»
2 Sun

microsystems

man pages section 3: Networking
Library Functions

Sun Microsystems, Inc.

4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816-0214-10
May 2002

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks, registered trademarks, or service marks
of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks
of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software-Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent 'utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans
I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caracteres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systeme Berkeley BSD licenciés par 1'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, ou
marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des
marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques
SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d utilisation visuelle ou graphique pour l'industrie
de I'informatique. Sun détient une licence non exclusive de Xerox sur l'interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l'interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

9] &

Adobe PostScript

1

020313@3332

Contents

Preface 11

Networking Library Functions 17
accept(3SOCKET) 18
accept(3XNET) 20
ber_decode(3LDAP) 22
ber_encode(3LDAP) 27
bind(3SOCKET) 31
bind(3XNET) 33
byteorder(3SOCKET) 35
cldap_close(3LDAP) 36
cldap_open(3LDAP) 37
cldap_search_s(3LDAP) 38
cldap_setretryinfo(3LDAP) 40
connect(3SOCKET) 41
connect(3XNET) 43
dial(3NSL) 46
doconfig(3NSL) 48
endhostent(3XNET) 50
endnetent(3XNET) 52
endprotoent(3XNET) 54
endservent(3XNET) 56
ethers(3SOCKET) 58
fn_attr bind(3XFN) 60
fn_attr_create_subcontext(3XFN) 61
fn_attr_ext_search(3XFN) 62

fn_attr_get(3XFN) 69
fn_attr_get_ids(3XFN) 70
fn_attr_get_values(3XFN) 71
FN_attribute_t(3XFN) 73
fn_attr_modify(3XFN) 75
FN_attrmodlist_t(3XFN) 77
fn_attr_multi_get(3XFN) 80
fn_attr_multi_modify(3XFN) 84
fn_attr_search(3XFN) 86
FN_attrset_t(3XFN) 91
FN_attrvalue_t(3XFN) 93
FN_composite_name_t(3XFN) 94
FN_compound_name_t(3XFN) 99
fn_ctx_bind(3XFN) 104
fn_ctx_create_subcontext(3XFN) 106
fn_ctx_destroy_subcontext(3XFN) 107
fn_ctx_equivalent_name(3XFN) 108
fn_ctx_get_ref(3XFN) 110
fn_ctx_get_syntax_attrs(3XFN) 111
fn_ctx_handle_destroy(3XFN) 113
fn_ctx_handle_from_initial 3XFN) 114
fn_ctx_handle_from_ref(3XFN) 116
fn_ctx_list_bindings(3XFN) 118
fn_ctx_list_names(3XFN) 119
fn_ctx_lookup(3XFN) 122
fn_ctx_lookup_link(3XFN) 123
fn_ctx_rename(3XFN) 124
FN_ctx_t(3XFN) 126
fn_ctx_unbind(3XFN) 129
FN_identifier t(3XFN) 130
FN_ref_addr_t(3XFN) 131
FN_ref t(3XFN) 133
FN_search_control_t(3XFN) 136
FN_search_filter_t(3XFN) 139
FN_status_t(3XFN) 146
FN_string_t(3XFN) 151
getaddrinfo(3SOCKET) 155
gethostbyname(3NSL) 159

4 man pages section 3: Networking Library Functions ¢ May 2002

gethostname(3XNET) 165
getipnodebyname(3SOCKET) 166
getnetbyname(3SOCKET) 172
getnetconfig(3NSL) 176
getnetpath(3NSL) 178
getpeername(3SOCKET) 180
getpeername(3XNET) 181
getprotobyname(3SOCKET) 182
getpublickey(3NSL) 185
getrpcbyname(3NSL) 186
getservbyname(3SOCKET) 189
getsockname(3SOCKET) 193
getsockname(3XNET) 194
getsockopt(3SOCKET) 195
getsockopt(3XNET) 199
gss_accept_sec_context(3GSS) 202
gss_acquire_cred(3GSS) 208
gss_add_cred(3GSS) 211
gss_add_oid_set_member(3GSS) 215
gss_canonicalize_name(3GSS) 216
gss_compare_name(3GSS) 218
gss_context_time(3GSS) 219
gss_create_empty_oid_set(3GSS) 220
gss_delete_sec_context(3GSS) 221
gss_display_name(3GSS) 223
gss_display_status(3GSS) 225
gss_duplicate_name(3GSS) 227
gss_export_name(3GSS) 228
gss_export_sec_context(3GSS) 229
gss_get_mic(3GSS) 231
gss_import_name(3GSS) 233
gss_import_sec_context(3GSS) 235
gss_indicate_mechs(3GSS) 237
gss_init_sec_context(3GSS) 238
gss_inquire_context(3GSS) 245
gss_inquire_cred(3GSS) 248
gss_inquire_cred_by_mech(3GSS) 250
gss_inquire_mechs_for_name(3GSS) 252

Contents 5

gss_inquire_names_for_mech(3GSS) 254
gss_oid_to_str(3GSS) 255
gss_process_context_token(3GSS) 257
gss_release_buffer(3GSS) 259
gss_release_cred(3GSS) 260
gss_release_name(3GSS) 261
gss_release_oid(3GSS) 262
gss_release_oid_set(3GSS) 263
gss_str_to_oid(3GSS) 264
gss_test_oid_set_member(3GSS) 266
gss_unwrap(3GSS) 267
gss_verify_mic(3GSS) 269
gss_wrap(3GSS) 271
gss_wrap_size_limit(3GSS) 273
htonl(3XNET) 275
if_nametoindex(3NSL) 276
if_nametoindex(3XNET) 278
inet(3SOCKET) 280
inet_addr(3XNET) 284
ldap(3LDAP) 286
ldap_abandon(3LDAP) 297
ldap_add(3LDAP) 298
Idap_ber_free(3LDAP) 300
ldap_bind(3LDAP) 301
ldap_charset(SLDAP) 304
ldap_compare(3LDAP) 306
Idap_control_free(3LDAP) 308
ldap_delete(3LDAP) 309
ldap_disptmpl(3LDAP) 310
ldap_entry2text(3LDAP) 316
ldap_error(3LDAP) 319
Idap_first_attribute(3LDAP) 323
ldap_first_entry(3LDAP) 324
ldap_first_message(3LDAP) 326
Idap_friendly(3LDAP) 327
ldap_get_dn(3LDAP) 328
ldap_get_entry_controls(3LDAP) 330
ldap_getfilter(SLDAP) 331

6 man pages section 3: Networking Library Functions ¢ May 2002

ldap_get_lang_values(3LDAP) 333
ldap_get_option(SLDAP) 335
ldap_get_values(3LDAP) 338
ldap_memcache(3LDAP) 340
ldap_memfree(3LDAP) 343
ldap_modify(3LDAP) 344
ldap_modrdn(3LDAP) 346
ldap_open(3LDAP) 348
ldap_parse_result(3LDAP) 350
ldap_result(3LDAP) 351
ldap_search(3LDAP) 353
ldap_searchprefs(3LDAP) 355
ldap_sort(3LDAP) 357
ldap_ufn(3LDAP) 359
ldap_url(BLDAP) 361
ldap_version(3LDAP) 364
listen(3SOCKET) 365
listen(3XNET) 366
netdir(3NSL) 368
nis_error(3NSL) 372
nis_groups(3NSL) 374
nis_local_names(3NSL) 377
nis_names(3NSL) 379
nis_objects(3NSL) 385
nis_ping(3NSL) 393
nis_server(3NSL) 394
nis_subr(3NSL) 396
nis_tables(3NSL) 399
nlsgetcall(BNSL) 408
nlsprovider(3NSL) 409
nlsrequest(3NSL) 410
remd(3SOCKET) 412
recv(3SOCKET) 414
recv(3XNET) 417
recvirom(3XNET) 420
recvmsg(3XNET) 423
resolver(3RESOLV) 426
rexec(3SOCKET) 432

Contents

7

rpc(3NSL) 434

rpcbind(3NSL) 443
rpc_cint_auth(3NSL) 445
rpc_cint_calls(3NSL) 447
rpc_clnt_create(3NSL) 451
rpc_control(3NSL) 458
rpc_gss_getcred(3NSL) 460
rpc_gss_get_error(3NSL) 462
rpc_gss_get_mechanisms(3NSL) 463
rpc_gss_get_principal_name(3NSL) 465
rpc_gss_max_data_length(3NSL) 467
rpc_gss_mech_to_oid(3NSL) 468
rpc_gss_seccreate(3NSL) 470
rpc_gss_set_callback(3NSL) 472
rpc_gss_set_defaults(3NSL) 474
rpc_gss_set_svc_name(3NSL) 475
rpc_rac(3RAC) 477
rpcsec_gss(3NSL) 481
rpc_soc(3NSL) 486
rpc_svc_calls(3NSL) 496
rpc_svc_create(3NSL) 500
rpc_svc_err(3NSL) 505
rpc_svec_input(3NSL) 507
rpc_svec_reg(3NSL) 509
rpc_xdr(3NSL) 511
rstat(3RPC) 513

rusers(3RPC) 514

rwall(3RPC) 515
secure_rpc(3NSL) 516
send(3SOCKET) 520
send(3XNET) 522
sendmsg(3XNET) 525
sendto(3XNET) 529
setsockopt(3XNET) 533
shutdown(3SOCKET) 536
shutdown(3XNET) 537
slp_api(3SLP) 538
SLPClose(3SLP) 548

8 man pages section 3: Networking Library Functions ¢ May 2002

SLPDelAttrs(3SLP) 549
SLPDereg(3SLP) 551
SLPEscape(3SLP) 553
SLPFindAttrs(3SLP) 555
SLPFindScopes(3SLP) 557
SLPFindSrvs(3SLP) 559
SLPFindSrvTypes(3SLP) 561
SLPFree(3SLP) 563
SLPGetProperty(3SLP) 564
SLPGetRefreshInterval(3SLP) 565
SLPOpen(3SLP) 566
SLPParseSrvURL(3SLP) 568
SLPReg(3SLP) 570
SLPSetProperty(3SLP) 572
slp_strerror(3SLP) 573
SLPUnescape(3SLP) 574
socket(3SOCKET) 576
socket(3XNET) 579
socketpair(3SOCKET) 581
socketpair(3XNET) 582
spray(3SOCKET) 584
t_accept(3NSL) 586
t_alloc(3NSL) 590
t_bind(3NSL) 593
t_close(3NSL) 597
t_connect(3NSL) 599
t_errno(3NSL) 603
t_error(3NSL) 605
t_free(3NSL) 607
t_getinfo(3NSL) 609
t_getprotaddr(3NSL) 613
t_getstate(3NSL) 615
t_listen(3NSL) 617
t_look(3NSL) 620
t_open(3NSL) 622
t_optmgmt(3NSL) 626
t_rcv(BNSL) 634
t_rcvconnect(3NSL) 637

Contents

9

t_rcvdis(3NSL) 640
t_rcvrel(BNSL) 642
t_rcvreldata(3NSL) 644
t_rcvudata(3NSL) 646
t_rcvuderr(3NSL) 649
t_rcvv(3NSL) 651
t_rcvvudata(3NSL) 654
t_snd(BNSL) 656
t_snddis(3NSL) 660
t_sndrel(3NSL) 662
t_sndreldata(3NSL) 664
t_sndudata(3NSL) 666
t_sndv(3NSL) 669
t_sndvudata(3NSL) 673
t_strerror(3NSL) 676
t_sync(3NSL) 677
t_sysconf(3NSL) 679
t_unbind(3NSL) 680
xdr(3NSL) 682
xdr_admin(3NSL) 684
xdr_complex(3NSL) 686
xdr_create(3NSL) 689
xdr_simple(3NSL) 691
xfn(3XFN) 695
xfn_attributes(3XFN) 696
xfn_composite_names(3XFN) 699
xfn_compound_names(3XFN) 700
xfn_links(3XFN) 703
xfn_status_codes(3XFN) 706
ypcInt(3NSL) 710
yp_update(3NSL) 715

Index 717

10 man pages section 3: Networking Library Functions « May 2002

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page is
intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview

The following contains a brief description of each man page section and the
information it references:

m Section 1 describes, in alphabetical order, commands available with the operating
system.

m Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

m Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

m Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

m Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

m Section 5 contains miscellaneous documentation such as character-set tables.
® Section 6 contains available games and demos.

m Section 7 describes various special files that refer to specific hardware peripherals
and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

1

m Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the DriverKernel Interface (DKI).

m Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

m Section 9F describes the kernel functions available for use by device drivers.

m Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full path name is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order
is required.

The following special characters are used in this
section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename

Separator. Only one of the arguments
separated by this character can be
specified at a time.

{} Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

12 man pages section 3: Networking Library Functions « May 2002

PROTOCOL

DESCRIPTION

IOCTL

OPTIONS

OPERANDS

OUTPUT

RETURN VALUES

ERRORS

This section occurs only in subsection 3R to
indicate the protocol description file.

This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands,
subcommands, requests, macros, and functions are
described under USAGE.

This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioct1(2) system call is called
ioctl and generates its own heading. ioct1 calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioct1 calls are
used for a particular class of devices all of which
have an io ending, such as mtio(7I).

This secton lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

This section lists the command operands and
describes how they affect the actions of the
command.

This section describes the output — standard output,
standard error, or output files — generated by the
command.

If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or -1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions declared void do

not return values, so they are not discussed in
RETURN VALUES.

On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the
conditions that cause each error. When more than

Preface 13

14

USAGE

EXAMPLES

ENVIRONMENT VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example$%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(5) for more information.

This section lists references to other man pages,
in-house documentation, and outside publications.

man pages section 3: Networking Library Functions « May 2002

DIAGNOSTICS

WARNINGS

NOTES

BUGS

This section lists diagnostic messages with a brief
explanation of the condition causing the error.

This section lists warnings about special conditions
which could seriously affect your working
conditions. This is not a list of diagnostics.

This section lists additional information that does
not belong anywhere else on the page. It takes the
form of an aside to the user, covering points of
special interest. Critical information is never
covered here.

This section describes known bugs and, wherever
possible, suggests workarounds.

Preface 15

16 man pages section 3: Networking Library Functions « May 2002

Networking Library Functions

17

accept(3SOCKET)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

accept — accept a connection on a socket

ce [flag ... 1 file ... -lsocket -1lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int accept (int s, struct sockaddr *addr, socklen t *addrlen) ;

The argument s is a socket that has been created with socket(3SOCKET) and bound
to an address with bind(3SOCKET), and that is listening for connections after a call to
1isten(3SOCKET). The accept () function extracts the first connection on the queue
of pending connections, creates a new socket with the properties of s, and allocates a
new file descriptor, 1s, for the socket. If no pending connections are present on the
queue and the socket is not marked as non-blocking, accept () blocks the caller until
a connection is present. If the socket is marked as non-blocking and no pending
connections are present on the queue, accept () returns an error as described below.
The accept () function uses the netconfig(4) file to determine the STREAMS
device file name associated with s. This is the device on which the connect indication
will be accepted. The accepted socket, s, is used to read and write data to and from
the socket that connected to #s. It is not used to accept more connections. The original
socket (s) remains open for accepting further connections.

The argument addr is a result parameter that is filled in with the address of the
connecting entity as it is known to the communications layer. The exact format of the
addr parameter is determined by the domain in which the communication occurs.

The argument addrlen is a value-result parameter. Initially, it contains the amount of
space pointed to by addr; on return it contains the length in bytes of the address
returned.

The accept () function is used with connection-based socket types, currently with
SOCK_STREAM.

It is possible to select(3C) or poll(2) a socket for the purpose of an accept () by
selecting or polling it for a read. However, this will only indicate when a connect
indication is pending; it is still necessary to call accept ().

The accept () function returns —1 on error. If it succeeds, it returns a non-negative
integer that is a descriptor for the accepted socket.

accept () will fail if:

EBADF The descriptor is invalid.

ECONNABORTED The remote side aborted the connection before the
accept () operation completed.

EFAULT The addr parameter or the addrlen parameter is invalid.

EINTR The accept () attempt was interrupted by the

delivery of a signal.

EMFILE The per-process descriptor table is full.

18 man pages section 3: Networking Library Functions ¢ Last Revised 24 Jan 2002

ATTRIBUTES

SEE ALSO

ENODEV

ENOMEM

ENOSR

ENOTSOCK
EOPNOTSUPP

EPROTO

EWOULDBLOCK

accept(3SOCKET)

The protocol family and type corresponding to s could
not be found in the netconfig file.

There was insufficient user memory available to
complete the operation.

There were insufficient STREAMS resources available
to complete the operation.

The descriptor does not reference a socket.
The referenced socket is not of type SOCK_STREAM.

A protocol error has occurred; for example, the
STREAMS protocol stack has not been initialized or the
connection has already been released.

The socket is marked as non-blocking and no
connections are present to be accepted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

Safe

poll(2), bind(3SOCKET), connect(3SOCKET), 1isten(3SOCKET), select(3C),
socket(BHEAD), socket(3SOCKET), netconfig(4), attributes(5)

Networking Library Functions 19

accept(3XNET)
NAME | accept —accept a new connection on a socket

SYNOPSIS | cc [flag ... 1 file ... -lxnet [library ...]

#include <sys/socket.h>

int accept (int socket, struct sockaddr *address, socklen t
*address_len) ;

DESCRIPTION | The accept () function extracts the first connection on the queue of pending
connections, creates a new socket with the same socket type protocol and address
family as the specified socket, and allocates a new file descriptor for that socket.

The function takes the following arguments:

socket Specifies a socket that was created with socket(3XNET), has been
bound to an address with bind(3XNET), and has issued a
successful call to 1isten(3XNET).

address Either a null pointer, or a pointer to a sockaddr structure where
the address of the connecting socket will be returned.

address_len Points to a socklen_t which on input specifies the length of the
supplied sockaddr structure, and on output specifies the length
of the stored address.

If address is not a null pointer, the address of the peer for the accepted connection is
stored in the sockaddr structure pointed to by address, and the length of this address
is stored in the object pointed to by address_len.

If the actual length of the address is greater than the length of the supplied sockaddr
structure, the stored address will be truncated.

If the protocol permits connections by unbound clients, and the peer is not bound,
then the value stored in the object pointed to by address is unspecified.

If the listen queue is empty of connection requests and O_NONBLOCK is not set on
the file descriptor for the socket, accept () will block until a connection is present. If
the 1isten(3XNET) queue is empty of connection requests and O_NONBLOCK is set
on the file descriptor for the socket, accept () will fail and set errno to EAGAIN or
EWOULDBLOCK

The accepted socket cannot itself accept more connections. The original socket remains
open and can accept more connections.

USAGE | When a connection is available, select(3C) will indicate that the file descriptor for
the socket is ready for reading.

RETURN VALUES | Upon successful completion, accept () returns the nonnegative file descriptor of the
accepted socket. Otherwise, —1 is returned and errno is set to indicate the error.

ERRORS | The accept () function will fail if:

20 man pages section 3: Networking Library Functions * Last Revised 8 May 1998

ATTRIBUTES

SEE ALSO

EAGAIN
EWOULDBLOCK

EBADF

ECONNABORTED

EFAULT

EINTR

EINVAL

EMFILE

ENFILE

ENOTSOCK

EOPNOTSUPP

accept(3XNET)

O_NONBLOCK is set for the socket file descriptor and
no connections are present to be accepted.

The socket argument is not a valid file descriptor.
A connection has been aborted.

The address or address_len parameter can not be
accessed or written.

The accept () function was interrupted by a signal
that was caught before a valid connection arrived.

The socket is not accepting connections.

OPEN_MAX file descriptors are currently open in the
calling process.

The maximum number of file descriptors in the system
are already open.

The socket argument does not refer to a socket.

The socket type of the specified socket does not
support accepting connections.

The accept () function may fail if:

ENOBUFS

ENOMEM

ENOSR

EPROTO

No buffer space is available.

There was insufficient memory available to complete
the operation.

There was insufficient STREAMS resources available to
complete the operation.

A protocol error has occurred; for example, the
STREAMS protocol stack has not been initialized.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

MT-Safe

bind(3XNET), connect(3XNET), 1isten(3XNET), socket(3XNET),

attributes(5)

Networking Library Functions 21

ber_decode(3LDAP)

NAME | ber_decode, ber_alloc_t, ber_free, ber_bvdup, ber_init, ber_flatten, ber_get_next,
ber_skiptag, ber_peek_tag, ber_scanf, ber_get_int, ber_get_stringa, ber_get_stringal,
ber_get_stringb, ber_get_null, ber_get_boolean, ber_get_bitstring, ber_first_element,
ber_next_element, ber_bvfree, ber_bvecfree — Basic Encoding Rules library decoding
functions

SYNOPSIS | ccl flag... 1 file... -11ldapl library...]

#include <lber.h>

BerElement *ber alloc_t (int options) ;

struct berval *ber bvdup (struct berval *bv) ;

void ber free (BerElement *ber, int freebuf) ;

BerElement *ber init (struct berval *bv);

int ber flatten (BerElement *ber, struct berval *buPtr) ;
ber get next (Sockbuf *sb, unsigned long *len, char *bv_val) ;
ber skip tag(BerElement **ber, unsigned long **len) ;

ber peek tag(BerElement **ber, unsigned long **len) ;

ber get int (BerElement **ber, long **num) ;

ber get stringb (BerElement **ber, char **buf, unsigned long **len) ;
ber get stringa(BerElement **ber, char ***buf);

ber get stringal (BerElement **ber, struct berval ***bv) ;
ber get null (BerElement **ber) ;

ber get boolean (BerElement **ber, int **bool) ;

ber get bitstringa (BerElement **ber, char ***buf, unsigned long
**blen) ;

ber first element (BerElement **ber, unsigned long **len, char
***cookie) ;

ber next element (BerElement **ber, unsigned long **len, char **cookie) ;
ber scanf (BerElement **ber, char *fmt [, arg..]1);
ber bvfree (struct berval *bv) ;

ber bvecfree (struct berval ***bvec) ;

DESCRIPTION | These functions provide a subfunction interface to a simplified implementation of the
Basic Encoding Rules of ASN.1. The version of BER these functions support is the one
defined for the LDAP protocol. The encoding rules are the same as BER, except that
only definite form lengths are used, and bitstrings and octet strings are always
encoded in primitive form. In addition, these lightweight BER functions restrict tags
and class to fit in a single octet (this means the actual tag must be less than 31). When

22 man pages section 3: Networking Library Functions ¢ Last Revised 27 Jan 2002

ber_decode(3LDAP)

a "tag" is specified in the descriptions below, it refers to the tag, class, and primitive or
constructed bit in the first octet of the encoding. This man page describes the decoding
functions in the lber library. See ber_encode(3LDAP) for details on the
corresponding encoding functions.

Normally, the only functions that need be called by an application are

ber get next () to get the next BER element and ber scanf () to do the actual
decoding. In some cases, ber_peek_tag () may also need to be called in normal
usage. The other functions are provided for those applications that need more control
than ber_scanf () provides. In general, these functions return the tag of the element
decoded, or —1 if an error occurred.

The ber get next () function is used to read the next BER element from the given
Sockbuf, sb. A Sockbuf consists of the descriptor (usually socket, but a file descriptor
works just as well) from which to read, and a BerElement structure used to maintain a
buffer. On the first call, the sb_ber struct should be zeroed. It strips off and returns the
leading tag byte, strips off and returns the length of the entire element in len, and sets
up ber for subsequent calls to ber_scanf (), and all to decode the element.

The ber scanf () function is used to decode a BER element in much the same way
that scan£(3C) works. It reads from ber, a pointer to a BerElement such as returned by
ber_get_next(), interprets the bytes according to the format string fmt, and stores the
results in its additional arguments. The format string contains conversion
specifications which are used to direct the interpretation of the BER element. The
format string can contain the following characters.

-a Octet string. A char ** should be supplied. Memory is allocated,
filled with the contents of the octet string, null-terminated, and
returned in the parameter.

-s Octet string. A char * buffer should be supplied, followed by a
pointer to an integer initialized to the size of the buffer. Upon
return, the null-terminated octet string is put into the buffer, and
the integer is set to the actual size of the octet string.

-0 Octet string. A struct ber_val ** should be supplied, which upon
return points to a memory allocated struct berval containing the
octet string and its length. ber_bvfree () can be called to free the
allocated memory.

-b Boolean. A pointer to an integer should be supplied.
-1 Integer. A pointer to an integer should be supplied.
-B Bitstring. A char ** should be supplied which will point to the

memory allocated bits, followed by an unsigned long *, which will
point to the length (in bits) of the bitstring returned.

-n Null. No parameter is required. The element is simply skipped if it
is recognized.

Networking Library Functions 23

ber_decode(3LDAP)

-v Sequence of octet strings. A char *** should be supplied, which
upon return points to a memory allocated null-terminated array of
char *’s containing the octet strings. NULL is returned if the
sequence is empty.

-V Sequence of octet strings with lengths. A struct berval *** should
be supplied, which upon return points to a memory allocated,
null-terminated array of struct berval *’s containing the octet
strings and their lengths. NULL is returned if the sequence is
empty. ber bvecfree () can be called to free the allocated

memory.
-x Skip element. The next element is skipped.
-{ Begin sequence. No parameter is required. The initial sequence tag
and length are skipped.
-} End sequence. No parameter is required and no action is taken.
-l Begin set. No parameter is required. The initial set tag and length
are skipped.
-1 End set. No parameter is required and no action is taken.

The ber_get_int () function tries to interpret the next element as an integer,
returning the result in num. The tag of whatever it finds is returned on success, -1 on
failure.

The ber get stringb () function is used to read an octet string into a preallocated
buffer. The len parameter should be initialized to the size of the buffer, and will contain
the length of the octet string read upon return. The buffer should be big enough to
take the octet string value plus a terminating NULL byte.

The ber get stringa () function is used to allocate memory space into which an
octet string is read.

The ber get stringal () function is used to allocate memory space into which an
octet string and its length are read. It takes a struct berval **, and returns the result in
this parameter.

The ber get null () function is used to read a NULL element. It returns the tag of
the element it skips over.

The ber get boolean () function is used to read a boolean value. It is called the
same way that ber_get_int() is called.

The ber get bitstringa () function is used to read a bitstring value. It takes a
char ** which will hold the allocated memory bits, followed by an unsigned long *,
which will point to the length (in bits) of the bitstring returned.

24 man pages section 3: Networking Library Functions ¢ Last Revised 27 Jan 2002

EXAMPLES

ber_decode(3LDAP)

The ber first element () function is used to return the tag and length of the first
element in a set or sequence. It also returns in cookie a magic cookie parameter that
should be passed to subsequent calls to ber next element (), which returns
similar information.

ber alloc t () constructs and returns BerElement. A null pointer is returned on
error. The options field contains a bitwise-or of options which are to be used when
generating the encoding of this BerElement. One option is defined and must always
be supplied:

#define LBER_USE_DER 0x01

When this option is present, lengths will always be encoded in the minimum number
of octets. Note that this option does not cause values of sets and sequences to be
rearranged in tag and byte order, so these functions are not suitable for generating
DER output as defined in X.509 and X.680

The ber init function constructs a BerElement and returns a new BerElement
containing a copy of the data in the bv argument. ber _init returns the null pointer
on error.

ber free () frees a BerElement which is returned from the API calls

ber alloc t() orber init ().Each BerElement must be freed by the caller. The
second argument freebuf should always be set to 1 to ensure that the internal buffer
used by the BER functions is freed as well as the BerElement container itself.

ber bvdup () returns a copy of a berval. The bv_val field in the returned berval points
to a different area of memory as the bv_val field in the argument berval. The null
pointer is returned on error (that is, is out of memory).

The ber flatten routine allocates a struct berval whose contents are BER encoding
taken from the ber argument. The buPtr pointer points to the returned berval, which
must be freed using ber_bvfree (). This routine returns 0 on success and —1 on
error.

EXAMPLE 1 Assume the variable ber contains a lightweight BER encoding of the following
ASN.1 object:

AlmostASearchRequest := SEQUENCE {
baseObject DistinguishedName,
scope ENUMERATED {

baseObject (0),
singleLevel (1),
wholeSubtree (2)

b

derefAliases ENUMERATED {
neverDerefaliases (0),
derefInSearching (1),
derefFindingBaseObj (2),
alwaysDerefAliases (3N)

1

sizelimit INTEGER (0 .. 65535),

timelimit INTEGER (0 .. 65535),

Networking Library Functions 25

ber_decode(3LDAP)

26

ERRORS

NOTES

ATTRIBUTES

SEE ALSO

EXAMPLE 1 Assume the variable ber contains a lightweight BER encoding of the following
ASN.1 object: (Continued)

attrsOnly BOOLEAN,
attributes SEQUENCE OF AttributeType

EXAMPLE 2 The element can be decoded using ber scanf () as follows.

int scope, ali, size, time, attrsonly;

char *dn, **attrs;

if (ber scanf(ber, "{aiiiib{v}}", &dn, &scope, &ali,
&size, &time, &attrsonly, &attrs) == -1

/* error */
else
/* success */

If an error occurs during decoding, generally these functions return —1.

The return values for all of these functions are declared in the <1ber.h> header file.
Some functions may allocate memory which must be freed by the calling application.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNW.Gsl (32-bit)
SUNW.Gslx (64-bit)

Interface Stability Evolving

ber encode(3LDAP)

Yeong, W., Howes, T., and Hardcastle-Kille, S., "Lightweight Directory Access
Protocol", OSI-DS-26, April 1992.

Information Processing - Open Systems Interconnection - Model and Notation -
Service Definition - Specification of Basic Encoding Rules for Abstract Syntax Notation
One, International Organization for Standardization, International Standard 8825.

man pages section 3: Networking Library Functions ¢ Last Revised 27 Jan 2002

NAME

SYNOPSIS

DESCRIPTION

ber_encode(3LDAP)

ber_encode, ber_alloc, ber_printf, ber_put_int, ber_put_ostring, ber_put_string,
ber_put_null, ber_put_boolean, ber_put_bitstring, ber_start_seq, ber_start_set,
ber_put_seq, ber_put_set — simplified Basic Encoding Rules library encoding functions

cel flag... 1 file... -1ldapl library...]

#include <lber.h>

BerElement*ber_alloc () ;

ber printf (BerElement *ber, char *fmt[, arg... 1);
ber put int (BerElement *ber, long num, char tag) ;

ber put ostring(BerElement *ber, char **str, unsigned long len, char
tag) ;

%%,

ber put string(BerElement *ber, char **str, char tag) ;

ber put null (BerElement *ber, char tag) ;

ber put boolean (BerElement *ber, int bool, char tag) ;

ber put bitstring(BerElement *ber, char *str, int blen, char tag) ;
ber start seq(BerElement *ber, char tag) ;

ber start_ set (BerElement *ber, char tag) ;

ber put seq(BerElement *ber) ;

ber put set (BerElement *ber) ;

These functions provide a subfunction interface to a simplified implementation of the
Basic Encoding Rules of ASN.1. The version of BER these functions support is the one
defined for the LDAP protocol. The encoding rules are the same as BER, except that
only definite form lengths are used, and bitstrings and octet strings are always
encoded in primitive form. In addition, these lightweight BER functions restrict tags
and class to fit in a single octet (this means the actual tag must be less than 31). When
a "tag" is specified in the descriptions below, it refers to the tag, class, and primitive or
constructed bit in the first octet of the encoding. This man page describes the encoding
functions in the lber library. See ber_decode(3LDAP) for details on the
corresponding decoding functions.

Normally, the only functions that need be called by an application are ber alloc (),
to allocate a BER element, and ber_printf () to do the actual encoding. The other
functions are provided for those applications that need more control than

ber printf () provides. In general, these functions return the length of the element
encoded, or —1 if an error occurred.

The ber alloc () function is used to allocate a new BER element.

The ber_printf () function is used to encode a BER element in much the same way
that sprintf (3S) works. One important difference, though, is that some state
information is kept with the ber parameter so that multiple calls can be made to

Networking Library Functions 27

ber_encode(3LDAP)

ber printf () to append things to the end of the BER element. Ber_printf ()
writes to ber, a pointer to a BerElement such as returned by ber_alloc (). It
interprets and formats its arguments according to the format string fmt. The format
string can contain the following characters:

-b Boolean. An integer parameter should be supplied. A boolean
element is output.

-1 Integer. An integer parameter should be supplied. An integer
element is output.

-B Bitstring. A char * pointer to the start of the bitstring is supplied,
followed by the number of bits in the bitstring. A bitstring element
is output.

-n Null. No parameter is required. A null element is output.

-0 Octet string. A char * is supplied, followed by the length of the

string pointed to. An octet string element is output.

-s Octet string. A null-terminated string is supplied. An octet string
element is output, not including the trailing NULL octet.

-t Tag. An int specifying the tag to give the next element is provided.
This works across calls.

-v Several octet strings. A null-terminated array of char *’s is
supplied. Note that a construct like ’{v}’ is required to get an actual
SEQUENCE OF octet strings.

—{ Begin sequence. No parameter is required.
-} End sequence. No parameter is required.
-l& Begin set. No parameter is required.

-1 End set. No parameter is required.

The ber put int () function writes the integer element num to the BER element ber.

The ber put boolean () function writes the boolean value given by bool to the BER
element.

The ber put bitstring() function writes blen bits starting at str as a bitstring
value to the given BER element. Note that blen is the length in bits of the bitstring.

The ber_put_ostring() function writes len bytes starting at str to the BER element
as an octet string.

The ber_put_string() function writes the null-terminated string (minus the
terminating ') to the BER element as an octet string.

The ber put null () function writes a NULL element to the BER element.

28 man pages section 3: Networking Library Functions ¢ Last Revised 27 Jan 2002

EXAMPLES

RETURN VALUES

ATTRIBUTES

ber_encode(3LDAP)

The ber_start_seq() function is used to start a sequence in the BER element. The

ber start_set () function works similarly. The end of the sequence or set is
marked by the nearest matching call to ber put seqg() orber put set (),
respectively.

The ber first element () function is used to return the tag and length of the first

element in a set or sequence. It also returns in cookie a magic cookie parameter that

should be passed to subsequent calls to ber next element (), which returns
similar information.

EXAMPLE 1 Assuming the following variable declarations, and that the variables have been

assigned appropriately, an BER encoding of the following ASN.1 object:

AlmostASearchRequest := SEQUENCE {
baseObject DistinguishedName,
scope ENUMERATED {

baseObject (0),
singleLevel (1),
wholeSubtree (2)

}

derefAliases ENUMERATED {
neverDerefaliases (0),
derefInSearching (1),

derefFindingBaseObj (2),
alwaysDerefAliases (3N)

b

sizelimit INTEGER (0 .. 65535),
timelimit INTEGER (0 .. 65535),
attrsOnly BOOLEAN,

attributes SEQUENCE OF AttributeType

can be achieved like so:

int scope, ali, size, time, attrsonly;
char *dn, **attrs;

/* ... £ill in values ... */
if ((ber = ber_alloc()) == NULLBER)
/* error */

if (ber_printf(ber, "{siiiib{v}}", dn, scope, ali,
size, time, attrsonly, attrs) == -1
/* error */
else
/* success */

If an error occurs during encoding, ber _alloc () returns NULL; other functions
generally return —1.

See attributes(5) for a description of the following attributes:

Networking Library Functions

29

ber_encode(3LDAP)

30

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWGsl (32-bit)
SUNW.Gslx (64-bit)
Interface Stability Evolving

SEE ALSO | attributes(b), ber decode(3LDAP)

Protocol", OSI-DS-26, April 1992.

Yeong, W., Howes, T., and Hardcastle-Kille, S., "Lightweight Directory Access

Information Processing - Open Systems Interconnection - Model and Notation -
Service Definition - Specification of Basic Encoding Rules for Abstract Syntax Notation
One, International Organization for Standardization, International Standard 8825.

NOTES | The return values for all of these functions are declared in the <1ber.h> header file.

man pages section 3: Networking Library Functions ¢ Last Revised 27 Jan 2002

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

bind (3SOCKET)

bind - bind a name to a socket

ce [flag ... 1 file ... -lsocket -1lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int bind (int s, const struct sockaddr *name, int namelen) ;

bind () assigns a name to an unnamed socket. When a socket is created with
socket(3SOCKET), it exists in a name space (address family) but has no name
assigned. bind () requests that the name pointed to by name be assigned to the socket.

If the bind is successful, 0 is returned. A return value of —1 indicates an error, which is
further specified in the global errno.

The bind () call will fail if:

EACCES The requested address is protected and the current user
has inadequate permission to access it.

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available on the local
machine.

EBADF s is not a valid descriptor.

EINVAL namelen is not the size of a valid address for the

specified address family.
EINVAL The socket is already bound to an address.

ENOSR There were insufficient STREAMS resources for the
operation to complete.

ENOTSOCK s is a descriptor for a file, not a socket.

The following errors are specific to binding names in the UNIX domain:

EACCES Search permission is denied for a component of the
path prefix of the pathname in name.

EIO An I/0 error occurred while making the directory
entry or allocating the inode.

EISDIR A null pathname was specified.

ELOOP Too many symbolic links were encountered in

translating the pathname in name.

ENOENT A component of the path prefix of the pathname in
name does not exist.

ENOTDIR A component of the path prefix of the pathname in
name is not a directory.

Networking Library Functions 31

bind(3SOCKET)

32

EROFS The inode would reside on a read-only file system.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO | unlink(2), socket(3SOCKET), attributes(5), socket(3BHEAD)

NOTES | Binding a name in the UNIX domain creates a socket in the file system that must be

man pages section 3: Networking Library Functions ¢ Last Revised 22 Oct 1999

deleted by the caller when it is no longer needed (using unlink(2)).

The rules used in name binding vary between communication domains.

NAME
SYNOPSIS

DESCRIPTION

USAGE

RETURN VALUES

ERRORS

bind(3XNET)
bind - bind a name to a socket

ce [flag ... 1 file ... -lxnet [library ...]

#include <sys/socket.h>

int bind (int socket, const struct sockaddr *address, socklen t
address_len) ;

The bind () function assigns an address to an unnamed socket. Sockets created with
socket(3XNET) function are initially unnamed; they are identified only by their
address family.

The function takes the following arguments:
socket Specifies the file descriptor of the socket to be bound.

address Points to a sockaddr structure containing the address to be
bound to the socket. The length and format of the address depend
on the address family of the socket.

address_len Specifies the length of the sockaddr structure pointed to by the
address argument.

The socket in use may require the process to have appropriate privileges to use the
bind () function.

An application program can retrieve the assigned socket name with the
getsockname(3XNET) function.

Upon successful completion, bind () returns 0. Otherwise, -1 is returned and errno
is set to indicate the error.

The bind () function will fail if:

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available from the local
machine.

EAFNOSUPPORT The specified address is not a valid address for the
address family of the specified socket.

EBADF The socket argument is not a valid file descriptor.

EFAULT The address argument can not be accessed.

EINVAL The socket is already bound to an address, and the

protocol does not support binding to a new address; or
the socket has been shut down.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The socket type of the specified socket does not
support binding to an address.

Networking Library Functions 33

bind(3XNET)
If the address family of the socket is AF_UNIX, then bind () will fail if:

EACCES A component of the path prefix denies search
permission, or the requested name requires writing in a
directory with a mode that denies write permission.

EDESTADDRREQ

EISDIR The address argument is a null pointer.

EIO An I/0O error occurred.

ELOOP Too many symbolic links were encountered in
translating the pathname in address.

ENAMETOOLONG A component of a pathname exceeded NAME_MAX
characters, or an entire pathname exceeded PATH MAX
characters.

ENOENT A component of the pathname does not name an
existing file or the pathname is an empty string.

ENOTDIR A component of the path prefix of the pathname in
address is not a directory.

EROFS The name would reside on a read-only filesystem.

The bind () function may fail if:

EACCES The specified address is protected and the current user
does not have permission to bind to it.

EINVAL The address_len argument is not a valid length for the
address family.

EISCONN The socket is already connected.

ENAMETOOLONG Pathname resolution of a symbolic link produced an
intermediate result whose length exceeds PATH_MAX.

ENOBUFS Insufficient resources were available to complete the
call.

ENOSR There were insufficient STREAMS resources for the

operation to complete.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO | connect(3XNET), getsockname(3XNET), 1isten(3XNET), socket(3XNET),
attributes(b)

34 man pages section 3: Networking Library Functions ¢ Last Revised 8 May 1998

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

byteorder(3SOCKET)

byteorder, htonl, htons, ntohl, ntohs — convert values between host and network byte
order

#include <sys/types.h>
#include <netinet/in.hs>
#include <inttypes.h>

uint32 t htonl (unint32_t hostlong) ;
uint1l6_ t htons (uintlé_t hostshort) ;
uint32 t ntohl (uint32 t mnetlong) ;

uint1l6 t ntohs (uintlé t netshort) ;

These routines convert 16 and 32 bit quantities between network byte order and host
byte order. On some architectures these routines are defined as NULL macros in the
include file <netinet/in.h>. On other architectures, if their host byte order is
different from network byte order, these routines are functional.

These routines are most often used in conjunction with Internet addresses and ports as
returned by gethostent () and getservent (). See gethostbyname(3NSL) and
getservbyname(3SOCKET).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gethostbyname(3NSL), get servbyname(3SOCKET), attributes(b),
inet(B3HEAD)

Networking Library Functions 35

cldap_close(3LDAP)
NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

SEE ALSO

cldap_close — dispose of connectionless LDAP pointer

ccl flag... 1 file... -1ldapl library...]

#include <lber.h>
#include <ldap.h>

void cldap close (LDAP *Id) ;

The cldap close () function disposes of memory allocated by
cldap_ open(3LDAP). It should be called when all CLDAP communication is
complete.

Id The LDAP pointer returned by a previous call to
cldap_open(3LDAP).

See attributes(d) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNW.Gsl (32-bit)
SUNW.Gslx (64-bit)

Interface Stability Evolving

1dap(3LDAP), cldap open(3LDAP), cldap search_ s(3LDAP),
cldap setretryinfo(3LDAP)

36 man pages section 3: Networking Library Functions ¢ Last Revised 27 Jan 2002

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

ERRORS

ATTRIBUTES

SEE ALSO

cldap_open(3LDAP)
cldap_open — LDAP connectionless communication preparation

ccl flag... 1 file... -1ldapl library...]

#include <lber.h>
#include <ldap.h>

LDAP *cldap open (char *host, int port) ;
host The name of the host on which the LDAP server is running.

port The port number to connect.

The cldap_open () function is called to prepare for connectionless LDAP
communication (over udp(7P)). It allocates an LDAP structure which is passed to
future search requests.

If the default IANA-assigned port of 389 is desired, LDAP_PORT should be specified
for port. host can contain a space-separated list of hosts or addresses to try.
cldap_open () returns a pointer to an LDAP structure, which should be passed to
subsequent calls to cldap_search s(3LDAP), cldap setretryinfo(3LDAP), and
cldap close(3LDAP). Certain fields in the LDAP structure can be set to indicate size
limit, time limit, and how aliases are handled during operations. See

ldap open(3LDAP) and <1dap.h> for more details.

If an error occurs, cldap open () will return NULL and errno will be set
appropriately.

See attributes(d) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNW.Gsl (32-bit)
SUNW.Gslx (64-bit)

Interface Stability Evolving

1dap(3LDAP) cldap_search s(B3LDAP), cldap setretryinfo(3LDAP),
cldap close(BLDAP), attributes(5), udp(7P)

Networking Library Functions 37

cldap_search_s(3LDAP)

NAME
SYNOPSIS

DESCRIPTION

Retransmission
Algorithm

EXAMPLES

cldap_search_s — connectionless LDAP search

ccl flag... 1 file... -11ldapl library. ..]

#include <lber.h>
#include <ldap.h>

int cldap_search s(LDAP *Id, char *base, int scope, char *filter, char
*attrs, int attrsonly, LDAPMessage **tes, char *logdn) ;

The cldap_search_s () function performs an LDAP search using the
Connectionless LDAP (CLDAP) protocol.

cldap_search s () has parameters and behavior identical to that of
ldap_search_s(3LDAP), except for the addition of the logdn parameter. logdn should
contain a distinguished name to be used only for logging purposed by the LDAP
server. It should be in the text format described by RFC 1779, A String Representation of
Distinguished Names.

cldap_search_s () operates using the CLDAP protocol over udp(7P). Since UDP is
a non-reliable protocol, a retry mechanism is used to increase reliability. The

cldap_ setretryinfo(3LDAP) function can be used to set two retry parameters:
tries, a count of the number of times to send a search request and timeout, an initial
timeout that determines how long to wait for a response before re-trying. timeout is
specified seconds. These values are stored in the 1d_cldaptries and
1d_cldaptimeout members of the 1d LDAP structure, and the default values set in
ldap open(3LDAP) are 4 and 3 respectively. The retransmission algorithm used is:

Step 1. Set the current timeout to 1d_cldaptimeout seconds, and the
current LDAP server address to the first LDAP server found
during the 1dap_open(3LDAP) call.

Step 2: Send the search request to the current LDAP server address.

Step 3: Set the wait timeout to the current timeout divided by the number
of server addresses found during 1dap open(3LDAP) or to one
second, whichever is larger. Wait at most that long for a response;
if a response is received, STOP. Note that the wait timeout is
always rounded down to the next lowest second.

Step 5: Repeat steps 2 and 3 for each LDAP server address.

Step 6: Set the current timeout to twice its previous value and repeat Steps
2 through 6 a maximum of tries times.

Assume that the default values for tries and timeout of 4 tries and 3 seconds are used.
Further, assume that a space-separated list of two hosts, each with one address, was
passed to cldap_open(3LDAP). The pattern of requests sent will be (stopping as
soon as a response is received):

Time Search Request Sent To:
+0 Host A try 1
+1 (0+3/2) Host B try 1

38 man pages section 3: Networking Library Functions ¢ Last Revised 27 Jan 2002

ERRORS

ATTRIBUTES

SEE ALSO

+2
+5
+8
+14
+20
+32
+44

cldap

(1+3/2)
(2+6/2)
(5+6/2)
(8+12/2)
(14+12/2)
(20+24/2)
(20+24/2)

cldap_search_s(3LDAP)

Host A try 2
Host B try 2
Host A try 3
Host B try 3
Host A try 4
Host B try 4
(give up - no response)

_search_s () returns LDAP_SUCCESS if a search was successful and the
appropriate LDAP error code otherwise. See 1dap error(3LDAP) for more
information.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNW(csl (32-bit)
SUNWGslx (64-bit)
Interface Stability Evolving

1dap(3LDAP), 1dap error(3LDAP), 1dap search_ s(3LDAP),
cldap open(3LDAP), cldap_ setretryinfo(3LDAP), cldap close(3LDAP),
attributes(5), udp(7P)

Networking Library Functions 39

cldap_setretryinfo(3LDAP)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

ATTRIBUTES

SEE ALSO

cldap_setretryinfo — set connectionless LDAP request retransmission parameters

ccl flag... 1 file... -1ldapl library...]

#include <lber.h>
#include <ldap.h>

void cldap_ setretryinfo (LDAP *Id, int fries, int timeout) ;

Id LDAP pointer returned from a previous call to
cldap_ open(3LDAP).
tries Maximum number of times to send a request.
timeout Initial time, in seconds, to wait before re-sending a request.

The cldap setretryinfo () function is used to set the CLDAP request
retransmission behavior for future cldap search s(3LDAP) calls. The default
values (set by cldap_open(3LDAP)) are 4 tries and 3 seconds between tries. See
cldap_search_s(3LDAP) for a complete description of the retransmission algorithm
used.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNW.Gsl (32-bit)
SUNW.Gslx (64-bit)

Interface Stability Evolving

1dap(BLDAP), cldap open(3LDAP), cldap search_ s(3LDAP),
cldap close(BLDAP), attributes(b)

40 man pages section 3: Networking Library Functions ¢ Last Revised 27 Jan 2002

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

connect(3SOCKET)

connect — initiate a connection on a socket

ce [flag ... 1 file ... -lsocket -1lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int connect (int s, const struct sockaddr *name, int namelen) ;

The parameter s is a socket. If it is of type SOCK_DGRAM, connect () specifies the peer
with which the socket is to be associated; this address is the address to which
datagrams are to be sent if a receiver is not explicitly designated; it is the only address
from which datagrams are to be received. If the socket s is of type SOCK STREAM,
connect () attempts to make a connection to another socket. The other socket is
specified by name. name is an address in the communication space of the socket. Each
communication space interprets the name parameter in its own way. If s is not bound,
then it will be bound to an address selected by the underlying transport provider.
Generally, stream sockets may successfully connect () only once; datagram sockets
may use connect () multiple times to change their association. Datagram sockets
may dissolve the association by connecting to a null address.

If the connection or binding succeeds, 0 is returned. Otherwise, —1 is returned and sets
errno to indicate the error.

