Al X Version 4.3 Differences Guide

Scott Vetter, Atsushi Baba, Robert lacopetta, Federico Vagnini

I nternational Technical Support Organization

http://www.redbooks.ibm.com

Draft Document for Review October 21, 1999 11:11 pm SG24-2014-02

SG24-2014-02

International Technical Support Organization

AlX Version 4.3 Differences Guide

December 1999

Draft Document for Review October 25, 1999 9:43 pm

2014edno.fm Draft Document for Review October 25, 1999 9:43 pm

Take Note!

Before using this information and the product it supports, be sure to read the general information in
Appendix B, “Special Notices” on page 695.

Third Edition (December 1999)
This edition applies to AIX Version 4 Release 3, program number 5765-C34 and subsequent releases.

Comments may be addressed to:

IBM Corporation, International Technical Support Organization
Dept. IN9B Building 003 Internal Zip 2834

11400 Burnet Road

Austin, Texas 78758-3493

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Draft Document for Review October 25, 1999 10:31 pm 2014TOC.fm

Contents

Figures. XV
Tables. . . Xix
Preface. XXi
How this Redbook is Organized. XXi
The Team That Wrote This Redbook. XXi
Comments Welcome e XXV
Chapter 1. Hardware Announcements 27
1.1 RS/6000 7017 Enterprise Server Model S80 27
1.2 RS/6000 7046 Model B50. 29
1.3 Token Ring PCI Adapter 4/16 Mbps (#4959,4.3.3) 30
1.4 Dual Channel Ultra2 SCSI Adapter (#6205) 31
1.5 PCI 3-Channel Ultra2 SCSI RAID Adapter (#2494) 32
1.6 GXT130P Graphics Accelerator (#2830). 32
Chapter 2. AIX Kernel Enhancements. 33
2.1 Binary Compatibility 33

2.1.1 Compatibility between AIX Version 4 Releases. 33

2.1.2 X11 Compatibility 34

2.1.3 AIX Version 3 Application Compatibility 35

2.1.4 Client/Server Application Compatibility 36

2.1.5 IBM Licensed Program Products Compatibility 36
2.2 AIX 4.3 for 24-Way SMP Performance (4.3.3) 37
2.3 64 GB Real Memory Support (4.3.3). . . .o oo 37
2.4 Real Memory Driver Design (4.3.3)o i 38
2.5 Lock-Based DUMPINGo oot 38

2.5.1 DUMP SUPPOIt . .o 39

2.5.2 Programming Interface. 39
2.6 Bad Block Relocation during System Dump (4.3.1). 40
2.7 Kernel Protection 40

2.7.1 Storage Protection Macro.ccuiiiiuinon.. 41

2.7.2 Debug Modifications. 41

2.7.3 Stack Overflow Protection 41
28 SMPTTY Handling. e 42
2.9 FasterPer-Thread Data 42
2.10 Expanded Limits on Open Files (4.3.1). 42
2.11 Multiple Concurrent JFS Reads (4.3.1).ot 43
2.12 Increase in the Upper Limit of Trace Buffer (4.3.1) 44
2.13 Kernel Scaling Enhancements 44

© Copyright IBM Corp. 1999 i

2014TOC.fm

Draft Document for Review October 25, 1999 10:31 pm

2.13.1 Network Memory Buffer Pool (4.3.2). 44
2.13.2 Expanded KernelHeap (4.3.2), a7
2.13.3 Network Water Marks Scaling with thewall (4.3.3) 47
2.13.4 Larger Pipe Buffer Pool (4.3.2) o 49
2.13.5 Inter-Process Communication Identifier Enhancement (4.3.2). . 49
2.13.6 Boot Logical Volume Scaling (4.3.2) 50
2.13.7 Kernel Services Locks (4.3.3) o oo 50
2.13.8 Networking Enhancements (4.3.3) 52
2.13.9 VMM Enhancements (4.3.3)o i it i 52
2.13.10 Threads and Processes (4.3.3). oo i i 55
2.13.11 I/O Wait Time Calculation on SMP Systems (4.3.3) 58
2.14 Scheduler Enhancements (4.3.2) i 59
2.14.1 Thread Priority Calculation Changes. 59
2.14.2 Sample Results of Altering Nice Value 61
2.15 Fast Device Configuration (4.3.3) o i 64
2.15.1 Thecfgmgr Command 64
Chapter 3. 64-Bit Enablement 69
3.1 Introduction to 64-Bit Computing 69
3.1.1 64-Bit Architecture and Benefits, 69
3.1.2 64-BitChallenges. 70
3.1.3 64-Bit PowerPC Design 71
3.1.4 64-Bit AIX Design Criteria. 74
3.2 64-Bit Core DeSIgN. . .. ot 75
3.2.1 Segment Register Mapping 76
3.2.2 System Calls 80
3.2.3 64-Bit XCOFF Format. e 92
3.2.4 Device Drivers 96
3.25 Loader 99
3.2.6 Virtual Memory Manager, 100
3.3 Application Development 105
3.3.1 CCompiler. 105
3.3.2 XL Fortran Version5 112
3.3.3 System Libraries. 112
3.3.4 LinKer. 113
3.3.5 Archiver 115
3.3.6 Thedbx Debugger 116
3.3.7 Commands and Utilities 117
Chapter 4. Application Development and Pthreads 119
4.1 ClLanguage Standards.ttt 119
4.2 |IEEE POSIX and UNIX98 Conformance. 119
4,21 Realtime Optionst i e e e 120

iv AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014TOC.fm

4.2.2 Unsupported Threads Options 121
4.2.3 Dynamic Linking Extension. 121
4.2.4 Year 2000. 123
4.3 M:N Pthreads (4.3.1) 124
4.3.1 Porting Application from Draft 7 Pthreads. 125
4.3.2 The MiN Model. 125
4.3.3 User Scheduler. 126
434 MuteX LoCKS 128
4.3.5 TUNING ..o e e 128
4.3.6 Combined Thread-Safe Libraries 130
4.4 Pthreads Suspend and Resume (4.3.2) i 130
4.5 Pthread Debug Library (4.3.3) i 131
4.6 Preserve Modified Ptrace Data (4.3.2), 132
4.7 DireCt /O .. oo 133
4.7.1 Opening Files for Direct /O 134
4.7.2 Inode Flags 134
4.7.3 JFS Function Calls for Direct 1/O 134
4.7.4 System Archive Utilities 135
4.8 Shared Memory Enhancements 135
4.8.1 Larger Shared Memory Regions (4.3.1) 135
4.8.2 128 KB Shared Memory IDs (4.3.2), 135
4.8.3 Shared Memory Debugging Enhancements (4.3.2).......... 136
4.9 DMA Pre-Translation (4.3.2). i e e 136
4,10 Fastfork() Function (4.3.1).o e 137
4.11 New Sockets System Call (4.3.2) i 137
4.12 Network Buffer Cache Improvements (4.3.3) 139
4.13 Binder Library Enhancements (4.3.2) 141
4.14 Fast Single Instruction Breakpoint (4.3.3). 141
4.15 Java Developers Kit (4.3.3)o 142
4.16 ShipPerlon AIX (4.3.3)o 143
4.17 KDB Kernel Debugger and the kdb Command (4.3.3)........... 143
4.17.1 Fileset Changes Associated with the Introduction of KDB. . .. 144
4.17.2 AlIX DocumentationforKDB 145
4.17.3 AIX Documentation Updates for the KDB Kernel Debugger . . 145
4.17.4 Enabling the KDB Kernel Debugger 147
4.17.5 A Comparison of the New and Existing Kernel Tools 151
4.18 Malloc Enhancements (4.3.3) it 158
4.18.1 Replaceable Malloc Subsystem 158
4.18.2 Malloc Multiheap. 159
4.18.3 Debug Malloco 160
Chapter 5. Logical Volume Manager Enhancements 171
5.1 Logical Volume Synchronization. 171

2014TOC.fm

Draft Document for Review October 25, 1999 10:31 pm

5.2 importvg Learning Mode (4.3.2) 172
5.3 importvg Fast Mode (4.3.2) 173
5.4 Raw LV Online Mirror Backup Support (4.3.1) 173
5.4.1 Removal of 1016 PPs per Physical Volume Limit (4.3.1). 174
5.5 Physical Partition Support (4.3.1) 176
5.6 Big Volume Groups (4.3.2) oot 176
5.6.1 ChangestoLVCB. e 177
5.6.2 General EnhancementsforBigVG...................... 178
5.6.3 SmallVGtoBigVG Conversion. 182
5.6.4 Big VG Limitations i 183
5.7 Concurrent Online Mirror Backup and Special File Support (4.3.2). . 183
5.7.1 Limitations o 184
5.7.2 Commands Changed 184
5.8 Online JFS Backup (4.3.3) . . .« oo o 186
5.8.1 Split Offa Mirrored Copy i 186
5.8.2 Reintegrate a Mirrored Backup Copy 188
5.9 Mirroring and Striping Support (4.3.3). 188
Chapter 6. System Management and Utilities. 193
6.1 Overview of Existing AIX Systems Management. 193
6.1.1 SMIT OVervIieW.o e 193
6.1.2 DSMIT OVerVIEW e 195
6.1.3 VSM OVEIVIEWo e 196
6.2 Web-Based System Manager Architecture 197
6.2.1 Web-Based System Manager Components. 198
6.2.2 Web-Based System Manager User Interface 199
6.2.3 Web-Based System Manager Launch Interfaces 199
6.2.4 Web-Based System Manager User Interface Objects 201
6.2.5 Userinterface Elements. 203
6.2.6 Message BOXeS 213
6.2.7 User AssistanCe 213
6.2.8 Navigation 215
6.2.9 Selection and Multiple Selection. 216
6.3 Web-Based System Manager Enhancements (4.3.1) 216
6.4 Web-Based System Manager Enhancements (4.3.2) 216
6.4.1 Security Enhancements 216
6.4.2 Diagnostics Enhancements 219
6.4.3 Registered Applications 221
6.5 Web-Based System Manager Enhancements (4.3.3) 224
6.5.1 Volumes Application Enhancements. 225
6.5.2 NISH. ... 226
6.5.3 File Systems Application Enhancements 226
6.6 Daylight Savings Time 227

Vi AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014TOC.fm

6.7 Login Performance. 228
6.7.1 Indexing of the /etc/passwd File 229
6.7.2 Indexing of the /etc/security/passwd File 229
6.7.3 Indexing and Locking /etc/security/lastlog File 229
6.7.4 mkpasswd Command 230

6.8 LDAP Exploitation for User Management (4.3.3) 230
6.8.1 The mksecldap Command 231
6.8.2 Server Configuration. 232
6.8.3 Client Configuration 233
6.8.4 User Administration 234

6.9 Microcode Packaging.uiin i 235

6.10 Online Alternate Disk Installation 236
6.10.1 alt_disk _install Command Syntax...................... 238
6.10.2 Using alt_disk_install 240
6.10.3 Alternate Disk Installation Enhancements (4.3.1) 241
6.10.4 Alternate Disk Installation Enhancements (4.3.2) 242

6.11 Printer SUPPOIt.o 247
6.11.1 Remote Printing Robustness 247
6.11.2 Remote PrintJob Count............. 247
6.11.3 Additional Printer Support. 248
6.11.4 Print Job Administration Enhancements (4.3.2) 249

6.12 System Resource Controller Subsystem Enhancements (4.3.2) . . . 250
6.12.1 Recoverable SRCDaemon.oiiiiuea... 250
6.12.2 Thread-Safe Routinesinlibsrc 252

6.13 TTY Remote Reboot (4.3.2) 253

6.14 Network Install Manager Enhancements. 255
6.14.1 Restrict Concurrent Group Operations (4.3.2). 255
6.14.2 Resource Lock Contention (4.3.2) 256
6.14.3 Administration Enhancements (4.3.2) 257
6.14.4 bosinst.data Resource Handling (4.3.3) 257
6.14.5 NIM Security (4.3.3) . . . i 258
6.14.6 NIM Scalability (4.3.3) 259
6.14.7 Web-Based System Manager Improvements (4.3.3)........ 264

6.15 Paging Space Enhancements (4.3.2) 267
6.15.1 Late and Early Paging Space Allocation................. 267
6.15.2 Commands Affected by Late Paging.................... 270

6.16 Error Message Templates (4.3.2)o 271

6.17 Remote File Distribution Enhancements (4.3.2) 272

6.18 Editor Enhancements (4.3.2) 273

6.19 System Backup Usability Enhancements (4.3.2). 273

6.20 Operating System Install Enhancement (4.3.2). 274

6.21 New Diagnostic Service Aid (4.3.2) i 275

6.22 Diagnostic Enhancements (4.3.3). i i 276

Vii

2014TOC.fm

Draft Document for Review October 25, 1999 10:31 pm

6.22.1 Diagnostics Task Selection List 277
6.22.2 New Diagnostic EventLog 278
6.22.3 Diagnostic Test Enhancements 283
6.22.4 Customer Engineer Diagnostic Login Capability 283
6.22.5 Hardware Diagnostic Exerciser. 284
6.23 Performance Toolbox Agent Repacking (4.3.2) 286
6.24 Performance Toolbox Enhancements (4.3.3) 287
6.24.1 Kernel Statistics Access From User Mode 287
6.24.2 SPMI-Based Top Clone 287
6.24.3 Performance Toolbox for AIX (PTX) Scaling.............. 288
6.25 Performance Related Enhancements (4.3.3) 288
6.25.1 sar Command: New-dFlag 289
6.25.2 Feedback Directed Program Restructuring............. 289
6.25.3 svmon Performance Tool Enhancements 290
6.25.4 Trace Based Tools Scaling. 293
6.25.5 ipfilter Script 299
6.25.6 CPU Utilization Enhancement. 300
6.26 Mksysb on CD-R (4.3.3)ottt e 301
6.26.1 Personal SystemBackupCD 301
6.26.2 GenericBackup CD i 301
6.26.3 Non-Bootable Volume Group Backup 301
6.26.4 Tested Software and Hardware 301
6.26.5 mked Command 302
6.27 System RAS improvements (4.3.3). i 304
6.27.1 AIX Console Loggingot 304
6.27.2 Error Log Enhancements 306
6.27.3 System Dump Improvements, 321
Chapter 7. AIX Workload Managercouiuunn... 329
7.1 OVEIVIBW . . o oot e e e e e e e e e 329
7.2 Concepts and Configuration. 330
7.2.1 Job Attributes 331
7.2.2 Categories . ..ot 332
7.2.3 RESOUICES . . .ttt e e e e e e e e 333
7.2.4 Resource Handling for the Unclassified Class 336
7.2.5 Interaction with Other Scheduler Control Mechanisms 337
7.2.6 Interaction with Other Physical Memory Control Mechanisms. . 337
7.3 WLM Administration 337
7.4 Configuration Files. i 338
7.5 WLM Commandsottt e 342
751 chelass. . ..o 343
7.5.2 ISCIasSs . . .o 343
7.5.3 MKCIASS . .. oo 344

Viii AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014TOC.fm

7.5.4 IMCIASS. . . . 344
755 wimentrl ..o 345
7.5.6 wimstat. 345
7.5.7 Madificationof pscommand, 346
7.6 CPUManagement 346
7.7 Real Memory Management. 349
7.7.1 TierHandling 351
7.7.2 Memory Classification 351
7.7.3 Memory Allocation 352
7.7.4 Memory Replacement. i 353
7.8 Very Simple Examples 354
7.9 Web-Based System Manager Interface 356
Chapter 8. Networking Enhancements 365
8.1 Internet Protocol Version 6. 365
8.1.1 IPV6 Introduction 365
8.1.2 IPv6 128-Bit Addressing. i 366
8.1.3 Neighbor Discovery/Stateless Address Autoconfiguration. 369
8.1.4 Internet Control Message Protocol (ICMPV6) 370
8.1.5 Tunnelingover IPv4 372
8.1.6 IP SeCUrity 373
8.1.7 Resolver Support for /etc/hosts. 385
8.1.8 Commands and Applications Enabled for IPv6 385
8.1.9 IPv6 Socket Library Support. 394
8.1.10 System Management Changes and Additions. 394
8.1.11 IPv6 and IPSec-Related RFCs Implementation. 397
8.2 IP Security Enhancements (4.3.1) 398
8.3 IP Security Enhancements (4.3.3) 398
8.3.1 Improved RAS 398
8.3.2 Perfect Forward Secrecy Support. 399
8.3.3 Web-Based System Manager Panel Enhancements. 400
8.3.4 IP Address Ranges Support i 403
8.3.5 On Demand Tunnel Support. 404
8.4 TCP/IP Command Security Enhancement (4.3.1). 405
8.5 Dynamic Host Configuration Protocol Enhancements (4.3.1) 405
8.6 TFTP Block Size Option (4.3.1) i 406
8.7 IPv6 Routing Support (4.3.2) 407
8.7.1 Gated Version 6.0 407
8.7.2 IPv6 Routing Functions. 409
8.7.3 Commands Changed 411
8.8 Gratuitous ARP (4.3.3)o 412
8.9 Enhancement to the ifconfig Command (4.3.2). 413
8.10 Latest BIND DNS (NameD) Support (4.3.2) 414

2014TOC.fm Draft Document for Review October 25, 1999 10:31 pm

8.11 PMTU Active by Default (4.3.3) 415
8.12 Interface Specific Network Options (4.3.3) 416
8.13 Inheriting TCP Socket Options (4.3.3) 417
8.14 Web Server Performance Improvements 418
8.14.1 Reducing the Number of TCP Packages (4.3.2) 418
8.14.2 HTTP GET Kernel Extension (4.3.3).o oot 421
8.15 TCP Checksum Offload on ATM 155 Mbps PCI Adapter (4.3.2) . . . 428
8.15.1 Limitations 429
8.15.2 Command Changes 429
8.16 TCP Checksum Offload on Gigabit Ethernet Adapter (4.3.3) 430
8.17 Thread-Based Application Connection Enhancement (4.3.2) 430

8.18 Kernel Enhancement for High Speed Network Adapters (4.3.3) ... 431
8.19 IBM 10/100 Mbps PCI Ethernet Adapter Device Driver (4.3.2) 432

8.19.1 Packaging 433
8.19.2 Configuration Parameters. 433
8.19.3 TracCe 435
8.19.4 Error Logging . . .« ottt 435
8.20 SDLC/BSC Support for 4-Port PCI Adapter (4.3.2) 436
8.20.1 Packaging 437
8.20.2 TraCe . ..\t 437
8.20.3 Error LOQgging . . .« v v vt 438
8.21 Open Network Computing (ONC+) 438
8.21.1 CacheFS 438
8.21.2 AUIOFS (4.3.1)o 444
8.21.3 NFS Server Performance Enhancement (4.3.2) 448
8.21.4 NIS+H (4.3.3) . ottt 448
8.22 TCP Selective Acknowledgments (4.3.3) 475
8.22.1 How SACKWOrks. e 475
8.22.2 Newno OptioNnot 477
8.23 DHCP/DDNS Upgrade (4.3.3) . ..ottt e i 477
8.23.1 Dynamic DNS Update Daemon. 477
8.23.2 User Defined Extension 477
8.24 Quality of Service Support (4.3.3). 478
8.24.1 Integrated Service 478
8.24.2 Differentiated Service 478
8.24.3 Policy-Based Networking 479
8.24.4 AIX Integration 479
8.25 Name Resolver Dynamic Loading (4.3.3) 483
8.26 Socks Enhancements (4.3.3) 483
8.26.1 Socks Library 484
8.26.2 Automatic Socksification. oL 484
8.27 Sendmail Enhancements (4.3.3). 486
8.27.1 Whatis Spam?. e 486

X AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014TOC.fm

8.27.2 Anti-Spam Features i 486
8.27.3 Generating Customized sendmail.cf.................... 487
8.27.4 Enhancements Added by IBM. 489
8.28 AlIX FastConnectRelease 2, 489
8.28.1 AIX Fast Connect OVerviewiiuennon.. 490
8.28.2 AIX Fast Connect Release 2 New Function 490
8.28.3 CIFS Logon Client Considerations 491
8.28.4 Sample Configuration................ 492
8.28.5 AIX Fast Connect WSM integration. 493
8.29 Cisco EtherChannel Support (4.3.3). 494
8.29.1 How EtherchannelWorks 494
8.29.2 Configurationexample 495
8.29.3 Performance Considerations 498
8.30 ATM Enhancements (4.3.3) 498
8.30.1 Multiprotocol over ATM. 499
8.30.2 Classical IPand ARPoverATM 502
Chapter 9. Graphical Environment Enhancements 505
9.1 X Window System Architecture Review 505
9.1.1 Client . ..o 505
9.1.2 Protocol 506
9.1.3 SeIVer .o 506
9.2 X Window System Release 6 507
9.2.1 X11 SECUNLY . v vttt e e e e 508
9.2.2 XlImage Extension 508
9.2.3 Inter-Client Communications Conventions Manual 508
9.2.4 ICE (Inter-Client Exchange) 510
9.2.5 SM (Session Management) 510
9.2.6 X Logical Font Description 510
9.2.7 SYNC EXteNSion. e 510
9.2.8 XC-MISC ExXtension 511
9.2.9 BIG-REQUESTS Extensionc.cuuiiiinennn... 511
9.2.10 Double Buffer Extension (DBE). 511
9.2.11 X Keyboard Extension 511
9.2.12 X Record Extension 516
9.2.13 ICE X RENAEZVOUS o vttt et e e 516
9.2.14 Print EXtENSION oo it 516
9.2.15 Xlib Vertical Writing and User-Defined Characters 517
9.2.16 XlibLibrary 518
9.2.17 XtToolKit 519
9.2.18 Xaw ToolKit.o 520
9.2.19 Header Files. 521
9.2.20 FONIS ..ottt 522

Xi

2014TOC.fm

Draft Document for Review October 25, 1999 10:31 pm

9.2.21 XlinputMethod. e 523
9.2.22 Input Method Protocol. 524
9.2.23 New X FUNCtionNs i 526
9.2.24 X OutputMethod 528
9.2.25 X11R6 NLS Database., 529
9.2.26 Command Line Interfaces. 532
9.3 Motif Version 2.1 533
9.3.1 NewWidgets e 534
9.3.2 Motif ChangesinBehavior 539
9.3.3 The Motif Extensibility Framework 539
9.3.4 Miscellaneous Enhancements 543
9.3.5 Compatibility with Motif 1.2and 2.0 549
9.4 X Virtual Frame Buffer (4.3.2). 551
9.4.1 Direct Soft OpenGL 551
9.4.2 CATweb Navigator and XVFB/DSO 552
9.5 X1IR6.3(4.3.3) . ittt 552
9.5.1 LowBandwidth X 553
9.5.2 X Remote Execution. 554
9.5.3 Security Extension 557
9.5.4 Application Group Extension. 557
9.6 OpenGL Enhancements. 557
9.6.1 OpenGL 64-bit Indirect Rendering (4.3.1). 558
9.6.2 OpenGL Performance Enhancements (4.3.2) 558
9.6.3 OpenGL Version 1.2 and ZAPdb (4.3.2) 558
9.6.4 New OpenGL Extensions (4.3.2) 560
9.6.5 GLX Version 1.3 (4.3.3) . ..ot i ittt 560
9.6.6 Thread Enablement for Magician (4.3.3). 561
9.6.7 Pixmap Rendering for GXT3000P and GXT2000P (4.3.3). 561
9.6.8 Performance Enhancements (4.3.3) 561
9.6.9 New OpenGL Extensions (4.3.3) 561
9.7 graPHIGS Enhancements 562
9.7.1 Performance Enhancements (4.3.2) 562
9.7.2 Performance Enhancements (4.3.3) 562
9.7.3 Euro Symbol Support (4.3.2) 562
Chapter 10. Online Documentation........................... 565
10.1 Unified Documentation Library Services (4.3.3) 565
10.1.1 Advice to Help You Create Your Library 565
10.1.2 Installing the Documentation Library Service 566
10.1.3 Using the Documentation Library 581
10.2 Installing Online Manuals 585
10.3 Help for Library Problems. 586
10.4 Internationalization. e 587

Xii AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014TOC.fm

10.5 Man Page Changest e e 587
10.6 SMIT Documentationt 588
Chapter 11. National Language Support....................... 589
11.1 National Language Character Handling 589
11.2 Levelsof NLS Enablement., ... 589
11.3 UNIiCOde . . oo 590
11,31 UTF-8. . e e e e 591
11.3.2 ULS .. 592
11.3.3 Universal Locale. 593
11.3.4 Installation and Packaging 599
11.3.5 List of Supported Unicode Locales 600
11.4 Java NLS Support 602
11.5 Euro Symbol Support for AIX (4.3.2) 603
11.5.1 OVEIVIEW .ottt e e e e e 603
11.5.2 Local Definitions for the UTF-8 Code Set 604
11.5.3 Keyboard Definitions 613
11.5.4 Input Methods for the Euro Symbol. 615
11.5.5 Codeset Conversion Tables 621
11.5.6 Euro SBCS Migration Option - IBM-1252 Locale........... 626
11.5.7 Packaging 628
11.5.8 Installation of Euro Symbol Support 629
11.6 National Language Enhancements. 637
11.6.1 Byelorussian and Ukrainian Localization. 637
11.6.2 ThaiLanguage Support 637
11.6.3 Vietnamese Language Support., 639
11.6.4 Japanese Code Page 943 (AIX4.3.2)., 641
11.6.5 Korean TrueType Font (AIX4.3.2) 642
11.7 Additional Languages (4.3.3) oot 643
11.7.1 64-bit Localized Objects (4.3.3) 644
11.7.2 Traditional Chinese Unicode Input Methods(4.3.3) 644
11.7.3 Korean Input Method Enhancements (4.3.3). 647
11.7.4 Internationalized Classes for Unicode (4.3.3) 648
11.8 Documentation Search Service: DBCS HTML Search (4.3.2) 651
11.8.1 Documentation Libraries. 653
11.8.2 Limitationsot 654
11.8.3 Invoking Documentation Search Service. 654
11.8.4 Binary Compatibility, 663
Chapter 12. AIX Stand-Alone LDAP Directory Product 665
12.1 Whatis LDAP 665
12.2 LDAP Naming Model i 666
12.3 Typical Configurations 667

Xiii

2014TOC.fm

Draft Document for Review October 25, 1999 10:31 pm

12.4 LDAP Protocol Support e 669
12.5 LDAP Client ToolKit e 670
12.6 Stand-Alone LDAP Directory Server. 670
12.6.1 DB2BackEnd 672
12.6.2 ODBC. . .ot 672
126.3 RDBGIUE. 672
12.6.4 SLAPD 672
12.6.5 Server Replication 672
12.6.6 HTTP Accessto Directory., 673
12,7 SECUMY . ottt e e 673
12.7.1 Authentication. 673
12.8 Installation 673
12.8.1 Software Prerequisites 674
12.9 Administrative Interface 674
12.9.1 Web-Based Graphical User Interface 674
12.9.2 Command Line Utilities. 675
12.9.3 Other Administrative Procedures 675
12.10 LDAP-Related RFCs and Internet Drafts Implemented 676
12.10.1 InternetDrafts. 676
12.10.2 LDAP-Related RFCS. o e 677
12.10.3 X.500-Related RFCs. oo 677
12.11 LDAP Enhancements (4.3.3)ot 678
12.12 LDAP Configuration (4.3.3). oo i e 680
Appendix A. SSL File Creationfor LDAP 685
A.l ServerKey Creationt e e e 685
A2 ClientKey Creation.t e 691
Appendix B. Special Notices i 695
Appendix C. Related Publications. 699
C.1 International Technical Support Organization Publications 699
C.2 Redbooks on CD-ROMS. e e 699
C.3 Other Publications i 700
C Internet SIteS. . ..ot 700
How to Get ITSO Redbooks 701
IBM Redbook Fax Order Form. 702
List of Abbreviations. 703
INdEX . 707
ITSO Redbook Evaluation. 729

Xiv AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014LOF.fm

Figures

©CoNOGO~WDNE

(I
N =)

B WWWWWWWWWWNDNNNNNMNNNNNRPRERPRPEERERREREPRPR
QUOWOUONOUUMMWNPOOONOODMAWNPOOO~NOOOGA,WDN

RS/6000 7017 Model S80t 28

RS/6000 7046 Model B50o 30

Kernel Segment OXE i e 56

Register Implementation of 32-Bit and 64-Bit PowerPC Processors. 72

Comparison of Address Translation in 32-Bit and 64-Bit Mode. 74

Interfacing 64-Bit Processes to a 32-BitKernel 82

M:N Threads Model 126

Importvg -L Example 172

Mirrored and Striped Logical Volume. 189
. Logical volume creation with Web-Based System Manager 191
.Default SMIT Menu 194
. Default Motif SMIT Menu. e 195
. Sample VSM Storage Manager.ot 197
. Web-Based System Manager Launch Interface 201
. Web-Based System ManagerUserMenu 204
. Web-Based System Manager Selected Menu. 206
. Web-Based System Manager ViewMenu. 207
. Web-Based System Manager OptionsMenu. 209
. Web-Based System Manager lconView 211
. Web-Based System Manager Details View 212
. Web-Based System Manager Tree View. 213
. Example of Secure Mode Connection Using HTTPS 218
. Example of Container Window In Secure Mode 219
. Example of DiagnosticsMenu i 220
. Example of ELA Day SelectionMenu 221
. Registered Applications Dialog BOX. i 222
. Registered Applications Container. 223
. Registered Application Host Selection Dialog 224
. Volume Application BIG VG and Large-Disk VG Support 225
. NIS+ Server Configuration Panel on Web-Based System Manager 226
. New Cached File System Web-Based System Manager Panel 227
. Sample NIM SMIT Panel Showing Group Controls. 256
. NIM Web-Based System Manager Panel 265
. NIM Web-Based System Manager Machine Group Definition. 266
.NIMBOS Task GUIdEo e 267
. Sample SMIT Volume Group Backup Screen 274
. Memory Exerciser Options Menu. 276
. System ExerciserMain Menu i 276
. Dump Progress on the Front Panel Display. 327
.BasicWLM Elements. 331

© Copyright IBM Corp. 1999 XV

2014LOF.fm

XVi

41.
42.
43.
44,
45,
46.
47.
48.
49,
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.

Draft Document for Review October 25, 1999 10:31 pm

Example of Classes and Class AssignmentRules 334
Example of Share Distribution Automatically Adjusting Resources. 335
CPUUSAgE ZONES. oo e e 348
Memory Usage ZONESottt 350
Memory Allocation 353
Workload Management Web-Based System Manager Main Panel. 357
Workload Management Web-Based System Manager Menu 358
Adding a Class using Web-Based System Manager................ 359
Rules Management Using Web-Based System Manager 360
Show Defined Limits with Web-Based System Manager............. 361
Multiple Workload Management Configurations 362
Change Configuration Panel 363
Virtual Private Network 374
Authentication Header e 376
Encapsulating Security Payload 378
AH in Transport Mode 381
AHin TunnelMode 381
ESPin Transport Mode 381
ESPinTunnelMode 382
VPN Configuration Example 382
Typical Output from the netstat -niCommand. 387
Routing Tables Shown by netstat -rn Command. 387
IPv6 Statistics from netstat -p ipv6 Command. 388
Example of ifconfig Command Usage 389
Example of route Command Usage., 390
Example of ndp Command Usage. 393
New SMIT TCP/IP Configuration Panel Entries. 394
Configuring IPv6 Tunnel Interfaces with SMIT. 395
IPv6 Daemon Configuration SMIT Panel. 396
IPv6 autoconf6 SMIT Configuration Panel. 397
Perfect Forward Secrecy Support WSM Configuration Panel 400
New WSM Network Application Panel. 401
Manual Tunnel Support WSM Configuration Panel................. 402
Static Filter Support WSM Configuration Support 403
IP Address Ranges Support WSM Configuration Panel 404
On Demand Tunnel Support WSM Configuration Panel 405
FRCAGETDataFlow i 423
Output of mount Command Showing CacheFS. 444
NIS+ Namespace Hierarchy 453
NIS+ System Tables 454
NIS+ Domain Hierarchy e e 455
NIS+ Server PositioninaDomain. 457
NIS+ Transaction LOgt e i a 458

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014LOF.fm

84. NIS+ Replica e e e 459
85. DES Credential 464
86. Network Configuration for NIS+ Example 467
87. SACK Message FIow. 476
88. QoS Configuration Panelon WSM 482
89. Example Sendmail Configuration. 487
90. Window95 Logon Panel. 493
91. Windows NT Logon Script Message Dialog. 493
92. AIX Fast Connect WSM Panel. o, 494
93. An Example of a Network That Benefits From MPOA 500
94. XKB Server EXtensiont 512
95. Types Of XKB Clients. o e e 514
96. Example of the New Motif Widgets 535
97. The IbXproxy LOQIC. o oo e 553
98. RX Example - aixterm e 556
99. A Newly Installed Documentation Library with No Documents 575
100.Closed Library Tree.o 582
101.0pen Library Tree 583
102.How to Searchthe Library. i 584
103.Documentation Library Search Results. 585
104.Euro Symbol (http://europa.eu.int/euro/html/entry.html) 603
105.UNIVERSAL Input Method: Switching. 619
106.UNIVERSAL Input Method: Character List Selection 620
107.UNIVERSAL Input Method: Character List 621
108.German UTF-8: Add Additional Language Environment. 631
109.German UTF-8: Change/Show Cultural Convention, Lang., or Keyboard633
110.Internal Code Input Method. i 645
111.Phonetic Input Method 645
112.Dayi Input Method 646
113.Array Input Method 646
114.Tsangjye InputMethod i, 647
115.Boshiami InputMethod 647
116.ICU English Locale Example. 650
117.CU French Locale Example e 651
118.Japanese Search FOrm. i e 656
119.Searching Japanese Documentation 657
120.A Japanese Search Result i, 658
121. A Japanese BOOK 659
122.Chinese Search FOrm e 660
123.Input Chinese Character i 661
124.Chinese Searching Result. i 662
125.A Chinese Book for Installation 663
126.Directory Information Tree (DIT)ttt i 667

XVii

2014LOF.fm

Draft Document for Review October 25, 1999 10:31 pm

127.Typical AIX Stand-Alone LDAP Client/Server Configuration. 668
128.Stand-Alone LDAP Directory Server -Details. 671
129.The Idapxcfg Dialog Panel i 681
130.Web-Based Administration GUI 682
131.Directory Management Tool i 683
132.The ikmgui Initial Window 686
133.The ikmgui New Database CreationDialog 686
134.The ikmgui Set Password Dialog, 687
135.The ikmgui Database Dialogc e 688
136.The ikmgui Create New Self-Certificate Dialog. 689
137.The ikmgui with Self Certificate Dialog 690
138.The ikmgui Extract Certificate Dialog 690
139.The ikmgui Client Key Database Dialog 691
140.The ikmgui Add Certificate Dialog. i 692
141.The ikmgui Final Client Key Database Dialog. 692

XViii AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014LOT.fm

Tables

©CoNoGOWDNE

(I
N =)

B WWWWWWWWWWNDNNNNNMNNNMNNNRPRERPRPERERPR
QUOWOUONOUUMSMWNPOOONOODMAWNPOOO~NOOOGA,WDN

Maximum Supported Numberof CPU 37

Maximum Supported Memory Sizes 37

Default and Maximum Values of thewall 48

IPC Identifier LIMitso 49

Per Second Ticksineach Category. 59

Old Priority Algorithm, sched_R and sched D Defaultedto 16......... 62

New Priority Algorithm, sched_R and sched_D Defaultedto 16 62

Old Priority Algorithm, sched R=8....... 63

New Priority Algorithm, sched_R=8........ 63
. Size of Address Space as a Function of Address Length 70
. Address Space LayoutinUserMode 77
. Effective Segment IDs in 32-Bit and 64-BitMode 85
. Old and New Kernel Services Used by Device Drivers.. 98
. Settings for OBJECT_MODE and the Resulting Compiler Behavior. . .. 107
. Alignment of Basic Data Types in 32 and 64-BitMode 110
. Unsupported Real-Time Routines, 120
. Unsupported Optional Threads Interfaces. 121
. A Comparison of crash and kdb Subcommands 151
. A Comparison of lldb and kdbSubcommands 155
. chlvcopy New Options in AIX 4.3.1 i 174
CRactor -t 174
. Limitations of LVMo 177
. New Options for chivcopy Command in AIX4.3 185
. Possible Valuesof Phase Value 242
. Threadsafe Routinesinlibsrc 252
. Settings of reboot_enable Attribute L. 253
. Paging Space Allocation Palicies. 268
. Possible Values of EXISTING_SYSTEM_OVERWRITE. 275
. AlX Leveland Required File Sets 287
. New JFS Related Error Labels 307
. New Dump Loader Data Subcommands 327
. ICMPVG Error Messageso 371
. ICMPvV6 Informational Messages.c i 371
. Applications Ported to IPV6 385
cauotconf6 OptionNso 390
Ltraceroute OptioNSo e 391
NP OPtiONS .« . .o e 392
. ndpd-host Optionso e 393
. RFCs Implemented in AIX Version4.3.0......................... 397
. ifconfig New Flags for Display Interface Information 414

© Copyright IBM Corp. 1999 XiX

2014LOT.fm

XX

41.
42.
43.
44,
45,
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.

Draft Document for Review October 25, 1999 10:31 pm

Ifconfig New Options for Checksum Offload 429
Hook IDs of 10/100 Ethernet PCI Adapter. 435
CacheFS Components. e 439
cfsadmin OptioNS. 441
CacheFS Resource Parameters, 442
fsck_cachefs Options. 443
NIS and NIS+ Differences 449
NIS+ Namespace Administration Commands 450
Where NIS+filesare Stored i 452
Pre-configured NIS+ Tables i, 455
NIS+ Security Levels e 464
NIS+cred TableContent. i 465
XKB Protocol Errors.ot 515
New X11R6 Xlib Functions 518
XIM Module Loading Priorities. 523
New Input Method Values i 526
New Input Context Values i 527
Internal Locale Methods Called for Each Locale 598
Supported Unicode Locales. i 600
Encoding for the European Currency Symbol and Euro Sign 608
List of Locales for Euro Specific LC_MONETARY Locale............ 608
LC_MONETARY Keywords forthe EuroLocale 610
Locale Specific Deviations in the LC_MONETARY Category 611
Keyboard Definitions to Incorporate the Euro Symbol. 613
Existing EBCIDIC Code SetS.ot 622
Converters for Euro Symbol Support. L. 623
Additional Doublebyte Support in Docsearch 652
LDAP-Related RFCS e e 677
X.500-Related RFCSo 677

AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 2014pref.fm

Preface

This redbook focuses on the latest enhancements introduced in AlX Version
4.3 through 4.3.3. It is intended to help system administrators, developers,
and users understand these enhancements and evaluate potential benefits in
their own environments.

AIX Version 4.3 includes many new features, including 64-bit application
support, IP Version 6, X11 Release 6, Lightweight Directory Access Protocol
(LDAP), and improved scaling over a wider range of RS/6000 platforms. The
availability of two new Web-based utilities, Web-based System Manager and
a Web-based Documentation Search Service signal AlX's move towards a
standard unified interface for system tools. There are many other
enhancements available with AlIX Version 4.3, and you can explore them all in
this redbook.

This publication is an update to the previously published AIX Version 4.3
Differences Guide, Second Edition, which focused on the enhancements
introduced in AlX Version 4.3.2. Certain sections of the First Edition and
Second Edition have been removed, or edited as required, to reflect the fact
that the online documentation provided with AlIX Version 4.3 now covers
many of the original topics in sufficient depth.

How this Redbook is Organized

Throughout this publication, each major section heading indicates which level
of AIX 4.3 introduced the enhancement by including the maintenance level in
parentheses. For example, the following section heading:

Multiple Concurrent Reads (4.3.1)

indicates that the feature was introduced in AlX Version 4.3.1. If no
maintenance level is given, then the feature was included in the initial AlX
Version 4.3.0 offering.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization Austin Center.

Atsushi Baba is an I/T specialist at the Distribution Industry Systems
Engineering lab at IBM Japan. Since he joined IBM in 1991, he has worked
mainly as a field engineer for customers in the Travel and Transportation

© Copyright IBM Corp. 1999 XXi

2014pref.fm

Draft Document for Review October 25, 1999 10:23 pm

industry. His area of expertise include database, middleware design, Web
server implementation, and airline systems.

Robert lacopetta works in the IBM Software Support Centre in Sydney,
Australia providing support for almost every AlX related product. After
completing an Engineering degree, he joined IBM just before the RS/6000
was launched in 1990, and has worked with AlX since then. Most of his
career is focused in Support Centre positions. He is an author of A/X Storage
Management, GG24-4484.

Federico Vagnini is an I/T specialist at the Midrange Technical Support in
IBM lItaly. He joined IBM in 1995 and has four years of experience in the AIX
field. He holds an university degree in Electronic Engineering from
Politecnico di Milano. His areas of expertise include TCP/IP networking,
network security, and SP administration. He has been author of the
Understanding and Using the SP Switch, SG24-5161.

The authors of the First Edition are:

Colin Fearnley IBM Johannesburg, South Africa
Andreas Gruber IBM Munich, Germany

John Hance IBM Melbourne, Australia

Kevin Murrell IBM Basingstoke, UK

John Newman IBM Basingstoke, UK

The authors of the Second Edition are:

Richard Cutler IBM Austin, USA

Zhu Li IBM Beijing, China

Armin Olaf Roell IBM Hamburg, Germany

The project that produced this publication was managed by:
Scott Vetter IBM Austin

Thanks to the following people for their invaluable contributions to this
project. Without their help, this publication would have been impossible:

Andre L. Albot IBM Austin
Greg Althaus IBM Austin
Ron Arroyo IBM Austin
David Babbitt IBM Austin
Jim Babka IBM Austin

XXil AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm

Richard Belden IBM Austin
Greg Birgen IBM Austin
Larry Brenner IBM Austin
Luke Browning IBM Austin
Bill Bulko IBM Austin
Chij-Mehn Chang IBM Austin
Daisy Chang IBM Austin
lliese Chelstowski IBM Austin
Julie Craft IBM Austin
Zane Dodson IBM Austin
Frank Dea IBM Austin
John Emmons IBM Austin
Kevin Fought IBM Austin
Stan Gowen IBM Austin
Maggie Gretta IBM Austin
Mark Grubbs IBM Austin
Lon Hall IBM Austin
Emilia Hezari IBM Austin
Dan Hinderliter IBM Austin
Gary Hook IBM Austin
Duen-wen Hsiao IBM Austin
Ida Jackson IBM Austin
Yoji Kumazawa IBM Japan
Joy Latten IBM Austin
Yantian Lu IBM Austin
James Manon IBM Austin
Dave Marquardt IBM Austin
Brandon Mayfield IBM Austin
Gerald McBrearty IBM Austin

2014pref.fm

Mark McConaughy IBM Austin
Dwayne McConnell IBM Austin

XXiii

2014pref.fm

Casey McCreary

Hye-Young McCreary

Bruce Mealey
James Moody
Kumar Nallapati
Steve Nasypany
Chris Nelson
Grover Neuman
Ram Pandiri
Priya Paul
Stephen Peckham
Deanna Quigg
Tony Ramirez
Mark D. Rogers
Ken Rozendal
Ron Saint Pierre
Jim Shaffer

Greg Sharek
Dave Sheffield
Jeff A. Smith

Luc Smolders
Jeanne Sparlin
Stephen Stair
Marc Stephenson
Masato Suzuki
Randy Swanberg
Takayuki Takitani
Andrew Taylor
Marvin Toungate
Arthur Tysor

Basu Vaidyanathan

XXiv AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm

IBM Austin
IBM Austin
IBM Austin
IBM Austin
IBM Austin
IBM Austin
IBM Austin
IBM Austin
IBM Austin
IBM Austin
IBM Austin
IBM Austin
IBM Austin
IBM Austin
IBM Austin
IBM Austin
IBM Austin
IBM Austin
IBM Austin
IBM Austin
IBM Austin
IBM Austin
IBM Austin
IBM Austin
IBM Japan
IBM Austin
IBM Japan
IBM Austin
IBM Austin
IBM Austin
IBM Austin

Draft Document for Review October 25, 1999 10:23 pm 2014pref.fm

Wayne Wheeler IBM Austin
Mike Wortman IBM Austin
Seong Soo Yim IBM Korea
James Young IBM Austin
Dalal Younis IBM Austin

Comments Welcome
Your comments are important to us!
We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

¢ Fax the evaluation form found in “ITSO Redbook Evaluation” on page 729
to the fax number shown on the form.

¢ Use the online evaluation form found at ht t p: // waw. r edbooks. i bm cont

¢ Send your comments in an Internet note to r edbook@s. i bm com

XXV

2014pref.fm Draft Document for Review October 25, 1999 10:23 pm

XXVi AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 9:42 pm 2014hardware.fm

Chapter 1. Hardware Announcements

The following RS/6000 severs and adapters were companion announcements
with AIX Version 4.3.3. AlX is exhaustively tested with every new hardware
enhancement.

1.1 RS/6000 7017 Enterprise Server Model S80

The new RS/6000 7017 Model S80 belongs to the IBM’s high-end enterprise
server family, the S series, that provides the power, capacity, reliability, and
growth capacity to help customers move towards the next generation of
mission-critical commercial computing. The other members of the S series
are the S70 and the S70 Advanced Models.

All S series models are nearly identical in appearance, consisting of a central
electronic complex (CEC) and at least one 1/O rack. In the CEC are located
the CPUs and the central memory, while in the I/O rack are contained the PCI
adapters and the disks. The CEC and I/O units are connected by the Remote
I/0 (RIO) and System Power Control Network (SPCN) cables. A new length
cable is available to help reduce clutter.

The I/O racks may contain one or two 1/O drawers each, up to a maximum of
four drawers per system. The first I/O rack holds the primary I/O drawer,
which contains:

» Service processor

« High-performance disk drive

¢ 32X maximum speed CD-ROM
1.44 MB, 3.5-inch diskette drive
2 PCI Ultra SCSI controllers

Up to three additional I/O drawers can be added. Each drawer provides
fourteen PCI slots across four independent buses. Each drawer may contain
two Ultra SCSI or SSA hot-pluggable disk 6-packs. Existing RS/6000 7015
Model ROO and 7014 Model SO0 racks can also be used for additional storage
and communication drawers.

The Model S80 may be attached to an RS/6000 SP to provide additional
online transaction processing (OLTP) and database capability to the SP
cluster. It may also be configured for high availability using IBM’'s High
Availability Cluster Multi Processing (HACMP) software and redundant
hardware components.

© Copyright IBM Corp. 1999 27

2014hardware.fm Draft Document for Review October 25, 1999 9:42 pm

A Model S80 CEC (left) and one I/O rack is shown in Figure 1.

Figure 1. RS/6000 7017 Model S80

The Model S80 incorporates IBM'’s state-of-the-art copper chip technology to
provide faster, more reliable processors for commercial environments. The
base configuration has a 6-way copper technology 450 MHz RS64-111 64 bit
processor card. Each processor has 8 MB of L2 cache. Minimum system
memory is 2 GB of SDRAM. Cache and system memory is capable of
single-bit error correction and double-bit error detection (ECC).

A 6-way system can be expanded to a 12-, 18- or 24-way, with additional
processor cards, containing six more processors each. Memory can be
increased to 64 GB.

28 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 9:42 pm 2014hardware.fm

A fully configured system consists of:

e 24 processors

64 GB of system memory

53 available PCI adapter slots

48 hot-pluggable disk bays

7 available media bays.

The PCI adapters may be used for a wide range of communications and
storage subsystems. Supported communications adapters include Gigabit
Ethernet, 10/100 Mbps Ethernet, standard Ethernet, token ring,
asynchronous transfer mode (ATM) and fiber distributed data interface
(FDDI). Storage device protocols include Ultra SCSI, SSA, and fiber channel
arbitrated loop (FCAL).

The Model S80 is shipped and delivered with internal adapters and devices
already installed and configured. System power supplies are designed for
maximum configurations. The Model S80 requires AIX Version 4.3.3 or later,
which comes with every system ordered and which can be preinstalled, if
desired.

1.2 RS/6000 7046 Model B50

The IBM RS/6000 7046 Model B50 is a rack mounted server offered at an
affordable price. It enables high-density packaging of a variety of applications
for the Internet and corporate intranets with a very small footprint, allowing up
to 20 servers in one 19-inch rack.

The Model B50 is a uniprocessor system that provides enhanced
performance by using a 375 MHz PowerPC 604e processor and an enhanced
memory controller. With this memory controller, the Model B50 uses SDRAM
memory and has an 83 MHz memory bus speed.

The Model B50 is shown in Figure 2.

Hardware Announcements 29

2014hardware.fm

Draft Document for Review October 25, 1999 9:42 pm

Figure 2. RS/6000 7046 Model B50

The key features of the Model B50 are:

375 MHz PowerPC 604e processor

1 MB L2 cache

128 MB to 1 GB ECC SDRAM memory using four memory slots
Integrated 10/100 Mbps Ethernet controller (IEEE 802.3 compliant)
Integrated Ultra SCSI controller

Two 33 MHz PCI slots, one long and one half size

Four bays. The two media bays are used by the 1.44 MB 3.5-inch diskette
drive and the 32X max speed CD-ROM, and there are two disk bays that
can be filled with 9.1 GB or 18.2 GB Ultra SCSI disks

The GXT130 2D graphics adapter may be optionally installed

Rack mountable format

For the operating system, the customer can specify to have AlX Version 4.3.3
installed by default, or obtain from the Web the Linux operating system.

1.3 Token Ring PCIl Adapter 4/16 Mbps (#4959, 4.3.3)

The IBM Token Ring PCI Adapter for the RS/6000 is a single slot, short,
32-bit, PCIl adapter supporting 4 and 16 Mbps data rates, in either half-duplex
or full-duplex mode. Automatic ring-speed selection prevents wrong speed
insertion into the ring, even when connected to speed sensing hubs.

30

This adapter operates with either unshielded twisted pair (UTP) Cat. 5 cable
with RJ-45 connectors or shielded twisted pair (STP) Type 1A cabling with
9-pin D-shell connectors. The adapter provides network boot capability.
Diagnostic support has also been provided. The PCI Token Ring device driver

AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 9:42 pm 2014hardware.fm

is shipped in the devices.pci.14103e00 fileset. This adapter provides the
following:

e Can be obtained by specifying feature code 4959

< Autodetects connection types at all speeds

« Meets PCI 2.1 specification

* Fits in PCI Half size slots

e Operates in 64 bit PCI slots in 32 bit mode

e Operates at PCl bus speed from 16 MHz to 33 MHz
« Supports full duplex LAN operation at all speeds

e Consumes less than 2 W of power

 Includes adapter and ring status LEDs

e Supports field update of FLASH EEPROM

« Offers on card diagnostics in microcode

¢ Is FCC Class B and CISPR Class B certified for STP and UTP cabling

e Supports NIM installations

1.4 Dual Channel Ultra2 SCSI Adapter (#6205)

The PCI Dual Channel Ultra2 SCSI adapter is a 64-bit adapter and is an
excellent solution for high performance SCSI applications. It provides two
SCSI channels, each of them can either be internal or external and it supports
a data rate of up to 80 MBY/s, twice the maximum data transfer rate of
previous Ultra SCSI adapters.

In order to achieve an Ultra2 SCSI bus data rate of up to 80 MB/s and also
maintain a reasonable drive distance, the adapter utilizes Low Voltage
Differential (LVD) drivers and receivers. In order to utilize this performance,
all attaching devices or subsystems must also be Ultra2 LVD devices. If any
device is not Ultra2 LVD, the adapter switches its SCSI bus to single-ended
(SE) performance and its interface at the lower SE SCSI bus data rate of the
device.

Two industry standard very high density cable interconnect (VHDCI) 68-pin
connectors are mounted on the adapter's end bracket allowing attachment of
various LVD and SE external subsystems. When using LVD drivers and
receivers, drive distance from adapter may be up to 20 meters.

Hardware Announcements 31

2014hardware.fm Draft Document for Review October 25, 1999 9:42 pm

Any supported RS/6000 system can be set up to boot from the PCI Dual
Channel Ultra2 SCSI Adapter. Running AlX 4.3.3 or later software, the boot
support is part of AIX software. If the system uses previous AlX version, the
operating system must be loaded the first time using Network Install Manager
(NIM); the following boots will be made from the disk.

1.5 PCI 3-Channel Ultra2 SCSI RAID Adapter (#2494)

The RS/6000 PCI 3-Channel Ultra2 SCSI RAID Adapter (#2494) is a non
bootable high-performance Ultra2 SCSI RAID Adapter providing RAID 0, 1 or
5 capability and can address up to forty five 16 bit SCSI2 physical disk drives
on three independent SCSI buses. This adapter has one internal and two
external independent Ultra2 SCSI buses. This adapter also supports
connectivity to Ultra2 LVD devices.

Upgrading an existing PCI 3-Channel Ultra SCSI Adapter to the later version
PCI 3-Channel Ultra2 SCSI RAID adapter is also available.

1.6 GXT130P Graphics Accelerator (#2830)

32

GXT130P Graphics Accelerator is an entry 2D graphics adapter that has
been previously. AIX 4.3.3 introduces support for the adapter on following
additional RS/6000 system models:

e 7013 Models S70 and S7A
e 7015 Models S70 and S7A
e 7017 Models S70 and S7A
e 7026 Models H10, H50, and H70

AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 2014kernel.fm

Chapter 2. AIX Kernel Enhancements

This chapter examines the changes in the AIX base kernel that are new with
AIX Version 4.3.

2.1 Binary Compatibility

The AIX architecture and development teams place a very high priority on
ensuring that binary compatibility exists for customers who want to migrate
their applications the latest versions of AIX. The following sections explain
the extent of this compatibility and the few areas where problems may arise.

2.1.1 Compatibility between AIX Version 4 Releases

Applications written using earlier releases of AlX Version 4 (Release 1 or
Release 2) for RS/6000 POWER, POWER2, POWER3, and PowerPC-based
models, can be executed on AIX Version 4 Release 3 without recompilation
for the same and newer models in that processor family (POWER, POWER?2,
POWERS3, or PowerPC). The exceptions to this statement are applications
using:

* Non-shared compiles of AIX shared libraries

« Features explicitly described as non-portable by IBM in the AIX Version 4
reference manuals

¢ Undocumented AIX internal features
¢ X11R5 server extensions (AlIX Version 4.3 Only)

e Applications compiled using POWER2-, POWER3-, or PowerPC-specific
compiler options but executed on models other than POWER2, POWER3,
or PowerPC.

Note: Applications compiled on a given release level of AlIX Version 4 may
not operate properly on systems running an earlier release of AIX Version 4.

Any program intended to run in all environments, POWER, POWER?2,
POWER3, and PowerPC (601 and newer PowerPC processors), must be
compiled using the common mode option of the compiler. Programs compiled
to exploit POWERZ2 technology must be run on POWER2-based processors.
Programs compiled to exploit POWER3 technology must be run on
POWER3-based processors. Programs compiled to exploit PowerPC-based
technology must be run on PowerPC-based processors. Existing binaries do
not need to be recompiled to operate on the target processors.

© Copyright IBM Corp. 1999 33

2014kernel.fm

Draft Document for Review October 25, 1999 10:23 pm

64-bit applications produced using AlX Version 4 Release 3 on any of the
32-bit processor models, or the 64-bit processor models, will execute without
recompilation on the 64-bit processor models. 32-bit applications produced
using AlIX Version 4 Release 3 on either 32- or 64-bit processor models will
execute without recompilation on both models.

2.1.2 X11 Compatibility

The AIX 4.3 X-server has been upgraded to the X Consortium Release 6
version of X (commonly known as X11R6). The libraries shipped by IBM with
X11R6 are backward-compatible, and the client applications that access
these libraries will work as on previous releases of AIX. As on earlier releases
of AIX, IBM will also ship X11R3, X11R4, and X11R5 compatibility installation
options for maximum customer flexibility. In this way, client applications will
experience no problems with compatibility.

The majority of applications using X fall into this category and will not have
any difficulties. However, a small number of X applications use the loadable
extension facility provided by the X server.

The X-server allows for the addition of new function through its extension
mechanism. For each extension, part of the extension is loaded into the
X-server before it can be executed. X11R6 has modified this mechanism, and
it is this part of the extension that must be made compatible with X11R6 to
execute properly. All extensions supplied by IBM have been made compatible
and will execute properly. In some circumstances, a customer may have an
extension that will not work with X11R6, such as:

e Customers who have sample extensions downloaded from the X
Consortium FTP site.

e Customers who have developed their own extensions.

e Customers using third-party extensions.

In these cases, the extensions must be made compatible with X11R6 before
they will execute properly. Customer-developed extensions and sample X
consortium extensions will need to be recompiled with the X11R6
environment. For third-party extensions, the customer should contact the
vendor for a X11R6-compatible update.

Customers using non-IBM display adapters may also be using
vendor-supplied software specific to those devices that use X-server
capabilities. If so, this software must be made compatible with X11R6 to
operate properly. The customer should contact the vendor of the display
adapter for this software.

34 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 2014kernel.fm

IBM provides a porting guide with AIX Version 4.3 that also appears on The
Developers Connection CD to assist customers and vendors developing
adapters or extensions for AlX. The Developers Connection can be found at
the following URL:

http://ww. devel oper.ibm conf devcon/

2.1.3 AIX Version 3 Application Compatibility

All AIX applications correctly written using AIX Version 3 Release 2 or greater
for POWER, POWERZ2, and PowerPC-based models will run on AIX Version 4
without recompilation for the same models. Exceptions are applications that
use:

* Their own loadable kernel extensions

e Certain High Function Terminal (HFT) control interfaces

X11R3 input device interfaces
The CIO LAN device driver interface

SCSI device configuration methods (IHVS)

The nlist() interface
e DCE threads

Other exceptions include applications compiled using POWER?2 or
PowerPC-specific compiler options that run on models other than POWER2
or PowerPC.

Any program designed to run in all environments, that is, POWER, POWER2
and PowerPC (601 and above), must be compiled using the common mode
option of the compiler. Programs compiled to exploit POWER2 technology
must be run on POWERZ2-based processors. Programs compiled to exploit
PowerPC-based technology must be run on PowerPC-based processors.
Existing code does not need to be recompiled to run.

Note: Applications created on a system using AlX Version 4 may not function
properly on a system using AlIX Version 3.

For these statements to apply, applications must have been created using the
AIX shared libraries.

AIX Kernel Enhancements 35

2014kernel.fm Draft Document for Review October 25, 1999 10:23 pm

2.1.4 Client/Server Application Compatibility

An RS/6000 system using AlX Version 3 Release 2 or greater can operate as
a server system for client machines using AIX Version 4 with the following
exceptions:

 Service of Version 4 diskless/dataless machines
» Network install of Version 4 clients

» Service SNA or X.25 to Version 4 clients

» Service HCON to Version 4 clients

¢ Service CGE extensions of PEX and PEX-PHIGS

Use of AIX Version 4 client install formats

An AlX system using AlX Version 4 may operate as a server system for client
machines using AlX Version 3 Release 2 or greater as long as the proper
compatibility options are installed. All statements about binary compatibility
apply in this case. Version 4 applications may not execute properly on
Version 3 systems using remote network mounts of file systems.

In both cases, minor administrative changes must be made to the AIX Version
3 systems to support the new AlIX Version 4 LFT terminal type.

2.1.5 IBM Licensed Program Products Compatibility

There are hundreds of Licensed Program Products (LPP) available for AIX
Version 4. IBM LPPs currently sold for AIX Version 4 Release 1 or Release 2
will operate without change on AlX Version 4 Release 3 with certain
exceptions, such as newer versions or releases of a product being available.
For information about a specific LPP can be found at the following URL.

http://ww. i bm con servers/aix/products/ibmw

This site contains information about latest LPP version levels, support, and
AlX release compatibility.

