etc. Please refer Section 5.2, “Data Definition Language
differences” on page 95 for these conversions. Also we need to write a
DDL script for creating database and table space.

• Data type changes

Check the data type used in the table definition. Change the MySQL
data type to DB2 UDB data type. Please refer Section 5.1, “Data type
mapping” on page 90 for data type conversions.

• Reserved words conversion
114 MySQL to DB2 UDB Conversion Guide

There are many reserved words in MySQL and DB2 UDB which cannot
be a valid name for the column and database element. Please refer
MySQL and DB2 UDB Reference guide for more detail about reserved
words and change the conflicting names in the DDL statements.

� Create database and database objects

Now that you have DDL statements modified, you are ready to create the DB2
UDB database and database objects. This can be done from command line
processor (CLP).

It is a common practice to place the database and table space creation
statements in one file and tables, views etc. creation statements in a separate
file. The database and table spaces will be created first. Once the database and
table spaces are in place, the tables, views etc., other objects will be created.
The database creation scripts should be based on the logical and physical
database design. In our example, we created database using the
create-database.sql script as shown in Example 5-13.

Example 5-13 create-database.sql script

-- Create the Initial Database
create database itsodb
 catalog tablespace managed by system
 using ('/home/itsodb/database/catalog') extentsize 16 prefetchsize 16
 user tablespace managed by system
 using ('/home/itsodb/database/user4K') extentsize 16 prefetchsize 16
 temporary tablespace managed by system
 using ('/home/itsodb/database/temp')

connect to itsodb

-- Create a Bufferpool with 8K and 16K Pages
create bufferpool itsodb8k size 2000 pagesize 8192
create bufferpool itsodb16k size 1000 pagesize 16384

-- Make the Bufferpool Change Take Effect
disconnect itsodb
connect to itsodb

-- Create a Tablespace with 8K and 16K Pages
create regular tablespace itsodb8k pagesize 8192 managed by system
 using ('/home/itso/database/user8K')
 extentsize 8 prefetchsize 8 bufferpool itsodb8k

create regular tablespace itsodb8k pagesize 16384 managed by system
 using ('/home/itso/database/user16K')
 extentsize 8 prefetchsize 8 bufferpool itsodb16k
 Chapter 5. Database porting 115

-- Create a System Temporary Tablespace with 8K and 16K Pages
create system temporary tablespace itsotemp8k pagesize 8 K managed by system
 using ('/home/itso/database/temp8K')
 extentsize 32 prefetchsize 16 bufferpool itsodb8K

create system temporary tablespace itsotemp16k pagesize 16 K managed by system
 using ('/home/itso/database/temp16K')
 extentsize 32 prefetchsize 16 bufferpool itsodb16K

disconnect itsodb

To create database, invoke the above SQL script from DB2 UDB Command Line
Window or bash shell by using.

db2>@create-database.sql
bash>db2 -f create-database.sql

We then pick up database object creation statements from the output of
mysqldump, mysqlobjects.ddl file and create db2objects.ddl script. Change the
DDL statements and data types following section 5.1 and 5.2 of this chapter. You
can create any additional statement required.

Now we execute the above created DDL scirpts from DB2 Command Line
Window or bash shell as shown in Example 5-14 and Example 5-15 below.

Example 5-14 create database objects from DB2 command line window

db2>connect to itsodb
db2>@db2objects.ddl
db2>disconnect itsodb

Example 5-15 create database objects from bash shell

bash>db2 connect to itsodb
bash>db2 -tf db2objects.ddl
bash>db2 disconnect itsodb

5.4.3 Metadata transport
In this section we discuss about using the database modelling tool for the
migration of a database structure from MySQL to DB2 UDB. There are number of
modelling tools existing in market which supports capturing of database model
from MySQL database. In most of the tools a logical model defines the database
design and physical model maps to the target database.

� IBM Rational® Rose® Professional Data Modeler Edition
116 MySQL to DB2 UDB Conversion Guide

The IBM Rational Rose Data Modeler Edition is a data design tool which
integrates application design with database design and maps data model with
object model. It allows database designers, business analysts and developers
to work together through a common language. Use this tool for migration
requires your MySQL model file to be available to converting to DB2 UDB
physical model.

� CA AllFusion ERwin Data Modeler

ERWin is database modelling tool which support easy creation and
maintenance of relational databases. It helps you create entity-relationship
diagram from MySQL database, which can be converted to DB2 database
structure. It can automatically generates tables, key-elements, and database
design.

� Embarcadero Technologies ER/Studio

ER/Studio is a model-driven application for the logical and physical analysis,
design, creation, and maintenance of database objects. It can
reverse-engineer the complete schema from MySQL database.

Database structure conversion process using modeling tools
Database structure conversion using the modeling tool is a very neat technique
for database conversion as lot of applications already have entity-relation
diagram. The conversion can be done very easily by following the steps given
below:

� Reverse-engineer database objects using a DDL script or an existing
database using one of the modeling tool.

� Switch to a physical model.

� Select DB2 database as a target database and generate a DDL script for a
new target.

� Create DB2 database structure using DDL scripts.

Limitation of this technique is that not everyone can afford costly modeling tools
just for migration.

5.5 Sample database migration
This section demonstrate the database structure conversion for our sample
BHMS Application from MySQL to DB2 UDB. BHMS is small real world Web
application consisting of tables, views and indexes. Before starting the database
conversion, please see the existing database structure in 3.1.2, “Database
structure” on page 71.
 Chapter 5. Database porting 117

For demonstration purposes we describe a step-by-step process using MTK and
then describe manual method for additional objects, which are not converted
using MTK:

� Starting MTK

<MTK Installation directory>/home/itsosj/mtk/Mysql2UDB

This will launch MTK Java application window as shown in Figure 5-6.

Figure 5-6 MTK startup window

� Enter Database name, User name, Password, Data path, and select the
option Test mode Does not deploy to DB2.

With the Test Mode Does not deploy to DB2 option selected, MTK will
generate DB2 DDL in a file, and will not execute the DDL to create the DB2
database structure. This allows you to change the data type, any column
names, or add any additional statements to add DB2 objects. Now click OK.

� The message box as shown in Figure 5-7 is displayed.
118 MySQL to DB2 UDB Conversion Guide

Figure 5-7 MTK Message window

� On completion of above task, you will see the successful migration window
and output as shown in Example 5-16.

Example 5-16 MTK output console

mysql2db2:> Grabbing MySQLdump output... Done.
mysql2db2:> Parsing Dump Files...
mysql2db2:> * -> Parsed CREATE statement for Table: catalog
mysql2db2:> * -> Parsed CREATE statement for Table: oenummer
mysql2db2:> * -> Parsed CREATE statement for Table: users
mysql2db2:> * -> Parsed CREATE statement for Table: shopping_cart
mysql2db2:> * -> Parsed CREATE statement for Index: manufacturer
mysql2db2:> * -> Parsed CREATE statement for Index: sku
mysql2db2:> * -> Parsed CREATE statement for Index: name
mysql2db2:> * -> Parsed CREATE statement for Index: sc_id
mysql2db2:> Database Test Migration Successful.

� In Test mode option, MTK will generate a number of files:

– <dbname>.mysql.create.<timestamp>
– output.mysql.create.<timestamp>
– data file corresponding to each table

� This allows you to examine the DDL generated by MTK. The DDL can be run
in later time to create DB2 database and object.

� If you want MTK to create DB2 objects and move the data for you, select
Quiet Mode - turn off output trace after lunch to MTK (see Figure 5-6). MTK
will automatically create the DB2 database and load data into it. The final
window as shown in Figure 5-8 will mark the completion.

Figure 5-8 MTK success message
 Chapter 5. Database porting 119

In this case you will get an additional line in the command window stating:

mql2db2:> Database Migration Completed. Please look into the log file for
details.
Log file name:itsodb2.db2.log.2004.02.03.09.41

Now you need to go and check the itsodb2.db2.log.2004.02.03.09.41 file
for correctness of data and a table.

Modify generated DDL
In this section we concentrate on mysql.create and output.mysql.create files
generated by MTK under Test Mode. The first file consists of create statements
for MySQL, and the second file contains those statements converted to DB2
UDB.

Now, we have database create statements, the default table create, and index
create statements, we will have a closer look at these create statements and
change them according to our requirement. In our case we got MySQL
statements in itsodb.mysql.create.2004.01.06.01.38, which is shown in
Example 5-17.

Example 5-17 input database

--
-- Table structure for table `catalog`
--

CREATE TABLE catalog (
 manufacturer char(14) default '0',
 model char(25) default NULL,
 type char(25) default NULL,
 year_from char(7) default NULL,
 year_to char(7) default NULL,
 kw char(3) default NULL,
 hp char(3) default NULL,
 ccm char(4) default NULL,
 cyl_capacity char(2) default NULL,
 motor_code char(60) default NULL,
 prodgroup char(2) default NULL,
 sku char(8) default NULL,
 dimension char(12) default NULL,
 ac char(3) default NULL,
 transmission char(3) default NULL,
 hint char(60) default NULL,
 stock int(10) unsigned default NULL,
 id int(12) unsigned NOT NULL auto_increment,
 PRIMARY KEY (id),
 KEY manufacturer (manufacturer,model)
) TYPE=MyISAM;
120 MySQL to DB2 UDB Conversion Guide

--
-- Table structure for table `oenummer`
--

CREATE TABLE oenummer (
 id int(11) NOT NULL auto_increment,
 sku char(8) default '0',
 oe_no char(15) default NULL,
 PRIMARY KEY (id),
 KEY artnr (sku)
) TYPE=MyISAM;
--
-- Table structure for table `users`
--

CREATE TABLE users (
 id int(11) NOT NULL auto_increment,
 firstname varchar(30) default NULL,
 lastname varchar(30) NOT NULL default '',
 email varchar(100) NOT NULL default '',
 company varchar(50) default NULL,
 street varchar(40) default NULL,
 zip varchar(12) default NULL,
 city varchar(40) default NULL,
 status int(1) NOT NULL default '1',
 solutation varchar(12) default NULL,
 loginname varchar(10) default NULL,
 password varchar(10) default NULL,
 telephon varchar(30) default NULL,
 fax varchar(40) default NULL,
 customer_no varchar(12) default NULL,
 PRIMARY KEY (id),
 KEY name (lastname,firstname)
) TYPE=MyISAM;

--
-- Table structure for table `shopping_cart`
--

CREATE TABLE shopping_cart (
 sc_id int(11) unsigned NOT NULL auto_increment,
 user_id int(11) unsigned default NULL,
 cnt int(10) unsigned default NULL,
 cat_id int(12) unsigned default NULL,
 status varchar(10) default NULL,
 PRIMARY KEY (sc_id),
 UNIQUE KEY sc_id (sc_id)
 Chapter 5. Database porting 121

) TYPE=MyISAM;

This is converted to output.db2.create.2004.01.06.01.38, which in the sample
application case is as following (Example 5-18).

Example 5-18 Output DB2 statements

--
-- Table structure for table `catalog`
--
CREATE TABLE catalog (
 manufacturer CHAR(14) default '0',
 model CHAR(25) default NULL,
 type CHAR(25) default NULL,
 year_from CHAR(7) default NULL,
 year_to CHAR(7) default NULL,
 kw CHAR(3) default NULL,
 hp CHAR(3) default NULL,
 ccm CHAR(4) default NULL,
 cyl_capacity CHAR(2) default NULL,
 motor_code CHAR(60) default NULL,
 prodgroup CHAR(2) default NULL,
 sku CHAR(8) default NULL,
 dimension CHAR(12) default NULL,
 ac CHAR(3) default NULL,
 transmission CHAR(3) default NULL,
 hint CHAR(60) default NULL,
 stock INT default NULL,
 id INT NOT NULL GENERATED BY DEFAULT AS IDENTITY,
 PRIMARY KEY (id)
);

--
-- Table structure for table `oenummer`
--
CREATE TABLE oenummer (
 id INT NOT NULL GENERATED BY DEFAULT AS IDENTITY,
 sku CHAR(8) default '0',
 oe_no CHAR(15) default NULL,
 PRIMARY KEY (id)
);

--
-- Table structure for table `users`
--
CREATE TABLE users (
 id INT NOT NULL GENERATED BY DEFAULT AS IDENTITY,
 firstname VARCHAR(30) default NULL,
 lastname VARCHAR(30) NOT NULL default '',
122 MySQL to DB2 UDB Conversion Guide

 email VARCHAR(100) NOT NULL default '',
 company VARCHAR(50) default NULL,
 street VARCHAR(40) default NULL,
 zip VARCHAR(12) default NULL,
 city VARCHAR(40) default NULL,
 status INT NOT NULL default 1,
 solutation VARCHAR(12) default NULL,
 loginname VARCHAR(10) default NULL,
 password VARCHAR(10) default NULL,
 telephone VARCHAR(30) default NULL,
 fax VARCHAR(40) default NULL,
 customer_no VARCHAR(12) default NULL,
 PRIMARY KEY (id)
);

--
-- Table structure for table `shopping_cart`
--
CREATE TABLE shopping_cart (
 sc_id INT NOT NULL GENERATED BY DEFAULT AS IDENTITY,
 user_id INT default NULL,
 cnt INT default NULL,
 cat_id INT default NULL,
 status VARCHAR(10) default NULL,
 PRIMARY KEY (sc_id)
);

These scripts are created considering that we will go for default schema mapping
from MySQL to DB2 UDB as discussed in 5.1, “Data type mapping” on page 90.
This is according to the MTK recommended mapping, but you may decide to
define some different mapping. If your application requires any mapping
changes, this is a time to do it. For example, in our case we want the DB2 table
SHOPPING_CART to have different columns names instead of above defined,
additional column for the address and change in status column size.

We can change them to the one as shown in Example 5-19.

Example 5-19 Change in the default scripts

CREATE TABLE shopping_cart (
 sc_id INT NOT NULL GENERATED BY DEFAULT AS IDENTITY,
 user_id INT default NULL,
 quantity INT default NULL,
 catalog_id INT default NULL,
 status VARCHAR(20) default NULL,
 address VARCHAR(100) default NULL,
 primary key (sc_id)
 Chapter 5. Database porting 123

)

If you have any timestamp and a BLOB column, special attention is required for
them. This is discussed in Chapter 6, “Data porting” on page 127.

Enhancement
This also is the time to add any enhancement to your database using the DB2
features MySQL does not have such as referential integrity. It is very essential
for the database as it ensures the consistency of data values between related
columns in different tables. RI is usually maintained by using the primary key,
unique key, and foreign keys. Primary and unique keys are successfully migrated
using MTK. As MySQL does not support foriegn keys except for table type
InnoDB, if you want to use foriegn keys in your database you need to add them
manually.

In our sample application, based on application requirements we created
referential integrity between tables in the referential.ddl file, which looks like
Example 5-20.

Example 5-20 Added foreign keys

alter table itsodb.shopping_cart add constraint foreign1 foreign key (user_id)
 references itsodb.users on delete set null

alter table itsodb.catalog add constraint foreign2 foreign key (id)
 references itsodb.shopping_cart on delete set null

alter table itsodb.catalog add constraint foreign1 foreign key (sku)
 references itsodb.oenummer on delete set null

Now we have completed the DDL modification; we executed the above changed
scripts to create the DB2 database and the objects as shown in Example 5-21.

Example 5-21 creation of tables and database in DB2 UDB

bash>db2 create database itsodb2
The CREATE DATABASE command completed successfully
bash>db2 connect to itsodb2

 Database Connection Information

 Database server = DB2/LINUX 8.1.4

Note: You should not reduce size of any field because it may cause an error
while porting data.
124 MySQL to DB2 UDB Conversion Guide

 SQL authorization ID = ITSOSJ
 Local database alias = ITSODB2
bash>db2 -tf "itsodb2.db2.create.2004.02.03.09.41"
DB20000I The SQL command completed successfully.
DB20000I The SQL command completed successfully.
DB20000I The SQL command completed successfully.
DB20000I The SQL command completed successfully.

Incase you are migrating InnoDB tables having foreign keys you need to migrate
them manually as MTK does not support migration of foreign keys. So after
running MTK in test mode you need to change the create table statement in
output.mysql.create.<timestamp> and remove CONSTRAINT `constraint name`.
You will create the table without the foreign key. After migrating your data you
then create a foreign key on this table.

Example 5-22 shows two MySQL InnoDB tables with the referential integrity
defined.

Example 5-22 MySQL InnoDB using foriegn key

mysql> create table innoParent(id int not null,name char(20), primary key(id))
 type=INNODB;

mysql> create table innoChild(cid int not null,name char(20), pid int not null,
 primary key(cid),index(pid),foreign key(pid)
 references innoParent(id)) type=INNODB;

Example 5-23 is the conversion to DB2.

Example 5-23 DB2 conversion of innoDB foreign key

db2>create table innochild
 (cid int not null default 0, name char(20) default null,
 pid int not null default 0, primary key(cid))

db2>create table innoparent
 (id int not null default 0, name char(20) default null,
 primary key(id));

db2>alter table innochild add constraint foreign1 foreign key (pid)
 references innoParent

Note: If you are adding foriegn key constaints before migrating data, make
sure that you load the parent table data before the child table.
 Chapter 5. Database porting 125

126 MySQL to DB2 UDB Conversion Guide

Chapter 6. Data porting

This chapter informs you about the considerations concerning data porting from
a MySQL system to a DB2 UDB system.

The usage of tools and commands supporting data dumping from MySQL and
loading data into DB2 UDB is described, and what you should be aware of when
using the tools.

This chapter also discusses the differences in specific data formats and data
types and how you can convert them from MySQL to DB2.

We also describe how the user account management (user data, access rights,
and privileges) is implemented in MySQL, and how you can port it to database
access information within DB2 security.

Finally, the steps for how we did the data porting in our sample project are
discussed in detail.

6

© Copyright IBM Corp. 2004. All rights reserved. 127

6.1 Considerations concerning data porting
Data porting describes the steps that are necessary to get data from one
database to another one. In general, you have to unload (also referred to as
dump or export) the data from the source database into one or more files, and
load (also referred to as import) the files into the target database.

Database systems provide commands and tools for unloading and loading data.
In MySQL the mysqldump tool is for unloading a database. DB2 UDB provides
the LOAD and IMPORT commands for loading data from files into the database.

You have to be aware of differences in how specific data types are represented
by different database systems. For example, the representation of date and time
values may be different in different databases, and it is often depends on the
local settings of the system.

If the source and the target database use different formats, you need to convert
the data either automatically by tools or manually. Otherwise, the loading tool
cannot understand the data to load due to the wrong format.

The migration of binary data stored in BLOBs should be done manually because
binary data cannot be exported to files in a text format.

Porting the user account management is a very specific step in a migration
project. You need to get the information about users, access rights, and
privileges out of MySQL, convert it to DB2 specific security information, and
create the users in DB2 UDB according to the source data. Migrating encrypted
passwords is impossible in most cases.

6.1.1 Commands and tools supporting data porting
MySQL and DB2 UDB provide tools that support data porting between these two
systems. In MySQL the mysqldump utility is used to retrieved data from the
database; the LOAD and IMPORT commands can be used to get this data into DB2
UDB.

MTK automates the use of the mysqldump utility and the DB2 LOAD command.

The mysqldump tool
When porting application data, this tool can be used for retrieving the data from
MySQL tables. It is shipped with MySQL and is usually located in the bin
directory of the MySQL installation.

The basic usage of the mysqldump tool is as follows:
128 MySQL to DB2 UDB Conversion Guide

mysqldump [OPTIONS] database [tables]

For a complete description of this tool, run mysqldump --help. The most
important command line options are:

� --no-data
No data information is extracted from the database, just the SQL statements
for creating the tables and indexes. This option is used for extracting DDL
statements only.

� --no-create-info
No SQL statements for creating the exported table is extracted from the
database. So, this option should be used for exporting data only. The output
file containing the data can be loaded into a DB2 table.

� --tab=<outFilePath>
This option creates a text file with the DDL (<tablename>.sql) and a tabulator
separated text file with the data (<tablename>.txt) in the given path for each
specified table. This option only works when the utility is run on the same
machine as the MySQL daemon. If this option is not specified, INSERT
statements for each row are created.

Example 6-1 shows the usage and output of the mysqldump command without
the --no-create-info and the --tab options. The output has DDL statements for
table creation, and INSERT statements to insert data into the table.
 Chapter 6. Data porting 129

Example 6-1 Usage of mysqldump without the --no-create-info and the --tab option

bash>mysqldump --user root itsodb testtable
-- MySQL dump 9.10
--
-- Host: localhost Database: itsodb
-- --
-- Server version 4.0.17-standard

--
-- Table structure for table `testtable`
--

CREATE TABLE testtable (
 name char(10) default NULL,
 birthday date default NULL
) TYPE=MyISAM;

--
-- Dumping data for table `testtable`
--

INSERT INTO testtable VALUES ('Klaus','1978-07-03');
INSERT INTO testtable VALUES ('Michael','1974-03-20');
INSERT INTO testtable VALUES ('Rakesh','1977-09-26');

Example 6-2 shows the usage and output of the mysqldump command with the
--no-create-info but without the --tab options. The output has only INSERT
statements for each row to insert data into the table.

Example 6-2 Usage of mysqldump with the --no-create-info but without the --tab option

bash>mysqldump --no-create-info --user root itsodb testtable
-- MySQL dump 9.10
-- ...

--
-- Dumping data for table `testtable`
--

INSERT INTO testtable VALUES ('Klaus','1978-07-03');
INSERT INTO testtable VALUES ('Michael','1974-03-20');
INSERT INTO testtable VALUES ('Rakesh','1977-09-26');

Example 6-3 shows the usage and output of the mysqldump command with the
--no-create-info and the --tab options. The output is a file with the exported
MySQL data. This file can be read by the DB2 LOAD command.
130 MySQL to DB2 UDB Conversion Guide

Example 6-3 Usage of mysqldump with the --no-create-info and the --tab option

bash>mysqldump --no-create-info --tab=. --user root itsodb testtable

bash>cat testtable.txt
Klaus 1978-07-03
Michael 1974-03-20
Rakesh 1977-09-26

Example 6-4 shows the usage and output of the mysqldump command without
the --no-create-info but with the --tab options. The output are two files: one
containing the DDL statements for table creation, the other one with the exported
MySQL data. The second file can be read by the DB2 LOAD command.

Example 6-4 Usage of mysqldump without the --no-create-info but with --tab option

bash>mysqldump --tab=. --user root itsodb testtable

bash>cat testtable.sql
-- MySQL dump 9.10
-- ...

--
-- Table structure for table `testtable`
--

CREATE TABLE testtable (
 name char(10) default NULL,
 birthday date default NULL
) TYPE=MyISAM;

bash>cat testtable.txt
Klaus 1978-07-03
Michael 1974-03-20
Rakesh 1977-09-26

For porting the application data only, MTK generates the following call of
mysqldump:

mysqldump --no-create-info --tab=<outFilePath>
--user=<username> [--password=<pwd>] <dbname> [<tablenames>]

DB2 loading tools
DB2 UDB provides two utilities for loading data into a database: the LOAD and the
IMPORT command.

In general, the LOAD utility is faster than the IMPORT utility, because it writes
formatted pages directly into the database, while the IMPORT utility performs SQL
 Chapter 6. Data porting 131

insert statements. The LOAD utility validates the uniqueness of the indexes, but it
does not fire triggers, and does not perform referential or table constraints
checking.

DB2 LOAD command
The LOAD utility is capable of efficiently moving large quantities of data into newly
created tables, or into tables that already contain data.

The load process contains four phases:

1. Load data.

2. Build indexes.

3. Delete rows with a unique key violation or a datalink violation.

4. Copy index data from the system temporary table space to the original table
space.

See Example 6-5 for a simplified syntax diagram for the LOAD command. For a
complete syntax description please visit:
http://www-306.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/v
8document.d2w/report?fn=r0008305.htm
132 MySQL to DB2 UDB Conversion Guide

http://www-306.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/v8document.d2w/report?fn=r0008305.htm.
http://www-306.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/v8document.d2w/report?fn=r0008305.htm.

Example 6-5 Simplified syntax of the DB2 LOAD command

>>-LOAD--+--------+--FROM----+-filename---+-+--OF--filetype----->
 '-CLIENT-' +-pipename---+
 +-device-----+
 '-cursorname-'
>--+-------------------------------+---------------------------->
 | .--------------. |
 | V | |
 '-MODIFIED BY----filetype-mod-+-'
>--+--------------+--+-------------+--+-----------------+------->
 '-SAVECOUNT--n-' '-ROWCOUNT--n-' '-WARNINGCOUNT--n-'
>--+------------------------+----------------------------------->
 '-MESSAGES--message-file-'
>--+-------------------------------+--+-INSERT----+------------->
 '-TEMPFILES PATH--temp-pathname-' +-REPLACE---+
 +-RESTART---+
 '-TERMINATE-'
>--INTO--table-name--+-------------------------+---------------->
 | .-,-------------. |
 | V | |
 '-(----insert-column-+--)-'
 .-ALLOW NO ACCESS-----------------------------.
>--+---+-------------->
 '-ALLOW READ ACCESS--+----------------------+-'
 '-USE--tablespace-name-'
>--+--------------------------------------+--------------------->
 '-CHECK PENDING CASCADE--+-IMMEDIATE-+-'
 '-DEFERRED--'
>--+-----------------+-->
 '-LOCK WITH FORCE-'

For loading the application data into the DB2 UDB, MTK generates the following
call of the LOAD command:

db2 LOAD from ""<outFilePath>/<tablename>.dat""
of DEL
modified by\

coldel0x09
timestampformat=\"YYYY-MM-DD HH:MM:SS\"

insert into <schemaname>.<tablename>

DB2 IMPORT command
The IMPORT utility inserts data from an input file into a table or updateable view. If
the table or view receiving the imported data already contains data, you can
either replace or append to the existing data.
 Chapter 6. Data porting 133

See Example 6-6 for a simplified syntax diagram for the IMPORT command. For a
complete syntax description please visit:
http://www-306.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/v
8document.d2w/report?fn=r0008304.htm

Example 6-6 Simplified syntax of the DB2 IMPORT command

>>-IMPORT FROM--filename--OF--filetype-------------------------->
>--+-------------------------------+---------------------------->
 | .--------------. |
 | V | |
 '-MODIFIED BY----filetype-mod-+-'
>--+------------------------+----------------------------------->
 '-MESSAGES--message-file-'
>--+-+-INSERT---------+--INTO--+-table-name--+-------------------------+-+-->
 | +-INSERT_UPDATE--+ | | .-,-------------. | | |
 | +-REPLACE--------+ | | V | | |
 | '-REPLACE_CREATE-' | '-(----insert-column-+--)-' |
 | '-| hierarchy description |---------------'

6.1.2 Differences in data formats
When migrating data from MySQL to DB2 UDB, specific data types require high
attention. The DATETIME and TIMESTAMP data types have the same content in
MySQL and DB2 UDB, but have a different representation. When loading the
exported data into DB2 UDB you have to be aware of the data format.

Binary Large Objects (BLOB data type) usually contain binary data. Exporting of
binary data into text files is not possible. So, if your BLOBs contain binary data,
you have to migrate them in a different way than exporting and loading.

MySQL DATETIME and TIMESTAMP data type format
Both MySQL data types DATETIME and TIMESTAMP are mapped to the DB2 data
type TIMESTAMP. So, exported MySQL application data of these types must be in
a DB2 readable format.

The export format of MySQL DATETIME values is ‘YYYY-MM-DD hh:mm:ss’, e.g.
‘2004-01-30 14:21:14’. Please notice the separators.

The export format of MySQL TIMESTAMP values is ‘YYYYMMDDhhmmss’, without any
separators between, such as ‘20040130142114’.

The DB2 LOAD command lets you specify in the filetype-modifier clause
TIMESTAMPFORMAT how the format of TIMESTAMP values should be.
134 MySQL to DB2 UDB Conversion Guide

http://www-306.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/v8document.d2w/report?fn=r0008304.htm
http://www-306.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/v8document.d2w/report?fn=r0008304.htm

MTK by default uses a TIMESTAMP format that is ‘YYYY-MM-DD hh:mm:ss’, so this
matches the MySQL DATETIME values. If you want to import MySQL TIMESTAMP
values, you have to change the LOAD command in the deploy.sh script according
to the following:

db2 LOAD from ""<outFilePath>/<tablename>.dat"" |
of DEL

modified by
coldel0x09
timestampformat=\"YYYYMMDDHHMMSS\"

insert into <schemaname>.<tablename>

If you have MySQL DATETIME values and MySQL TIMESTAMP values in the same
table, you have to convert the format of the TIMESTAMP values to the DATETIME
format in the data file. Then the data file can be processed by the LOAD command
correctly.

Migration of BLOBs
BLOBs usually contain binary data. As binary data cannot be exported to text
files, a different way has to be found to migrate them.

MTK does not support the automatic migration of BLOB data in the current
version. Porting BLOB data from MySQL to DB2 UDB needs to be done manually.

MTK converts the DDL correctly, it exports the data correctly in case of text-only
BLOBs, but the data files are not loaded automatically into DB2 UDB. In the case
of text-only BLOBs, you just need to run the LOAD command for the MySQL
export file generated by MTK.

If your BLOBs contain binary data (such as bitmaps), you have to write a
program to migrates your data.

We provide a simple Java program MigBlob.java (Example 6-7) that copies data
from a specified MySQL BLOB to a DB2 BLOB. This program can be easily
integrated into migration scripts.

Note: If your BLOBs contain only ASCII data and no binary data, you can
dump them out of MySQL and load them into DB2 UDB in the same way as all
other data.
 Chapter 6. Data porting 135

Example 6-7 Source code of the MigBlob utility

import java.lang.*;
import java.io.*;
import java.sql.*;

public class MigBlob {
 private static final String MYHOST = "localhost";
 private static final String MYDB = "temp";
 private static final String MYUSR = "root";
 private static final String MYPWD = "";

 private static final String DB2DB = "sample";
 private static final String DB2USR = "itsosj";
 private static final String DB2PWD = "itsosj";

 private static Connection mysqlConnection, db2Connection;

 public static void main(String[] args) throws SQLException, Exception {
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();

mysqlConnection = DriverManager.getConnection(
"jdbc:mysql://" + MYHOST + "/" + MYDB +
"?user=" + MYUSR + "&password=" + MYPWD);

db2Connection = DriverManager.getConnection(
"jdbc:db2:" + DB2DB, DB2USR, DB2PWD);

 PreparedStatement ps1 = mysqlConnection.prepareStatement(
"select * from blobdata");

 ResultSet rs = ps1.executeQuery();

 if (! rs.next()) {
 System.out.println("No rows in blobdata...");
 return;
 }

 InputStream is = rs.getBinaryStream("b");

 PreparedStatement ps2 = db2Connection.prepareStatement(
"insert into tempdb2.blobdata values(?)");

 ps2.setBinaryStream(1,is,is.available());
 ps2.executeUpdate();
 }
}

To use this program for migrating BLOBs, please follow these steps:
136 MySQL to DB2 UDB Conversion Guide

1. Install MySQL JDBC driver (if not installed yet)

In order to run the Java program you need to download and install the MySQL
JDBC driver, if it is not already installed on your system. Make sure that both
the MySQL JDBC driver and the DB2 JDBC driver, which is installed during
DB2 Installation, are in your CLASSPATH environment variable. Your CLASSPATH
value could look like Example 6-8.

Example 6-8 Sample CLASSPATH including MySQL and DB2 JDBC drivers

bash>echo $CLASSPATH
/home/db2inst1/sqllib/java/db2java.zip:/home/db2inst1/sqllib/java/db2jcc.ja
r:/home/db2inst1/sqllib/function:/home/db2inst1/sqllib/java/db2jcc_license_
cisuz.jar:/home/db2inst1/sqllib/java/db2jcc_license_cu.jar:.:/usr/local/mys
ql/jdbc/mysql-connector-java-3.0.10-stable-bin.jar

2. Edit the MigBlob Java source code and insert your database connectivity
information (user ID and password for both MySQL and DB2 UDB). Compile
the Java source code:

bash>javac MigBlob.java

3. Connect to MySQL and create the temporary MySQL table for the MigBlob
utility:

mysql>create table temp.blobdata (b longblob);

4. Connect to DB2 UDB and create the temporary DB2 table for the MigBlob
utility:

db2>create table tempdb2.blobdata (b blob(2g) not logged)

5. Insert the BLOB you want to migrate into the temporary MySQL table:

mysql>insert into temp.blobdata select <blobcol> from <sourcetab>
where <keyfields>=<keyvalue>

6. Run the MigBlob utility to copy the BLOB from MySQL to DB2 UDB:

bash>java MigBlob

Please note that just one BLOB is copied by the MigBlob utility, so you have
to run the utility for each BLOB you want to migrate, or you enhance the
MigBlob utility.

7. Insert the BLOB from the temporary DB2 table into the designated field (be
sure to use the key fields corresponding to the MySQL table):

db2>insert into <desttable> (<destcol>) (select b from
tempdb2.blobdata) where <keyfields>=<keyvalue>

8. Drop the temporary MySQL table:

mysql>drop table temp.blobdata;
 Chapter 6. Data porting 137

9. Drop the temporary DB2 table:

db2>drop table tempdb2.blobdata

10.. For each BLOB that you want to migrate, proceed from step 3.

6.1.3 Differences in the user account management
The way the user information’s access rights and privileges are stored in MySQL
is completely different from DB2 UDB.

MySQL user account management
Migrating the user account management from MySQL to the DB2 security
system requires knowledge about how the user account management data
affects your application, and how user data, passwords, access rights, and
privileges are stored in MySQL.

User data
When assessing your application, be sure to distinguish between the following
user types:

� Database users
These users connect directly to the MySQL database to retrieve and
manipulate data. At least one database user must exist for applications to
connect to the database. These users are typically stored in the mysql.user
table and must be migrated in data porting step. Access rights and privileges
for these users are stored in the mysql.db, mysql.host, mysql.tables_priv, and
mysql.columns_priv tables.

� Application users
These users log on to the application, but do not exist on the database level.
Database access is through the application with the application’s database
user ID. As the information about application users is usually stored in custom
application tables, the migration of application users is done when migrating
the MySQL application data.

Passwords
Database users typically have associated passwords, which are stored
encrypted in the mysql.user table. Encrypted passwords cannot be migrated and
must be reset on the new system. The password of the database user that is
used by an application to access the database is typically stored in a profile with
restricted rights.

Note: The migration of encrypted passwords is impossible, because it is the
intended purpose of encryption functions to make password unencryptable!
138 MySQL to DB2 UDB Conversion Guide

Access rights
You can connect to a MySQL database if you provide a user name and the
associated password. Furthermore, the machine where you connect from must
be associated with this user to allow a connection. This is based on the
assumption that a user with a specific user name from one host is different from
a user with the same user name from a different host.

This access information is stored in the mysql.user table in the fields user,
password, and host. The MySQL wildcard % is often used in the host field to
specify that this user can connect from any host. The wildcard ‘_’ is also
sometimes used for single characters.

In Example 6-9 the user Klaus can connect from any host, the user Michael can
connect from just the host lochness.almaden.ibm.com, and from localhost any
user can connect.

Example 6-9 Sample user data for connection verification

mysql> select user, password, host from user;
+---------+------------------+--------------------------+
| user | password | host |
+---------+------------------+--------------------------+
		localhost
Michael	2f4fba967c46f214	lochness.almaden.ibm.com
Klaus	c46f2142f4fba967	%
+---------+------------------+--------------------------+

Please refer to the MySQL Reference Manual
(at http://dev.mysql.com/doc/)for a complete description of the MySQL
connection verification. You can also find information on how the entries in the
mysql.user table are ordered when the provided connection data meets more
than one connection criteria. In the above example, this would be when user
Klaus connects from localhost.

Privileges
Once a connection to the MySQL database is established, each time a command
is run against the database, MySQL checks if the connected user has sufficient
privileges to run this command.

Privileges exist for selecting, inserting, updating, and deleting data for creating,
altering, and dropping tables and other operations performed at the database
level.

All privileges are stored in either the mysql.user, mysql.db, mysql.host,
mysql.tables_priv or mysql.columns_priv tables.
 Chapter 6. Data porting 139

Privileges in MySQL can be granted on the following levels:

� Global level
Global privileges are used on all databases on a given server and are stored
in the mysql.user table.

� Database level
Database privileges are used on all tables in a given database and are stored
in the mysql.db (database privileges) and mysql.host (host privileges) tables.

� Table level
Table privileges are used on all columns in a given table and are stored in the
mysql.tables_priv table.

� Column level
Column privileges are used on single columns in a given table and are stored
in the mysql.columns_priv table.

Privileges can be granted to users with the MySQL GRANT command; they can be
revoked with the REVOKE command.

The privilege for a specific command is determined like this:

global privileges
OR (database privileges AND host privileges)
OR table privileges
OR column privileges

To retrieve privilege information from a MySQL database, the mysqlaccess tool
can be used.

For more information about MySQL privileges please, see the MySQL Reference
Manual.

DB2 security system
DB2 UDB has no separate user account management, it uses the user accounts
from the operating system where the database is installed on and grants the
users specific database privileges needed.

User data
Creating a user for DB2 UDB means to create a user in the server’s operating
system, assign the user to a group, and grant specific database privileges to the
user or group.

On Linux systems you must have root access to the system to create groups and
users. Group information is stored in the file /etc/group, user information in the
file /etc/passwd.
140 MySQL to DB2 UDB Conversion Guide

For example, if you want to create a new group db2app1 with one user db2usr1 to
access a specific DB2 table, the necessary steps are:

1. Log on to the Linux system with root privileges.

2. Create the group. Make sure that the provided group name does not already
exist. Group names should not be longer than eight characters:

groupadd [-g 995] db2app1

3. Create the user and assign it to the previously created group. Make sure that
the ID for the user does not already exist. User names should not be longer
than eight characters:

useradd [-u 1001] -g db2app1 -m -d /home/db2usr1 db2usr1 [-p passwd1]

If the user is going to access the DB2 database locally, then continue with the
next two steps:

4. Edit the profile of the created user:

vi /home/db2usr1/.profile

5. Add the following line to the profile. Be sure to specify the path of your DB2
instance owner’s home directory and to specify a blank between the dot and
the command:

. /home/db2inst1/sqllib/db2profile

Passwords
The passwords that are used for DB2 UDB are the system passwords of the user.
To set a password in Linux use the passwd <username> command as root user.

Access rights
Access to DB2 databases is restricted to users that exist on the DB2 system.
When connecting to a DB2 database you have to provide a valid user name and
password of the server’s system. The information from where a user connects
(the hostname or IP address) is not required when connecting to the DB2
database. The information is in the DB2 UDB directory when the server and
database are cataloged.

If you use host name feature in MySQL, you have to implement a work around
(e.g. different users for each system). See Chapter 7.2.7, “Special conversions”
on page 221 for more information about a workaround and sample code for a
host authentication mechanism.

Authorities and privileges
Privileges enable users to create or access database objects. Authority levels
provide a method of grouping privileges and control over higher-level database
manager maintenance and utility operations. Together, these act to control
 Chapter 6. Data porting 141

access to the database manager and its database objects. Users can access
only those objects for which they have the appropriate authorization, that is, the
required privilege or authority.

Figure 6-1 illustrates the relationship between authorities and their span of
control (database, database manager).

Figure 6-1 Hierarchy of authorities

A user or group can have one or more of the following levels of authorization:

� Administrative authority (SYSADM or DBADM) gives full privileges for a set of
objects.

� System authority (SYSCTRL or SYSMAINT) gives full privileges for managing
the system, but does not allow access to the data.

� Load authority (LOAD) gives LOAD utility or AutoLoader utility privileges to load
data into tables.

� Ownership privilege (also called CONTROL privilege in some cases) gives
full privileges for a specific object.

� Individual privileges may be granted to allow a user to carry out specific
functions on specific objects.
142 MySQL to DB2 UDB Conversion Guide

� Implicit privileges may be granted to a user who has the privilege to execute a
package. While users can run the application, they do not necessarily require
explicit privileges on the data objects used within the package.

Users with administrative authority (SYSADM or DBADM) or ownership
privileges (CONTROL) can grant and revoke privileges to and from others, using
the GRANT and REVOKE statements. It is also possible to grant a table, view, or
schema privilege to another user if that privilege is held WITH GRANT OPTION.
However, the WITH GRANT OPTION does not allow the person granting the privilege
to revoke the privilege once granted. You must have SYSADM authority, DBADM
authority, or CONTROL privilege to revoke the privilege.

A user or group can be authorized for any combination of individual privileges or
authorities. When a privilege is associated with a resource, that resource must
exist. For example, a user cannot be given the SELECT privilege on a table
unless that table has previously been created.

Privileges in DB2 UDB can be granted on the following levels:

� Database level

– CONNECT privilege
– CREATETAB privilege
– LOAD privilege
– IMPLICIT_SCHEMA privilege
– BINDADD privilege
– others

� Schema level

– CREATEIN privilege
– ALTERIN privilege
– DROPIN privilege

� Table space level

– USE privilege

Note: Care must be taken to give authorities and privileges to a user name
that does not exist in the system yet. At some later time, this user name can
be created and will automatically receive all of the authorities and privileges
associated.
 Chapter 6. Data porting 143

� Table and view level

– CONTROL privilege
– SELECT privilege
– INSERT privilege
– UPDATE privilege
– DELETE privilege
– INDEX privilege
– ALTER privilege
– REFERENCES privilege

� Other privileges

– Package privileges
– Index privileges
– Procedure, function and method privileges
– Sequence privileges

Privileges can be granted to users or groups with the GRANT command, they can
be revoked using the REVOKE command.

When a database is created, the following privileges are automatically granted to
PUBLIC (all users):

� CREATETAB
� BINDADD
� CONNECT
� IMPLICIT_SCHEMA
� USE privilege on USERSPACE1 table space
� SELECT privilege on the system catalog views.

Mapping the user information from MySQL to DB2 UDB
When migrating from MySQL to DB2 UDB, you have to migrate the privileges of
the users as well.

Table 6-1 shows the mapping from MySQL privileges to DB2 privileges,
assuming that different MySQL databases are mapped to different DB2 schemas.

For example, an INSERT privilege granted in MySQL on the global level means
that you have to grant the INSERT privilege on all existing tables in the DB2
database to the specified user. If you create a new table in DB2 UDB, you have
to grant the INSERT privilege on this table to the user.
144 MySQL to DB2 UDB Conversion Guide

Table 6-1 Mapping of MySQL to DB2 privileges

MySQL
privilege

MySQL
scope

DB2 privilege
or authority

DB2 scope

Select global Select All tables in the database

Insert global Insert All tables in the database

Update global Update All tables in the database

Delete global Delete All tables in the database

Create global Createtab Database

Drop global Dropin All schemas

Reload global not available

Shutdown global “SYSADM, SYSCTRL, or
SYSMAINT authority”

Instance

Process global “SYSADM, SYSCTRL, or
SYSMAINT authority”

Instance

File global LOAD authority Database

Grant global Control All tables in the database

Index global Createin All schemas

Alter global Alterin All schemas

Show_db global Select SYSCAT.TABLES

Super global not available

Create_tmp_
table

global Createtab Database

Lock_tables global Select All tables in the database

Repl_slave global not available

Repl_client global not available

Select database Select All tables in the schema

Insert database Insert All tables in the schema

Update database Update All tables in the schema

Delete database Delete All tables in the schema

Create database Createin Schema
 Chapter 6. Data porting 145

6.2 Sample project: Doing the data porting
This chapter describes the steps that we use to migrate the data in our sample
project.

Drop database Dropin Schema

Grant database Control All tables in the schema

Index database Creatin Schema

Alter database Alterin Schema

Create_tmp_
table

database Createin Schema

Lock_tables database Select All tables in the schema

Select table Select Table

Insert table Insert Table

Update table Update Table

Delete table Delete Table

Create table not available

Drop table Control Table

Grant table Control Table

Index table Index Table

Alter table Alter Table

Select column Select Table/view

Insert column Insert Table/view

Update column Update Table/view

Note: Privileges on the column level are not natively supported in DB2 UDB.
The workaround for maintaining privileges on that scope is by defining views
for specified columns in a table, and maintaining the privileges on table level
of the view.

MySQL
privilege

MySQL
scope

DB2 privilege
or authority

DB2 scope
146 MySQL to DB2 UDB Conversion Guide

6.2.1 Export user data from MySQL
We use the mysqlaccess utility to get the user names that have access to the
database itsodb out of the MySQL databases. See Example 6-10.

Example 6-10 Retrieve users with access to the sample project database

bash>mysqlaccess % % itsodb -b -U root
mysqlaccess Version 2.06, 20 Dec 2000
...

