Cyrlx

July 15, 1997 3:24

Addendums and other updates for this manual can be obtained from
Cyrix Web site: www.cyrix.com.

http://www.cyrix.com

©1997 Copyright Cyrix Corporation. All rights reserved.
Printed in the United States of America

Trademark Acknowledgments:

Cyrix is a registered trademark of Cyrix Corporation.
6x86 and 6x86MX are trademarks of Cyrix Corporation. MMX is a trademark of Intel Corporation.
All other brand or product names are trademarks of their respective companies.

Order Number: 94329-00
Cyrix Corporation

2703 North Central Expressway
Richardson, Texas 75080-2010
United States of America

Cyrix Corporation (Cyrix) reserves the right to make changes in the devices or specifications described herein without notice.
Before design-in or order placement, customers are advised to verify that the information is current on which orders or design
activities are based. Cyrix warrants its products to conform to current specifications in accordance with Cyrix’ standard warranty.
Testing is performed to the extent necessary as determined by Cyrix to support this warranty. Unless explicitly specified by
customer order requirements, and agreed to in writing by Cyrix, not all device characteristics are necessarily tested. Cyrix assumes
no liability, unless specifically agreed to in writing, for customers’ product design or infringement of patents or copyrights of third
parties arising from the use of Cyrix devices. No license, either express or implied, to Cyrix patents, copyrights, or other intellec-
tual property rights pertaining to any machine or combination of Cyrix devices is hereby granted. Cyrix products are not intended
for use in any medical, life saving, or life sustaining system. Information in this document is subject to change without notice.

P

’Advanclng the Standards
Introduction

¢+ Enhanced Sixth-Generation
Architecture
- Performance Rating: PR166, PR200,

PR233, PR266 and higher

- 64K 4-Way Unified Write-Back Cache
-2 Level TLB (16 Entry L1, 384 Entry L2)
- Branch Prediction with a 512-entry BTB
- Enhanced Memory Management Unit
- Scratchpad RAM in Unified Cache
- Optimized for both 16- and 32-Bit Code
- High Performance 80-Bit FPU

6x86MX" PROCESSOR

Enhanced Sixth-Generation CPU

Compatible with MMX " Technology

¢+ X86 Instruction Set Includes
MMX™ Instructions

- Compatible with MMX " Technology
- Runs Windows® 95, Windows 3.x, Windows NT,
DOS, UNIX®, OS/2®, Solaris®, and others

+ Other Features

- Socket 7 Pinout Compatible

-2.9V Core, 3.3V I/O
- Flexible Core/Bus Clock Ratios (2x, 2.5x%, 3%, 3.5x)

- Leverages Existing Socket Infrastructure

The Cyrix 6x86MX " processor offers significant
enhancements over the 6x86 CPU. The 6x86MX
design quadruples the cache size, triples the TLB size,
increases the frequency scalability to 200 MHz and
beyond, and is compatible with MMX' technology.
The 6x86MX CPU contains a scratchpad RAM
feature, supports performance monitoring, and
allows caching of both SMI code and SMI data. It
delivers high 16- and 32-bit performance while
running Windows 95, Windows NT, OS/2, DOS,
UNIX, and other operating systems.

The 6x86MX processor achieves top performance
through the use of two optimized superpipelined
integer units, an on-chip floating point unit, and a
64 KByte unified write-back cache. The superpipe-
lined architecture reduces timing constraints and
increase frequency scalability. Advanced architectural
techniques include register renaming, out-of-order
completion, data dependency removal, branch
prediction and speculative execution. Many data
dependencies and resource conflicts have been elimi-
nated, allowing higher performance for both 16- and
32-bit software.

Instruction Address
Direct- Mapped 32 Superpipelined Instruction Data
16-Entry — Integer Unit <—T 108 a2
Level 1 X Linear A31-A3
X Data <—>
TLB Address <ﬁ,_> Address BE7#-BEO#
32 32 32 Bus
6-Wa - i
y ‘_,; FPU with Y Data 256 E':yte Instruction Interface D63-D0
384-Entry Y Linear | | 512-Entry MMX Line Cache it [47P
Level 2 BTB X 32 64
Address Extension
TLB FPU
Data 64- KByte Unified Cache >
Memory CPU Core Data CLk
Management Unit 64 4 - P
Cache Unit 64
Control
42 A 4P contro
X Physical
Address 32
Y Physical
Address Bus Interface
1747800

April 1997

®. 6x86MX"'PROCESSOR

Enhanced Sixth-Generation CPU
Compatible with MMX " Technology
Advancing the Standards

TABLE OF CONTENTS

1. ARCHITECTURE OVERVIEW

1.1 Major Differences Between the 6x86MX and 6x86 Processors. 1-2

1.2 Major Functional Blocks. oo 1-3

1.3 IntegerUnit 1-4

1.4 CacheUnits. 1-14

1.5 Memory Management Unit 1-16

1.6 Floating Point Unit 1-17

1.7 BusInterfaceUnit. 1-17 —

2. PROGRAMMING INTERFACE

2.1 Processor Initialization 2-1
2.2 Instruction Set Overview 2-3
2.3 Register Sets. 2-4 _r
2.4 System Register Seto 2-11
2.5 Model Specific Registers. 2-38
2.6 Time Stamp Counter 2-38
2.7 Performance Monitoring. 2-38
2.8 Performance Monitoring Counters Land 2 2-39
2.9 DebugRegisters 2-44
210 TestRegisterso 2-46
2,11 AddressSpace. 2-47 r)
2.12 Memory Addressing Methods 2-48
2.13 Memory Caches 2-57 —
2.14 Interrupt and Exceptions 2-62 \lJ
2.15 System Management Mode 2-70
2.16 Shutdownand Halt 2-80
2.17 Protection 2-82
2.18 Virtual 8086 Mode 2-85
2.19 Floating Point Unit Operations 2-86
220 MMXOperations 2-89 / |
3. BUS INTERFACE _
3.1 Signal Description Table. 3-2
3.2 Signal Descriptions 3-7 —
3.3 Functional Timing. 3-23
4. ELECTRICAL SPECIFICATIONS
4.1 Electrical Connections. 4-1 J
4.2 Absolute Maximum Ratings 4-2 r
4.3 Recommended Operating Conditions 4-3 —_—
4.4 DC Characteristics. 4-4 [
4.5 AC Characteristics. 4-6
5. MECHANICAL SPECIFICATIONS
5.1 296-Pin SPGAPackage 5-1
5.2 Thermal Characteristics 5-7