For AIX systems using AlX Version 3 Release 2 or greater needing to migrate
to AIX Version 4, the publication A Holistic Approach to AlX V4 Migration,
Planning Guide, SG24-4651, contains information about LPPs and AIX
release compatibility.

36 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 2014kernel.fm

2.2 AIX 4.3 for 24-Way SMP Performance (4.3.3)

AIX Version 4.3 has evolved to provide better scalability and increased
performance. Certain kernel areas identified by the AIX performance team
were investigated, tuned, and redesigned, when necessary, to eliminate
situations that impede SMP performance.

SMP support is enhanced to support up to 24-way processor configurations in
AIX 4.3.3. A list of AIX versions and their supported number of CPUs are
provided in Table 1.

Table 1. Maximum Supported Number of CPU

AlX Version Maximum CPUs supported
AIX4.1.5 8 CPU

AIX 4.3.0 12 CPU

AIX 4.3.3 24 CPU

2.3 64 GB Real Memory Support (4.3.3)

AIX now supports up to 64 GB of real memory and has been enabled to
support larger memory sizes as hardware grows in capacity.

Common Hardware Reference Platform (CHRP) and later RS/6000 Platform
Architecture (RPA) are the system architecture bases for systems with large
physical memory or any memory above 32-bit real addresses. A list of AlX
versions and their supported maximum memories are provided in Table 2.

Table 2. Maximum Supported Memory Sizes

AlX Version Maximum memory supported
AIX 4.1.5 2GB

AlX4.2.1 4 GB

AIX 4.3.0 16 GB

AlX 4.3.2 32GB

AIX 4.3.3 64 GB

AIX Kernel Enhancements 37

2014kernel.fm Draft Document for Review October 25, 1999 10:23 pm

2.4 Real Memory Driver Design (4.3.3)

A new driver /dev/ipmem has been added in AlX 4.3.3 to access real memory.
It is a requirement for the new command kdb in order to support VMM
debugging and to read memory without interfering with VMM. Only a root user
is allowed to access the driver and this access is limited to read-only mode.

The /dev/ipmem special file provides access to the real memory address
space, as it is seen by the kernel. The seek offset, set by the Iseek()
subroutine, is used to specify the real address targeted for the read. Only the
open(), close(), read(), and readx() subroutines are supported. Before issuing
a read operation, the Iseek() subroutine must be used to designate the
relevant starting address in real memory.

The Iseek() subroutine limits the offset to OFF_MAX (2 GB). The llseek() and
Iseek64() subroutine limits the offset to DEV_OFF_MAX (1 TB). If the address
is within the first terabyte of real memory, then the read() subroutine call can
be used. If memory addresses higher than 1 TB are to be accessed, the
readx() form of the subroutine call must be used. In this case, the ext
(extension) parameter must be set to specify which terabyte range of real
memory is referenced. This causes the Iseek offset to be interpreted relative
to this terabyte range of real memory. No more than 264 bytes of real memory
can be accessed.

2.5 Lock-Based Dumping

In AIX Version 4.1 and 4.2, the AIX dump routines always dumped the same
data areas. This generic policy meant that certain key data areas were kept

out of system dumps because their inclusion would greatly increase the size
of the dump. For AlX Version 4.3, dump routines have been added that gather
additional information for inclusion in a dump (based on the status of certain
locks or flags in the kernel) when the system dump is initiated.

If a lock protecting a structure is held at the time of the dump, then almost
certainly, that structure must have been in the process of being updated and
should be included in the dump. The primary area where this information is of
use is in the Virtual Memory Manager (VMM).

With these additional routines, the need to inconvenience customers with
debug kernels or reproduce the problem on test systems with the kernel
debugger is greatly reduced.

38 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 2014kernel.fm

2.5.1 Dump Support

In AIX Version 4.3 you can use the dunp interface, through a dump table, to
dump specified memory using a real address without requiring the real
address to have virtual address mapping.

To support dumping real memory using a real address, a new data structure
and a new magic number (DMP_MAA C REAL) has been defined. The following
are modified to check for the magic number and handle the new table format:

* savecore.c

e copydump.c

savecore() and copycore() check for both DMP_MAGIC and
DMP_MAGIC_REAL and are able to process either of the dump table
formats.

When displaying the data for a dump table, crash and dnpf mt use an address
format that distinguishes real addresses from virtual addresses. A real
address can be entered on a crash subcommand as r.address. For example:

> od r: 10012

When dunp is initialized, it allocates one page from the pinned heap. It also
gets the real address for this page. When dumping memory referenced by a
virtual address, dump will perform the following steps for each page (or page
segment) to be copied:

1. Turn data translation off

2. Copy the data to the buffer at the real address
3. Turn data translation back on

4. Dump the data

This process retrieves the data in real mode while calling the device driver
code in virtual mode.

Note: Only one page will be dumped at a time.

2.5.2 Programming Interface

The external dump interfaces are found in /usr/include/sys/dump.h, and new
structures have been defined in this file. In the dumpinfo structure, dm_hostip
becomes _ ulong32_t. The structures dump_read and dumpio_stat are
defined for the kernel and extensions only.

AIX Kernel Enhancements 39

2014kernel.fm Draft Document for Review October 25, 1999 10:23 pm

2.6 Bad Block Relocation during System Dump (4.3.1)

In previous versions of AlX, if the LVM detected a bad block and received an
I/0 error while processing a system dump, the dump was ended if no
secondary dump device was available. In AIX Version 4.3.1, the LVM will now
try to relocate the bad block so that processing of the system dump can
continue and information is not lost.

2.7 Kernel Protection

Memory overlays are extremely destructive and, in certain cases, can destroy
the kernel’s ability to respond to interrupts, making it impossible to obtain a
dump. A destructive overlay can be caught when it occurs if the kernel code
is protected from overwrites. The AIX kernel has therefore been enhanced to
provide some protection against these types of errors. The first page of
memory is how protected from writes by setting page protection bits in virtual
page tables. A similar scheme has been implemented for other pages in the
kernel that contain nothing but code (since code should never be altered).
Any attempt to overlay protected pages now results in dumps that point
directly to the program that tried to do the overwriting. This cuts out the most
expensive and time-consuming part of memory overlay debugging for a large
number of overlay cases.

For kernel text, enough symbol information has been added to the kernel
space so that the kernel text is protected during system initialization. Note
that pages containing a mixture of data and text, or data only, cannot be
protected, so some kernel text remains writable.

Kernel extension text areas are optionally protected. A run-time check
enables the system loader to protect kernel extension text areas. If xmdbg is
set by the bosdebug or bosboot commands, text pages are protected at kernel
extension load time. Pages that share text and data are not protected.

Note: This change has impacted kernel and kernel extension code that
attempts to modify text. Self-modifying kernel extensions will cause the
system to crash unless those extensions also modify the protection of the text
pages.

This design protects as many pages in the kernel space as is practical
without extensive kernel modifications or increasing the working set needed
to run the kernel.

40 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 2014kernel.fm

2.7.1 Storage Protection Macro

The STORE_PROTECT macro has been added to store-protect whole pages
that reside between two symbols (x and y). This macro is defined as follows:

#def i ne STGRE_PROTECT(x,y) if (STARTGFPAGE(y) > NEXTPAGH(x)) \
vm pr ot ect (NEXTPAGH x) , STARTCFPACGE(y) - NEXTPAGE(x) , RDANLY)

The STORE_PROTECT macro has the effect of protecting all pages starting
with the next page boundary beyond x to the last page boundary before vy.
This macro is used during system initialization for the various regions in the
kernel and conditionally by the loader during kernel extension load time.

During system initialization, k_protect() is called to protect the regions
marked by the bind steps. k_protect() is called from main() in the following

sequence:

debugger init(); /* start the kernel debugger */
kmeminit(); /* initialize kernel nenory heaps */
k_protect(); /* store protect kernel text areas */
strtdisp(); /* start up the dispatcher */

When called, k_protect() does the following:

e Store protects low.o areas, at least the first three pages
e Store protects pinned text sub binds
e Store protects paged text sub binds

2.7.2 Debug Modifications

Since the debugger cannot store to some areas in virtual mode due to kernel
protection, the debugger has been altered so that all stores to virtual memory
addresses are first translated and then performed in real mode. This
operation is transparent to the debug user. It requires a modification to the
get_put_data_aligned() routine so that virtual operations are translated and
performed in real mode. 1/O space has not been affected.

2.7.3 Stack Overflow Protection

A stack overflow detection mechanism has been implemented. i_poll() and
i_poll_soft() check the MST save-area located lower in memory to see if the
csa_prev values, that would be used if the interrupt is interrupted, are valid. If
this location contains incorrect data, it is repaired if possible, and the code
logs an error.

AIX Kernel Enhancements 41

2014kernel.fm Draft Document for Review October 25, 1999 10:23 pm

2.8 SMP TTY Handling

Currently on J30 and J40 SMP systems equipped with 128-port adapters,
when the system is under load, CPU 0 spends a great deal of time off-level
polling the various 128-port adapters for incoming events.

To alleviate this problem, instead of CPU 0 being used as a timer handler, the
load has been passed to other CPUs that are available, thereby improving the
overall SMP performance.

2.9 Faster Per-Thread Data

In previous versions of AlX, all threads shared an identical address space.
When per-thread data needed to be accessed, a fairly expensive lookup had
to be performed by the get_thread_specific() routine.

In a non-threaded version of the OpenGL API (which is very call intensive),
tests show that you can expect to spend roughly 150 cycles per call (on
average) in a routine. Using the existing get-thread-specific() routine would
add approximately 70 cycles (or 50 percent overhead) to enable a
multithreaded OpenGL API. A much faster mechanism to access per-thread
data for 32-bit systems is therefore required. For 32-bit systems, a separate
segment O for each processor is now provided. This segment contains a page
of thread-specific data that is modified as each thread is swapped in. Faster
access to private memory should also provide benefits to the thread libraries.

2.10 Expanded Limits on Open Files (4.3.1)

In previous versions of AlX, a single process was limited to a maximum of
2000 open files at any one time. There was also a total system-wide limit of
200,000 open files. This number was entirely arbitrary, and although it was
perfectly adequate for most processes, it was not enough for some. AlX
Version 4.3.1 increases these limits to the following.

¢ Maximum of 1,048,576 open files system wide.

« Maximum of 32,767 open files per process.

The maximum number of file descriptors per process is defined by the
constant OPEN_MAX. In AIX 4.3.1itis 32767.

However, this change can create certain compatibility problems with
programs that were compiled with the old OPEN_MAX value of 2000. So
there must be a way to enforce the old OPEN_MAX value for existing

42 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 2014kernel.fm

programs, yet allow new programs to exploit the new capability. This has
been done with the existing resource limit functions. There was already a limit
for number of available file descriptors, but it has always been set to
RLIM_INFINITY. In AIX 4.3.1, the setrlimit() and getrlimit() system calls can
be used to maintain specific values for RLIMIT_NOFILE. By default, the soft
limit will be the old value of OPEN_MAX, 2000. The default and maximum
hard limit will be the new OPEN_MAX value, 32767. With these limits,
everything should continue to work as before with no user intervention. If a
user increases the soft limit, then programs written to exploit the increased
table size can be used.

In addition to the system calls for managing limits, the user can change their
limit for number of file descriptors with the ulimt -n command. Because the
hard limit is set to OPEN_MAX, any user can increase the limit. Privileged
access is not required.

2.11 Multiple Concurrent JFS Reads (4.3.1)

AlX uses a simple lock type to serialize access to the in-core inode of a file or
directory on a JFS. This is to ensure data integrity, particularly on MP
systems, where multiple threads can be accessing an inode simultaneously.
When reading a file, the lock is used to serialize updates to the last access
time stamp in the inode. This lock has been identified as a potential
performance bottleneck in the situation where multiple threads are attempting
to read the same file, particularly when migrating from UP to MP systems.

This type of problem affects customers who use databases on a JFS and do
not have a choice because their database application does not support raw
partitions. Examples include Progress, and Universe, to name two. There are
also some large customers who use a JFS for their databases.

The problem stems from the length of time the lock is held. A thread would
obtain the lock and then initiate the I/O to read the required data before
updating the access time field in the inode and releasing the lock. During this
time, other threads would be blocked from accessing the file.

To alleviate this problem, AIX 4.3.1 has changed the mechanism for reads
from a JFS to minimize the length of time the inode lock is held by a thread.

When only one thread is reading a file, no change has been made. The
reading thread obtains the inode lock and sets a flag in the inode to indicate
that a read operation is in place. When the I/O for the read is complete, the
thread updates the access time field in the inode and releases the lock.

AIX Kernel Enhancements 43

2014kernel.fm

Draft Document for Review October 25, 1999 10:23 pm

When a thread attempts to get the inode lock and determines that a read is in
progress, instead of blocking on the inode lock, it calls a kernel service to
pre-read the data it requires. Once the pre-read has completed, the thread
will attempt to obtain the inode lock to update the access time field. This
solution reduces the amount of time a thread is required to hold the inode
lock when performing a read operation, therefore allowing greater throughput
on multiple concurrent reads.

If a thread attempting to read from a file cannot get the inode lock and there is
a write operation in progress, then the thread blocks on the lock waiting for
the write operation to complete.

2.12 Increase in the Upper Limit of Trace Buffer (4.3.1)

The current upper limit for a trace buffer produced by the trace command with
-T option is around 55 MB on SMP systems. This only allows a few seconds
of a performance benchmark execution to be recorded. As a consequence,
only a fraction of the data needed can be collected, since the benchmarks
can take up to several minutes.

For AIX Version 4.3.1, the upper limit is increased to the size of a segment
and two segments when double buffering is used or as close to that as
possible, allowing the amount of information collected to be more complete
and useful.

2.13 Kernel

Scaling Enhancements

With increasing demands being placed on machines acting as busy network
servers, it is possible that in certain situations some kernel resources may
become exhausted. As machines supporting larger amounts of physical
memory, adapters, and devices are introduced, it makes sense for the kernel
to be able to use larger resource pools when required. Therefore, the crash
utility, used for examining system images and the running kernel, is enhanced
to understand the new increased system resources.

The following sections describe the major enhancements.

2.13.1 Network Memory Buffer Pool (4.3.2)

The kernel allocates memory from the network memory buffer pool,
commonly called the mbuf pool, to be used as buffers by the networking
subsystem. The size of the mbuf pool is a tunable parameter and is changed
using the thewal | option of the no command.

44 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 2014kernel.fm

2.13.1.1 Network Memory Buffer Pool Size Increase

The maximum size of the mbuf pool is now hardware dependent. Previous
versions of AIX allocated the mbuf pool from the kernel heap. AlX 4.3.2 now
uses a dedicated memory segment for the mbuf pool on most machines, and
four contiguous memory segments on CHRP machines. This allows a
maximum mbuf pool of 256 MB on most machines and 1 GB on CHRP
hardware. The kernel will allocate an amount of virtual memory equal to one
half the amount of physical memory, or the maximum value allowed for the
hardware type, whichever is smaller. For example, on a machine with 128 MB
of memory, the default value of thewal | will be 64 MB. On a CHRP machine
with 16 GB of memory, the default value will be 1 GB.

The larger mbuf pool will allow greater network throughput on large SMP
systems.

2.13.1.2 Network Memory Buffer Pool Allocation Algorithm

The algorithm used by the net_malloc kernel service for allocating buffers of
various sizes has been changed. The high-water marks for various buffer
sizes have been increased, particularly the 2 KB size used by the Ethernet
and token ring device drivers.

Requests for memory buffers between 16 KB and 128 KB are now rounded to
the nearest power of 2. Allocations in this range were rounded to the nearest
page size on prior versions of AIX. This change reduces the number of
different sizes of buffers available, which in turn reduces the number of free
lists the algorithm is required to manage.

The method used by net_malloc to maintain free list information has been
changed. On prior versions of AlIX, each CPU maintained a free list for each
different size of buffer. There is now one central free list for each buffer size
between 16 KB and 128 KB in size. Each CPU still maintains a free list for
each of the smaller buffer sizes. This change minimizes the amount of
memory used by unallocated large buffers, while at the same time still
allowing each CPU to maintain a list of smaller buffers for faster allocation.

2.13.1.3 Network Memory Buffer Pool Statistics

The kernel maintains usage statistics for the buffers allocated from the
network memory buffer pool. The information contains details of the number
of buffers of each size, and for each size, information on the number of
buffers in use and the number of failed requests. This information can be
displayed using the netstat -mcommand. In addition to maintaining
information indexed by buffer size, the kernel also maintains information
indexed by the purpose the buffer is being used for. The type indexed

AIX Kernel Enhancements 45

2014kernel.fm

Draft Document for Review October 25, 1999 10:23 pm

information can be difficult to maintain, so AlX Version 4.3.2 has introduced a
method to disable it.

The new extendednetstats network variable, which is altered using the no
command, determines whether the by-type statistical information should be
collected by the kernel. The variable has a default value of 1, which means
that the kernel will collect the information. In order to improve networking
performance, the default AIX installation disables collection of this
information by changing the value of extendednetstats to 0. This is performed
in the file /etc/rc.net that is run during system start up. If you want to view the
by-type statistics, you should comment out the section of /etc/rc.net that
changes the value of extendednetstats.

The following fragment is from the end of the file and appears as:

This disabl es extended netstat statistics for perfornance
reasons. To have extended netstat statistics enabled on
future reboots, coment out the follow ng three |ines.

if [-f /fusr/sbin/no] ; then
/usr/sbin/no -o extendednetstats=0 >>/dev/null 2>&1
fi

The information collected when extendednetstats is set to a value of 1 is
displayed near the end of the output produced by the netstat -mcommand.
An example of the output is shown as followings.

netstat -m

61 nbufs in use:

32 nbuf cluster pages in use

143 Kbytes all ocated to nbufs

0 requests for nbufs denied

0 calls to protocol drain routines

0 sockets not created because sockthresh was reached

Kernel malloc statistics:

kkkkkkk (P Q *R*kkkk

By size i nuse calls failed free hiwat freed
32 201 749 0 55 640 0
64 98 325 0 30 320 0
128 61 257 0 35 160 0
256 135 7324 0 25 384 0
512 110 937 0 2 40 0
1024 35 276 0 5 100 0
2048 0 482 0 6 100 0
4096 34 68 0 2 120 0
16384 1 1 0 18 24 7
32768 1 1 0 0 511 0
By type i nuse calls failed menuse nemax mapb

nbuf 61 6952 0 15616 21760 0

ncl uster 32 1123 0 131072 141312 0

46 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 2014kernel.fm

socket 212 1034 0 76480 77536 0
pch 77 457 0 14144 14400 0
rout et bl 19 21 0 3008 3648 0
fragtbl 0 132 0 0 32 0
i faddr 6 6 0 1472 1472 0
nbl k 23 196 0 4992 5504 0
nbl kdat a 2 125 0 512 2816 0
strhead 11 19 0 3232 3680 0
st rqueue 18 38 0 9216 10752 0
st r modsw 22 22 0 1408 1408 0
strosr 0 17 0 0 256 0
strsyncq 26 88 0 2752 3200 0
streans 138 153 0 15520 16096 0
file 1 1 0 128 128 0
kernel table 14 14 0 50016 50016 0
| ocki ng 3 3 0 384 384 0
tenp 9 15 0 5568 10112 0
ncast opts 0 2 0 0 128 0
nctast addrs 2 2 0 128 128 0

Streans nblk statistic failures:
0 high priority nblk failures

O nediumpriority nblk failures
O low priority nblk failures

#

When extendednetstats is set to a value of 0, the by-type information is not
displayed.

2.13.2 Expanded Kernel Heap (4.3.2)

AIX Version 4.3.2 has added a dedicated memory segment for the kernel
heap. The kernel heap is a general memory allocation area and is used to
store the dynamic data structures created and used by the kernel, kernel
extensions, and device drivers.

This enhancement has increased the maximum size of the heap by an
additional 256 MB. The kernel heap was previously located in the upper part
of segment 0 that was not used for kernel text pages. The maximum size of
the heap depended on the size of the kernel image that was running. The
original location is now used as an overflow buffer and is only used if the
dedicated 256 MB kernel heap segment becomes exhausted.

2.13.3 Network Water Marks Scaling with thewall (4.3.3)

The network memory allocator (net_malloc) is based on the 4.3 BSD UNIX
general purpose memory allocator. It was designed before machines with
gigabytes of memory were available and little improvements were introduced
since the original design.

In brief, net_malloc is a power of 2 memory allocator and has a set of
buckets, each of size 2". There is a set of these buckets for each CPU in the

AIX Kernel Enhancements 47

2014kernel.fm

Draft Document for Review October 25, 1999 10:23 pm

system. Each of these buckets maintains of list of free memory pieces of the
specific size. This bucket structure has a high water mark: when the length of
the bucket free list is greater than the bucket high water mark, net_malloc
attempts to return memory from the bucket free list to the system by
coalescing and unpinning pages. When the high water mark is set too low for
a particular workload, net_malloc may spend much time coalescing and
unpinning free memory, only to pin the memory again a short time later.

The network memory allocator also has a low water mark for the
MAXALLOCSAVE (16384 bytes) sized buckets. When net_malloc detects
shortages in buckets of size less than MAXALLOCSAVE, it attempts to steal
memory from buckets whose size is between PAGESIZE (4096 bytes) and
MAXALLOCSAVE. By keeping a low water mark for the MAXALLOCSAVE
sized buckets, net_malloc ensures there is always memory available to be
divided into smaller pieces when necessary. This low water mark is
maintained by the netm thread and if we run low on MAXALLOCSAVE sized
buffers on some CPU it may take some time before the thread gets around to
replenishing the MAXALLOCSAVE bucket on that CPU.

Water marks have been tuned for some of the buckets, but this tuning is static
and does not scale with thewall, which is the maximum amount of memory, in
kilobytes, that net_malloc is allowed to pin.

The default (and maximum) value of thewall is represented in Table 3:

Table 3. Default and Maximum Values of thewall

Platform Maximum (and default) thewall value

CHRP

real memory sizep

Min %1.048576; 5048 H

non CHRP

real memory sizer]

Min %62144 : SOA8 H

Starting from AlIX 4.3.3 the two watermarks are set according to the default
value of thewall parameter, that is the physical amount of memory installed,
when the machine boots. In this way, systems with large amounts of memory
experience fewer dropped packets and fewer dropped connections, causing
the system to handle fewer retransmissions.

48 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 2014kernel.fm

This new feature causes the network memory allocator subsystem to have
more pinned pages on its free lists. However, this is the trade off of memory
against CPU time. By having more memory available on free lists, the are two
advantages:

* Less CPU time is spent in the main code paths pinning pages

* Less CPU time is spent processing dropped packets and retransmissions

2.13.4 Larger Pipe Buffer Pool (4.3.2)

The increased size of the kernel heap means that more space can be used
for pipe buffers by the kernel, therefore increasing the number of
simultaneously open pipes. As with the mbuf pool, the amount of kernel
virtual memory reserved for the pipe buffer pool depends on the total amount
of physical memory. The system will allocate an amount of virtual memory
equivalent to one eighth of the physical memory, or 64 MB, whichever is
smaller, with a minimum allocation of 16 MB. Of the memory reserved for use
as pipe buffers, 1 MB is pinned in physical memory for faster initial buffer
allocation. The size of each individual pipe buffer remains the same as on
previous versions of AlX, at 4 KB.

2.13.5 Inter-Process Communication Identifier Enhancement (4.3.2)

The limits of the maximum number of IPC identifiers have been increased, as
provided in Table 4.

Table 4. IPC Identifier Limits

Value Previous Limit New Limit
Message queue IDs 4096 131072
Semaphore set IDs 4096 131072
Shared memory IDs 4096 131072

In addition to increasing the number of identifiers available, AIX Version 4.3.2
has also implemented a new algorithm to handle the ipcget() routine.

The previous implementation used a sequential search algorithm for
traversing the list of IPC identifiers. For a table size of N, the algorithm
resulted in N operations for a search miss and N/2 operations for a search hit.
Although this is very simple, it does not scale very well. The algorithm has
been replaced with a hash table implementation that is better matched to the
larger number of IPC identifiers now available.

AIX Kernel Enhancements 49

2014kernel.fm

2.13.6 Boot

Draft Document for Review October 25, 1999 10:23 pm

The IPC support commands, such as i pcrmand i pcs, have also been
changed to take account of the increased limits.

Logical Volume Scaling (4.3.2)

In AIX 4.3.2, the boot logical volume is expanded to enable system
configurations with up to 1,000 devices.

As more and more devices are added to a system, the ODM object classes
containing device configuration data will grow larger and larger. It is possible
that the RAM file system used in the initial stages of booting will not be large
enough for the larger ODM files. The existing boot process accounts for this
when booting from disk by dynamically expanding the RAM file system based
on the amount of system memory. The increased savebase area will not fit on
the boot logical volume when adding large amount of devices.

2.13.7 Kernel Services Locks (4.3.3)

Locks are kernel services that are used to serialize and co-ordinate work by
multiple threads. For example, if two executing threads both have
simultaneous write access to critical data areas, then data corruption and
confusion may be the end result. There was usually no need to use locks on a
uniprocessor system since interrupt control was sufficient. However, the
growing number of CPUs that you can use with a single AIX system image
means that more flexible co-ordination mechanisms are required. Not only
does your application need to use a locking mechanism to organize data
access, but also different parts of the AIX operating system must also use
locks.

AIX Version 4.3.3 includes lock enhancements that enable it to support extra
CPUs. The AIX documentation includes information about locks, such as the
article Locking Kernel Services in the publication AIX Version 4.3 Kernel
Extensions and Device Support Programming Concepts, SC23-4125. This
article describes two major types of locks that are used:

e Simple Locks

e Complex Locks

2.13.7.1 Some Specific Lock Enhancements

As well as enhancements affecting how specific locks are used in AlX, the
lock code itself has been improved. Specifically, there are front-ends to the
complex lock code optimized for the following cases:

» Take read lock with no one holding the lock

« Take write lock with no one holding the lock

50 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 2014kernel.fm

xmalloc

The xmalloc kernel service allocates an area of memory out of the heap. In
the past, the kernel heap has been serialized with a single lock for all
allocations.

This memory allocation process has been redesigned so that it consists of a
front end and a back end. The back end code behind xmalloc uses many
more locks, so that its much less likely that multiple CPUs will suffer lock
contention related delays if they cannot have their xmalloc request satisfied
by the front end code.

The fast front end code to xmalloc eliminates contention since it provides
each processor with its own set of lists from which it can allocate memory. If
the lists do not satisfy the allocation, then the back end is called to get
memory from the kernel heap. When the processor is finished with this
memory from the kernel heap, the xmfree routine may return that memory to
the processor’s list of memory it can allocate, rather than to the kernel heap.
Much of kernel memory use from the heap is short term, and many of the lists
will remain relatively short.

This combination of the front end and back end components of xmalloc is
thus effectively contention free, so that xmalloc can now scale linearly with
the addition of any supported number of CPUs. That is, no matter how many
CPUs, there is never any measurable contention for any of the kernel heap
related locks.

Other Lock Changes
The vfs_list_lock has been redesigned to reduce lock contention. The
tod_lock has been converted from a simple_lock to a complex_lock.

2.13.7.2 FIFO Files, or Pipes

A FIFO s first in first out special file that is more commonly known as a pipe.
In the previous AlX release, FIFO buffers were allocated from a pool of
buffers. When a FIFO finished with a buffer it was returned to the pool.
Therefore, throughout the life of the FIFO, it had to allocate and free buffers
as needed. A global lock had to be taken when allocating and freeing buffs
from the pool. When the number of FIFO's reading and writing became
significant enough, contention on the global lock (FIFOBUF_LOCK)
sometimes rose to unacceptable levels.

Now AIX has eliminated this contention by allocating a slot within a segment
for the fifonode buffer. Even after the fifonode has been released and
returned to the fifonode pool, the fifonode maintains the same slot.These
buffer slots exist within their own segment(s). New segments are created

AIX Kernel Enhancements 51

2014kernel.fm

Draft Document for Review October 25, 1999 10:23 pm

once all slots in the current segment have been allocated. A possible side
effect of this change is that it may cause an application foot print to become
larger. This is due to the fact that previously a buffer was allocated and
released during the read/write operation. The buffer was not held. In this
case, the pages are not released after the read or write operation. The buffer
is held onto for the life of the fifonode. This would be most obvious with an
application that opened a large number of FIFOs, held them open and did
occasional read or writes. For additional information, refer to the article File
Creation and Removal in the publication General Programming Concepts:
Writing and Debugging Programs, SC23-4128.

2.13.8 Networking Enhancements (4.3.3)

Some of the changes affecting kernel networking include:

¢ Further reduction of INIFADDR_LOCK contention by the elimination of the
need to take this lock for every incoming and outgoing packet.

¢ NFS performance over UDP has been enhanced by the improvement of
the socket connections.

« KRPC_XPRT_LOCK contention for the NFS server has been reduced.
The nfsd thread startup mechanism has been redesigned so that the lock
does not need to be taken every time a request comes in.

2.13.9 VMM Enhancements (4.3.3)

As the amount of AIX memory increases, systems have increased
addressability requirements. The VMM continues to have internal
improvements, such as a reduction in lock contention. The following sections
2.13.9.2, “Memory Pools” on page 53 and 2.13.9.3, “Segments” on page 54
are mainly of interest if you work with memory analysis tools.

2.13.9.1 VMM Background Information

Virtual memory is a mechanism where the real memory available for use
appears larger than its true size. The virtual memory system is composed of
physical disk space where portions of a file that are not currently in use are
stored, as well as the system’s real memory. The physical disk part of virtual
memory is divided into three types of segments that reflect where the data is
being stored:

e Local persistent segments from a local file system
« Working segments in the paging space

« Client persistent segments from CD-ROM or remote file systems

52 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 2014kernel.fm

One of the basic building blocks of the AIX memory system is the segment,
which is a 256 MB (228 bytes) piece of the virtual address space. Each
segment is further divided into 4096 byte pages of information. Each page
sits in a 4 KB partition of the disk known as a slot. Similarly, real memory is
divided into 4096 byte page frames. A frame (or page frame) usually means a
physical memory page as opposed to a virtual page; the context usually of its
use usually indicates which one is intended. When a page is needed from its
disk location, it is loaded into a frame in real memory.

The Virtual Memory Manager (VMM) coordinates and manages all the
activities associated with the virtual memory system. The VMM is responsible
for allocating real memory page frames and resolving references to pages
that are not currently in real memory.

2.13.9.2 Memory Pools

Previous releases of AIX managed all of a system’s real memory as one large
resource that was available for the programs executing in one or more CPUs
to address and use through the VMM. During this time, there was only one list
of free memory frames, and one page replacement daemon that would help
ensure that the required pages could be located in system RAM.

Since systems continue to grow (for example, 64 GB is possible on an
RS6000 Model S80), AIX 4.3.3 has improved memory management through
the use of multiple free frame lists, and multiple page replacement daemons.
This increases the VMM concurrency since contention has been reduced in
the serialization mechanisms and processes with lower latencies can now
service the memory requests.

A memory pool is a range of memory on which operates a single memory
replacement operation; that is, only one least recently used (LRU) manages
this pool of memory frames. A memory frame (or page frame) appears in one,
and only one memory pool. A frame setis a set of memory frames; the frames
in a set belong exclusively to that set.

Using this terminology, previous releases of AlIX can be considered to consist
of one memory pool and one frame set. In AIX 4.3.3, all of the system wide
memory frames are managed with multiple memory pools. Each pool has
roughly the same number of frames (so that the system is balanced), and the
frames in a pool are organized in multiple frame sets. The number of frame
sets, and the number of memory pools, depends on the number of CPUs and
the amount of real memory in the system. In the AlX Version 4.3.3
implementation, for each memory pool, a LRU daemon called /rud (least
recently used daemon) is created and started at the end of the VMM

AIX Kernel Enhancements 53

2014kernel.fm

Draft Document for Review October 25, 1999 10:23 pm

initialization. To see the current implementation of the VMM memory pool
mechanism has been implemented on an MP system, perform the following:

echo thread|crash|grep I rud

> 14 s eld elc unbound FFFO 10 O | rud
17 s 1123 elc unbound FIFO 10 O lrud
> # |sattr -BH sysO|grep real nem
real nem 1048576 Amount of usabl e physical menory in Koytes
Fal se
| sdev -Cc processor|we -
12

As previously described, the number of memory pools depends on the
number of CPUs and the amount of real memory on your system. For an MP
kernel (packaged in the bos.mp fileset), there should be at least one Irud
daemon even if it is running on a single CPU system. With the UP kernel (in
the bos.up fileset), there is only one memory pool and one frameset. There
will never be a Irud when the UP kernel is active.

Now, if a thread needs some page frames, it is no longer constrained by
having only one Irud available to check memory in an MP environment.
Relevant VMM locks have also been enhanced.

Debugger Enhancements

The KDB kernel debugger has been modified in order to provide visibility of
memory pools and frame sets. (Note that crash and |1 db do not have these
changes.) The following commands have been modified:

* ppda
pft 1,2,3,7,8

e rmap
* vmlocks

pfhdata

The debugger has been enhanced with the following new commands that
display all the new data structures:

« vmpool

e frameset [*| frs_id]

« mempool [* | memp_id]
2.13.9.3 Segments

Information about segments is stored in segment control blocks (SCBs).
Previous releases of AIX were limited to 22 SCBs. The PowerPC

54 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 2014kernel.fm

architecture allows for 24 bits to be used for the segment id, but the 24 bits in
the SCB were used as follows:

« 1 bit to specify a page is in I/O state (I0SID)

3 bits to support big files up to 2 GB (8 segments of 256 MB each, without
requiring 8 unique segment IDs)

¢ 20 bits to specify the segment ID

There is now another mechanism for handling big files up to 64 GB, so all
files bigger than the segment size of 256 MB can now be supported with this
mechanism. This means that there are now 3 bits that can be used for
segment IDs. However, these SCBs themselves are stored in a segment; this
is segment 0xB, the VMM data segment. Thus all 3 bits cannot be used for
the segment ID to get an eight-fold increase in the total number of segments,
since the complete information about all these segments would not fit in the
VMM data segment. To solve this problem, extended SCBs, (or mini-SCBs)
are now used. Since the 23 index bits allow for up to eight million segments,
and two million are used for big SCBs, there are six million left for mini-SCBs.

2.13.10 Threads and Processes (4.3.3)

With up to 24 CPUs available on the Model S80, a single AIX system
potentially manages an increased number of processes and threads.
Consequently, support of an increased number of threads and processes has
been enhanced. Useful background reading includes the article SMP
Scheduling in the publication AlIX Versions 3.2 and 4 Performance Tuning
Guide, SC23-2365.

2.13.10.1 Threads and Process Limits
With previous releases of AlX, the following limits applied:

¢ Maximum number of processes was 128K

« Maximum number of threads was 128K

The kernel’'s 15th segment, segment OXE, holds global kernel data,
specifically the process and thread tables. The contents of this segment was
reorganized so that these limits have been increased, as shown in Figure 3
on page 56.

You can better understand these changes by looking at the system header
files, and comparing them to those for the previous 4.3.2 Release of AIX. For
example, /usr/incl ude/ sys/ t hread. h has increased THREADSHIFT so that
the line now reads as:

#defi ne THREADSH FT 19 /* nunber of bits in thread i ndex */

AIX Kernel Enhancements 55

2014kernel.fm

Draft Document for Review October 25, 1999 10:23 pm

—f— OxE0000000
sys_resource sys_resource
—f— OxE1000000
TCE_space TCE_space
—f— OxE2000000
Unused Space
—f— OxE3000000
Process
Process —f— O0xE4000000 Table
Table —— 0xE5000000
—f— OxE6000000
Thread
Table 0OxE7000000
—— OxE8000000
Lock
—f— OxE9000000
Instrumentation Thread
—f— OxEA000000 Table
—f— OxEBOO0000
—— OxEC000000
Unused Space — oxepoooooo
—f— OXEE000000
-+ oxeroooo0o Lock
Instrumentation
—f— O0xF0000000
' memory

Figure 3. Kernel Segment OxE

Threads

Before AlX 4.3.3, the thread table was in the address range of 0OXE6000000 to
0xE8000000, so there was 0x2000000 bytes of space. Since each thread
table entry requires 256 bytes, which is 0x100, then there could only be
0x20000 table entries, which is a maximum of 128K threads.

The new address range allows for OXEE000000 - 0xE6000000 = 0x8000000
bytes of space. Since the table entries are still 256 bytes each, and there has
also been an increase of the THREADSHIFT index variable, then you can
have up to 0x80000 thread table entries, which is 512K threads. The change
in the thread table address use is shown in Figure 3.

56 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 2014kernel.fm

Processes

As was the case with threads, the available space in kernel segment OxE,
and the PROCSHIFT variable, limited you to 128K processes. Each process
entry in the proc table requires 384 bytes, which equals 0x180.

Since the new address range provides 0x4000000 bytes of space, then you
now can have up to 0x2AAAA proc table entries, or 174,762 processes.

Lock Enhancements

With the increase in the number of processes in the system, the maximum
limit of processes per user using the p_uidl pointer in the proc structure was
causing contention on proc_tbl_lock. The p_uidl pointer has hence been
replaced with pointer to a common user specific information structure
(uidinfo), which is globally visible to all processes in the system.

2.13.10.2 Run Queues for CPU Scheduling

AIX Version 4.3.3 offers improved cache affinity through the use of multiple
run queues. The new kernel scheduler implements a single global run queue
along with a set of local run queues, where each processor has a dedicated
local run queue. With multiple run queues, there are multiple locks that
eliminates a major source of lock contention.

Once a thread is placed on a local run queue, it generally stays there until an
imbalance is detected. Thresholds are used to limit the amount of load
balancing that takes place. In general, threads have better processor affinity
than in previous versions of AlX, since the set of runable threads that have
affinity with a particular processor is strongly held in its local run queue. In the
previous version of the scheduler, the scheduler looked at a number of
threads on its single run queue and was sometimes able to protect threads’
affinities while scheduling.

Load Balancing
Load Balancing refers to a number of distinct algorithms designed to keep the
various run queues of a system approximately equally utilized.

The load balancing algorithms include:

« Initial load balancing attempts to spread new work evenly across the
processors of the system, using the global run queue if there are no idle
CPUs. All CPUs can serve the global run queue.

« Idle load balancing attempts to find work for processors that have gone
idle, but with a bias to maintain a certain degree of processor affinity as
well.

AIX Kernel Enhancements 57

2014kernel.fm Draft Document for Review October 25, 1999 10:23 pm

e Busy load balancing is performed during periods of extreme load when no
processors go idle.

e Starvation load balancing detects threads that have been waiting in local
run queues for a long time, and pushes them onto the global run queue so
they may be rescheduled.

The global run queue is used for fixed priority POSIX compliant unbound
threads (those with XPG_SUS_ENV=O0ON exported when they are executed.)
This preserves the POSIX requirement for running fixed priority threads in
strict priority order.

2.13.11 1/O Wait Time Calculation on SMP Systems (4.3.3)

The calculation of I/0O wait time on SMP systems has been modified to
provide a more accurate accounting of CPU utilization in tools like vnst at and
iostat .

2.13.11.1 Previous Releases of AIX

The high I/O wait on AIX SMPs was a statistical anomaly of the way AIX

counted CPU time. The commands vnstat and i ostat simply reported the
CPU break down into the four categories of usr/sys/wio/idle as tabulated

within the kernel.

At each clock interrupt on each processor (100 times a second in AlX), a
determination is made as to which of the four categories to place the last 10
ms of time. If the CPU is busy in user mode at the time of the clock interrupt,
then usr gets the clock tick added into its category. If the CPU was busy in
kernel mode at the time of the clock interrupt, then sys category gets the tick.
If the CPU was not busy, then a check is made to see if any I/O to disk is in
progress. If any disk 1/O is in progress, then the wio category is incremented.
If no disk I/O was or is in progress and the CPU is not busy, then the idle
category gets the tick.

Notice in the prior discussion that it does not matter which processor starts
the 1/0. This fact leads to higher wio times on SMP systems compared to UP
systems in some situations. Using a cp copy command example, one
processor will do all the work (assume the cp process is bound) and so that
processor would show some combination of usr, sys and wio percentages,
but no idle. If this were a UP, there would be no miscalculation. On an SMP
system, however, the other processors (three others in the case of a four-way
SMP) would show some combination of wio and idl, but no usr or sys
percentage. Table 5 on page 59 shows a hypothetical example of the impact
of the cp command on a 4 way system, as reported by vmstat or iostat (cp

58 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 2014kernel.fm

runs on processor 0). Note that this is a hypothetical example for a total of
400 ticks:

Table 5. Per Second Ticks in each Category

Processor usr sys wio idl

0 30 40 30 0

1 0 0 90 10
2 0 0 90 10
3 0 0 90 10
Average 7.5 10 75 7.5

Any disk I/O in progress would cause all idle processors to show wio instead
of idle regardless of which processor initiated the 1/0O activity. There was no
track kept of which one started the 1/0. I/O wait goes up compared to UP
systems and an eight-way SMP would show even higher 1/O wait compared
to the four-way in theTable 5 example (82.5%).

2.13.11.2 AIX 4.3.3

The time attributed to I/O wait is no longer inflated; all CPUs are no longer
attributed wait time when a disk is busy and the CPU is idle. The decision is
based on whether a thread is awaiting an I/O on the CPU being measured.

This method can report much lower wio times when just a few threads are
doing I/O and the system is otherwise idle. For example, an RS/6000 with
four CPUs and one thread doing I/O will report a maximum of 25% wio time.
An RS/6000 with 12 CPUs and one thread doing I/O will report a maximum of
8.3% wio time.

2.14 Scheduler Enhancements (4.3.2)

The scheduler on AIX Version 4.3.2 has been enhanced to increase the
impact of using the ni ce command to alter the priority of a thread. The
following sections explain how the changes have been implemented and
show sample results by comparing the new scheduler with the previous
version.

2.14.1 Thread Priority Calculation Changes

All threads on a system have a priority value between 0 and 127, with 60
being the default initial value. As a thread runs and consumes CPU time, the
priority value changes numerically as a function of CPU time recently used. A

AIX Kernel Enhancements 59

2014kernel.fm

Draft Document for Review October 25, 1999 10:23 pm

numerically higher number represents a less favored priority. A thread that
started with the default priority of 60 may have an instantaneous priority in the
range 60 to 126. The value of 127 is reserved for the wait process. The
scheduler runs all threads at priority N that are marked as runable before it
runs any threads at priority N+1, thus favoring threads using less CPU time.

The ni ce and reni ce commands, and the setpriority system call, can be used
to change the initial priority of a thread by a given delta. The delta can be in
the range -20 to 19. Thus a thread can have an initial absolute priority in the
range 40 to 79. The absolute initial priority, or nice value, is included in the
calculation of a threads priority. This introduces the idea of relative priority
between threads.

In addition to the nice value, the schedt une command can be used to fine tune
the method used to calculate the new priority. The calculation also has
parameters that scale the relative importance of recent CPU utilization (the -r
option to schedtune, shown as sched_R) and historical CPU utilization (the -d
option to schedtune, shown as sched_D). Both the sched_R and sched_D
parameters have a default value of 16.

On versions of AlIX prior to 4.3.2, thread priority is calculated using the
following algorithm:

* Once per clock tick: cpu = cpu + 1 for the currently running thread, limited
to a maximum of 120

« Priority calculation: (cpu * sched_R) / (2 * 16) + nice, limited to a maximum
of 126

* Once per second ageing of all threads: cpu = cpu * sched_D / 32

With the default values in place, this equates to:

 Priority calculation: cpu /2 + 60

« Once per second ageing of all threads: cpu = cpu /2
The scheduler on AIX 4.3.2 now uses the following algorithm to calculate
thread priorities.

¢ Once per clock tick: cpu = cpu + 1 for the currently running thread, limited
to a maximum of 120

 Priority calculation part 1:
e xnice = (nice > DEFAULT_NICE) ? (2*nice) - 60 : nice
 Priority calculation part 2 (limited to a maximum of 126):
e p = (cpu * sched_R * (xnice + 4))/(32*(DEFAULT_NICE + 4)) + xnice

60 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 2014kernel.fm

« Once per second ageing of all threads: cpu = cpu * sched_D / 32

The ni ce value has a much greater impact on the priority of a thread. It is now
included in the calculation as a multiplier of the recent CPU usage in addition
to the use as a constant factor.

With the default values of 16 for sched_R and sched_D, and 60 for ni ce and
DEFAULT_NICE, the priority calculation equates to:

« Priority calculation: cpu /2 + 60

¢ Once per second ageing of all threads: cpu =cpu /2

Although the algorithm has changed, the default values provide an identical
function.

2.14.2 Sample Results of Altering Nice Value

The following tables list the results of changing the nice value of a thread on
two identical machines; one running the old algorithm, and the other running
the new algorithm. In each case, the tables list the percentage of CPU time
delivered to one thread that has been niced by the indicated delta, which is in
competition with varying numbers of default priority threads. All threads were
running the same CPU bound application.

From comparison of the values in Table 6 and Table 7, it can be seen that the
effect of a positive nice delta on a thread has been enhanced. Take, for
example, a thread running with a nice delta of 19 in competition with one
default thread. Previously, the niced thread would receive 41 percent of the
CPU, with the default thread receiving the remaining 59 percent. With the
new algorithm, the niced thread has been reduced to 15 percent, with the
default thread increasing to 85 percent.

In addition, the effect of a negative nice delta has been increased. A thread
running with a nice delta of -20 competing against 31 default threads now
receives 32 percent of the CPU, compared with 23 percent under the

AIX Kernel Enhancements 61

2014kernel.fm Draft Document for Review October 25, 1999 10:23 pm

62

previous algorithm. Correspondingly, the CPU delivered to each of the
remaining 31 default threads has decreased from 2.5 percent to 2.2 percent.

Table 6. Old Priority Algorithm, sched_R and sched_D Defaulted to 16

nice Number of threads running (1 niced, others default)
delta
1 2 3 4 5 8 16 32
-20 100 60 47 40 36 30 25 23
-15 100 58 43 36 32 26 21 17
-10 100 55 40 32 28 21 15 13
-5 100 53 37 29 24 17 11 8
0 100 50 33 25 20 13 6 3
5 100 48 30 21 16 7 2 0
10 100 45 27 17 12 4 0 0
15 100 43 23 14 8 0 0 0
19 100 41 21 11 4 0 0 0
Table 7. New Priority Algorithm, sched_R and sched_D Defaulted to 16
nice Number of threads running (1 niced, others default)
delta
1 2 3 4 5 8 16 32
-20 100 78 60 52 48 42 36 32
-15 100 69 51 43 39 33 26 24
-10 100 60 45 37 32 25 19 16
-5 100 55 39 31 25 19 12 9
0 100 50 33 25 20 13 6 3
5 100 42 24 16 11 4 0 0
10 100 32 17 8 4 0 0 0
15 100 22 11 3 0 0 0 0
19 100 15 6 0 0 0 0 0

It can be seen from the values in Table 8 and Table 9 that decreasing the
value of the sched_R parameter makes the effect of the nice delta even
greater. By reducing the value of sched_R, the priority algorithm places less

AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 2014kernel.fm

emphasis on recently used CPU time. Consequently, the thread with a
negative nice delta receives even more CPU time.

Table 8. Old Priority Algorithm, sched_R=8

nice Number of threads running (1 niced, others default)
delta 1 2 3 4 5 8 16 32
-20 100 78 60 55 52 47 43 41
-15 100 68 54 48 44 39 34 32
-10 100 60 47 40 36 30 25 23
-5 100 55 40 32 28 21 15 13
0 100 50 33 25 20 13 6 3
5 100 45 27 18 12 3 0 0
10 100 40 20 10 4 0 0 0
15 32 14 2 0 0 0 0 0
19 100 24 8 0 0 0 0 0

Table 9. New Priority Algorithm, sched_R=8

nice Number of threads running (1 niced, others default)
delta

1 2 3 4 5 8 16 32
-20 100 98 96 94 92 86 70 59
-15 100 84 68 58 53 50 43 41
-10 100 68 52 46 41 36 28 27
-5 100 57 42 35 31 23 18 13
0 100 50 33 25 20 13 6 3
5 100 37 18 9 4 0 0 0
10 100 17 6 0 0 0 0 0
15 100 2 0 0 0 0 0 0
19 100 0 0 0 0 0 0 0

AIX Kernel Enhancements 63

2014kernel.fm Draft Document for Review October 25, 1999 10:23 pm

— Note

Changing system scheduling parameters using the schedt une command
can cause unexpected results, particularly if more than one system
parameter is changed. See RS/6000 Performance Tools In Focus,
SG24-4989 for more information on the schedt une command, its
parameters, and other performance monitoring and tuning tools.

2.15 Fast Device Configuration (4.3.3)

A new device configuration methodology has been introduced in AlIX 4.3.3 in
order to reduce the time needed to detect and configure all the devices
attached to the system. In particular, the cfgngr command has been changed
so that it can run device configuration methods in parallel rather than
sequentially, one at a time. A new locking mechanism has also been
introduced to serialize critical sections of the configuration code.

In general, the more devices that are attached to a system, the longer it takes
to configure them. With systems having thousands of disk drives or
thousands of TTY devices, it can take AlX an hour or more just configuring
them into the kernel at boot time.

Many of the asynchronous 1/0O adapters take two to five minutes to configure.
In a system with 16 asynchronous I/O adapters this means that from 32 to 80
minutes of boot time is required just to configure these adapters. Most of this
time is spent waiting on 1/0 which could be done in parallel if the configure
methods were executed in parallel instead of one at a time. Thus, in theory,
16 asynchronous I/O adapters could be configured in the same time it takes
to configure one.

2.15.1 The cfgmgr Command

The cf gngr command executes configuration rules from the Config_Rules
Object class. They are executed one at a time in the order specified by
sequence numbers in the Config_Rules objects. If two or more configuration
rules have the same sequence number, they are executed in the order they
are returned by the Object Data Manager (ODM).

If a configuration rule is associated with the root node of a device tree in the
ODM, it may write device hames and device package names to stdout. The
cf gngr command parses the stdout for the device names and adds them to a
list it maintains for keeping track of the devices for which it must execute
device configure methods. The names are added to the list in the same order

64 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 2014kernel.fm

they were returned in stdout. The cf gngr command then processes this list by
looking up each device’s configure method in the ODM and executing them
one at a time. The methods may return additional device names and package
names to the cfgngr command using stdout, and those are added to the end
of the list devices to be configured.

When new devices are discovered, named, and added to the ODM, the cf gngr
command ensures that this is done in a repeatable fashion: two identical
systems with identical devices all cabled and connected identically always
have their devices named exactly in the same way.

The new version of the cf gngr command is able to have the same behavior of
previous releases, though starting some configuration processes in parallel.
A full parallelization is not possible since some methods must be serialized
and devices must be always named in the same order.

At boot time, the configuration process uses the RS/6000’s LEDs to display
an indication of the type of device being configured. The device configuration
methods were responsible for displaying the proper LED value. Now, with the
cf gngr command invoking several configure methods in parallel, this scheme
would leave the LEDs displaying the value for the last device whose configure
method writes the LEDs.

To avoid any confusion, the cfgngr command now is responsible for setting
the LEDs for a device. It looks up the proper LED value from the ODM (PdDv
and CuAt objects) for the device, and displays this value just prior to running
the configure method for the device. It displays the LED value for the most
recently invoked configure method. Each time the configure method whose
LED value was last displayed completes, the cf gngr command changes the
LED value to that for the next most recently invoked configure method that
has not yet completed. If there is a configure method that is taking an
exceptionally long time to complete or is hung, it will eventually be the only
configure method that has not yet completed and hence its LED value will be
displayed.

If the cf gngr command is unable to determine the LED value to be displayed
for a device, it displays a value of 538. If there is not another configure
method running when one completes, the value 539 is shown.

Some systems are equipped with a two line LCD display. On those machines
the cf gngr displays the device's physical location codes on the second line.
Physical location codes are not the location codes from the CuDv objects in
the ODM. They can be obtained from the Open Firmware device tree for
many devices, from the CuVPD object class for PCI and built-in adapters. If

AIX Kernel Enhancements 65

2014kernel.fm

66

Draft Document for Review October 25, 1999 10:23 pm

the device does not have a physical location code in the CuVPD object class
but it has an AlX location code in the CuDv object class, then the AIX location
code is displayed. If the device has neither a physical location code nor an
AlX location code in the ODM, then the device name is displayed.

If it is a configuration rule that is being executed, then the cf gngr command
displays the sequence number of the rule on the second line. This can be
used to determine which configuration rule is being run.

The cf gngr command’s verbose output, produced using the -v option,
indicates the name of a configuration method that is invoked and the name of
the device it is configuring. This is followed by a display of the stdout and
stderr produced by the configure method. When running configure methods in
parallel, the invoking of a configure method and its completion are disjoint
events. Therefore, the verbose output has been changed to explicitly identify
when a configure method is being started and the device being configured.
Later, when the configure method completes, the verbose output explicitly
indicates that the configure method has completed for the device and then
shows the stdout and stderr. Information indicating the number of configure
methods currently running, time stamps showing when methods are invoked
and when they complete, and the elapsed time are also given.

The following example shows the cfgngr -v command output:

cfgmgr is running in phase 2
Ti me: OLEDS: 0x538
invoking top |evel
Ti me: OLEDS: 0x539
return code = 0

KAk KK AR KA KKK KK * Kk

program-- "/etc/nethods/cfgprobe -c /etc/drivers/coreprobe. ext"

NO Stdout *******xxxx

KkkkkkkkkkkkkkkKkk* o gtdery FrrrrRrk Ak kKK

Ti me: OLEDS: 0x538
invoking top |evel
Ti me: OLEDS: 0x539
return code = 0

Kk kKK KKK KRR A KK Kh Kk

program -- "/etc/nethods/ def sys"

St dout khkkkkkkkkkxk
sys0

KEKKKKKKKKKXKKKKKK* o grdery FrRAAFRAF KKK

attempting to configure device 'sys0’
Time: OLEDS: 0x811
invoking /ustr/lib/methods/cfgsys_chrp -l sysO
Number of running methods: 1
Completed method for: sys0, Elapsed time = 0
return code = 0

stdout

pmc0
pcio
pcil
pci2

AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 2014kernel.fm

Kkkkkkkkkkkkkkkkk* o gtdery FrrrArk Ak KKK

l'i nes ski pped

Time: 1LEDS: 0x746 for scsil
Nunber of running nethods: 1
attempting to configure device 'sa0’

Time: 1LEDS: 0x826

invoking /ustr/lib/methods/cfgasync_rspc -I sa0
Number of running methods: 2

attempting to configure device 'sal’

Time: 1LEDS: 0x826

invoking /usr/lib/methods/cfgasync_rspc -l sal
Number of running methods: 3

attempting to configure device 'sa2’

Time: 1LEDS: 0x826

invoking /usr/lib/methods/cfgasync_rspc - sa2
Number of running methods: 4

attempting to configure device 'scsi0’

Time: 1LEDS: 0x746

invoking /usr/lib/methods/cfgncr_scsi -l scsi0
Number of running methods: 5

Completed method for: sa0, Elapsed time = 0
return code = 0

sk 1)) gRQUt Frkkkkk

Fkkkk KR RRRRRK 1)) GO FRRRRRRkRk

lines skipped

calling savebase
return code = 0

ko 1)) gEQUt Frkkkkk

Fkkkk Rk RRRRRK 1)) GO FRRRRRRkRk

Configuration time: 15 seconds

AIX Kernel Enhancements 67

2014kernel.fm Draft Document for Review October 25, 1999 10:23 pm

68 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

Chapter 3. 64-Bit Enablement

This chapter covers the introduction of 64-bit systems and the support
provided in AIX Version 4.3 for these systems. In the first section, an
introduction to 64-bit architectures and its benefits is provided, including the
hardware and software aspects of 64-bit implementations. The design chosen
for RS/6000 systems and the AIX operating system is also explained.

The second section describes the changes made to the core operating
system that are necessary to run AlX on 64-bit hardware and enable 64-bit
applications. These changes include modifications to the basic application
development tools like compiler, linker, and debugger, and other tools that
operate on object files.

3.1 Introduction to 64-Bit Computing

The following sections describe some of the features of the new 64-bit
environment.

3.1.1 64-Bit Architecture and Benefits
From an operational point of view, an architecture is said to be 64-bit when:

« It can handle 64-bit-long data; in other words, a contiguous block of 64 bits
(8 bytes) in memory is defined as one of the elementary units that the CPU
can handle. This means that the instruction set includes instructions for
moving 64-bit-long data and instructions for performing arithmetic
operations on 64-bit-long integers.

« It generates 64-bit-long addresses, both as effective addresses (the
addresses generated and used by machine instructions) and as physical
addresses (those that address the memory cards plugged into the
machine memory slots). Individual processor implementations may
generate shorter physical addresses, but the architecture must support
64-bit addresses.

The benefits of 64-bit architectures can be summarized as follows:

« Extended-precision arithmetic. The ability to use very long integers in
computations is a feature that can be very useful in specialized
applications.

« Access to large data sets. The ability to create and maintain very large file
systems is increasingly important for many users. In particular, data

© Copyright IBM Corp. 1999 69

201464bit.fm

Draft Document for Review October 25, 1999 10:23 pm

warehousing applications, scientific, and multimedia applications
frequently require these features.

e Large address spaces. A 64-bit architecture has the capability of
addressing huge address spaces. You should realize that the step to
64-bits is much more than just a doubling of 32-bits. In terms of
addressability, it represents a four billion-fold increase. With clever
exploitation, these large address spaces can result in spectacular
performance improvements or gains in productivity through simplified
programming of very large technical problems.

The ability to handle large address spaces is considered the greatest
potential benefit for users since, in the future, complex applications such as
large databases, large numeric applications, and multimedia environments
will need to manage and operate on larger data sets. Since internal memory
is much faster than most storage devices, the ability to fetch and keep more
data in memory, where it can be directly manipulated, should provide
dramatic performance improvements. Table 10 provides the size of the
address spaces that can be managed as a function of the length of the
address that the CPU generates.

Table 10. Size of Address Space as a Function of Address Length

Address Length Flat Address Space
8-bit 256 Bytes

16-bit 64 Kilobytes

32-bit 4 Gigabytes

52-bit 4000 Terabytes
64-bit 16 Million Terabytes

3.1.2 64-Bit Challenges

As previously mentioned, 64-bit architectures can prove advantageous in
many areas of application. It should be noted, however, that these
advantages can come at a cost. Extra addressability must be accompanied
by very large amounts of system memory to work effectively. Applications
compiled in 64-bit mode also consume more disk space than their 32-bit
equivalents, adding to the cost of system storage. It is also important to
remember that 32-bit applications that cannot or do not take advantage of the
features previously mentioned should remain as 32-bit binaries. If compiled in
64-bit mode without change, they will probably not see any performance
improvement. It is possible that the application will run slightly slower due to
cache effects and longer code-path length.

70 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

Although the vast majority of current applications will not fully utilize the
functions and capabilities of a 64-bit architecture, the applications of the near
future will increasingly view 32-bit technology as a limiting factor.

3.1.3 64-Bit PowerPC Design

The PowerPC architecture is, by its nature, an open, extendable design.
There is nothing in the chip architecture itself that would affect binary
compatibility as you migrate across different PowerPC implementations. The
PowerPC processor architecture was defined from the start as a 64-bit
architecture that is a superset of the 32-bit architecture implemented in the
601, 603, and 604 processors.

An important aspect of the 64-bit version of PowerPC is its binary
compatibility with the previous PowerPC processors. From the standpoint of
the 32-bit and 64-bit specifications, there are a few differences, as shown in
Figure 4. The number of CPU registers (the basic storage cell where the CPU
stores the data on which it performs its computations) remains the same, but
these registers are now 64 bits long instead of 32 bits. A few other control
registers also move from 32 to 64 bits in length. Note that the floating point
registers do not change in size, since they already conform to industry
standards for floating-point that require 32- or 64-bit-long data.