Sele Inse Upda Dele Crea Drop Relo Shut Proc File Gran Refe Inde Alte Show Supe Crea
Lock Exec Repl Repl Ssl_ Ssl_ X509 X509 Max_ Max_ Max_ | Host,User,DB
---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- + --------------------
 Y Y Y Y Y Y N N N N N Y Y Y N N Y Y
N N N ? ? ? ? 0 0 0 | %,itsosj,itsodb
 N N N N N N N N N N N N N N N N N N
N N N N N N N N N N | %,root,itsodb
 N N N N N N N N N N N N N N N N N N
N N N N N N N N N N | %,Michael,itsodb
 N N N N N N N N N N N N N N N N N N
N N N ? ? ? ? 0 0 0 | %,Klaus,itsodb
 N N N N N N N N N N N N N N N N N N
N N N N N N N N N N | %,ANY_NEW_USER,itsodb
 Y Y Y Y Y Y N N N N N Y Y Y N N Y Y
N N N ? ? ? ? 0 0 0 | localhost,itsosj,itsodb
 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Y Y Y ? ? ? ? 0 0 0 | localhost,root,itsodb
 N N N N N N N N N N N N N N N N N N
N N N ? ? ? ? 0 0 0 | localhost,Michael,itsodb
 N N N N N N N N N N N N N N N N N N
N N N ? ? ? ? 0 0 0 | localhost,Klaus,itsodb
 N N N N N N N N N N N N N N N N N N
N N N ? ? ? ? 0 0 0 | localhost,ANY_NEW_USER,itsodb

6.2.2 Map MySQL user data to DB2 user data
The root user is the database administrator and is not used by our sample
application; we do not want to migrate this user. The MySQL root user is similar
to the instance owner in DB2 UDB.

The users Michael, Klaus and ANY_NEW_USER (which is similar to the logical DB2
group PUBLIC) do not have any privileges on our sample database, so we do not
need to migrate these users either.

The only remaining user is the user itsosj. This one is the user our application
uses to connect to the MySQL database and to manipulate data.

We want to add a new group for this user called db2app1.
 Chapter 6. Data porting 147

The user’s privileges are set for SELECT, INSERT, UPDATE, DELETE, CREATE and
DROP on database level for itsodb, so we map these privileges to SELECT, INSERT,
UPDATE and DELETE for all tables in the DB2 schema itsodb and CREATEIN and
DROPIN for the schema.

6.2.3 Create DB2 user
For user and group creation we use the script in Example 6-11.

Example 6-11 Sample script to create DB2 users and groups

bash> cat db2addusr.sh
export DB2DIR='/home/db2inst1'
export HOMEDIR='/home'

groupadd $2
useradd -g $2 -m -d $HOMEDIR/$1 $1
passwd $1
echo '. '${DB2DIR}'/sqllib/db2profile' >> $HOMEDIR/$1/.profile

The creation of our user and group was done by the root user as shown in
Example 6-12.

Example 6-12 Creation of the user and group

bash>./db2addusr.sh itsosj db2app1
Changing password for itsosj.
New password:
Re-enter new password:
Password changed
148 MySQL to DB2 UDB Conversion Guide

The granting of the privileges was done by the instance owner db2inst1 with the
DB2 command shown in Example 6-13.

Example 6-13 Granting of privileges

db2 => connect to itsodb2

 Database Connection Information

 Database server = DB2/LINUX 8.1.4
 SQL authorization ID = DB2INST1
 Local database alias = ITSODB2

db2 => grant createin, dropin on schema itsodb to group db2app1
DB20000I The SQL command completed successfully.
db2 => grant select, insert, update, delete on table itsodb.shopping_cart to user itsodb
DB20000I The SQL command completed successfully.
db2 => grant select, insert, update, delete on table itsodb.users to user itsodb
DB20000I The SQL command completed successfully.
db2 => grant select, insert, update, delete on table itsodb.catalog to user itsodb
DB20000I The SQL command completed successfully.
db2 => grant select, insert, update, delete on table itsodb.oenumber to user itsodb
DB20000I The SQL command completed successfully.

6.2.4 Export MySQL application data
The export of the MySQL application data was done automatically when
exporting the MySQL data with MTK as described in Chapter 5.5, “Sample
database migration” on page 117.

In Example 6-14 the created export files are listed.

Example 6-14 Automatically created export files

bash>ls -l *.dat
-rw-r--r-- 1 itsosj db2app1 2166 2004-02-03 09:46 catalog.dat
-rw-r--r-- 1 itsosj db2app1 186660 2004-02-03 09:46 oenumber.dat
-rw-r--r-- 1 itsosj db2app1 791 2004-02-03 09:46 users.dat
-rw-r--r-- 1 itsosj db2app1 37 2004-02-03 09:46 shopping_cart.dat

Each of the files is tabulator delimited containing the data from the corresponding
MySQL table. This format can be read by the DB2 LOAD command.

6.2.5 Convert MySQL application data to DB2 format
As no special data types (TIMESTAMP or BLOB) are used in our sample application,
no manual conversion has to be done in our export files.
 Chapter 6. Data porting 149

6.2.6 Import application data into DB2 UDB
Importing data into DB2 UDB can be done automatically by using MTK. MTK
creates a script containing the DB2 LOAD commands and then executes the
script. In case of errors the script can be edited and run again.

Example 6-15 shows the DB2 LOAD commands that were generated by MTK for
our sample project.

Example 6-15 DB2 LOAD commands for loading the data into DB2 UDB

db2 LOAD from ""/home/itsosj/mlog/catalog.dat"" of DEL modified by coldel0x09
timestampformat=\"YYYY-MM-DD HH:MM:SS\" insert into itsodb.catalog
db2 LOAD from ""/home/itsosj/mlog/oenumber.dat"" of DEL modified by coldel0x09
timestampformat=\"YYYY-MM-DD HH:MM:SS\" insert into itsodb.oenumber
db2 LOAD from ""/home/itsosj/mlog/users.dat"" of DEL modified by coldel0x09
timestampformat=\"YYYY-MM-DD HH:MM:SS\" insert into itsodb.users
db2 LOAD from ""/home/.../shopping_cart.dat"" of DEL modified by coldel0x09
timestampformat=\"YYYY-MM-DD HH:MM:SS\" insert into itsodb.shopping_cart

After importing the data into the DB2 tables, the RUNSTATS command should be
executed in order to recreate the statistic information about indexes. The
statistics information is used by the query optimizer. See 9.5.5, “SQL execution
plan” on page 308 for more information about the RUNSTATS command.

See Example 6-16 for the creation of the statistics information in our sample
project.

Example 6-16 DB2 RUNSTATS commands for recreating the statistics information

db2 RUNSTATS on table itsodb.catalog
DB20000I The RUNSTATS command completed successfully.
db2 RUNSTATS on table itsodb.oenumber
DB20000I The RUNSTATS command completed successfully.
db2 RUNSTATS on table itsodb.users
DB20000I The RUNSTATS command completed successfully.
db2 RUNSTATS on table itsodb.shopping_cart
DB20000I The RUNSTATS command completed successfully.

6.2.7 Basic data checking
Once the script is executed, a log file is created where messages are stored.
Please check the log file for the success of the DB2 LOAD commands. You can
find this information in the log file as shown in Example 6-17.
150 MySQL to DB2 UDB Conversion Guide

Example 6-17 Log file information about the DB2 LOAD command

...
Deploying LOAD Scripts...
SQL3501W The table space(s) in which the table resides will not be placed in
backup pending state since forward recovery is disabled for the database.

SQL3109N The utility is beginning to load data from file
"/home/itsosj/mlog/catalog.dat".
...
SQL3110N The utility has completed processing. "21" rows were read from the
input file.
...
Number of rows read = 21
Number of rows skipped = 0
Number of rows loaded = 21
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 21
...
SQL3109N The utility is beginning to load data from file
"/home/itsosj/mlog/oenumber.dat".
...
Number of rows read = 8771
Number of rows skipped = 0
Number of rows loaded = 8771
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 8771
...
SQL3109N The utility is beginning to load data from file
"/home/itsosj/mlog/users.dat".
...
Number of rows read = 8
Number of rows skipped = 0
Number of rows loaded = 8
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 8
...
SQL3109N The utility is beginning to load data from file
"/home/itsosj/mlog/shopping_cart.dat".
...
Number of rows read = 3
Number of rows skipped = 0
Number of rows loaded = 3
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 3
...
 Chapter 6. Data porting 151

Please make sure that the number of rows read equals the number of rows
committed. This should also equal to the number of records in the MySQL source
table. Example 6-18 shows the MySQL command for the record count.

Example 6-18 Retrieving the number of records from MySQL

mysql> select count(*) from catalog;
+----------+
| count(*) |
+----------+
| 21 |
+----------+
1 row in set (0.00 sec)

mysql> select count(*) from oenumber;
+----------+
| count(*) |
+----------+
| 8771 |
+----------+
1 row in set (0.00 sec)

mysql> select count(*) from users;
+----------+
| count(*) |
+----------+
| 8 |
+----------+
1 row in set (0.00 sec)

mysql> select count(*) from shopping_cart;
+----------+
| count(*) |
+----------+
| 3 |
+----------+
1 row in set (0.04 sec)

After you have checked that all the records were loaded into DB2 UDB, you
should check sample data in each migrated table if the values are correct,
especially if you have any-time values or decimal values. Example 6-19 shows
the table content checking.
152 MySQL to DB2 UDB Conversion Guide

Example 6-19 Sample data of MySQL data

mysql> select * from catalog limit 1;
+------------+--------------+------+---------+---------+------+------+------+------+-----------------
+------+-------+-----------+------+----------+------------+---------+----+
|manufacturer| model | type |year_from| year_to | kw | hp__ | ccm | cyl | motorcode
| pg | sku __| dimension | ac | transmiss| hint______ | stock__ | id |
+------------+--------------+------+---------+---------+------+------+------+------+-----------------
+------+-------+-----------+------+----------+------------+---------+----+
| VW | PASSAT (3B2) | 1.6 | 10.1996 | 11.2000 | 74 | 101 | 1595 | 4 | ADP/AHL/ANA/ARM
| 10 | 16633 | 630-420 | +/- | M | see figure | 10 | 2 |
+------------+--------------+------+---------+---------+------+------+------+------+-----------------
+------+-------+-----------+------+----------+------------+---------+----+
1 row in set (0.05 sec)

db2 => select * from itsodb.catalog where manufacturer='VW' and model='PASSAT (3B2)' and type='1.6'

MANUFACTURER__ MODEL TYPE_____________________ YEAR_FR YEAR_TO KW_ HP_ CCM_ CYL
MOTORCODE PR SKU_____ DIMENSION____AC_ TRANSMIS
HINT__ STOCK______ ID
-------------- ------------------------- ------------------------- ------- ------- --- --- ---- ---
-- -- -------- ------------ --- --------
-- ----------- -----------
VW PASSAT (3B2) 1.6 10.1996 11.2000 74 101 1595 4
ADP/AHL/ANA/ARM 10 16633 630-420 +/- M
see figure 10 2

 1 record(s) selected.
 Chapter 6. Data porting 153

154 MySQL to DB2 UDB Conversion Guide

Chapter 7. Application porting

The task of migrating an application, its databases, and the associated data most
often requires significant resources and commitments. Simultaneously to the
meticulous planning of the porting project as a whole, it is paramount to assess
the issues that may be high up to the highest level of resources. In many porting
projects this is the part of application porting. This chapter attempts to give the
reader “food for thought” in the following areas:

� Differences in SQL Data Manipulation Language (DML), built-in functions,
and SQL semantics

� Converting application source, application programming interfaces (APIs),
and condition handling

� Internals of the Database Management System that may impact the
conversion, such as locking, isolation levels, transaction logging, and national
language support

7

© Copyright IBM Corp. 2004. All rights reserved. 155

7.1 Differences and similarities in Data Manipulation
Language

Modifying the application to work with DB2 UDB can be a significant task in the
conversion process. While a large portion of this step may encompass changing
code to work with a different development environment, it is likely that additional
time will be spent on testing the resulting code.

7.1.1 SELECT syntax
This section focuses on the SELECT statement syntax as it is supported in
MySQL, and attempts to show how MySQL extensions to the SQL standard
might be implemented in DB2 Version 8. Example 7-1 shows the MySQL syntax
for the SELECT statement. A discussion of individual keywords follows.

Example 7-1 MySQL SELECT syntax

SELECT [STRAIGHT_JOIN]
[SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]
[SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS] [HIGH_PRIORITY]
[DISTINCT | DISTINCTROW | ALL]
select_expression,...
[INTO {OUTFILE | DUMPFILE} 'file_name' export_options]
[FROM table_references
[WHERE where_definition]
[GROUP BY {unsigned_integer | col_name | formula} [ASC | DESC], ...
[WITH ROLLUP]]
[HAVING where_definition]
[ORDER BY {unsigned_integer | col_name | formula} [ASC | DESC] ,...]
[LIMIT [offset,] row_count | row_count OFFSET offset]
[PROCEDURE procedure_name(argument_list)]
[FOR UPDATE | LOCK IN SHARE MODE]]

The STRAIGHT_JOIN keyword forces the MySQL optimizer to join tables in the
specified order. In DB2 the join order is always determined by the optimizer. The
optimizer choices can be limited by changing the default query optimization class
using SET CURRENT QUERY OPTIMIZATION to a lower level. This may still not
force the optimizer to evaluate the join order as given in the SQL statement.
However, the DB2 cost-based optimizer usually chooses the best access path
for a given query. For additional information see 9.5.5, “SQL execution plan” on
page 308.

The options prefixed with SQL_ are MySQL specific and do not require a DB2
equivalent.
156 MySQL to DB2 UDB Conversion Guide

The DISTINCTROW keyword is as a synonym for DISTINCT which is supported by
DB2.

The INTO {OUTFILE | DUMPFILE} 'file_name' export_options selection allows you to
write data to an outfile quickly without invoking the mysqldump utility. The DB2
command line processor allows you to direct the output of any SELECT
statement to an operating system file.

The LIMIT [offset,] row_count | row_count OFFSET offset keyword translates to
FETCH FIRST n ROWS ONLY in DB2. An offset to retrieve rows needs to be
implemented through the WHERE clause if possible.

With the SQL_SMALL_RESULT or SQL_BIG_RESULT the query developer can hint to the
SQL optimizer the size of the expected result set, and therefore influences the
optimizer access strategy. Example 7-2 shows how the optimizer hint works.

Example 7-2 MySQL SELECT with optimizer hint

mysql>
mysql> select sql_small_result * from t1;
mysql>

DB2 UDB has a similar operator to guide SQL optimizer decisions with a different
syntax as shown in Example 7-3. Please note that the number of rows is
exemplary.

Example 7-3 DB2 SELECT with optimizer hit

db2 => select * from t1 optimize for 2 rows
DB20000I The SQL command completed successfully.

7.1.2 JOIN syntax
The join capabilities of a commercial and industrial strength database
management system are one of the most significant functions. MySQL supports
the linguistic elements for JOIN as shown in Example 7-4. Various aspects of
JOINs are discussed below.

Example 7-4 MySQL JOIN Syntax

table_reference, table_reference
table_reference [INNER | CROSS] JOIN table_reference [join_condition]
table_reference STRAIGHT_JOIN table_reference
table_reference LEFT [OUTER] JOIN table_reference [join_condition]
table_reference NATURAL [LEFT [OUTER]] JOIN table_reference
{OJ table_reference LEFT OUTER JOIN table_reference ON conditional_expr }
 Chapter 7. Application porting 157

table_reference RIGHT [OUTER] JOIN table_reference [join_condition]
table_reference NATURAL [RIGHT [OUTER]] JOIN table_reference

Where table_reference is defined as:
table_name [[AS] alias] [[USE INDEX (key_list)] | [IGNORE INDEX (key_list)] | [FORCE
IN and join_condition is defined as:
ON conditional_expr |
USING (column_list)

The STRAIGHT_JOIN keyword forces the MySQL optimizer to join tables in the
specified order. In DB2 the join order is always determined by the optimizer. The
optimizer choices can be limited by changing the default query optimization class
using SET CURRENT QUERY OPTIMIZATION.

A NATURAL join, as its name implies, can be invoked when two or more tables
share exactly the same columns needed for a successful equijoin. It is
semantically equivalent to DB2 INNER JOIN or LEFT OUTER JOIN with the
respective join criteria specified in the ON clause.

According to the SQL ANSI standard when you need to join tables that share
more than one column naturally, the JOIN ... USING syntax needs to be used. An
equivalent join can be composed using the DB2 supported join syntax in the ON
clause.

Everybody in application and database query development spends a lot of time
trying to avoid them; however, cartesian products do happen from time to time,
usually as the result of an equijoin condition that has been missed in a query
using DB2 syntax. However, one of the advantages of the CROSS JOIN syntax is
that a specific keyword is required to create a Cartesian product. Therefore,
when the CROSS JOIN syntax is used in your migration project, just code a regular
join in DB2 with a no join condition in the WHERE clause.

7.1.3 UNION Syntax
In MySQL Version 4.0.0 the newly implemented UNION feature (shown in
Example 7-5) is very similar to the DB2 syntax, and therefore does not require
additional discussion.

Example 7-5 UNION syntax in MySQL and DB2

SELECT ...
UNION [ALL | DISTINCT]
SELECT ...
[UNION [ALL | DISTINCT]
SELECT ...]
158 MySQL to DB2 UDB Conversion Guide

7.1.4 Subquery syntax
A subquery is a SELECT inside another query or statement. Therefore,
subqueries can be found in other SELECT either in the column list, the WHERE
clause, or the HAVING clause, and in addition in INSERT, UPDATE, and
DELETE statements. In Example 7-6 a sequence of subqueries is shown in a
DELETE statement.

Example 7-6 Example for subqueries an a DELETE statement

DELETE FROM t1
WHERE col1 > ANY
 (SELECT COUNT(*) FROM t2
 WHERE NOT EXISTS
 (SELECT col3 FROM t3
 WHERE col3 =
 (SELECT col4 FROM t4 UNION SELECT 1 FROM
 (SELECT col5 ROM t5) AS t5)));

Our project uses MySQL Version 4.0.17 and subqueries are supported in MySQL
from Version 4.1, and it therefore has not been possible to do a comprehensive
testing of subqueries. However, after studying the reference manual for MySQL,
the subquery implementation seems quite similar to the DB2 implementation.
Nothing has been found causing serious issues when moving from MySQL to
DB2.

7.1.5 Grouping, having, and ordering
All ANSI SQL 92 standard grouping functions available in MySQL Version 4.0 are
also available in DB2. In general no significant differences were found in the area
of grouping, having, and ordering. However, beyond the SQL 92 standard DB2
provides some interesting functionality that may enhance the ported application
significantly. Please refer to DB2 UDB manual SQL Reference, Volume 2,
SC09-4845. Table 7-1 lists the differences in two databases and provides
conversion examples.
 Chapter 7. Application porting 159

Table 7-1 Differences in DB2 and MySQL grouping, having and ordering

MySQL DB2 UDB Example

 BIT_AND Not available. Example
provided

MySQL:
select bit_and(a),a from t1
group by a

DB2 UDB:
Refer to UDF example
BITAND in Appendix A.1,
“Sample code for
BIT_AND” on page 336

 BIT_OR Not available MySQL:
select bit_or(a),a from t1
group by a

DB 2UDB:
Compare to UDF BitAnd in
Appendix A.1, “Sample
code for BIT_AND” on
page 336

COUNT(DISTINCT
expr,expr,...)

DB2 allows only one
expression:
COUNT(DISTINCT expr).
Use CONCAT for
character data type or
CHAR and CONCAT on
numeric data types

MySQL:
select count(distinct a,b),a
from t1 group by a”

DB2 UDB:
select count(distinct
concat(a,b)), a from t1
group by a

 STD STDDEV MySQL:
select std(a),a from t1
group by a

DB2 UDB:
select stddev(a), a from t1
group by a

 STDDEV STDDEV MySQL:
select stddev(a),a from t1
group by a

DB2 UDB:
select stddev(a),a from t1
group by a
160 MySQL to DB2 UDB Conversion Guide

7.1.6 Strings
Unless MySQL is started in ANSI mode using mysqld --ansi it will behave
differently from DB2 Version 8.1. As Example 7-7 illustrates, MySQL accepts
single as well as double quotes as a string delimiter when started in default
mode.

Example 7-7 MySQL string handling

mysql> select 'redbook', '"redbook"', '""redbook""', 'red''book';
+---------+-----------+-------------+----------+
| redbook | "redbook" | ""redbook"" | red'book |
+---------+-----------+-------------+----------+
| redbook | "redbook" | ""redbook"" | red'book |
+---------+-----------+-------------+----------+
1 row in set (0.00 sec)

mysql> select "redbook", "'redbook'", "''redbook''", "red""book";
+---------+-----------+-------------+----------+
| redbook | 'redbook' | ''redbook'' | red"book |
+---------+-----------+-------------+----------+

not available VARIANCE DB2 UDB:
select variance(a), a from
t1 group by a

GROUP BY on alias use column name for
grouping

MySQL:
select a as ab from t1
group by ab

DB2 UDB:
select a from t1 group by a

GROUP BY on position use column name for
grouping

MySQL:
select a from t1 group by 1

DB2 UDB:
select a from t1 group by a

 HAVING on alias use column name in
having clause

MySQL:
select a as ab from t1
group by a having ab > 0

DB2 UDB:
select a from t1 group by a
having a > 0

MySQL DB2 UDB Example
 Chapter 7. Application porting 161

| redbook | 'redbook' | ''redbook'' | red"book |
+---------+-----------+-------------+----------+
1 row in set (0.00 sec)

Since DB2 UDB has been designed and implemented according to the ANSI
standard, it accepts single quotes as a string delimiter. Double quotes are used
in DB2 for delimiting SQL identifiers; for example, in a migration project you may
want to create table or column names in lower or mixed character notation.
Example 7-8 shows how DB2 handles strings. Similar results will be achieved
when MySQL runs in ANSI mode.

Example 7-8 DB2 string handling

db2 => select 'redbook', '"redbook"', '""redbook""', 'red''book' from t1

1 2 3 4
------- --------- ----------- --------
redbook "redbook" ""redbook"" red'book

Table 7-2 provides an overview of MySQL string related functions, and how these
can be converted to DB2 UDB.

Table 7-2 MySQL and DB2 UDB string related function

MySQL DB2 UDB Comment

ASCII in string cast:
select ascii('a') from t1

ASCII in string cast:
select ascii('a') from t1

Returns ASCII code value,
for example
values(ascii('i')) returns
105

automatic num->string
convert
automatic string->num
convert

Require explicit casting Please refer to:
“Implicit casting of data
types” on page 163

concatenation with + CONCAT or || Concatenation with +.

CONCAT(‘a’,’b’,’c’) (‘a’||’b’||’c’) Use || to implement
CONCAT(list)

ELT(n,str1,str2,str3,...) CASE Returns the nth string or
NULL. Use CASE
expression or UDF

FORMAT:
select
format(1234.5555.2)
returns 1,234.56

no equivalent,
implementing use UDF

Refer to UDF in
Appendix A.2, “Sample
code for FORMAT
function” on page 337
162 MySQL to DB2 UDB Conversion Guide

7.1.7 Implicit casting of data types
We have found significant differences in the way MySQL and DB2 UDB handle
the casting of data types. Unless explicitly using the CAST function, DB2 does
not convert strings representing numeric values. Example 7-9 shows how
MySQL implicitly casts the character value 5 to an integer value to resolve the
query. Implicit casting is not only performed in unambiguous cases as shown in

LPAD no equivalent. Implement
using UDF

Refer to UDF LPAD in
Appendix A.3, “Sample
code for RPAD and LPAD
functions” on page 339

MID SUBSTR Function MID is synonym
for SUBSTR

REVERSE SET (RESTSTR, LEN) = (INSTR,
LENGTH(INSTR));
WHILE LEN > 0 DO
SET (REVSTR, RESTSTR, LEN)=
(SUBSTR(RESTSTR, 1, 1) ||
REVSTR,SUBSTR(RESTSTR, 2,
LEN - 1),LEN - 1);
END WHILE;

Implement UDF. For the
complete code of the
example refer to IBM DB2
UDB SQL Reference,
Volume 1, V8, SC09-4844

RPAD no equivalent. Implement
using UDF

Refer to UDF RPAD in
Appendix A.3, “Sample
code for RPAD and LPAD
functions” on page 339

STRCMP CASE Implement using CASE
expression and VALUES
statement

SUBSTRING_INDEX no equivalent. Implement
using UDF

Refer to UDF
SUBSTRING_INDEX in
Appendix A.7, “Sample
code for
SUBSTRING_INDEX” on
page 360

TRIM (1 arg) LTRIM,RTRIM Requires string
manipulation

TRIM; Many char
extension

LTRIM,RTRIM Requires string
manipulation

TRIM; Substring extension LTRIM,RTRIM Requires string
manipulation

MySQL DB2 UDB Comment
 Chapter 7. Application porting 163

the example, but also for mixed strings such as 6x. For further information on the
conversion of strings and numbers, you may want to consult the MySQL
Reference Manual.

Example 7-9 MySQL performs implicit data type casting

mysql> create table t1 (c1 int);
Query OK, 0 rows affected (0.08 sec)

mysql> insert into t1 values(5);
Query OK, 1 row affected (0.02 sec)

mysql> select * from t1 where c1='5';
+------+
| c1 |
+------+
| 5 |
+------+
1 row in set (0.00 sec)

An implicit casting of incompatible data types is not support by DB2 UDB. An
explicit casting of the character value to an integer value is required as illustrated
in Example 7-10.

Example 7-10 DB2 UDB requires explicit casting

db2 => create table t1 (c1 int)
DB20000I The SQL command completed successfully.
db2 => insert into t1 values(5)
DB20000I The SQL command completed successfully.
db2 => commit
DB20000I The SQL command completed successfully.
db2 => select * from t1 where c1 = '5'
SQL0401N The data types of the operands for the operation "=" are not
compatible. SQLSTATE=42818

db2 => select * from t1 where c1 = cast ('5' as int)

C1

 5

 1 record(s) selected.

Example 7-11 illustrates how MySQL implicitly casts numeric values and DATA,
TIME, or TIMESTAMP values to strings when concatenated.
164 MySQL to DB2 UDB Conversion Guide

Example 7-11 MySQL implicit casting using concatenation for strings and DATE

mysql> select concat('ITSOSJ',1234) from t1;
+-----------+
| stringcol |
+-----------+
| ITSOSJ1234|
+-----------+
1 row in set (0.02 sec)

mysql> select concat('ITSOSJ',current_date) as stringdate from t1;
+------------------+
| stringdate |
+------------------+
| ITSOSJ2004-01-23 |
+------------------+
1 row in set (0.01 sec)

DB2 requires compatible arguments for the concatenation built-in functions as
shown in Example 7-12. If the arguments are not compatible (for example, one
argument is of character data type and the second argument is of numeric data
type) the concatenation will fail with the error message SQL0440.

Example 7-12 DB2 UDB casting character strings and DATE explicitly

db2 => select concat('ITSOSJ',1234) from t1
SQL0440N No authorized routine named "CONCAT" of type "FUNCTION" having
compatible arguments was found. SQLSTATE=42884

db2 => select concat('ITSOSJ','1234') as stringcol from t1

STRINGCOL

ITSOSJ1234

 1 record(s) selected.

db2 => select concat('ITSOSJ', current date) as stringdate from t1
SQL0440N No authorized routine named "CONCAT" of type "FUNCTION" having
compatible arguments was found. SQLSTATE=42884

db2 => select concat('ITSOSJ',CAST(current date as char(20))) as stringdate
from t1

STRINGDATE

ITSOSJ01/23/2004
 Chapter 7. Application porting 165

 1 record(s) selected.

7.1.8 String concatenation and NULL values
The ANSI92 standard states that if you concatenate a NULL value onto an
existing string, the result set is NULL. Example 7-13 shows you the behavior of
MySQL.

Example 7-13 How MySQL concatenates strings and NULL values

mysql> create table t2 (col1 char(2));
Query OK, 0 rows affected (0.03 sec)

mysql> insert into t2 values(NULL);
Query OK, 1 row affected (0.07 sec)

mysql> select concat('abc',col1) as nullstring from t2;
+--------------------+
| nullstring |
+--------------------+
| NULL |
+--------------------+
1 row in set (0.05 sec)

mysql> select concat('abc', coalesce(col1,'')) as nullstring from t2;
+----------------------------------+
| nullstring |
+----------------------------------+
| abc |
+----------------------------------+
1 row in set (0.00 sec)

As shown, MySQL behaves as ANSI-92 compliant, and therefore gives you the
same result sets as Example 7-14 for DB2.

Example 7-14 DB2 handles string and NULL concatenation similar

db2 => create table t2 (col1 char(2))
DB20000I The SQL command completed successfully.
db2 => insert into t2 values(NULL)
DB20000I The SQL command completed successfully.
db2 => select concat('abc', col1) as nullstring from t2

NULLSTRING

-

166 MySQL to DB2 UDB Conversion Guide

 1 record(s) selected.

db2 => select concat('abc', coalesce(col1,'')) as nullstring from t2

NULLSTRING

abc

 1 record(s) selected.

7.1.9 Record deletion
As some other competitive relational database management systems, MySQL
introduced in Version V4.0 the TRUNCATE statement. TRUNCATE is used to
delete all rows from a table when there is no need to recover the deleted records.
Therefore, there is no ROLLBACK after a TRUNCATE is possible. Example 7-15
shows how TRUNCATE is used to remove all rows, and does not allow a rollback
of the deleted rows.

Example 7-15 Using MySQL TRUNCATE to delete all records in a file

mysql> select * from t1;
+------+
| col1 |
+------+
| 5 |
| 10 |
+------+
2 rows in set (0.02 sec)

mysql> truncate table t1;
Query OK, 0 rows affected (0.00 sec)

mysql> select * from t1;
Empty set (0.00 sec)

mysql> rollback
 -> ;
ERROR 1196: Warning: Some non-transactional changed tables couldn't be rolled
back
mysql> select * from t1;
Empty set (0.00 sec)

The TRUNCATE option is primarily used to quickly delete all records from a table
when no recovery of the deleted rows is required. To achieve a similar behavior
 Chapter 7. Application porting 167

in DB2 V8.1, you may want to turn off logging with the following ALTER TABLE
statement.

ALTER TABLE <tablename> ACTIVATE NOT LOGGED INITIALLY WITH EMPTY TABLE

7.1.10 Built-in functions and operators
A function is an operation that is denoted by a function name followed by a pair of
parentheses enclosing the specification of arguments if arguments are required.

The following group of tables do not claim to be a complete reference of
differences in built-in functions and operators between MySQL Version 4.0 and
DB2 UBD Version 8.1. The listed built-in functions attempt to highlight those
differences and map functionality between the two database management
systems. Grouping the built-in functions and operators into ANSI standard,
ODBC standard and other groups seems somehow arbitrary; however, this is
one way of dividing the sum of all built-in functions into something smaller and
easier to conquer.

Functions following the ANSI SQL standard
Table 7-3 lists functions specific to the ANSI SQL92 standard.

Table 7-3 SQL 92 functions

MySQL DB2 equivalent Description

select bit_length(‘abc’) LENGTH(‘abc’)*8 Result depends on the
encoding scheme used for
character data: singly byte,
double byte, UTF-8

select char_length(b) from
t1; select
character_length(‘abcd’)

LENGTH(expr) Returns the number of
bytes for expression. For
double byte character set
(DBCS) the number of
DBCS characters is
returned

select extract(minute from
timestamp ‘2000-02-23
18:43:12.987’)

VALUES
MINUTE(‘2000-02-23
18:43:12.987’),
HOUR, YEAR, MONTH,
DAY

Extracts part of date/time
168 MySQL to DB2 UDB Conversion Guide

Functions according to ODBC declaration
ODBC 3.0 requires a wide range of built-in function and it is amazing to find only
minor differences between the two DBMS. Please note that not all functions have
been tested for their results. Specifically when performing date and time
arithmetic using the WEEK function and the DATE function listed in Table 7-4, the
results between MySQL and DB2 maybe different. However, these may not be
the only ones returning different results.

Table 7-4 ODBC 3.0 functions

LOCALTIME,
LOCALTIME(),
LOCALTIMESTAMP,
LOCALTIMESTAMP()

CURRENT_TIME,
CURRENT_DATE,
CURRENT_TIMESTAMP

Are all synonyms for
NOW() which returns date
and time in YYYY-MM-DD
HH:MM:SS or
YYYYMMDDHHMMSS
format.

select octet_length(‘abc’) LENGTH OCTET_LENGTH is in
MySQL a synonym for
LENGTH

select positional’ in ‘hello’) VALUES POSSTR(‘hello’ ,
‘ll’)”

Returns the position of the
search string

select substring(‘abcd’
from 2 for 2)

SUBSTR(‘abcd’, 2, 2) ANSI SQL SUBSTRING

select trim(trailing from
trim(LEADING FROM ‘ abc
‘))

Use RTRIM and LTRIM Combination of LTRIM and
RTRIM

MySQL DB2 Description

select
dayofmonth(‘2004-02-23’)
from t1

VALUES
DAY(‘2004-02-23’)

DAY returns the day
portion of the argument

select hour(TIME
‘12:13:14’)

VALUES
HOUR(TIME(‘12:13:14’))

Slightly different syntax

WEEK WEEK DB2 starts at week 1,
MySQL starts at week 0.
DB2 also provides
WEEK_ISO

MySQL DB2 equivalent Description
 Chapter 7. Application porting 169

Comparing operators
There is a plethora of function as listed in Table 7-5, Table 7-6, and Table 7-7
where syntax or implementation can be quite different. The tables attempt to
summarize these differences and show code snippets for some selected
functions on how to convert a MySQL function to DB2. In many cases you will
find the DB2 CASE expression is really helpful when function mapping is
required.

Table 7-5 MySQL and DB2 UDB operator comparison

Functions converting date and time
Working with date and time functions and operators uncovers in many cases the
implementation differences for the various DBMS. Table 7-6 lists some date and
time related functions. You may also find such functions in the SQL92 and ODBC
standards.

Table 7-6 Date and Time related functions

MySQL DB2 Comments

logical NOT as '!' in
SELECT list

VALUES CASE WHEN
1!=1 THEN 0 ELSE 1 END

Implement using CASE
expression and VALUES
statement

% MOD In MySQL % is a synonym
for modulo

& (bitwise and) not available. Implement
using UDF

Refer to UDF BIT_AND in
Appendix A.1, “Sample
code for BIT_AND” on
page 336

logical AND as '&&' in
SELECT list

CASE Implement using CASE
expression and VALUES
statement

not equal, <> or != in
SELECT list:
select 1<>1

SELECT CASE WHEN
1<> 1 THEN x ELSE y
END

Implement using CASE
expression

Function = in SELECT list:
select (1=1)

CASE Implement using CASE
expression and VALUES
statement

MySQL DB2 UDB Comments

DATE_FORMAT various options such as
DAYNAME,
MONTHNAME, etc.

Formatting DATE, TIME
data types
170 MySQL to DB2 UDB Conversion Guide

More functions
There is always a set of items left that do not seem to fit in any of the categories
defined when the categorization has been decided. Those you find in Table 7-7.

Table 7-7 Other functions

FROM_DAYS(n) DATE(n-365) DB2 and MySQL use
different base year

FROM_UNIXTIME TIMESTAMP_FORMAT May deliver slightly
different result

PERIOD_ADD:
select
period_add(9602,-12)

SELECT
DATE(‘2004-02-23’) - 12
MONTH FROM T1

Adds a number of month

PERIOD_DIFF YEAR and MONTH Requires some date
arithmetic

WEEKDAY DAYOFWEEK DB2 range is 1 (Sunday) to
7, MySQL ranges 0
(Monday™) to 6."

SEC_TO_TIME HOUR, MINUTE,
SECOND

Requires some time
arithmetic

TIME_TO_SEC HOUR, MINUTE,
SECOND

Requires some time
arithmetic

TO_DAYS DAYS Requires some date
arithmetic

MySQL DB2 UDB Comments

BETWEEN in SELECT CASE Implement using CASE
expression and VALUES
statement

<< and >> (bitwise shifts) no equivalent Implement using power
function:
MySQL:
SELECT (x>>y)
SELECT(x<<y)
DB2 UDB:
SELECT(x/power(2,y))
SELECT(x*power(2,y)):

MySQL DB2 UDB Comments
 Chapter 7. Application porting 171

BIT_COUNT no equivalent, implement
using UDF

Refer to BIT_CNT UDF in
Appendix A.6, “Sample
code for BIT_COUNT” on
page 359

ENCRYPT ENCRYPT DB2 requires encryption
password

FIELD CASE Implement using CASE
expression and VALUES
statement

GREATEST FnGratst See UDF example in
Appendix A.4, “Sample
code for GREATEST
function” on page 346

IF CASE Implement using CASE
expression and VALUES
statement

IN on numbers in SELECT CASE Implement using CASE
expression and VALUES
statement

IN on strings in SELECT CASE Implement using CASE
expression and VALUES
statement

LOCATE as INSTR LOCATE Arguments are swapped

INTERVAL CASE Implement using CASE
expression and VALUES
statement

LAST_INSERT_ID IDENTITY_VAL_LOCAL DB2 returns NULL,
MySQL return zero if not
set

LEAST FnLeastN See UDF example in
Appendix A.5, “Sample
code for LEAST” on
page 353

LIKE in SELECT CASE with LIKE Implement using CASE
expression and VALUES
statement

MySQL DB2 UDB Comments
172 MySQL to DB2 UDB Conversion Guide

7.2 Application source conversion
Every programming language provides a huge amount of commands and
possibilities to program a special functionality. It is almost impossible to give a
migration example for every possible programming approach. Therefore, in this
section we discuss the most important commands used to access a database,
which are:

� connecting database
� query statements
� disconnecting database

LIKE ESCAPE in SELECT CASE with LIKE and
ESCAPE

Implement using CASE
expression and VALUES
statement

LOG(m,n) LOG(m)/LOG(n) To convert logarithm to an
arbitrary base

NOT in SELECT CASE Implement using CASE
expression and VALUES
statement

NOT BETWEEN in
SELECT

CASE Implement using CASE
expression and VALUES
statement

NOT LIKE in SELECT CASE Implement using CASE
expression and VALUES
statement

PASSWORD ENCRYPT For encryption

POW POWER™ Returns value of arg1 to
the power of arg2

REGEXP in SELECT no equivalent in DB2 UDB
8.1

see article on developer
works for work-around
http://www-106.ibm.com/
developerworks/db2/libr
ary/techarticle/0301sto
lze/0301stolze.html

ROUND(1 arg) INT(ROUND(arg1,0)) Round to integer value

VERSION db2level To retrieve installed version
of DBMS

MySQL DB2 UDB Comments
 Chapter 7. Application porting 173

http://www-106.ibm.com/developerworks/db2/library/techarticle/0301stolze/0301stolze.html

7.2.1 Converting MySQL Perl applications to DB2 UDB
Two interfaces between Perl and the MySQL database have to be considered
when discussing application porting form MySQL to DB2. First is Mysql.pm, a
custom interface that works only with MySQL. The other newer interface is a
plug-in for the Database Independent (DBI) set of modules. DBI provides a
common Perl API for all database accesses and enables greater portability. The
DBI interface is the most robust and standard. However, many legacy systems
still use the Mysql.pm interface to connect to MySQL. In fact, the MySQL
interface Mysql.pm is currently implemented as an emulation on top of the DBI
drivers. The interface for accessing DB2 is the DBI interface with the DBD::DB2
driver. Information about and how to install the DBI interface and the DBD::DB2
driver can be found at the following Web sites:

http://www.ibm.com/software/data/db2/perl/
http://www.perl.com/CPAN/modules/by-module/DBD/
http://aspn.activestate.com/ASPN/Modules/

As applications using the DBI interface to connect to MySQL generally can be
adapted to DB2 by simply changing the database driver from DBD::Mysql to
DBD::DB2; this section only discusses the application conversion from Mysql.pm
to DBI interface.

Converting Mysql.pm to DBI interface supported code
The interface documentation is normally installed with the appropriate module in
the perl directory. More detailed information about the interface and the provided
functions can be found there.

Connecting database
With Mysql.pm, five different connect statements can be used to connect to a
database in a MySQL server:

$dbh = Mysql->Connect;
$dbh = Mysql->Connect($host);
$dbh = Mysql->Connect($host,$database);
$dbh = Mysql->Connect($host,$database,$password);
$dbh = Mysql->Connect($host,$database,$password,$user);

The connect statement needs the host name, database name, user ID, and
password. The first four statements assume some or all connection information
from the environment. If no $database parameter is given, a SelectDB statement
has to be provided to connect to a database. In Example 7-16 the connect
syntax to a MySQL database is shown. For simplicity reasons the error handling
is not included in following examples.
174 MySQL to DB2 UDB Conversion Guide

http://www-306.ibm.com/software/data/db2/perl/
http://www.perl.com/CPAN/modules/by-module/DBD/
http://aspn.activestate.com/ASPN/Modules/

Example 7-16 MySQL database connection with the Mysql.pm interface

use Mysql;
my $host="localhost";
my $database="itsodb";
my $user="itsosj";
my $password="itsosj";

$dbh = Mysql->connect($host,$database,$password,$user);

The corresponding DBI connection to a DB2 database is quite similar. Instead of
the use Mysql, the DBI interface and the DBD::DB2 driver have to be defined. If
DB2 constants are used (e.g. SQL_MODE_READ_ONLY in the connection
attributes, etc.) this has to be announced to the Perl interpreter by including 'use
DBD::DB2::Constants' in the Perl program (see Example 7-17).

Example 7-17 DB2 database connection with DBI interface

use DBI;
use DBD::DB2::Constants;
use DBD::DB2;
my $user="itsosj";
my $password="itsosj";

$dbh = DBI->connect("dbi:DB2:itsodb2", $user, $password);

As DB2 is more powerful than MySQL, the connect statement may require a
fourth argument \%attr which contains the connection attributes as shown in
Example 7-18.

$dbh=DBI->connect($data_source, $user,$password, \%attr);

Example 7-18 DB2 specific connection attributes

db2_access_mode SQL_MODE_READ_ONLY or SQL_MODE_READ_WRITE
db2_clischema Character string
db2_close_behavior SQL_CC_NO_RELEASE or SQL_CC_RELEASE
db2_connect_node Integer (must be set in DBI->connect method; it cannot be

 modified afterwards)
db2_current_schema Character string
db2_db2estimate Integer
db2_db2explain One of:
 SQL_DB2EXPLAIN_OFF
 SQL_DB2EXPLAIN_SNAPSHOT_ON
 SQL_DB2EXPLAIN_MODE_ON
 SQL_DB2EXPLAIN_SNAPSHOT_MODE_ON
db2_info_acctstr Character string
db2_info_applname Character string
db2_info_userid Character string
 Chapter 7. Application porting 175

db2_info_wrkstnname Character string
db2_longdata_compat Boolean
db2_quiet_mode Integer
db2_sqlerrp Character string (read only)
db2_txn_isolation One of the following:
 SQL_TXN_READ_UNCOMMITTED
 SQL_TXN_READ_COMMITTED
 SQL_TXN_REPEATABLE_READ
 SQL_TXN_SERIALIZABLE
 SQL_TXN_NOCOMMIT

As in the Mysql.pm connect example, the DBI connect statement returns a
database handle if the connection has been successfully established. Otherwise,
the value undef is returned. All further communication with the database server
takes places through this object.

SELECT query statements
Example 7-19 and Example 7-20 show the differences between the two
interfaces in using the SELECT statement.

Example 7-19 Select statement used with the Mysql.pm interface

use Mysql;
my $host="localhost";
my $database="itsodb";
my $user="itsosj";
my $password="itsosj";
$dbh = Mysql->connect($host,$database,$password,$user);

$sql_statement = "SELECT * FROM catalog WHERE id='$id';";
$sth = $dbh->query($sql_statement);
@arr = $sth->fetchrow;

A DB2 conversion using the DBI interface is shown in Example 7-20.

Example 7-20 Select statement used with the DBI interface

use DBI;
use DBD::DB2::Constants;
use DBD::DB2;
my $user="itsosj";
my $password="itsosj";
$dbh = DBI->connect("dbi:DB2:itsodb2", $username, $password);

$sql_statement = "SELECT * FROM katalog WHERE id='$id';";
$sth = $dbh->prepare($sql_statement);
$sth->execute();
176 MySQL to DB2 UDB Conversion Guide

@arr = $sth->fetchrow_array;

The biggest difference is that in case of DBI, the statement first has to be
prepared before it is executed. Two statements are needed for this functionality.

The MySQL code fetchrow and the respective DB2 code fetchrow_array
functions return the next row of data from the statement handle generated by the
query or execute commands.

INSERT, UPDATE, and DELETE statements
Generally, the same functions can be used for the INSERT, UPDATE and DELETE
statements as for the SELECT statement discussed above. For the non-SELECT
statement, DBI provides a faster substitute for DBI::prepare/DBI::execute pair
with the DBI::do function:

$rows_affected = $dbh->do($sql_statement);

For further information, please refer to the DBI documentation previously.

Disconnecting database
The Mysql.pm interface does not provide a disconnect function, because MySQL
does not support transactions yet. Whenever the database handle loses its
value, Mysql.pm closes the database connection. However, databases that do
support transactions need to be explicitly disconnected. The DBI interface
supports the disconnect function for the database handle.

Example 7-21 Disconnecting DB2 database using DBI

use DBI;
use DBD::DB2::Constants;
use DBD::DB2;
my $user="itsosj";
my $password="itsosj";
$dbh = DBI->connect("dbi:DB2:itsodb2", $username, $password);
...
$dbh->disconnect;

7.2.2 Converting MySQL PHP applications to DB2 UDB
With PHP applications, different approaches can be used to access DB2:

� iODBC with ODBC-compliant drivers

iODBC is provided by OpenLink Software. iODBC is the acronym for
Independent Open DataBase Connectivity, an Open Source platform
 Chapter 7. Application porting 177

independent implementation of both the ODBC and X/Open specifications.
Information about this library can be found at: http://www.iodbc.org

� unixODBC

unixODBC (http://www.unixodbc.org) is an open source project whose
goals are to develop and promote unixODBC to be the definitive standard for
ODBC on the Linux platform.