The call fails if:

EACCES Search permission is denied for a component of the
path prefix of the pathname in name.

EADDRINUSE The address is already in use.

EADDRNOTAVAIL The specified address is not available on the remote
machine.

EAFNOSUPPORT Addpresses in the specified address family cannot be
used with this socket.

EALREADY The socket is non-blocking and a previous connection
attempt has not yet been completed.

EBADF s is not a valid descriptor.

ECONNREFUSED The attempt to connect was forcefully rejected. The
calling program should close(2) the socket descriptor,
and issue another socket(3SOCKET) call to obtain a
new descriptor before attempting another connect ()
call.

EINPROGRESS The socket is non-blocking and the connection cannot
be completed immediately. It is possible to select(3C)
for completion by selecting the socket for writing.

EINTR The connection attempt was interrupted before any

data arrived by the delivery of a signal.

Networking Library Functions 41

connect(3SOCKET)

EINVAL namelen is not the size of a valid address for the
specified address family.

EIO An I/0O error occurred while reading from or writing to
the file system.

EISCONN The socket is already connected.

ELOOP Too many symbolic links were encountered in
translating the pathname in name.

ENETUNREACH The network is not reachable from this host.

ENOENT A component of the path prefix of the pathname in
name does not exist.

ENOENT The socket referred to by the pathname in name does
not exist.

ENOSR There were insufficient STREAMS resources available to
complete the operation.

ENXIO The server exited before the connection was complete.

ETIMEDOUT Connection establishment timed out without
establishing a connection.

EWOULDBLOCK The socket is marked as non-blocking, and the

requested operation would block.

The following errors are specific to connecting names in the UNIX domain. These
errors may not apply in future versions of the UNIX IPC domain.

ENOTDIR A component of the path prefix of the pathname in
name is not a directory.

ENOTSOCK s is not a socket.

ENOTSOCK name is not a socket.

EPROTOTYPE The file referred to by name is a socket of a type other

than type s (for example, s is a SOCK_DGRAM socket,
while name refers to a SOCK_STREAM socket).

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:
ATTRIBUTE TYPE ATTRIBUTE VALUE
MT-Level Safe
SEE ALSO | close(2), accept(3SOCKET), get sockname(3SOCKET), select(3C),

socket(3SOCKET), socket(B3HEAD), attributes(5)

42 man pages section 3: Networking Library Functions ¢ Last Revised 11 Jan 2002

NAME
SYNOPSIS

DESCRIPTION

connect(3XNET)

connect — connect a socket

ce [flag ... 1 file ... -lxnet [library ...]

#include <sys/socket.h>

int connect (int socket, const struct sockaddr *address, socklen t
address_len) ;

The connect () function requests a connection to be made on a socket. The function
takes the following arguments:

socket Specifies the file descriptor associated with the socket.

address Points to a sockaddr structure containing the peer address. The
length and format of the address depend on the address family of
the socket.

address_len Specifies the length of the sockaddr structure pointed to by the

address argument.

If the socket has not already been bound to a local address, connect () will bind it to
an address which, unless the socket’s address family is AF_UNIX, is an unused local
address.

If the initiating socket is not connection-mode, then connect () sets the socket’s peer
address, but no connection is made. For SOCK_DGRAM sockets, the peer address
identifies where all datagrams are sent on subsequent send(3XNET) calls, and limits
the remote sender for subsequent recv(3XNET) calls. If address is a null address for
the protocol, the socket’s peer address will be reset.

If the initiating socket is connection-mode, then connect () attempts to establish a
connection to the address specified by the address argument.

If the connection cannot be established immediately and O_NONBLOCK is not set for
the file descriptor for the socket, connect () will block for up to an unspecified
timeout interval until the connection is established. If the timeout interval expires
before the connection is established, connect () will fail and the connection attempt
will be aborted. If connect () is interrupted by a signal that is caught while blocked
waiting to establish a connection, connect () will fail and set errno to EINTR, but
the connection request will not be aborted, and the connection will be established
asynchronously.

If the connection cannot be established immediately and O_NONBLOCK is set for the
file descriptor for the socket, connect () will fail and set errno to EINPROGRESS,
but the connection request will not be aborted, and the connection will be established
asynchronously. Subsequent calls to connect () for the same socket, before the
connection is established, will fail and set errno to EALREADY.

When the connection has been established asynchronously, select(3C) and pol1(2)
will indicate that the file descriptor for the socket is ready for writing.

Networking Library Functions 43

connect(3XNET)

The socket in use may require the process to have appropriate privileges to use the
connect () function.

USAGE | If connect () fails, the state of the socket is unspecified. Portable applications should
close the file descriptor and create a new socket before attempting to reconnect.

RETURN VALUES | Upon successful completion, connect () returns 0. Otherwise, —1 is returned and
errno is set to indicate the error.

ERRORS | The connect () function will fail if:

EADDRNOTAVAIL The specified address is not available from the local
machine.

EAFNOSUPPORT The specified address is not a valid address for the
address family of the specified socket.

EALREADY A connection request is already in progress for the
specified socket.

EBADF The socket argument is not a valid file descriptor.

ECONNREFUSED The target address was not listening for connections or
refused the connection request.

EFAULT The address parameter can not be accessed.

EINPROGRESS O_NONBLOCK is set for the file descriptor for the

socket and the connection cannot be immediately
established; the connection will be established
asynchronously.

EINTR The attempt to establish a connection was interrupted
by delivery of a signal that was caught; the connection
will be established asynchronously.

EISCONN The specified socket is connection-mode and is already
connected.

ENETUNREACH No route to the network is present.

ENOTSOCK The socket argument does not refer to a socket.

EPROTOTYPE The specified address has a different type than the
socket bound to the specified peer address.

ETIMEDOUT The attempt to connect timed out before a connection
was made.

If the address family of the socket is AF_UNIX, then connect () will fail if:

EIO An I/0O error occurred while reading from or writing to
the file system.

44 man pages section 3: Networking Library Functions * Last Revised 8 May 1998

ATTRIBUTES

SEE ALSO

ELOOP

ENAMETOOLONG

ENOENT

ENOTDIR

connect(3XNET)

Too many symbolic links were encountered in
translating the pathname in address.

A component of a pathname exceeded NAME MAX
characters, or an entire pathname exceeded PATH MAX
characters.

A component of the pathname does not name an
existing file or the pathname is an empty string.

A component of the path prefix of the pathname in
address is not a directory.

The connect () function may fail if:

EACCES

EADDRINUSE

ECONNRESET

EHOSTUNREACH

EINVAL

ENAMETOOLONG

ENETDOWN

ENOBUFS

ENOSR

EOPNOTSUPP

Search permission is denied for a component of the
path prefix; or write access to the named socket is
denied.

Attempt to establish a connection that uses addresses
that are already in use.

Remote host reset the connection request.

The destination host cannot be reached (probably
because the host is down or a remote router cannot
reach it).

The address_len argument is not a valid length for the
address family; or invalid address family in sockaddr
structure.

Pathname resolution of a symbolic link produced an
intermediate result whose length exceeds PATH_MAX.

The local interface used to reach the destination is
down.

No buffer space is available.

There were insufficient STREAMS resources available
to complete the operation.

The socket is listening and can not be connected.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

MT-Safe

close(2), poll(2), accept(3XNET), bind(3XNET), get sockname(3XNET),
select(3C), send(3XNET), shutdown(3XNET), socket(3XNET), attributes(5)

Networking Library Functions 45

dial(3NSL)

46

NAME
SYNOPSIS

DESCRIPTION

dial — establish an outgoing terminal line connection

ce [flag ... 1 file ... -1nsl [library ...]
#include <dial.h>

int dial (CALL call) ;

void undial (int fd) ;

dial () returns a file-descriptor for a terminal line open for read /write. The argument
to dial () is a CALL structure (defined in the header <dial.hs>).

When finished with the terminal line, the calling program must invoke undial () to
release the semaphore that has been set during the allocation of the terminal device.

CALL is defined in the header <dial.h> and has the following members:

struct termio *attr; /* pointer to termio attribute struct */

int baud; /* transmission data rate */

int speed; /* 212A modem: low=300, high=1200 */

char *1line; /* device name for out-going line */

char *telno; /* pointer to tel-no digits string */

int modem; /* specify modem control for direct lines */
char *device; /* unused */

int dev_len; /* unused */

The CALL element speed is intended only for use with an outgoing dialed call, in
which case its value should be the desired transmission baud rate. The CALL element
baud is no longer used.

If the desired terminal line is a direct line, a string pointer to its device-name should
be placed in the 1ine element in the CALL structure. Legal values for such terminal
device names are kept in the Devices file. In this case, the value of the baud element
should be set to -1. This value will cause dial to determine the correct value from the
<Devices> file.

The telno element is for a pointer to a character string representing the telephone
number to be dialed. Such numbers may consist only of these characters:

0-9 dial 0-9
* dail *
dail

= wait for secondary dial tone

- delay for approximately 4 seconds

The CALL element modem is used to specify modem control for direct lines. This
element should be non-zero if modem control is required. The CALL element attr is a
pointer to a termio structure, as defined in the header <termio.h>. A NULL value

man pages section 3: Networking Library Functions ¢ Last Revised 30 Dec 1996

RETURN VALUES

FILES

ATTRIBUTES

SEE ALSO

NOTES

dial(3NSL)

for this pointer element may be passed to the dial function, but if such a structure is
included, the elements specified in it will be set for the outgoing terminal line before
the connection is established. This setting is often important for certain attributes such
as parity and baud-rate.

The CALL elements device and dev_1len are no longer used. They are retained in the
CALL structure for compatibility reasons.

On failure, a negative value indicating the reason for the failure will be returned.
Mnemonics for these negative indices as listed here are defined in the header
<dial.h>.

INTRPT -1 /* interrupt occurred */

D_HUNG -2 /* dialer hung (no return from write) */
NO_ANS -3 /* no answer within 10 seconds */

ILL BD -4 /* illegal baud-rate */

A PROB -5 /* acu problem (open() failure) */

L _PROB -6 /* line problem (open() failure) */
NO_Ldv -7 /* can’t open Devices file */

DV_NT A -8 /* requested device not available */
DV_NT K -9 /* requested device not known */
NO_BD A -10 /* no device available at requested baud */
NO_BD_K -11 /* no device known at requested baud */
DV_NT E -12 /* requested speed does not match */
BAD SYS -13 /* system not in Systems file*/
/etc/uucp/Devices

/etc/uucp/Systems

/var/spool/uucp/LCK. . tty-device

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

uucp(1C), alarm(2), read(2), write(2), attributes(5), termio(7I)

Including the header <dial.h> automatically includes the header <termio.h>. An
alarm(2) system call for 3600 seconds is made (and caught) within the dial module
for the purpose of “touching” the LCK. . file and constitutes the device allocation
semaphore for the terminal device. Otherwise, uucp(1C) may simply delete the LCK. .
entry on its 90-minute clean-up rounds. The alarm may go off while the user program
isin a read(2) or write(2) function, causing an apparent error return. If the user
program expects to be around for an hour or more, error returns from read () s should
be checked for (errno==EINTR), and the read () possibly reissued.

This interface is unsafe in multithreaded applications. Unsafe interfaces should be
called only from the main thread.

Networking Library Functions 47

doconfig(3NSL)
NAME
SYNOPSIS

DESCRIPTION

doconfig — execute a configuration script

ce [flag ... 1 file ... -1nsl [library ...]
include <sac.h>

int doconfig (int fildes, char *script, long rflag) ;

doconfig () is a Service Access Facility library function that interprets the
configuration scripts contained in the files </etc/saf /pmtag/ _configs,
</etc/saf/ sysconfigs,and </etc/saf/pmtag/svctag>, where pmtag specifies
the tag associated with the port monitor, and suctag specifies the service tag associated
with a given service. See pmadm(1M) and sacadm(1M).

script is the name of the configuration script; fildes is a file descriptor that designates
the stream to which stream manipulation operations are to be applied; rflag is a
bitmask that indicates the mode in which script is to be interpreted. If rflag is zero,
all commands in the configuration script are eligible to be interpreted. If rflag has the
NOASSIGN bit set, the assign command is considered illegal and will generate an
error return. If rflag has the NORUN bit set, the run and runwait commands are
considered illegal and will generate error returns.

The configuration language in which script is written consists of a sequence of
commands, each of which is interpreted separately. The following reserved keywords
are defined: assign, push, pop, runwait, and run. The comment character is #;
when a # occurs on a line, everything from that point to the end of the line is ignored.
Blank lines are not significant. No line in a command script may exceed 1024
characters.

assign variable=value
Used to define environment variables. variable is the name of the environment
variable and value is the value to be assigned to it. The value assigned must be a
string constant; no form of parameter substitution is available. value may be quoted.
The quoting rules are those used by the shell for defining environment variables.
assign will fail if space cannot be allocated for the new variable or if any part of
the specification is invalid.

push modulel[, module2, module3, . . .]
Used to push STREAMS modules onto the stream designated by fildes. modulel is
the name of the first module to be pushed, module? is the name of the second
module to be pushed, etc. The command will fail if any of the named modules
cannot be pushed. If a module cannot be pushed, the subsequent modules on the
same command line will be ignored and modules that have already been pushed
will be popped.

pop [module]
Used to pop STREAMS modules off the designated stream. If pop is invoked with
no arguments, the top module on the stream is popped. If an argument is given,
modules will be popped one at a time until the named module is at the top of the
stream. If the named module is not on the designated stream, the stream is left as it

48 man pages section 3: Networking Library Functions ¢ Last Revised 30 Dec 1996

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

doconfig(3NSL)

was and the command fails. If module is the special keyword ALL, then all modules
on the stream will be popped. Note that only modules above the topmost driver are

affected.

runwait command

The runwait command runs a command and waits for it to complete. command is
the pathname of the command to be run. The command is run with /usr/bin/sh

-c prepended to it; shell scripts may thus be executed from configuration scripts.

The runwait command will fail if command cannot be found or cannot be

executed, or if command exits with a non-zero status.

run command

The run command is identical to runwait except that it does not wait for

command to complete. command is the pathname of the command to be run. run
will not fail unless it is unable to create a child process to execute the command.

Although they are syntactically indistinguishable, some of the commands available to

run and runwait are interpreter built-in commands. Interpreter built-ins are used
when it is necessary to alter the state of a process within the context of that process.

The doconfig () interpreter built-in commands are similar to the shell special
commands and, like these, they do not spawn another process for execution. See sh(l).

The built-in commands are:
cd

ulimit

umask

doconfig () returns 0 if the script was interpreted successfully. If a command in the

script fails, the interpretation of the script ceases at that point and a positive number is
returned; this number indicates which line in the script failed. If a system error occurs,
a value of —1 is returned. When a script fails, the process whose environment was

being established should not be started.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

Unsafe

sh(1), pmadm(1M), sacadm(1M), attributes(5)

This interface is unsafe in multithreaded applications. Unsafe interfaces should be

called only from the main thread.

Networking Library Functions

49

endhostent(3XNET)
NAME

SYNOPSIS

DESCRIPTION

USAGE

endhostent, gethostbyaddr, gethostbyname, gethostent, sethostent — network host
database functions

ce [flag ... 1 file ... -lxnet [library ...]
#include <netdb.h>
extern int h_errno;

void endhostent (void) ;

struct hostent *gethostbyaddr (const void *addr, size t len, int
type) ;
struct hostent *gethostbyname (const char *name) ;

struct hostent *gethostent (void) ;

void sethostent (int stayopen) ;

The gethostent (), gethostbyaddr (), and gethostbyname () functions each
return a pointer to a hostent structure, the members of which contain the fields of an
entry in the network host database.

The gethostent () function reads the next entry of the database, opening a
connection to the database if necessary.

The gethostbyaddr () function searches the database and finds an entry which
matches the address family specified by the type argument and which matches the
address pointed to by the addr argument, opening a connection to the database if
necessary. The addr argument is a pointer to the binary-format (that is, not
null-terminated) address in network byte order, whose length is specified by the len
argument. The datatype of the address depends on the address family. For an address
of type AF_INET, thisis an in addr structure, defined in <netinet/in.h>. For an
address of type AF_INETS, there is an in6 addr structure defined in
<netinet/in.h>.

The gethostbyname () function searches the database and finds an entry which
matches the host name specified by the name argument, opening a connection to the
database if necessary. If name is an alias for a valid host name, the function returns
information about the host name to which the alias refers, and name is included in the
list of aliases returned.

The sethostent () function opens a connection to the network host database, and
sets the position of the next entry to the first entry. If the stayopen argument is
non-zero, the connection to the host database will not be closed after each call to
gethostent () (either directly, or indirectly through one of the other gethost* ()
functions).

The endhostent () function closes the connection to the database.

The gethostent (), gethostbyaddr (), and gethostbyname () functions may
return pointers to static data, which may be overwritten by subsequent calls to any of
these functions.

50 man pages section 3: Networking Library Functions ¢ Last Revised 8 Nov 1999

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

endhostent(3XNET)

These functions are generally used with the Internet address family.

On successful completion, gethostbyaddr (), gethostbyname () and
gethostent () return a pointer to a hostent structure if the requested entry was
found, and a null pointer if the end of the database was reached or the requested entry
was not found. Otherwise, a null pointer is returned.

On unsuccessful completion, gethostbyaddr () and gethostbyname () functions
set /i_errno to indicate the error.

No errors are defined for endhostent (), gethostent () and sethostent ().

The gethostbyaddr () and gethostbyname () functions will fail in the following
cases, setting hi_errno to the value shown in the list below. Any changes to errno are
unspecified.

HOST NOT FOUND No such host is known.

NO_DATA The server recognised the request and the name but no
address is available. Another type of request to the
name server for the domain might return an answer.

NO_RECOVERY An unexpected server failure occurred which can not
be recovered.

TRY_AGAIN A temporary and possibly transient error occurred,
such as a failure of a server to respond.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

endservent(3XNET), htonl(3XNET), inet addr(3XNET), attributes(5)

Networking Library Functions 51

endnetent(3XNET)
NAME

SYNOPSIS

DESCRIPTION

USAGE

RETURN VALUES

ERRORS

endnetent, getnetbyaddr, getnetbyname, getnetent, setnetent — network database
functions

ce [flag ... 1 file ... -lxnet [library ...]
#include <netdb.h>

void endnetent (void) ; struct netent *getnetbyaddr (in_addr_t net,
int type) ;

struct netent *getnetbyname (const char *name) ;
struct netent *getnetent (void) ;

void setnetent (int stayopen) ;

The getnetbyaddr (), getnetbyname () and getnetent (), functions each return
a pointer to a netent structure, the members of which contain the fields of an entry in
the network database.

The getnetent () function reads the next entry of the database, opening a
connection to the database if necessary.

The getnetbyaddr () function searches the database from the beginning, and finds
the first entry for which the address family specified by type matches the
n_addrtype member and the network number net matches the n_net member,
opening a connection to the database if necessary. The net argument is the network
number in host byte order.

The getnetbyname () function searches the database from the beginning and finds
the first entry for which the network name specified by name matches the n_name
member, opening a connection to the database if necessary.

The setnetent () function opens and rewinds the database. If the stayopen argument
is non-zero, the connection to the net database will not be closed after each call to
getnetent () (either directly, or indirectly through one of the other getnet* ()
functions).

The endnetent () function closes the database.

The getnetbyaddr (), getnetbyname () and getnetent (), functions may return
pointers to static data, which may be overwritten by subsequent calls to any of these
functions.

These functions are generally used with the Internet address family.

On successful completion, getnetbyaddr (), getnetbyname () and getnetent (),
return a pointer to a netent structure if the requested entry was found, and a null
pointer if the end of the database was reached or the requested entry was not found.
Otherwise, a null pointer is returned.

No errors are defined.

52 man pages section 3: Networking Library Functions ¢ Last Revised 8 May 1998

ATTRIBUTES

SEE ALSO

endnetent(3XNET)

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

Unsafe

attributes(b)

Networking Library Functions

53

endprotoent(3XNET)
NAME

SYNOPSIS

DESCRIPTION

USAGE

RETURN VALUES

ERRORS

ATTRIBUTES

endprotoent, getprotobynumber, getprotobyname, getprotoent, setprotoent — network
protocol database functions

ce [flag ... 1 file ... -lxnet [library ...]
#include <netdb.h>

void endprotoent (void) ;

struct protoent *getprotobyname (const char *name) ;
struct protoent *getprotobynumber (int profo) ;
struct protoent *getprotoent (void) ;

void setprotoent (int stayopen) ;

The getprotobyname (), getprotobynumber () and getprotoent (), functions
each return a pointer to a protoent structure, the members of which contain the
fields of an entry in the network protocol database.

The getprotoent () function reads the next entry of the database, opening a
connection to the database if necessary.

The getprotobyname () function searches the database from the beginning and
finds the first entry for which the protocol name specified by name matches the
p_name member, opening a connection to the database if necessary.

The getprotobynumber () function searches the database from the beginning and
finds the first entry for which the protocol number specified by number matches the
p_proto member, opening a connection to the database if necessary.

The setprotoent () function opens a connection to the database, and sets the next
entry to the first entry. If the stayopen argument is non-zero, the connection to the
network protocol database will not be closed after each call to getprotoent ()
(either directly, or indirectly through one of the other getproto* () functions).

The endprotoent () function closes the connection to the database.

The getprotobyname (), getprotobynumber () and getprotoent () functions
may return pointers to static data, which may be overwritten by subsequent calls to
any of these functions.

These functions are generally used with the Internet address family.

On successful completion, getprotobyname (), getprotobynumber () and
getprotoent () functions return a pointer to a protoent structure if the requested
entry was found, and a null pointer if the end of the database was reached or the
requested entry was not found. Otherwise, a null pointer is returned.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

54 man pages section 3: Networking Library Functions * Last Revised 8 May 1998

SEE ALSO

endprotoent(3XNET)

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

Unsafe

attributes(5)

Networking Library Functions

55

endservent(3XNET)
NAME

SYNOPSIS

DESCRIPTION

USAGE

endservent, getservbyport, getservbyname, getservent, setservent — network services
database functions

ce [flag ... 1 file ... -lxnet [library ...]
#include <netdb.h>

void endservent (void) ;

struct servent *getservbyname (const char *name, const char *proto) ;
struct servent *getservbyport (int port, const char *proto) ;

struct servent *getservent (void) ;

void setservent (int stayopen) ;

The getservbyname (), getservbyport () and getservent () functions each
return a pointer to a servent structure, the members of which contain the fields of an
entry in the network services database.

The getservent () function reads the next entry of the database, opening a
connection to the database if necessary.

The getservbyname () function searches the database from the beginning and finds
the first entry for which the service name specified by name matches the s_name
member and the protocol name specified by proto matches the s_proto member,
opening a connection to the database if necessary. If proto is a null pointer, any value of
the s_proto member will be matched.

The getservbyport () function searches the database from the beginning and finds
the first entry for which the port specified by port matches the s_port member and
the protocol name specified by proto matches the s_proto member, opening a
connection to the database if necessary. If proto is a null pointer, any value of the
s_proto member will be matched. The port argument must be in network byte order.

The setservent () function opens a connection to the database, and sets the next
entry to the first entry. If the stayopen argument is non-zero, the net database will not
be closed after each call to the getservent () function (either directly, or indirectly
through one of the other getserv* () functions).

The endservent () function closes the database.

The port argument of get servbyport () need not be compatible with the port values
of all address families.

The getservent (), getservbyname () and getservbyport () functions may
return pointers to static data, which may be overwritten by subsequent calls to any of
these functions.

These functions are generally used with the Internet address family.

56 man pages section 3: Networking Library Functions ¢ Last Revised 8 May 1998

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

endservent(3XNET)

On successful completion, get servbyname (), getservbyport () and

getservent () return a pointer to a servent structure if the requested entry was

found, and a null pointer if the end of the database was reached or the requested entry

was not found. Otherwise, a null pointer is returned.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

Unsafe

endhostent(3XNET), endprotoent(3XNET), htonl(3XNET), inet addr(3XNET),

attributes(b)

Networking Library Functions

57

ethers(3SOCKET)
NAME

SYNOPSIS

DESCRIPTION

ethers, ether_ntoa, ether_aton, ether_ntohost, ether_hostton, ether_line — Ethernet
address mapping operations

ce [flag ... 1 file ... -1lsocket -1lnsl [library ...]
#include <sys/types.h>

#include <sys/socket.h>

#include <net/if.h>

#include <netinet/in.h>

#include <netinet/if ether.h>

char *ether ntoa(struct ether addr *e);
struct ether addr *ether aton (char *s);
int ether ntohost (char *hostname, struct ether addr *e);
int ether hostton(char *hostname, struct ether addr *e);

int ether line(char *I, struct ether addr *e, char *hostname) ;

These routines are useful for mapping 48 bit Ethernet numbers to their ASCII
representations or their corresponding host names, and vice versa.

The function ether ntoa () converts a 48 bit Ethernet number pointed to by e to its
standard ASCII representation; it returns a pointer to the ASCII string. The
representation is of the form x : x : x : x : x : x where x is a hexadecimal number
between 0 and ££. The function ether aton () converts an ASCII string in the
standard representation back to a 48 bit Ethernet number; the function returns NULL if
the string cannot be scanned successfully.

The function ether_ntohost () maps an Ethernet number (pointed to by e) to its
associated hostname. The string pointed to by hostname must be long enough to hold
the hostname and a NULL character. The function returns zero upon success and
non-zero upon failure. Inversely, the function ether hostton () maps a hostname
string to its corresponding Ethernet number; the function modifies the Ethernet
number pointed to by e. The function also returns zero upon success and non-zero
upon failure. In order to do the mapping, both these functions may lookup one or
more of the following sources: the ethers file, the NIS maps “ethers.byname’ and
“ethers.byaddr’” and the NIS+ table “ethers”. The sources and their lookup order are
specified in the /etc/nsswitch. conf file (see nsswitch. conf(4) for details).

The function ether_line () scans a line (pointed to by /) and sets the hostname and
the Ethernet number (pointed to by e). The string pointed to by hostname must be
long enough to hold the hostname and a NULL character. The function returns zero
upon success and non-zero upon failure. The format of the scanned line is described
by ethers(4).

58 man pages section 3: Networking Library Functions ¢ Last Revised 30 Dec 1996

FILES

ATTRIBUTES

SEE ALSO

BUGS

/etc/ethers

/etc/nsswitch.conf

ethers(3SOCKET)

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

MT-Safe

ethers(4), nsswitch.conf(4), attributes(b)

Programs that call ether_hostton () or ether ntohost () routines cannot be
linked statically since the implementation of these routines requires dynamic linker
functionality to access shared objects at run time.

Networking Library Functions 59

fn_attr_bind(3XFN)
NAME | fn_attr_bind — bind a reference to a name and associate attributes with named object
SYNOPSIS | #include <xfn/xfn.h>

int fn attr bind (FN ctx t *cfx, const FN composite name t *name,
const FN ref t *ref, const FN_attrset t *aftrs, unsigned int
exclusive, FN_status_t *status) ;

DESCRIPTION | This operation binds the supplied reference ref to the supplied composite name name
relative to ctx, and associates the attributes specified in attrs with the named object.
The binding is made in the target context, that is, that context named by all but the
terminal atomic part of name. The operation binds the terminal atomic name to the
supplied reference in the target context. The target context must already exist.

The value of exclusive determines what happens if the terminal atomic part of the
name is already bound in the target context. If exclusive is nonzero and name is already
bound, the operation fails. If exclusive is 0, the new binding replaces any existing
binding, and, if attrs is not NULL, attrs replaces any existing attributes associated with
the named object. If attrs is NULL and exclusive is 0, any existing attributes associated
with the named object are left unchanged.

RETURN VALUES | fn_attr bind () returns 1 upon success, 0 upon failure.

ERRORS | fn_attr bind() sets status as described in FN_status_t(3XFN) and
xfn_status_codes(3XFN). Of special relevance for this operation is the following
status code:

FN E NAME IN USE The supplied name is already in use.

USAGE | The value of ref cannot be NULL. If the intent is to reserve a name using
fn_attr bind(), a reference containing no address should be supplied. This
reference may be name service-specific or it may be the conventional NULL reference.

If multiple sources are updating a reference or attributes associated with a named
object, they must synchronize amongst each other when adding, modifying, or
removing from the address list of a bound reference, or manipulating attributes
associated with the named object.

ATTRIBUTES | See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO | FN_composite name_ t(3XFN), FN_ctx t(3XFN), FN_ref t(3XEN),
FN_status_ t(3XFN), fn_ctx_ bind(3XFN), fn_ctx_lookup(3XFN),

fn ctx _unbind(3XEN), xfn attributes(3XFN), xfn status_ codes(3XFN),
attributes(5)

60 man pages section 3: Networking Library Functions ¢ Last Revised 22 Nov 1996

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

fn_attr_create_subcontext(3XFN)

fn_attr_create_subcontext — create a subcontext in a context and associate attributes
with newly created context

#include <xfn/xfn.h>

FN ref t *fn attr create subcontext (FN_ctx t *cfx, const
FN_composite name_t *name, const FN_attrset t *attrs,
FN_ status_t *status) ;

This operation creates a new XEN context of the same type as the target context, that
is, that context named by all but the terminal atomic component of name, and binds it
to the supplied composite name. In addition, attributes given in attrs are associated
with the newly created context.

The target context must already exist. The new context is created and bound in the
target context using the terminal atomic name in name. The operation returns a
reference to the newly created context.

fn attr create subcontext () returns a reference to the newly created context;
if the operation fails, it returns a NULL pointer.

fn attr create subcontext () sets status as described in FN_status_t(3XFN)
and xfn_status_codes(3XFN). Of special relevance for this operation is the
following status code:

FN_E NAME IN USE The terminal atomic name already exists in the target
context.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_composite name t(3XFN), FN ctx t(3XFN), FN _ref t(3XFN),
FN_status_ t(3XFN), fn_attr bind(3XFN), fn_ctx bind(3XFN),

fn ctx _create subcontext(3XFN), fn_ctx_destroy subcontext(3XEN),
fn_ctx lookup(3XFN), xfn attributes(3XEN), xfn_status_codes(3XFN),
attributes(b)

Networking Library Functions 61

fn_attr_ext_search(3XFN)

NAME

SYNOPSIS

DESCRIPTION

fn_attr_ext_search, FN_ext_searchlist_t, fn_ext_searchlist_next,
fn_ext_searchlist_destroy — search for names in the specified context(s) whose
attributes satisfy the filter

#include <xfn/xfn.h>

FN ext searchlist t *fn attr ext search(FN ctx t *cfx, const
FN _composite name t *name, const FN search control t *control,
const FN search filter t *filter, FN status t *status) ;

FN composite name t *fn ext searchlist next (FN ext searchlist t
*esl, FN ref t **returned_ref, FN attrset t x*returned_attrs,
FN status_t *status) ;

void fn_ext searchlist destroy(FN _ext searchlist t *esl);

This set of operations is used to list names of objects whose attributes satisfy the filter
expression. The references to which these names are bound and specified attributes
and their values may also be returned.

control encapsulates the option settings for the search. These options are:

® the scope of the search

m whether XFN links are followed

® 3 limit on the number of names returned

m whether references and specific attributes associated with the named objects that

satisfy the filter are returned

The scope of the search is one of:

® the object named name relative to the context ctx
m the context named name relative to the context ctx
m the context named name relative to the context ctx,
and its subcontexts
or
m the context named name relative to the context ctx, and a context

implementation-defined set of subcontexts

If the value of control is 0, default control option settings are used. The default settings
are:

scope is search named context

links are not followed

all names of objects that satisfy the filter are returned
references and attributes are not returned

The FN_search control_t typeis described in FN_search control t(3XEN).

62 man pages section 3: Networking Library Functions ¢ Last Revised 22 Nov 1996

RETURN VALUES

ERRORS

fn_attr_ext_search(3XFN)

The filter expression filter in fn_attr_ext_search () is evaluated against the
attributes of the objects bound in the scope of the search. The filter evaluates to either
TRUE or FALSE. The names and, optionally, the references and attributes of objects
whose attributes satisfy the filter are enumerated. If the value of filter is 0, all names
within the search scope are enumerated. The FN_search_filter_t typeis
described in FN_search filter t(3XFN).

The call to fn_attr ext search() initiates the search process. It returns a handle
toan FN_ext_searchlist_t object that is used to enumerate the names of the
objects that satisfy the filter.

The operation fn_ext searchlist next () returns the next name in the
enumeration identified by esl; it also updates es! to indicate the state of the
enumeration. If the reference to which the name is bound was requested, it is returned
in returned_ref. Requested attributes associated with the name are returned in
returned_attrs; each attribute consists of an attribute identifier, syntax, and value(s).
Successive calls to fn_ext searchlist next () using es! return successive names
and, optionally, their references and attributes, in the enumeration; these calls further
update the state of the enumeration.

The names that are returned are composite names, to be resolved relative to the
starting context for the search. This starting context is the context named name relative
to ctx unless the scope of the search is only the named object. If the scope of the search
is only the named object, the terminal atomic name in name is returned.

fn_ext_searchlist_destroy () releases resources used during the enumeration.
This may be invoked at any time to terminate the enumeration.

fn attr ext search() returns a pointer to an FN ext searchlist t objectif
the search is successfully initiated; it returns a NULL pointer if the search cannot be
initiated or if no named object with attributes whose values satisfy the filter expression
is found.

fn ext searchlist next () returns a pointer to an FN_composite name t
object (see FN_composite name_t(3XFN)) that is the next name in the enumeration;
it returns a NULL pointer if no more names can be returned. If returned_attrs is a NULL
pointer, no attributes are returned; otherwise, returned_attrs contains the attributes
associated with the named object, as specified in the control parameter to

fn attr ext search().If returned_ref is a NULL pointer, no reference is returned;
otherwise, if control specified the return of the reference of the named object, that
reference is returned in refurned_ref.

In the case of a failure, these operations return in the status argument a code indicating
the nature of the failure.

If successful, fn_attr ext search() returns a pointer to an
FN ext searchlist t object and sets status to FN_ SUCCESS.

fn_attr ext_search() returns a NULL pointer when no more names can be
returned. status is set in the following way:

Networking Library Functions 63

fn_attr_ext_search(3XFN)

FN_SUCCESS

FN_E NOT A CONTEXT

FN_E SEARCH INVALID FILTER

FN_E SEARCH INVALID OPTION

FN_E SEARCH INVALID OP

FN_E ATTR NO PERMISSION

FN_E INVALID ATTR VALUE

xfn_ status_codes(3XFN).

is set in the following way:

FN_SUCCESS

FN_E ATTR NO PERMISSION

FN_E_INVALID ATTR IDENTIFIER

FN_E NO SUCH ATTRIBUTE

FN_E INSUFFICIENT RESOURCES

A named object could not be found whose
attributes satisfied the filter expression.

The object named for the start of the search
was not a context and the search scope was
the given context or the given context and
its subcontexts.

The filter could not be evaluated TRUE or
FALSE, or there was some other problem
with the filter.

A supplied search control option could not
be supported.

An operator in the filter expression is not
supported or, if the operator is an extended
operator, the number of types of arguments
supplied does not match the signature of
the operation.

The caller did not have permission to read
one or more of the attributes specified in the
filter.

A value type in the filter did not match the
syntax of the attribute against which it was
being evaluated.

Other status codes are possible as described in FN_status_t(3XFN) and

Each successful call to fn_ext searchlist next () returns a name and,
optionally, its reference in returned_ref and requested attributes in returned_attrs. status

All requested attributes were returned
successfully with the name.

The caller did not have permission to read
one or more of the requested attributes.

A requested attribute identifier was notin a
format acceptable to the naming system, or
its contents were not valid for the format
specified.

The named object did not have one of the
requested attributes.

Insufficient resources are available to return
all the requested attributes and their values.

64 man pages section 3: Networking Library Functions ¢ Last Revised 22 Nov 1996

USAGE

fn_attr_ext_search(3XFN)

FN_E ATTR NO PERMISSION

FN_E INVALID ATTR IDENTIFIER

FN_E NO SUCH ATTRIBUTE

FN_E INSUFFICIENT RESOURCES These indicate that some of the requested
attributes may have been returned in
returned_attrs but one or more of them could
not be returned. Use fn_attr get(3XFN)
or fn_attr multi get(3XFN) to
discover why these attributes could not be
returned.

If fn ext searchlist next () returns a name, it can be called again to get the
next name in the enumeration.

fn ext searchlist next () returns a NULL pointer if no more names can be
returned. status is set in the following way:

FN_SUCCESS The search has completed successfully.

FN _E PARTIAL RESULT The enumeration is not yet complete but
cannot be continued.

FN_E ATTR NO_PERMISSION The caller did not have permission to read
one or more of the attributes specified in the
filter.

FN E INVALID ENUM HANDLE The supplied enumeration handle was not

valid. Possible reasons could be that the
handle was from another enumeration, or
the context being enumerated no longer
accepts the handle (due to such events as
handle expiration or updates to the
context).

Other status codes are possible as described in FN_status_t(3XFN) and
xfn status_codes(3XFN).

The search performed by fn_attr_ ext_search() is not ordered in any way,
including the traversal of subcontexts. The names enumerated using

fn ext searchlist next () are not ordered in any way. Furthermore, there is no
guarantee that any two series of enumerations with the same arguments to
fn_attr ext_ search() will return the names in the same order.

XEN links encountered during the resolution of name are followed, regardless of the
follow links control setting, and the search starts at the final named object or context.

If control specifies that the search should follow links, XEN link names encountered
during the search are followed and the terminal named object is searched. If the
terminal named object is bound to a context and the scope of the search includes
subcontexts, that context and its subcontexts are also searched. For example, if aname

Networking Library Functions 65

fn_attr_ext_search(3XFN)

EXAMPLES

is bound to an XFN link, /name, in a context within the scope of the search, and aname
is returned by fn_ext_searchlist_next (), this means that the object identified
by Iname satisfied the filter expression. aname is returned instead of [name because
aname can always be named relative to the starting context for the search.

If control specifies that the search should not follow links, the attributes associated
with the names of XFN links are searched. For example, if aname is bound to an XFN
link, Iname, in a context within the scope of the search, and aname is returned by
fn_ext_searchlist_next (), this means that the object identified by aname
satisfied the filter expression.

When following XFN links, fn_attr_ext_search () may search contexts outside of
scope. In addition, if the link name’s terminal atomic name is bound in a context within
scope, the operation may return the same object more than once.

XEN does not specify how control affects the following of native naming system links
during the search.

EXAMPLE 1 A sample program of displaying how the fn_attr_ext_search () operation
may be used.

The following code fragment illustrates how the fn_attr ext search() operation
may be used. The code consists of three parts: preparing the arguments for the search,
performing the search, and cleaning up.

The first part involves getting the name of the context to start the search and
constructing the search filter that named objects in the context must satisfy. This is
done in the declarations part of the code and by the routine get_search_query. See
FN_search filter_ t(3XFN) for the description of sfilter and the filter creation
operation.

The next part involves doing the search and enumerating the results of the search.
This is done by first getting a context handle to the Initial Context, and then passing
that handle along with the name of the target context and search filter to

fn attr ext search(). This particular call to fn_attr ext search() uses the
default search control options (by passing in 0 as the control argument). This means
that the search will be performed in the context named by target_name and that no
reference or attributes will be returned. In addition, any XFN links encountered will
not be followed and all named objects that satisfy the search filter will be returned
(that is, no limit). If successful, fn_attr ext search() returns esl, a handle for
enumerating the results of the search. The results of the search are enumerated using
calls to fn_ext searchlist_next (), which returns the name of the object. (The
arguments returned_ref and returned_attrs to fn_ext_searchlist next () are 0
because the default search control used i fn_attr ext search() did not request
them to be returned.)

66 man pages section 3: Networking Library Functions ¢ Last Revised 22 Nov 1996

fn_attr_ext_search(3XFN)

EXAMPLE 1 A sample program of displaying how the fn_attr ext search () operation

may be used. (Continued)

The last part of the code involves cleaning up the resources used during the search
and enumeration. The call to fn_ext searchlist destroy () releases resources

reserved for this enumeration. The other calls release the context handle, name, filter,

and status objects created earlier.

/* Declarations */

FN_ctx t *ctx;

FN_ext_searchlist_t *esl;

FN_composite name t *name;

FN_status_t *status = fn status_create();

FN_composite name t *target name = get name_ from user input();

FN_search filter t *sfilter = get_search query();

/* Get context handle to Initial Context */

ctx = fn_ctx handle from initial (status);

/* error checking on ’status’ */

/* Initiate search */

if ((esl=fn_attr ext search(ctx, target_name,
/* default controls */ 0, sfilter, status)) == 0) ({
/* report ’‘status’, cleanup, and exit */

}

/* Enumerate names requested */

while (name=fn_ext_ searchlist next (esl, 0, 0, status)) {
/* do something with ’‘name’ */
fn_composite_destroy (name) ;

}

/* check ’'status’ for reason for end of enumeration */

/* Clean up */

fn_ext_searchlist_destroy(esl);

fn_search filter destroy(sfilter);

fn_ctx handle_destroy(ctx) ;

fn_composite name_ destroy (target_name) ;

fn_status_destroy(status) ;

/*

* Procedure for constructing the filter object for search:
* "age" attribute is greater than or equal to 17 AND
* less than or equal to 25

* AND the "student" attribute is present.

*/

FN_search filter t *
get_search_query ()
{
extern FN_attribute_t *attr_age;
extern FN_attribute t *attr_student;
FN_search filter t *sfilter;
unsigned int filter status;
sfilter = fn_search filter create(
&filter_status,
"(%a >= 17) and (%a <= 25) and %a",
attr_age, attr_age, attr_student);
/* error checking on 'filter status’ */
return (sfilter);

Networking Library Functions

67

fn_attr_ext_search(3XFN)

68

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO | FN_attrset t(3XFN), FN _composite name t(3XFN), FN ctx_t(3XFN),

FN ref t(3XFN), FN search control t(3XFN), FN search filter t(3XFN),
FN_status_ t(3XFN), fn_attr get(3XFN), fn_attr multi get(3XFN),
xfn_status_codes(3XFN), attributes(5)

man pages section 3: Networking Library Functions ¢ Last Revised 22 Nov 1996

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

NOTES

fn_attr_get(3XFN)
fn_attr_get — return specified attribute associated with name

ce [flag ... 1 file ... -1xfn [library ...]
#include <xfn/xfn.h>

FN_attribute_t *fn attr get (FN_ctx t *cfx, const
FN _composite name t *name, const FN identifier t *attribute_id,
unsigned int follow_link, FN status t #*status) ;

This operation returns the identifier, syntax and values of a specified attribute for the
object named name relative to ctx. If name is empty, the attribute associated with ctx is
returned.

The value of follow_link determines what happens when the terminal atomic part of
name is bound to an XEN link. If follow_link is non-zero, such a link is followed, and
the values of the attribute associated with the final named object are returned; if
follow_link is zero, such a link is not followed. Any XEN links encountered before the
terminal atomic name are always followed.

fn_attr get returns a pointer to an FN_attribute t object if the operation
succeeds; it returns a NULL pointer (0) if the operation fails.

fn_attr get () sets status as described in FN_status_t(3XFN) and
xfn_status_codes(3XFN).

fn_attr get_values () and its related operations are used for getting individual
values of an attribute. They should be used if the combined size of all the values are
expected to be too large to be returned in a single invocation of fn_attr_get ().

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_attribute t(3XFN), FN composite name t(3XFN), FN_ ctx t(3XFN),
FN_identifier t(3XFN), FN_status t(3XFN), fn attr get values(3XFN),
xEn(3XEN), xfn_attributes(3XFN), xfn status_ codes(3XFN), attributes(b)

The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.

Networking Library Functions 69

fn_attr_get_ids(3XFN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

NOTES

fn_attr_get_ids — get a list of the identifiers of all attributes associated with named
object

ce [flag ... 1 file ... -1xfn [library ...]

#include <xfn/xfn.h>

FN attrset t *fn attr get ids(FN _ctx t *ctx, const
FN composite name t *name, unsigned int follow_link, FN status t
*status) ;

This operation returns a list of the attribute identifiers of all attributes associated with
the object named by name relative to the context ctx. If name is empty, the attribute
identifiers associated with ctx are returned.

The value of follow_link determines what happens when the terminal atomic part of
name is bound to an XFN link. If follow_link is non-zero, such a link is followed, and
the values of the attribute associated with the final named object are returned; if
follow_link is zero, such a link is not followed. Any XEN links encountered before the
terminal atomic name are always followed.

This operation returns a pointer to an object of type FN_attrset_t; if the operation
fails, a NULL pointer (0) is returned.

This operation sets status as described in FN_status_t(3XFN) and
xfn status_ codes(3XFN).

The attributes in the returned set do not contain the syntax or values of the attributes,
only their identifiers.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_attribute t(3XFN), FN_attrset t(3XFN), FN composite name_ t(3XEN),
FN_ctx t(3XFN), FN_status_ t(3XFN), fn_attr get(3XFN),

fn attr multi get(3XFN) xfn(3XFN), xfn attributes(3XFN),

xfn status_codes(3XFN), attributes(d)

The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.

70 man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

fn_attr_get_values(3XFN)

fn_attr_get_values, FN_valuelist_t, fn_valuelist_next, fn_valuelist_destroy — return
values of an attribute

ce [flag ... 1 file ... -1xfn [library ...]
#include <xfn/xfn.h>

FN_valuelist t *fn attr get values(FN_ctx t *cfx, const
FN_composite name t *name, const FN_identifier t *attribute_id,
unsigned int follow_link, FN_ status_t *status) ;

FN_attrvalue t *fn valuelist next (FN valuelist t *vl,
FN_identifier t **aftr_syntax, FN_status_t *status) ;

void fn valuelist destroy(FN valuelist t *vl, FN_status_t *status) ;

This set of operations is used to obtain the values of a single attribute, identified by
attribute_id, associated with the object named name, resolved in the context ctx. If name
is empty, the attribute values associated with ctx are obtained.

The value of follow_link determines what happens when the terminal atomic part of
name is bound to an XFN link. If follow_link is non-zero, such a link is followed, and
the values of the attribute associated with the final named object are returned; if
follow_link is zero, such a link is not followed. Any XFN links encountered before the
terminal atomic name are always followed.

The operation fn_attr get_values () initiates the enumeration process. It returns
a handle to an FN_valuelist_t object that can be used to enumerate the values of
the specified attribute.

The operation fn_valuelist next () returns anew FN_attrvalue_t object
containing the next value in the attribute and may be called multiple times until all
values are retrieved. The syntax of the attribute is returned in attr_syntax.

The operation fn_valuelist_destroy () is used to release the resources used
during the enumeration. This may be invoked before the enumeration has completed
to terminate the enumeration.

These operations work in a fashion similar to the fn_ctx_list_ names ()
operations.

fn_attr get values () returns a pointer to an FN_valuelist_t object if the
enumeration process is successfully initiated; it returns a NULL pointer if the process
failed.

fn valuelist next () returns a NULL pointer if no more attribute values can be
returned.

In the case of a failure, these operations set status to indicate the nature of the failure.

Each successful call to fn_valuelist next () returns an attribute value. status is set
to FN_SUCCESS.

Networking Library Functions 71

fn_attr_get_values(3XFN)

USAGE

ATTRIBUTES

SEE ALSO

NOTES

When fn_valuelist_next () returns a NULL pointer, it indicates that no more
values can be returned. status is set in the following way:

FN_SUCCESS The enumeration has completed
successfully.
FN E INVALID ENUM HANDLE The given enumeration handle is not valid.

Possible reasons could be that the handle
was from another enumeration, or the
context being enumerated no longer accepts
the handle (due to such events as handle
expiration or updates to the context).

FN_E PARTIAL RESULT The enumeration is not yet complete but
cannot be continued.

In addition to these status codes, other status codes are also possible in calls to these
operations. In such cases, status is set as described in FN_status_t(3XFN) and
xfn_ status_ codes(3XFN).

This interface should be used instead of fn_attr_get () if the combined size of all
the values is expected to be too large to be returned by fn_attr_get ().

There may be a relationship between the ctx argument supplied to

fn_attr get_values () and the FN_valuelist_t object it returns. For example,
some implementations may store the context handle ctx within the FN_valuelist_t
object for subsequent fn_valuelist next () calls. In general, an

fn ctx handle destroy(3XFN) should not be invoked on ctx until the
enumeration has terminated.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_attribute t(3XFN), FN_attrvalue t(3XFN),

FN_composite name t(3XFN), FN _ctx t(3XFN), FN identifier t(3XFN),
FN_status t(3XFN), fn_attr get(3XFN), fn_ctx handle destroy(3XFN),
fn_ctx list names(3XEFN), xfn(3XEN), xfn_attributes(3XFN),
xfn_status_codes(3XFN), attributes(5)

The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.