64-Bit Enablement 71

201464bit.fm

Draft Document for Review October 25, 1999 10:23 pm

64-bit implementation

GPR 00
GPR 01
GPR 02

GPR 31

CTR
0 63
LR i
0 63
FPR 00
FPR 01

FPR 02

32-bit implementation
35 GPR 00
General-Purpose GPR 01
Registers GPR 02
GPR 31
) |
0 31
Count Register CTR
0 31
Link Register
0 31
FPR 00
32 FPR 01
Floating FPR 02
Point
Registers
0 63
Condition Register
0 31

Figure 4. Register Implementation of 32-Bit and 64-Bit PowerPC Processors

In the 64-bit implementation of PowerPC, existing machine instructions do
not change drastically. Many instructions simply work the same in 64-bit
mode. That is, they can manage 64-bit long data and use/generate
64-bit-long addresses. New instructions, that were not implemented in the
previous PowerPC chips, are included for the handling of 64-bit data.

A 64-bit PowerPC can also work in 32-bit mode. In this way, any application
that currently runs on the 32-bit PowerPCs can run unchanged. For example,
arithmetic instructions running in 32-bit mode operate only on the lower-half

72 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

of the CPU register involved and consider only that half of the register in the
result. 32-bit addresses are handled in the same way.

The virtual address space is the amount of virtual memory that an application
can address independent of the size of the physical memory actually installed
in the machine on which it is running. Figure 5 shows a simplified
representation of the virtual address space that the PowerPC architecture
can manage in 32-bit and in 64-bit mode. As shown, the 32-bit
implementation is already capable of addressing a very large (252 bytes, refer
also to Table 10) address space. The 64-bit implementation goes up to 280
bytes (a huge number that signifies nearly one trillion terabytes). Other 64-bit
architectures currently on the market mainly address a 264 bytes-wide virtual
address space.

64-Bit Enablement 73

201464bit.fm

Draft Document for Review October 25, 1999 10:23 pm

32-bit effective address

[\/I

Segment Registers

32-bit addressing '

52-bit virtual address / 4000 TB

NI virtual
™~ \

Address Translation

v 2GB
| | | | | physical

32-bit physical address

64-bit addressing '
64-bit effective address
Ll .

™1 -
1 trillion

Segment Table
80-bit virtual address / TB virtual

1 O O -
™1]

Address Translation
v / 8 million
| [TB physical

64-bit physical address

Figure 5. Comparison of Address Translation in 32-Bit and 64-Bit Mode

3.1.4 64-Bit AIX Design Criteria

It is important to note that the 64-bit execution environment for application
processes is an upward-compatible addition to AIX capability, not a
replacement for the existing 32-bit function. The design IBM chose for 64-bit
AlX allows existing 32-bit applications to run with 64-bit applications with no
changes, thus protecting the investment users have made in their current

74 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

applications. Users can take advantage of the features of 64-bit AIX when
business needs dictate.

AIX 64-bit support is intended to be run on 64-bit hardware systems, not
simply any system containing a 64-bit PowerPC processor. A 64-bit hardware
system is one that is based on the RS/6000 architecture and identifies 64-bit
properties for the processor(s) and processor host bridges (PHBS) in
configurations with memory addressing greater than 32 bits.

For AlX, and the applications that run on AlX, the 64-bit PowerPCs have two
important attributes. They are very fast when running as 32-bit processors,
and they offer the opportunity of running a 64-bit environment. AlX 4.3
exploits these attributes separately. There are two different execution
environments in AlX 4.3, the 32-bit execution environment and the 64-bit
execution environment. These two environments are only available for 64-bit
hardware. There is no 64-bit execution environment on 32-bit hardware.

Generally, the AlX 4.3 kernel remains 32-bit, and only selected parts, such as
the Virtual Memory Manager, are upgraded to be aware of the 64-bit address
space. This means that the number of AlIX kernels remains two (uniprocessor
and multiprocessor).

Although there were a number of choices regarding the basic data types of
64-bit processes, the choice that was made by the Aspen working group,
formed by XOPEN, and a consortium of hardware vendors is called LP64,
short for Long-Pointer 64. This is commonly also called the 4/8/8 model,
which stands for the Integer/Long/Pointer type sizes. The benefit of this
configuration is that it provides 64-bit addressing with 8-byte pointers, large
object support (8-byte longs), and backward compatibility (4-byte integers).
Other alternatives included an 8/8/8 solution, called ILP64, and the LLP64
that were not adapted. Obviously, the choice for AIX was LP64.

3.2 64-Bit Core Design

As stated, the kernel of the AIX operating systems remains 32-bit. To allow
64-bit applications to run and use memory in the 64-bit address space,
extensions to the kernel were introduced. This is discussed in Section 3.2.2,
“System Calls” on page 80. A fundamental change was also introduced in the
object module format that basically enables executables to overcome the size
limit of 232 bytes. The subsection on XCOFF addresses these changes.

The implications for device drivers of 64-bit and 32-bit devices in a 64-bit
execution environment are explained in Section 3.2.4, “Device Drivers” on
page 96.

64-Bit Enablement 75

201464bit.fm

Draft Document for Review October 25, 1999 10:23 pm

The loading of 64-bit modules is shared between kernel-space code and
user-space code. The changes to the loader are discussed in 3.2.5, “Loader”
on page 99.

The Virtual Memory Manager is one of the key parts of the operating system
when it comes to large address space and mapping of virtual to real memory.
The consequences are summarized in the last part of this section.

3.2.1 Segment Register Mapping

Since the 64-bit hardware uses 64-bit effective addresses while operating in
64-bit execution mode, keeping sixteen segment registers would have
required increasing the size of segments proportionally to allow for the
increased address space. This is less useful to applications than increasing
the number of segments in a process' address space. Therefore,
segmentation on the 64-bit hardware remains in units of 256 megabytes. In
64-bit execution mode, the sixteen segment registers used for 32-bit
addressing are replaced with a segment table (analogous to the hardware
page table) that contains up to 256 of the most recently used mappings of
segment numbers to segment ID for the process' user address space.

The architecture also allows a Segment Lookaside Buffer (SLB) to hold a
smaller number of recently used segment number to segment ID mappings
for the process' user address space. For 32-bit mode, part of the SLB can be
used by the hardware to represent the sixteen segment registers.

64-bit processes are limited to 60-bit effective addresses. This is a
convenient number for the VMM since 2°° represents effective segment IDs
up to 32-bits, which fits into one register in the kernel. The 60-bit effective
address space will be sparsely instantiated up to the rlimit values for the
process or up to some limitation imposed by overall system resources. The
choice of address space layout was made to reduce the number of
constraints on the size of each area and to allow for future expansion and
new uses for address spaces. At some future date, the address space may
be expanded to more than 60 bits.

The first sixteen segment numbers are freed as much as possible from
default system use and left for application use. This has many advantages. It
makes finding incorrect use of 32-bit addresses in 64-bit processes easier; it
allows 32-bit and 64-bit applications to share memory at the same addresses
in each process, and it allows 64-bit applications to be specially designed to
work with interfaces that do not understand 64-bit addresses. For example
ioctl().

76 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm

201464bit.fm

Segment number 0 is used for the first kernel segment in user mode. It is
read-protected in user mode, except for the system call (SVC) tables,
svc_instruction code, and system configuration structure.

Segment number 1 is used for the second kernel segment in user mode. It
contains the 64-bit system call (SVC) tables.

Segment number 2 is still used for the process private segment. No
program-allocatable data is contained in this segment. The address of the
user block is at the same location in 32-bit and 64-bit processes.

The segment numbers from 3 to 12 and segment number 14 are reserved for
application use by the shmat() and mmap() interfaces.

Segment numbers 13 and 15 are reserved for the new user space loader (see
3.2.5, “Loader” on page 99) used at exec() and load() time. These segments
are global, read-only, and are always mapped in.

The address space from segment numbers 0XxA0000000 to OXEFFFFFFF are
reserved for future system use. These segments numbers are not given out in
response to user requests.

Table 11. Address Space Layout in User Mode

Segment Number

Use in 64-Bit Mode

Use in 32-Bit Mode

0 Kernel Kernel
1 Kernel User
2 Process Private Process Private
3 shmat/mmap Available for User
4-0xC shmat/mmap shmat/mmap
0xD Loader use Shared libraries
OxE shmat/mmap shmat/mmap
OxF Loader use Shared lib data
0x10-Ox6FFFFFFF Application text, data, Bss, | N/A

heap
0x70000000-0x7FFFFFFF Default shmat/mmap N/A
0x80000000-0x8FFFFFFF Private load N/A
0x90000000-0x9FFFFFFF Shared library text and N/A

data

64-Bit Enablement 77

201464bit.fm

78

Draft Document for Review October 25, 1999 10:23 pm

Segment Number

Use in 64-Bit Mode

Use in 32-Bit Mode

0xA0000000-OXEFFFFFFF

Reserved for system use

N/A

0xF0000000-0xFFFFFFFF

Application stack

N/A

The following list provides more detail on the use of the various segments in

32-bit and 64-bit mode:

* Process private data

Segment number 2 continues to contain the process private segment. This
segment is substantially different for 32-bit and 64-bit processes. The
process private segment continues to contain errno, errnop, environ, the
top_of_stack structure, and the exec() arguments. It also contains the user
structure, primary user thread structure, and the primary kernel thread
stack.

It does not contain the user thread stack or any user data. The user thread
structures (other than the primary) is moved to the kernel thread stack
segments for both 32-bit and 64-bit processes. The errno, errnop, and
environ locations are different in 32-bit and 64-bit mode. The top_of stack
structure is reformatted for the 64-bit values for 64-bit processes.

The errno, errnop, environ, the top_of stack structure, and the exec
arguments (all the user accessible data) are kept in the lowest one
megabyte of this segment and are user-modifiable. All data above this in
the segment is read-protected from user access. The segment table,
adspace, and segstate structures for the process are allocated from a
region above the first megabyte in the segment. The segment table is
pinned. The region above these adspace structures and below the primary
kernel thread stack is used for the overflow heap for the per-process
loader heap.

Executable text area

The text area starts in segment number 16. All segments from the start of
the executable, through, and including, the loader section of the
executable, are mapped in. No segments beyond the segment containing
the loader section of the executable are mapped in the address space.
The text segments are mapped read-only if the underlying file system
supports mapping (JFS, NFS, CD-ROM file system, AFS, and DFS
support mapping). Otherwise, the text section and the loader section are
copied to working storage segments.

AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

* Executable data and BSS

Following the text segments are working segments containing the
executable's initialized data and BSS (uninitialized data) areas. The data
area is vm_map()ed from the executable and relocated.

e Heap

The break value for the process is initialized just above the BSS area. As
the heap is grown (with brk() and sbrk() calls), new segments are
allocated above the current segment containing the current break value up
to the segment containing the new break value. The heap is not allowed to
grow into segment number 0x70000000 or beyond any shmat or mmap
segment.

« shmat and mmap segments

Starting at segment number 0x70000000, shmat and mmap segments are
allocated if no address is specified. Segments are allocated in increasing
order in the first available segment at, or after, segment number
0x70000000. The shmat and mmap segments are placed where requested
if the segment number is available and less than segment number
0x80000000.

e Explicitly-loaded modules

Explicitly-loaded modules (using the load() system call) were previously
loaded into the heap of the process. This creates complexity in dealing
with heap expansion/contraction and explicit loads.

Explicitly-loaded objects are now loaded into separate segments starting
at segment number 0x80000000. Segment numbers are allocated in
increasing order in the first available segment number at, or after, segment
number 0x80000000.

Explicitly-loaded objects are limited to segment numbers 0x80000000 to
Ox8FFFFFFF. To reduce segment table faults, multiple loaded modules are
vm_map()ed into these working storage segments. The data for the
loaded modules is loaded into these segments (and relocated) also.

e Shared library text and data segments

Starting at segment number 0x90000000, shared library text and data
segments are allocated. These segment numbers are allocated globally
(at the same address in all 64-bit address spaces) to allow sharing of the
segments (in the case of text segments) and vm_map()ing of the
segments (in the case of data segments). Global shared library text and
data segments are maintained by the loader using the current method.
Shared library text and data segments are limited to segment numbers
0x90000000 to Ox9FFFFFFF.

64-Bit Enablement 79

201464bit.fm

Draft Document for Review October 25, 1999 10:23 pm

* User stack

The initial user stack is allocated starting at the top of segment number
OXFFFFFFFF and will consume additional segment numbers below this as
the stack grows. New segment numbers will be allocated at stack growth
time. Only the segment number below the segment nhumber containing the
current top of stack is allocated. References to more than one segment
number away from the current top of the stack are treated as wild
references.

Note: This restricts local variable allocation to less than 256 megabytes of
the total allocation in each function. The stack growth is limited to segment
numbers ranging from 0xFO000000 to OxFFFFFFFF as segment numbers
in the range 0XA0000000 to OXEFFFFFFF are reserved for future system
use.

« Big data programs

The maxdata field is used for 32-bit programs to indicate that the heap
should be placed in a different place where a larger heap can be
accommodated. In 64-bit processes, the address space will always be
able to accommodate a large heap, so no indication is necessary. The
maxdata and maxstack fields, if set, are used to set the soft rlimit value for
32-bit and 64-bit applications. If the limit specified is greater than the hard
rlimit values, the exec() will fail.

3.2.2 System Calls

Because the AIX kernel remains 32-bit, the interfaces to the various system
calls must be through the types and structures of 32-bit mode C. 64-bit mode
applications, however, are compiled with 64-bit mode types and structures.
This section explains how the different types are communicated to the kernel.

On a 64-bit PowerPC, AIX will run both 32-bit-mode processes and
64-bit-mode processes. The problem is that 64-bit applications compiled with
the same AIX header files that 32-bit processes use (but compiled for 64-bit
execution mode) build data structures, arrays, and scalars using the rules of
64-bit C, though the kernel expects data structures, arrays, and scalars that
match the ones built by 32-bit applications using 32-bit C. If a 64-bit
application builds, for example, an iove C structure containing an address
and a length, this structure cannot be passed directly to the kernel's kreadv()
system call routine because that routine cannot interpret the 64-bit address
and 64-bit length.

80 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

Clearly, some code must be placed between the 64-bit application’s system
calls and the 32-bit kernel (see Figure 6). AlX takes advantage of the
following two features in implementing this interface code:

* The 32-bit and 64-bit name spaces are completely separate, and calls
from 64-bit applications are never resolved to 32-bit entry points.
Specifically, the calls from 64-bit applications to traditional system call
entry points should not be resolved to the 32-bit entry points of the same
names exported by the kernel.

« Since UNIX no longer makes a distinction between system calls and
subroutines, it is no longer necessary to strictly follow the old UNIX
semantics. If a caller passes a bad address to any system-supplied
subroutine (whether system call or not), it is permissible to end the calling
process, as will happen if a library routine dereferences an incorrect
pointer. This means that routines, traditionally considered to be system
calls, can reside in subroutine libraries, and almost all of the system call
interface code needed for 64-bit processes can be placed in a user-mode
library such as libc.a.

64-Bit Enablement 81

201464bit.fm Draft Document for Review October 25, 1999 10:23 pm

| Other 32-bit libraries | Other 64-bit libraries
| 32-bit C libc.a | 64-bit C libc.a
32-bit application 64-bit application
\ 32-bit data structs 64-bit data structs
Call
SysCall %}ointers to
Pass pointers to 64-bit library
interface routine
(in libé4.a)
\\ ___________
Build *> 1 Remapping table ‘.
1
SysCall to 32-bit data structs :
Kernel 1
Extension !

%sointers to

. A [4
\ 32-bit kernel

Kemael extension

Target of system call — interface routine
expecting 32-bit input parameters, Cail

32-bit data structs

Figure 6. Interfacing 64-Bit Processes to a 32-Bit Kernel

Each system call that is exported by the 32-bit kernel is represented in 64-bit
mode by a 64-bit-mode library routine in libc64.a that is the call target of what
would have been (in 32-bit mode) a system call. These library routines handle
any necessary reformatting of data to communicate with the 32-bit system
call routines in the kernel. In many cases, they build a remapping table that
tells how the required portions of the 64-bit address space should be
reflected in a 32-bit map for the kernel.

82 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

On the kernel side, in 32-bit mode, a kernel extension routine is added for
each of the system calls supported in 64-bit mode. These routines are
invoked from the 64-bit library routines through AlX’s syscall interface. They
accept the reformatted data from the library routines and perform any
necessary remapping of addresses using data supplied by the library
routines. The kernel can then properly see data structures, buffers, and so on
in the user spaces that are referred to in the call.

A typical system call involves several pieces of code located in various places
in the system. The names of these various pieces are all derived from the
original name of the 32-bit system call. If a particular 32-bit system call is
named sample(), then:

* The name of the C language routine in libc64.a that intercepts 64-bit calls
to sample() is precisely that: sample. Note that the kernel does not export
a symbol named sample to 64-bit-mode processes, so all 64-bit calls to
that label reach the library routine.

e The C language routine library, at the point where it needs to invoke the
kernel extension routine for this system call, calls __sample() (two leading
underscores). This is an assembler language glue routine reached
through the branch-and-link instruction. The name of its actual entry point
will be .__sample (leading period).

« The glue routine, still in the 64-bit library, loads an entry from the TOC and
issues a system call instruction. The TOC entry is assembled as a pointer
to sample64 (no prefix, suffix 64).

» The kernel extension routine is named sample64(), and this is the name
that the kernel extension exports as a syscall. The kernel extension
routine will itself call sample() the existing 32-bit kernel service.

The reason for the two underscores is for conformance with ANSI C, which
reserves names not starting with two underscores (or one underscore and a
capital letter) for the user, except for existing non-conforming UNIX names
that are grandfathered. All external symbols in libc64.a must begin with two
underscores.

3.2.2.1 64-Bit to 32-Bit Data Reformatting

The goal of the 64-bit interface is to make it appear to the kernel that the
system service request came from a 32-bit program. To this end, the width of
any data passed across the interface in either direction must be adjusted to
match the expected size.

Data reformatting is done by the 64-bit library routine that is the call target of
64-bit system calls. It receives 64-bit data from the caller, does any necessary

64-Bit Enablement 83

201464bit.fm

Draft Document for Review October 25, 1999 10:23 pm

reformatting to 32-bit data, and calls its corresponding kernel extension
routine that passes the (now 32-bit) data on to the kernel’'s system call
service routine. On completion of the system call, a return code is (generally)
passed back. In addition, the kernel may have passed data back in user
space. When the library routine regains control, it expands the return code
from 32 bits to 64 and expands any returned data in user space.

For scalar parameters, the library does the following before calling the kernel
extension routine:

e char, unsigned char - Passed without change.
« short, unsigned short - Passed without change.

« int, unsigned int, long, unsigned long - Tested to make sure that the value
being passed will fit in the 32-bit version of int or unsigned int. A value that
is too large generally results in setting errno to EINVAL and returning a
return code of -1. Values that are not too large are passed as 32-bit
integers.

Note: Integers that are larger than 232 are valid in some cases. For
example, the Iseek() routine takes an off_t (that is a long) as the seek
position, a value that can be larger than 232 for large files. In this case, the
system call is directed to the 32-bit llseek() interface that is prepared to
handle long integers.

« float, double - Passed without change.

« pointer - Converted from 64-bit effective address to 32-bit effective
address as described in Section 3.2.2.2, “64-Bit to 32-Bit Address
Remapping” on page 85.

Many system calls involve passing the address of one or more structures in
storage. If the structures involve any data types whose sizes differ between
32-bit and 64-bit mode (int, long, pointer), the library routine must pass a
(32-bit) pointer to a local 32-bit copy of the data constructed on its own stack.

Some system calls are 64-bit-enabled, meaning they understand 64-bit
pointers or longs. In such cases, the library code typically passes these by
value in adjacent registers. The kernel code understands to parse the input
as such. The shmat() call is an example of a service that understands a 64-bit
address in adjacent registers.

If the kernel is going to look at the data being passed, the library routine

allocates 32-bit versions of the same structure(s) and copies the data, field by
field, through assignment statements. This results in automatic truncation of
the int and long fields, some of which may need testing for magnitude before

84 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

the conversion is done. Pointers are converted as described in Section
3.2.2.2, “64-Bit to 32-Bit Address Remapping” on page 85.

If the kernel fills in data as the result of a system call, the data must be
widened by the library routine on return from the kernel extension. Space for
the 32-bit version of the structures to be filled-in must be allocated by the
library routine before calling the kernel extension. Assignment, field by field,
will do the proper widening (zero extension or sign extension, as
appropriate).

Returned pointers, such as from sbrk() or shmat(), require special handling
between the library routine and kernel extension routine to ensure that the
proper 64-bit values are returned to the library routine.

Note that some system calls involve data passing in both directions, into and
out of the kernel, and thus require action on the part of the library routine
before, and after, the system call.

3.2.2.2 64-Bit to 32-Bit Address Remapping
As shown in Figure 12, the PowerPC architecture divides the Effective
Address (EA) into three fields:

* The Effective Segment ID (ESID)
« A 16-bit page number within the segment

« A 12-bit byte offset within the page

The width of the ESID varies with execution mode:

¢ In 32-bit mode, the ESID is 4 bits and is often referred to as the Segment
Register number.

* In 64-bit mode, the ESID is 36 bits.

ESID 4 16 12 . .
| o | 5 | 32-bit Effective Address,
age yte with 4-bit ESID
36 16 12
64-bit Effective Address,
ESID | Page | By | isebithsD

Table 12. Effective Segment IDs in 32-Bit and 64-Bit Mode

64-Bit Enablement 85

201464bit.fm

Draft Document for Review October 25, 1999 10:23 pm

For each process, the kernel maintains an array of sixteen entries, each
holding a segment register value that defines the mapping of user effective
addresses to system virtual addresses at the point of a system call. When a
32-bit application issues a system call and passes pointers to data in user
space, the entries in this array are loaded into segment registers by the
copyin() and copyout() routines to access user-space data. The kernel never
accesses user-space data directly, but only through copyin() and copyout().

The 32-bit AIX kernel does not generally understand 64-bit address spaces.
To perform kernel services for 64-bit address spaces, the 16-element
mapping array previously mentioned must be set up so that the relevant
user-space data for a system call can all be accessed through 32-bit
addresses.

The VMM provides services to remap 64-bit pointers passed through system
calls into a 32-bit address space. The 64-bit library code fills out a data
structure describing the 64-bit pointers to be remapped using one of the
__remap*() services. This structure is passed to one of the remap*_64()
kernel services by the 64-bit kernel extension to remap the specified
segments in the user address space into a 32-bit address space for use by
the normal kernel system call routines.

The general form of the remapping structure is an array of effective segment
identifiers and an integer indicating the number of such ESIDs to be
remapped. A pointer to this remapping structure is passed to the remap*_64()
routine. An ESID is 36 bits long and is represented as two integers; the
high-order 32-bits of the ESID in the first word, and the remaining four bits of
the ESID in the high-order four bits of the second word. To optimize the
remapping of a single ESID, the two words describing the ESID are passed in
registers rather than passing a pointer to a remapping structure. Additional
bits are defined in the unused bits of the second word to indicate which form
is being used — pointer or inline registers.

Remapped addresses are only valid in the kernel for the duration of the
system call. Subsequent system calls may not rely on 32-bit remapped
addresses from previous system calls. Extensions with such requirements
should save the segment register value and use the long-form virtual address
instead or call as_unremap64() to obtain the 64-bit unremapped address to
store.

3.2.2.3 Remap Library Data Structures
All the remap data structures are defined in the header file <sys/remap.h>,
except the kernel MST-extension remap region that was discussed earlier.

86 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

This header file is shipped with AlX because all of these structures may be
required by the user.

The addr struct is a library-side structure that holds the information relevant
to the remapping of the address of a single 64-bit area. It also holds the size
of the structure pointed to. Segment crossings are allowed for items in the
addr struct, with the limitation that a single item to remap may not be
contained in more than fifteen segments. This limits the maximum size of an
object to be remapped to 3.75 GB, assuming that it is aligned to a segment
boundary.

The uremap struct is a library-side structure that consists of an array of addr
structs and an integer giving the size of the array. In the general case, the
number of entries can be quite large, such as the number of addresses of
environment variables passed on execve(). The size is set at 17 in the
structure definition to cover cases that need to pass this many addresses
(writev() is one such case). Cases with more than 17 addresses require
individually-constructed structs similar to uremap or just the C-allowed use of
an index greater than an array-size, with appropriate storage malloc()'d by
the caller. The naddr field of the uremap struct can accommodate large
numbers of addr structs input. The point is that __remap() is not limited to 17
addresses to remap on one call. It can accept a large quantity. As of this
writing, the upper bound has not been set. The number 17 was specifically
arrived at from the iovec struct. 17 is iovent+1 to allow for the vectors plus the
address of the structure itself.

The remap struct is the basic data structure used to communicate remapping
information from the library side to the kernel extension. A single remap struct
contains an unremapped 64-bit address (actually ESID), and additionally, the
low bits of a remap struct (address) also have meaning. This will be
discussed later.

The kremap struct is an array of remap structs plus an integer giving the
number of array elements actually used. In the general case, this structure is
passed by the library side to the kernel extension, which accesses it through
copyin64(). The elements of the r[.] array represent up to fifteen unremapped
64-bit addresses.

The remapping code gets the right answer implicitly by making sure that the
library remap code and the kernel remap code allocate srnos in the same
order while processing the kremap struct. It is particularly important, for
segment crossings, that adjacent segments become allocated in the kernel
as needed. The r_xingcnt field in the remap struct is used to indicate the

64-Bit Enablement 87

201464bit.fm

Draft Document for Review October 25, 1999 10:23 pm

number of segments that a particular mapping crosses, so the segments may
be created adjacently.

It is important not to confuse the uremap and kremap structures. The uremap
structures are where the full 64-bit to 32-bit address translations are kept for
each 64-bit address remapped. The kremap structs are passed to the kernel
and indicate on a segment-basis which 64-bit ESIDs are remapped to which
32-bit sreg numbers. The mapping of entries in a uremap struct to entries in a
kremap struct is typically many-to-one. For example, two pointers in the same
ESID will create two uremap entries and one kremap entry.

3.2.2.4 Remap Library Programming Interfaces
The remap library services set up the remap data structures to be passed to
the kernel remap services. There are three library remapping interfaces:

union __remap_handl e __remap(struct uremap *up, struct kremap *kp)
struct remap __renmapl(struct addr *ua)
void __remap2(struct addr *ua, struct kremap *kp)

Three interfaces exist, rather than just one, to improve performance on
remapping. For the case of syscalls that require only one or two parameters
to be remapped, the parameters may be passed in registers. This avoids the
copyin() to the kernel by remap_64() of a kremap struct and is a significant
performance saving. So, __remapl() or __remap2() should be used when
only one or two parameters require remapping, respectively. The __ remap()
call should be used for syscalls requiring three or more remappings.

Like other things in 64-bit libc.a, __remap() is only available to applications
running in 64-bit mode and linked with the correct library. The input to
__remap() are the 64-bit addresses to remap in the addr structs (in uremap).
The __remap() code fills in the addr structs with remapped 32-bit addresses.
It also fills in the kremap struct with the 64-bit ESIDs in the slot corresponding
to the 32-bit sreg number that __remap() picked for the remapping. Slot 0 of
the kremap struct corresponds to 32-bit sreg 1. This is because sreg 0 is
never given out for reasons previously stated having to do with NULL
pointers. As such, only fifteen different segments can be remapped with one
kremap struct.

There is no formal provision at the moment for remapping a given user-mode
address to a specific remapped address specified by the library. It is expected
that applications can avoid dependencies such as this. In the event that this
is not possible, two alternatives exist; add a new force-remap service, or
create a kremap structure with the specified remapping as though it had
already been processed by __remap().

88 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

3.2.2.5 Remap Optimization for Multiple Addresses

If more than one item must be remapped, there is a folding optimization done
by _ _remap(). For the second, and subsequent addresses in the uremap
struct, __remap() determines whether the ESID of the address being
operated on has already been remapped. If so, there is no need to make
another kremap entry for it.

The preceding works fine for circumstances where segment crossings are not
involved. It does, however, become complicated when you put
segment-crossings into the equation. Assume that __remap() is to process
the uremap struct in array-order. The addresses will not be sorted. Also
assume that the first parameter, which does not cross a segment boundary
and resides in 64-bit ESID 3, becomes remapped to 32-bit srno 1. If the
second parameter does cross a segment boundary and starts at 64-bit ESID
2, in the absence of any special optimizations, this second parameter would
have to be remapped to 32-bit srnos 2 and 3 (0 is unavailable for use). Note
that the second parameter must occupy adjacent 32-bit segments.

There are several ways around this problem. One way is to have __remap()
presort the input addr structs by ascending address, but this could get
expensive, since it could have a virtually unbounded number of input address
structures to process. The actual __remap() implementation is a two-pass
method. The first pass (for a majority of the cases) takes a simple approach.
In the preceding example, it would simply associate the 32-bit srnos 1, 2, and
3 as explained. As long as the rest of the remappings fit in the maximum
fifteen slots that are available, this is not a problem, and there is no
expensive sorting or post-processing required. The simple first pass will do
folding only as far as checking to see if the 64-bit ESID has been remapped.

Itis also possible to have a situation similar to the preceding example, except
that the second remapping could touch fifteen segments, starting with ESID
2. This case would fail the first pass, and a second pass becomes necessary
to sort them into ascending order. Although this second pass, when required,
does add some overhead, it guarantees that the ranges to be mapped will fit
into fifteen segments.

3.2.2.6 Remap Kernel Programming Interfaces

There are remapping programming interfaces that are exported to kernel
extensions from the kernel. These are primarily for use by the 64-bit kernel
extension; however, applications that add their own system calls will need
these as well. For this reason, these services take up regular namespace and
are not prefixed with an underscore. See the man pages for formal

64-Bit Enablement 89

201464bit.fm

Draft Document for Review October 25, 1999 10:23 pm

documentation of these routines as_unremap64() is intended for kernel
extensions that really need to have the unremapped address.

The library-side maps 64-bit addresses to 32-bit in that it selects the sreg
numbers to correspond to the ESIDs of the 64-bit addresses. However, the
kernel-extension still has to update the address space map for the 64-bit
thread to reflect these values, so that when the kernel uses these 32-bit
addresses to access memory, the proper SID will be inferred. These services
update the MST-extension remap struct described previously:

int remap_64(struct remap r)
int remapl 64(struct remap r)
int remap2_64(struct remap rl, struct remap r2)

unsi gned | ong | ong as_unr emap64(ui nt addr 32)

The reason for three different remap routines is to optimize for cases where
only one or two ESIDs are used. This is a very common case. The
remap_64() call handles the case of greater than two remap structs input as
well as all other cases. Parameters to remapl_64() and remap2_64() are
passed entirely in registers, so these routines do not have to copyin() a
remap struct from user-mode.

There is also an internal kernel routine, remap(), that is used by copyin64()
and others. The purpose of remap() is to support 64-bit-enabled code in the
kernel that handles non-remapped addresses. Code calling remap() passes
the address of a remap-like struct on the stack (typically), and this is used as
a save area for the regular MST remap fields that are overwritten by this
remap() call. At the end of the copyin64(), or any other call, restoremap() is
called with the address of the stack-resident remap-like struct. The original
contents of the MST remap fields that were temporarily overwritten are
written back to the MST. An additional internal routine, as_remapaddr(), is
used to return the original 64-bit unremapped address (modulo SEGSIZE) for
a given 32-bit remapped address.

static void renap(ptr64 addr, uint nbytes, struct remaps * ptr)
static void restoremap(struct renmaps * ptr)
ptr64 as_renmapaddr (ui nt addr 32)

These services take only one address and length to remap, and there is no
place, currently, where calls to remap() are nested without restoremap(). Only
one data structure at a time can be remapped in this fashion. The on-stack
remaps structure is able to store the entire mstext->remaps array when there
are fifteen segments total in the range to be remapped through savemap().

90 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

3.2.2.7 Optimizations for One or Two Parameters

The library-side and the kernel-side remap routines have optimizations built
into them to pass one or two parameters by value if possible. This provides a
significant improvement over requiring a full copyin64() of the kremap
structure every time. There are three cases that the remap() code has to
handle:

* The output library remapping resulted in only one remapping or remap
struct (R_IN_LINE - see the following).

* The output remapping resulted in two remappings, and __remap2() was
called (with two addr structs only).

« The output remapping resulted in more than one remapping if __remap()
was called.

The low order bit of the cookie passed to the kernel remap services, all the
way from the library, identifies what the cookie actually is. For example,
although remap_64() is documented to have a struct remap() passed to it, if
the R_IN_LINE bit is not set in this, then this struct remap is a pointer to a
struct kremap, on which a copyin64() must be performed. If, however, the
R_IN_LINE bit is set on input, then that indicates that all of the parameters
collapsed into a single remapping in the library (case 1), and remap_64() can
call remapl_64() to do the work. This avoids the copyin() when many
parameters reside in the same segment (ESID). This should be a common
case.

The R_IN_LINE flag is interpreted differently by the remap2_64() kernel
service. The __remap2() subroutine sets the R_IN_LINE flag in the first
remap struct if the output remappings collapsed into one. This indicates that
the second parameter to remap2_64() should be ignored. See the next
section for coding and calling conventions for __remap2().

3.2.2.8 Using the Remapping Services

There are very rigid rules on how to invoke the remapping services and how
to handshake with the kernel-side remapping wrappers. Typically, whatever
library remapping service was invoked for a particular wrapper, it should have
the corresponding kernel remapping service called as well. For example, if
__remap2() is called in the library wrapper, the kernel-extension should call
remap2_64().

The following is very important:

e For a given system call, it is only permissible to make a single call to the
remapping kernel services. In other words, it is not legal to call

64-Bit Enablement 91

201464bit.fm

3.2.3 64-Bit

Draft Document for Review October 25, 1999 10:23 pm

remap_64() twice on the same system call. Similarly, it is not legal to call
remapl_64() and then remap2_64() on the same system call.

To detect potential misuse of the remapping services, the remap data
structures are coded with a unique code for whichever library remap service
created them. If a kernel service other than the correct one for a given library
service is called, an error will result. For example, callers of __remap1() must
call remapl_64().

Typically, a library wrapper will call a remap service and check if the return
code is -1. If so, it will fail. After that, the returned value remap structure from
the particular __remap* service is passed as the first parameter. If this is a
__remap?2() call, the first parameter is kremap.r[0], and the second parameter
is kremap.r[1]. Of course, each of these parameters is split into two 32-bit
registers. A single remap struct fits into a single 64-bit register in user-mode
but requires two registers each to pass to the kernel.

XCOFF Format

The extended common object file format (XCOFF) combines the standard
common object file format (COFF) with the TOC module format concept. This
allows dynamic linking and replacement of units within an object file.

Until AIX 4.2, the XCOFF format assumed that addresses were 32 bits,
memory could be no larger than 232 bytes, and therefore, no object (csect,
text section, and so on) could be larger than 232 bytes. The XCOFF header
files contained 32-bit fields for value in the symbol table, 32-bit length-fields
for sections, and so on.

For PowerPC’s 64-bit execution mode, these sizes are too restrictive. The
reason for moving an application from 32-bit mode to 64-bit mode is to use
addresses larger than 32 bits. In general, this means that all fields in XCOFF
structures that can hold an address or a size should be increased to 64 bits.
At the very least, it should be possible to describe a bss (common, or
uninitialized data) object with a size greater than 232 bytes.

3.2.3.1 XCOFF Design

There are two XCOFF formats; one for 32-bit applications, and one for 64-bit
applications. The 64-bit XCOFF differs from the 32-bit XCOFF format in
several ways, as listed in the following:

« The file size can be up to 283 bytes (rather than 23! bytes).
« Each XCOFF section can be up to 253 bytes (rather than 231 bytes).

92 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

« The virtual addresses in the process can be up to 2% bytes (rather than

232).

« The offsets of objects within the XCOFF file can be up to 252 bytes (rather

than 231).

Line numbers can be up to 23 (rather than 21°).

The 64-bit XCOFF does not differ from the 32-bit XCOFF format in the
following fields because they are considered to be big enough:

Symbol table indexes will still be limited to 231, allowing about half this
many symbols in an executable (each symbol uses an average of about
two symbol table entries).

The string table will be limited to 231 bytes in size, limiting the sum of the
length of all symbol names to less than this value.

The following design issues have been implemented:

All header file declarations for both 32-bit XCOFF and 64-bit XCOFF are
contained in the same files used for 32-bit XCOFF declarations.

Field names within structures are the same for structures that have
different versions for 32-bit XCOFF and 64-bit XCOFF.

Where possible, the structure sizes and layouts from the 32-bit XCOFF
definition were not changed. Some fields have been rearranged to avoid
alignment padding and to increase the number of fields that are at the
same offset in both XCOFF versions.

Fixed width types are used in all header files. The following are the fixed
width types: char, short, int, and long long. (Of course, these types are
only fixed with respect to AIX.)

Note: Pointers exist in some of the existing header files. Since pointers
are not fixed-width types, source code using these pointers will not
compile in 64-bit mode.

Source code compatibility is maintained for 32-bit programs written to
process 32-bit XCOFF files.

Minimal changes are required to port a 32-bhit program that manipulates
32-bit XCOFF files to a 32-bit program that manipulates 64-bit XCOFF
files.

Minimal changes are required to port a 32-bit program that manipulates
32-bit XCOFF files to a 64-bit program that manipulates 32-bit XCOFF
files.

64-Bit Enablement 93

201464bit.fm Draft Document for Review October 25, 1999 10:23 pm

3.2.3.2 Using the XCOFF Formats

There are different options for an application to use the XCOFF formats. The
following strategies are possible:

* Using 32-bit XCOFF declarations.

To only use the 32-bit XCOFF definitions, an application must include the
appropriate header files. This will define only the structures for 32-bit
XCOFF files. The 64-bit XCOFF structures and field names will not be
defined. Structure names and field names will match those in previous
versions of AlX, providing source compatibility.

Note: Existing uses of shorthand type notation (for example, uint, ulong)
have been removed.

¢ Using 64-bit XCOFF declarations.

To only use the 64-bit XCOFF definitions, an application must define the
preprocessor macro _ XCOFF64__ . This will define only the structures
for 64-bit XCOFF files. The 32-bit XCOFF structures and field names will
not be defined. Structure names and field names will match the 32-bit
XCOFF versions.

¢ Using both XCOFF declarations.

To use separate 32-bit XCOFF and 64-bit XCOFF definitions, an
application must define both the preprocessor macros _ XCOFF32__ and
___XCOFF64__. This will define structures for both kinds of XCOFF files.
Structure and typedef names for 64-bit XCOFF will have the suffix _64
added to them, even if a common structure could be used.

¢ Using a hybrid of both XCOFF declarations.

To use a hybrid of both the 32-bit XCOFF and 64-bit XCOFF definitions, an
application must define the preprocessor macro _ XCOFF_HYBRID .
This will define single structures that can be used with both 32-bit XCOFF
and 64-bit XCOFF, where possible. Where fields in structures are a
different size or at a different offset, suffixes 32 and 64 are used to
differentiate between the fields. For example, the symbol table definition
(in /usr/include/syms.h) will have the names n_offset32 and n_offset64,
which should be used for 32-bit XCOFF and 64-bit XCOFF files
respectively.

Depending on the execution environment of the executable and the targeted
XCOFF format, the following combinations exist:
¢ 32-bit program manipulating 32-bit XCOFF files.

A 32-bit program that manipulates 32-bit XCOFF files will require no
change to continue to do so with the new header files.

94 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

Note: Since the types of some fields are being changed from long to int,
code that takes the address of such a field will result in a compiler warning
when compiled in ANSI mode.

« 32-bit program manipulating 64-bit XCOFF files.

An existing 32-bit program that manipulates 32-bit XCOFF files can be
recompiled to manipulate 64-bit XCOFF files by defining the symbol
__XCOFF64__. Some code changes will be necessary, but the changes with
respect to the file format will be limited to cases where 32-bit XCOFF and
64-bit XCOFF use different constructs. In particular, n_name will not be
defined in struct syment, and use of struct auxent will require changes since
auxiliary symbols are redefined.

¢ 64-bit program manipulating 32-bit XCOFF files.

An existing 32-bit program that processes 32-bit XCOFF files can be
recompiled to a 64-bit program without change (with respect to the XCOFF
definition) with two exceptions:

« Pointers in the existing XCOFF files will be defined as ints in 64-bit
mode.

« Existing header files use preprocessor macro definitions in some
cases. These same macros may no longer exist when compiling in
64-bit mode, so incidental use of the macros may require a code
change.

3.2.3.3 Incomplete aouthdr Structure

Non-executable XCOFF files do not require a full-size auxiliary header.
Current practice defines a short 32-bit auxiliary header that is generated by
the compiler or the linker when the output file is not an executable. A short
64-bit auxiliary header will not be required by this definition. Applications
examining non-executables must examine f_opthdr in the XCOFF header to
determine how much of the auxiliary header is in the file.

There will be no auxiliary header used for non-executable 64-bit XCOFF files.
Applications needing the fields from the auxiliary header for non-executable
64-bit XCOFF files should use the information in the section headers to
generate these values. The fields where this may be necessary are text, data,
and BSS sizes.

3.2.3.4 XCOFF Magic Number

The calling conventions for 32-bit mode and 64-bit mode are different in detail
because one saves 32-bit General Purpose Registers (GPRs) onto the stack
frame, and the other saves 64-bhit GPRs. Calling from a program of one mode

64-Bit Enablement 95

201464bit.fm

Draft Document for Review October 25, 1999 10:23 pm

to a subroutine of the other mode is not supported. The linkage editor Id
refuses a request to link programs of differing execution mode.

Because of this, a new magic number has been introduced for 64-bit
execution mode. The primary purpose of the XCOFF magic number is to
identify the associated Application Binary Interface (ABI), which implies a
hardware system and an execution environment. The 64-bit XCOFF magic
number implies a 64-bit PowerPC processor and 64-bit execution mode on
that processor.

The magic number keeps the linkage editor from binding 64-bit programs with
32-bit programs and keeps the loader from trying to execute 64-bit programs
on 32-bit hardware.

The magic number is defined in the header file /usr/include/filehdr.h and has
the name UB03XTOCMAGIC with the value 0757.

3.2.4 Device Drivers

AIX 4.3 supports 64-bit applications on 64-bit PowerPC hosts in addition to
maintaining support for 32-bit applications on all other supported hosts. Thus,
on 64-bit hosts, both 32-bit and 64-bit applications can run simultaneously. To
minimize the impact of adding 64-bit support, the kernel continues to run in
32-bit mode but provides interfaces to 64-bit applications by remapping the
64-bit application space address into a 32-bit address for the kernel. Thus,
the following is true for device drivers in general and 1/O drivers specifically:

« 32-bit versions of device drivers will operate correctly without change on
AIX Version 4.3 in support of 32-bit applications.

« 64-bit applications require modification of only the entry points (such as
ioctl()s) for proper operation.

The 4/8/8 model requires two primary changes for an I/O device driver:
e Providing ioctl support for 64-bit applications.

¢ Ensuring that structures describing fixed sized entities are size-invariant
between both 32-bit and 64-bit applications.

3.2.4.1 Changes to ioctl()

The third argument of an ioctl call is referred to as the arg parameter. For
some ioctls, the arg parameter can be a pointer. For AlX 4.3, the kernel
guarantees that the arg parameter received by a device driver is always a
32-bit value. For 64-bit applications, the kernel will remap the address to a
32-bit address. Often, the arg parameter is a pointer to a data structure that
may contain additional pointers. The kernel has no knowledge of this and, as

96 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

a result, it is the device driver’s responsibility to interpret these correctly.
Device drivers that support 64-bit embedded pointers need to notify the
kernel of this by setting the DEV_64BIT define for the d_opts flag passed to
the devswadd() call from the config entry point of the device driver. For
example a 64-bit-enabled SMP driver would use the following code segment:

devsw struct.d_opts = DEV_MPSAFE | DEV 64BI T,
devswadd(devno, &devsw struct);

For device drivers that do not set the DEV_64BIT flag, all ioctls from 64-bit
applications will fail with an errno of EINVAL.

Since data structures with embedded pointers cannot remain size-invariant
between 32-bit and 64-bit applications, a 64-bit-enabled device driver will
need to maintain an internal-use-only 64-bit equivalent (recall the device
driver will be compiled for 32-bit mode) of all such structures that can be
passed as arg parameters. This can be accomplished by cloning the structure
definition and replacing all pointers with type ptr64 (defined in types.h as
unsigned long long).

3.2.4.2 Parameter Passing Examples
For example, assume a device driver’s shipped header file has struct A, and a
device driver supports an ioctl call whose arg parameter is the address of

struct A:
struct A {
i nt aaa,;
char *bbb;
char c;
i nt *ddd;
}

For a 32-bit application using struct A as the arg parameter of an ioctl, the
device driver can recast the arg parameter as struct A. However, if the device
driver determines the caller is a 64-bit application (through a call to the 1S64U
kernel macro), then the device driver will have to recast struct A to a new
struct A64 defined as:

struct A64 {
i nt aaa;
ptr64 bbb;
char c;
ptr64 ddd;
}

The code segment of the device driver for this ioctl is similar to this:

64-Bit Enablement 97

201464bit.fm Draft Document for Review October 25, 1999 10:23 pm

if (164U {
/* The caller is a 64-bit application */
X = (struct A64 *) arg;

} else {
/* The caller is a 32-bit application */
X = (struct A*) arg;

}

The following naming conventions are used to create the device driver’s
64-bit equivalent structure:

* The 64-bit equivalent structure used by the device driver is included in the
same shipped header file.

It has a comment indicating that this is used for device drivers only and not
applications.

* The name of the 64-bit equivalent structure is that of the original structure
but with a 64 appended (for example, for sc_iocmd, it will be sc_iocmd64).

For the device driver to manipulate the 64-bit addresses, new 64-bit kernel
services are provided. These kernel services support 32-bit unremapped
addresses as well as 32-bit remapped addresses and 64-bit addresses. Thus
all 64-bit-enabled drivers make the global kernel service replacements
provided in Table 13.

Table 13. Old and New Kernel Services Used by Device Drivers

Old Kernel Service New Kernel Service
copyin() copyin64()

copyout() copyout64()
xmattach() xmattach64()

pinu() xmempin()

unpinu() xmemunpin()

98 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

The xmempin()/xmemunpin() calls use the same arguments as
pinu()/unpinu(), with the exception that the third argument for
xmempin()/xmemunpin() is the address of the cross memory descriptor from
xmattach()/xmattach64() instead of a segflag. The xmattach64() call uses the
same arguments as xmattach(), with the exception that the first argument for
xmattach() is of type unsigned long long (ptr64) instead of type char *.

Note: xmattach64() enables xmempin(), so that the 64-bit address can be
recast as a 32-bit address when passed to xmempin(). The xmdetach() call is
used to undo xmattach64().

3.2.5 Loader

For AIX 4.3, the same basic loader system calls are provided to 64-bit
programs. That is, there are 64-bit versions of execve(), fork(), exit(), load(),
and unload() that are aware of the 64-bit user address space. There are also
64-bit versions of knlist() and sysconfig(), although these just interface to the
existing 32-bit services. There is no 64-bit version of ptrace(), but 64-bit
processes can be debugged by 32-bit debuggers. Finally, the loadquery(),
loadbind(), and __loadx() functions are no longer system calls for 64-bit
programs but are implemented in libc.a.

Four new external functions are added to the loader in AIX 4.3 to support
64-bit processing:
* Idr_init64()

This function is called during kernel initialization when a 64-bit system
boots.

« Idr_config64()

This function is called by sysconfig() when a 64-bit machine is configured
to run 64-bit processes.

« |dr_gettextusage64()

This function computes the number of real memory pages used by the
main executable of a process. It only needs to be called if the main
executable is loaded in multiple working segments.

* 1dr64()
This is a new system call exported to the special 64-bit process that
relocates shared objects. No other process has access to this system call.

On AIX 4.3, the same algorithm is used for loading 64-bit modules, but the
work is split between kernel code and user-space code. The kernel part of the
64-bit loader is responsible for mapping the modules of a process into the

64-Bit Enablement 99

201464bit.fm

Draft Document for Review October 25, 1999 10:23 pm

64-bit user address space. The user-space part processes the symbol tables
and performs the relocation of the data sections.

Kernel extensions are still in XCOFF32 modules and they are entirely loaded
and resolved by the kernel. The user-space processing of the shared library
segments is handled by a privileged process running in 64-bit mode called
the shared library loader assistant process or SHLAP.

The user-space processing of privately-loaded modules is handled by code
that is loaded into a system-wide segment that is shared by all 64-bit
processes. This code is called user-space loader assistant (USLA) and runs
in the process of loading the module. The USLA is implemented as a loadable
module that is prelinked at a fixed address, so that it will not have to be
relocated. When an execve() system call leaves the kernel, it transfers
control to the USLA that performs symbol resolution and relocation for
privately-loaded modules. After load() calls, library code will be responsible
for calling the USLA to complete the relocation of any newly-loaded modules.

Because the kernel is not performing symbol resolution and relocation for
64-bit processes, only a small portion of a 64-bit module needs to be
addressable in the kernel. The kernel only needs to examine the XCOFF
header, the section headers, the loader section headers, and the loader
section import IDs. Even for extremely large programs, the size of these
areas will be small. Only the import ID section is variable length, and its
length depends on the number of dependents a module has, not on the size
of the module itself. These portions of a module can be read into allocated
memory, avoiding addressability problems inherent in the existing 32-bit
loader.

3.2.6 Virtual Memory Manager

The AIX 4.3 design point is a 60-bit user address space. The areas impacted
in the VMM are the address space code, the shared memory code, teaching
VMM code to understand remapped addresses, and the remapping services
themselves.

3.2.6.1 Executing a 64-Bit Program

The size of a user-address space only changes as a result of exec(). A 32-bit
program may exec a 32 or 64-bit program, and conversely, all combinations
are possible.

The VMM provides support routines for exec() processing to switch between
a 32-bit and 64-bit executable. The routine vm_makeme64() is called when
the exec()'d program is a 64-bit program. This routine pins and initializes the

100 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

64-bit u-block extension, initializes the 64-bit address space structures,
initializes the Address Space Register (ASR) in the Machine State (MST)
extension with the real address of the segment table, sets the shreak and
stack sizes, and marks the process as a 64-bit executable.

The routine vm_makeme32() is called whenever a 64-bit program execs(). It
is called even if the program to be executed is 64-bits. This routine initializes
a 32-bit user address space from the 64-bit one, clears the 64-bit MST
extension address and marks the process as a 32-bit executable. The
segstate structure is handled later by shm_asinit(), and the 64-bit u-block
extension is freed in the subsequent call to vm_cleardata(). The
vm_cleardata() call also initializes the sbreak value for the private segment
and adjusts the storage protect key accordingly in the external page tables
covering the user region. There is no service to re-initialize a 64-bit adspace
to a newly-created 64-bit adspace, so it is necessary to call vm_makeme32,
followed by vm_cleardata() and vm_makeme64(), when a 64-bit program
exec()’s another 64-bit program.

3.2.6.2 Address Space Management

The address space management code is significantly impacted for 64-bits.
The code was updated to understand segment numbers, or effective segment
IDs, above the first sixteen IDs.

32-Bit Address Space Programming Interfaces

The following 32-bit services that operate on the process address space are
exported to kernel extensions, so the AlX 4.3 versions of these services are
binary-compatible with prior versions. For internal base kernel use, these
address space services are extended to handle 64-bit address spaces but
only by code that has been modified to be 64-bit aware. This means only by
code that knows how to compute an appropriate adspace_t for a 64-bit
address space:

caddr _t as_att(adspace_t * adsp, vnhandl e t srval, caddr_t addr)
int as_det (adspace_t * adsp, caddr_t addr)

vnhandl e_t as_get h(adspace_t * adsp, caddr_t addr)

vnhandl e_t as_get srval (adspace_t * adsp, caddr_t addr)

voi d as_put h(adspace_t *adsp, vnhandle_t srval)

voi d as_set h(adspace_t * adsp, vnhandl e_t srval, caddr_t addr)
adspace_t *getadsp()

To provide compatibility for 32-bit kernel extensions, the 32-bit getadsp()
kernel service is modified to determine if it is running under a 64-bit user
address space, and if so, it will return the first adspace_t. This represents
ESIDS 0-15. This could enable some extensions to run under the 4 GB
boundary for 64-bit.

64-Bit Enablement 101

201464bit.fm

Draft Document for Review October 25, 1999 10:23 pm

All of the 32-bit services listed may be used by a kernel extension or device
driver, but they will only operate on addresses below 4 GB, even when under
a 64-bit process. The service to compute an adspace_t for 64-bit,
getadsp64(), is not exported from the kernel. Thus, these routines are not
enabled outside the kernel to operate above the 4 GB line.

Kernel services and drivers should use the new 64-bit address space
services described in the following.

For 64-bit address spaces (internal to the kernel, where there is getadsp64()),
the address arguments specified preceding as caddr_ts are actually 32-bit
guantities that are treated as offsets into the appropriate adspace_t. The only
reason for keeping enablement of these services for 64-bit inside the kernel is
that, on some system calls, there should be some performance improvement
by only computing an adspace_t once.

64-Bit Address Space Programming Interfaces

The following additional address space services are provided for use by the
64-bit kernel extension and by other base kernel code that has been modified
to be 64-bit aware.

All of the following services are exported:

unsigned long | ong as_att64(vnhandl e_t srval, int offset)

int as_det 64(unsi gned | ong | ong addr 64)

vrhand! e_t as_get h64(unsi gned | ong | ong addr 64)

vnhand! e_t as_get srval 64(unsi gned | ong | ong addr 64)

int as_put h64(unsi gned | ong | ong addr64, vnhandl e_t srval)
int as_set h64(unsi gned | ong | ong addr64, vnhandl e_t srval)
int | S64U

The address space programming model for 64-bit introduces a copy of all the
32-bit interfaces appropriately scaled for 64-bit addresses. All of the 64-bit
services work properly under a 32-bit user address space or under a kproc as
well as a 64-bit user address space:

One additional non-exported service is provided:

adspace_t *get adsp64(unsi gned | ong addr 64)

The getadsp64() service exists to provide a bridge between the 64-bit and
32-hit services. The adspace_t returned by getadsp64() may be passed to
any of the 32-bit services, and it will work properly. The one exception to the
example is that 32-bit as_att() will not support attaching anywhere other than
the first adspace_t. The advantage of using getadsp64() is the performance
improvement of only computing an adspace_t once per system call.

102 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

The concept of an adspace_t really does not exist with the new 64-bit
interfaces; getadsp64() is the only exception, and it is only for use with the
32-bit interfaces internal to the kernel. The advantage of not having an
adspace_t externalized is that the width of an adspace_t is no longer
surfaced to extensions. This saves the extensions the overhead of having to
compute another adspace_t every 4 GB.

Kernel extensions writing new code to enable 64-bit support that need the
address space services, should use the new *64 services instead of the
current 32-bit services. The *64 services handle all the general cases for
64-bit and 32-bit address spaces. The 32-bit services will only work for
addresses less than 4 GB outside the kernel.

How to Determine if this is a 64-Bit Address Space

The 1S64U macro will return true if the user address space for the current
process is 64-bits. This macro is valid only in kernel mode. If used inside the
kernel, this will return the value of U.U_64bit directly. If used outside the
kernel in an extension, this will generate a subroutine call to the new kernel
service: _as_is64(). _as_is64() will simply return the value of the variable.
U.U_64bit is managed by exec() in vm_makeme64/32. 1S64U is defined in
user.h.

3.2.6.3 Shared Memory Management

The shared memory code is impacted for 64-bit support since it must attach
shared memory segments at large addresses. The functions shmat() and
mmap() will behave as follows regarding segment number (ESID) allocation:

« If no fixed address is specified, then allocation takes place from the
shmat()/mmap() pool at ESIDs: 0x70000000 - Ox7FFFFFFF.

« If a fixed address is specified by the user, then the allocation will be
allowed as long as the ESID is less than 0x80000000 and is not ESID
0-2,13, or 15.

* The shared memory allocator internally allocates anywhere in the address
space. The reason for this is that other areas of the kernel, for example
the loader, need to insert segments at ESIDs greater than 0x80000000.
Therefore, shm_insert() is allowed to insert anywhere, but the higher-level
user-interfaces perform the validation for the user level.

Shared Memory User and Exported Kernel Programming Interfaces
The shared memory component has numerous system calls surfaced to the
user. All of these system calls are registered in the 64-bit libc.a and the 64-bit
kernel extension. The following is the list of the 32-bit shared memory system
calls:

64-Bit Enablement 103

201464bit.fm

Draft Document for Review October 25, 1999 10:23 pm

voi d* shnat (int shmd, const void *address, int shnflag)

int shnetl (int shmd, int cormand, struct shmid_ds *buffer)
int shmdt(const void *address)

int shnget (key_t key, size t size, int shnilag)

int disclain{char *address, uint len, uint flag)

The following are the new, 64-bit-ready interfaces for the shared memory
services. These interfaces are called directly from the 64-bit kernel
extensions only:

ptr64 _shnat64(int shmd, ptr64 address, int shnil ag)
int _shrdt 64(ptr 64 addr ess)
int _di scl ai mB4(ptr64 addr, unsi gned | en, unsi gned fl ag)

The _shmat64(), _shmdt64(), and _disclaim64() calls do not require
parameter remapping, since they are 64-bit-enabled. They do, however,
require 64-bit libc.a to split their address parameters into two adjacent
general purpose registers for processing in 32-bit mode. the shmctl() call
does require parameter remapping on the pointer to the shmid_ds.
Additionally, shmget() takes a size_t as input. This typedef is an unsigned
long, which has different widths in 32-bit and 64-bit programs.

The prototype to shmget() will not change for 64 bits. The low 32 bits of the
64-bit size will be passed to the kernel, with the size being range-checked for
32 bits in the library-side. There will be no increase in size of the supported
memory region. The key_t parameter to shmget() is currently a long. It will be
changed to always be an int. This will be true for 32-bit and 64-bit code to
make it invariant. This allows predictable message-passing between 32-bit
and 64-bit processes.

3.2.6.4 User Data and Stack Management

The 32-bit programming interfaces for adjusting a program’s data size are
brk() and sbrk():

int brk(voi d *enddat asegnent)
void * sbrk(int incremrent)

There is a change to the sbrk() interface required by 64-bit mode and UNIX98
standards. For UNIX98, sbrk() needs to take a long on input.

This poses a breakage for those who want to have the UNIX95-behavior of
sbrk() that obeys the preceding prototype, taking an int in 64-bit mode. The
problem is that the 64-bit library wrapper for sbrk() has no way of determining
whether it was passed a 32-bit value or a 64-bit value. The compiler will not
ensure that the high 32-bits of a register are 0 for int’s. Since most
programmers going to 64-bit with their applications will require some porting

104 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

effort to do so, changing sbrk() to the UNIX98 interface will add very little
extra work. This does not mean that they have to change everything to
UNIX98 conformance, just sbrk() in this case.

The sbrk() function prototype in <sys/unistd.h> was changed to pass a long
for all 64-bit compilations; that is, if __64BIT___is set. For 32-bit compilations,
the sbrk() prototype will be conditionally compiled to generate the appropriate
UNIX95 or UNIX98 prototype since the data-width between int and long does
not change for 32-bit. Code that wants to run 64-bit must either make sure it
passes a long, or if it obeys UNIX98, it is required to include <sys/unistd.h>.
The standards require header file inclusion. The prototype for sbrk(), which
defines it as taking a long, is as follows:

void * shrk(intptr_t increnent)

intptr_t is a new type. Defined in <sys/inttypes.h>, it maps to a long.

