Floating-Point Arithmetic
with the TMS32020

APPLICATION REPORT: SPRAO11

Author: Charles Crowell
Digital Signal Processor — Semiconductor Group

Digital Signal Processing Solutions
1989

‘9 TEXAS
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques
are utilized to the extent Tl deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of Tl products in such applications is understood to be fully at the risk of the customer. Use of Tl
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to Tl through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does Tl warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

Tl is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE
US TMS320 FAX

US TMS320 BBS

US TMS320 email

(281) 274-2320
(281) 274-2324
(281) 274-2323
dsph@ti.com

Floating-Point Arithmetic with the
TMS32020

Abstract

This report presents algorithm and code implementing floating-
point addition, subtraction, multiplication, and division with the
TMS320. The support of floating-point operations by the TI
processors has made possible some applications, such as
implementation of the CCITT Adaptive Differential Pulse Code
Modulation (ADPCM) algorithm and image/graphics operations.

Floating-Point Arithmetic with the TMS32020 5

*i’
SPRAO11

Product Support on the World Wide Web

Our World Wide Web site at www.ti.com contains the most up to
date product information, revisions, and additions. Users
registering with TI&ME can build custom information pages and
receive new product updates automatically via email.

6 Floating-Point Arithmetic with the TMS32020

INTRODUCTION

The TMS32020 Digital Signal Processor is a fixed-point
16/32-bit microprocessor. However, it can also perform
floating-point computations at a speed comparable to some
dedicated floating-point processors.

The purpose of this application report is to analyze an
implementation of floating-point addition, multiplication, and
division on the TMS32020. The floating-point single-
precision standard proposed by the IEEE will be examined.
Using this standard, the TMS32020 performs a floating-point
multiplication in 7.8 microseconds, a floating-point addition
in 15.4 microseconds, and a floating-point division in 22.8
microseconds.

To illustrate floating-point formats and the tradeoffs
involved in making a choice between different floating-point
formats, a review of floating-point arithmetic notation and
of addition, multiplication, and division algorithms is first
presented.

FLOATING-POINT NOTATION

The floating-point number f may be written in floating-
point format as

f = mxbe
where

m = mantissa

b = base

e = exponent

For example, 6,789,320 may be written as

0.6789320 x 107

In this case,
m = 0.6789320
b = 10
e =7

The two floating-point numbers f) and f may be written as

f
f2

mj xbel
my xbe2

Floating-point addition/subtraction, multiplication, and
division for f) and f are defined as follows:

filxfy = (mjp+my xb~ (€172 x pel if e1zep (1)
or
= (m xb'(ez—el))imz) xbe2 if e] <ep
fixf; = myxmy x be1 +€2) @
fi/fy = (my/my)xb 17D 3

A cursory examination of these expressions reveals
some of the factors involved in the implementation of
floating-point arithmetic. For addition, it is necessary to shift
the mantissa of the floating-point number which has the
smaller exponent to the right by the difference in the
magnitude of the two exponents. This is shown in the
multiplication by the terms

b—(€17€2) and p—(e2—¢1)

This right shift can result in mantissa underflow. There
are also possibilities for mantissa overflow. Addition and
subtraction of exponents can lead to exponent underflow and
overflow. To alleviate underflow and overflow, it is
necessary to decide on some scheme for roundoff. For a
detailed description and analysis of underflow and overflow
conditions and rounding schemes, see reference 1.

It is desirable to have all numbers normalized, i.e., the
mantissas of f] and f have the most significant digit in the
leftmost position. This provides the representation with the
greatest accuracy possible for a fixed mantissa length. The
result of any floating-point operation must also be
normalized. The factors associated with normalization,
overflow, and other characteristics of floating-point
implementations are best illustrated with a few examples.

Consider the addition of two binary floating-point
numbers f and fy where

0.10100 x 2011
0.11100 x 2001

f
f2

Both of these numbers are normalized, i.e., the first
bit after the binary point is a 1. Addition requires equal
exponents, so the fractions are aligned by shifting right the
one with the smaller exponent and adjusting the smaller
exponent. This yields

fa 0.00111 %2011

Then,

0.10100 x 2011 +0,00111 x 2011
0.11011 x2011 =3

f1+f2

The sum may overflow the left end by one digit, thus
requiring a postaddition adjustment or renormalization step.
Since it is assumed that the register is only of a finite length,
this renormalization will result in the loss of the lowest order
bit.

Another example illustrates the overflow past the most
significant bit. With an assumed register length of five, let

0.11100 x 2011
0.10101 x 2001

f1
f2

Then,
0.11100 x2011=f;
+ 0.0010101 x 2011 =f:
1.0000101 x 2011 =13

The significance of the two digits underlined in the right
part of the mantissa is suspect, since it is assumed that the
corresponding bits of f] are zero. The left underlined digit
is the overflow past the most significant bit. To finish the
addition, f3 is shifted to the right and the exponent adjusted
accordingly. Thus,

1.0000101 x 2011 =f5

The shift of the fraction and the adjustment of the exponent
yield

0.10000101 x 2100 =13
The result may be rounded, giving
0.10001 x 2100 =13
or truncated, giving
0.10000 x 2100 =13
FLOATING-POINT ALGORITHMS
Multiplication Algorithm
The algorithm for normalized floating-point
multiplication is illustrated in Figure 1. This algorithm is an
implementation of Equation 2 in the section on floating-point
notation. The floating-point numbers being multiplied are A
and B written as
A = mp xb®A and B = mp xb°B
The result is
C = mcxbC
For the resulting mg, there are three special cases. The

mc may be zero, in which case there is a branch to Step
10 to set C=0. If mc %0, then the most significant bit will

"‘+A ';n

MULTIPLY MANTISSAS
mC = mA X mg

A g
¥ !

ADD EXPONENTS
oCc =ep + og

Y T_T

3 I TEST FOR SPECIAL CASES OF m¢]

N

ZERO LEADING NORMALIZED
ZERO
4| oc = ZERO
Y
5 LEFT SHIFT m¢ ONE BIT
oc = o¢ -1
R 1

DISPOSE OF EXTRA BITS:
ROUNDING OR TRUNCATION

1

7 [TEST FOR OVERFLOW OF m¢]

NO OVERFLOW fovznnow

RIGHT SHIFT m¢ ?NE BIT

8 Py

\ 4 v 4

9 [TEST FOR SPECIAL CASES OF ec

OVERFLOW IN RANGE

1 OR ¢
UNDERFLOW

10 l SET SPECIAL VALUES OF RESULﬂ

C=Ax8B

Figure 1. Floating-Point Multiplication

be in either the first or second leftmost bit. If the most
significant bit is in the second leftmost bit, then a left shift
of mc is necessary (see Step 5). Otherwise, C is already in
normalized form, and there is a branch to Step 6.

In Step 6, the desired rounding scheme is implemented.
After this rounding, it is possible that m¢ will overflow (see
Step 7). In this case, it is necessary to right-shift mc one
bit (see Step 8). Special cases of ec, are tested for in Step 9.