72 man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

NAME

SYNOPSIS

DESCRIPTION

FN_attribute_t(3XFN)

FN_attribute_t, fn_attribute_create, fn_attribute_destroy, fn_attribute_copy,
fn_attribute_assign, fn_attribute_identifier, fn_attribute_syntax,
fn_attribute_valuecount, fn_attribute_first, fn_attribute_next, fn_attribute_add,
fn_attribute_remove — an XFN attribute

ce [flag ... 1 file ... -1xfn [library ...]
#include <xfn/xfn.h>

FN attribute t *fn attribute create(constFN_identifier t
*attribute_id, const FN identifier t *attribute_syntax) ;

void fn_ attribute destroy (FN_attribute t *attr);
FN attribute t *fn attribute copy(constFN attribute t *attr) ;

FN_attribute t *fn attribute assign(FN attribute t *dst, const
FN attribute t *src) ;

const FN_identifier t
*fn attribute identifier (constFN_attribute t *attr) ;

const FN_identifier t *fn attribute syntax(constFN_attribute t
*attr) ;

unsigned int fn_ attribute valuecount (constFN attribute_ t *attr);

const FN_attrvalue t *fn attribute first(constFN attribute t
*attr, void *xiter_pos) ;

const FN_attrvalue t *fn attribute next (constFN attribute_ t *attr,
void **iter_pos) ;

int fn attribute add(FN attribute_ t *atfr, const FN_attrvalue t
*qattribute_value, unsigned int exclusive) ;

int fn attribute remove (FN_attribute t *atfr, const FN _attrvalue t
*attribute_value) ;

An attribute has an attribute identifier, a syntax, and a set of distinct values. Each
value is a sequence of octets. The operations associated with objects of type
FN_attribute t allow the construction, destruction, and manipulation of an
attribute and its value set.

The attribute identifier and its syntax are specified using an FN_identifier_t.
fn_attribute_ create () creates a new attribute object with the given identifier
and syntax, and an empty set of values. fn_attribute_ destroy () releases the
storage associated with attr. fn_attribute_copy () returns a copy of the object
pointed to by attr. fn_attribute assign () makes a copy of the attribute object
pointed to by src and assigns it to dst, releasing any old contents of dst. A pointer to the
same object as dst is returned.

fn_attribute identifier () returns the attribute identifier of attr.
fn_attribute syntax() returns the attribute syntax of attr.
fn_attribute_valuecount () returns the number of attribute values in attr.

Networking Library Functions 73

FN_attribute_t(3XFN)

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

NOTES

fn attribute first() and fn_attribute next () are used to enumerate the
values of an attribute. Enumeration of the values of an attribute may return the values
in any order. fn_attribute first () returns an attribute value from attr and sets
the iteration marker iter_pos. Subsequent calls to fn_attribute_next () returns the
next attribute value identified by iter_pos and advances iter_pos. Adding or removing
values from an attribute invalidates any iteration markers that the caller holds.

fn_attribute_add() adds a new value attribute_value to attr. The operation
succeeds (but no change is made) if attribute_value is already in attr and exclusive is 0;
the operation fails if attribute_value is already in attr and exclusive is non-zero.

fn_attribute_remove () removes attribute_value from attr. The operation succeeds
even if attribute_value is not amongst attr’s values.

fn_attribute_ first () returns 0 if the attribute contains no values.
fn attribute next () returns 0 if there are no more values to be returned in the
attribute (as identified by the iteration marker) or if the iteration marker is invalid.

fn_attribute_add() and fn_attribute_remove () return 1 if the operation
succeeds, 0 if it fails.

Manipulation of attributes using the operations described in this manual page does
not affect their representation in the underlying naming system. Changes to attributes
in the underlying naming system can only be effected through the use of the interfaces
described in xfn_attributes(3XFN).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_attrset t(3XFN), FN_attrvalue t(3XFN), FN_identifier t(3XFN),
fn_attr get(3XFN), fn_attr modify(3XFN), xfn(3XEN),
xfn_attributes(3XFN), attributes(5)

The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.

74 man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

NAME
SYNOPSIS

DESCRIPTION

fn_attr_modify(3XFN)
fn_attr_modify — modify specified attribute associated with name

ce [flag ... 1 file ... -1xfn [library ...]
#include <xfn/xfn.h>

int fn attr modify (FN ctx t *ctx, const FN_composite name_t *name,
unsigned int mod_op, const FN attribute t *affr, unsigned int
follow_link, FN_ status_t *status) ;

This operation modifies according to mod_op the attribute attr associated with the
object named name relative to ctx. If name is empty, the attribute associated with ctx is
modified.

The value of follow_link determines what happens when the terminal atomic part of
name is bound to an XFN link. If follow_link is non-zero, such a link is followed, and
the values of the attribute associated with the final named object are returned; if
follow_link is zero, such a link is not followed. Any XFN links encountered before the
terminal atomic name are always followed.

The modification is made on the attribute identified by the attribute identifier of attr.
The syntax and values of attr are used according to the modification operation.

The modification operations are as follows:

FN ATTR OP_ADD Add an attribute with given attribute
identifier and set of values. If an attribute
with this identifier already exists, replace
the set of values with those in the given set.
The set of values may be empty if the target
naming system permits.

FN ATTR OP ADD EXCLUSIVE Add an attribute with the given attribute
identifier and set of values. The operation
fails if an attribute with this identifier
already exists. The set of values may be
empty if the target naming system permits.

FN ATTR OP REMOVE Remove the attribute with the given
attribute identifier and all of its values. The
operation succeeds even if the attribute
does not exist. The values of the attribute
supplied with this operation are ignored.

FN ATTR OP ADD VALUES Add the given values to those of the given
attribute (resulting in the attribute having
the union of its prior value set with the set
given). Create the attribute if it does not
exist already. The set of values may be
empty if the target naming system permits.

FN_ATTR OP_REMOVE_VALUES Remove the given values from those of the
given attribute (resulting in the attribute

Networking Library Functions 75

fn_attr_modify(3XFN)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

1 Successful operation.

0 Operation failed.

having the set difference of its prior value
set and the set given). This succeeds even if
some of the given values are not in the set
of values that the attribute has. In naming
systems that require an attribute to have at
least one value, removing the last value will
remove the attribute as well.

fn attr modify () sets status as described in FN status_ t(3XFN) and

xfn status_codes(3XEN).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

MT-Safe

FN_attribute t(3XFN), FN_composite name t(3XFN), FN_ctx t(3XEFN),
FN_status_ t(3XEN), fn_attr multi modify(3XFN), xfn(3XFN),
xfn_attributes(3XFN), xfn status codes(3XFN), attributes(5)

The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.

76 man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

NAME

SYNOPSIS

DESCRIPTION

FN_attrmodlist_t(3XFN)

FN_attrmodlist_t, fn_attrmodlist_create, fn_attrmodlist_destroy, fn_attrmodlist_copy,
fn_attrmodlist_assign, fn_attrmodlist_count, fn_attrmodlist_first, fn_attrmodlist_next,
fn_attrmodlist_add - a list of attribute modifications

ce [flag ... 1 file ... -1xfn [library ...]
#include <xfn/xfn.h>

FN_attrmodlist_t *fn attrmodlist create(void);
void fn_attrmodlist destroy (FN attrmodlist_t *modlist) ;

FN attrmodlist t *fn attrmodlist copy(const FN_attrmodlist t
*modlist) ;

FN attrmodlist t *fn attrmodlist assign(FN attrmodlist t *dst,
const FN_attrmodlist t *src);

unsigned int fn attrmodlist count (const FN_attrmodlist t *modlist) ;

const FN_attribute t *fn attrmodlist first(const
FN attrmodlist t *modlist, void **iter_pos, unsigned int
*first_mod_op) ;

const FN_attribute t *fn attrmodlist next (const FN_attrmodlist t
*modlist, void **iter_pos, unsigned int *mod_op) ;

int fn attrmodlist add(FN attrmodlist t *modlist, unsigned int
mod_op, const FN_attribute t *attr) ;

An attribute modification list allows for multiple modification operations to be made
on the attributes associated with a single named object. It is used in the
fn_attr multi_modify(3XFN) operation.

An attribute modification list is a list of attribute modification specifiers. An attribute
modification specifier consists of an attribute object and an operation specifier. The
attribute’s identifier indicates the attribute that is to be operated upon. The attribute’s
values are used in a manner depending on the operation. The operation specifier is an
unsigned int that must have one of the values:

FN_ATTR OP_ADD

FN_ATTR OP_ADD EXCLUSIVE
FN ATTR OP_ REMOVE
FN_ATTR OP ADD VALUES

or

FN_ATTR OP_REMOVE VALUES

(See fn_attr modify(3XEN) for detailed descriptions of these specifiers.) The
operations are to be performed in the order in which they appear in the modification
list.

Networking Library Functions 77

FN_attrmodlist_t(3XFN)

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

fn_attrmodlist_create () creates an empty attribute modification list.
fn_attrmodlist_destroy () releases the storage associated with modlist.
fn_attrmodlist_copy () returns a copy of the attribute modification list modlist.
fn_attrmodlist_assign () makes a copy of src and assigns it to dst, releasing any
old contents of dst. It returns a pointer to the same object as dst.

fn_attrmodlist_count () returns the number attribute modification items in the
attribute modification list.

The iterators fn_attrmodlist first () and fn attrmodlist next () returna
handle to the attribute part of the modification and return the operation specifier part
through an unsigned int * parameter. fn_attrmodlist_first () returns the
attribute of the first modification item from modlist and sets mod_op to be the code of
the modification operation of that item; iter_pos is set after the first modification item.

fn attrmodlist next () returns the attribute of the next modification item from
modlist after iter_pos and advances iter_pos; mod_op is set to the code of the
modification operation of that item. The order of the items returned during an
enumeration is the same as the order by which the items were added to the
modification list.

fn_attrmodlist_add() adds a new item consisting of the given modification
operation code mod_op and attribute attr to the end of the modification list modlist.
attr’s identifier indicates the attribute that is to be operated upon. attr’s values are used
in a manner depending on the operation.

fn_attrmodlist_first () returns 0 if the modification list is empty.
fn_attrmodlist_next () returns 0 if there are no more items on the modification
list to be enumerated or if the iteration marker is invalid.

fn attrmodlist add() returns 1 if the operation succeeds, 0 if the operation fails.

Manipulation of attributes using the operations described in this manual page does
not affect their representation in the underlying naming system. Changes to attributes
in the underlying naming system can only be effected through the use of the interfaces
described in xfn_attributes(3XFN).

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_attribute t(3XFN), FN_attrset t(3XFN), FN_identifier t(3XFN),
fn_attr modify(3XFN), fn_attr multi modify(3XFN), x£n(3XFN),
xfn_attributes(3XFN), attributes(5)

78 man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

FN_attrmodlist_t(3XFN)

NOTES | The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.

Networking Library Functions 79

fn_attr_multi_get(3XFN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

fn_attr_multi_get, FN_multigetlist_t, fn_multigetlist_next, fn_multigetlist_destroy —
return multiple attributes associated with named object

ce [flag ... 1 file ... -1xfn [library ...]

#include <xfn/xfn.h>

FN multigetlist t *fn attr multi get (FN_ctx t *ctx, const
FN _composite name t *name, const FN _attrset t *attr_ids,
unsigned int follow_link, FN status t #*status) ;

FN attribute t *fn multigetlist next(FN multigetlist t *ml,
FN status_t *status) ;

void fn multigetlist destroy(FN multigetlist t *ml, FN status t
*status) ;

This set of operations returns one or more attributes associated with the object named
by name relative to the context ctx. If name is empty, the attributes associated with ctx
are returned.

The value of follow_link determines what happens when the terminal atomic part of
name is bound to an XFN link. If follow_link is non-zero, such a link is followed, and
the values of the attribute associated with the final named object are returned; if
follow_link is zero, such a link is not followed. Any XEN links encountered before the
terminal atomic name are always followed.

The attributes returned are those specified in attr_ids. If the value of attr_ids is 0, all
attributes associated with the named object are returned. Any attribute values in
attr_ids provided by the caller are ignored; only the attribute identifiers are relevant for
this operation. Each attribute (identifier, syntax, values) is returned one at a time using
an enumeration scheme similar to that for listing a context.

fn attr multi get () initiates the enumeration process. It returns a handle to an
FN_multigetlist_t object that can be used for the enumeration.

The operation fn multigetlist next () returns a new FN attribute t object
containing the next attribute (identifiers, syntaxes, and values) requested and updates
ml to indicate the state of the enumeration.

The operation fn multigetlist destroy () releases the resources used during
the enumeration. It may be invoked before the enumeration has completed to
terminate the enumeration.

fn_attr multi_get () returns a pointer to an FN_multigetlist_t object if the
enumeration has been initiated successfully; a NULL pointer (0) is returned if it failed.

fn multigetlist next () returns a pointer to an FN_attribute_ t objectif an
attribute was returned, a NULL pointer (0) if no attribute was returned.

In the case of a failure, these operations set status to indicate the nature of the failure.

Each call to fn_multigetlist next () sets status as follows:

80 man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

USAGE

fn_attr_multi_get(3XFN)

FN_SUCCESS If an attribute was returned, there are more
attributes to be enumerated. If no attribute
was returned, the enumeration has
completed successfully.

FN_E ATTR _NO_PERMISSION The caller did not have permission to read
this attribute.

FN E INSUFFICIENT RESOURCES Insufficient resources are available to return
the attribute’s values.

FN_E INVALID ATTR_IDENTIFIER This attribute identifier was not in a format
acceptable to the naming system, or its
contents was not valid for the format
specified for the identifier.

FN E INVALID ENUM HANDLE (No attribute should be returned with this
status code). The given enumeration handle
is not valid. Possible reasons could be that
the handle was from another enumeration,
or the object being processed no longer
accepts the handle (due to such events as
handle expiration or updates to the object’s
attribute set).

FN_E NO SUCH ATTRIBUTE The object did not have an attribute with
the given identifier.

FN _E PARTIAL RESULT (No attribute should be returned with this
status code). The enumeration is not yet
complete but cannot be continued.

For FN_E ATTR NO PERMISSION, FN E INVALID ATTR IDENTIFIER,

FN_E INSUFFICIENT RESOURCES, or FN E NO SUCH ATTRIBUTE, the returned
attribute contains only the attribute identifier (no value or syntax). For these four
status codes and FN_SUCCESS (when an attribute was returned),

fn multigetlist next () can be called again to return another attribute. All other
status codes indicate that no more attributes can be returned by

fn multigetlist next ().

Other status codes, such as FN_E_COMMUNICATION FAILURE, are also possible, in
which case, no attribute is returned. In such cases, status is set as described in
FN_status t(3XFN)and xfn_status_codes(3XEN).

Implementations are not required to return all attributes requested by attr_ids. Some
may choose to return only the attributes found successfully, followed by a status of
FN_E_PARTIAL_ RESULT; such implementations may not necessarily return
attributes identifying those that could not be read. Implementations are not required
to return the attributes in any order.

Networking Library Functions 81

fn_attr_multi_get(3XFN)

There may be a relationship between the ctx argument supplied to

fn attr multi get () and the FN multigetlist t object it returns. For
example, some implementations may store the context handle ctx within the

FN multigetlist t object for subsequent fn multigetlist next () calls.In
general, a fn_ctx_handle destroy () should not be invoked on ctx until the
enumeration has terminated.

EXAMPLES | EXAMPLE 1 A sample program displaying how to use fn_attr multi_get () function.

The following code fragment illustrates to obtain all attributes associated with a given
name using the fn_attr multi get () operations.

/* list all attributes associated with given name */
extern FN_string t *input_string;
FN ctx t *ctx;

FN_composite_name_t *target name = fn composite_name_ from string(input_string) ;
FN multigetlist t *ml;

FN_status_t *status = fn_status_create();

FN attribute t *attr;

int done = 0;

ctx = fn ctx handle from initial (status) ;

/* error checking on ’status’ */

/* attr_ids == 0 indicates all attributes are to be returned */

if ((ml=fn _attr multi get (ctx, target name, 0, status)) == 0) ({
/* report ’‘status’ and exit */

}

while ((attr=fn multigetlist next (ml, status)) && !done) {
switch (fn_status code (status))
case FN_SUCCESS:
/* do something with ’‘attr’ */
break;
case FN_E ATTR NO PERMISSION:
case FN_E_ATTR_INVALID ATTR IDENTIFIER:
case FN_E NO SUCH ATTRIBUTE:
/* report error using identifier in ’attr’ */

break;

default:
/* other error handling */
done = 1;

}

if (attr)

fn_attribute_destroy(attr);

}

/* check ’'status’ for reason for end of enumeration and report if necessary */
/* clean up */
fn multigetlist_ destroy(ml, status);

/* report ’status’ */

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

82 man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

SEE ALSO

NOTES

fn_attr_multi_get(3XFN)

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_attribute t(3XFN), FN_attrset_ t(3XFN), FN_composite name_t(3XEN),
FN_ctx t(3XFN), FN_identifier t(3XFN), FN_status t(3XFN),

fn attr get(3XFN), fn_ctx handle destroy(3XFN),

fn ctx list names(3XFN), xfn(3XFN), xfn_attributes(3XFN),
xfn_status_codes(3XFN), attributes(5)

The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.

Networking Library Functions 83

fn_attr_multi_modify(3XFN)

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

fn_attr_multi_modify — modify multiple attributes associated with named object

ce [flag ... 1 file ... -1xfn [library ...]
#include <xfn/xfn.h>

int fn attr multi modify (FN ctx t *ctx, const FN_composite name_t
*name, const FN attrmodlist t *mods, unsigned int follow_link,
FN_attrmodlist t **umexecuted_mods, FN_status_t *status) ;

This operation modifies the attributes associated with the object named name relative
to ctx. If name is empty, the attributes associated with ctx are modified.

The value of follow_link determines what happens when the terminal atomic part of
name is bound to an XFN link. If follow_link is non-zero, such a link is followed, and
the values of the attribute associated with the final named object are returned; if
follow_link is zero, such a link is not followed. Any XEN links encountered before the
terminal

In the mods parameter, the caller specifies a sequence of modifications that are to be
done in order on the attributes. Each modification in the sequence specifies a
modification operation code (see fn_attr modify(3XEFN)) and an attribute on which
to operate.

The FN_attrmodlist t typeis described in FN attrmodlist t(3XFN).

fn_attr multi_modify () returns 1 if all the modification operations were
performed successfully. The function returns 0 if it any error occurs. If the operation
fails, status and unexecuted_mods are set as described below.

If an error is encountered while performing the list of modifications, status indicates
the type of error and unexecuted_mods is set to a list of unexecuted modifications. The
contents of unexecuted_mods do not share any state with mods; items in unexecuted_mods
are copies of items in mods and appear in the same order in which they were originally
supplied in mods. The first operation in unexecuted_mods is the first one that failed and
the code in status applies to this modification operation in particular. If status indicates
failure and a NULL pointer (0) is returned in unexecuted_mods, that indicates no
modifications were executed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_attrmodlist t(3XFN), FN_composite name t(3XEN), FN_ctx_t(3XEN),
FN_status_ t(3XFN), fn_attr modify(3XFN), xfn(3XFN),
xfn_attributes(3XFN), xfn status_ codes(3XFN), attributes(5)

84 man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

fn_attr_multi_modify(3XFN)

NOTES | The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.

Networking Library Functions 85

fn_attr_search(3XFN)
NAME

SYNOPSIS

DESCRIPTION

86 man pages section 3

fn_attr_search, FN_searchlist_t, fn_searchlist_next, fn_searchlist_destroy — search for
the atomic name of objects with the specified attributes in a single context

#include <xfn/xfn.h>

FN searchlist t *fn attr search(FN_ctx t *cfx, const
FN_composite name t *name, const FN_attrset t *match_attrs,
unsigned int return_ref, const FN _attrset t *refurn_attr_ids,
FN status_t *status) ;

FN_string t *fn searchlist next (FN searchlist t *sl, FN ref t
**returned_ref, FN attrset t **returned_attrs, FN status t #*status) ;

void fn_searchlist destroy(FN searchlist t *sl);

This set of operations is used to enumerate names of objects bound in the target
context named name relative to the context ctx with attributes whose values match all
those specified by match_attrs.

The attributes specified by match_attrs form a conjunctive AND expression against
which the attributes of each named object in the target context are evaluated. For
multi-valued attributes, the list order of values is ignored and attribute values not
specified in match_attrs are ignored. If no value is specified for an attribute in
match_attrs, the presence of the attribute is tested. If the value of match_attrs is 0, all
names in the target context are enumerated.

If a non-zero value of return_ref is passed to fn_attr_search (), the reference
bound to the name is returned in the returned_ref argument to
fn searchlist next().

Attribute identifiers and values associated with named objects that satisfy match_attrs
may be returned by fn_searchlist_next (). The attributes returned are those
listed in the return_attr_ids argument to fn_attr_search (). If the value of
return_attr_ids is 0, all attributes are returned. If return_attr_ids is an empty
FN_attrset_t(3XFN) object, no attributes are returned. Any attribute values in
return_attr_ids are ignored; only the attribute identifiers are relevant for return_attr_ids.

The call to fn_attr search() initiates the enumeration process. It returns a handle
toan FN_searchlist_t object that is used to enumerate the names of the objects
whose attributes match the attributes specified by match_attrs.

The operation fn_searchlist next () returns the next name in the enumeration
identified by the sl. The reference of the name is returned in returned_ref if return_ref
was set in the call to fn_attr_ search (). The attributes specified by return_attr_ids
are returned in refurned_attrs. fn_searchlist next () also updates s/ to indicate
the state of the enumeration. Successive calls to fn_searchlist next () using sl
return successive names, and optionally, references and attributes, in the enumeration;
these calls further update the state of the enumeration.

fn_searchlist destroy () releases resources used during the enumeration. This
can be invoked at any time to terminate the enumeration.

: Networking Library Functions * Last Revised 22 Nov 1996

RETURN VALUES

ERRORS

fn_attr_search(3XFN)

fn_attr_ search() does not follow XFN links that are bound in the target context.

fn_attr search() returns a pointer to an FN_searchlist_t object if the
enumeration is successfully initiated; it returns a NULL pointer if the enumeration
cannot be initiated or if no named object with attributes whose values match those
specified in match_attrs is found.

fn searchlist next () returns a pointer to an FN_string t(3XFN) object; it
returns a NULL pointer if no more names can be returned in the enumeration. If
returned_ref is a NULL pointer, or if the refurn_ref parameter to fn_attr_search was 0, no
reference is returned; otherwise, returned_ref contains the reference bound to the name.
If returned_attrs is a NULL pointer, no attributes are returned; otherwise, returned_attrs
contains the attributes associated with the named object, as specified by the
return_attr_ids parameter to fn_attr_search().

In the case of a failure, these operations return in the status argument a code indicating
the nature of the failure.

fn_attr search() returns a NULL pointer if the enumeration could not be initiated.
The status argument is set in the following way:

FN_SUCCESS A named object could not be found whose
attributes satisfied the implied filter of
equality and conjunction.

FN_E ATTR NO_PERMISSION The caller did not have permission to read
one or more of the specified attributes.

FN E INVALID ATTR VALUE A value type in the specified attributes did
not match the syntax of the attribute against
which it was being evaluated.

Other status codes are possible as described in FN status_t(3XFN) and
xfn status_codes(3XFN).

Each successful call to fn_searchlist_next () returns a name and, optionally, the
reference and requested attributes. status is set in the following way:

FN_SUCCESS All requested attributes were returned
successfully with the name.

FN E ATTR NO PERMISSION The caller did not have permission to read
one or more of the requested attributes.

FN_E INVALID ATTR_ IDENTIFIER A requested attribute identifier was notin a
format acceptable to the naming system, or
its contents was not valid for the format
specified.

FN E NO SUCH ATTRIBUTE The named object did not have one of the
requested attributes.

Networking Library Functions 87

fn_attr_search(3XFN)

FN_E INSUFFICIENT RESOURCES Insufficient resources are available to return
all the requested attributes and their values.

FN_E ATTR NO PERMISSION

FN_E INVALID ATTR IDENTIFIER

FN_E NO SUCH ATTRIBUTE

FN_E INSUFFICIENT RESOURCES These indicate that some of the requested
attributes may have been returned in
returned_attrs but one or more of them could
not be returned. Use fn_attr get(3XFN)
or fn_attr multi_ get(3XFN) to
discover why these attributes could not be
returned.

fn_searchlist_next () returns a NULL pointer if no more names can be returned.
The status argument is set in the following way:

FN_ SUCCESS The search has completed successfully.

FN_E PARTIAL RESULT The enumeration is not yet complete but
cannot be continued.

FN_E ATTR NO PERMISSION The caller did not have permission to read
one or more of the specified attributes.

FN E INVALID ENUM HANDLE The supplied enumeration handle was not
valid. Possible reasons could be that the
handle was from another enumeration, or
the context being enumerated no longer
accepts the handle (due to such events as
handle expiration or updates to the
context).

Other status codes are possible as described in FN status_t(3XFN) and
xfn status_codes(3XEN).

USAGE | The names enumerated using fn _searchlist next () are not ordered in any way.
Furthermore, there is no guarantee that any two series of enumerations on the same
context with identical match_attrs will return the names in the same order.

EXAMPLES | EXAMPLE 1 A sample program of displaying how to use fn_attr search() function.

The following code fragment illustrates how the fn_attr_search () operation may
be used. The code consists of three parts: preparing the arguments for the search,
performing the search, and cleaning up.

The first part involves getting the name of the context to start the search and
constructing the set of attributes that named objects in the context must satisfy. This is
done in the declarations part of the code and by the routine get _search query.

88 man pages section 3: Networking Library Functions ¢ Last Revised 22 Nov 1996

fn_attr_search(3XFN)

EXAMPLE 1 A sample program of displaying how to use fn_attr_search () function.
(Continued)

The next part involves doing the search and enumerating the results of the search.
This is done by first getting a context handle to the Initial Context, and then passing
that handle along with the name of the target context and matching attributes to

fn attr search(). This particular call to fn_attr search() is requesting that
no reference be returned (by passing in 0 for return_ref), and that all attributes
associated with the named object be returned (by passing in 0 as the return_attr_ids
argument). If successful, fn_attr search () returns sl, a handle for enumerating the
results of the search. The results of the search are enumerated using calls to

fn searchlist next (), which returns the name of the object and the attributes
associated with the named object in refurned_attrs.

The last part of the code involves cleaning up the resources used during the search
and enumeration. The call to fn_searchlist destroy () releases resources
reserved for this enumeration. The other calls release the context handle, name,
attribute set, and status objects created earlier.

/* Declarations */

FN_ctx_t *ctx;

FN_searchlist t *sl;

FN_string_t *name;

FN_attrset_t *returned attrs;

FN_status_t *status = fn_status_create();

FN_composite name t *target name = get name from user_ input () ;

FN_attrset_t *match_attrs = get_search query();

/* Get context handle to Initial Context */

ctx = fn_ctx handle_ from initial (status);

/* error checking on ’status’ */

/* Initiate search */

if ((sl=fn_attr_search(ctx, target_name, match_attrs,
/* no reference */ 0, /* return all attrs */ 0, status)) == 0) {
/* report ’‘status’, cleanup, and exit */

}

/* Enumerate names and attributes requested */

while (name=fn_searchlist_next (sl, 0, &returned attrs, status)) {
/* do something with ’‘name’ and ’returned attrs’*/
fn_string destroy (name) ;
fn_attrset_destroy(returned attrs);

}

/* check ’status’ for reason for end of enumeration */

/* Clean up */

fn searchlist destroy(sl); /* Free resources of ’sl’ */

fn_status_destroy(status) ;

fn_attrset destroy(match_attrs);

fn_ctx handle_destroy(ctx) ;

fn_composite name_ destroy (target_name) ;

/*

* Procedure for constructing attribute set containing

* attributes to be matched:

* "zip_code" attribute value is "02158"
* AND "employed" attribute is present.
*/

Networking Library Functions 89

fn_attr_search(3XFN)

90

EXAMPLE 1 A sample program of displaying how to use fn_attr_search () function.
(Continued)

FN_attrset_t =*

get_search query ()

{
/* Zip code and employed attribute identifier, syntax */
extern FN_attribute t *attr zip code;
extern FN_attribute t *attr employed;
FN_attribute t *zip code = fn attribute copy(attr zip code) ;
FN_attr _value t zc value = {5, "02158"};
FN attrset_t *match attrs = fn attrset create();
fn_attribute_add(zip_code, &zc_value, 0);
fn attrset add(match_attrs, zip code, 0);
fn_attrset_add(match_attrs, attr_employed, 0);
return (match attrs);

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO | FN_attribute t(3XFN), FN attrset t(3XEFN), FN_attrvalue t(3XFN),
FN_composite name t(3XFN), FN ctx t(3XFN), FN_status_ t(3XFN),
FN_string t(3XFN), fn_attr ext search(3XFN), fn_attr get(3XFN),
fn attr multi get(3XEN), fn ctx list names(3XEN),
xfn_status_codes(3XFN), attributes(5)

man pages section 3: Networking Library Functions ¢ Last Revised 22 Nov 1996

NAME

SYNOPSIS

DESCRIPTION

FN_attrset_t(3XFN)

FN_attrset_t, fn_attrset_create, fn_attrset_destroy, fn_attrset_copy, fn_attrset_assign,
fn_attrset_get, fn_attrset_count, fn_attrset_first, fn_attrset_next, fn_attrset_add,
fn_attrset_remove — a set of XFN attributes

ce [flag ... 1 file ... -1xfn [library ...]

#include <xfn/xfn.h>

FN attrset t *fn attrset create(void) ;

void fn attrset destroy (FN attrset t *aset) ;

FN attrset t *fn attrset copy(constFN attrset t *aset) ;

FN attrset t *fn attrset assign(FN_attrset t *dst, const
FN_ attrset t *src) ;

const FN_attribute t *fn attrset get(constconst FN_attrset t
*gset, const FN identifier t *attr_id) ;

unsigned int fn_attrset count (constFN attrset t *aset) ;

const FN_attribute t *fn attrset first (constFN_attrset t *asef,
void **iter_pos) ;

const FN_attribute t *fn attrset next (constFN attrset t *aset,
void **iter_pos) ;

int fn attrset add(FN attrset t *aset, const FN_attribute t *attr,
unsigned int exclusive) ;

int fn attrset remove (FN_attrset t *aset, const FN_identifier t
*attr_id) ;

An attribute set is a set of attribute objects with distinct identifiers. The

fn attr multi get(3XFN) operation takes an attribute set as parameter and
returns an attribute set. The fn_attr get_ids(3XFN) operation returns an attribute
set containing the identifiers of the attributes.

Attribute sets are represented by the type FN_attrset_t. The following operations
are defined for manipulating attribute sets.

fn_attrset create () creates an empty attribute set. fn_attrset destroy ()
releases the storage associated with the attribute set aset. fn_attrset_copy ()
returns a copy of the attribute set aset. fn_attrset_assign() makes a copy of the
attribute set src and assigns it to dst, releasing any old contents of dst. A pointer to the
same object as dst is returned.

fn attrset get () returns the attribute with the given identifier attr_id from aset.
fn_attrset count () returns the number attributes found in the attribute set aset.

fn attrset first() and fn attrset next () are functions that can be used to
return an enumeration of all the attributes in an attribute set. The attributes are not

ordered in any way. There is no guaranteed relation between the order in which items
are added to an attribute set and the order of the enumeration. The specification does

Networking Library Functions 91

FN_attrset_t(3XFN)

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

NOTES

guarantee that any two enumerations will return the members in the same order,
provided thatno fn_attrset add() or fn attrset remove () operation was
performed on the object in between or during the two enumerations.

fn_attrset first () returns the first attribute from the set and sets iter_pos after
the first attribute. fn_attrset_next () returns the attribute following iter_pos and
advances iter_pos.

fn_attrset_add () adds the attribute attr to the attribute set aset, replacing the
attribute’s values if the identifier of attr is not distinct in aset and exclusive is 0. If
exclusive is non-zero and the identifier of attr is not distinct in aset, the operation
fails.

fn attrset remove () removes the attribute with the identifier attr_id from aset.
The operation succeeds even if no such attribute occurs in aset.

fn_attrset_first () returns 0 if the attribute set is empty. fn_attrset_next ()
returns 0 if there are no more attributes in the set.

fn_attrset_add() and fn_attrset_remove () return 1 if the operation
succeeds, and 0 if the operation fails.

Manipulation of attributes using the operations described in this manual page does
not affect their representation in the underlying naming system. Changes to attributes
in the underlying naming system can only be effected through the use of the interfaces
described in xfn_attributes(3XFN).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_attribute t(3XFN), FN_attrvalue t(3XFN), FN_identifier_ t(3XFN),
fn_attr get ids(3XEN), fn_attr multi get(3XFN), xfn(3XEN),
xfn_attributes(3XFN), attributes(5)

The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.

92 man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

NAME
SYNOPSIS

DESCRIPTION

SEE ALSO

FN_attrvalue_t(3XFN)
FN_attrvalue_t — an XFN attribute value

cc [flag ... 1 file ... -1xfn [library ...]
#include <xfn/xfn.h>

The type FN_attrvalue t is used to represent the contents of a single attribute
value, within an attribute of type FN_attribute t.

The representation of this structure is defined by XFN as follows:

typedef struct { size t length;
void *contents; } FN_attrvalue t;

FN_attribute t(3XFN), fn_attr get values(3XFN), xfn(3XFN)

Networking Library Functions 93

FN_composite_name_t(3XFIN)

NAME | FN_composite_name_t, fn_composite_name_create, fn_composite_name_destroy,
fn_composite_name_from_str, fn_composite_name_from_string,
fn_string_from_composite_name, fn_composite_name_copy,
fn_composite_name_assign, fn_composite_name_is_empty,
fn_composite_name_count, fn_composite_name_first, fn_composite_name_next,
fn_composite_name_prev, fn_composite_name_last, fn_composite_name_prefix,
fn_composite_name_suffix, fn_composite_name_is_equal,
fn_composite_name_is_prefix, fn_composite_name_is_suffix,
fn_composite_name_prepend_comp, fn_composite_name_append_comp,
fn_composite_name_insert_comp, fn_composite_name_delete_comp,
fn_composite_name_prepend_name, fn_composite_name_append_name,
fn_composite_name_insert_name - a sequence of component names spanning
multiple naming systems

SYNOPSIS | cc [flag ... 1 file ... -1xfn [library ...]

#include <xfn/xfn.h>
FN composite name t *fn composite name create(void) ;
void fn composite name destroy (FN composite name t *name) ;

FN_composite name_t *fn composite name from str(const unsigned
char *cstr) ;

FN_composite name t *fn composite name from string(const
FN string t *str);

FN_string t *fn string from composite name (const
FN composite name t *name, unsigned int *status) ;

FN composite name t *fn composite name copy (const
FN composite name t *name) ;

FN composite name t
*fn composite name assign (FN _composite name t *dst, const
FN composite name_t *src) ;

int fn composite name is empty(const FN_composite name_ t *name) ;

unsigned int fn composite name count (const FN_composite name_t
*name) ;

const FN_string t *fn composite name first(const
FN composite name t *name, void **iter_pos) ;

const FN_string t *fn composite name next (const
FN composite name t *name, void **iter_pos) ;

const FN_string t *fn composite name prev(const
FN composite name t *name, void **iter_pos) ;

const FN_string t *fn composite name last (const
FN _composite name t *name, void **iter_pos) ;

94 man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

DESCRIPTION

FN_composite_name_t(3XFIN)

FN composite name t *fn composite name prefix(const
FN _composite name t *name, const void *iter_pos) ;

FN_composite name t *fn composite name suffix(const
FN composite name t *name, const void *iter_pos) ;

int fn composite name is equal (const FN _composite name t *name,
const FN_composite name t *name2, unsigned int *status) ;

int fn composite name is prefix(const FN_composite name_ t *name,
const FN composite name t *prefix, void **iter_pos, unsigned int
*status) ;

int fn composite name is suffix(const FN_composite name t *name,
const FN composite name t *suffix, void **iter_pos, unsigned int
*status) ;

int fn composite name prepend comp (FN_composite name_ t *name,
const FN_string_t *newcomp) ;

int fn composite name append comp (FN composite name_ t *name,
const FN_string_t *newcomp) ;

int fn composite name insert comp (FN composite name t *name, void
*xjter_pos, const FN_string t *newcomp) ;

int fn composite name delete comp (FN composite name t *name, void
**jter_pos) ;

int fn composite name prepend name (FN_ composite name t *name,
const FN_composite name_t *newcomps) ;

int fn composite name append name (FN composite name t *name,
const FN_composite name_ t *newcomps) ;

int fn composite name insert name (FN_composite name_ t *name, void
**iter_pos, const FN_composite name_t *newcomps) ;

A composite name is represented by an object of type FN_composite_name_t. Each
component is a string name, of type FN_string_t, from the namespace of a single
naming system. It may be an atomic name or a compound name in that namespace.

fn_composite name_create creates an FN_composite name_t object with zero
components. Components may be subsequently added to the composite name using
the modify operations described below. fn_composite name_destroy releases any
storage associated with the given FN_composite_name_t handle.

fn composite name from str () creates an FN _composite name_t from the
given null-terminated string based on the code set of the current locale setting, using
the XFN composite name syntax. fn_composite name from string() creates an
FN composite name t from the string str using the XFN composite name syntax.
fn_string from_composite_name () returns the standard string form of the
given composite name, by concatenating the components of the composite name in a
left to right order, each separated by the XFN component separator.

Networking Library Functions 95

FN_composite_name_t(3XFIN)

fn_composite_name_copy () returns a copy of the given composite name object.
fn composite name assign () makes a copy of the composite name object
pointed to by src and assigns it to dst, releasing any old contents of dst. A pointer to the
same object as dst is returned.

fn_composite_name_is_empty () returns 1 if the given composite name is an
empty composite name (that is, it consists of a single, empty component name);
otherwise, it returns 0. fn_composite name count () returns the number of
components in the given composite name.

The iteration scheme is based on the exchange of an opaque void * argument,
iter_pos, that serves to record the position of the iteration in the sequence.
Conceptually, iter_pos records a position between two successive components (or at
one of the extreme ends of the sequence).

The function fn_composite name first () returns a handle to the FN_string t
that is the first component in the name, and sets iter_pos to indicate the position
immediately following the first component. It returns 0 if the name has no
components. Thereafter, successive calls of the fn_composite_name_next ()
function return pointers to the component following the iteration marker, and advance
the iteration marker. If the iteration marker is at the end of the sequence,
fn_composite_name next () returns 0. Similarly, fn _composite name prev ()
returns the component preceding the iteration pointer and moves the marker back one
component. If the marker is already at the beginning of the sequence,

fn _composite name prev () returns 0. The function

fn_composite_name_last () returns a pointer to the last component of the name
and sets the iteration marker immediately preceding this component (so that
subsequent calls to fn_composite name_ prev () can be used to step through
leading components of the name).

The fn_composite_name_suffix () function returns a composite name consisting
of a copy of those components following the supplied iteration marker. The method
fn_composite_name_prefix () returns a composite name consisting of those
components that precede the iteration marker. Using these functions with an iteration
marker that was not initialized using fn_composite name first (),

fn composite name last (), fn composite name is prefix(),or

fn _composite name is suffix() yields undefined and generally undesirable
behavior.

The functions fn_composite name is equal (),

fn_composite name is prefix(),and fn composite name is suffix()
test for equality between composite names or between parts of composite names. For
these functions, equality is defined as exact string equality, not name equivalence. A
name’s syntactic property, such as case-insensitivity, is not taken into account by these
functions.

The function fn_composite name_is_prefix () tests if one composite name is a
prefix of another. If so, it returns 1 and sets the iteration marker immediately
following the prefix. (For example, a subsequent call to

96 man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

RETURN VALUES

ERRORS

ATTRIBUTES

FN_composite_name_t(3XFIN)

fn composite name suffix () will return the remainder of the name.) Otherwise,
it returns 0 and the value of the iteration marker is undefined. The function

fn composite name is suffix() is similar. It tests if one composite name is a
suffix of another. If so, it returns 1 and sets the iteration marker immediately
preceding the suffix.

The functions fn_composite name prepend_ comp () and

fn composite name_ append comp () prepend and append a single component to
the given composite name, respectively. These operations invalidate any iteration
marker the client holds for that object. fn_composite name_insert_comp ()
inserts a single component before iter_pos to the given composite name and sets
iter_pos to be immediately after the component just inserted.
fn_composite name delete comp () deletes the component located before
iter_pos from the given composite name and sets iter_pos back one component.

The functions fn_composite name prepend name (),
fn_composite name append name (), and
fn_composite_name_insert_name () perform the same update functions as their
_comp counterparts, respectively, except that multiple components are being added,
rather than single components. For example,

fn composite name insert name () sets iter_pos to be immediately after the
name just added.

The functions fn_composite name is empty (),

fn_composite name is equal (), fn_composite name is suffix(),and
fn composite name is prefix () return 1 if the test indicated is true; 0
otherwise.

The update functions fn_composite_name prepend_comp (),

fn composite name append comp (), fn composite name insert comp(),
fn composite name delete comp (), and their _name counterparts return 1 if the
update was successful; 0 otherwise.

If a function is expected to return a pointer to an object, a NULL pointer (0) is returned
if the function fails.

Code set mismatches that occur during the composition of the string form or during
comparisons of composite names are resolved in an implementation-dependent way.
fn string from composite name (), fn_composite name is equal (),
fn_composite name is suffix(),and fn composite name is prefix()
set status to FN_E_INCOMPATIBLE_CODE_SETS for composite names whose
components have code sets that are determined by the implementation to be
incompatible.

See attributes(5) for descriptions of the following attributes:

Networking Library Functions 97

FN_composite_name_t(3XFIN)

98

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO | FN_string t(3XFN), xfn(3XFN), attributes(b)

NOTES | The implementation of XFN in this Solaris release is based on the X/Open preliminary

developed against the preliminary specification.

man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been

FN_compound_name_t(3XFN)

NAME | FN_compound_name_t, fn_compound_name_from_syntax_attrs,
fn_compound_name_get_syntax_attrs, fn_compound_name_destroy,
fn_string_from_compound_name, fn_compound_name_copy,
fn_compound_name_assign, fn_compound_name_count, fn_compound_name_first,
fn_compound_name_next, fn_compound_name_prev, fn_compound_name_last,
fn_compound_name_prefix, fn_compound_name_suffix,
fn_compound_name_is_empty, fn_compound_name_is_equal,
fn_compound_name_is_prefix, fn_compound_name_is_suffix,
fn_compound_name_prepend_comp, fn_compound_name_append_comp,
fn_compound_name_insert_comp, fn_compound_name_delete_comp,
fn_compound_name_delete_all — an XFN compound name

SYNOPSIS | cc [flag ... 1 file ... -1xfn [library ... 1]

#include <xfn/xfn.h>

FN_compound name_t *fn compound name from syntax attrs(const
FN attrset t *aset, const FN string t *name, FN_status t
*status) ;

FN attrset t *fn compound name get syntax attrs(const
FN_compound name_t *name) ;

void fn compound name destroy (FN compound name t *name) ;

FN_string t *fn string from compound name (const
FN_compound name_t *name) ;

FN compound name t *fn compound name copy (const
FN compound name_t *name) ;

FN compound name_ t *fn compound name assign (FN_compound name t
*dst, const FN compound name_t *src) ;

unsigned int fn_ compound name count (const FN_compound name t
*name) ;

const FN_string t *fn compound name first (const
FN_compound name_ t *name, void **iter_pos) ;

const FN_string t *fn compound name next (const
FN compound name_ t *name, void **iter_pos) ;

const FN_string t *fn compound name prev (const
FN_compound_name_t *name, void **iter_pos) ;

const FN_string t *fn compound name last (const
FN_compound_name_t *name, void **iter_pos) ;

FN_compound name_ t *£fn compound name prefix(const
FN_compound name_ t *name, const void *iter_pos) ;

FN compound name t *fn compound name suffix(const
FN compound name t *name, const void *iter_pos) ;

int fn compound name is empty (const FN_compound name_ t *name) ;

Networking Library Functions 99

FN_compound_name_t(3XFN)

100

DESCRIPTION

int fn compound name is equal (const FN_compound name t *namel,
const FN_compound name_ t *name2, unsigned int *status) ;

int fn compound name is prefix(const FN_compound name t *name,
const FN compound name t *pre, void **iter_pos, unsigned int
*status) ;

int fn compound name is suffix(const FN_compound name_ t *name,
const FN compound name t *suffix, void **iter_pos, unsigned int
*status) ;

int fn compound name prepend comp (FN_compound name_ t *name, const
FN_string t *atomic_comp, unsigned int *status) ;

int fn compound name append comp (FN_compound name t *name, const
FN_string t *atomic_comp, unsigned int *status) ;

int fn compound name insert comp (FN_compound name_ t *name, void
**jter_pos, const FN_string t *aftomic_comp, unsigned int *status) ;

int fn compound name delete comp (FN_compound name_t *name, void
**jter_pos) ;

int fn compound name delete all (FN compound name_ t *name) ;

Most applications treat names as opaque data. Hence, the majority of clients of the
XEN interface will not need to parse names. Some applications, however, such as
browsers, need to parse names. For these applications, XEN provides support in the
form of the FN_compound _name_t object.

Each naming system in an XFN federation potentially has its own naming
conventions. The FN compound name t object has associated operations for
applications to process compound names that conform to the XFN model of
expressing compound name syntax. The XFN syntax model for compound names
covers a large number of specific name syntaxes and is expressed in terms of syntax
properties of the naming convention. See xfn_compound names(3XFN).

An FN_compound_name_t object is constructed by the operation
fn_compound_name_from syntax_attrs, using a string name and an attribute
set containing the "fn_syntax_type" (with identifier format FN_ID_ STRING) attribute
identifying the namespace syntax of the string name. The value "standard" (with
identifier format FN ID STRING) in the "fn_syntax_type" specifies a syntax model
that is by default supported by the FN_compound name_t object. An implementation
may support other syntax types instead of the XFN standard syntax model, in which
case the value of the "fn_syntax_type" attribute would be set to an
implementation-specific string. fn _compound name get syntax attrs() returns
an attribute set containing the syntax attributes that describes the given compound
name. fn_compound name destroy () releases the storage associated with the
given compound name. fn_string from_ compound name () returns the string
form of the given compound name. fn_compound_name copy () returns a copy of
the given compound name. fn_compound_name_assign () makes a copy of the

man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

FN_compound_name_t(3XFN)

compound name src and assigns it to dst, releasing any old contents of dst. A pointer to
the object pointed to by dst is returned. fn_compound_name_count () returns the
number of atomic components in the given compound name.

The function fn_compound name first () returns a handle to the FN string t
that is the first atomic component in the compound name, and sets iter_pos to indicate
the position immediately following the first component. It returns 0 if the name has no
components. Thereafter, successive calls of the fn_compound name next ()

function return pointers to the component following the iteration marker, and advance
the iteration marker. If the iteration marker is at the end of the sequence,
fn_compound_name_next () returns 0. Similarly, fn_compound_name_prev ()
returns the component preceding the iteration pointer and moves the marker back one
component. If the marker is already at the beginning of the sequence,

fn compound name prev () returns 0. The function fn_compound name last ()
returns a pointer to the last component of the name and sets the iteration marker
immediately preceding this component (so that subsequent calls to
fn_compound_name_prev () can be used to step through trailing components of the
name).

The fn_compound_name_suffix () function returns a compound name consisting
of a copy of those components following the supplied iteration marker. The function
fn_compound_name_prefix () returns a compound name consisting of those
components that precede the iteration marker. Using these functions with an iteration
marker that was not initialized with the use of fn_compound name first(),

fn compound name_ last (), fn_compound name_is_prefix (), or
fn_compound_name_is_suffix () yields undefined and generally undesirable
behavior.

The functions fn_compound name is equal (),

fn compound name is prefix(),and fn_compound name is suffix() test
for equality between compound names or between parts of compound names. For
these functions, equality is defined as name equivalence. A name’s syntactic property,
such as case-insensitivity, is taken into account by these functions.

The function fn_compound name is prefix () tests if one compound name is a
prefix of another. If so, it returns 1 and sets the iteration marker immediately
following the prefix. (For example, a subsequent call to

fn compound name suffix () will return the remainder of the name.) Otherwise,
it returns 0 and value of the iteration marker is undefined. The function

fn compound name is suffix() is similar. It tests if one compound name is a
suffix of another. If so, it returns 1 and sets the iteration marker immediately
preceding the suffix.