6. INSTRUCTION SET

6.1 Instruction Set Summary 6-1 r '
6.2 General Instruction Fields. 6-2

6.3 CPUID Instruction. 6-11

6.4 Instruction Set Tables 6-12

6.5 FPU Instruction Clock Counts. 6-30

6.6 6x86MX Processor MMX Instruction Clock Counts 6-37

Appendix, Index and Distributors

P

O
Ix List of Tables and Figures
Advancing the Standards

LIST OF FIGURES

Figure Name Page Number
Figure 1-1. Integer Unit 1-4
Figure 1-2. Cache Unit Operations 1-15
Figure 1-3. Paging Mechanism within the Memory Management Unit. 1-16
Figure 2-1. Application Register Set 2-5
Figure 2-2. General Purpose Registers 2-6
Figure 2-3. Segment Selector in Protected Mode. L0000 2-7
Figure 2-4. EFLAGS Register 2-9
Figure 2-5. System Register Seto 2-12
Figure 2-6. Control Registers 2-13
Figure 2-7. Descriptor Table Registers 2-16
Figure 2-8. Application and System Segment Descriptors 2-17
Figure 2-9. Gate Descriptor 2-20
Figure 2-10. Task Register. 2-21
Figure 2-11. 32-Bit Task State Segment (TSS) Table. 2-22
Figure 2-12. 16-Bit Task State Segment (TSS) Table. 2-23
Figure 2-13. 6x86MX Configuration Control Register 0 (CCRO) 2-26
Figure 2-14. 6x86MX Configuration Control Register 1 (CCRL) 2-27
Figure 2-15. 6x86MX Configuration Control Register 2 (CCR2) 2-28
Figure 2-16. 6x86MX Configuration Control Register 3 (CCR3) 2-29
Figure 2-17. 6x86MX Configuration Control Register 4 (CCR4) 2-30
Figure 2-18. 6x86MX Configuration Control Register 5(CCR5) 2-31
Figure 2-19. 6x86MX Configuration Control Register 6 (CCR6) 2-32
Figure 2-20 Address Region Registers (ARRO - ARR7) 2-33
Figure 2-21. Region Control Registers (RCRO -RCR7). 2-36
Figure 2-22. Counter Event Control Register 2-40
Figure 2-23. Debug Registers 2-44
Figure 2-24. Memory and I/O Address Spaces 2-47
Figure 2-25. Offset Address Calculation.00 2-49
Figure 2-26. Real Mode Address Calculation 2-50
Figure 2-27. Protected Mode Address Calculation00 2-51
Figure 2-28. Selector Mechanism 2-51
Figure 2-29. Paging Mechanisms 2-53

vi PRELIMINARY

List of Tables and Figures

LIST OF FIGURES (Continuved)

Figure Name Page Number
Figure 2-30. Directory and Page Table Entry (DTE and PTE) Format 2-53
Figure 2-31. TLB Test Registers 2-55
Figure 2-32. Unified Cacheo 2-58
Figure 2-33. Cache Test Registers 2-59
Figure 2-34. Error Code Format 2-69
Figure 2-35. SMI Execution Flow Diagram 2-70
Figure 2-36. System Management Memory Address Space 2-71
Figure 2-37. SMM Memory Space Header. 2-72
Figure 2-38. SMHR Register 2-74
Figure 2-39. SMM and Suspend Mode State Diagram 2-81
Figure 2-40. FPU Tag Word Register 2-87
Figure 2-41. FPU Status Register 2-87
Figure 2-42. FPU Mode Control Register 2-88
Figure 3-1. 6x86MX Functional Signal Groupings. 3-1
Figure 3-2. RESET Timing.o 3-23
Figure 3-3. 6x86MX CPU Bus State Diagram 3-25
Figure 3-4. Non-Pipelined Single Transfer Read Cycles 3-28
Figure 3-5. Non-Pipelined Single Transfer Write Cycles 3-29
Figure 3-6. Non-Pipelined Burst Read Cycles 3-31
Figure 3-7. Burst Cycle with Wait States.o 3-32
Figure 3-8. “1+4” Burst Read Cycle 3-33
Figure 3-9. Non-Pipelined Burst Write Cycles 3-35
Figure 3-10. Pipelined Single Transfer Read Cycles 3-36
Figure 3-11. Pipelined Burst Read Cycles 3-37
Figure 3-12. Read Cycle Followed by Pipelined Write Cycle 3-38
Figure 3-13. Interrupt Acknowledge Cycles. 3-39
Figure 3-14. SMIACT#Timing 3-40
Figure 3-15. SMM /O Trap Timing o 3-41
Figure 3-16. Cache Invalidation Using FLUSH# 3-42
Figure 3-17. External Write Buffer Empty (EWBE#) Timing 3-43
Figure 3-18. Requesting Hold froman Idle Bus. 3-44
Figure 3-19. Requesting Hold During a Non-Pipelined Bus Cycle. 3-45

PRELIMINARY vii

P

O
Ix List of Tables and Figures
Advancing the Standards

LIST OF FIGURES (Continuved)