If there is an overflow or underflow of ec, it is corrected
in Step 10. Otherwise, the result is in range, and the
calculation is complete.

Addition Algorithm

The implementation of normalized floating-point
addition is more involved than for multiplication. This
addition algorithm, outlined in Figure 2, is an implementation
of Equation 1 in the section on floating-point notation.

In Step 1, e4 and e are compared to determine ec.
For this illustration of the algorithm, it is assumed that
epa<eg. The right shift (d) required to align mp is
determined in Step 2. The procedure in Step 3 implements
the right shift of ma. In Step 4, the extra bits of mp are
discarded by using the desired rounding technique. The
mantissas of A and B are then added in Step 5.

A 8

i t

1l COMPARE EXPONENTS AND 8ET o (ASSUME sp 5 og): o¢ = og J

1

2 I SUBTRACT EXPONENTS: d = eg - g I

3 I ALIGN MANTISSAS: SHIFT ma RIGHT d BITS l

DISPOSE OF EXTRA BITS:
ROUNDING OR TRUNCATION

3 IADD MANTISSAS mg = mg + m.]

L] LTESY FOR SPECIAL CASES OF m¢
ZERO OVERFLOW NORMALIZED
k LEADING ZEROS

RIGHT SHIFT mc ONE 8IT LEFT SHIFT mg k BITS
7 oc =oc + 1 8

oc = oc -k
FORCE EXPONENT
® =0
DISPOSE OF EXTRA BITS:

10 | ROUNDING O TRUNCATION

1 I TEST FOR OVERFLOW OF m¢ I

NO OVERFLOW
RIGHT SHIFT mc ONE BIT
oc = oc + 1

|3| TEST FOR SPECIAL CASES OF ¢ I

14 I SET SPECIAL VALUES OF RESULT I

OVERFLOW

12

QVERFLOW
OoR
UNDERFLOW

C=A+8

Figure 2. Floating-Point Addition

Now, the procedure becomes somewhat more involv-
ed. The mc may be zero, in which case there is a branch to
Step 9 which sets ec =0; a branch to Step 14 sets the special
value of the result. The m¢ may overflow, making a right
shift of one necessary (see Step 7). The m¢ may have k
leading zeroes; therefore, a left shift of k is required. This
normalization step is generally the most involved and time-
consuming step to perform. The procedures in Steps 10, 11,
and 12 round the mc, test for a possible overflow due to
the rounding, and adjust ec accordingly. The special case
of ec is determined in Step 13. Finally, after Step 14, the
sum C = A + B is formed.

Division Agorithm

Floating-point division is more sophisticated than
multiplication and addition since fixed-point processors such
as the TMS32020 are not inherently capable of performing
division. For example, 1/3 = 0.3333...; only an approx-
imation can be calculated since 1/3 must be represented in
a finite number of terms. Several algorithms can be im-
plemented to find good approximations of such numbers. The
algorithm implemented in this report is shown in Figure 3.

Step 1 shows the equivalent of A/B. In Step 2, the latter
term is expanded using a power series of 1/(1 + X), where
¢ (BLO/BHI) is X (e simply denotes that the term is right-
shifted 16 bits forming the least significant bits of a 32-bit
number). The third term in the power series only affects the
LSB of a 32-bit result; therefore, this term and all the
following terms can be dropped, as shown in Step 3.

The equation in Step 3 can be implemented on the
TMS32020 in two steps. Assuming that the result is a 32-bit
number Q and that it is composed of a 16-bit QHI and a 16-bit
QLO, think of the equation in Step 3 in the following
manner: A/B = Q — eX. The first term is a fair approx-
imation of the result Q, and the second term is a correction
term to obtain a better approximation. With this in mind,
it can be shown that (AHI + ¢ALO)/BHI will give a 16-bit
quotient and a 16-bit remainder. Due to the architecture of
the TMS32020, the 16-bit quotient will be in the low word
of the accumulator and the remainder will be in the high word
of the accumulator after the division. Since it is desirable

A divided by 8
where AHI + €ALO
BHI + €BLO
1 LA
JWORDSIZE 18

A
B
€

[

AHI + €ALO AHI + €ALO 1
Tep 1: -
sTE SHI + €BLO Bl (‘*(B0
()
AHI + €ALO 80 BLO }2
Tee 2: - AR - 2
st BHI (6(em)'((am))
STEP 3: -

AHI + €ALO 6(BLO) (AHI + €ALO)
B

aHl BHI HI

Figure 3. Division Equation

to have a floating-point result, the remainder must be divid-
ed by BHI to obtain the low word of the quotient. Now QHI
and QLO have been calculated. When placing Q into the cor-
rection term (equation in Step 3), note that Q is equal to QHI
+ QLO. It can be shown that QLO will have no effect on
the result since the correction term is multiplied by e.
Therefore, to calculate A divided by B, simply implement
the following equation:

é = ._A_ —€ BB X QHI)
B BHI BHI

where the division is fixed binary (left-shifts and subtracts).

Figure 4 shows the implementation of the division
algorithm that was outlined in Figure 3.

In Step 1, the dividend is right-shifted four times to
prevent an overflow. Note that the result is not shifted left
to compensate for this shift, because the normalization routine
automatically does this. The shift causes the dividend to be
limited to 27 significant bits instead of 31. In Step 2, a binary
divide (left-shifts and subtracts) is implemented on the
dividend by the high 16 bits of the divisor. The 32-bit result
contains a quotient in the low 16 bits of the accumulator,
and a remainder (R1) in the high 16 bits of the accumulator.
R1 is left-shifted fifteen places in Step 3. The new R1 is
divided by BHI in Step 4 to calculate the lower 16 bits of
the quotient.

The quotient has now been approximated. The 32-bit
result is composed of QHI and QLO, as shown in Figure 3.
To obtain a better approximation, one term in the power
series expansion must be added to the quotient. Therefore,
the procedure in Step 5 calculates a 16-bit correction term,
which is then added (or subtracted since it is the term
following the *‘1”’ in the power series) to the 32-bit quotient.

Testing for an overflow of the resulting mantissa is
necessary. Since the dividend was left-shifted four places,
the resulting quotient will not be negative if an overflow
occurred. To detect an overflow, bit 28 in the quotient must
be tested. If this bit is a 1, an overflow occurred; if it is a
0, no overflow occurred. If an overflow has occurred, the
exponent must be incremented. Finally, it is necessary to
normalize the quotient and output the results.

A DIVIDED 8Y B
3 16 15

WHERE A=r AHL JL ALO
N . |

SHIFT “"A”" RIGHT FOUR TIMES TO
PROTECT FROM OVERFLOW,

1

A/BHI = 32-BIT RESULT.
2 | HIGH 16 BITS ARE REMAINDER #1 (R1).
LOW 16 BITS ARE HIGH QUOTIENT (QHI).

1

SHIFT R1 LEFT FIFTEEN TIMES.
EQUIVALENT TO R1 x 215,

1

R1/BHI = 32-BIT RESULT.
HIGH 16 BITS ARE REMAINDER #2 (R2).
LOW 16 BITS ARE LOW QUOTIENT (QLO).