� Unified ODBC

Unified ODBC consists of a single set of ODBC functions provided by PHP to
access different databases that have borrowed the semantics of ODBC API
to implement their own API. It is more efficient to use the database native
database driver because there is no ODBC involved in the communication or
access path.

� ADOdb

ADOdb library provides a wrapper around MySQL API for supporting MySQL
database, and wrapper around DB2 ODBC Driver for DB2 UDB. So you need
the Unified ODBC support for using ADOdb libraries.

� PEAR

PEAR DB is the default database abstraction library included in PHP4, and it
is quite similar to the more popular ADOdb library. As PEAR DB is also a
wrapper around the DB2 ODBC driver, the Unified ODBC DB2 support must
be provided for using PEAR DB libraries.

When we talk about ODBC in this section (always Unified ODBC), respectively
the native DB2 driver is meant. Because of the wide similarities in the syntax
between Unified ODBC and other ODBC types, and the performance advantage
when using the Unified ODBC support, the application conversion is discussed
with the Unified ODBC support.

Converting from native MySQL library to Unified ODBC
Using the Unified ODBC support in PHP applications does not require a special
load of library files as the support already is integrated during the compilation
process of PHP. A complete overview about the MySQL and the Unified ODBC
functions can be found in the PHP Manual, which can be downloaded at:
http://www.php.net/docs.php

Connecting database
Connecting a MySQL database consists of two parts: First a connection to the
MySQL server has to be established and after that a database can be chosen.

The function specified to connect the MySQL server is given in the following
declaration:
178 MySQL to DB2 UDB Conversion Guide

http://www.iodbc.org
http://www.unixodbc.org
http://www.php.net/docs.php

resource mysql_connect ([string server [, string username [, string password
[, bool new_link [, int client_flags]]]]])

Another way to connect to a MySQL server is to use the mysql_pconnect()
function, which acts very much like mysql_connect() with two major differences:

� When connecting the first time, the function would try to find a (persistent) link
that is already open with the same host, username and password. If one is
found, an identifier for it will be returned instead of opening a new connection.

� The connection to the MySQL server will not be closed when the execution of
the script ends. Instead, the link will remain open for future use.

The server variable in the mysql_connect() function contains the hostname or
the IP address of the server that provides the MySQL database.

Choosing the MySQL database is done by the mysql_select_db() function:

bool mysql_select_db (string database_name [, resource link_identifier])

The connection part of our sample application using MySQL database is shown
in Example 7-22.

Example 7-22 Connecting a MySQL database

$db_host = "localhost";
$db_user = "itsosj";
$db_pass = "itsosj";
$datab = "itsodb";

$db = mysql_connect($db_host,$db_user,$db_pass)
or die("Could not connect ". mysql_error());

mysql_select_db($datab,$db) or die(mysql_error());

When connecting a DB2 database with ODBC, the connection is done in a single
ODBC command (odbc_connect()).

resource odbc_connect (string dsn, string user, string password [, int
cursor_type])

The migrated connection part of the sample application is shown in
Example 7-23. In our connection script snippet, the statement after connection
statement sets the current schema, which will be used when querying the

Note: As we use the IBM DB2 native driver, the DSN is the database name
which is registered in the DB2 catalog. Therefore, no server address has to be
declared in the connect statement.
 Chapter 7. Application porting 179

database. The background for this approach is that compared to DB2, MySQL
does not have schemas, nor instances.

In MySQL, a table can be referenced by database.tablename. If no database
name is provide in the table name, the default is the currently used database. In
DB2, table name is defined as schema.tablename. When reference to a DB2
table, if no schema is provided, the default schema is the user ID which is
connected to the database. In an application, the set schema statement can be
used to provide a global schema name for the tables which do not have a full
table name specified. To simplify the application conversion, during database
porting the tables were created with the schema of the MySQL database name
(in our case itsodb). By using the set schema after database connection, we do
not need to change every table name in the application.

Example 7-23 Connecting a DB2 database

$db_user = "itsosj";
$db_pass = "itsosj";
$datab = "itsodb";

$db=odbc_connect($datab,$db_user,$db_pass) or die("Could not connect ".
odbc_errormsg());
$query="SET CURRENT SCHEMA='ITSODB'";
odbc_exec($db,$query) or die(odbc_errormsg($db));

A complement function to the persistent connect function mysql_pconnect() is
the odbc_pconnect().

SELECT query statements
Querying a table in MySQL using the PHP MySQL functions is shown in
Example 7-24.

Example 7-24 MySQL select example

$sql = mysql_query("SELECT * FROM catalog WHERE id='$id'");
 $rowsql = mysql_fetch_row($sql);
 $graphic = "../graphic/".$rowsql[11].".jpg";

The correspondent ODBC DB2 query is shown in Example 7-25.

Example 7-25 DB2 select example

$sql = odbc_exec($db,"SELECT * FROM catalog WHERE id=$id");
 odbc_fetch_into($sql,$rowsql);
 $graphic = "../graphics/".$rowsql[11].".jpg";
180 MySQL to DB2 UDB Conversion Guide

The odbc_exec() function nearly corresponds to the mysql_query() function.
The only difference is that the odbc_exec() function needs two parameters where
the first parameter is the connection id returned by the odbc_connect statement:

resource odbc_exec (resource connection_id, string query_string)

To get each row by row in an array equivalent to the mysql_fetch_row() function
the odbc_fetch_into() function can be used without great modifications. There
are only syntax differences in both statements in our case.

A problem can occur when converting SQL statements with variables to ODBC.
In our MySQL example above, the $id variable is in single quote (‘) whereas in
the DB2 example the single quotes are removed. The background for the change
is that the table column ID is of type integer, and ODBC does not convert strings
to integer automatically whereas in the MySQL function it does.

INSERT, UPDATE,and DELETE statements
In fact for all three SQL commands, INSERT, UPDATE, and DELETE the same
MySQL and ODBC functions are used as discussed for the SELECT statement:

mysql_query($sql_statement)
odbc_exec($db,$sql_statement)

In Example 7-26 and Example 7-27, the difference between the MySQL and
ODBC functions for the INSERT statement is shown.

Example 7-26 MySQL insert statement

$ret=mysql_query("INSERT INTO warenkorb (user_id, ktg_id) VALUES
('$user_id','$ktg_id')");
if ($ret){

$text="Item ".$artnr." was inserted in the shopping cart";
}else{

$text="Insert failure of item ".$artnr." into the shopping cart";
}
echo $text;

Example 7-27 DB2 insert statement

$ret=odbc_exec($db,"INSERT INTO warenkorb (user_id, ktg_id) VALUES
('$user_id','$ktg_id')");
if ($ret){

Attention: When using ODBC functions, variable contents in a SQL
statement are not converted to the correspondent type of the database
column. ODBC expects that the variable in the SQL statement has the correct
data type defined.
 Chapter 7. Application porting 181

$text="Item ".$artnr." was inserted in the shopping cart";
}else{

$text="Insert failure of item ".$artnr." into the shopping cart";
}
echo $text;

There is a minor difference between these functions in returning values:

� mysql_query() returns a resource identifier only for SELECT,SHOW,EXPLAIN or
DESCRIBE statements, and returns a false if the query was not executed
correctly. For other type of SQL statements, mysql_query() returns true on
success and false on error.

� odbc_exec() returns a result identifier if the SQL command was executed
successfully and false if an error occurs.

Disconnecting database
Example 7-28 and Example 7-29 show the disconnect functions using the
MySQL library and the ODBC library.

Example 7-28 Disconnecting MySQL database

$db = mysql_connect($db_host, $db_user, $db_pass)
or die("Could not connect: " . mysql_error());
echo "Connected successfully";
mysql_close($db);

Example 7-29 Disconnecting DB2 database

$db=odbc_connect($datab,$db_user,$db_pass) or die("Could not connect ".
odbc_errormsg());
echo "Connected successfully";
odbc_close($db);

There is a difference between both functions in returning values. The function
mysql_close() returns true on success and false on failure. The function
odbc_close() does not return any value. In rare cases the return value of the
mysql_close() function is not used at all (see note above), therefore the
conversion if necessary at all can mostly be done by simply replacing the
function or inserting the new function at the end of program execution.

Note: Using mysql_close() or odbc_close() is usually not necessary when
databases are used that do not support transactions as non-persistent open
links are automatically closed, and the associated memory is freed at the end
of the script’s execution.
182 MySQL to DB2 UDB Conversion Guide

Converting MySQL ADOdb PHP applications to DB2 UDB
Active Data Object Database (ADOdb) for PHP is a database abstraction library
modeled on Microsoft's ADO for building dynamic Web pages with database
support. A PHP Web application can use this database class library to access
any supported database. ADOdb supports MySQL, PostgreSQL, Oracle,
Microsoft SQL Server, Sybase, Informix, Access, FoxPro, Interbase, ODBC, and
ADO for true cross-platform database independence, which means a PHP
application written for one database can be easily converted to another
database.

As both MySQL and DB2 UDB are supported by ADOdb for the PHP library, the
application conversion will be much easier than other incompatible APIs. ADOdb
architecture is built in such a way that all the database dependant code are
stored in stub functions, which means you can easily support your database
specific functionality by changing the stub file.

So, for using DB2 UDB from your PHP application you need adodb-db2.inc.php
instead of adodb-mysql.inc.php. As ADOdb function calls will remain the same
for both the databases, the only change you may need is changing some
database specific formats.

The ADOdb library provides a wrapper around MySQL API for supporting the
MySQL database and wrapper around DB2 ODBC Driver for DB2 UDB. So, you
need DB2 ODBC Driver for using ADOdb libraries.

The MySQL ADOdb PHP application can be ported to DB2 UDB by doing the
following changes at various levels of the application:

� Loading ADOdb driver

Before using the ADOdb library you need to include PHP ADOdb libraries and
initialize ADOdb variables in your program. ADOdb requires loading of at least
two files:

– adodb.inc.php, which contains all the functions used by all database
classes

– adodb-<dbname>.inc.php, which contains database specific code

For instance, MySQL code requires the loading of adodb-mysql.inc.php, and
now you need to change it to a adodb-db2.inc.php file. This can be done by
changing ADOLoadCode('mysql') to ADOLoadCode('db2'); this code actually
makes sure that you load only the required driver. Example 7-30 shows the
code for initialization and the changes required for DB2 UDB.

Example 7-30 Loading ADOdb driver for MySQL and DB2 UDB

include('/home/itso/adodb/adodb.inc.php');
$ADODB_CACHE_DIR = '/home/itso/adodb/cache';
 Chapter 7. Application porting 183

// Loads adodb-mysql.inc.php for mysql
ADOLoadCode('mysql');

// Loads adodb-db2.inc.php for db2
ADOLoadCode('db2');

� Connecting to database

ADOdb uses an object-oriented approach to manage the complexity of
handling multiple databases. This is done by passing an input parameter for
the database driver name while creating the connection object. The
connection instance for DB2 can be created using ADONewConnection('db2')
or NewADOConnection('db2').

After creating the connection instance, you need to connect to the database
using:

– PConnect()

It creates a persistent connection, which is faster because this connection
is never closed.

– Connect()

It creates a non-persistent connection, which takes up much fewer
resources though, therefore reducing the risk of your database and your
Web-server becoming overloaded.

– NConnect()

It forces the creation of a new connection.

Example 7-31 and Example 7-32 show the changes in connection code in the
ADOdb PHP program. All the above connect methods take four parameters
(systemname, username, password, databasename) in MySQL, whereas in
DB2 UDB ODBC, it only requires three parameters (dbname, username,
password). Also, we can set the cursor mode to SQL_CUR_USE_ODBC for
optimization purposes.

Example 7-31 MySQL creating connection in ADOdb

// create connection instance for MySQL
$db = &ADONewConnection('mysql');
$db->Connect('localhost', 'itso', 'itso', 'itsodb');

Example 7-32 DB2 creating connection in ADOdb

// create connection instance for DB2 UDB
$conn = &ADONewConnection('db2');
$conn->curMode = SQL_CUR_USE_ODBC;
$conn->Connect(“itsodb2”,”itso”,”itso”);
184 MySQL to DB2 UDB Conversion Guide

);

� Processing query

Now the connection to the database is established and this connection can be
used to execute the query. This can be done by calling the ADOConnection.
Execute() function. The function calls for DB2 UDB and MySQL remains the
same, so they do not require any changes. Whereas the SQL statements may
require change due to the SQL difference in MySQL and DB2 UDB.

– Executing the SELECT query and fetching results

The query execution and result fetching code remains the same for
MySQL and DB2 UDB. The Example 7-33 shows the code for query
execution, and the result fetching using the ADOdb library for PHP.

Example 7-33 Select query execution

$recordSet = $conn->Execute('select * from katalog');
if (!$recordSet)

print $conn->ErrorMsg();
else{

while (!$recordSet->EOF) {
print 'HERSTELLER= '.$recordSet->fields[0].' Model=

'.$recordSet->fields[1];
$recordSet->MoveNext();

}
$recordSet->Close();

}
$conn->Close();

– Executing UPDATE/INSERT statement

The code for executing UPDATE and INSERT remains the same. The code
for inserting the data is shown in Example 7-34.

Example 7-34 Executing update/insert statement

$sql = "INSERT INTO katalog (id, model,type) values (1,’1001’,'new')";
$conn->Execute($sql);
print "Number of rows affected =".$conn->Affected_Rows() ;
$conn.Close();

Converting MySQL PEAR DB PHP applications to DB2 UDB
Another means to provide a database abstraction in the PHP application is using
the PHP extension and add-on repository for the database (PEAR DB). PEAR
DB is the default database abstraction library included in PHP4. It is quite similar
to more the popular library ADOdb functionally, but the syntax for both is quite
different.
 Chapter 7. Application porting 185

Just like ADOdb, it enables the PHP application to be written once and run with
minor changes for various database engines such as MySQL, Oracle,
PostgreSQL, or DB2 UDB.

To provide database abstraction features, PEAR DB uses an object-oriented
methodology such as classes and objects. For doing so it uses three files:

� DB.php

This class contains implementation of the DB class, which creates database
connection objects.

� common.php

This class contains generic code for all the database specific implementation
of the database access methods. All the drivers inherit and overload this
code.

� <drivername>.php

This file contains database specific implementation of the access code. This
class is also called the driver class and is used by PHP applications. In case
of MySQL, the driver file is mysql.php, whereas in the case of DB2 it is
odbc.php.

The way PEAR DB provides its services for a DB2 UDB application and MySQL
application is quite different. In MySQL PEAR DB uses the currently existing
extension for MySQL database, whereas PEAR DB does not provide any
extension for connecting to DB2 UDB, so the ODBC extension is used for the
DB2 UDB connection.

The PHP application that uses PEAR DB for database connection generally
performs the following steps:

� Include PEAR DB objects

As discussed before PEAR DB requires three files DB.php, common.php and
<drivername>.php for proper functioning of the PHP application. But you
need not explicitly include all these files, you just need to include DB.php and
its functions will include the required driver depending upon your data source
name.

So for both MySQL and DB2 UDB the include statements will be same as:

include('/home/itso/php/PEAR/DB.php');

� Connect to database

PEAR DB database connection can be established using connect method of
declared in DB.php. This method requires data source name (DSN)
containing in connection parameters as input. The DSN is a URL-style string
that consists of the database driver name, the user name, the password, the
186 MySQL to DB2 UDB Conversion Guide

hostname (for non-ODBC), and a database name. So complete DSN syntax
would be

driver name://username:password@hostname/databasename

PEAR DB has a database driver for MySQL called mysql, it can be used to
create a connection. So DSN for connecting to our database would be

mysql://itso:itso@localhost/itsodb

PEAR DB does not provide a driver for DB2 UDB. But it supports DB2 UDB
using ODBC driver. SO DSN for DB2 UDB would be

odbc(db2)://itso:itso/itsodb2

You can optionally provide second parameter to connect() which specifies
whether you want your connection to be persistent or non-persistent.
Example 7-35 shows the PEAR DB database connect for MySQL and the
DB2 conversion code.

Example 7-35 PEAR DB database connection for DB2 UDB and MySQL

include('/usr/local/lib/php/PEAR/DB.php');

\\ MySQL database connection with DSN=’mysql//itso:itso@localhost/itsodb2’
$conn = DB::connect('mysql//itso:itso@itsodb2');

\\ DB2 UDB database connection with DSN=’odbc(db2)//itso:itso/itsodb2’
$conn = DB::connect('odbc(db2)://itso:itso@itsodb2');

if(DB::isError($conn))
print "connection error : ".$conn->getMessage();

� Process query

The query can be executed by calling query() method on the connection
object. It takes the SQL statement as an input parameter and returns the
results. The results can be used in three modes depending on the SQL
statement and statement’s final status:

– Error case

In case an error occurs while executing the SQL statement you can use
return object for getting error message using the method getMessage().
This code does not change with the change in database, so MySQL and
DB2 UDB code is same. Example 7-36 shows the usage of the result
object for getting the error message.

– Result set

If your SQL statement was a query statement, the return object can be
used to fetchthe result set using the fetchRow variable of the return object.
Again, MySQL and DB2 UDB database differences do not cause any
 Chapter 7. Application porting 187

change in the PEAR DB code. So this code require only changes in the
SQL statements. Example 7-36 shows an PHP query statement execution
with PEAR DB.

Example 7-36 PEAR DB PHP query statement

$result = $conn->query ("SELECT * FROM itsodb.katalog");
if (DB::isError ($result))

die ("SELECT failed: " . $result->getMessage () . "\n");
while ($row = $result->fetchRow ())

print "HERSTELLER= ".$row[0]."Model=".$row[1];
$result->free

– Update report

In the cases of an update and insert statement, return objects will be
DB_ok. In this case the connection object can be used to get the affected
row using the method affectedRows(). This code also remains the same
for MySQL and DB2 UDB. Example 7-37 shows data insertion using
PEAR DB.

Example 7-37 PEAR DB PHP data manipulation statement

$result = $conn->query ("INSERT INTO katalog (id, model,type) values
(1,’1001’,'new')");
print "Number of rows affected=".$conn->affectedRows();

– Disconnect from the database

Finally, as a good programming practice you should release all the
ResultSets and connections. This can be done using free() method of th
eresult object of query() in cases of SQL query statements. Connection
can be released using disconnect() method of the connection object.

7.2.3 Converting MySQL Java applications to DB2 UDB
DB2 UDB supports the usage of Java programming at the following levels:

� DB2 server side programming

– Java stored procedure on DB2 server
– Java user-defined function (UDF) on DB2 server

� Java applications

– Java enabled Web browser accessing DB2 UDB using JDBC
– Java standalone application using JDBC and SQLj

� J2EE application server

– JavaServer Pages (JSP) using a JDBC connection
188 MySQL to DB2 UDB Conversion Guide

– Servlets using JDBC or SQLj
– Enterprise JavaBeans (EJB) using JDBC or SQLj

DB2 UDB provides an implementation of the two standard-based Java
programming interface (APIs), Java Database Connectivity (JDBC), and
embedded SQL for Java (SQLj). This section provides an overview of JDBC,
SQLj, and the conversion of existing MySQL Java applications to DB2 UDB.

MySQL has an optional package MySQL Connector/J, which is a type 4 JDBC
driver. The latest Version of MySQL Connector/J implements SUN’s JDBC 3.0
API for relational database access.

Java database connectivity (JDBC)
JDBC is a vendor-neutral dynamic SQL interface that provides data access for
your application through standardized Java methods. JDBC drivers provide the
mechanics to the JDBC API to allow Java applications to access databases.
Currently JDBC API is in its third revision, but most of the drivers available in
market comply to JDBC1.2 or JDBC2.0 specification. IBM DB2 V8.1 supports
JDBC2.1 and some methods support JDBC3.0 forms.

A JDBC application can establish a connection to a data source using the JDBC
DriverManager interface. In the following sections we discuss what are the
changes required in Java application code from MySQL to DB2.

IBM JDBC driver for DB2
IBM DB2 UDB provides support for various types of JDBC technology-enabled
drivers. The drivers available in DB2 UDB V8.1 are:

� DB2 JDBC type 2 driver

The DB2 JDBC type 2 driver, also called the native-API/partly Java driver,
lets Java applications make JDBC calls that are translated to Java native
methods. The Java applications that use this driver must run a DB2 client,
which is used to communicate the JDBC requests to the DB2 server.
Figure 7-1 shows a call transfer for DB2 JDBC type 2 driver. As shown in
Figure 7-1, this driver can be used only by Java applications. This driver is
implemented using the DB2 CLI interface to communicate with DB2 UDB
servers.

For using DB2 JDBC type 2 driver you need following properties:

drivername=”COM.ibm.db2.jdbc.app.DB2Driver”
URL=”java:db2:dbname”

The user ID and password are implicitly picked from the DB2 client setup.
 Chapter 7. Application porting 189

Figure 7-1 DB2 type 2 JDBC Driver

� DB2 JDBC type 3 driver

The DB2 JDBC type 3 driver also called the applet or net-protocol/all-Java
driver and follows a three-tiered approach. In the DB2 JDBC type 3 driver,
the Java standalone application or Java applet passes the JDBC database
requests through the network to the middle-tier server where the DB2 applet
server is running. The DB2 applet server then translates the request (directly
or indirectly) to the database-specific native-connectivity interface to pass the
request to the database server. Figure 7-2 shows the various tiers involved in
DB2 JDBC type 3 driver. The DB2 JDBC server process is db2jd and the
driver is available in the db2java.zip in directory sqllib/java.

For using DB2 JDBC type 3 driver you need following properties:

drivername=”COM.ibm.db2.jdbc.net.DB2Driver”
URL=”java:db2://servername:serverport/dbname”

Note: Here servername and serverport are the applet server port.

Note: The DB2 JDBC type 2 driver is J2EE certified for use with IBM
WebSphere Application Server, which means it conforms to J2EE
specifications.

Note: The JDBC type 3 driver is deprecated for DB2 UDB Version 8.

DB2 CLI

Java Application

DB2
Database

Client tier
Server tier

DB2 JDBC Type2
Driver

DB2
Client
190 MySQL to DB2 UDB Conversion Guide

Figure 7-2 DB2 JDBC type 3 driver

� DB2 Universal JDBC driver

The DB2 JDBC Universal Driver is a single driver that include both type 2 and
type 4 behavior. This type 4/ Native-protocol all-Java driver is implemented in
Java and it uses the Distributed Relational Database Architecture™ (DRDA®)
protocol for client/server communications. Figure 7-3 shows the JDBC
Universal Driver usage in the Java application. DB2 Universal JDBC Driver
does not need any service on client side, this driver is available in the
db2jcc.jar.

For using the DB2 Universal JDBC driver, you need the following properties:

drivername=”com.ibm.db2.jcc.DB2Driver”
URL=”java:db2://servername:serverport/dbname”

Note: Servername and serverport refer to the database server.

Figure 7-3 JDBC Universal Driver

DB2 JDBC Type 3
Driver

Java Application

DB2
Database

Client tier Server tier

DB2 JDBC applet
server

Middle tier

DB2
Database

Client tier Server tier

Java Application

DB2 Universal
Driver

DRDA Protocol
 Chapter 7. Application porting 191

The JDBC type 1 driver /JDBC-ODBC bridge provided by Sun Microsystem can
be used for DB2 UDB. IBM does not guarantee or recommend this driver.

You can use any type of driver according to your requirement, but we suggest
that you directly convert your MySQL Java application to DB2 Java application by
using DB2 Universal JDBC driver instead of MySQL JDBC Driver.

For more information on Java application development and the JDBC
specification, see the DB2 Universal Database Java Web site at:
http://www.ibm.com/software/data/db2/udb/ad/v8/java/

Embedded SQL for Java
DB2 UDB provides embedded SQL (both static and dynamic) access to Java
applications though SQLj APIs. DB2 SQLj support allows you to create, build,
and run embedded SQL for Java applications, applets, stored procedures, and
user-defined functions (UDFs). SQLj requires sqllib/java/sqlj.zip and
sqllib/java/runtime.zip.

Conversion of JDBC application
As both MySQL and DB2 UDB comply to JDBC specification, the Java
application does not require a lot of code changes. It might be required to change
SQL statements as discussed in DDL differences in Chapter 5, “Database
porting” on page 89.

In this section we provide you information on the Java program conversion from
MySQL to DB2 UDB.

Loading JDBC Driver
First step in the Java program is loading of the appropriate JDBC driver. This is
done by calling Class.forName(drivername) in your Java program. Appropriate
values for the driver name are already discussed in “IBM JDBC driver for DB2” on
page 189. Example 7-38 shows loading of the driver for MySQL, and
Example 7-39 shows the DB2 UDB conversion using Universal driver.

Connecting to database
In this part the Java program tries to establish a connection to the given
database. This is done by calling DriverManager.getConnection with the proper
URL values, which was discussed in the driver description in “IBM JDBC driver
for DB2” on page 189. After this call DriverManager selects the appropriate driver
from set of registered drivers, which actually connects to the database.
Example 7-38 and Example 7-39 show these steps for MySQL and DB2 UDB
respectively.
192 MySQL to DB2 UDB Conversion Guide

http://www.ibm.com/software/data/db2/udb/ad/v8/java/

Example 7-38 MySQL JDBC driver loading and connection

import java.sql.*;

public class MySQLClient
{
 public static void main (String[] args) throws Exception
 {

 // load the driver
 Class.forName ("com.mysql.jdbc.Driver");

 // connect to database
 Connection conn = DriverManager.getConnection
("jdbc:mysql://localhost/itsodb", "userid", "passwd");

 //...

 }
}

Example 7-39 DB2 JDBC driver loading and connection

import java.sql.*;

public class DB2Client
{
 public static void main (String[] args) throws Exception
 {

 // load the driver
 Class.forName ("COM.ibm.db2.jdbc.net.DB2Driver");

 // connect to database
 Connection conn = DriverManager.getConnection
("jdbc:db2://localhost/itsodb2", "userid", "passwd");

 //...

 }
}

Calling query statement
As both DB2 and MySQL follow the SQL standard and the JDBC specification,
the query execution code will not change much. Once a connection is
 Chapter 7. Application porting 193

established, most of the time the only code which change is either SQL
statements or return data types.

The JDBC API does not put any restrictions on the kinds of SQL statements that
can be executed though JDBC, so it is the application’s responsibility to pass
SQL statements compatible to the database used. The connection obtained in
Example 7-38 and Example 7-39 can be used for one of the following three types
of statements depending upon the requirements:

� Statement - Simple single SQL statement

The statement can be created by using the createStatement method of the
Connection. Example 7-40 shows the usage of executeQuery with a change
for MySQL and DB2 UDB. As we can see in the example the only change in
this code is the SQL statement.

Example 7-40 Query statement changes from MySQL to DB2 UDB

Statement s = conn.createStatement();

//MySQL statement
s.executeQuery ("SELECT warenkorb.wk_id, warenkorb.user_id,warenkorb.status
FROM warenkorb");

//DB2 UDB statement
s.executeQuery ("SELECT wk_id, user_id,status FROM itsodb.warenkorb");

ResultSet rs = s.getResultSet ();
while (rs.next ())
 {
 int id = rs.getInt ("wk_id");
 int uid = rs.getInt("user_id");
 String status = rs.getString ("status");
 System.out.println (
 "id = " + id
 + ", user = " + uid
 + ", status = " + status);
 }
 rs.close ();
 s.close ();

� PreparedStatement - Precompiled SQL statements

PreparedStatements are used to effectively execute the statement multiple
times. Example 7-41 shows the conversion of the prepared statements.
Setting appropriate values of host variables is very important while using
prepared statements. In the section titled “Java, JDBC, and SQL data type
conversions” on page 197 we discuss more about it.

� callableStatement - Statement to call stored procedures (only in DB2 UDB)
194 MySQL to DB2 UDB Conversion Guide

Calling insert/update/delete statement
Any statement that updates the database or inserts and deletes a value in a
database can be executed using the executeUpdate or execute method of the
statement. Example 7-41 shows the update of the record using the prepared
statement for MySQL and conversion for DB2 UDB. The change is due to the
multiple MySQL database that have been merged into one DB2 database and
grouped by the table schema. If you use set schema= schema for a connection,
then nothing needs to be changed.

Example 7-41 MySQL Prepared statement and executeUpdate

// MySQL prepared statement
PreparedStatement s = conn.prepareStatement("update warenkorb set anzahl=?
,status=? where wk_id=65;");

//DB2 UDB changes for prepared statement
PreparedStatement s = conn.prepareStatement("update itsodb.warenkorb set
anzahl=? ,status=? where wk_id=65;");

s.setInt (1, 10);
s.setString (2, "working");
int count = s.executeUpdate ();
System.out.println (count + " rows were inserted");

Using connection pooling and data source
The JDBC 2.0 Standard Extension API provides the data source interface as an
alternative to the DriverManager for establishing a connection. When a
DataSource class has been implemented appropriately, a DataSource object can
be used to produce Connection objects that participate in connection pooling.
You can either create a data source in your program or you can get an existing
data source from the context.

MySQL provides MysqlDataSource, which is a data source implementation of
MySQL data source. The MySQL data source can be created by calling a default
constructor com.mysql.jdbc.jdbc2.optional.MysqlDataSource as shown in
Example 7-42.

Example 7-42 MySQL datasource creation and binding

com.mysql.jdbc.jdbc2.optional.MysqlDataSource mysqlds = new
com.mysql.jdbc.jdbc2.optional.MysqlDataSource();
mysqlds.setServerName("localhost");
mysqlds.setDatabaseName(“itsodb”);
mysqlds.setUser("itso");
mysqlds.setPassword("itso");
mysqlds.setPortNumber(3306);
Context ctx = new InitialContext(env);
 Chapter 7. Application porting 195

ctx.bind(“jdbc/itsodb”, mysqlds);

On the other hand, the DB2 UDB Universal JDBC Driver and DB2 UDB type 2
JDBC driver provide a number of data source implementations. Depending on
your application requirement, you can use one of the following data sources with
DB2 UDB Universal JDBC Driver:

� com.ibm.db2.jcc.DB2SimpleDataSource
� com.ibm.db2.jcc.DB2DataSource
� COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource
� COM.ibm.db2.jdbc.DB2XADataSource

DB2 UDB type 2 driver provides the following data source implementations:

� COM.ibm.db2.jdbc.DB2DataSource
� COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource
� COM.ibm.db2.jdbc.DB2XADataSource

The DB2 UDB data source can be created in a similar fashion by initializing one
of the above data sources as shown in Example 7-43. Also, the same example
shows deployment of the data source in context for further use.

Example 7-43 DB2 UDB datasource creation and deployment

DB2SimpleDataSource db2ds = new com.ibm.db2.jcc.DB2SimpleDataSource();

db2ds.setDatabaseName("itsodb2");
db2ds.setDescription("Itso Sample Database");
db2ds.setUser("itso");
db2ds.setPassword("itso");

Context ctx=new InitialContext();
Ctx.bind("jdbc/itsodb",db2ds);

Once the data source is bound, subsequent JDBC programs can use the same
data source for creating the JDBC connection. The MySQL and DB2 UDB
programs for creating the connection remain the same. Example 7-44 shows how
to get a data source from InitialContext and how to get a connection from the
data source.

Example 7-44 MySQL and DB2 UDB datasource from context

Context ctx = new InitialContext();
DataSource ds = (DataSource)ctx.lookup(“jdbc/itsodb”);// Only logical
datasource name can change in this program.
Connection con = ds.getConnection();
196 MySQL to DB2 UDB Conversion Guide

Java, JDBC, and SQL data type conversions
In this section we discuss about the way MySQL and DB2 UDB handles column
type to Java data type conversions. As we saw in 5.1, “Data type mapping” on
page 90, MySQL and DB2 UDB have different data types. As you migrate your
Java application you should check the Java data types used to fetch your data
using JDBC. The JDBC driver converts the data exchanged between the
application and the database using the specified schema mapping, which is
defined by both DB2 UDB and MySQL for their data types.

Table 7-8, shows MySQL to Java data types. Since MySQL does not enforce a
strict type conversions, the Java programmer has to take care of data loss
because of round off, overflow, or precision loss.

Table 7-8 MySQL data type mapping to Java data type

On the other hand, DB2 UDB sticks to JDBC specification, and provides a default
and recommended data type mapping as shown in Table 7-9.

Table 7-9 DB2 UDB data types mapping to Java types

MySQL column type Java type Description

CHAR, VARCHAR, BLOB,
TEXT, ENUM, and SET

java.lang.String,
java.io.InputStream,
java.io.Reader,
java.sql.Blob,
java.sql.Clob

All these columns types
can be converted to any of
these java data types.

FLOAT, REAL, DOUBLE
PRECISION, NUMERIC,
DECIMAL, TINYINT,
SMALLINT, MEDIUMINT,
INTEGER, BIGINT

java.lang.String,
java.lang.Short,
java.lang.Integer,
java.lang.Long,
java.lang.Double,
java.math.BigDecimal

round-off, overflow or loss
of precision may occur if
you choose a Java numeric
data type that has less
precision or capacity than
the MySQL data type you
are converting to/from.

DATE, TIME, DATETIME,
TIMESTAMP

java.lang.String,
java.sql.Date,
java.sql.Timestamp

Locale specific data should
be handled with care.

DB2 UDB data type Java type Data type description

SMALLINT short 16-bit signed integer

INTEGER int 32-bit signed integer

BIGINT long 64-bit signed integer

REAL float Single precision floating
point
 Chapter 7. Application porting 197

DOUBLE double Double precision floating
point

DECIMAL java.math.BigDecimal Packed decimal

CHAR java.lang.String Fixed-length character
string of length n where n is
from 1 to 254

CHAR FOR BIT DATA byte[] Fixed-length character
string of length n where n is
from 1 to 254

VARCHAR java.lang.String Variable-length character
string

VARCHAR FOR BIT DATA byte[] Variable-length character
string

LONG VARCHAR java.lang.String Long variable-length
character string

LONG VARCHAR FOR
BIT DATA

byte[] Long variable-length
character string

BLOB java.sql.Blob Large object
variable-length binary
string

CLOB java.sql.Clob Large object
variable-length character
string

DBCLOB(n) java.sql.Clob Large object
variable-length
double-byte character
string

GRAPHIC java.lang.String Fixed length double-byte
character string

VARGRAPHIC java.lang.String Non-null-terminating
varying double-byte
character string with 2 byte
string length indicator

LONG VARGRAPHIC java.lang.String Non-null-terminating
varying double-byte
character string with 2 byte
string length indicator

DB2 UDB data type Java type Data type description
198 MySQL to DB2 UDB Conversion Guide

JDBC methods conversion
Some of the methods specified by JDBC specification are not implemented in
MySQL, so the functionality of these methods would have been implemented by
you in your application code. Now you can use those methods with DB2 UDB.
Some of these methods are listed here:

� Blob.truncate()
� PreparedStatement.setArray(int, Array)
� PreparedStatement.setRef()
� PreparedStatement.getParameterMetaData()
� ResultSet.getArray(int)
� ResultSet.getArray(colName)
� ResultSet.getRef(int)
� ResultSet.getRef(String)
� ResultSet.rowDeleted()
� ResultSet.rowInserted()
� ResultSet.rowUpdated()
� ResultSet.updateArray(int, Array)
� ResultSet.updateArray(String, Array)
� ResultSet.updateRef(int, Ref)
� ResultSet.updateRef(String, Ref)

7.2.4 Converting MySQL C/C++ applications to DB2 UDB
DB2 UDB provides the following programming interfaces for developing an
application in C/C++:

� Embedded SQL
� DB2 Call Level Interface (CLI)

Apart from this, DB2 UDB uses C/C++ for server side programming for creating:

� Stored procedures on DB2 server
� User-defined functions (UDF) on DB2 server.

DB2 UDB provides precompilers for C, C++, COBOL, Fortran, REXX, and Java
to support embedded SQL applications. Embedded SQL applications support
both static and dynamic SQL statements. Static SQL statements require
information of all the SQL statements, tables, and data types used at compile

DATE java.sql.Date 10-byte character string

TIME java.sql.Time 8-byte character string

TIMESTAMP java.sql.Timestamp 26-byte character string

DB2 UDB data type Java type Data type description
 Chapter 7. Application porting 199

time. The application needs precompile, bind, and compile before execution. In
contrast, dynamic SQL statements can be built and executed at runtime. For
further details on embedded SQL. For more information refer to IBM DB2 UDB
Application Development Guide: Building and Running Applications V8,
SC09-4825.

Another interface provided by DB2 UDB is DB2 Call Level Interface (CLI). It is a
standard based API following the Microsoft’s Open Database Connectivity
(ODBC) specification and the ISO SQL/CLI standard. Both embedded SQL and
DB2 CLI support database administration as well as database manipulation from
C/C++ applications.

MySQL provides a client library for accessing a MySQL database from C
applications. MySQL C is included in the mysqlclient library. It provides features
for:

� Connection mechanism
� Creation and execution of SQL queries
� Status and error reporting

MySQL Connector/C++(or MySQL ++) is an additional library for accessing
MySQL databases from C++ applications. It is another layer of abstraction on top
of the mysqlclient library.

Converting applications
MySQL C API and DB2 CLI are quite similar in functionality and mechanisms to
access databases. Both use the function call to pass dynamic SQL statements
and do not need to precompile. We recommend that you convert MySQL C
applications to DB2 CLI. This section describes conversion changes for various
levels of the application:

� Connecting to the server

The first step in converting MySQL C applications is to change the include
information, initialize variables, and to replace the MySQL connection with a
DB2 connection. Example 7-45 shows a typical MySQL C program to initiate
MySQL variables, create a connection, and terminate the connection.

Example 7-45 MySQL C application, initialize MySQL and create connection

#include <mysql/mysql.h> /* Include MySQL variable and function definition
*/
MYSQL *connection; /* pointer to connection handler */
int main()
{

if(mysql_init(MYSQL *mysql)==NULL) /* initiate the mysql variable */
{

/* handle error */
200 MySQL to DB2 UDB Conversion Guide

return 1;
}
if(mysql_real_connect (

connection, /* pointer to connection handler */
NULL, /* host to connect, default localhost*/
NULL, /* user name, default local user*/
NULL, /* password, default none*/
"itsodb", /* database name*/
0, /* port */
NULL, /* socket */
0 /* flags*/

) == NULL)
{

/* handle error */
return 1;

}
if(mysql_close (connnection)==NULL)
{

/* handle error */
return 1;

}
exit(0);

}

Figure 7-4 shows a similar task using DB2 CLI. It shows the initialization
tasks, which consists of: the allocation and initialization of the environment
and connection handlers; creation of the connection; transaction processing;
and finally termination of the connection and deallocation of the handlers.
 Chapter 7. Application porting 201

Figure 7-4 DB2 CLI activities

The Example 7-46 shows the implementation of the task defined by the figure.

Example 7-46 DB2 CLI application, connecting to database

#include <sqlcli.h> /* Include DB2 CLI variable and function definition */
int main()
{

SQLRETURN ret = SQL_SUCCESS;
int rc = 0;
SQLHANDLE henv; /* environment handle */
SQLHANDLE hdbc; /* connection handle */

/* Allocate an environment handle */
ret = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);
if (ret != SQL_SUCCESS)
{

/* handle error */
return 1;

}

/* Allocate a connection handle */
202 MySQL to DB2 UDB Conversion Guide

ret = SQLAllocHandle(SQL_HANDLE_DBC, *henv, *hdbc);
if (ret != SQL_SUCCESS)
{

/* handle error */
return 1;

}

/* connect to the database */
ret = SQLConnect(*hdbc

 (SQLCHAR *)"itsodb2",
 SQL_NTS,
 (SQLCHAR *)NULL /*user*/,
 SQL_NTS,
 (SQLCHAR *)NULL /* password*/,
 SQL_NTS);

if (ret != SQL_SUCCESS)
{

/* handle error */
return 1;

}

/* disconnect from the database */
ret = SQLDisconnect(hdbc);
if (ret != SQL_SUCCESS)
{

/* handle error */
return 1;

}

/* free connection handle */
ret = SQLFreeHandle(SQL_HANDLE_DBC, *hdbc);
if (ret != SQL_SUCCESS)
{

/* handle error */
return 1;

}

/* free environment handle */
ret = SQLFreeHandle(SQL_HANDLE_ENV, *henv);
if (ret != SQL_SUCCESS)
{

/* handle error */
return 1;

}
exit(0);

}

� Processing query
 Chapter 7. Application porting 203

A typical MySQL C API program involves three steps in query processing:

– Query construction

Depending upon your requirement you can construct a null terminated
string or counted length string for the query:

char *query;

– Execute the query

For executing the query you can use mysql_real_query() for a counted
length query string or mysql_query() for a null terminated query string.
Example 7-47 shows the processing of a query with both
mysql_real_query() and mysql_query() method calls.

– Processing of the returned results

After executing the query, the final step is to process the results. All the
statements except select, show, describe, and explain do not return any
results; optionally in those query mysql provides mysql_affected_rows()
for accessing the number of rows effected.

If your query returns a result set, follow these steps for the result
processing:

i. Generate the result set using mysql_store_result() or
mysql_use_result().

ii. Fetch each row using mysql_fetch_row()

iii. Deallocate the result set using mysql_free_result()

Example 7-47shows an example for both MySQL query, which returns results
as well as querys that do not return results.

Example 7-47 MySQL query processing

MYSQL_RES *result;
if (mysql_query(conn, "SELECT wk_id, user_id,status FROM warenkorb") != 0){

/* handle error */
return 1;

}
else
{

result = mysql_store_result (conn); /* generate result set */
if (result == NULL){

/* handle error */
return 1;

}else
{
/* process result set, then deallocate it */
MYSQL_ROW row;
MYSQL_FIELD* fd ;
204 MySQL to DB2 UDB Conversion Guide

while ((row = mysql_fetch_row (res_set)) != NULL)
{

for (i = 0; i < mysql_num_fields (res_set); i++)
{

if (i > 0)fputc (‘\t’, stdout);
if(i == 0 || i== 1)printf (“%i”, row[i]);
if(i == 2)printf (“%s”, row[i]);

}
}
mysql_free_result (res_set);
}

}

On the other hand DB2 CLI provides a more comprehensive set of APIs for
doing similar tasks. One of the essential parts of DB2 CLI is transaction
processing, which is supported by all the tables in DB2 UDB. Figure 7-5
shows the typical order of function calls of query processing.
 Chapter 7. Application porting 205

Figure 7-5 DB2 Query processing

DB2 CLI query processing involves the following steps:

a. Allocating statement handle

A statement handle tracks execution of the query for a particular
connection. This can be allocated using SQLAllocHandle() with a
HandleType of SQL_HANDLE_STMT.

b. Preparing and executing SQL statements

DB2 UDB provides two ways for preparing and executing the query:

• Prepare and execute as separate steps

If you plan to execute the same query multiple times with different
parameters, you can use this technique. This involves the following
steps: Preparation of query using SQLPrepare(), binding of the
206 MySQL to DB2 UDB Conversion Guide

parameters using SQLBindParameter(), and finally execution of the
query using SQLExecute(). Example 7-48 shows an example for
prepared statements.

• Prepare and execute in a single step

If your query is executed only once, then you can use SQLExecDirect()
to directly call, prepare, and execute in a single step. Example 7-49
shows the usage of this method.

c. Processing results

Processing query results involves binding application variables to columns
of a result set, and then fetching the rows of data into the application
variables. This is done by calling SQLBindCol() followed by SQLFetch() as
shown in Example 7-48.

Another way to get data without binding the column is by calling
SQLFetch() and SQLGetData(), this technique is used in Example 7-49.

d. Committing or rolling back

DB2 UDB supports two commit modes: auto-commit and manual commit.
This can be set using SQLSetConnectAttr() with the parameter
SQL_AUTOCOMMIT_ON or SQL_AUTOCOMMIT_OFF. If a transaction is set to
SQL_AUTOCOMMIT_OFF it is the programmer’s responsibility to end the
transaction. This can be done using SQLEndTran() to either rollback or
commit the transaction using parameter SQL_COMMIT or SQL_ROLLBACK.

e. Deallocating statement handle

This requires unbinding of the variables, columns, or cursors (if allocated)
using SQLFreeStmt() with the option of SQL_CLOSE, SQL_UNBIND or
SQL_RESET_PARAMS, and then finally calling SQLFreeHandle() to
deallocate the statement handle.