Figure Name Page Number
Figure 3-20. Requesting Hold During a Pipelined Bus Cycle 3-46
Figure 3-21. Back-Off Timing. 3-47
Figure 3-22. HOLD Inquiry Cycle that Hits on a Modified Line. 3-49
Figure 3-23. BOFF# Inquiry Cycle that Hits on a Modified Line 3-50
Figure 3-24. AHOLD Inquiry Cycle that Hits on a Modified Line. 3-51
Figure 3-25. AHOLD Inquiry Cycle Duringa Line Fill 3-52
Figure 3-26. APCHK# Timing. 3-53
Figure 3-27. Hold Inquiry that Hits on a Modified DataLine 3-54
Figure 3-28. BOFF# Inquiry Cycle that Hits on a Modified Data Line. 3-56
Figure 3-29. Hold Inquiry that Misses the Cache While in SMM Mode 3-57
Figure 3-30. AHOLD Inquiry Cycle During a Line Fill from SMM Memory. 3-58
Figure 3-31. SUSP# Initiated Suspend Mode 3-60
Figure 3-32. HALT Initiated Suspend Mode. 3-61
Figure 3-33. Stopping CLK During Suspend Mode 3-62
Figure 4-1. Drive Level and Measurement Points for Switching Characteristics 4-7
Figure 4-2. CLK Timing and Measurement Points 4-8
Figure 4-3. Output Valid Delay Timing 4-9
Figure 4-4. Output Float Delay Timing 4-10
Figure 4-5. Input Setup and Hold Timing 4-12
Figure 4-6. TCK Timing Measurement Points00 4-13
Figure 4-7. JTAG Test Timings. o e 4-14
Figure 4-8. Test Reset Timing 4-14
Figure 5-1. 296-Pin SPGA Package Pin Assignments (Top View). 5-1
Figure 5-1. 296-Pin SPGA Package Pin Assignments (Bottom View). 5-2
Figure 5-2. 296-Pin SPGA Package 5-5
Figure 5-3 Typical HeatSink/Fan 5-8
Figure 6-1 Instruction Set Format. 6-1

viii PRELIMINARY

List of Tables and Figures

LIST OF TABLES

Table Name Page Number
Table 1-1. Register Renaming with WAR Dependency. 1-2
Table 1-2. Register Renaming with WAR Dependency. 1-7
Table 1-2. Register Renaming with WAW Dependency 1-8
Table 1-3. Example of Operand Forwarding 1-10
Table 1-4. Result Forwarding Example 1-11
Table 1-5. Example of Data Bypassing 1-12
Table 2-1. Initialized Register Controls 2-2
Table 2-2. Segment Register Selection Rules L 2-8
Table 2-3. EFLAGS Bit Definitions. 2-10
Table 2-4. CRO Bit Definitions 2-14
Table 2-5. Effects of Various Combinations of EM, TSand MP Bits 2-14
Table 2-6. CR4 Bit Definitions 2-15
Table 2-7. Segment Descriptor Bit Definitions 2-18
Table 2-8. TYPE Field Definitions with DT =0 2-18
Table 2-9. TYPE Field Definitions with DT =1, 2-19
Table 2-10. Gate Descriptor Bit Definitions 2-20
Table 2-11. 6x86MX Configuration Registers 2-25
Table 2-12. CCRO Bit Definitions 2-26
Table 2-13. CCRI1 Bit Definitions 2-27
Table 2-14. CCR2 Bit Definitions 2-28
Table 2-15. CCR3 Bit Definitions 2-29
Table 2-16. CCR4 Bit Definitions 2-30
Table 2-17. CCR5 Bit Definitions 2-31
Table 2-18. CCRO6 Bit Definitions 2-32
Table 2-19. ARRO - ARR7 Registers Index Assignments 2-34
Table 2-20. Bit Definitions for SIZE Field 2-34
Table 2-21. RCRO -RCR7 Bit Definitions 2-36
Table 2-22. Machine Specific Registers 2-38
Table 2-23. Counter Event Control Register Bit Definitions 2-40
Table 2-24. Event Type Register. 2-41
Table 2-25. DR6 and DR7 Debug Register Field Definitions. 2-45
Table 2-26. Memory Addressing Modes. 2-49

PRELIMINARY ix

P

O
Ix List of Tables and Figures
Advancing the Standards

LIST OF TABLES (Continued)

Table Name Page Number
Table 2-27. Directory and Page Table Entry (DTE and PTE) Bit Definitions 2-54
Table 2-28. CMD Field 2-54
Table 2-29. TLB Test Register Bit Definitions 2-56
Table 2-30. Cache Test Register Bit Definitions 2-59
Table 2-31. Cache Locking Operations 2-61
Table 2-32. Interrupt Vector AsSignments 2-65
Table 2-33. Interrupt and Exception Priorities. L 2-67
Table 2-34. Exception Changesin Real Mode 2-68
Table 2-35. Error Code Bit Definitions. 2-69
Table 2-36. SMM Memory Space Header 2-73
Table 2-37. SMHR Register 2-74
Table 2-38. SMM Instruction Set 2-75
Table 2-39. Requirements for Recognizing SMI# and SMINT 2-76
Table 2-40. Descriptor Types Used for Control Transfer. 2-84
Table 2-41. FPU Status Register Bit Definitions 2-87
Table 2-42. FPU Mode Control Register Bit Definitions 2-88
Table 2-43. Saturation Limits 2-90
Table 3-1. 6x86MX CPU Signals Sorted by Signal Name 3-2
Table 3-2. Clock Control. 3-7
Table 3-3. Pins Sampled During RESET 3-7
Table 3-4. Signal States During RESET 3-8
Table 3-5. Byte Enable Signal to Data Bus Byte Correlation. 3-9
Table 3-6. Parity Bit to Data Byte Correlation. 3-10
Table 3-7. Bus Cycle Types. 3-12
Table 3-8. Effects of WB/WT# on Cache Line State. 3-16
Table 3-9. Signal States During Bus Hold. 3-17
Table 3-10. Signal States During Suspend Mode. 3-21
Table 3-11. 6x86MX CPU Bus States 3-24
Table 3-12. Bus State Transitions 3-26
Table 3-13. “1+4” Burst Address Sequences. 3-33
Table 3-14. Linear Burst Address Sequences. 3-34
Table 4-1. Pins Connected to Internal Pull-Up and Pull-Down Resistors 4-1

x PRELIMINARY

List of Tables and Figures

LIST OF TABLES (Continued)