The functions fn_compound name_prepend comp () and

fn compound name append comp () prepend and append a single atomic
component to the given compound name, respectively. These operations invalidate
any iteration marker the client holds for that object.

fn compound name insert comp () inserts an atomic component before iter_pos
to the given compound name and sets iter_pos to be immediately after the component

Networking Library Functions 101

FN_compound_name_t(3XFN)

RETURN VALUES

102

ERRORS

just inserted. fn_compound name_delete_comp () deletes the atomic component
located before iter_pos from the given compound name and sets iter_pos back one
component. fn_compound name delete all () deletes all the atomic
components from name.

The following test functions return 1 if the test indicated is true; otherwise, they return
0:

fn compound name is empty ()
fn compound name is equal ()
fn_compound name_is_suffix()
fn compound name_ is prefix()

The following update functions return 1 if the update was successful; otherwise, they
return O:

fn compound name prepend comp ()
fn compound name append_ comp ()
fn compound name_ insert comp ()
fn compound name delete comp ()
fn_compound name_ delete all()

If a function is expected to return a pointer to an object, a NULL pointer (0) is returned
if the function fails.

When the function fn_compound name from syntax_attrs () fails, it returns a
status code in status. The possible status codes are:

FN_E ILLEGAL_NAME The name supplied to the operation was not
a well- formed XFN compound name, or
one of the component names was not
well-formed according to the syntax of the
naming system(s) involved in its resolution.

FN_E INCOMPATIBLE_CODE_SETS The code set of the given string is
incompatible with that supported by the
compound name.

FN E INVALID SYNTAX ATTRS The syntax attributes supplied are invalid
or insufficient to fully specify the syntax.

FN_E SYNTAX NOT_ SUPPORTED The syntax type specified is not supported.

The following functions may return in status the status code
FN_E INCOMPATIBLE_ CODE SETS when the code set of the given string is
incompatible with that of the compound name:

fn compound name is equal ()

fn compound name_is_ suffix()
fn_compound name_is prefix()

fn_ compound name prepend comp ()
fn compound name_ append_comp ()

man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

ATTRIBUTES

SEE ALSO

NOTES

fn compound name insert comp ()

See attributes(5) for descriptions of the following attributes:

FN_compound_name_t(3XFN)

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

MT-Safe

FN_attribute t(3XFN), FN attrset t(3XFN), FN composite name_ t(3XEN),
FN_status_ t(3XFN), FN_string t(3XFN), fn_ctx get syntax attrs (3XFN),
xEn(3XEN), xfn compound_names(3XFN), attributes(5)

The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.

Networking Library Functions

103

fn_ctx_bind(3XFN)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

NOTES

fn_ctx_bind - bind a reference to a name

ce [flag ... 1 file ... -1xfn [library ...]
#include <xfn/xfn.h>

int fn ctx bind (FN_ctx_t *ctx, const FN_composite name_t *name,
const FN ref t *ref, unsigned int exclusive, FN status_t *status) ;

This operation binds the supplied reference ref to the supplied composite name name
relative to ctx. The binding is made in the target context, that is, the context named by
all but the terminal atomic part of name. The operation binds the terminal atomic name
to the supplied reference in the target context. The target context must already exist.

The value of exclusive determines what happens if the terminal atomic part of the
name is already bound in the target context. If exclusive is nonzero and name is already
bound, the operation fails. If exclusive is 0, the new binding replaces any existing
binding.

When the bind operation is successful it returns 1; on error it returns 0.

fn ctx bind sets status as described in FN_status_t(3XFN) and
xfn status_ codes. Of special relevance for this operation is the status code
FN E NAME IN USE, which indicates that the supplied name is already in use.

The value of ref cannot be NULL. If the intent is to reserve a name using

fn_ctx bind (), a reference containing no address should be supplied. This
reference may be name service-specific or it may be the conventional NULL reference
defined in the X/Open registry (see fns_references(5)).

If multiple sources are updating a reference, they must synchronize amongst each
other when adding, modifying, or removing from the address list of a bound
reference.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_composite name t(3XFN), FN _ctx t(3XFN), FN_ref t(3XFN),
FN_status_ t(3XEN), fn_ctx_lookup(3XFN), fn_ctx_unbind(3XFN),
xEn(3XEN), xfn status_codes(3XFN), attributes(d), fns references(d)

The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As

104 man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

fn_ctx_bind(3XFN)

the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.

Networking Library Functions 105

fn_ctx_create_subcontext(3XFN)

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUE

ERRORS

APPLICATION
USAGE

ATTRIBUTES

SEE ALSO

fn_ctx_create_subcontext — create a subcontext in a context

ce [flag ... 1 file ... -1xfn [library ...]
#include <xfn/xfn.h>

FN ref t *fn ctx create subcontext (FN_ctx t *ctx, const
FN composite name_ t *name, FN_status_t *status) ;

This operation creates a new XFN context of the same type as the target context — that
named by all but the terminal atomic component of name — and binds it to the
supplied composite name.

As with fn_ctx_bind(), the target context must already exist. The new context is
created and bound in the target context using the terminal atomic name in name. The
operation returns a reference to the newly created context.

fn_ctx create_subcontext () returns a reference to the newly created context; if
the operation fails, it returns a NULL pointer (0).

fn ctx _create subcontext () sets status as described in FN_status_t(3XFN)
and xfn status codes(3XEN). Of special relevance for this operation is the
following status code:

FN_E NAME IN USE The terminal atomic name already exists in the target
context.

The new subcontext is an XFN context and is created in the same naming system as
the target context. The new subcontext also inherits the same syntax attributes as the
target context. XFIN does not specify any further properties of the new subcontext. The
target context and its naming system determine these.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

FN_composite name t(3XFN), FN _ctx t(3XFN), FN_ref t(3XFN),
FN_status_ t(3XFN), fn_ctx bind(3XFN), fn_ctx lookup(3XFN),

fn_ctx destroy subcontext(3XFN), xfn status_codes(3XFN), xfn(3XFN),
attributes(b)

106 man pages section 3: Networking Library Functions ¢ Last Revised 30 Dec 1996

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUE

ERRORS

APPLICATION
USAGE

ATTRIBUTES

SEE ALSO

fn_ctx_destroy_subcontext(3XFN)

fn_ctx_destroy_subcontext — destroy the named context and remove its binding from
the parent context

ce [flag ... 1 file ... -1xfn [library ...]

#include <xfn/xfn.h>

int fn ctx destroy subcontext (FN ctx t *cfx, const
FN composite name t *name, FN_status_t *status) ;

This operation destroys the subcontext named by name relative to ctx, and unbinds the
name.

As with fn_ctx_unbind(), this operation succeeds even if the terminal atomic
name is not bound in the target context — the context named by all but the terminal
atomic name in name.

fn ctx destroy subcontext () returns 1 on success and 0 on failure.

fn ctx _destroy subcontext () sets status as described in FN_status_t(3XFN)
and xfn_status_codes(3XFN). Of special relevance for
fn ctx destroy subcontext () are the following status codes:

FN_E CTX NOT A CONTEXT name does not name a context.

FN_E_CTX NOT EMPTY The naming system being asked to do the destroy does
not support removal of a context that still contains
bindings.

Some aspects of this operation are not specified by XFN, but are determined by the
target context and its naming system. For example, XFN does not specify what
happens if the named subcontext is non-empty when the operation is invoked.

In naming systems that support attributes, and store the attributes along with names
or contexts, this operation removes the name, the context, and its associated attributes.

Normal resolution always follows links. Ina fn_ctx_destroy_subcontext ()
operation, resolution of name continues to the target context; the terminal atomic name
is not resolved. If the terminal atomic name is bound to a link, the link is not followed
and the operation fails with FN_ E_CTX NOT A CONTEXT because the name is not
bound to a context.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

FN_ctx_ t(3XFN), FN_composite name t(3XFN), FN_status_t(3XFN),
fn ctx _create subcontext(3XFN), fn_ctx_ unbind(3XFN), xfn(3XFN),
xfn status codes(3XFN), attributes(b)

Networking Library Functions 107

fn_ctx_equivalent_name(3XFN)

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

fn_ctx_equivalent_name — construct an equivalent name in same context
#include <xfn/xfn.hs>

FN_composite name t *fn ctx equivalent name (FN_ctx t *cfx, const
FN composite name t *name, const FN_string t *leading_name,
FN status_t * status) ;

Given the name of an object name relative to the context ctx, this operation returns an
equivalent name for that object, relative to the same context ctx, that has leading_name
as its initial atomic name. Two names are said to be equivalent if they have prefixes
that resolve to the same context, and the parts of the names immediately following the
prefixes are identical.

The existence of a binding for leading_name in ctx does not guarantee that a name
equivalent to name can be constructed. The failure may be because such equivalence is
not meaningful, or due to the inability of the system to construct a name with the
equivalence. For example, supplying _thishost as leading_name when name starts
with _myself to fn_ctx equivalent name () in the Initial Context would not be
meaningful; this results in the return of the error code FN_E NO_ EQUIVALENT NAME.

If an equivalent name cannot be constructed, the value 0 is returned and status is set
appropriately.

fn ctx_equivalent name () sets status as described in FN_status_t(3XFN) and
xfn_status_codes(3XEN). The following status code is especially relevant for this
operation:

FN E NO EQUIVALENT NAME No equivalent name can be constructed,
either because there is no meaningful
equivalence between name and
leading_name, or the system does not
support constructing the requested
equivalent name, for
implementation-specific reasons.

EXAMPLE 1 Naming Files

In the Initial Context supporting XFN enterprise policies, a user jsmith is able to
name one of her files relative to this context in several ways.

_myself/ fs/map.ps
_user/jsmith/ fs/map.ps
_orgunit/finance/_user/jsmith/_fs/map.ps

The first of these may be appealing to the user jsmith in her day-to-day operations.
This name is not, however, appropriate for her to use when referring the file in an
electronic mail message sent to a colleague. The second of these names would be
appropriate if the colleague were in the same organizational unit, and the third
appropriate for anyone in the same enterprise.

108 man pages section 3: Networking Library Functions ¢ Last Revised 22 Nov 1996

ATTRIBUTES

SEE ALSO

fn_ctx_equivalent_name(3XFN)

EXAMPLE 1 Naming Files (Continued)

When the following sequence of instructions is executed by the user jsmith in the
organizational unit finance, enterprise wide name would contain the
composite name orgunit/finance/ user/jsmith/ fs/map.ps:

FN_string t* namestr =
fn_string from_str((const unsigned char*)" myself/ fs/map.ps");

FN composite name t* name = fn composite name from string(namestr) ;
FN_string t* org lead =

fn string from str((const unsigned char*)" orgunit");
FN_status_t* status = fn status_create();

FN composite name t* enterprise wide name;
FN_ctx t* init ctx = fn ctx handle from initial (status) ;

/* check status of from initial() */
enterprise_wide name = fn ctx equivalent name (init_ctx, name, org_lead,
status) ;

When the following sequence of instructions is executed by the user jsmith in the
organizational unit finance, shortest_name would contain the composite name
_myself/ fs/map.ps:

FN_string t* namestr =

fn string from str((const unsigned char*)

" _orgunit/finance/ user jsmith/_fs/map.ps");

FN_composite name t* name = fn composite name_ from string(namestr) ;
FN_string t* mylead = fn_string from str((const unsigned char*)" myself");
FN_status_t* status = fn status_ create();
FN_composite name_t* shortest_name;
FN_ctx t* init ctx = fn ctx handle from initial (status);
/* check status of from_initial() */
shortest _name = fn ctx equivalent name (init ctx, name, mylead, status);

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_composite name t(3XFN), FN ctx t(3XFN), FN_status_t(3XFN),
FN_string t(3XFN), xfn status codes(3XFN), attributes(b)

Networking Library Functions 109

fn_ctx_get_ref(3XFN)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUE

ERRORS

APPLICATION
USAGE

ATTRIBUTES

SEE ALSO

fn_ctx_get_ref — return a context’s reference

ce [flag ... 1 file ... -1xfn [library ...]
#include <xfn/xfn.h>

FN ref t *fn ctx get ref (const FN_ctx t *ctx, FN_status_t *status) ;
This operation returns a reference to the supplied context object.

fn ctx get ref () returns a pointer to an FN_ref t object if the operation
succeeds, it returns 0 if the operation fails.

fn ctx get ref () sets status as described in FN_status_t(3XFN) and
xfn_status_codes(3XFN). The following status code is of particular relevance to
this operation:

FN_E OPERATION NOT SUPPORTED Using the fn_ctx_get_ref () operation
on the Initial Context returns this status
code.

fn ctx get ref () cannot be used on the Initial Context. fn _ctx get ref () can
be used on contexts bound in the Initial Context (in other words, the bindings in the
Initial Context have references).

If the context handle was created earlier using the fn ctx handle from ref ()
operation, the reference returned by the fn_ctx_get ref () operation may not
necessarily be exactly the same in content as that originally supplied. For example,
fn_ctx _handle_from ref () may construct the context handle from one address
from the list of addresses. The context implementation may return with a call to

fn ctx get ref () only that address, or a more complete list of addresses than
what was supplied in fn_ctx handle from ref().

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

FN_ctx t(3XFN), FN_ref t(3XFN), FN_status_t(3XFN),
fn ctx handle from initial(3XFN), fn ctx handle from ref(3XFN),
xfn_status_codes (3XFN), xfn(3XFN), attributes(5)

110 man pages section 3: Networking Library Functions ¢ Last Revised 30 Dec 1996

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUE

ERRORS

APPLICATION
USAGE

ATTRIBUTES

fn_ctx_get_syntax_attrs(3XFN)
fn_ctx_get_syntax_attrs — return syntax attributes associated with named context

ce [flag ... 1 file ... -1xfn [library ...]
#include <xfn/xfn.h>

FN attrset t *fn ctx get syntax attrs(FN ctx t *cfx, const
FN composite name t *name, FN_status_t *status) ;

Each context has an associated set of syntax-related attributes. This operation returns
the syntax attributes associated with the context named by name relative to the context
ctx.

The attributes must contain the attribute fn_syntax_type (FN_ID STRING format).
If the context supports a syntax that conforms to the XFN standard syntax model,
fn_syntax type is set to "standard" (ASCII attribute syntax) and the attribute set
contains the rest of the relevant syntax attributes described in

xfn_ compound names(3XFN).

This operation is different from other XFN attribute operations in that these syntax
attributes could be obtained directly from the context. Attributes obtained through
other XFN attribute operations may not necessarily be associated with the context;
they may be associated with the reference of context, rather than the context itself (see
xfn_attributes(3XFN)).

fn ctx get syntax attrs () returns an attribute set if successful; it returns a
NULL pointer (0) if the operation fails.

fn ctx _get syntax_attrs () setsstatus as described in FN_status_t(3XFN)
and xfn_status_codes(3XFN).

Implementations may choose to support other syntax types in addition to, or in place
of, the XFN standard syntax model, in which case, the value of the fn_syntax_type
attribute would be set to an implementation-specific string, and different or additional
syntax attributes will be in the set.

Syntax attributes of a context may be generated automatically by a context, in
response to fn_ctx get syntax attrs(), or they may be created and updated
using the base attribute operations. This is implementation-dependent.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

Networking Library Functions 111

fn_ctx_get_syntax_attrs(3XFN)

SEE ALSO | FN_attrset t(3XFN), FN composite name_ t(3XFN),
FN_compound name t(3XFN), FN _ctx t(3XFN), FN_status_t(3XFN),
fn attr get(3XFN), fn_attr multi_ get(3XFN),

xfn compound names(3XFN), xfn_ attributes(3XFN),
xfn_status_codes(3XFN), xfn(3XFN), attributes(5)

112 man pages section 3: Networking Library Functions ¢ Last Revised 30 Dec 1996

NAME
SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

fn_ctx_handle_destroy(3XFN)
fn_ctx_handle_destroy — release storage associated with context handle

ce [flag ... 1 file ... -1xfn [library ...]
#include <xfn/xfn.h>

void fn ctx handle destroy (FN_ctx t *ctx) ;

This operation destroys the context handle ctx and allows the implementation to free
resources associated with the context handle. This operation does not affect the state of
the context itself.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

FN_ctx t(3XFN), fn_ctx handle from initial(3XFN),
fn ctx_handle from ref(3XFN), xfn(3XFN), attributes(5)

Networking Library Functions 113

fn_ctx_handle_from_initial(3XFN)

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

fn_ctx_handle_from_initial — return a handle to the Initial Context

ce [flag ... 1 file ... -1xfn [library ...]
#include <xfn/xfn.h>

FN ctx t *fn ctx handle from initial (unsigned int authoritative,
FN status_t *status) ;

This operation returns a handle to the caller’s Initial Context. On successful return, the
handle points to a context which meets the specification of the XEN Initial Context (see
fns initial context(5)).

authoritative specifies whether the handle to the context returned should be
authoritative with respect to information the context obtains from the naming service.
When the flag is non-zero, subsequent operations on the context will access the most
authoritative information. When authoritative is 0, the handle to the context returned
need not be authoritative.

fn ctx handle from initial () returns a pointer to an FN_ctx_t object if the
operation succeeds; it returns a NULL pointer (0) otherwise.

fn_ctx_handle from initial () sets only the status code portion of the status
object status.

Authoritativeness is determined by specific naming services. For example, in a naming
service that supports replication using a master/slave model, the source of
authoritative information would come from the master server. In some naming
systems, bypassing the naming service cache may reach servers which provide the
most authoritative information. The availability of an authoritative context might be
lower due to the lower number of servers offering this service. For the same reason, it
might also provide poorer performance than contexts that need not be authoritative.

Applications set authoritative to 0 for typical day-to-day operations. Applications only
set authoritative to a non-zero value when they require access to the most authoritative
information, possibly at the expense of lower availability and/or poorer performance.

It is implementation-dependent whether authoritativeness is transferred from one
context to the next as composite name resolution proceeds. Getting an authoritative
context handle to the Initial Context means that operations on bindings in the Initial
Context are processed using the most authoritative information. Contexts referenced
implicitly through an authoritative Initial Context (for example, through the use of
composite names) may not necessarily themselves be authoritative.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

114 man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

fn_ctx_handle_from_initial(3XFN)

SEE ALSO | FN_ctx t(3XFN), FN_status t(3XFN), fn_ctx get ref(3XFN),
fn ctx handle from ref(3XFN), xfn(3XFN), xfn status codes(3XFN),
attributes(b), fns initial context(d)

NOTES | The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.

Networking Library Functions 115

fn_ctx_handle_from_ref(3XFN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

fn_ctx_handle_from_ref — construct a handle to a context object using the given
reference

ce [flag ... 1 file ... -1xfn [library ...]
#include <xfn/xfn.h>

FN ctx t *fn ctx handle from ref (const FN ref t *ref, unsigned int
authoritative, FN_status_t *status) ;

This operation creates a handle to an FN_ctx_t object using an FN_ref_t object for
that context.

authoritative specifies whether the handle to the context returned should be
authoritative with respect to information the context obtains from the naming service.
When the flag is non-zero, subsequent operations on the context will access the most
authoritative information. When authoritative is 0, the handle to the context returned
need not be authoritative.

This operation returns a pointer to an FN_ctx_t object if the operation succeeds;
otherwise, it returns a NULL pointer (0).

fn ctx handle from ref () setsstatus as described in FN status t(3XFN) and
xfn status codes(3XEN). The following status code is of particular relevance to
this operation:

FN_E NO_SUPPORTED ADDRESS A context object could not be constructed
from a particular reference. The reference
contained no address type over which the
context interface was supported.

Authoritativeness is determined by specific naming services. For example, in a naming
service that supports replication using a master/slave model, the source of
authoritative information would come from the master server. In some naming
systems, bypassing the naming service cache may reach servers which provide the
most authoritative information. The availability of an authoritative context might be
lower due to the lower number of servers offering this service. For the same reason, it
might also provide poorer performance than contexts that need not be authoritative.

Applications set authoritative to 0 for typical day-to-day operations. Applications only
set authoritative to a non-zero value when they require access to the most authoritative
information, possibly at the expense of lower availability and/or poorer performance.

To control the authoritativeness of the target context, the application first resolves
explicitly to the target context using fn_ctx_lookup(3XEN). It then uses

fn ctx handle from ref () with the appropriate authoritative argument to
obtain a handle to the context. This returns a handle to a context with the specified
authoritativeness. The application then uses the XEN operations, such as lookup and
list, with this context handle.

116 man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

ATTRIBUTES

SEE ALSO

NOTES

fn_ctx_handle_from_ref(3XFN)

It is implementation-dependent whether authoritativeness is transferred from one
context to the next as composite name resolution proceeds. The application should use
the approach recommended above to achieve the desired level of authoritativeness on
a per context basis.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_ctx t(3XFN), FN_ref t(3XFN), FN_status_t(3XFN),

fn ctx get ref(3XFN), fn_ctx handle_ destroy(3XFN),

fn_ctx lookup(3XFN), xfn(3XFN), xfn status_ codes(3XEN), attributes(d),
fns references(5)

The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.

Networking Library Functions 117

fn_ctx_list_bindings(3XFN)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

fn_ctx_list_bindings, FN_bindinglist_t, fn_bindinglist_next, fn_bindinglist_destroy —
list the atomic names and references bound in a context

ce [flag ... 1 file ... -1xfn [library ...]

#include <xfn/xfn.h>

FN _bindinglist t *fn ctx list bindings (FN_ctx_ t *cfx, const
FN composite name t *name, FN_status_t *status) ;

FN_string t *fn bindinglist next (FN bindinglist t *bl, FN_ref t
**ref, FN_status_t *status) ;

void fn bindinglist destroy (FN bindinglist t *bl, FN_status t
*status) ;

This set of operations is used to list the names and bindings in the context named by
name relative to the context ctx. Note that name must name a context. If the intent is to
list the contents of ctx, name should be an empty composite name.

The semantics of these operations are similar to those for listing names (see

fn ctx list names(3XFN)). In addition to a name string being returned,

fn bindinglist next () also returns the reference of the binding for each member
of the enumeration.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_composite name t(3XFN), FN_ctx t(3XFN), FN_ref t(3XEN),
FN_status_t(3XEN), FN_string t(3XEN), fn_ctx_list names(3XFN),
xfn(3XEN), xfn_status_ codes(3XEN), attributes(5)

The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.

118 man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

fn_ctx_list_names(3XFN)

fn_ctx_list_names, FN_namelist_t, fn_namelist_next, fn_namelist_destroy — list the
atomic names bound in a context

ce [flag ... 1 file ... -1xfn [library ...]

#include <xfn/xfn.h>

FN_namelist t *fn ctx list names (FN_ctx t *ctx, const
FN composite name t *name, FN_status_t *status) ;

FN_string t *fn namelist next (FN _namelist t *nl, FN_status t
*status) ;

void fn namelist destroy(FN namelist t *nl, FN_status_t *status) ;

This set of operations is used to list the names bound in the target context named name
relative to the context ctx. Note that name must name a context. If the intent is to list
the contents of ctx, name should be an empty composite name.

The call to fn_ctx list names () initiates the enumeration process. It returns a
handle to an FN_namelist_t object that can be used to enumerate the names in the
target context.

The operation fn_namelist_next () returns the next name in the enumeration
identified by n1 and updates nl to indicate the state of the enumeration. Successive
calls to fn _namelist next () using nl return successive names in the enumeration
and further update the state of the enumeration. fn namelist next () returnsa
NULL pointer (0) when the enumeration has been completed.

fn_namelist_destroy () is used to release resources used during the enumeration.
This may be invoked at any time to terminate the enumeration.

fn_ctx list names () returns a pointer to an FN_namelist_t object if the
enumeration is successfully initiated; otherwise it returns a NULL pointer (0).

fn namelist next () returns a NULL pointer (0) if no more names can be returned
in the enumeration.

In the case of a failure, these operations return in status a code indicating the nature of
the failure.

Each successful call to fn_namelist next () returns a name and sets status to
FN_SUCCESS.

When fn namelist next () returns a NULL pointer (0), it indicates that no more
names can be returned. status is set in the following way:

FN_SUCCESS The enumeration has completed
successfully.
FN E INVALID ENUM HANDLE The supplied enumeration handle is not

valid. Possible reasons could be that the
handle was from another enumeration, or
the context being enumerated no longer

Networking Library Functions 119

fn_ctx_list_names(3XFN)

120

USAGE

EXAMPLES

accepts the handle (due to such events as
handle expiration or updates to the
context).

FN_E PARTIAL RESULT The enumeration is not yet complete but
cannot be continued.

Other status codes, such as FN_E_COMMUNICATION FAILURE, are also possible in
callsto fn_ctx list names (), fn namelist next (), and

fn namelist destroy (). These functions set status for these other status codes as
described in FN_status_t(3XFN) and xfn_status_codes(3XFN).

The names enumerated using fn_namelist next () are not ordered in any way.
There is no guaranteed relation between the order in which names are added to a
context and the order of names obtained by enumeration. The specification does not
guarantee that any two series of enumerations will return the names in the same
order.

When a name is added to or removed from a context, this may or may not invalidate
the enumeration handle that the client holds for that context. If the enumeration
handle becomes invalid, the status code FN_E_INVALID ENUM_ HANDLE is returned
in status. If the enumeration handle remains valid, the update may or may not be
visible to the client.

In addition, there may be a relationship between the ctx argument supplied to

fn ctx list names () and the FN namelist t object it returns. For example,
some implementations may store the context handle ctx within the FN_namelist_t
object for subsequent £n_namelist next () calls. In general, a

fn_ctx handle_destroy(3XFN) should not be invoked on ctx until the
enumeration has terminated.

EXAMPLE 1 A sample program.

The following code fragment illustrates how the list names operations may be used:

extern FN_string t *user_ input;

FN_ctx_t *ctx;

FN_composite_name_t *target name = fn_composite name_from string(user_input) ;

FN_status_t *status = fn_status_create();

FN_string_t *name;

FN_namelist_t *nl;

ctx = fn_ctx handle from initial (status);

/* error checking on ’status’ */

if ((nl=fn ctx list names(ctx, target name, status))
/* report ’status’ and exit */

}

while (name=fn namelist next (nl, status))
/* do something with ‘name’ */
fn string destroy (name) ;

0) {

/* check ’status’ for reason for end of enumeration and report if necessary */
/* clean up */

man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

ATTRIBUTES

SEE ALSO

NOTES

fn_ctx_list_names(3XFN)

EXAMPLE 1 A sample program. (Continued)

fn_namelist_destroy(nl, status);

/* report ’status’ */

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_composite name t(3XFN), FN ctx t(3XFN), FN_status_ t(3XFN),
FN_string t(3XFN), fn_ctx_handle destroy(3XFN), xfn(3XFN),
xfn_status_codes(3XFN), attributes(5)

The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.

Networking Library Functions 121

fn_ctx_lookup(3XFN)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUE

ERRORS

APPLICATION
USAGE

ATTRIBUTES

SEE ALSO

fn_ctx_lookup - look up name in context

ce [flag ... 1 file ... -1xfn [library ...]
#include <xfn/xfn.h>

FN ref t *fn ctx lookup (FN_ctx t *ctx, const FN_composite name t
*name, FN_status_t *status) ;

This operation returns the reference bound to name relative to the context ctx.

If the operation succeeds, the fn_ctx lookup () function returns a handle to the
reference bound to name. Otherwise, 0 is returned and status is set appropriately.

fn ctx lookup () sets status as described FN_status_t(3XFN) and
xfn_status_codes(3XEN).

Some naming services may not always have reference information for all names in
their contexts; for such names, such naming services may return a special reference
whose type indicates that the name is not bound to any address. This reference may be
name service specific or it may be the conventional NULL reference defined in the
X/Open registry. See fns_references(5).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

FN_composite name t(3XFN), FN _ctx t(3XFN), FN_ref t(3XFN),
FN_status_ t(3XFN), fns references(d), xfn_status codes (3XFN),
xfn(3XEN), attributes(5)

122 man pages section 3: Networking Library Functions ¢ Last Revised 30 Dec 1996

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

fn_ctx_lookup_link(3XFN)
fn_ctx_lookup_link —look up the link reference bound to a name

ce [flag ... 1 file ... -1xfn [library ...]
#include <xfn/xfn.h>

FN ref t *fn ctx lookup link(FN ctx t *ctx, const

FN composite name t *name, FN_status_t *status) ;

This operation returns the XFN link bound to name. The terminal atomic part of name
must be bound to an XFN link.

The normal fn_ctx_lookup(3XFN) operation follows all links encountered,
including any bound to the terminal atomic part of name. This operation differs from
the normal lookup in that when the terminal atomic part of name is an XFN link, this
link is not followed, and the operation returns the link.

If fn ctx lookup link() fails, a NULL pointer (0) is returned.

fn ctx lookup link () sets status as described in FN_status_ t(3XFN) and
xfn_status_codes(3XEN). Of special relevance for fn_ctx_lookup_link () is
the following status code:

FN_E MALFORMED_LINK name resolved to a reference that was not a link.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_composite name t(3XFN), FN_ctx t(3XFN), FN_ref t(3XFN),
FN_status_t(3XEN), fn_ctx_lookup(3XFN), xfn(3XFN), xfn_1inks(3XFN),
xfn_status_codes(3XFN), attributes(5)

The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.

Networking Library Functions 123

fn_ctx_rename(3XFN)

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

fn_ctx_rename — rename the name of a binding

ce [flag ... 1 file ... -1xfn [library ...]
#include <xfn/xfn.h>

int fn ctx rename (FN_ctx t *ctx, const FN_composite name t
*oldname, const FN composite name t *newname, unsigned int
exclusive, FN_status_t *status) ;

The fn_ctx_rename () operation binds the reference currently bound to oldname
relative to ctx, to the name newname, and unbinds oldname. newname is resolved relative
to the target context (that named by all but the terminal atomic part of oldname).

If exclusive is 0, the operation overwrites any old binding of newname. If exclusive is
nonzero, the operation fails if newname is already bound.

fn ctx rename () returns 1 if the operation is successful, 0 otherwise.

fn ctx_rename () sets status as described FN_status_t(3XFN) and
xfn_ status_codes(3XFN).

The only restriction that XFN places on newname is that it be resolved relative to the
target context. XFN does not specify further restrictions on newname. For example, in
some implementations, newname might be restricted to be a name in the same naming
system as the terminal component of oldname. In another implementation, newname
might be restricted to be an atomic name.

Normal resolution always follows links. In an fn_ctx rename () operation,
resolution of oldname continues to the target context; the terminal atomic name is not
resolved. If the terminal atomic name is bound to a link, the link is not followed and
the operation binds newname to the link and unbinds the terminal atomic name of
oldname.

In naming systems that support attributes and store the attributes along with the
names, the unbind of the terminal atomic name of oldname also removes its associated
attributes. It is implementation-dependent whether these attributes become associated
with newname.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_composite name t(3XFN), FN ctx t(3XFN), FN_ref t(3XFN),
FN_status t(BXFN), fn_ctx bind(3XFN) fn_ctx_unbind(3XFN), xfn(3XFN),
xfn_ status_ codes(3XFN), attributes(b)

124 man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

fn_ctx_rename(3XFN)

NOTES | The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.

Networking Library Functions 125

FN_ctx_t(3XFN)

126

NAME
SYNOPSIS

FN_ctx_t — an XFN context

ce [flag ... 1 file ... -1xfn [library ...]
#include <xfn/xfn.h>

FN ctx t *fn ctx handle from initial (unsigned int authoritative,
FN status_t *status) ;

FN ctx t *fn ctx handle from ref (const FN ref t *ref, unsigned int
authoritative, FN_status_t *status) ;

FN ref t *fn ctx get ref (const FN ctx t *ctx, FN_status_t *status) ;
void fn ctx handle destroy (FN_ctx t *ctx) ;

FN ref t *fn ctx lookup (FN_ctx t *ctx, const FN_composite name t
*name, FN_status_t *status) ;

FN namelist t *fn ctx list names (FN ctx t *cfx, const
FN composite name t *name, FN_status_t *status) ;

FN string t *fn namelist next (FN namelist t *n/, FN status t
*status) ;

void fn namelist destroy(FN namelist t *nl, FN_status_t *status) ;

FN_bindinglist_t *fn ctx list bindings (FN_ctx t *ctx, const
FN composite name t *name, FN_status_t *status) ;

FN_string t *fn bindinglist next (FN_bindinglist t *iter, FN_ref t
**ref, FN_status_t *status) ;

void fn_bindinglist destroy (FN_bindinglist_t *ifer_pos, FN_status_t
*status) ;

int fn ctx bind(FN_ctx t *ctx, const FN_composite name_t *name,
const FN_ref t *ref, unsigned int exclusive, FN_status_t *status) ;

int fn ctx unbind (FN _ctx t *ctx, const FN composite name t *name,
FN status_t *status) ;

int fn ctx rename (FN_ctx t *cfx, const FN_composite name t
*oldname, const FN_composite name t *newname, unsigned int
exclusive, FN_status_t *status) ;

FN ref t *fn ctx create subcontext (FN_ctx t *ctx, const
FN composite name t *name, FN_status_t *status) ;

int fn ctx destroy subcontext (FN ctx t *cfx, const
FN composite name t *name, FN_status_t *status) ;

FN_ref t *fn ctx lookup link(FN_ctx t *ctx, const
FN_composite name_ t *name, FN_status_t *status) ;

FN attrset t *fn ctx get syntax attrs(FN ctx t *cfx, const
FN composite name_ t *name, FN_status_t *status) ;

man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

DESCRIPTION

ERRORS

USAGE

FN_ctx_t(3XFN)

An XEN context consists of a set of name to reference bindings. An XEN context is
represented by the type FN_ctx_t in the client interface. The operations for
manipulating an FN_ctx_t object are described in detail in separate reference manual

pages.
The following contains a brief summary of these operations:

fn ctx handle from initial () returns a pointer to an Initial Context that
provides a starting point for resolution of composite names.

fn_ctx handle_from ref () returns a handle to an FN_ctx_t object using the
given reference ref. fn_ctx_get ref () returns the reference of the context ctx.

fn ctx handle destroy () releases the resources associated with the FN_ctx t
object ctx; it does not affect the state of the context itself.

fn_ctx lookup () returns the reference bound to name resolved relative to ctx.
fn_ctx list names () is used to enumerate the atomic names bound in the context
named by name resolved relative to ctx. fn_ctx list bindings () is used to
enumerate the atomic names and their references in the context named by name
resolved relative to ctx.

fn_ctx_bind () binds the composite name name to a reference ref resolved relative to
ctx. fn_ctx_unbind () unbinds name resolved relative to ctx. fn_ctx rename ()
binds newname to the reference bound to oldname and unbinds oldname. oldname is
resolved relative to ctx; newname is resolved relative to the target context.

fn_ctx create_subcontext () creates a new context with the given composite
name name resolved relative to ctx. fn_ctx_destroy subcontext () destroys the
context named by name resolved relative to ctx.

Normal resolution always follows links. fn_ctx lookup link () looks up name
relative to ctx, following links except for the last atomic part of name, which must be
bound to an XEN link.

fn_ctx get_syntax_attrs () returns an attribute set containing attributes that
describe a context’s syntax. name must name a context.

In each context operation, the caller supplies an FN_status_t object as a parameter.
The called function sets this status object as described in FN status_t(3XFN) and
xfn_ status_codes(3XFN).

In most of the operations of the base context interface, the caller supplies a context and
a composite name. The supplied name is always interpreted relative to the supplied
context.

The operation may eventually be effected on a different context called the operation’s
target context. Each operation has an initial resolution phase that conveys the operation
to its target context, and the operation is then applied. The effect (but not necessarily
the implementation) is that of doing a lookup on that portion of the name that
represents the target context, and then invoking the operation on the target context.
The contexts involved only in the resolution phase are called intermediate contexts.

Networking Library Functions 127

FN_ctx_t(3XEN)

128

ATTRIBUTES

SEE ALSO

NOTES

Normal resolution of names in context operations always follows XFN links.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_attrset t(3XFN), FN composite name t(3XEN), FN ref t(3XFN),
FN_status_ t(3XFN), fn_ctx_bind(3XFN),

fn ctx_create subcontext(3XFN), fn_ctx_destroy subcontext(3XEN),
fn ctx _get ref(3XFN), fn_ctx_get syntax attrs(3XFN),

fn_ctx handle destroy(3XEN), fn_ctx_handle from initial(3XEN),

fn _ctx handle from ref(3XFN), fn ctx list bindings(3XEFN),

fn ctx list names(3XFN), fn_ctx lookup(3XFN),

fn ctx lookup 1ink(3XEN), fn_ ctx_rename(3XFN), fn_ctx_ unbind(3XFN),
xEn(3XEN), xfn 1inks(3XFN), xfn status_codes(3XFN), attributes(d)

The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.

man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

fn_ctx_unbind (3XFN)
NAME | fn_ctx_unbind — unbind a name from a context

SYNOPSIS | cc [flag ... 1 file ... -1xfn [library ...]

#include <xfn/xfn.h>

int fn _ctx unbind (FN_ctx t *ctx, const FN_composite_ name_ t *name,
FN status_t *status) ;

DESCRIPTION | This operation removes the terminal atomic name in name from the the target context
— that named by all but the terminal atomic part of name.

This operation is successful even if the terminal atomic name was not bound in target
context, but fails if any of the intermediate names are not bound. fn_ctx_unbind ()
is idempotent.

RETURN VALUE | The operation returns 1 if successful, and 0 otherwise.

ERRORS | fn ctx unbind() sets status as described in FN_status_t and
xfn status codes (3XEN).

Certain naming systems may disallow unbinding a name if the name is bound to an
existing context in order to avoid orphan contexts that cannot be reached via any
name. In such situations, the status code FN_E OPERATION NOT SUPPORTED is
returned.

APPLICATION | In naming systems that support attributes, and store the attributes along with the
USAGE | names, the unbind operation removes the name and its associated attributes.

Normal resolution always follows links. In an fn_ctx_unbind () operation,
resolution of name continues to the target context; the terminal atomic name is not
resolved. If the terminal atomic name is bound to a link, the link is not followed and
the link itself is unbound from the terminal atomic name.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

SEE ALSO | FN_composite name t(3XFN), FN _ctx t(3XEN), FN_ref t(3XFN),
FN_status_t(3XEN), fn_ctx_bind(3XFN), fn_ctx_lookup(3XFN),
xfn_status_codes(3XFN), xfn(3XEFN), attributes(5)

Networking Library Functions 129

FN_identifier_t(3XFN)

NAME

DESCRIPTION

FILES

SEE ALSO

NOTES

FN_identifier_t — an XFN identifier

Identifiers are used to identify reference types and address types in an XFN reference,
and to identify attributes and their syntax in the attribute operations.

An XFN identifier consists of an unsigned int, which determines the format of
identifier, and the actual identifier, which is expressed as a sequence of octets.

The representation of this structure is defined by XFN as follows:

typedef struct {
unsigned int format;
size_t length;

void *contents;

} FN_identifier t;

XFN defines a small number of standard forms for identifiers:

FN_ID STRING The identifier is an ASCII string (ISO 646).

FN ID DCE UUID The identifier is an OSF DCE UUID in
string representation. (See the X/Open DCE
RPC.)

FN ID ISO OID STRING The identifier is an ISO OID in ASN.1

dot-separated integer list string format. (See
the ISO ASN.1.)

FN_ID ISO_OID_BER The identifier is an ISO OID in ASN.1 Basic
Encoding Rules (BER) format. (See the IS0
BER.)

#include <xfn/xfn.h>
FN_attribute t(3XFN), FN_ref addr t(3XFN), FN_ref t(3XFN), xfn(3XFN)

The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.

130 man pages section 3: Networking Library Functions ¢ Last Revised 4 Nov 1994

NAME

SYNOPSIS

DESCRIPTION

FN_ref_addr_t(3XFN)

FN_ref_addr_t, fn_ref_addr_create, fn_ref_addr_destroy, fn_ref_addr_copy,
fn_ref_addr_assign, fn_ref_addr_type, fn_ref_addr_length, fn_ref_addr_data,
fn_ref_addr_description — an address in an XEN reference

ce [flag ... 1 file ... -1xfn [library ...]

#include <xfn/xfn.h>

FN_ref addr_t *fn ref addr create(constFN identifier t *type,
size t length, const void *data) ;

void fn_ref addr destroy(FN ref addr t *addr) ;
FN ref addr t *fn ref addr copy(constFN ref addr t *addr) ;

FN ref addr t *fn ref addr assign(FN ref addr t *dst, const
FN ref addr t *src);

const FN_identifier t *fn ref addr type(constFN ref addr t
*addr) ;

size t fn ref addr length(const FN ref addr t *addr);
const void* fn ref addr data(const FN _ref addr t *addr) ;

FN string t *fn ref addr description(constFN ref addr_t *addr,
unsigned int detail, unsigned int *more_detail) ;

An XEN reference is represented by the type FN_ref t. An object of this type
contains a reference type and a list of addresses. Each address in the list is represented
by an object of type FN_ref addr_t. An address consists of an opaque data buffer
and a type field, of type FN_identifier_t.

fn_ref addr create () creates and returns an address with the given type and
data. length indicates the size of the data. fn_ref addr destroy () releases the
storage associated with the given address. fn_ref_addr_copy () returns a copy of
the given address object. fn_ref addr assign () makes a copy of the address
pointed to by src and assigns it to dst, releasing any old contents of dst. A pointer to the
same object as dst is returned.

fn_ref_addr_type () returns the type of the given address.
fn_ref addr_ length() returns the size of the address in bytes.
fn ref addr data () returns the contents of the address.

fn ref addr description () returns the implementation-defined textual
description of the address. It takes as arguments a number, detail, and a pointer to a
number, more_detail. detail specifies the level of detail for which the description should
be generated; the higher the number, the more detail is to be provided. If more_detail is
0, it is ignored. If more_detail is non-zero, it is set by the description operation to
indicate the next level of detail available, beyond that specified by detail. If no higher
level of detail is available, more_detail is set to detail.

Networking Library Functions 131

FN_ref_addr_t(3XFN)

USAGE

ATTRIBUTES

SEE ALSO

NOTES

The address type of an FN_ref addr_t object is intended to identify the mechanism
that should be used to reach the object using that address. The client must interpret
the contents of the opaque data buffer of the address based on the type of the address,
and on the type of the reference that the address is in. However, this interpretation is
intended to occur below the application layer. Most applications developers should
not have to manipulate the contents of either address or reference objects themselves.
These interfaces would generally be used within service libraries.

Multiple addresses in a single reference are intended to identify multiple
communication endpoints for the same conceptual object. Multiple addresses may
arise for various reasons, such as the object offering interfaces over more than one
communication mechanism.

Manipulation of addresses using the operations described in this manual page does
not affect their representation in the underlying naming system. Changes to addresses
in the underlying naming system can only be effected through the use of the interfaces
described in FN_ctx_t(3XFN).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_ctx t(3XFN), FN_identifier t(3XFN), FN_ref t(3XEFN),
FN_string t(3XEN), xfn(3XFN), attributes(5)

The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.

132 man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

NAME

SYNOPSIS

DESCRIPTION

FN_ref_t(3XFN)

FN_ref_t, fn_ref_create, fn_ref_destroy, fn_ref_copy, fn_ref_assign, fn_ref_type,
fn_ref_addrcount, fn_ref_first, fn_ref_next, fn_ref_prepend_addr, fn_ref_append_addr,
fn_ref insert_addr, fn_ref delete_addr, fn_ref delete_all, fn_ref create_link,
fn_ref_is_link, fn_ref_link_name, fn_ref_description — an XFN reference

ce [flag ... 1 file ... -1xfn [library ...]
#include <xfn/xfn.h>

FN ref t *fn ref create(const FN identifier t *ref _fype) ;
void fn_ref destroy (FN_ref t *ref);

FN ref t *fn ref copy(const FN_ref t *ref);

FN ref t *fn ref assign(FN ref t *dst, const FN ref t *src);
const FN identifier t *fn ref type(const FN ref t *ref);
unsigned int fn ref addrcount (const FN ref t *ref) ;

const FN ref addr t *fn ref first(const FN ref t *ref, void
**jter_pos) ;

const FN ref addr t *fn ref next(const FN ref t *ref, void
**jter_pos) ;

int fn ref prepend addr (FN ref t *ref, const FN ref addr t *addr);
int fn ref append addr (FN ref t *ref, const FN ref addr t *addr);

int fn ref insert addr (FN_ref t *ref, void **iter_pos, const
FN_ref addr_t *addr) ;

int fn ref delete addr (FN_ref t *ref, void **iter_pos) ;
int fn ref delete all (FN_ref t *ref);

FN ref t *fn ref create link(const FN_composite name_t
*link_name) ;

int fn ref is link(const FN ref t *ref);
FN_composite name t *fn ref link name (const FN ref t *link_ref) ;

FN string t *fn ref description(const FN ref t *ref, unsigned int
detail, unsigned int *more_detail) ;

An XEN reference is represented by the type FN_ref t. An object of this type
contains a reference type and a list of addresses. The ordering in this list at the time of
binding might not be preserved when the reference is returned upon lookup.

The reference type is represented by an object of type FN_identifier t.The
reference type is intended to identify the class of object referenced. XFN does not
dictate the precise use of this.

Each address is represented by an object of type FN_ref addr t.

Networking Library Functions 133

FN_ref_t(3XFN)

RETURN VALUES

134

USAGE

fn_ref create () creates a reference with no address, using ref_type as its reference
type. Addresses can be added later to the reference using the functions described
below. fn_ref destroy () releases the storage associated with ref. fn_ref copy ()
creates a copy of ref and returns it. fn_ref assign() creates a copy of src and
assigns it to dst, releasing any old contents of dst. A pointer to the same object as dst is
returned.

fn ref addrcount () returns the number of addresses in the reference ref.

fn ref first () returns the first address in ref and sets iter_pos to be after the
address. It returns 0 if there is no address in the list. fn_ref next () returns the
address following iter_pos in ref and sets iter_pos to be after the address. If the iteration
marker iter_pos is at the end of the sequence, fn_ref next () returns 0.

fn_ref prepend_addr () adds addr to the front of the list of addresses in ref.
fn_ref append_addr () adds addr to the end of the list of addresses in ref.

fn ref insert addr () adds addr to ref before iter_pos and sets iter_pos to be
immediately after the new reference added. fn_ref delete addr () deletes the
address located before iter_pos in the list of addresses in ref and sets iter_pos back one
address. fn_ref delete all () deletes all addresses in ref.

fn ref create link() creates a reference using the given composite name
link_name as an address. fn_ref is link () tests if refis a link. It returns 1 if it is; 0
ifitisnot. fn_ref link name () returns the composite name stored in a link
reference. It returns 0 if link_ref is not a link.

fn ref description() returns a string description of the given reference. It takes
as argument an integer, detail, and a pointer to an integer, more_detail. detail specifies
the level of detail for which the description should be generated; the higher the
number, the more detail is to be provided. If more_detail is 0, it is ignored. If more_detail
is non-zero, it is set by the description operation to indicate the next level of detail
available, beyond that specified by detail. If no higher level of detail is available,
more_detail is set to detail.

The following operations return 1 if the operation succeeds, 0 if the operation fails:

fn ref prepend addr ()
fn_ref append_addr ()
fn ref insert addr()
fn ref delete addr()
fn ref delete all()

The reference type is intended to identify the class of object referenced. XFN does not
dictate the precise use of this.

Multiple addresses in a single reference are intended to identify multiple
communication endpoints for the same conceptual object. Multiple addresses may
arise for various reasons, such as the object offering interfaces over more than one
communication mechanism.

man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

ATTRIBUTES

SEE ALSO

NOTES

FN_ref_t(3XFN)

The client must interpret the contents of a reference based on the type of the addresses
and the type of the reference. However, this interpretation is intended to occur below
the application layer. Most applications developers should not have to manipulate the
contents of either address or reference objects themselves. These interfaces would
generally be used within service libraries.

Manipulation of references using the operations described in this manual page does
not affect their representation in the underlying naming system. Changes to references
in the underlying naming system can only be effected through the use of the interfaces
described in FN_ctx_t(3XFN).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

FN_composite name t(3XFN), FN ctx t(3XFN), FN identifier t(3XFN),
FN_ref addr t(3XFN), FN_string t(3XFN), fn_ctx_lookup(3XFN),
fn ctx_ lookup 1ink(3XFN), xfn(3XFN), xfn 1inks(3XFN), attributes(5)

The implementation of XFN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been
developed against the preliminary specification.