Example 7-48 DB2 CLI prepared statement with column binding, auto commit on

SQLHANDLE hstmt; /* statement handle */

SQLINTEGER wk_id=10;
SQLINTEGER user_id;
SQLCHAR val[15];

/* SQL statements to execute */
SQLCHAR *stmt1 = (SQLCHAR *)"SELECT user_id,status FROM warenkorb where
wk_id=?";

/* set AUTOCOMMIT on */
ret = SQLSetConnectAttr(hdbc,

SQL_ATTR_AUTOCOMMIT,
 Chapter 7. Application porting 207

 SQLPOINTER)SQL_AUTOCOMMIT_ON,
 SQL_NTS);
if (ret != SQL_SUCCESS)
{

/* handle error */
}

/* allocate a statement handle */
ret = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
if (ret != SQL_SUCCESS)
{

/* handle error */
}

/* prepare the statement */
ret = SQLPrepare(hstmt, stmt, SQL_NTS);
if (ret != SQL_SUCCESS)
{

/* handle error */
}

/* bind parameter1 to the statement */
ret = SQLBindParameter(hstmt,
 1,
 SQL_PARAM_INPUT,
 SQL_C_UBIGINT,
 SQL_INT,
 0,
 0,
 &wk_id,
 0,
 NULL);
if (ret != SQL_SUCCESS)
{

/* handle error */
}

ret = SQLBindCol(hstmt,
1,
SQL_C_UBIGINT,
&user_id,
0,
4);

/* execute the statement */
ret = SQLExecute(hstmt);
if (ret != SQL_SUCCESS)
{

208 MySQL to DB2 UDB Conversion Guide

/* handle error */
}

/* fetch each row and display */
ret= SQLFetch(hstmt);
if(ret == SQL_NO_DATA_FOUND)
{

printf("No data found");
}
while(ret != SQL_NO_DATA_FOUND)

{
printf("%i%",user_id);
ret=SQLFetch(hstmt);

}

ret = SQLFreeStmt(hstmt, SQL_UNBIND);
if (ret != SQL_SUCCESS)
{

/* handle error */
}

/* free the statement handle */
ret = SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
if (ret != SQL_SUCCESS)
{

/* handle error */
return 1;

}

Example 7-49 DB2 CLI prepare/execute in one step with SQLGetData & manual commit

SQLHANDLE hstmt; /* statement handle */

SQLINTEGER wk_id;
SQLINTEGER user_id;
SQLCHAR val[15];

/* SQL statements to execute */
SQLCHAR *stmt1 = (SQLCHAR *)"SELECT wk_id, user_id,status FROM warenkorb";

/* set AUTOCOMMIT on */
ret = SQLSetConnectAttr(hdbc,

SQL_ATTR_AUTOCOMMIT,
 SQLPOINTER)SQL_AUTOCOMMIT_OFF,
 SQL_NTS);
if (ret != SQL_SUCCESS)
 Chapter 7. Application porting 209

{
/* handle error */

}

/* allocate a statement handle */
ret = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);
if (ret != SQL_SUCCESS)
{

/* handle error */
}

/* execute statement 1 directly */
ret = SQLExecDirect(hstmt, stmt1, SQL_NTS);
if (ret != SQL_SUCCESS)
{

/* handle error */
}

/* fetch each row and display */
ret= SQLFetch(hstmt);
if(ret == SQL_NO_DATA_FOUND)
{

printf("No data found");
}
while(ret != SQL_NO_DATA_FOUND)

{
/* get data from column 1 */
ret = SQLGetData(hstmt,

1,
SQL_C_UBIGINT,
wk_id,
0,
4);

if (ret != SQL_SUCCESS)
{

/* handle error */
}
/* get data from column 2 */
ret = SQLGetData(hstmt,

1,
SQL_C_UBIGINT,
user_id,
15,
4);

if (ret != SQL_SUCCESS)
{

/* handle error */
}
ret=SQLFetch(hstmt);
210 MySQL to DB2 UDB Conversion Guide

}
ret = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_ROLLBACK);
if (ret != SQL_SUCCESS)
{

/* handle error */
return 1;

}

/* free the statement handle */
ret = SQLFreeHandle(SQL_HANDLE_STMT, hstmt);
if (ret != SQL_SUCCESS)
{

/* handle error */
return 1;

}

For all the applications using the MySQL Connector/C++, you may want to
consider converting them to DB2 CLI. The typical conversion process would
remain the same as both MySQL C and MySQL C++ use the same flow of the
program.

7.2.5 Converting MyODBC applications to DB2 UDB
MySQL supports the ODBC database API to connect to a MySQL database
server using the optional product called MySQL Connector/ODBC (also known
as MyODBC). MyODBC supports ODBC at two levels: MyODBC 2.5 supports
ODBC 2.5x and MyODBC 3.5x is a 32-bit ODBC Driver supporting ODBC 3.51
specification.

As DB2 CLI is also based on the ODBC specification, and you can build ODBC
applications without using any ODBC driver manager, so the application
conversion is quite easy. All you need to do is use DB2's ODBC driver by linking
your application with libdb2. The DB2 CLI driver also acts as an ODBC driver
when loaded by an ODBC driver manager. DB2 CLI conforms to ODBC 3.51.

Figure 7-6 shows the MySQL driver and DB2 ODBC driver in the ODBC
scenario; it shows that an application written for one ODBC driver can easily be
converted to another driver. It also shows various components involved in the
ODBC application and how they are mapped from MyODBC to DB2 ODBC.
 Chapter 7. Application porting 211

Figure 7-6 ODBC application conversion from MyODBC to DB2 ODBC Driver

Typically, the MyODBC connector has five components:

� Application

As both MyODBC and DB2 CLI are based on ODBC specification,
applications do not require many changes. Though you have to perform some
tasks such as:

– Changing SQL queries
– Changes in transaction management
– Proprietary methods changes, deviation from ODBC or additional

methods.

� ODBC Driver Manager

DB2 CLI/ODBC Driver does not come with ODBC Driver Manager. When
using an ODBC application you must ensure that an ODBC Driver Manager is
installed and users who will use ODBC have access to it.

� ODBC.ini

The ODBC Driver Manager uses two initialization files:

MySQL ODBC
Application

DB2 ODBC
Application

ODBC Driver Manager

MyODBC DB2 ODBC Driver

MySQL Server DB2 Server

Application
Conversion

.odbc.ini odbcinst.ini
db2 cli.ini

odbcinst.ini.odbc.ini

Database
Conversion

ODBC Driver Setup
Conversion
212 MySQL to DB2 UDB Conversion Guide

– /etc/unixODBC/odbcinst.ini, in which you need to add the following:

[IBM DB2 ODBC DRIVER]
 Driver=/home/<instance name>/sqllib/lib/db2.o

– /home/<instance name>/.odbc.ini, in which you need to configure the data
source; for setting up a data source you need to add the following:

In [ODBC Data Source] stanza add
itsodb2= IBM DB2 ODBC DRIVER

Add [itsodb2] stanza with
Driver=/home/<instance name>/sqllib/lib/db2.o
Description=itsodb2 DB2 ODBC Database

in [ODBC] stanza add
InstallDir=/home/<instance name>sqllib/odbclib

� MyODBC

As shown in Figure 7-6, you do not need to use MyODBC now, instead you
will use DB2 ODBC Driver.

� MySQL Server

The MySQL database server is replaced by the DB2 UDB server; this is
discussed in detail in previous chapters.

You may optionally configure DB2 ODBC Driver to modify the behavior of the
DB2 ODBC Driver. This can be done by changing the db2cli.ini file.

7.2.6 Condition handling in DB2
Condition handling is one of the least sparkling topics in the application
development arena. Foreseeing and handling exceptions in the application is
paramount for a robust, industrial strength programming style. This section
attempts an introduction to various ways to handle conditions in DB2.

Error checking with SQLCODE and SQLSTATE
Each time an SQL statement is executed two values are returned by the DB2
engine and placed in the SQL communication area (SQLCA): SQLCODE and
SQLSTATE.

Within your application program you can retrieve these values to determine the
state of the previously executed SQL statement. They are identifiers to get more
detailed information about the condition of the statement.

SQLCODE is the variable conventionally used for error handling in applications
coded against the DB2 family. Therefore, SQLCODE is probably of the finest
granularity when it comes to DB2 exception handling.
 Chapter 7. Application porting 213

However, the value for SQLCODE is IBM defined. To achieve the highest
portability of applications, you should only build dependencies on a subset of
DB2 SQLSTATEs that are defined by ODBC Version 3 and ISO SQL/CLI
specifications. Whenever you build your exception handling on IBM supplied
SQLSTATEs or SQLCODEs, the dependencies should be carefully documented.
The specifications can be found using the search words ISO/IEC and standards
9075-1, 9075-2, and 9075-3 for SQL Foundation.

SQLSTATE is a five character string conforming with the ANSI SQL92 standard.
The first two characters are known as the SQLSTATE class code. For example:

� 00 means successful completion
� 01 is a warning
� HY is generated by the DB2 CLI (call level interface) or ODBC driver
� IM is generated by the ODBC driver manager

If, for example, your application would signal SQLSTATE 23000, the DB2
description reports an integrity constraint violation , which is quite similar to
MySQL’s rudimentary description ER NON UNIQ ERROR or ER DUP KEY.
Hence, condition handling for both database management systems could almost
execute the same code.

Error returns in MySQL
Although it was necessary to limit the scope of this document to MySQL Version
4.0, fairness requires us to mention that Version 4.1. of MySQL provides
exception handling using SQLSTATE. It will only appear for Version 4.1 or later,
and was added for compatibility with X/Open/ANSI/ODBC behavior in an attempt
to attract standard compliant applications, and encourage existing MySQL
applications to become more standard compliant.

The definition for SQLSTATE can be found in the MySQL source code file
include/sql_state.h.

SQLSTATE for DB2 CLI
Follow these guidelines for using SQLSTATEs within your CLI application:

� Always check the function return code before calling SQLGetDiagRec() to
determine if diagnostic information is available. Please refer to the IBM DB2
UDB manual Call Level Interface Guide and Reference, Volume 2,
SC09-4850 for more information on this API.

� Use the SQLSTATEs rather than the native error code.

� To increase your application's portability, only build dependencies on the
subset of DB2 CLI SQLSTATEs that are defined by the ODBC version 3 and
ISO SQL/CLI specifications, and return the additional ones as information
only.
214 MySQL to DB2 UDB Conversion Guide

� It may be useful to build dependencies on the class (the first two characters)
of the SQLSTATEs.

� For maximum diagnostic information, return the text message along with the
SQLSTATE (if applicable, the text message will also include the IBM defined
SQLSTATE). It is also useful for the application to print out the name of the
function that returns the error.

The following code segment from utilcli.c shows how diagnostic information
such as SQLSTATEs can be retrieved and displayed.

Example 7-50 Handling SQLSTATE in CLI

void HandleDiagnosticsPrint(SQLSMALLINT htype, /* handle type identifier */
 SQLHANDLE hndl /* handle */)
{
 SQLCHAR message[SQL_MAX_MESSAGE_LENGTH + 1];
 SQLCHAR sqlstate[SQL_SQLSTATE_SIZE + 1];
 SQLINTEGER sqlcode;
 SQLSMALLINT length, i;

 i = 1;

 /* get multiple field settings of diagnostic record */
 while (SQLGetDiagRec(htype,
 hndl,
 i,
 sqlstate,
 &sqlcode,
 message,
 SQL_MAX_MESSAGE_LENGTH + 1,
 &length) == SQL_SUCCESS)
 {
 printf("\n SQLSTATE = %s\n", sqlstate);
 printf(" Native Error Code = %ld\n", sqlcode);
 printf("%s\n", message);
 i++;
 }

 printf("-------------------------\n");
}

Note: The code snippets provided in this chapter are for illustration purposes
only. Utilcli.c is sample code shipped with DB2 and can be found in the
SQLLIB/samples directory.
 Chapter 7. Application porting 215

Handling SQL errors in an SQLj application
SQLj clauses use the JDBC class java.sql.SQLException for error handling.
SQLj generates an SQLException under the following circumstances:

� When any SQL statement returns a negative SQL error code
� When a SELECT INTO SQL statement returns a +100 SQL error code

You can use the getErrorCode method to retrieve SQL error codes and the
getSQLState method to retrieve SQLSTATEs.

To handle SQL errors in your SQLj application, import the java.sql.SQLException
class, and use the Java error handling try/catch blocks to modify program flow
when an SQL error occurs (see Example 7-51).

Example 7-51 SQL Exception with SQLj

try {
 #sql [ctxt] {SELECT LASTNAME INTO :empname
 FROM EMPLOYEE WHERE EMPNO='000010'};
}
catch(SQLException e) {
 System.out.println("Error code returned: " + e.getErrorCode());
}

For exception handling in Java it is important to know that DB2 provides several
types of JDBC drivers with slightly different characteristics. With the DB2
Universal JDBC Driver, you can retrieve the SQLCA. For the DB2 JDBC type 2
driver for Linux, UNIX, and Windows (DB2 JDBC type 2 driver), use the standard
SQLException to retrieve SQL error information.

SQLException under the DB2 Universal JDBC Driver
As in all Java programs, error handling is done using try/catch blocks. Methods
throw exceptions when an error occurs, and the code in the catch block handles
those exceptions.

JDBC provides the SQLException class for handling errors. All JDBC methods
throw an instance of SQLException when an error occurs during their execution.
According to the JDBC specification, an SQLException object contains the
following information:

� A string object that contains a description of the error or null
� A string object that contains the SQLSTATE or null
� An int value that contains an error code
� A pointer to the next SQLException or null

The DB2 Universal JDBC Driver provides an extension to the SQLException
class, which gives you more information about errors that occur when DB2 is
216 MySQL to DB2 UDB Conversion Guide

accessed. If the JDBC driver detects an error, this SQLException class gives you
the same information as the standard SQLException class. However, if DB2
detects the error, this SQLException class gives you the standard information,
along with the contents of the SQLCA that DB2 returns. If you plan to run your
JDBC applications only on a system that uses the DB2 Universal JDBC Driver,
you can use this extended SQLException class.

Under the DB2 Universal JDBC Driver, SQLExceptions from DB2 implement the
com.ibm.db2.jcc.DB2Diagnosable interface. An SQLException from DB2
contains the following information:

� A java.lang.Throwable object that caused the SQLException or null if no such
object exists. The java.lang.Throwable class is the superclass of all errors
and exceptions in the Java language.

� The information that is provided by a standard SQLException

� An object of DB2-defined type DB2Sqlca that contains the SQLCA. This
object contains the following objects:

– An INT value that contains an SQL error code
– A String object that contains the SQLERRMC values
– A String object that contains the SQLERRP value
– An array of INT values that contains the SQLERRD values
– An array of CHAR values that contains the SQLWARN values
– A String object that contains the SQLSTATE

The basic steps for handling an SQLException in a JDBC program that runs
under the DB2 Universal JDBC Driver are:

1. Import the required classes for DB2 UDB error handling,
com.ibm.db2.jcc.DB2Diagnosable for getting diagnostic data, and
com.ibm.db2.jcc.DB2Sqlca for error messages.

2. In your code catch SQLException and use it to get SQLCA. This is allowed
only if the exception thrown is an instance of the DB2Diagnosable class.

3. Once you have DB2Sqlca, it can be used to get SQLCODE, messages, SQL
errors, and winnings as shown in Example 7-52.

Example 7-52 Processing an SQLException under the DB2 Universal JDBC Driver

import com.ibm.db2.jcc.DB2Diagnosable;
import com.ibm.db2.jcc.DB2Sqlca;

try {
 // Code that could throw SQLExceptions
} catch(SQLException sqle) {
 while(sqle != null) {
 if (sqle instanceof DB2Diagnosable) {
 DB2Sqlca sqlca = ((DB2Diagnosable)sqle).getSqlca();
 Chapter 7. Application porting 217

 if (sqlca != null) {
System.err.println ("SqlCode: " + sqlca.getSqlCode());
System.err.println ("SQLERRMC: " + sqlca.getSqlErrmc());
System.err.println ("SQLERRP: " + sqlca.getSqlErrp());
String[] sqlErrmcTokens = sqlca.getSqlErrmcTokens();
for (int i=0; i< sqlErrmcTokens.length; i++) {

System.err.println (" token " + i + ": " + sqlErrmcTokens[i]);
}
int[] sqlErrd = sqlca.getSqlErrd();
char[] sqlWarn = sqlca.getSqlWarn();
System.err.println ("SQLSTATE: " + sqlca.getSqlState());
System.err.println ("message: " + sqlca.getMessage());

 }
}
sqle=sqle.getNextException();

 }
}

Error handling using the WHENEVER statement
The WHENEVER statement causes the SQL precompiler to generate source
code that directs the application to go to a specified label if either an error, a
warning, or no rows are found during execution. The WHENEVER statement
affects all subsequent executable SQL statements until another WHENEVER
statement alters the situation.

The WHENEVER statement has three basic forms:

EXEC SQL WHENEVER SQLERROR action

EXEC SQL WHENEVER SQLWARNING action

EXEC SQL WHENEVER NOT FOUND action

In the above statements:

� SQLERROR: Identifies any condition where SQLCODE < 0.

� SQLWARNING: Identifies any condition where SQLWARN(0) = W or
SQLCODE > 0 but is not equal to 100.

� NOT FOUND: Identifies any condition where SQLCODE = 100.

In each case, the action can be either of the following:

� CONTINUE: Indicates to continue with the next instruction in the application.

� GO TO label: Indicates to go to the statement immediately following the label
specified after GO TO. (GO TO can be two words, or one word, GOTO.)

If the WHENEVER statement is not used, the default action is to continue
processing if an error, warning, or exception condition occurs during execution.
218 MySQL to DB2 UDB Conversion Guide

The WHENEVER statement must appear before the SQL statements you want to
affect. Otherwise, the precompiler does not know that additional error-handling
code should be generated for the executable SQL statements. You can have any
combination of the three basic forms active at any time. The order in which you
declare the three forms is not significant.

To avoid an infinite looping situation, ensure that you undo the WHENEVER
handling before any SQL statements are executed inside the handler. You can do
this using the WHENEVER SQLERROR CONTINUE statement.

Declaring the SQLCA for error handling
You can declare the SQLCA in your application program so that the database
manager can return information to your application. When you preprocess your
program, the database manager inserts host language variable declarations in
place of the INCLUDE SQLCA statement. The system communicates with your
program using the variables for warning flags, error codes, and diagnostic
information.

After executing each SQL statement, the system returns a return code in both
SQLCODE and SQLSTATE. SQLCODE is an integer value that summarizes the
execution of the statement, and SQLSTATE is a character field that provides
common error codes across IBM’s relational database products. SQLSTATE
also conforms to the ISO/ANS SQL92 and FIPS 127-2 standard.

Note that if SQLCODE is less than 0, it means an error has occurred and the
statement has not been processed. If the SQLCODE is greater than 0, it means a
warning has been issued, but the statement is still processed.

For a DB2 application written in C or C++, if the application is made up of multiple
source files, only one of the files should include the EXEC SQL INCLUDE
SQLCA statement to avoid multiple definitions of the SQLCA. The remaining
source files should use the following lines:

#include "sqlca.h"
extern struct sqlca sqlca;

Condition handling in DB2 stored procedure
Although the content of this book is based on MySQL Version 4, and stored
procedure support is advertised for Version 5 of MySQL, it seems appropriate to
include a few examples of DB2 condition handling. For detailed information on
condition handlers you may refer to DB2 UDB manual Application Development
Guide: Programming Server Applications, SC09-4827.

The general form of a handler declaration is:

---DECLARE-----+-CONTINUE-+---- HANDLER-- FOR---condition------>
 Chapter 7. Application porting 219

 +-EXIT---------+
 +-UNDO---------+
>-----------SQL-procedure-statement-----------------------------|

When DB2 raises a condition that matches a condition, DB2 passes control to
the condition handler. The condition handler performs the action indicated by
handler-type, and then executes SQL-procedure-statement.

DB2 provides three general conditions:

� NOT FOUND:
Identifies any condition that results in an SQLCODE of +100 or an SQLSTATE
beginning with the characters ‘02’.

� SQLEXCEPTION:
Identifies any condition that results in a negative SQLCODE.

� SQLWARNING:
Identifies any condition that results in a warning condition (SQLWARN0 is
‘W’), or that results in a positive SQL return code other than +100. The
corresponding SQLSTATE value will begin with the characters ‘01’.

You can also use the DECLARE statement to define your own condition for a
specific SQLSTATE.

Example 7-53 shows the general flow of the condition handler in a stored
procedure.

Example 7-53 General example for condition handling

Begin
 declare exit handler
 for sqlexception
 begin
 statement3;
 statement4;
 end;

 statement1;
 statement2;
End

Example 7-54 shows a CONTINUE handler for delete and update operations on
a table named EMP. Again, please note that this code is intended for illustration
only.
220 MySQL to DB2 UDB Conversion Guide

Example 7-54 Example of a DB2 CONTINUE handler

CREATE PROCEDURE PROC1()
LANGUAGE SQL
BEGIN
 DECLARE SQLCODE, v_error INT;
 DECLARE CONTINUE HANDLER FOR
 SQLEXCEPTION,
 SET v_error = SQLCODE;

 DELETE FROM emp
 WHERE empno BETWEEN 100 and 200;
 IF (v_error = -147) THEN
 INSERT . . .

 UPDATE staff SET salary = salary * 1.25;
 IF (v_error <> 0) THEN
 RETURN -1;
 END IF;
END

7.2.7 Special conversions
MySQL provides access control on the level of hosts. That means specific
privileges are granted depending on the host from which the user connects. DB2
UDB does not provide this control mechanism. So, if you use this MySQL
feature, you have to implement a workaround in the application. Applications
which use the MySQL host authentication feature to control user privileges on a
database or global level will require code change.

There are many ways to implement this authentication mechanism on the
application level. Here we demonstrate a workaround using a simple example
application that has two functions SELECT and INSERT, which use the MySQL
security feature to limit selecting and inserting data on the host level.
Example 7-55 shows that the MySQL host access data for four users controlled
by our example.
 Chapter 7. Application porting 221

Example 7-55 MySQL host access data

mysql> select user, host, select_priv, insert_priv from user;
+---------+--------------------------+-------------+-------------+
| user | host | select_priv | insert_priv |
+---------+--------------------------+-------------+-------------+
	localhost	N	N
Michael	%.ibm.com ______________	Y _________	N
Klaus	%	N	Y _________
Rakesh _	%.in.ibm.com ___________	Y _________	Y _________
itsosj	localhost	Y _________	N
itsosj	%.ibm.com ______________	Y _________	Y _________
+---------+--------------------------+-------------+-------------+

This information has to be ported into a DB2 table. When a user attempts to
access the data in the DB2 database, the application will verify every user’s
database access rights along with the host system information where one is
connecting from.

Two tables are needed for our DB2 conversion: one to store the user privileges
information ported from MySQL and one is a working table. The table definitions
and some sample values are shown in Example 7-56.

Example 7-56 Creation of the tables for host authentication

-- script for creating the tables used by our example application

-- connect to the database
connect to SAMPLE user itsosj using itsosj;

-- table ACCESSLIST
-- it stores access rights for specific users connecting from specific hosts
-- remark: there should be different access-flags for different functions

-- fields:
-- username, whom access to the function should be granted
-- hostname or ip-address, from which the user must connect
-- select access flag (Y/N), if SELECT is granted
-- insert access flag (Y/N), if INSERT is granted

drop table ACCESSLIST;
create table ACCESSLIST (
 USERNAME varchar(8),
 HOST varchar(30),
 ACCESS_SEL char(1),
__ACCESS_INS char(1)
);
222 MySQL to DB2 UDB Conversion Guide

-- insert some sample values, according to the MySQL values (see above)
insert into ACCESSLIST values('Michael', '%.ibm.com', 'Y', 'N');
insert into ACCESSLIST values('Klaus', '%', 'N', 'Y');
insert into ACCESSLIST values('Rakesh', '%.in.ibm.com', 'Y', 'Y');
insert into ACCESSLIST values('itsosj', 'localhost', 'Y', 'N');
insert into ACCESSLIST values('itsosj', '%.ibm.com', 'Y', 'Y');

-- table APPLACCESS
-- it stores the info about users and their host asking for access
-- this table is filled automatically by the sample application

-- fields:
-- username, who asks for access to the function
-- hostname, from which the user connects
-- ip-address, from which the user connects
-- timestamp, when the user asks for access

drop table APPLACCESS;
create table APPLACCESS (
 USERNAME varchar(8),
 HOSTNAME varchar(30),
 IPADDR varchar(30),
 TS timestamp
);

The tables ACCESSLIST and APPLACCESS are used by the authentication
mechanism:

� ACCESSLIST table

This table stores all the combinations of users and hosts (either name or
IP-address) and specific database access privileges are granted to the user
and host combination. In our example, we control two access rights: SELECT
and INSERT, so that we have two access fields ACCESS_SEL and ACCESS_INS. In
a real world application more functions would probably be controlled, so this
table should be expanded to have one ACCESS field for each function to be
controlled based on the corresponding MySQL privilege.

We insert some sample values into this table for demonstration purposes.

� APPLACCESS table

This table is filled by the authentication application during runtime. When a
user asks for access, the application inserts the user ID, the host name, and
the IP-address from where the user connects. The timestamp is used as a
key in this table as records are not deleted from it.

The application code is listed in Example 7-57; remember that the code is just for
demonstration purposes.
 Chapter 7. Application porting 223

Example 7-57 Authentication mechanism example

import java.lang.*;
import java.io.*;
import java.sql.*;
import java.net.*;

public class AccessControl
{

// in our example we use fixed values, you should make this variable
private static final String DB2DB = "sample"; // database name
private static final String DB2USR = "itsosj"; // database user
private static final String DB2PWD = "itsosj"; // database password

private static Connection db2Conn; // DB2 connection object

public static void main(String[] args) throws SQLException, Exception
{

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver").newInstance();

db2Conn=DriverManager.getConnection("jdbc:db2:"+DB2DB,DB2USR,DB2PWD);

// This example shows how to verify accesss to specific functions
// depending on the host where the program is executed.

// We assume that this program runs locally and connects directly to DB2
// In a client/server-app, the server must detect the client's host.

// Java provides two methods for this purpose:
// socket.getInetAddress() ... for socket-connections
// request.getRemoteHost() ... for HTTP-connections

// In this example the username is the same as the DB2 user.
// The application user and the database user could also be different.
// This example implements no error handling.

// This example shows access to two specific functions:
// SELECT...this is indicated by mode=’SEL’
// INSERT...this is indicated by mode=’INS’
// mode should be a variable parameter

String mode = "SEL";

InetAddress addr = InetAddress.getLocalHost(); // appl executes locally
String ipname = addr.getHostName(); // get the hostname
String ipaddr = addr.getHostAddress(); // get the ip-address
System.out.println("Host name = " + ipname);
System.out.println("Host addr = " + ipaddr);
224 MySQL to DB2 UDB Conversion Guide

// get records for the specified username with access to the function
String query1 = "select HOST, current timestamp as TS from ACCESSLIST "+

"where USERNAME='" + DB2USR + "' and ACCESS_" + mode + "='Y'";
System.out.println("Query = " + query1);
PreparedStatement ps1 = db2Conn.prepareStatement(query1);
ResultSet rs = ps1.executeQuery(); // run the query

if (! rs.next()) // no rows found?
System.out.println("no authorization for this username...");

else
{

String ts = rs.getString("TS"); // retrieve the timestamp (key)
String hostval = rs.getString("HOST"); // retrieve allowed hostname

// write the current connection info into a table
// with this table it is possible to use the SQL like function
String insertStr = "insert into APPLACCESS values " +

"('"+DB2USR+"','"+ipname+"','"+ipaddr+"','"+ts+"')";
System.out.println("Insert = " + insertStr);
PreparedStatement ps0 = db2Conn.prepareStatement(insertStr);
ps0.execute(); // run the insert

// check if the current connection info has an equivalent host entry
// (either IP-name or IP-address)
String query2 = "select 1 from APPLACCESS where "+

"TS='"+ts+"' and "+
"HOSTNAME like '"+hostval+"' or IPADDR like '"+hostval +"'";

while (rs.next()) // there can be more than one permitted hosts
{

hostval = rs.getString("HOST"); // retrieve the allowed hostname
query2 = query2 + " or HOSTNAME like '" + hostval +

"' or IPADDR like '" + hostval + "'";
}
System.out.println("Query = " + query2);
PreparedStatement ps2 = db2Conn.prepareStatement(query2);
ResultSet rs2 = ps2.executeQuery(); // run the query
if (! rs2.next()) // no accordance found?

System.out.println("no authorization...");
else
{

System.out.println("You are authorized to go on!");
// here should be the call to the access controlled function
if (mode.equals("SEL")
{

// call the SELECT function
}
if (mode.equals("INS")
{

// call the INSERT function
 Chapter 7. Application porting 225

}
}

}
}

}

This example application works in the following ways:

� The first step is to get all hosts out of the ACCESSLIST table from which the
specified user has access to the requested function.

� The second step is to insert the information about the access request into the
table APPLACCESS. The main reason for this step is that if this information is
stored in a table, the SQL LIKE function can be used in the next step. The
LIKE function handles wildcards (’%’ and ’_’) in the host information correctly.

� The third step is to verify if the host name or IP address has the access rights
by comparing the entry with the host name retrieved in the first step.

� If so, access is allowed and the function should be executed. You can also
implement a method that has a return code telling if access is allowed or not.

7.3 Additional application considerations
Once converted to DB2 Version 8.1, an application’s run-time performance can
be impacted by a number of factors. The following section describes what locking
and transaction isolation does to your application when running in a multi-user
environment.

7.3.1 What is the purpose of locking?
When many users access the same data source through your application, or any
other interface that allows data manipulation, some unwanted effects may occur.
These effects are called:

� Lost update:
Two concurrent users retrieve and update the same data. The last successful
change is kept while the first change is overridden.

� Uncommitted (or dirty) read:
User A can read or view data changed by User B, but those changes have not
been committed yet.

� Non-repeatable read:
Within the same transaction User A runs the identical SELECT statement
multiple times with different results because User B modified records in User
A’s result set.
226 MySQL to DB2 UDB Conversion Guide

� Phantom read:
Within the same transaction User A runs a SELECT statement multiple times
and gets addition records because user B added records in User A’s result
set.

One of the more advanced features of a data management system is to define
modification rules to control the use of data and guarantee the integrity of the
data to prevent above undesirable effects.

7.3.2 Concurrency control and transaction isolation
From a bird’s eye view, two methods for concurrency control can be
differentiated:

� The optimistic concurrency approach:
A strategy to increase concurrency in which rows are not locked.
Transactions are divided into read, validate, and write phases. Instead,
during the validation phase before they are updated or deleted, a cursor
checks to see if they have been changed since they were last read. If so, the
update or delete fails.

� The pessimistic concurrency or locking approach:
A strategy for implementing serializability in which rows are locked so that
other transactions cannot change them. Transaction requests locks to update
resources. Other transactions have to wait or time-out. The resource is
released on transaction completion or commit and rollback.

Both methods have their pros and cons, but by far the most popular method is
the latter approach. Both MySQL and DB2 follow this approach to various
degrees of sophistication and implementation differences.

7.3.3 DB2 isolation levels
In general DB2 UDBs default setting do nt require changes in the application to
work around a different locking behavior.

DB2 provides transaction isolation levels to segregate data and prevent the
undesirable effects discussed in 7.3.1, “What is the purpose of locking?” on
page 226. Table 7-10 gives an overview over DB2 isolation levels.

Table 7-10 DB2 isolation level

DB2 UDB isolation level Description

Uncommitted Read � Access to uncommitted data from
other transaction

� No record locks unless updates occur
 Chapter 7. Application porting 227

As one can see, the isolation levels listed in Table 7-10 are ordered descendent
according to the number and duration of locks held during the transaction, and
therefore the degree of concurrency or locking is required to ensure the desired
level of data integrity. However, as we can see too much locking drastically
reduces concurrency. Poor application design and coding may cause locking
problems such as:

� Deadlocks
� Lock waits
� Lock escalation
� Lock time-outs

By default DB2 operates with the isolation level cursor stability. Transaction
isolation can be specified at many different levels as discussed in 7.3.5,
“Specifying the isolation level in DB2” on page 230. For good performance, verify
the lowest isolation level required for your migrated application.

For additional information on the DB2 UDB concurrency implementation, please
refer to the DB2 UDB manual Administration Guide: Performance, SC09-4821.

Cursor Stability � Addresses dirty read issue
� Sees only committed data from other

transaction
� Lock is only held on cursor position

unless update occurs
� Update lock is held until transaction

completed = commit

Read Stability � Addresses non-repeatable read issue
� Sees only committed data from other

transaction
� Locks are held on every row fetched

(Inserts permitted)
� Locks are held for duration of

transaction (commit/rollback)

Repeatable Read � Addresses phantom read issue
� All record locks held for duration of

transaction
� A repeated query within the same

transaction will get the same result set
(Inserts are prevented)

DB2 UDB isolation level Description
228 MySQL to DB2 UDB Conversion Guide

7.3.4 Locking
Some MySQL applications when ported to DB2 appear to behave identically, and
the topic of concurrency can be ignored. However, if your applications involve
frequent access to the same tables you may experience a different behavior. By
default, MySQL runs in a mode that is called autocommit. This means that
MySQL considers each and every SQL statement as an atomic unit of work or
transaction.

In contrast, DB2 by default considers a group of SQL statements with the
corresponding unit of work boundaries set by a commit respectively a rollback
statement as single or atomic transaction. Only certain interfaces such as the
DB2 command line processor (CLP) or the JDBC interface run in autocommit
mode. For all other application interfaces, autocommit is by default turned off.

Another matter causing heated discussions among experts is the level of locking
that needs to be implemented on the database level. Should the locking
approach be implemented with the lowest level of overhead, and therefore
maintain locks on a table level? Or, is it better to lock on a lower level for example
on page level? Should the granularity be even finer and locking occur on row
level?

As usual, the correct answer to these questions is: it depends!

MySQL development decided to go the multi storage engine way and decided to
implement lock levels based on the type of table. Table types can be mixed within
a database and even a statement, and types can be altered. The default storage
engine for MySQL supports only table level locking. MyISAM table, Merge and
HEAP tables use a default storage engine and have table level locking. The
InnoDB storage engine was released as a transactional table handler of MySQL
with a lock manager for row level locking mechanisms. Hence, the MySQL table
type InnoDB defines tables most alike DB2 tables. In addition to the two storage
engines already discussed, MySQL integrated the BDB or Berkley DB table type.
Table 7-11 gives a superficial comparison of the different flavors of MySQL tables
with DB2 tables:

Table 7-11 MySQL and DB2 table comparison

Characteristics DB2 tables MyISAM
tables

InnoDB
tables

BDB tables

Lock level Row level,
Table level
only on explicit
request

None or table
level

Row level
and table
level

Page level
and table
level
 Chapter 7. Application porting 229

Consider using table level locking for:

� Applications that use mostly reads such as Data Warehouse and Business
Intelligence applications

� Applications reading and updating through key positioning such as
UPDATE... WHERE Custno = ?

� Applications using INSERTs with subselects and only a small number of
UPDATE and DELETEs

Consider to use for row level locking for:

� Applications requiring a high level of concurrency and OLTP capabilities
� Many SELECTs with only small result sets
� Applications with high UPDATE/INSERT/DELETE frequency

However, let us attempt to summarize the concurrency issues that may arise
when migrating a MySQL application to DB2 based on the two MySQL table
types, which we consider significant:

� MyISAM tables provide a high level of concurrency since SQL processing
occurs in autocommit mode and no row level locks are maintained. When
migrating to DB2 ensure your application operates in autocommit mode,
which is by default not the case. Verify the lowest isolation level required for
your application and MyISAM tables.

� InnoDB tables provide concurrency control very similar to DB2. Please be
aware that default transaction isolation for InnoDB is repeatable read while
DB2 operates by default with cursor stability.

7.3.5 Specifying the isolation level in DB2
Because the isolation level determines how data is locked and isolated from
other processes while the data is being accessed, you should select an isolation
level that balances the requirements of concurrency and data integrity. The
isolation level that you specify is in effect for the duration of the unit of work.

Commitment
Control

Yes No Yes Yes

Isolation level UR, CS, RS,
RR

No RU, RC, RR,
Serializable

Rollback on DDL Yes No No No

Characteristics DB2 tables MyISAM
tables

InnoDB
tables

BDB tables
230 MySQL to DB2 UDB Conversion Guide

The isolation level can be specified in several different ways. The following
heuristics are used in determining which isolation level will be used in compiling
an SQL statement:

� Static SQL:

– If an isolation clause is specified in the statement, then the value of that
clause is used.

– If no isolation clause is specified in the statement, then the isolation level
used is the one specified for the package at the time when the package
was bound to the database.

� Dynamic SQL:

– If an isolation clause is specified in the statement, then the value of that
clause is used.

– If no isolation clause is specified in the statement, and a SET CURRENT
ISOLATION statement has been issued within the current session, then
the value of the CURRENT ISOLATION special register is used.

– If no isolation clause is specified in the statement, and no SET CURRENT
ISOLATION statement has been issued within the current session, then
the isolation level used is the one specified for the package at the time
when the package was bound to the database.

SQL procedure and isolation level
This section discusses when to specify the isolation level for a SQL procedure.

At precompile or bind time
For an application written in a supported compiled language, use the ISOLATION
option of the Command Line Processor PREP or BIND commands. You can also
use the PREP or BIND APIs to specify the isolation level.

� If you create a bind file at precompile time, the isolation level is stored in the
bind file. If you do not specify an isolation level at bind time, the default is the
isolation level used during precompilation.

� If you do not specify an isolation level, the default of cursor stability is used.

Note: Many commercially written applications provide a method for
choosing the isolation level. Refer to the application documentation for
information.
 Chapter 7. Application porting 231

On database servers that support REXX
When a database is created, multiple bind files that support the different isolation
levels for SQL in REXX are bound to the database. Other command-line
processor packages are also bound to the database when a database is created.

REXX and the command line processor connect to a database using a default
isolation level of cursor stability. Changing to a different isolation level does not
change the connection state. It must be executed in the CONNECTABLE AND
UNCONNECTED state, or in the IMPLICITLY CONNECTABLE state.

At the statement level
Use the WITH clause. The statement-level isolation level overrides the isolation
level specified for the package in which the statement appears.

You can specify an isolation level for the following SQL statements:

� SELECT
� SELECT INTO
� Searched DELETE
� INSERT
� Searched UPDATE
� DECLARE CURSOR

The following conditions apply to isolation levels specified for statements:

� The WITH clause cannot be used on subqueries.

� The WITH UR option applies only to read-only operations. In other cases, the
statement is automatically changed from UR to CS.

From CLI or ODBC at runtime
Use the CHANGE ISOLATION LEVEL command. For DB2 Call Level Interface (DB2
CLI), you can change the isolation level as part of the DB2 CLI configuration. At
runtime, use the SQLSetConnectAttr function with the SQL_ATTR_TXN_ISOLATION
attribute to set the transaction isolation level for the current connection
referenced by the ConnectionHandle. You can also use the TXNISOLATION
keyword in the db2cli.ini file .

Tip: To determine the isolation level of a package, execute the following query:

 SELECT ISOLATION FROM SYSCAT.PACKAGES
 WHERE PKGNAME = 'XXXXXXXX'
 AND PKGSCHEMA = 'YYYYYYYY'

where XXXXXXXX is the name of the package and YYYYYYYY is the schema name
of the package. Both of these names must be in all capital letters.
232 MySQL to DB2 UDB Conversion Guide

When working with JDBC or SQLj at runtime

Use the setTransactionIsolation method in the java.sql interface connection.

In SQLj, you run the db2profc SQLJ optimizer to create a package. The options
that you can specify for this package include its isolation level.

For dynamic SQL within the current session
Use the SET CURRENT ISOLATION statement to set the isolation level for dynamic
SQL issued within a session. Issuing this statement sets the CURRENT
ISOLATION special register to a value that specifies the level of isolation for any
dynamic SQL statements issued within the current session. Once set, the
CURRENT ISOLATION special register provides the isolation level for any
subsequent dynamic SQL statement compiled within the session, regardless of
the package issuing the statement. This isolation level will apply until the session
is ended, or until a SET CURRENT ISOLATION statement is issued with the
RESET option.

Note: JDBC and SQLj are implemented with CLI on DB2, which means the
db2cli.ini settings might affect what is written and run using JDBC and SQLj.
 Chapter 7. Application porting 233

234 MySQL to DB2 UDB Conversion Guide

Chapter 8. Database administration

In this chapter, we focus on the database administration features of a DB2 UDB,
keeping in mind all the MySQL features. We provide a general introduction to
MySQL administrations programs, utilities, and tools, and then provide a detailed
description of DB2 UDB options corresponding to them. We also cover a few of
the salient features available in DB2 UDB but missing in MySQL.

We present key attributes of database administration for both MySQL and DB2
UDB such as:

� Database recovery
� Database replication
� Data movement utilities
� High availability
� Automated tasks/jobs
� Database configuration

We also explore following graphical and command line tools:

� MySQL phpMyAdmin and Control Center
� DB2 UDB Control Center
� DB2 UDB Web Command Center
© Copyright IBM Corp. 2004. All rights reserved. 235

8.1 Database recovery
Database recovery is the action the database system or user takes to recuperate
the database in case of system, hardware, software, or application failure. This
includes precautionary measures and curing measures. Different and multiple
recovery methods are followed by all the database systems for warding off the
data lose condition.

8.1.1 MySQL recovery
MySQL provide two recovery options: the first one is using table maintenance
feature and the second is using backup and restore utilities. MySQL also
provides automatic recovery of crashed tables, which can be enabled by running
mysqld with the --myisam-recover=# option. This works only for MyISAM tables
and internally uses the myisamchk utility. MySQL recovery options can be done
by:

� Checking and repairing tables for disorder

MySQL provides myisamchk (or isamchk) for checking and repairing MyISAM
(or ISAM) tables:

bash>myisamchk --silent --force --fast --update-state
/home/itso/mysql/data/*.MYI

bash>isamchk --silent --force /home/itso/mysql/data/*.ISM

If you are using mysqld with the --skip-external-locking option, you cannot
use mysqladmin to check the table if it is locked by mysqld. In this case you
should do mysqladmin flush-tables before checking the table.

Also, you may use the check table or REPAIR TABLE command for doing this;
using REPAIR TABLE is same as using myisamchk -r

CHECK TABLE works only with MyISAM and InnoDB table and the REPAIR TABLE
option works with only MyISAM tables.

� Using backup and restore

Another technique the MySQL user can use for crash recovery is by doing
precautionary database backup frequently. In case of a crash, obtaining a
stable state of database by restoring the data from backup and binary logs.
The steps for doing this are:

– Precautionary frequent database backup by using one of these:

bash> mysqldump --tab=/home/itso/mysql/backup --opt itz‘sodb
bash> mysqlhotcopy itsodb /home/itso/mysql/backup

– Restart mysqld with the --log-bin option; this will write the information
required to replicate all the changes to the database after backup.
236 MySQL to DB2 UDB Conversion Guide

bash>mysqld --log-bin=/home/itso/mysql/logs

– Restore backup data after crash recovery; this can be done using:
mysqlimport or LOAD DATA INFILE,

bash>mysqlimport itsodb tablename.txt

– Re-running the update binary logs that occurred after backup

This can be done by running the mysqlbinlog command and redirecting
the output to mysql using Linux pipes as shown below:

bash>mysqlbinlog hostname-bin.[0-9]* | mysql

8.1.2 DB2 UDB database recovery
DB2 UDB supports database recovery using database backup in conduction with
two recovery logs: active logs and archived logs:

� Active logs

Active logs contain current transaction data. These logs are required in crash
recovery.

� Achieved logs

Archived logs contain committed transactions. These logs are used in
rollforward recovery, which can recover the database to the state immediately
before the failure. Archie logging can be enabled by setting logretain and
the userexit database configuration parameter to ON.

Database backup
Backup DB2 UDB database can use DB2 backup command. This command can
be used to back up database to disk, tape, or names pipes in UNIX. DB2 UDB
supports both offline and online backup.

db2>backup database itsodb2 to /home/itsodb/backup

In addition to backing up the entire database every time, DB2 UDB also supports
incremental backup where you can back up large databases on a regular basis
incrementally. This requires a trackmod database configuration parameter to be
set to yes. Incremental backup can be a cumulative backup, which stores data
changes since the last successful full backup, or delta backup which is the last
successful backup irrespective of whether that backup was full, delta, or
cumulative. Figure 8-1 and Example 8-1 show the cumulative and delta backup
technique.
 Chapter 8. Database administration 237

Figure 8-1 Incremental backup

Example 8-1 Incremental backup

db2>backup database itsodb2 to /home/itso/backup
db2>backup database itsodb2 INCREMENTAL to /home/itso/backup_inc
db2>backup database itsodb2 INCREMENTAL DELTA to /home/itso/backup_delta

Database restore
DB2 UDB database restore is as easy as taking database backup. This can be
done by using the RESTORE utility. The restore database command rebuilds the
database data or table space that was backed up using the backup command
above. This utility supports full and incremental database restore. Incremental
database restore can be automatic or manual. Example 8-2 shows automatic
incremental restore, and Example 8-3 shows manual incremental restore.

Example 8-2 Automatic incremental restore

db2>restore database itsodb2 INCREMENTAL AUTOMATIC from /home/itso/backup taken
at 20040116

Example 8-3 Manual incremental restore

db2>create database itsodb2new1
db2>restore database itsodb2 INCREMENTAL from /home/itso/backup taken at
20040114
db2>restore database itsodb2 INCREMENTAL from /home/itso/backup taken at
20040114
db2>restore database itsodb2 INCREMENTAL from /home/itso/backup taken at
20040114

Sunday Mon Tue Wed Thu Fri Sat Sunday

Cumulative Backups
FullFull

Delta Backups FullFull
238 MySQL to DB2 UDB Conversion Guide

Using the above log files and backup files, DB2 UDB can support database
recovery by various methods and to different levels:

� Crash/restart recovery

This is a technique for an automated database recovery to recover the
database to a stage where all the transactions are completed and committed.
This is done by rolling back incomplete transactions and completing
committed transactions that were still in memory when the crash occurred.