Table Name Page Number
Table 4-2. Absolute Maximum Ratings 4-2
Table 4-3. Recommended Operating Conditions 4-3
Table 4-4. DC Characteristics (at Recommended Operating Conditions) 1 of2. 4-4
Table 4-5. DC Characteristics (at Recommended Operating Conditions) 2 of2. 4-5
Table 4-6. Power Dissipation 4-5
Table 4-7. Drive Level and Measurement Points for Switching Characteristics 4-7
Table 4-8. Clock Specifications L 4-8
Table 4-9. Output Valid Delays, C; =50 pF, T 4o =0°Cto 70°C 4-9
Table 4-10. Output Float Delays, C; = 50 pF, T, =0°Cto 70°C. 4-10
Table 4-11. Input Setup Times T4oe =0°Cto 70°Co 4-11
Table 4-12. Input Hold Times T, =0°Cto 70°C. 4-11
Table 4-13. JTAG AC Specifications 4-13
Table 5-1. 296-Pin SPGA Package Signal Names Sorted by Pin Number 5-3
Table 5-2. 296-Pin SPGA Package Pin Numbers Sorted by Signal Name 5-4
Table 5-3. 296-Pin SPGA Package Dimensions 5-6
Table 5-4. Required B4 to Maintain 70°C Case Temperature. 5-7
Table 5-5. Heatsink/Fan Dimensions 5-8
Table 6-1. Instruction Set Format. 6-1
Table 6-2. Instruction Fields 6-2
Table 6-3. Instruction Prefix Summary 6-3
Table 6-4. wField Encoding 6-4
Table 6-5. dField Encoding. 6-4
Table 6-6. sField Encoding. 6-5
Table 6-7. eee Field Encoding. 6-5
Table 6-8. mod r/m Field Encoding 6-6
Table 6-9. mod r/m Field Encoding Dependent onw Field 6-7
Table 6-10. regField 6-7
Table 6-11. sreg3 Field Encoding. 6-8
Table 6-12. sreg2 Field Encoding. 6-8
Table 6-13. ss Field Encoding 6-9
Table 6-14. index Field Encoding 6-9
Table 6-15. mod base Field Encoding 6-10

PRELIMINARY xi

P

’Advanclng the Standards

o
List of Tables and Figures

Table 6-16. CPUID Data Returned When EAX =0 6-11
Table 6-17. CPUID Data Returned When EAX =1 6-11
Table 6-18. CPU Clock Count Abbreviations 6-13
Table 6-19. Flag Abbreviations 6-13
Table 6-20. Action of Instructionon Flag 6-13
Table 6-21. 6x86MX CPU Instruction Set Clock Count Summary. 6-14
Table 6-22. FPU Clock Count Table Abbreviations 6-30
Table 6-23. 6x86MX FPU Instruction Set Summary. 6-31
Table 6-24. MMX Clock Count Table Abbreviations, 6-37
Table 6-25. MMX Instruction Set SUMMAry 6-38
xii PRELIMINARY

’Advanclng the Standards
Product Overview —

1. ARCHITECTURE
OVERVIEW

The Cyrix 6x86MX ' processor is an enhanced
6x86 processor, that can process 57 new
multimedia instructions compatible with
MMX™echnology. The processor also
operates at a higher frequency, contains a
enlarged cache, a two-level TLB, and a
improved branch target cache.

The 6x86MX processor is based on the proven
6x86 core that is superscalar in that it contains
two separate pipelines that allow multiple
instructions to be processed at the same time.
The use of advanced processing technology
and superpipelining (increased number of
pipeline stages) allow the 6x86MX CPU to
achieve high clocks rates.

Through the use of unique architectural
features, the 6x86MX processor eliminates
many data dependencies and resource
conflicts, resulting in optimal performance for
both 16-bit and 32-bit x86 software.

For maximum performance, the 6x86MX CPU
contains two caches, a large unified 64 KByte
4-way set associative write-back cache and a
small high-speed instruction line cache.

6x86MX"'PROCESSOR

Enhanced Sixth-Generation CPU
Compatible with MMX ™ Technology

To provide support for multimedia operations,
the cache can be turned into a scratchpad RAM
memory on a line by line basis. The cache area
set aside as scratchpad memory acts as a
private memory for the CPU and does not
participate in cache operations.

Within the 6x86MX processor there are two

TLBs, the main L1 TLB and the larger L2 TLB.
The direct-mapped L1 TLB has 16 entries and
the 6-way associative L2 TLB has 384 entries.

The on-chip FPU has been enhanced to
process MMX " instructions as well as the
floating point instructions. Both types of
instructions execute in parallel with integer
instruction processing. To facilitate FPU opera-
tions, the FPU features a 64-bit data interface,
a four-deep instruction queue and a six-deep
store queue.

The CPU operates using a split rail power
design. The core runs on a 2.9 volt power
supply, to minimize power consumption.
External signal level compatibility is main-
tained by using a 3.3 volt power supply for the
I/0 interface.

For mobile systems and other power sensitive
applications, the 6x86MX processor incorpo-
rates low power suspend mode, stop clock
capability, and system management mode
(SMM).

PRELIMINARY 1-1

P

O
Ix Major Differences
Advancing the Standards

1.1 Major Differences Between the 6x86MX and the

6x86 Processors

The major differences between the 6x86MX and the 6x86 processors are summarized in Table 1-1.