3.3 Application Development

Section 3.2, “64-Bit Core Design” on page 75, explained the design issues of
AIX 4.3 with respect to 64-bit application support. The changes in the core
design of AIX have impacts on various components of the software
development environment. This section describes what decisions have been
made to provide a migration path from 32-bit to 64-bit applications. It shows
the modifications that have been made to the most important tools in the
software development area, such as the compiler, linker, and archiver.

3.3.1 C Compiler

This section discusses the implementation of 64-bit capabilities in the C for
AIX compiler. The C compiler provides supporting functions that can enable
the usability of 64-bit C syntax and semantics.

Each program compiled for execution on AlX is intended for execution in one
particular target execution mode: 32-bit mode or 64-bit mode. The default
compilation and assembly mode is 32-bit. This is the ILP32 model. The
change from the default 32-bit to 64-bit mode is under user control. In the
compiler, the option -q64 is used to change the compilation mode.

The default execution mode is not directly controllable by the user processes
but can be examined indirectly (for code dynamically targeted to multiple
environments) through the pointer or long type size. The compiler provides
porting assistance options wherever there are statements that can be
ambiguously interpreted for the LP64 environment.

64-Bit Enablement 105

201464bit.fm

Draft Document for Review October 25, 1999 10:23 pm

When running 32-bit processes on 64-bit platforms, the execution is
transparent and identical to executing on a 32-bit platform with no loss of
performance. When trying to run 64-bit processes on 32-bit platforms, the
execution will fail in an obvious manner.

The 64-bit implementation in the C front end does not change the default
behavior of the compiler. The compiler only changes the behavior of code
when compiled in 64-bit mode. Code that was compiled in 32-bit mode that
has no requirements for large address spaces (pointers) or large object sizes
(arrays and dynamic heaps) will not need to be recompiled to work in 32-bit
mode on a 64-bit platform. You may recompile the code in 64-bit mode to
check performance implications in 64-bit mode on a 64-bit platform.

While most code will recompile and execute properly in 64-bit mode, some
code will behave differently, or may not function at all, due to nonportability
deliberately or accidentally written into the code. Common causes of behavior
changes are due to mixed use of long and int types in operators, especially
comparison operators that will change the code execution path. Although the
usual operand promotion rules do not change, the changed size of long types
may yield surprising and unexpected results. Function arguments and return
types from functions need to be checked for their actual value. Many library
functions return long types and take long types that are implicit, such as
size_t and ptrdiff_t. Structures, structure alignments, member alignments, bit
fields, and enums are guaranteed to change when compiled in 64-bit mode
(especially if they contain long and pointer types).

3.3.1.1 Compiler Mode

The generation of 64-bit instructions and 64-bit XCOFF is called the 64-bit
compilation mode. The compiler invocation for setting the 64-bit versus 32-bit
mode evaluates several sources. They are:

* Internal default
¢ Environment variable OBJECT_MODE
« Configuration file
e Command line
» Source file
The compiler evaluates the options in the given order of the items. The last

one takes precedence. For example, if the environment variable
OBJECT_MODE exists, it will replace the internal default of the compiler.

106 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

Table 14 provides a list of OBJECT_MODE settings and the compilation
mode behavior.

Table 14. Settings for OBJECT_MODE and the Resulting Compiler Behavior

OBJECT_MODE Setting Compilation Mode Behavior

not set 32-bit mode
32 32-bit mode
64 64-bit mode
32_64 fatal error and stop (unless there is explicit user setting

in the config file or command line) with message:
1501- 054 CBJECT_MIXDE=32_64 is for m xed-node
and is not a valid setting for the conpiler.

anything else fatal error and stop (unless there is explicit user setting
in the config file or command line) with message:
1501- 055 CBJECT_MXDE setting i s not recogni zed
and is not a valid setting for the conpiler.

This option allows the code to function in a 32- or 64-bit environment without
excessive use of new option names. This will maintain compatibility with other
tools that can exhibit 32/64-bit mode behavior since they will all use the
OBJECT_MODE environment variable. It also maintains compatibility with
machines without 64-bit capability that want to compile in 64-bit mode. In all
cases, the user is free to override the environment variable with an explicit
option in the config file or the command line.

32-bit mode is invoked by specifying -q32 on the compiler command line and
is the default if OBJECT_MODE is not set. This option is equivalent to a
direct expansion into the -qarch=com option. For the compilers that do not
have 64-bit yet, use of the -q32 or the -q64 option will cause the following
warning (this is the usual warning on unrecognized options):

1501-055 ption -g32, -g64 is not recogni zed and is ignored.

Problems with #pragma arch Suboptions in Source Files

The -q32/64 option has no pragma equivalence because the compilation
mode must be determined before the compiler driver exits and invokes the
compiler. Implicitly expanded options are parsed with the rest of the
command line to produce a final compilation mode. From this compilation
mode, the options are passed separately to the compiler, linker, and
assembler. However, since the ARCH suboption has an equivalent #pragma
arch suboption in the source file, the individual files may be compiled in a
different mode than what was decided by the command line.

64-Bit Enablement 107

201464bit.fm

Draft Document for Review October 25, 1999 10:23 pm

It was decided to disallow the setting of a #pragma arch suboption in a source
file. This is a change in Version 4.0 of the C compiler that means a loss of
backward compatibility with previous C compiler versions.

Mixed-Mode Compilation and Two-Step Compile and Linking

When you cause a mixed 32- and 64-bit compilation mode, your XCOFF
objects will not bind. This will become obvious if the compile and link
occurred in one step. However, you may not know this if the compile and link
occurred in different steps. In other words, if you compiled and produced
64-bit objects, you need to remember to link using the 64-bit mode (when
linking using xIc), otherwise the objects will not link. If the objects are in
mixed XCOFF mode, then they will never link, and you must recompile
completely, making sure that all objects will be in the same mode.

There is a set of new configuration file attributes that are used in place of the
normal attributes whenever the compiler determines that the 64-bit mode is
enabled. These new attributes are:

e crt_64
e gcrt_64
e mcrt_64

The new definitions for these attributes are:

crt_64 Path name of the object file passed as the first parameter to the
linkage editor. If you do not specify either -p or the -pg option, the
crt_64 value is used. The default depends on the compiler being
used.

gcrt_64 Path name of the object file passed as the first parameter to the
linkage editor. If you specify the -pg option, the gcrt value is used.
The default depends on the compiler being used.

mcrt_64 Path name of the object file passed as the first parameter to the
linkage editor if you have specified the -p option. The default
depends on the compiler being used.

Note: The invocation of 64-bit mode using the -q64 option (either
explicitly or using a stanza) automatically implies linkage in 64-bit
mode. The compiler driver automatically and quietly generates the
correct linker options (-b32 or -b64) to call the binder or the
correct assembler option (-a32 or -a64) when calling the
assembler. Therefore, these options do not need to be set by the
user.

108 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

Predefined __64BIT__ Macro

When the compiler is invoked to compile for 64-bit mode, the preprocessor
macro __ 64BIT__ is predefined. When it is invoked in 32-bit (default) mode,
this macro is not defined. The variable can be tested through:

#f defined(_64BIT)

or

#ifdef _ 64BT__
to select lines of code (such as printf statements) that are appropriate for 64
or 32-bit mode. The ability to choose execution mode (of the final executable)

at compile time and the existence of the __64BIT__ macro implies there is no
need for an application to determine its execution mode at run time.

When the compiler is invoked to compile for 64-bit mode, this macro is set to
a value of 1 internally, so that the C preprocessor and compiler will recognize
it. It cannot be redefined or undefined. Any attempt at redefinition will fail.

3.3.1.2 Fixed-Width Types
There is a a set of types that maintain their width regardless of the
compilation mode of the compiler. These types may be used if the program
relies on an exact and unchanging size for the types.
Programs that exchange formatted messages are, for example:

* An X Windows server and client executing in different modes.

e Processes running in different modes that share data (using shmat() to
jointly access and change common memory areas).

« Data files written by applications running in one mode and read by
applications running in a different mode.

All of these demand the availability of fixed-width types.

ANSI introduced two sets of types. One is the signed fixed-size integral type:
e int8_t
e intl6 _t
e int32_t
e int64_t

The other is the unsigned fixed-size integral type:
e uint8_t

64-Bit Enablement 109

201464bit.fm

Draft Document for Review October 25, 1999 10:23 pm

e uintl6 _t
e uint32_t
e uint64_t

These ANSI types are defined through the header <inttypes.h>. Note that the
signed or unsigned are explicitly coded into the typedefs and not left to
chance. Although it is unlikely that the defaults for short/int/long are
unsigned, it is possible on some machines. Furthermore, by forcing the
keyword, this would have the same error behavior in all cases if the user were
to add a sign qualifier to the ANSI types, as in signed int8 _t.

3.3.1.3 Structure Alignment and Bitfields

The LP64 specifications will change the size, member alignment, structure
alignment, and bitfield sizes and alignment of most structures implicitly.
Structures with only long and pointer types will at least double in size
depending on the alignment mode.

Sharing data between 64-bit and 32-bit processes will not be possible unless
the fixed-width types are used, or the structure is devoid of pointer and long
types. Special attention needs to be paid to unions that attempt to overlay int
types with long types or pointer types.

For the details of alignment in different modes and in combination with
different compiler flags, consult the compiler reference manual.

Table 15 provides the different alignments found in 32- or 64-bit modes.

Table 15. Alignment of Basic Data Types in 32 and 64-Bit Mode

Type 32-Bit 64-Bit
char 1 1
short 2 2
int 4 4
long 4 8
long long 8 8
float 4 4
double 8 8
pointer 4 8

110 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

According to ANSI, a bit field will have a type that is a qualified or unqualified
version of one of int, unsigned int, or signed int. Therefore, the ANSI mode
cannot change the type.

Bitfields in ANSI mode can only be signed int or unsigned int. In extended
mode, common mode, or k&r mode, non-integer bitfields are tolerated. When
a non-integer bitfield is tolerated, it means that any type other than int will be
converted to int.

The extended mode bitfields are updated to long types to admit 64-bit width in
64-bit mode. If a long type bitfield of length greater than 32-bits is used in
32-bit extended mode, the following message is given:

1506- 003 (S) Wdth of a bit-field of type "l ong" cannot exceed 32.

If a long type bitfield of length greater than 64-bits is used in 64-bit extended
mode, the following message is given:

1506-003 (S) Wdth of a bit-field of type "l ong" cannot exceed 64.

Bitfields are packed into the current word. Adjacent bitfields that cross a word
boundary will start at a new storage unit. This storage unit is a word in power,
full or natural alignment in 32-bit mode, but is a double word in 64-bit mode.
In 64-bit mode, adjacent declarations of bitfields of type long can now be
contained into one storage unit. Since long bitfields of greater than 32-bits
were not permitted in 32-bit mode, this does not change and is not a
portability problem.

Note that the packed alignment option just reduces the alignment ceiling to
one, two, four, or eight bytes depending on the packed=1|2|4|8 setting and
leaves the remaining alignment parameters unchanged.

3.3.1.4 Enum Support

Enum constants are always of type int, except when the range of these
constants is beyond the range of int, in which case, they have type unsigned
int. Enum variables may be smaller depending on the mode of
-genum=small|int|1|2|4|8 option.

small Specifies that enumeration occupies a minimum amount of
storage (either 1, 2, 4, or 8 bytes) depending on the range of
enum constants.

int Enumeration occupies 4 bytes and are represented by int.
1 Enumeration occupies 1 byte and are represented by char.
2 Enumeration occupies 2 bytes and are represented by short.

64-Bit Enablement 111

201464bit.fm

Draft Document for Review October 25, 1999 10:23 pm

4 Enumeration occupies 4 bytes and are represented by int.

8 Enumeration occupies 8 bytes and are represented by long.

enum=int and enum=4 are not the same. The enum=4 allows signed and
unsigned variant. The enum constants will usually be typed int, even in 64-bit
mode, to enhance compatibility with 32-bit programs. Only when the range
chooses an unsigned long or long, the constant will use unsigned long or long
types respectively. In 32-bit mode, -genum=8 will yield an warning message:

1506- 749 (W Enun¥8 is not valid in 32-bit node, setting enum4 instead.

3.3.2 XL Fortran Version 5

XL Fortran Version 5.1 introduced a new compiler option, -q64. This allows
the object code to run in 64-bit mode. The programming conventions are
similar to C. For a better understanding of Fortran tuning on POWERS3
processors, see RS/6000 Scientific and Technical Computing: POWER3
Introduction and Tuning Guide, SG24-5155.

3.3.3 System Libraries

AIX 4.3 provides a 32-bit Application Binary Interface (ABI) and a 64-bit ABI.
The 32-bit ABI consists of the entire pre-AlX 4.3 ABI and provides binary
compatibility at the same level as maintained by previous releases.

The dual ABI means two different version of all the Application Program
Interfaces (APIs). The mechanism for this are two separate versions of all the
objects in a given library. The objects are distinguished by distinct names.
The linker is able to distinguish which object to use for a given symbol based
on the differing object formats (32-bit and 64-bit).
The following libraries and APIs are not supported in the 64-bit environment:

« lib300.a - obsolete ASCII graphing library

¢ lib300s.a - obsolete ASCII graphing library

¢ lib4014.a - obsolete ASCII graphing library

« lib450.a - obsolete ASCII graphing library

¢ libIN.a - Interactive Systems library from RT days

 libPW.a - obsolete Programmer's Workbench library

« libcur.a - obsolete IBM-invented curses extensions

« libplot.a - obsolete ASCII graphing library

« libbsd.a - nonstandard BSD APIs (others are in libc.a)

112 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

The preceding APIs are also obsolete in 32-bit environments and will not be
supported in the future. Also, the back level X11 compatibility and libcurses
libraries do not have 64-bit versions.
The following functions will not be provided in the 64-bit version of libc.a:

* NC*

* NL*

* _NC*

¢ NL*

o igj*

e jis*

e compile

* step

* advance

The asterisk represents a wild card.

3.3.4 Linker

Compilers, the assembler, and the binder create XCOFF64 object files when
invoked in 64-bit mode. The AlX 4.3 linker links these object files in the same
way that it links XCOFF32 obiject files.

The AIX linker supports the development of 64-bit applications, libraries, and
kernel extensions. For 64-bit applications and libraries, the linker is able to
read and write XCOFF64 files, performing internal processing appropriate for
64-bit mode. For 64-bit kernel extensions, the linker is able to mark exported
symbols with storage-mapping class XMC_SV, XMC_SV64, or
XMC_SV3264.

In this section, mode indicates the linking mode, which means whether an
XCOFF32 or XCOFF64 file is generated as the output file. Mixed-mode
linking is not allowed.

Archives may contain both XCOFF32 and XCOFF64 members. Depending on
the mode, members in the appropriate format are processed, while other
XCOFF members are silently ignored. Archives containing XCOFF64
members use a new archive file format that provides for separate global
symbol tables for XCOFF32 and XCOFF64 members (see Section 3.3.5,
“Archiver” on page 115). This new archive format is also used for all archives

64-Bit Enablement 113

201464bit.fm

114

Draft Document for Review October 25, 1999 10:23 pm

created on AIX 4.3, so the binder reads the new archive format even when
running in 32-bit mode.

The following new command line flags and options in import files are
introduced:

-b32 option

Specifies 32-bit linking mode. In this mode, all input object files must be
XCOFF32 files, or an error is reported. Only XCOFF32 archive members
are processed. Other archive members are ignored. For import files
specifying the mode of certain symbols, 64-bit imports are ignored.

-b64 option

Specifies 64-bit linking mode. In this mode, all input object files must be
XCOFF64 files, or an error is reported. Only XCOFF64 archive members
are processed. Other archive members are ignored. For import files
specifying the mode of certain symbols, 32-bit imports are ignored.

32 option in an import file

This option can be used in an import file to specify that subsequent
symbols should be processed when linking in 32-bit mode but ignored
when linking in 64-bit mode. If no 32 or 64 option is specified, all symbols
are processed in both 32 and 64-bit modes.

Note: The syntax for import file options is a pound sign (#) followed by a
blank followed by a list of options.

64 option in an import file

This option can be used in an import file to specify that subsequent
symbols should be processed when linking in 64-bit mode but ignored
when linking in 32-bit mode. If no 32 or 64 option is specified, all symbols
are processed in both 32 and 64-bit modes.

no32 or no64 option in an import file

This option overrides a previous 32 or 64 option. Subsequent symbols are
processed in both 32 and 64-bit modes.

OBJECT_MODE environment variable

If the -b32 or -b64 options are not used, the OBJECT_MODE environment
variable is examined to determine the linking mode. If the value of
OBJECT_MODE is 64, 64-bit mode is used. If the value is 32_64, the
linker prints an error message and exits with a non-zero return code.
Otherwise, 32-bit mode is used.

AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

If both -b32 and -b64 options are specified, the last specified option is used. If
neither option is specified, the mode is determined from the value of the
environment variable OBJECT_MODE.

New keywords are recognized in import and export files. The keywords are
svc64 and svc3264, with synonyms syscall64 and syscall3264. For ease of
use, svc32 and syscall32 are added as well. They are equivalent to svc and
syscall. All these keywords may be in upper- or lower-case. The keywords
are ignored in import files. In export files, a symbol exported with the svc64
keyword is given storage-mapping class XMC_SVC64 in the loader-section
symbol table. Similarly, symbols exported with svc3264 are assigned a
storage-mapping class, XMC_SVC3264. The existing flags and options -T,
-D, -S, -bD, -bS, -bmaxdata, -bmaxstack, -bpD, and -bpT will accept 64-bit
values as arguments. The 64-bit values are passed to the binder in the
respective binder subcommands, regardless of the mode. The binder reports
errors for used values that are too large for 32-bit mode. Depending on the
options specified, some values are never used and do not result in an error.

3.3.5 Archiver

The AIX 4.3 the ar command handles the archiving of 64-bit XCOFF object
modules in addition to the current 32-bit object modules. An archive file in AlX
4.2 supports only a single global symbol table to reference the symbols
contained in all object-file modules within the archive. To support the two
formats of object files, it is important that the symbols of 64-bit objects be
distinguishable from those of 32-bit objects. This is not an issue for the old
(pre-AlX 4.3) archive file format since 64-bit modules are not stored in these
archives. For the AIX 4.3 archive format, however, there are two global
symbol tables: one for 32-bit object symbols and one for 64-bit object
symbols. The ar command is able to recognize each type of object file and
store its symbols in the appropriate table.

The ar command maintains compatibility with the previous archive file format.
If given an archive file of the old format, ar still adds, deletes, reorders, and
lists members without altering the format of the archive file except in two
cases: when the user explicitly requests conversion to the AlX 4.3 format by
using the -o option, or when the user adds a 64-bit object to the archive. For
the latter case, a 64-bit object cannot be handled by the old-format archive,
so conversion is required. A mechanism is provided for ar to refuse the 64-bit
object instead of converting the archive format.

When creating a new archive, the 4.3 ar command automatically uses the
new format. For files that are not XCOFF objects of either type, ar processes
them as usual. If such files are added to a nonexisting archive, the new

64-Bit Enablement 115

201464bit.fm

Draft Document for Review October 25, 1999 10:23 pm

format is used in creation. If ar is given an old-format archive, it is not
reformatted (unless the user requests it). The new maximum size of an
archive has increased from (10ll -1)to (1019 - 1) bytes.

A new flag has been added, -X, which requires an argument of either 32, 64,
or 32_64. This flag indicates to ar whether to accept only 32-bit objects or
only 64-bit objects (in addition to any non-object files, which are always valid)
or both. If both -X32 and -X64 are specified, ar treats it as though -X32_64
were specified and accept both object types. If only one of the options is
specified, ar ignores all object files in the archive that are not of the specified
type. If such objects are specified on the command line, an error message is
issued, but other acceptable objects are still processed. If the -X option is
given with an unrecognized argument, an error message is printed with the
usage statement, and ar exits.

A new environment variable, OBJECT_MODE, is recognized by ar to
determine the XCOFF file type(s) acceptable for processing. The values of
OBJECT_MODE=32, OBEJECT_MODE=64, and OBJECT_MODE=32_64 all
have the equivalent function of their -X flag counterparts. If both the
environment variable and the -X flag are specified, the flag will take
precedence over the environment variable. If no -X flag is given and
OBJECT_MODE is unset or is set to an unrecognized value, 32-bit mode is
used.

Displaying the symbol table with the -w option shows the symbol table
depending on the chosen mode. In 32-bit mode, only the 32-bit symbol table
is displayed; in 64-bit mode, only the 64-bit symbol table is displayed. In
mixed mode, both are displayed. To distinguish the 32-bit table from the
64-bit table in mixed mode, each symbol table entry is followed by a field
containing the characters 32 or 64, respectively. Each field is separated from
the previous field by a single tab character. The 32-bit table is printed before
the 64-bit table if both are present.

3.3.6 The dbx Debugger

The dbx command provides a symbolic debug program for C, C++, Pascal,
and FORTRAN 32-bit and 64-bit programs. It is also able to process and
examine core files generated from both 32-bit and 64-bit processes. dbx itself
stays a 32-bit program, but its data is expanded to accommodate debugging
of 64-bit programs. In case of debugging 32-bit code, there are wrapper, or
interface routines, that translate from 32-bit formats to dbx’s internal 64-bit
data formats.

The dbx program:

116 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:23 pm 201464bit.fm

« Automatically identifies the execution mode of the code
» Understands the new XCOFF64 format

» Understands the new archive format

¢ Understands the new coredump format

e Supports M:N threads debugging

e Accepts 64-bit addresses input

* Does arithmetical calculations in 64-bit precision

« Displays 64-bit values
The dbx parser has been changed to accept 64-bit addresses.

Note: To save typing of 16-digit long addresses, the user can set a dbx
variable and use it as a base.

Commands will allow 64-bit values for addresses, subscripts, ranges, offsets,
and so on. The 32-bit dbx required a suffix Il or ull on 64-bit number input. For
example, 0x123456789ull. Any number that was too big for its type was set to
the maximum value without any warning message. For ease of use, dox now
assumes long long for any input string greater than 8 digits for hex, 11 digits
for octal, and 10 digits for decimal including leading zeroes if any. For
convenience, underscores are allowed in any numeric input. For example,
0x1234_4567_890A_BCDE. They are ignored and not counted in the
preceding sizes like in the assembler.

3.3.7 Commands and Utilities

All commands that needed to be modified for 64-bit support were modified to
work with 32-bit and 64-bit objects (object files or processes). No commands
and utilities were converted to 64-bit executables; they remain 32-bit
executables.

There are two major reasons for changing commands:
e The new XCOFF64 format

¢ Data values that might exceed 281

In general, no command user interfaces or new flags were added to these
commands, with the exception of the XCOFF-specific commands and the
lint command. For most of the commands that deal with XCOFF files, a new
flag was added, -X that requires an argument of either 32, 64, or 32_64. This
flag indicates whether to recognize only 32-bit objects, 64-bit objects, or both.
If both -X32 and -X64 are specified, the command treats it as -X32_64 and

64-Bit Enablement 117

201464bit.fm

Draft Document for Review October 25, 1999 10:23 pm

recognizes both object types. If only one of the options is specified, the
command ignores all object files that are not of the specified type. If such
objects are specified on the command line, an error message is issued, but
other acceptable objects are still processed. If the -X option is given with an
unrecognized argument, an error message is printed with the, usage
statement and the command exits.

For the same XCOFF-specific commands, the environment variable
OBJECT_MODE determines the XCOFF file type(s) to be recognized. The
defined values of OBJECT_MODE=32, OBJECT_MODE=64, and
OBJECT_MODE=32_64 all have the equivalent function of their -X flag
counterparts. If both the environment variable and the -X flag are specified,
the flag takes precedence over the environment variable. If no -X flag is given
and OBJECT_MODE is unset, 32-bit mode is used. If OBJECT_MODE is set
to an undefined value, an error message is printed, and the command fails
unless the value is overridden on the command line.

118 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

Chapter 4. Application Development and Pthreads

This chapter details the changes in AIX 4.3 that may have an impact on the
work of application developers. Applications may exhibit better performance
by using new features and functions that are available in AIX 4.3.

4.1 C Language Standards

AIX Version 4 Release 3 made several changes and additions to conform to
the ISO C Language Standard Normative Addendum One. The changes
concern the handling of multibyte and wide character text formats.

The changes include new and altered programming interface specifications,
many of which are contained in new #include files. For more information, see
the National Language Support chapter of AIX Version 4.3 General
Programming Concepts: Writing and Debugging Programs. The document is
part of the online documentation, which is supplied with AIX. If you have not
installed the documentation on a local machine, it can also be viewed on the
internet using the URL.:

http: // waw rs6000. i bm cond doc_I i nk/ en_US a_doc_I i b/ ai xgen/

4.2 IEEE POSIX and UNIX98 Conformance
AIX 4.3 is now aligned with the following standards:

¢ ISO/IEC 9945-1:1996 that incorporates ANSI/IEEE Std POSIX
1003.1-1990, 1003.1b-1993, 1003.1¢-1995, and 1003.1i-1995
(1003.1b-1993 and 1003.1i-1995 are real-time extensions; 1003.1¢c-1995
is a threads extension).

¢ ISO C Amendment 1: 1995 (multibyte support).
* The Open Group UNIX98 specification that adds:

« Extended threads functions over POSIX threads, based on industry
input from Sun, Digital, HP and DCE.

« Dynamic linking extensions to permit applications to share common
code across many applications and ease maintenance of bug fixes and
performance enhancements for applications.

* N-bit cleanup (64-bit and beyond) to remove any architectural
dependencies in the UNIX specification. This is of particular relevance
with the IBM move to 64-bit UNIX.

¢ Year 2000 alignment to minimize the impact of the millennium rollover.

© Copyright IBM Corp. 1999 119

2014appdev.fm Draft Document for Review October 25, 1999 10:31 pm
4.2.1 Realtime Options

AIX 4.3 does not support the realtime optional parts of the IEEE POSIX and
UNIX98 specifications. In particular, the routines provided in Table 16 are not
supported in AIX Version 4.3.

Table 16. Unsupported Real-Time Routines

clock_getres() clock_gettime()

clock_settime() fdatasync()
lio_listio() mlock()

mlockall() mq_close()
mq_getattr() mq_notify()

ma_open() ma_receive()
mq_send() mq_settattr()
mq_unlink() munlock()
munlockall() nanosleep()

sched_get_priority_max()

sched_get_priority_min()

sched_getparam()

sched_getsceduler()

sched_rr_get_interval()

sched_setparam()

sched_setscheduler()

sched_yield()

sem_close() sem_destroy()
sem_getvalue() sem_init()
sem_open() sem_post()

sem_trywait()

sem_unlink()

sem_wait()

shm_open() function

shm_unlink()

sigqueue()

sigtimedwait()

sigwaitinfo()

timer_create()

timer_delete()

timer_getoverrun()

timer_gettime()

timer_settime()

120 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

4.2.2 Unsupported Threads Options

AIX 4.3.2 does not support the optional pthread interfaces provided in Table
17.

Table 17. Unsupported Optional Threads Interfaces

pthread_attr_getinheritsched() pthread_attr_setinheritsched()

pthread_mutex_getprioceiling() pthread_mutex_setprioceiling()

4.2.3 Dynamic Linking Extension

The dynamic linking extension that came out of the Aspen group comprises a
set of four routines and a header file to provide a portable API for
manipulation of an implementation-defined class of files, such as shared
libraries. These routines are based on those introduced in UNIX System V
Release 4.

Use of dynamic linking allows several benefits for application developers:

* The ability to share commonly-used code across many applications,
leading to disk and memory savings.

« It allows the implementation of services to be hidden from applications.

« It allows the re-implementation of services. For example, to permit bug
and performance fixes or to allow multiple implementations selectable at
runtime.

4.2.3.1 dlopen()

The dlopen() function is used to dynamically load a module into a process'
address space. The value returned by dlopen() is a handle that can be
passed to dlsym() to look up symbols in the loaded module. The handle can
also be passed to diclose() to allow the module to be removed from the
address space.

Synopsis: #incl ude <dl fcn. h> voi d *dl open(const char *pathnane, int flags);

If the <pat hnane> is /unix, dlopen() returns a handle that can be used to look
up symbols in the current kernel image, including all kernel extensions. If
<pat hnane> is NULL, a handle for the main executable is returned. Otherwise,
<pat hnane> names a module that will be loaded.

If <pat hnane> contains a slash character(/), the pathname is used directly,
whether it is an absolute or a relative path. Otherwise, a search for the named
module is made. Directories to be searched are listed in:

1. Value of LIBPATH when the process was first loaded

Application Development and Pthreads 121

2014appdev.fm Draft Document for Review October 25, 1999 10:31 pm

2. Current value of LIBPATH that can be modified during execution with the
set env command

The new module and its dependents are actually loaded with the load()
system call. If the main program was built with the -brtl option, the run-time
linker processes the loaded modules. Next, initialization routines are called
for modules loaded for the first time.

If dlopen() succeeds, it returns a handle that can be used for calls to disym()
and diclose(). Otherwise, dlopen() returns NULL and sets errno. If errno is set
to ENOEXEC, additional information can be obtained by calling dlerror().

4.2.3.2 dlsym()
This function returns the address of a symbol in a module opened by
dlopen().

Synopsis: #incl ude <dl fcn. h> voi d *dl syn{voi d *handl e, const char *nane);

The argument <handl e> must be a value returned by dlopen() that has not
been passed to diclose(). The argument <nane> is the name of a symbol or the
special value RTLD_EP. For functions, the symbol name should not begin
with a period.

If the <nane>is RTLD_EP, the address of the entry point of the module is
returned. If there is no entry point, the address of the data section of the
module is returned. The returned value may be passed to loadbind().

In general, the module denoted by <handl e> and its original dependents are
searched in breadth-first search order, based on the import file IDs listed in
each module. If a module is linked with the -brtl option or the -G flag, the
dependency list will contain all modules listed on the command line in the
same order. Otherwise, all dependent modules will be listed in an unspecified
order.

If dlIsym() succeeds, it returns the address of the desired symbol. Otherwise,
NULL is returned.

4.2.3.3 dlclose()

This function is used to unload a module loaded by dlopen(). The function is
implemented by calling unload(). If this is the last use of the module, it is
removed from the address space. Termination functions are called by
unload() before the modules are actually unloaded.

The following is a synopsis of getdate():

122 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

#include <dl fcn.h> int d close(void *handl e);

If diclose() succeeds, 0 is returned. Otherwise, errno will be set to EINVAL,
and EINVAL will be returned as well.

4.2.3.4 dlerror()

This function is used to return error information about the most recent call to
the dlopen(), dlsym(), or diclose() call. If dlopen() fails and sets errno to
ENOEXEC, dlerror() will return a pointer to a buffer describing reasons for the
failure. In all other failing cases, errno will have been set, and dlerror() will
return the formatted string corresponding to errno.

Synopsis: # ncl ude <dl fcn. h> char *dl error(void);

Error information is reset after a call to dlerror(). Therefore, if two consecutive
calls are made to dlerror(), the second call will return a pointer to a null string.

Note: The dlerror() function is not thread-safe since the string may reside in a
static area that is overwritten whenever an error occurs.

4.2.4 Year 2000

The following APIs and commands were changed in accordance with the
UNIX98 specification:

4.2.4.1 getdate()
The following is a synopsis of getdate():

struct tm*getdate(const char *string);
The entry for getdate() states the following with respect to the format code
%y:

"oy year w thin century (00-99)"
%y is now defined such that, when a century is not otherwise specified,
values in the range 69-99 refer to the twentieth century, and values in the
range 00-68 refer to the twenty-first century. The %C specifier has been

added to the interface to denote the century and interprets the %y specifier in
the absence of a century as noted in the section above.

4.2.4.2 strptime()
The following is a synopsis of strptime():

char *strptine(const char *buf, const char *format, struct tm*tnj;

Application Development and Pthreads 123

2014appdev.fm

Draft Document for Review October 25, 1999 10:31 pm

The entry for strptime() states the following with respect to the format code
%y:

"%y is the year within century [00,99]; leading zeros are permitted but not
required

%y is now defined such that, when a century is not otherwise specified,
values in the range 69-99 refer to the twentieth century, and values in the
range 00-68 refer to the twenty-first century.

4.2.4.3 date Command
Century handling has been added as follows:

date mmddhhmmj [cc] yy]

cc is the century specifier.

4.2.4.4 prs Command
The prs command is part of SCCS and has been changed such that the -c
option

-c cutoff
indicates the cut off date-time, in the form:
YY[MM[DD[HH[MMI[SSIII

The YY specifier is a two digit specifier to the year and, therefore, does not
denote the century. YY is now defined such that values in the range 69-99
refer to the twentieth century, and values in the range 00-68 refer to the
twenty-first century.

4.3 M:N Pthreads (4.3.1)

AlIX 4.3.1 replaced the previous 1:1 threads implementation model with an
M:N version. The M:N model complies with the UNIX98 pthreads standard,
which includes the POSIX pthreads standard. Previous releases of AlX
Version 4 complied with Draft 7 of the POSIX pthreads standard. AIX 4.3.1 is
binary compatible with previous releases. The UNIX98 implementation is the
default for application development, but you can use the cc_r7 or xlc_r7
compiler interfaces to develop new applications using Draft 7 pthreads. Users
may need to alter existing source code to obtain the required function on AlX
4.3.1 using the default UNIX98 pthreads library.

124 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

4.3.1 Porting Application from Draft 7 Pthreads
There are very few differences between Draft 7 and the final standard.

« There are some minor errno differences. The most prevalent is the use of
ESRCH to denote the specified pthread could not be found. Draft 7
frequently returns EINVAL for this failure.

e Pthreads are joinable by default. This is a significant change since it can
result in a memory leak if ignored.

« Pthreads have process scheduling scope by default.
« The subroutine pthread_yield has been replaced by sched_yield.

¢ The various scheduling policies associated with the mutex locks are
slightly different.

4.3.2 The M:N Model

In the M:N model, there are two underlying types of pthreads. Those with
PTHREAD_SCOPE_SYSTEM, or system scope contention, otherwise known
as global threads, and those with PTHREAD_SCOPE_PROCESS, or process
scope contention. These threads are known as local threads. There are also
two types of thread schedulers in the system. The AlIX kernel scheduler
schedules all kernel threads. There is also a user thread scheduler, which
schedules the local pthreads in a process.

Global threads are mapped 1:1 to kernel threads, and hence, are scheduled
exclusively by the AIX kernel scheduler. The 1:1 threads model used by prior
releases of AIX Version 4 only uses global threads. Figure 7 shows the two
threading models.

Application Development and Pthreads 125

2014appdev.fm

Draft Document for Review October 25, 1999 10:31 pm

Process A Process B

G L L L L L L User

Pthreads
User Scheduler User Scheduler
Pthreads
69 VP VP VP Library

K K K K Kernel
Threads
Kernel

Kernel Scheduler Scheduler

Figure 7. M:N Threads Model

The local pthreads are multiplexed over a set of kernel threads by the user
scheduler, which is part of the pthreads library.

4.3.3 User Scheduler

126 AIX Versio

The user scheduler is run on a dedicated hidden pthread, which is created
when the pthreads library is initialized in M:N mode at process startup. There
is one user scheduler for each process using the M:N model. The hidden
pthread is created with system scope contention and therefore is scheduled
directly by the kernel scheduler.

The user scheduler maintains a runqueue of runnable local pthreads and
dispatches them on available kernel threads. Each kernel thread is
represented in the pthreads library by a virtual processor structure (VP).
There is a 1:1 mapping between VPs and kernel threads.

n 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

The user scheduler catches a SIGWAITING signal. Applications should not
catch this signal, it is only for system use.

Each time a local pthread is created, terminates, or goes to sleep in the
library, the user scheduler examines the ratio of kernel threads to active and
sleeping user pthreads. If they are not consistent with the required values,
then VPs, and hence, kernel threads, are created or destroyed as required. A
VP that is to be deleted first places the user pthread it was running on to the
gueue of runnable pthreads maintained by the library. It then adds itself to the
list of zombie VPs, and marks the underlying kernel thread for termination.
The user scheduler traverses the list of zombie VPs on a regular basis and
deletes the redundant VP structures.

Time slicing of local threads is initiated by the AIX scheduler, which sets a
flag in the currently running kernel thread once it has obtained a full timeslice.
On return from the clock tick interrupt handler, if the timeslice flag is set, the
thread will call the user scheduler. The user scheduler places the current
local thread on the local pthreads library runqueue and then selects the
highest priority thread to run. If there are no threads on the run queue, then
the current thread continues to run.

The user scheduler controls which pthreads are woken when a pthread event
occurs. For example, when a mutex lock is released. The sleeping pthreads
may have system-wide (global) or process-wide (local) contention scope. The
user scheduler favors pthreads with system-wide scope over those with
process-wide scope, regardless of their priorities. Priority is only used to
decide between pthreads with the same contention scope. If they have the
same priority, then the pthread that has been waiting the longest will be
woken first.

When a local pthread makes a system call, it may block in the kernel waiting
for a response from the system call. In this instance, the kernel thread and VP
are not available to run another local pthread.

Consider a process with N+1 local threads, and N VPs, where one thread
writes data to a pipe, and N threads read data from the pipe. The process
would encounter a deadlock situation when the N threads reading from the
pipe were blocked in the kernel. There would be no VP available for the N+1
thread to run on to write data to the pipe. This situation is avoided by a
special check in the routine that a thread calls when about to block in the
kernel. If the thread about to block is on the only VP of the process that is not
already blocked, then the user scheduler is activated and instructed to create
a new VP and kernel thread to run another local thread.

Application Development and Pthreads 127

2014appdev.fm Draft Document for Review October 25, 1999 10:31 pm

4.3.4 Mutex Locks

In previous versions of AIX, when a mutex lock is blocked, a pthread
attempting to get the lock sleeps in the kernel. The internal structure of the
mutex lock has been changed so that the list of threads waiting for the mutex
is maintained in the user address space by the pthreads library. This is to
allow the user scheduler to achieve relatively uniform levels of multiplexing
over the remaining pthreads sharing the VPs. When the mutex lock is freed,
the user scheduler examines the list of threads waiting for the mutex and
activates one of them.

4.3.5 Tuning

The M:N pthreads implementation provides several environment variables
that can be used to affect application performance. If possible, the application
developer should provide a front-end shell script to invoke the binary
executables in which the user may specify new values to override the system
defaults. The following environment variables can be set by end users and
are examined at process initialization time.

AIXTHREAD_SCOPE
This variable can be used to set the contention scope of pthreads
created using the default pthread attribute object. It is represented
by the following syntax:
Al XTHREAD SOCPES[| §
The value P indicates process scope, while a value of S indicates
system scope. If no value is specified, then the default pthread
attribute object will use process scope contention.

AIXTHREAD_MNRATIO
This variable allows the user to specify the ratio of pthreads to
kernel threads. It is examined when creating a pthread to
determine if a kernel thread should also be created to maintain the
correct ratio. It is represented with the following syntax:
Al XTHREAD MN\RATI O=p: k
where k is the number of kernel threads to use to handle p
pthreads. Any positive integer value may be specified for p and k.
These values are used in a formula that employs integer
arithmetic, which can result in the loss of some precision when big
numbers are specified. If k is greater than p, then the ratio is
treated as 1:1. If no value is specified, the default ratio depends on
the default contention scope. If system scope contention is the
default, the ratio is 1:1. If process scope contention is set as the
default, the ratio is 8:1.

128 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

AIXTHREAD_SLPRATIO
This variable is used to determine the number of kernel threads
used to support local pthreads sleeping in the library code on a
pthread event. For example, attempting to obtain a mutex. It is
represented by the following syntax:
Al XTHREAD SLPRATI G=k: p
where k is the number of kernel threads to reserve for every p
sleeping pthreads. Notice that the relative positions of the
numbers indicating kernel threads and user pthreads are reversed
when compared with AIXTHREAD_MNRATIO. Any positive integer
value may be specified for p and k. These values are used in a
formula that employs integer arithmetic, which can result in the
loss of some precision when large numbers are specified. If k is
greater than p, then the ratio is treated as 1:1. If the variable is not
set, then a ratio of 1:12 is used.

The reason for maintaining kernel threads for sleeping pthreads is
that, when the pthread event occurs, the pthread will immediately
require a kernel thread to run on. It is more efficient to use a kernel
thread that is already available than it is to create a new kernel
thread once the event has taken place.

AIXTHREAD_MINKTHREADS
This variable is a manual override to the AIXTHREAD MNRATIO.
It allows you to stipulate the minimum number of active kernel
threads. The library scheduler will not reclaim kernel threads
below this number.

SPINLOOPTIME
This variable controls the number of times the system will try to get
a busy lock without taking a secondary action, such as calling the
kernel to yield the processor. This control is really intended for MP
systems where it is hoped that the lock is held by another actively
running pthread and will soon be released. On uniprocessor
systems, this value is ignored.

YIELDLOOPTIME
This variable controls the number of times that the system yields
the processor when trying to acquire a busy mutex or spin lock
before actually going to sleep on the lock. This variable has been
shown to be effective in complex applications where multiple locks
are in use.

Application Development and Pthreads 129

2014appdev.fm

4.3.6 Combi

Draft Document for Review October 25, 1999 10:31 pm

ned Thread-Safe Libraries

Non-thread-safe and thread-safe libraries have been combined into one set
of libraries, thereby turning thread-safety on by default.

AlIX Version 4.2 libc.a (non-thread-safe) and libc_r.a (thread-safe).
AlX Version 4.3.1 libc.a which is thread-safe.

Libraries, such as X11R6, which link with libc.a are not thread-safe by default;
they are thread-aware.

New libraries that are thread-safe include:

¢ libbsd.a
¢ libm.a

¢ libmsaa.a
« librts.a

¢ libodm.a
¢ libs.a

¢ libdes.a
¢ libXm.a

* libXt.a

e |libX1l.a

These thread-safe libraries enable a convenient programming model for
exploiting SMPs and simplify exploitation of threads by applications,
middleware, and other API providers.

4.4 Pthreads Suspend and Resume (4.3.2)

The pthreads library has been enhanced to provide the ability to suspend and
resume individual threads. This function is added to AIX 4.3.2 to assist in the
porting of applications from other platforms.

The pthreads implementation on AIX 4.3.2 complies with the UNIX98
standard. The four new API functions are not part of this standard, and this is
indicated by appending _np to their names to indicate that they are
NON-POSIX compliant.
The four new user functions are:

e int pthread_suspend_np(pthread_t thread);

e int pthread_continue_np(pthread_t thread);

e int pthread_attr_setsuspendstate_np(pthread_attr_t *attr, int
suspendst at e) ;

130 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

e int pthread_attr_getsuspendstate_np(pthread_attr_t *attr, int
*suspendst at e) ;

The pthread_suspend_np and pthread_continue_np functions are used to
immediately suspend and resume execution of the thread indicated by the
function argument.

The pthread_attr_getsuspendstate _np and pthread_attr_setsuspendstate_np
functions are used to get and set the value of the new suspendstate member
of the pthread_attr_t structure. The suspendstate argument can be set to
either PTHREAD_CREATE_SUSPENDED_NP or
PTHREAD_CREATE_UNSUSPENDED_NP. The default value of the
suspendstate attribute of a pthread_attr_t structure is
PTHREAD_CREATE_UNSUSPENDED_NP.

The new functions work in both the 1:1 and M:N threading environments.

4.5 Pthread

Debug Library (4.3.3)

Pthread debug library (libpthdebug.a) provides a set of APIs that allows
debuggers to provide pthread specific debugging. Currently only the dbx
debugger gains access to all the private thread information through the use of
internal data structures.

The pthread library (libpthreads.a) creates and maintains pthread, mutex,
attribute, condition variable and read/write lock objects information in
debugee's address space. The pthread debug library provides information
about these objects. It also provides function which allows the debuggers to
hold and unhold pthreads, and access and set the context of a pthread.

The debuggers that uses pthread debug library should be compiled with

32-bit mode, since neither ptrace() nor ptracex() functions are supported in

64-bit mode.

The APIs provided with pthread debug library fall into following categories:
¢ Session Functions

The pthread debug library assigns a unique session handle to the process
the debugger is debugging. This user handle is passed back to the
debugger whenever the pthread debug library invokes a call back function.

Application Development and Pthreads 131

2014appdev.fm Draft Document for Review October 25, 1999 10:31 pm

* Execution Control Functions

These functions are provided to control the execution of the debuggee's
threads. They can be used continue one or more pthreads by informing
the pthread library which threads to hold and which threads to unhold.

* Context Functions

These functions are provided to set or get the context information of a
pthread from either the kernel or the pthread data structure om the
debuggee's address space.

¢ Object Functions

The pthread debug library maintains lists for pthreads, attributes, mutexs,
mutex attributes, condition variables, condition variable attributes, read/write
locks, read/write lock attributes, pthread specific keys, and active keys. Each
of them is represented by a type specific handle. The pthread debug library
provides functions to get the handle of each object in the list and to get
detailed information about the object.

4.6 Preserve Modified Ptrace Data (4.3.2)

AIX 4.3.2 has improved the performance of the ptrace() subroutine, which is
used by debuggers to control the execution of applications under their
control. Debuggers use a private copy of the text pages for the application
being traced and any shared libraries it uses. This allows the debugger to
modify the text pages to insert breakpoints without affecting any other
processes on the system that may be running the same executable or shared
library text.

Prior to AlX 4.3.2, when the application being debugged calls the load(), or
loadbind() routines to load a private module into its address space, the
system loader reloads fresh copies of all the text pages for the application
and any required shared libraries. In so doing, any modifications made to the
text pages are lost, so the debugger has to reinsert breakpoints after the
application calls load() or loadbind().

The function of the ptrace routine has been modified along with the system
loader to maintain ptrace altered copies of text pages across calls to load or
loadbind. This will improve the performance of the debugger when controlling
large applications that call load or loadbind many times since breakpoints and
other changes will not have to be reinserted.

132 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

4.7 Direct I/O

Direct 1/0O is a way of opening JFS files that allows for disk reads and writes
using less CPU cycles than normal I/0. The main CPU savings come from
avoiding the memory-to-memory copy done by the JFS. As the difference
between memory and CPU cycle times increases, the savings achieved by
avoiding this copy becomes greater.

Direct 1/0 offers a big performance gain for applications that do large block
I/0 (32 KB or greater) to JFS files and a smaller increase in performance for
small block I/O. It does not improve raw 1/O performance.

With normal I/O, the I/O request is first sent to the device driver. To service
the request the device driver uses Direct Memory Access (DMA) to copy the
data to or from pages in a file persistent segment. The data is then copied
between the persistent segment and userspace through calls to vmcopyin()
or vmcopyout(). Thus, a file’s persistent segment acts as a file cache.

With direct 1/O, the data is not cached, but rather, I/O is done directly to a
user supplied buffer through cross-memory technology. In other words, DMA
is done directly from the disk to user space and conversely through the
device strategy routine of the JFS file system.

Optimization was also made to the DMA setup routines. This improves large
block 1/0 to JFS files and to raw logical volumes. However, the benefits of the
DMA changes are much less than the benefits of direct I/0.

—— Take Note

It is important to note that since direct I/O reads are done synchronously
and there is no read-ahead benefit, if they are not used correctly, they can
also take much longer. The only read-ahead-like semantics that direct 1/0
can benefit from will be read-ahead performed by the disk device driver
(normally 32 KB). For this reason, it is very important for a direct I/O reader
to specify large read requests to match the performance of normal cached
I/0 readers. To match the performance of normal cached I/O readers, a
direct I/O reader should issue read requests of at least 128 KB.

Direct I/O is considered advisory. This means that if a file is opened for direct
I/0, and another application decides to open that same file for normal 1/O, the
file will be opened using normal cached I/O until direct I/O can be resumed
(the normal 1/O application closes the file).

Application Development and Pthreads 133

2014appdev.fm Draft Document for Review October 25, 1999 10:31 pm

Files can also be opened for a deferred update using the O_DEFER flag. If a
file is opened with O_DEFER, and a subsequent open for direct 1/O is issued,
all writes will use normal cached 1/0. Similarly, if another application opens
the file with O_DEFER while it is already opened for direct 1/O, all I/O to the
file will be cached.

4.7.1 Opening Files for Direct I/O

A new flag, O_DIRECT, has been defined in fcntl.h. When an application
opens a file specifying or calling this flag through the fcntl() system call, 1/0 to
this file will be done using direct I/0.

4.7.2 Inode Flags

When a file is using direct I/O, the i_flag field in the inode is set with the
IDIRECT flag, defined in inode.h. Even so, it is not enough to simply have a
flag in the inode to determine if the file is using direct I/O or not. If a normal
I/0 application opens the file while a direct I/O application currently has it
open, then all /0 will be done using normal I/O until the normal 1/O reader or
writer closes the file. A count of direct I/O readers is maintained to determine
if the direct I1/0O can be resumed. A new field in the inode, i_diocnt, has been
added for this purpose. This field indicates if any application has the file
opened for direct 1/O.

4.7.3 JFS Function Calls for Direct I/O

134

There are only a few functions that were affected in the JFS for direct I/O to
be implemented. These functions are serialized by the inode lock and are
described below.

jfs_map() If a file opened for direct I/O is mapped, the IDIRECT flag is
reset, and all subsequent 1/O will be done using normal 1/O. If
the mapped file is then closed, direct 1/O will be resumed.

jfs_close() Close semantics are closed with direct I/O. When the final close
occurs, (checked by the counts on gnode) the IDIRECT flag in
the inode is turned off. If a close is initiated by a normal 1/0O
reader or writer and another application opens the file for direct
I/0, all cached pages are flushed to disk, and direct I/O is
resumed on the file.

jfs_dio() jfs_dio() is called from jfs_rdwr(). If the FDIRECT flag is set,
jfs_dio() evaluates if direct I/0 can be done for a particular file.
This function performs all alignment and file state consistency
checking.

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

If a read or write request cannot be done using direct 1/O,
jfs_dio() returns a non-zero return code, and the request is done
through normal cached 1/O.

4.7.4 System Archive Utilities

Archive commands are typical applications that can benefit from the use of
direct I/0. Therefore, the standard system commands tar, backup, restore,
and cpi o have been enabled to use direct I/0. Since these commands are
read-once commands, that is, they do not reference the data again after it
has been read and written to media, the copyin() and copyout()
characteristics of normal cached I/O consume a lot of unnecessary CPU
when these commands are executing. The enabling of these commands has
been accomplished by changing all calls to open() and setting the O_DIRECT
flag.

4.8 Shared Memory Enhancements

The following enhancements reflect changes to the shared memory function
in AlX.

4.8.1 Larger Shared Memory Regions (4.3.1)

The maximum size of a shared memory region created by the shmget()
routine and attached to a process’ address space by the shmat() routine has
been increased from 256 MB to 2 GB. Prior to AlX 4.3.1, it was possible to
mmap() a memory mapped file of up to 2 GB, but an anonymous memory
region was limited to 256 MB. This meant that a large memory region had to
be created in several 256 MB portions and each portion attached individually.
AIX 4.3.1 has removed this restriction, so it is now possible to attach a 2 GB
memory region with one call to the shmat() routine.

If EXTSHM=ON is set and an application performs a shmget() with a size
greater than SEGSIZE-PAGESIZE, the system will use the traditional shmat()
and not mmap() as would be the case when EXTSHM=O0ON.

4.8.2 128 KB Shared Memory IDs (4.3.2)

AIX 4.3.2 now supports 128 KB mem, sem, and shm IDs, up from 4
KB in the previous releases.

Application Development and Pthreads 135

2014appdev.fm Draft Document for Review October 25, 1999 10:31 pm

4.8.3 Shared Memory Debugging Enhancements (4.3.2)

AIX 4.3.2 has added the facility for additional information to be included in the
core file that may be produced by an application program when it encounters
certain types of error.

There are two methods of enabling the extra information to be included in the
core dump.

« The application can use the sigaction routine to set the SA_FULLDUMP
flag for the signal that will cause the core file to be generated.

< Enable full core information as the default, either from the SMIT Change /
Show Characteristics of Operating System panel, the Web-Based System
Manager Devices panel by selecting sysO0, or by using the command:

chdev -1 sysO -a fullcore="true’

When an application faults, and a full core is generated, the core will include
all the shared memory regions of the faulting process that are currently
attached.

The dbx debugger has been changed to understand the extra information in
the core file and allow the developer to interrogate the user defined variables
contained in the shared memory regions of the process at the time of
termination.

4.9 DMA Pre-Translation (4.3.2)

DMA pre-translation of memory buffers reduces the cost of setting up DMA
operations. Its objective is to reduce DMA setup path length for selected and
predetermined I/O operations to improve performance. The enhances the
performance of network memory buffers (mbufs), file system 1/O, raw 1/O, and
page I/0.

In previous AlX versions, during a DMA operation, the majority of path length
was spent in page translation/lookup paths to get the virtual to physical
address translations for DMA.

The term pre-translation refers to the concept of performing the virtual to
physical address translations for a data buffer to be involved in a DMA
operation once, for the life of the data buffer, instead of for each individual 1/0
setup for the buffer. In general, a subsystem desiring to benefit from the
performance gain of pre-translation calls a new kernel service passing in a
buffer address, length, and cross-memory descriptor. The kernel service will
attach to the cross memory descriptor pre-translation information for the

136 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

buffer. Then, whenever the buffer is used for 1/0O, the DMA services recognize
the presence of pre-translation info in the cross-memory descriptor and avoid
page table lookups.

There is no change required by device drivers to take advantage of this
enhancement, as long as a network driver is using mbufs from the global
net_malloc pool and performing dynamic on-the-fly DMA mappings
(compared with copying data to pre-mapped buffers).

4.10 Fast fork() Function (4.3.1)

AIX Version 4.3.1 introduces a fast-fork function called f_fork() that is based
on IEEE POSIX specifications. The f_fork() call is precisely like fork() except:

« Itis required that the child process calls one of the exec functions
immediately after it is created. Since fork handlers are never called, the
application data, mutexes, and the locks are all undefined in the child
process.

The use of f_fork() will significantly enhances the performance of Internet and
Web server applications that need to create many short lived child processes.

4.11 New Sockets System Call (4.3.2)

AIX 4.3.2 has added the new send_file() system call. Its use is aimed at
applications that transmit file data across the network using a socket
connection. It offers a speed improvement over the traditional method of
sending a file across the network by avoiding unnecessary data copying
where possible.

#i ncl ude <sys/ socket . h>
ssize t send_file(Socket_p, sf_iobuf, flags)

int *Socket_p;
struct sf_parns *sf_iobuf;
uint_t flags;

Using send_file eliminates the need to read a file just to send it across the
network. Applications can remove the read() call, and therefore avoid
redundant transfer of data between kernel space and user space. The
send_file call reads file data into the new Network Buffer Cache (NBC). The
NBC is allocated from an area of the mbuf pool and uses mbufs for file data
storage. The networking subsystem then transmits the data directly from the

Application Development and Pthreads 137

2014appdev.fm Draft Document for Review October 25, 1999 10:31 pm

mbufs in the NBC across the specified socket. The system call dynamically
caches the data in the NBC, thus improving performance for files that are
sent frequently across the network, and which do not change often. This
feature can be disabled on a file by file basis.

The application sending the data will need to be altered to use the send_file
call. The greatest improvement in performance can be gained by using direct
I/0 to read the file that is to be transmitted. This can be achieved simply by
opening the file using the O_DIRECT flag. This flag enables send_file to
bypass the JFS cache when reading the file, thus further reducing the number
of data transfers required.

The size of the NBC, and various cache tuning parameters can be altered
using the no command. The options that can be changed are:

nbc_limit Maximum size of the NBC. Specifies in KB the maximum
amount of memory that can be used for the NBC. The
default value is derived from the size of the mbuf pool
(thewall), which in turn, is determined from the amount
of physical memory. If a system has less than 512 MB of
memory, the default value of nbc_limit is 0.

nbc_max_cache Maximum size of a cache object in the NBC. Specified in
bytes, default value is 131072 (128 KB) bytes.

nbc_min_cache Minimum size of a cache object in the NBC. Specified in
bytes, default value is 1.

send_file_duration Specifies the cache validation duration for all the file
objects that system call send_file accessed in the
Network Buffer Cache. This attribute is in number of
seconds, the default is 300 for 5 minutes. 0 means that
the cache will be validated for every access.

Cache statistics can be viewed using the command netstat -c, that provides
an output similar to the following:

netstat -c

Network Buffer Cache Statistics:
Qurrent total cache buffer size: 325312
Maxi mimtotal cache buffer size: 325312
Qurrent total cache data size: 207450
Maxi mumtotal cache data size: 207450
Qurrent nunber of cache: 25

Maxi mum nunber of cache: 25

Nunber of cache with data: 25

138 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

Nunber of searches in cache: 2063

Nunber of cache hit: 1044

Nunber of cache nmiss: 81

Nunber of cache new y added: 25

Nunber of cache updated: 0

Nunber of cache renoved: 0

Nunber of successful cache accesses: 1069
Nunber of unsuccessful cache accesses: 56
Nunber of cache validation: 0

The send_file call only supports the TCP/IP protocol. In other words, the
sockets of type SOCK_STREAM in address family AF_INET. Both blocking
and non-blocking connections are supported. In blocking mode, send_file
blocks until all of the file data has been transmitted. In non-blocking mode, or
in the event send_file is interrupted, the system call updates parameters in
the sf_parms structure to indicate the amount of data that has actually been
transmitted.

4.12 Network Buffer Cache Improvements (4.3.3)

The Network Buffer Cache (NBC) was introduced in AlX 4.3.2 to improve the
performance of the network file servers, such as the Web, FTP, and SMB
servers. In AIX 4.3.3 new features have been added allowing NBC to have a
bigger capacity and multiple keys for the cache access mechanism.

A new, secondary, key access to data in the NBC has been added in order to
make the FRCA HTTP GET engine (see “HTTP GET Kernel Extension
(4.3.3)” on page 421) search among cache data objects using the URL of the
object. The primary key access is the vnode address of the file cached and it
is used by the send_file() system call.

The base NBC configuration uses network buffers with an upper size limit that
is defined by thewall variable and cannot grow over 1 GB. Taking into account
that a normal network 1/0 activity may take about 250 MB, the effective
maximum NBC cache is about 750 MB. This size is too small for most servers
that access large file sets.

The new AlX 4.3.3 design of NBC allows the use of additional 256 MB
memory segments for caching additional data. Since over one million memory
segments are available, NBC is able to handle a huge cache on top of the
wall. The additional segments are private and are mapped and pinned in
memory only when referenced and unmapped when network 1/O is done.

Application Development and Pthreads 139

2014appdev.fm Draft Document for Review October 25, 1999 10:31 pm

In order to achieve optimal performance with private segments, the network
device drivers must be able to support the private segments. Otherwise, the
data from the private segments must be copied from the private segments to
normal mbufs, before transmission. The network devices that currently
support private segments are Gigabit Ethernet, 100 Mbps Ethernet, and 155
Mbps ATM PCI.

In order to control these segments, new no parameters have been added:

nbc_pseg Maximum number of private segments that can be created
by the NBC. The default value is 0. In each private
segment only one file can be stored, so you should use an
appropriate value to store many files.

nbc_pseg_limit Maximum size of pinned memory that can be created for
private segments. The value is in kilobytes and the default
is half of the physical memory size.

When one of the two nbc_pseg or nbc_pseg_limit value is reached, cache
data may be flushed in order to let new data in. If one of the two value is set
to 0, all existing NBC private segments will be flushed and released and no
more segments are created.

Previous no options (nbc_limit, nbc_max_cache, nbc_min_cache) are not
changed. The maximum memory used in global segment is given by
nbc_limit. Objects with size smaller than nbc_min_cache are not cached.
Objects bigger than nbc_max_cache were previously left out of the NBC, now
they are put in private segments if they are physically smaller than 256 MB.