1

MULTIPLY QHI BY BLO AND DiVIDE BY 8HI.
{QHI x BLOVBHI = CORRECTION TERM.

1

SUBTRACT 16-BIT CORRECTION TERM
6 FROM 32-8IT QUOTIENT.
(QHI | QLO) ~ (0 | CT) = RESULT.

Al ©

-

w

»

o

} NO OVERFLOW
Coxp = Aexp - Bexp J

OVERF’LOW +

7[coxp=onp‘Bup*1J BI

NORMALIZE RESULT.

10 I OUTPUT Cyign. Coxp, CHI. AND cu.oj

'Figure 4. Floating-Point Division

IEEE FLOATING-POINT
SINGLE-PRECISION FORMAT

Of interest is a set of formats known as the IEEE
standard. This IEEE recommended format consists of a
variety of precision formats (single, double, single-extended,
and double-extended). The IEEE has also proposed several
techniques for handling special cases such as overflow,
underflow, + oo, and rounding. For complete details, the
reader is referred to the proposed IEEE standard.2

The single-precision format is a 32-bit format consisting
of a 1-bit sign field s, an 8-bit biased exponent e, and a 23-bit
fraction f (see Figure 5). The value of a binary floating-point
number X is determined as follows:

X = (-1 x 2(e~127) x 1.f

Figure 5. IEEE Floating-Point Single-Precision Format

The advantage of this format is that it is structured in
such a way as to provide easy storage and straightforward
input/output operations on 8-, 16- and 32-bit processors. The
disadvantage with this format is that the large mantissa will
generally span several words of memory.

FLOATING-POINT IMPLEMENTATION

IEEE Implementation

The IEEE single-precision format is described here as
it applies to the addition, multiplication, and division
algorithms. In these floating-point routines written for the
TMS32020, all results are truncated to 31 bits to provide
more flexibility in the user’s development of a rounding
scheme suitable for his application. The representations of
+ oo are ignored so that the user can decide how to handle
these exceptions in a manner that is appropriate for his
particular application.

I/O Considerations

The first consideration is the internal representation of
the binary floating-point number. If the number is read into
the TMS32020 as two 16-bit words, some processing is then
necessary to put the floating-point number into a
representation which is easier to process. The representation
used in the TMS32020 programs in the appendices is shown
in Figure 6. This internal representation may be arrived at
by a simple manipulation of the IEEE bit fields. For this
particular algorithm, it is assumed that the floating-point
number is input to the TMS$32020 as the four 16-bit fields
shown in Figure 6. However, the user can easily supply his

own routine to arrive at this format from two 16-bit inputs
to the TMS32020 where the inputs contain the IEEE single-
precision format.

The format in Figure 6 was chosen to minimize the
execution time of the floating-point addition, multiplication,
and division routines. The format of the result is shown in
Figure 7. Notice that it is identical to the format in Figure
5 except for CLO. CLO has its 16 most significant bits valid
for both the addition, multiplication, and division routines.

Normalization

Since the floating-point routines require normalization,
a partial binary search algorithm is implemented in the
addition and division routines in the appendices. To begin
the normalization routine, note that all mantissas can be
considered to be positive with the format used for the result
shown in Figure 7. The binary search for the most significant
bit (the leftmost 1 since the mantissa is positive) is illustrated
in Figure 8.

The first move is to split the result into CHI and CLO.
If CHI # 0, the most significant bit (MSB) is the CHI;
otherwise, it is the CLO. For this example, it is in CLO.

1413121110 9 8 7 6 5 4 3 2 1 0

ASIGN
{0 IF POSITIVE, [
OR — 1iF NEGATIVE}

151413121110 9 8 7 6 5 4 3 2 1 0
[

- 15 14 13121110 9 8 7 6 § 4 3 2 1

AHI N
(NORMALIZED) f {most significant 14 bits) J

o

0 00 0 O

[

ALO I 0 f lleast significant 9 bits)

15141312 1110 9 8 7 6 6§ 4 3 2 1

AEXP r .

Figure 6. Floating-Point Representation

L__J°

15 14 13 12 1110 9 8 7 6 6 4 3 2 1 O

CSiGN
(0 OR -1}

15 14 13121110 9 8 7 6 65 4 3 2 1

CHI o 1
(NORMALIZED)

15 14 13 12 11 10 ¢ 8 7 & 65 4 3 2 1

cLo l

15 14 13 1211 10 9 8 7 8 5 4 3 2 1

L o

.

L_J°

CEXP I

Figure 7. Result Representation

31

c

0000000000000D0000001010011000111

31 CHI 16

|

16 cLOo 0

0000000000000 O00O00O

000101001 1000111

31 16

16 0

0001010011 000111

00000000000COO0OO0O0CDO

8LZ NOFLOW
RPT TTEEN
NORM

31

v

GOTO NOFLOW ON OVERFLOW.
TTEEN = 13, PERFORM 14 "“NORM"’.

16*15 0

0101001100011 100

00000000000 O0CO0COCOO

Figure 8. Partial Binary Search

The next step is to form a 32-bit result with CLO in the most
significant word position. It is now possible for the MSB
to be in the highest bit location since CLO has been left-
shifted 16 times. If this is the case, an overflow has occurred,
and the result must be right-shifted once. The normalization
routine tests this by branching to NOFLOW if the result is
negative. If the number is not negative, the normalization
can continue.

The NORM instruction is used in the repeat mode to
complete the normalization. Note that this whole
normalization routine can be replaced by the following two
instructions: RPTK 29 and NORM. The RPTX instruction
causes the NORM instruction to be repeated 30 times, thus
normalizing a 32-bit number. This method is not
implemented here due to the timing. These two instructions
always take 31 cycles to normalize a 32-bit number. The
normalization routine here takes only 22 cycles (worst case)
for normalizing a 32-bit number. Therefore, if program space
is more important than timing efficiency, it is best to replace
the normalization routine with these two instructions.

Added Precision
As illustrated in Figure 7, the 16 most significant bits
of CLO are valid, i.e., C is valid for 31 places beyond the

binary point. Oftentimes the user is not as concerned with
the IEEE standard as in being certain that he has enough
accuracy for his particular application. Since the TMS32020
uses 16-bit words, the routines in the appendices implicitly
maintain a 30-bit mantissa. They also implicitly use a 16-bit
exponent. If the user desires this added accuracy and dynamic
range, then it is readily implementable with no additional
cost in execution time. The normalization for the addition,
as mentioned previously, operates over the entire 32-bit
accumulator. For the strict IEEE format, the user will only
want to normalize over the 25 most significant bits of the
accumulator. The structure of the normalization routine
inakes this modification simple.

The routines in the appendices make no provision for
the representation of + oo and exponent underflow and
overflow. The user of the routines should consider the degree
of significance of these results and the way they should be
handled for his particular application. Since these routines
are written to operate at maximum speed, truncation of results
is used. If the user desires to implement a rounding scheme,
then he will also need to check for the possibility of overflow
due to the rounding scheme. This step is shown in the
multiplication, addition, and division flowcharts (see Figures
1, 2, and 3).