Table 1-1. The 6x86MX Processor Versus the 6x86 Processor

L2: 384 entry

FEATURE 6x86MX Processor 6x86 Processor
Pinout P55C P54C
Supply Voltage 6x86: 6x86L:
Core 29V 330r3.52V | 28V
/0 33V 33V 33V
CPU Primary Cache 64 KBytes 16 KBytes
Translation Lookaside Buffer (TLB) L1: 16 entry L1: 128 entry

Victim TLB: 8 entry

Branch Prediction

512 entry branch target cache
1024 entry branch history table

256 entry branch target cache
512 entry branch history table

MMX Yes No
Performance Monitor including Yes No
Time Stamp Counter and Model

Specific Registers

Scratchpad RAM in Primary Cache Yes No
Cacheable SMI Code/Data Yes No
Clock Modes 2x, 2.5x, 3x, 3.5x 2x, 3x

1-2

PRELIMINARY

I |

1.2 Major Functional

Blocks

The 6x86MX processor consists of four major
functional blocks, as shown in the overall
block diagram on the first page of this manual:

* Memory Management Unit
e CPU Core

e (Cache Unit

¢ Bus Interface Unit

The CPU contains the superpipelined integer
unit, the BTB (Branch Target Buffer) unit and
the FPU (Floating Point Unit).

The BIU (Bus Interface Unit) provides the
interface between the external system board
and the processor’s internal execution units.
During a memory cycle, a memory location is
selected through the address lines (A31-A3
and BE7# -BEO#). Data is passed from or to
memory through the data lines (D63-DO).

Each instruction is read into 256-Byte Instruc-
tion Line Cache. The Cache Unit stores the
most recently used data and instructions to
allow fast access to the information by the
Integer Unit and FPU.

The CPU core requests instructions from the
Cache Unit. The received integer instructions
are decoded by either the X or Y processing
pipelines within the superpipelined integer
unit. If the instruction is a MMX or FPU
instruction it is passed to the floating point
unit for processing.

As required data is fetched from the 64-KByte
unified cache. If the data is not in the cache it
is accessed via the bus interface unit from main
memory.

The Memory Management Unit calculates
physical addresses including addresses based
on paging.

Physical addresses are calculated by the
Memory Management Unit and passed to the
Cache Unit and the Bus Interface Unit (BIU).

PRELIMINARY 1-3

P

II::"':::D IIlII:==:I=’:II:I:Ii:III
Advancing the Standards

1.3 integer Unit * Instruction Decode 2 (ID2)
o . e Address Calculation 1 (AC1)

The Integer Unit (Figure 1-1) provides o Address Calculation 2 (AC2)

parallel instruction execution using two e Execute (EX)

seven-stage integer pipelines. Each of the e Write-Back (WB)

two pipelines, X and Y, can process several

instructions simultaneously. The instruction decode and address calcula-

tion functions are both divided into superpipe-

The Integer Unit consists of the following lined st
ined stages.

pipeline stages:

¢ Instruction Fetch (IF)
¢ Instruction Decode 1 (ID1)

Instruction Fetch
Instruction Decode 1
In-Order_ Instruction Instruction
Processing Decode 2 Decode 2
Address Address
Calculation 1 Calculation 1
Address Address
! Calculation 2 Calculation 2
Execution Execution
Out-of-Order
Completion
v Write-Back Write-Back
X Pipeline Y Pipeline
1727301

1-4 PRELIMINARY

- mesrun]

1.3.1 Pipeline Stages

The Instruction Fetch (IF) stage, shared by
both the X and Y pipelines, fetches 16 bytes of
code from the cache unit in a single clock
cycle. Within this section, the code stream is
checked for any branch instructions that could
affect normal program sequencing.

If an unconditional or conditional branch is
detected, branch prediction logic within the IF
stage generates a predicted target address for
the instruction. The IF stage then begins
fetching instructions at the predicted address.

The superpipelined Instruction Decode
function contains the ID1 and ID2 stages.
ID1, shared by both pipelines, evaluates the
code stream provided by the IF stage and
determines the number of bytes in each
instruction. Up to two instructions per clock
are delivered to the ID2 stages, one in each
pipeline.

The ID2 stages decode instructions and send
the decoded instructions to either the X or Y
pipeline for execution. The particular pipeline
is chosen, based on which instructions are
already in each pipeline and how fast they are
expected to flow through the remaining pipe-
line stages.

The Address Calculation function contains
two stages, AC1 and AC2. If the instruction
refers to a memory operand, the AC1 calcu-
lates a linear memory address for the instruc-
tion.

The AC2 stage performs any required memory
management functions, cache accesses, and
register file accesses. If a floating point instruc-
tion is detected by AC2, the instruction is sent
to the FPU for processing.

The Execute (EX) stage executes instructions
using the operands provided by the address
calculation stage.

The Write-Back (WB) stage is the last U
stage. The WB stage stores execution results
either to a register file within the IU or to a
write buffer in the cache control unit.

1.3.2 Out-of-Order
Processing

If an instruction executes faster than the
previous instruction in the other pipeline, the
instructions may complete out of order. All
instructions are processed in order, up to the
EX stage. While in the EX and WB stages,
instructions may be completed out of order.

If there is a data dependency between two
instructions, the necessary hardware interlocks
are enforced to ensure correct program
execution. Even though instructions may
complete out of order, exceptions and writes
resulting from the instructions are always
issued in program order.

PRELIMINARY 1-5

Advancing the Standards

1.3.3 Pipeline Selection

In most cases, instructions are processed in
either pipeline and without pairing constraints
on the instructions. However, certain instruc-
tions are processed only in the X pipeline:

¢ Branch instructions
* Floating point instructions
¢ Exclusive instructions

Branch and floating point instructions may be
paired with a second instruction in the Y pipe-
line.