Networking Library Functions 135

FN_search_control_t(3XFN)

136

NAME

SYNOPSIS

DESCRIPTION

FN_search_control_t, fn_search_control_create, fn_search_control_destroy,
fn_search_control_copy, fn_search_control_assign, fn_search_control_scope,
fn_search_control_follow_links, fn_search_control_max_names,
fn_search_control_return_ref, fn_search_control_return_attr_ids — options for attribute
search

#include <xfn/xfn.h>

FN_search control t *fn search control create(unsigned int scope,
unsigned int follow_links, unsigned int max_names, unsigned int
return_ref, const FN_attrset_t *return_attr_ids, unsigned int
*status) ;

void fn_search control destroy (FN_search control t *scontrol) ;

FN search control t *fn search control copy (const
FN_search control t *scontrol) ;

FN_search_control_ t
*fn search control assign(FN search control t *dst, const
FN_search control t *src);

unsigned int fn search control scope(const FN search control t
*scontrol) ;

unsigned int fn search control follow links (const
FN_search control t *scontrol) ;

unsigned int fn search control max names (const
FN_search control t *scontrol) ;

unsigned int fn search control return ref (const
FN_search control t *scontrol) ;

const FN_attrset t *fn search control return attr ids(const
FN search control t *scontrol) ;

The FN_search_control_t object is used to specify options for the attribute search
operation fn_attr ext search(3XEN).

fn_search control_create () creates an FN_search_control_t object using
information in scope, follow_links, max_names, return_ref, and return_attr_ids to set the
search options. If the operation succeeds, fn_search control create () returns a
pointer to an FN_search_control_t object; otherwise, it returns a NULL pointer.

The scope of the search, scope, is either the named object, the named context, the
named context and its subcontexts, or the named context and a context
implementation defined set of subcontexts. The values for scope are:

FN_SEARCH_NAMED OBJECT Search just the given named object.
FN_SEARCH ONE CONTEXT Search just the given context.
FN SEARCH SUBTREE Search given context and all its subcontexts.

man pages section 3: Networking Library Functions * Last Revised 22 Nov 1996

FN_search_control_t(3XFN)

FN_SEARCH_CONSTRAINED_ SUBTREE Search given context and its subcontexts as
constrained by the context-specific policy in
place at the named context.

follow_links further defines the scope and nature of the search. If follow_links is
nonzero, the search follows XFN links. If follow_links is 0, XFN links are not followed.
See fn_attr ext search(3XFN) for more detail about how XEN links are treated.

max_names specifies the maximum number of names to return in an

FN_ext searchlist t(3XFN)enumeration (see fn_attr ext search(3XFN)).
The names of all objects whose attributes satisfy the filter are returned when
max_names is 0.

If return_ref is non-zero, the reference bound to the named object is returned with the
object’s name by fn_ext_searchlist_next(3XFN) (see
fn_attr ext search(3XEN)). If return_ref is 0, the reference is not returned.

Attribute identifiers and values associated with named objects that satisfy the filter
may be returned by fn_ext_searchlist next(3XFN). The attributes returned are
those listed in return_attr_ids. If the value of return_attr_ids is 0, all attributes are
returned. If return_attr_ids is an empty FN_attrset t object (see

FN_attrset_ t(3XFN)), no attributes are returned. Any attribute values in
return_attr_ids are ignored; only the attribute identifiers are relevant for this operation.

fn attr ext search(3XFN) interprets a value of 0 for the search control argument
as a default search control which has the following option settings:

scope FN SEARCH ONE_CONTEXT

follow_links 0 (do not follow links)

max_names 0 (return all named objects that match filter)
return_ref 0 (do not return the reference of the named object)
return_attr_ids an empty FN_attrset_t object (do not return any

attributes of the named object)
fn_search control_destroy () releases the storage associated with scontrol.
fn_search control_ copy () returns a copy of the search control scontrol.

fn search control assign () makes a copy of the search control src and assigns
it to dst, releasing the old contents of dst. A pointer to the same object as dst is
returned.

fn search control scope () returns the scope for the search.

fn search control follow links () returns non-zero if links are followed; 0 if
not.

fn search control max names () returns the maximum number of names.

Networking Library Functions 137

FN_search_control_t(3XFN)

fn search control return ref () returns nonzero if the reference is returned; 0
if not.

fn_search control_return_attr_ids () returns a pointer to the list of
attributes; a NULL pointer indicates that all attributes and values are returned.

ERRORS | fn_search_control_create () returns a NULL pointer if the operation fails and
sets status as follows:

FN E SEARCH INVALID OPTION A supplied search option was invalid or
inconsistent.

Other status codes are possible (see xfn status codes(3XFN)).

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO | FN_attrset t(3XFN), fn_attr ext search(3XFN),
xfn status_codes(3XFN), attributes(d)

138 man pages section 3: Networking Library Functions ¢ Last Revised 22 Nov 1996

NAME

SYNOPSIS

DESCRIPTION

FN_search_filter_t(3XFN)

FN_search_filter_t, fn_search_filter_create, fn_search_filter_destroy,
fn_search_filter_copy, fn_search_filter_assign, fn_search_filter_expression,
fn_search_filter_arguments — filter expression for attribute search

#include <xfn/xfn.h>

FN_search filter t *fn search filter create(unsigned int *status,
const unsigned char *estr, .);

void fn search filter destroy(FN search filter t *sfilter) ;

FN_search filter t *fn search filter copy (const
FN_search filter t *sfilter) ;

FN search filter t *fn search filter assign(FN search filter t
*dst, const FN_search filter t *src);

const char *fn search filter expression(const FN_search filter t

*sfilter) ;

const void **fn search filter arguments(const FN_search filter t
*sfilter, size_t *number_of_argquments) ;

The FN_search_filter_t type is an expression that is evaluated against the
attributes of named objects bound in the scope of the search operation

fn attr ext search(3XFN). The filter evaluates to TRUE or FALSE. If the filter is
empty, it evaluates to TRUE. Names of objects whose attribute values satisfy the filter
expression are returned by the search operation.

If the identifier in any subexpression of the filter does not exist as an attribute of an
object, then the innermost logical expression containing that identifier is FALSE. A
subexpression that is only an attribute tests for the presence of the attribute; the
subexpression evaluates to TRUE if the attribute has been defined for the object and
FALSE otherwise.

fn_search filter_create () creates a search filter from the expression string estr
and the remaining arguments.

fn search filter destroy () releases the storage associated with the search
filter sfilter.

fn search filter copy () returns a copy of the search filter sfilter.

fn_search filter_assign () makes a copy of the search filter src and assigns it to
dst, releasing the old contents of dst. A pointer to the same object as dst is returned.

fn search filter expression () returns the filter expression of sfilter.

fn search filter arguments () returns an array of pointers to arguments
supplied to the filter constructor. number_of_arguments is set to the size of this array.
The types of the arguments are determined by the substitution tokens in the
expression in sfilter.

Networking Library Functions 139

FN_search_filter_t(3XFN)

BNF of Filter | <FilterExpr> : : = [<Expr>]
Expression <Expr> : : = <Expr> "or" <Expr>
<Expr> "and" <Expr>
| "not" <Expr>
(" <Exprs> ")"
3o
| <Attribute> [<Rel Op> <Value>]

| <Ext>
<Rel Op> e T e B B P N we —m P
<Attribute> : : = "%a"
<Value> : : = <Integer>
‘ ngsn
| <Wildcarded_string>
<Wildcarded_string> : : = "*"

| <String>
| {<String> "*"}+ [<String>]
| {"*" <Strings}+ ["*"]
<String> : : = "‘" { <Char> } * "
l|%sl|
<Chars> <PCS> // See BNF in Section 4.1.2 for PCSdefinition
Characters in the repertoire of a string representation

<Identifier> : : =" "gin

<Ext> : : = <Ext Op> " (" [Arg List] ")"

<Ext Op> : : = <String> | <Identifiers>

<Arg List> : : = <Arg> | <Arg> "," <Arg List>
<Arg> : : = <Value> | <Attribute> | <Identifiers>

Specification of | The arguments to fn_search filter create () are a return status, an expression
Filter Expression | string, and a list of arguments. The string contains the filter expression with
substitution tokens for the attributes, attribute values, strings, and identifiers that are
part of the expression. The remaining list of arguments contains the attributes and
values in the order of appearance of their corresponding substitution tokens in the
expression. The arguments are of types FN_attribute t*, FN attrvalue t*,
FN_string t* or FN identifier t*.Any attribute values in an
FN_attribute t* type of argument are ignored; only the attribute identifier and
attribute syntax are relevant. The argument type expected by each substitution token
are listed in the following table.

Token Argument Type

o\°
@

FN attribute t*

o°
b

FN_attrvalue_ t*

o®
0

FN_string t*

o°
.

FN identifier t¥*

Precedence | The following precedence relations hold in the absence of parentheses, in the order of
lowest to highest:

or
and

140 man pages section 3: Networking Library Functions ¢ Last Revised 22 Nov 1996

Relational
Operators

Wildcarded Strings

FN_search_filter_t(3XFN)

not
relational operators

These boolean and relational operators are left associative.

Comparisons and ordering are specific to the syntax and/or rules of the supplied
attribute.

Locale (code set, language, or territory) mismatches that occur during string
comparisons and ordering operations are resolved in an implementation-dependent
way. Relational operations that have ordering semantics may be used for strings of
code sets in which ordering is meaningful, but is not of general use in
internationalized environments.

An attribute that occurs in the absence of any relational operator tests for the presence
of the attribute.

Operator Meaning

== The sub-expression is TRUE if at least one value of the specified
attribute is equal to the supplied value.

! o= The sub-expression is TRUE if no values of the specified attribute
equal the supplied value.

> = The sub-expression is TRUE if at least one value of the attribute is
greater than or equal to the supplied value.

> The sub-expression is TRUE if at least one value of the attribute is
greater then the supplied value.

< = The sub-expression is TRUE if at least one value of the attribute is
less than or equal to the supplied value.

< The sub-expression is TRUE if at least one value of the attribute is
less than the supplied value.

= = The sub-expression is TRUE if at least one value of the specified
attribute matches the supplied value according to some
context-specific approximate matching criterion. This criterion
must subsume strict equality.

A wildcarded string consists of a sequence of alternating wildcard specifiers and
strings. The sequence can start with either a wildcard specifier or a string, and end
with either a wildcard specifier or a string.

The wildcard specifier is denoted by the asterisk character ("*’) and means zero or
more occurrences of any character.

Wildcarded strings can be used to specify substring matches. The following are
examples of wildcarded strings and what they mean:

Networking Library Functions 141

FN_search_filter_t(3XFN)

142

Extended
Operations

Wildcarded String Meaning

* Any string
*/ing’ Any string ending with ing
Any string starting

with jo, and containing
the substring ph,

and which contains
the substring ne in the
portion

of the string
following ph, and which
ends with er

T}
$s* Any string starting with the supplied string

Any string starting
with bix and ending with
the supplied string

T}

String matches involving strings of different locales (code set, language, or territory)
are resolved in an implementation-dependent way.

In addition to the relational operators, extended operators can be specified. All
extended operators return either TRUE or FALSE. A filter expression can contain both
relational and extended operations.

Extended operators are specified using an identifier (see FN_identifier t(3XFN))
or a string. If the operator is specified using a string, the string is used to construct an
identifier of format FN_ID STRING. Identifiers of extended operators and signatures
of the corresponding extended operations, as well as their suggested semantics, are
registered with X/Open Company Ltd.

The following three extended operations are currently defined:

‘name’ (<Wildcarded String>) The identifier for this operation is ' name’
(FN_ID STRING). The argument to this
operation is a wildcard string. The
operation returns TRUE if the name of the
object matches the supplied wildcard string.

"reftype’ (%1) The identifier for this operation is
"reftype’ (FN_ID STRING). The
argument to this operation is an identifier.

man pages section 3: Networking Library Functions * Last Revised 22 Nov 1996

RETURN VALUES

ERRORS

FN_search_filter_t(3XFN)

The operation returns TRUE if the reference
type of the object is equal to the supplied
identifier.

‘addrtype’ (%1) The identifier for this operation is
"addrtype’ (LM FN_ID STRING). The
argument to the operation is an identifier.
The operation returns TRUE if any of the
address types in the reference of the object
is equal to the supplied identifier.

Support and exact semantics of extended operations are context-specific. If a context
does not support an extended operation, or if the filter expression supplies the
extended operation with either an incorrect number or type of arguments, the error
FN_E SEARCH INVALID OP is returned. (Note:

FN _E OPERATION NOT SUPPORTED is returned when

fn attr ext search(3XFN) is not supported.)

The following are examples of filter expressions that contain extended operations:

Expression Meaning

Evaluates to
TRUE

if the name of the object starts

with

bill.

T}

%$i(%a, %v) Evaluates to result of applying the specified
operation to the supplied arguments.

(%a == %v) and ‘name’ (' joe’*) Evaluates to TRUE if the specified attribute has

the given value and if the name of the object
starts with joe.

fn _search filter create () returns a pointer to an FN_search filter t
object if the operation succeeds; otherwise it returns a NULL pointer.

fn search filter create () returns a NULL pointer if the operation fails and sets
status in the following way:

FN_E SEARCH_INVALID FILTER The filter expression had a syntax error or
some other problem.

FN_E SEARCH INVALID OP An operator in the filter expression is not
supported or, if the operator is an extended

Networking Library Functions 143

FN_search_filter_t(3XFN)

144

EXAMPLES

ATTRIBUTES

operator, the number of types of arguments
supplied does not match the signature of
the operation.

FN_E INVALID ATTR IDENTIFIER The left hand side of an operator expression
was not an attribute.

FN_E INVALID ATTR VALUE The right hand side of an operator
expression was not an integer, attribute
value, or (wildcarded) string.

Other status codes are possible as described in the reference manual pages for
FN_status_ t(3XFN)and xfn_status_codes(3XFN).

EXAMPLE 1 Creating Different Filters

The following examples illustrate how to create three different filters.

The first example shows how to construct a filter involving substitution tokens and
literals in the same filter expression. This example creates a filter for named objects
whose color attribute contains a string value of red, blue, or white. The first two
values are specified using substitution tokens; the last value, white, is specified as a
literal in the expression.

unsigned int status;

extern FN_attribute t *attr color;

FN_string t *red = fn_string from str((unsigned char *)"red");
FN_string t *blue = fn string from str((unsigned char *)'"blue");
FN_search_filter t *sfilter;

sfilter = fn_search filter create(

&status,
"(%a == %s) or (%a == %s) or (%a == ’‘white’)",

attr color, red, attr color, blue,
attr color) ;

The second example illustrates how to construct a filter involving a wildcarded string.
This example creates a filter for searching for named objects whose last_name attribute
has a value that begins with the character m.

unsigned int status;
extern FN_attribute_ t *attr_ last_name;
FN_search filter t *sfilter;
sfilter = fn_search filter create(
&status, "%a == 'm’*", attr last name);

The third example illustrates how to construct a filter involving extended operations.
This example creates a filter for finding all named objects whose name ends with ton.

unsigned int status;
FN_search_filter t *sfilter;
sfilter= fn_search filter create(&status, "’'name’ (*'ton’)");

See attributes(5) for descriptions of the following attributes:

man pages section 3: Networking Library Functions * Last Revised 22 Nov 1996

SEE ALSO

FN_search_filter_t(3XFN)

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

MT-Safe

FN_attribute t(3XFN), FN_attrvalue_ t(3XFN), FN_identifier_ t(3XEN),

FN_status_ t(3XFN), FN_string t(3XFN), fn_attr ext search(3XFN),
xfn status_ codes(3XFN), attributes(b)

Networking Library Functions

145

FN_status_t(3XFN)

NAME | FN_status_t, fn_status_create, fn_status_destroy, fn_status_copy, fn_status_assign,
fn_status_code, fn_status_remaining name, fn_status_resolved_name,
fn_status_resolved_ref, fn_status_diagnostic_message, fn_status_link_code,
fn_status_link_remaining_name, fn_status_link_resolved_name,
fn_status_link_resolved_ref, fn_status_link_diagnostic_message, fn_status_is_success,
fn_status_set_success, fn_status_set, fn_status_set_code,
fn_status_set_remaining_name, fn_status_set_resolved_name,
fn_status_set_resolved_ref, fn_status_set_diagnostic_message,
fn_status_set_link_code, fn_status_set_link_remaining_name,
fn_status_set_link_resolved_name, fn_status_set_link_resolved_ref,
fn_status_set_link_diagnostic_message, fn_status_append_resolved_name,
fn_status_append_remaining name, fn_status_advance_by_name,
fn_status_description — an XFN status object

SYNOPSIS | cc [flag ... 1 file ... -1xfn [library ...]

#include <xfn/xfn.h>

FN status_t *fn_ status create(void) ;

void fn status destroy (FN_status_t *stat) ;

FN status_t *fn_status_copy(const FN status_t *stat) ;

FN_status_t *fn status_assign(FN_status_t *dst, const FN_status t
*sre) ;

unsigned int fn status code(const FN_status_t *stat) ;

const FN_composite name t
*fn status remaining name (constFN status_t *staf) ;

const FN_composite name t
*fn status resolved name (constFN_status_t *stat) ;

const FN _ref t *fn status resolved ref (constFN status_ t *staf) ;

const FN_string t *fn status diagnostic message (constFN status_t
*stat) ;

unsigned int fn status link code(const FN_status_t *staf) ;

const FN_composite name t
*fn status link remaining name (constFN status_t *staf) ;

const FN_composite name t
*fn status link resolved name (constFN_ status_t *stat) ;

const FN ref t *fn status link resolved ref (constFN_status t
*stat) ;

const FN_string t
*fn status link diagnostic message(constFN_status_ t *staf) ;

int fn status_ is success(const FN_status_t *stat) ;

int fn status_set success (FN_status_t *stat) ;

146 man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

DESCRIPTION

FN_status_t(3XFN)

int fn status set (FN_status t *stat, unsigned int code, const
FN_ref t *resolved_ref, const FN composite name t *resolved_name,
const FN composite name t *remaining_name) ;

int fn_status set code (FN_status_t *stat, unsigned int code) ;

int fn status_set remaining name (FN_status_t *staf, const
FN composite name_ t *name) ;

int fn status_ set resolved name (FN _status_t *stat, const
FN composite name t *name) ;

int fn status_set resolved ref (FN_status_t *stat, const FN_ref t
*ref) ;

int fn status_set diagnostic message (FN_status_t *stat, const
FN_string t *msg) ;

int fn status set link code (FN_status_t *staf, unsigned int code) ;

int fn status_set link remaining name (FN_ status_t *sfaf, const
FN composite name t *name) ;

int fn status set link resolved name (FN status t *stat, const
FN composite name_ t *name) ;

int fn status set link resolved ref (FN status_t *stat, const
FN ref t *ref);

int fn status set link diagnostic_message (FN status_t *stat, const
FN_string t *msg) ;

int fn status_ append resolved name (FN_status_t *stat, const
FN composite name t *name) ;

int fn status_append remaining name (FN_status_t *staf, const
FN composite name t *name) ;

int fn status_ advance by name (FN_status_t *staf, const
FN_composite name_t *prefix, const FN_ref t *resolved_ref) ;

FN _string t *fn status_description(const FN_status_t *stat,
unsigned int detail, unsigned int *more_detail) ;

The result status of operations in the context interface and the attribute interface is
encapsulated in an FN_status_t object. This object contains information about how
the operation completed: whether an error occurred in performing the operation, the
nature of the error, and information that helps locate where the error occurred. In the
case that the error occurred while resolving an XFN link, the status object contains
additional information about that error.

The context status object consists of several items of information:

primary status code An unsigned int code describing the disposition of
the operation.

Networking Library Functions 147

FN_status_t(3XFN)

resolved name In the case of a failure during the resolution phase of
the operation, this is the leading portion of the name
that was resolved successfully. Resolution may have
been successful beyond this point, but the error might
not be pinpointed further.

resolved reference The reference to which resolution was successful (in
other words, the reference to which the resolved name
is bound).

remaining name The remaining unresolved portion of the name.

diagnostic message This contains any diagnostic message returned by the

context implementation. This message provides the
context implementation a way of notifying the
end-user or administrator of any
implementation-specific information related to the
returned error status. The diagnostic message could
then be used by the end-user or administrator to take
appropriate out-of-band action to rectify the problem.

link status code In the case that an error occurred while resolving an
XEN link, the primary status code has the value
FN_E_LINK ERROR and the link status code describes
the error that occurred while resolving the XEN link.

resolved link name In the case of a link error, this contains the resolved
portion of the name in the XEN link.

resolved link reference In the case of a link error, this contains the reference to
which the resolved link name is bound.

remaining link name In the case of a link error, this contains the remaining
unresolved portion of the name in the XFN link.

link diagnostic message In the case of a link error, this contains any diagnostic
message related to the resolution of the link.

Both the primary status code and the link status code are values of type unsigned
int that are drawn from the same set of meaningful values. XEN reserves the values 0
through 127 for standard meanings. The values and interpretations for the codes are
determined by XFN. See xfn_status_codes(3XFN).

fn_status_create () creates a status object with status FN_SUCCESS.
fn_status_destroy () releases the storage associated with stat.

fn_status_copy () returns a copy of the status object stat. fn_status_assign ()
makes a copy of the status object src and assigns it to dst, releasing any old contents of
dst. A pointer to the same object as dst is returned.

148 man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

RETURN VALUES

ATTRIBUTES

FN_status_t(3XFN)

fn status_ code () returns the status code. fn_status remaining name ()
returns the remaining part of name to be resolved. fn_status_resolved_name ()
returns the part of the composite name that has been resolved.

fn status_resolved ref () returns the reference to which resolution was
successful. fn_status_diagnostic message returns any diagnostic message set
by the context implementation.

fn_status_link code () returns the link status code.
fn_status_link_remaining name () returns the remaining part of the link name
that has not been resolved. fn_status_link resolved_name () returns the part of
the link name that has been resolved. fn_status_link resolved_ ref () returns
the reference to which resolution of the link was successful.
fn_status_link_diagnostic_message () returns any diagnostic message set by
the context implementation during resolution of the link.

fn status_is success () returns 1 if the status indicates success, 0 otherwise.

fn_status_set success () sets the status code to FN_SUCCESS and clears all
other parts of stat. fn_status_set () sets the non-link contents of the status object
stat. fn_status_set_code () sets the primary status code field of the status object
stat. fn_status_set_remaining name () sets the remaining name part of the
status object stat to name. fn_status_set_resolved_name () sets the resolved
name part of the status object stat to name. fn_status set resolved ref () sets
the resolved reference part of the status objectstat to ref.

fn status_set_diagnostic_message () sets the diagnostic message part of the
status object to msg.

fn status_set_link code () sets the link status code field of the status object stat
to indicate why resolution of the link failed.

fn_status_set_link remaining name () sets the remaining link name part of
the status object stat to name. fn_status set link resolved name () sets the
resolved link name part of the status object stat to name.

fn status_set link resolved ref () sets the resolved link reference part of
the status object stat to ref. fn_status_set_link diagnostic message () sets
the link diagnostic message part of the status object to msg.

fn_status_append resolved_name () appends as additional components name to
the resolved name part of the status object stat.

fn status append remaining name () appends as additional components name
to the remaining name part of the status object stat.

fn status_advance by name () removes prefix from the remaining name, and
appends it to the resolved name. The resolved reference part is set to resolved_ref. This
operation returns 1 on success, 0 if the prefix is not a prefix of the remaining name.

The fn_status_set_*() operations return 1 if the operation succeeds, 0 if the
operation fails.

See attributes(5) for descriptions of the following attributes:

Networking Library Functions 149

FN_status_t(3XFN)

150

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO | FN_composite name_ t(3XFN), FN_ref t(3XEN), FN_string t(3XFN),

xEfn(3XEN), xfn_status_ codes(3XEN), attributes(5)

NOTES | The implementation of XEN in this Solaris release is based on the X/Open preliminary

developed against the preliminary specification.

man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been

NAME

SYNOPSIS

FN_string_t(3XFN)

FN_string_t, fn_string_create, fn_string_destroy, fn_string_from_str,
fn_string_from_str_n, fn_string_str, fn_string_from_contents, fn_string_code_set,
fn_string_charcount, fn_string_bytecount, fn_string_contents, fn_string_copy,
fn_string_assign, fn_string_from_strings, fn_string_from_substring,
fn_string_is_empty, fn_string_compare, fn_string_compare_substring,
fn_string_next_substring, fn_string_prev_substring — a character string

ce [flag ... 1 file ... -1xfn [library ...]

#include <xfn/xfn.h>

FN string t *fn_string create(void) ;

void fn string destroy (FN_string t *str);

FN _string t *fn string from str (const unsigned char *cstr) ;

FN string t *fn string from str n(const unsigned char *cstr,
size t n);

const unsigned char *fn string str(const FN string t *str,
unsigned int *status) ;

FN string t *fn string from contents (unsigned long code_set, const
void *locale_info, size t locale_info_len, size t charcount, size t
bytecount, const void *contents, unsigned int *status) ;

unsigned long fn string code set(const FN_string t *str, const
void **locale_info, size_t *locale_info_len) ;

size t fn string charcount (const FN_string t *str);
size t fn_ string bytecount (const FN_string t *str);
const void *fn string contents(const FN _string t *str);
FN_string t *fn_string copy(const FN_string t *str);

FN string t *fn string assign(FN_string t *dst, const FN string t
*src) ;

FN string t *fn string from strings(unsigned int *status, const
FN _string t *sl, const FN string t *s2, ...);

FN_string t *fn string from substring(constFN string t *str, int
first, int last) ;

int fn string is empty(const FN_string t *str);

int fn string compare (const FN_string t *strl, const FN_string t
*str2, unsigned int string_case, unsigned int *status) ;

int fn string compare substring(const FN string t *strl, int first,
int last, const FN_string t *str2, unsigned int string_case,
unsigned int *status) ;

Networking Library Functions 151

FN_string_t(3XFN)

152

DESCRIPTION

int fn string next substring(const FN string t *str, const
FN_string t *sub, int index, unsigned int string case, unsigned
int *status) ;

int fn string prev_ substring(const FN_string t *str, const
FN string t *sub, int index, unsigned int string_case, unsigned
int *status) ;

The FN_string t type is used to represent character strings in the XFN interface. It
provides insulation from specific string representations.

The FN_string_t supports multiple code sets. It provides creation functions for
character strings of the code set of the current locale setting and a generic creation
function for arbitrary code sets. The degree of support for the functions that
manipulate FN_string t for arbitrary code sets is implementation-dependent. An
XEN implementation is required to support the ISO 646 code set; all other code sets
are optional.

fn_string destroy () releases the storage associated with the given string.
fn_string create() creates an empty string.

fn string from str() createsan FN string t object from the given null
terminated string based on the code set of the current locale setting. The number of
characters in the string is determined by the code set of the current locale setting.
fn_string from_str n() islike fn_string from str () exceptonly n
characters from the given string are used. fn_string str () returns the contents of
the given string str in the form of a null terminated string in the code set and current
locale setting.

fn string from contents () createsan FN_ string t object using the specified
code set code_set, locale information locale_info, and data in the given buffer contents.
bytecount specifies the number of bytes in contents and charcount specifies the number
of characters represented by contents.

fn string code set () returns the code set associated with the given string object
and, if present, the locale information in locale_info. fn_string charcount ()
returns the number of characters in the given string object.

fn_string bytecount () returns the number of bytes used to represent the given
string object. fn_string contents () returns a pointer to the contents of the given
string object.

fn_string copy () returns a copy of the given string object.

fn_string assign() makes a copy of the string object src and assigns it to dst,
releasing any old contents of dst. A pointer to the same object as dst is returned.

fn string from strings () is a function that takes a variable number of
arguments (minimum of 2), the last of which must be NULL (0); it returns a new string
object composed of the left to right concatenation of the given strings, in the given
order. The support for strings with different code sets and/or locales as arguments to a
single invocation of fn_string from strings () is implementation-dependent.

man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

ERRORS

FN_string_t(3XFN)

fn_string from_substring () returns a new string object consisting of the
characters located between first and last inclusive from str. Indexing begins with 0. If
last is FN_STRING_INDEX_LAST or exceeds the length of the string, the index of the
last character of the string is used.

fn_string is_empty () returns whether str is an empty string.

Comparison of two strings must take into account code set and locale information. If
strings are in the same code set and same locale, case sensitivity is applied according
to the case sensitivity rules applicable for the code set and locale; case sensitivity may
not necessarily be relevant for all string encodings. If string_case is non-zero, case is
significant and equality for strings of the same code set is defined as equality between
byte-wise encoded values of the strings. If string_case is zero, case is ignored and
equality for strings of the same code set is defined using the definition of
case-insensitive equality for the specific code set. Support for comparison between
strings of different code sets, or lack thereof, is implementation-dependent.

fn string compare () compares strings strl and str2 and returns 0 if they are
equal, non-zero if they are not equal. If two strings are not equal,

fn string compare () returns a positive value if the difference of str2 precedes that
of strl in terms of byte-wise encoded value (with case-sensitivity taken into account
when string_case is non-zero), and a negative value if the difference of str1 precedes
that of str2, in terms of byte-wise encoded value (with case-sensitivity taken into
account when string_case is non-zero). Such information (positive versus negative
return value) may be used by applications that use strings of code sets in which
ordering is meaningful; this information is not of general use in internationalized
environments. fn_string compare substring() is similar to

fn_string compare () exceptthat fn string compare substring()
compares characters between first and last inclusive of str2 with str1. Comparison of
strings with incompatible code sets returns a negative or positive value (never 0)
depending on the implementation.

fn string next substring () returns the index of the next occurrence of sub at
or after index in the string str. FN_ STRING INDEX NONE is returned if sub does not
occur. fn_string prev substring () returns the index of the previous occurrence
of sub at or before index in the string str. FN_STRING INDEX NONE is returned if sub
does not occur. In both of these functions, string_case specifies whether the search
should take case-sensitivity into account.

fn string str () returns 0 and sets status to FN_E_INCOMPATIBLE CODE_SETS if
the given string’s representation cannot be converted into the code set of the current
locale setting. It is implementation-dependent which code sets can be converted into
the code set of the current locale.

Code set mismatches that occur during concatenation, searches, or comparisons are
resolved in an implementation-dependent way. When an implementation discovers
that arguments to substring searches and comparison operations have incompatible

Networking Library Functions 153

FN_string_t(3XFN)

154

ATTRIBUTES

positive (greater than 0); it is never 0.

code sets, it sets status to FN_E INCOMPATIBLE CODE SETS. In such cases,
fn string from strings () returns 0. The returned value for comparison
operations when there is code set or locale incompatibility is either negative or

fn string from contents () returns 0 and status is set to
FN_E INCOMPATIBLE CODE SETS if the supplied code set and/or locale
information are not supported by the XFN implementation.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO | xfn(3XEN), attributes(b)

NOTES | The implementation of XEN in this Solaris release is based on the X/Open preliminary
specification. It is likely that there will be minor changes to these interfaces to reflect
changes in the final version of this specification. The next minor release of Solaris will
offer binary compatibility for applications developed using the current interfaces. As
the interfaces evolve toward standardization, it is possible that future releases of
Solaris will require minor source code changes to applications that have been

developed against the preliminary specification.

man pages section 3: Networking Library Functions ¢ Last Revised 13 Dec 1996

NAME

SYNOPSIS

DESCRIPTION

getaddrinfo(3SOCKET)

getaddrinfo, getnameinfo, freeaddrinfo, gai_strerror — translate between node name
and address

cc [flag ...] file... -lsocket -1lnsl [library ...]
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo (const char *nodename, const char *servname, const
struct addrinfo *hints, struct addrinfo **res) ;

int getnameinfo (const struct sockaddr *sa, socklen_ t salen, char
*host, size_t hostlen, char *serv, size_t servlen, int flags) ;

void freeaddrinfo (struct addrinfo *ai) ;

char *gai strerror (int errcode) ;

These functions perform translations from node name to address and from address to
node name in a protocol-independent manner.

The getaddrinfo () function performs the node name to address translation. The
nodename and servname arguments are pointers to null-terminated strings or NULL. One
or both of these arguments must be a non-null pointer. In the normal client scenario,
both the nodename and servname are specified. In the normal server scenario, only the
servname is specified. A non-null nodename string can be either a node name or a
numeric host address string (a dotted-decimal IPv4 address or an IPv6 hex address). A
non-null servname string can be either a service name or a decimal port number.

The caller can optionally pass an addrinfo structure, pointed to by the third
argument, to provide hints concerning the type of socket that the caller supports.

The addrinfo structure is defined as:

struct addrinfo

int ai_flags; /* AI_PASSIVE, AI_CANONNAME, AI_ NUMERICHOST */
int ai_ family; /* PF xxx */

int ai_socktype; /* SOCK_xxx */

int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */

size t ai_addrlen; /* length of ai_ addr */

char *al_ canonname; /* canonical name for nodename */

struct sockaddr *ai_addr; /* binary address */

struct addrinfo *ai_next; /* next structure in linked list */

}i

In this hints structure, all members other than ai_flags, ai_family, ai socktype,
and ai_protocol must be 0 or a null pointer. A value of PF_UNSPEC for ai_family
indicates that the caller will accept any protocol family. A value of 0 for ai_socktype
indicates that the caller will accept any socket type. A value of 0 for ai_protocol
indicates that the caller will accept any protocol. For example, if the caller handles
only TCP and not UDP, then the ai_socktype member of the hints structure should
be set to SOCK_STREAM when getaddrinfo () is called. If the caller handles only

Networking Library Functions 155

getaddrinfo(3SOCKET)

156

IPv4 and not IPv6, then the ai family member of the hints structure should be set to
PF_INET when getaddrinfo () is called. If the third argument to getaddrinfo ()
is a null pointer, it is as if the caller had filled in an addrinfo structure initialized to 0
with ai family set to PF_UNSPEC.

Upon success, a pointer to a linked list of one or more addrinfo structures is
returned through the final argument. The caller can process each addrinfo structure
in this list by following the ai_next pointer, until a null pointer is encountered. In
each returned addrinfo structure the three members ai family, ai_socktype,
and ai_protocol are the corresponding arguments for a call to the
socket(3SOCKET) function. In each addrinfo structure the ai _addr member
points to a filled-in socket address structure whose length is specified by the
ai_addrlen member.

If the AT PASSIVE bit is setin the ai_flags member of the hints structure, the caller
plans to use the returned socket address structure in a call to bind(3SOCKET). In this
case, if the nodename argument is a null pointer, the IP address portion of the socket
address structure will be set to INADDR_ANY for an IPv4 address or
IN6ADDR_ANY INIT for an IPv6 address.

If the AT _PASSIVE bit is not set in the ai_flags member of the hints structure, then
the returned socket address structure will be ready for a call to connect(3SOCKET)
(for a connection-oriented protocol) or either connect(3SOCKET),
sendto(35OCKET), or sendmsg(3SOCKET) (for a connectionless protocol). If the
nodename argument is a null pointer, the IP address portion of the socket address
structure will be set to the loopback address.

If the AT CANONNAME bit is set in the ai flags member of the hints structure, then
upon successful return the ai canonname member of the first addrinfo structure in
the linked list will point to a null-terminated string containing the canonical name of
the specified nodename.

If the AT NUMERICHOST bit is set in the ai_flags member of the hints structure,
then a non-null nodename string must be a numeric host address string. Otherwise an
error of EAI_NONAME is returned. This flag prevents any type of name resolution
service (such as DNS) from being called.

All of the information returned by getaddrinfo () is dynamically allocated: the
addrinfo structures as well as the socket address structures and canonical node
name strings pointed to by the addrinfo structures. The freeaddrinfo () function
is called to return this information to the system the function . For freeaddrinfo (),
the addrinfo structure pointed to by the ai argument is freed, along with any
dynamic storage pointed to by the structure. This operation is repeated until a null
ai_next pointer is encountered.

man pages section 3: Networking Library Functions ¢ Last Revised 15 Dec 2000

getaddrinfo(3SOCKET)

To aid applications in printing error messages based on the EAI_* codes returned by
getaddrinfo (), the gai_strerror () is defined. The argument is one of the EAT_*
values defined below and the return value points to a string describing the error. If the
argument is not one of the EAI_* values, the function still returns a pointer to a string
whose contents indicate an unknown error.

The getnameinfo () function looks up an IP address and port number provided by
the caller in the name service database and system-specific database, and returns text
strings for both in buffers provided by the caller. The function indicates successful
completion by a 0 return value; a non-zero return value indicates failure.

The first argument, sa, points to either a sockaddr_in structure (for IPv4) or a
sockaddr 1iné structure (for IPv6) that holds the IP address and port number. The
salen argument gives the length of the sockaddr_in or sockaddr_iné structure.

The function returns the node name associated with the IP address in the buffer
pointed to by the host argument. The caller provides the size of this buffer with the
hostlen argument. The service name associated with the port number is returned in the
buffer pointed to by serv, and the servlen argument gives the length of this buffer. The
caller specifies not to return either string by providing a 0 value for the hostlen or
servlen arguments. Otherwise, the caller must provide buffers large enough to hold the
node name and the service name, including the terminating null characters.

To aid the application in allocating buffers for these two returned strings, the
following constants are defined in <netdb.h>:

#define NI_MAXHOST 1025
#define NI_MAXSERV 32

The final argument is a flag that changes the default actions of this function. By
default, the fully-qualified domain name (FQDN) for the host is looked up in the name
service database and returned. If the flag bit NI_NOFQDN is set, only the node name
portion of the FQDN is returned for local hosts.

If the flag bit NI_NUMERICHOST is set, or if the host’s name cannot be located in the
name service, the numeric form of the host’s address is returned instead of its name,
for example, by calling inet_ntop () (see inet(3SOCKET)) instead of
getipnodebyname(3SOCKET). If the flag bit NI_NAMEREQD is set, an error is
returned if the host’s name cannot be located in the name service database.

If the flag bit NI_NUMERICSERV is set, the numeric form of the service address is
returned (for example, its port number) instead of its name. The two NI_NUMERIC*
flags are required to support the "-n" flag that many commands provide.

A fifth flag bit, NI_DGRAM, specifies that the service is a datagram service, and causes
getservbyport(3SOCKET) to be called with a second argument of "udp" instead of
the default "tcp". This is required for the few ports (for example, 512-514) that have
different services for UDP and TCP.

Networking Library Functions 157

getaddrinfo(3SOCKET)

RETURN VALUES

ERRORS

FILES

SEE ALSO

These NI_* flags are defined in <netdb.h> along with the AI_* flags already defined
for getaddrinfo ().

For getaddrinfo (), if the query is successful, a pointer to a linked list of one or
more addrinfo structures is returned by the fourth argument and the function
returns 0. If the query fails, a non-zero error code will be returned. For

getnameinfo (), if successful, the strings hostname and service are copied into host
and serv, respectively. If unsuccessful, zero values for either hostlen or servien will
suppress the associated lookup; in this case no data is copied into the applicable
buffer. If gai_strerror () is successful, a pointer to a string containing an error
message appropriate for the EAT * errors is returned. If errcode is not one of the EAT *
values, a pointer to a string indicating an unknown error is returned.

The following names are the error values returned by getaddrinfo () and are
defined in <netdb.h>:

EAI ADDRFAMILY address family for nodename not supported

EAI_AGAIN temporary failure in name resolution

EAI BADFLAGS invalid value for ai flags

EAI_FAIL non-recoverable failure in name resolution
EAI FAMILY ai family not supported

EAI_MEMORY memory allocation failure

EAI NODATA no address associated with nodename
EAI_NONAME nodename nor servname provided, or not known
EAI_ SERVICE servname not supported for ai_ socktype
EAI_SOCKTYPE ai_socktype not supported

EAI_SYSTEM system error returned in errno
/etc/inet/hosts

/etc/inet/ipnodes

/etc/netconfig

/etc/nsswitch.conf

gethostbyname(3NSL), get ipnodebyname(3SOCKET), htonl(3SOCKET),
inet(3SOCKET), netdb(3BHEAD), socket(3SOCKET), hosts(4), ipnodes(4),
nsswitch.conf(4)

158 man pages section 3: Networking Library Functions ¢ Last Revised 15 Dec 2000

NAME

SYNOPSIS

DESCRIPTION

gethostbyname(3NSL)

gethostbyname, gethostbyname_r, gethostbyaddr, gethostbyaddr_r, gethostent,
gethostent_r, sethostent, endhostent — get network host entry

ce [flag ... 1 file ... -1nsl [library ...]
#include <netdb.h>

struct hostent *gethostbyname (const char *name) ;

struct hostent *gethostbyname r (const char *name, struct hostent
*result, char *buffer, intbuflen, int *h_errnop) ;

struct hostent *gethostbyaddr (const char *addr, int len, int type) ;

struct hostent *gethostbyaddr r(const char *addr, int length, int
type, struct hostent *result, char *buffer, int buflen, int
*h_errnop) ;

struct hostent *gethostent (void) ;

struct hostent *gethostent r(struct hostent *result, char *buffer,
int buflen, int =*h_errnop) ;

int sethostent (int stayopen) ;

int endhostent (void) ;

These functions are used to obtain entries describing hosts. An entry may come from
any of the sources for hosts specified in the /etc/nsswitch. conf file. See
nsswitch.conf(4). Please take note that these functions have been superseded by
the newer functions, get ipnodebyname(3SOCKET), get ipnodebyaddr(3SOCKET),
and getaddrinfo(3SOCKET). The newer functions provide greater portability to
applications when multithreading is done or technologies such as IPv6 are used. For
example, the functions described below cannot be used with applications targeted to
work with IPv6.

gethostbyname () searches for information for a host with the hostname specified
by the character-string parameter name.

gethostbyaddr () searches for information for a host with a given host address. The
parameter type specifies the family of the address. This should be one of the address
families defined in <sys/socket .h>. See the NOTES section below for more
information. Also see the EXAMPLES section below on how to convert a “.” separated
Internet IP address notation into the addr parameter. The parameter len specifies the

length of the buffer indicated by addr.

All addresses are returned in network order. In order to interpret the addresses,
byteorder(3SOCKET) must be used for byte order conversion.

The functions sethostent (), gethostent (), and endhostent () are used to
enumerate host entries from the database.

Networking Library Functions 159

gethostbyname(3NSL)

Reentrant
Interfaces

RETURN VALUES

sethostent () sets (or resets) the enumeration to the beginning of the set of host
entries. This function should be called before the first call to gethostent (). Calls to
gethostbyname () and gethostbyaddr () leave the enumeration position in an
indeterminate state. If the stayopen flag is non-zero, the system may keep allocated
resources such as open file descriptors until a subsequent call to endhostent ().

Successive calls to gethostent () return either successive entries or NULL,
indicating the end of the enumeration.

endhostent () may be called to indicate that the caller expects to do no further host
entry retrieval operations; the system may then deallocate resources it was using. It is
still allowed, but possibly less efficient, for the process to call more host retrieval
functions after calling endhostent ().

The functions gethostbyname (), gethostbyaddr (), and gethostent () use
static storage that is reused in each call, making these functions unsafe for use in
multi-threaded applications.

The functions gethostbyname r (), gethostbyaddr r (), and gethostent r ()
provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the “_r” suffix. The reentrant interfaces, however, use buffers
supplied by the caller to store returned results, and are safe for use in both
single-threaded and multi-threaded applications.

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as
well as the following additional parameters. The parameter result must be a pointer to
a struct hostent structure allocated by the caller. On successful completion, the
function returns the host entry in this structure. The parameter buffer must be a pointer
to a buffer supplied by the caller. This buffer is used as storage space for the host data.
All of the pointers within the returned struct hostent result point to data stored
within this buffer. See RETURN VALUES. The buffer must be large enough to hold all of
the data associated with the host entry. The parameter buflen should give the size in
bytes of the buffer indicated by buffer. The parameter h_errnop should be a pointer to
an integer. An integer error status value is stored there on certain error conditions. See
ERRORS.

For enumeration in multi-threaded applications, the position within the enumeration
is a process-wide property shared by all threads. sethostent () may be used in a
multi-threaded application but resets the enumeration position for all threads. If
multiple threads interleave calls to gethostent r (), the threads will enumerate
disjoint subsets of the host database.

Like their non-reentrant counterparts, gethostbyname r () and
gethostbyaddr r () leave the enumeration position in an indeterminate state.

Host entries are represented by the struct hostent structure defined in
<netdb.hs>:

160 man pages section 3: Networking Library Functions » Last Revised 22 Jan 2002

ERRORS

gethostbyname(3NSL)

struct hostent {

char *h name; /* canonical name of host */
char **h aliases; /* alias list */

int h_addrtype; /* host address type */

int h length; /* length of address */
char **h addr list; /* list of addresses */

}i

s

See the EXAMPLES section below for information about how to retrieve a “.”” separated
Internet IP address string from the h_addr_list field of struct hostent.

The functions gethostbyname (), gethostbyname r (), gethostbyaddr (), and
gethostbyaddr_r () each return a pointer to a struct hostent if they
successfully locate the requested entry; otherwise they return NULL.

The functions gethostent () and gethostent_r () each return a pointer to a
struct hostent if they successfully enumerate an entry; otherwise they return
NULL, indicating the end of the enumeration.

The functions gethostbyname (), gethostbyaddr (), and gethostent () use
static storage, so returned data must be copied before a subsequent call to any of these
functions if the data is to be saved.

When the pointer returned by the reentrant functions gethostbyname_xr (),
gethostbyaddr r(),and gethostent r() is not NULL, it is always equal to the
result pointer that was supplied by the caller.

The functions sethostent () and endhostent () return 0 on success.

The reentrant functions gethostbyname r (), gethostbyaddr r(), and
gethostent_r () will return NULL and set errno to ERANGE if the length of the buffer
supplied by caller is not large enough to store the result. See Intro(2) for the proper
usage and interpretation of errno in multithreaded applications.

The reentrant functions gethostbyname r () and gethostbyaddr r () set the
integer pointed to by h_errnop to one of these values in case of error.

On failures, the non-reentrant functions gethostbyname () and gethostbyaddr ()
set a global integer hi_errno to indicate one of these error codes (defined in
<netdb.h>): HOST NOT_FOUND, TRY AGAIN, NO RECOVERY, NO DATA, and

NO ADDRESS.

Note however that if a resolver is provided with a malformed address, or if any other
error occurs before gethostbyname () is resolved, then gethostbyname () returns
an internal error with a value of —1.

gethostbyname () will set hi_errno to NETDB_INTERNAL when it returns a NULL
value.

Networking Library Functions 161

gethostbyname(3NSL)

162

EXAMPLES

EXAMPLE 1 Using gethostbyname ()

Here is a sample program that gets the canonical name, aliases, and “.”” separated

" orr

Internet IP addresses for a given “.” separated IP address:

#include <stdio.h>
#include <string.hs>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
main(int argc, const char **argv)
{

ulong_t addr;

struct hostent *hp;

char **p;

if (argc != 2) {

(void) printf ("usage: %s IP-address\n", argv[0]);

exit (1);

if ((int) (addr = inet_addr (argv[1])) == -1) ({
(void) printf ("IP-address must be of the form a.b.c.d\n");
exit (2);

}

hp = gethostbyaddr ((char *)&addr, sizeof (addr), AF_INET);

if (hp == NULL) {
(void) printf ("host information for %s not found\n", argv([1]);
exit (3);

}
for (p = hp->h addr_list; *p != 0; p++) {
struct in addr in;
char **q;
(void) memcpy (&in.s addr, *p, sizeof (in.s addr));
(void) printf ("%s\t%s", inet ntoa(in), hp—>h name) ;
for (g = hp->h aliases; *g != 0; g++)
(void) printf (" %s", *q);
(void) putchar('\n’);
}

exit (0);

}

Note that the above sample program is unsafe for use in multithreadeded
applications.

man pages section 3: Networking Library Functions ¢ Last Revised 22 Jan 2002

FILES

ATTRIBUTES

SEE ALSO

WARNINGS

NOTES

gethostbyname(3NSL)
/etc/hosts
/etc/netconfig

/etc/nsswitch.conf

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See “Reentrant Interfaces” in DESCRIPTION.

Intro(2), Intro(3), byteorder(3SOCKET), inet(3SOCKET), netdir(3NSL),
hosts(4), netconfig(4), nsswitch.conf(4), attributes(5), netdb(3HEAD)

The reentrant interfaces gethostbyname r (), gethostbyaddr r(), and
gethostent_r () are included in this release on an uncommitted basis only, and are
subject to change or removal in future minor releases.

Programs that use the interfaces described in this manual page cannot be linked
statically since the implementations of these functions employ dynamic loading and
linking of shared objects at run time.

In order to ensure that they all return consistent results, gethostbyname (),
gethostbyname r (), and netdir getbyname () are implemented in terms of the
same internal library function. This function obtains the system-wide source lookup
policy based on the inet family entries in netconfig(4) and the hosts: entry in
nsswitch.conf(4). Similarly, gethostbyaddr (), gethostbyaddr r (), and
netdir getbyaddr () are implemented in terms of the same internal library
function. If the inet family entries in netconfig(4) have a “-”’ in the last column for
nametoaddr libraries, then the entry for hosts in nsswitch. conf will be used;
otherwise the nametoaddr libraries in that column will be used, and nsswitch.conf
will not be consulted.