SUMMARY

The TMS32020 may be used to perform floating-point
operations with great accuracy, wide dynamic range, and
high-speed execution. The design engineer has the
responsibility of deciding what type of floating-point format
is best for his application. To aid in understanding floating-
point operations, several examples have been given that
illustrate the manipulations necessary to implement floating-
point addition, multiplication, and division algorithms.
Flowcharts for these algorithms are also included. The
appendices contain the TMS32020 code for the IEEE
floating-point single-precision format used in addition,
multiplication, and division. The addition and multiplication
routines may also be used without modification to implement
a format with up to a 30-bit mantissa and a 16-bit exponent
without any increase in execution time.

ACKNOWLEDGEMENTS

Major portions of this application report were taken
from *‘Floating-Point Arithmetic with the TMS32010,”" an
application report written by Ray Simar, Jr. The author
would also like to thank Gwyn Guidy for her assistance with
the floating-point division algorithm.

REFERENCES

1. D.]. Kuck, The Structure of Computers and
Computations, Vol 1, John Wiley & Sons (1978).

2. J. Coonen et al, ‘‘A Proposed Standard for Binary
Floating-Point Arithmetic,”” ACM Signum Newsletter,
4-12 (October 1979). ‘

3. Donald E. Knuth, Seminumerical Algorithms, Vol 2, 2nd
Edition, Addison-Wesley (1981).

APPENDIX A

FLTADD 32020 FAMILY MACRO ASSEMBLER PC 1.0 85.157 11:47:00 08-19-86
PAGE 0001

Oool RARRRERABRRRAARAEBRRRRRRR AR ARRARARSERERBERRRREARR RGNS RRERN

0002 . .

0003 * THIS IS A FLOATING-POINT ADDITION ROUTINE WHICH *

0004 * IMPLEMENTS THE IEEE PROPOSED FLOATING-POINT .

0005 * FORMAT ON THE TMS32020. .

0006 * *

0007 ERRRRAARRARRRERRERRRRRRERARGARRRRRRRRRRRRRRRRRRRNARRERRRR

0008 .

0009 * INITIAL FORMAT (ALL 16 BIT WORDS)

0010 .

0011 * iy ALOORI ! ASIGN (0 OR -1)

0012 .

0013 .

0014 .

0015 * 10j. 158BITS | AHI (NORMAL1ZED)

0016 .

0017 .

0018 .

0019 * 10} 9 BITS i--0-} ALO

0020 .

0021 .

0022 *

0023 LI ! AEXP (-127 TO 128)

0024 .

0025 .

0026 * TO CORRESPOND WITH IEEE FORMAT,

0027 * INPUT 0.IF * 2 ** (E + 1)

0028 * INSTEAD OF 1.F * 2 **E, AND SUBTRACT 127 FROM E.

0029 .

0030 * THE FINAL FORMAT IS THE SAME AS THE INITIAL FORMAT

0031 * EXCEPT THAT FOR CLO WE HAVE:

0032 .

0033 »

0034 * | 16 BITS | cLo

0035 .

0036 .

0037 * ALL 16 BITS OF CLO ARE VALID. ANYTHING PAST THESE HAS

0038 * BEEN TRUNCATED.

0039 .

0040 BRAERARARRRRAERRRRRERRRRRA R AR AR AR R RRARRNRERRRRARRRRERRRR AN

0041 . .

0042 * WORST CASE (EXCLUDING INITIALIZATION AND 1/0): *

0043 * 15.4 MICROSECONDS. .

0044 * THIS TIMING INCLUDES THE NORMALIZATION. .

0045 * WORDS OF PROGRAM MEMORY: 217 .

0046 . .

0047 ARRRRRR AR AR AR AR R R R ARRARR AR RARRRRARRAARRARRRERRARR RN RRER

0048 .

0049 107 " FLTADD’

0050 0000 AORG

0051 0000 ASIGN EQU 0

0052 0001 AEXP EQU 1

0053 0002 AHI EQU 2

0054 0003 ALO EQU 3

0055 0004 BSIGN EQU 4

0056 0005 BEXP EQU 5

0057 0006 BH! EQU 6

FLTADD

0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076

0077
0078
0079
0080
008!
0082
0083
0084
0085
0086
0087
6088
0089
0090
0091
0092
0093
0094

0095

0096
0097
0098
0099

0100
0101
0102
0103
0104
0105
0106
0107
o108
0109
0110

0000
000!
0002
0003
0004
0005
0006
0007
0008
0009
000A
0008
000C
000D
000E
000F
0010

0011
0012
0013
0014
0015
ocie

0017
00t8
o019
001A

o018
0o1C
0010
001E
001F
0020
0021
0022

32020 FAMILY MACRO ASSEMBLER PC 1.0 85.157 11:47:00 08-19-86

0007
0008
0009
000A
000B
00oC
000D
000€E
000F
0010
0011
0012

C804
CEOQ7
5589
D100
0200
CBO7
80A0
5588
coog
CAO1
6000
CAlO
6010
CAO3
600F
CAOD
6012

200t
1005
F680
0043
F380
004D

Cez3
0010
F380
0028

600C
3CocC
4206
6806
6011
4207
Cels
6807

BLO
CSIGN
CEXP
CHI
CLO

0

ONE
TEMP
THREE
SIXT
RESID
TTEEN

-
L]
L]

up

AGTB

*

EQu 7

EQu 8

€qQu 9

EQU 10

EQU 11

EQU 12

EQu 13

EQu 14

EQU 15

EQU 16

EQu 17

EQu 18
INITIALIZATION
LOPK 4

SSXM

LARP 1

LRLK AR1,>200
RPTK 7

IN *+,PAO
LARP 0

LARK ARO,0
LACK 1

SACL ONE
LACK 16
SACL SIXT
LACK 3

SACL THREE
LACK 13
SACL TTEEN

PAGE 0002

BEGIN ON PAGE 4.
SET SIGN EXTENSION.

CLEAR EXPONENT REGISTER.

ONE = |

BEGIN FLOATING POINT ADD

LAC
sus
B8Z

BLZ

NEG

ADD
BLZ

AEXP
BEXP
AEQB

ALTB

SIXT

FIND LARGEST NUMBER.
IF EXP ARE THE SAME, JUMP TO AEQB.

IF A IS LESS THAN B, JUMP TO ALTB.

D = (16-D)
JUNP IF EXP DIFFERENCE IS > 16

* EXPONENT DIFFERENCE < 16

SACL
LT
LACT
SACH
SACL
LACT
SFL
SACH

D

b}

BHI
BHI
RESID
BLO

BLO

BHI 1S SHIFTED RIGHT "D" TIMES.

RESIDUAL BITS MUST BE MAINTAINED.
BLO IS SHIFTED RIGHT "D" TIMES.
MSB (THE 0) IS SHIFTED AWAY.

