

IDT WinChip C6+: The Next Generation

WinChip Background

- Started 4/95 (4 in my kitchen, home PC, etc)
- Designed IDT-C6 Processor (Ann'd 5/97)
 - P55-compatible (Includes MMX[™])
 - Optimized for business applications
 - Smallest 0.35μ die (88 mm²) → lowest cost
 - 8.9 W max power at 200 MHz (3.3V)
- Started Production Shipments In Sept
 - Windows certified, XXCAL Platinum certified
 - 4 BIOSes available, 10's qualified boards
 - Targeting tier 3 sub-\$1000 PCs
 - Primarily via distribution (HHT, Wyle)
- 180 (\$90) & 200 MHz (\$135) Shipping Now
 - 225 & 240 Sample In November MMX is a trademark of Intel Corporation

IDT C6 Architecture

- Simple RISC Pipeline
 - Highly tuned for high MHz & small size
 - Large caches (64 KB), large TLBs, etc.
 - Many non-obvious tricks for x86 (50 patents filed)

Next Generation Goals (C6+™)

- "2x" MMX & FP CPI Improvement
 - For those who care (not everyone)
 - Primary FP focus is 3D graphics
- Some Winstone CPI Improvement
 - Already very competitive
- Same Small Die Size (at same 0.35µ)
 - Exploit our small-size design & methodology
- Support New Technologies
 - 2.5V transistor & 0.25μ shrink
 - Faster MHz, lower cost, less power
- Ship 6 Months After C6
 - Exploit our fast development cycle

IDT C6+ MMX Improvements

- Full MMX Pairing (Superscalar)
 - Dual MMX units ala P55 (1 multiplier, 1 shifter)
 - 2 Instructions decoded, issued & executed per clock
 - Same pairing rules as P55
- Faster MMX Instruction Timing Than P55
 - 1 cycle multiply latency (vs 3)!
 - 1 cycle multiply-add latency (vs 3)!
 - 1 cycle store (vs 2)
- No MMX-Integer Pairing
 - But, larger caches, larger TLBs, etc.
- Result: Better MMX Performance Than P55
 - Even on biased Intel Media Benchmark!

IDT C6+ FP Improvements

- Fully Pipelined (Complete Redesign → Same Size)
- Some Instructions Slower Than P55
 - FMUL → 4/2 or 3/1 (SP) (vs 3/1)
 - FXCHG → 1 (vs 1/0)
 - 1 clock penalty on register-memory forms
- Some Instructions Faster Than P55
 - FST → 1 (vs 2-3), FIST, FSTSWAX-SAHF, etc.
- Results: 80-100% P55 FP Performance
 - 80% on biased Intel Media Benchmark (FP)
 - Typically same/faster P55 on real FP applications
- We Intentionally Stopped Here!
 - Silicon better spent on 3D assists/Winstone/etc.

3D Graphics Improvements

- 53 New x86 Instructions (12 x86 opcodes)
 - Designed to speed coord transforms/lighting
 - Addresses 20-50% CPU time in heavy-duty 3D
- 22 Additional FP Registers
- Minimal Die Size Impact (< 1mm²)
 - Primarily reuse of existing dataflow
 - New instruction decodes, a few muxes, etc.
- Intended For Distribution In Future MS D3D
 - Working with Microsoft to add our code
 - Automatically selected machine-specific code
 - Transparent to applications & users

3D Graphics Improvements

- Base Instruction Functions (Hdw)
 - 22 additional FP registers (30 total)
 - 1-clock multiply-accumulate
 - 1-clock load of 2 single-precision (SP) values
 - 1-clock compare & set bit flags
 - Fast SP inverse square root, square root, divide
 - 1-clock convert to/from integer
 - Fast & flexible moves to/from integer registers
 - Individual instruction control of precision
- Microcode Instructions For Future Speedups
 - Multiple clocks initially → single clock in future
 - 2x & 4x multiply-accumulates
 - Store 2 single-precision values at once

3D Graphics Improvements

Results (SP data)

■ [x y z] Transform (12 values)

 \blacksquare 1/sqrt(x²+y²+z²)

[x y z] Edge Detect (6)

Best

P55 1 C6+ 2

34

14 clks

125 (hw) 29

≈80 (sw)

37

8

Total 196

51

etc.

Notes

- 1. Highly optimized low-level assembler code for P55. Much better than any real code that we have found in programs/benchmarks.
- 2. Highly optimized low-level assembler code for IDT C6+.

IDT C6+ Integer Improvements

- Many Misc Improvements
 - Multiply → 6 (vs 10 for P55)
 - Load-ALU-Store → 2 (vs 3 for P55)
 - No penalty for 0F prefixes
 - Reduced AGIs, no penalty on base+index, etc.
- Limited Instruction Pairing
 - PUSH-PUSH, POP-POP
 - Pairs executed in same clock
- Generate Up to 4 Micro Instructions per Clock
 - Helps fill queue faster → key to branch prediction
- Great Branch Prediction
 - Better performance & much smaller than P55

IDT C6+ Branch Prediction

IDT C6+ Branch Prediction

	<u>P55</u>	<u>C6</u>
BTB/BHT Bits	34 Kb	4 Kb ←
Correctly Predicted Brand	ch 1	1-2 clks (1.1 avg)
Mispredict Time	5-6	4 clks
Predict Rates - Norton SI32 - Winstone Business	77% 82%	89% 93%
Avg Branch Clocks - Norton SI32 - Winstone Business	2.03 1.81	1.41 1.30

System Perf Improvements

- 4-way D-Cache (vs. current 2-way)
- Write Allocate (optional)
- Weak Read Ordering (optional)
- Plus Branch Prediction, etc.

Results

- 6% Faster Winstone 97 Business (Win95)
 - As fast as anyone at same MHz (P55, K6, M2)

Business Performance

Low-end commodity desktop (TX, 512 KB, 32-MB EDO, S3 Virge)

IDT C6+ Summary

- 2x C6 MMX CPI Performance
 - Better Than P55 MMX (on its own benchmark)!
- 2x C6 FP CPI Performance
 - Worst-case 80% of P55 (biased Intel Media BM)
- 2-4x P55 CPI on Specific 3D Graphics Kernels
 - Will be transparently available via MS D3D
- 6% Winstone CPI Improvement
 - As good as any other socket 7 at same MHz
- Support For New Technology (Split Voltage)
- 91 mm² vs. 88 for Current C6 (both 0.35μ)

IDT C6+ Summary

- Production Tapeout 11/15
- Target Shipments 2Q98
 - Samples 1Q98
- Two Technology Options
 - 3.3V core
 - Up to 266 MHz
 - Split V core allows reduced power & MHz
 - 2.5V core
 - 300 MHz at first ship
 - 40% lower power (at same MHz)
 - 3 months after 3.3V version

C6+ Die

WinChip '98 Roadmap

18

.25μ C6