New statistics are added to keep track of private segment usage in NBC.
They are displayed by the netstat -c¢ command:

e Current total cache data size in private segments: byte count of the total
object size currently cached in private segments.

* Maximum total cache data size in private segments: highest total object
size in bytes that has ever been cached in private segments.

e Current total number of private segments: number of private segments
currently used in the cache.

* Maximum total number of private segments: highest number of private
segments that has ever been used in cache.

e Current number of free private segments: current number of private
segments.

e Current total NBC_NAMED_FILE entries: number of cache entries that are
indexed by multiple keys.

140 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

¢ Maximum total NBC_NAMED_FILE entries: the highest number of
secondary cache entries that has ever been created in cache.

4.13 Binder Library Enhancements (4.3.2)

The binder library, libld.a, that provides functions to allow an application to
create and manipulate XCOFF object files, has been enhanced in AIX
Version 4.3.2 to support a cross mode environment.

This allows 32-bit applications to create and manipulate both 32-bit and 64-bit
objects using a consistent interface. The changes also allow 64-bit objects to
create and manipulate both 32-bit and 64-bit objects. The functions in the
library transparently open both 32-bit and 64-bit object files, as well as both
small format and large format archive files.

An application need not know the format of an object file before opening it. It
can call the Idopen function and then check the magic number of the file or
archive member.

4.14 Fast Single Instruction Breakpoint (4.3.3)

In some cases, it may be useful for certain trap instructions to be handled by
the process being debugged, instead of causing the process to be stopped
and the debugger to be notified. This capability can be used to patch running
programs or programs for which source code is not available. In order for a
process to use this capability, fast traps must be enabled, which requires a
ptrace() call from a debugger on behalf of the process.

The fast trap instruction is an unconditional trap immediate instruction of the
form:

tw 14, r 13, OXNXXX

To allow a process to handle fast traps, a debugger uses the subroutine call:
pt race(PT_SET, pi d, 0, PTFLAG FAST_TRAP, 0)

This capability can be canceled with another call:
ptrace(PT_CLEAR pi d, O, PTFLAG FAST_TRAP, 0)

If a process is enabled to handle fast traps when the debugger detaches, the
capability is automatically cleared.

A typical usage of the fast trap instruction could be:

Application Development and Pthreads 141

2014appdev.fm

Draft Document for Review October 25, 1999 10:31 pm

. A debugger or a special purpose tool replaces some specific bl

instructions with the fast trap instruction.

2. The debugger or the tool enables the fast trap capability using ptrace().

. The debugger installs the SIGTRAP signal handler so that the signal

handler can modify the behavior of the debugged program without source
code.

. The replaced routine runs without being interfered by the debugger.

4.15 Java Developer’s Kit (4.3.3)

Java Developer’s Kit (JDK) 1.1.8 is shipped with AIX 4.3.3. JDK 1.1.8 is the
latest release of Java environment in the Java 1 platform. New features
included in JDK 1.1.8 are:

+ Java Remote Method Invocation - Internet Inter-ORB Protocol

A new version of RMI can run over IIOP and Java programs that use the
RMI can interoperate with Common Object Request Broker (CORBA)
objects which are programmed in other languages.

Java Security Migration Aid

This feature provides the more robust policy-based security model of the
Java 2 platform in the Java 1 platform environment. The security migration
aid is intended to help users migrate from the relatively simple Java 1
platform security mode to the finer grained Java 2 platform model. The
Security Migration Aid supports the use of security policies, permissions,
tools, and Java run time security managers as defined in the Java 2
platform security model.

Java Database Connectivity - Object Database Concavities

This feature enhances the capability of enterprise customers to
communicate with databases using Java. The bridge provides JDBC
access to databases with ODBC drivers.

Swing

Part of the Java Foundation Classes (JFC) that implements a new set of
GUI components with a pluggable look and feel. Swing is implemented in
100% Pure Java and is based on the JDK 1.1 light-weight Ul framework.
The pluggable look and feel lets you design a single set of GUI
components that can automatically have the look and feel of any OS
platform (Windows, Solaris, Macintosh). Swing components include both
100% Pure Java versions of the existing AWT component set (Button,

142 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

Scrollbar, Label, to name a few), plus a rich set of higher-level
components (such as tree view and list box).

« Big Decimal

IBM has enhanced Java's big decimal math class by adding support for
floating point arithmetic. Computer systems must provide an arithmetic
that gives results that people expect. This is not available in Java today; a
decimal floating point arithmetic is needed -- one that gives the same
results as the arithmetic that people learn at school. IBM's dig decimal
class implements the decimal arithmetic defined in the ANSI standard
X3.274-1996.

JDK 1.1.8 is included in the AIX BOS operating system CD-ROM in AlX 4.3
and a bonus pack CD-ROM in AlX 4.2.

4.16 Ship Perl on AlX (4.3.3)

The Perl script language is shipped with AIX 4.3.3. The version shipped is
5.5.3 which is most stable version at this time of writing. Perl is packaged in
the perl.rte fileset and included in an AIX BOS CD-ROM.

The following simple Perl script send an HTTP GET request to localhost and
prints the HTML document returned:

#! [usr/ bi n/ perl

use LWP.: S npl e;

$doc=get ' http://local host’;
print $doc

Note that to use the WWW features of Perl, you need to download
libwww-perl module from http://www.linpro.no/lwp/.

4.17 KDB Kernel Debugger and the kdb Command (4.3.3)

The KDB Kernel Debugger provides a symbolic debugger for the AlX kernel,
kernel extensions, and device drivers. kdb is also a command to allow
examination of system crash dumps. kdb is an alternative to the current kernel
debug crash command, and the KDB Kernel Debugger is an alternative to the
LLDB kernel debugger.

Note that the KDB Kernel Debugger and the kdb command are two separate
entities. The KDB Kernel Debugger is a debugger you can use to debug the
kernel, device drivers, and other kernel extensions. You can use the kdb

command to view data contained in system image dumps. However, the kdb

Application Development and Pthreads 143

2014appdev.fm

Draft Document for Review October 25, 1999 10:31 pm

command may be run on an active system to view system data. Also note that
although they are separate and have different roles, they do share many
commands, since both work with the AlX kernel.

— Usage Notes

To use the KDB Kernel Debugger, you need to use the bosboot -k
command, as described in “AlX Documentation Updates for the KDB
Kernel Debugger” on page 145, so that you can use a KDB kernel. A KDB
kernel is a version of the AlX kernel that has been designed to work with
the new kdb command and KDB Kernel Debugger tools.

An example of how to enable the KDB kernel and then use the KDB
debugger is in “Enabling the KDB Kernel Debugger” on page 147. You do
not need to do this if you only want to use the kdb command, either on an
active system or to view a system dump.

To determine what kernel you are currently using, use the method
described in “Enabling the KDB Kernel Debugger” on page 147.

4.17.1 Fileset Changes Associated with the Introduction of KDB

AlX 4.3.3 now includes the kdb command and KDB kernels. The filesets that
have been changed include:

« bos.up ships unix_kdb which is the UP version of the KDB kernel.
« bos.mp ships unix_mp_kdb which is the MP version of the KDB kernel.

* bos.sysmgt.serv_aid ships kdb, kdb_up, and kdb_np which are the kdb
dump readers.

* bos.msg.en_US.rte includes the kdb catalog for the kdb dump readers.

You can look at the /unix files installed on your system by executing:

#1s -1 [unix

I rvkrwkrwx 1 root system 21 Aug 20 14:17 /unix ->
[usr/1ib/boot/uni x_np

#1s -1 [usr/lib/boot/un*

I rvkrwkrwx 1 root system 21 Aug 20 14:17 /usr/li b/ boot/uni x ->
[usr/1ib/boot/uni x_np

-r-xr-xr-x 1 root system 3673916 Aug 19 07:05 /usr/|i b/ boot/uni x_np
-r-xr-xr-x 1 root system 5523759 Aug 19 08: 36

[usr/1ib/boot/uni x_np_kdb

144 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

Note that it is the bosboot command, together with the setup of these /unix
files, that builds the boot logical volume that contains the kernel that you use.

4.17.2 AlX Documentation for KDB

The kdb command and KDB Kernel Debugger are documented in AlX Version
4.3 Kernel Extensions and Device Support Programming Concepts,
SC23-4125, in section KDB Kernel Debugger and Command, as well as in
the kdb man page. The following are links to articles for the following three
topics:

« KDB Kernel Debugger and kdb Command

This describes the KDB Kernel Debugger and kdb command. It describes
what these tools are and how you can use them.

« Subcommands for the KDB Kernel Debugger and kdb Command

This includes a description of each of the subcommands, with each
subcommand identified as being available through the KDB Kernel
Debugger, the kdb command, or both. Along with a description of each
subcommand there is at least one example for at least one of the
subcommand’s options.

¢ Using the KDB Kernel Debug Program

This provides some examples of how to use KDB to perform common
debugging tasks. This section includes a simple kernel extension and
program to load it; this is used in examples of using the KDB Kernel
Debugger that you can step through to learn about this tool.

4.17.3 AlIX Documentation Updates for the KDB Kernel Debugger

In the Kernel Extensions and Device Support Programming Concepts
manual, SC23-4125, the section Loading and Starting the KDB Kernel
Debugger should be replaced with the following section.

4.17.3.1 Loading and Starting the KDB Kernel Debugger

The KDB Kernel Debugger must be loaded at boot time. This requires that a
boot image is created with the debugger enabled. To enable the KDB Kernel
Debugger, the bosboot command must be invoked with a KDB kernel specified
and options set to enable the KDB Kernel Debugger. KDB kernels are
shipped as /usr/lib/boot/unix_kdb for UP systems and
/usr/lib/boot/unix_mp_kdb for MP systems; as opposed to the normal AlX
kernels of /usr/lib/boot/unix_up and /usr/lib/boot/unix_mp. The specific kernel
to be used in creation of the boot image may be specified using the -k option

Application Development and Pthreads 145

2014appdev.fm Draft Document for Review October 25, 1999 10:31 pm

of bosboot. The KDB Kernel Debugger must also be enabled using either the
-1 or -D options of bosboot .

Examples of bosboot commands that build boot images using the KDB kernel
for a MP system are:
* bosboot -a -d /dev/ipldevice -k /usr/lib/boot/unix_np_kdb
The KDB Kernel debugger is disabled.
* bosbhoot -a -d /dev/ipldevice -D -k /usr/lib/boot/uni x_np_kdb
The KDB Kernel Debugger is enabled but is not invoked during system
initialization.
*boshoot -a -d /deviipldevice -| k /usrfib/boot/unix_mp_kdb
The KDB Kernel Debugger is enabled and is invoked during system
initialization.

The file /usr/lib/boot/unix_kdb would be used, instead of
/usr/lib/boot/unix_mp_kdb, for a UP system.

— KDB Environment Notes

The execution of the bosboot command only builds the boot image; this
boot image is not used until the machine is restarted.

External interrupts are disabled while the KDB Kernel Debugger is active.

If the KDB debugger is invoked during system initialization the g
subcommand must be issued to continue the initialization process.

The KDB Kernel Debugger requires exclusive access of a machine.

The links /usr/lib/boot/unix and /unix are not changed by bosboot . However,
these links are used by user commands such as sar,crash , and others to
read symbol information for the kernel. Therefore, if these commands are to
be used with a KDB boot image these links should point to the kernel
specified for the bosboot command that created the KDB boot image. This
may be done by removing and recreating the links. This must be done as
root. For the previous bosboot examples the following command sequence
would set up the links correctly:

1. m/unix
2. In-s/usrfib/oot/unix_mp_kdb /unix
3. m/usrflib/bootfunix

146 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

4. In -s [usr/lib/boot/unix_np_kdb /usr/lib/boot/unix

Similarly, if you chose to quit using a KDB kernel then the links for
{usrl/lib/boot/unix and /usr/lib/boot/unix_mp_kdb should be modified to point to
the kernel specified to bosboot .

— Default Kernel for bosboot

/unix is the default kernel used by bosboot . Therefore, if this link is changed
to point to a KDB kernel, subsequent bosboot commands which do not have
a kernel specified will use the KDB kernel unless this link is changed. The
link can be changed with a method similar to the previous command
sequence that used the rmand | n commands.

4.17.4 Enabling the KDB Kernel Debugger

An AlX documentation topic (See “KDB Kernel Debugger and kdb Command”
on page 145.) describes how to enter the KDB environment. It also shows
you that you check if the KDB environment is currently active on your system
by executing:
kdb

(0)> dw kdb_avai |

If the above dwsubcommand returns a 0, the KDB Kernel Debugger is not
available. This section guides you through the use of the KDB kernel and the
associated KDB Kernel Debugger. Read the entire section before you try the
examples.

Documentation Update

To check for the availability of the KDB Kernel Debugger, use only the kdb
subcommand dw kdb_avai | , not the subcommand dw kdb_want ed.

4.17.4.1 Checking the Kernel
You can combine the kdb and crash commands to do:
echo ' dw kdb_avai |’ | kdb| egrep "expect ed| kdb"

(0)> dw kdb_avai |
(0)> expected synbol or address

The error message expected synbol or address means that you are not using
the KDB kernel, so you cannot use the KDB Kernel Debugger. To use this tool
(the tool is not invoked during the boot process in this case), enter:

Application Development and Pthreads 147

2014appdev.fm Draft Document for Review October 25, 1999 10:31 pm

bosboot -a -d /dev/ipldevice -D -k /usr/lib/boot/uni x_kdb

bosboot: Boot inage is 8491 512 byte bl ocks.
shut down - Fr

When your system has completed its boot process, you can again use the kdb
and echo commands to verify that you should be able to use the KDB Kernel
Debugger:

echo ' dw kdb_avai |’ | kdb| egrep " expect ed| kdb"
(0)> dw kdb_avai |
kdb_avai | +000000: 00000001 00000001 00000001 02000000

This command has returned a value of 000000: 00000001 SO you can now use
the KDB Kernel Debugger.

—— Debug Terminal Choice

Even though you can now use the KDB Kernel Debugger, you will not
usually enter the debugger environment with the kdb command. (That is, a
breakpoint subcommand would need to be set.) To use the KDB kernel
Debugger you need to use an ASCII terminal connected to a native serial
port. Press the Ctrl-\ keys simultaneously on a tty keyboard to enter the
KDB Kernel Debugger.

Graphical console devices are not supported, but native keyboards are.

4.17.4.2 Using the KDB Kernel Debugger
To use an ASCII terminal for the debugger on host A, you can:

1. Connect the native serial port to another AIX system’s serial port using a
null modem cable. Assume that this second system is host B.

2. Connect to host B from whatever client you are using. Some clients are:
* A telnet session.
¢ An aixterm, dtterm or xterm on a network X11 server.
3. Install the uucp fileset (bos.net.uucp) on host B:
1. Use script to log your work.

2. From your client session on host B, use the cu command to establish a
tty session on host A.

These steps are similar to:

root @t sosnp: /tnp > script kdb-dbg. out

148 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

Script started, file is kdb-dbg. out
root @tsosnp: /tnp > cu -m tty0

4. Login, then execute the required key sequence:

« If you are using a tty session from any client, press the Ctrl-\ (control
and back-slash) keys simultaneously to obtain output similar to the
following:

#
Debugger entered via keyboard.
05001E28 beg- cr 0. eq, <050021Q0>

KDB(0) >

KDB(0) > st at

PONR RS1 machine with 1 cpu(s)

.......... SYSTEM STATUS

sysnane... Al X nodenare. . itsosrv2
release... 3 version... 4

nmachi ne... 000000131C nid....... 0000131C

Debugger entered vi a keyboar d.
age of system 9 hr., 23 min., 7 sec.
.......... SYSTEM MESSACES

A X Version 4.3

sysconfig SYS SINAELQAD fail ed
<- end_of buffer

KDB(0) > q

Note that the debugger advises that it was entered from the keyboard.

« If the previous attempt fails, or if host A is physically located in a
convenient location, you can also use the native keyboard sequence.
This still requires a client session through the tty connection, since the
graphics adapters are not supported. Press the Ctrl-Alt-Numpad4 keys
simultaneously to obtain:

Debugger entered via keyboard with key in SERVI CE position using nunmpad 4
.wai t proc+000038 bne- cr0. eq, <. wai t proc+000038>

KDB(0)> q
Note that the debugger message is different for this sequence, but in both
examples, the g subcommand quits the KDB Kernel Debugger and returns
the system to the normal processing environment.

Complete your debugger work as normal.

Application Development and Pthreads 149

2014appdev.fm Draft Document for Review October 25, 1999 10:31 pm

— Limit Use of KDB

You should disable the debugger when you are finished using it. Otherwise,
if you were to accidentally press the debugger key sequence you would
interrupt all system users.

For example, all communications stops, as shown by this increase in ping
time from another system while the debugger is active:

64 bytes from9. 3. 187.212: icnp_seqg=11 ttl =255 tinme=1 ns

64 bytes from9. 3.187.212: icnp_seq=12 ttl =255 ti ne=6785 ns

4.17.4.3 Disabling the KDB Kernel Debugger and Kernel
You can disable the KDB Kernel Debugger, but not the kernel, by entering:

bosboot -a -d /dev/ipldevice -k /usr/lib/boot/unix_kdb

bosboot: Boot inage is 8483 512 hyte bl ocks.
shut down -Fr

When the system completes the boot process, verify that the KDB Kernel
Debugger is disabled by entering:

echo ' dw kdb_avai |’ | kdb| egrep "expect ed| kdb"
(0)> dw kdb_avai |
kdb_avai | +000000: 00000000 00000002 00000000 02000000

Since the link commands were not done along with the bosboot command that
enabled the KDB Kernel Debugger, some commands may be affected. For
example, to use crash on the live system in this state, you need to explicitly
specify the /unix file by executing:

crash /dev/ nem/usr/|i b/ boot/uni x_kdb
> stat
sysnane: Al X
nodenarre: itsosrv2
rel ease: 3
version: 4
machi ne: 000000131Q00
tine of crash: Fri Aug 27 13:34:46 CDT 1999
age of system 10 mn.
xnal | oc debug: di sabl ed

Likewise, the kdb command that you can use to confirm the KDB kernel is in
use needs to be changed. The incorrect version is:

150 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

echo ' dw kdb_avai |’ | kdb| egrep "expect ed| kdb"
[kdb_read_nenj no real storage @OO00DFASC

If you specify the KDB kernel, then it works as expected.

echo 'dw kdb_avai |’ | kdb /dev/ mem/usr/1i b/ boot/ uni x_kdb| egr ep
"expect ed| kdb"

(0)> dw kdb_avai |

kdb_avai | +000000: 00000000 00000001 00000002 02000000

To return to the original, default kernel environment, execute:

bosboot -a -d /dev/ipldevice -k /usr/lib/boot/unix_up

bosboot: Boot inage is 6339 512 byte bl ocks.
shut down - Fr

No other steps are required for this example since the /unix and
/usr/lib/boot/unix links were not changed.

4.17.5 A Comparison of the New and Existing Kernel Tools

This section enables you to become familiar with the new kernel tools by
comparing the subcommands of the new tools with the subcommands from
the existing tools that do a similar function.

4.17.5.1 crash and kdb Subcommands Cross Reference

Table 18 on page 151 cross references the crash and kdb commands. In some
cases it is possible that several kdb subcommands may be required to
perform the same function as a single command in crash. In such cases, all of
the appropriate kdb subcommands are listed.

Also note that even though the subcommands perform approximately the
same function, there are often differences between the syntax for the crash
and kdb subcommands. Refer to the AIX documentation on the crash and kdb
subcommands for more information. Table 18 on page 151 is ordered
alphabetically by crash subcommand.

Table 18. A Comparison of crash and kdb Subcommands

Dump Tool Subcommands Function
crash kdb
buf buf Display system buffer headers

Application Development and Pthreads 151

2014appdev.fm

Draft Document for Review October 25, 1999 10:31 pm

Dump Tool Subcommands Function
crash kdb
buffer Use both buf and Display data in a system buffer
one of
d, dw, dd, dp, dpw,
dpd commands to
display memory
calc hcal, dcal Calculator. Note, KDB does not support operator
precedence. This will be changed in the future, but
currently input to hcal and dcal are processed
from left to right and parentheses are not
supported.
callout trb Display entries on the active trb list
cm sw Change segment registers used in address
resolution.
conv dcal, hcal hex/decimal conversion
cpu cpu Switch CPUs
dblock None Display a streams data block header
decode dc, dcp Decode an instruction word. Note, dc and dcp
actually disassemble the code at a specified
address; they do no disassemble a user specified
instruction word.
devsw dev Show device switch table entries
dlock dla Search for possible deadlocks
dmodsw Dmodsw,dmodsw Display the streams driver switch table
ds ts Find symbol closes to a given address
du Use both ttid and Hex and ASCII dump of a thread’s uthread
one of structure and of the user structure of the process
d, dw, dd, dp, dpw, for the thread
dpd commands to
display memory
dump None Display component dump table and allow
selection for formatting usint the dump formatting
routines
errpt None Display error log entries
file file Display file table entries

152 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm

2014appdev.fm

Dump Tool Subcommands Function

crash kdb

find find Search for a pattern

fmodsw Fmodsw Display streams module switch table

fs f Trace a kernel stack

help help Display help

hide set no_symbol Hide symbols for symbolic name translation. Note,
KDB does not currently have a function to turn off
symbolic name translation for specific symbols;
symbolic name translation is either on or off. The
set no_symbol subcommand toggles the setting.

id dc, dcp Instruction decode (disassembly)

inode ino Display i-node table

kfp None Set frame pointer for use by trace subcommand

knlist None Display addresses for specified symbols

le ke Display load list entries

link None Traverse a linked list

linkblk None Display streams linkblk table

lock slk,clk Print lock information

mblock msg Display streams message block headers

mbuf mbuf Display mbuf structures

mst mst Display mstsave portion of the uthread structure

ndb tcb, udb, sock, Display network kernel data structures

mbuf, ifnet

netm None Display net_malloc_police records

netstat None Display network statistics

nm nm Display symbol value and type

od d, dw, dd, dp, dpw, Display memory

dpd
ppd ppda Display per-processor data area

Application Development and Pthreads 153

2014appdev.fm

154

Draft Document for Review October 25, 1999 10:31 pm

Dump Tool Subcommands Function
crash kdb
prall None Print an assortment of structures to stdout without
further user interaction.
print None dbx style formatted display of data for a structure
proc proc Display process table entries
grun sgh,sge Display list of scheduled streams queues
gqueue streams, stream, Display the streams queue
queues, queue
quit q Exit
search None Display the symbol at an indicated address
segst64 u-64 Display segstate information for a 64-bit process
set set Set user options
socket sock Display socket structures
stack Use both stack and | Display the memory for a kernel stack
one ofd, dw, dd, dp,
dpw, dpd
commands to
display memory
stat stat Display statistics found in a dump
status sw, thread, proc Display a description of the kernel thread
scheduled on a processor
stream streams, stream Display the stream head table
symptom None Display a symptom string for a dump
tcb mst Display the mstsave portion of the user structure
for a thread
thread th Display thread table entries
trace strack Display a kernel stack
ts ts Find the text symbol closes to an address
tty None Display tty structures

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

Dump Tool Subcommands Function
crash kdb
unhide set no_symbol Restore symbols for symbolic name translation.

Note, KDB does not currently have a function to
turn off symbolic name translation for specific
symbols; symbolic name translation is either on or
off. The set_nosymbol subcommand toggles the

setting.

user user Display uthread structure and associated user
structure

var var Display tunable system parameters

vfs vfs Display entries in the VFS table

vhode vhode Display v-node data

which None Display the name of the kernel source file

containing a symbol

xmalloc xmalloc Display information concerning the allocation and
usage of kernel memory

! ! Run shell commands

? ? Display command summary

4.17.5.2 LLDB and KDB Subcommands Cross Reference

Table 19 on page 155 cross references the LLDB and KDB subcommands. In
some cases it is possible that several KDB subcommands may be required to
perform the same function as a single command in LLDB. In such cases, all
of the appropriate KDB subcommands are listed. Also note that even though
the subcommands perform approximately the same function, there are often
differences between the syntax for the LLDB and KDB subcommands. Refer
to the AIX documentation on the LLDB and KDB subcommands for more
information. Table 19 on page 155 is ordered alphabetically by LLDB
subcommand:

Table 19. A Comparison of lldb and kdbSubcommands

System Debugger Subcommands Function

lidb kdb

alter m, mw, md, mp, mpg, mpd Alter memory

back mr iar Decrement the Instruction Address
Register (IAR).

Application Development and Pthreads 155

2014appdev.fm Draft Document for Review October 25, 1999 10:31 pm

System Debugger Subcommands Function

lidb kdb

break b, Ib Set a breakpoint.

breaks b, Ib, wr, ww, wrw, lwr, lww, lwrw | Lists currently set breakpoints.

buckets unknown Displays statistics for net_malloc
memory pool

clear ¢, lc, ca, cw, lew Clears (removes) breakpoints

cpu cpu Sets the current processor or shows

processor states

display d, dw, dd, dp, dpw, dpd Displays a specified amount of
memory.

dmodsw dmodsw Displays the STREAMS driver switch
table.

drivers dev Displays the contents of the device
driver table.

find find, findp Finds a pattern in memory.

float dr fp Displays the floating point registers.

fmodsw Fmodsw, fmodsw Displays the STREAMS module
switch table.

fs ino, vno, vfs Displays the internal file system tables.

go g Starts the program running.

? or help h Displays the list of valid commands.

loop bt and [Run until control returns to this point.

mst64 mst Displays mstsave64 of a 64-bit
process.

map exp Displays the system loadlist.

mblk kmstats Displays the contents of message

block structures.

netdata mbuf, udb, soc, tcpch Displays the mbuf, ndd, socket, inpcb,
and tcpcb data structures.

next mr iar Increment the Instruction Address

origin Not Applicable Sets the origin.

156 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm

2014appdev.fm

System Debugger Subcommands Function

lldb kdb

ppd ppda Displays per-processor data.

proc proc Displays the formatted process table.

queue gueue, queues Displays contents of STREAMS queue
at specified address.

quit ca, g, q Ends a debugging session.

reason stat Displays the reason for entering the
debugger.

reboot eboot Reboots the machine.

reset NONE Releases a user-defined variable.

screen NONE Displays a screen containing registers
and memory.

segst64 unknown Displays the states of all memory
segments of a 64-bit process.

set mr Defines or initialize a variable.

sregs dr Displays segment registers.

sr64 NONE Displays segment registers only in
64-bit context.

st mw Stores a full word in memory.

stack stack Displays a formatted kernel stack
trace.

stc m Stores one byte in memory.

step n,s,S,B Performs an instruction single-step.

sth sth Stores a halfword in memory.

stream stream, streams Displays stream head table.

swap NONE Switches from the current display and
keyboard to another RS232 port.

sysinfo stat Displays the system configuration
information.

thread thread, ttid, tpid Displays thread table entries.

Application Development and Pthreads 157

2014appdev.fm Draft Document for Review October 25, 1999 10:31 pm

System Debugger Subcommands Function
lldb kdb
trace trace Displays formatted trace information.
trb trb Displays the timer request blocks.
tty NONE Displays the tty structure.
un dc Displays the assembly instruction(s).
user user Displays a formatted user area.
user64 user Displays the user structure of a 64-bit
process.
uthread mst,user Displays the uthread structure.
vars NONE Displays a listing of the user-defined
variables.
vmm vmker, pfhdata, vmstat, pdt, Displays the virtual memory data
scb, pft, pte, apt, vmwait, structure.
vmadder, ames, rmap, vmlog,
zproc
watch wr, ww, wrw, lwr, lww, lwrw Watches for load or store at an
address.
xlate tr, tv Translates a virtual address to a real
address.

4.18 Malloc Enhancements (4.3.3)

The AIX memory subsystem has been significantly enhanced in this release.

4.18.1 Replaceable Malloc Subsystem

You can now use alternative memory allocation routines through the use of
environment variables. This allows you to fully replace the system malloc
routine, including the one used within libc itself without any relinking.
Previously, a malloc replacement would only be used for application calls
directly linked with a new malloc but would not be utilized by shared libc
routines. This may have resulted in undetectable memory references. This
enhancement helps make memory references more visible, thus enabling
third party memory access products performing functions including:

* Garbage collection

158 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

« Memory usage analysis

¢ High speed memory allocation

4.18.1.1 Implementation
The memory subsystem includes the following interfaces:

* malloc()
« free()

« realloc()
e calloc()
« mallopt()

e mallinfo()

The existing memory subsystem works for both threaded and non-threaded
applications. Your user defined memory subsystem should be thread-safe
since there are no checks to verify that it is. If a non-thread safe memory
module is loaded in a threaded application, memory and data may be
corrupted.

Your user defined memory subsystem 32- and 64-bit objects must be placed
in an archive with the 32-bit shared object named nen82. o and the 64-bit
shared object named mem64.0.

You can enable your memory subsystem either by using the MALLOCTYPE
environment variable or using a global variable _malloc_user_defined_name
bound statically in the user application. Note that the check for a user
supplied memory subsystem will only be done once per process and once set
cannot be changed.

Replacement memory subsystems written in C++ are not supported due to
the use of the libc.a memory subsystem by the C++ library libC.a.

The complete implementation details are in the AIX documentation section
“User Defined Malloc Replacement” in General Programming Concepts
SC23-4128.

4.18.2 Malloc Multiheap

This enhancement is very important if you are concerned about the
performance of threaded applications running on multiprocessor systems,
such as Netscape’s Web Server. A single free memory pool, or heap, is
provided by default by malloc. With AlX version 4.3.3, the capability to enable
the use of multiple heaps of free memory is provided, which reduces thread

Application Development and Pthreads 159

2014appdev.fm Draft Document for Review October 25, 1999 10:31 pm

contention for access to memory. You can use this feature by using the
MALLOCMULTIHEAP environment variable, as described in the readme file
/usr/Ipp/bos/README. For example, set

MALLGCMLTI HEAP=t r ue

Setting MALLOCMULTIHEAP in this manner will enable malloc multiheap in
its default configuration, with all 32 heaps and the fast heap selection
algorithm.

4.18.3 Debug Malloc

Debug Malloc is a powerful, effective tool for developing more reliable
software, since software will be much less likely to have memory
management related problems. However, this facility may initially appear to
cause problems since it will result in the manifestation of software defects
that have previously been dormant or difficult to discover. Now a core file will
be generated so that software problems can be analyzed and resolved early
in your software’s life cycle.

This debug facility provides memory overlay detection capabilities for the
user level malloc() and free() routines which are similar to those provided by
the xmalloc debug facility, which already is a standard kernel debug tool
shipped with AIX. The kernel tool is referred to as the Memory Overlay
Detection System (MODS). Debug Malloc can be turned on without modifying
executables, simply by exporting an environment variable. Activation and
configuration of the Debug Malloc capability is available at runtime using the
MALLOCTYPE and MALLOCDEBUG environment variables.

Debug Malloc detects a variety of incorrect scenarios, including:

« Writing to memory that is owned by another program or routine

« Writing past the end (or before the beginning) of declared variables or
arrays

« Writing or reading past the end (or before the beginning) of dynamically
allocated memory

¢ Writing to or reading from freed memory
« Trying to free the same memory twice
« Exiting without freeing allocated memory

It works by allocating at least a full page (4096 bytes) for every memory
allocation, and at free time, hiding the page so that any references will cause

160 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

a page fault. It causes larger quantities of memory to be used, but it is very
effective in finding incorrect memory uses.

A thorough discussion of this facility is in the /usr/lpp/bos/README file.

—— Debug Malloc Limitations

Debug Malloc is not appropriate for full-time, constant, or system-wide use.
Although it is designed for minimal performance impact upon the
application being debugged, it may have significant negative impact upon
overall system throughput if it is used widely throughout a system.

The README file describes this and other limitations.

4.18.3.1 Using Debug Malloc

This section includes four sample programs and their output that illustrate the
use of some different Debug Malloc options. The comments included at the
start of each program'’s text describes what the program shows and how you
can use it with Debug Malloc enabled.

* The doublefree.c program tries to free the same memory twice

/
doubl efree.c: This programattenpts to free the same nmenory twice.

To build and run this programw th Debug Malloc enabl ed, performthe
follow ng steps:

cc -0 doubl ef ree doubl efree. c
export MALLOCTYPE=debug

export MALLOCDEBUG=val i date_ptrs
doubl efree

Upon conpl etion of this program turn off Debug Malloc and exanine the
core file as follows:

export MALLOCTYPE=
export NMALLOCDEBUG=
dbx doubl ef ree

R N T T T T S R S

*
-~

#i ncl ude <stdio. h>
#i nclude <stdlib.h>

mai n()
{
char *ptr = NULL;

ptr = (char *) malloc(sizeof (char) * 4096);
free(ptr);
free(ptr);
exit(0);
}

Application Development and Pthreads 161

2014appdev.fm Draft Document for Review October 25, 1999 10:31 pm

You can use this program in the following sequence:

1. Compile the program, and then execute it to verify that it does not
create a core file. That is, it appears to work correctly.

#1s -1l
total 8
STWr--1-- 1 root sys 624 Aug 23 16: 08 doubl efree. ¢
nake doubl ef ree
cc -O doubl efree.c -o doubl ef ree
./doubl efree

#1s -1

total 24

-rwxr-xr-x 1 root Sys 4278 Aug 23 16: 09 doubl ef ree
SFWr--1-- 1 root Sys 624 Aug 23 16: 08 doubl ef ree. c

2. Set up the Debug Malloc environment, and then execute the program
again.

export MALLCOCTYPE=debug

export MALLOCDEBUG-val idate ptrs

./doubl efree

Debug Mal | oc: Buffer (0x20002000) has al ready been free’d.
| OT/ Abort trap(coredunp)

#1s -1

total 40

STWr--1-- 1 root Sys 8115 Aug 23 16:12 core
-rwxr-xr-x 1 root Sys 4278 Aug 23 16: 09 doubl ef ree
SFWr--1-- 1 root Sys 624 Aug 23 16: 08 doubl ef ree. c

3. Turn off the Debug Malloc environment with the commands:

export MALLOCTYPE=
export MALLOCDEBUG=

4. You now have an error message and a core file to analyze. You can
use the dbx command to analyze the core file.

dbx doubl ef ree
Type 'hel p’ for help.
readi ng synbolic information ...warning: no source conpiled with -g

[using nenory inmage in core]

| O/ Abort trap in raise at 0xd016f d28

0xd016f d28 (rai se+Ox4c) 80410014 Iwz r2,0x14(rl)
(dbx) where

rai se(??) at OxdOl1l6fd28

abort() at 0xd0169450

do validate part2(??, ??, ??) at 0xd0163424
do_debug_free(??) at 0xd01630c4

162 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

mai n() at 0x10000340
(dbx)

The where dbx subcommand has provided you with some more
information so that you can return to your source code to look for where
it is incorrectly freeing memory. In this case, there should only be one,
not two, calls to the free function.

« The memleak.c program exits without freeing allocated memory.

-

B T T T T S

*
-~

mem eak.c: This programexits w thout freeing allocated nmenory.

To build and run this programw th Debug Mal | oc enabl ed, performthe
followi ng steps:

cc -o menl eak neni eak. c

export MALLOCTYPE=debug

export MALLOCDEBUG=r eport _al | ocati ons
mem eak

Upon conpl etion of this program turn off Debug Malloc as follows:

export MALLCCTYPE=
export MALLOCDEBUG=

#i ncl ude <stdio. h>
#i ncl ude <stdlib.h>

mai n()

char *ptr = NULL;

}

ptr = (char *) malloc(sizeof (char) * 4096);
ptr = (char *) malloc(sizeof (char) * 4096);
ptr = (char *) mall oc(sizeof (char) * 4096);
exit(0);

You can use this program in the following sequence:

1.

Compile the program, and then execute it to verify that it does not
display any error message. That is, it appears to work correctly.

#1s -1l
total 8
STWr--T-- 1 root sys 622 Aug 23 17:19 neni eak. c
nake nenl eak
cc -O neneak.c -o nen eak

./ men eak

#1s -1

total 16

-rwkr-xr-x 1 root Sys 4016 Aug 23 17:19 mem eak
SFWr--1-- 1 root Sys 622 Aug 23 17:19 nen eak. c

Application Development and Pthreads 163

2014appdev.fm Draft Document for Review October 25, 1999 10:31 pm

2. Set up the Debug Malloc environment, and then execute the program
again.

export MALLCCTYPE=debug
export MALLOCDEBUG-T eport_al | ocati ons
./ ment eak
Qurrent allocation report:
Al ocation #1: 0x2000A000
Al ocation traceback:
0x2000B024 __start
0x2000B028 nai n
0x2000B02C nal | oc

Al ocation #2: 0x20007000
Al ocation traceback:
0x20008024 _ start
0x20008028 nai n
0x2000802C nmal | oc

Al ocation #3: 0x20004000
Al ocation traceback:
0x20005024 __start
0x20005028 nai n
0x2000502C nal | oc

Al ocation #4: 0x20001FF8
Al ocation traceback:
0x2000201C _ start
0x20002020 nai n
0x20002024 nal | oc
0x20002028 atexit
0x2000202C nal | oc

Total allocations: 4.

#1s -1

total 16

-rwxr-xr-x 1 root Sys 4016 Aug 23 17:19 mem eak
SFWr--1-- 1 root Sys 622 Aug 23 17:19 mem eak. c

You do not get a core file created, but memleak’s output should help
you debug the memleak.c source program. The program memleak.c
has three calls to malloc, but none of these are freed before the
program exits. The Debug Malloc output has four allocation records
because, as explained in the report_allocations section of the
/usr/bos/Ipp/README file, one allocation record will always be listed
for the atexit() handler that dumps the allocation records.

164 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

3. Turn off the Debug Malloc environment with the commands:

export MALLOCTYPE=
export MALLOODEBUG=

—— Note for Long Output

If this debug method results in more than one screen of output, you
may be presented with misleading, confusing malloc output. This
may happen if you redirect memleak’s output, for example, to the pg
command. This can be avoided by saving your program'’s standard
output in a file, and then turning off Debug Malloc before you check
the output. In this example, you should execute:

./ mem eak > nenl eak. out 2
export MALLOCTYPE=

export MALLOCDEBUG=

pg ment eak. out 2

* The
/

R T T S S S S S N T R

*
-~

overwrite.c program attempts to write beyond allocated memory

overwite.c: This programattenpts to wite beyond all ocated nenory.

To build and run this programw th Debug Malloc enabled, performthe
foll owi ng steps:

cc -0 overwite overwite.c
export MALLOCTYPE=debug
export MALLOCDEBUG=al i gn: 0
overwite

Upon conpl etion of this program turn off Debug Malloc and exam ne the
core file as foll ows:

export MALLOCTYPE=
export MALLOCDEBUG=
dbx overwite

Then, performthe follow ng steps:

export MALLOCTYPE=debug
export MALLOCDEBUG=al i gn: 2
overwite

Turn of f Debug Malloc and exami ne the new core file.

#i ncl ude <stdio. h>
#i ncl ude <stdlib.h>
#i ncl ude <string. h>

voi d
voi d
voi d

copy7();
copy8();
copy9() ;

Application Development and Pthreads 165

2014appdev.fm Draft Document for Review October 25, 1999 10:31 pm

mai n()

{
copy7(); /* OKwith both align:0 and align:2 */
copy8(); /* seg faults with align:0, OKwith align:2 */
copy9(); /* seg faults with align:0 or align:2 */
exit(0);

}

voi d copy7()
{
char *ptr = NULL;

ptr = (char *) nalloc(sizeof(char) * 7);

strcpy(ptr, "123456"); /* six bytes + null = seven bytes */
free(ptr);

return;

}

voi d copy8()

{

char *ptr = NULL;

ptr = (char *) nall oc(sizeof(char) * 7);

strcpy(ptr, "1234567"); [/* seven bytes + null = eight bytes */
free(ptr);

return;

}

voi d copy9()

{

char *ptr = NULL;

ptr = (char *) mall oc(sizeof (char) * 7);

strcpy(ptr, "12345678"); /* eight bytes + null = nine bytes */
free(ptr);

return;

}
You can use this program in the following sequence:

1. Compile the program, and then execute it to verify that it does not
create a core file. That is, it appears to work correctly.

#1s -1
total 8
STWr----- 1 root Sys 1443 Aug 24 00: 12 overwite.c
nmake overwite
cc -O overwite.c -o overwite
./loverwite

#1s -1

total 24

-rWKr-xr-x 1 root Sys 5380 Aug 24 00:13 overwite
STWr----- 1 root Sys 1443 Aug 24 00: 12 overwite.c
#

2. Set up the Debug Malloc environment, with the align option is set to 0O,
and then execute the program again.

export MALLCOCTYPE=debug

166 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm

export MALLOCDEBUG-al i gn: 0
./loverwite
Segnent ati on faul t (coredunp)

2014appdev.fm

#1s -1

total 40

STWr--1-- 1 root Sys 8115 Aug 24 00: 16 core
-rWKr-xr-x 1 root Sys 5380 Aug 24 00:13 overwite
STWr----- 1 root Sys 1443 Aug 24 00: 12 overwite.c
#

3. Turn off the Debug Malloc environment with the commands:

export MALLOCTYPE=
export MALLOODEBUG=

4. You can use the dox command to analyze the core file.

dbx overwite
Type 'hel p’ for help.

readi ng synbolic information ...warning: no source conpiled with -g

[using nenory image in core]

Segnentation fault in strcpy.strcpy [overwite] at 0x100005c4
0x100005c4 (strcpy+0xe4) 9ce50001 stbu r7,0x1(r5)

(dbx) where

strcpy. strcpy() at 0x100005c4
copy8() at 0x100003e8

mai n() at 0x10000328

(dbx) ¢

#

5. In the previous step, overwrite failed in the copy8() function. Set up the
Debug Malloc environment again, but this time with align set to 2, and

then execute the program again.

export MALLOCTYPE=debug

export MALLOCDEBUG=al i gn: 2
./overwite

Segnent ati on faul t (coredunp)

#1s -1l

total 40

STWr--1-- 1 root Sys 8115 Aug 24 00: 36 core
-rwkr-xr-x 1 root Sys 5380 Aug 24 00:13 overwite
STWr----- 1 root Sys 1443 Aug 24 00: 12 overwite.c
#

6. Turn off the Debug Malloc environment with the commands:

export MALLOCTYPE=
export MALLOODEBUG=

Application Development and Pthreads 167

2014appdev.fm

Draft Document for Review October 25, 1999 10:31 pm

7. You can use the dbx command to analyze the core file.

dbx overwite
Type 'hel p’ for help.
readi ng synbolic information ...warning: no source conpiled with -g

[using nenory inage in core]

Segnentation fault in strcpy.strcpy [overwite] at 0x100005c4
0x100005c4 (strcpy+0xe4) 9ce50001 stbu r7,0x1(r5)
(dbx) where

strcpy. strcpy() at 0x100005c4

copy9() at 0x10000388

nmai n() at 0x1000032c

(dbx) q

#

This second debug attempt using a different align option has not failed
in neither the copy7() or copy8() functions, but only the copy9()
function. To understand why, you need to review the bos README file
that contains a detailed discussion about the use of Debug Malloc.
Specifically, it says:

Addi tional Information about align:n Option

The follow ng formula can be used to cal cul ate how many bytes of overreads
and/ or overwrites Debug Malloc will allow for a given allocation request
when MALLOCDEBUG=al i gn:n and size is the nunber of bytes to be all ocated:

((((size/ n) +1) * n) - size) %n

The README then explains what happens with the two values of align
used in this example, that is the value two and the special case of zero.
The overwite program includes three functions (copy7(), copy8() and
copy9()) that each allocate seven bytes of storage using malloc.

« The copy7() function copies exactly seven bytes into the memory
provided by malloc, so there are no writes beyond allocated
memory. This means that overwite does not fail in this function.

e The copy8() function copies eight bytes into memory, so it
overwrites the allocated area by one byte.

For align:0, no bytes of overwrites are allowed so the core file dbx
debug output shows that the overwite program failed in copy8().

For align:2, the formula works out to be one since the value of size
is 8 and the value of n, the align option, is 2. As the bos README
explains, the overwite program allocated an odd number of bytes.
Consequently, Debug Malloc allocates an extra byte so it will accept

168 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014appdev.fm

a one byte overhead. This is why overwite does not fail in copy8(),
but continues to copy9() where it does falil.

« The copy9() function copies nine bytes into memory, so it overwrites
the allocated area by two bytes. This amount is not acceptable for
either align scenario. The overwrite program will always fail here if it
has not already failed or exited before it gets to copy9() in its
program sequence. You can repeat this example without copy8() in
the overwrite.c source program to verify the copy9() failure for
align:0.

* The final example is the postfree.c program that attempts to write to freed
memory.

| *
*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*/

postfree.c: This programattenpts to wite to freed nenory.

To build and run this programw th Debug Malloc enabled, performthe
foll owi ng steps:

cc -0 postfree postfree.c

export MALLOCTYPE=debug

export MALLOCDEBUG=post f r ee_checki ng
postfree

Upon conpl etion of this program turn off Debug Malloc and exam ne the
core file as foll ows:

export MALLOCTYPE=
export MALLOCDEBUG=
dbx postfree

#i ncl ude <stdio. h>
#include <stdlib.h>
#i ncl ude <string. h>

mai n()

{

char *ptr = NULL;

}

ptr = (char *) mall oc(sizeof (char) * 4096);
free(ptr);

strcpy(ptr, "This is an error.");

exit(0);

You can use this program in the following sequence:

1.

Compile the program, and then execute it to verify that it does not
create a core file. That is, it appears to work correctly.

#1s -1
total 8
STWr--1-- 1 root Sys 656 Aug 24 01: 00 postfree.c
nake postfree
cc -O postfree.c -o postfree

Application Development and Pthreads 169

2014appdev.fm

Draft Document for Review October 25, 1999 10:31 pm

./postfree

#1s -1l

total 24

-rWKr-xr-x 1 root Sys 4928 Aug 24 01:01 postfree
STWr--1-- 1 root Sys 656 Aug 24 01: 00 postfree.c
#

. Set up the Debug Malloc environment, and then execute the program

again.

export MALLOCTYPE=debug

export MALLOCDEBUG=post free_checki ng
./ postfree

Segnent ati on faul t (coredunp)

#1s -1l

total 40

STWr--r-- 1 root Sys 8115 Aug 24 01: 05 core
-rWKr-xr-x 1 root Sys 4928 Aug 24 01:01 postfree
STWr--1-- 1 root Sys 656 Aug 24 01: 00 postfree.c
#

. Turn off the Debug Malloc environment with the commands:

export MALLOCTYPE=
export MALLOODEBUG=

. You can use the dox command to analyze the core file.

dbx postfree
Type 'hel p’ for help.
readi ng synbolic information ...warning: no source conpiled with -g

[using nenory inage in core]

Segnentation fault in strcpy.strcpy [postfree] at 0x1000046c
0x1000046¢ (strcpy+0x8c) 94e50004 stwu r7,0x4(r5)
(dbx) where

strcpy. strcepy() at 0x1000046¢

mai n() at 0x10000344

(dbx)

The where dbx subcommand has provided you with some more
information so that you can return to your source code to look for where
it is incorrectly writing to freed memory. In this case, the free before the
strcpy is incorrect and this is detected by using Debug Malloc.

170 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:24 pm 2014filesys.fm

Chapter 5. Logical Volume Manager Enhancements

AIX 4.3, AIX 4.3.1, AIX 4.3.2, and AlX 4.3.3 received enhancements to the
logical volume group scalability, synchronization performance, online backup,
and mirroring functions. These changes enhance AlIX's image as a robust
and powerful operating system for increasingly demanding customer
requirements.

In this chapter, the major new features of logical volume manager are
described.

5.1 Logical Volume Synchronization

The following commands now support the -P flag to allow the user to specify
the number of LPs to sync. in parallel.

e /usr/sbin/syncvg
e /usr/sbin/lresynclv

The -P flag is followed on the command line by the number of partitions to be
synchronized as follows:

syncvg [-i] [-f] [-H [-P_NumParallelLPs] {-1]|-p|]-v} Name[-P
num paral | el _I ps]

Iresynclv [-H [-P NunParallelps] -1 LVid

The valid range for NumParallelLps is 1 to 32. If the number entered is less
than one then numparal | el _| ps defaults to one. If the number entered is
greater than 32 then numparal | el _I ps will be set to 32.

The nkl v and chl v commands were updated in AlX 4.3.0 to allow
synchronized updates of volume groups in a concurrent environment. All
nodes that share disks must be available at the time the updated command is
issued in order for updates to take place. If a system already has an existing
LV with the same name as a new one being added to another system, the
command will fail. Other conflicts are also detected to provide stable LV
updates in a shared environment. All systems must be running AlX 4.3.0 or
higher in order to use this enhancement.

© Copyright IBM Corp. 1999 171

2014filesys.fm Draft Document for Review October 25, 1999 10:24 pm

5.2 importvg Learning Mode (4.3.2)

A new option has been created for the LVM i nportvg command. This new
option, -L for learning mode, is executed on a shared volume group in a
cluster. It allows the LVM actions of creation, deletion, or extension performed
on one cluster node to be propagated to other nodes connected to the same
shared volume group.

importvg [-V Maj orNunber] [-y VoluneGoup] [-f] [-c] [-X] | [-L

Vol uneGoup] [-n] [-F Physical Vol une

The -L flag takes a volume group and learns about possible changes
performed to that volume group. Any new logical volumes created as a result
of this command inherit the ownership, group identification, and permissions
of the /dev special file for the volume group listed in the -y flag.

To use this feature, note the following:

* The volume group must not be in an active state on the system executing
the -L flag.

* The volume group's disks must be unlocked on all systems that have the
volume group varied on and operational. Volume groups, and their disks,
may be unlocked, remain active, and used through the varyonvg -b -u
command.

If an active node has both added and deleted logical volumes on the
volume group, the -L flag may produce inconsistent results. The -L flag
should be used after each addition or deletion rather than being deferred
until after a sequence of changes.

Figure 8 shows an example of a multi-tailed system.

hdisk3
sharevg
node: mickey node: goofy

Figure 8. Importvg -L Example

172 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:24 pm 2014filesys.fm

There are two machines, goofy and mickey, that share one disk. The volume
group sharevg is created on the shared disk. Both goofy and mickey are
aware of the sharevg volume group. The sharevg in node mickey is varied on
and in node goofy, it is varied off.

On node mickey, to make the sharevg unlocked, enter:

#varyonvg -b -u sharevg

On node goofy, to read the LVM information made by node mickey, enter:

importvg -L sharvg datavg hdi sk3

On node mickey, to return to the normal mode and release the lock, enter:

varyonvg shar evg

It should be noted that the volume group sharevg remained on line during the
entire operation, therefore, not affecting production work.

5.3 importvg Fast Mode (4.3.2)

A new option -F has been added to i nport vg command. The command syntax
is shown in the following example.

importvg [-V Maj orNunber] [-y VolunmeGoup] [-f] [-c] [-X] | [-L
Vol uneGoup] [-n] [-F Physical Vol une

It provides a fast version of importvg that checks the Volume Group
Descriptor Areas (VGDA) of only the disks that are members of the
designated volume group. As a result, if a user exercises this flag, they must
ensure that all physical volumes in the volume group are in a good and known
state. If this flag is used on a volume group where a disk may be in missing or
removed state, the command may fail, or the results may be inconsistent.
This flag has the advantage of avoiding a lengthy search for missing disks
that happens during normal i nport vg processing. Administration of large SSA
disk arrays will greatly benefit from the terse search the -F option provides.

5.4 Raw LV Online Mirror Backup Support (4.3.1)

The LVM in AIX 4.3.1 provides a snap shot capability for raw mirrored logical
volumes. One mirror of a mirrored logical volume can be used to archive the
data on the raw logical volume without splitting the mirror copies from each
other (only the logical partitions that have changed during the system backup
need to be resynchronized).

Logical Volume Manager Enhancements 173

2014filesys.fm Draft Document for Review October 25, 1999 10:24 pm

Table 20 lists the new options added to chl vcopy command.
Table 20. chlvcopy New Options in AlX 4.3.1

Flag Description
-b Mark a mirror copy as an online backup copy.
-C Identify which mirror copy used as online backup copy. The

allowed values of copy are 1, 2, or 3. If this option is not
specified, the default for copy is the last mirror copy of the
logical volume.

-B Unmark a mirror as an online backup copy.
-f Force LV copy to be marked as backup even if there are stale
partitions.

5.4.1 Removal of 1016 PPs per Physical Volume Limit (4.3.1)

The support for greater than 1016 PPs per physical volume has been added
in AlX Version 4.3.1. To support a VG exceeding the limit of 1016 PPs using
the same VGDA and VGSA areas, the number of disks supported in the
volume group has been reduced.

The -t flag was added to the chvg and nkvg commands to convert and create
a volume group with multiples of 1016 partitions per disk. This reduces the
total number of disks that can be added to the volume group by same
fraction. Once a volume group is changed or created to hold more than 1016
physical partitions per disk, it cannot be imported into AlX versions earlier
than 4.3.1.

The -t factor allows (factor * 1016) PPs per physical volume. For example, a
partition size of at least 16 MB would be needed to create a volume group
with a 10 GB disk. Or with at factor size of 2, a smaller partition size of 8 MB
can be used. However, this limits the total number of disks that can be added
to the volume group. If a factor value is used, a maximum of MAXPV S/factor
disks can be included in the volume group.

The relationship of factor -t, PP numbers per physical disk, and the number of
disks allowed in one VG is provided in Table 21.

Table 21. Factor -t

Factor t PP numbers Number of disks in VG
1 1016 32
2 2032 16

174 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:24 pm 2014filesys.fm

Factor t PP numbers Number of disks in VG
3 3048 10

4 4064 8

5 5080 6

6 6096 5

7 7112 4

8 8128 4

16 16256 2

Following is an example of a 4.3 GB disk. The PP size 8 MB is needed for
creating the volume group vgl without the factor -t:

I svg vgl

VO.UME GROP: vgl VG | DENTI FI ER 00091974e54218d7
VG STATE active PP Sl ZE 8 negabyt e(s)

VG PERMSSION read/wite TOTAL PPs: 537 (4296
negabyt es)

MAX LVs: 256 FREE PPs: 537 (4296 negabyt es)
LVs: 0 USED PPs: 0 (0 negabytes)
CPEN LVs: 0 QUORWM 2

TOTAL P\s: 1 VG DESCR PTCRS: 2

STALE P\s: 0 STALE PPs: 0

ACTI VE PVs: 1 AUTO ON yes

MAX PPs per PV: 1016 MAX PVs: 32

When using the factor -t to create vgl, the PP size of 4 MB can be used.
Then, the maximum PPs per physical volume becomes 2032, and the
maximum physical volumes allowed in the volume group is 16. Following is
an example:

nkvg -t 2 -y vgl hdi sk4
0516- 1193 nkvg: WARNING once this operation is conpl eted, vol unme group vgl
cannot be inported into Al X 430 or |ower versions. Continue (y/n) ?
y
0516- 631 nkvg: Vérning, all data bel onging to physical
vol une hdi sk4 will be destroyed.
nkvg: Do you w sh to continue? y(es) n(o)? y

vgl

I svg vgl

VALUME GROUP vgl VG | DENTI FI ER 00091974e54743e9
VG STATE active PP Sl ZE 4 megabyt e(s)

Logical Volume Manager Enhancements 175

2014filesys.fm

Draft Document for Review October 25, 1999 10:24 pm

VG PERMSSION read/wite TOTAL PPs: 1075 (4300
negabyt es)
MAX LVs: 256 FREE PPs: 1075 (4300 negabyt es)
LVs: 0 USED PPs: 0 (0 negabyt es)
CPEN LVs: 0 QICRWM 2
TOTAL PVs: 1 VG DESCR PTCRS: 2
STALE PVs: 0 STALE PPs: 0
ACTI VE PVs: 1 AUTO ON yes
MAX PPs per PV: 2032 MAX PVs: 16

Note

When using the -t flag with chvg and nkvg, it must be entered from the
command line.

5.5 Physical Partition Support (4.3.1)

The support for physical partition sizes of 512 MB and 1024 MB have been
added to AIX 4.3.1. Volume groups created with this new size cannot be
imported into previous versions of AlX.

In pre-AlX 4.3.1 versions, if you add a new volume group, the physical
partition sizes in megabytes you are allowed to chose are: 1, 2, 4, 8, 16, 32,
64, 128, and 256.

For AlIX 4.3.1, and later releases, if you add a new volume group, the physical
partition sizes in megabytes you are allowed to chose are: 1, 2, 4, 8, 16, 32,
64, 128, 256, 512, and 1024 MBs.

If you select a physical partition size of 512 or 1024 MBs on a AIX 4.3.1 or
later system, the volume group created cannot be imported on older versions
of AlX.

5.6 Big Volume Groups (4.3.2)

A new volume group (VG) format is added in AlX 4.3.2, which increases the
maximum number of disks that can be included in a volume group from 32 to
128. The maximum number of logical volumes in this new volume group
format is increased from 256 to 512. This means:

e The maximum physical volume (PV) number in one volume group is
increased from 32 to 128 (1024 in the future)

¢ The maximum logical volume (LV) number in one volume group is
increased from 256 to 512 (1024 in the future)

176 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:24 pm 2014filesys.fm

Table 22 provides information about LVM restrictions in several AlX versions.

Table 22. Limitations of LVM

Versio | Volume Physical Physical Logical Logical

n group volume partition volume partition
(per (per volume (per physical (per volume (per logical
system) group) volume) group) partition)

AIX 255 128 1016*-t factor 512 32,512

43.2

AIX 255 32 1016*-t factor 256 32,512

43.1

AIX 255 32 1016*-t factor 256 32,512

4.3.0

AlIX 4.2 | 255 32 1016 256 32,512

The LVM in AIX 4.3.2 supports both the small VG configurations of the
previous versions of AIX and the new big VG configuration. A migration path
is provided to convert old volume groups to the new volume group format,
provided there are sufficient free partitions on each of the physical volumes in
the volume group to be allocated.

The following sections explain the changes for the bigger VGDA/VGSA,
which describe a volume group to a system completely. The changes needed
for commands, library, and the LV device driver are also discussed.

5.6.1 Changes to LVCB

The original design of the VGDA and VGSA limited the number of disks that
can be added to the volume group at 32 and the total number of logical
volumes at 256 (including one reserved for LVM internal use). With the
increasing use of disk arrays, the need for the increased capacity for a single
volume group is greater.

Following are the basic concepts of VGDA, VGSA, and LVCB.

VGDA Stands for volume group descriptor area. The VGDA contains
information that describes the mapping of physical partitions to
logical partitions for each logical volume in the volume group, as
well as other vital information, including a time stamp. The VGDA
is stored on each physical volume of the volume group.

VGSA Stands for volume group status area. VGSA contains information,
such as which physical partitions are stale and which physical
volumes are missing (that is, not available or active), when a

Logical Volume Manager Enhancements 177

2014filesys.fm

Draft Document for Review October 25, 1999 10:24 pm

vary-on operation is attempted on a volume group. The VGSA is
stored on each physical volume of the volume group.

LVCB Stands for logical volume control block. The LVCB is the first 512
bytes of a logical volume. This area holds important information,
such as the creation date of the logical volume, information about
mirrored copies, and possible mount points in the journaled file
system (JFS). Certain LVM commands are required to update the
LVCB as part of the algorithms in LVM.

The Logical Volume Control Block has been moved from the first block of the
logical volume to inside the VGDA for better preservation. Though database
programs that use logical volumes as raw devices skip this block, obliteration
of the LVCB has caused confusion and loss of information such as
intra-policy, inter-policy, upperbound, and so on. Since other subsystems,
such as diagnostics, IPL, and ROS, do use the LVCB without using the LVM
access routines, the LVCB will be maintained at both places.

5.6.2 General Enhancements for Big VG

The following sections describe the general limitations and updates required
to implement big VG support on AlX.