There is no analogue of gethostent () and gethostent r () in the netdir
functions, so these enumeration functions go straight to the hosts entry in
nsswitch. conf. Thus enumeration may return results from a different source than
that used by gethostbyname (), gethostbyname r (), gethostbyaddr (), and
gethostbyaddr r ().

All the functions that return a struct hostent must always return the canonical
name in the h_name field. This name, by definition, is the well-known and official
hostname shared between all aliases and all addresses. The underlying source that
satisfies the request determines the mapping of the input name or address into the set
of names and addresses in hostent. Different sources might do that in different ways.
If there is more than one alias and more than one address in hostent, no pairing is
implied between them.

Networking Library Functions 163

gethostbyname(3NSL)

164

The system will strive to put the addresses on the same subnet as that of the caller
first.

When compiling multi-threaded applications, see Intro(3), Notes On Multithread
Applications, for information about the use of the REENTRANT flag.

Use of the enumeration interfaces gethostent () and gethostent r() is
discouraged; enumeration may not be supported for all database sources. The
semantics of enumeration are discussed further in nsswitch.conf(4).

The current implementations of these functions only return or accept addresses for the
Internet address family (type AF_INET).

The form for an address of type AF_INET is a struct in_addr defined in
<netinet/in.h>. The functions described in inet(3SOCKET), and illustrated in the
EXAMPLES section above, are helpful in constructing and manipulating addresses in
this form.

man pages section 3: Networking Library Functions ¢ Last Revised 22 Jan 2002

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES
ERRORS

ATTRIBUTES

SEE ALSO

gethostname(3XNET)

gethostname — get name of current host

ce [flag ... 1 file ... -1xnet [library ...]
#include <unistd.h>

int gethostname (char *name, size_t namelen) ;

The gethostname () function returns the standard host name for the current
machine. The namelen argument specifies the size of the array pointed to by the name
argument. The returned name is null-terminated, except that if namelen is an
insufficient length to hold the host name, then the returned name is truncated and it is
unspecified whether the returned name is null-terminated.

Host names are limited to 255 bytes.
On successful completion, 0 is returned. Otherwise, -1 is returned.
No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

uname(1), gethostid(3C), attributes(b)

Networking Library Functions 165

getipnodebyname(3SOCKET)

166

NAME
SYNOPSIS

DESCRIPTION

getipnodebyname, getipnodebyaddr, freehostent — get IP node entry

cc [flag ...] file... -lsocket -1lnsl [library ...]

#include <sys/socket.h>
#include <netdb.h>

struct hostent *getipnodebyname (const char *name, int tlf, int ﬂags,
int *error_num) ;

struct hostent *getipnodebyaddr (const void *src, size t len, int af,
int *error_num) ;

void freehostent (struct hostent *ptr);

The getipnodebyname () function searches the ipnodes database from the beginning
and finds the first entry for which the hostname specified by name matches the
h_name member. It takes an af argument that specifies the address family, which can
be either AF INET for IPv4 addresses or AF_INET6 for IPv6 addresses. The flags
argument determines what results will be returned based on the value of flags. If the
flags argument is set to 0 (zero), then the default operation of this function is specified
as follows:

m If the af argument is AF_INET, then a query is made for an IPv4 address. If
successful, IPv4 addresses are returned and the h_1ength member of the
hostent structure will be 4. Otherwise, the function returns a null pointer.

m If the af argument is AF_INETS6, then a query is made for an IPv6 address. If
successful, IPv6 addresses are returned and the h_1ength member of the
hostent structure will be 16. Otherwise, the function returns a null pointer.

The flags argument changes the default actions of the function. You can set the flags
argument by logically ORing any of the following values together:

AI VAMAPPED
AI ALL
AI ADDRCONFIG

Note that a special flags value of AT DEFAULT, as defined below, should handle most
applications. In other words, porting simple applications to use IPv6 replaces the call

hptr = gethostbyname (name) ;

with

hptr = getipnodebyname (name, AF INET6, AI DEFAULT, &error num) ;
A flags of 0 implies a strict interpretation of the af argument:

m If flags is 0 and af is AF_INET, then the caller wants only IPv4 addresses. A query is
made for A records. If successful, the IPv4 addresses are returned and the
h length member of the hostent structure will be 4; otherwise, the function
returns a null pointer.

man pages section 3: Networking Library Functions ¢ Last Revised 22 Jan 2002

getipnodebyname(3SOCKET)

m If flags is 0, and if af is AF_INETS6, then the caller wants only IPv6 addresses. A
query is made for AAAA records. If successful, the IPv6 addresses are returned and
the h_length member of the hostent structure will be 16; otherwise, the
function returns a null pointer.

Other constants can be logically-ORed into the flags argument, to modify the behavior
of the function.

m If the AT_V4MAPPED flag is specified along with an af of AF_INETS, then the caller
can accept IPv4-mapped IPv6 addresses. That is, if no AAAA records are found, then
a query is made for A records, and any found are returned as IPv4-mapped IPv6
addresses (h_lengthis 16). The AI_V4MAPPED flag is ignored unless af equals
AF_INETS6.

m The AT ALL flag is used in conjunction with the AT V4MAPPED flag, and is only
used with the IPv6 address family. When AI_ALL is logically ORed with
AI V4MAPPED flag then the caller wants all addresses: IPv6 and IPv4-mapped
IPv6. A query is first made for AAAA records and if successful, the IPv6 addresses
are returned. Another query is then made for A records, and any found are
returned as IPv4-mapped IPv6 addresses. h_length is 16. Only if both queries fail
does the function return a null pointer. This flag is ignored unless af equals
AF INETS6.

m The AI_ADDRCONFIG flag specifies that a query for AAAA records should occur
only if the node has at least one IPv6 source address configured. A query for A
records should occur only if the node has at least one IPv4 source address
configured. For example, if the node has no IPv6 source addresses configured, and
af equals AF _INET6, and the node name being looked up has both AAAA and A
records, then:

1. If only AI_ADDRCONFIG is specified, the function returns a null pointer.
2. If AT ADDRCONFIG or AI_V4MAPPED is specified, the A records are returned as
IPv4-mapped IPv6 addresses.
The special flags value of AI_DEFAULT is defined as
#define AI DEFAULT (AI V4MAPPED | AI_ADDRCONFIG)
The getipnodebyname () function must allow the name argument to be either a node
name or a literal address string, that is, a dotted-decimal IPv4 address or an IPv6 hex

address. This saves applications from having to call inet pton(3SOCKET) to handle
literal address strings.

Four scenarios arise based on the type of literal address string and the value of the af
argument. The two simple cases are when name is a dotted-decimal IPv4 address and
af equals AF_INET, or when name is an IPv6 hex address and af equals AF_INET6. The
members of the returned hostent structure are:

h name Points to a copy of the name argument

h_aliases Is a null pointer.

Networking Library Functions 167

getipnodebyname(3SOCKET)

h_addrtype Is a copy of the af argument.
h length Is either 4 (for AF_INET) or 16 (for AF_INETS).
h addr list[0] Is a pointer to the 4-byte or 16-byte binary address.
h addr_list[1] Is a null pointer
PARAMETERS | af Address family
flags Various flags
name Name of host
error_num Error storage
src Address for lookup
len Length of address
ptr Pointer to hostent structure

RETURN VALUES | Upon successful completion, getipnodebyname () and getipnodebyaddr ()
return a hostent structure. Otherwise they return NULL.

The hostent structure does not change from its existing definition when used with
gethostbyname(3NSL). For example, host entries are represented by the struct
hostent structure defined in <netdb.h>:

struct hostent

char *h name; /* canonical name of host */
char **h aliases; /* alias list */

int h_addrtype; /* host address type */

int h length; /* length of address */

char **h addr list; /* list of addresses */

}i

An error occurs when name is an IPv6 hex address and af equals AF_INET. The
function’s return value is a null pointer and error num equals HOST NOT_FOUND.

The getipnodebyaddr () function has the same arguments as the existing
gethostbyaddr(3NSL) function, but adds an error number. As with
getipnodebyname (), getipnodebyaddr () is thread safe. The error num value
is returned to the caller with the appropriate error code to support thread safe error
code returns. The following error conditions can be returned for error num:

HOST_NOT_ FOUND Host is unknown.

NO_DATA No address is available for the name specified in the
server request. This error is not a soft error. Another
type of name server request might be successful.

NO_ RECOVERY An unexpected server failure occurred, which is a
nonrecoverable error.

168 man pages section 3: Networking Library Functions » Last Revised 22 Jan 2002

EXAMPLES

getipnodebyname(3SOCKET)

TRY AGAIN This error is a soft error that indicates that the local
server did not receive a response from an authoritative
server. A retry at some later time might be successful.

One possible source of confusion is the handling of IPv4-mapped IPv6 addresses and
IPv4-compatible IPv6 addresses, but the following logic should apply:

1. Ifafis AF INET6, and if len equals 16, and if the IPv6 address is an IPv4-mapped
IPv6 address or an IPv4-compatible IPv6 address, then skip over the first 12 bytes
of the IPv6 address, set af to AF_INET, and set len to 4.

If af is AF INET, lookup the name for the given IPv4 address.
If af is AF_INET6, lookup the name for the given IPv6 address.

If the function is returning success, then the single address that is returned in the
hostent structure is a copy of the first argument to the function with the same
address family that was passed as an argument to this function.

All four steps listed are performed in order.

This structure, and the information pointed to by this structure, are dynamically
allocated by get ipnodebyname () and getipnodebyaddr (). The freehostent ()
function frees this memory.

EXAMPLE 1 Getting the Canonical Name, Aliases, and Internet IP Addresses for a Given
Hostname

The following is a sample program that retrieves the canonical name, aliases, and all
Internet IP addresses, both version 6 and version 4, for a given hostname.

#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

main(int argc, const char **argv)
{

char abuf [INET6 ADDRSTRLEN] ;

int error num;

struct hostent *hp;

char **p;

if (arge !'= 2) {
(void) printf ("usage: %s hostname\
", argv[0]);
exit (1);

}

/* argv[l] can be a pointer to a hostname or literal IP address */
hp = getipnodebyname (argv([1], AF INET6, AI ALL | AI ADDRCONFIG |
AI_V4MAPPED, &error num);

Networking Library Functions 169

getipnodebyname(3SOCKET)

170

FILES

ATTRIBUTES

SEE ALSO

EXAMPLE 1 Getting the Canonical Name, Aliases, and Internet IP Addresses for a Given
Hostname (Continued)

if (hp == NULL) ({
if (error num == TRY AGAIN) {
printf ("$s: unknown host or invalid literal address "
"(try again later)\n", argv([1l]);
} else {
printf ("%$s: unknown host or invalid literal address\n",
argv[1l]) ;
}
exit (1);
}
for (p = hp->h _addr list; *p != 0; p++) {
struct iné_addr iné6;
char **q;

bcopy (*p, (caddr_t)&iné6, hp->h length);

(void) printf ("%$s\t%s", inet ntop (AF_INET6, (void *)&iné,
abuf, sizeof (abuf)), hp->h name);

for (q = hp->h aliases; *qg != 0; g++)

(void) printf (" %s", *q);

(void) putchar(’\n’);

}

freehostent (hp) ;
exit (0);

}

/etc/inet/hosts
/etc/inet/ipnodes
/etc/netconfig

/etc/nsswitch.conf

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNW.Gsl, SUNWarc (32-bit)

SUNW.Gslx (64-bit)

MT Level Safe

getaddrinfo(3SOCKET), gethostbyname(3NSL), htonl(3SOCKET),
inet(3SOCKET), netdb(3BHEAD), hosts(4), ipnodes(4), nsswitch.conf(4),
attributes(b)

man pages section 3: Networking Library Functions ¢ Last Revised 22 Jan 2002

NOTES

getipnodebyname(3SOCKET)

Programs that use the interfaces described in this manual page cannot be linked
statically since the implementations of these functions employ dynamic loading and
linking of shared objects at run time.

No enumeration functions are provided for IPv6. Existing enumeration functions, for
example, sethostent(3NSL) does not work in combination with
getipnodebyname () and getipnodebyaddr ().

All the functions that return a struct hostent must always return the canonical in
the h name field. This name, by definition, is the well-known and official hostname
shared between all aliases and all addresses. The underlying source that satisfies the
request determines the mapping of the input name or address into the set of names
and addresses in hostent. Different sources might do that in different ways. If more
than one alias and more than one address in hostent exist, no pairing is implied
between them.

The current implementations of these functions only return or accept addresses for the
Internet address family (type AF INET) or the Internet address family Version 6 (type
AF INETS).

The form for an address of type AF_INET is a struct in addr defined in
<netinet/in.hs>. The form for an address of type AF_INET6 is a struct

iné_ addr, defined also in <netinet/in.h>. The functions described in

inet ntop(3SOCKET) and inet pton(3SOCKET) that are illustrated in the
EXAMPLES section are helpful in constructing and manipulating addresses in either
of these forms.

Networking Library Functions 171

getnetbyname(3SOCKET)

NAME

SYNOPSIS

DESCRIPTION

getnetbyname, getnetbyname_r, getnetbyaddr, getnetbyaddr_r, getnetent, getnetent _r,
setnetent, endnetent — get network entry

ce [flag ... 1 file ... -1lsocket -1lnsl [library ...]
#include <netdb.h>

struct netent *getnetbyname (const char *name) ;

struct netent *getnetbyname r (const char *name, struct netent
*result, char *buffer, int buflen) ;

struct netent *getnetbyaddr (long net, intfype) ;

struct netent *getnetbyaddr r(long net, intfype, struct netent
*result, char *buffer, int buflen) ;

struct netent *getnetent (void) ;

struct netent *getnetent r(struct netent *result, char *buffer, int

buflen) ;
int setnetent (int stayopen) ;

int endnetent (void) ;

These functions are used to obtain entries for networks. An entry may come from any
of the sources for networks specified in the /etc/nsswitch. conf file. See
nsswitch.conf(4).

getnetbyname () searches for a network entry with the network name specified by
the character string parameter name.

getnetbyaddr () searches for a network entry with the network address specified by
net. The parameter type specifies the family of the address. This should be one of the
address families defined in <sys/socket .h>. See the NOTES section below for more
information.

Network numbers and local address parts are returned as machine format integer
values, that is, in host byte order. See also inet_network(3SOCKET).

The netent .n_net member in the netent structure pointed to by the return value
of the above functions is calculated by inet_network (). The inet_network ()
function returns a value in host byte order that is aligned based upon the input string.
For example:

Text Value

“10” 0x0000000a
“10.0" 0x00000a00
“10.0.1” 0a000a0001

172 man pages section 3: Networking Library Functions » Last Revised 15 Jan 2002

Reentrant
Interfaces

getnetbyname(3SOCKET)

Text Value

“10.0.1.28" 0x0a000180

Commonly, the alignment of the returned value is used as a crude approximate of
pre-CIDR (Classless Inter-Domain Routing) subnet mask. For example:

in_addr_t addr, mask;

addr = inet network (net name) ;

mask= ~(in_addr t)O0;

if ((addr & IN CLASSA NET)
addr <<= 8, mask <<=

if ((addr & IN CLASSA_NET) =
addr <<= 8, mask <<=

if ((addr & IN_CLASSA NET)
addr <<= 8, mask <<=

I I
o o

I o I o I
o

This usage is deprecated by the CIDR requirements. See Fuller, V., Li, T., Yu, J., and
Varadhan, K. RFC 1591, Classless Inter-Domain Routing (CIDR): an Address Assignment
and Aggregation Strategy. Network Working Group. September 1993.

The functions setnetent (), getnetent (), and endnetent () are used to
enumerate network entries from the database.

setnetent () sets (or resets) the enumeration to the beginning of the set of network
entries. This function should be called before the first call to getnetent (). Calls to
getnetbyname () and getnetbyaddr () leave the enumeration position in an
indeterminate state. If the stayopen flag is non-zero, the system may keep allocated
resources such as open file descriptors until a subsequent call to endnetent ().

Successive calls to getnetent () return either successive entries or NULL, indicating
the end of the enumeration.

endnetent () may be called to indicate that the caller expects to do no further
network entry retrieval operations; the system may then deallocate resources it was
using. It is still allowed, but possibly less efficient, for the process to call more network
entry retrieval functions after calling endnetent ().

The functions getnetbyname (), getnetbyaddr (), and getnetent () use static
storage that is reused in each call, making these routines unsafe for use in
multi-threaded applications.

The functions getnetbyname r (), getnetbyaddr r (), and getnetent r()
provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the “_r”’ suffix. The reentrant interfaces, however, use buffers
supplied by the caller to store returned results, and are safe for use in both
single-threaded and multi-threaded applications.

Networking Library Functions 173

getnetbyname(3SOCKET)

RETURN VALUES

174

ERRORS

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as
well as the following additional parameters. The parameter result must be a pointer to
a struct netent structure allocated by the caller. On successful completion, the
function returns the network entry in this structure. The parameter buffer must be a
pointer to a buffer supplied by the caller. This buffer is used as storage space for the
network entry data. All of the pointers within the returned struct netent result
point to data stored within this buffer. See RETURN VALUES. The buffer must be large
enough to hold all of the data associated with the network entry. The parameter buflen
should give the size in bytes of the buffer indicated by buffer.

For enumeration in multi-threaded applications, the position within the enumeration
is a process-wide property shared by all threads. setnetent () may be used in a
multi-threaded application but resets the enumeration position for all threads. If
multiple threads interleave calls to getnetent_r (), the threads will enumerate
disjointed subsets of the network database.

Like their non-reentrant counterparts, getnetbyname_r () and getnetbyaddr_r ()
leave the enumeration position in an indeterminate state.

Network entries are represented by the struct netent structure defined in
<netdb.h>.

The functions getnetbyname (), getnetbyname r(), getnetbyaddr(), and
getnetbyaddr_r () each return a pointer to a struct netent if they successfully
locate the requested entry; otherwise they return NULL.

The functions getnetent () and getnetent_r () each return a pointer to a struct
netent if they successfully enumerate an entry; otherwise they return NULL,
indicating the end of the enumeration.

The functions getnetbyname (), getnetbyaddr (), and getnetent () use static
storage, so returned data must be copied before a subsequent call to any of these
functions if the data is to be saved.

When the pointer returned by the reentrant functions getnetbyname_r (),
getnetbyaddr r(),and getnetent r () is non-NULL, it is always equal to the
result pointer that was supplied by the caller.

The functions setnetent () and endnetent () return 0 on success.

The reentrant functions getnetbyname r (), getnetbyaddr r() and
getnetent_r () will return NULL and set errno to ERANGE if the length of the buffer
supplied by caller is not large enough to store the result. See intro(2) for the proper
usage and interpretation of errno in multi-threaded applications.

man pages section 3: Networking Library Functions ¢ Last Revised 15 Jan 2002

FILES

ATTRIBUTES

SEE ALSO

WARNINGS

NOTES

getnetbyname(3SOCKET)
/etc/networks

/etc/nsswitch.conf

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Intro(2), Intro(3), byteorder(3SOCKET), inet(3SOCKET), netdb(3HEAD),
networks(4), nsswitch.conf (4), attributes(b)

Fuller, V., Li, T, Yu, J., and Varadhan, K. RFC 1591, Classless Inter-Domain Routing
(CIDR): an Address Assignment and Aggregation Strategy. Network Working Group.
September 1993.

The reentrant interfaces getnetbyname r (), getnetbyaddr r(),and
getnetent_r () are included in this release on an uncommitted basis only, and are
subject to change or removal in future minor releases.

The current implementation of these functions only return or accept network numbers
for the Internet address family (type AF_INET). The functions described in
inet(3SOCKET) may be helpful in constructing and manipulating addresses and
network numbers in this form.

Programs that use the interfaces described in this manual page cannot be linked
statically since the implementations of these functions employ dynamic loading and
linking of shared objects at run time.

When compiling multi-threaded applications, see Intro(3), Notes On Multithread
Applications, for information about the use of the REENTRANT flag.

Use of the enumeration interfaces getnetent () and getnetent r() is
discouraged; enumeration may not be supported for all database sources. The
semantics of enumeration are discussed further in nsswitch.conf(4).

Networking Library Functions 175

getnetconfig(3NSL)

176

NAME

SYNOPSIS

DESCRIPTION

getnetconfig, setnetconfig, endnetconfig, getnetconfigent, freenetconfigent, nc_perror,
nc_sperror — get network configuration database entry

#include <netconfig.h>

struct netconfig *getnetconfig(void *handlep) ;

void *setnetconfig(void) ;

int endnetconfig(void *handlep) ;

struct netconfig *getnetconfigent (const char *netid) ;
void freenetconfigent (struct netconfig *netconfigp) ;
void nc_perror (const char *msg) ;

char *nc_sperror (void) ;

The library routines described on this page are part of the Network Selection
component. They provide the application access to the system network configuration
database, /etc/netconfig. In addition to the routines for accessing the netconfig
database, Network Selection includes the environment variable NETPATH (see
environ(5)) and the NETPATH access routines described in getnetpath(3NSL).

getnetconfig () returns a pointer to the current entry in the netconfig database,
formatted as a struct netconfig. Successive calls will return successive
netconfig entries in the netconfig database. getnetconfig() can be used to
search the entire netconfig file. getnetconfig () returns NULL at the end of the
file. handlep is the handle obtained through setnetconfig().

A call to setnetconfig () has the effect of “binding” to or “rewinding’” the
netconfig database. setnetconfig () must be called before the first call to
getnetconfig () and may be called at any other time. setnetconfig () need not
be called before a call to getnetconfigent (). setnetconfig() returns a unique
handle to be used by getnetconfig ().

endnetconfig () should be called when processing is complete to release resources
for reuse. handlep is the handle obtained through setnetconfig (). Programmers
should be aware, however, that the last call to endnetconfig() frees all memory
allocated by getnetconfig () for the struct netconfig data structure.
endnetconfig () may not be called before setnetconfig ().

getnetconfigent () returns a pointer to the struct netconfig structure
corresponding to netid. It returns NULL if netid is invalid (that is, does not name an
entry in the netconfig database).

freenetconfigent () frees the netconfig structure pointed to by netconfigp
(previously returned by getnetconfigent ()).

nc_perror () prints a message to the standard error indicating why any of the above
routines failed. The message is prepended with the string msg and a colon. A
NEWLINE is appended at the end of the message.

man pages section 3: Networking Library Functions ¢ Last Revised 30 Dec 1996

RETURN VALUES

ATTRIBUTES

SEE ALSO

getnetconfig(3NSL)

nc_sperror () is similar to nc_perror () but instead of sending the message to the
standard error, will return a pointer to a string that contains the error message.

nc_perror () and nc_sperror () can also be used with the NETPATH access
routines defined in getnetpath(3NSL).

setnetconfig () returns a unique handle to be used by getnetconfig().In the
case of an error, setnetconfig () returns NULL and nc_perror () or
nc_sperror () can be used to print the reason for failure.

getnetconfig () returns a pointer to the current entry in the netconfig()
database, formatted as a struct netconfig. getnetconfig() returns NULL at
the end of the file, or upon failure.

endnetconfig () returns 0 on success and —1 on failure (for example, if
setnetconfig () was not called previously).

On success, getnetconfigent () returns a pointer to the struct netconfig
structure corresponding to netid; otherwise it returns NULL.

nc_sperror () returns a pointer to a buffer which contains the error message string.
This buffer is overwritten on each call. In multithreaded applications, this buffer is
implemented as thread-specific data.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getnetpath(3NSL), netconfig(4), attributes(5), environ(b)

Networking Library Functions 177

getnetpath(3NSL)
NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

getnetpath, setnetpath, endnetpath — get /etc/netconfig entry corresponding to
NETPATH component

#include <netconfig.h>
struct netconfig *getnetpath (void *handlep) ;
void *setnetpath(void) ;

int endnetpath (void *handlep) ;

The routines described on this page are part of the Network Selection component.
They provide the application access to the system network configuration database,
/etc/netconfig, as it is "filtered" by the NETPATH environment variable. See
environ(5). See getnetconfig(3NSL) for other routines that also access the
network configuration database directly. The NETPATH variable is a list of
colon-separated network identifiers.

getnetpath () returns a pointer to the netconfig database entry corresponding to
the first valid NETPATH component. The netconfig entry is formatted as a struct
netconfig. On each subsequent call, getnetpath () returns a pointer to the
netconfig entry that corresponds to the next valid NETPATH component.
getnetpath () can thus be used to search the netconf ig database for all networks
included in the NETPATH variable. When NETPATH has been exhausted,
getnetpath () returns NULL.

A call to setnetpath () "binds" to or "rewinds" NETPATH. setnetpath () must be
called before the first call to getnetpath () and may be called at any other time. It
returns a handle that is used by getnetpath ().

getnetpath () silently ignores invalid NETPATH components. A NETPATH
component is invalid if there is no corresponding entry in the netconfig database.

If the NETPATH variable is unset, getnetpath () behaves as if NETPATH were set to
the sequence of "default" or "visible" networks in the netconfig database, in the
order in which they are listed.

endnetpath () may be called to "unbind" from NETPATH when processing is
complete, releasing resources for reuse. Programmers should be aware, however, that
endnetpath () frees all memory allocated by getnetpath () for the struct
netconfig data structure. endnetpath () returns 0 on success and -1 on failure
(for example, if setnetpath () was not called previously).

setnetpath () returns a handle that is used by getnetpath (). In case of an error,
setnetpath () returns NULL. nc_perror () or nc_sperror () can be used to
print out the reason for failure. See getnetconfig(3NSL).

When first called, getnetpath () returns a pointer to the netconfig database entry
corresponding to the first valid NETPATH component. When NETPATH has been
exhausted, getnetpath () returns NULL.

178 man pages section 3: Networking Library Functions ¢ Last Revised 30 Dec 1996

ATTRIBUTES

SEE ALSO

getnetpath(3NSL)

endnetpath () returns 0 on success and -1 on failure (for example, if

setnetpath () was not called previously).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

MT-Safe

getnetconfig(3NSL), netconfig(4), attributes(5), environ(5)

Networking Library Functions

179

getpeername(3SOCKET)

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

getpeername — get name of connected peer

ce [flag ... 1 file ... -lsocket -1lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int getpeername (int s, struct sockaddr *name, socklen_ t *namelen) ;

getpeername () returns the name of the peer connected to socket s. The int pointed
to by the namelen parameter should be initialized to indicate the amount of space
pointed to by name. On return it contains the actual size of the name returned (in
bytes), prior to any truncation. The name is truncated if the buffer provided is too
small.

If successful, getpeername () returns 0; otherwise it returns —1 and sets errno to
indicate the error.

The call succeeds unless:

EBADF The argument s is not a valid descriptor.

ENOMEM There was insufficient user memory for the operation to
complete.

ENOSR There were insufficient STREAMS resources available
for the operation to complete.

ENOTCONN The socket is not connected.

ENOTSOCK The argument s is not a socket.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

accept(3SOCKET), bind(3SOCKET), get sockname(3SOCKET),
socket(3SOCKET), attributes(5), socket(BHEAD)

180 man pages section 3: Networking Library Functions ¢ Last Revised 26 Mar 1998

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

getpeername(3XNET)
getpeername — get the name of the peer socket

ce [flag ... 1 file ... -lxnet [library ...]
#include <sys/socket.h>

int getpeername (int socket, struct sockaddr *address, socklen t
*address_len) ;

The getpeername () function retrieves the peer address of the specified socket, stores
this address in the sockaddr structure pointed to by the address argument, and stores
the length of this address in the object pointed to by the address_len argument.

If the actual length of the address is greater than the length of the supplied sockaddr
structure, the stored address will be truncated.

If the protocol permits connections by unbound clients, and the peer is not bound,
then the value stored in the object pointed to by address is unspecified.

Upon successful completion, 0 is returned. Otherwise, —1 is returned and errno is set
to indicate the error.

The getpeername () function will fail if:

EBADF The socket argument is not a valid file descriptor.

EFAULT The address or address_len parameter can not be accessed or written.

EINVAL The socket has been shut down.

ENOTCONN The socket is not connected or otherwise has not had the peer
prespecified.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The operation is not supported for the socket protocol.

The getpeername () function may fail if:

ENOBUFS Insufficient resources were available in the system to complete the
call.
ENOSR There were insufficient STREAMS resources available for the

operation to complete.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

accept(3XNET), bind(3XNET), get sockname(3XNET), socket(3XNET),
attributes(b5)

Networking Library Functions 181

getprotobyname(3SOCKET)

182

NAME

SYNOPSIS

DESCRIPTION

getprotobyname, getprotobyname_r, getprotobynumber, getprotobynumber_r,
getprotoent, getprotoent_r, setprotoent, endprotoent — get protocol entry

ce [flag ... 1 file ... -lsocket -1lnsl [library ...]
#include <netdb.h>

struct protoent *getprotobyname (const char *name) ;

struct protoent *getprotobyname r (const char *name, struct
protoent *result, char *buffer, int buflen) ;

struct protoent *getprotobynumber (int profo) ;

struct protoent *getprotobynumber r (int proto, struct protoent
*result, char *buffer, int buflen) ;

struct protoent *getprotoent (void) ;

struct protoent *getprotoent r(struct protoent *result, char *buﬁer,
int buflen) ;

int setprotoent (int stayopen) ;

int endprotoent (void) ;

These routines return a protocol entry. Two types of interfaces are supported: reentrant
(getprotobyname r (), getprotobynumber r(),and getprotoent r())and
non-reentrant (getprotobyname (), getprotobynumber (), and getprotoent ()).
The reentrant routines may be used in single-threaded applications and are safe for
multi-threaded applications, making them the preferred interfaces.

The reentrant routines require additional parameters which are used to return results
data. result is a pointer to a struct protoent structure and will be where the
returned results will be stored. buffer is used as storage space for elements of the
returned results. buflen is the size of buffer and should be large enough to contain all
returned data. buflen must be at least 1024 bytes.

getprotobyname r (), getprotobynumber r (), and getprotoent r () each
return a protocol entry.

The entry may come from one of the following sources: the protocols file (see
protocols(4)), the NIS maps “protocols.byname” and “protocols.bynumber”, and
the NIS+ table “protocols”. The sources and their lookup order are specified in the
/etc/nsswitch. conf file (see nsswitch. conf(4) for details). Some name services
such as NIS will return only one name for a host, whereas others such as NIS+ or DNS
will return all aliases.

getprotobyname_r () and getprotobynumber_r () sequentially search from the
beginning of the file until a matching protocol name or protocol number is found, or
until an EOF is encountered.

man pages section 3: Networking Library Functions ¢ Last Revised 25 Jul 2000

RETURN VALUES

ERRORS

getprotobyname(3SOCKET)

getprotobyname () and getprotobynumber () have the same functionality as
getprotobyname r () and getprotobynumber r () except that a static buffer is
used to store returned results. These routines are unsafe in a multi-threaded
application.

getprotoent r () enumerates protocol entries: successive calls to

getprotoent r () will return either successive protocol entries or NULL.
Enumeration may not be supported by some sources. Note that if multiple threads call
getprotoent_r (), each will retrieve a subset of the protocol database.

getprotent () has the same functionality as getprotent r () except that a static
buffer is used to store returned results. This routine is unsafe in a multi-threaded
application.

setprotoent () “rewinds” to the beginning of the enumeration of protocol entries. If
the stayopen flag is non-zero, resources such as open file descriptors are not deallocated
after each call to getprotobynumber r () and getprotobyname r (). Calls to
getprotobyname r () , getprotobyname () , getprotobynumber r () and
getprotobynumber () may leave the enumeration in an indeterminate state, so
setprotoent () should be called before the first getprotoent r () or
getprotoent (). Note that setprotoent () has process-wide scope, and “rewinds”’
the protocol entries for all threads calling getprotoent_r () as well as main-thread
calls to getprotoent ().

endprotoent () may be called to indicate that protocol processing is complete; the
system may then close any open protocols file, deallocate storage, and so forth. It is
legitimate, but possibly less efficient, to call more protocol routines after
endprotoent ().

The internal representation of a protocol entry is a protoent structure defined in
<netdb . h> with the following members:

char *p_name;
char **p aliases;

int p_proto;

getprotobyname r(), getprotobyname(), getprotobynumber r(), and
getprotobynumber () return a pointer to a struct protoent if they successfully
locate the requested entry; otherwise they return NULL.

getprotoent r() and getprotoent () return a pointer to a struct protoent if
they successfully enumerate an entry; otherwise they return NULL, indicating the end
of the enumeration.

getprotobyname r(), getprotobynumber r(), and getprotoent r ()
will fail if the following is true:

ERANGE length of the buffer supplied by caller is not large enough to store
the result.

Networking Library Functions 183

getprotobyname(3SOCKET)

FILES

ATTRIBUTES

SEE ALSO

NOTES

BUGS

/etc/protocols

/etc/nsswitch.conf

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See NOTES below.

intro(3), nsswitch.conf(4), protocols(4), attributes(b), netdb(3HEAD)

Although getprotobyname_r (), getprotobynumber r (), and
getprotoent_r () are not mentioned by POSIX 1003.1c, they were added to
complete the functionality provided by similar thread-safe functions.

When compiling multithreaded applications, see intro(3), Notes On Multithread
Applications, for information about the use of the REENTRANT flag.

The routines getprotobyname r (), getprotobynumber r(),and
getprotoent r () are reentrant and multi-thread safe. The reentrant interfaces can
be used in single-threaded as well as multi-threaded applications and are therefore the
preferred interfaces.

The routines getprotobyname (), getprotobyaddr (), and getprotoent () use
static storage, so returned data must be copied if it is to be saved. Because of their use
of static storage for returned data, these routines are not safe for multi-threaded
applications.

setprotoent () and endprotoent () have process-wide scope, and are therefore
not safe in multi-threaded applications.

Use of getprotoent _r () and getprotoent () is discouraged; enumeration is
well-defined for the protocols file and is supported (albeit inefficiently) for NIS and
NIS+, but in general may not be well-defined. The semantics of enumeration are
discussed in nsswitch.conf(4).

Only the Internet protocols are currently understood.

Programs that call getprotobyname_r () or getprotobynumber r () routines
cannot be linked statically since the implementation of these routines requires
dynamic linker functionality to access shared objects at run time.

184 man pages section 3: Networking Library Functions e Last Revised 25 Jul 2000

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

WARNINGS

NOTES

getpublickey(3NSL)
getpublickey, getsecretkey, publickey — retrieve public or secret key

#include <rpc/rpc.h>
#include <rpc/key prot.hs

int getpublickey (const char netname[MAXNETNAMELEN], char
publickey HEXKEYBYTES+1]) ;

int getsecretkey (const char netname[MAXNETNAMELEN], char
secretkey[HEXKEYBYTES+1], const char *passwd) ;

getpublickey () and getsecretkey () get public and secret keys for netname. The
key may come from one of the following sources:

m the /etc/publickey file. See publickey(4).

m the NIS map “publickey.byname” or the NIS+ table “cred.org_dir”. The sources
and their lookup order are specified in the /etc/nsswitch. conf file. See
nsswitch.conf(4).

getsecretkey () has an extra argument, passwd, which is used to decrypt the
encrypted secret key stored in the database.

Both routines return 1 if they are successful in finding the key. Otherwise, the routines
return 0. The keys are returned as null-terminated, hexadecimal strings. If the
password supplied to get secretkey () fails to decrypt the secret key, the routine
will return 1 but the secretkey [0] will be set to NULL.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

secure_rpc(3NSL), nsswitch.conf(4), publickey(4), attributes(5)

If getpublickey () gets the public key from any source other than NIS+, all
authenticated NIS+ operations may fail. To ensure that this does not happen, edit the
nsswitch.conf(4) file to make sure that the public key is obtained from NIS+.

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit

http:/ /www.sun.com/directory /nisplus/transition.html.

Networking Library Functions 185

getrpcbyname(3NSL)

NAME | getrpcbyname, getrpcbyname_r, getrpcbynumber, getrpcbynumber_r, getrpcent,
getrpcent_r, setrpcent, endrpcent — get RPC entry
SYNOPSIS | cc [flag ... 1 file ... -1nsl [library ...]

#include <rpc/rpcent.h>
struct rpcent *getrpcbyname (const char *name) ;

struct rpcent *getrpcbyname r (const char *name, struct rpcent
*result, char *buffer, int buflen) ;

struct rpcent *getrpcbynumber (const int number) ;

struct rpcent *getrpcbynumber r (const int number, struct rpcent
*result, char *buffer, int buflen) ;

struct rpcent *getrpcent (void) ;

struct rpcent *getrpcent r (struct rpcent *result, char *buffer, int

buflen) ;
voild setrpcent (const int stayopen) ;

void endrpcent (void) ;

DESCRIPTION | These functions are used to obtain entries for RPC (Remote Procedure Call) services.
An entry may come from any of the sources for rpc specified in the
/etc/nsswitch.conf file (see nsswitch.conf(4)).

getrpcbyname () searches for an entry with the RPC service name specified by the
parameter name.

getrpcbynumber () searches for an entry with the RPC program number number.

The functions setrpcent (), getrpcent (), and endrpcent () are used to
enumerate RPC entries from the database.

setrpcent () sets (or resets) the enumeration to the beginning of the set of RPC
entries. This function should be called before the first call to getrpcent (). Calls to
getrpcbyname () and getrpcbynumber () leave the enumeration position in an
indeterminate state. If the stayopen flag is non-zero, the system may keep allocated
resources such as open file descriptors until a subsequent call to endrpcent ().

Successive calls to getrpcent () return either successive entries or NULL, indicating
the end of the enumeration.

endrpcent () may be called to indicate that the caller expects to do no further RPC
entry retrieval operations; the system may then deallocate resources it was using. It is
still allowed, but possibly less efficient, for the process to call more RPC entry retrieval
functions after calling endrpcent ().

Reentrant | The functions getrpcbyname (), getrpcbynumber (), and getrpcent () use static
Interfaces storage that is re-used in each call, making these routines unsafe for use in
multithreaded applications.

186 man pages section 3: Networking Library Functions ¢ Last Revised 20 Feb 1998

RETURN VALUES

getrpcbyname(3NSL)

The functions getrpcbyname r (), getrpcbynumber r (), and getrpcent r ()
provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the “_r”’ suffix. The reentrant interfaces, however, use buffers
supplied by the caller to store returned results, and are safe for use in both
single-threaded and multithreaded applications.

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as
well as the following additional parameters. The parameter result must be a pointer to
a struct rpcent structure allocated by the caller. On successful completion, the
function returns the RPC entry in this structure. The parameter buffer must be a
pointer to a buffer supplied by the caller. This buffer is used as storage space for the
RPC entry data. All of the pointers within the returned struct rpcent result point
to data stored within this buffer (see RETURN VALUES). The buffer must be large
enough to hold all of the data associated with the RPC entry. The parameter buflen
should give the size in bytes of the buffer indicated by buffer.

For enumeration in multithreaded applications, the position within the enumeration is
a process-wide property shared by all threads. setrpcent () may be used in a
multithreaded application but resets the enumeration position for all threads. If
multiple threads interleave calls to getrpcent r (), the threads will enumerate
disjoint subsets of the RPC entry database.

Like their non-reentrant counterparts, getrpcbyname_r () and
getrpcbynumber r () leave the enumeration position in an indeterminate state.

RPC entries are represented by the struct rpcent structure defined in
<rpc/rpcent.h>:

struct rpcent {

char *r_name; /* name of this rpc service
char **r_aliases; /* zero-terminated list of alternate names */
int r number; /* rpc program number */

}i

The functions getrpcbyname (), getrpcbyname r(), getrpcbynumber(),
and getrpcbynumber r () each return a pointer to a struct rpcent if they
successfully locate the requested entry; otherwise they return NULL.

The functions getrpcent () and getrpcent r () each return a pointer to a struct
rpcent if they successfully enumerate an entry; otherwise they return NULL,
indicating the end of the enumeration.

The functions getrpcbyname (), getrpcbynumber (), and getrpcent () use static
storage, so returned data must be copied before a subsequent call to any of these
functions if the data is to be saved.

Networking Library Functions 187

getrpcbyname(3NSL)

When the pointer returned by the reentrant functions getrpcbyname_r (),
getrpcbynumber_ r (), and getrpcent_r () is non-NULL, it is always equal to the
result pointer that was supplied by the caller.

ERRORS | The reentrant functions getrpcyname r (), getrpcbynumber r() and
getrpcent r () will return NULL and set errno to ERANGE if the length of the
buffer supplied by caller is not large enough to store the result. See intro(2) for the
proper usage and interpretation of errno in multithreaded applications.

FILES | /etc/rpc

/etc/nsswitch.conf

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See “Reentrant Interfaces” in DESCRIPTION.

SEE ALSO | rpcinfo(1M), rpc(3NSL), nsswitch.conf(4), rpc(4), attributes(5)

WARNINGS | The reentrant interfaces getrpcbyname_r (), getrpcbynumber r (), and
getrpcent_r () are included in this release on an uncommitted basis only, and are
subject to change or removal in future minor releases.

NOTES | Programs that use the interfaces described in this manual page cannot be linked
statically since the implementations of these functions employ dynamic loading and
linking of shared objects at run time.

When compiling multithreaded applications, see intro(3), Notes On Multithreaded
Applications, for information about the use of the REENTRANT flag.

Use of the enumeration interfaces getrpcent () and getrpcent r () is
discouraged; enumeration may not be supported for all database sources. The
semantics of enumeration are discussed further in nsswitch.conf(4).

188 man pages section 3: Networking Library Functions ¢ Last Revised 20 Feb 1998

NAME

SYNOPSIS

DESCRIPTION

getservbyname(3SOCKET)

getservbyname, getservbyname_r, getservbyport, getservbyport_r, getservent,
getservent_r, setservent, endservent — get service entry

ce [flag ... 1 file ... -lsocket -lnsl [library ...]
#include <netdb.h>

struct servent *getservbyname (const char *name, const char *proto) ;

struct servent *getservbyname r (const char *name, const char
*proto, struct servent *result, char *buffer, int buflen) ;

struct servent *getservbyport (int port, const char *proto) ;

struct servent *getservbyport r (int port, const char *proto, struct
servent *result, char xbuffer, int buflen) ;

struct servent *getservent (void) ;

struct servent *getservent r(struct servent *result, char *buﬁer,
int buflen) ;

int setservent (int stayopen) ;

int endservent (void) ;

These functions are used to obtain entries for Internet services. An entry may come
from any of the sources for services specified in the /etc/nsswitch. conf file.
See nsswitch.conf(4).

getservbyname () and getservbyport () sequentially search from the beginning
of the file until a matching protocol name or port number is found, or until end-of-file
is encountered. If a protocol name is also supplied (non- NULL), searches must also
match the protocol.

getservbyname () searches for an entry with the Internet service name specified by
the parameter name.

getservbyport () searches for an entry with the Internet port number port.

All addresses are returned in network order. In order to interpret the addresses,
byteorder(3SOCKET)

must be used for byte order conversion. The string proto is used by both
getservbyname () and getservbyport () to restrict the search to entries with the
specified protocol. If proto is NULL, entries with any protocol may be returned.

The functions setservent (), getservent (), and endservent () are used to
enumerate entries from the services database.

Networking Library Functions 189

getservbyname(3SOCKET)

190

Reentrant
Interfaces

setservent () sets (or resets) the enumeration to the beginning of the set of service
entries. This function should be called before the first call to getservent (). Calls to
the functions getservbyname () and getservbyport () leave the enumeration
position in an indeterminate state. If the stayopen flag is non-zero, the system may keep
allocated resources such as open file descriptors until a subsequent call to
endservent ().

getservent () reads the next line of the file, opening the file if necessary.
getservent () opens and rewinds the file. If the stayopen flag is non-zero, the net
data base will not be closed after each call to getservent () (either directly, or
indirectly through one of the other "getserv" calls).

Successive calls to getservent () return either successive entries or NULL,
indicating the end of the enumeration.

endservent () closes the file. endservent () may be called to indicate that the
caller expects to do no further service entry retrieval operations; the system may then
deallocate resources it was using. It is still allowed, but possibly less efficient, for the
process to call more service entry retrieval functions after calling endservent ().

The functions getservbyname (), getservbyport (), and getservent () use
static storage that is re-used in each call, making these functions unsafe for use in
multithreaded applications.

The functions getservbyname r (), getservbyport r(), and getservent r()
provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the “ r” suffix. The reentrant interfaces, however, use buffers
supplied by the caller to store returned results, and are safe for use in both
single-threaded and multithreaded applications.

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as
well as the following additional parameters. The parameter result must be a pointer to
a struct servent structure allocated by the caller. On successful completion, the
function returns the service entry in this structure. The parameter buffer must be a
pointer to a buffer supplied by the caller. This buffer is used as storage space for the
service entry data. All of the pointers within the returned struct servent result
point to data stored within this buffer. See the RETURN VALUES section of this man
page. The buffer must be large enough to hold all of the data associated with the
service entry. The parameter buflen should give the size in bytes of the buffer indicated
by buffer.

For enumeration in multithreaded applications, the position within the enumeration is
a process-wide property shared by all threads. setservent () may be used in a
multithreaded application but resets the enumeration position for all threads. If
multiple threads interleave calls to getservent_x (), the threads will enumerate
disjoint subsets of the service database.

man pages section 3: Networking Library Functions ¢ Last Revised 23 Mar 1998

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

getservbyname(3SOCKET)

Like their non-reentrant counterparts, get servbyname_r () and
getservbyport r () leave the enumeration position in an indeterminate state.

Service entries are represented by the struct servent structure defined in
<netdb.h>:

struct servent {

char *s name; /* official name of service */
char **s aliases; /* alias list */

int s_port; /* port service resides at */
char *s proto; /* protocol to use */

i

The members of this structure are:

S_name The official name of the service.
s_aliases A zero terminated list of alternate names for the service.
s_port The port number at which the service resides. Port numbers are

returned in network byte order.

s_proto The name of the protocol to use when contacting the service

The functions getservbyname (), getservbyname r(), getservbyport(),
and getservbyport r () each return a pointer to a struct servent if they
successfully locate the requested entry; otherwise they return NULL.

The functions getservent () and getservent r() each return a pointer to a
struct servent if they successfully enumerate an entry; otherwise they return
NULL, indicating the end of the enumeration.

The functions getservbyname (), getservbyport (), and getservent () use
static storage, so returned data must be copied before a subsequent call to any of these
functions if the data is to be saved.

When the pointer returned by the reentrant functions get servbyname_r (),
getservbyport_r(),and getservent_r() is non-null, it is always equal to the
result pointer that was supplied by the caller.

The reentrant functions getservbyname r (), getservbyport r() and
getservent_r () will return NULL and set errno to ERANGE if the length of the
buffer supplied by caller is not large enough to store the result. See intro(2) for the
proper usage and interpretation of errno in multithreaded applications.

/etc/services Internet network services
/etc/netconfig network configuration file
/etc/nsswitch.conf configuration file for the name-service switch

See attributes(5) for descriptions of the following attributes:

Networking Library Functions 191

getservbyname(3SOCKET)

192

SEE ALSO

WARNINGS

NOTES

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See “Reentrant Interfaces” in DESCRIPTION.

intro(2), intro(3), byteorder(3SOCKET), netdir(3NSL), netconfig(4),
nsswitch.conf(4), services(4), attributes(5), netdb(3HEAD)

The reentrant interfaces getservbyname r (), getservbyport r(),and
getservent_r () are included in this release on an uncommitted basis only, and are
subject to change or removal in future minor releases.

The functions that return struct servent return the least significant 16-bits of the
s_port field in network byte order. get servbyport () and getservbyport r () also
expect the input parameter port in the network byte order. See ht ons(3SOCKET) for
more details on converting between host and network byte orders.

Programs that use the interfaces described in this manual page cannot be linked
statically since the implementations of these functions employ dynamic loading and
linking of shared objects at run time.

In order to ensure that they all return consistent results, get servbyname (),
getservbyname r(),and netdir getbyname () are implemented in terms of the
same internal library function. This function obtains the system-wide source lookup
policy based on the inet family entries in netconfig(4) and the services: entry
in nsswitch.conf(4). Similarly, get servbyport (), getservbyport_r (), and
netdir getbyaddr () are implemented in terms of the same internal library
function. If the inet family entries in netconfig(4) have a “-”’ in the last column for
nametoaddr libraries, then the entry for services in nsswitch. conf will be used;
otherwise the nametoaddr libraries in that column will be used, and nsswitch.conf
will not be consulted.