Exclusive Instructions cannot be paired with
instructions in the Y pipeline. These instruc-
tions typically require multiple memory
accesses. Although exclusive instructions may
not be paired, hardware from both pipelines is
used to accelerate instruction completion.
Listed below are the 6x86MX CPU exclusive
Instruction types:

* Protected mode segment loads
* Special register accesses
(Control, Debug, and Test Registers)
¢ String instructions
* Multiply and divide
* 1/O port accesses
e Push all (PUSHA) and pop all (POPA)
* Intersegment jumps, calls, and returns

1.3.4 Data Dependency
Solutions

When two instructions that are executing in
parallel require access to the same data or
register, one of the following types of data
dependencies may occur:

e Read-After-Write (RAW)
e ‘Write-After-Read (WAR)
o Write-After-Write (WAW)

Data dependencies typically force serialized
execution of instructions. However, the
6x86MX CPU implements three mechanisms
that allow parallel execution of instructions
containing data dependencies:

* Register Renaming
* Data Forwarding
¢ Data Bypassing

The following sections provide detailed exam-
ples of these mechanisms.

1.3.4.1 Register Renaming

The 6x86MX CPU contains 32 physical
general purpose registers. Each of the 32
registers in the register file can be temporarily
assigned as one of the general purpose
registers defined by the x86 architecture (EAX,
EBX, ECX, EDX, ESI, EDI, EBP, and ESP). For
each register write operation a new physical
register is selected to allow previous data to be
retained temporarily. Register renaming
effectively removes all WAW and WAR
dependencies. The programmer does not have
to consider register renaming as register
renaming is completely transparent to both the
operating system and application software.

1-6 PRELIMINARY

- mesrun]

Example #1 - Register Renaming Eliminates Write-After-Read (WAR) Dependency

A WAR dependency exists when the first in a pair of instructions reads a logical register, and the
second instruction writes to the same logical register. This type of dependency is illustrated by the
pair of instructions shown below:

X PIPE Y PIPE

(1) MOV BX, AX (2) ADD AX, CX
BX « AX AX « AX + CX

Note: In this and the following examples the original instruction order is shown in parentheses.

In the absence of register renaming, the ADD instruction in the Y pipe would have to be stalled to
allow the MOV instruction in the X pipe to read the AX register.

The 6x86MX CPU, however, avoids the Y pipe stall (Table 1-2). As each instruction executes, the
results are placed in new physical registers to avoid the possibility of overwriting a logical register
value and to allow the two instructions to complete in parallel (or out of order) rather than in
sequence.

Table 1-2. Register Renaming with WAR Dependency

Physical Register Contents Action
Instruction
Reg0 | Reg1l | Reg2 | Reg3 | Reg4 | Pipe
(Initial) AX BX CcX
MOV BX, AX AX CcX BX X Reg3 — Reg0
ADD AX, CX X BX AX Y Reg4 « Reg0 + Reg2

Note: The representation of the MOV and ADD instructions in the final column of Table 1-2
are completely independent.

PRELIMINARY 1-7

Cyrix r——

dvancing the Standards

Example #2 - Register Renaming Eliminates Write-After-Write (WAW) Dependency

A WAW dependency occurs when two consecutive instructions perform writes to the same logical
register. This type of dependency is illustrated by the pair of instructions shown below:

X PIPE Y PIPE
(1) ADD AX, BX (2) MOV AX, [mem]
AX ~AX + BX AX « [mem]

Without register renaming, the MOV instruction in the Y pipe would have to be stalled to guar-
antee that the ADD instruction in the X pipe would write its results to the AX register first.

The 6x86MX CPU uses register renaming and avoids the Y pipe stall. The contents of the AX and
BX registers are placed in physical registers (Table 1-3). As each instruction executes, the results
are placed in new physical registers to avoid the possibility of overwriting a logical register value
and to allow the two instructions to complete in parallel (or out of order) rather than in sequence.

Table 1-3. Register Renaming with WAW Dependency

Physical Register Contents Action
Instruction
Reg0 | Regl Reg2 | Reg3 Pipe
(Initial) AX BX
ADD AX, BX BX AX X Reg2 « Reg0 + Regl
MOV AX, [mem] BX AX Y Reg3 « [mem]

Note: All subsequent reads of the logical register AX will refer to Reg 3, the result of the MOV
Instruction.

1-8 PRELIMINARY

- mesrun]

1.3.4.2 Data Forwarding

Register renaming alone cannot remove RAW
dependencies. The 6x86MX CPU uses two
types of data forwarding in conjunction with
register renaming to eliminate RAW depen-
dencies:

* Operand Forwarding
* Result Forwarding

Operand forwarding takes place when the
first in a pair of instructions performs a move
from register or memory, and the data that is
read by the first instruction is required by the
second instruction. The 6x86MX CPU
performs the read operation and makes the
data read available to both instructions simul-
taneously.

Result forwarding takes place when the first
in a pair of instructions performs an operation
(such as an ADD) and the result is required by
the second instruction to perform a move to a
register or memory. The 6x86MX CPU
performs the required operation and stores the
results of the operation to the destination of
both instructions simultaneously.

PRELIMINARY

1-9

Advancing the Standards

Example #3 - Operand Forwarding Eliminates Read-After-Write (RAW) Dependency

A RAW dependency occurs when the first in a pair of instructions performs a write, and the
second instruction reads the same register. This type of dependency is illustrated by the pair of
instructions shown below in the X and Y pipelines:

X PIPE Y PIPE

(1) MOV AX, [mem] (2) ADD BX, AX

AX < [mem] BX « AX + BX

The 6x86MX CPU uses operand forwarding and avoids a Y pipe stall (Table 1-4). Operand
forwarding allows simultaneous execution of both instructions by first reading memory and then
making the results available to both pipelines in parallel.

Table 1-4. Example of Operand Forwarding

Physical Register Contents Action
Instruction
RegO0 | Regl Reg2 | Reg3 Pipe
(Initial) AX BX
MOV AX, [mem] BX AX X Reg2 « [mem]
ADD BX, AX AX BX Y Reg3 « [mem] + Regl

Operand forwarding can only occur if the first instruction does not modify its source data. In
other words, the instruction is a move type instruction (for example, MOV, POP, LEA). Operand
forwarding occurs for both register and memory operands. The size of the first instruction desti-
nation and the second instruction source must match.