*FLTADD

011t
o112
0113
0114

0115
o1ie6
0117
o118
0119

0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
013t
0132

0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144

0145
0146
0147
0148
0149
0150
0151
0152
0153
0154

0155
0156
0157

0158
0159
0160
0161

0023
0024
0025
0026
0027

0028
0029
002A
0028
002C
002D
002E
002F
0030
0031
0032
0033
0034
0035
0036
0037
0038

0039
003A
0038
003C
6030
003E
003F
0040
0041
0042

0043
0044
0045
0046
0047
0048
0049
004A
0048
004C

004D
004t
004F
0050
0051
0052
0053

32020 FAMILY MACRO ASSEMBLER PC 1.0 85.157 11:47:00 08-19-86
PAGE 0003
2007 LAC BLO
apt1 OR RESID GET BITS THAT WERE SHIFTED FROM BHI.
6007 SACL BLO
FF80 8 A2
0031
*
* EXPONENT DIFFERENCE >16
*
0010 Al ADD SIXT
F380 BLZ A3 JUMP IF EXPONENT DIFF > 32
0039
600C SACL D
3coc LT)
4206 LACT BHI
6807 SACH BLO
CAO0 zac
6006 SACL BHI
2000 A2 LAC ASIGN A IS LARGER THAN B.
6008 SACL CSIGN THEREFORE, CSIGN = ASIGN.
2001 LAC AEXP ALIGN THE B MANTISSA.
6009 SACL CEXP
2103 LAC ALO, 1 GET RID OF EXTRA BIT.
6003 SACL AL
FF80 8 CHKSGN DO BOTH NUMBERS HAVE THE SAME SIGN?
0078
*
* A>> B, RESULT = A
-
2002 A3 LAC AHI
600A SACL CHI
2103 LAC ALO, |
6008 SACL CLO A IS LARGER THAN 8
2000 LAC ASIGN THEREFORE CSIGN = ASIGN
6008 SACL CSIGN
2001 LAC AEXP
6009 SACL CEXP
FF80 8 AROUND
0006
*
2000 AEQB LAC ASIGN IF SIGNS ARE THE SAME, CSIGN = ASIGN
6008 SACL CSIGN
2103 LAC ALO, 1 ALIGN MANTISSAS.
6003 SACL ALO
2107 LAC BLO, |
6007 SACL BLO
2001 LAC AEXP SET C EXPONENT = A EXPONENT.
6009 SACL CEXP
FF8O 8 CHKSGN DO BOTH NUMBERS HAVE THE SAME SIGN?
0078
-
0010 ALTB ADD SIXT D = (16-D)
F380 BLZ Bl JUMP IF EXP DIFF > 16
005D
600C SACL D
3coc LT D
4202 LACT AHI AHI GETS SHIFTED D" TIMES.
6802 SACA AHI

FLTADD

0162 0054
0163 0055
0164 0056
0165 0057
0166 0058
0167 0059
0168 005A
0169 0058
005C
0170
0171
0172
0173 0050
0174 0O5SE
005F
0175 0060
0176 0061
0177 0062
0178 0063
0179 0064
0180 0065
0181 0066
0182 0067
0183 0068
0184 0069
0185 006A
0186 006B
0187 006C
006D
0i88
0189
0190
0191 006E
0192 006F
0193 0070
0194 0071
0195 0072
0196 0073
0197 0074
0198 0075
0199 0076
0077
0200
0201 0078
0202 0079
0203 007A
0078
0204 007C
007D
0205 007€
0206 007F
0207 0080
0208 0081
0209 0082
0083
0210 0084
0085

32020 FAMILY MACRO ASSEMBLER

6011
4203
CE18
6803
2003
4011
6003
FF80
0066

0010
F380
006E
600C
3coc
4202
6803
CA00
6002
2004
6008
2005
6009
2107
6007
FF80
0078

2006
600A
2107
6008
2004
6008
2005
6009
FF80
0006

2000
1004
F&80
00A9
F380
008C
4002
4903
4507
4406
Fé80
009A
F380
00A1

* EXPONENENT

82

.83

CHKSGN

BISNEG

SACL
LACT
SFL
SACH
LAC
OR
SACL
8

ADD
8Lz

SACL
LT
LACT
SACH
ZAC
SACL
LAC
SACL
LAC
SACL
LAC
SACL
8

8 >

LAC
SACL
LAC
SACL
LAC
SACL
LAC
SACL

LAC
sus
8Z

8Lz

ZALH
ADDS
SuBS
SUBH
BZ

B8LZ

A

’

PC 1.0 85.157

11:47:00 08-19-86

PAGE 0004
RESID ~ MAINTAIN EXTRA BITS.
ALO ALO GETS SHIFTED "D" TIMES.
MSB (THE 0) IS5 SHIFTED AWAY.
ALO
ALO
RESID GET RESIDUAL BITS.
ALO
B2

DIFFERENCE > 16

SIXT
B3

8]
D
AH1
ALO

AHI
BSIGN
CSIGN
BEXP
CEXP
BLO, 1
BLO
CHKSGN

RESULT

BHI
CHI
BLO, 1
CLo
BSIGN
CSIGN
BEXP
CEXP
AROUND

ASIGN
BSIGN
ADNOW

AISNEG

AH!
ALO
BLO
BHI
CZERO

CNEG

JUMP IF EXP DIFF > 32

B IS THE BIGGEST NUMBER.

THEREFORE, LET THE SIGN OF C=BSIGN.
SET C EXPONENT = B EXPONENT.

GET RID OF EXTRA BIT.

DO BOTH NUMBERS HAVE THE SAME SIGN?

"
@

B IS THE BIGGEST NUMBER
THEREFORE, LET THE SIGN OF C=BSIGN

SET C EXPONENT = B EXPONENT

CHECK THE SIGNS.

IF THEY ARE THE SAME, JUST ADD.

00 (Al - 1B})),
SINCE B < 0 AND A > O.