5.6.2.1 Command Changes
To support the big VG format, some new options have been added to the
commands nkvg, chvg, inportvg, nklv, and chl vcommands.

The mkvg Command
The following lists some of the major changes to the nkvg command:

* The new option -B creates a big VG format volume group. This can
accommodate up to 128 physical volumes and 511 logical volumes (one
reserved for LVM internal use).

« If you do not use the -B option, the mkvg command will create the a VG with
1016*factor(-t) physical partitions and 32/factor(-t) disks per volume
group.

« The option -G creates the volume group with enough space reserved at

the beginning of the disk to expand the VGDA to include 1024 disks in the
future without having to migrate the physical partitions.

Following is an example of the nkvg command. To create a big VG, testvg, on
hdisk1, enter:

nkvg -B -y testvg hdi skl

178 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:24 pm 2014filesys.fm

To see the attributes of this VG, enter:

| svg testvg

VO.UME GROP: testvg V@A DENTI Fl ER 061515169c44a3e

VG STATE active PP Sl ZE 4 negabyt e(s)

VG PERMSSION read/wite TOTAL PPs: 80 (320negabyt es)
MAX LVs: 512 FREE PPs: 80 (320 negabyt es)
LVs: 0 USED PPs: 0 (0 negabytes)
CPEN LVs: 0 QURWM 2

TOTAL P\s: 1 VG DESCR PTCRS: 2

STALE P\s: 0 STALE PPs: 0

ACTI VE PVs: 1 AUTO ON yes

MAX PPs per PV: 1016 MAX PVs: 128

This example shows the new limit values for big VG: MAX PVs is 128 and
MAX LVs is 512.

The chvg Command

The option -B converts a small VG to a big VG. Once all the logical volumes
are in closed/synced state (file systems unmounted), and if all the physical
volumes are in the ACTIVE state in the volume group, the -B flag can be used
to convert the small VG to a big VG format. This operation expands the
VGDA/VGSA to change the total number of disks that can be added to the
volume group from 32 to 128.

If you want to convert the rootvg, you will get the following error message:

chvg -B rootvg
0516- 1212 chvg: rootvg cannot be converted to the big vol une group fornat.
0516- 732 chvg: Whabl e to change vol une group rootvg.

If both -t and -B flags are specified, factor will be updated first, and then the
VG is converted to the big VG format (sequential operation).

First create a small VG, testvg, on hdisk1:
#nkvg -y testvg hdi skl

To see the small VG information, enter:

#l svg hdi skl

VCLUME GROP. testvg VG | DENTI FI ER 00615151692724b1
VG STATE active PP Sl ZE 4 negabyt e(s)

VG PERMSSION read/wite TOTAL PPs: 81 (324 negabyt es)
MAX LVs: 256 FREE PPs: 81 (324 negabyt es)
LVs: 0 USED PPs: 0 (0 negabyt es)
CPEN LVs: 0 QURWM 2

TOTAL P\s: 1 VG DESCR PTCRS: 2

Logical Volume Manager Enhancements 179

2014filesys.fm

Draft Document for Review October 25, 1999 10:24 pm

STALE PVs: 0 STALE PPs: 0
ACTI VE PVs: 1 AUTO ON yes
MAX PPs per PV. 1016 MAX PVs: 32

To convert a small VG into a big VG:

chvg -B test

0516- 1224 chvg: WARNING once this operation is conpl eted, vol une group
test

cannot be inported into Al X 431 or | ower versions. Continue (y/n) ?

y

0516- 1164 chvg: Vol une group testvg changed. Wth given characteristics
testvg can include up to 128 physi cal vol unes with 1016 physical partitions
each physical vol ure.

To see the attributes of this VG, enter:

I svg test

VCLUME GROLP: t est VG | DENTI FI ER 00615151692724b1
VG STATE active PP Sl ZE 4 megabyt e(s)

VG PERMSSION read/wite TOTAL PPs: 81 (324 negabyt es)
MAX LVs: 512 FREE PPs: 79 (316 negabyt es)
LVs: 0 USED PPs: 2 (8 negabyt es)
CPEN LVs: 0 QUICRM 2

TOTAL PVs: 1 VG DESCR PTCRS: 2

STALE PVs: 0 STALE PPs: 0

ACTI VE PVs: 1 AUTO ON yes

MAX PPs per PV 1016 MAX PVs: 128

As shown, the number of TOTAL PPs remain unchanged. The number of free
PPs are reduced by two. These two PPs are reserved for the larger
VGDA/VGSA.

If you do not have enough space on your disk, suppose disk1 on the small VG
is full, such as:

| spv hdi skl

PHYS| CAL VOLUME hdi skl VOLUME QRO testvg

PV | DENTI FI ER 00615151648abel0 VG | DENTI FI ER 006151516a0af 1a9 PV
STATE active

STALE PARTI TI ONS: 0 ALLCCATABLE yes

PP Sl ZE: negabyt e(s) LG CAL VALUMES 2

TOTAL PPs: 81 (324 megabytes) VG DESCR PTCRS 2

FREE PPs: 0 (0 negabyt es)

USED PPs: 81 (324 negabyt es)

FREE D STR BUTI G\ 00. . 00. . 00. . 00. . 00
USED DISTR BUTION 17..16..16..16..16

180 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:24 pm 2014filesys.fm

The following example shows what happens if you want to convert the small
testvg into big testvg:

chvg -B testvg

0516- 1214 chvg: Not enough free physical partitions exist on hdi skl for the
expansi on of the vol ume group descriptor area. Mgrate/reorganize to free
up 2 partitions and run chvg agai n.

0516- 732 chvg: Whabl e to change vol une group testvg.

You must migrate or reorganize the volume group using mi grat epv or r eor gvg
to free up enough physical partitions for the system to expand the
VGDA/VGSA.

The importvg Command

The option -R restores the ownership, group ID, and permissions of the
logical volume special device files. These values will be restored only if they
were set using -U, -G, and -P flags of nkl v or chl v commands. The -U, -G,
and -P flags are for root to define the ownership, group, and permissions of
the LV you are creating respectively. This flag is applicable only for big VG
format volume groups.

The mklv Command
If you create a logical volume in a big VG, you can use the following three
new options (using root privileges):

e Option -U specifies the user ID for logical volume special file.

« Option -G specifies the group ID for the logical volume special file.

« Option -P specifies the permissions (file modes) for the logical volume
special file.

The chlv Command
The three new options are the same with nkl v command (using root
privileges):

« Option -U specifies the user ID for logical volume special file.
« Option -G specifies the group ID for the logical volume special file.

« Option -P specifies the permissions (file modes) for the logical volume
special file.

Note

When using the above new options in nkvg, chvg, inportvg, nklv, and chlv
commands, the commands must be entered from the command line. There
are no smt or wsminterfaces for them.

Logical Volume Manager Enhancements 181

2014filesys.fm

Draft Document for Review October 25, 1999 10:24 pm

5.6.2.2 Header File Changes
The following header file was changed to support big VGs:

¢ lvmrec.h

5.6.2.3 Default Maximum PPs for Each Physical Volume - 1016

No matter if you create a big VG or small VG, the nkvg command will still use
1016 as the default value for the number of physical partitions per physical
volume. If you use the -t (factor) option together with the big VG option, you
can create the volume group with the desired partition size and number of
partitions.

The -t volume group factor was first introduced in AlX 4.3.1. See 5.5,
“Physical Partition Support (4.3.1)" on page 176 for reference. The number of
physical partitions calculated is 1016 * t factor per physical volume. The size
for each of the physical partition is up to 1024 MB.

The nkvg command, by default, creates a volume group that can
accommodate 255 logical volumes and 32 physical volumes (disks). These
limits can be extended to 511 logical volumes and 128 physical volumes by
specifying the -B flag.

5.6.3 Small VG to Big VG Conversion

To convert the small VG to a big VG, a number of free physical partitions are
needed to expand the VGDA/VGSA. Depending on the size of the physical
partition and the current size of the VGDA, the number of partitions required
are calculated. Since the first partition starts immediately after the end of the
secondary VGDA, if it is occupied by a logical partition, it will be migrated to
another free physical partition on the disk. This first physical partition will then
be removed from the list of available partitions (not be moved or allocated for
any reason), and the remaining partitions will be renumbered. After the
conversion, the total number of physical partitions on the disk will not change,
except that the extra partitions allocated for the VGDA are marked non
allocatable.

You should be aware of the following items when you perform a conversion
from a small VG to a big VG:

« All the disks in the volume group should have enough free PPs for the
conversion to be possible.

« All the logical volumes in the volume group must be in closed/synced
state.

« All physical volumes must be available and be in the ACTIVE state.

182 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:24 pm 2014filesys.fm

« The volume group is varied on in management mode to prevent opening of
any logical volumes.

« The ownership/permissions of special device files will only be preserved if
nkl v or chl v are used with the -U, -G, or -P flags.

Currently, the ni grat epv command does not allow the migration of individual
physical partitions. The conversion needs to free up just enough physical
partitions from the beginning of the disk to elsewhere. The current
implementation will try to migrate the partitions within the physical volume,
and the user must move the partitions to other disks in the volume group.

5.6.4 Big VG Limitations
The following list are the limitations of a big VG:

« A big VG is not enabled for concurrent access. This is posed by the
communication path used by the concurrent logical volumes. It will be
prohibitively slower for the big VG to communicate across nodes due to an
increase in the number of disks.

¢ The rootvg cannot be converted to the big VG format.

« A big VG cannot be imported or activated on pre-AlX 4.3.2 levels.

5.7 Concurrent Online Mirror Backup and Special File Support (4.3.2)

AIX 4.3.1 provided support for an on line backup mechanism for a mirrored
raw logical volume. But it lacked support for file system access and restricts
concurrent mode access for the volume group.

AIX 4.3.2 enhances the capabilities of the online backup in AIX 4.3 to
support:

e Concurrent mode volume groups

¢ Filesystem and database access
Note that file system access does not mean JFS access. This enhancement

to the LVM still requires additional steps (such as unmounting a file system)
to prevent data loss.

This new feature is used for HACMP concurrent mode (mode 3). While in
concurrent mode, you can designate a mirror copy in a VG as a backup copy
to archive the data on the raw logical volume without affecting the other
mirror copies. It improves the system availability to end users.

Logical Volume Manager Enhancements 183

2014filesys.fm

Draft Document for Review October 25, 1999 10:24 pm

Use a second LV and special device to allow access to the backup mirror
copy. All I/O and ioctls coming to this second LV would be routed to the actual
logical volume to be serviced. A number of changes were made to VGDA to
support this new type of LV.

If the LV contains a file system, there will be two serial writes to support the
new mount point. In order to support this function, there are updates to the
LVCB and the superblock of the new file system.

5.7.1 Limitations

Following are some limitations:

« The original logical volume cannot be removed while the on line backup
copy exists. No changes are allowed to the original logical volume
structure, or attributes, while the on line backup exists. But you still can
make changes to the file system mounted over the logical volume.

« All partitions of a logical volume must be fresh before you mark a mirror
copy as an on line backup. Only one copy may be designated as an on
line backup copy.

¢ This function is currently documented only in the man pages. Use at your
own risk.

5.7.2 Commands Changed

Using the chl vcopy command, you can mark, or unmark, a mirror copy as an
on line backup copy and change the backup mirror copy characteristics for a
logical volume.

The syntax is:

chivcopy -B| { -b[-ccopy] [-f] [-P] [-I newvnane] [-w] } LV
name

184 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:24 pm 2014filesys.fm

— Note

Although the chl vcopy command can mark online backup copies on logical
volumes that are open (including logical volumes containing mounted file
systems), this is not recommended unless the application is at a known
state at the time the copy is marked as a backup. The backup copy is
internally consistent at the time the chl vcopy command is run, but
consistency is lost between the logical volume and the backup copy if the
logical volume is accessed by multiple processes simultaneously, and the
application is not at a known state. When marking an open logical volume,
data may be lost or corrupted. Logical volumes should be closed before
marking on line backup copies in order to avoid a potential corruption
window.

The -P, -I, and -w are new options for AlX 4.3.2.

If the persistence flag -P is not set to prevent the loss of backup data, the
volume group should be set to not automatically varyon, and the -n flag
should be used with varyonvg to prevent stale partitions from being resynced.
If the persistence flag -P is set, the following applies: in the event of a crash
while an on line backup copy exists (or multiples exist), the existence of
copies is retained when the system is rebooted.

Use the -l or -P flag to prevent the volume group from being unstable on prior
releases of AlX.

Table 23 lists the new options of chl vcopy command in AlIX 4.3.2.

Table 23. New Options for chlvcopy Command in AlX 4.3

Flag Description

-P Maintains information about the existence of an online backup copy across
a reboot and also allows other nodes (in a concurrent mode environment)
to be aware of the existence of the online backup(s).

- New name of the backup logical volume. If one is not provided, one will be
created by the system.

-w Allow backup copy to be writable (default is to create the backup copy as
READ ONLY)

To create an on line backup, perform the following steps:
1. Unmount the file system from the mirrored LV

2. Execute chlvcopy -b -c¢ <#> -| <newlvname> <original_lvname>

Logical Volume Manager Enhancements 185

2014filesys.fm

Draft Document for Review October 25, 1999 10:24 pm

Remount the original file system
Execute mount -o ro /dev/<newlvname> /<backupfs>
Backup the backupfs

Execute unmount /<backupfs>

N o g ks~ o

Execute chlvcopy -B original_lvhame

In general, use chl vcopy the same as you would spl i t | vcopy.

5.8 Online JFS Backup (4.3.3)

Making an online backup of a mounted JFS file system creates a snapshot of
the logical volume that contains the file system while applications are still
using the file system. Be aware, though, that since the file writes are
asynchronous, the snapshot may not contain all data that was written
immediately before the snapshot is taken. Modifications that start after the
shapshot begins may not be present in the backup copy. Therefore, it is
recommended that file system activity be minimal while the split is taking
place.

5.8.1 Split Off a Mirrored Copy

In order to make an online backup of a mounted file system, the logical
volume that the file system resides on must be mirrored. The JFS log logical
volume for the file system must also be mirrored. The number of copies of the
jfs log must be equal to the number of copies of the file systems’s logical
volume.

To split off the mirrored copy of the file system, use the chfs command and
you can control which copy is used as the backup by using the copy attribute.
The second copy is the default if a copy value is not specified.

The following example shows a copy of the file system /testfs split off. The
example assumes that there are three copies of the file system and three
copies of the JFS log, as you can verify using:

Isvg -1 testvg

testvg:

LV NAMVE TYPE LPs PPs PVs LV STATE MOUNT PQA NT
| ogl vOO j fslog 1 3 3 open/ syncd N A

| vOO jfs 10 30 3 open/ syncd /testfs

Issuing the chf s command you can use the third copy of /testfs to produce a
new /backup file system:

186 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:24 pm 2014filesys.fm

chfs -a splitcopy=/backup -a copy=3 /testfs

Once this command completes successfully, a copy of the file system is
available read-only in /backup. Remember that additional changes made to
the original file system after the copy is split off are not reflected in the
backup copy.

— Note

Splitting a mirrored copy of a file systems means that one copy is
temporary dedicated to backup activities and is not available to provide
data availability. It is recommended that you have three mirrored copies of
the file system so you can recover a disk problem before the backup copy
has been reintegrated on the file system.

The /backup file system has been created pointing to the third copy of the
original file system. If you issue again the | svg command you can see what
has changed:

lsvg -1 testvg

testvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT PO NT
| ogl vOO jfslog 1 3 3 open/ syncd N A

1 v0O jfs 10 30 3 open/ stal e /testfs

1 vOOcopy00 jfs 0 0 0 open??????? [backup

The /testfs file system is still made by a logical volume with three copies, but
now it has stale partitions, since one copy is no longer kept in sync with the
other and is made available for read-only access through the /backup mount
point. Note the new IvOOcopy0O logical volume: it is in an open state, it cannot
be in sync or in stale so that is why there are the question marks, and no
logical partitions are assigned to it since it only points to a specific copy of
Iv0O.

The /backup file system has been mounted and is available to use. If you
issue the nount command you can see it mounted with read-only permissions
and without any JFS log.

nount
node nount ed nount ed over vfs date options

/ dev/ hd4 / jfs Jul 29 16:15 rw, | og=/ dev/ hd8

/ dev/ hd2 [l usr jfs Jul 29 16: 15 rw, | og=/ dev/ hd8

/ dev/ hd9var [var jfs Jul 29 16: 15 rw, | og=/ dev/ hd8

/ dev/ hd3 /tmp jfs Jul 29 16: 15 rw, | og=/ dev/ hd8

/ dev/ hdl / hone jfs Jul 29 16:16 rw, | og=/ dev/ hd8

/ dev/1v00 /testfs jfs Jul 29 16: 35 rw, | og=/dev/| ogl vOO
/ dev/ | vOOcopy00 /backup jfs Jul 29 16:40 ro

Logical Volume Manager Enhancements 187

2014filesys.fm

Draft Document for Review October 25, 1999 10:24 pm

Now it is possible to read the data in /backup.

When a copy of a file system is split off, some activity is made on the jfslog in
order to keep consistent the structure of the original file system and the
read-only copy. During such operation no other splitting must be done on file
systems that use the same jfslog. They must be delayed until the previous
split is finished.

For example, consider the case of two file systems, /team1 and /team2, that
use the same jfslog. If you want to make a online backup of both on the same
tape drive, you have to split first /team1, wait for the read-only copy to be
available and then you may split /team2. Finally you can do the backup. If, for
some reason, you split both file systems in the same moment, one split will
succeed and the other will fail.

5.8.2 Reintegrate a Mirrored Backup Copy

Once a backup has been made, the copy can be reintegrated as a mirrored
copy unmounting the backup file system and using the rnis command. All the
mirrored copies are put in sync automatically.

To restore the copy used in the previous section, you can simply execute the
following commands:

urmount / backup

rnfs [backup

rmv: Logical vol ume | vOOcopyQO is renoved.
Isvg -1 testvg

testvg:

LV NAME TYPE LPs PPs PVs LV STATE MOUNT PA NT
| ogl vOO jfslog 1 3 3 open/ syncd N A

I vOO jfs 10 30 3 open/ syncd /testfs

5.9 Mirroring and Striping Support (4.3.3)

Starting from AlIX 4.3.3 it is possible to create logical volumes that are both
mirrored and striped, providing RAID 0+1 capability. Performance
improvement of striping technique can be combined with the availability
provided by mirroring. A typical example is given in Figure 9 on page 189,
where a logical volume is striped on three disks and it also have another copy
on other three disks.

188 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:24 pm 2014filesys.fm

Stripe units of copy #1

Ld
_——
ONE single / . ’

logical volume

Physical partition
copies

Stripe units of copy #2

Figure 9. Mirrored and Striped Logical Volume

If no mirror is present, a failure on one disk causes all the striped logical
volume content to be unavailable. Introducing the second (or third) copy of
the logical volume, the failure of a disk does not affect access to data as long
as there is one available copy of data on another disk.

Since this is a new feature of AlX 4.3.3, the volume group in which a mirrored
and striped logical volume is created cannot be imported by any other
machines running previous version of AlX. When you create such logical
volume, a warning message is prompted and you are requested to confirm
your choice.

From an administrator point of view, very few changes have been made to
LVM command interface in order to make mirror and striping available on the
same logical volume. Logical volumes are created like in previous releases
but copies may be specified, added, and removed when the logical volume is
striped.

A new concept of allocation policy is added to LVM. Since striped logical
volumes are very sensitive to the loss of a disk, it is important to force them to
have mirrored copies to different physical volumes and not to have partitions
allocated for one copy on the same physical volume with the partitions from
another copy.

This new allocation policy is called super strict. It is mandatory for striped and
mirrored logical volumes, but it can be chosen also for other logical volume
types. Every LVM command that have the -s flag to define the allocation
policy now may have one of the following values:

Logical Volume Manager Enhancements 189

2014filesys.fm Draft Document for Review October 25, 1999 10:24 pm

-sy Strict allocation policy: copies for a logical partition cannot share the
same physical volume.

-sn No allocation policy: copies for a logical partition can share the same
physical volume.

-ss Super strict allocation policy: the partitions allocated for one mirror
cannot share a physical volume with the partitions from another
mirror.

You can either create a new striped and mirrored logical volume with a single
command or create first a striped logical volume and then you create the
copies.

— Note

If you create a striped logical volume with SMIT or Web-Based System
Manager, the administration tool ensures that the super strictness policy is
applied. On the other hand, if you use nkl vcopy to create the mirrored
copies, you must remember to use the -s s option to have super strictness
policy. If you do not specify the policy the copies will be created but without
the correct policy and you may loose data in case of disk failure.

Web-Based System Manager has been also modified in order to make user
create mirrored and striped logical volumes. An example of a Web-Based
System Manager panel is in Figure 10 on page 191.

190 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:24 pm 2014filesys.fm

Add Logical Yolume : rootmaster

databasel
—
Hournaled File System (JFS r

Figure 10. Logical volume creation with Web-Based System Manager

In order to replace a failed disk that contains a striped and mirrored logical
volume, you should use the repl acepv command. If your failed disk is, for
example hdisk5 and you have a spare disk hdisk20, you must first be sure
that hdisk20 does not belong to any volume group, then you can issue the
following command:

repl acepv hdi sk5 hdi sk20

Logical Volume Manager Enhancements 191

2014filesys.fm Draft Document for Review October 25, 1999 10:24 pm

192 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

Chapter 6. System Management and Utilities

Web-Based System Manager is an AlX system administration tool for
administering an AlX host locally or over the Internet. Web-Based System
Manager is the next step in the evolution of AlX system administration tools.
This evolution has included System Management Interface tool (SMIT), Motif
SMIT, Distributed SMIT, and Visual System Manager (VSM). SMIT and VSM
have been major contributors to customer satisfaction regarding AIX system
management and usability. It is an objective for Web-Based System Manager
to encompass the system administration capabilities and surpass the
usability of these predecessors.

The objectives of Web-Based System Manager are:
e Simplification of AIX administration by a single new interface.
« Enable AIX systems to be administered from almost any client platform.

« Enable AIX systems to be administered remotely.

e Provide an administrative environment that exploits the similarities of the
Windows 95/NT and AIX CDE desktop environments so that users of the
system will find a large degree of look and feel consistency between
Web-Based System Manager and these two primary desktop
environments.

Web-Based System Manager provides a comprehensive system
management environment and covers most of the tasks in the SMIT user
interface.

Note: SMIT continues to fulfill the need for system administration from an
ASCII terminal.

6.1 Overview of Existing AIX Systems Management

Since the introduction of AlX Version 3.1 there have been a number of system
management tools available to help system administrators manage their
installations. These include SMIT, DSMIT, and VSM.

6.1.1 SMIT Overview

SMIT was introduced in AIX Version 3.1. It provides a menu-driven interface
for approximately 160 local system management tasks. In SMIT, the user is
guided by a series of interactive menus and dialogs that automatically build,
execute, and log commands required to accomplish selected operations.
SMIT eliminates the need to know, or learn, command-level syntax for system

© Copyright IBM Corp. 1999 193

2014sysmanage.fm

194

management tasks. SMIT is easily extendable, and many LPPs and
customers have added their own SMIT menus and dialogs.

Figure 11 shows the default SMIT menu, as seen on an X-based display.

Draft Document for Review October 25, 1999 10:31 pm

= [

System Management

Move cursor to desired item and press Enter.

e Installation and Main
re License Management
Devices
System Storage Management (Physical & Logical Storage)
Security & Users
Communications applications and Services
Print Spoocling
Problem Determination
Performance & Resource Scheduling
System Environments
Processes & Subsystems
Zpplicaticons
Using BMIT (information only)

1Fl=Help F2=Refresh F3i=Cancel Fi=Image
F9=thell Fl0=Exit Enter=Do

Figure 11. Default SMIT Menu

SMIT provides a character-based interface and a graphical interface. The
character-based interface, ASCIl SMIT (as shown in Figure 11), can be run
on a TTY terminal, while the graphical interface, Motif SMIT (as shown in
Figure 12), requires an X Windows compatible graphical display. Motif SMIT
provides a point and click interface to the SMIT menus.

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

System Management Interface Tool : ro

Exit Show

N
o
o
o
o
o
o
o
o
o
o
o
o

Figure 12. Default Motif SMIT Menu

6.1.2 DSMIT Overview

DSMIT (Distributed SMIT) makes the function of SMIT available in a
distributed systems environment. DSMIT allows the administrator to perform
SMIT tasks across multiple systems simultaneously from a single point of
control. Concurrent and sequential modes of execution are supported. DSMIT
provides both the ASCII and graphical user interfaces of SMIT.

DSMIT is a Licensed Program Product (LPP) originally introduced on AIX
3.2.5 and later enhanced and released for AIX V4. In the most recent version,
Version 2.2, DSMIT provides an ongoing secure operation including the
secure modification of the security configuration and updates of passwords
and keys. DSMIT security is based on well established cryptographic routines
and DSMIT-specific (modeled after Kerberos 5) communication protocols.
DSMIT security features include integrated sign on, authentication, data
integrity, data confidentiality, and logging.

System Management and Utilites 195

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

Like SMIT, the DSMIT menus and dialogs are easily extendable.
Furthermore, DSMIT provides a command line interface that allows the user
to run commands, scripts, and programs of their choice on distributed
systems. The command line interface allows the user to exploit the capability
of DSMIT beyond the provided menus and dialogs without adding additional
menus or dialogs. The command line interface also supports interactive
commands in the sequential mode of execution. For example, you can run ksh
and perform interactive tasks over the secure DSMIT connection.

DSMIT also extends the function of SMIT to heterogeneous systems, with
agents available for managing SunOS 4.1.3, Solaris 2.3, and HP-UX 9.0,
although the DSMIT agents have not remained current with new releases of
Solaris and HP-UX.

6.1.3 VSM Overview

VSM (Visual System Manager) is a graphical user interface that enables you
to perform system management tasks through the direct manipulation of
objects (icons). Due to VSMs drag and drop graphical interface, you do not
need to have a complete understanding of the AIX commands.

VSM was originally introduced as part of AlX 3.2.5 and was enhanced on AlX
Version 4. VSM is composed of independent application programs that
currently include:

« Device Manager

¢ Print Manager

e Storage Manager (as shown in Figure 13)
e Users and Groups Manager

« Install and Update Software Manager
» Set Date and Time

» Schedule a Job

* Remove or View Scheduled Jobs

¢ Maintain Installed Software

¢ RAID Device Manager

* NIM Install Manager

Figure 13 shows a sample VSM dialog.

196 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

Figure 13. Sample VSM Storage Manager

6.2 Web-Based System Manager Architecture

Web-Based System Manager enables a system administrator to manage an
AIX machine either locally from a graphics terminal or remotely from a PC or
RS/6000 client. Information is entered through the use of GUI components on
the client side. The information is then sent over the network to the
Web-Based System Manager server, which runs the commands necessary to
perform the required action.

Web-Based System Manager is implemented using the Java programming
language. The implementation of Web-Based System Manager in Java
provides:

¢ Cross-platform portability. Any client platform with a Java 1.1-enabled
Web browser is able to run a Web-Based System Manager client object.

System Management and Utilites 197

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

« Remote administration. A Web-Based System Manager client is able to
administer an AIX machine remotely through the Internet.

* A richer and more flexible GUI environment than is available with either
HTML forms or Java Script.

Java programs can be delivered as applets that require a Web browser to
download the executable code or as stand-alone applications that are stored
locally and run independently of a browser or viewer.

Web-Based System Manager has been packaged in a browser-based applet
mode, and for local execution, an application mode has been implemented.
The application mode uses the AlIX Java Virtual-Machine that, in turn,
executes the Java applications as threads on the system.

Note: When referring to Java applications, the term application is used
differently than the conventional use of application as in word processing
application or in the discussion on application-oriented user interfaces below.
Java application refers to the manner in which Java code is invoked.

6.2.1 Web-Based System Manager Components

198

Web-Based System Manager includes the following components:
e Backups
» Devices
* File Systems
* Network (interfaces for configuring network communications)
¢ Printer Queues
* Processes
» Registered Applications

e Software (installable software, software installed, and objects related to
installation)

¢ Subsystems

« System (user interface, console, date/time, language, OS characteristics,
system logs, and dump devices)

e Users

* Volumes

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

6.2.2 Web-Based System Manager User Interface

The Web-Based System Manager user interface is an Object-Oriented User
Interface (OOUI). OOUIs are distinguished from traditional,
application-oriented user interfaces, in that the user focuses on readily
identifiable things on which the user works. In an application-oriented
environment, the user focuses on a tool for manipulating the work. Some
examples may clarify the distinction. In a document processing context with
an application-oriented interface, the user focuses on the tool (a word
processing program). While in OOUI, the user focuses on the object of the
task itself (the document). In a system management context, an
application-oriented interface would require the user to learn management
tools (for example, a Print Manager application), while an OOUI would enable
the user to directly manipulate a representation of the managed object (for
example, a printer or group of printers).

In the evolution of AIX system management user interfaces, SMIT was an
application-oriented interface, and VSM was a mixed
application/object-oriented interface. Web-Based System Manager is
intended to significantly increase the object-orientation of system
management of AlX.

The reasons for this approach, as opposed to an application-oriented user
interface are:

« By focusing on objects rather than tools for manipulating objects, OOUIs
are more direct and require less learning than application-oriented GUI's.

¢ OOUls (especially if implemented using object-oriented programming
techniques) have a more consistent user interface than
application-oriented interfaces, further reducing the amount of learning
required by the user.

¢ OOUls follow the current trends in user interface development. User
interface styles such as CDE, OS/2, and Windows reflect a trend of
increasing object-orientation.

6.2.3 Web-Based System Manager Launch Interfaces

Web-Based System Manager has been implemented in a modular fashion so
that it can be accessed from a variety of launch points. Some launch points
are:

* A Web-Based System Manager launch page running inside a
Java-enabled browser.

System Management and Utilities 199

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

200

« A Web-Based System Manager application icon in the CDE application
manager.

The launch pad icon in the CDE Application Manager loads the Web-Based
System Manager environment with launch icons for all of the Web-Based
System Manager applications. Multiple applications can be started without
the need to restart the Web-Based System Manager environment each time.

The remote launch pad icon in the CDE application manager enables the
administrator to login to another AIX 4.3 host and manage it with Web-Based
System Manager.

The command line allows Web-Based System Manager to be in X Windows
from an aixterm window or in the CDE desktop from a dtterm window.

When an applet is invoked from a Web-Based System Manager launch
interface it appears as a Java frame (essentially a child widow) above the
launch interface. Additional dialogs are always opened as child windows. The
initial Web-Based System Manager frame appears in Figure 14.

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

.‘:I.‘ v

Backups Devices File Systems

@ 'ﬂ.
Yolumes Frinter Glueues FProcesses

m .
=
Users Subsystems Registerad

applications

1172 Chjects 0 Hidden | i

Figure 14. Web-Based System Manager Launch Interface

6.2.4 Web-Based System Manager User Interface Objects

Many system administration and configuration tasks are performed by
interacting with simple objects. Simple objects represent individual managed
objects that cannot be further decomposed into a collection of objects.

Each instance of a simple object in the system is represented as anicon in a
container’s view area. Double-clicking on a simple object opens the object so
that administrative tasks may be performed. The Web-Based System
Manager user interface consists of the following hierarchy of objects:

Container Objects
Container objects include other container objects and simple objects
representing elements of system resources to be configured and
managed.

System Management and Utilities 201

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

202

Objects
Objects include the following user interface classes:

Property Notebook Objects
Property notebooks (tabbed dialogs) are used for displaying and
changing settings associated with a managed resource or container.
Property notebooks are useful because they can organize a large
collection of system settings into individual pages. They are used in
Web-Based System Manager for viewing configuration settings and
for configuration change tasks in which there is no predefined order of
steps for the user to perform.

TaskGuide Objects
TaskGuides are dialogs designed to assist the user in performing
complex tasks. Unlike property dialogs, TaskGuides lead the user
through a task in an ordered series of steps.

6.2.4.1 Container Objects

Simple objects are viewed and manipulated in container objects. Containers
consist of a view area, objects within the view, and a group of actions. Actions
apply to the container view area and individual objects in the view area.

Web-Based System Manager containers are specialized, that is, each type of
Web-Based System Manager simple object (for example, user) is viewed
within its own container type (for example, the Users container). The
classification of containers provides rules for actions to be applied to included
objects and any specialized views of objects within the container type.

Containers are viewed and manipulated in their own primary windows.
Container windows perform the functions of CDE and Windows NT file
manager folders. All the container windows support the following behaviors:

Open Iconized containers may be opened to reveal their contents.

Close Containers may be closed, returning control to the parent
container (or in the case of the top-level container, exiting
the application).

Find Find an object by specifying its name.

Reload Now Rediscover the objects and their current states.
Stop Loading Halt the loading, or reloading, of a container.
Select All Select all objects in a container.

Deselect All Remove selection from all objects in a container.

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

Scroll When containers are sized such that their entire contents
cannot be shown, they can be scrolled up/down and
right/left.

6.2.4.2 Open Action
Opening a container causes the container view area to be populated with
objects.

6.2.4.3 TaskGuides

TaskGuides are the IBM/Lotus equivalent of Wizards. Wizards are a Microsoft
tool for assisting users in performing complex tasks. They direct the user
through the task using questions, instructions, prompts, and controls specific
to each step in the task. TaskGuides are used for rarely-performed, and
otherwise complex, tasks, such as printer and queue configuration, installing
software, and so forth.

Further information on the use and requirements for TaskGuides may be
found in the User Assistance section below.

6.2.4.4 Generic Dialogs
Generic dialogs are used to represent objects where notebook or TaskGuide
functions are not necessary.

6.2.5 User Interface Elements

The user interface elements of the Web-Based System Manager container
are described in the following sections:

Note: The figures are provided as an example to illustrate the user interface
elements. The rendering of details of the title bar, menu bar, and so on, vary
depending upon the client system on which the applet is running (Figure 15).

System Management and Utilities 203

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

204

133 Objects 0 Hidden | I

el T8 &
|Description

® K
TazkGuide for assistance in adding new user V

TaskiGuide for assistance in adding new group

g Set Up Disk Guotas TaskiGuide for assistance in configuring disk quotas

'@I system
ﬂ staff
gl hin
=
gl adm
B wer
gl tail

Figure 15. Web-Based System Manager User Menu

The menu bar may be shown or hidden at the user’s option. A hidden menu
bar may be retrieved through a pop-up menu on the main view area
background.

The following menu items are meant to reflect actions that are common
across most Web-Based System Managers containers. Additional choices
are included for functions that have specific object types.

6.2.5.1 Menu

The object menu contains actions that globally apply to the current container.
In each container type, the object menu is titled with the name of the type of
object included in the menu. For example, in the users container the object
menu is titled User, in the printer’s container, the menu is titled Printer, and so
on. The basic object menu choices are:

New Create a new instance of the object type contained in current window.
This action is equivalent to opening the default template object for the
container.

Switch Administrator (applet and remote mode only)
Switch to another user. A dialog box is opened for logging in as

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

another user. Following authentication, the new user’s administrative
rights are used for actions on the contents of the current container.

Find Opens a search dialog for locating objects. The result of the find
action is displayed by providing selection emphasis for visible objects
matched in the view area and scrolling the view area to the first object
found.

The find dialog also includes a list area for displaying the objects
found (because some may not be visible since they are nested in
subcontainers) and provide a method of saving the results in a new
subcontainer.

Close Close the container window.

Exit Exit Web-Based System Manager. An exit menu choice is present on
all Web-Based System Manager containers. When Exit is selected
from secondary containers, it generates a confirmation dialog,
otherwise, Web-Based System Manager exits.

6.2.5.2 Selected Menu

The selected menu contains actions that are applied against one or more
selected objects in the view area. The contents of the Selected menu will
differ depending on the type of object container. The selected menu lists only
these actions that apply to an object or the set of objects selected. Actions for
an object that are temporarily unavailable (for example, start when the object
has already been started) are dimmed.

Note: The pop-up menu for an object in the view area is roughly equivalent to
the selected menu. Additionally, the enabled/disabled menu choices for a
pop-up menu on a given object will be equivalent to the enabled/disabled
menu choices on the selected menu when the same object has selection
emphasis.

Figure 16 shows an example of the Web-Based System Manager Selected
menu.

System Management and Utilities 205

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

Mame Drescription

S
4]
$ B TaskGuide for assistance in adding new user V

@) TaskGuide for assistance in adding new group

$ Set Up Disk Guotas TaskGuide for assistance in configuring disk quotas

r@l system
ﬂ staff
) pin
@
@l adm
B vucr
g’ mail

133 Objects 0 Hidden I I |

Figure 16. Web-Based System Manager Selected Menu

The basic Selected menu choices are:

Open Opens a selected container or TaskGuide.

Properties Opens a properties notebook dialog for the selected object.
Delete Deletes the selected objects.

Select all Selects all of the objects in the container.

Deselect all Deselects all of the objects in the container.

6.2.5.3 View Menu

The view menu contains options that change the way objects are presented
in the view area. The view menu is shown in Figure 17.

206 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

- RE]
Mame IE
$ Al Mew Us assistance in adding new user V

d%
-
oI
ELEL

$ Add New Gre 2 assistance in adding new group

o
@ Set Up Disk assistance in configuring disk quotas

@' system
[ﬂ' staff
@f] hin
Q-
g‘] adm
B wor
g‘_] mail

133 Objects 0 Hidden | |

Figure 17. Web-Based System Manager View Menu

The View menu choices are:

Reload Now
Updates the view area with the latest data from the target system.
This is analogous to the Netscape Reload function.

Stop Loading
Halts an update of the view.

Open New Window
Opens another instance of the current container window. This is
equivalent to the Netscape New Web Browser action and the CDE file
manager Open New View action.

Large/Small Icons
Selects either small or large icons for the display.

Icon View
Displays icons in a grid arrangement.

Tree
Changes the presentation of icons to tree view.

System Management and Utilities 207

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

Details
Changes the presentation to a tabular view that displays small icons
in the first column, object names in the second column, and other
relevant properties in one or more additional columns (for example,
object description, status, and so on). The exact information displayed
in the details view will vary depending upon the application.

Tree Details
Changes the presentation of icons to a tree that also lists properties of

each node.

Filter
Opens a dialog box for filtering objects based on user-specified
criteria. (Filter is available only in icon and detail views).

Sort

Open a dialog box for sorting the objects based on user-specified
criteria. (Filter is available only in icon and detail views).

6.2.5.4 Options Menu

The Options menu contains choices that specify the inclusion, or exclusion, of
main user interface elements in the primary window, such as tool bar, status
line, and so on. These menu items are selected by a check box for each
menu choice, as shown in Figure 18.

208 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

= |1

; " = - for?
P SERT K : ®
Mame |E
$ Add Mew User TaskGuide for assistance in adding new user
@ Add Mew Group TaskGuide for assistance in adding new group
$ Set Up Disk Guotas TaskGuide for assistance in configuring disk guotas

g] system
ﬂ staff
) pin
@
@] adm
B vucr
g’ mail

133 Oiects 0 Hidden I |

Figure 18. Web-Based System Manager Options Menu

The Options menu choices are:

Show Menu Bar (check box)
Default position is checked. Unchecking removes the menu bar from the
window. The menu bar is restored through a pop-up menu choice on the
view area background.

Show Tool Bar (check box)
Default position is checked. Unchecking removes the tool bar from the
window and subsequent subcontainers windows.

Show Status Line (check box)
Default position is checked. Unchecking removes the status line from the
container and subsequent containers.

6.2.5.5 Help Menu
See Section 6.2.7.2, “Container Help Menu Contents” on page 214.

6.2.5.6 Pop-Up (Context) Menus
Pop-up menus are available for each object in a view area. When the cursor
is positioned over an object, the Selected menu for that object is presented in

System Management and Utilities 209

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

210

a pop-up menu. When the cursor is over the main view area background, the
pop-up menu contains the Options menu contents.

When a group of dissimilar objects is selected, the pop-up menu for the
collection reflects only the actions that are applicable to all of the collection.

6.2.5.7 Dynamic Status Icon
A dynamic status icon is used to indicate the status of:

« Communications

« Processing on the target system

6.2.5.8 Tool Bar
Frequently used actions are represented on a tool bar. The tool bar can be
displayed, or hidden, at the user's option.

The contents of the tool bar consists of some icons common to all containers
(for example, Reload Now, Stop Loading, View Type) and other icons unique
to specific container types. For example, the Users container includes a
Change Password icon.

6.2.5.9 Main View Area

The main view area displays the objects and containers within the current
container.

6.2.5.10 Command Buttons
The following command buttons are included on the background panel of the
dialog. They are:

OK Applies all of the parameters specified on each of the tab pages
visited and closes the dialog box.

Apply Applies all of the parameters specified on each of the tab pages
visited and leaves the dialog box open.

Cancel Closes the dialog box without applying any parameters.

Help Launches a help window for the tab page currently visible.

6.2.5.11 Status Line

The status line is used to display current status information about the
container. The status line may be shown, or hidden, at the user's option.
Examples of information displayed in the status line are: number of objects
shown in the view area, number of objects hidden, and loading status.

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

6.2.5.12 Container Views

Container views present a variety of representations of a group of objects that
can be altered according to user needs or preferences. Many containers are
able to present more than one view. Because different view types may be
more or less appropriate for different object types, there is no one default
view for all object containers.

Examples of standard views are listed in the following:

Icon Icon view arranges icons for managed objects in a grid. This view
is useful for displaying a large number of objects in a small area
(Figure 19).

= BE

Set Up Disk
Quotas

seuriw
R @ 0
printg nlﬁbody ust pérr
-] I

133 objects 0 Hidden I I

Figure 19. Web-Based System Manager Icon View

Details The icons in the view are displayed in a grid or table with the
object icons, or names, in the columns on the far-left and
additional property information in the remaining columns. See
Figure 20 for an example of the details view for system devices.

System Management and Utilities 211

2014sysmanage.fm

212

Draft Document for Review October 25, 1999 10:31 pm

.| - I|
Description REDE |status |Change Status |Parent [A]
= System Chject (sys0) sysl Available Mot spplicable
System Planar (sysplanard) sysplanard Available sy:0
% FCIBus (poild) pcil Available Same sysplana
% PCIBus {pcil) peil available Same sysplana
% PCI Bus (pei) pci Available Same sysplana
% FCI Bus (pcid) pcid available Same sysplana
% |58 Bus (isal) izal Available Same peil
Standard Y0 Serial Port (sal) sal Available isal
. standard 170 Serial Port (sa1) sal Available isal
1|63 Objects 0 Hidden | I

Figure 20. Web-Based System Manager Details View

Tree A tree view displays a hierarchical relationship with parent and
child nodes. The tree view is useful for displaying users and
groups, printers and queues, bundles and file sets, and devices.
See Figure 21 for an example of a tree view for system devices.

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

System Chject (sys)

System Planar (sysplanard)

Elﬁ FCI Bus (pcil

Ew\:S 154 Bus (isal)
g Standard 10 Serial Port (sa0)

sgynchronous Terminal (ttyd)
Standard VO Serial Port (sa1)

Keyboard/Mouse Adapter (siokmad)

Keyhaard adapter (siokal)

% touse Adapter (siomal)
1 | |

Figure 21. Web-Based System Manager Tree View

Note: The Web-Based System Manager Ul architecture includes
single-rooted and multiple-rooted tree views and trees of an arbitrary number
of levels.

6.2.6 Message Boxes

Where it is necessary to alert the user to various conditions, a message box
is used for the following purposes:

¢ Informational messages
« Warning messages
« Critical conditions

¢ Confirmation prompts

6.2.7 User Assistance

User assistance includes online information designed to aid users in
performing unfamiliar tasks. Web-Based System Manager user assistance
includes: online books, help, TaskGuides, hover help, and context help.
These are described below.

System Management and Utilities 213

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

214

6.2.7.1 Help

General help for each Web-Based System Manager application is provided
through a container-level help for that application. The general help also
contains an overview section common to all Web-Based System Manager
applications.

All help text is written in HTML and is accessed through the Web browser on
the client system.

6.2.7.2 Container Help Menu Contents
Container help menu choices are provided for the following:

« Contents (contents of extended or reference help)

What's this? (places the application in context-sensitive help mode)
« Search for help on topic (Web page for accessing the help search engine)

* How to use Help

About Web-Based System Manager (product information)

6.2.7.3 Context Sensitive Helps

Context-sensitive help is provided in a child window that pops up above the
user interface element for which help is requested. It is available when the
user:

e Selects What's this? from the application help menu. This enters
context-sensitive help mode.

e Clicks on a tool bar icon containing a question mark to get help on the
contents of a window.

« Presses the help button on a dialog.

Context-sensitive help is available for:
¢ Fields with a dialog

¢ Objects in a view area

6.2.7.4 Hover Help
Web-Based System Manager displays hover help when the user pauses the
mouse pointer over a tool bar icon.

6.2.7.5 Online Books
Web-Based System Manager users have access to the complete AIX online
documentation library through hypertext links in extended help.

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

6.2.8 Navigation

Although the usual method of navigation through Web-Based System
Manager is by use of a mouse, it also possible through the keyboard.

6.2.8.1 Keyboard Navigation

To meet the needs of a wide range of users of different abilities and skills,
Web-Based System Manager supports keyboard navigation. Specific key
assignments for keyboard navigation are similar to Windows and Netscape
Navigator.

The following keyboard navigation methods are supported:

Focus Traversal
Tab and Shift-Tab are used to move forward and backward among
controls.

Menu Shortcuts
Short cuts (or accelerators) are keyboard equivalents for menu
commands that are executed by key combinations (such as
CTRL-F for Find).

6.2.8.2 Mouse Model
For a three-button mouse, the mouse button functions are:

e Button 1 - select, drag, activate.

e Button 3 - context (pop-up) menu

For a two button mouse, the mouse button functions are:
e Button 1 - select, drag, activate

* Button 2 - context menu

A single-click of button 1 is used for selecting icons and activating button
controls.

A double-click of button 1 activates view area icons with their default
behaviors. For container objects, the default behavior is to
open-contents-view. For simple objects (that is, without contents), the default
behavior is open-properties-dialog. For objects that have both properties and
contents (for example, UNIX groups), the double-click action is to
open-contents-view. Pop-up and Selected menu choices (Open=contents,
Properties=properties dialog) for each action are provided.

System Management and Utilities 215

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

6.2.9 Selection and Multiple Selection

A single selection defines to which object the actions in the selected menu, or
pop-up menu, apply. Specific actions are enabled, or disabled, depending
upon the type of object selected. A single-click of button 1 is used to select an
object.

A multiple selection is enabled for various types of objects and actions.
Specific actions in the selected and pop-up menu will be enabled or disabled
depending upon whether or not multiple selection is allowed for the collection
of objects selected. The menu choices enabled are the intersection of the
enabled states of the objects in the selected collection.

Most standard multiple selection interaction techniques are supported,
including range selection, use of Ctrl-Select to modify a selection, and use of
shift-select to select a contiguous range of objects.

6.3 Web-Based System Manager Enhancements (4.3.1)

Web-Based System Manager was introduced with AlX version 4.3.0 as a
technology evaluation release. It did not provide all of the function required
for system management but was intended to demonstrate to customers the
direction of system management products.

The version of Web-Based System Manager shipped with AIX version 4.3.1
contained significant performance enhancements over the previous release.
The improvements were mostly due to improvements in the underlying Java
run time system.

6.4 Web-Based System Manager Enhancements (4.3.2)

The following sections describe the enhancements to Web-Based System
Manager that were introduced by AlX version 4.3.2.

6.4.1 Security Enhancements

216

AlX 4.3.2 has enhanced the function of Web-Based System Manger to allow
remote administration sessions to be carried out using the Secure Socket
Layer (SSL) protocol. This allows all data transmitted on the network between
the Web-Based System Manager client and the machine being managed to
be encrypted and, therefore, prevent unauthorized systems from viewing the
data.

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

The software required to implement this function is included on the AIX Bonus
Pack that ships with AlIX 4.3.2. The required package is
sysmgt.websm.security. Users in the United States and Canada can
additionally install the package sysmgt.websm.security-us, which provides
stronger encryption facilities.

The configuration process for using the SSL protocol involves generating a
public and private key for each machine to be managed. The certificates can
be obtained from an external Certificate Authority or generated on a
designated Web-Based System Manager server for use in a private network.
The keys are installed on the machine being managed and, additionally, on
any AIX machines that will use the Web-Based System Manager client to
manage the machine in client/server mode. In this scenario, all
communication between the client and server takes place using the SSL
protocol.

In applet mode, where the Web-Based System Manager client is run in a
browser, the client is required to download the Web-Based System Manager
servers public key in order to verify the applet files that are being
downloaded. For maximum security, the client should connect to the server
using the HTTPS protocol.

The encryption facilities provided work in conjunction with a Web server that
uses SSL to support the HTTPS protocol. The Lotus Domino Go Web server,
that is also provided on the Bonus Pack can be configured to accept requests
using the HTTPS protocol, either in addition to, or instead of, the HTTP
protocol. Similarly, the Web-Based System Manager server running on the
managed machine can be configured to respond to HTTPS requests either in
addition to, or instead, of HTTP requests.

A client session with a server that has been configured with the optional
security is shown in Figure 22.

System Management and Utilities 217

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

= B
File Edit Wiew Go Window Help
1 € 2 3 @4 = & A
i Back Foryard Reload Home Search Metscape Frint Security Stap
|v| w" Bookmarks ‘& Location: https: //ravenmen f| @' ‘What’s Related
" [AIX+R3E000 ¢ WebMail ¢ People 4 Yellow Pages 4 Download ¢ MNew & Cool [Channels
@ 1BM Corporation
> mtroduction Web-based System Manager
I? Feedback
Enter your user nhame and password to logon.
[Questions
PEAQ
[AIX Support
> X Lib User Name: I
P Task Help Password:
W Enable Secure Communication (Required by Server) N
Log On | Reset |
a] [

Figure 22. Example of Secure Mode Connection Using HTTPS

The only visible differences when using the secure version are:

« The URL of the initial Web-Based System Manager login page specifies
the HTTPS protocol.

« The browser indicates that the Web page being viewed has been obtained
using a secure connection. The Netscape Navigator browser shipped on
the Bonus Pack indicates this with a locked padlock icon in the lower left
corner of the window.

* Web-Based System Manger child windows have the message Secure
Connection displayed in the status bar at the base of the window. See
Figure 23.

218 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

— =

-
gg fgallery
5% Mestfs
% fhackrs —

@ Metwork File System

| HSecure Connection “

[=] Unsigned Java Applet Window

Figure 23. Example of Container Window In Secure Mode

6.4.2 Diagnostics Enhancements

Web-Based System Manager has been enhanced to allow diagnostic and
service aid functions to be carried out on devices that support these actions.
The menu presented depends on the capabilities of the selected device. For
example, it is possible to perform format or certify operations on certain
models of disk drives, as shown in Figure 24.

It is also possible to perform Error Log Analysis when running diagnostics on
the selected device. The AIX error log can be searched for errors logged
against the selected device for errors between 1 and 60 days old.

If a device is marked with a warning triangle (containing an explanation
point), the Run Diagnostics selection can be used to determine what is wrong
with the device, or if it has just been removed from the system.

System Management and Utilities 219

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

D | ¥ = @7

1170 Contraller (scsi0)

GE 4mm Tape Crive (rmtd)

| Multimedia CD-ROM Drive (cd0)
" Run Diagno 3

Hapter (14104500) {ssall)

T

Elﬁ PCI Bus (pcid)

- fag) Wile SCSI KO Contraller (scsi1)

16 Bit SCS1 Disk Drive {hdisk0)

16 Bit SCS| Disk Drive (hdisk1)

SCSI Enclosure Services Device (se30)

SCEl Enclosure Services Device (ses1)

Figure 24. Example of Diagnostics Menu

Using the previous selections, the menu shown in Figure 25 is presented.
Here, you may select how the diagnostics are run.

220 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

Figure 25. Example of ELA Day Selection Menu

6.4.3 Registered Applications

This function allows a system administrator to register remote applications
with Web-Based System Manager. It only supports an application that can be
accessed using a URL. For example, it allows a system administrator to
register the Netfinity Manager application with Web-Based System Manager.
The dialog screen, shown in Figure 26, prompts the user to enter the URL to
start the application and shows a list of machines that have the application
installed.

System Management and Utilites 221

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

Fegistered Application Properties

Metfinity Manager

somesurlshere htm]

Ra_default

netfinity 3

Figure 26. Registered Applications Dialog Box

The registered application then appears on the Registered Applications
container as an icon, shown in Figure 27.

222 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm

NN Metfinity
Spplication hdanager

Figure 27. Registered Applications Container

Online Help

2014sysmanage.fm

When the icon is opened, the user is prompted to select the required target
machine if the application is registered with multiple machines. This is shown

in Figure 28. Web-Based System Manager then starts the Netscape Web

browser with an initial URL of the registered application on the target

machine.

System Management and Utilities

223

2014sysmanage.fm

E

Fegistered Applications : raven

Draft Document for Review October 25, 1999 10:31 pm

.

D

LRy

Bz
W=

Application

netiinity2
netfinity3

ok |

Cancel

[

3 Objects D HiddeH

Figure 28. Registered Application Host Selection Dialog

6.5 Web-Based System Manager Enhancements (4.3.3)

224

Following is the list of new enhancements on Web-Based System Manager

presented with AIX Version 4.3.3. The enhancements include both
enhancements to existing applications and new applications, namely:

* Volumes Application enhancements (5.9, “Mirroring and Striping Support
(4.3.3)” on page 188 for striping and mirroring, 6.5.1, “Volumes Application

Enhancements” on page 225 for large-disk VG and big VG support)

« File Systems Application enhancements (6.5.3, “File Systems Application

Enhancements” on page 226)

* Workload Management (7.9, “Web-Based System Manager Interface” on
page 356)

« NIS+ (6.5.2, “NIS+” on page 226)

* IPSec (8.3.3, “Web-Based System Manager Panel Enhancements” on
page 400)

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm

2014sysmanage.fm

¢ Quality of Service (8.24.4.1, “Web-Based System Manager Integration” on

page 482)

* SMB Server Release 2 (8.28.2, “AlX Fast Connect Release 2 New
Function” on page 490)

Also a lot of modifications have been done to existing applications. Most of

them are bug fixes and user interface changes for better look and feel.

See each section referenced for descriptions and GUI images of the
enhancements.

6.5.1 Volumes Application Enhancements

Volumes Application supports creating large-disk VG (VG that support more

than 1016 PPs per PV) and big VG (VG that has more than 32 PVs).

Figure 29 shows the configuration panel which is launched from
Volume->Add Volume Group->Advanced Method menu.

N New Yolume Group : 9.3.240.42 O] x|

The suggested padition size is based on the largest physical disk that you selected on the previous
panel. Maximum disk size and Approximate total volurme group capacity are estimates based on the
othervalues on this panel.

default settings allow, orto use a padition size smaller than the suggested value, select either ofthe
two checkboxes below,

Mote that checking either ot these options will create a volume group that cannot be imported into AKX
systems version 4.3.0 or lower.

FParition size (Megahytes): 3z -| MB

Maxirmum disk size: 08076 MB
(Parition size x maximum numhber of paritions)

Approxirate total volure group capacity: 4161536 MB
{Maxirmum disk size ¥ maximum number of disks)

|7 Create avolume group with mare than 1016 partitions per disk {in multiples of 1016)

|7 Create avolume group that can contain up to 128 physical disks

To create a volume droup that accommodates either larger disks or a larder number of disks than the

haxirnum Size Factor haxirnum
number of partitions numhber of disks
Fa024 | I— 128
Back Finish | Cancel Help

E | Unzigned Java Applat Window

Figure 29. Volume Application BIG VG and Large-Disk VG Support

System Management and Utilities

225

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

6.5.2 NIS+

AlX 4.3.3 provides NIS+ configuration panels on Web-Based System
Manager. You can configure, change delete the NIS+ configuration and
populate NIS+ tables using Web-Based System Manager panels. The panel
shown in Figure 30 can be launched by double-clicking NIS+ Server icon on
Network panel.

I MIS+ Server Configuration Options : rootmaster

Figure 30. NIS+ Server Configuration Panel on Web-Based System Manager

6.5.3 File Systems Application Enhancements

The Web-Based System Manager file systems application now supports
cache file system. You can create, change properties of, delete a cache file
system through Web-Based System Manager file systems application. The
Cached File Systems icons appears below the CD-ROM File Systems icon
and the following panel can be launched by selecting File System->New File
System->Create Cached File System menu on File Systems panel (Figure
31).

226 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

Il Mew Cached File System : 9.3.240.42

Figure 31. New Cached File System Web-Based System Manager Panel

6.6 Daylight Savings Time

Before AIX Version 4.3, daylight savings time could be selected through
SMIT, but the date of change for this characteristic was restricted to USA
standard. Once the daylight savings YES or NO question had been
answered, a list of available time zones was presented, but there was no
option within SMIT for specifying the start and end dates for daylight savings.

By default, the daylight saving time starts on the first Sunday of April at 2:00
am and stops on the last Sunday of October at 2:00 am. AlX Version 4.3 now
has the capability of overriding these settings by specifying the start time and
stop time in the TZ environment variable.

Additional fields have been added to the SMIT time setting menu to set the
TZ variable. A back-end script performs the actual setting of the TZ variable.

System Management and Utilites 227

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

6.7 Login Performance

228

The original design of the UNIX/AIX login system dates back to the early days
of UNIX when the number of users to be catered for was relatively small. As
such, the login process was perfectly adequate. With the commercial
acceptance of UNIX, however, the number of users per system has grown
dramatically with tens of thousands of users now being seen on some
servers. This increase in the number of users has highlighted some of the
deficiencies in the original design of the login process that are now beginning
to affect system performance.

A problem exists, which once a user has entered their name and password,
the system must then search through the /etc/passwd and
letc/security/passwd files trying to find a match for that user and, if
successful, must also update a number of other files. All the files are
searched sequentially, and the time consumed can be substantial if there are
a large number of records to search through. In extreme cases, if a user’s
entry is near the end of the files, it is possible for the login attempt to time out
before completion. Also, the amount of CPU time being consumed by the
login process is a cause for concern. Login CPU usage has been recorded as
high as 47 percent on some systems.

The three major bottlenecks that have been identified are:
« Reading the /etc/passwd file
* Reading the /etc/security/passwd file

« Updating the /etc/security/lastlog file

A limited solution was used in previous versions of AIX to address some of
these issues by creating a hashed version of the /etc/passwd file. The
nkpasswd command took the /etc/passwd file as input and created the
/etc/passwd.dir and /etc/passwd.pag files. Then during login, if these hashed
files existed, they were read instead of the ASCII file. This partial solution
provided some relief, but there were still other areas that could also be
improved.

A further improvement has been introduced in AlX Version 4.3 that provides
indexed access to the data files instead of sequential reads. Indexes are
created using the user name and user ID as keys with offsets into the data
file. The data files remain as ASCII files, but the design allows for them to be
upgraded to binary files at a later date if this is found to be necessary.

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

The /etc/passwd and /etc/security/passwd files have been indexed, and the
/etc/security/lastlog file has been indexed with a corresponding change in the
way that this file is processed.

6.7.1 Indexing of the /etc/passwd File

The actual /etc/passwd file has not been changed. However, two new files
have been created, /etc/passwd.nm.idx and /etc/passwd.id.idx, through the
nkpasswd command. These files are indexes created using the username
(string) and the user ID (number) as keys. A record in the index file contains
the key, offset of the corresponding record in the data file (/etc/passwd), and
the status of the record. A negative offset value implies the corresponding
record is deleted.

A hook was also added at the point where the file is read to check for the
existence of the index file. If the corresponding index exists, then the index
read mechanism is called with the key as a parameter.