There is no analogue of getservent () and getservent_r () in the netdir
functions, so these enumeration functions go straight to the services entry in
nsswitch.conf. Thus enumeration may return results from a different source than
that used by get servbyname (), getservbyname r (), getservbyport (), and
getservbyport r ().

When compiling multithreaded applications, see intro(3), Notes On Multithread
Applications, for information about the use of the REENTRANT flag.

Use of the enumeration interfaces getservent () and getservent r() is
discouraged; enumeration may not be supported for all database sources. The
semantics of enumeration are discussed further in nsswitch.conf(4).

man pages section 3: Networking Library Functions ¢ Last Revised 23 Mar 1998

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

getsockname(3SOCKET)

getsockname — get socket name

ce [flag ... 1 file ... -lsocket -lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int getsockname (int s, struct sockaddr *name, socklen_ t *namelen) ;

getsockname () returns the current name for socket s. The namelen parameter should
be initialized to indicate the amount of space pointed to by name. On return it contains
the actual size in bytes of the name returned.

If successful, getsockname () returns 0; otherwise it returns —1 and sets errno to
indicate the error.

The call succeeds unless:

EBADF The argument s is not a valid file descriptor.

ENOMEM There was insufficient memory available for the operation to
complete.

ENOSR There were insufficient STREAMS resources available for the

operation to complete.

ENOTSOCK The argument s is not a socket.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

bind(3SOCKET), getpeername(3SOCKET), socket(3SOCKET), attributes(b)

Networking Library Functions 193

getsockname(3XNET)

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

getsockname — get the socket name

ce [flag ... 1 file ... -1xnet [library ...]
#include <sys/socket.h>

int getsockname (int socket, struct sockaddr *address, socklen t
*address_len) ;

The getsockname () function retrieves the locally-bound name of the specified
socket, stores this address in the sockaddr structure pointed to by the address
argument, and stores the length of this address in the object pointed to by the
address_len argument.

If the actual length of the address is greater than the length of the supplied sockaddr
structure, the stored address will be truncated.

If the socket has not been bound to a local name, the value stored in the object pointed
to by address is unspecified.

Upon successful completion, 0 is returned, the address argument points to the address
of the socket, and the address_len argument points to the length of the address.
Otherwise, —1 is returned and errno is set to indicate the error.

The getsockname () function will fail:

EBADF The socket argument is not a valid file descriptor.

EFAULT The address or address_len parameter can not be accessed or written.
ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The operation is not supported for this socket’s protocol.

The getsockname () function may fail if:

EINVAL The socket has been shut down.

ENOBUFS Insufficient resources were available in the system to complete the
call.

ENOSR There were insufficient STREAMS resources available for the

operation to complete.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

accept(3XNET), bind(3XNET), getpeername(3XNET), socket(3XNET)
attributes(b)

194 man pages section 3: Networking Library Functions ¢ Last Revised 8 May 1998

NAME
SYNOPSIS

DESCRIPTION

getsockopt(3SOCKET)
getsockopt, setsockopt — get and set options on sockets

ce [flag ... 1 file ... -lsocket -1lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int getsockopt (int s, int level, int optname, void *optval, int *optlen) ;

int setsockopt (int s, int level, int optname, const void *optval, int
optlen) ;

getsockopt () and setsockopt () manipulate options associated with a socket.
Options may exist at multiple protocol levels; they are always present at the
uppermost “socket” level.

When manipulating socket options, the level at which the option resides and the name
of the option must be specified. To manipulate options at the “socket” level, level is
specified as SOL_SOCKET. To manipulate options at any other level, level is the
protocol number of the protocol that controls the option. For example, to indicate that
an option is to be interpreted by the TCP protocol, level is set to the TCP protocol
number . See getprotobyname(3SOCKET).

The parameters optval and optlen are used to access option values for setsockopt ().
For getsockopt (), they identify a buffer in which the value(s) for the requested
option(s) are to be returned. For getsockopt (), optlen is a value-result parameter,
initially containing the size of the buffer pointed to by optval, and modified on return
to indicate the actual size of the value returned. Use a 0 optval if no option value is to
be supplied or returned.

optname and any specified options are passed uninterpreted to the appropriate
protocol module for interpretation. The include file <<sys/socket . h> contains
definitions for the socket-level options described below. Options at other protocol
levels vary in format and name.

Most socket-level options take an int for optval. For setsockopt (), the optval
parameter should be non-zero to enable a boolean option, or zero if the option is to be
disabled. SO_LINGER uses a struct linger parameter that specifies the desired
state of the option and the linger interval. struct linger is defined in
<<sys/socket.h>. struct linger contains the following members:

1 onoff on=1/off =0

1 linger linger time, in seconds

The following options are recognized at the socket level. Except as noted, each may be
examined with getsockopt () and set with setsockopt ().

SO_DEBUG enable/disable recording of debugging information
SO _REUSEADDR enable/disable local address reuse
SO_KEEPALIVE enable/disable keep connections alive

Networking Library Functions 195

getsockopt(3SOCKET)

196

SO_DONTROUTE enable/disable routing bypass for outgoing messages

SO_LINGER linger on close if data is present

SO BROADCAST enable/disable permission to transmit broadcast
messages

SO_OOBINLINE enable/disable reception of out-of-band data in band

SO _SNDBUF set buffer size for output

SO_RCVBUF set buffer size for input

SO_DGRAM_ERRIND application wants delayed error

SO_TYPE get the type of the socket (get only)

SO_ERROR get and clear error on the socket (get only)

SO_DEBUG enables debugging in the underlying protocol modules. SO_REUSEADDR
indicates that the rules used in validating addresses supplied in a bind(3SOCKET)
call should allow reuse of local addresses. SO KEEPALIVE enables the periodic
transmission of messages on a connected socket. If the connected party fails to
respond to these messages, the connection is considered broken and processes using
the socket are notified using a SIGPIPE signal. SO DONTROUTE indicates that
outgoing messages should bypass the standard routing facilities. Instead, messages are
directed to the appropriate network interface according to the network portion of the
destination address.

SO_LINGER controls the action taken when unsent messages are queued on a socket
and a close(2) is performed. If the socket promises reliable delivery of data and
SO_LINGER is set, the system will block the process on the close () attempt until it is
able to transmit the data or until it decides it is unable to deliver the information (a
timeout period, termed the linger interval, is specified in the setsockopt () call
when SO_LINGER is requested). If SO_LINGER is disabled and a close () is issued,
the system will process the close () in a manner that allows the process to continue
as quickly as possible.

The option SO BROADCAST requests permission to send broadcast datagrams on the
socket. With protocols that support out-of-band data, the SO OOBINLINE option
requests that out-of-band data be placed in the normal data input queue as received; it
will then be accessible with recv () or read () calls without the MSG_0OB flag.

SO_SNDBUF and SO_RCVBUF are options that adjust the normal bulffer sizes allocated
for output and input buffers, respectively. The buffer size may be increased for
high-volume connections or may be decreased to limit the possible backlog of
incoming data. The maximum buffer size for UDP is determined by the value of the
ndd variable udp max_buf. The maximum buffer size for TCP is determined the
value of the ndd variable tcp max_buf. Use the ndd(1M) utility to determine the
current default values. See the Solaris Tunable Parameters Reference Manual for
information on setting the values of udp_max_buf and tcp_max_buf.

man pages section 3: Networking Library Functions ¢ Last Revised 24 Jan 2002

RETURN VALUES

ERRORS

ATTRIBUTES

getsockopt(3SOCKET)

By default, delayed errors (such as ICMP port unreachable packets) are returned only
for connected datagram sockets. SO_DGRAM_ERRIND makes it possible to receive
errors for datagram sockets that are not connected. When this option is set, certain
delayed errors received after completion of a sendto () or sendmsg () operation will
cause a subsequent sendto () or sendmsg () operation using the same destination
address (fo parameter) to fail with the appropriate error. See send(3SOCKET).

Finally, SO_TYPE and SO_ERROR are options used only with getsockopt ().
SO_TYPE returns the type of the socket, for example, SOCK_STREAM. It is useful for
servers that inherit sockets on startup. SO_ERROR returns any pending error on the
socket and clears the error status. It may be used to check for asynchronous errors on
connected datagram sockets or for other asynchronous errors.

If successful, getsockopt () and setsockopt () return 0; otherwise, the functions
return —1 and set errno to indicate the error.

The getsockopt () and setsockopt () calls succeed unless:

EBADF

ENOMEM

ENOPROTOOPT

ENOSR

ENOTSOCK

ENOBUFS

EINVAL

EHOSTUNREACH

EINVAL

EADDRNOTAVAIL

EADDRINUSE

ENOENT

EPERM

EINVAL

The argument s is not a valid file descriptor.

There was insufficient memory available for the
operation to complete.

The option is unknown at the level indicated.

There were insufficient STREAMS resources available
for the operation to complete.

The argument s is not a socket.

SO_SNDBUF or SO_RCVBUF exceeds a system limit.
Invalid length for IP OPTIONS.

Invalid address for IP_ MULTICAST IF.

Not a multicast address for IP_ADD_MEMBERSHIP and
IP DROP MEMBERSHIP

Bad interface address for IP_ ADD MEMBERSHIP and
IP DROP MEMBERSHIP.

Address already joined for IP_ADD_ MEMBERSHIP.
Address not joined for IP_ DROP_MEMBERSHIP.
No permissions.

The specified option is invalid at the specified socket
level, or the socket has been shut down.

See attributes(5) for descriptions of the following attributes:

Networking Library Functions 197

getsockopt(3SOCKET)

198

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO | ndd(1M), close(2), ioctl(2), read(2), bind(3SOCKET),

socket(3SOCKET), attributes(5)

Solaris Tunable Parameters Reference Manual

man pages section 3: Networking Library Functions ¢ Last Revised 24 Jan 2002

getprotobyname(3SOCKET), recv(3SOCKET), send(3SOCKET),

NAME
SYNOPSIS

DESCRIPTION

getsockopt(3XNET)
getsockopt — get the socket options

ce [flag ... 1 file ... -lxnet [library ...]
#include <sys/socket.h>

int getsockopt (int socket, int level, int option_name, void *option_value,
socklen t *option_len) ;

The getsockopt () function retrieves the value for the option specified by the
option_name argument for the socket specified by the socket argument. If the size of the
option value is greater than option_len, the value stored in the object pointed to by the
option_value argument will be silently truncated. Otherwise, the object pointed to by
the option_len argument will be modified to indicate the actual length of the value.

The level argument specifies the protocol level at which the option resides. To retrieve
options at the socket level, specify the level argument as SOL_SOCKET. To retrieve
options at other levels, supply the appropriate protocol number for the protocol
controlling the option. For example, to indicate that an option will be interpreted by
the TCP (Transport Control Protocol), set level to the protocol number of TCP, as
defined in the <netinet/in.h> header, or as determined by using
getprotobyname(3XNET) function.

The socket in use may require the process to have appropriate privileges to use the
getsockopt () function.

The option_name argument specifies a single option to be retrieved. It can be one of the
following values defined in <sys/socket .h>:

SO_DEBUG Reports whether debugging information is being
recorded. This option stores an int value. This is a
boolean option.

SO_ACCEPTCONN Reports whether socket listening is enabled. This
option stores an int value.

SO_BROADCAST Reports whether transmission of broadcast messages is
supported, if this is supported by the protocol. This
option stores an int value. This is a boolean option.

SO_REUSEADDR Reports whether the rules used in validating addresses
supplied to bind(3XNET) should allow reuse of local
addresses, if this is supported by the protocol. This
option stores an int value. This is a boolean option.

SO_KEEPALIVE Reports whether connections are kept active with
periodic transmission of messages, if this is supported
by the protocol.

If the connected socket fails to respond to these
messages, the connection is broken and processes
writing to that socket are notified with a SIGPIPE
signal. This option stores an int value.

Networking Library Functions 199

getsockopt(3XNET)

RETURN VALUES

200

SO_LINGER

SO_OOBINLINE

SO_SNDBUF

SO_RCVBUF

SO_ERROR

SO_TYPE

SO_DONTROUTE

This is a boolean option.

Reports whether the socket lingers on close(2) if data
is present. If SO_LINGER is set, the system blocks the
process during close(2) until it can transmit the data
or until the end of the interval indicated by the

1 linger member, whichever comes first. If
SO_LINGER is not specified, and close(2) is issued,
the system handles the call in a way that allows the
process to continue as quickly as possible. This option
stores a 1inger structure.

Reports whether the socket leaves received out-of-band
data (data marked urgent) in line. This option stores an
int value. This is a boolean option.

Reports send buffer size information. This option stores
an int value.

Reports receive buffer size information. This option
stores an int value.

Reports information about error status and clears it.
This option stores an int value.

Reports the socket type. This option stores an int
value.

Reports whether outgoing messages bypass the
standard routing facilities. The destination must be on
a directly-connected network, and messages are
directed to the appropriate network interface according
to the destination address. The effect, if any, of this
option depends on what protocol is in use. This option
stores an int value. This is a boolean option.

For boolean options, a zero value indicates that the option is disabled and a non-zero
value indicates that the option is enabled.

Options at other protocol levels vary in format and name.

The socket in use may require the process to have appropriate privileges to use the
getsockopt () function.

Upon successful completion, getsockopt () returns 0. Otherwise, —1 is returned and
errno is set to indicate the error.

ERRORS | The getsockopt () function will fail if:

EBADF

The socket argument is not a valid file descriptor.

man pages section 3: Networking Library Functions ¢ Last Revised 8 May 1998

ATTRIBUTES

SEE ALSO

getsockopt(3XNET)

EFAULT The option_value or option_len parameter can not be accessed or
written.
EINVAL The specified option is invalid at the specified socket level.

ENOPROTOOPT The option is not supported by the protocol.

ENOTSOCK The socket argument does not refer to a socket.

The getsockopt () function may fail if:

EACCES The calling process does not have the appropriate privileges.

EINVAL The socket has been shut down.

ENOBUFS Insufficient resources are available in the system to complete the
call.

ENOSR There were insufficient STREAMS resources available for the

operation to complete.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

close(2), bind(3XNET), endprotoent(3XNET), setsockopt(3XNET),
socket(3XNET), attributes

Networking Library Functions 201

gss_accept_sec_context(3GSS)

202

NAME
SYNOPSIS

DESCRIPTION

gss_accept_sec_context — accept a security context initiated by a peer application

cc -flag ... file...-1gss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_ accept sec context (OM_uint32 *minor_status,
gss_ctx id t *context_handle, const gss cred id t
acceptor_cred_handle, const gss_buffer t input_token, const
gss_channel bindings t inpuf_chan_bindings, const gss name t
*src_name, gss_OID *mech_type, gss_buffer t output_token, OM uint32
*ret_flags, OM_uint32 *time_rec, gss_cred_id_t *delegated_cred_handle) ;

The gss_accept sec context () function allows a remotely initiated security
context between the application and a remote peer to be established. The routine may
return an output_token, which should be transferred to the peer application, where the
peer application will present it to gss_init_sec_context (). See

gss_init sec_context(3GSS). If no token need be sent,

gss_accept sec context () will indicate this by setting the length field of the
output_token argument to zero. To complete the context establishment, one or more
reply tokens may be required from the peer application; if so,
gss_accept sec_ context () will return a status flag of
GSS_S_CONTINUE_NEEDED, in which case it should be called again when the reply
token is received from the peer application, passing the token to
gss_accept_sec_context () by means of the input_token parameters.

Portable applications should be constructed to use the token length and return status
to determine whether to send or to wait for a token.

Whenever gss_accept_sec_context () returns a major status that includes the
value GSS_S_CONTINUE_NEEDED, the context is not fully established and the
following restrictions apply to the output parameters:

® The value returned by means of the time_rec parameter is undefined.

® Unless the accompanying ret_flags parameter contains the bit
GSS_C_PROT_READY FLAG, which indicates that per-message services may be
applied in advance of a successful completion status, the value returned by the
mech_type parameter may be undefined until gss_accept_sec_context ()
returns a major status value of GSS_S COMPLETE.

The values of the GSS_C DELEG FLAG, GSS_C MUTUAL FLAG,

GSS C REPLAY FLAG,GSS C SEQUENCE FLAG,GSS C CONF_ FLAG,

GSS_C INTEG FLAGand GSS C_ANON FLAG bits returned by means of the ref_flags
parameter are values that would be valid if context establishment were to succeed.

The values of the GSS_C_PROT READY FLAG and GSS_C TRANS FLAG bits within
ret_flags indicate the actual state at the time gss_accept sec_context () returns,
whether or not the context is fully established. However, applications should not rely

man pages section 3: Networking Library Functions ¢ Last Revised 18 Apr 2000

PARAMETERS

gss_accept_sec_context(3GSS)

on this behavior, as GSS_C_PROT READY FLAG was not defined in Version 1 of the
GSS-APL Instead, applications should be prepared to use per-message services after a
successful context establishment, based upon the GSS_C_INTEG_FLAG and
GSS_C_CONF_FLAG values.

All other bits within the ret_flags argument are set to zero.

While gss_accept_sec context () returns GSS_S CONTINUE NEEDED, the
values returned by means of the the ret_flags argument indicate the services available
from the established context. If the initial call of gss_accept sec context () fails,
no context object is created, and the value of the context_handle parameter is set to
GSS_C_NO_CONTEXT. In the event of a failure on a subsequent call, the security
context and the context_handle parameter are left untouched for the application to
delete using gss_delete sec context(3GSS). During context establishment, the
informational status bits GSS_S OLD TOKEN and GSS_S DUPLICATE TOKEN
indicate fatal errors; GSS-API mechanisms always return them in association with a
routine error of GSS_S_FAILURE. This pairing requirement did not exist in version 1
of the GSS-API specification, so applications that wish to run over version 1
implementations must special-case these codes.

The parameter descriptions for gss_accept sec context () follow:
minor_status The status code returned by the underlying mechanism.

context_handle The context handle to return to the initiator. This should be
set to GSS_C_NO_CONTEXT before the loop begins.

acceptor_cred_handle The handle for the credentials acquired by the acceptor,
typically through gss_acquire_cred().It may be
initialized to GSS_C NO_CREDENTIAL to indicate a default
credential to use. If no default credential is defined, the
function returns GSS_C_NO_CRED.

input_token_buffer Token received from the context initiative.

input_chan_bindings Optional application-specified bindings. Allows application
to securely bind channel identification information to the
security context. Set to GSS_C_NO_CHANNEL_ BINDINGS if
you do not want to use channel bindings.

src_name The authenticated name of the context initiator. After use, this
name should be deallocated by passing it to
gss_release name (). See gss_release name(3GSS). If
not required, specify NULL.

mech_type The security mechanism used. Set to NULL if it does not
matter which mechanism is used.

output_token The token to send to the acceptor. Initialize it to
GSS_C_NO_BUFFER before the function is called (or its length
field set to zero). If the length is zero, no token need be sent.

Networking Library Functions 203

gss_accept_sec_context(3GSS)

ret_flags Contains various independent flags, each of which indicates
that the context supports a specific service option. If not
needed, specify NULL. Test the returned bit-mask ref_flags
value against its symbolic name to determine if the given
option is supported by the context. ret_flags may contain one
of the following values:

GSS_C DELEG FLAG
If true, delegated credentials are available by means of the
delegated_cred_handle parameter. If false, no credentials
were delegated.

GSS_C MUTUAL FLAG
If true, a remote peer asked for mutual authentication. If
false, no remote peer asked for mutual authentication.

GSS_C REPLY FLAG
If true, replay of protected messages will be detected. If
false, replayed messages will not be detected.

GSS_C_SEQUENCE_FLAG
If true, out of sequence protected messages will be
detected. If false, they will not be detected.

GSS_C_CONF_FLAG
If true, confidentiality service may be invoked by calling
the gss_wrap () routine. If false, no confidentiality service
is available by means of gss_wrap (). gss_wrap () will
provide message encapsulation, data-origin authentication
and integrity services only.

GSS_C_INTEG FLAG
If true, integrity service may be invoked by calling either
the gss_get mic(3GSS) or the gss_wrap(3GSS) routine.
If false, per-message integrity service is not available.

GSS_C_ANON FLAG
If true, the initiator does not wish to be authenticated. The
src_name parameter, if requested, contains an anonymous
internal name. If false, the initiator has been authenticated
normally.

GSS_C_PROT READY FLAG
If true, the protection services specified by the states of
GSS_C_CONF_FLAG and GSS C INTEG FLAG are
available if the accompanying major status return value is
either GSS_S COMPLETE or GSS_S_CONTINUE NEEDED.
If false, the protection services are available only if the
accompanying major status return value is
GSS_S_COMPLETE.

204 man pages section 3: Networking Library Functions ¢ Last Revised 18 Apr 2000

RETURN VALUES

gss_accept_sec_context(3GSS)

GSS C TRANS FLAG
If true, the resultant security context may be transferred to
other processes by means of a call to
gss_export_sec_context(3GSS). If false, the security
context cannot be transferred.

time_rec

The number of sections for which the context will remain

value Specify NULL if not required.

delegated_cred_handle

The credential value for credentials received from the

context’s initiator. It is valid only if the initiator has requested
that the acceptor act as a proxy: that is, if the ret_flag
argument resolves to GSS_C DELEG FLAG.

gss_accept_sec_context () may return the following status codes:

GSS_S_COMPLETE

GSS_S_CONTINUE_NEEDED

GSS S DEFECTIVE TOKEN

GSS_S DEFECTIVE_ CREDENTIAL

GSS_S_NO_CRED

GSS_S_CREDENTIALS EXPIRED

GSS_S_BAD BINDINGS

GSS_S NO CONTEXT

GSS_S_BAD SIG

GSS_S_OLD_TOKEN

GSS_S_DUPLICATE_TOKEN

GSS_S BAD MECH

Successful completion.

A token from the peer application is
required to complete the context, and that
gss_accept_ sec_context () must be
called again with that token.

Consistency checks performed on the
input_token failed.

Consistency checks performed on the
credential failed.

The supplied credentials were not valid for
context acceptance, or the credential handle
did not reference any credentials.

The referenced credentials have expired.

The input_token contains different channel
bindings than those specified by means of
the input_chan_bindings parameter.

The supplied context handle did not refer to
a valid context.

The input_token contains an invalid MIC.

The input_token was too old. This is a fatal
error while establishing context.

The input_token is valid, but it is duplicate
of a token already processed. This is a fatal
error while establishing context.

The token received specified a mechanism
that is not supported by the implementation
or the provided credential.

Networking Library Functions 205

gss_accept_sec_context(3GSS)

GSS_S_FAILURE The underlying mechanism detected an
error for which no specific GSS status code
is defined. The mechanism-specific status
code reported by means of the minor_status
parameter details the error condition.

EXAMPLES | EXAMPLE 1 Invoking gss_accept_sec_context () Within a Loop

A typical portable caller should always invoke gss_accept_sec_context () within
a loop:

gss _ctx id t context hdl = GSS C NO CONTEXT;

do {

receive_token from peer (input_token) ;

maj stat = gss_accept sec context (&min_ stat,
&context hdl,
cred hdl,
input_token,
input bindings,
&client name,
&mech type,
output_token,
&ret flags,
&time rec,
&deleg cred) ;

if (GSS_ERROR(maj_stat)) {

report error (maj stat, min stat);

if (output_token-s>length != 0)
send_token_ to_ peer (output_token) ;
gss_release buffer (&min_stat, output token) ;

if (GSS_ERROR(maj stat)) {
if (context_hdl != GSS_C_NO_ CONTEXT)
gss_delete sec_context (&min_stat,
&context_hdl,
GSS_C_NO_BUFFER) ;
break;
}i

} while (maj_stat & GSS_S_CONTINUE_NEEDED) ;

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT-Level Safe

206 man pages section 3: Networking Library Functions ¢ Last Revised 18 Apr 2000

gss_accept_sec_context(3GSS)

SEE ALSO | gss_delete sec_context(3GSS), gss_export sec context(3GSS),
gss_get mic(3GSS), gss_init sec context(3GSS), gss release name(3GSS),
gss_wrap(3GSS), attributes(5)

GSS-API Programming Guide

Networking Library Functions 207

gss_acquire_cred(3GSS)

208

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

gss_acquire_cred — acquire a handle for a pre-existing credential by name

cc -flag ... file...-1gss [library ...]
#include <gssapi/gssapi.h>

OM uint32 gss acquire cred(OM uint32 *minor_status, const gss name t
*desired_name, OM uint32 time_req, const gss OID set desired_mech,
gss_cred _usage t cred_usage, gss_cred id t *output_cred_handle,
gss_OID_set *actual_mechs, OM_uint32 *time_rec) ;

The gss_acquire cred() function allows an application to acquire a handle for a
pre-existing credential by name. This routine is not intended as a function to login to
the network; a function for login to the network would involve creating new
credentials rather than merely acquiring a handle to existing credentials.

If desired_name is GSS_C_NO_NAME, the call is interpreted as a request for a credential
handle that will invoke default behavior when passed to

gss_init sec_ context(3GSS) (if cred_usage is GSS_C INITIATE or GSS_C BOTH)
orgss_accept sec context(3GSS) (if cred_usage is GSS_C ACCEPT or
GSS_C_BOTH).

Normally gss_acquire_cred () returns a credential that is valid only for the
mechanisms requested by the desired_mechs argument. However, if multiple
mechanisms can share a single credential element, the function returns all the
mechanisms for which the credential is valid in the actual_mechs argument.

gss_acquire cred() isintended to be used primarily by context acceptors, since
the GSS-API routines obtain initiator credentials through the system login process.
Accordingly, you may not acquire GSS_C_INITIATE or GSS_C_BOTH credentials by
means of gss_acquire cred() for any name other than GSS_C NO NAME.
Alternatively, you may acquire GSS_C INITIATE or GSS_C BOTH credentials for a
name produced when gss_inquire cred(3GSS) is applied to a valid credential, or
when gss_inquire_context(3GSS) is applied to an active context.

If credential acquisition is time-consuming for a mechanism, the mechanism may
choose to delay the actual acquisition until the credential is required, for example, by
gss_init sec context(3GSS)or by gss accept sec context(3GSS). Such
mechanism-specific implementations are, however, invisible to the calling application;
thus a call of gss_inguire cred(3GSS) immediately following the call of
gss_acquire cred () will return valid credential data and incur the overhead of a
deferred credential acquisition.

The parameter descriptions for gss_acquire cred () follow:

desired_name The name of the principal for which a credential should be
acquired.
time_req The number of seconds that credentials remain valid. Specify

GSS_C_INDEFINITE to request that the credentials have the
maximum permitted lifetime

man pages section 3: Networking Library Functions ¢ Last Revised 18 Apr 2000

RETURN VALUES

ATTRIBUTES

gss_acquire_cred(3GSS)

desired_mechs The set of underlying security mechanisms that may be used.
GSS_C_NO_OID_SET may be used to obtain a default.

cred_usage A flag that indicates how this credential should be used. If the
flag is GSS_C_ACCEPT, then credentials will be used only to
accept security credentials. GSS_C_INITIATE indicates that
credentials will be used only to initiate security credentials. If
the flag is GSS_C_BOTH, then credentials may be used either to
initiate or accept security contexts.

output_cred_handle The returned credential handle. Resources associated with this
credential handle must be released by the application after use
with a call to gss_release cred(3GSS)

actual_mechs The set of mechanisms for which the credential is valid. Storage
associated with the returned OID-set must be released by the
application after use with a call to
gss_release_oid_set(3GSS). Specify NULL if not required.

time_rec Actual number of seconds for which the returned credentials
will remain valid. Specify NULL if not required.

minor_status Mechanism specific status code.

gss_acquire cred () may return the following status codes:

GSS_S COMPLETE Successful completion.

GSS_S BAD MECH An unavailable mechanism has been
requested.

GSS_S_BAD NAMETYPE The type contained within the desired_name
parameter is not supported.

GSS_S BAD NAME The value supplied for desired_name
parameter is ill formed.

GSS_S_CREDENTIALS EXPIRED The credentials could not be acquired
because they have expired.

GSS_S _NO_CRED No credentials were found for the specified
name.

GSS_S_FAILURE The underlying mechanism detected an

error for which no specific GSS status code
is defined. The mechanism-specific status
code reported by means of the minor_status
parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

Networking Library Functions 209

gss_acquire_cred(3GSS)

210

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT-Level Safe

SEE ALSO | gss_accept_sec_context(3GSS), gss_init sec context(3GSS),
gss_inquire context(3GSS), gss_inquire cred(3GSS),
gss_release cred(3GSS), gss_release oid set(3GSS), attributes(b)

GSS-API Programming Guide

man pages section 3: Networking Library Functions ¢ Last Revised 18 Apr 2000

NAME
SYNOPSIS

DESCRIPTION

gss_add_cred(3GSS)
gss_add_cred — add a credential-element to a credential

cc -flag ... file...-1gss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_add cred(OM_uint32 *minor_status, const gss cred id t
input_cred_handle, const gss name t desired_name, const gss OID
desired_mech, gss_cred _usage t cred_usage, OM_uint32 initiator_time_req,
OM_uint32 acceptor_time_req, gss_cred id t *output_cred_handle,
gss_OID_set *actual_mechs, OM_uint32 *initiator_time_rec, OM_uint32
*qcceptor_time_rec) ;

The gss_add_cred () function adds a credential-element to a credential. The
credential-element is identified by the name of the principal to which it refers. This
routine is not intended as a function to login to the network; a function for login to the
network would involve creating new mechanism-specific authentication data rather
than merely acquiring a handle to existing data.

If the value of desired_name is GSS_C_NO_NAME, the call is interpreted as a request to
add a credential element that will invoke default behavior when passed to

gss_init sec context(3GSS) (if the value of cred_usage is GSS_C INITIATE or
GSS C BOTH) or gss_accept sec_context(3GSS) (if the value of cred_usage is
GSS_C_ACCEPT or GSS_C_BOTH).

The gss_add_cred () function is expected to be used primarily by context acceptors,
since the GSS-API provides mechanism-specific ways to obtain GSS-API initiator
credentials through the system login process. Consequently, the GSS-API therefore
does not support acquiring GSS_C_INITIATE or GSS_C_BOTH credentials by means
of gss_acquire_cred(3GSS) for any name other than GSS_C_NO_NAME, or from
name produced by gss_inquire_cred(3GSS) applied to a valid credential or
gss_inquire_context(3GSS) applied to an active context.

If credential acquisition is time-consuming for a mechanism, the mechanism may
choose to delay the actual acquisition until the credential is required, for example, by
gss_init sec context(3GSS) or by gss_accept_sec context(3GSS). Such
mechanism-specific implementation decisions are, however, invisible to the calling
application; thus a call to gss_inquire_ cred(3GSS) immediately following the call
of gss_add_cred () will return valid credential data as well as incur the overhead of
deferred credential acquisition.

The gss_add_cred () routine can be used either to compose a new credential that
contains all credential-elements of the original in addition to the newly-acquired
credential-element, or to add the new credential-element to an existing credential. If
the value of the output_cred_handle parameter argument is NULL, the new
credential-element will be added to the credential identified by input_cred_handle; if a
valid pointer is specified for the output_cred_handle parameter, a new credential handle
will be created.

Networking Library Functions 211

gss_add_cred(3GSS)

If the value of input_cred_handle is GSS_C_NO_CREDENTIAL, gss_add cred() will
compose a credential and set the output_cred_handle parameter based on the default
behavior. That is, the call will have the same effect as if the application had first made
acall to gss_acquire_cred(3GSS) specifying the same usage and passing
GSS_C_NO_NAME as the desired_name parameter to obtain an explicit credential handle
that incorporates the default behaviors, then passed this credential handle to
gss_add_cred (), and finally called gss_release_cred(3GSS) on the first
credential handle.

If the value of the input_cred_handle parameter is GSS_C_NO_CREDENTIAL, you must
supply a non-NULL value for the output_cred_handle parameter.

PARAMETERS | The parameter descriptions for gss_acquire_cred() follow:
minor_status A mechanism specific status code.

input_cred_handle The credential to which the credential-element will be added. If
GSS_C_NO CREDENTIAL is specified, the routine will compose
the new credential based on default behavior. While the
credential-handle is not modified by gss_add_cred (), if
output_credential_handle is NULL, the underlying credential will be

modified.
desired_name Name of principal for which a credential should be acquired.
desired_mech If the value of desired_mech is GSS_C BOTH, the credential may be

used either to initiate or accept security contexts. If the value of
desired_mech is GSS_C_INITIATE, the credential will only be
used to initiate security contexts. The credential will only be used
to accept security contexts, if the value of desired_mech is
GSS_C_ACCEPT.

initiator_time_req The number of seconds that the credential may remain valid for
initiating security contexts. This argument is ignored if the
composed credentials are of type GSS_C_ACCEPT. Specify
GSS_C_INDEFINITE to request that the credentials have the
maximum permitted initiator lifetime.

acceptor_time_req ~ Number of seconds that the credential may remain valid for
accepting security contexts. This argument is ignored if the
composed credentials are of type GSS_C_INITIATE. Specify
GSS_C_INDEFINITE to request that the credentials have the
maximum permitted initiator lifetime.

output_cred_handle The returned credential handle that contains the new
credential-element and all the credential-elements from
input_cred_handle. If a valid pointer to a gss_cred_id_t is
supplied for this parameter, gss_add cred () creates a new
credential handle containing all credential-elements from
input_cred_handle and the newly acquired credential-element; if

212 man pages section 3: Networking Library Functions ¢ Last Revised 28 Mar 2000

RETURN VALUES

actual_mechs

initiator_time_rec

acceptor_time_rec

gss_add_cred(3GSS)

NULL is specified for this parameter, the newly acquired
credential-element will be added to the credential identified by
input_cred_handle.

The resources associated with any credential handle returned by
means of this parameter must be released by the application after
use by a call to gss_release cred(3GSS).

The complete set of mechanisms for which the new credential is
valid. Storage for the returned OID-set must be freed by the
application after use by a call to gss_release_oid_set(3GSS).
Specify NULL if this parameter is not required.

The actual number of seconds for which the returned credentials
will remain valid for initiating contexts using the specified
mechanism. If a mechanism does not support expiration of
credentials, the value GSS_C INDEFINITE will be returned.
Specify NULL if this parameter is not required

The actual number of seconds for which the returned credentials
will remain valid for accepting security contexts using the
specified mechanism. If a mechanism does not support expiration
of credentials, the value GSS_C_INDEFINITE will be returned.
Specify NULL if this parameter is not required.

gss_acquire_cred () may return the following status codes:

GSS_S_COMPLETE

GSS_S BAD MECH

Successful completion.

An unavailable mechanism has been
requested.

GSS_S BAD NAMETYPE The type contained within the desired_name

GSS_S_BAD NAME

parameter is not supported.

The value supplied for desired_name
parameter is ill formed.

GSS_S DUPLICATE ELEMENT The credential already contains an element

for the requested mechanism that has
overlapping usage and validity period.

GSS_S CREDENTIALS EXPIRED The credentials could not be added because

GSS_S NO_CRED

GSS_S FATLURE

they have expired.

No credentials were found for the specified
name.

The underlying mechanism detected an
error for which no specific GSS status code
is defined. The mechanism-specific status
code reported by means of the minor_status
parameter details the error condition.

Networking Library Functions 213

gss_add_cred(3GSS)
ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT-Level Safe

SEE ALSO | gss_accept_sec_context(3GSS), gss_acquire cred(3GSS),
gss_init_sec_context(3GSS),

gss_inguire context(3GSS)gss inquire cred(3GSS),

gss_release cred(3GSS), gss _release oid set(3GSS), attributes(5)

GSS-API Programming Guide

214 man pages section 3: Networking Library Functions * Last Revised 28 Mar 2000

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

SEE ALSO

gss_add_oid_set_member(3GSS)
gss_add_oid_set_member — add an object identifier to an object identifier set

cc -flag ... file...-1gss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_add oid set member (OM uint32 *minor_status, const
gss_OID member_oid, gss_OID_ set *oid_set) ;

The gss_add_oid_set_member () function adds an object identifier to an object
identifier set. You should use this function in conjunction with

gss_create empty oid set(3GSS) when constructing a set of mechanism OIDs
for input to gss_acquire cred(3GSS). The oid_set parameter must refer to an
OID-set created by GSS-AP], that is, a set returned by

gss_create_empty oid_set(3GSS).

The GSS-API creates a copy of the member_oid and inserts this copy into the set,
expanding the storage allocated to the OID-set elements array, if necessary. The
function may add the new member OID anywhere within the elements array, and the
GSS-API verifies that the new member_oid is not already contained within the elements
array. If the member_oid is already present, the oid_set should remain unchanged.

The parameter descriptions for gss_add_oid_set_member () follow:

minor_status A mechanism specific status code.
member_oid Object identifier to be copied into the set.
oid_set Set in which the object identifier should be inserted.

The gss_add oid_set member () function may return the following status codes:
GSS_S_COMPLETE Successful completion.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT-Level Safe

gss_acquire cred(3GSS), gss_create empty oid set(3GSS), attributes(5)

GSS-API Programming Guide

Networking Library Functions 215

gss_canonicalize_name(3GSS)
NAME | gss_canonicalize_name — convert an internal name to a mechanism name

SYNOPSIS | cc [flag..] file... -1lgss I[library...]

#include <gssapi/gssapi.h>

OM_uint32 gss_canonicalize name (OM uint32 *minor_status, const
gss_name_t input_name, const gss_OID mech_type, gss_name t
*output_name) ;

DESCRIPTION | The gss_canonicalize_name () function generates a canonical mechanism name
from an arbitrary internal name. The mechanism name is the name that would be
returned to a context acceptor on successful authentication of a context where the
initiator used the input_name in a successful call to gss_acquire cred(3GSS),
specifying an OID set containing mech_type as its only member, followed by a call to
gss_init_sec_context(3GSS), specifying mech_type as the authentication
mechanism.

PARAMETERS | The parameter descriptions for gss_canonicalize name () follow:

minor_status Mechanism-specific status code.
input_name The name for which a canonical form is desired.
mech_type The authentication mechanism for which the canonical form of the

name is desired. The desired mechanism must be specified
explicitly; no default is provided.

output_name The resultant canonical name. Storage associated with this name
must be freed by the application after use with a call to
gss_release name(3GSS).

RETURN VALUES | The gss_canonicalize name () function may return the status codes:
GSS_S_COMPLETE Successful completion.
GSS_S BAD MECH The identified mechanism is not supported.

GSS_S BAD NAMETYPE The provided internal name contains no elements that
could be processed by the specified mechanism.

GSS_S BAD_ NAME The provided internal name was ill-formed.

GSS_S_FAILURE The underlying mechanism detected an error for which
no specific GSS status code is defined. The
mechanism-specific status code reported by means of the
minor_status parameter details the error condition.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

216 man pages section 3: Networking Library Functions ¢ Last Revised 18 Apr 2000

SEE ALSO

gss_canonicalize_name(3GSS)

ATTRIBUTE TYPE

ATTRIBUTE VALUE

SUNWgssx (64-bit)

MT-Level

Safe

gss_acquire cred(3GSS), gss_init sec context(3GSS),
gss_release name(3GSS), attributes(b)

GSS-API Programming Guide

Networking Library Functions

217

gss_compare_name(3GSS)

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

SEE ALSO

gss_compare_name — compare two internal-form names

ce [flag..]1 file... -1gss [library..]
#include <gssapi/gssapi.h>

OM_uint32 gss compare name (OM_uint32 *minor_status, const gss name_t
namel, const gss_name_ t name2, int *name_equal) ;

The gss_compare_name () function allows an application to compare two
internal-form names to determine whether they refer to the same entity.

If either name presented to gss_compare_name () denotes an anonymous principal,
the routines indicate that the two names do not refer to the same identity.

The parameter descriptions for gss_compare_name () follow:

minor_status Mechanism-specific status code.

namel Internal-form name.

narme2 Internal-form name.

name_equal If non-zero, the names refer to same entity. If 0, the names refer to

different entities. Strictly, the names are not known to refer to the
same identity.

The gss_compare_name () function may return the following status codes:
GSS_S_COMPLETE Successful completion.

GSS_S_BAD_NAMETYPE The two names were of incomparable types.
GSS_S BAD_NAME One or both of namel or name2 was ill-formed.

GSS_S_FAILURE The underlying mechanism detected an error for which
no specific GSS status code is defined. The
mechanism-specific status code reported by means of the
minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT-Level Safe

attributes(b)

GSS-API Programming Guide

218 man pages section 3: Networking Library Functions ¢ Last Revised 18 Apr 2000

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

SEE ALSO

gss_context_time(3GSS)
gss_context_time — determine how long a context will remain valid

cc -flag ... file...-1gss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss context time (OM uint32 *minor_status, gss_ctx_id t
xcontext_handle, OM_uint32 *time_rec) ;

The gss_context time () function determines the number of seconds for which the
specified context will remain valid.

The parameter descriptions for gss_context_time () are as follows:

minor_status A mechanism-specific status code.
context_handle A read-only value. Identifies the context to be interrogated.
time_rec Modifies the number of seconds that the context remains valid. If

the context has already expired, returns zero.

The gss_context time () function returns one of the following status codes:

GSS_S_COMPLETE Successful completion.
GSS_S CONTEXT EXPIRED The context has already expired.
GSS_S NO_CONTEXT The context_handle parameter did not

identify a valid context.

GSS_S_FAILURE The underlying mechanism detected an
error for which no specific GSS status code
is defined. The mechanism-specific status
code reported by means of the minor_status
parameter details the error condition.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNW(gss (32-bit)

SUNWgssx (64-bit)

MT Level Safe

gss_init_sec_context(3GSS), gss_accept_sec_context(3GSS),
gss_delete sec context(3GSS), gss process context token(3GSS),
gss_inquire context(3GSS), gss _wrap size 1imit(3GSS),
gss_export_ sec_context(3GSS), gss import sec_context(3GSS),
attributes(d)

GSS-API Programming Guide

Networking Library Functions 219

gss_create_empty_oid_set(3GSS)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

SEE ALSO

gss_create_empty_oid_set — create an object-identifier set containing no object
identifiers

cc -flag ... file...-1gss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss create empty oid set (OM _uint32 *minor_status,
gss_OID set *oid_set) ;

The gss_create_empty_oid_set () function creates an object-identifier set
containing no object identifiers to which members may be subsequently added using
the gss_add_oid_set member(3GSS) function. These functions can be used to
construct sets of mechanism object identifiers for input to gss_acquire cred(3GSS).

The parameter descriptions for gss_create empty oid set () follow:
minor_status Mechanism-specific status code

oid_set Empty object identifier set. The function will allocate the
gss_OID_set_desc object, which the application must free after
use with a call to gss_release oid set(3GSS).

The gss_create_empty oid_set () function may return the following status
codes:

GSS_ S COMPLETE Successful completion

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT-Level Safe

gss_acquire cred(3GSS), gss_add _oid set member(3GSS),
gss_release oid_ set(3GSS), attributes(b)

GSS-API Programming Guide

220 man pages section 3: Networking Library Functions ¢ Last Revised Apr 18 2000

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

gss_delete_sec_context(3GSS)
gss_delete_sec_context — delete a GSS-API security context

cc -flag ... file...-1gss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss delete sec context (OM_uint32 *minor_status,
gss_ctx_id t *context_handle, gss buffer t output_token) ;

Use the gss_delete_sec_context () function to delete a security context. The
gss_delete sec_ context () function will delete the local data structures
associated with the specified security context. You may not obtain further security
services that use the context specified by context_handle.

In addition to deleting established security contexts, gss_delete_sec_context ()
will delete any half-built security contexts that result from incomplete sequences of
calls to gss_init sec_context(3GSS) and gss_accept sec_ context(3GSS).

The Solaris implementation of the GSS-API retains the output_token parameter for
compatibility with version 1 of the GSS-API. Both peer applications should invoke
gss_delete sec_ context (), passing the value GSS_C NO BUFFER to the
output_token parameter; this indicates that no token is required. If the application
passes a valid buffer to gss_delete_sec_context (), it will return a zero-length
token, indicating that no token should be transferred by the application.

The parameter descriptions for gss_delete_sec_context () follow:
minor_status A mechanism specific status code.

context_handle Context handle identifying specific context to delete. After deleting
the context, the GSS-API will set context_handle to
GSS C NO CONTEXT.

output_token A token to be sent to remote applications that instructs them to
delete the context.

gss_delete_sec_context () may return the following status codes:

GSS_S COMPLETE Successful completion.
GSS_S NO_CONTEXT No valid context was supplied.
GSS_S_FAILURE The underlying mechanism detected an error for which

no specific GSS status code is defined. The
mechanism-specific status code reported by means of
the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

Networking Library Functions 221

gss_delete_sec_context(3GSS)

222

ATTRIBUTE TYPE

ATTRIBUTE VALUE

SUNWgssx (64-bit)

MT-Level Safe

SEE ALSO | gss_accept_sec_context(3GSS), gss_init sec context(3GSS),

attributes(b)

GSS-API Programming Guide

man pages section 3: Networking Library Functions ¢ Last Revised 18 Apr 2000

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

gss_display_name(3GSS)
gss_display_name — convert internal-form name to text

ce [flag..1 file... -1gss [library...]
#include <gssapi/gssapi.h>

OM_uint32 gss display name (OM_uint32 *minor_status, const gss name_t
input_name, gss_buffer t output_name_buffer, gss_ OID
*output_name_type) ;

The gss_display name () function allows an application to obtain a textual
representation of an opaque internal-form name for display purposes.

If input_name denotes an anonymous principal, the GSS-API returns the gss_0ID
value GSS_C NT ANONYMOUS as the output_name_type, and a textual name that is
syntactically distinct from all valid supported printable names in output_name_buffer.

If input_name was created by a call to gss_import_name(3GSS), specifying
GSS_C NO_OID as the name-type, the GSS-API returns GSS_C NO_OID by means of
the output_name_type parameter.

The parameter descriptions for gss_display name () follow:
minor_status Mechanism-specific status code.
input_name Name in internal form.

output_name_buffer ~ Buffer to receive textual name string. The application must free
storage associated with this name after use with a call to
gss_release buffer(3GSS).

output_name_type The type of the returned name. The returned gss_0OID will be a
pointer into static storage and should be treated as read-only by
the caller. In particular, the application should not attempt to
free it. Specify NULL if this parameter is not required.

The gss_display name () function may return the following status codes:
GSS_S COMPLETE Successful completion.
GSS_S_BAD NAME The input_name was ill-formed.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

Networking Library Functions 223

gss_display_name(3GSS)

ATTRIBUTE TYPE ATTRIBUTE VALUE

SUNWgssx (64-bit)

MT-Level Safe

SEE ALSO | gss_import name(3GSS), gss _release buffer(3GSS), attributes(b)

GSS-API Programming Guide

224 man pages section 3: Networking Library Functions ¢ Last Revised 18 Apr 2000

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

gss_display_status(3GSS)
gss_display_status — convert a GSS-API status code to text

cc -flag ... file...-1gss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_display status(OM_uint32 *minor_status, OM_uint32
status value, int status type, const gss_ OID mech_type, OM_uint32
*message_context, gss buffer t status string) ;

The gss_display status () function enables an application to obtain a textual
representation of a GSS-API status code for display to the user or for logging
purposes. Because some status values may indicate multiple conditions, applications
may need to call gss_display status () multiple times, with each call generating
a single text string.

The message_context parameter is used by gss_acquire_cred () to store state
information on error messages that are extracted from a given status_value. The
message_context parameter must be initialized to 0 by the application prior to the first
call, and gss_display status () will return a non-zero value in this parameter if
there are further messages to extract.

The message_context parameter contains all state information required by
gss_display status () to extract further messages from the status_value. If a
non-zero value is returned in this parameter, the application is not required to call
gss_display status () again unless subsequent messages are desired.

The parameter descriptions for gss_display status () follow:

minor_status Status code returned by the underlying mechanism.
status_value Status value to be converted.
status_type If the value is GSS_C GSS_CODE, status_value is a GSS-API status

code. If the value is GSS_C MECH CODE, then status_value is a
mechanism status code.

mech_type Underlying mechanism that is used to interpret a minor status
value. Supply GSS_C_NO_OID to obtain the system default.

message_context Should be initialized to zero prior to the first call. On return from
gss_display status (), a non-zero status_value parameter
indicates that additional messages may be extracted from the
status code by means of subsequent calls to
gss_display_status (), passing the same status_value ,
status_type, mech_type, and message_contextparameters.

status_string Textual representation of the status_value. Storage associated with
this parameter must be freed by the application after use with a
call to gss_release buffer(3GSS).

The gss_display status () function may return the following status codes:

GSS_S_COMPLETE Successful completion.

Networking Library Functions 225

gss_display_status(3GSS)

226

GSS_S BAD MECH Indicates that translation in accordance with an unsupported
mechanism type was requested.