This is done automatically by the database manager if you set the automatic
restart (autorestart) database configuration parameter to ON by:

db2>db2 update database configuration for itsodb2 using autorestart ON

or by restarting the database when a database failure occurs; this is done by
calling:

db2>restart database itsodb2

DB2 UDB maintains log files, the recovery history file, and table space
change history file to recover data that is lost or damaged.

� Version recovery

This is recovery option used for non-recoverable databases or databases
without achieved logs. In this recovery option, previous backup versions of
the database are restored in case of an emergency. Typically, database
backups are taken in tapes and kept in remote places.

It is very necessary to take a backup on regular basis because this recovery
method loses the changes made in database after backup. This is done by
restoring the database using incremental, delta, or full backup.

� Rollforward recovery

In rollforward recovery, you can specify the local time to which you want to roll
forward your database. In this method backup data is used in conjugation with
database transaction records to achieve a goal of taking DB2 UDB to the
state immediately before the failure. Figure 8-2 shows the roll forward
recovery technique of DB2 UDB.
 Chapter 8. Database administration 239

Figure 8-2 DB2 UDB roll forward restore

This can be achieved by executing the rollforward command after the backup
image is restored as shown below:

db2>rollforward database itsodb2 complete

8.2 Database replication
Database replication is a process of maintaining the database in multiple
systems. It involves synchronizing changes from one database (a source) to
another database (a target). This feature is very useful for load sharing, fast
disaster recovery, and high availability.

MySQL allows one-way replication between two MySQL servers only. It is based
on the master server keeping track of all the changes to the database in the
binary log; and all the slave servers need to get this binary log from the master
server and rerun all the statements on the slave database from the previous
stable state. The slave server can be set up using the LOAD DATA FROM MASTER
command; this is supported only for the MyISAM table type. Once the slave
setup is done and running, it will connect to the master and wait for updates to
process. This is a continues process and the slave will always listen for an
update.

DB2 UDB supports replication using publish subscribe replication setup, wherein
you can replicate data not only in two DB2 UDB systems running on different
platforms, but also on the following non-DB2 databases: Informix, Microsoft Jet,
Microsoft SQL Server, Oracle, Sybase, and Sybase SQLAnywhere.

DB2 UDB provides a tool called the DB2 UDB Replication Center; it is a tool
which can be used to set up and administer your replication environment, and to

Tip: DB2 UDB backup and restore can also be done using Control Center.
240 MySQL to DB2 UDB Conversion Guide

run the Capture, Apply, and Replication Alert Monitor programs. It can be used to
perform administrative tasks such as:

�

 Chapter 8. Database administration 241

8.3.1 MySQL data movement
In MySQL, you can transfer tables (MyISAM and ISAM) by copying data (*.ISD,
.MYD) and index files(.ISM, *.MYI) but only if your source and target operating
system and machine architecture are same. Otherwise, you have to use following
utilities for data movement:

� mysqldump

This is most popular MySQL utility for transferring the data from one MySQL
server to another. It actually dumps a MySQL database into a file as SQL
statements or as tab-separated text files. You can back up and restore
databases or tables as shown in Example 8-4.

Example 8-4 mysqldump and restore

bash>mysqldump --opt itsodb > mysql.sql
bash>mysql itsodbtemp< mysql.sql
or
bash>mysql -e “source mysql.sql” itsodbtemp

This utility supports dumping from remote machine, multiple databases
dumping, flush log before dumping, and locking the table before dumping
options.

� mysqlhotcopy

If you are dumping data on server machine you may prefer to use
mysqlhotcopy. This command internally calls MySQL commands LOCK
TABLES, FLUSH TABLES, and then copies files into the output directory. It
works only for UNIX machines and MyISAM and ISAM tables. It can be
executed as shown below:

bash>mysqlhotcopy itsodb /home/itso/mysql/dbcopy

� mysqlimport

It is a simple utility to load data into the tables. It takes a comma or space
separated data file as input and load it into the table. It is equivalent to calling
the LOAD DATA INFILE SQL statement. This command can be executed as
shown below:

bash>mysqlimport itsodb tablename.txt

8.3.2 DB2 UDB data movement
On the contrary, DB2 UDB provides faster and efficient tools and utilities for data
movement across the different systems or reorganizing data on same system.
242 MySQL to DB2 UDB Conversion Guide

EXPORT utility
DB2 EXPORT is a powerful tool to export your DB2 data quickly from DB2 UDB to
one of the file system outside DB2 system. DB2 EXPORT can be used to export
tables, views, large objects, or typed tables to one of the three external file
formats:

� .DEL: delimited ASCII format file
� .WSF: work sheet format like lotus 1-2-3®
� .IXF: integrated exchange format

The EXPORT utility can be invoked through:

� The Command Line Processor (CLP)

The EXPORT utility can be used from CLP by supplying an SQL SELECT
statement, or by providing hierarchical information for typed tables as shown
below:

db2>export to itos.ixf of ixf select * from itsodb.katalog

� The Control Center

DB2 UDB data can be exported using a graphical user interface, which allows
you to set export options for each table visually from Control Center.
Figure 8-4 shows the usage of export through Control Center.
 Chapter 8. Database administration 243

Figure 8-4 Export using control centre

� An application programming interface (API)

DB2 UDB provides an API for exporting data, which can be used to export
data programmatically. This can be used by importing sqlutil.h and the
method sqluexpr.

The IMPORT utility
The files created by EXPORT utility can be used to populate data into a new DB2
UDB database on the same system, or they can be transferred to another
workstation platform and imported or loaded to a DB2 database that resides on
that platform. IMPORT utility supports the following file formats:

� ASC: non-delimited ASCII format file
� .DEL: delimited ASCI format file
� .WSF: work sheet format like lotus 1-2-3
� .IXF: integrated exchange format

As EXPORT, IMPORT utility can also be used from:

� The Command line processor (CLP)
244 MySQL to DB2 UDB Conversion Guide

The IMPORT utility can be used from CLP by supplying an SQL INSERT,
INSERT UPDATE, REPLACE or REPLAE_CREATE option. Also you can import the
table hierarchy using the CREATE INTO option. The example below shows the
simple IMPORT statement:

db2>import from itso.ixf of ixf messages msg.txt insert into itsodb.katalog

� The Control Center

Control Center can be used for importing data visually. You can get a wizard
shown in Figure 8-5 by right-clicking <tablename> and selecting Import...
from the System -> server name -> Instance -> Databases -> database
name -> Tables window.

Figure 8-5 Import using control center

� An application programming interface (API)
 Chapter 8. Database administration 245

DB2 UDB provides an API for importing data from files exported using the
export tool. This provides an option to do importing programmatically by using
sqlutil.h, and a method sqluimpr.

The DB2MOVE utility
Data can be copied using the DB2 EXPORT and IMPORT utilities. But a more
efficient way to copy an entire DB2 UDB database is by using the DB2 db2move
utility. This utility queries the system catalog tables for the specified database,
and exports the table structure and contents of each table found to a PC/IXF
formatted file. These files can be used to populate another DB2 UDB database. It
can be run in three modes:

� EXPORT mode

In this mode, the db2move utility invokes DB2 EXPORT utility to extract data from
one or more tables and write to PC/IXF formatted files. It also creates a file
named db2move.lst that contains the names of all tables exported and the
names of the files that the table's data was written to. EXPORT mode can be
used as below:

bash>db2move itsodb2 export

� IMPORT mode

In this mode, the db2move utility invokes DB2 IMPORT utility to recreate tables
and indexes from data stored in PC/IXF formatted files. The file db2move.lst
generated in EXPORT mode can be used to get information about tables in the
exported files. The above exported files can be imported using:

bash>db2move itsodb2 import

� LOAD mode

In this mode, the db2move utility invokes DB2 LOAD utility to populate tables
that already exist with data stored in PC/IXF formatted files. The file
db2move.lst generated in EXPORT mode can be used to get information about
tables. The above exported files can be loaded using:

bash>db2move itsodb2 load -l /home/itso/backup

8.4 High availability
High availability is a business requirement on the system to provide services all
the time, and survive disaster, system crash, and glitches without or with minimal
interrupting of the service. This is achieved by a number of techniques like online
management of the database system, advanced instance management,
suspended I/O, and clustered servers.
246 MySQL to DB2 UDB Conversion Guide

One of the advanced feature used for HA is failover, wherein a workload is
transferred from one system to another quickly and automatically in case of
failure.

MySQL does not support automatic high availability, instead you have to use
replication features of MySQL to support high availability. You have to set up a
master and slaves, and write scripts that will monitor the master to see if it is up
and running, and as soon as the master gets down one of the slave, it acts like a
master.

DB2 UDB has an advanced continuous checkpointing system and a parallel
recovery capability that allows for extremely fast crash recovery. DB2 UDB
fail-safe can be achieved in number of ways, most frequently used once are:

� Log shipping

In log shipping, whole log files are shipped to a standby machine though
achieve file or user exit program running against primary database. The
standby database is continuously rolling forward through the log files
produced by the production machine. Now, as soon as main server gets
down, the remaining logs are transferred to the standby machine, and the
standby database rolls forward and the client resumes its services by
reconnecting to the standby machine.

� Suspended I/O

Suspended I/O supports a quick initialization of new database by making a
split mirror. A split mirror is instantaneous copy of the database that can be
made by mirroring the disks containing the data, and splitting the mirror when
a copy is required.

The db2inidb command initializes the split mirror so that it can be used:

� As a clone database
� As a standby database
� As a backup image

DB2 UDB failover can also be achieved using platform specific software:

� High Availability Cluster Multi-Processing, Enhanced Scalability, for AIX

� Microsoft Cluster Server, for Windows operating systems

� Sun Cluster, or VERITAS Cluster Server, for the Solaris Operating
Environment

� Steeleye’s Linux based high reliability solution for DB2 UDB

Apart from failover, DB2 UDB uses features like online buffer pools, online
backup, and loading of data, online table, and index organization for providing
uninterrupted service.
 Chapter 8. Database administration 247

8.5 Automated tasks/jobs
Automated tasks lets you automate your database management job by
scheduling the activities according to your requirement. They can be really useful
for performing regular maintenance tasks such as backup, space monitoring,
error checking, and maintenance, etc.

MySQL reckons on operating system functionality for scheduling. On Windows
platforms, MySQL uses the Task Scheduler services to schedule jobs. On Linux
platforms, it uses cron to schedule jobs. Few scheduling tools are available in
market that can be used for scheduling:

� SQLyog Job Agent (SJA)

SJA is MySQL data synchronization and migration tool.

� PhpJobScheduler

PhpJobScheduler is a tool to automate tasks by scheduling PHP scripts to
run at set intervals.

DB2 UDB offers an administrative interface called Task Center to automate and
schedule tasks. The Task Center can be used to execute tasks, either
immediately or according to a schedule, and to notify people about the status of
completed tasks. It provides the ultimate flexibility for centralized scheduling and
server-side execution.

With the help of Task Center you can:

� Schedule the task
� Specify success and failure conditions
� Specify success and failure actions
� Specify notification details
� Specify conditional coding using task actions.

The Task Center is tightly coupled with Control Center, so it can be invoked either
directly by calling db2tm or from the Control Center Tools -> Task Center
menu. Tasks can be created, saved, and reopened using a dialog or wizard
within the Control Center. Figure 8-6 shows creation of tasks using Task Center.
248 MySQL to DB2 UDB Conversion Guide

Figure 8-6 The Task Center console

8.6 Database configuration
Database configuration is an another very important task for database
administrators. It involves setting up parameters for database, system, database
manager, etc. to optimum values for getting the best performance for your
application. In this section we discuss how MySQL and DB2 UDB database
parameters are tuned.

8.6.1 MySQL configuration
MySQL database configuration involves setting up system level parameters,
server parameters, and database parameters. You can use database
parameters to define various characteristics of a database. When you install the
MySQL, a default configuration is stored; either this configuration can be used or
it can be modified to suit any specific requirements you may have.
 Chapter 8. Database administration 249

MySQL server options can either be given as a parameter to mysqld, or it can be
written in the MySQL option files. The options are read from different files in the
order of preference as shown in Table 8-1.

Table 8-1 MySQL options files

Another way to tune MySQL is by running mysqld with --name=value to set the
variable.

You can also set MySQL database variables using the SET command when your
server is running. It can be executed with two modes:

� Global

This mode sets options at the server level; if a new connection is created the
new values are used:

mysql>SET GLOBAL sort_buffer_size=1000000;

� Session

In this mode, the option you set will remain valid until the current session
ends, or until you set the option to different values. It can be used as the
following:

mysql>SET SESSION sort_buffer_size=1000000;

8.6.2 DB2 UDB configuration
DB2 UDB has two levels of configuration:

DB2 profile registry
DB2 profile registry variables control the DB2 environment. Information stored in
these profile registries are used by the DB2 server instance, and the DB2
applications started after the changes are made. DB2 UDB provides the
following different levels of profile registry:

� The DB2 Instance Level Profile Registry
� The DB2 Global Level Profile Registry
� The DB2 Instance Node Level Profile Registry

Preference Filename Purpose

1 /etc/my.cfg Global options

2 DataDir/my.cfg Server-specific options

3 defaults-extra-file The file specified with
--defaults-extra-file=path

4 ~/.my.cnf User -specific options
250 MySQL to DB2 UDB Conversion Guide

� The DB2 Instance Profile Registry

All these registry profile variables can be set using the db2set command.
Example 8-5 shows different modes in which the db2set command can be used.

Example 8-5 Changing registry and environment variables using db2set

bash>db2set -all --this shows the current registry variables
[i] DB2COMM=tcpip
[i] DB2AUTOSTART=YES
[g] DB2SYSTEM=lochnessr1a
[g] DB2ADMINSERVER=dasusr1

bash>db2set DB2AUTOSTART=NO -i db2inst1 --this sets registry for all
databases in particular instance

bash>db2set DB2AUTOSTART=NO -g --this sets registry variable for all
instances

bash>db2set DB2AUTOSTART=NO -i db2inst1 65000 --this sets registry variable
for particular node

DB2 UDB configures the operating environment by checking for registry values
and environment variables, and resolving them in the following order:

1. Environment variables set using the export command

2. Registry values set with the instance node level profile using db2set -i
instname nodenum

3. Registry values set with the instance level profile using db2set -i

4. Registry values set with the global level profile using db2set -g

Configuration files
In addition to DB2 Profile Registry, DB2 UDB also has instance and database
configuration files, which provide users the flexibility to configure the database
and the database engine to fit business and application needs. These files are
created when the DB2 instance or database is created. They contain the
parameters that define values such as resource allocated to DB2 UDB,
diagnostic level, log files location, etc. As shown in Figure 8-7, there are two DB2
configuration files and additional operating system configurations.
 Chapter 8. Database administration 251

Figure 8-7 Configuration parameter files

� The database manager configuration file

This file is created with the DB2 instance and it affects the DB2 instance level.
It is stored in db2systm file under the sqllib subdirectory of instance. The
values in this file can be seen using:

bash>db2 get database manager configuration

and it can be set using:

bash>db2 update dbm cfg using DIAGLEVEL 1

� The database configuration file

For each database there exists a database configuration file, which is created
when a database is created. It resides in the directory where the database
resides. It defines the resources and variables for the particular database.
The values in the database configuration can be obtained using:

bash>get database configuration for itsodb2
252 MySQL to DB2 UDB Conversion Guide

and it can be set using:

bash>update database configuration for itsodb2 using ...

You can also use DB2 UDB Configuration Assistant to update DB2 UDB
configuration parameters. Configuration Assistant is a graphical tool tightly
integrated with Control Center. It allows you to configure both the DB2 UDB
Profile Registry and the DB2 configuration files on the local machine as well as
remotely. It can be launched from Control Center or by calling the db2ca utility.
The Configuration Assistant also has an advanced view, which uses a notebook
to organize connection information by object: Systems, Instance Nodes,
Databases, Database Connection Services (DCS), and Data Sources. Figure 8-8
shows how to change the database manager configuration using Configuration
Assistant.

Figure 8-8 DB2 Configuration Assistant
 Chapter 8. Database administration 253

8.7 Database management tools
In this section we introduce the graphical tools available for managing MySQL
and DB2 UDB database servers. Although you can do all the tasks in both the
database from shell command prompt, these tools play an important role in
making the database administrators’ job easier.

By default MySQL does not come with any control tool for database
management, but MySQL AB provides MySQL Control Center, also known as
MySQLCC for graphical administration of the MySQL server. Also, the
SourceForge open source community provides a tool called phpMyAdmin, which
is more popular, and can manage the MySQL server and database from the Web
browser.

On the other hand, DB2 UDB supports impressive suite of tools for database
management and services. All the daily database operations can be easily and
effectively done using following GUI tools and wizards:

� Control Center

The Control Center is a tool provided by DB2 UDB to manage systems, DB2
instances, and database objects such as tables and views. It can be used to
launch other centers and tools to help you optimize queries, jobs, and scripts,
perform data warehousing tasks, create stored procedures, and work with
DB2 commands. It can be opened by calling the db2cc command.

� Command Center

DB2 UDB Command Center interface can be used to execute SQL
statements and DB2 CLP commands, to execute operating system
commands, to work with command scripts, and to view a graphical
representation of the access plan for explained SQL statements. It can be
launched by calling the db2cmdctr command.

� Development Center

Development Center is easy to use interface for developing and debugging
routines such as user defined functions and stored procedures.

� Project Deployment Center

This tool helps you deploy objects that you exported to a file system using the
export wizard in the Development Center. This wizard can be launched using
the db2dcdpl command.

� Journal

The Journal is the monitoring tool for viewing historical information generated
within the Control Center and its components. It historical information about
tasks, database actions and operations, Control Center actions, messages,
254 MySQL to DB2 UDB Conversion Guide

and alerts. It can be launched from Control Center or by calling the
db2journal command.

� Replication Center

The Replication Center is a graphical user interface to administer the
relational data replication. From the Replication Center, you can define your
replication environments, copy designated changes from one location to
another, and synchronize the data in both locations. Replication Center can
be launched using the db2rc command.

� Task Center

The Task Center is a interface provided by DB2 UDB for scheduling, running
tasks, and notifying people about the status of completed tasks. It can be
executed by calling the db2tc command.

� Information Center

Information Center is central point for accessing documenting, help,
instructions, conceptual information, answers, and other information about
DB2 UDB. It can be activated using the db2ic command.

� Event Analyzer

An Event Monitor is a tool provided by DB2 UDB for collecting information on
database activities such as transaction executed, CPU used by a statement
etc. over a period of time. It provides a summary to determine how well a
database activity was performed. Event Analyzer is a tool to analyze the data
collected by Event Monitor. The Event Analyzer can be actuated by calling
the db2eva command.

� Health Center

DB2 UDB Health Center is a tool provided to analyze and improve the health
of DB2 UDB database. It provides an interface for determining and resolving
problems related to memory, space, transaction, and other system resources.
It can be launched by calling db2hc.

� Indoubt Transaction Manager

Indoubt Transaction Manager is a tool to administer global transactions that
are left in an indoubt state. It can be used to initiate in-sync action or launch
heuristic actions on those transactions. It can be triggered by calling the
db2indbt command.

� Configuration Assistant

The Configuration Assistant is a tool to configure and maintain the database
objects, bind application, set database configuration parameters, and
import/export configuration information. It can be launched by issuing db2ca
from your shell prompt.
 Chapter 8. Database administration 255

� Satellite Synchronizer

Satellite Synchronizer can also be used to start, stop, and monitor the
progress of a synchronization session, and to upload a satellite's
configuration information to its control server.

Apart from this, DB2 UDB provides DB2 Web tools suite targeted for Web
browsers, mobile laptops and notebooks, and Web-enabled PDAs and Palm
devices. This suite includes:

� DB2 Web Command Center
� DB2 Web Health Center

IBM also provides DB2 for enhancing the performance of DB2 UDB on a
multiplatform. The IBM DB2 offering includes:

� DB2 Performance Expert
� DB2 Recovery Expert
� DB2 High Performance Unload
� DB2 Table Editor
� DB2 Web Query Tool

8.7.1 MySQL phpMyAdmin and Control Center
phpMyAdmin is a SourceForge open community tool written in php for managing
MySQL server and MySQL databases from a Web browser. It supports:

� Managing databases
� Table maintenance
� SQL-statement execution
� Exporting, loading and dumping of tables
� Managing users and privileges
� Checking referential integrity in MyISAM tables

Figure 8-9 shows phpMyAdmin console with the database structure of our
sample application.
256 MySQL to DB2 UDB Conversion Guide

Figure 8-9 phpMyAdmin console

MySQL Control Center is a platform-independent GUI Administration Client for
the MySQL database server, which can be used for table, database, or server
administration. It can be used to construct queries using a syntax-highlighting
text editor, and then views the results in a configurable table display. Currently, it
is in beta stage. Figure 8-10 shows the usage for MySQL Control Center.
 Chapter 8. Database administration 257

Figure 8-10 MySQL control center console

8.7.2 DB2 UDB Control Center
IBM DB2 Control Center is the central point from which you can manage your
family of DB2 databases, running on an array of operating systems in your
workplace. A user-friendly graphical interface makes your job easier by guiding
you through each of the steps in managing DB2 Universal Database.

DB2 Control Center provides a common interface for managing DB2 databases
on different platforms. You can run DB2 commands, create DDL statements, and
execute DB2 utilities. DB2 Control Center's point-and-click navigation capabilities
make it easy to find objects, whether you have hundreds or tens of thousands in
your database environment. It can be used to administer system, instances,
tables, views, indexes, triggers, user-defined types, user-defined functions,
packages, aliases, users, or groups.

It is tightly coupled with other DB2 tools; Figure 8-11 shows a hierarchy of
database objects on the left hand panel, and details on right hand panel.
258 MySQL to DB2 UDB Conversion Guide

Figure 8-11 DB2 control center

The following tools can be launched from the Control Center Tools menu:

� Replication Center
� Satellite Administration Center
� Command Center
� Task Center
� Health Center
� Journal
� License Center
� Development Center

DB2 Control Center also provide set of wizards for completing specific
administration tasks by taking you through each step one at a time. The following
DB2 wizards are available though Control Center:

� Add partitions launchpad
� Backup wizard
� Create database wizard
� Create table space wizard
� Create table wizard
� Design Advisor
� Load wizard
 Chapter 8. Database administration 259

� Configuration Advisor
� Restore data wizard
� Configure database logging wizard

8.7.3 DB2 UDB Web Command Center
Web Command Center is Web version of the Command Center and is targeted
for Web browsers for mobile laptops, notepads, and Web-enabled PDAs and
Palm devices. It supports most of the features of the Command Center, but it
does not currently support Visual Explain or SQL Assist. It is based on a
three-tier architecture wherein the first tier is a Web browser, the second is
application server, and the third is DB2 Server. Figure 8-12 shows DB2 UDB
Web Command Center in Internet Explorer.

Figure 8-12 DB2 Web command center console

For using DB2 UDB Web Command Center, you need to install db2wa.war in
your application server. This is available in the sqllib/tools/web directory.

It can be used for running:

� DB2 commands and SQL statements
260 MySQL to DB2 UDB Conversion Guide

� DB2/SQL scripts
� Operating system commands
 Chapter 8. Database administration 261

262 MySQL to DB2 UDB Conversion Guide

Chapter 9. Testing and tuning

This chapter discusses the following steps to verify that data and application
functionality were ported completely and correctly:

� Test planning
� Data checking
� Code and application testing
� Troubleshooting

It provides information on how you can check that system behavior has not been
changed during migration in a way that was not intended.

Methods and tools on how to tune your database in order to get as much
performance as possible out of the DB2 UDB are also discussed in this chapter.
© Copyright IBM Corp. 2004. All rights reserved. 263

9.1 Test planning
The test planning details the activities, dependencies, and effort required to
conduct the test of the converted solution.

9.1.1 Principles of software tests

Keep in mind the principles of software tests in general:

� It is not possible to test a non-trivial system completely.

� Tests are optimizing processes regarding completeness.

� Always test against expectations.

� Each test must have reachable goals.

� Test cases have to contain reachable and non-reachable data.

� Test cases must be repeatable.

� Test cases have to be archived in the configuration management system as
well as source code and documentation.

9.1.2 Test documentation
The test documentation is a very important part of the project. The ANSI/IEEE
Standard 829-1983 for Software Test Documentation describes its content
exactly. We give you a high level overview here.

Scope
State the purpose of the plan, possibly identifying the level of the plan (master
etc.). This is essentially the executive summary part of the plan. You may want to
include any references to other plans, documents, or items that contain
information relevant to this project and process. If preferable, you can create a
references section to contain all reference documents.

Identify the scope of the plan in relation to the software project plan that it relates
to. Other items may include resource and budget constraints, scope of the testing
effort, how testing relates to other evaluation activities (analysis and reviews),
the process to be used for change control and communication, and coordination
of key activities.

As this is the executive summary, keep information brief and to the point.
264 MySQL to DB2 UDB Conversion Guide

Definition of test items
Define the test items you intend to test within the scope of this test plan.
Essentially, something you will test is a list of what is to be tested. This can be
developed from the software application inventories as well as other sources of
documentation and information.

This section is a technical description of the software, and can be oriented to the
level of the test plan. For higher levels, it may be by application or functional area,
for lower levels it may be by program, unit, module, or build.

Features to be tested
This is a listing of what is to be tested from the user’s viewpoint of what the
system does. This is not a technical description of the software, but a user’s view
of the functions. Users do not understand technical software terminology. They
understand functions and processes as they relate to their jobs.

Set the level of risk for each feature. Use a simple rating scale such as high,
medium, and low (H, M, L). These types of levels are understandable to a user.
You should be prepared to discuss why a particular level was chosen.

Features not to be tested
This is a listing of what is not to be tested from both the user’s viewpoint of what
the system does, and a configuration management view. This is not a technical
description of the software, but a user’s view of the functions.

Identify why the feature is not to be tested; there can be any number of reasons.

Test strategy
This is your overall test strategy for this test plan. It should be appropriate to the
plan and should be in agreement with plans affecting application and database
parts. Overall rules and processes should be identified:

� Are any special tools to be used and what are they?

� Will the tool require special training?

� What metrics will be collected?

� Which level is each metric to be collected at?

� How is configuration management to be handled?

� How many different configurations will be tested?

� Which combinations of hardware, software, and other vendor packages are
used?
 Chapter 9. Testing and tuning 265

� What levels of regression testing will be done and how much at each test
level?

� Will regression testing be based on severity of defects detected?

� How will elements in the requirements and design that do not make sense or
are un-testable be processed?

Item pass and fail criteria
What is the completion criteria for this plan? What is the number and severity of
defects located? This is a critical aspect of any test plan and should be
appropriate to the level of the plan.

Suspension criteria and resumption requirements
Know when to pause in a series of tests. If the number or type of defects reaches
a point where the follow on testing has no value, it makes no sense to continue
the test - you are just wasting resources.

Specify what constitutes stoppage for a test or series of tests, and what is the
acceptable level of defects that will allow the testing to proceed past the defects.

Testing after a truly fatal error will generate conditions that may be identified as
defects, but are in fact ghost errors caused by the earlier defects that were
ignored.

Test deliverable
What is to be delivered as part of this plan?

� Test plan document
� Test cases
� Test design specification
� Tools and their outputs
� Error logs and execution logs
� Problem reports and corrective actions

One thing that is not a test deliverable is the software itself, which is listed under
test items, and is delivered by development.

Environmental needs
Are there any special requirements for this test plan such as:

� Special hardware such as simulators, static generators, etc.

� How will test data be provided? Are there special collection requirements or
specific ranges of data that must be provided?

� How much testing will be done on each component of a multi-part feature?
266 MySQL to DB2 UDB Conversion Guide

� Special power requirements

� Specific versions of other supporting software

� Restricted use of the system during testing

Staffing and skills
The staffing depends on the kind of tests defined. In this section you should
define the persons and the education and training needed for executing the test
case.

Responsibilities
Who is in charge? This issue includes all areas of the plan. Here are some
examples:

� Setting risks

� Selecting features to be tested and not tested

� Setting overall strategy for this level of plan

� Ensuring all required elements are in place for testing

� Providing for resolution of scheduling conflicts, especially if testing is done on
the production system

� Who provides the required training?

� Who makes the critical “go/no” decisions for items not covered in the test
plans?

9.1.3 Test phases
Series of well designed tests should validate all stages of the migration process.
A detailed test plan should describe all the test phases, scope of the tests,
validation criteria, and specify the time frame. To ensure that the applications
operate in the same manner as they did in the source database, the test plan
should include data migration, functional and performance tests, as well as other
post migration assessments.

Data migration testing
The extracting and loading process entails conversion between source and
target data types. The migrated database should be verified to ensure that all
data is accessible, and was imported without any failure or modification that can
cause applications to function improperly.
 Chapter 9. Testing and tuning 267

Functional testing
Functional testing is a set of tests in which new and existing functionality of the
system are tested after migration. Functional testing includes all components of
the RDBMS system, networking, and application components. The objective of
functional testing is to verify that each component of the system functions as it
did before migrating, and to verify that new functions are working properly.

Integration testing
Integration testing examines the interaction of each component of the system. All
modules of the system and any additional applications (Web, supportive
modules, Java programs, etc.) running against the target database instance
should be verified to ensure that there are no problems with the new
environment. The tests should also include GUI and text-based interfaces with
local and remote connections.

Performance testing
Performance testing of a target database compares the performance of various
SQL statements in the target database with the statements’ performance in the
source database. Before migrating, you should understand the performance
profile of the application under the source database. Specifically, you should
understand the calls the application makes to the database engine.

Volume/load stress testing
Volume and load stress testing tests the entire migrated database under high
volume and loads. The objective of volume and load testing is to emulate how the
migrated system might behave in a production environment. These tests should
determine whether any database or application tuning is necessary.

Acceptance testing
Acceptance tests are carried out by the end users of the migrated system. Users
are asked to simply explore the system, test usability, and system features, and
give direct feedback. Acceptance tests are usually the last step before going into
production with the new system.

Post migration tests
Because a migrated database can be a completely new environment for the IT
staff, the test plan should also encompass examination of new administration
procedures like database backup/restore, daily maintenance operation, or
software updates.
268 MySQL to DB2 UDB Conversion Guide

9.1.4 Time planning and time exposure
The time planning should be based on realistic and validated estimates. If the
estimates for the migration of the application and database are inaccurate, the
entire project plan will slip, and the testing is part of the overall project plan.

It is always best to tie all test dates directly to their related migration activity
dates. This prevents the test team from being perceived as the cause of a delay.
For example, if system testing is to begin after delivery of the final build, then
system testing begins the day after delivery. If the delivery is late, system testing
starts from the day of delivery, not on a specific date. This is called dependent or
relative dating.

Figure 9-1 shows the test phases during a typical migration project. The
definition of the test plans happen in a very early moment. The test cases, and all
its following tasks, must be done for all test phases.

Figure 9-1 Test phases during a migration project

The time exposure of tests depends on the availability of an existing test plan,
and already prepared test items. The efforts depend also on the degree of
changes during the application and database migration.

Create Test Plan

Create Test Cases

Prepare Test Items

Prepare Infrastructure

Compare Test Results

Test Run in
MySQL Environment

Test Run in
DB2 UDB Environment
 Chapter 9. Testing and tuning 269

9.2 Data checking techniques
Data movement is the first thing any migration should focus on. Without having
all your tables and data properly moved over, all other migration testing is in vain.

The test process should detect if all rows were imported into the target database,
verify that data type conversions were successful, and check random data
byte-by-byte. The data checking process should be automated by appropriate
scripts. When testing data migration you should:

� Check IMPORT/LOAD messages for errors and warnings.

� Count the number of rows in source and target databases and compare them.

� Prepare scripts that perform data checks.

� Involve data administration staff familiar with the application and its data to
perform random checks.

9.2.1 IMPORT/LOAD messages
You should always check the messages generated by the IMPORT or LOAD
commands. Example 9-1 presents messages generated by the sample IMPORT
command. You should read not only the summary at the end of the listing, but
also pay attention to the warning messages.

Example 9-1 Sample IMPORT messages

db2>IMPORT from table01.unl of del replace into table01

SQL3109N The utility is beginning to load data from file "table01.unl".

SQL3148W A row from the input file was not inserted into the table. SQLCODE
"-545" was returned.

SQL0545N The requested operation is not allowed because a row does not satisfy
the check constraint "ITSO.TABLE01.SQL030812222227680". SQLSTATE=23513

SQL3185W The previous error occurred while processing data from row "2" of the
input file.

SQL3117W The field value in row "3" and column "1" cannot be converted to a
SMALLINT value. A null was loaded.

Note: The test efforts can be between 50% and 70% of the total migration
effort.
270 MySQL to DB2 UDB Conversion Guide

SQL3125W The character data in row "4" and column "2" was truncated because
the data is longer than the target database column.

SQL3110N The utility has completed processing. "4" rows were read from the
input file.

SQL3221W ...Begin COMMIT WORK. Input Record Count = "4".

SQL3222W ...COMMIT of any database changes was successful.

SQL3149N "4" rows were processed from the input file. "3" rows were
successfully inserted into the table. "1" rows were rejected.

Number of rows read = 4
Number of rows skipped = 0
Number of rows inserted = 3
Number of rows updated = 0
Number of rows rejected = 1
Number of rows committed = 4

As shown in the summary, during the import process one record from the input
file was rejected, and three were inserted into the database. To understand the
nature of the warnings, you should look into the data source file and the table
definition (db2look command). For Example 9-1, the table definition is presented
in Figure 9-2, and the data file in Figure 9-3.

Figure 9-2 Table definition for Example 9-1

Figure 9-3 Data file for Example 9-1

The first row from the input file (Figure 9-3) was inserted without any warnings.
The second row was rejected because it violated check constraints (warnings
SQL3148W, SQL0545N, SQL3185W). A value of 32768 from the third row was

CREATE TABLE TABLE01 (
 C1 SMALLINT,
 C2 CHAR(3),
 C3 SMALLINT CHECK(C3 IN (1,2,3)))

1,"abc",1
2,"abc",4
32768,"abc",2
4,"abcd",3
 Chapter 9. Testing and tuning 271

changed to null because it was out of SMALLINT data type range (warning
SQL3117W) and string abcd from the last row was truncated to abc because it was
longer than the relevant column definition (warning SQL3125W).

The LOAD utility generates messages in a similar format, but because it is
designed for speed, it bypasses the SQL engine, and inserts data directly into
table spaces without constraint checking. Inserting the same table01.unl file
(Figure 9-3) into table01 (Figure 9-2) with the LOAD utility generates messages
without SQL3148W, SQL0545N, SQL3185W warnings as shown in Example 9-2.

Example 9-2 LOAD messages

db2> LOAD FROM table01.unl OF DEL REPLACE INTO table01

[..]
SQL3117W The field value in row "3" and column "1" cannot be converted to a
SMALLINT value. A null was loaded.

SQL3125W The character data in row "4" and column "2" was truncated because
the data is longer than the target database column.

[..]
Number of rows read = 4
Number of rows skipped = 0
Number of rows loaded = 4
Number of rows rejected = 0
Number of rows deleted = 0
Number of rows committed = 4

A table that has been created with constraints is left by the LOAD command in
check pending state. Accessing the table with SQL queries generates a warning
SQL0668N Operation not allowed for reason code "1" on table
"<TABLE_NAME>". SQLSTATE=57016.

The SET INTEGRITY SQL statement should be used to move loaded table into a
usable state. Example 9-3 shows a way to validate constraints. All rows that
violated constraints will be moved to exception table table01_e.

Example 9-3 Turning integrity checking on

db2> create table table01_e like table01
db2> set integrity for table01 immediate checked for exception in table01 use
table01_e

SQL3602W Check data processing found constraint violations and moved them to
exception tables. SQLSTATE=01603
272 MySQL to DB2 UDB Conversion Guide

The SET INTEGRITY statement has many options like turning integrity on only for
new data, turning integrity off, or specifying exception tables with additional
diagnostic information. To read more about the SET INTEGRITY command refer
to:
http://www-306.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/v
8document.d2w/report?fn=r0000998.htm

9.2.2 Data checking
Scripts performing logical data integrity checks automate the data verification
process and save administrator effort.

For small tables (with less that 50,000 rows) you can write a program that
compares data byte-by-byte. The program can extract sorted rows from MySQL
and DB2 UDB to files in the same ASCII format. The files should be then binary
compared (on Linux use the diff command) and checked to determine if they
are the same.

For larger tables, comparing all rows byte-by-byte can be very inefficient. The
data migration should be evaluated by comparing aggregate values like the
number of rows. To do this you can create a special table for storing the
information about the number of rows in the source MySQL database. Table
CK_ROW_COUNT presented in Example 9-4 can be used for that purpose.

Example 9-4 Table for storing number of rows (MySQL)

CREATE TABLE CK_ROW_COUNT (
 TAB_NAME VARCHAR2(30), -- table name
 ROW_COUNT INT, -- number of rows
 SYS_NAME CHAR(3), -- code to distinguish the system: MYS or DB2
 TIME_INS DATE -- time when the count was performed

For each table you should count the number of rows and store the information in
the CK_ROW_COUNT table. The following INSERT statement can be used for that
purpose:

insert into ck_row_count select 'TAB_NAME', count(*), 'MYS', sysdate()
from TAB_NAME

The table CK_ROW_COUNTS and its data can be manually migrated to the target
DB2 database. Example 9-5 presents the DB2 version of the table.
 Chapter 9. Testing and tuning 273

http://www-306.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/v8document.d2w/report?fn=r0000998.htm
http://www-306.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/v8document.d2w/report?fn=r0000998.htm

Example 9-5 Table for storing number of rows (DB2 UDB)

CREATE TABLE CK_ROW_COUNT (
 TAB_NAME VARCHAR(30),
 ROW_COUNT INT,
 SYS_NAME CHAR(3),
 TIME_INS TIMESTAMP
)

On the DB2 system, you should repeat the counting process with the equivalent
INSERT statement:

insert into ck_row_count select 'TAB_NAME', count(*), 'DB2', CURRENT
TIMESTAMP from TAB_NAME

After performing the described steps, DB2 table CK_ROW_COUNT should contain
information about the number of rows counted on MySQL and DB2 databases.
The records in the table should look like Example 9-6.

Example 9-6 Sample table CK_ROW_COUNTS contents

select TAB_NAME, ROW_COUNT, SYS_NAME, TIME_INS from CK_ROW_COUNT
[...]
TABLE_A 39001 MYS 2004-02-13-10.13.39
TABLE_A 39001 DB2 2004-02-13-10.32.13
TABLE_B 60003 MYS 2004-02-13-10.15.29
TABLE_B 60002 DB2 2004-02-13-10.33.49
[...]

Having the information about the number of rows in a SQL table is very
convenient, because with a single query you can get the table names that
contain a different number of rows in the source and target database:

select tab_name from (select distinct tab_name, num_rows from CK_ROW_COUNT)
as t_temp group by t_temp.tab_name having(count(*) > 1)

The presented approach for comparing the number of rows can be extended for
additional checking like comparing the sum of numeric columns. Here are the
steps that summarize the technique:

1. Define check sum tables on the source database and characterize scope of
the computation.

2. Perform the computation and store the results in the appropriate check sum
tables.

3. Migrate the check sum tables as other user tables.

4. Perform equivalent computations on the target system, and store the
information in the migrated check sum tables.
274 MySQL to DB2 UDB Conversion Guide

5. Compare the computed values.

Table 9-1 provides computations for selected database types. The argument for
the DB2 SUM() function is converted to DECIMAL type, because in most cases the
SUM() function returns the same data type as its argument, which can cause
arithmetic overflow. For example, when calculating the sum on an INTEGER
column, if the result exceeds the INTEGER data type range, error SQL0802N is
generated: Arithmetic overflow or other arithmetic exception occurred.
Converting the argument to DECIMAL eliminates the error.

Table 9-1 Aggregations for data migration verification

9.3 Code and application testing
The most important part of the testing process is to verify that each component of
the system functions as it was before migrating. All components of the RDBMS
system should be verified whether they are working properly.

9.3.1 Application code check
The scope of application testing depends on the migrated application.

For self-built applications the testing process should be started with the
application queries. All queries should be independently tested to ensure that
they return the expected results. With the application queries successfully
migrated, the surrounding client programs should be rebuilt, and then the
application should be tested against the target database. Each module of the
application and possibly each screen form should be run and be checked for
errors or improper functionality. All supported interfaces should also be checked.

The very important issue is to document all the tests conditions such as what
operations were performed, which application screens were opened, what input
data was used for testing, and what the result was. For larger projects, the

Data type MySQL operation DB2 operation

numeric(<preci-
sion>,<scale>)

sum(val) sum(cast(val as
decimal(31,<scale>)))

date sum(trunc(val - to_date(
'0001/01/02','yyyy/mm/dd')))

sum(cast(days(val) as
decimal(31,1)))

variable length
character

sum(length(val)) sum(cast(length(val) as
decimal(31,0)))

fixed length
character

sum(length(rtrim(val))) sum(cast(length(rtrim(val))
as decimal(31,0)))
 Chapter 9. Testing and tuning 275

documenting part can become overwhelming, so usually specialized software is
used for those cases. As mentioned earlier, by definition, the new application
cannot be fully tested. In the migration project, the application testing is an
iterative process of planning, designing the test cases, executing the test cases,
and finally evaluating and analyzing the results.

Together with various functional testing, the application should be checked also
against performance. Since there are many architectural differences between
MySQL and DB2 UDB, some SQL operations might require further optimization.
Observing the performance differences on early testing stages increases the
chance to prepare more optimal code for the new environment.

Before going into production, the migrated database should be verified under
high volume and loads. These tests should emulate the production environment,
and can determine if further application or database tuning is necessary. The
stress load can also reveal other hidden problems, like locking issues, which can
be observed only in a production environment.

9.3.2 Security testing
Before going into production, security must be checked in detail. MySQL handles
security quite differently than DB2, so it is not trivial to compare the user rights
between the two systems.

MySQL users and privileges are resolved in DB2 with operating system users
and groups. A list of MySQL users should be compared to the equivalent DB2
operating system users. All of DB2’s authorities should be verified to allow proper
persons to connect to the database. Privileges for all database objects also
should be verified.

9.3.3 Tools for testing and problem tracking
The software testing process can be a very complex task. All the tests should be
synchronized with the development life cycle, and be well documented. For large
projects, it might be necessary to use supportive software to improve testing
productivity. IBM Rational Suite® TestStudio® can be used for that purpose.

IBM Rational Suite TestStudio is a set of tools for testers and developers. It
automates regression, functionality, and performance testing, and provides
background runtime analysis for increased product reliability. IBM Rational Suite
TestStudio also includes tools for control, management, and reporting of all test
activities, defect, and change tracking, software configuration management, and
requirements management. IBM Rational Suite TestStudio addresses everything
from test process standardization to results analysis, requirement determination
to impact analysis, and test automation to defect tracking and reporting.
276 MySQL to DB2 UDB Conversion Guide

For more information about testing products, go to the IBM Rational Web site at:
http://www.ibm.com/software/rational

9.4 Troubleshooting
The first step of problem determination is to know what information is available to
you. Whenever DB2 UDB performs an operation, there is a return code
associated with that operation. The return code is displayed to the user in the
form of an informational or error message. These messages are logged into
diagnostic files depending on the diagnostic level set in the DB2 configuration. In
this section we discuss the DB2 diagnostic logs, error message interpretation,
tips that may help with problem determination, troubleshooting, as well as the
resolutions to some specific problems.

The following actions should be taken when experiencing a DB2 related problem:

� Check related messages
� Explain error codes
� Check documentation
� Search through available Internet resources
� Review APARs for current FixPak level
� Use available tools to narrow the problem
� Ask IBM for support

9.4.1 Interpreting DB2 informational messages
Start your investigation from the return code. DB2 UDB provides a return code
for every operation performed in the form of CCCnnnnnS. The prefix CCC identifies
the DB2 UDB component that is returning the message; the nnnnn is a four or five
digit number which is also referred to as SQLCODE; and the S is a severity
indicator. For example, in SQL0289N, the SQL identifier represents a message from
the Database Manager, the SQLCODE is 0289, and N indicates an error
message.

Here is the complete list for DB2 UDB error messages to prefix your reference:

� SQL: Database Manager messages
� DB2: Command Line Processor messages
� ASN: Replication messages
� CLI: Call Level Interface messages
� SQJ: Embedded SQLJ in Java messages
� SPM: Synch Point Manager messages
� DBI: Installation or configuration messages
� DBA: Control Center and Database Administration Utility messages
� CCA: Client Configuration Assistant messages
 Chapter 9. Testing and tuning 277

http://www.ibm.com/software/rational

� DWC: Data Warehouse Center messages
� FLG: Information Catalog Manager messages
� SAT: Satellite messages

The three severity indicators are:

� W: Indicates warning or informational messages
� N: Indicates error messages
� C: Indicates critical system errors

DB2 UDB also provides detailed information for each message. The full error
message describes the nature of the problem in detail and the potential user
responses. To display the DB2 UDB return code full message, you can use the
DB2 command db2 ? error-code. In Linux or AIX, since ? (question mark) is a
special character; you need to separate the DB2 command and the error code
with a double quote (“). See Example 9-7.