6.7.2 Indexing of the /etc/security/passwd File

The /etc/security/passwd file is a text file that contains one stanza for each
user. It is searched one line at a time looking for the user name. Similar to the
/etc/passwd file, the user name that is physically located at the top of the file
is at an advantage compared to the user name at the bottom of the file. This
file is also indexed by the nkpasswd command. The index is based on the
username string as the key and provides an offset into the file where the
stanza can be located. Once the stanza is located, it is then searched
sequentially for the relevant information.

6.7.3 Indexing and Locking /etc/security/lastlog File

The lastlog file is a text stanza file similar to the /etc/security/passwd file that
contains one stanza per user. It is accessed in a similar manner, sequentially
looking for a username. However, unlike the /etc/passwd and
letc/security/passwd files, this file is accessed for update, which means that
file-locking and crash-recovery must be taken into account. In the existing
design, locking is done at a file-level, and the whole file is backed up,
representing a major overhead. Note that there are no external commands or
system and library calls to access this file. It is accessed internally by the
tsmlogin() module to display lastlog information.

In AIX Version 4.3, the /etc/security/lastlog file remains a text file but has
been changed in the following ways:

System Management and Utilities 229

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

Indexed access
An index called /etc/security/lastiognm.id is built using the
username string. This index provides the offset to a stanza. Once
a stanza is located, the lines in it are processed sequentially as in
AIX Version 4.2. The index is created by the mkpasswd command.

Fixed record length
Since a user stanza is updated upon login, if the file needed to be
reorganized after every update (because of the variable length text
fields), this would cause the record (or stanza) offsets for all
stanzas after the changed stanza to be changed by a fixed delta.
This would keep the data and index files synchronized but would
be expensive in processing time. The extra processing was
avoided by keeping some unused space in each variable length
field. By padding the fields with spaces, they can shrink or grow
within limits, and a record can be updated without having to
rearrange the file and rebuild the index.

Record level lock
Locking is now done at the record-level instead of the file-level by
using advisory locks for updates. This prevents having to read and
write the entire file. There is no longer a need for the /etc/olastlog
file, and it has therefore been removed.

6.7.4 mkpasswd Command

The index system is created when the nkpasswd command is executed. It
deletes any existing outdated indexes (except for the lastlog index) and
builds new indexes. New flags allow complete control of this enhancement.

6.8 LDAP Exploitation for User Management (4.3.3)

There has been an increasing demand for a facility where the data is centrally
maintained on a server system and remotely accessed by one or more clients
in real time. LDAP is evolving as a standard protocol across the industry and
it is suitable for distributed security authentication because it provides a
ready made client/server implementation.

In AIX 4.3.3 security routines are enabled to make LDAP calls to store and
retrieve data in order to manage user and group information. System
performance improves in environments with large number of users because
of advantages inherent with searching through a database versus a text file,
even if it has indexes.

230 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

Unlike other directory services like NIS and NIS+, all the data related to AIX
users is stored into the LDAP database including, for example, login
restriction and system usage limits.

Security issues has been taken in special account to avoid LDAP clients to
gain non-authorized information on user data. The LDAP server does not
provide the LDAP schema or content to LDAP client except those who
authenticate themselves as being system administrator. There are two layers
of protection:

1. Password Protection: a password is specified by the system administrator
when the schema is configured and the LDAP APIs use this password to
bind with the server. The password is distributed to clients which store it
locally in clear text but in file located in a protected directory.

2. SSL Secure Port Protection: the password protection provides security but
information may still be captured snooping the communication network. To
provide further security, the LDAP can be configured to allow only SSL
connections for AlX information.

6.8.1 The mksecldap Command
The nksecl dap command provides both client and server configuration in order

to use LDAP for security authentication and data management.
The syntax for server configuration is:
nksecl dap -s -a adm nDN -p adm npasswd {-d | dapai xdn}\
{-k ssl key file path -w ssl key password}
The syntax for client configuration is:
nksecl dap -c -h hostlist {-d |dapai xdn} {-u [ALL|userlist]} \
-a admnDN -p adm npasswd \
{-k ssl key file path -w ssl key password } \
{-t naxtineout} \
{-C <cache size>} {-P <nunber of thread>}
The switches meaning is the following:
-c Client configuration
-s Server configuration
-a Administrator’s user name in distinguished name format
-p Administrator’s password

-d Distinguished name of AIX security information subtree. If not specified,
the default cn=aixsecdb is used

System Management and Utilities 231

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

-k Path to the SSL key file
-w Password needed to access SSL key file
-h List of the LDAP servers that provide AlX security data

-u When used on a client, it updates local /etc/security/user file in order to
define LDAP provided authentication. If an ALL keyword is provided, all
AlX users will be authenticated using LDAP.

-t Time out on LDAP request. If time out occurs, local files are used for
authentication.

-C Size of local LDAP data cache used by secl dapcl nt d

-P Number of threads created secl dapcl ntd

On the server, the command configures both LDAP and DB2 database. In
order to allow LDAP to provide both public access to non-AlX data and
restricted access to AlX security data, a secondary LDAP server is started
with a separate database instance. The primary LDAP server points to the
secondary for AIX data. The LDAP database is populated with all the users
defined on the server and their related information.

On the client, the command creates the /etc/security/ldap/Idap.cfg file that
contains the needed data to connect to the LDAP servers and starts the
secl dapcl nt d daemon that receives all the AIX security command’s requests
and forwards them to the LDAP servers. The command also updates the
letc/security/user file to define which users must use LDAP authentication,
when the -u switch is used.

6.8.2 Server Configuration

232

The server configuration is very simple. The basic information you have to
provide is the name of the administrator, the password and, optionally, the
LDAP directory name. For example, you may execute:

nksecl dap -s -a cn=root -p rootpwd

If you want to use the SSL security, you have to install from the Bonus Pack
the gskrf301.base fileset. Then you must create the SSL certificate (see
Appendix A, “SSL File Creation for LDAP” on page 685) and then execute, for
example:

nksecl dap -s -a cn=root -p rootpwd -k /etc/keyfile -w ssl pnd
The nksecl dap command takes care of configuring both LDAP and DB2

without interfering with existing LDAP configuration or data. Since many DB2
operations are required, it may take several minutes to complete.

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

6.8.3 Client

When command finishes, LDAP is ready to provide AlIX user information.
Initially, the database only contains the users and groups defined in the
server machine.

The configuration of the server part of LDAP does not make the RS/6000 a
client of LDAP database. In order to make the machine access the LDAP
server, an explicit client configuration must be made.

Note

By default, the nksecl dap command created the DB2 database in the /home
file system. The command may fail due if there is not enough free space.

Configuration

On client side, the nksecl dap command requires the names of the LDAP
servers, the user, and password to access the database. Optionally you can
use SSL for additional security providing the key file with the appropriate
password. For example:

nksecl dap -c -h LDAPsrv -a cn=root -p rootpwd

or, for SSL encryption:

nksecl dap -c -h LDAPsrv -a cn=root -p rootpwd -k /etc/keyfile.kdb -w ssl pnd

If you have not used the default directory name on the server, you need to
provide also the directory’s distinguished name using the -d switch.

In the previous examples, no users have been added to the system, but
LDAP access has been activated. You must configure the local machine to
accept LDAP users.

User authentication using LDAP is made by defining in /etc/security/user the
authentication method to be LDAP. This is made by changing the SYSTEM
attribute of the default stanza, or of a specific user, to be equal to LDAP and
providing a new registry named LDAP.

The following example shows two stanzas in /etc/security/user where only
Idapuser is authenticated by LDAP. Note that Idapuser may not be present in
letc/security/passwd: the password file is looked only if LDAP query fails or
times out.

| dapuser :
SYSTEMELDAP

System Management and Utilities 233

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

regi st ry=LDAP
| ocal :
admn = fal se

Once user information is provided by LDAP, all requests regarding the user
are made to the secl dapcl ntd daemon, that takes care of retrieving the data
from the LDAP servers. It is the only daemon that is allowed to contact the
LDAP server for AlX security. In order to improve performance, it is a
multithreaded process and caches collected data. If the daemon is not active,
the client cannot contact the LDAP server.

The configuration file of the daemon is /etc/security/ldap/Idap.cfg and looks
like the following example (if you do not use SSL, the last two lines are not
present):

| dapser ver s: LDAPsrv

| dapadm n: cn=r oot

| dapadnpwd: r oot pwd

| dapai xdn: cn=ai xsecdb

| dapssl keyf : / et c/ keyfil e. kdb
| dapssl| keypwd: ssl pwd

All user configuration may be made by nksecl dap command using the -u
switch. You can provide a list of users or define all users to require a lookup in
the LDAP database for authentication or you can use the ALL value to use
LDAP for all users, as in the following example:

nksecl dap -c -h LDAPserver -a cn=root -p rootpwd -u ALL

— Note

If you ever need to stop the secl dapcl t nd daemon, do not use kill -9 since
some IPC configuration will not be cleaned and you will not be able to
restart the daemon. Use the USRL1 signal instead as in the following
example:

kill -s 30 <pid>

6.8.4 User Administration

234

The LDAP database contains all the information related to the users. The AIX
commands that are used to administer user data like nkuser, | suser, nkgr oup,

| sgoup have been enhanced to use LDAP. A new switch -R is used to select

the authentication method.

For example, it is possible to create a new user and then view its parameters
in the following way:

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

nkuser -R LDAP | ogi n=fal se nol ogi n

| suser -R LDAP nol ogi n

nol ogi n i d=211 pgrp=staff groups=staff honme=/home/ nol ogi n shel |l =/ usr/bi n/ ksh | ogi n=f al se
su=true rlogi n=true tel net=true daenon=true adnm n=f al se sugroups=ALL t pat h=nosak ttys=ALL
expi res=0 aut h1=SYSTEM aut h2=NONE umask=22 SYSTEM-conpat | ogi nretri es=0 pwdwar nti me=0
account _| ocked=f al se m nage=0 maxage=0 maxexpired=-1 m nal pha=0 m not her =0 mi ndi f f =0
maxr epeat s=8 mi nl en=0 hi stsize=0 fsize=2097151 cpu=-1 dat a=262144 st ack=65536
core=2097151 rss=65536 nofi | es=2000

The values of the variables associated to the user have the same meaning as
if present in the local files, so there is no semantic difference between LDAP
provided data and local data. For example, a user that has been defined with
remote login disabled cannot perform a remote login in any machine using
LDAP security.

Note that user creation with nkuser -R LDAP does not modify the
/etc/security/user file: the command only updates the LDAP database. If you
want the user to login you must either have LDAP authentication enabled in
the default /etc/security/user stanza or you must add a stanza in the file that
instructs the system to use LDAP.

6.9 Microcode Packaging

In versions of AlX prior to Version 4.3, some IBM microcode entities resided
in filesets that were prerequisites of other filesets. This meant that our OEM
customers had to ship these filesets even if they were not required. In some
cases, customers who developed their own additional features preferred to
use their own microcode instead of the IBM-supplied microcode. In order for
these OEM customers to replace the IBM microcode, it was necessary for
them to modify AlX.

To rectify this situation, the following filesets were modified to remove the IBM
microcode so that our OEM customers can ship AlIX without having to perform
any changes:

¢ bos.sysmgt.nim.master
» devices.mca.8fc8
« Common token-ring Software
« Token-Ring high-performance adapter diagnostics
« Token-Ring high-performance adapter microcode
« Token-Ring high-performance adapter software
 devices.mca.dfof

e Direct-Attached disk diagnostics

System Management and Utilities 235

2014sysmanage.fm

Draft Document for Review October 25, 1999 10:31 pm

* Direct-Attached disk software

* devices.mca.ffel

e 128-port asynchronous adapter diagnostics

e 128-port asynchronous adapter microcode

e 128-port asynchronous adapter software

The devices.mca packages were a source of error because even though
some systems do not have an MCA bus, other rspc packages regarded these
MCA packages as prerequisites. The files needed by the other rspc packages
were moved out of the devices.mca.* packages and into a separate fileset.

6.10 Online

Alternate Disk Installation

The alt_di sk_i nstal| command gives users another way to update AlX to the
next release or maintenance level without having to schedule an extended
period of system downtime.

The update can be performed in two ways:

mksysb image

Cloning

Installing a mksysb requires a 4.3 mksysb image or 4.3 mksysb
tape. The al t_di sk_i nstal | command is called, specifying a disk or
disks that are installed in the system but are not currently in use.
The mksysb is restored to those disks, such that, if the user
chooses, the next reboot will boot the system on a 4.3 system.

Note: If needed, the boot|ist command can be run after the new
disk has been booted, and the bootlist can be changed to boot
back to the older version of AlX.

Cloning allows the user to create a backup copy of the root
volume group. Once created, the copy may be used either as a
back up, or it can be modified by installing additional updates. One
possible use might be to clone a running production system, then
install updates to bring the cloned rootvg to a later maintenance
level. This would update the cloned rootvg while the system was
still in production. Rebooting from the new rootvg would then bring
the level of the running system up to the newly installed
maintenance level. If there was a problem with this level, simply
changing the bootlist back to the original disk and rebooting would
bring the system back to the old level.

236 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

Currently, you can run the alt_di sk_install command on 4.1.4 and higher
systems for both of these functions. The bos.alt_disk_install.rte fileset must
be installed on the system to do cloning to an alternate disk, and the
bos.alt_disk_install.boot_images fileset must be installed to allow a mksysb
install to an alternate disk.

The mksysb image that is used must be created before installation and
include all the necessary device and kernel support required for the system
on which it is installed. No new device, or kernel support, can be installed
before the system is rebooted from the newly-installed disk.

Note: The level of mksysb that you are installing must match the level of the
bos.alt_disk_install.boot_images fileset. At this time, 4.3.3, 4.3.2, 4.3.1, and
4.3.0 mksysb images are supported. AlX 4.3.2 boot images are available only
on the 4.3.2 installation media.

When cloning the rootvg volume group, a new boot image is created with the
bosboot command. When installing a mksysb image, a boot image for the
level of mksysb and platform type is copied to the boot logical volume for the
new alternate rootvg. When the system is rebooted, the bosboot command is
run in the early stage of boot, and the system will be rebooted again. This is
to synchronize the boot image with the mksysb that was just restored. The
system will then boot in normal mode.

At the end of the install a volume group, altinst_rootvg, is left on the target
disks in the varied off state as a place holder. If varied on, it will show as
owning no logical volumes, but it does, in fact, contain logical volumes. Their
definitions have been removed from the ODM because their names now
conflict with the names of the logical volumes on the running system. Itis
recommended that you do not vary on the altinst_rootvg volume group but
just leave the definition there as a place holder.

When the system reboots from the new disk, the former rootvg will not show
up in an | spv listing. The disks that were occupied by the rootvg will show up
as not having a volume group. However, you can still use the boot | i st
command to change the bootlist to reboot from the old rootvg if necessary.

When the system is rebooted from the new altinst_rootvg, then | spv will show
the old rootvg as old_rootvg so you will know which disk or disks your
previous rootvg was on. There is also a -q option in alt_disk_install that will
allow you to query to see which disk has the boot logical volume so you can
set your bootlist correctly for cases when old_rootvg has more than one disk.

System Management and Utilities 237

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

The alternate root file system is mounted as /alt_inst, so other file systems
also have that prefix (/alt_inst/usr, /alt_inst/var). This is how they must be
accessed if using a customization script.

Note: If you have created an alternate rootvg with alt_disk_install, but no
longer want use it, or you want to run alt_di sk_i nstal| commands again, do
not run exportvg on altinst_rootvg. Simply run the alt_disk_install -X
command to remove the altinst_rootvg definition from the ODM database.

The reason you cannot run the exportvg command (or the reducevg command)
is that the logical volume names and file systems now have the real names,
and exportvg removes the stanzas for the real file system from
letc/filesystems for the real rootvg.

If exportvg is run by accident, be sure to recreate the /etc/filesystems file
before rebooting the system. The system will not reboot without a correct
/etc/filesystems file.

6.10.1 alt _disk_install Command Syntax

238

The following is an example of the al t _di sk_instal| command:

alt_disk install -d device || -C[-i image.data] [-s script] [-R
resol v_conf]
[-O0 [-B [-M [-r] [-p platform] [-L nksysb_|evel]

[-b bundle_ nane [[-1 installp_flags] [-] images_location] [-f
fix_bundl e]
[-Ffixes] [-e exclude_list] [-wfilesets] target_disks...

alt_disk install -X

The following is a description of alt _di sk_instal | flags:

-d device
The value for device can be:

Tape device - for example, /dev/rmt0.
Path name of mksysb image in a file system.
Note: -d and -C are mutually exclusive.
-C Clone rootvg.
Note: -d and -C are mutually exclusive.

-i image.data
Optional image.data file to use instead of default image.data from
mksysb image or image.data created from rootvg. The image.date

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

-S script

file name must be a full path name. For example,
/tmp/my_image.data.

Optional customization script to run at the end of the mksysb
install or the rootvg clone. This file must be executable. This script
is called on the running system before the /alt_inst file systems are
unmounted, so files can be copied from the running system to the
/alt_inst file systems before the reboot. This is the only opportunity
to copy or modify files in the alternate file system because the
logical volume names will be changed to match rootvg’s, and they
will not be accessible until the system is rebooted with the new
alternate rootvg. You must use a full path name for script.

-R resolv_conf

Specifies the path name of the resolv.conf file you want to replace
the existing one after the mksysb has been restored, or the rootvg
has been cloned. You must use a full path name for resolv_conf.

-D Turn on debug (set -x output).

-V Turn on verbose output. This will show the files that are being
backed up for rootvg clones. This flag will show files that are
restored for mksysb alt_disk_installs.

-B Specifies not running bootlist after the mksysb or clone. If set,
then the -r flag cannot be used.

-r Specifies to reboot from the new disk when the alt_disk_install
command is complete.

-p platform

This is the platform to use to create the name of the disk boot
image. The default value is the platform of the running system
obtained with the bootinfo -T command on 4.1 or the bootinfo -p
command in 4.2. This flag is only valid for mksysb installs (-d flag).

-L mksysb_level

This level is combined with the platform type to create the name of
the boot image to use (IE rspc_4.3.0_boot). This must be in the
form V.R.M. The default is 4.3.0. The mksysb image is checked
against this level to verify that they are the same.

The following flags are only valid for use when cloning the rootvg (-C):

-b bundle_name

Path name of optional file with a list of packages, or filesets, that
will be installed after a rootvg clone. The -I flag must be used with
this option.

System Management and Utilities 239

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

-l installp_flags
The flags to use when updating, or installing, new filesets into the
cloned alt_inst_rootvg. The default flags are -acgX. The -I flag
must be used with this option.

-l images_location
Location of the installp images, or updates, to apply after a clone
of the rootvg. This can be a directory full path name or a device
name (for example, /dev/rmt0).

-f fix_bundle
Optional file with a list of APARSs to install after a clone of the
rootvg. The -l flag must be used with this option.

-F fixes Optional list of APARSs (such as 1X123456) to install after a clone of
the rootvg. The -l flag must be used with this option.

-e exclude_list
Optional exclude list to use when cloning rootvg. The rules for
exclusion follow the pattern matching rules of the grep command.
The exclude_list must be a full path name.

-w filesets
List of filesets to install after cloning a rootvg. The - flag must be
used with this option.

The following are supplied as parameters

Target Disks
Specifies the name, or names, of the target disks where the
alternate rootvg will be created. The disk, or disks, must not
currently contain any volume group definition. The | spv command
should show these disks as belonging to volume group None.

6.10.2 Using alt_disk_install
The following are examples of using the al t_di sk_i nstal | command:

1. To clone the running 4.2.0 rootvg to hdisk3 and apply updates from
/updates to bring the cloned rootvg to a 4.2.1 level:

alt_disk install -C-F 4.2.1.0 AXM -1 /updates hdisk3

The bootlist will then be set to boot from hdisk3 at the next reboot.

2. To install a 4.3 mksysb image on hdisk3, then run a customized script
(/home/myscript) to copy some user files over to the alternate rootvg file
systems before reboot:

240 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

alt_disk_install -d /nksysb_inages/4.3_nksysb -s /hone/ nyscri pt
hdi sk3

6.10.3 Alternate Disk Installation Enhancements (4.3.1)

The alt_di sk_i nstall command gives users another way to update AlX to the
next release or maintenance level without having to schedule an extended
period of system downtime. The function is included in the
bos.alt_disk_install package, which is shipped on the AIX media. The
package is not installed by default during system installation.

AIX 4.3.1 has enhanced the alternate disk installation function by splitting the
task into three distinct phases. A system administrator now has greater
control over the task by being able to perform each phase in isolation from
the others. It is not required to perform them all at once.
The three phases of the alternate disk install are:
1. Phase One

e Create the altinst_rootvg, logical volumes and file systems.

« Restore or copy files to the /alt_inst file systems.
2. Phase Two

e Copy a resolv.conf file to the /alt_inst/etc file system if specified.

e Copy NIM client configuration information if specified.

e For clones, install any new filesets, updates, and fixes.

* Run any user specified customization script.
3. Phase Three

¢ Manipulate the ODM databases and /etc/filesystems file.

« Build the boot image.

« Unmount the /alt_inst file systems and rename the logical volumes and

file systems.

Phase two can be performed with phase one or phase three and can also be
performed on its own multiple times if required before phase three is run.

System Management and Utilities 241

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

The phases performed are controlled by the new -P option that has possible
values as shown in Table 24.

Table 24. Possible Values of Phase Value

Flag Value Result

1 Phase one performed

2 Phase two performed

3 Phase three performed

12 Phases one and two performed

23 Phases two and three performed

all Phases one, two, and three performed

The target disk name is required for all phases, even though the
altinst_rootvg has already been created.

Some standard alt_disk_install options, such as the reboot option and the no
bootlist option, are not allowed in phase one or phase two.

Specifying an exclude list (-e exclude_list) is not allowed in phase two or
phase three.

If a flag is used in a wrong phase, a warning is displayed, but the install does
not terminate.

6.10.4 Alternate Disk Installation Enhancements (4.3.2)

In this section, the enhancements made at the AIX 4.3.2 introduction are
given.

6.10.4.1 New alt_disk_install 4.3.2 Usage
Listed below are the new command formats for the various tasks given.

Create Alternate Disk: mksysb (-d) or clone (-C):
alt_disk install {-d <device>| -G [-i <inmage.data>] [-s <script>]

[-R<resolv_conf>] [-O [-B [-M [-r]
[-p <platformp] [-L <nksysb | evel >]
[-b <bundl e_name>] [-] <installp_flags>]
[-] <images_location>] [-f <fix_bundl e>]
[-F <fixes>] [-e <exclude_|ist>] [-w<filesets>]
[-n] [-P <phase_option>] <target_disks...>

242 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

Determine Volume Group Boot Disk (-q):
alt_disk install -q <disk>

Rename Alternate Disk Volume Group (-v):
alt_disk install -v <new vol une group nane> <di sk>

Wake-Up Volume Group (-W):
alt_disk install -W<disk>

Put-to-Sleep Volume Group (-S):
alt disk install -S

Clean Up Alternate Disk Volume Group (-X):
alt_disk install -X [<volune group>]

6.10.4.2 Scenarios for Command Enhancements

To see which disks belong to the original rootvg volume group after the
system has been rebooted from the alternate disk, an entry has been added
to the database, so that when the system is rebooted from the alternate disk,
and the | spv command is executed, a volume group name old_rootvg will be
listed for the original rootvg disks.

| spv
hdi skO 00006091aef 8b687 ol d_rootvg
hdi sk1 00076443210a72ea r oot vg

This volume group will be set to not varyon at reboot, and should only be
removed with:

alt_disk_install -X ol d_rootvg

| spv
hdi skO 00006091aef 80687 None
hdi skl 00076443210a72ea r oot vg

New function was added to the -X flag to allow for specified volume group
name information removal. It is recommended that you always use
al't_disk_install -Xwhen removing any information about an alternate
volume group (altinst_rootvg, old_rootvg, and so on). alt_disk_install
manages changes to the ODM that are required. Using export vg or r educevg
could cause serious problems to your system (like removing base entries in
/etc/filesystems). al t _di sk_install -Xand alt_disk_install -X <new vol une
group nane> will not remove actual data from the volume group. Therefore,
you can still reboot from that volume group, if you reset your bootlist.

To see which disk is the boot disk, of the old_rootvg volume group, after a
reboot from the alternate disk, the -q flag has been added to al t _di sk_i nstal |

System Management and Utilites 243

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

244

to determine the boot disk, from the user specified disk and its associated
volume group. The command syntax is:

alt_disk install -q <di sk>

Given any disk in the volume group, and the command will return the actual
boot disk (contains hd5), for that volume group.

| spv

hdi skO 00006091aef 8687 ol d_rootvg
hdi skl 00076443210a72ea r oot vg

hdi sk2 0000875f 48998649 ol d_rootvg
alt_disk_install -q hdi skO

hdi skl

In this case, the boot disk for old_rootvg is actually hdiskl. Therefore, you
could reset your bootlist to hdiskl and reboot to the original rootvg volume
group.

bootlist -mnornmal hdi skl

reboot -q

This query will work on any volume group that has a boot (hd5) logical
volume.

Different names for altinst_rootvg are now possible for the case that a user
would want to have multiple alternate disks on one system (one with 4.3.2,
one with 4.2.1, and so on). The -v flag was added to allow non-rootvg volume
group names to be changed. The syntax for this is:

alt_disk_install -v <new vol ume group name> <di sk>

For example, on a 4.2.1 system, run alt_disk_install to restore a 4.3.2 mksysh
to hdisk2 and hdisk3. Execute alt_disk_install, with the -v flag, to rename the
altinst_rootvg volume group name. Then, on the same system, run
alt_disk_install to clone the 4.2.1 system to hdisk4 and hdisk5. Finally,
rename the cloned altinst_rootvg.

| spv

hdi skO 00006091aef 8b687 r oot vg
hdi sk1 00000103000d1a78 r oot vg
hdi sk2 000040445043d9f 3 None
hdi sk3 00076443210a72ea None
hdi sk4 0000875f 48998649 None
hdi sk5 000005317¢c58000e None

alt_disk install -d /dev/rn0 hdisk2 hdi sk3
| spv
hdi skO 00006091aef 8687 r oot vg

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm

hdi skl 00000103000d1a78
hdi sk2 000040445043d9f 3
hdi sk3 00076443210a72ea
hdi sk4 0000875f 48998649
hdi sk5 000005317c58000e
alt_disk install -v alt_disk 432
| spv

hdi skO 00006091aef 80687
hdi skl 00000103000d1a78
hdi sk2 000040445043d9f 3
hdi sk3 00076443210a72ea
hdi sk4 0000875f 48998649
hdi sk5 000005317c58000e

alt _disk install

| spv

hdi skO 00006091aef 80687
hdi sk1 00000103000d1a78
hdi sk2 000040445043d9f 3
hdi sk3 00076443210a72ea
hdi sk4 0000875f 48998649
hdi sk5 000005317c58000e
alt disk install -v alt_disk 421
| spv

hdi sk0 00006091aef 80687
hdi skl 00000103000d1a78
hdi sk2 000040445043d9f 3
hdi sk3 00076443210a72ea
hdi sk4 0000875f 48998649
hdi sk5 000005317c58000e

alt_disk_install -q hdisk3
hdi sk2

- C hdi sk4 hdi sk5

2014sysmanage.fm

r oot vg

al tinst_rootvg
al tinst_rootvg
None

None

hdi sk2

r oot vg

r oot vg
alt_disk 432
alt_disk 432
None

None

r oot vg

r oot vg
alt_disk 432
alt_disk 432
al tinst_rootvg
al tinst_rootvg
hdi sk4

r oot vg
r oot vg
alt_disk 432
alt_disk 432
alt_disk 421
alt_disk 421

ol d_rootvg
ol d_rootvg

r oot vg

r oot vg
alt_disk 421

bootlist -mnormal hdisk2

sync

reboot -q

After the systemreboot, performthe follow ng steps:
| spv

hdi skO 00006091aef 80687
hdi skl 00000103000d1a78
hdi sk2 000040445043d9f 3
hdi sk3 00076443210a72ea
hdi sk4 0000875f 48998649
hdi sk5 000005317¢c58000e

alt_disk 421

A way to wake up a volume group for data access between the alternate disk
and the original rootvg and also a way to put the volume group back to sleep

is provided.

245

System Management and Utilities

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

The syntax for the wake-up function is:
alt _disk install -W<disk>

Note, the volume group that will experience the wake-up will be renamed
altinst_rootvg.

The booted volume group’s version of AIX must be later or equal to the
version of AlX on the volume group that will undergo the wake-up. This may
mean that you will need to boot from the altinst_rootvg and wake-up the
old_rootvg.

osl evel

4.1.0.0

| spv

hdi skO 000040445043d9f 3 r oot vg
hdi sk1 00076443210a72ea None
alt disk install -d /dev/rmO hdiskl

| spv

hdi skO 000040445043d9f 3 r oot vg
hdi skl 00076443210a72ea al tinst_rootvg
reboot -q

After rebooting...

osl evel

4.3.0.0

| spv

hdi skO 000040445043d9f 3 ol d_rootvg

hdi skl 00076443210a72ea r oot vg

alt_disk_install -WhdiskO

| spv

hdi skO 000040445043d9f 3 al tinst_rootvg
hdi skl 00076443210a72ea r oot vg

At this point, you will find the altinst_rootvg volume group varied on and the
/alt_inst file systems will be mounted.

Now, to put the volume group to sleep the command syntax is:
alt_disk_ install -S

| spv
hdi skO 000040445043d9f 3 al tinst_rootvg
hdi skl 00076443210a72ea r oot vg

246 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

The altinst_rootvg is no longer varied-on and the /alt_inst file systems are no
longer mounted. If desired and the bootlist is reset, this volume group is now
ready for booting. If it is necessary for the altinst_rootvg volume group name
to be changed back to old_rootvg, this can be done with the -v flag.

alt_disk install -v old_rootvg hdi skO

| spv
hdi skO 000040445043d9f 3 ol d_rootvg
hdi sk1 00076443210a72ea r oot vg

6.11 Printer Support

The AIX spooler subsystem was already significantly enhanced over the
basic UNIX spooler. For AIX Version 4.3, the following additional
enhancements have been included:

6.11.1 Remote Printing Robustness

Both renbak and | pd have new flags that allow you to build a log file. A log file
is helpful in determining why a daemon failed. Use the following commands to
start error logging:

startsrc -s | pd -a "-D /tnp/| pddebug”
letc/qconfig -D /tnp/renback_debug flag backend=/usr/1i b/l pd/ r enbak

Support in SMIT was updated to allow renbak error logging to be enabled
when adding a remote queue.

6.11.2 Remote Print Job Count

On a print server, when a job is received from the print client, | pd receives a
control file and one or more data files. The control file contains information on
the job to be printed, including the name of the corresponding data files. The
datafiles contain the actual data to be printed. The control file is used to
generate the arguments to the eng command. It is subsequently deleted. The
datafiles are copied to the spooling directory so they can be processed by
gdaenon.

The LPR/LPD protocol (RFC 1179) specifically designates the naming
convention for print data files sent from print clients to print servers. Part of
the name is a three-digit job ID. Due to this specification, problems could
arise when a single print client sent more than 1000 print jobs to a print
server. The datafiles became non-unique and the older file with the same
name would get deleted. This could cause major problems for high-volume
printing installations.

System Management and Utilities 247

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

AlX version 4.3.0 has modified the function of the print server. When files are
received by | pd, (before they are copied to the spooling directory) a time
stamp is appended to the data file names, thus generating unique file names.
This enables a large number of jobs to be submitted. The print server still
conforms to the specification of the LPD protocol, which does not stipulate
what happens to the data file once it has been received by the server.

6.11.3 Additional Printer Support

AIX Version 4.3 now includes native support for five additional Lexmark
dot-matrix printers:

¢ Lexmark 2380 Model 3
Lexmark 2381 Model 3
Lexmark 2390 Model 3
Lexmark 2391 Model 3
¢ Lexmark Forms Printer Model 4227

More printer support was specifically introduced in AIX 4.3.1:

* Hewlett-Packard 4000
¢ IBM InfoPrint 20

More printer support was specifically introduced in AlX 4.3.2 for IBM,
Lexmark and Hewlett-Packard printers:

* IBM InfoPrint 32

e Lexmark Optra Color 40

¢ Lexmark Optra Color 45

e Lexmark Optra Color 1200

e Lexmark Optra K 1220

* Hewlett-Packard 8000

¢ Hewlett-Packard 8500 Color

More printer support is introduced in AlX 4.3.3 for Hewlett-Packard, IBM and
Lexmark printers:

* Hewlett-Packard 2500C Color Printer

* Hewlett-Packard Color LaserJet 4500

* Hewlett-Packard LaserJet 8100

¢ Hewlett-Packard LaserJet 5000 D640 Printer
¢ IBM InfoPrint 40

e Lexmark Optra E310 Laser Printer

e Lexmark Optra M410 Laser Printer

e Lexmark Optra Se Laser Printer

e Lexmark Optra T Laser Printer Family

248 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

Lexmark Optra W810 Laser Printer

The HP 8000 and HP 8500 Color printers and the associated AlX print drivers
support A3 paper size.

For all printers, this includes:

Printer backend colon files for each printer data stream supported by the
printer.

ODM parameters for the printer device driver and diagnostics.

New message catalog entries for the printer name and new printer
attributes (if required).

Packaging files to make support for the printer's separately installable
packages.

More information and colon files can be obtained from Lexmark. In the USA,
call 1-800-Lexmark (1-800-539-6275) or visit their Web site at the following
URL:

http://waw | exmar k. com

6.11.4 Print Job Administration Enhancements (4.3.2)

The print queue administration commands have been enhanced to support
print queues with more than 1000 jobs. Previous editions of AlX would allow
more than 1000 jobs in a print queue. Cancelling or altering a job when the
gueue size grew more than 1000 became difficult, because job numbers
would repeat, and specifying a specific job number would not guarantee that
the job selected would be unique and the one desired.

The formatting of the output of the gchk command, when used with the -W
flag, has been changed to show the six-figure print job number. The Ipstat
command has been changed to also accept the -W flag to show information in
wide format. Use of the -W flag results in output where the lines are over 106
characters in length. It can be quite confusing to read the output when using a
screen that is only 80 characters wide. To maintain compatibility for any user
scripts that parse the output of these commands, the default format for both
remains unchanged from previous versions.

qchk

W

Queue Dev Status Job Files User

PP % Blks O Rk

| p0o DO
QUEUED 2228 /et c/ passwd root
1 1 1
QUEUED 2229 /etc/ passwd root
1 1 2

System Management and Utilites 249

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

QUEUED 2230 /etc/ passwd r oot
QUEUED 2231 /etc/ passwd r oot

#

The engq, cancel , gpri, gcan, and | prmcommands have been altered to accept
six-figure job numbers.

The enhancement applies only to jobs submitted to local print queues. Jobs
submitted to remote printers will still have three digit print job numbers. This
is because of a restriction in the Ipd protocol.

Although AIX 4.3.2 now generates six digit job numbers for local jobs, the
response time of the qchk and | pst at commands is identical to that on AIX
4.3.0. The time taken to list the jobs on the queue is proportional to the
number of jobs. It is suggested that you maintain a queue size less than 1000
unless absolutely necessary, because larger queue sizes will impact
performance.

6.12 System Resource Controller Subsystem Enhancements (4.3.2)

Two major enhancements have been introduced to the System Resource
Controller (SRC) subsystem in AIX 4.3.2. They are aimed at increasing the
reliability and scalability of both the various subsystems that are controlled by
SRC and the SRC itself. The following sections explain these enhancements:

6.12.1 Recoverable SRC Daemon

250

The SRC is a subsystem controller that facilitates the management and
control of complex subsystems. The SRC provides a single set of commands
to start, stop, trace, refresh, and query the status of a subsystem. If a
subsystem should fail for any reason, the SRC can automatically restart it.

If the SRC itself were to fail for any reason, it would be restarted due to its
entry in /etc/inittab, as shown in the following example:

srcnstr: 2: respawn: / usr/ sbhin/srcnstr # System Resource Control | er

The respawned SRC is, however, unable to control or monitor the
subsystems started by the previous instance of SRC since they will have
been inherited by the i nit process when the original SRC terminated. As a
result, the | ssrc command will show such a subsystem as inoperative, even
though it is still running. In addition, the startsrc command can be used to
start a second instance of the subsystem, even though the subsystem
definition explicitly forbids multiple instances.

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

The SRC in AlX 4.3.2 has been enhanced to allow a respawned srcnstr
daemon to monitor and control the subsystems started by the previous
instance of the daemon. This has been achieved using the following
enhancements.

The SRC now keeps an external list of the subsystems under its control in the
file /var/adm/SRC/active_list. This file is for use by the SRC system only,
therefore the format is unpublished. A respawned srcnstr daemon will read
the contents of this file to update its internal list of the currently running
subsystems. This will allow the | ssrc command to correctly determine the
status of the running subsystems, even though they were not necessarily
started by the current instance of the srcnstr daemon.

A respawned srcnstr daemon uses a new kernel extension to register interest
in the termination of certain processes. This allows a respawned srcnstr
daemon to be informed of the termination of subsystems started by the
previous instance of the daemon. A child process is created to communicate
with the kernel extension. The child process in turn communicates with the
srcmstr daemon. The presence of the child process, called srcd, indicates
that the srcnstr daemon has been restarted.

ps -ef | grep src

root 4650 1 0 Aug?21 - 0:00 /usr/sbin/srcrstr
root 24680 4650 0 Aug 21 - 0:00 srcd
root 25894 7030 2 10:03:38 pts/1 0:00 grep src

#

If a subsystem fails for any reason while under the control of a respawned
srcnstr daemon, it will be restarted if the subsystem policy requires it. In this
case the exit code of the subsystem is not available to SRC due to the
method used by the kernel extension to detect process termination. This is
still preferable however to the previous function of SRC that would not detect
subsystem failure at all in this situation.

If you run the I ssrc command with the -S flag, you receive a list of the
subsystem attributes. The action is set to -R (for respawn) or -O (for once).
The value of action must be -R to have the subsystem restarted. Also, there
is a retry limit. If the subsystem fails more than once within the configured
wait time (20 seconds by default), it will not be restarted.

The action and waittime attributes can be set using the nkssys command or
changed with the chssys command.

System Management and Utilities 251

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

This new feature of the srcnstr daemon can be disabled if required by
specifying the -B option when starting the daemon. This is usually performed
by an entry in /etc/inittab.

6.12.2 Thread-Safe Routines in libsrc

In previous versions of AlIX, some of the libsrc subroutines are neither
threadsafe nor reentrant. This prevents other libraries and applications that
call these libsrc subroutines from achieving thread-safety and reentrance
requirements.

The libsrc subroutines of interest in a threaded environment are those that
support communication with an SRC subsystem. In other words, the routines
that are used by an application, that may be multithreaded, to interrogate the
SRC.

The libsrc subroutines that update the subsystem configuration data, and
those that are used by SRC commands to process input parameters, are not
required in a threaded environment. This is because the applications that use
these routines, the srcmstr daemon itself along with I ssrc and related
commands, are not threaded applications.

The threadsafe and reentrant routines are shown in Table 25. The new
function has been implemented by changing the internals of some routines
and by providing new threadsafe and reentrant versions of other routines.
The new routines are indicated by the _r extension on the name. Where a
new routine has been implemented, the original non-threadsafe version has
been retained for use by non-threaded applications and for binary
compatibility with previous versions of AlX.

Table 25. Threadsafe Routines in libsrc

New threadsafe routines Existing routines made threadsafe
src_err_nsg_r Srcsrpy

srcrrqs_r srcst at hdr

srcstattxt_r srcst op

srcstat _r srcstrt

srcsrqt_r

srcsbuf _r

252 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

6.13 TTY Remote Reboot (4.3.2)

AlX 4.3.2 has added the ability to communicate with a system that has
stopped responding on the network but is still processing device interrupts.
The feature allows a system administrator to force a machine to take a
predetermined action when a user defined character sequence is entered on
a serial port. The feature can only be enabled on native serial ports. Only one
serial port on a machine can be configured for remote reboot. Serial ports
configured on 8, 16, 64, and 128 port adapter cards are not supported.

The feature is configured by setting two ODM attributes that have been added
to native serial ports. The new attributes are reboot_enable and
reboot_string. The reboot_enable attribute has possible values of no, reboot,
and dump. The reboot_string attribute is used to store a case sensitive user
defined string up to 16 characters in length. It is advised to choose an
unusual character sequence that would never normally be typed. For
example ReEbOoTmE. This allows the serial port to be used for a normal
login session, if required, without the possibility of accidentally rebooting the
system.

Table 26. Settings of reboot_enable Attribute

Value of reboot_enable Result
Attribute
no Remote reboot disabled. No action taken if

reboot_string is entered.

reboot Machine will reboot when reboot_string is entered
and confirmed.

dump Machine will dump system image to dump device
when reboot_string is entered and confirmed.

The settings appear on the SMIT Add a TTY, and Change / Show
Characteristics of a TTY panels as:

REMOTE reboot ENABLE no
REMOTE reboot STR NG [#@eb@]

Interrupts must be enabled on the port for this feature to be active. One way
to insure interrupts are enabled is to enable login on the port; with the port
enabled, getty is running and holding the device open, although the user
does not need to be logged in for the system to recognize the reboot string.

If the user defined reboot string is entered when reboot_enable is set to
reboot or dump, the user defined string is erased from the screen and

System Management and Utilities 253

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

254

replaced with the symbol > that is the confirmation prompt. If the user presses
the 1 key on the keyboard, then the predefined action specified by
reboot_enable will occur. If the user presses any other key, the user defined
string reappears on screen; the subsequent character is appended, and no
other action is taken.

An error log entry is made when the remote reboot facility is enabled or
disabled on a serial port. An entry is also made when the facility is used to
reboot a machine or force a system dump. The entry is created when the
machine next starts the errorlog daemon indicating the action taken and the
name of the tty device used to initiate the action.

LABEL: TTY_RRB

| DENTI FI ER: 1960E672

Dat e/ Ti ne: Fri Aug 28 14:54:41
Sequence Nunber: 20

Machi ne | d: 000044091C00

Node |d: ai x4xdev

d ass: (0]

Type: I NFO

Resour ce Nane: Renot e Reboot

Descri ption
SYSTEM REBOOTED USI NG TTY REMOTE REBOOT.

User Causes
SYSTEM REBOOTED USI NG TTY REMOTE REBOOT.

Detail Data
TTY LOG CAL NAME
ttyo

The remote reboot function is intended to be used on remote server
machines that do not have a service processor. Ordinarily, the serial port with
remote reboot enabled would be connected to a modem to allow remote
support staff to reboot the machine if it fails to respond on the network in the
normal manner.

It is the system administrator’s responsibility to provide physical security on
any serial port with remote reboot enabled. This is because any user can
determine the reboot string by using the | sattr command with the appropriate
logical device name. It is not possible to enable a password protected reboot
string, as this would require the code checking the password to use the
crypt() function. Since the code checking the string is running at the highest
interrupt priority, any increase in the time taken to service the interrupt may
cause other device interrupts to be lost with unpredictable results.

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

6.14 Network Install Manager Enhancements

The Network Install Manager (NIM) subsystem has been enhanced in AIX
4.3.2 and AlX 4.3.3 to offer greater control over NIM operations. The system
has been changed to allow more concurrent NIM operations and restrict the
number of concurrent NIM operations.

6.14.1 Restrict Concurrent Group Operations (4.3.2)

A NIM machine group allows an administrator to use a single command to
initiate the same NIM action on many machines at the same time. Depending
on the NIM operation and numbers of machines involved, this can sometimes
lead to resource constraints. For example, many machines performing a BOS
install action could saturate a network segment.

Two new settings are available when performing NIM operations on group
resources. Together they allow the administrator to specify how many
concurrent operations should be attempted on machines in the group and for
how long the NIM server should continue to initiate the operations.

For example, this would allow the administrator of a NIM environment with a
machine group of 100 machines to initiate a NIM operation on the group and
to specify that no more than 10 machines in the group should have the
operation in progress at any one time. This ensures that the network
bandwidth is not exhaustively consumed. When a NIM operation completes
on a client machine, the NIM server initiates an operation on the next
machine in the group until all group members have been processed, or the
time limit has been exceeded. The options are in place for the duration of the
NIM operation. Subsequent NIM operations on the group can use different
values if desired.

The options are valid only for certain operations when a NIM group is used as
the target. The NIM operation will fail with an error message if the options are
used for individual machine, LPP, or SPOT targets. The options appear near
the end of the following NIM SMIT panels that initiate operations likely to
generate large amounts of network traffic:

« Install the Base Operating System on Stand-alone Clients

« Install and Update from LATEST Available Software

¢ Update Installed Software to Latest Level (Update All)

« Install and Update Software by Package Name (includes devices and
printers)

« Install Software Bundle (Easy Install)

« Update Software by Fix (APAR)

System Management and Utilities 255

2014sysmanage.fm

« Install and Update from ALL Available Software

« Install mksysb on an Alternate Disk
« Clone the rootvg to an Alternate Disk

Figure 32 shows an example of the new NIM settings within SMIT.

Draft Document for Review October 25, 1999 10:31 pm

= -
Update Installed Software to Latest Level (Update 211)
Type or select walues in entry fields.
Press Enter AFTER making all desired changes.
[TOFR] [Entry Fields]
*# Installation Target chrpboxes
* LPP_SOURCE aixzd3Zlpp
goftware to Install update_all
Customization BIPT to run after installation [l +
(not applicable to SP0OTs)
Force no +
installp Flags
PREVIEW cnly? [no] +
COMMIT software updates? [ves] +
SAVE replaced files? [no] +
AUTOMATICALLY install reguisite software? [ves] +
EXTEND filesystems if space needed? [ves] +
OVERWEITE same or newser versions? [no] +
WERIFY install and check file sizes? [no] +
Group controls (only walid for group targets):
Number of conourrent operations [1 #
Time limit (hours) [1 #
[MORE...6]
Fl=Help F2=Refresh F3i=Cancel Fd=List
AF5=Reset F&=Command F7=Edit Fi=Image
F9=%hell F10=Exit Enter=Do

Figure 32. Sample NIM SMIT Panel Showing Group Controls

6.14.2 Resource Lock Contention (4.3.2)

The lock granularity of the NIM subsystem has been improved to allow more
operations in parallel. Previous versions of NIM would lock an object for the

256

duration of some operations, thus preventing any other operation on the

same object.

The locking methodology has been changed to lock the object only for critical

parts of the operation. This will allow other operations on the object to

complete when in the past they may have waited or timed out. For example,

this change will allow a showlog operation to be carried out on a machine

resource, which a customer operation is also being carried out. Previously,
the machine object would be locked for the entire duration of the customer

operation.

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

6.14.3 Administration Enhancements (4.3.2)

The NIM sections of SMIT and Web-Based System Manager have been
updated to offer function that was previously only available using the NIM
command line interface. This includes support for ATM network types and
IEEE 802.3 Ethernet networks.

6.14.4 bosinst.data Resource Handling (4.3.3)

The bosinst.data file is of vital importance in the restore of system backup
images, either using NIM and attached tapes or CDs. Syntax errors or
elements missing on the file may cause the restore to fail. New features in
AIX 4.3.3 give more means to reduce errors.

6.14.4.1 File Checking

A new command has been added in the bos.sysmgt.sysbr fileset that enables
you to verify the correctness of the bosinst.data file. The root user and
system group can execute the following script:

[usr/| pp/ bosi nst/ bi check <fil enane>

where filename is the bosinst.data file you want to verify: the command
returns error code 0 if no error has been found or error code 1 and a message
on standard error with the name of stanzas and fields which have incorrect
values. All the file is read and multiple errors may be highlighted.

The bi check command verifies the existence of the control_flow,
target_disk_data, and locale stanzas as needed. The value for each field, if
given, is confirmed to match an allowable value, or other limitations, if they
exist. If a non prompted install is specified, the existence of values for
required fields are confirmed. If a dump stanza exists, the values are
determined to match the allowable values or be within other limitations, where
they exist.

6.14.4.2 File Update During mksysb

When a system backup is created using the nksysb command, the data file
bosinst.data that describes how the system backup will be reinstalled is a
copy of the bosinst.data created when the system was first installed.

If disks have been added to the rootvg, the changes are not reflected in the
bosinst.data file and when the system backup is reinstalled problems will
arise. During a non prompted install, the incorrect data can lead to a failed
install.

System Management and Utilities 257

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

A common case in which the install fails is when a second disk is added to
the rootvg, so that logical volumes can be mirrored to a separate disk. When
reinstalling a mksysb from one of these systems, the install will fail due to
lack of space, unless both disks were selected to be in the rootvg.

In AIX 4.3.3 the nksysb and savevg commands are able to check if the
bosinst.data file contains all the disks present in rootvg or if stanzas related to
removed disks are still present and they can correct the file content.

The nksysb and savevg commands look also for existence of
/save_bosinst.data_file file and they do not update an existing /bosinst.data
file if the /save_bosinst.data_file is found. Otherwise, they check the
/bosinst.data file and correct any missing or incorrect information in the
target_disk_data stanza. If the /bosinst.data file does not exist, they copy the
/var/adm/ras/bosinst.data file to /bosinst.data and correct the
target_disk_data stanzas as needed. If /save_bosinst.data_file exists, but
there is no /bosinst.data file, they behave as though /save_bosinst.data_file
does not exist.

6.14.5 NIM Security (4.3.3)

258

NIM’s method of running commands on remote clients is based on standard
AIX authentication and, starting from AlX version 4.3.1, Kerberos 5. Kerberos
provides better security but is not always available.

In SP environments Kerberos 4 is used for authenticating remote commands.
In order to improve security and to give all NIM installation benefits to SP
customers, AlX 4.3.3 supports also Kerberos 4 authentication in NIM
operations.

The NIM master must have Kerberos 4 authentication enabled to support
clients that only have Kerberos 4 authentication. The NIM master may also
have other authentication methods enabled, such as standard AIX or
Kerberos 5. The NIM master attempts all authentication methods until a
successful method is reached. If there are no remote execution access for the
master on the client then the NIM commands fails.

The NIM master supports the clients that have one of the authentication
methods that the NIM master has.

NIM is not responsible for configuring Kerberos 4 or disabling standard
security AIX on the clients. Kerberos 4 authentication is implemented utilizing
the PSSP 3.1 (or later) Kerberos 4 authentication commands. In secure
environments, if you wish to support only Kerberos 4 on his clients, then you
need to remove the /.rhosts file from the client after the defining a machine as

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

a NIM client. NIM is not responsible for prompting for tokens in the Kerberos
4 environment. Any tokens that are required should be acquired prior to
running any NIM commands.

If secure clients are reinstalled with BOS (Base Operating System), the
authentication methods on the NIM master should be set for both Kerberos 4
and Standard UNIX. This is because NIM does not configure Kerberos 4 on
the client after the BOS is installed. NIM relies on standard /.rhosts to
guarantee that it can remotely execute commands on the client until the client
is configured by the system administrator with Kerberos 4 and made into a
secure client.

6.14.6 NIM Scalability (4.3.3)

NIM has been designed to install machines over the network. It was not
designed to install large quantities of machines at the same time. Steps have
been taken to increase the capability of installing more machines
simultaneously, reducing the amount of time on locks being held, distributing
resources around the network, and exporting NIM resources in a global
manner.

6.14.6.1 nimesis Daemon

All NIM clients communicate with the NIM database during an install sending
their status changes. A new value is sent about every minute to the master to
communicate progress and also to identify the last task completed on the
client. All these commands get funneled though the ni nesi s daemon.

Before AIX 4.3.3 several ni nesi s processes were launched to manage each
command that comes from the client and when a large group of machines
were installed at the same time this could cause many processes on the
master at a single given time. Either some of the commands may fail due to
lack of swap space or the NIM master may become really slow due to the
mass quantity of processes required. Overloads have been reported during
an install of over 30 or 40 client machines at the same time.

Clients send asynchronous message to notify NIM master of state changes or
result values making the master change the status of NIM objects. If these
commands are not handled by the master server, the NIM client may not be
placed into the correct state at the completion of an install. The resources
used by this client may not get deallocated. This may cause problems and
confusion for the NIM administrator.

System Management and Utilities 259

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

260

Starting from AlIX 4.3.3, the ni nesi s daemon is a multithreaded process that
handle ni ntli ent commands to support installations of around 200 client
machines simultaneously, with better performance than previous releases.

A new max_nimesis_threads attribute for the master object has been added
that indicate how many threads the ni nesi s should use. The new ni nesi s
daemon is now made by only two processes: one is similar to the previous
version daemon and then a new multithreaded process that handles the

ni nel i ent command on the master. The first process basically accepts the
connection from the client machines and then passes the socket descriptor
through a stream socket to the second process. The second process consists
of several circular queues that handle the buffering of client commands.

The default value of max_nimesis_threads is 20, as you can see using the
snim-1 master command:

lsnim-1 naster

nast er :
cl ass = nachi nes
type = naster
coment s = nmachi ne whi ch controls the N M envi ronnment
pl atform = chrp
net boot _ker nel =np
ifl = itso 433c.itsc.austin.ibmcom 0020357C5FD8
ring_speedl =16
Gstate =ready for a N Moperation
prev_state =ready for a N Moperation
Mt at e = currently running
serves = boot
serves = nimscript
nast er _port = 1058
registration_port = 1059
reserved = yes
i f_defined = chrp. np. tok
i f_defined = rspc. up. tok

nmax_ni mesi s_t hreads = 20

If the max_nimesis_threads attribute is present and has a value different from
zero, the new multithreaded version of the daemon is used, otherwise the
non-threaded version is activated.

You control the nimesis behavior executing the ni mcommand:

nim-o change -a nmax_ni nesi s_t hr eads=<max nunber of threads> naster

or you can use the Web-Based System Manager or SMIT interface. The
following SMIT panel (fast path nim_tune_nimesis) lets you select the ni nesi s

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

behavior disabling the tuning or defining the number of nimesis threads that
handle simultaneous requests.

Tune dient Request Processing

Type or select values in entry fields.
Press Enter AFTER naking al |l desired changes.

[Entry Fields]
* dient Request Tuni ng? [enabl €] +
Mixi num si mul t aneous request s [40] #

Fl=Hel p F2=Ref resh F3=Cancel F4=Li st
Esc+5=Reset F6=Cormand Fr=Edi t F8=l mage
9 Fo=Shel | F10=Exi t Ent er =Do

In the example, the number of threads is set to 40. You can increase the
value up to 150, but a value of 50 is enough to manage about 200 concurrent
installations: each thread is able to handle more than one client.

6.14.6.2 nim_script Resource

The nim_script resource defines the directory containing customization
scripts created by NIM.

AIX 4.3.3 supports the nim_script resource to reside on NIM servers other
than the NIM master. This helps reducing the resource contention on the
master during installations of large quantities of machines. This also allows
the nim_script resource to potentially be better located in the network,
reducing network contention.

There is only one nim_script object used by all NIM machines and NIM places
it on the most logical NIM server machine for the operation according to the
following ordering rules:

« If it is a bos_inst operation, locate the nim_script on the SPOT server.

« If it is a customer operation and a Ipp_source is allocated, locate the
nim_script on the on the Ipp_source server.

« If it is a cust operation and no Ipp_source is allocated and a script
resource is allocated, locate the nim_script on the on the script server.

« If the prior three locations fail then allocate it on NIM master.

System Management and Utilities 261

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

262

6.14.6.3 Resource Propagation

As customers begin creating larger NIM environments and attempt to install
all the machines at the same time, NIM tends to buckle under the pressure.
SP install works around this by hiding many NIM masters in their
environment, usually one per frame. This allows less global traffic and
keeping the traffic more local to the SP frames themselves. As part of this
scheme, SP does its own resource distribution management.

In an attempt to make NIM more scalable, better facilities for distributing the
install resources to other NIM servers have been added. NIM already
provides the capability to propagate SPOT and Ipp_source resources.
Starting from AlX 4.3.3, all install resources may be propagated to other NIM
servers.

The concept is that the NIM administrator may propagate the resources to
NIM servers in the same subnet or at least in closer proximity to the clients
being installed. NIM then allows the administrator the capability to propagate
NIM install resources to any NIM client machine. This potentially reduces
resource contention on one NIM server and possibly lessen the network
contention in the environment.
The resources that may have replicas on more than one server are:

¢ mksysb

* script

¢ bosinst_data

* image_data

« installp_bundle

« fix_bundle

* resolv_conf

« exclude_files
This first implementation does not provide a way to keep the replicated

resources in sync. It is designed to take a snap-shot of one resource and
copy it to another location.

The new SMIT panels for script, exclude_files, installp_bundle, fix_bundle,
bosinst_data, image_data and resolv_conf resources have a new Source for
replication field, as shown in the following example:

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

Define a Resource

Type or select values in entry fields.
Press Enter AFTER naking all desired changes.

[Entry Fields]
* Resource Nane

* Resour ce Type scri pt
* Server of Resource [1 +
* Location of Resource [1 /
Corment s [1
Source for Replication [1 +
Fl=Hel p F2=Ref resh F3=Cancel F4=Li st
Esc+5=Reset F6=Cormand Fr=Edi t F8=I nage
Fo=Shel | F10=Exi t Ent er =Do

You create the original resource without filling the new field. Then you can
ask NIM to create a new replica (a copy) of the resource defining a new
resource located on another NIM server and you give in the Source for
Replication the name of the original resource.

The mksysb resource allocation is a little different but the only new addition is
the Source for Replication field, as shown in the following example:

System Management and Utilites 263

2014sysmanage.fm

Draft Document for Review October 25, 1999 10:31 pm

Define a Resource

Type or select values in entry fields.
Press Enter AFTER naking al |l desired changes.

Resour ce Nane

Resour ce Type

Server of Resource
Location of Resource
GConment s

E

Source for Replication
-R
System Backup | nage Oreation Qoti ons:
CREATE syst em backup i nage?
N M QLI BENT to backup
PREM EWonl y?
| G\ORE space requi renent s?
BEXPAND /tnp if needed?
Geate MAP files?
Nunber of BLOOKSto wite in a single output
(l eave bl ank to use systemdefaul t)
Wse | ocal EXALULE fil e?
(specify no toinclude all files in backup)
-R
EXCLULE Fl LES resource
(leave blank to include all files in backup)

Fl=Hel p F2=Ref resh F3=Cancel
F5=Reset F6=Cormand F7=Edi t
F9=Shel | F10=Exi t Ent er =Do

[Entry Fields]

F4=Li st
F8=I nage

++ + 4+ + o+

The same feature has been added in Web-Based System Manager panels

that allow resource allocation.

6.14.7 Web-Based System Manager Improvements (4.3.3)

New functions and task guides have been added to NIM Web-Based System
Manager interface to ease NIM operations. By launching the Web-Based
System Manager interface and selecting NIM from the launch pad, you can
select the new task guides selecting the NIM menu on the upper bar, as

264

shown in Figure 33.

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

E 433a standalone ready far a MIk operation
ﬁ 433c standalone ready for a MIk operation
ﬂ master master ready far a MIk operation

TR | —

Figure 33. NIM Web-Based System Manager Panel

6.14.7.1 Machine Group Definition

Machine groups are present in NIM starting from AlIX 4.3.0, but no support
was present in Web-Based System Manager. In AlX 4.3.3 they can be directly
used by Web-Based System Manager. Selecting NIM and then New Group...
the following panel appears (Figure 34), from where you can define the new
machine group and add into it any number of NIM clients among those you
have previously defined:

System Management and Utilites 265

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

Group Properties Dialog

.

Figure 34. NIM Web-Based System Manager Machine Group Definition

6.14.7.2 Base Operating System Install

Installation of AIX on a machine is now even simpler making use of
Web-Based System Manager task guides. Select NIM an then Install Base
Operating System to start the following task guide (Figure 35):

266 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

I

Thiz TaskGuide alloves you to initiate and customize the installation of
the Base Operating System on one or more standalone NIk machines
or a MIkt machine group. Included are options to specify and create
Mk resources that customize the installation.