FLTADD 32020 FAMILY MACRO ASSEMBLER PC 1.0 85.157 11:47:00 08-19-86

PAGE 0005
0211 0086 680A SACH CHI
0212 0087 600B SACL CLo
0213 0088 CA00 ZAC
0214 0089 6008 SACL CSIGN
0215 008A FF80 8 NORMAL GO AND NORMALIZE RESULT.
0088 0083
0216 008C 4006 AISNEG ZALH BHI DO (1B} - 1AL,
0217 008D 4907 ADDS BLO SINCE A < 0 AND B > 0.
0218 008E 4503 SuUBS ALO
0219 008F 4402 SUBH = AHI
0220 0090 Fe80 8Z CZERO
0091 009A
0221 0092 F380 8LZ CNEG
0093 00Al
0222 0094 680A SACH CHI
0223 0095 600B SACL CcLo
0224 0096 CAQO ZAC
0225 0097 6008 SACL CSIGN
0226 0098 FF80 8 NORMAL GO AND NORMALIZE RESULTS.
0099 0083
0227 ’ *
0228 009A CAGO0 CZERO ZAC HERE, ONLY IF RESULT = 0.
0229 0098 6009 SACL CEXP
0230 009C 6008 SACL CSIGN
0231 009D 600A SACL CHI
0232 009E 6008 SACL CLo
0233 DO9F FFB0 B AROUND OUTPUT A ZERO.
00A0 00D6
0234 *
0235 00Al CEIB CNEG ABS HERE, If RESULT IS NEGATIVE.
0236 00AZ 680A SACH CHI
0237 00A3 6008 SACL cLo
0238 00A4 DOO! LALK >FFFF
00AS FFFF
0239 00A6 6008 SACL CSIGN
0240 00A7 FF80 -] NORMAL GO NORMALIZE RESULT.
00A8 0083
0241 *
0242 00A9 4002 ADNOW ZALH ARI [F SIGNS ARE THE SAME, JUST ADD.
0243 00AA 4903 ADDS ALO
0244 00AB 4907 ADDS 8LO
0245 0O0AC 4806 ADDH BHI
0246 00AD 680A SACH CHI
0247 00AE 6008 SACL CLO
0248 00Af F080 8v OVFLOW 01D AN OVERFLOW OCCUR?
0080 00C4
0249 00B1 F680 BZ CZERO IS RESULT = 0 ?
0082 00SA
0250 .
0251 * NORMAL I ZE
0252 *
0253 0083 200A NORMAL LAC CHI DOES CHI HAVE THE MSB?
0254 00B4 F680 BZ Lot
00B5 008BC
0255 00B6 400A ZALH CHI IF YES, NORMALIZE RESULT.
0256 00B7 4908 ADDS cLo

0257 0088 4812 RPT TTEEN WILL PERFORM 14 "NORMS"

FLTADD

0258
0259

0260
0261
0262

0263
0264
0265

0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280

0281
0282
0283
0284
0285
0286
0287
0288
0289
0250
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303

0089
008A
0088
008C
008D
00BE
00BF
00C0
0ocC!
0oc2
00C3

00C4
00Cs
0oCe
00C7
00cs
00C9
00CA
00CB
oocc

00CD
00CE
00CF

0000
00D!
0002
0003
0004
0005

0006
0007
ooos
0009

NO ERRORS,

32020 FAMILY MACRO ASSEMBLER PC 1.0 85.157 11:47:00 08-39-86

CEA2
FF80
0000
4008 (0!
colo
F380
00CD
4812
CEA2
FFBo
0000

$ * ® % % * ¥

CEO6 OVFLOW
CE19
680A
6008
2009
006D
6009
FF80
0006

5590 NOFLOW
CEO06
CE19

* 2 x % =

-
700E OQUTPUT
680A
6008
2009
100E
6009
5589 AROUND
4B0F
EGAO
CELF
NO WARNINGS

NORM
8

ZALH
LARK
BLZ

RPT
NORM
B

OUTPUT
cLo

ARO, 16
NOFLOW
TTEEN

ouTPUT

PAGE 0006

GO OUTPUT RESULTS.

HERE IF CLO HAS MSB.

OFFSET EXPONENT BY 16.

OID BIT SEARCH CAUSE OVERFLOW?
[F NOT, NORMALIZE RESULT.

GO OUTPUT RESULT.

FINISHED WITH NORMALIZATION

HERE ONLY [F OVERFLOW OCCURRED DURING ADDITION

RSXM
SFR
SACH
SACL
LAC
ADD
SACL
-]

OVERLOW
MAR

RSXM
SFR

CHI
CLO
CEXP
ONE
CEXP
AROUND

RESET SIGN EXTENSION TO SHIFT RIGHT
SHIFT RIGHT.
STORE NORMALIZED MANTISSA.

DECREMENT EXPONENT.

GO OUTPUT RESULTS.

OCCURRED DURING BIT SEARCH

o

OECREMENT EXPONENT.
RSXM FOR LOGICAL RIGHT SHIFT.
PERFORM RIGHT SHIFT.

TAKE CARE OF EXPONENT & NORMALIZED MANTISSA,
THEN OUTPUT RESULTS.

SAR
SACH
SACL
LAC
sus
SACL

LARP
RPT
out
IDLE

ARO, TEMP
CHI

CLo
CEXP

.TEMP

CEXP

i
THREE
*+,PAO

HERE AFTER NORMALIZATION.
SAVE NORMALIZED MANTISSA.

ADJUST EXPONENT.

RESET POINTER.

WAIT FOR INTERRUPT.

’ APPENDIX B

NOSIDT 32020 FAMILY MACRO ASSEMBLER PCO.7 ©4,34% 15124153 03-27-85
##% PRERELEASE st
PAGE 0001

0001 PR ITIEEEITEL TR 2L LTINS LIS ST LTS e e IRt s sty
0002 #*
000z THIS I% A FLOATING-FOINT MULTIPLICATION ROUTINE WHICH #
0004 IMFLEMENTS THE 1EEE PROFISED FLOATING-POINT FORMAT *
000s ON THE TMS3Z0Z0, #*
Q004 #*
Q007 A A2 3 I A I A B B3 I R I3 S I SR
0003
0009
0010
0011
0012
0012
0014
0015
0016
0017
00te
0019
0020
0021
0022

* o ok %k ok

INITIAL FORMAT (ALL 14-BIT WORDS)

! ALL 0 OR 1 i ASIGN (0 OR ~1)

1010, 15 BITS ! AHI (NCRMALIZED)

101 % BITS 1--0-1 ALO

AEXF (—-127 TO 122

T CORRESPOND WITH IEEE FORMAT,
INPUT O 1F # 2 #% (E + 1)
INSTEAD OF 1.F % 2 ##E, AND SUBTRACT 127 FROM E.

THE FINAIL. FORMAT IS THE SAME AS THE INITIAL FORMAT
EXCEPT THAT FOR CLD WE HAVE:

| 14 BITE ! cLo

(¢

003

ALL 14 BITS OF CLOD ARE VALID. ANYTHING FPARST THESE HAS

IR EEEEEE I T I N N A I N B B N

BEEN TRLUNCATELD.
0029
Q040 FEEHERE SR LIS D EFE RS FFERE A B RBRARAF RS E RN A SRR RR R LSRR R R EHHSH
0041 * *
004z #* WORST CASE (EXCLUDING INITIALTZATION AND I/00: #*
Q043 * .8 MICRUOSECONDS. . *
Q044 #* THIS TIMING INCLUDES THE NOIRMALIZATION. *
0045 #* WORDES OF FROGRAM MEMORY: &0 #*
[SISY: VS ¥* #
0047 [T AT E TSR T Y Y R g e e et
D048 #
D047 0000 ADORG
0000 ASIGN B 0
(AEXP Ecn! 1
AHI EQd 2
ALD el 3
BZIGN EQU 4
REXF E <l

EHI Erid

NO$IDT

0057
0058
0059
0060
0061
0062
00463
0064
0065
0064
Q047
0048
0069
0070
0071
0072
0073
0074
0075

0076
0077
0078
Q079
0080

0031
0082
0083
0024
Q0es
0086
0087
0083
0089
Q090
0091
0092
Q093
0094
Q095
Q094
0097
009g
0099
0100
0101
0102
0103
Q104
0105
0104
0107
0102
0109
0110