Example 9-7 Explaining error codes

db2 "? sql0289"
SQL0289N Unable to allocate new pages in tablespace
 "<tablespace-name>".

Explanation:

One of the following conditions is true:

1. One of the containers assigned to this SMS tablespace has
reached the maximum file size. This is the likely cause of
the error.

2. All the containers assigned to this DMS tablespace are
full. This is the likely cause of the error.

[...]

You can find full information about the DB2 message format, and a listing of all
the messages in Messages Reference, Volumes 1 and 2, GC09-4840-00, and
GC09-4841-00.

9.4.2 DB2 diagnostic logs
DB2 UDB logs every return code in diagnostic logs based on the diagnostic level
set in the database manager configuration. When investigating DB2 problems,
the essential information can be found in diagnostic log files generated by DB2
UDB. These logs are:

� db2diag.log
278 MySQL to DB2 UDB Conversion Guide

� Notify files
� Trap files
� Dump files
� Messages files

db2diag.log
The db2diag.log is the most often used file for DB2 problem investigation. You
can find this file in the DB2 UDB diagnostic directory, defined by the DIAGPATH
variable in the database manager configuration. If the DIAGPATH parameter is not
set, by default the directory is located at:

Linux and UNIX:

$HOME/sqllib/db2dump

where $HOME is the DB2 instance owner's home directory.

Windows:

<INSTALL PATH>\<DB2INSTANCE>

where <INSTALL PATH> is the directory where DB2 is installed, and
<DB2INSTANCE> is the name of DB2 instance.

The database manager configuration parameter DIAGLEVEL controls how much
information is logged to the db2diag.log. Valid values can range from 0 to 4:

0 - No diagnostic data captured

1 - Severe errors only

2 - All errors

3 - All errors and warnings (default)

4 - All errors, warnings and informational messages

Most of the time, the default value is sufficient for problem determination. In some
cases, especially on development or test systems you can set the parameter to 4,
and collect all informational messages. However, be aware that depending on the
activity, this may cause performance issues due to the large amount of data
recorded into the file. Setting DIAGLEVEL to 4 may also make the file very large
and harder to read.

The information in the db2diag.log includes:

� A diagnostic message (beginning with DIA) explaining the reason for the error

� Application identifiers, which allow matching up error entries with
corresponding application or DB2 server processes
 Chapter 9. Testing and tuning 279

� Any available supporting data such as SQLCA data structures, and pointers
to the location of any extra dump or trap files

� Administrative events, i.e. backup/restore start and finish

Example 9-8 contains an extract of a db2diag.log taken at DIAGLEVEL 3.

Example 9-8 Example of db2diag.log file

(1) 2004-02-10-02.26.33.004000 (2) Instance:DB2INST1 (3) Node:000
(4) PID:1012(db2syscs.exe) (5) TID:1996 (6) Appid:*LOCAL.DB2.00E049090924
(7) data management (8) sqldEscalateLocks (9) Probe:3 (10) Database:DB2_EMP2

(11) ADM5502W The escalation of "1251" locks on table "DB2INST1 .TABLE01" to
lock intent "X" was successful.

Explanations of the db2diag.log entries are included below. The number in
parenthesis corresponds to the following numbers:

� (1) Date and timestamp of the entry made into the log

� (2) Name of the instance

� (3) Node or partition number
This number is always 0 in a single partition configuration.

� (4) Process ID of the application or agent

� (5) Thread ID of the application or agent
This is only used on the Windows platform.

� (6) The application ID
This corresponds to the LIST APPLICATIONS command output, each
application has a unique application ID.

� (7) Component name

� (8) Name of the function in the component that is reporting an error or
information

� (9) Probe point in the function
This corresponds to a location in the source code of the function that has
returned an error or information.

� (10) Name of the accessed database that generated the message

� (11) Diagnostic information
In this example this is a administration warning telling about lock escalation
(1251 row locks where successfully replaced by one table lock) on table
DB2INST1.TABLE01.
280 MySQL to DB2 UDB Conversion Guide

Notify files
DB2 UDB also provides diagnosis information to the administration notification
log in case of a failure. On Linux and UNIX platforms, the administration
notification log is a text file called <instance>.nfy, where <instance> is the name
of the instance. It is located in the same directory as the db2diag.log file. On
Windows, all administration notification messages are written to the Event Log.

The DBM configuration parameter NOTIFYLEVEL specifies the level of information
to be recorded:

0 - No administration notification messages captured (not recommended)

1 - Fatal or unrecoverable errors

2 - Immediate action required

3 - Important information, no immediate action required (default)

4 - Informational messages

Not only DB2 UDB can write to the notify logs, but also the Health Monitor, the
Capture and Apply programs, and user applications using the db2AdminMsgWrite
API function.

Trap files
Whenever a DB2 UDB process receives a signal or exception (raised by the
operating system as a result of a system event) that is recognized by the DB2
signal handler, a trap file is generated in the DB2 diagnostic directory. The files
are created using the following naming convention:

Linux and UNIX:

� tpppppp.nnn

– pppppp: The process ID (PID)
– nnn: The node where the trap occurred
– Example: t123456.000

Windows:

� DBpppttt.TRP

– ppp : The process ID (PID)
– ttt : The thread ID (TID)
– Example: DB123654.TRP

Depending on the signal received or the exception raised, the existence of these
files can indicate different extremes of consequences. These consequences can
range from the generation of a simple stack trace back for additional diagnostics,
 Chapter 9. Testing and tuning 281

to a complete DB2 instance shutdown due to a serious internal or external
problem.

Dump files
When DB2 determines that internal information needs to be collected, it will often
create binary dump files in the diagnostic path. These files are generated with
the following format:

Linux and UNIX:

� pppppp.nnn or lpppppp.nnn (for lock list dump)

– pppppp: The process ID (PID)
– nnn: The node where the problem occurred
– Example: 123456.000

Windows:

� pppttt.nnn or lpppttt.nnn (for lock list dump)

– ppp: The process ID (PID)
– ttt: The thread ID (TID)
– nnn: The node where the problem occurred
– Example: 123654.000

Messages files
Some DB2 UDB utilities like BIND, LOAD, EXPORT and IMPORT provide an option to
dump out a messages file to a user-defined location. These files contain useful
information to report the progress, success, or failure of the utility that was run.

9.4.3 DB2 support information
Identifying what information is typically required to resolve problems is a very
important step. All the conditions that define the problem are essential when
reviewing documentation, searching through available Internet resources, or
contacting DB2 support.

Maintenance version
The db2level utility can be used to check the current version of DB2 UDB. As
presented in Figure 9-4, the utility returns information about the installed
maintenance updates (FixPaks), the length of word used by the instance (32-bit
or 64-bit), the build date, and other code identifiers. It is recommended to
periodically check if the newest available FixPaks are installed. DB2
maintenance updates are freely available at:
ftp://ftp.software.ibm.com/ps/products/db2/fixes
282 MySQL to DB2 UDB Conversion Guide

ftp://ftp.software.ibm.com/ps/products/db2/fixes

Figure 9-4 Sample db2level output

db2support utility
The db2support utility is designed to automatically collect all DB2 and system
diagnostic data. This program generates information about a DB2 server,
including information about its configuration and system environment.

The output of this program is stored in one compressed file named
db2support.zip, located in the directory specified as part of the command invoked
at the command line.

In one simple step, the tool can gather database manager snapshots,
configuration files, and operating system parameters, which should make the
problem determination quicker. Below is a sample call of the utility:

db2support . -d db2_emp -c

The dot represents the current directory where the output file is stored. The rest
of the command is optional. -d and -c instructs the utility to connect to the
db2_emp database, and to gather information about database objects such as
table spaces, tables, or packages.

DB2 Technical Support site
An invaluable place to look if experiencing a problem is the DB2 Technical
Support site for Linux, Windows, and UNIX located on the Web at:
http://www.ibm.com/software/data/db2/udb/winos2unix/support

$db2level

DB21085I Instance "db2inst1" uses "32" bits and DB2
code release "SQL08014" with level identifier
"02050106".

Informational tokens are "DB2 v8.1.0.32", "s031027",
"MI00060", and FixPak "4".

Product is installed at "/opt/IBM/db2/V8.1".

T h i s ca n b e m a t ch ed t o
re l a t ed F i xP a k di re c to r y
o n ft p .s of t w a re . ib m. c o m

T h e b u i lt d a t e
(Y Y MM DD)

D B 2 v er si o n
 Chapter 9. Testing and tuning 283

http://www.ibm.com/software/data/db2/udb/winos2unix/support

The site has the most recent copies of the documentation, the knowledge base
to search for technical recommendations or DB2 UDB defects, links for product
updates, the latest support news, and many useful DB2 UDB related links.

To find related problems, prepare words that describe the issue like the
commands that were run, the symptoms, and tokens from the diagnostics
messages, and use them as each terms in the DB2 Knowledge Base. The
Knowledge Base offers an option to search through DB2 UDB documentation,
TechNotes, and DB2 UDB defects (APARs).

TechNotes is a set of recommendations and solutions for specific problems.

Authorized Program Analysis Reports (APARs) are defects in DB2’s code
discovered by customers that require a fix. APARs have unique identifiers and
are always specific to a particular version, but may affect multiple products in the
DB2 family running on multiple platforms. Fixes for APARs are provided through
DB2 UDB FixPaks.

On the DB2 support site there is a possibility to search for closed, open, and
HIPER APARs. A status of closed APAR indicates the resolution for the problem
has been verified and included in the FixPaks. Open APARs represent DB2 UDB
defects that are currently being worked upon or waiting to be included in the next
available FixPak. HIPER APARs (High-Impact or PERvasive) are critical
problems that should be reviewed to assess the potential impact of staying at a
particular FixPak level.

The DB2 Technical Support site offers e-mail notification of critical or pervasive
DB2 UDB customer support issues including HIPER APARs and FixPak alerts.
To subscribe to it, follow the DB2 Alert link on the Technical Support main page.

Calling IBM support
If the problem seems to be too complex to solve on your own, you can contact
the IBM Software Support Center. In order to understand and resolve your
support service request in the most expedient way, it is important that you gather
information about the problem and have it on hand when talking to the software
specialist.

The guidelines and reference materials (which you may need when calling IBM
support) as well as the telephone numbers are available in the IBM Software
Support Guide at:
http://techsupport.services.ibm.com/guides/handbook.html
284 MySQL to DB2 UDB Conversion Guide

http://techsupport.services.ibm.com/guides/handbook.html

9.4.4 Problem determination tools
Tuning and troubleshooting a database can be a complex process. DB2 UDB
comes with a great number of tools, functions, and applications that make this
task much simpler.

Monitoring tools
DB2 UDB monitoring utilities can collect information on many different system
activities like usage of buffer pools, locks held by applications, sorts performed
by system, activities on tables, connections, transactions statistics or statements
run on the system. There are two main methods of monitoring:

� Snapshot monitoring
� Event monitoring

Snapshot monitoring
Snapshot monitoring describes the state of database activity at the particular
point in time the snapshot is taken. Snapshot monitoring is useful in determining
the current state of the database and its applications. Because snapshots
provide the point in time data, they are usually executed in scripts on regular
intervals.

Snapshots can be taken from the command line, using custom API programs or
through SQL using table functions. Example 9-9 shows the extract from a sample
snapshot invoked from the command line.

Example 9-9 Example snapshot

db2 get snapshot for database on db2_emp

 Database Snapshot

Database name = DB2_EMP
Database path =
/db2/home/db2inst1/db2inst1/NODE0000/SQL00001/
Input database alias = DB2_EMP
Database status = Active
[...]

High water mark for connections = 3
Application connects = 7
Secondary connects total = 0
Applications connected currently = 1
Appls. executing in db manager currently = 0
Agents associated with applications = 1
Maximum agents associated with applications= 1
Maximum coordinating agents = 1
[...]
 Chapter 9. Testing and tuning 285

Buffer pool data logical reads = Not Collected
Buffer pool data physical reads = Not Collected
Asynchronous pool data page reads = Not Collected
[...]

The snapshot collects database level information for database DB2_EMP. Some of
the returned parameters display point in time values such as the number of
currently connected applications:

Applications connected currently = 1

Some parameters represent cumulative values like the number of connect
statements issued against the database:

Application connects = 7

Some parameters can contain historical values like the maximum number of
concurrent connections that have been observed on the database:

High water mark for connections = 3

The cumulative or historical values relate to the point in time, since the last
counters’ initialization. The counters can be reset to zero by the RESET MONITOR
command, or by the appropriate DB2 event. With the mentioned Example 9-9,
database deactivation and activation will reset all the database level counters.
Example 9-10 shows how to reset monitors for an entire instance and for the
specific database.

Example 9-10 Resetting snapshot monitor counters

db2 reset monitor all
db2 reset monitor for database db2_emp

To optimize database performance in a default DB2 configuration, most of the
snapshot monitor elements are not collected. Because of that reason, in
Example 9-9 the value Not Collected was displayed for the buffer pool statistics.
DB2 UDB contains monitor switches to provide database administrators with the
option of constraining the collection of monitor elements. Current monitor
switches set for the session can be displayed from the command line with the GET
MONITOR SWITCHES command as shown in Example 9-11.

Example 9-11 Displaying monitor switches

db2 get monitor switches

 Monitor Recording Switches

Switch list for db partition number 0
286 MySQL to DB2 UDB Conversion Guide

Buffer Pool Activity Information (BUFFERPOOL) = OFF
Lock Information (LOCK) = OFF
Sorting Information (SORT) = OFF
SQL Statement Information (STATEMENT) = OFF
Table Activity Information (TABLE) = OFF
Take Timestamp Information (TIMESTAMP) = ON 02-10-2004 13:01:51.019864
Unit of Work Information (UOW) = OFF

The monitor switches can be turned on at the instance level or at an application
level. To switch the monitors at the instance level, modify the appropriate
database manager parameter. After modifying the DFT_MON_BUFPOOL parameter,
as shown in Example 9-12, all users with administration authorities will be able to
collect buffer pool statistics on any database in the instance.

Example 9-12 Updating monitor switches at instance level

db2 update dbm cfg using DFT_MON_BUFPOOL ON

To switch the monitors at the application level, issue the UPDATE MONITOR
SWITCHES command from the command line. The changes will only be applicable
to that particular prompt window. Example 9-13 shows how to update the suitable
monitor switch for collecting buffer pool information.

Example 9-13 Updating monitor switches at application level

db2 update monitor switches using BUFFERPOOL ON

The complete list of monitor switches and related database manager parameters
is presented on Table 9-2.

Table 9-2 List of monitor switches and related DBM parameters

Database manager
parameter

Monitor switch Information provided

DFT_MON_BUFFERPOOL BUFFERPOOL Number of reads and
writes, time taken

DFT_MON_LOCK LOCK Lock wait times, deadlocks

DFT_MON_SORT SORT Number of heaps used,
sort performance

DFT_MON_STMT STATEMENT Start/stop time, SQL
statement identification

DFT_MON_TABLE TABLE Measure of activity (rows
read/written)
 Chapter 9. Testing and tuning 287

Sample snapshots
The database manager snapshot (Example 9-14) captures information specific to
the instance level. The information centers on the total amount of memory
allocated to the instance and the number of agents that are currently active on
the system.

Example 9-14 Database manager snapshot

db2 get snapshot for database manager

The lock snapshot (Example 9-15) is very useful in determining what locks an
application currently is holding, or what locks another application is waiting on.
The snapshot lists all applications on the system and the locks that each is
holding. Each lock and each application is given a unique identifier number.

Example 9-15 Lock snapshot

db2 get snapshot for locks on db2_emp

The table snapshot (Example 9-16) contains information on the usage and
creation of all tables. This information is quite useful in determining how much
work is being run against a table and how much the table data changes. This
information can then be used to decide how your data should be laid out
physically.

Example 9-16 Table snapshot

db2 get snapshot for tables on db2_emp

The table space and buffer pool snapshots (Example 9-17) contain similar
information. The table space snapshot returns information on the layout of the
table space and how much space is being used. The buffer pool snapshot
contains information on how much space is currently allocated for the buffer pool,
and how much space will be allocated when the database is next reset. Both
snapshots contain a summary of the way in which data is accessed from the
database. This access can be done from a buffer pool, direct from tables on disk,
or through a direct read or write for LOBs or LONG objects.

DFT_MON_UOW UOW (Unit Of Work) Start/end times,
completion status

DFT_MON_TIMESTAMP TIMESTAMP Timestamps

Database manager
parameter

Monitor switch Information provided
288 MySQL to DB2 UDB Conversion Guide

Example 9-17 Table space and buffer pool snapshots

db2 get snapshot for tablespaces on db2_emp
db2 get snapshot for bufferpools on db2_emp

The dynamic SQL snapshot (Example 9-18) is used extensively to determine how
well SQL statements are performing. This snapshot summarizes the behavior of
the different dynamic SQL statements that are run. The snapshot does not
capture static SQL statements, so anything that was pre-bound will not show up
in this list. The snapshot is an aggregate of the information concerning the SQL
statements. If a SQL statement is executed 102 times, then there will be one
entry with the summary of the total behavior of the 102 executions.

Example 9-18 Dynamic SQL snapshot

db2 get snapshot for dynamic sql on db2_emp

Snapshot table functions
As mentioned earlier, DB2 UDB features the capability to capture snapshots
using SQL table functions. Accessing snapshot information through an SQL
interface is very useful, because the requested information can be filtered and
sorted, thereby presented in a more readable format. The snapshot table
functions can be also very helpful in analyzing system utilization over a time
period.

Most of the snapshot table functions accept two input parameters. The first is a
string representing the database name. Entering NULL value for the database
name parameter instructs the function to get snapshot information for all
databases in the instance. The second parameter represents the partition
number. To capture a snapshot for the currently connected partition, enter a
value of -1 or a NULL.

The query in Example 9-19 uses the table function SNAPSHOT_TABLE() to
retrieve the five table names, which have the most read and write activity on
database DB2_EMP.

Example 9-19 Sample snapshot table function

db2 "select snapshot_timestamp, table_name, rows_written, rows_read,
rows_written + rows_read as rows_accessed

from table (SNAPSHOT_TABLE('DB2_EMP', -1))as T
order by rows_accessed desc
fetch first 5 rows only"

TABLE_NAME ROWS_WRITTEN ROWS_READ ROWS_ACCESSED
------------- ------------ ---------- --------------
EMPLOYEE 0 256 256
 Chapter 9. Testing and tuning 289

STAFF 35 105 140
SYSTABLES 0 30 30
SYSROUTINES 0 10 10
INTERNAL 0 5 5

Example 9-20 illustrates a usage of the SNAPSHOT_DYN_SQL() function, which is
very useful for finding the SQL statements that are taking the most time in the
database.

Example 9-20 Sample snapshot table function

SELECT stmt_text, total_exec_time, num_executions
FROM TABLE(SNAPSHOT_DYN_SQL('DB2_EMP', -1)) as dynSnapTab
ORDER BY total_exec_time desc
FETCH FIRST 5 ROW ONLY

Example 9-21 finds the five SQL statements with the worst average execution
time.

Example 9-21 Sample snapshot table function

SELECT CASE WHEN num_executions = 0
 THEN 0
 ELSE (total_exec_time / num_executions)
 END avgExecTime,
 num_executions,
 stmt_text
FROM TABLE(SNAPSHOT_DYN_SQL('DB2_EMP', -1)) as dynSnapTab
ORDER BY avgExecTime desc
FETCH FIRST 5 ROWS ONLY

Like snapshot commands, snapshot table functions access point-in-time data
kept by monitors in memory. To keep the history of the snapshots, create a table
based on the snapshot query such as presented in Example 9-22; include the
SNAPSHOT_TIMESTAMP column in the snapshot query, and periodically store the
results of the query in the table.

Example 9-22 Storing snapshot data in a table

db2 create table table_snap_hist as
(select snapshot_timestamp, table_name, rows_written, rows_read,

rows_written + rows_read as rows_accessed
from table (SNAPSHOT_TABLE('DB2_EMP', -1))as T) definition only

db2 "insert into table_snap_hist
select snapshot_timestamp, table_name, rows_written, rows_read,

rows_written + rows_read as rows_accessed
from table (SNAPSHOT_TABLE('DB2_EMP', -1))as T
290 MySQL to DB2 UDB Conversion Guide

order by rows_accessed desc fetch first 5 rows only"

Table 9-3 lists the more commonly used snapshot table functions. A complete list
and detailed descriptions of snapshot table functions can be found in the System
Monitor Guide and Reference, SC09-4847.

Table 9-3 Common snapshot table functions

Snapshot table function Information returned

SNAPSHOT_DBM Database manager information

SNAPSHOT_DATABASE Database information. Information is returned only if
there is at least one application connected to the
database.

SNAPSHOT_APPL General application information for each application that
is connected to the database on the partition. This
includes cumulative counters, status information, and the
most recent SQL statement executed (if the statement
monitor switch is set).

SNAPSHOT_APPL_INFO General application identification information for each
application that is connected to the database on the
partition.

SNAPSHOT_LOCKWAIT Application information regarding lock waits for the
applications connected to the database on the partition.

SNAPSHOT_STATEMENT Application information regarding statements for the
applications connected to the database on the partition.
This includes the most recent SQL statement executed (if
the statement monitor switch is set).

SNAPSHOT_TABLE Table activity information for each table that was
accessed by an application connected to the database.
Requires the table monitor switch.

SNAPSHOT_LOCK Lock information at the database level, and application
level for each application connected to the database.
Requires the lock monitor switch.

SNAPSHOT_TBS Information about table space activity at the database
level, the application level for each application connected
to the database, and the table space level for each table
space that has been accessed by an application
connected to the database. Requires the buffer pool
monitor switch.

SNAPSHOT_BP Buffer pool activity counters for the specified database.
Requires the buffer pool monitor switch.
 Chapter 9. Testing and tuning 291

Similar to snapshot commands, the amount of information returned from table
snapshots functions is controlled by the monitor switches. Because snapshots
can collect large amounts of diagnostic data, enabling all monitor switches
(especially DYNAMIC SQL) can have a very negative impact on database
performance.

All the monitoring utilities use memory heap, controlled by the MON_HEAP_SZ
database manager parameter. This monitoring heap size should be increased
when many applications access snapshot data.

Event monitoring
Event monitors are used to monitor the performance of DB2 over a fixed period
of time. The information that can be captured by an event monitor is similar to the
snapshots, but event monitors examine transition events in the database, and
consider each event as an object. Event monitors can capture information about
DB2 events in the following areas:

� Database: An event of database information is recorded when the last
application disconnects from the database.

� Tables: All active table events will be recorded when the last application
disconnects from the database. An active table is one which has been altered
or created since the database was activated. The monitor captures the
number of rows read and written to the table.

� Deadlocks: A deadlock event is recorded immediately when a deadlock
occurs. This monitor also has an additional option WITH DETAILS. This option
will capture additional information, like which SQL statement was being
executed when the deadlock occurred, and what locks were held by the
application that encountered the deadlock. The information captured by the
monitor focuses on the locks involved in the deadlock and the applications
that own them.

� Buffer pools: A buffer pool event is recorded when the last application
disconnects from the database. The information captured contains the type
and volume of use of the buffer pool, use of pre-fetchers and page cleaners,
and whether or not direct I/O was used.

� Table spaces: A table space event is recorded when the last application
disconnects from the database. This monitor captures the same information
as the buffer pool monitor, but the information is summarized at a table space
level.

SNAPSHOT_DYN_SQL Point-in-time statement information from the SQL
statement cache for the database.

Snapshot table function Information returned
292 MySQL to DB2 UDB Conversion Guide

� Connections: A connection event is recorded whenever an application
disconnects from the database.

� Transactions: A transaction event is recorded whenever a transaction
finishes. The event will be written out whenever a commit or rollback occurs.
The monitor captures all of the individual statement data, and also information
about the transaction such as its start and stop time.

� Statements: A statement event is recorded when an SQL statement ends.
The monitor records statement’s start and stop time, CPU used, text of
dynamic SQL, the return code of the SQL statement, and other metrics such
as fetch count.

Event monitors are created with the CREATE EVENT MONITOR SQL statement.
Information about event monitors is stored in the system catalog table, and it can
be reused later.

Example 9-23 creates a sample event monitor named DEADLOCK_EVMON. The
query in the example accesses the SYSCAT.EVENTMONITORS view and displays
names of event monitors that have been created in the database.

Example 9-23 Creating sample event monitor

db2 create event monitor deadlock_evmon for deadlocks with details
write to table manualstart

db2 select evmonname from syscat.eventmonitors

The output of the DEADLOCK_EVMON monitor will be recorded in newly created
tables. To check in advance what tables are to be created, or to generate syntax
that overrides the default table names, use the db2evtbl tool as shown in the
Example 9-24.

Example 9-24 Generating table syntax for specified event monitor

db2evtbl -evm deadlock_evmon deadlocks with details

CREATE EVENT MONITOR deadlock_evmon
 FOR DEADLOCKS WITH DETAILS
 WRITE TO TABLE
 CONNHEADER (TABLE CONNHEADER_deadlock_evmon,
 INCLUDES (AGENT_ID,
 APPL_ID,
 APPL_NAME,
 AUTH_ID,
[...]
 Chapter 9. Testing and tuning 293

Because the DEADLOCK_EVMON monitor was created with a manual start, it
remains inactive after creation. To activate an event monitor, change the state of
the event monitor to the value 1 and use the EVENT_MON_STATE() function to check
for the current state as shown in Example 9-25 (when calling EVENT_MON_STATE()
use the event monitor name in upper case). After activation of
DEADLOCK_EVMON, each time a deadlock occurs in the database, it will be
recorded into the event monitor tables.

Example 9-25 Enabling event monitor

db2 set event monitor deadlock_evmon state = 1

db2 values event_mon_state('DEADLOCK_EVMON')

To browse the data collected by the event monitor, you can directly access the
tables, or use the GUI tool db2eva. For more information about db2eva, refer to
the Command Reference.

Event monitors offer an option to write the monitored information to a binary file.
This option is particularly useful when there is a need to prevent the event
monitor from collecting an uncontrolled amount of data.

Example 9-26 shows the creation of an event monitor that writes the diagnostic
data to files (extensions *.EVT) located on the c:\tmp\deadlock directory
(Windows example). If the total amount of collected data exceeds 5000 pages
(4 KB) the event monitor will stop.

Example 9-26 Creating an event monitor with the file option

db2 create event monitor deadlock_evmon for deadlocks with details
write to file 'c:\tmp\deadlock' maxfilesize 5000 manualstart

To convert the event monitor binary files to user readable form use the db2evmon
utility as shown in Example 9-27.

Example 9-27 Formatting event monitor output files

C:\tmp>db2evmon -path c:\tmp\deadlock

Reading c:\tmp\00000000.EVT ...
--
 EVENT LOG HEADER
 Event Monitor name: DEADLOCK_EVMON
 Server Product ID: SQL08014
 Version of event monitor data: 7
 Byte order: LITTLE ENDIAN
 Number of nodes in db2 instance: 1
 Codepage of database: 1252
294 MySQL to DB2 UDB Conversion Guide

 Territory code of database: 1
 Server instance name: DB2
--

--
 Database Name: SAMPLE
 Database Path: C:\DB2\NODE0000\SQL00001\
 First connection timestamp: 02-01-2004 13:25:43.028006
 Event Monitor Start time: 02-06-2003 09:51:57.663712
--

3) Deadlock Event ...
 Deadlock ID: 4
 Number of applications deadlocked: 2
 Deadlock detection time: 02-06-2003 09:53:11.952919
 Rolled back Appl participant no: 2
 Rolled back Appl Id: *LOCAL.DB2.010686063633
 Rolled back Appl seq number: : 0005
[...]

Visual Explain
Visual Explain is used to capture and view information about the access plan
chosen by the DB2 optimizer for SQL statements as a graph. An access plan is
a cost estimation of resource usage for a query, which is based on the available
information such as statistics for tables and indexes, instance and database
configuration parameters, bind options and query optimization level, and so on.
An access plan also specifies the order of operations for accessing the data.

The access plan acquired from Visual Explain helps to understand how individual
SQL statements are executed. The information available from the Visual Explain
graph can be used to tune the SQL queries for better performance.

To start Visual Explain, launch the Control Center, right-click the database name
and select either the Explain SQL or Show Explained Statements History
option. You can input an SQL statement manually or import the SQL statement
through the Get button available in the Explain SQL window. You can also specify
the optimization class for the SQL statement in the same window. The
optimization class implies the effort the DB2 optimizer will spend on preparing
the execution plan (higher value means more sophisticated optimization).
Figure 9-5 shows an example of an access plan graph.
 Chapter 9. Testing and tuning 295

Figure 9-5 A Visual Explain access plan graph

An access plan graph shows details of:

� Tables (and their associated columns) and indexes
� Operators (such as table scans, sorts, and joins)
� Table spaces and functions

To get the details right-click the desired graph element.

9.5 Initial tuning
Performance of a DB2 database application can be influenced by many factors
such as the type of workload, application design, database design, capacity
296 MySQL to DB2 UDB Conversion Guide

planning, and instance and database configuration. Since databases created
with default values are suited for computers with relatively small memory and
disk storage, you may need to modify them to fit your environment. This section
focuses on a number of DB2 UDB performance tuning tips that may be used for
initial configuration.

9.5.1 Table spaces
At database creation time, three table spaces are created:

� SYSCATSPACE - Catalog table space for storing information about all the objects
in the database

� TEMPSPACE1 - System temporary table space for storing internal temporary
data required during SQL operations such as sorting, reorganizing tables,
creating indexes, and joining tables

� USERSPACE1 - For storing application data

By default all the three table spaces are created as System Managed Spaces
(SMS), which means that the regular operating system functions will be used for
handling I/O operations.

Reading and writing data from tables will be buffered by the operating system,
and space will be allocated according to the operating system conventions: files
with DAT extension for tables and INX files for table indexes. When the table is
initially created only one page is allocated on disk. When records are inserted
into a table, DB2 UDB will extend the files by one page at a time.

On heavy inserts, extending files by only one page at a time can be very
expensive. To minimize internal overhead for the table space extension, you can
enable multi-page file allocation. With multi-page file allocation enabled for SMS
table spaces, disk space is allocated one extent at a time (contiguous groups of
pages defined for the table space).

To check whether the feature is enabled, look at the database configuration and
search for the Multi-page word.

Example 9-28 Checking for current page allocation status

$db2 get db cfg for sample
…
Rollforward pending = NO
Restore pending = NO

Multi-page file allocation enabled = NO

Log retain for recovery status = NO
 Chapter 9. Testing and tuning 297

User exit for logging status = NO
…

In Example 9-28 Multi-page was not enabled. This can be changed by running
the db2empfa program on the target database. Since db2empfa connects to the
database in exclusive mode, all other users should be disconnected from the
database. After db2empfa execution against the target database, check the
multi-page file allocation parameter for the status (see Example 9-29).

Example 9-29 Enabling multi page allocation

$db2empfa sample
$db2 get db cfg for sample
…
Rollforward pending = NO
Restore pending = NO

Multi-page file allocation enabled = YES

Log retain for recovery status = NO
User exit for logging status = NO
…

Better insert performance can be achieved with Database Managed Spaces
(DMS) because containers are pre-allocated and management of the I/O
operations is shifted to the database engine. In DB2 UDB Version 8 you can
easily add new containers, drop, or modify the size of existing containers. Data is
rebalanced to other containers automatically unless instructed. The
administrative overhead is not so significant when compared to the SMS table
spaces.

For optimal performance, large volume data and indexes should be placed on
DMS table spaces; if possible, split to separate raw devices. Initially, system
catalogs and system temporary table spaces should stay on the SMS table
spaces. System catalogs contain large objects, which are not cached by the DB2
UDB engine, and can be cached by the operating system cache. In an OLTP
environment, there is no need for creating large temporary objects to process
SQL queries, so the SMS system temporary table space is a good starting point.

9.5.2 Physical placement of database objects
When creating a database, the first important decision is the storage
architecture. The ideal situation is to have the fastest disks as possible and at
least five to ten disks per processor (for high I/O OLTP workload use even more).
The reality is the hardware is often chosen based on other considerations, so in
298 MySQL to DB2 UDB Conversion Guide

order to achieve optimal performance, the placement of database objects should
be carefully planned.

Figure 9-6 Explaining logical log

As shown in Figure 9-6, all data modifications are not only written to table space
containers, but are also logged to ensure recoverability. Because every INSERT,
UPDATE, or DELETE is replicated in the transactional log, the flushing speed of the
logical log buffer can be crucial for the entire database performance. To
understand the importance of logical log placement, you should keep in mind that
the time necessary to write data to disk depends on the physical data distribution
on disk. The more random reads or writes are performed, the more disk head
movements are required, and therefore, the slowest is the writing speed.
Flushing logical log buffer to disk by its nature is sequential and should not be
interfered by other operations. Locating logical log files on separate devices
isolates them from other processes, and ensures uninterrupted sequential writes.

To change logical log files to a new location you need to modify the NEWLOGPATH
database parameter as shown in Example 9-30. The logs will be relocated to the
new path on the next database activation (this can take some time to create the
files).

Example 9-30 Relocation of logical logs

db2 update db cfg for sample using NEWLOGPATH /db2/logs

Buffer pool

Log buffer

...
insert
update
delete
commit
insert
...

Data and indexes Logical log files
 Chapter 9. Testing and tuning 299

When creating a DMS table space with many containers, DB2 UDB automatically
distributes the data across them in a round-robin fashion, similar to the striping
method available in disk arrays. To achieve the best possible performance, each
table space container should be placed on a dedicated physical device. For
parallel asynchronous writes and reads from multiple devices, the number of
database page cleaners (NUM_IO_CLEANERS) and I/O servers (NUM_IOSERVERS)
should be adjusted. The best values for these two parameters depends on the
type of workload and available resources. You can start your configuration with
the following values:

� NUM_IOSERVERS = Number of physical devices, but not less than three and no
more than five times the number of CPUs.

� NUM_IO_CLEANERS = Number of CPUs

Example 9-31 shows how to set the initial values of the parameters for two
processor machines with six disks available to DB2.

Example 9-31 Updating IO related processes

db2 update db cfg for sample using NUM_IOSERVERS 6
db2 update db cfg for sample using NUM_IOCLEANERS 2

If there is a relatively small number of disks available, it can be difficult to keep
logical logs, data, indexes, system temporary table spaces (more important for
processing large queries in a warehousing environment), backup files, or the
operating system paging file on separate physical devices. A compromise
solution is to have one large file system striped by a disk array (RAID device) and
create table spaces with only one container. The load balancing is shifted to
hardware, and you do not have to worry about space utilization. If you want
parallel I/O operations on a single container, the DB2_PARALLEL_IO registry
variable should be set before starting the DB2 UDB engine.

By performing the following command, I/O parallelism will be enabled within a
single container for all table spaces:

db2set DB2_PARALLEL_IO="*"

The following example enables parallel I/O only for two table spaces: DATASP1
and INDEXSP1:

db2set DB2_PARALLEL_IO="DATASP1,INDEXSP1"

To check the current value for the parameter issue:

db2set DB2_PARALLEL_IO
300 MySQL to DB2 UDB Conversion Guide

9.5.3 Buffer pools
The default size for buffer pools is very small: only 250 pages (~ 1 MB) for
Windows and 1000 pages (~ 4 MB) for Linux and UNIX platforms. The overall
buffer size has a great effect on DB2 UDB performance since it can significantly
reduce I/O, which is the most time consuming operation. We recommend to
increase the default values. However, the total buffer pool size should not be set
too high, because there might be not enough memory to allocate them. To
calculate the maximum buffer size, all other DB2 memory related parameters like
database heap, the agent’s memory, storage for locks, as well as the operating
system and any other applications should be considered.

Initially, set the total size of buffer pools to 10% to 20% of available memory. You
can monitor the system later and correct it. DB2 version 8 allows changing buffer
pool sizes without shutting down the database. The ALTER BUFFERPOOL statement
with the IMMEDIATE option will take effect right away, except when there is not
enough reserved space in the database-shared memory to allocate new space.
This feature can be used to tune database performance according to periodical
changes in use, for example, switching from daytime interactive use to nighttime
batch work.

Once the total available size is determined, this area can be divided into different
buffer pools to improve utilization. Having more than one buffer pool can preserve
data in the buffers. For example, let us suppose that a database has many very
frequently used small tables, which would normally be in the buffer in their
entirety, and thus would be accessible very fast. Now let us suppose that there is
a query that runs against a very large table, which uses the same buffer pool and
involves reading more pages than the total buffer size. When this query runs, the
pages from the small, very frequently used tables will be lost, making it
necessary to re-read them when they are needed again.

At the start you can create additional buffer pools for caching data and leave the
IBMDEFAULTBP for system catalogs. Creating an extra buffer pool for system
temporary data also can be valuable for the system performance, especially in an
OLTP environment where the temporary objects are relatively small. Isolated
temporary buffer pools are not influenced by the current workload, so it should
take less time to find free pages for temporary structures, and it is likely that the
modified pages will not be swapped out to disk. In a warehousing environment,
the operation on temporary table spaces are considerably more intensive, so the
buffer pools should be larger, or combined with other buffer pools if there is not
enough memory in the system (one pool for caching data and temporary
operations).

Example 9-32 shows how to create buffer pools assuming that an additional table
space DATASPACE for storing data and indexes was already created and that there
 Chapter 9. Testing and tuning 301

is enough memory in the system. You can take this as a starting buffer pool
configuration for a 2 GB RAM system.

Example 9-32 Increasing buffer pools

connect to sample;
-- creating two buffer pools 256 MB and 64 MB

create bufferpool DATA_BP immediate size 65536 pagesize 4k;
create bufferpool TEMP_BP immediate size 16384 pagesize 4k;

-- changing size of the default buffer pool
alter bufferpool IBMDEFAULTBP immediate size 16384;

-- binding the tablespaces to buffer pools
alter tablespace DATASPACE bufferpool DATA_BP;
alter tablespace TEMPSPACE1 bufferpool TEMP_BP;

-- checking the results
select

substr(bs.bpname,1,20) as BPNAME
,bs.npages
,bs.pagesize
,substr(ts.tbspace,1,20) as TBSPACE

from syscat.bufferpools bs join syscat.tablespaces ts on
 bs.bufferpoolid = ts. bufferpoolid;

The results:

BPNAME NPAGES PAGESIZE TBSPACE
-------------------- ----------- ----------- --------------------
IBMDEFAULTBP 16384 4096 SYSCATSPACE
IBMDEFAULTBP 16384 4096 USERSPACE1
DATA_BP 65536 4096 DATASPACE
TEMP_BP 16384 4096 TEMPSPACE1

The CHNGPGS_THRESH parameter specifies the percentage of changed pages at
which the asynchronous page cleaners will be started. Asynchronous page
cleaners will write changed pages from the buffer pool to disk. The default value
for the parameter is 60%. When that threshold is reached, some users may
experience a slower response time. Having larger buffer pools means more
modified pages in memory and more work to be done by page cleaners, as
shown on Figure 9-7. To guarantee more consistent response time and also
shorter recovery phase, lower the value to 50 or 40 using the following command:

db2 update db cfg for sample using CHNGPGS_THRESH 40
302 MySQL to DB2 UDB Conversion Guide

Figure 9-7 Visualizing CHNGPGS_THRESH parameter

9.5.4 Large transactions
By default, databases are created with relatively small space for transactional
logs, only three log files with each 250 pages on Windows and 1000 pages on
Linux and UNIX.

A single transaction should fit into the available log space to be completed; if it
does not fit, the transaction is rolled back by the system (SQL0964C The
transaction log for the database is full). To process transactions which are
modifying large numbers of rows, adequate log space is needed.

The currently total log space available for transactions can be calculated by
multiplying the size of one log file (database parameter LOGFILSIZ) and the
number of logs (database parameter LOGPRIMARY).

From the performance perspective, it is better to have a larger log file size
because of the cost for switching from one log to another. When log archiving is
switched on, the log size also indicates the amount of data for archiving. In this
case, a larger log file size is not necessarily better, since a larger log file size may
increase the chance of failure, or cause a delay in archiving or log shipping
scenarios. The log size and the number of logs should be balanced.

The following Example 9-33 allocates 400 MB of total log space.

Default bufferpool

The new larger bufferpool

CHNGPGS_THRESH 60 %

CHNGPGS_THRESH 60 %

More work
for page cleaners
 Chapter 9. Testing and tuning 303

Example 9-33 Resizing the transactional log

db2 update db cfg for sample using LOGFILSIZ 5120
db2 update db cfg for sample using LOGPRIMARY 20

Locking is the mechanism that the database manager uses to control concurrent
access to data in the database by multiple applications.

Each database has its own list of locks (a structure stored in memory, which
contains the locks held by all applications concurrently connected to the
database).

The size of the lock list is controlled by the LOCKLIST database parameter. The
default storage for LOCKLIST is 50 pages (200 KB) for Windows and 100 pages
(400 KB) for Linux and UNIX. On 32-bit platforms, each lock requires 36 or 72
bytes of the lock list, depending on whether other locks are held on the object or
not. For the default values, the maximum of 5688 (Windows) or 11377 (Linux and
UNIX) locks can be allocated as shown in Figure 9-8.

Figure 9-8 Maximum number of locks available for default settings on Linux

When the maximum number of lock requests has been reached the database
manager will replace existing row level locks with table locks (lock escalation).
This operation will reduce the requirements for locks space, because
transactions will hold only one lock on the entire table instead of many locks on
every row. Lock escalation has a negative performance impact because it
reduces concurrency on shared objects. Other transactions must wait until the
transaction holding the table lock commits or rollbacks work.

100 * 4096 / 36 = 11377

LOCKLIST - default value Page size

Minimum space needed
to acquire 1 lock.

Maximum number of locks. Keep in
mind that database manager may
also acquire locks for internal
use.
304 MySQL to DB2 UDB Conversion Guide

The lock escalation can also be forced by the MAXLOCKS database parameter,
which defines a limit for the maximum percentage of the lock storage held by one
application. The default value for Linux and UNIX is 10 (22 for Windows), which
means that if one application requests more that 10% of total locks space
(LOCKLIST), an escalation will occur for the locks held by that application. As an
example, inserting 1137 rows on Linux with one transaction will result in lock
escalation, because the transaction requests 1138 locks (one per each inserted
row plus one internal lock), which requires at least 1138*36 = 40968 bytes - more
than 10% of global lock memory defined by the default LOCKLIST parameter.

Initial values for LOCKLIST and MAXLOCKS should be based on the maximum
number of applications and average number of locks requested by the
transaction (for OLTP systems start with 512 locks for every application). When
setting MAXLOCKS, you should take into account lock consuming batch processes
that run during daytime hours. To check current usage of locks use snapshots
such as in Example 9-34.

Example 9-34 Invoking snapshot for locks on database sample

db2 get snapshot for locks on sample

The snapshot will collect the requested information at the time the command was
issued. On Figure 9-9 you can find a sample lock snapshot output. For the time
the snapshot was run there were two applications connected to the database
SAMPLE, and in total 1151 locks were acquired on the database. Issuing the GET
SNAPSHOT command later can produce different results because in the meantime
the applications may commit the transaction and release the locks.
 Chapter 9. Testing and tuning 305

Figure 9-9 Explaining lock snapshot information

To check lock escalations occurrences look at the db2diag.log file. The lock
escalation message should look like Example 9-35.

Example 9-35 Lock escalation message in db2diag.log file

2004-02-10-19.05.05.888741 Instance:db2inst1 Node:000
PID:56408(db2agent (SAMPLE) 0) TID:1 Appid:*LOCAL.db2inst1.0DB5F2004313
data management sqldEscalateLocks Probe:3 Database:SAMPLE
ADM5502W The escalation of "1136" locks on table "DB2INST1.TABLE01" to lock
intent "X" was successful.

Logical log buffer
The default size for logical log buffer is eight pages (32 KB), which is often too
small for an OLTP database, and not big enough for long running batch
processes. In most cases the log records are written to disk when one of the
transactions issue a COMMIT, or the log buffer is full. Increasing the size of the log
buffer may result in more efficient I/O operations, especially when the buffer is

 Dat a b as e Lo c k S n ap sh ot

Da ta b as e na m e = S A M P L E
Da ta b as e pa t h =
/h om e /d b2 in s t1/ d b 2i ns t1 / NOD E 00 00 /S Q L 000 0 1/
In pu t d at ab a se a l ia s = S A MP LE
Lo ck s h el d = 1 1 5 1
Ap pl i ca ti on s cu r r en tl y c onn e ct ed = 2
Ag en t s cu rr e ntl y wa it in g on lo ck s = 0
Sn ap s ho t ti m est a m p = 0 2 -1 0- 20 0 4 16 :3 8 :5 8. 7 59 89 0

Ap pl i ca ti on han d l e = 2 1
Ap pl i ca ti on ID = * L O C A L . d b 2 i n s t 1 . 0 C 3 B 3 2 1 8 2 8 0 8
Se qu e nc e nu m ber = 0 0 01
Ap pl i ca ti on nam e = d b 2b p
CO NN E CT A ut h ori z a ti on I D = D B 2I NS T1
Ap pl i ca ti on sta t u s = U O W Wa it i ng
St at u s ch an g e t i m e = N o t Co ll e ct ed
Ap pl i ca ti on cod e pa ge = 8 1 9
Lo ck s h el d = 1 3
To ta l w ai t t ime (ms) = N o t Co ll e ct ed

Li st Of L oc k s
 L oc k N am e = 0 x0 0 0 300 0 50 01 05 2 54 00 00 0 00 05 2
 L oc k A tt ri b ute s = 0 x0 0 0 000 0 0
 R el e as e Fl a gs = 0 x4 0 0 000 0 0
 L oc k C ou nt = 2 55
 H ol d C ou nt = 0
 L oc k O bj ec t Na m e = 1 06 9 6 52
 O bj e ct T yp e = R o w
 T ab l es pa ce Nam e = D AT A S PAC E
 T ab l e Sc he m a = D B2 I N ST1
 T ab l e Na me = T A B L E 0 1
 M od e = X

[. .. th e li s tin g wa s cu t he r e .. .]