1 Meet = | Cancel

Figure 35. NIM BOS Task Guide

The task guide allows you to install multiple machines or, if you have defined
any, to install a machine group.

6.15 Paging Space Enhancements (4.3.2)

AIX Version 4.3.2 now provides support for up to 32 GBs of memory on
RS/6000 64-bit SMP servers. Before AlX 4.3.2, paging space was allocated
for the executing process at the time the memory was requested or accessed.
This required backing paging space allocated for all pages in the real
memory, to save the image of the page. On a large-memory machine where
paging was never or rarely required, these paging space blocks were
allocated but never be used. In this case, resources were wasted.

In AlX 4.3.2, the policy for paging space allocation has been modified to allow
a deferred paging space allocation. The allocation of paging space is delayed
until it is necessary to page out the page, which results in no wasted paging
space allocation. This new paging space allocation method greatly reduces
the paging space requirements for systems with large physical memory.

6.15.1 Late and Early Paging Space Allocation

There are three kinds of paging space allocation policies used with AlX. The
setting of the PSALLOC environment variable determines the paging space
allocation mode.

System Management and Utilities 267

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

268

Early Allocation

If the environment variable PSALLOC is set to early, then the early allocation
policy is used. This will cause a disk block to be allocated whenever a
memory request is made. If there is insufficient paging space available at the
time of the request, the early allocation mechanism fails the memory request.
This guarantees that the paging space will be available if it is needed.

Late Allocation in Pre-AlX 4.3.2

If the environment variable is not set, then the default late allocation policy is
used and a disk block is allocated only when a page in memory is initially
accessed, not when it is allocated.

Late Allocation in AlX 4.3.2

AIX 4.3.2 modifies the late allocation policy so that a disk block is not
allocated until it becomes necessary to page out the page from memory into
paging space. In AlX 4.3.2, late allocation will not allocate any disk blocks if
there is enough real memory and no paging required for a given application
set.

In summary, Table 27 shows the different policies used in various AIX
versions.

Table 27. Paging Space Allocation Policies

PSALLOC = early All AIX versions

Paging space is allocated when memory is requested

PSALLOC is not | Pre-AlX 4.3.2 AlX 4.3.2

set or set to any

value other than | Paging space is allocated Paging space is allocated

early when the page in memory is when the page in memory
accessed needs to be paged out

Paging space slots are only released by process (not thread) termination or
by the disclaim system call. They are not released by the free call.

6.15.1.1 Early Paging Allocation Mode Considerations

If the PSALLOC environment variable is set to early, then every program
started in that environment from that point on, but not including currently
running processes, will run in the early allocation environment. The early
allocation algorithm causes the appropriate number of paging space slots to
be allocated at the time the virtual-memory address range is allocated. For
example, with malloc. Interfaces, such as the malloc subroutine and the brk
subroutine, will fail if sufficient paging space cannot be reserved when the
request is made.

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

The early allocation algorithm guarantees as much paging space as
requested by a memory allocation request. Thus, proper paging space
allocation on the system disk is important for efficient operations. When
available paging space drops below a certain threshold, new processes
cannot be started, and currently running processes may not be able to get
more memory. Any processes running under the default late allocation mode
become highly vulnerable to the SIGKILL signhal mechanism. In addition,
since the operating system kernel sometimes requires memory allocation, itis
possible to crash the system by using up all available paging space.

Before you use the early allocation mode throughout the system, it is very
important to define an adequate amount of paging space for the system. The
paging space required for early allocation mode will almost always be greater
than the paging space required for the default late allocation mode. How
much paging space to define depends on how your system is used and what
programs you run. A good starting point for determining the right mix for your
system is to define a paging space four times greater than the amount of
physical memory.

Certain applications can use extreme amounts of paging space if they are run
in early allocation mode. The AIXwindows server currently requires more than
250 MB of paging space when the application runs in early allocation mode.
The paging space required for any application depends on how the
application is written and how it is run.

6.15.1.2 Late Paging Allocation

If the environment variable PSALLOC is not set, is set to null, or is set to any
value other than early, the default late paging space allocation policy is used,
and a disk block is allocated only when a page is initially used, not when a
memory request is made.

The default late allocation algorithm for paging space allocation assists in the
efficient use of disk resources and supports applications of customers who
wish to take advantage of a sparse allocation algorithm for resource
management.

Some programs allocate large amounts of virtual memory and then use only a
fraction of the memory. Examples of such programs are technical applications
that use sparse vectors or matrices as data structures. The late allocation
algorithm is also more efficient for a real-time, demand-paged kernel, such as
the one in the operating system.

System Management and Utilities 269

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

6.15.2 Commands Affected by Late Paging

270

The following commands are affected by the change in paging policy.

6.15.2.1 vmstat Command Update

The avm column reported by vnstat command means active virtual pages. In
previous AlX versions, the description of avm states "virtual pages are
considered active if they are allocated". This is not true for every release of
AlIX and is changed to "virtual pages are considered active if they have been
accessed".

6.15.2.2 Isps Command Update

If you set the environment variable PSALLOC=early, the -s flag displays a
value different from the value returned when using the -a flag for all the
paging spaces. In this case, the value of -s flag displays the percentage of
paging space allocated (reserved), whether the paging space has been
assigned (used) or not. The -a flag specifies the percentage of paging space
used. Therefore, the percentage reported by the -s flag is usually larger than
that reported by the -a flag.

The following is an example. First, set the paging space allocation to early:
#export PSALLQC=early

After the system is running for some time, the paging space looks like:
#l sps -a
Page Space Physical Volume Vol une G oup Sze %ked Active Auto
Type
hd6 hdi skO r oot vg 256MB 8
yes yes v
#lsps -s
Total Paging Space Percent Used
256MB 9%

The paging space used reported by using -s (9%) is larger than using -a
(8%).

Set the paging space allocation to late:

#export PSALLOC=

The | sps command displays the same percentage value with -a and -s flag
(8%).

lsps -a

Page Space Physical Volume Vol une G oup Sze %ked Active Auto
Type

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

hd6 hdi skO r oot vg 256MB 8 yes yes v
lsps -s
Total Paging Space Percent Used

256MB 8%

6.16 Error Message Templates (4.3.2)

When an application wants to log an error to the AlX error log, it writes
information about the error, specifically the error identifier, resource name,
and error specific data to the /dev/error special file. The error daemon reads
from the special file and logs the information in the error log. The errpt
command, which is used to display error messages, reads the error message
template repository to determine how to interpret and display the error data.

On previous versions of AlX, it is not possible for an error message template
definition to contain any message text. It can only contain codepoints, which
are two byte message numbers used to reference predefined message
strings. The codepoints refer to messages defined by the IBM SNA Generic
Alert Architecture described in SNA Formats, GA27-3136. The architecture
imposes restrictions on the message numbering and message length that can
be used. The message strings are kept in the codepoint.cat file, which is a
specially formatted message catalog.

AIX 4.3.2 has updated the errpt command, along with the commands used
for updating the error template repository, to understand an additional error
template format, which can define messages from a normal format NLS
message catalog as well as using the previous codepoint method.

A template may contain all NLS messages, all codepoints, or a combination
of both. An NLS message is represented with a message set number, a
message number, and a default text string to be printed if the associated
message catalog is not present. Each error template also specifies the
message catalog to be used for messages referenced by that template.

*1 sanpl e. cat
* sanple error tenplate using NLS nessages
+ SAMPLE:
Err_Type = UNKN
dass = S
Report = TRUE
Log = TRUE
Alert = FALSE
Comment = "Sanple of nsgs in tenplates"
Err_Desc = {1, 2, "SAWPLE DESCRI PTI ON TEXT"}
Fai | _Causes = {0, Oxeb54, ""), (1, 5, "default cause"},
{3, 5, "default cause 2"}, {3, 6, "default cause3"}
Prob_Causes = {2, 1, "Bad Operator"}, {2, 2, "Bad Progranmmer"}
User _Causes = {2, 5, "User pressing wong key"}

System Management and Utilities 271

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

User _Actions = {2, 6, "Read the manual "},
{2, 7, "Take a long long I ong\n\t\
long, really long, look at the manual ."}
I nst_Causes = {0, 0, ""}
Inst_Actions= {2, 8, "reinstall"}
Fai|l _Actions = {2, 9, "kick it"}
Detail _Data = 226, {0, 0x8004,""} , ALPHA
Detail _Data = 4, {2, 10, "regester value"} ,HEX

This dramatically increases the number of messages that can be used by an
error template, as it is no longer restricted to the messages defined by the
IBM Alert Architecture. The trade off is that the new error messages are no
longer changeable.

In addition to increasing the number of messages available to an error
template, this enhancement has also increased the number of detail data
items up to a maximum of sixteen.

6.17 Remote File Distribution Enhancements (4.3.2)

272

Previous versions of AlX included Version 5.1 of the rdi st command, which is
used to distribute and maintain identical copies of files on multiple hosts. The
rdi st command on AIX 4.3.2 has been updated to Version 6.1.3, which
includes some new features, namely:

« Multiple target hosts are now updated in parallel. This improves the
update time when working with large numbers of hosts. This behavior can
be controlled by changing the number of hosts updated in parallel, or
disabling the feature, in which case, hosts are updated sequentially.

« The new version of rdi st avoids problems when communicating with a
remote host by setting a time-out value. If the remote host fails to respond
within a set period during a transfer, rdi st displays an error message and
continues to update other hosts. The previous version of rdi st would
continue to wait until the remote host responded.

« Local and remote error messages are distinctly marked for better clarity.

« The amount of free space can optionally be checked to avoid filling up a
file system. Before actually installing or updating a file, rdi st will calculate
whether the update would exceed the minimum amount of free space as
specified on the command line. If the minimum space would be exceeded
by the update, no update is performed and an error message is displayed.

« The client and server portions are split into two distinct programs, rdi st
and rdistd. This lowers the risk of security vulnerabilities since the server
rdistd does not need to be setuid to root. It also allows for greater ease in
maintaining different versions of rdi st.

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

Version 6.1 of rdi st implements a new protocol for communicating between
machines. Both versions of the rdi st command are shipped with AIX 4.3.2 to
allow users to distribute files to machines running either version of rdi st. The
new version is shipped as / usr/bi n/rdi st, and the old version as
/usr/bin/oldrdist.

When the rdi st program contacts a target machine, it requests the target to
start the rdi st server side program. Version 6.1 rdi st will start the rdistd
server program. Version 5.1 rdi st requests the target machine to run rdi st
-Server. If the version 6.1 rdi st is run with the -Server option, then it will exec
a copy of ol drdi st. In this way, you can get compatibility with hosts running
rdi st Version 5.1 attempting to distribute files to a machine running rdi st
Version 6.1. If a host running rdi st Version 6.1 wants to distribute files to a
host running the rdi st Version 5.1, then it must run the ol drdi st program.

6.18 Editor Enhancements (4.3.2)

The ed editor program has been enhanced to examine the environment
variable EDTMPDIR to determine the directory location for temporary files.
This has been done to allow a system to better handle the start up of multiple
ed sessions by avoiding a bottleneck on the inode for the default temporary
directory used by ed.

6.19 System Backup Usability Enhancements (4.3.2)

The nksysb and savevg commands have been enhanced to include information
in the backup image about block size of the tape device being used to store
the backup image.

This change means that when using SMIT to list the contents of the backup,
restore individual files, or restore the complete backup. The system can read
the information on the tape indicating the block size used to create the image.
It can then change the block size of the tape device being used to read the
backup to be the same, therefore maximizing the data transfer rate. Once the
operation to list, or restore the backup has completed, the system changes
the block size of the tape device back to the previous setting.

The following SMIT panels have been updated to include a new option that
allows the user to specify whether the system should attempt to determine
the tape block size used to create the backup image:

« List Files in a System Image

* Restore Files in a System Image

System Management and Utilites 273

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

e List Files in a Volume Group Backup

« Restore Files in a Volume Group Backup

An example of the change is shown in Figure 36. If the option is set to yes,
and the tape being read was created on a previous version of AlX that did not
include the tape block size information on the tape, then the underlying
commands will set the block size to 0 and continue with the required
operation.

Fl=Help F2=Refresh F3i=Cancel Fd=List
AFS=Reset F&=Command F7=Edit Fi=Image

= =]
List Files in a Volume Group Backup
Type or select walues in entry fields.
Press Enter AFTER making all desired changes.
. [Entry Fields]
* DEVICE or FILE

[/dev/rmt0] +/
Number of BLOCES to read in a single input []
lank to use a svstem default)
. size if ta

F9=%hell F10=Exit Enter=Do

Figure 36. Sample SMIT Volume Group Backup Screen

6.20 Operating System Install Enhancement (4.3.2)

274

The function of the non-prompted install method has been improved to
provide a means of protecting user defined volume groups already on the
system. A non-prompted install can be carried out by supplying a customized
bosinst.data file when restoring a mksysb or installing the base operating
system from CD-ROM, tape, or NIM server.

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

The EXISTING_SYSTEM_OVERWRITE variable now has three possible
values, provided in Table 28, which determine the action taken.

Table 28. Possible Values of EXISTING_SYSTEM_OVERWRITE
EXISTING_SYSTEM_OVERWRITE= Action Taken

any Any disk can be used for the system install.
This is the behavior of the 'yes’ option on
releases prior to AIX 4.3.2.

no Only disks containing no volume groups
(user defined or previous rootvg) can be
used.

yes Only disks in the current rootvg, or

containing no volume groups, can be used
for the system install

The value of EXISTING_SYSTEM_OVERWRITE is only examined if the
bosinst.data file also sets PROMPT=no and INSTALL_METHOD=overwrite.

6.21 New Diagnostic Service Aid (4.3.2)

The diagnostics subsystem in AlX 4.3.2 has been enhanced by the addition
of a system memory exerciser, which can be used to check system memory
on CHRP systems. The tool is implemented as a service aid and is only
available when running online diagnostics in service or maintenance modes.
Service mode diagnostics are entered when the machine boots in service
mode. Maintenance mode diagnostics are entered by first taking the machine
to maintenance mode using the shut down - mcommand.

The machine to be tested is required to have the bos.acct package installed
and paging space of at least one and a half times the amount of physical
memory. The service aid will exit with an error if the bos.acct package is not
installed. If the paging space requirement is not met, the service aid will give
a warning message informing the user that it is not possible to test the
maximum amount of physical memory.

The service aid will then display the memory exerciser options screen, which
allows the user to select the characteristics of the testing that will be
performed.

The service aid memory exerciser options screen is shown in Figure 37.

System Management and Utilites 275

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

MEMORY EXHERCISER OPTIONS

Select walues for the options below.

When finished, use ’‘Commit’ to continue.
Fun 2ddress Test [Ees]
Eun Data Test (memory to memory) [Ho]
Run Data Test (disk to memory) [No]
Eun cone pass only [Tes]

Fl=Help FZ=Refresh Fi=Cancel Fd=List

F5=Reset Fi=Commit F10=Exit

Figure 37. Memory Exerciser Options Menu

Once the desired options have been selected, the system exerciser menu
(Figure 38) is displayed, which allows the user to start and stop the exerciser
and view the error logs.

| gystem Exerciser Main Menu |
| |
| 1 Activate/Halt System |
| & Activate/Halt Device(s) |
| 3 Bhow/8et/Clear "Continue on Error" Flag(s) for Device(s) |
| 4 Display Dewvice Status Table |
| 5 View Device Statistics |
| 6 View Error Log |
| 7T View Message Log |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| Please enter the number of the desired option: _ |
| h = help r = refresh screen %z = exit |

Figure 38. System Exerciser Main Menu

6.22 Diagnostic Enhancements (4.3.3)

This section describes the enhancements to the diagnostic environment that
are provided as part of AlX Version 4.3.3. For background information

276 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

regarding this environment, you should review the book Understanding the
Diagnostic Subsystem for AIX, SA23-2797 which has also been upgraded.

There is a new diagnostic CD-ROM for AlX Version 4.3.3.

6.22.1 Diagnostics Task Selection List

Previously, the diagnostic Tasks Selection List menu listed items in the order
in which it was thought that they would be used, but this has proven to be
difficult to use. With AlX Version 4.3.3, tasks and service aids under
diagnostics have now been ordered alphabetically for improved ease of use.

You can see the new display order by using the steps that follow:

1. Go to the main diagnostic menu. You can execute snitty, select Problem
Determination, then Hardware Diagnostics, then Current Shell
Diagnostics, or the fast path di ag command, and then press the Enter key
to continue to the screen from which you can select the option in the next
step.

2. Select the option Task Selection(Diagnostics, Advanced Diaghostics,
Service Aids, etc.) to display the list of tasks on your screen, which
should appear as in the following example:

TASKS SH ECTI ON LI ST 801004

Fromthe list bel ow select a task by moving the cursor to
the task and pressing 'Enter’.
To list the resources for the task highlighted, press 'List’.

[TCH
Run D agnosti cs
Run Error Log Anal ysi s
Run Exerci sers
DO splay or Change D agnostic Run Tine (ptions

Add Resource to Resource Li st

Backup and Restore Media

Certify Media

Change Hardware Mital Product Data

Gonfigure | SA Adapt er

Gonfi gure Reboot Policy

Qonfigure Renote M ntenance Pol i cy
[MRE .. 30]

Fl=Hel p F4=Li st F10=Exi t Ent er
F3=Pr evi ous Menu

System Management and Utilities 277

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

The choices that follow on subsequent screens are now listed in alphabetical
order. The tasks are discussed in the article Tasks and Service Aids in the
book Understanding the Diagnostic Subsystem for AlX, SA23-2797.

—— Documentation of Tasks

The AIX Documentation that describes the diagnostic tasks is currently
task oriented. The Tasks and Service Aids article has grouped the tasks in
the article’s Task List section in one of the following six categories:

e Diagnostics and Error Log Analysis
e Configuration and VPD

e Communications and LANs

* Media

» Microcode

« Displays

Each task has a hypertext link to text that describes what the task is. The
descriptions of every task are located following the list of all tasks. The
descriptions are listed alphabetically, which is also how they appear on the
screen as shown for the output of step 2 on page 277.

As shown in that screen, the Change Hardware Vital Product Data task
follows the Certify Media task. The Tasks and Service Aids article
categorizes the Certify Media task in the Media group of tasks, and the
Change Hardware Vital Product Data task is in the Configuration and VPD
group. If you select the link for either task, you will go to its description. The
text description of the Change Hardware Vital Product Data task follows
that of the Certify Media task, even though they are in separate categories.

6.22.2 New Diagnostic Event Log

278

With the enhanced AIX diagnostic package, you can keep track of diagnostic
activity on the systems by using a new diagnostic event log. This log can be
viewed by using the Display Previous Diagnostic Results task. Previously,
the results of diagnostic tasks may not have been clear. That is, Service
Request Numbers (SRNs) may not have been noticed amongst any No
Trouble Found (NFT) messages; before AIX Version 4.3.3, the previous
results task displayed at most 25 entries.

The diagnostic log is a tasks log that is stored in binary in the new log file
/var/ladm/ras/diag_log, not the errlog file. The Diagnostic Controller also

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

writes its analysis to files in the directory /etc/Ipp/diagnostics/data, and the

di agrpt command, or Display Previous Diagnostic Results task, can be used
at a later date to retrieve and display these results. If you look in the
/etc/lpp/diagnostics/data directory, you can see the last 25 diagnostic results
(NTFs, SRNs, and menugoals) in files named diagrptX.dat where X is a
number from 1 to 25. The di agrpt command can be used to look at either the
*.dat files or the diag_log. You can look at the diag_log directly by using the -a
(detail version) or -r (summary version) flags. The -0 and -s flags can be used
to view the *.dat files directly. Some examples of the di agrpt command are
shown in “Using the Enhanced diagrpt Command” on page 281. The files in
letc/lpp/diagnostics/data/*.dat are ASCII data files. When there are more than
25 entries, the files are overwritten. Therefore, you will always have the last
25 diagnostic results (NTFs, SRNs, and menugoals).

The same diagnostic results are also logged to /var/adm/ras/diag_log which

is a binary file. However, unlike the *.dat files which can only show the last 25
results, the diagnostic log can show you a lot more diagnostic results. Since

the diag_log is at least 100K it can hold more than 25 results before the data
is wrapped.

Note that you should not use the binary form of the log data, but only the data
formatted and presented to you by the di agrpt command, in case the format
of the binary log changes.

6.22.2.1 Inside the Diagnostics Log

Before AIX Version 4.3.3, the Display Previous Diagnostic Results task
displayed at most 25 entries. Now this task allows you to access the contents
of the new diagnostic event log ranging from 100 KB to 1 MB. This log can be
used to trace the execution of diagnostics. The following events are logged:

« Starting diagnostics

All problem reports (SRNS)
* All NTFs

e All menu goals

All software errors

« Exerciser errors
The log entries are similar to the AIX Error Log. They can be displayed in
either a short or long version. The command di agrpt -a displays the long

version of the log. The short version, using the command di agrpt -r, has the
following output format:

I D DATE TTME T RESOURCE_ NAME DESCR PTI QN

System Management and Utilities 279

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

280

The Date/Time field has the following form: weekday month day HH:MM:SS.
For example, an entry may be: Mon Jan 5 11:25:30. This is the same time
stamp format as is used in the long version of the errpt command.

Log Identifier
The ID is a hex value that identifies the event being logged when viewing the
short version of the log. The current log identifiers are:

« DCOO = Diagnostic Controller session started
« DCFO = Diagnostic Controller reported an SRN from missing options
« DCF1 = Diagnostic Controller reported an SRN from new resource
« DCE1 = Diagnostic Controller reported ERROR_OTHER
« DAOO = Diagnostic Application reported NTF
« DAFO = Diagnostic Application reported an SRN
« DAFE = Diagnostic Application reported an ELA SRN
* DAEO = Diagnostic Application reported ERROR_OPEN
* DAEL1 = Diagnostic Application reported ERROR_OTHER
Log Types

Each log entry has a Type (T field) associated with it. The following Types are
logged:

e Type | = Informational Message
* Type S = SRN Callout

e Type N = No Trouble Found

« Type E = Error Condition

6.22.2.2 Log Options

The log has a toggle option to start or stop logging diagnostic events. You can
also control the size of the log. After the maximum size of the log is reached,
the log will wrap, overwriting previous events. To support multiple sessions of
Diagnostics, the log is locked using the ODM lock routines before events are
written to it. The log only logs events in online concurrent or online service
mode, and is turned off when running from standalone diagnostics.

You can change the log options by the following method:

1. Go to the main diagnostic menu. You can execute smt, select Problem
Determination, then Hardware Diagnostics, then Current Shell
Diagnostics, or the fast path di ag command and then press the Enter key
to continue to the screen with the usual menu choices.

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

5.

Select the option Task Selection(Diagnhostics, Advanced Diagnostics,
Service Aids, etc.) to display the list of tasks.

. Select the task Display or Change Diagnostic Run Time Options to get

to a screen that looks similar to the following example:

D SPLAY/ GHANGE D AGNCSTI C RIN TI ME GPTI ONS 801009

Sel ect val ues for the options bel ow

Wen fini shed, use 'Gmmt’ to continue.
D spl ay DO agnostic Mde Sel ection Menus [O] +
I ncl ude Advanced D agnosti cs [af] +
Include Eror Log Analysis [Gf] +
Nunber of days used to search error |og [7 +
D splay Progress Indicators [O] +
D agnostic Event Loggi ng [O] +
D agnostic Event Log fil e size [100K] +
Save changes to the dat abase? [Ng +

Fl=Hel p F2=Ref resh F3=Cancel F4=Li st

F5=Reset F7=Conmi t F10=Exi t

N /

Make the required changes to the options Diagnostic Event Logging and
Diagnostic Event Log file size.

Press the F7 key to save your changes and exit this screen.

6.22.2.3 Using the Enhanced diagrpt Command
The di agrpt command is shipped in the bos.diag.util fileset, and its syntax is:

diagrpt [[-o][-s mdyy]] | [[-a][[-r]]

Previously, the syntax of the di agrpt command was:

usage: diagrpt [-o][-s mmdyy]

The following examples show the use of the di agrpt command:

¢ The short version of the command, using the -r flag, displays one event

per line. You can use this with the head -5 command to display the five
most recent entries, as shown:

[usr/| pp/diagnostics/bin/diagrpt -r|head -5

System Management and Utilities 281

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

282

1D DATE TI ME T RESCURCE_NAME DESCRI PTI ON

DCO0 Wed Aug 11 09:59:51 | diag D agnostic Session was started
DAO0O Wed Aug 11 04:00:52 N sysplanar0 No Troubl e Found

DO00 Wed Aug 11 04:00:48 | diag D agnostic Session was started
DAO0O Wed Aug 11 04:00:45 N sysplanar0 No Troubl e Found

The -o flag can be used, as in the AlX 4.3.2 release, to display some more
detail about what the most recent diagnostic activity was:

[usr/| pp/ di agnosti cs/ bi n/di agrpt -o
TESTI NG COVPLETE on Véd Aug 11 04: 00: 52 CDT 1999
801010

No troubl e was found.
The resources tested were:

- syspl anar0 00- 00 CPU H anar
You can use the wc command to show that the log contains 523 entries:

[usr/| pp/di agnostics/bin/diagrpt -r|wc -1
523

You can use the long version, invoked with the -a flag, to display all
information contained in each event log entry as in the (different) example:

diagrpt -a

| DENTI Fl ER DA0o

Dat e/ Ti ne: Mn Jan 5 11:25:30
Sequence Nunber: 1

Event Type: I nformational Message
Resour ce Nane: di ag

Db ag Sessi on: 23781

Descri ption:

D agnostic Session was started.

| DENTI FI ER DAFO

Dat e/ Ti ne: Mon Jan 5 11:25: 30
Sequence Nunber: 2

Event Type: SRN Cal | out

Resour ce Nane: fdo

Resource d ass: di skette

Resour ce Subcl ass: siofd

Resour ce Type: fd

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

Locat i on: 01- D1- 00- 00
DO ag Sessi on: 23781
Test Mode: Consol e, Advanced, Nornal

Probl em Deternninati on, ption Checkout
SR\ 935- 102

Descri ption:
D skette Drive select test failed.

Probabl e FRUs:
80%f dO 00- 00- 0D 00 D skette Drive
20% syspl anar 0 00- 00 Syst em M anar

6.22.3 Diagnostic Test Enhancements

Some improvements have been made to the system hardware tests. These
include:

* The FRU part number is now displayed instead of the FRU confidence
level, if available. This reduces the amount of cross reference lookup by a
CE to get the correct replacement part.

« A restructure of the Central Electronics Complex (CEC) tests has been
done, to improve the analysis of microcode generated error logs.

« The Operator Panel tests have been placed in their own Diagnostic
Application. Previously, the Operator Panel tests were included in the
system planar Diagnostic Application. Normally, the system planar
diagnostics are run to test and do error log analysis for system problems.
The Operator Panel Test just had previously added unneeded menus that
you had to answer while investigating such problems. Since this has been
changed, the system planar can be tested more quickly. An entry for the
Operator Panel now appears on the Diagnostic Selection and Resource
Selection menu.

6.22.4 Customer Engineer Diagnostic Login Capability

In previous versions of AlX, only the root user could run diagnostics. The CE
diagnostic login capability will allow a Customer Engineer (CE) or service
support representative to login to a system as non-root user and run
diagnostics.

An administrative role has been created that allows diagnostics to be run.
Diagnostics authenticates the user by checking if the user has this

System Management and Utilities 283

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

administrative role. Users in the Run Diagnostics role can change the system
configuration, update microcode, for example.

6.22.4.1 Creating a Customer Engineer User

You must either have root user authority or be a user with administrative role
RunDiagnostics to run diagnostics. If you are not a root user, you must also
have system as primary group. You can create a user with the appropriate
authority by executing the command snitty nkuser and entering the minimally
required fields, as in the following example:

Add a Wser

Type or select values in entry fields.

Press Enter AFTER naking al |l desired changes.

[TCAA [Entry Fields]

* User NAME [di agce]
Wer ID [1 #
ADM N STRATI VE USER? fal se +
Primary GROP [systen} +
Goup SET [1 +
ADM N STRATI VE GROLPS [1 +
RAES [RunD agnosti cs] +
Anot her user can SU TO USER? true +
SU QRAPS [ALL] +
HOME directory [1
Initia PROZRAM [
User | NFGRVATI ON [
BEXPl RATI ON dat e (MCDhhnmyy) [0]
I's this user AGCONT LOKED? fal se +

[MFE . . 36]

Fl=Hel p F2=Ref resh F3=Cancel F4=Li st

F5=Reset F6=Cormand Fr=Edi t F8=l mage

Fo=Shel | F10=Exi t Ent er =Do

If a user does not have the appropriate authority, they will receive an error
message similar to the following if they try to access the system diagnostic
tools:

$ diag
Wser is not authorized to run diagnosti cs.

6.22.5 Hardware Diagnhostic Exerciser

A diagnostic exerciser has been added for processors to enhance problem
determination. It provides a means to verify both memory and processor
repairs previously detected by error log analysis.

284 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

The exercisers are used to test hardware and verify part replacement. Fatal
hardware errors and data mis-compares are reported by the exercisers.
Recoverable errors are not reported by the exercisers. Fatal errors are
logged in the AlIX error log and data mis-compare errors are logged in the
diagnostics event log. Recoverable errors may be logged in the AlX error log
if thresholds are exceeded. Error Log Analysis should be run to determine a
SRN. Mis-compare errors should be rare. Note the following important points:

The exercisers are only supported on CHRP platforms.

In general the exercisers will try to verify the hardware by writing data
patterns to the device, reading it back and comparing the data written with
the data read.

The exercisers are not supported from standalone diagnostics.

100% of the real memory will not be exercised since memory access is
through the AIX Virtual Memory Manager (VMM). The vnstat and | sps
commands are used to determine how much memory and paging space is
available and then that amount of memory is allocated for use by the
exerciser using the IPC shared memory facility.

It is recommended that no customer applications be running while the
systems exerciser is running since the system performance will be
degraded.

You need 1 MB of free storage in /tmp. You can use smt to increase the
size of the /tmp file system.

If there are no free physical partitions on the hard disk you select, the
exercise will be limited to read only. If there are free partitions, you are
given the option to set up a scratch logical volume to perform a
read/write/compare exercise. The default is one logical partition which in
most cases is sufficient.

Exerciser Options and Duration
There are two exerciser options:

Extended

If the extended exercise option is selected the exerciser main menu is
displayed and once the exercisers are started they will run continuously
until you choose to terminate the exercise.

Short

The short exercise will take 5-10 minutes depending on processor speed,
memory, and I/O configuration. For the short exercise the Exerciser Main
Menu screen is bypassed, the exercisers started automatically, and the

status screen is displayed. When the exercise completes without error(s)

System Management and Utilites 285

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

an Exerciser conplete, Run Error Log Anal ysi s message is displayed, and
when you respond by pressing Enter, the Task Selection Menu is
displayed.

If error(s) are detected, you have the option to further investigate the error(s)
before returning to the Task Selection Menu.

6.23 Performance Toolbox Agent Repacking (4.3.2)

286

The Performance Toolbox is a Motif-based AlX licensed program product
(LPP) that consolidates AlX performance tools into a toolbox framework.
Users can easily access tools for system and network performance tuning,
monitoring, and analysis. It consists of two major components: Performance
Toolbox Manager and Performance Toolbox Agent.

The Performance Toolbox Manager has three packages:

perfmgr.local This package contains the commands and utilities that
allow monitoring of only the local system.

perfmgr.network This package contains the commands and utilities that
allow monitoring of remote systems as well as the local
system.

perfmgr.common This package contains the commands and utilities that
are common between the network support and the local
support.

The Performance Toolbox Agent has one package:

perfagent.server This package contains the performance agent
component required by Performance Toolbox as well as
some local AIX analysis and control tools.

The packaging of the previous Performance Toolbox contained two filesets:
perfagent.server and perfagent.tool causing installation difficulty. To improve
this process, those pieces that are required to be built with the AIX kernel are
moved into the perfagent.tools fileset. Then the agent becomes mainly an
interface routine to those pieces.

The perfagent.tools fileset is shipped with the AIX 4.3.2 base. For AIX 4.3.2,
The Performance Toolbox Agent will prereq perfagent.tools. So the .tools
fileset must be installed first.

Note: The online PTX Guide and Reference for AIX 4.3
(perfagent.html.en_US) is available by ordering APAR 1X80484 (PTF

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

U458736). In AlX Version 4.3.0, this document is shipped with the
Performance Aide CD. In AlX Version 4.3.2, it is included in the base AlX
documentation.

Table 29 lists the various minimum file set levels required with a particular
AlIX level.

Table 29. AlX Level and Required File Sets

AlX Version File Set

AIX 4.1.5 perfagent.tools 2.1.6.*
perfagent.server 2.1.6.*

AlX 4.2.1 perfagent.tools 2.2.1.*
perfagent.server 2.2.1.*

AlX 4.3.1 perfagent.tools 2.2.31.*
perfagent.server 2.2.31.* (replaced by 32)

AlIX 4.3.0 perfagent.tools 2.2.32.0
perfagent.server 2.2.32.0 (prereqs 3.3.32.0 perfagent.tools)

6.24 Performance Toolbox Enhancements (4.3.3)

On AIX 4.3.3 following performance toolbox enhancements are provided.

6.24.1 Kernel Statistics Access From User Mode

Sometimes it is useful to access kernel statistics information from
non-privileged processes. An example of such process is the database
manager process that requires kernel statistics information for its own
resource management. A new kernel extension, libspmi_kex, is introduced to
allow user mode process to access kernel statistics. The libspmi_kex kernel
extension supplies functions to open /dev/ikmem and /dev/mem for binary
read. The functions are used only by the functions in libspmi.a shared library.
Processes can access kernel statistics information through libspmi.a shared
library.

6.24.2 SPMI-Based Top Clone

A new performance monitoring program based on libspmi.a shared library is
introduced. The program, topas, is a cursed based application that displays
top processes, disk, and memory usage. As its name implies, t opas program
is a clone of the freeware program t op. The following screen output shows
screen images of t opas.

System Management and Utilities 287

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

Topas Monitor for host: r oot nast er BEVENTY QUELES ALE TTY
Thu Aug 12 19:13:48 1999 Interval: 2 Gswi tch 483 Readch 1178
Syscal | 4781 Witech 197
Ker nel 6.2 |## | Reads 6 Rawin 0
User 0.2 | | Wites 0 Ttyout 197
Vi t 44.5 | HHHARHHERET | Forks 0 lgets 0
Ide 49.0 | HHHHHHHHHHHHHH | Execs 0 Nanei 2300
Rungqueue 0.0 Orblk 2627
Interf KBPS |-Pack OPack KBIn KB Qit Witqueue 1.7
tro 0.3 2.0 0.5 0.1 0.2
| 00 0.0 0.0 0.0 0.0 0.0 PAANG MEMCRY
Faults 325 Real,MB 511
O sk Busy% KBPS TPS KB-Read KB-Wit Seals 0 %Qnp 28.0
hdi sk0 0.0 894.0 223.5 894.0 0.0 Pgspln 0 %MNonconp 20.0
hdi sk1 0.0 0.0 0.0 0.0 0.0 PgspQit 0 %Qdient 0.0
hdi sk5 0.0 0.0 0.0 0.0 0.0 Pageln 223
hdi sk3 0.0 0.0 0.0 0.0 0.0 PageQit 0 PAGQ NG SPACE
hdi sk2 0.0 0.0 0.0 0.0 0.0 Sos 223 dze, MB 288
% Used 0.6
find (18398) 10.0% PgSp: 0. 1nb root %Free 99.3
t opas (26004) 0.5%PgSp: 0. 4nb root
ol (1548) 0.0%PgSp: 0.0nb root
ksh (24814) 0.0%PgSp: 0. 2nb root Press "h" for hel p screen.
X (4464) 0.0%PgSp: 2.9nb root Press "g" to quit program

6.24.3 Performance Toolbox for AIX (PTX) Scaling

The Performance Toolbox Agent (PTX) has been upgraded with the ability to
process performance metrics by activity, rather than by a fixed name. This
capability allows system metrics to be logged only when your specified
thresholds are exceeded. Another improvement to PTX is the ability to create
a file which contains shell commands to be executed when recording files are
deleted. This feature allows you to merge, rename or move recording files
automatically.

The process table size internal to the System Performance Measurement
(SPMI) Library was previously limited to 100 processes, but this has been
expanded. The PTX agent can initialize contexts for more than 256 processes
in 4.3.3, but you cannot monitor all of them at the same time. Remote
monitoring is usually limited to less than 150 simultaneous metrics. The SPMI
library internals and metric definitions now uses the procsinfo structure
instead of the procinfo and userinfo structures.

6.25 Performance Related Enhancements (4.3.3)

288

There are a number of AlX performance enhancements. Some of the
changes, such as the consolidation of common code in the net pnon, tprof,
and fil enon tools into one common library, may not have a significant impact

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

on how you use these tools. However, other tools have had usability
enhancements also and so these changes are described in this section.

6.25.1 sar Command: New -d Flag

AIX 4.3.3 has added an additional option to the sar command: the -d option
provides useful statistics such as throughput, average queue depth, and so
on. Many of these statistics were previously being provided with the i ost at
command. For compatibility with other UNIX systems, this information is also
being provided with the sar command. The following example uses the find
command to create some disk activity. The sar interval parameter used here
is two seconds and the number parameter is three. The following example
shows the output of new -d flag; disk I/O data is shown three times at two
second intervals.

#find/ -Is >devinull &
[1] 4494
#sar -d23

A X nisclient 3 4 006152004000 08/ 22/ 99

19: 09: 17 devi ce %usy avque r+w's blks/s awwait avserv
19: 09: 19 hdi skO 0 0.0 0 0 0.0 0.0
cd0 0 0.0 0 0 0.0 0.0
19: 09: 21 hdi skO 61 1.0 90 358 0.0 0.0
cd0 0 0.0 0 0 0.0 0.0
19: 09: 23 hdi skO 70 0.0 95 382 0.0 0.0
cd0 0 0.0 0 0 0.0 0.0
Aver age hdi skO 43 0.3 61 246 0.0 0.0
cd0 0 0.0 0 0 0.0 0.0

6.25.2 Feedback Directed Program Restructuring

Feedback Directed Program Restructuring (FDPR) is an optimization tool that
improves program code locality. The tool receives input files in XCOFF
format, instruments them, executes them for profiling information and then
reorders them in order to get a better cache ratio. In AlX 4.3.3, the usability
and reliability of this tool has been improved by adding automatic selection of
options based on the type of execution used.

System Management and Utilities 289

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

The FDPR tool contains many optimization options which you can choose for
optimizing a program. Some of the options are essential for certain
applications. For example, if you had a C++ application which used the Throw
and Catch mechanism, then you had to use the -tb fdpr flag to preserve trace
back tables in order for the reordered code to run properly. Now -tb can be
omitted and the trace back tables will be automatically included.

6.25.3 svmon Performance Tool Enhancements

290

The svnon tool has been enhanced with usability, scalability and speed
improvements. Additionally, it supports the new Workload Management
function offered in AIX Version 4.3.3.The svnon tool is part of the
perfagent.toolspackage, which contains many performance analysis tools.

An updated svnon man page is in B.2, “svmon” on page 711.

6.25.3.1 What does svmon do
The AIX operating system manages lots of entities, such as processes, files,
and users, that consume virtual memory resources. The goal of svnon is to
provide you with a snapshot of Virtual Memory consumption of some entities.
An application developer can use svrnon's statistics to optimize an application,
or an administrator may be able to identify a problem with an application.
VMM skill is important to fully interpret and utilize svnon output data.
The virtual memory consumption is expressed by means of:

* The number of pages in real memory (and the pinned pages herein)

* The number of pages reserved on paging space

* The number of pages allocated in real memory or on paging space

6.25.3.2 New svmon Filter Options

The svmon man page describes all the flags and also the different types of
reports that svnon can generate. By default, all segments are processed, but
you can use the following new flags to filter the analyzed segment:

-w Only working segments are analyzed

-f Only persistent segments are analyzed

-c Only client segments are analyzed

A new flag will sort the entities in decreasing order.

-v Sort the entities by number of pages in virtual space

During the detailed report (-D), the option -b can be used for debugging
purposes. This can display frame information of all frames of the segment (page

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

number, frame number, pinned status, modified bit status, and reference bit
status). An example of its use, assuming you want detailed statistics for segment
11211, is:

svnon -D 11211 -b| pg

Segi d: 11211
Type: persistent
Address Range: 0..0

Page Frame An Ref Mod
0 151167 N N N
#

- /

Assuming that you had used the ps and grep commands to determine that the
process ID of the cron command is 10338, you could display the working
segments in uses as in the following example:

4 ™
svnon - P 10338 -w
R d Gonmand I nuse Fn Pgsp Mrtual 64-bi t Mhrd
10338 cron 3624 1426 178 2621 N N
\sid Esid Type Description Inuse PFn Pgsp Virtual Addr Range
0 0 work kernel seg 2701 1425 178 2431 0..32767 :
65475. . 65535
9029 d work shared library text 747 0 0 40 0..65535
1181 2 work process private 125 1 0 125 0..46:
65309. . 65535
1f 1f f f work shared library data 51 0 0 25 0..109
#
N /

6.25.3.3 New svmon Report Displays

The svnon command now can produce seven types of reports. The three new
types are:

-W to supports workload management.This option displays memory usage
statistics for the specified workload management class name(s).

-U to display the memory consumption of a user
-C to display the memory consumption of a command
As an example of these new flags, the following command shows how you no

longer have to find cron’s PID, but you can quickly obtain a snapshot of its
memory usage in one step:

System Management and Utilities 291

2014sysmanage.fm

Draft Document for Review October 25, 1999 10:31 pm

svnon -C cron

0

Vsi d
1181

If 1f f
1bldb
18008
12212
11211
170b7
16006

90c9
1b07b

bOab

\si d

9029

19099
#

N

Gommand cron I nuse Fn
3645 1426
SYSTEM segnent s I nuse Fn
2701 1425

\sid Esid Type Description

0 work kernel seg

Esid Type Description
2 work process private

f work shared library data
1 pers code, / dev/ hd2: 58

- pers /dev/ hd2: 4105

- pers /dev/ hd2: 14935

- pers /dev/hd9var: 21

- pers /dev/ hd2: 2

- pers /dev/ hd4: 25

- pers /dev/ hd9var: 17

- pers /dev/ hd3: 2

- pers /dev/ hd2: 4098

Esid Type Description
d work shared library text
- pers /dev/ hd4: 757

Inuse Fn Pgsp Mirtual
2701 1425 178 2431

Pgsp Mrtual
0 150
Inuse PR n Pgsp Mirtual

125 1 0 125

SHARED segnent s

51 0 0 25
10 0 - -
3 0 - -
1 0 - -
1 0 - -
1 0 - -
1 0 - -
1 0 - -
1 0 - -
1 0 - -
Pgsp M rtual
0 40
Inuse PR n Pgsp Mirtual

47 0 0 40
1 0 - -

Addr Range
0..32767 :
65475. . 65535

65309. . 65535
. 109
9

ocoocooooocoo

[eNeoNoNoNoNoNaN V]

Addr Range
0. . 65535
0..0

6.25.3.4 Svmon Scaling
The svnmon command has also been changed internally, such as by the

addition of six new global page counters, to help enable it to scale on large
systems. The new counters are:

¢ Number of pages in use for working segment

* Number of pages pinned for working segment

292

AlIX Version 4.3 Differences Guide

Number of pages in use for persistent segment
Number of pages pinned for persistent segment

Number of pages in use for client segment

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

* Number of pages pinned for client segment

6.25.3.5 rmss Kernel Extension

Svnon requires some system calls that are not part of the kernel. They are
delivered in a dedicated kernel extension named rmss.ext. The command
svnon is actually divided in two binaries. The first binary (/usr/bin/svmon) only
loads the kernel extension rmss.ext and then execs the second binary
lusrllib/perf/svmon_back.

6.25.4 Trace Based Tools Scaling

The system trace utility has been changed to optionally provide one buffer set
per CPU. Two other tools associated with trace also have been improved:

e tprof - This tool has been enhanced to produce separate statistics per
processor when running off-line and in conjunction with a new trace option
to produce one trace log file per processor.

« pprof - This is a lightweight, trace-based tool which collects a system's
process and thread information. Reports are generated in several formats,
including a family view. The family view displays all parent-child
relationships for all processes and threads. This tool is especially helpful
in pinpointing system degradation when caused by multiple processes.

6.25.4.1 Trace Changes

With the growing number of processors in a system, there may be an
increase in buffer contention that affects system performance. Hence, AIX
Version 4.3.3 optionally provides separate buffers per CPU so as to maximize
trace output by minimizing buffer contention. Up to 1024 CPUs can now have
their own trace buffer.

If this function is invoked, the trace command will produce one file per CPU,
one file per set of buffers, plus the base file, which is /var/adm/ras/trcfile by
default. Thus the trace is still able to be accessed with a single file. The base
file will tell the utilities what type of trace this is. The files may then be merged
by trcrpt when you generate the report.

System Management and Utilities 293

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

294

—— Trace Documentation

The AIX documentation for the changes in the trace command has been
included in the file /usr/lpp/bos/README. One of the important items in this
file is the statement:

NOTE: It is strongly recommended that the -B flag is used to tell trace to
allocate buffers in separate segments rather than using memory from the
kernel heap.

Syntax Changes in trace, trcrpt and snap

Since this change will primarily be used by the performance measurement
tools, the change has not yet been formally documented. Currently, the
command line is the only way to use the new trace options directly. The main
changes in the trace, tcrpt and snap commands are described here:

* Both trace and trcrpt now have a -C flag for separate CPU tracing. The
format is -C cpuid-list. The cpuid-list can be a list of CPU ids, beginning
with 0, separated by commas or spaces. The list format is the same as for
the -j and -k flags. In addition, however, the list might be the reserved word
" or "all", for all CPUs.

If -C is specified, the trace command will allocate separate buffer(s) per
CPU, and create separate files as well. By default, the files will be named
trcfile, trcfile-0, trcfile-1, and so forth. Be aware of three other flags:

-C This flag saves the old trace file in a .old file, so it should not be
used with the new -C flag, since the new CPU specific files will not
be saved.

The files will be created in the same directory, /var/adm/ras by
default. If you want to transfer these files, they may be placed in a
different directory than the one in which they were created, but they
must not be renamed.

-0 If -0 filename is specified along with -C, then -0 through -(n-1) is
appended to the name specified with -o for a n-way CPU system.

For example,
trace -Call -o /tnp/tlog
would produce files named /tmp/tlog, /tmp/tlog-0, /tmp/tlog-1, and so

on. If you don't specify a file name, the trace command's stream
output option, -o, will not be supported.

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

-f If you use -f for a single mode trace, as opposed to the wraparound
default option, tracing stops when the last buffer fills. As each buffer
fills, a buffer wrap hook, 006, will be produced, so trace readers may
elect to stop processing data as soon as the first wrap hook is seen,
or they may continue.

e trcrpt merges the information traced. The information is merged based on
the time stamps in the entries. When a multi-CPU trace is being
processed, the CPU ID is displayed along with each reported entry, as
though -O cpuid=on was specified. Note that for trcrpt, -C all or -C * is
unnecessary. Note that there is no ambiguity here since the command
used to start the trace is shown as part of the report header. For example,
if you execute

trace -a -C0,1,2

this specifies to trace CPUs 0, 1, and 2. If you then execute trcrpt (no
options), the report will consist of all CPUs traced, and the header shows
trace -a -C 0,1,2. Also, if all CPUs were traced, buttrcrpt -C 5is given,
then only the trace for CPU 5 is shown. An error is produced if there is no
trace information to report for the CPUs specified.

Y This verbose option for the trcrpt command now gives information
about which CPUs were traced and the associated file names.

« snap has been be updated to gather multiple trace files, with the addition of
the -T option. Hence, you should use something similar to

snap -gT ./trace.logl -d /junk/ newtrc/snap

If no file name is specified for the "-T" option, then use "." so that the
default root trace file, /var/adm/ras/trc, and any CPU files are saved if the
trace was a multi CPU trace. If you only use snap -g, then you will get only
the base file and be warned by the following message:

WARN NG This is a milticpu trace. Specify -T flag to copy all CPU
files.

Using a Multiple CPU Trace
You can execute a command sequence similar to the following example:

trace -Call -a -of/junk/newtrc/trace. | ogl

cp /etc/nmotd /tnp/junk

trestop

trerpt -Q) trace.logl > ./trcrpt. Q0-only. out

trerpt trace.logl > ./trcrpt.all-cpus. out

#1s -1

total 37504

STW W W 1 root system 23552 Aug 03 15:02 trace. | ogl

System Management and Utilities 295

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

STW W W 1 root system 1311816 Aug 03 15:03 trace. | ogl-0

STW W W 1 root system 1311816 Aug 03 15:03 trace. | ogl-1
STWr--1-- 1 root system 5797652 Aug 03 15: 18 trcrpt. Q0-only. out
STWr--1-- 1 root system 10744715 Aug 03 15:26 trcrpt.all -cpus. out

This example shows how this new trace function generates a trace file for
each CPU, and that the trace data can be filtered for a particular CPU. Thus
trcrpt. @-only. out is approximately half the size of trcrpt.al I -cpus. out .

The smaller file without a dash numerical suffix is known as the base file. This
file contains only meta data; that is initial conditions. These initial conditions
in the base file are the same as those written to a standard trace file, except a
base file for a multi CPU trace contains the extra 00A 0x10 hooks. 00A is the
standard utility hook, and 0x10 is the data word in this hook that identifies this
as the hook mapping CPU to file. The initial conditions specify system
environment data as of when the trace was started. For example, they
contain a list of the processes running on the system when trace was started,
the time conversion data, and loader data if -n was specified.

Trace Issues

Note that use of the -C flag creates trace buffers and trace log files for each
processor that is traced. The buffer and file sizes specified apply to each
buffer and file created. Therefore, if trace -C all is specified on a system with
eight processors, eight sets of buffers will be allocated. In this case, eight
files would also be created along with a trace header file pointing to the files
for each CPU. The files created would be /var/adm/ras/trcfile,
/var/adm/ras/trcfile-0 through /var/adm/ras/trcfile-7. Because of the extra
pinned memory overhead, If -C is specified, no trace information will appear
in a system dump, if one is taken. The kernel debuggers, such as kdb, will
continue to format trace data given that the separate buffers option is not
used. Also, the trace behavior of allocating one set of buffers will continue to
be the default.

6.25.4.2 Tprof

Given the change in the trace command such that you now can obtain CPU
specific trace data, the t prof command has also been updated to process this
multi CPU data.

An updated t prof man page is in B.1, “tprof: Traces from Multiple CPUs"” on
page 697.

tprof operates in two modes, the first is called the online mode which has
tprof execute the system trace command and a specific program, if specified,
which is to be profiled. After the trace has completed, tprof processes the

296 AIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

trace data and produces report files. In the offline mode, the trace data has
already been gathered and tprof simple reads from this file and as before
processes the trace data and produces report files. If multiple trace files exist
from multiple CPUs, then tprof can also provide you with CPU specific data.

Note that the gennanes tool is used in conjunction with the new offline mode
capability found in tprof. It consolidates and simplifies the information needed
by tprof to process symbol, loader and extension information.

If the -C flag is specified, indicating that there are multiple CPU trace files
then tprof will spawn multiple threads, one per trace file. The new syntax is

tprof { [-i trace file] [-n gennanes_file] [-Call | list] }

If you created multiple CPU trace files with the trace command the base
name of the file should be entered after the -i option. The -C option could be
used to specify the CPUs to run t prof against and to generate per CPU t prof
reports.

Using trcrpt, gennames and tprof With Traces From Multiple CPUs
If you have a trace from a system with two CPUs, then you can execute the
following command sequence to analyze these trace files offline with this new
tprof feature. The method is similar to that documented in the t prof man
page for analysis of a single trace file. Assume that the trace base file is
trace. | ogl, so that the two CPU trace files are trace. | ogl-0 and trace. | ogl- 1.

« Create the files needed by tprof, with trcrpt and gennames:

trerpt -r trace.logl > trace. | ogl. out
trerpt -r trace.logl-0 > trace. |l ogl. out-0
trerpt -r trace.logl-1 > trace.logl.out-1
gennanmes > gennanes. out

« Execute tprof:

tprof -i trace.logl.out -n gennanes.out -C all
Tue Aug 3 15:02:41 1999
System Al X 433c Node: 4 Machi ne: 000416314000

0.000 secs in neasured interval

WI 1 process cpu trace file trace.logl.out-0
WI 1 process cpu trace file trace.logl.out-1
15. 492 secs in neasured interval

17.492 secs in neasured interval

* Sanples from__trc_rpt2

* Sanples from__trc_rpt2

* Reached second section of __trc_rpt2

* Reached second section of __trc_rpt2

System Management and Utilities 297

2014sysmanage.fm Draft Document for Review October 25, 1999 10:31 pm

298

Conbi ning data from__trc_rpt2-0

Conbi ning data from__trc_rpt2-1
Qeating Sumary Reports

* Sanples from__trc_rpt2

* Reached second section of __trc_rpt2

« The directory where you have the trace and t prof data should be similar

to:

#1s

__ldnmap _tnp.u trace.logl
__prof.all __tnp.u-0 trace.logl-0
_prof.all-0 _tnp.u-1 trace.logl-1
_prof.all-1 _trc_rpt2 trace. | ogl. out
_tnmp.k _trc_rpt2-0 trace.logl.out-0
_tmp. k-0 _tre_rpt2-1 trace.logl.out-1
_tmp.k-1 gennanes. out trcrpt. Q-only. out
_tnp.s snap trcrpt.all-cpus. out
__tmp.s-0 snap-onl y-g trcrpt.all-cpus. out-v
_tmp.s-1 trace-ri-cntds

e The trpof man page describes the reports it generates, but the following
output shows how you now have both the summary report for all CPUs,
and a report for each CPU in the system that you are using.

You can review the data for both CPUs with a command similar to:
tail -3 *prof*.all

Tot al 8 1555 1554 0 1 0
You can review the data for CPU 0 with a command similar to:
tail -3 *prof*0

Tot al 4 692 692 0 0 0
You can review the data for CPU 1 with a command similar to:
tail -3 *prof*l

Tot al 5 863 862 0 1 0
You can see that 862 and 692 add up to give 1554.

6.25.4.3 pprof

Previous versions of AlX included a fileset called bos.perf.pmr. This fileset
included a shell script, trace reader and awk script which together allowed you
to record the CPU usage of all processes on a system over a time interval.
This fileset is no longer shipped with AlX since this function has been moved
into a single C executable, called pprof, which is now shipped as part of the
perfagent.tools fileset. The pprof man page describes the five types of reports
that it can generate. Note that the perfpmr package (the Performance PMR

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

Data Collection Scripts.) is still available for download from the Internet, for
different releases of AIX. This package is still quite useful to help you resolve
performance problems.

6.25.5 ipfilter Script

This tool sorts the information provided by the i preport command and
presents it in table format. The ipfilter command allows you to select which
operation headers (NFS, TCP, UDP, IPX and ICMP) to view, displayed in
three different reports. The tool is a script which contains both korn shell and
avk code.

— Use ipreport -s

ipfilter reads a report that is created by i preport -s. This command option
adds the protocol specification to every line in a packet). If you have a
trace with no UDP, NFS, TCP, IPX, or ICMP type protocols, then you will
have no output from the ipfilter command. For example, ARP data is
currently ignored.

6.25.5.1 Using the new ipfilter Tool

Create your ipreport file as usual with the i ptrace and i preport commands.
Assume that you created an ipreport output file called i p. rpt., and want to
create the default output file called i pfilter.all. You could then use the new
i pfilter tool in a manner similar to that shown in the following example:

1. Check the file created by the ipreport command.

head ip.rpt
| PTRACE version: 2.0

Packet Nurmber 1

FDO : ====(4372 bytes transmtted on interface fi0)====
06: 18: 59. 809370880

FDO : FDO packet FDO: FDO MAC header:

FDD : frame control field = 50

FDO : [src = 10: 00: 5a: b8: 7a: 5f, dst = 10: 00: 5a: b8: 29: 40]

2. Use the ipfilter command:
#ipfilter ip.rpt

3. Verify that the output file exists with the Is command. A zero byte file
would suggest that your trace did not have the protocol information that
ipfilter is looking for.

System Management and Utilities 299

2014sysmanage.fm

#1s -1

total 5656
STWEP--T-- 1 root
STWr--1-- 1 root

Draft Document for Review October 25, 1999 10:31 pm

Sys 2583316 Aug 10 14:55 ip.rpt
sys 305803 Aug 10 14:56 ipfilter.all

4. Finally, look at the output file.

head ipfi*

pkt . Ti me

Qperation Headers: |QOW |IPX NFS TCP UDP

Sour ce Dest. Length Seq # Ack # Sour ce

Destination Net_lnterface Operation

1 06: 18: 59. 809370
766, 2049(shi | p)

2 06: 18: 59. 809387
0 0

3 06: 18: 59. 809581
766, 2049(shi | p)

4 06: 18: 59. 819224
831, 2049(shil p)
#

110.1.1.11 110.1.1.10 4348,
fi0 UDP NFS

110.1.1.11 110. 1. 1. 10 4008,

fio

110.1.1.11 110.1.1.10 1168,
fi0 UDP NFS

110.1.1.11 110.1.1.10 4348,
fi0 UDP NFS

The output in the file ipfilter.all is wide. You can improve the display with a
wide screen. For example, use ai xterm-fn Ron8 and then make your
aixterm window wide enough to display all the data without wrapping.

6.25.6 CPU Utilization Enhancement

Previous releases of AlX would provide a discrepancy in the measurement of
the accurate time in ticks that a given CPU was busy. This error was due to
the clock interrupt handler not considering the missed ticks to be counted in
measuring the CPU busy time. If any higher priority interrupt was running on
this CPU masking the clock interrupt, then the clock interrupt handler may not
have had a chance to run every tick to update the sysinfo and cpuinfo
counters. For example, a device driver may be using the CPU for a while but
have appeared to have only used say one clock tick.

300

The system counter and the per CPU counter now track these previously
mixed ticks so that the accuracy of system and per CPU busy or idle time has

been improved.

AlIX Version 4.3 Differences Guide

Draft Document for Review October 25, 1999 10:31 pm 2014sysmanage.fm

6.26 Mksysb on CD-R (4.3.3)

CD-recordable devices (CD-R) is supported as a mksysb media on AlX 4.3.3.
There are three types of CDs that can be created, discussed in the following
sections:

« Personal System Backup
« Generic Backup

* Non-bootable Volume Group Backup

Note: Only 74 minutes CD-R is supported.

6.26.1 Personal System Backup CD

This type of mksysh backup is same as the mksysb backup on a tape media.
This backup CD can only boot and install the original machine that the
backup has been taken or the machine with same platform and device
configuration.

6.26.2 Generic Backup CD

This type of backup CD is used to boot and install any RS/6000 platform
(rspc, rs6k or chrp). It contains all three boot images and the device and
kernel filesets to enable cloning. The kernel used to build the boot image
must be an MP kernel (not necessary to be running) because this kernel
supports both UP and MP RS/6000.

6.26.3 Non-Bootable Volume Group Backup

This type of backup CD is non-bootable and contains only a volume group
image. If the image in the CD is a rootvg image, then the CD can be used to
install AlX after booting from a product CD-ROM. This CD can also be used
as a source media for alt_di sk_install command. CD-R can be used as a
backup media for non-rootvg volume group and the volume group can be
restored using rest vg command.

6.26.4 Tested Software and Hardware

Because IBM does not sell or support the RS/6000 software and hardware to
create CDs, they must be obtained from third vendors. The following table
lists tested software, hardware, and