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0004
0008

000C
000D
QO0E

QOGOF
0010
0011
0012
0013

o014
0013

0014
0017

Q013
0oLy
001A

O01R
[sIe} 1
o010

32020 FAMILY MACRO ASSEMBLER

##% PRERELEASE #3##

0007
0008
000%
000A
0O00B
0ooC
000D
QO0E
O0OOF

£204
CEO7
5589
D100
0200
CBO7
80RO
£O00
ssas
D001
FFFF
00D

2001
0005
L0009

3C03
3806
CE14
£230C
L0O0E

3002

3807

CE1S
CELD

4300
490E
LEOC

IB0L
CE14
490C

BLO
CSIGN
CEXP
CHI
CLO
THI
NEGONE
TLO
TEMP

*

EE N 2 3

* o ok %k Ak

EQu 7

EQ 2

EQU 9

EQU 10

EQL 11

e 2

EQU 13

EQU 14

ERu 15
INITIALIZATION
LDPK 4

SEXM

LARF 1

LRLE ARL, 2200
RPTK 7

IN #+ PAO
LARK. AR, O
LARP 0

LALK HFFFF
SACL NEGONE

PCO.7 84,348 15124153 03-27-85

PAGE 0002

BEGIN ON PAGE 4.
SET SIGN EXTENSION,

READ NUMBERS INTOD BLOCK BG.

CLEAR EXPONENT REGISTER.

NEGONE = -1

BEGIN FLOATING-FOINT MULTIPLICATION,

LAC
ADD
SACL

LT
MFY
PAL
SACH
SACL

LT
MFY

AFAL
AFALC

ADDH
ALD:E
SACH

MEY
FAC
ADDS

AEXP
BEXP
CEXP

ALD
BHI

THI
TLO

AHI
BLO

THI
TLO
THI
EHI

THI

ADD EXPONENTS.

FIRST PRODUCT (ALD % BHI)

SECOND PRODUCT (AHI # BLID)

HAZ EFFECT OF (AHI # BLO + ALD # BHI) # 3 ## —135,

(AHI # BHI)

N#1DT ¢ 32020 FAMILY MACRO ASSEMBLER PCO.7 24,348 15:24:53 03-27-85
PRERELEASE
PAGE 0003

0111 QO1E &70A SACH CHI, 1 GET RID OF EXTRA SIGN BITS.
0112 0O0LF 410B SACL cLo,t
0113 #*
0114 0020 FS80 BNZ 0k, IS RESULT ZERO?Y
0021 002&
0115 0022 CADO ZAC
0114 0023 6009 SACL CEXF
0117 0024 FF30 B SETSIN
0025 002F
0113 #*
0119 0026 400A 0K ZALH CHI NORMALIZE AND WRAFP LIF.
Q120 0027 490B ADDS CLD
0121 Q028 CEA2 NORM
0122 0029 680A SACH CHI
0123 002ZA AOOR SACL CLID
0124 Q0ZB 700F SAR ARO, TEMF
0125 0020 2009 LAC CEXP
0126 002D 100F SUB TEMF
0127 00ZE L0009 SACL CEXF
0123 *
0129 002F 4100 SETSIN ZALS ASIGN WHAT I3 3IGN OF RESULT?
0120 0030 4C04 XOR BSIGN
0131 0031 FS80 ENZ NEG
0032 0037
0132 0033 CAQD ZAC
0133 0034 6002 SACL CSIGN
0134 0035 FF30 E OUTFUT
) 002 0039
0135 0037 2000 NEG LALC NEGONE
Q136 0038 L0082 SACL TS IGN
0137 0029 59587 OQUTPUT LARF 1 AUTFLT RESULTS.
0132 002A CBO3 RPTE 2
0139 002R EOAQ auT #+, FAQ
0140 002 CELF IDLE

NO ERRORS, NO WARNINGS

NO$SIDT

0001
0002
0003
0004
0005
0004
0007
a0og
0009
0010
0011
0012
0013
0014
0015
0014
0017
o01e
0019
0020
0021
0022
0022
0024
0025
0026
0027
0028
Q02%
0030
0031
0032
0033
0034
003sS
Q024
0037
0038
0039
0040

0048
004% 0000
O0S0
0051

APPENDIX C

32020 FAMILY MACRO ASSEMBLER FCO.7 84.342 15:25:17 03-27-85
PRERELEASE

0000
o0t
0002
0003
0004
Q00S
000&

PAGE 0001
HAAE RIS R R RS S R R R R R AR
THIS IS A FLOATING-POINT DIVISION ROUTINE WHICH

IMPLEMENTS THE IEEE PROPOSED FLOATING-FOINT FORMAT
ON THE TME22020.

L I
& ok k% Kk

3£ 3H4E 336 3636 3 306 30 T T H 303033330 H NN NN IR ERERS

INITIAL FORMAT (ALL 14-BIT WORDS) ‘
i ALL O OR 1 H ASIGN (O DR ~1)
100, 15 BITS H AHI (NORMALIZED)
00 9 BITE 1--0-1 ALD

! AEXF (-127 TO 12&)

TO CORRESPOND WITH IEEE FORMAT,
INPUT O.LF # 2 ## (E + 1)
INSTEAD OF 1.F # 2 ##E, AND SUBTRACT 127 FROM E.

THE FINAL FORMAT IS THE SAME AS THE INITIAL FORMAT
EXCEPT THAT FOR LD WE HAVE:

} 14 BITS H CLO

ALL 14 BITS OF CLO ARE VALID. ANYTHING FPAST THESE HAS
BEEN TRUNCATEL.

I ok gk ok Ak o %k ok &k ok K & ok ok ok ok ok ok ok ok ko k& ok ok %k ok %k

FH R HH TR IR TN SRR SRR F R R RRRE R RE RS

WORST CASE (EXCLUDING INITIALIZATION AND I/0)%
22,8 MICROSECONDS.

THIS TIMING INCLUDES THE NORMALIZATION.