GSS_S_BAD_STATUS The status value was not recognized, or the status type was
neither GSS_C_GSS_CODE nor GSS_C_MECH_CODE.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT-Level Safe

SEE ALSO | gss_acquire cred(3GSS), gss _release buffer(3GSS), attributes(b)

GSS-API Programming Guide

man pages section 3: Networking Library Functions ¢ Last Revised 18 Apr 2000

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

SEE ALSO

gss_duplicate_name(3GSS)
gss_duplicate_name — create a copy of an internal name

ce [flag..1 file... -1gss [library...]
#include <gssapi/gssapi.h>

OM_uint32 gss duplicate name (OM_uint32 *minor_status, const
gss_name_t src_name, gss_name_t *dest_name) ;

The gss_duplicate_name () function creates an exact duplicate of the existing
internal name src_name. The new dest_name will be independent of the src_name. The
src_name and dest_name must both be released, and the release of one does not affect
the validity of the other.

The parameter descriptions for gss duplicate name () follow:
minor_status A mechanism-specific status code.
src_name Internal name to be duplicated.

dest_name The resultant copy of src_name. Storage associated with this name
must be freed by the application after use with a call to
gss_release name(3GSS).

The gss_duplicate_name () function may return the following status codes:
GSS_S COMPLETE Successful completion.
GSS_S BAD NAME The src_name parameter was ill-formed.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT-Level Safe

gss_release name(3GSS), attributes(b)

GSS-API Programming Guide

Networking Library Functions 227

gss_export_name(3GSS)

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

SEE ALSO

gss_export_name — convert a mechanism name to export form

ce [flag..]1 file... -1lgss [library...]
#include <gssapi/gssapi.h>

OM_uint32 gss_export name (OM_uint32 *minor_status, const gss_name t
input_name, gss_buffer t exported_name) ;

The gss_export name () function allows a GSS-API internal name to be converted
into a mechanism-specific name. The function produces a canonical contiguous string
representation of a mechanism name, suitable for direct comparison, with
memcmp(3C), or for use in authorization functions, matching entries in an
access-control list. The input_name parameter must specify a valid mechanism name,
that is, an internal name generated by gss_accept_sec_context(3GSS) or by
gss_canonicalize name(3GSS).

The parameter descriptions for gss_export_name () follow:
minor_status A mechanism-specific status code.
input_name The mechanism name to be exported.

exported_name The canonical contiguous string form of input_name. Storage
associated with this string must freed by the application after use
with gss_release buffer(3GSS).

The gss_export_name () function may return the following status codes:
GSS_S COMPLETE Successful completion.
GSS_S_NAME_NOT_MN The provided internal name was not a mechanism name.

GSS_S FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status
parameter details the error condition.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT-Level Safe

gss_accept_ sec_context(3GSS), gss_canonicalize name(3GSS),
gss_release buffer(3GSS)memcmp(3C), attributes(d)

GSS-API Programming Guide

228 man pages section 3: Networking Library Functions ¢ Last Revised 27 Mar 2000

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

gss_export_sec_context(3GSS)
gss_export_sec_context — transfer a security context to another process

cc -flag ... file...-1gss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_ export sec context (OM_uint32 *minor_status,
gss_ctx_id t *context_handle, gss buffer t interprocess_token) ;

The gss_export_sec_context () function generates an interprocess token for
transfer to another process within an end system. gss_export_sec_context () and
gss_import_sec_context () allow a security context to be transferred between
processes on a single machine.

The gss_export_sec_context () function supports the sharing of work between
multiple processes. This routine is typically used by the context-acceptor, in an
application where a single process receives incoming connection requests and accepts
security contexts over them, then passes the established context to one or more other
processes for message exchange. gss_export_sec_context () deactivates the
security context for the calling process and creates an interprocess token which, when
passed to gss_import_sec_context () in another process, reactivates the context
in the second process. Only a single instantiation of a given context can be active at
any one time; a subsequent attempt by a context exporter to access the exported
security context will fail.

The interprocess token may contain security-sensitive information, for example
cryptographic keys. While mechanisms are encouraged to either avoid placing such
sensitive information within interprocess tokens or to encrypt the token before
returning it to the application, in a typical object-library GSS-API implementation, this
might not be possible. Thus, the application must take care to protect the interprocess
token and ensure that any process to which the token is transferred is trustworthy. If
creation of the interprocess token is successful, the GSS-API deallocates all
process-wide resources associated with the security context and sets the
context_handle to GSS_C_NO CONTEXT. In the event of an error that makes it
impossible to complete the export of the security context, the function does not return
an interprocess token and leaves the security context referenced by the context_handle
parameter untouched.

Sun’s implementation of gss_export_sec_context () does not encrypt the
interprocess token. The interprocess token is serialized before it is transferred to
another process.

The parameter descriptions for gss_export_sec_context () are as follows:

minor_status A mechanism-specific status code.
context_handle Context handle identifying the context to transfer.
interprocess_token Token to be transferred to target process. Storage

associated with this token must be freed by the
application after use with a call to
gss_release buffer(3GSS).

Networking Library Functions 229

gss_export_sec_context(3GSS)

RETURN VALUES

230

GSS_S_COMPLETE
GSS_S_CONTEXT EXPIRED
GSS_S_NO_CONTEXT
GSS_S_UNAVAILABLE

GSS_S FAILURE

gss_export_sec_context () returns one of the following status codes:

Successful completion.

The context has expired.

The context was invalid.

The operation is not supported.

The underlying mechanism detected an
error for which no specific GSS status code
is defined. The mechanism-specific status
code reported by means of the minor_status
parameter details the error condition.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWgss (32-bit)

SUNWgssx (64-bit)

MT Level

Safe

SEE ALSO | gss_accept_sec_context(3GSS), gss_import_ sec_ context(3GSS),

GSS-API Programming Guide

gss_init sec context(3GSS), gss release buffer(3GSS), attributes(5)

man pages section 3: Networking Library Functions ¢ Last Revised 27 Mar 2000

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

gss_get_mic(3GSS)
gss_get_mic — calculate a cryptographic message

cc -flag ... file...-1gss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss get mic (OM _uint32 *minor_status, const gss_ctx_id t
context_handle, gss_qop t qop_req, const gss buffer t message_buffer,
gss_buffer t msg_token) ;

The gss_get_mic () function generates a cryptographic MIC for the supplied
message, and places the MIC in a token for transfer to the peer application. The
qop_req parameter allows a choice between several cryptographic algorithms, if
supported by the chosen mechanism.

Since some application-level protocols may wish to use tokens emitted by
gss_wrap(3GSS) to provide secure framing, the GSS-API allows MICs to be derived
from zero-length messages.

The parameter descriptions for gss_get mic () follow:
minor_status The status code returned by the underlying mechanism.
context_handle Identifies the context on which the message will be sent.

qop_req Specifies the requested quality of protection. Callers are encouraged,
on portability grounds, to accept the default quality of protection
offered by the chosen mechanism, which may be requested by
specifying GSS_C_QOP_DEFAULT for this parameter. If an
unsupported protection strength is requested, gss_get_mic () will
return a major_status of GSS_S BAD QOP.

message_buffer ~ The message to be protected.

msg_token The buffer to receive the token. Storage associated with this message
must be freed by the application after use with a call to
gss_release buffer(3GSS).

gss_get_mic () may return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S CONTEXT EXPIRED The context has already expired.

GSS_S _NO_CONTEXT The context_handle parameter did not
identify a valid context.

GSS_S_BAD_QOP The specified QOP is not supported by the
mechanism.

GSS_S_FAILURE The underlying mechanism detected an

error for which no specific GSS status code
is defined. The mechanism-specific status
code reported by means of the minor_status
parameter details the error condition.

Networking Library Functions 231

gss_get_mic(3GSS)

232

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT-Level Safe

SEE ALSO | gss_release buffer(3GSS), gss_wrap(3GSS), attributes(5)

GSS-API Programming Guide

man pages section 3: Networking Library Functions ¢ Last Revised 18 Apr 2000

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

gss_import_name(3GSS)
gss_import_name — convert a contiguous string name to GSS_API internal format

ce [flag..1 file... -1gss [library..]
#include <gssapi/gssapi.h>

OM_uint32 gss_ import name (OM uint32 * minor_status, const
gss_buffer t input_name_buffer, const gss OID input_name_type,
gss_name_t *output_name) ;

The gss_import_name () function converts a contiguous string name to internal
form. In general, the internal name returned by means of the output_name parameter
will not be a mechanism name; the exception to this is if the input_name_type indicates
that the contiguous string provided by means of the input_name_buffer parameter is of
type GSS_C_NT_ EXPORT NAME, in which case, the returned internal name will be a
mechanism name for the mechanism that exported the name.

The parameter descriptions for gss_import_name () follow:
minor_status Status code returned by the underlying mechanism.

input_name_buffer =~ The gss_buffer desc structure containing the name to be
imported. The application must allocate this explicitly. This
argument must be deallocated with
gss_release_buffer(3GSS) when the application is done

with it.

input_name_type A gss_OID that specifies the format that the input_name_buffer is
in.

output_name The gss_name_t structure to receive the name.

The gss_import name () function may return the following status codes:

GSS_S COMPLETE The gss_import name () function completed
successfully.

GSS_S_BAD_NAMETYPE The input_name_type was unrecognized.

GSS_S BAD NAME The input_name parameter could not be interpreted as a
name of the specified type.

GSS_S BAD MECH The input_name_type was GSS_C_NT EXPORT NAME, but
the mechanism contained within the input_name is not
supported.

GSS_S FAILURE The underlying mechanism detected an error for which

no specific GSS status code is defined. The
mechanism-specific status code reported by means of the
minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

Networking Library Functions 233

gss_import_name(3GSS)

234

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT-Level Safe

SEE ALSO | gss_release buffer(3GSS), attributes(5)

GSS-API Programming Guide

man pages section 3: Networking Library Functions ¢ Last Revised 24 Apr 2000

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

gss_import_sec_context(3GSS)
gss_import_sec_context — import security context established by another process

cc -flag ... file...-1gss [library ...]
#include <gssapi/gssapi.h>

OM uint32 gss_import sec context (OM uint32 *minor_status, const
gss_buffer t interprocess_token, gss ctx id t *context_handle) ;

The gss_import_sec_context () function allows a process to import a security
context established by another process. A given interprocess token can be imported
only once. See gss_export_sec_context(3GSS).

The parameter descriptions for gss_import_sec_context () are as follows:

minor_status A mechanism-specific status code.
interprocess_token Token received from exporting process.
context_handle Context handle of newly reactivated context. Resources

associated with this context handle must be released by
the application after use with a call to
gss_delete sec_context(3GSS).

gss_import_sec_context () returns one of the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S NO_CONTEXT The token did not contain a valid context
reference.

GSS_S_DEFECTIVE_TOKEN The token was invalid.

GSS_S UNAVAILABLE The operation is unavailable.

GSS_S_UNAUTHORIZED Local policy prevents the import of this

context by the current process.

GSS_S_FAILURE The underlying mechanism detected an
error for which no specific GSS status code
is defined. The mechanism-specific status
code reported by means of the minor_status
parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT Level Safe

Networking Library Functions 235

gss_import_sec_context(3GSS)

SEE ALSO | gss_accept sec context(3GSS), gss _context time(3GSS),
gss_delete sec_context(3GSS), gss _export sec_content(3GSS),
gss_init sec context(3GSS), gss_inquire context(3GSS),
gss_process_context token(3GSS), gss wrap size 1imit(3GSS),
attributes(b)

GSS-API Programming Guide

236 man pages section 3: Networking Library Functions ¢ Last Revised 27 Mar 2000

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

SEE ALSO

gss_indicate_mechs(3GSS)
gss_indicate_mechs — determine available security mechanisms

cc -flag ... file...-1gss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_indicate mechs (OM_uint32 *minor_status, gss_OID set
*mech_set) ;

The gss_indicate_mechs () function enables an application to determine available
underlying security mechanisms.

The parameter descriptions for gss_indicate_mechs () follow:
minor_status A mechanism-specific status code.

mech_set Set of supported mechanisms. The returned gss_0ID set value will
be a dynamically-allocated OID set that should be released by the
caller after use with a call to gss_release oid_set(3GSS).

The gss_indicate mechs () function may return the following status codes:
GSS_S_COMPLETE Successful completion.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT-Level Safe

gss_release oid set(3GSS), attributes(b)

GSS-API Programming Guide

Networking Library Functions 237

gss_init_sec_context(3GSS)
NAME | gss_init_sec_context — initiate a GSS-API security context with a peer application

SYNOPSIS | cc -flag ... file...-1gss [library ...]

#include <gssapi/gssapi.h>

OM uint32 gss_init sec context (OM uint32 *minor_status, const
gss_cred id t initiator_cred_handle, gss_ctx id t *context_handle,
const gss_name_t *target_name, const gss_OID mech_type, OM uint32
req_flags, OM_uint32 time_req, const gss_channel bindings t
input_chan_bindings, const gss_buffer t input_token, gss_OID
*actual_mech_type, gss_buffer t output_token, OM_uint32 *ret_flags,
OM_uint32 *time_rec) ;

DESCRIPTION | The gss init sec context () function initiates the establishment of a security
context between the application and a remote peer. Initially, the input_token parameter
should be specified either as GSS_C NO_ BUFFER, or as a pointer to a

gss_buffer desc object with a length field that contains a zero value. The routine
may return a output_token, which should be transferred to the peer application, which
will present it to gss_accept sec context(3GSS). If no token need be sent,
gss_init sec context () will indicate this by setting the 1ength field of the
output_token argument to zero. To complete context establishment, one or more reply
tokens may be required from the peer application; if so, gss_init sec context ()
will return a status code that contains the supplementary information bit
GSS_S_CONTINUE NEEDED. In this case, make another call to

gss_init_ sec_ context () when the reply token is received from the peer
application and pass the reply token to gss_init_sec_context () by means of the
input_token parameter.

Construct portable applications to use the token length and return status to determine
whether to send or wait for a token.

Whenever the routine returns a major status that includes the value
GSS_S_CONTINUE_NEEDED, the context is not fully established, and the following
restrictions apply to the output parameters:

m The value returned by means of the fime_rec parameter is undefined. Unless the
accompanying ret_flags parameter contains the bit GSS_C_PROT READY FLAG,
which indicates that per-message services may be applied in advance of a
successful completion status, the value returned by means of the actual_mech_type
parameter is undefined until the routine returns a major status value of
GSS_S_COMPLETE.

m The values of the GSS_C DELEG_FLAG, GSS_C_MUTUAL_ FLAG,
GSS_C_REPLAY FLAG, GSS C SEQUENCE FLAG, GSS_C_CONF FLAG,
GSS_C_INTEG_FLAG and GSS_C_ANON_FLAG bits returned by the ret_flags
parameter contain values that will be valid if context establishment succeeds. For
example, if the application requests a service such as delegation or anonymous
authentication by means of the req_flags argument, and the service is unavailable
from the underlying mechanism, gss_init_sec_context () generates a token
that will not provide the service, and it indicate by means of the ret_flags argument
that the service will not be supported. The application may choose to abort context

238 man pages section 3: Networking Library Functions ¢ Last Revised 24 Apr 2000

PARAMETERS

gss_init_sec_context(3GSS)

establishment by calling gss_delete_sec_context(3GSS) if it cannot continue
without the service, or if the service was merely desired but not mandatory, it may
transmit the token and continue context establishment.

m The values of the GSS_C_PROT READY FLAGand GSS_C TRANS FLAG bits
within ret_flags indicate the actual state at the time gss_init sec context ()
returns, whether or not the context is fully established.

m The GSS-API sets the GSS_C PROT READY FLAG in the final ret_flags returned to a
caller, for example, when accompanied by a GSS_S_COMPLETE status code.
However, applications should not rely on this behavior, as the flag was not defined
in Version 1 of the GSS-API. Instead, applications should determine what
per-message services are available after a successful context establishment
according to the GSS_C_INTEG_FLAG and GSS_C_CONF_FLAG values.

m All other bits within the ret_flags argument are set to zero.

If the initial call of gss init sec context () fails, the GSS-API does not create a
context object; it leaves the value of the context_handle parameter set to

GSS_C _NO_CONTEXT to indicate this. In the event of failure on a subsequent call, the
GSS-API leaves the security context untouched for the application to delete using
gss_delete sec_context(3GSS).

During context establishment, the informational status bits GSS_S_OLD_TOKEN and
GSS_S DUPLICATE_ TOKEN indicate fatal errors, and GSS-API mechanisms should
always return them in association with a status code of GSS_S_FAILURE. This pairing
requirement was not part of Version 1 of the GSS-API specification, so applications
that wish to run on Version 1 implementations must special-case these codes.

The parameter descriptions for gss_init sec_context () follow:
minor_status A mechanism specific status code.

initiator_cred_handle ~ The handle for the credentials claimed. Supply
GSS_C NO CREDENTIAL to act as a default initiator principal.
If no default initiator is defined, the function returns
GSS_S NO_CRED.

context_handle The context handle for a new context. Supply the value
GSS_C NO_CONTEXT for the first call, and use the value
returned in any continuation calls. The resources associated
with context_handle must be released by the application after
use by a call to gss_delete_sec_context(3GSS).

target_name The name of the target.

mech_type The object ID of the desired mechanism. To obtain a specific
default, supply the value GSS C NO ID.

req_flags Contains independent flags, each of which will request that
the context support a specific service option. A symbolic name
is provided for each flag. Logically-OR the symbolic name to

Networking Library Functions 239

gss_init_sec_context(3GSS)

time_req

input_chan_bindings

input_token

actual_mech_type

the corresponding required flag to form the bit-mask value.
req_flags may contain one of the following values:

GSS_C_DELEG FLAG
If true, delegate credentials to a remote peer. Do not
delegate the credentials if the value is false.

GSS_C_MUTUAL_FLAG
If true, request that the peer authenticate itself. If false,
authenticate to the remote peer only.

GSS_C REPLAY FLAG
If true, enable replay detection for messages protected with
gss_wrap(3GSS) or gss_get_mic(3GSS). Do not attempt
to detect replayed messages if false.

GSS_C_SEQUENCE_FLAG
If true, enable detection of out-of-sequence protected
messages. Do not attempt to detect out-of-sequence
messages if false.

GSS_C_CONF_FLAG
If true, request that confidential service be made available
by means of gss_wrap(3GSS). If false, no per-message
confidential service is required.

GSS_C_INTEG_FLAG
If true, request that integrity service be made available by
means of gss_wrap(3GSS) or gss_get mic(3GSS). If
false, no per-message integrity service is required.

GSS_C_ANON FLAG
If true, do not reveal the initiator’s identify to the acceptor.
If false, authenticate normally.

The number of seconds for which the context will remain
valid. Supply a zero value to time_req to request a default
validity period.

Optional application-specified bindings. Allows application to
securely bind channel identification information to the security
context. Set to GSS_C_NO_CHANNEL_BINDINGS if you do not
want to use channel bindings.

Token received from the peer application. On the initial call,
supply GSS_C _NO_BUFFER or a pointer to a buffer containing
the value GSS_C_EMPTY BUFFER.

The actual mechanism used. The OID returned by means of
this parameter will be pointer to static storage that should be
treated as read-only. The application should not attempt to free
it. To obtain a specific default, supply the value
GSS_C_NO_ID. Specify NULL if the parameter is not required.

240 man pages section 3: Networking Library Functions ¢ Last Revised 24 Apr 2000

output_token

ret_flags

gss_init_sec_context(3GSS)

The token to send to the peer application. If the length field of
the returned buffer is zero, no token need be sent to the peer
application. After use storage associated with this buffer must
be freed by the application by a call to

gss_release buffer(3GSS).

Contains various independent flags, each of which indicates
that the context supports a specific service option. If not
needed, specify NULL. Test the returned bit-mask ret_flags
value against its symbolic name to determine if the given
option is supported by the context. ret_flags may contain one
of the following values:

GSS_C DELEG FLAG
If true, credentials were delegated to the remote peer. If
false, no credentials were delegated.

GSS_C_MUTUAL_FLAG
If true, the remote peer authenticated itself. If false, the
remote peer did not authenticate itself.

GSS_C REPLY FLAG
If true, replay of protected messages will be detected. If
false, replayed messages will not be detected.

GSS_C_SEQUENCE FLAG
If true, out of sequence protected messages will be detected.
If false, they will not be detected.

GSS_C_CONF_FLAG
If true, confidential service may be invoked by calling the
gss_wrap () routine. If false, no confidentiality service is
available by means of gss_wrap(3GSS). gss_wrap () will
provide message encapsulation, data-origin authentication
and integrity services only.

GSS_C_INTEG FLAG
If true, integrity service may be invoked by calling either
the gss_wrap(3GSS) or gss_get mic(3GSS) routine. If
false, per-message integrity service is not available.

GSS_C_ANON FLAG
If true, the initiator’s identity has not been revealed; it will
not be revealed if any emitted token is passed to the
acceptor. If false, the initiator has been or will be
authenticated normally.

GSS_C_PROT READY FLAG
If true, the protection services specified by the states of
GSS_C_CONF_FLAG and GSS_C_INTEG_FLAG are available
if the accompanying major status return value is either
GSS_S COMPLETE or GSS_S_CONTINUE_NEEDED. If false,

Networking Library Functions 241

gss_init_sec_context(3GSS)

RETURN VALUES

the protection services are available only if the
accompanying major status return value is
GSS_S COMPLETE

GSS_C_TRANS FLAG
If true, the resultant security context may be transferred to
other processes by means of a call to
gss_export sec context(3GSS). If false, the security
context cannot be transferred.

time_rec

The number of seconds for which the context will remain

valid. Specify NULL if the parameter is not required.

gss_init sec context () may return the following status codes:

GSS_S COMPLETE

GSS_S_CONTINUE NEEDED

GSS_S DEFECTIVE TOKEN

GSS S DEFECTIVE CREDENTIAL

GSS_S NO CRED

GSS S CREDENTIALS EXPIRED

GSS_S BAD BINDINGS

GSS_S_BAD SIG

GSS_S OLD_TOKEN

GSS_S_DUPLICATE_TOKEN

GSS_S NO CONTEXT

GSS_S BAD NAMETYPE

Successful completion.

A token from the peer application is
required to complete the context, and
gss_init sec_ context () mustbe
called again with that token.

Consistency checks performed on the
input_token failed.

Consistency checks performed on the
credential failed.

The supplied credentials are not valid for
context acceptance, or the credential handle
does not reference any credentials.

The referenced credentials have expired.

The input_token contains different channel
bindings than those specified by means of
the input_chan_bindings parameter.

The input_token contains an invalid MIC or
a MIC that cannot be verified.

The input_token is too old. This is a fatal
error while establishing context.

The input_token is valid, but it is a duplicate
of a token already processed. This is a fatal
error while establishing context.

The supplied context handle does not refer
to a valid context.

The provided target_name parameter
contains an invalid or unsupported name

type.

242 man pages section 3: Networking Library Functions ¢ Last Revised 24 Apr 2000

EXAMPLES

gss_init_sec_context(3GSS)

GSS_S_BAD_NAME The supplied target_name parameter is
ill-formed.
GSS_S BAD MECH The token received specifies a mechanism

that is not supported by the implementation
or the provided credential.

GSS_S_FAILURE The underlying mechanism detected an

error for which no specific GSS status code
is defined. The mechanism-specific status
code reported by means of the minor_status

parameter details the error condition.

EXAMPLE 1 Invoking gss_init_sec_context () Within a Loop

A typical portable caller should always invoke gss_init_sec_context () withina

loop:

int context established = 0;
gss_ctx id t context_hdl = GSS_C NO_CONTEXT;

input_token->length = 0;

while (!context established)

maj stat = gss_init sec context (&min_stat,
cred_hdl,
&context hdl,
target_name,
desired mech,
desired_services,
desired time,
input_bindings,
input_ token,
&actual_mech,
output_ token,
&actual_services,
&actual time) ;

if (GSS_ERROR(maj_stat)) ({

report error (maj stat, min_ stat);

}i

if (output token->length != 0) {
send token to peer (output token);
gss_release buffer (&min stat, output_ token)
}i

if (GSS_ERROR(maj_stat)) ({

if (context hdl != GSS_C NO CONTEXT)
gss_delete sec_context (&min_stat,
&context hdl,
GSS_C _NO_BUFFER) ;
break;
}i
if (maj_stat & GSS_S CONTINUE NEEDED) {
receive token from peer (input token) ;

Networking Library Functions

243

gss_init_sec_context(3GSS)

244

EXAMPLE 1 Invoking gss_init_ sec_context () Within a Loop (Continued)

} else {
context established = 1;

}i
}i

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT-Level Safe

SEE ALSO | gss_delete_ sec_context(3GSS), gss_export sec_ context(3GSS),
gss_get mic(3GSS), gss_wrap(3GSS), attributes(5)

GSS-API Programming Guide

man pages section 3: Networking Library Functions ¢ Last Revised 24 Apr 2000

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

gss_inquire_context(3GSS)
gss_inquire_context — obtain information about a security context

cc -flag ... file...-1gss [library ...]
#include <gssapi/gssapi.h>

OM uint32 gss_inquire context(OM uint32 *minor_status, const
gss_ctx id t context_handle, gss name t *src_name, gss name t
*targ_name, OM_uint32 *lifetime_rec, gss_OID *mech_type, OM_ uint32
*ctx_flags, int *locally_initiated, int *open) ;

The gss_inquire_context () function obtains information about a security
context. The caller must already have obtained a handle that refers to the context,
although the context need not be fully established.

The parameter descriptions for gss_inquire_context () are as follows:

minor_status A mechanism-specific status code.
context_handle Ahandle that refers to the security context.
src_name The name of the context initiator. If the context was established

using anonymous authentication, and if the application invoking
gss_inquire_ context () is the context acceptor, an anonymous
name is returned. Storage associated with this name must be freed
by the application after use with a call to gss release name ().
Specify NULL if the parameter is not required.

targ_name The name of the context acceptor. Storage associated with this
name must be freed by the application after use with a call to
gss_release name (). If the context acceptor did not
authenticate itself, and if the initiator did not specify a target name
inits call to gss_init sec_context (), the value
GSS_C_NO_NAME is returned. Specify NULL if the parameter is not
required.

lifetime_rec The number of seconds for which the context will remain valid. If
the context has expired, this parameter will be set to zero. Specify
NULL if the parameter is not required.

mech_type The security mechanism providing the context. The returned OID
is a pointer to static storage that should be treated as read-only by
the application; in particular, the application should not attempt to
free it. Specify NULL if the parameter is not required.

ctx_flags Contains various independent flags, each of which indicates that
the context supports (or is expected to support, if ctx_open is
false) a specific service option. If not needed, specify NULL.
Symbolic names are provided for each flag, and the symbolic
names corresponding to the required flags should be logically
ANDed with the ret flags value to test whether a given option is
supported by the context. The flags are:

Networking Library Functions 245

gss_inquire_context(3GSS)

RETURN VALUES

locally_initiated

open

GSS C_DELEG FLAG
If true, credentials were delegated from the initiator to the
acceptor. If false, no credentials were delegated.

@SS _C MUTUAL FLAG
If true, the acceptor was authenticated to the initiator. If false,
the acceptor did not authenticate itself.

GSS_C_REPLAY FLAG
If true, the replay of protected messages will be detected. If
false, replayed messages will not be detected.

GSS_C_SEQUENCE_FLAG
If true, out-of-sequence protected messages will be detected. If
false, out-of-sequence messages will not be detected.

GSS_C_CONF_FLAG
If true, confidential service may be invoked by calling the
gss_wrap(3GSS) routine. If false, no confidential service is
available through gss_wrap (). gss_wrap () provides
message encapsulation, data-origin authentication, and
integrity services only.

GSS_C_INTEG FLAG
If true, integrity service can be invoked by calling either the
gss_get _mic () or the gss_wrap () routine. If false,
per-message integrity service is unavailable.

GSS_C_ANON FLAG
If true, the initiator’s identity is not revealed to the acceptor. The
src_name parameter, if requested, contains an anonymous
internal name. If false, the initiator has been authenticated
normally.

GSS_C_PROT READY FLAG
If true, the protection services, as specified by the states of the
GSS_C_CONF_FLAGand GSS_C_INTEG FLAG, are available for
use. If false, they are available only if the context is fully
established, that is, if the open parameter is non-zero.

GSS_C_TRANS FLAG
If true, resultant security context can be transferred to other
processes through a call to gss_export sec context (). If
false, the security context is not transferable.

Non-zero if the invoking application is the context initiator.
Specify NULL if the parameter is not required.

Non-zero if the context is fully established; zero if a
context-establishment token is expected from the peer application.
Specify NULL if the parameter is not required.

gss_inquire_context () returns one of the following status codes:

246 man pages section 3: Networking Library Functions « Last Revised 27 Mar 2000

ATTRIBUTES

SEE ALSO

gss_inquire_context(3GSS)

GSS_S COMPLETE Successful completion.

GSS_S_NO_CONTEXT The referenced context could not be accessed.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability SUNWgss (32-bit)
SUNWgssx (64-bit)
MT-Level Safe

gss_accept_sec_context(3GSS), gss_context time(3GSS),
gss_delete_sec_context(3GSS), gss_export sec context(3GSS),
gss_import sec_ context(3GSS), gss_init sec context(3GSS),
gss_process_context token(3GSS), gss wrap(3GSS),
gss_wrap_size 1imit(3GSS), attributes(5)

GSS-API Programming Guide

Networking Library Functions

247

gss_inquire_cred(3GSS)

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

gss_inquire_cred — obtain information about a credential

cc -flag ... file...-1gss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_ inquire cred(OM uint32 *minor_status, const
gss_cred id t cred_handle, gss name t *name, OM_uint32 *lifetime,
gss_cred_usage t *cred_usage, gss_OID set *mechanisms) ;

Use the gss_inquire cred () function to obtain information about a credential.

The parameter descriptions for gss_acquire_cred () follow:

minor_status A mechanism specific status code.

cred_handle Ahandle that refers to the target credential. Specify
GSS_C NO CREDENTIAL to inquire about the default initiator
principal.

name The name whose identity the credential asserts. Any storage

associated with this name should be freed by the application after
use by a call to gss release name(3GSS).

lifetime The number of seconds for which the credential will remain valid.
If the credential has expired, this parameter will be set to zero.
Specify NULL if this parameter is not required.

cred_usage How the credential may be used. The cred_usage parameter may
contain one of the following values: GSS_C INITIATE,
GSS_C ACCEPT, or GSS_C BOTH. Specify NULL if this parameter
is not required.

mechanisms The set of mechanisms which the credential supports. Storage for
the returned OID-set must be freed by the application after use by
acalltogss release oid set(3GSS). Specify NULL if this
parameter is not required.

gss_acquire cred () may return the following status codes:

GSS_S_COMPLETE Successful completion.

GSS_S_NO_CRED The referenced credentials could not be
accessed.

GSS_S DEFECTIVE CREDENTIAL The referenced credentials were invalid.

GSS_S_CREDENTIALS EXPIRED The referenced credentials have expired. If

the lifetime parameter was not passed as
NULL, it will be set to 0.

GSS_S_FAILURE The underlying mechanism detected an
error for which no specific GSS status code
is defined. The mechanism-specific status
code reported by means of the minor_status

248 man pages section 3: Networking Library Functions ¢ Last Revised 24 Apr 2000

gss_inquire_cred(3GSS)

parameter details the error condition.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT-Level Safe

SEE ALSO | gss_release name(3GSS), gss release oid_set(3GSS), attributes(5)

GSS-API Programming Guide

Networking Library Functions 249

gss_inquire_cred_by_mech(3GSS)

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

gss_inquire_cred_by_mech — obtain per-mechanism information about a credential

cc -flag ... file...-1gss [library ...]
#include <gssapi/gssapi.h>

OM uint32 gss_inquire cred by mech(OM uint32 *minor_status, const
gss_cred id t cred_handle, const gss OID mech_type, gss name t
*name, OM_uint32 *initiator_lifetime, OM_uint32 *acceptor_lifetime,
gss_cred_usage t *cred_usage) ;

The gss_inquire cred by mech () obtains per-mechanism information about a
credential.

The parameter descriptions for gss_inquire_cred_by mech () follow:

minor_status A mechanism specific status code.
cred_handle A handle that refers to the target credential. Specify
GSS_C NO_CREDENTIAL to inquire about the default initiator
principal.
mech_type The mechanism for which the information should be returned.
name The name whose identity the credential asserts. Any storage

associated with this name must be freed by the application after
use by a call to gss_release name(3GSS).

initiator_lifetime ~ The number of seconds that the credential is capable of initiating
security contexts under the specified mechanism. If the credential
can no longer be used to initiate contexts, or if the credential usage
for this mechanism is GSS_C ACCEPT, this parameter will be set
to 0. Specify NULL if this parameter is not required.

acceptor_lifetime ~ The number of seconds that the credential is capable of accepting
security contexts under the specified mechanism. If the credential
can no longer be used to accept contexts, or if the credential usage
for this mechanism is GSS_C INITIATE, this parameter will be
set to 0. Specify NULL if this parameter is not required.

cred_usage How the credential may be used with the specified mechanism.
The cred_usage parameter may contain one of the following values:
GSS_C_INITIATE, GSS_C_ACCEPT, or GSS_C_BOTH. Specify
NULL if this parameter is not required.

gss_inquire_cred_ by mech () may return the following status codes:

GSS_S COMPLETE Successful completion.

GSS_S_NO_CRED The referenced credentials cannot be
accessed.

GSS_S DEFECTIVE CREDENTIAL The referenced credentials are invalid..

250 man pages section 3: Networking Library Functions ¢ Last Revised 24 Apr 2000

ATTRIBUTES

SEE ALSO

GSS_S_CREDENTIALS EXPIRED

GSS_S_FAILURE

gss_inquire_cred_by_mech(3GSS)

The credentials cannot be added because
they have expired.

The underlying mechanism detected an
error for which no specific GSS status code
is defined. The mechanism-specific status
code reported by means of the minor_status
parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability SUNWgss (32-bit)
SUNWgssx (64-bit)
MT-Level Safe

gss_release name(3GSS),, attributes(b)

GSS-API Programming Guide

Networking Library Functions 251

gss_inquire_mechs_for_name(3GSS)

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

gss_inquire_mechs_for_name — list mechanisms that support the specified name-type

ce [flag..] file... -1gss [library...]
#include <gssapi/gssapi.h>

OM_uint32 gss_inquire mechs for name (OM uint32 *minor_status, const
gss_name_t input_name, gss_OID set *mech_types) ;

The gss_inguire mechs for name () function returns the set of mechanisms
supported by the GSS-API that may be able to process the specified name. Each
mechanism returned will recognize at least one element within the internal name.

Some implementations of the GSS-API may perform this test by checking nametype
information contained within the passed name and registration information provided
by individual mechanisms. This means that the mech_types set returned by the
function may indicate that a particular mechanism will understand the name, when in
fact the mechanism would refuse to accept the name as input to

gss_canonicalize name(3GSS), gss init_ sec context(3GSS),
gss_acquire_cred(3GSS), or gss_add_cred(3GSS), due to some property of the
name itself rather than the name-type. Therefore, this function should be used only as
a pre-filter for a call to a subsequent mechanism-specific function.

The parameter descriptions for gss_inquire mechs for name () follow in
alphabetical order:

minor_status Mechanism-specific status code.
input_name The name to which the inquiry relates.

mech_types Set of mechanisms that may support the specified name. The returned
OID set must be freed by the caller after use with a call to
gss_release oid set(3GSS).

The gss_inquire mechs for name () function may return the following status
codes:

GSS_S_COMPLETE Successful completion.
GSS_S_BAD NAME The input_name parameter was ill-formed.

GSS_S_BAD NAMETYPE The input_name parameter contained an invalid or
unsupported type of name.

GSS_S_FAILURE The underlying mechanism detected an error for which
no specific GSS status code is defined. The
mechanism-specific status code reported by means of the
minor_status parameter details the error condition.

See attributes(d) for descriptions of the following attributes:

252 man pages section 3: Networking Library Functions ¢ Last Revised 24 Apr 2000

SEE ALSO

gss_inquire_mechs_for_name(3GSS)

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability SUNWgss (32-bit)
SUNWgssx (64-bit)
MT-Level Safe

gss_acquire cred(3GSS), gss_add_cred(3GSS),
gss_canonicalize name(3GSS), gss _init_ sec context(3GSS),
gss_release oid_set(3GSS), attributes(5)

GSS-API Programming Guide

Networking Library Functions

253

gss_inquire_names_for_mech(3GSS)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

SEE ALSO

gss_inquire_names_for_mech — list the name-types supported by the specified
mechanism

ce [flag..]1 file... -1lgss [library...]

#include <gssapi/gssapi.h>

OM uint32 gss inquire names for mech(OM uint32 *minor_status, const
gss_OID mechanism, gss OID set *name_types) ;

The gss_inquire_names_for mech () function returns the set of name-types
supported by the specified mechanism.

The parameter descriptions for gss_inquire_names_for mech () follow:
minor_status A mechanism-specific status code.
mechanism The mechanism to be interrogated.

name_types Set of name-types supported by the specified mechanism. The
returned OID set must be freed by the application after use with a call
togss_release oid set(3GSS).

The gss_inquire_names_for mech () function may return the following values:
GSS_S_COMPLETE Successful completion.

GSS S FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT-Level Safe

gss_release oid set(3GSS), attributes(5)

GSS-API Programming Guide

254 man pages section 3: Networking Library Functions ¢ Last Revised 24 Apr 2000

gss_oid_to_str(3GSS)
NAME | gss_oid_to_str — convert an OID to a string
SYNOPSIS | cc -flag ... file...-1gss [library ...]

#include <gssapi/gssapi.h>

gss_oid to str(OM uint32 *minor_status, const gss_OID *oid,
gss_buffer toid_str) ;

DESCRIPTION | The gss_oid_to_str () function converts a GSS-API OID structure to a string. You
can use the function to convert the name of a mechanism from an OID to a simple
string. This function is a convenience function, as is its complementary function,
gss_str_ to o0id(3GSS).

If an OID must be created, use gss_create empty oid set(3GSS) and
gss_add_oid_set member () (3GSS) to create it. OIDs created in this way must be
released with gss_release_oid_set(3GSS). However, it is strongly suggested that
applications use the default GS5-API mechanism instead of creating an OID for a
specific mechanism.

PARAMETERS | The parameter descriptions for gss_oid to_str () are as follows:

minor_status Status code returned by underlying mechanism.
oid GSS-API OID structure to convert.
oid_str String to receive converted OID.

RETURN VALUES | gss_oid_to_str () returns one of the following status codes:

GSS_S CALL INACCESSIBLE READ A required input parameter could not be
read.

GSS_S_CALL_ INACCESSIBLE WRITE A required output parameter could not be

written.
GSS_S_COMPLETE Successful completion.
GSS_S_FAILURE The underlying mechanism detected an

error for which no specific GSS status code
is defined. The mechanism-specific status
code reported by means of the minor_status
parameter details the error condition.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT-Level Safe

Networking Library Functions 255

gss_oid_to_str(3GSS)

SEE ALSO | gss_add oid set member () (3GSS), gss_create empty oid set(3GSS),
gss_release oid set(3GSS), gss _str to o0id(3GSS), attributes(5)

GSS-API Programming Guide

WARNINGS | This function is included for compatibility only with programs using earlier versions
of the GSS-API and should not be used for new programs. Other implementations of
the GSS-API might not support this function, so portable programs should not rely on
it. Sun might not continue to support this function.

256 man pages section 3: Networking Library Functions ¢ Last Revised 24 Apr 2000

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

gss_process_context_token(3GSS)
gss_process_context_token — pass asynchronous token to security service

cc -flag ... file...-1gss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_process_context token (OM uint32 *minor_status, const
gss_ctx_id_t context_handle, const gss buffer t token_buffer) ;

The gss_process_context_token () function provides a way to pass an
asynchronous token to the security service. Most context-level tokens are emitted and
processed synchronously by gss_init_sec_context () and
gss_accept sec context (), and the application is informed as to whether further
tokens are expected by the GSS_C CONTINUE NEEDED major status bit. Occasionally,
a mechanism might need to emit a context-level token at a point when the peer entity
is not expecting a token. For example, the initiator’s final call to
gss_init_sec_context () may emit a token and return a status of

GSS_S COMPLETE, but the acceptor’s call to gss_accept sec context () might
fail. The acceptor’s mechanism might want to send a token containing an error
indication to the initiator, but the initiator is not expecting a token at this point,
believing that the context is fully established. gss_process_context_token ()
provides a way to pass such a token to the mechanism at any time.

This function is provided for compatibility with the GSS-API version 1. Because
gss_delete_sec_context () no longer returns a valid output_token to be sent to
gss process context token(), applications using a newer version of the
GSS-API do not need to rely on this function.

The parameter descriptions for gss_process context token() are as follows:

minor_status A mechanism-specific status code.
context_handle Context handle of context on which token is to be processed.
token_buffer Token to process.

gss_process_context token () returns one of the following status codes:

GSS_S_ COMPLETE Successful completion.

GSS_S DEFECTIVE_ TOKEN Indicates that consistency checks performed
on the token failed.

GSS_S _NO_CONTEXT The context_handle did not refer to a valid
context.

GSS_S_FAILURE The underlying mechanism detected an

error for which no specific GSS status code
is defined. The mechanism-specific status
code reported by means of the minor_status
parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

Networking Library Functions 257

gss_process_context_token(3GSS)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT Level Safe

SEE ALSO | gss_accept_sec_context(3GSS), gss_delete sec context(3GSS),
gss_init sec context(3GSS), attributes(d)

GSS-API Programming Guide

258 man pages section 3: Networking Library Functions ¢ Last Revised 27 Mar 2000

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

SEE ALSO

gss_release_buffer(3GSS)

gss_release_buffer — free buffer storage allocated by a GSS-API function

cc -flag ... file...-1gss [library ...

#include <gssapi/gssapi.h>

OM_uint32 gss release buffer (OM_uint32 *minor_status,

gss_buffer tbuffer) ;

The gss_release buffer () function frees buffer storage allocated by a GSS-API

function. The gss_release_buffer () function also zeros the length field in the
descriptor to which the buffer parameter refers, while the GSS-API function sets the

pointer field in the descriptor to NULL. Any buffer object returned by a GSS-API
function may be passed to gss_release buffer (), even if no storage is associated

with the buffer.

The parameter descriptions for gss_release buffer () follow:

minor_status Mechanism-specific status code.

buffer The storage associated with the buffer will be deleted. The
gss _buffer desc () object will not be freed; however, its length

field will be zeroed.

The gss_release_buffer () function may return the following status codes:

GSS_S COMPLETE Successful completion

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific

status code reported by means of the minor_status parameter
details the error condition.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWgss (32-bit)
SUNWgssx (64-bit)
MT-Level Safe
attributes(b5)

GSS-API Programming Guide

Networking Library Functions

259

gss_release_cred(3GSS)

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

SEE ALSO

gss_release_cred — discard a credential handle

cc -flag ... file...-1gss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss release cred(OM uint32 *minor_status, gss_cred _id t
*cred_handle) ;

The gss_release_cred() function informs the GSS-API that the specified
credential handle is no longer required by the application and frees the associated
resources. The cred_handle parameter is set to GSS_C NO CREDENTIAL when this call
completes successfully.

The parameter descriptions for gss release cred() follow:
minor_status A mechanism specific status code.

cred_handle An opaque handle that identifies the credential to be released. If
GSS_C_NO_CREDENTIAL is specified, the gss_release_cred()
function will complete successfully, but it will do nothing.

gss_release_cred () may return the following status codes:

GSS_S_COMPLETE Successful completion.
GSS_S _NO_CRED The referenced credentials cannot be accessed.
GSS_S_FAILURE The underlying mechanism detected an error for which

no specific GSS status code is defined. The
mechanism-specific status code reported by means of
the minor_status parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT-Level Safe

attributes(b)

GSS-API Programming Guide

260 man pages section 3: Networking Library Functions ¢ Last Revised 24 Apr 2000

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

SEE ALSO

gss_release_name(3GSS)
gss_release_name — discard an internal-form name

ce [flag..]1 file... -1lgss [library...]
#include <gssapi/gssapi.h

OM_uint32 gss release name (OM_uint32 *minor_status, gss_name_t
*name) ;

The gss_release_name () function frees GSS-API-allocated storage associated with
an internal-form name. The name is set to GSS_C_NO_NAME on successful completion
of this call.

The parameter descriptions for gss_release_name () follow:
minor_status A mechanism-specific status code.

name The name to be deleted.

The gss_release name () function may return the following status codes:
GSS_S COMPLETE Successful completion.
GSS_S BAD NAME The name parameter did not contain a valid name.

GSS_S_FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT-Level Safe

attributes(5)

GSS-API Programming Guide

Networking Library Functions 261

gss_release_oid(3GSS)

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

SEE ALSO

WARNINGS

gss_release_oid — release an object identifier

cc -flag ... file...-1gss [library ...]
#include <gssapi/gssapi.h>

gss_release 0id(OM_uint32 *minor_status, const gss_ OID *oid) ;

The gss_release oid() function deletes an OID. Such an OID might have been
created with gss_str to oid().

Since creating and deleting individual OIDs is discouraged, it is preferable to use
gss_release_oid_set () if it is necessary to deallocate a set of OIDs.

The parameter descriptions for gss_release oid() are as follows:
minor_status A mechanism-specific status code.

oid The object identifier of the mechanism to be deleted.

gss_release_oid () returns one of the following status codes:
GSS_S_COMPLETE Successful completion.

GSS S FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT Level Safe

gss_release oid set(3GSS), gss _str to 0id(3GSS), attributes(5)
GSS-API Programming Guide

This function is included for compatibility only with programs using earlier versions
of the GSS-API and should not be used for new programs. Other implementations of
the GSS-API might not support this function, so portable programs should not rely on
it. Sun might not continue to support this function.

262 man pages section 3: Networking Library Functions ¢ Last Revised 24 Apr 2000

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

SEE ALSO

gss_release_oid_set(3GSS)

gss_release_oid_set — free storage associated with a GSS-API-generated gss_OID_set
object

cc -flag ... file...-1gss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss release oid set (OM _uint32 *minor_status, gss_OID set
*set) ;

The gss_release_oid_set () function frees storage associated with a
GSS-API-generated gss OID_set object. The set parameter must refer to an OID-set
that was returned from a GSS-API function. The gss release oid set () function
will free the storage associated with each individual member OID, the OID set’s
elements array, and gss_0OID set_ desc.

gss_OID_set issetto GSS_C NO OID SET on successful completion of this
function.

The parameter descriptions for gss_release oid set () follow:
minor_status A mechanism-specific status code

set Storage associated with the gss_0OID_set will be deleted

The gss_release_oid_set () function may return the following status codes:
GSS_S_COMPLETE Successful completion

GSS S FAILURE The underlying mechanism detected an error for which no
specific GSS status code is defined. The mechanism-specific
status code reported by means of the minor_status parameter
details the error condition.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWgss (32-bit)

SUNWgssx (64-bit)

MT-Level Safe

attributes(b)

GSS-API Programming Guide

Networking Library Functions 263

gss_str_to_oid(3GSS)
NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

gss_str_to_oid — convert a string to an OID

cc -flag ... file...-1gss [library ...]
#include <gssapi/gssapi.h>

OM_uint32 gss_str to oid(OM uint32 *minor_status, const gss buffer t
oid_str, gss_OID *oid) ;

The gss_str to_oid() function converts a string to a GSS-API OID structure. You
can use the function to convert a simple string to an OID to . This function is a
convenience function, as is its complementary function, gss_oid_to_str(3GSS).

OIDs created with gss_str_to_oid () must be deallocated through

gss_release 0id(3GSYS), if available. If an OID must be created, use
gss_create empty oid set(3GSS)and gss_add oid set member () (3GSS) to
create it. OIDs created in this way must be released with
gss_release_oid_set(3GSS). However, it is strongly suggested that applications
use the default GSS-API mechanism instead of creating an OID for a specific
mechanism.

The parameter descriptions for gss_str to_oid() are as follows:

minor_status Status code returned by underlying mechanism.
oid GSS-API OID structure to receive converted string.
oid_str String to convert.

gss_str to oid() returns one of the following status codes:

GSS_S_CALL_INACCESSIBLE READ A required input parameter could not be
read.

GSS_S_CALL_INACCESSIBLE WRITE A required output parameter could not be

written.
GSS_S COMPLETE Successful completion.
GSS_S_FAILURE The underlying mechanism detected an

error for which no specific GSS status code
is defined. The mechanism-specific status
code reported by means of the minor_status
parameter details the error condition.

See attributes(5) for descriptions of the following attributes:

AT