T o t a l n u m b e r o f l o c k s
a l l o c a t e d f o r t h e d a t a b a s e

T o t a l n u m b e r o f
l o c k s h e l d b y
t h e a p p l i c a t i o n

da
ta

ba
se
 s

ec
ti
on

ap
pl

ic
at
io

n
se
ct

io
n

lo
ck

s
de

sc
ri
pt

io
n

T h i s l o c k w a s p l a c e d o n a r o w i n
t a b l e " T A B L E 0 1 " b y a p p l i c a t i o n
* L O C A L . d b 2 i n s t 1 . 0 C 3 B 3 2 1 8 2 8 0 8
306 MySQL to DB2 UDB Conversion Guide

flushed to disk. The log records are written to disk less frequently and more log
records are written each time. Initially, set LOGBUFSZ to 128 (or 256) 4 KB pages.
The log buffer area uses space controlled by the DBHEAP database parameter, so
consider increasing this parameter also.

Later use the snapshot for applications to check current usage of log spaces by
transactions as presented in Example 9-36.

Example 9-36 Current usage of log space by applications

$db2 update monitor switches using uow on
$db2 get snapshot for applications on sample | grep "UOW log"

UOW log space used (Bytes) = 478
UOW log space used (Bytes) = 21324
UOW log space used (Bytes) = 110865

Before running the application snapshot, the Unit Of Work monitor should be
switched on. At the time the snapshot was issued, only three applications were
running on the system. The first transaction used 478 bytes of log space, the
second 21324, and the last used 110865, which is roughly 28 pages more than
the default log buffer size. The snapshot gives only current values from the
moment the command was issued. To get more valuable information about the
usage of log space by transactions, run the snapshot many times.

Example 9-37 shows how to get information about log I/O activity.

Example 9-37 Checking log I/O activity

db2 reset monitor for database sample
let the transactions run for a while

db2 get snapshot for database on sample > db_snap.txt
egrep -i "commit|rollback" db_snap.txt

Commit statements attempted = 23
Rollback statements attempted = 2
Internal commits = 1
Internal rollbacks = 0
Internal rollbacks due to deadlock = 0

grep "Log pages" db_snap.txt
Log pages read = 12
Log pages written = 630

Before running the database snapshot, you may have to reset the monitors. The
values gathered by the snapshot are cumulated since the last monitor reset or
 Chapter 9. Testing and tuning 307

database activation, so wait for a certain period after resetting the counters. For
convenience, the snapshot output was directed into a file, and then analyzed
using the Linux grep/egrep tool. In the example, 630 pages were written for the
period, which gives about 630 / (23+2+1) = 25 pages per transaction. Looking
at the value Log pages written it is not possible to tell what the average size of
transactions was, because the basic DB2 read or write unit is one page (4 KB).
Issuing only one small INSERT will force a flush of 4 KB from the log buffer to the
disk. The partially filled log page remains in the log buffer, and can be overwritten
to disk more than once until it is full. This guarantees that the log files are
contiguous.

When setting the value for log buffer, also look at the ratio between log pages
read and log pages written. An ideal value is zero log pages read, while seeing a
large number of log pages written. When there are too many log pages read, it
means a bigger LOGBUFSZ can improve performance.

9.5.5 SQL execution plan
When a query is issued against a database, DB2 prepares an execution plan.
The execution plan defines the necessary steps that should be done to get the
requested data. In order to prepare an optimal execution plan, the DB2 optimizer
considers many elements such as configuration parameters, available hardware
resources, or the characteristics of the database objects (available indexes, table
relationships, number of records, data distribution). The database characteristics
are collected manually with the RUNSTATS utility, and are stored in special system
catalog tables. The RUNSTATS command should be executed when:

� A table has been loaded with new data.

� The appropriate indexes have been created.

� There have been extensive updates, deletions, and insertions that affect a
table and its indexes (for example, 10% to 20% of the table and index data
has been affected).

� Data has been physically reorganized (by running the REORG utility, or adding
new containers).

The RUNSTATS command should be executed against each table in the database.
The DB2 Control Center can be very helpful with running statistics on a group of
tables.

Recommendation: After loading data to DB2 tables, run RUNSTATS before
starting testing.
308 MySQL to DB2 UDB Conversion Guide

To run statistics using The DB2 Control Center, select the desired tables (to
select more than one table, press the Ctrl or Shift key while clicking the table
names; to select all tables, click any table name and then press Control + A),
right-click the selection, and choose the Run Statistics option as shown in
Figure 9-10.

Figure 9-10 Running RUNSTATS on multiple tables

On the first Tables tab move all items from the Available list to the Selected list
by clicking the >> button. Figure 9-11 presents the sample result of the operation.
 Chapter 9. Testing and tuning 309

Figure 9-11 Selecting tables for RUNSTATS command

On the Statistics tab, you can specify options for the RUNSTATS command. You
can start with collecting basic statistics on all columns and indexes, and
distribution of values only for key columns like presented in Figure 9-12. After
setting the RUNSTATS options, you can execute the commands by clicking the
Apply button.
310 MySQL to DB2 UDB Conversion Guide

Figure 9-12 RUNSTATS command options

DB2 UDB comes with a very powerful query optimization algorithm. This
cost-based algorithm will attempt to determine the cheapest way to perform a
query against a database. Items such as the database configuration, database
physical layout, table relationships, and data distribution are all considered when
finding the optimal access plan for a query. To check the current execution plan,
you can use the Explain utility.

9.5.6 Configuration Advisor
The Configuration Advisor wizard is a GUI tool that can be helpful in preparing
the DB2 initial configuration. The wizard requests information about the
database, its data, and the purpose of the system, and then recommends new
configuration parameters for the database and the instance.

To invoke this wizard from the DB2 Control Center, expand the object tree until
you find the database that you want to tune. Select the icon for the database,
right-click and select Configuration Advisor. Through several dialog windows
the wizard collects information about the percentage of memory dedicated to
DB2, type of workload, number of statements per transaction, transaction
throughput, trade-off between recovery and database performance, number of
 Chapter 9. Testing and tuning 311

applications, and isolation level of applications connected to the database. Based
on the supplied answers, the wizard proposes configuration changes and gives
the option to apply the recommendations or save them as a task for the Task
Center for later execution as shown in Figure 9-13. The result window is
presented in Figure 9-14.

Figure 9-13 Scheduling Configuration Advisor recommendations
312 MySQL to DB2 UDB Conversion Guide

Figure 9-14 Configuration Advisor recommendations

Initial configuration recommendations can also be acquired through the text
based AUTOCONFIGURE command. Example 9-38 shows the sample execution of
the command.

Example 9-38 Sample AUTOCONFIGURE command

db2 autoconfigure using mem_percent 40 tpm 300 num_local_apps 80 isolation CS apply none

[...]
Current and Recommended Values for Database Configuration

Description Parameter Current Value Recommended Value

 Max appl. control heap size (4KB) (APP_CTL_HEAP_SZ) = 4096 128
 Max size of appl. group mem set (4KB) (APPGROUP_MEM_SZ) = 30000 9908
 Default application heap (4KB) (APPLHEAPSZ) = 256 256
 Catalog cache size (4KB) (CATALOGCACHE_SZ) = (MAXAPPLS*4) 404
 Changed pages threshold (CHNGPGS_THRESH) = 40 60
 Database heap (4KB) (DBHEAP) = 600 1461
 Degree of parallelism (DFT_DEGREE) = 1 1
 Default tablespace extentsize (pages) (DFT_EXTENT_SZ) = 32 32
[...]
 Chapter 9. Testing and tuning 313

Table 9-4 lists all AUTOCONFIGURE command parameters.

Table 9-4 Parameters for the autoconfigure command

9.5.7 Index Advisor
Well designed indexes are essential to database performance. DB2 UDB comes
with a utility called the Index Advisor, which can recommend indexes for specific
SQL queries. Index Advisor can be invoked either using the db2advis command
or using the Design Advisor wizard from the Command Center or Control Center.
This utility accepts one or more SQL statements and their relative frequency,
known as a workload.

The Index Advisor is good for:

� Finding the best indexes for a problem query

Keyword Values Explanation

mem_percent 1-100
default: 80

Percentage of memory to
dedicate to DB2

workload_type simple, mixed, complex
default: mixed

Type of workload: simple for
transaction processing,
complex for warehousing

num_stmts 1-1 000 000
default: 10

Number of statements per unit
of work

tpm 1-200 000
default: 60

Transactions per minute

admin_priority performance, recovery, both
default: both

Optimize for better performance
or better recovery time

is_populated yes, no
default: yes

Is the database populated with
data?

num_local_apps 0-5 000
default: 0

Number of connected local
applications

num_remote_apps 0-5 000
default: 10

Number of connected remote
applications

isolation RR, RS, CS, UR
default: RR

Isolation levels: Repeatable
Read, Read Stability, Cursor
Stability, Uncommitted Read

bp_resizeable yes, no
default: yes

Are buffer pools re-sizeable?
314 MySQL to DB2 UDB Conversion Guide

� Finding the best indexes for a specified workload. When specifying the
workload, you can use the frequency parameter to prioritize the queries. You
can also limit disk space for the target indexes.

� Testing an index on a workload without having to create the index

Example 9-39 shows a simple db2advis call against a single SQL query; for more
options run db2advis -h from the command line.

Example 9-39 Finding indexes for a particular query

db2advis -d db2_emp -s "select first_name, last_name, dept_name from
departments d, employees e where d.dept_code = e.dept_code and e.last_name like
'W%'"

execution started at timestamp 2004-02-10-14.15.00.408000
recommending indexes...
Initial set of proposed indexes is ready.
Found maximum set of [2] recommended indexes
Cost of workload with all indexes included [0.155868] timerons
total disk space needed for initial set [0.018] MB
total disk space constrained to [-1.000] MB
 2 indexes in current solution
 [50.3188] timerons (without indexes)
 [0.1559] timerons (with current solution)
 [%99.69] improvement

Trying variations of the solution set.
 2 indexes in current solution
 [50.3188] timerons (without indexes)
 [0.1559] timerons (with current solution)
 [%99.69] improvement
--
--
-- LIST OF RECOMMENDED INDEXES
-- ===========================
-- index[1], 0.009MB
 CREATE UNIQUE INDEX IDX030801141500000 ON "DB2INST1"."DEPARTMENTS"
("DEPT_CODE" ASC) INCLUDE ("DEPT_NAME") ALLOW REVERSE SCANS ;
 COMMIT WORK ;
 --RUNSTATS ON TABLE "DEPARTMENTS" FOR INDEX "IDX030801141500000" ;
 COMMIT WORK ;
-- index[2], 0.009MB
 CREATE INDEX IDX030801141500000 ON "DB2INST1"."EMPLOYEES" ("LAST_NAME" ASC,
"FIRST_NAME" ASC, "DEPT_CODE" ASC) ALLOW REVERSE SCANS ;
 COMMIT WORK ;
 --RUNSTATS ON TABLE "EMPLOYEES" FOR INDEX "IDX030801141500000" ;
 COMMIT WORK ;
-- ===========================
 Chapter 9. Testing and tuning 315

--
DB2 Workload Performance Advisor tool is finished.

Launching the Index Advisor in a GUI environment
The Index Advisor can also be invoked as a GUI tool. From the Control Center,
expand the object tree to find the Database folder. Right-click the desired
database and select Design Advisor. The wizard guides you through all the
necessary steps, and also helps to construct a workload by looking for recently
executed SQL queries, or looking through the recently used packages. In order
to get accurate recommendations, it is important to have the current catalog
statistics. With the Design Advisor there is an option to collect the required
basic statistics, however, this increases the total calculation time. Figure 9-15
presents a sample Design Advisor window.

Figure 9-15 The Design Advisor

The detailed usage of Design Advisor can be found in the following redbooks:

� DB2 UDB Evaluation Guide for Linux and Windows, SG24-6934
� DB2 UDB Exploitation of the Windows Environment, SG24-6893
� Up and Running with DB2 for Linux, SG24-6899
316 MySQL to DB2 UDB Conversion Guide

Chapter 10. Advanced DB2 UDB features

This chapter is about the advanced features DB2 UDB offers. When migrating a
database from MySQL to DB2 UDB, you should consider which DB2 UDB
features and functions can be used to enhance your application.

The features covered in this chapter are:

� Views
� Stored procedures
� Trigger
� User defined data types (UDT)
� User defined functions (UDF)
� Materialized query tables (MQT)
� Multidimensional clustering (MDC)

10
© Copyright IBM Corp. 2004. All rights reserved. 317

10.1 Views
A view provides a different way of looking at the data in one or more tables. It is a
named specification of a result table.

A view has columns and rows just like a base table. All views can be used just
like base tables for data retrieval. Whether a view can be used in an INSERT,
UPDATE, or DELETE operation depends on its definition.

You can use views to control access to sensitive data, because views allow
multiple users to see different presentations of the same data. For example,
several users may be accessing a table of employee data. A manager sees data
about his employees but not employees in another department. A recruiting
officer sees the hire dates of all employees, but not their salaries. A financial
officer sees the salaries, but not the hire dates. Each of these users works with a
view derived from the same base table. Each view appears to be a table and has
its own name.

When the column of a view is directly derived from the column of a base table,
that view column inherits any constraints that apply to the base table column. For
example, if a view includes a foreign key of its base table, INSERT and UPDATE
operations using that view are subject to the same referential constraints as in
the base table. Also, if the base table of a view is a parent table, DELETE and
UPDATE operations using that view are subject to the same rules as DELETE and
UPDATE operations on the base table.

A view can derive the data type of each column from the base table, or base the
types on the attributes of a user-defined structured type (typed view).

A view can become inoperative (for example, if the base table is dropped). If this
occurs, the view is no longer available for SQL operations.

Example 10-1 shows some examples for views that could be used in our sample
project.

Example 10-1 Example views for our sample project

-- A view that shows all existing groups of products in our catalog
-- and the number of items associated to them
create view GROUPS as

(select PRODGR, count(*) as CNT from ITSODB.CATALOG group by PRODGR)

Note: The specification is a SELECT statement that is run whenever the view is
referenced in an SQL statement.
318 MySQL to DB2 UDB Conversion Guide

-- A view that shows all existing manufacturers in our catalog
create view MANUFACTURER as

(select distinct MANUFACTURER from ITSODB.CATALOG);

-- A view that shows the inventory of each item in the catalog
create view INVENTORY as

(select ID, SKU, STOCK from ITSODB.CATALOG);

-- A view that shows all products in the catalog
create view TYPES as

(select ID, MANUFACTURER, MODEL, TYPE from ITSODB.CATALOG);

� View GROUPS
This view shows all existing groups of products in our sample catalog and the
number of items associated to them. Granting privileges to users just on this
view is a way to limit access for these users just on this data and not on the
whole catalog.

� View MANUFACTURER
This view provides information about the different manufacturers whose
products are in our catalog. This view provides a fast way to find out all these
manufacturers.

� View INVENTORY
This view shows the inventory of all items in the catalog. Again, granting
privileges on this view could be used for limited access to the catalog data
(e.g., users having access to this table may see the inventory of the item, but
not the price for which it is bought and sold).

� View TYPES
This view is a qualified overview of all products in the catalog that could be
used for a limited view on the catalog.

Example 10-2 shows the sample output of these views. Please notice that the
SELECT statements on the views are much simpler than the SELECT statements on
the tables the view is based on.

Example 10-2 Sample view data

db2> select * from GROUPS
PR CNT
-- -----------
10 16
85 5
 Chapter 10. Advanced DB2 UDB features 319

db2> select * from MANUFACTURER
MANUFACTURER

AUDI
VW

db2> select * from INVENTORY fetch first 10 rows only
ID SKU ____ STOCK
----------- -------- -----------
 2 16633 10
 3 16633 10
 5 16633 7
 8 951041 10
 9 951041 10
 12 951041 9
 14 951041 10
 15 951041 10
 17 16272 9
 19 16272 10

db2> select * from TYPES fetch first 10 rows only
ID MANUFACTURER _ MODEL TYPE
----------- -------------- ------------------------- -------------------------
 2 VW PASSAT (3B2) 1.6
 3 VW PASSAT (3B2) 1.8
 5 VW PASSAT (3B2) 1.8 T
 8 VW POLO (6N1) 45 1.0
 9 VW POLO (6N1) 50 1.0
 12 VW POLO (6N1) 55 1.3
 14 VW POLO (6N1) 55 1.4
 15 VW POLO (6N1) 60 1.4
 17 AUDI 80 Avant (8C, B4) 2.0
 19 AUDI 80 Avant (8C, B4) 2.0 E

10.2 Stored procedures
An extension to SQL defined by ANSI (ISO/IEC 9075) is called SQL/PSM or
persistent, stored modules and extends SQL to store application logic in the form
of procedures, functions, or triggers as database objects. The programming style
is a mix of conventional SQL statements combined with procedural logic; for
example, IF, WHILE for flow control. PSMs allow us to do things we cannot do in
SQL alone.

Reasons for implementing stored procedures may be:
320 MySQL to DB2 UDB Conversion Guide

� In today’s globalized world it is very likely that multiple applications written in
multiple languages working on multiple platforms may use the same database
for multiple purposes. A stored procedure may ensure that this database
stays consistent and applies to the business rules defined by the owner of the
database.

� Enriching and securing the application. For example, if there is a requirement
for additional auditing that is beyond the DBMS capabilities, stored
procedures can provide additional function.

This section gives you a brief introduction to the implementation of SQL/PSM as
SQL stored procedures in DB2 UDB. The introduction includes the setup of the
application development environment and SQL procedure fundamentals.

Setting up the environment
To successfully work with DB2 UDB stored procedures, the DB2 Application
Development Client and a DB2 supported C/C++ compiler are required. Here is a
list of supported compilers for a UNIX environment:

� AIX: IBM VisualAge® C++ 5.0
� Solaris: Forte C++ Version 5.0
� Linux: GNU/Linux g++
� HP-UX: HP aC++ Version A.03.31

You may have to configure your C/C++ compiler environment if the default setting
is not appropriate. Use the db2set command to configure the DB2 registry:

� DB2_SQLROUTINE_COMPILER_PATH and
� DB2_SQLROUTINE_COMPILE_COMMAND

Example 10-3 illustrates the use of the db2set command to set the compile
command to a non-default compiler.

Example 10-3 Configuring the compiler environment

db2set DB2_SQLROUTINE_COMPILE_COMMAND=cc -fpic -D_REENTRANT \
-I$HOME/sqllib/include SQLROUTINE_FILENAME.c \
-shared -lpthread -o SQLROUTINE_FILENAME -L$HOME/sqllib/lib -ldb2

To ensure your application development environment is set up correctly, you
may want to run the CREATE statement shown in Example 10-4 as the most
simple procedure possibly created.

Example 10-4 Simple CREATE PROCEDURE

db2 =>
db2 => create procedure myfirst begin end
 Chapter 10. Advanced DB2 UDB features 321

DB20000I The SQL command completed successfully.
db2 =>

Stored procedure fundamentals
Figure 10-1 illustrates the creation process for stored procedures and the objects
a stored procedure is composed of:

� The create procedure command invokes the SQL precompiler, which
replaces SQL statements with appropriate API calls. The result is for this
example a C source file with the extension .sqc.

� During the further compilation of the stored procedure, it is split into a file
containing the executable code plus a bind file, which ultimately is stored in
DB2 UDB as an SQL package.

� Code level consistency between the executable object and the package object
stored within the db2 engine is ensured by a consistency token, which is
exchanged on every execution.

Figure 10-1 Creating stored procedures

Stored procedures can get quite complex. For details please refer to Application
Development Guide: Programming Server Applications, SC09-4827.

The basic form a stored procedure looks like:

CREATE PROCEDURE proc [({optional parameters})]
[optional procedure attributes]
<statement>

create
procedure

...

...

C file
(.c)

bind
file

(.bnd)

package

library

embedded
C program

(.sqc)

DB2 UDB
322 MySQL to DB2 UDB Conversion Guide

whereby <statement> is considered to be a single statement even if a set of
statements is grouped between begin and end. Unlike the usual parameter style,
SQL stored procedures use a mode-name-type triplet for argument declaration,
where mode can be:

� IN: Input value is not changed by procedural code

� OUT: Procedural code modifies argument but is not required as input
parameter. In the CALL statement OUT parameters need to be supplied as
parameter markers.

� INOUT: Value is supplied by the caller, returned to the caller and may be
modified in between

In 7.2.6, “Condition handling in DB2” on page 213, you can find additional code
snippets of stored procedures dealing specifically with condition handling.

Stored procedure considerations
While stored procedures are often implemented to achieve performance
improvements and often yield such benefits, it is not necessarily guaranteed that
your queries run faster after moving them to a stored procedure. Improvements
are not as easily achieved as moving a statement from the application to a stored
procedure.

Indeed, there are circumstances under which the use of stored procedures can
actually cause performance to degrade. For example, if you create a stored
procedure that simply issues one INSERT statement and calls this procedure
from a remote application, network traffic will not be reduced. Your application
still has to make a network call to invoke the procedure, just as it would to issue
an INSERT statement.

Furthermore, the DBMS may need to load the procedure and incur inter-process
communications overhead to execute it. Thus, your application may actually run
slower by using such a stored procedure.

If you are planning on creating new stored procedures to support, or if you are
trying to tune existing stored procedures, you should be aware that language
issues and creation options can significantly influence your results. For example,
in some DBMS products, procedures written in Java may perform more poorly
than an equivalent procedure written in C or SQL. In addition, procedures that
run in a separate address space from the DBMS (“fenced” procedures) perform
more poorly than procedures that run in the same address space as the DBMS
(“unfenced” procedures).
 Chapter 10. Advanced DB2 UDB features 323

10.3 Trigger
Similar to SQL stored procedures, database triggers are an implementation of
SQL/PSM. A database trigger is a database object containing application logic,
which is activated when a particular event or operation occurs on a database
table. For example, you could set up a stored procedure that checks the credit
rating for a customer, and is triggered on each insert of a new customer in the
customer table. DB2 UDB provides a matured implementation of database
triggers. However, since V5.1 of MySQL is not just around the corner, we limit
this section to the very basics of database triggers.

Unlike stored procedures triggers are associated with a database table, an
operation (INSERT, UPDATE, DELETE) on the table and a point in time
(BEFOR, AFTER) which all have to apply for the trigger to be activated. Here are
some examples where triggers might be useful:

� When inserting rows in a table, triggers can be used to supply, validate or
manipulate data before allowing an insert operation to occur.

� When updating rows, triggers can be used to compare old and new values
and allow proper state transition. For example, a date value can only change
to a future never to a past value.

� Auditing and additional logging can be implemented upon deletion of rows.

Example 10-5 shows a simple example which inserts the value of start + 45
minutes into column end in table mytab if there is no value for column end
supplied on the insert statement activating the trigger

Example 10-5 Simple TRIGGER

CREATE TRIGGER FirstTrg
NO CASCADE BEFORE INSERT ON mytable
REFERENCING NEW AS n
REFERENCING OLD AS o
FOR EACH ROW
MODE DB2SQL
WHEN (n.end IS NULL)
 SET n.end = n.start + 45 MINUTES

10.4 User-defined data types (UDT)
A lot of application programming languages are based on object-oriented
analysis and design because of reasons like simplicity, scalability, and easier
modeling of complex business objects and services. DB2 UDB supports a few
object-oriented programming features which, you can incorporate object-oriented
324 MySQL to DB2 UDB Conversion Guide

(OO) concepts and methodology's into your relational database by extending it
with richer sets of types and functions. With these features, you can store
instances of object-oriented data types in columns of tables, and operate on
them by means of functions in SQL statements.

The basic object oriented support is provided by DB2 UDB using user-defined
types (UDTs) and user-defined functions (UDFs) and LOBs. They can be used to
build extensions to DB2 UDB, which include a whole set of customized types and
functionality.

User-defined data types are customized data types derived from the existing
built-in data types in DB2 UDB. They are useful when existing data types do not
serve your application requirements, and when you need data integrity, which
can be achieved by strong typing and encapsulation.

There are three types of user-defined types:

� Distinct type

A distinct type is a user-defined data type that is based on an existing built-in
data type. Internally, it is stored as an existing data type, but it is considered
as a separate and incompatible type. The main advantages of using distinct
type are extensibility, strong typing, encapsulation, and customization.

A distinct type can be created by issuing the CREATE DISTINCT TYPE
statement. The following statement defines a new distinct type for our sample
application where we want all the identification numbers to have common
properties and functions. To achieve this goal we create a distinct type ID,
which contains INTERGER values:

db2>create distinct type ID as integer with comparisons

� Structured type

A structured type is a user-defined data type that has a well defined structure
consisting of existing built-in or user-defined data types. A structured type has
attributes and methods defined. The attribute defines its data storage
properties and methods define its behavior.

A structured type may be used as the type of a table, view, or column. When
used as the type for a table or view, that table or view is known as a typed
table or typed view respectively. In this case, attributes of structured type
becomes columns of a typed table or view.

A structured type can be created using the CREATE TYPE statement. For
example, if we want our example database ITSODB design to use the UDT
features, we can define a product and sku type, which can be used to create
typed tables as shown in Example 10-6. Figure 10-2 shows its hierarchy.
 Chapter 10. Advanced DB2 UDB features 325

Figure 10-2 User defined data types

Example 10-6 Structured types and typed tables

db2>create type product_type as (
name varchar(20),
description varchar(200),
brand varchar(30))

instantiable ref using integer mode db2sql

db2>create type sku_type
under product_type as (quantity integer)
instantiable mode db2sql

db2>create table product
of product_type (ref is id user generated)

db2>create table sku of sku_type
under product inherit select privileges

db2>create table order(id ID,sku sku_type)

We can also use this type as a type for a column as shown in the last
statement of Example 10-6.

� Reference type

A reference type is a companion type to a structured type; it is quite similar to
a distinct type. The reference type representation is defined when the root
type of a type hierarchy is created. When using a reference type, a structured

ID

Product

Distinct type

Structure type Typed table

use Product_type

SKU

Typed table

SKU_type

Structure type

Order
326 MySQL to DB2 UDB Conversion Guide

type is specified as a parameter of the type. This parameter is called the
target type of the reference. The target of a reference is always a row in a
typed table or a typed view. When a reference type is used, it may have a
scope defined.

10.5 User-defined functions
DB2 UDB provides feature for creating additional functions, which can be used
as utilities or a methods on existing data types. This provides you the capability
to extend and customize your SQL according to your requirements. They can be
invoked in same way as your built-in DB2 UDB functions.

Another main advantage of using UDF is it allows you to perform your logic inside
the DB2 UDB server. By this way you can pass some of your application logic to
server-side for faster execution. Also, DB2 UDB supports implementation of
these user-defined functions in SQL or number of external programming
languages. This provides you a feature to use the power of languages like C,
C++, Java, OLE, etc.

The UDF can be of the types:

� Scalar function

A scalar function is a user-defined function, which returns only single values
all the time. They are quite useful while writing a utility functions based on
existing SQL functions. A scalar function can be referenced in the same
contexts as any built-in function.

A scalar function can be sourced or external. A sourced function is defined to
the database with a reference to another built-in or user-defined function,
whereas an external function is defined to the database with a reference to an
external library or code. Example 10-7 shows both source and external
creation for the function stringId, which ID type to varchar(20).

Example 10-7 Scalar functions

db2>create function stringId(ID) returns varchar(20) source DIGITS(INTEGER)
db2>create function stringId(ID) returns varchar(10) external name 'itso!id'
language C parameter style SQL deterministic no SQL no external action

� Column function

A column function is a user-defined function which single-valued answers
from a set of like values. They are quite useful when you want to aggregate a
result from set of rows. Currently, only sourced column functions are
supported in DB2 UDB. It means you can create a column function sourced
upon one of the built-in column functions, and you cannot write a column
 Chapter 10. Advanced DB2 UDB features 327

function using an external source. Columns functions can be created as
following:

db2>create function average(ID) returns ID source avg(integer)

� Table function

A table function is a user-defined function, which returns a data in tabular
form to the SQL statement that calls it. So, a table function can only be
invoked in the FROM clause of a SQL statement. Such a function can be
used to apply SQL language processing power to non DB2 UDB data or to
convert such data into a DB2 table. Table functions are always external. They
are useful when you want to convert your file text data to tabular form, or
convert your XML data to tabular form. Example 10-8 shows the creation and
usage of a tabular function, which fetches the user’s data from an existing file
in a tabular format.

Example 10-8 Table function creation and usage

db2> create function usernames()
returns table(

integer id,
vorname varchar(20),
name varchar(3),
email varchar(20))

external name 'itso.users'
language C parameter style SQL
not deterministic called on null
input scratchpad final call
no sql external action disallow parallel

db2>select * from TABLE(usernames()) as usernames

10.6 Materialized query tables (MQT)
A materialized query table (MQT) is a table whose definition is based on the
result of a query, and whose data is in the form of precomputed results that are
taken from one or more tables on which the materialized query table definition is
based. Sometimes they are also referred to as materialized views.

Prior to Version 8, DB2 UDB supported summary tables also known as
automatic summary tables (ASTs) or replication summary tables. Summary
tables are now considered to be a special type of MQT whose fullselect contains
a GROUP BY clause summarizing data from the tables referenced in the fullselect.

The main characteristics of MQTs are:
328 MySQL to DB2 UDB Conversion Guide

� MQTs can contain pre-computed and/or subsets of data.

� MQTs can have indexes; the RUNSTATS command can be performed against
them.

� MQTs can use multi dimensionally clustered and regular tables as source
tables.

� MQTs can be refreshed incremental.

� MQTs are automatically used by the optimizer if applicable.

The following MQT enhancements can result in improved query performance:

� Query routing enhancements

Queries can now be routed to MQTs whose definitions contain a join that is
not aggregated. Prior to Version 8, an MQT definition could only reference a
join that was aggregated. For example, in Version 8 the table described in
Example 10-9, which contains a join, can be created to store the customer
and account information for bad accounts.

Example 10-9 Sample MQT

CREATE TABLE bad_account AS (
SELECT customer_name, customer_id, a.balance
FROM account a, customers c
WHERE

status IN ('delinquent', 'problematic', 'hot')
AND a.customer_id = c.customer_id)

DATA INITIALLY DEFERRED REFRESH DEFERRED

If a user asks whether an account is delinquent, the DB2 UDB optimizer
recognizes that the MQT has cached the requested information, and instead
of accessing the base table ACCOUNT, DB2 accesses the MQT named
BAD_ACCOUNT, which provides a better response time and can be used to return
customer information.

� User-maintained materialized query tables

Many custom applications maintain and load tables that are really
precomputed data representing the result of a query. By identifying a table as
a user-maintained materialized query table, dynamic query performance can
be improved. Such MQTs are maintained by users rather than by the system.
UPDATE, INSERT, and DELETE operations are permitted against user-maintained
MQTs.

Setting appropriate special registers allows the query optimizer to take
advantage of the precomputed query result that is already contained in the
user-maintained MQT.

� Materialized query tables on nicknames
 Chapter 10. Advanced DB2 UDB features 329

This feature allows you to cache remote data locally on your DB2 Universal
Database instance. Remote data resides in databases that are supported by
relational DBMS instances such as Oracle or Sybase, or even other instances
of DB2 UDB.

MQTs can reference a combination of nicknames and local tables. Such
materialized query tables can be created with the REFRESH DEFERRED option
only. Queries against nicknames or tables are rewritten and optimized in
relation to these MQTs.

Routing a query to the MQT when all criteria for matching and routing are
satisfied, yields better performance than getting results from the remote table.

It is possible to query a nickname even if the remote table for which the
nickname was created becomes unavailable. If this nickname has a
materialized query table defined on it, and all routing criteria match, the query
will only need to select data from the MQT.

Maintenance is performed locally by means of the REFRESH TABLE command.
There is no way to keep track of updates to tables in a remote database.
Maintenance is always deferred; refresh immediate materialized query tables
(defined on nicknames) are not supported.

� Incremental maintenance of materialized query tables using a staging
table

You can incrementally refresh an MQT defined with the REFRESH DEFERRED
option. If a refresh deferred MQT is to be incrementally maintained, it must
have a staging table associated with it. The staging table associated with an
MQT is created with the CREATE TABLE SQL statement.

When INSERT, DELETE or UPDATE statements modify the underlying tables of
an MQT, the changes resulting from these modifications are propagated, and
are immediately appended to a staging table as part of the same statement.
The propagation of these changes to the staging table is similar to the
propagation of changes that occurs during the incremental refresh of
immediate MQTs.

A REFRESH TABLE statement is used to incrementally refresh the MQT. If a
staging table is associated with the MQT, the system may be able to use the
staging table that supports the MQT to incrementally refresh it. The staging
table is pruned when the refresh is complete. Prior to Version 8, a refresh
deferred MQT was regenerated from scratch when performing a refresh table
operation. MQTs can now be incrementally maintained, providing significant
performance improvement. For information about the situations under which
a staging table will not be used to incrementally refresh an MQT, see the SQL
Reference manual.

You can also use this new facility to eliminate the high lock contention caused
by the immediate maintenance of refresh immediate MQTs. If the data in the
330 MySQL to DB2 UDB Conversion Guide

MQT does not need to be current to the second, changes can be captured in
a staging table and applied on any schedule.

10.7 Multidimensional clustering (MDC)
This section gives a brief introduction about the Multidimensional Clustering
(MDC) feature provided by DB2 UDB, Version 8.1.

DB2 UDB in earlier versions provides the feature for single dimensional data
clustering. This was maintained by physically clustering the data on insert,
according to the order of one single clustering index. The number of clustering
indexes per table is limited to one.

Figure 10-3 shows data clustering according to one single index, in this case the
Region index.

Figure 10-3 One clustering index

One of the main drawbacks of this clustering method is that clustering degrades
over time and requires the use of the REORG utility from time to time to put the
index back in order.

Another drawback of this method is that the indexes are record based, and is
what makes them often very large.

Clustering
Index

on Region

Index
on Year

Table
 Chapter 10. Advanced DB2 UDB features 331

MDC addresses these drawbacks. Data is clustered physically in multiple
dimensions. The indexes for each dimension are not record based but block
based, thus reducing their size (and effort needed for logging and maintaining)
dramatically. Reorganization of the table in order to re-cluster is not necessary.

At the bottom line, MDC provides a powerful method for improving the
performance of SELECT, INSERT, UPDATE, and DELETE statements.

Example 10-10 shows the CREATE TABLE statement of an MDC table clustered in
two columns: Region and Year. The block indexes for each dimension are created
automatically.

Example 10-10 Creating an MDC table

CREATE TABLE sales (
Customer VARCHAR(80),
Region CHAR(5),
Year INT
)

ORGANIZE BY DIMENSIONS (Region, Year);

Figure 10-4 shows the data clustering according to two dimensions as defined in
Example 10-10. Actually, the number of dimensions for a table is only limited by
the system size.

Figure 10-4 MDC table and indexes

Extent (Four pages) DataData

East, 1993

East, 1996

North, 1997

North, 1998

North, 1996

South, 1999

Dimension
Block Index

Year

Dimension
Block Index

Region
332 MySQL to DB2 UDB Conversion Guide

Data in MDC tables is organized in blocks along extent boundaries according to
the dimensions (clustering values). A block (extent) is a set of contiguous pages
on disk, so access to these records is sequential and with minimal I/O
operations. The page size is specified at table space creation.

In Figure 10-4 the extents’ boundaries are defined by the two dimensions: Region
and Year.

Benefits of MDC
These are the benefits of MDC:

� Range scans on any dimension use clustered data access, because each
block corresponds to a set of sequential parts in the table guaranteed to
contain data having that dimension value.

� Dimensions can be accessed independently from each other through their
block indexes without compromising the clustering of any other.

� Block index scans can be combined by AND and OR logical operations. The
resulting scan also uses clustered data access.

� Access to clustered data is much faster than access to data through
clustering indexes (single dimensional data clustering), because with MDC
there is one pointer per qualifying block of pages versus one pointer per
qualifying row in single dimensional data clustering.

� With a specified block ID from a block index, scans on that block are very
efficient and much faster than accessing each row through row ID.
 Chapter 10. Advanced DB2 UDB features 333

334 MySQL to DB2 UDB Conversion Guide

Appendix A. Sample code for user
defined functions

This appendix provides sample code to implement various MySQL built-in
functions not provided by DB2 UDB. We would like to thank the respective
authors of the UDFs.

A

© Copyright IBM Corp. 2004. All rights reserved. 335

A.1 Sample code for BIT_AND
Example A-1 shows conversion code for MySQLs BIT_AND function.

Example: A-1 User-defined function to map BIT_AND

--
-- DB2 UDB UDF(User-Defined Function) Samples for Migration
--
-- 2001/08/29
--
-- Name of UDF: BIT_AND (N1 Integer, N2 Integer)
--
-- Used UDF: None
--
-- Description: Returns bit by bit and of both parameters.
--
-- Author: TOKUNAGA, Takashi
--
--
CREATE FUNCTION BITAND (N1 Integer, N2 Integer)
 RETURNS Integer
 SPECIFIC BITANDMySQL
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
 RETURN
WITH
Repeat (S, M1, M2, Ans) AS
(Values (0, N1, N2, 0)
Union All
Select S+1, M1/2, M2/2, Ans+MOD(M1,2)*MOD(M2,2)*power(2,S)
 From Repeat
 Where M1 > 0
 AND M2 > 0
 AND S < 32
)
SELECT ANS
 FROM Repeat
 WHERE S = (SELECT MAX(S)
 FROM Repeat)
;

Example A-2 shows the results of the BITAND user-defined function.

Example: A-2 Results for UDB BITAND

SQL0347W The recursive common table expression "DB2ADMIN.REPEAT"
336 MySQL to DB2 UDB Conversion Guide

may contain an infinite loop. SQLSTATE=01605

--
values bitand(10,8);

1

 8

--
values bitand(14,3);

1

 2

--
values bitand(1038,78);

1

 14

A.2 Sample code for FORMAT function
This section provides UDF for FORMAT function. Example A-3 shows the code
for a user-defined function emulating FORMAT.

Example: A-3 FORMAT user-defined function

--
-- DB2 UDB UDF(User-Defined Function) Samples for Migration
--
-- Created: 2004/02/29
--
-- Name of UDF: FORMAT (X Decimal(31,10), D Integer)
--
-- Used UDF: None
--
-- Description: Returns truncated to the precision specified by D and a "," for
each 3 digits as a separator.
--
-- Author: TOKUNAGA, Takashi
--
 Appendix A. Sample code for user defined functions 337

------------------------------ Command Entered ------------------------------
CREATE FUNCTION FORMAT (X Decimal(31,10), D Integer)
 RETURNS VARCHAR(50)
 LANGUAGE SQL
 SPECIFIC FORMAT_MySQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
BEGIN ATOMIC
DECLARE XN DECIMAL(21,0);
DECLARE RetVal VARCHAR(50);
SET RetVal = SUBSTR(CHAR(MOD(ABS(X), 1)), 22, D+1);
SET XN = ABS(X);

Main_Loop:
WHILE XN > 0 DO
 SET RetVal = SUBSTR(CHAR(MOD(XN,1000)),19,3) || RetVal;
 SET XN = XN/1000;
 IF XN > 0 THEN
 SET RetVal = ',' || RetVal;
 ELSE
 LEAVE Main_Loop;
 END IF;
END WHILE;

RETURN CASE WHEN X < 0 THEN '-' ELSE '' END
 || TRANSLATE(LTRIM(TRANSLATE(RetVal,' ','0')),'0',' ');
END
!

Example A-4 shows the results of the converted FORMAT.

Example: A-4 Converted FORMAT UDF result

------------------------------ Command Entered ------------------------------
SELECT N
 , FORMAT(N, 2)
 , FORMAT(N, 0)
 FROM (VALUES 12.34567, -12.34567, 120034.567, 123400123456789.) S(N)!

--Return result

N 2 3
-------------------------- ----------------------- -----------------------
 12.34567 12.34 12.
 -12.34567 -12.34 -12.
 120034.56700 120,034.56 120,034.
338 MySQL to DB2 UDB Conversion Guide

 23400123456789.00000 123,400,123,456,789.00 123,400,123,456,789.

 4 record(s) selected.

A.3 Sample code for RPAD and LPAD functions
This section provides UDF for LPD and RPAD functions. Example A-5 shows
code for a user-defined function emulating RPAD.

Example: A-5 CREATE FUNCTION RPAD and sample usage

-- DB2 UDB UDF(User-Defined Function) Samples for Migration
--
-- 2001/08/27, 09/27, 11/06
--
-- Name of UDFs: RPAD (C1 VarChar(4000), N integer, C2 VarChar(4000))
-- RPAD (I1 Integer, N integer, C2 Varchar(4000))
-- LPAD (C1 VarChar(4000), N integer, C2 Varchar(4000))
-- LPAD (I1 Integer, N integer, C2 Varchar(4000))
--
-- Used UDF: None
--
-- Description: Add repeatedly C2 to the right(RPAD) or left(LPAD) of parameter
1 (C1 or I1)
-- and return N byte.
--
-- Author: TOKUNAGA, Takashi
--

--
CREATE FUNCTION RPAD (C1 VarChar(4000), N integer, C2 VarChar(4000))
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC RPADBase
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
 substr(C1 ||
repeat(C2,((sign(N-length(C1))+1)/2)*(N-length(C1)+length(C2))/(length(C2)+1-si
gn(length(C2)))),1,N)
;

Example A-6 shows the results of the converted RPAD function.
 Appendix A. Sample code for user defined functions 339

Example: A-6 Usage of UDF RPAD

SELECT char(rpad('ABCDE',12,'*.'),20) FROM SYSIBM.SYSDUMMY1;

1

ABCDE*.*.*.*

 1 record(s) selected.
--
SELECT char(rpad('ABCDE',3,'*.'),20) FROM SYSIBM.SYSDUMMY1;

1

ABC

 1 record(s) selected.

--
SELECT char(rpad('ABCDE',20,'') || 'X',50) FROM SYSIBM.SYSDUMMY1;

1
--
ABCDE X
1 record(s) selected.

UDF RPAD with the third parameter omitted is shown in Example A-7.

Example: A-7 RPAD Omitting the third parameter

CREATE FUNCTION RPAD (C1 VarChar(4000), N integer)
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC RPADVarCharParm2
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
 RPAD(C1,N,' ')
;

Running the RPAD function gives you the results shown in Example A-8.

Example: A-8 Results of RPAD omitting the third parameter

SELECT char(rpad('ABCDE',15) || 'X',50) FROM SYSIBM.SYSDUMMY1;

340 MySQL to DB2 UDB Conversion Guide

1
--
ABCDE X

 1 record(s) selected.

--
SELECT char(rpad('ABCDE',3) || 'X',50) FROM SYSIBM.SYSDUMMY1;

1
--
ABCX

 1 record(s) selected.

Function RPAD allows a set of different input arguments. Example A-9 shows two
more RPAD UDFs.

Example: A-9 RPAD with first parameter as integer, 2, and 3 parameters

CREATE FUNCTION RPAD (I1 Integer, N integer, C2 Varchar(4000))
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC RPADIntParm3
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
 RPAD(rtrim(char(I1)),N,C2)
;

CREATE FUNCTION RPAD (I1 Integer, N integer)
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC RPADIntParm2
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
 RPAD(rtrim(char(I1)),N,' ')
;

And Example A-10 shows the results of the previous UDFs.
 Appendix A. Sample code for user defined functions 341

Example: A-10 Results of RPAD with first parameter as integer, 2, and 3 parameters

SELECT char(rpad(927,12,'*.'),50) FROM SYSIBM.SYSDUMMY1;

1
--
927*.*.*.*.*

 1 record(s) selected.

--
SELECT char(rpad(927,12,'') || 'X',50) FROM SYSIBM.SYSDUMMY1;

1
--
927 X

 1 record(s) selected.

--
SELECT char(rpad(9021,3),20) FROM SYSIBM.SYSDUMMY1;

1

902

 1 record(s) selected.

The counterpart for RPAD are the LPAD functions, which are shown in
Example A-11.

Example: A-11 LPAD: CREATE FUNCTION and sample usage

CREATE FUNCTION LPAD (C1 VarChar(4000), N integer, C2 VarChar(4000))
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC LPADBase
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
 CASE
342 MySQL to DB2 UDB Conversion Guide

 WHEN N > length(C1) THEN
substr(repeat(C2,(N-length(C1)+length(C2))/(length(C2)+1-sign(length(C2)))),1,N
-length(C1)) || C1
 ELSE substr(C1,1,N)
 END
;

Results of LPAD look like Example A-12.