1-10 PRELIMINARY

- mesrun]

Example #4 - Result Forwarding Eliminates Read-After-Write (RAW) Dependency

In this example, a RAW dependency occurs when the first in a pair of instructions performs a
write, and the second instruction reads the same register. This dependency is illustrated by the
pair of instructions in the X and Y pipelines, as shown below:

X PIPE Y PIPE
(1) ADD AX, BX (2) MOV [mem], AX
AX «AX +BX [mem] ~ AX

The 6x86MX CPU uses result forwarding and avoids a Y pipe stall (Table 1-5). Instead of transfer-
ring the contents of the AX register to memory, the result of the previous ADD instruction (Reg0O +
Regl) is written directly to memory, thereby saving a clock cycle.

Table 1-5. Result Forwarding Example

Physical Register Action
Instruction Contents
Reg0 | Regl Reg2 | Pipe
(Initial) AX BX
ADD AX, BX BX AX X Reg2 «Reg0 + Regl
MOV [mem], AX BX AX Y [mem] — RegO +Regl

The second instruction must be a move instruction and the destination of the second instruction
may be either a register or memory.

PRELIMINARY 1-11

COyrix r——

dvancing the Standards

1.3.4.3 Data Bypassing

In addition to register renaming and data forwarding, the 6x86MX CPU implements a third data
dependency-resolution technique called data bypassing. Data bypassing reduces the performance
penalty of those memory data RAW dependencies that cannot be eliminated by data forwarding.

Data bypassing is implemented when the first in a pair of instructions writes to memory and the
second instruction reads the same data from memory. The 6x86MX CPU retains the data from the
first instruction and passes it to the second instruction, thereby eliminating a memory read cycle.
Data bypassing only occurs for cacheable memory locations.

Example #1- Data Bypassing with Read-After-Write (RAW) Dependency

In this example, a RAW dependency occurs when the first in a pair of instructions performs a
write to memory and the second instruction reads the same memory location. This dependency is
illustrated by the pair of instructions in the X and Y pipelines as shown below:

X PIPE Y PIPE

(1) ADD [mem], AX (2) SUB BX, [mem]

[mem] « [mem] + AX BX « BX - [mem]

The 6x86MX CPU uses data bypassing and stalls the Y pipe for only one clock by eliminating the
Y pipe’s memory read cycle (Table 1-6). Instead of reading memory in the Y pipe, the result of the
previous instruction ([mem] + Reg0) is used to subtract from Regl, thereby saving a memory
access cycle.

Table 1-6. Example of Data Bypassing

Physical Register Achi
. Contents ction
Instruction
RegO | Regl | Reg2 | Pipe
(Initial) AX BX
ADD [mem], AX AX BX X [mem] « [mem] + RegO
SUB BX, [mem)] AX BX Y Reg2 « Regl - {[mem] + Reg0}

1-12 PRELIMINARY

- mesrun]

1.3.5 Branch Conirol

Branch instructions occur on average every
four to six instructions in x86-compatible pro-
grams. When the normal sequential flow of a
program changes due to a branch instruction,
the pipeline stages may stall while waiting for
the CPU to calculate, retrieve, and decode the
new instruction stream. The 6x86MX CPU
minimizes the performance degradation and
latency of branch instructions through the use
of branch prediction and speculative execu-
tion.

1.3.5.1 Branch Prediction

The 6x86MX CPU uses a 512-entry, 4-way set
associative Branch Target Buffer (BTB) to store
branch target addresses. The 6x86MX CPU has
1024-entry branch history table. During the
fetch stage, the instruction stream is checked
for the presence of branch instructions. If an
unconditional branch instruction is encoun-
tered, the 6x86MX CPU accesses the BTB to
check for the branch instruction’s target
address. If the branch instruction’ target
address is found in the BTB, the 6x86MX CPU
begins fetching at the target address specified
by the BTB.

In case of conditional branches, the BTB also
provides history information to indicate
whether the branch is more likely to be taken
or not taken. If the conditional branch instruc-
tion is found in the BTB, the 6x86MX CPU
begins fetching instructions at the predicted
target address. If the conditional branch misses
in the BTB, the 6x86MX CPU predicts that the
branch will not be taken, and instruction

PRELIMINARY

fetching continues with the next sequential
instruction. The decision to fetch the taken or
not taken target address is based on a
four-state branch prediction algorithm.

Once fetched, a conditional branch instruction
is first decoded and then dispatched to the X
pipeline only. The conditional branch instruc-
tion proceeds through the X pipeline and is
then resolved in either the EX stage or the WB
stage. The conditional branch is resolved in the
EX stage, if the instruction responsible for
setting the condition codes is completed prior
to the execution of the branch. If the instruc-
tion that sets the condition codes is executed
in parallel with the branch, the conditional
branch instruction is resolved in the WB stage.

Correctly predicted branch instructions
execute in a single core clock. If resolution of a
branch indicates that a misprediction has
occurred, the 6x86MX CPU flushes the pipe-
line and starts fetching from the correct target
address. The 6x86MX CPU prefetches both the
predicted and the non-predicted path for each
conditional branch, thereby eliminating the
cache access cycle on a misprediction. If the
branch is resolved in the EX stage, the
resulting misprediction latency is four cycles.
If the branch is resolved in the WB stage, the
latency is five cycles.

Since the target address of return (RET)
instructions is dynamic rather than static, the
6x86MX CPU caches target addresses for RET
instructions in an eight-entry return stack
rather than in the BTB. The return address is
pushed on the return stack during a CALL
instruction and popped during the corre-
sponding RET instruction.