WORDS OF PROGRAM MEMORY: %2

LR I I
L I I

RN FHEE RS FAFER L FERE SRR E S S ER RS FRERFRBGRSFHFRA R RS E IR HERS S
*

ACRG [}
AZIGN B Q
AEXP e 1
AHI ERL 2
ALD Ecy 3
BSIGN EQU 4
REXF B S
BHI EQ [

NO$IDT

0OS7
005g
0059
0040
Q041
Q0E2
0063
0064
00&S
00b4
0O0&7
0063
Q0L
0070
0071
0072
0073
0074
0079
0074
0077
0078
0079
0080
0031
0082
o0g3
0034
0033

0026
0037
Q08
00B?
0070

0071
0092

0093,

009
0095
0094
0097
0093
Q0%
0100
0101
010z
0103
Q0104
0109
OL04
0107
0108
010%

QOO0
0001
0002
Q003
0004
000S
QO0&
0007
0003
[slalele)
Q00A
Q00B
Q00C
0con
O00E
Q0OF
0010
0011
o012
Q0O1=
0014
o0O1S
Q1A
0017
0013
Do1%
001A
O01R
001

22020 FAMILY MACRZ ASZEMBLER

PRERELEASE

0007
0008
000%
QO0A
BOOR
D00
000D
OO0E
QO0F
0010
0011
o012
0013
0014
0015
0014
o017
o012
QoL

€204
CEO7
S5e9
D100
0200
CBO7
20A0
sS5es
CO00
nool
FFFF
£00C
DOOY
1000
&014
CAO4
L0O0E
CAOl
L0115
CAOZ
L0146
CAROF
A0L7
CALE
L0118
[Walaie]
L0119
CADO
AOOP

BLO
CEIGN
ZEXF
CHI
]
NEGINE
TEMF
FOLR
[n]

L

R1

2

CcL
M1000
ONE
THREE
FITEEN
THIRTY
TTEEN
3*

E I I3

ERQy 7

EQ =

EQL 9

EGIL 10

EG 11

EQH} 12

2} 13

EQU 14

EQU 13

EQy 14

EQU 17

EG 18

EQU

EQU

EGQU

EL

EQu

EQU

EQU

INITIALIZATION

LDPE 4

BSXM

LARF 1

LRLK AR, Z200

RPTK 7

IN #+, PAO

LARF [}

LARK ARD, O

LALK >FFFF

SACL NEGONE

LALK 1000
M1000
4
FOLR
1
ONE
THREE
15
FITEEN
20
THIRTY
13
TTEEN
CEXP

PCO.7 2

4,242

15025817 O3-€7-85

FAGE 0002

BEGIN ON PAGE 4.
SET ZIGN EXTENZION.

READ NUMBERS INTO BLOCK RO,

CLEAR EXPONENT REGISTER.

NEGONE

M1000

FOUR =

INE =

THREE

© FITEEN

THIRTY

TTEEN

CLEAR

= -

= 1000

4

0
[}

"
—_
|

It
W
2

.

NOSIDT <

0110
0111
0112
0113
114
0115
0114

0117
0112
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
012%
0130
0131
0132
0132
0134
0135
0136
0137
0138
0139
0140
0141
0142
01432
0144
0145
0146
0147

0142
0147
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159

01460
0161
0142

001D
001E
001F
0020
00zt
0022

0023
0024
Q025
0024

0027
0028
00z%
0024
002K
Qo2C
QOzZD
OOZE
002F

0020
0031
0032
0033
00324
00325
0026
00327
00ze
00z
003A
QO3B
Q03
002D
00ZE
QO3F
Q040
0041
004z
0043
0044

0045
0044
Q047
0048
0049
004A

® 32020 FAMILY MACRD ASSEMBLER
##% PRERELEASE s##

2000
6008
1004
F&R0
0022
200C

4002
4503
4B14
CE1%

4B17
4704
6211
HOOF
2F11
4p17
4704
6812
6010

ICOF
2507
CE14
4B17
4706
£013
A00F
4910
1013
&Q0B
AS0A
200A
4E14
F&20
0041
2015
LOO9
2001
1005
0007
6009

2004
F&30
004E
4007
490B
4B1%

¥

#
QK

NOOVF

L R]

NORMAL

PCO.7 B34.348 15:25:17 03-27-85

PAGE 0003

FINISHED WITH INITIALIZATION

LAC AZIGN
SACL CEIGN
SUB BZIGN
BZ oK
LAC NEGCNE
SACL CSIGN
ZALH AHI
ADDS ALO
RPT THREE
SFR
RPT FITEEN
SUBC BHI
SACH R1
SACL oM
LAC Ri,15
RFPT FITEEN
SUBC BHI
SACH RZ
SACL e
LT oM
MPY BLO
FPALC
RFT FITEEN
SUBC BHI
SACL cL
ZALH M
ADDS <1
SUB cL
SACL cLo
SACH CHI
LAC CHI
AND M1000
BZ NOOVF
LALC ONE
SACL CEXP
LAC AEXP
suB BEXF
ALOD CEXP
SACL CEXP
NORMALIZE
LA CHI
BZ Lay
ZALH CHI
ADDE cLa
RPT TTEEN

CSIGN = ASIGN, IF ASIGN = BSIGN.

ELSE, CSIGN = -1,

SHIFT DIVIDEND TQ PROTECT FROM OVERFLOW.

BM = AHIIALD / BHI, R1 = REMAINDER.
HIGH ACCUMULATOR RETAINS REMAINDER.

(R1 # 2#%#1{5) / BHI GIVES @L, AND R2.
COMPUTES (R # 2#%15) / BHI.

HIGH ACCUMULATOR RETAINS REMAINDER.
CORRECTION TERM = (@M # BLO) / BHI.
COMPUTES (&M # BLO),

COMPUTES (@M # BLO) / BHI.

OMIRL - OICL = CHIICLO

DID AN QVERFLOW OCCUR?
IF NOT, GOTO NOQVF.
ELZE, INCREMENT CEXP.

COMPUTE RESULTING EXPONENT.

DOES CHI HAVE THE MSR?

IF YES, NORMALIZE RESULT.

WILL FERFORM 14 “"NORMS*.

NOSIDT |

0163 0048

01464 004C
004D

0165 004E

0166 004F
0050

01467 0051

0168 0052

016% 0053
0054

06170

0171

0172

0173

0174

o175

0176 0055

0177 0056

0178

0179

0180

0181

0182

0183

0184 0057

0185 0058

0186 0059

0187 0054

0188 00SB

0189 005

N ERRORS,

32020 FAMILY MACRO ASSEMBLER
PRERELEASE 43

CEAZ
FF380
0057
4008 LO1
F380
0055
4B1%
CEAZ
FFGOo
0057

* & Kk Kk *k %k

CEOL NOFLOW
CE19

*
*
*
.i
*
#*
430A OUTPUT
&00B
5589
4B1&
EOAD
CEIF

NO WARNINGS

NCRM
E

ZALH
BLZ

RPT
NORM

DUTPLIT

CLO
NOFLOW

TTEEN

auTPuUT

FCO.7 84,348 15:25:17 03-27=g5 =

PAGE 0004

GO OUTPUT RESULTS.

HERE, IF CLO HAS MSE.
DID BIT SEARCH CAUSE OVERFLOW?

IF NOT, NORMALIZE RESLLT.

50 OUTPUT RESULT.

FINISHED WITH NORMALIZATION

OVERFLOW OCCURRED DURING BIT SEARCH

RSXM
SFR

RSXM FOR LOGICAL RIGHT SHIFT.
PERFORM RIGHT SHIFT.

TAKE CARE OF EXPONENT & NORMALIZED MANTISSA,
THEN OUTPUT RESULTS.

SACH
SACL
LARP
RPT
out
IDLE

CHI
cLo

THREE
#+, PAD

SAVE NORMALIZED MANTISSA.

RESET POINTER.
QUTPUT RESULTS, CSIGN, CEXP, CHI, AND CLO.

WAIT FOR INTERRUPT.