Example: A-12 Results of LPAD: CREATE FUNCTION and sample usage

SELECT char(lpad('ABCDE',15,'*.'),50) FROM SYSIBM.SYSDUMMY1;

1
--
..*.*.*.ABCDE

 1 record(s) selected.

--
SELECT char(lpad('ABCDE',3,'*.'),50) FROM SYSIBM.SYSDUMMY1;

1
--
ABC

 1 record(s) selected.

--
SELECT char(lpad('ABCDE',15,'') || 'X',50) FROM SYSIBM.SYSDUMMY1;

1
--
 ABCDEX

 1 record(s) selected.

As RPAD allows LPAD a different number and data type for input arguments,
Example A-13 shows LPAD without the third parameter.
 Appendix A. Sample code for user defined functions 343

Example: A-13 LPAD: Omitting the third parameter

CREATE FUNCTION LPAD (C1 VarChar(4000), N integer)
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC LPADParm2
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
 LPAD(C1,N,' ')
;

And the results of Example A-13 should look like those in Example A-14.

Example: A-14 Result of LPAD: Omitting the third parameter

SELECT char(lpad('ABCDE',15),20) FROM SYSIBM.SYSDUMMY1;

1

 ABCDE

 1 record(s) selected.

--
SELECT char(lpad('ABCDE',3),20) FROM SYSIBM.SYSDUMMY1;

1

ABC

 1 record(s) selected.

Two more LPAD UDFs with different characteristics are shown in Example A-15.

Example: A-15 LPAD: The first parameter is integer, 2, and 3 parameters

CREATE FUNCTION LPAD (I1 Integer, N integer, C2 Varchar(4000))
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC LPADIntParm3
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
344 MySQL to DB2 UDB Conversion Guide

 RETURN
 LPAD(rtrim(char(I1)),N,C2)
;

--

CREATE FUNCTION LPAD (I1 Integer, N integer)
 RETURNS VARCHAR(4000)
 LANGUAGE SQL
 SPECIFIC LPADIntParm2
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
 LPAD(rtrim(char(I1)),N,' ')
;

And the results are shown in Example A-16.

Example: A-16 Results of LPAD: The first parameter is integer, 2, and 3 parameter

SELECT char(lpad(9021,15,'*.'),50) FROM SYSIBM.SYSDUMMY1;

1
--
..*.*.*.*9021

 1 record(s) selected.

--
SELECT char(lpad(9021,15,''),50) FROM SYSIBM.SYSDUMMY1;

1
--
 9021

 1 record(s) selected.

--
SELECT char(lpad(9021,3),20) FROM SYSIBM.SYSDUMMY1;

1

 Appendix A. Sample code for user defined functions 345

902

 1 record(s) selected.

A.4 Sample code for GREATEST function
Example A-17 is a set of UDF examples emulating the behavior of MySQL’s
GREATEST function. The various UDFs accept input parameters in varchar and
from 2 to 10 input parameters.

Example: A-17 User-defined functions to map GREATEST

--
-- DB2 UDB UDF(User-Defined Function) Samples for Migration
--
-- 2001/08/28, 08/29
--
-- Name of UDF: GREATEST (P1 VarChar(254), P2 VarChar(254), ...)
--
--
-- Used UDF: None
--
-- Description: Returns greatest value of list of data.
--
-- Author: TOKUNAGA, Takashi
--
--
CREATE FUNCTION GREATEST (P1 VarChar(254), P2 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC GREATESTOracle2
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
CASE
WHEN P1 >= P2 THEN P1
ELSE P2
END
;

--
-- GREATEST function with three parameters
--
--
CREATE FUNCTION GREATEST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254))
 RETURNS VarChar(254)
346 MySQL to DB2 UDB Conversion Guide

 LANGUAGE SQL
 SPECIFIC GREATESTOracle3
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
CASE
WHEN P1 >= P2
THEN CASE
 WHEN P1 >= P3 THEN P1
 ELSE P3
 END
ELSE CASE
 WHEN P2 >= P3 THEN P2
 ELSE P3
 END
END
;

--
-- GREATEST function with four parameters
--
--
CREATE FUNCTION GREATEST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4
VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC GREATESTOracle4
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
CASE
WHEN P1 >= P2
THEN CASE
 WHEN P1 >= P3
 THEN CASE
 WHEN P1 >= P4 THEN P1
 ELSE P4
 END
 ELSE CASE
 WHEN P3 >= P4 THEN P3
 ELSE P4
 END
 END
ELSE CASE
 WHEN P2 >= P3
 THEN CASE
 WHEN P2 >= P4 THEN P2
 Appendix A. Sample code for user defined functions 347

 ELSE P4
 END
 ELSE CASE
 WHEN P3 >= P4 THEN P3
 ELSE P4
 END
 END
END
;

--
-- GREATEST function with five parameters
--
--
CREATE FUNCTION GREATEST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4
VarChar(254), P5 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC GREATESTOracle5
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
CASE
WHEN P1 >= P2
THEN CASE
 WHEN P1 >= P3
 THEN CASE
 WHEN P1 >= P4
 THEN CASE
 WHEN P1 >= P5 THEN P1
 ELSE P5
 END
 ELSE CASE
 WHEN P4 >= P5 THEN P4
 ELSE P5
 END
 END
 ELSE CASE
 WHEN P3 >= P4
 THEN CASE
 WHEN P3 >= P5 THEN P3
 ELSE P5
 END
 ELSE CASE
 WHEN P4 >= P5 THEN P4
 ELSE P5
 END
 END
348 MySQL to DB2 UDB Conversion Guide

 END
ELSE CASE
 WHEN P2 >= P3
 THEN CASE
 WHEN P2 >= P4
 THEN CASE
 WHEN P2 >= P5 THEN P2
 ELSE P5
 END
 ELSE CASE
 WHEN P4 >= P5 THEN P4
 ELSE P5
 END
 END
 ELSE CASE
 WHEN P3 >= P4
 THEN CASE
 WHEN P3 >= P5 THEN P3
 ELSE P5
 END
 ELSE CASE
 WHEN P4 >= P5 THEN P4
 ELSE P5
 END
 END
 END
END
;

--
-- GREATEST function with six parameters
--
--
CREATE FUNCTION GREATEST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4
VarChar(254)
 , P5 VarChar(254), P6 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC GREATESTOracle6
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
GREATEST(GREATEST(P1,P2,P3),GREATEST(P4,P5,P6))
;

--
-- GREATEST function with seven parameters
--
 Appendix A. Sample code for user defined functions 349

--
CREATE FUNCTION GREATEST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4
VarChar(254)
 , P5 VarChar(254), P6 VarChar(254), P7 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC GREATESTOracle7
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
GREATEST(GREATEST(P1,P2,P3,P4),GREATEST(P5,P6,P7))
;

--
-- GREATEST function with eight parameters
--
--
CREATE FUNCTION GREATEST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4
VarChar(254)
 , P5 VarChar(254), P6 VarChar(254), P7 VarChar(254), P8
VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC GREATESTOracle8
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
GREATEST(GREATEST(P1,P2,P3,P4),GREATEST(P5,P6,P7,P8))
;

--
-- GREATEST function with nine parameters
--
--
CREATE FUNCTION GREATEST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4
VarChar(254)
 , P5 VarChar(254), P6 VarChar(254), P7 VarChar(254), P8
VarChar(254)
 , P9 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC GREATESTOracle9
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
GREATEST(GREATEST(P1,P2,P3,P4,P5),GREATEST(P6,P7,P8,P9))
350 MySQL to DB2 UDB Conversion Guide

;

--
-- GREATEST function with ten parameters
--
--
CREATE FUNCTION GREATEST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4
VarChar(254)
 , P5 VarChar(254), P6 VarChar(254), P7 VarChar(254), P8
VarChar(254)
 , P9 VarChar(254),P10 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC GREATESTOracle10
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
 GREATEST(GREATEST(P1,P2,P3,P4,P5),GREATEST(P6,P7,P8,P9,P10))
;

Example A-18 shows the results of UDFs GREATEST.

Example: A-18 Result of UDFs mapping GREATEST

SELECT char(greatest('abcdefg','abcfgh'),20) FROM sysibm.sysdummy1;

1

abcfgh

 1 record(s) selected.

--
SELECT char(greatest('abcdefg','defgh','abcfgh'),20) FROM sysibm.sysdummy1;

1

defgh

 1 record(s) selected.

 Appendix A. Sample code for user defined functions 351

--
SELECT char(greatest('abcdefg','defgh','abcfgh','endof...'),20) FROM
sysibm.sysdummy1;

1

endof...

 1 record(s) selected.

--
SELECT char(greatest('abcdefg','defgh','abcfgh','endof...','add on'),20) FROM
sysibm.sysdummy1;

1

endof...

 1 record(s) selected.

--
SELECT char(greatest('abcdefg','defgh','abcfgh','endof...','add
on','extra'),20) FROM sysibm.sysdummy1;

1

extra

 1 record(s) selected.

--
SELECT char(greatest('abcdefg','defgh','abcfgh','endof...','add on','extra','a
bit of'),20) FROM sysibm.sysdummy1;

1

extra

 1 record(s) selected.
352 MySQL to DB2 UDB Conversion Guide

--
SELECT char(greatest('abcdefg','defgh','abcfgh','endof...','add on','extra','a
bit of','more'),20) FROM sysibm.sysdummy1;

1

more

 1 record(s) selected.

--
SELECT char(greatest('abcdefg','defgh','abcfgh','endof...','add on','extra','a
bit of','more','more and '),20) FROM sysibm.sysdummy1;

1

more and

 1 record(s) selected.

--
SELECT char(greatest('abcdefg','defgh','abcfgh','endof...','add on','extra','a
bit of','more','more and ',' something'),20) FROM sysibm.sysdummy1;

1

more and

 1 record(s) selected.

A.5 Sample code for LEAST
Example A-19 is a set of UDF examples emulating the behavior of MySQL’s
LEAST function. The various UDFs accept input parameters in varchar and from
2 to 10 input parameters.
 Appendix A. Sample code for user defined functions 353

Example: A-19 User-defined functions to map LEAST

-- DB2 UDB UDF(User-Defined Function) Samples for Migration
--
-- 2001/08/28, 08/29
--
-- Name of UDF: LEAST (P1 VarChar(254), P2 VarChar(254))
--
--
-- Used UDF: None
--
-- Description: Returns least value of list of data.
--
-- Author: TOKUNAGA, Takashi
--
--
CREATE FUNCTION LEAST (P1 VarChar(254), P2 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC LEASTOracle2
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
CASE
WHEN P1 <= P2 THEN P1
ELSE P2
END
;

--
-- LEAST function with three parameters
--
--
CREATE FUNCTION LEAST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC LEASTOracle3
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
CASE
WHEN P1 <= P2
THEN CASE
 WHEN P1 <= P3 THEN P1
 ELSE P3
 END
ELSE CASE
354 MySQL to DB2 UDB Conversion Guide

 WHEN P2 <= P3 THEN P2
 ELSE P3
 END
END
;

--
-- LEAST function with four parameters
--
--
CREATE FUNCTION LEAST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4
VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC LEASTOracle4
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
CASE
WHEN P1 <= P2
THEN CASE
 WHEN P1 <= P3
 THEN CASE
 WHEN P1 <= P4 THEN P1
 ELSE P4
 END
 ELSE CASE
 WHEN P3 <= P4 THEN P3
 ELSE P4
 END
 END
ELSE CASE
 WHEN P2 <= P3
 THEN CASE
 WHEN P2 <= P4 THEN P2
 ELSE P4
 END
 ELSE CASE
 WHEN P3 <= P4 THEN P3
 ELSE P4
 END
 END
END
;

--
-- LEAST function with five parameters
--
 Appendix A. Sample code for user defined functions 355

--
CREATE FUNCTION LEAST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4
VarChar(254)
 , P5 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC LEASTOracle5
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
CASE
WHEN P1 <= P2
THEN CASE
 WHEN P1 <= P3
 THEN CASE
 WHEN P1 <= P4
 THEN CASE
 WHEN P1 <= P5 THEN P1
 ELSE P5
 END
 ELSE CASE
 WHEN P4 <= P5 THEN P4
 ELSE P5
 END
 END
 ELSE CASE
 WHEN P3 <= P4
 THEN CASE
 WHEN P3 <= P5 THEN P3
 ELSE P5
 END
 ELSE CASE
 WHEN P4 <= P5 THEN P4
 ELSE P5
 END
 END
 END
ELSE CASE
 WHEN P2 <= P3
 THEN CASE
 WHEN P2 <= P4
 THEN CASE
 WHEN P2 <= P5 THEN P2
 ELSE P5
 END
 ELSE CASE
 WHEN P4 <= P5 THEN P4
 ELSE P5
356 MySQL to DB2 UDB Conversion Guide

 END
 END
 ELSE CASE
 WHEN P3 <= P4
 THEN CASE
 WHEN P3 <= P5 THEN P3
 ELSE P5
 END
 ELSE CASE
 WHEN P4 <= P5 THEN P4
 ELSE P5
 END
 END
 END
END
;

--
-- LEAST function with six parameters
--
--
CREATE FUNCTION LEAST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4
VarChar(254)
 , P5 VarChar(254), P6 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC LEASTOracle6
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
LEAST(LEAST(P1,P2,P3),LEAST(P4,P5,P6))
;

--
-- LEAST function with seven parameters
--
--
CREATE FUNCTION LEAST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4
VarChar(254)
 , P5 VarChar(254), P6 VarChar(254), P7 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC LEASTOracle7
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
LEAST(LEAST(P1,P2,P3,P4),LEAST(P5,P6,P7))
 Appendix A. Sample code for user defined functions 357

;

--
-- LEAST function with eight parameters
--
--
CREATE FUNCTION LEAST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4
VarChar(254)
 , P5 VarChar(254), P6 VarChar(254), P7 VarChar(254), P8
VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC LEASTOracle8
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
LEAST(LEAST(P1,P2,P3,P4),LEAST(P5,P6,P7,P8))
;

--
-- LEAST function with nine parameters
--
--
CREATE FUNCTION LEAST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4
VarChar(254)
 , P5 VarChar(254), P6 VarChar(254), P7 VarChar(254), P8
VarChar(254)
 , P9 VarChar(254))
 RETURNS VarChar(254)
 LANGUAGE SQL
 SPECIFIC LEASTOracle9
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
LEAST(LEAST(P1,P2,P3,P4,P5),LEAST(P6,P7,P8,P9))
;

--
-- LEAST function with ten parameters
--
--
CREATE FUNCTION LEAST (P1 VarChar(254), P2 VarChar(254), P3 VarChar(254), P4
VarChar(254)
 , P5 VarChar(254), P6 VarChar(254), P7 VarChar(254), P8
VarChar(254)
 , P9 VarChar(254),P10 VarChar(254))
 RETURNS VarChar(254)
358 MySQL to DB2 UDB Conversion Guide

 LANGUAGE SQL
 SPECIFIC LEASTOracle10
 DETERMINISTIC
 CONTAINS SQL
 NO EXTERNAL ACTION
 RETURN
LEAST(LEAST(P1,P2,P3,P4,P5),LEAST(P6,P7,P8,P9,P10))
;

Example A-20 shows the results of UDF’s LEAST.

Example: A-20 Results of UDFs mapping LEAST

SELECT least('HARRY','HARRIOT','HAROLD') FROM sysibm.sysdummy1;

1

HAROLD

 1 record(s) selected

A.6 Sample code for BIT_COUNT
Example A-21 is a UDF example emulating the behavior of MySQL’s
BIT_COUNT function. It returns the number of set bits in the parameter (the
number of 1 in the binary value of the parameter) assuming that the parameter is
a 32-bit INTEGER.

Example: A-21 User-defined function to map BIT_COUNT

CREATE FUNCTION BIT_CNT (N1 Integer)
 RETURNS Integer
 SPECIFIC BITCNTMySQL
 LANGUAGE SQL
 CONTAINS SQL
 NO EXTERNAL ACTION
 DETERMINISTIC
 RETURN
WITH
 Repeat (S, M1, Ans) AS
(Values (0, N1, 0)
Union All
Select S+1, M1/2, Ans+MOD(M1,2)
 From Repeat
 Appendix A. Sample code for user defined functions 359

 Where M1 <> 0
 AND S < 32
)
SELECT case when ANS > 0 then ANS else 32 + ANS end
 FROM Repeat
 WHERE S = (SELECT MAX(S)
 FROM Repeat)
;

Example A-22 shows the sample output.

Example: A-22 Sample output of BIT_CNT

db2> values bit_cnt(64)

1

 1

 1 record(s) selected.

db2> values bit_cnt(63)

1

 6

 1 record(s) selected.

db2> values bit_cnt(-7)

1

 29

 1 record(s) selected.

A.7 Sample code for SUBSTRING_INDEX
Example A-23 is a UDF example emulating the behavior of MySQL’s
SUBSTRING_INDEX function. It returns the substring from input string before
counting occurrences of the delimiter.
360 MySQL to DB2 UDB Conversion Guide

Example: A-23 User-defined function to map SUBSTRING_INDEX

create function SUBSTRING_INDEX(In varchar(2000),delimit varchar(200), n Int)
returns varchar(2000)
deterministic no external action contains sql
begin atomic

declare out varchar(2000);
declare dem varchar(2000);
declare num int;
declare pos int;
declare temp varchar(2000);
set dem=delimit;
set temp=In;
set num=n;
set pos=1;
if(num<0) then

while(locate(delimit,temp)!=0) do
set temp=substr(temp,locate(delimit,temp)+1);
set num=num+1;

end while;
set num=num+1;
set temp=In;

end if;
while (num>0) do

set pos=pos+locate(delimit,temp)-1;
set temp=substr(temp,locate(delimit,temp)+1);
set num=num-1;

end while;
if(n>0) then

return substr(In,1,pos);
else

return substr(In,pos+1);
end if;

end
 Appendix A. Sample code for user defined functions 361

362 MySQL to DB2 UDB Conversion Guide

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 366. Note that some of the documents referenced here may be available
in softcopy only.

� Up and Running with DB2 UDB for Linux, SG24-6899
� Oracle to DB2 UDB Conversion Guide, SG24-7048

Other publications
These publications are also relevant as further information sources:

� IBM DB2 UDB Command Reference V8, SC09-4828

� IBM DB2 UDB What’s New V8, SC09-4848

� IBM DB2 UDB Administration Guide: Planning V8, SC09-4822

� IBM DB2 UDB Administration Guide: Implementation V8, SC09-4820

� IBM DB2 UDB Administration Guide: Performance V8, SC09-4821

� IBM DB2 UDB Data Movement Utilities Guide and Reference V8, SC09-4830

� IBM DB2 UDB Data Recovery and High Availability Guide and Reference V8,
SC09-4831

� Federated Systems PIC Guide Version 8 Release 1, GC27-1224

� IBM DB2 UDB Guide to GUI Tools for Administration and Development,
SC09-4851

� IBM DB2 UDB SQL Reference, Volume 1, V8, SC09-4844

� IBM DB2 UDB SQL Reference, Volume 2, V8, SC09-4845

� IBM DB2 UDB System Monitor Guide and Reference V8, SC09-4847

� IBM DB2 UDB Application Development Guide: Building and Running
Applications V8, SC09-4825
© Copyright IBM Corp. 2004. All rights reserved. 363

� IBM DB2 UDB Application Development Guide: Programming Client
Applications V8, SC09-4826

� IBM DB2 UDB Application Development Guide: Programming Server
Applications V8, SC09-4827

� IBM DB2 UDB Call Level Interface Guide and Reference, Volume 1, V8,
SC09-4849

� IBM DB2 Universal Database Call Level Interface Guide and Reference,
Volume 2, V8, SC09-4850

� Data Warehouse Center Application Integration Guide Version 8 Release 1,
SC27-1124

� DB2 XML Extender Administration and Programming Guide Version 8
Release 1, SC27-1234

� IBM DB2 UDB Quick Beginnings for DB2 Clients V8, GC09-4832

� IBM DB2 UDB Quick Beginnings for DB2 Servers V8, GC09-4836

� IBM DB2 UDB Installation and Configuration Supplement V8, GC09-4837

Online resources
These Web sites and URLs are also relevant as further information sources:

DB2
� Database and Data Management

http://www.ibm.com/software/data/
http://www.ibm.com/software/data/highlights/db2tco.html

� DB2 Developer Domain

http://www7b.software.ibm.com/dmdd/

� DB2 Universal Database

http://www.ibm.com/software/data/db2/udb/
http://ibm.com/db2/v8

� DB2 Universal Database for Linux

http://www.ibm.com/software/data/db2/linux/
http://www.ibm.com/db2/linux/validate
http://ibm.com/db2/linux
http://www-3.ibm.com/software/data/db2/linux/validate

� DB2 Universal Database V8 Application Development

http://www.ibm.com/software/data/db2/udb/ad
364 MySQL to DB2 UDB Conversion Guide

http://www-3.ibm.com/software/data/
http://www.ibm.com/software/data/highlights/db2tco.html
http://www7b.software.ibm.com/dmdd/
http://www-3.ibm.com/software/data/db2/udb/
http://ibm.com/db2/v8
http://www-3.ibm.com/software/data/db2/linux/
http://www.ibm.com/db2/linux/validate
http://ibm.com/db2/linux
http://www-3.ibm.com/software/data/db2/linux/validate
http://www.ibm.com/software/data/db2/udb/ad

� DB2 Technical Support

http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/
index.d2w/report

� DB2 Extenders

http://www.ibm.com/software/data/db2/extenders/

� IBM Manuals for Data Management Products

http://www.ibm.com/software/data/db2/library/

� DB2 NOW!

http://www.ibm.com/db2/migration

MySLQ
� MySQL home page

http://www.mysql.com/

Linux
� IBM Software for Linux

http://www.ibm.com/software/is/mp/linux/software/

� SuSE home page

http://www.suse.com/index_us.html

� Red Hat home page

http://www.redhat.com/

Other
� Apache Web Development with IBM DB2 for Linux

http://www7b.boulder.ibm.com/dmdd/library/tutorials/db2linux/db2linux.html

� DBI.perl.org

http://dbi.perl.org

� DB2 Perl Database Interface

http://www.ibm.com/software/data/db2/perl

� Comprehensive Perl Archive Network

http://www.cpan.org
http://www.cpan.org/modules/by-category/07_Database_Interfaces/DBI

� Rapid e-business development for Linux

http://www.borland.com/kylix/index.html

� VisualAge for Java
 Related publications 365

http://www-3.ibm.com/cgi-bin/db2www/data/db2/udb/winos2unix/support/index.d2w/report
http://www-3.ibm.com/software/data/db2/extenders/
http://www-3.ibm.com/software/data/db2/library/
http://www.ibm.com/db2/migration
http://www-3.ibm.com/software/is/mp/linux/software/
http://www.suse.com/index_us.html
http://www.redhat.com/
http://www7b.boulder.ibm.com/dmdd/library/tutorials/db2linux/db2linux.html
http://dbi.perl.org
http://www.ibm.com/software/data/db2/perl
http://www.cpan.org
http://www.cpan.org/modules/by-category/07_Database_Interfaces/DBI
http://www.borland.com/kylix/index.html
http://www-3.ibm.com/software/is/mp/linux/software/

http://www-3.ibm.com/software/ad/vajava

� Net.data

http://www-3.ibm.com/software/data/net.data

� WebSphere Developer Domain Products

http://www7b.boulder.ibm.com/wsdd/products

� Apache HTTP Server Project

http://httpd.apache.org

� Perl.apache.org

http://perl.apache.org/docs/1.0/guide

PHP scripting language

http://php.apache.org

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
366 MySQL to DB2 UDB Conversion Guide

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www-3.ibm.com/software/ad/vajava
http://www-3.ibm.com/software/data/net.data
http://www7b.boulder.ibm.com/wsdd/products
http://httpd.apache.org
http://perl.apache.org/docs/1.0/guide
http://php.apache.org

Index

Symbols
.DEL 243–244
.IXF 243–244
.WSF 243–244

A
aC++ 321
acceptance testing 268
access rights 139, 141
ACID properties 34
Active Data Object Database 183
active log 237
Active subagent 10
ActiveX Data Objects and Remote Data Objects 27
address space 7
administration 60
Administration Client 21, 82
Administration Server 80
administrative authority 142
ADO 27
ADO.NET 28
ADOdb 178, 183
adodb-db2.inc.php 183
adodb-mysql.inc.php 183
ADONewConnection() 184
aliases 258
ALTER BUFFERPOOL 301
alter table 102
ANSI/ISO 95
APAR 284
applet driver 190
application 8
Application access 22
application assessment 49
Application Development Client 21
Application level processes 10
application porting 59
application profile 46
application users 138
apxs 85
archived log 237
ASC 244
ASN 277
© Copyright IBM Corp. 2004. All rights reserved.
assessment 46
AST 328
authentication mechanism 224
authorities 141
Authorized Program Analysis Reports 284
autocommit 207, 229
AUTOCONFIGURE 313–314
automatic summary tables (ASTs) 328

B
BDB 36, 100
BerkeleyDB 100
BerkeleyDB (BDB) tables 36
binary data 134–135
Binary Large Objects 134
bind 322
BLOB 134–135, 149
block 333
block based 332
bottleneck 96
buffer pool snapshot 288
buffer pools 301
built-in 90

C
cache 17
Call Level Interface 200
catalog table 13
CCA 277
CHNGPGS_THRESH 302
CLASSPATH 137
CLI 200
CLI Call 277
Client

Administration 82
Application Development 82
Run-Time 82

client proces 7
Client/Server or 2-tier 22
client-server 5
column function 327
columns_priv 138–139
commands
 367

IMPORT 133
LOAD 132
RUNSTATS 150

commit 99
common.php 186
Communication requirement 78
Compiler 321
concurrency 99, 230
Concurrency-Control Manager 31
configuration 249
Configuration Advisor 311
configuration file 11, 251
Connect() 184
consistency 124
consistency token 322
contraint 111
CONTROL 142
Control Center 258
CPU 101
crash 99
crash recovery 236, 239
CREATE EVENT MONITOR 293
CREATE PROCEDUR 321
create procedure 322
CREATE TRIGGER 324
cron 248
cumulative backup 237
cursor stability 228

D
d2setup 79
DAS 79–80
dasadm1 82
dasupdt 80
data checking 270
data clustering 332
Data Definition Language 95
data formats 134
data integrity 230
Data Managed Space 98
Data Manipulation Language (DML) 59
data migration testing 267
data movement 241
data porting 57, 127
Data type

Data and Time Type 92
data type 90

BLOB 134–135, 149

DATETIME 134
TIMESTAMP 134, 149

data types
DATETIME 134
TIMESTAMP 134

database 8, 11
Database Definition Language (DDL) 55
database level 143
Database level processes 9
Database Managed Spaces (DMS) 298
database manager snapshot 288
database partition group 12
database structure porting 55
database triggers 324
database users 138
DATETIME 134–135
DB.php 186
DB2 277
DB2 administrative API 24
DB2 Call Level Interface (DB2 CLI) 25
DB2 CLI 25
DB2 communication manager 10
DB2 coordinating agent 10
DB2 daemon spawner 9
DB2 Data Warehouse Enterprise Edition 4
DB2 Data Warehouse Standard Edition 4
DB2 database objects 10
DB2 deadlock detector 10
DB2 diagnostic logs 278
DB2 Everyplace 6
DB2 format log 9
DB2 Knowledge Base 284
DB2 log reader 9
DB2 log writer 9
DB2 Migrate Now! 49
DB2 optimizer 295, 308
DB2 page cleaner 9
DB2 prefetcher 9
DB2 security system 138, 140
DB2 subagent 10
DB2 system controller 9
DB2 system logger 9
DB2 TCP manager 10
DB2 Technical Support site 283
DB2 UDB architecture 6
DB2 UDB Connect Application Server Edition 5
DB2 UDB Connect Enterprise Edition 5
DB2 UDB Connect Personal Edition 5
DB2 UDB Connect Unlimited Edition 5
368 MySQL to DB2 UDB Conversion Guide

DB2 UDB Enterprise Server Edition 4
DB2 UDB Express 4
DB2 UDB Personal Developer's Edition 5
DB2 UDB Personal Edition 3
DB2 UDB processes 8
DB2 UDB Workgroup Server Edition 3
DB2 UDB Workgroup Server Unlimited Edition 4
DB2 Universal Database 2
DB2 Universal Developer’s Edition 6
DB2 version 282
DB2 watchdog 9
DB2_PARALLEL_IO 300
DB2_SQLROUTINE_COMPILE_COMMAND 321
DB2_SQLROUTINE_COMPILER_PATH 321
db2AdminMsgWrite 281
db2advis 314–315
db2agent 10
db2agnta 10
db2agntp 10
db2ca 255
db2cc 254
db2cmdctr 254
DB2COMM 21
db2dcdpl 254
db2diag.log 278–279, 281, 306
db2dlock 10
db2empfa 298
db2eva 255, 294
db2evmon 294
db2evtbl 293
db2fenc1 81
db2fmtlg 9
db2gds 9
db2hc 255
db2ic 255
db2icrt 81
db2indbt 255
db2inst1 81
db2ipccm 10
db2isetup 81
db2iupd 80
db2jd 190
db2journal 255
db2level 282
db2loggr 9
db2logw 9
db2move 246
db2pclnr 9
db2pfchr 9

db2rc 255
db2set 321
db2setup 80
db2setup.log 80
db2support 283
db2support.zip 283
db2sysc 9
db2syslog 9
db2tc 255
db2tcpcm 10
db2tm 248
db2wdog 9
DBA 277
DBADM 142
DBHEAP 307
DBI 174, 277
DBI->connect 175
DDL 95
delta backup 237
describe 110
Design Advisor 314, 316
DFT_MON_BUFPOOL 287
DIAGLEVEL 279
diagnostic logs 278
Differences 134
dimension 333
disconnect 177
Disk requirement 77
distinct type 325
distributions

Linux 76
DML 59
DMS 14, 98, 298
do($sql_statement) 177
DRDA 191
Driver Manager 212
DriverManager 195
dump files 282
DWC 278
Dynamic SQL 25
dynamic SQL snapshot 289

E
EDU 8
Embedded DML Precompiler 30
Embedded SQL for Java (SQLj) 27
Embedded SQL statements in applications 24
Engine Dispatchable Units 8
 Index 369

enterprise 6
environment variable 17
event monitoring 285, 292
EVENT_MON_STATE() 294
execute() 176
Execution Engine 31
executive summary 264
EXPORT 243
extent 333

F
failover 247
fenced procedures 323
FixPak 80, 282, 284
FLG 278
Forte 321
functional testing 268

G
GET MONITOR SWITCHES 286
GET SNAPSHOT 305
GNU/Linux g++ 321
grant 95
group 140

H
Hardware requirement 76
hashing 104
heap table 36, 104
high availability 246
HIPER APAR 284
host 138–139
host authentication 221

I
IBM DB2 Migration Toolkit (MTK) 53–54
IBM migration offering 48
IBM Software Support Center 284
IBM support 284
IBMDEFAULTBP 301
IMMEDIATE 301
implicit privileges 143
IMPORT 128, 131, 133, 244
index 98, 106
Index Advisor 314, 316
Index Sequential Access Method 35
individual privileges 142

initial tuning 296
InnoDB 100
InnoDB tables 36
installation 55
Installation procedure 78
installFixPak 80
instance 8, 11, 96
instance creation 81
Instance level processes 9
in-sync 255
integration testing 268
iODBC with ODBC-compliant drivers 177
ISAM 35, 101
ISAM tables 35
isamchk 30
isolation level 230
ISV 28

J
Java Database Connectivity application (JDBC) 25
Java embedded SQ 27
JDBC 25
JDBC driver 137
JDBC Universal Drive 191

L
libdb2 211
Linux

IBM validation program 76
LIST APPLICATIONS 280
LOAD 128, 131–132, 135, 142, 150
load authority 142
load stress testing 268
loading tools 131
lock escalation 304, 306
lock snapshot 288, 305
Locking 304
LOCKLIST 304–305
Log Manager 31
log shipping 247
log space 303
LOGBUFSZ 307–308
LOGFILSIZ 303
logical log 299
logical log buffer 306
logical model 116
LOGPRIMARY 303
370 MySQL to DB2 UDB Conversion Guide

M
manual commit 207
Materialized 328
materialized query table 104, 328
materialized views 328
MAXLOCKS 305
MDC 105, 331
Memory Manager 32
Memory requirement 78
merge table 103
messages files 282
metadata 18
metadata transport 111
methodology 186
MigBlob utility 136
migration planning 45
migration process 54
migration scenarios 52
migration tools 53
mobile 6
mode

EXPORT 246
IMPORT 246
LOAD 246

MON_HEAP_SZ 292
monitoring tools 285
mounting option 96
MQT 104–105, 328
MTK 53–54, 73, 112
Multidimensional clustering 105
Multidimensional clustering (MDC) 331
multi-page 297
multiple server 107
multi-tier 5, 23
MyISAM 101
MyISAM tables 35
myisamchk 236
MyODBC 211
mysql 30
MySQL AB 28
MySQL architecture 29
MySQL clients 30
MySQL data type

Numeric type 91
BIGINT 92
BIT/BOOL/BOOLEAN 91
DOUBLE 92
FLOAT 92
INTEGER/INT 92

MEDIUMINT 92
SMALLINT 91
TINYINT 91

MySQL database 28
MySQL standard SQL compliance 36
MySQL table type 34
mysql.columns_priv 138
mysql.columns_priv tables 139
mysql.db 138
mysql.host 138–139
Mysql.pm 174
mysql.tables_priv 138–139
mysql.user 138–139
Mysql->Connect 174
mysql_close($db) 182
mysql_connect 179
mysql_fetch_row() 181
mysql_pconnect() 179
mysql_select_db 179
mysqlaccess 147
mysqladmin 30
mysqldump 30, 128, 242
mysqlhotcopy 242
mysqlimport 242

N
native-API driver 189
NConnect() 184
NewADOConnection() 184
NEWLOGPATH 299
nodegroup 12, 97
non-persistent 104
notify files 281
NOTIFYLEVEL 281
NUM_IO_CLEANERS 300
NUM_IOSERVERS 300

O
Object

Database 11
object 99
object oriented 186, 324
ODBC 25, 211
odbc.php 186
odbc_close($db) 182
odbc_connect 179
odbc_exec() 181
odbc_fetch_into() 181
 Index 371

odbc_pconnect() 180
off-line 96
OLE DB 27
open source 28
overflow 104
ownership privilege 142

P
package 322
partition 97
passwords 138, 141
PConnect() 184
PEAR 178
PEAR DB 185
performance 263
performance testing 268
Perl DBI 28
personal digital assistant 6
phpMyAdmin 256
physical model 116
planning 45
point-and-click 258
porting preparation 55
prepare($sql_statement) 176
primary key 111
principles of software tests 264
privileges 139–141

column level 140
database level 140
global level 140
table level 140

problem determination 277
problem determination tools 285
profile registry 250
protocol 21
PUBLIC 144

Q
QLSetConnectAttr 232
Query processing 30
Query Processor 31
query($sql_statement) 176

R
RDO 27
recovery 236
recovery log 11

Recovery Management 31
Recovery Manager 31
Redbooks Web site 366

Contact us xviii
reference type 326
referential integrity 37, 95, 111, 124
regular table 101
Remote Data Objects 27
REORG 308
replication 240
replication summary tables 328
RESET MONITOR 286
Resource Management 31
Resource Manager 32
restart recovery 239
restore 238
result set 187
revoke 95
rollback 99
rollforward recovery 239
root user 79
row level 100
RUNSTATS 150, 308, 310
runtime 232
Run-Time Client 21, 82

S
SAT 278
scalar function 327
schema 14, 33, 99
schema level 143
security 33
services file 21
SET INTEGRITY 272
severity indicator 277
show 110
Single-tier 22
SMPO 48
SMS 14, 98, 297
snapshot monitoring 285
snapshot table functions 289, 291
SNAPSHOT_DYN_SQL() 290
SNAPSHOT_TABLE() 289
SNAPSHOT_TIMESTAMP 290
snapshots 288
Software Migration Project Office (SMPO) 48
special conversions 221
specification 14, 103
372 MySQL to DB2 UDB Conversion Guide

SPM 277
SQJ 277
SQL 14, 95, 277
SQL execution plan 308
SQL table functions 289
SQL/PSM 320
SQL-92 36
SQL-99 36
SQLCODE 277
SQLException 216
SQLj 27, 192
sqllogdir 17
SQLPorter 54
sqluexpr 244
SQLWays 54
standby 247
Static SQL statements 24
Storage Manager 32
stored procedure 38, 320
structured query language 14, 95
structured type 325
Subqueries 37
suspended I/O 247
symbolic link 96
SYSADM 142
SYSCAT.EVENTMONITORS 293
SYSCTRL 142
SYSMAINT 142
system authority 142
System catalog table 13
System Managed Space 98, 297
system planning 51

T
table 14, 98
table function 289, 291
table functions 289
table funtion 328
table level 144
table snapshot 288
table space 13, 98, 110, 297
table space level 143
table space snapshot 288
tables_priv 138–139
TechNotes 284
temporary table 104
test deliverables 266
test documentation 264

test phases 267, 269
test planning 264
test strategy 265
testing 60, 263
TIMESTAMP 134–135, 149
TIMESTAMPFORMAT 134
tools catalog 80
Transaction Management 31
Transactions 36
transaction-safe 99
trap files 281
trigger 38
tuning 60, 263
two-tier architecture 51
Type 2 driver 26
Type 2 driver, 189
Type 3 driver 26, 190
Type 4 driver 26
typed view 318

U
UDT 90
unfenced procedures 323
Unified ODBC 178
UNION ALL 104
unique key 111
unit of work 229
unixODBC 178
UPDATE MONITOR SWITCHES 287
user 138–139
user account management 138

differences 138
user data 138, 140
user defined data type 90
username 139

V
version recovery 239
view 14, 37, 318
view level 144
Views 318
views 318
Visual Explain 295
VisualAge 321
volume stress testing 268
 Index 373

W
wildcard 139
WITH DETAILS 292
work-around 221

Y
ysql.db 139
374 MySQL to DB2 UDB Conversion Guide

(0.5” spine)
0.475”<->

0.875”
250 <->

 459 pages

M
ySQL to DB2 UDB Conversion Guide

®

SG24-7093-00 ISBN 0738498254

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

MySQL to DB2 UDB
Conversion Guide

Complete guide to
migrate MySQL
database and
application to DB2
UDB

Application
enrichment through
advanced DB2 UDB
features

Application
migration with
detailed examples

DB2 Universal Database (DB2 UDB) has long been known for
its technology leadership. This IBM Redbook is an informative
guide that describes how to migrate the database system
from MySQL to DB2 UDB Version 8.1 on Linux, and how to
convert applications to use DB2 UDB instead of MySQL.

This guide presents the best practices in migration strategy
and planning, migration tools, and practical migration
examples. It is intended for technical staff involved in a
MySQL to DB2 UDB conversion project.

This redbook also provides step-by-step instructions for
installing and using the IBM DB2 Migration Toolkit (MTK) to
port the database objects and data from MySQL to DB2 UDB.

Application programming and conversion considerations are
discussed along with the differences in features and
functionality of MySQL and DB2 UDB.

Examples are used throughout the book to illustrate
conversions of database access, database administration,
SQL statements (DDL, DML) and others, as well as testing and
tuning your DB2 UDB system.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Tables
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction
	1.1 DB2 Universal Database
	1.1.1 Product overview
	1.1.2 DB2 UDB for Linux, UNIX, and Windows architecture
	1.1.3 DB2 utilities
	1.1.4 DB2 database access

	1.2 MySQL database
	1.2.1 MySQL architecture
	1.2.2 MySQL design and SQL compliance
	1.2.3 MySQL utilities
	1.2.4 MySQL application programming interfaces (API)

	Chapter 2. Planning the migration from MySQL to DB2 UDB
	2.1 Migration project planning overview
	2.1.1 Benefits of migrating to DB2 UDB
	2.1.2 IBM migration offering
	2.1.3 Education

	2.2 Application assessment
	2.3 System planning
	2.3.1 Software
	2.3.2 Hardware
	2.3.3 Migration tools

	2.4 The migration process
	2.4.1 Porting preparation and installation
	2.4.2 Database structure porting
	2.4.3 Data porting
	2.4.4 Application porting
	2.4.5 Basic administration
	2.4.6 Testing and tuning

	Chapter 3. Migration scenario
	3.1 Application description
	3.1.1 Steps using the application
	3.1.2 Database structure

	3.2 System environment

	Chapter 4. Installation
	4.1 DB2 UDB ESE V8.1.4 on Linux
	4.1.1 System requirements
	4.1.2 Installation procedure
	4.1.3 Instance creation
	4.1.4 Client setup on Linux

	4.2 Other software product
	4.2.1 PHP adjustment for Unified ODBC with DB2 support

	4.3 MTK installation and usage
	4.3.1 MTK prerequisites
	4.3.2 MTK installation

	Chapter 5. Database porting
	5.1 Data type mapping
	5.2 Data Definition Language differences
	5.2.1 Database manipulation
	5.2.2 Table manipulation
	5.2.3 Index manipulation

	5.3 Other considerations
	5.4 Porting database
	5.4.1 Automatic conversion using porting tools
	5.4.2 Manual porting
	5.4.3 Metadata transport

	5.5 Sample database migration

	Chapter 6. Data porting
	6.1 Considerations concerning data porting
	6.1.1 Commands and tools supporting data porting
	6.1.2 Differences in data formats
	6.1.3 Differences in the user account management

	6.2 Sample project: Doing the data porting
	6.2.1 Export user data from MySQL
	6.2.2 Map MySQL user data to DB2 user data
	6.2.3 Create DB2 user
	6.2.4 Export MySQL application data
	6.2.5 Convert MySQL application data to DB2 format
	6.2.6 Import application data into DB2 UDB
	6.2.7 Basic data checking

	Chapter 7. Application porting
	7.1 Differences and similarities in Data Manipulation Language
	7.1.1 SELECT syntax
	7.1.2 JOIN syntax
	7.1.3 UNION Syntax
	7.1.4 Subquery syntax
	7.1.5 Grouping, having, and ordering
	7.1.6 Strings
	7.1.7 Implicit casting of data types
	7.1.8 String concatenation and NULL values
	7.1.9 Record deletion
	7.1.10 Built-in functions and operators

	7.2 Application source conversion
	7.2.1 Converting MySQL Perl applications to DB2 UDB
	7.2.2 Converting MySQL PHP applications to DB2 UDB
	7.2.3 Converting MySQL Java applications to DB2 UDB
	7.2.4 Converting MySQL C/C++ applications to DB2 UDB
	7.2.5 Converting MyODBC applications to DB2 UDB
	7.2.6 Condition handling in DB2
	7.2.7 Special conversions

	7.3 Additional application considerations
	7.3.1 What is the purpose of locking?
	7.3.2 Concurrency control and transaction isolation
	7.3.3 DB2 isolation levels
	7.3.4 Locking
	7.3.5 Specifying the isolation level in DB2

	Chapter 8. Database administration
	8.1 Database recovery
	8.1.1 MySQL recovery
	8.1.2 DB2 UDB database recovery

	8.2 Database replication
	8.3 Data movement
	8.3.1 MySQL data movement
	8.3.2 DB2 UDB data movement

	8.4 High availability
	8.5 Automated tasks/jobs
	8.6 Database configuration
	8.6.1 MySQL configuration
	8.6.2 DB2 UDB configuration

	8.7 Database management tools
	8.7.1 MySQL phpMyAdmin and Control Center
	8.7.2 DB2 UDB Control Center
	8.7.3 DB2 UDB Web Command Center

	Chapter 9. Testing and tuning
	9.1 Test planning
	9.1.1 Principles of software tests
	9.1.2 Test documentation
	9.1.3 Test phases
	9.1.4 Time planning and time exposure

	9.2 Data checking techniques
	9.2.1 IMPORT/LOAD messages
	9.2.2 Data checking

	9.3 Code and application testing
	9.3.1 Application code check
	9.3.2 Security testing
	9.3.3 Tools for testing and problem tracking

	9.4 Troubleshooting
	9.4.1 Interpreting DB2 informational messages
	9.4.2 DB2 diagnostic logs
	9.4.3 DB2 support information
	9.4.4 Problem determination tools

	9.5 Initial tuning
	9.5.1 Table spaces
	9.5.2 Physical placement of database objects
	9.5.3 Buffer pools
	9.5.4 Large transactions
	9.5.5 SQL execution plan
	9.5.6 Configuration Advisor
	9.5.7 Index Advisor

	Chapter 10. Advanced DB2 UDB features
	10.1 Views
	10.2 Stored procedures
	10.3 Trigger
	10.4 User-defined data types (UDT)
	10.5 User-defined functions
	10.6 Materialized query tables (MQT)
	10.7 Multidimensional clustering (MDC)

	Appendix A. Sample code for user defined functions
	A.1 Sample code for BIT_AND
	A.2 Sample code for FORMAT function
	A.3 Sample code for RPAD and LPAD functions
	A.4 Sample code for GREATEST function
	A.5 Sample code for LEAST
	A.6 Sample code for BIT_COUNT
	A.7 Sample code for SUBSTRING_INDEX

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