P

Advancing the Standards

1.3.5.2 Speculative Execution

The 6x86MX CPU is capable of speculative
execution following a floating point instruction
or predicted branch. Speculative execution
allows the pipelines to continuously execute
instructions following a branch without
stalling the pipelines waiting for branch reso-
lution. The same mechanism is used to execute
floating point instructions (see Section 1.6) in
parallel with integer instructions.

The 6x86MX CPU is capable of up to four
levels of speculation (i.e., combinations of four
conditional branches and floating point opera-
tions). After generating the fetch address using
branch prediction, the CPU checkpoints the
machine state (registers, flags, and processor
environment), increments the speculation level
counter, and begins operating on the predicted
Instruction stream.

Once the branch instruction is resolved, the
CPU decreases the speculation level. For a
correctly predicted branch, the status of the
checkpointed resources is cleared. For a
branch misprediction, the 6x86MX processor
generates the correct fetch address and uses
the checkpointed values to restore the machine
state in a single clock.

In order to maintain compatibility, writes that
result from speculatively executed instructions
are not permitted to update the cache or
external memory until the appropriate branch
is resolved. Speculative execution continues
until one of the following conditions occurs:

1) A branch or floating point operation
is decoded and the speculation level
is already at four.

2) An exception or a fault occurs.
3) The write buffers are full.

4) An attempt is made to modify a
non-checkpointed resource (i.e.,
segment registers, system flags).

1.4 Cache Units

The 6x86MX CPU employs two caches, the
Unified Cache and the Instruction Line Cache
(Figure 1-2, Page 1-15). The main cache is a
4-way set-associative 64-KByte unified cache.
The unified cache provides a higher hit rate
than using equal-sized separate data and
instruction caches. While in Cyrix SMM mode
both SMM code and data are cacheable.

The instruction line cache is a fully associative
256-byte cache. This cache avoids excessive
conflicts between code and data accesses in the
unified cache.

1.4.1 Unified Cache

The 64-KByte unified write-back cache func-
tions as the primary data cache and as the
secondary instruction cache. Configured as a
four-way set-associative cache, the cache stores
up to 64 KBytes of code and data in 2048
lines. The cache is dual-ported and allows any

PRELIMINARY

- ceckeunn]i]

two of the following operations to occur in
parallel:

* Code fetch
* Data read (X pipe, Y pipeline or FPU)
* Data write (X pipe, Y pipeline or FPU)

The unified cache uses a pseudo-LRU replace-
ment algorithm and can be configured to allo-
cate new lines on read misses only or on read
and write misses.

1.4.2 Instruction Line Cache

The fully associative 256-byte instruction line
cache serves as the primary instruction cache.
The instruction line cache is filled from the
unified cache through the data bus. Fetches
from the integer unit that hit in the instruction
line cache do not access the unified cache. If
an instruction line cache miss occurs, the
instruction line data from the unified cache is
transferred to the instruction line cache and
the integer unit, simultaneously.

Instruction Data

¢ A A
Integer Instruction
Unit Addres!
IF > Instruction Line Cache BDa;aSS
P.)(Y o 256-Byte Fully Associative, 8 Lines A{igner
Ipe | Pipe <4 7 Y A
FPU
Data Bus
A
Bus
Interface
Unit
I Cache
Unified Cache 4— T
gs
64-KByte, 4-Way Set Associative, 2048 Lines

X, Y Instruction

Linear Line Cache

Address Miss Address

Modified X, Y
Physical Addresses

Memory Management Unit
(TLB)

Dual Bus
Single Bus

1747900

Figure 1-2. Cache Unit Operations

PRELIMINARY

®__:
C Ix Memory Management Unit
Advancing the Standards

The instruction line cache uses a pseudo-LRU
replacement algorithm. To ensure proper oper-
ation in the case of self-modifying code, any
writes to the unified cache are checked against
the contents of the instruction line cache. If a
hit occurs in the instruction line cache, the
appropriate line is invalidated.

1.5 Memory
Management Unit

The Memory Management Unit (MMU),
shown in Figure 1-3, translates the linear
address supplied by the 1U into a physical
address to be used by the unified cache and
the bus interface. Memory management proce-

dures are x86 compatible, adhering to stan-
dard paging mechanisms.

Within the 6x86MX CPU there are two TLBs,
the main L1 TLB and the larger L2 TLB. The
16-entry L1 TLB is direct mapped and holds
42 lines. The 384-entry L2 TLB is 6-way
associative and hold 384 lines. The DTE is
located in memory.

Scratch Pad Cache Memory

The 6x86MX CPU has the capability to “lock
down” lines in the L1 cache on a line by line
basis. Locked down lines are treated as private
memory for use by the CPU. Locked down
memory does not participate in hardware--
cache coherency protocols.

Linear
Address
9 MainL1TLB
O
> DTE — L2 TLB —,*
Directory Table
CR3 P PTE Physical Page |«
Control Register
>
Page Table Memory
1748000

Figure 1-3. Paging Mechanism within the Memory
Management Unit

PRELIMINARY

T |

Cache locking is controlled through use of the
RDMSR and WRMSR instructions.

1.6 Floating Point Unit

The 6x86MX Floating Point Unit (FPU)
processes floating point and MMX instruc-
tions. The FPU interfaces to the integer unit
and the cache unit through a 64-bit bus. The
6x86MX FPU is x87 instruction set compatible
and adheres to the IEEE-754 standard. Since
most applications contain FPU instructions
mixed with integer instructions, the 6x86MX
FPU achieves high performance by completing
integer and FPU operations in parallel.

FPU Parallel Execution

The 6x86MX CPU executes integer instruc-
tions in parallel with FPU instructions. Integer
instructions may complete out of order with
respect to the FPU instructions. The 6x86MX
CPU maintains x86 compatibility by signaling
exceptions and issuing write cycles in program
order.

As previously discussed, FPU instructions are
always dispatched to the integer unit’s X pipe-
line. The address calculation stage of the X
pipeline checks for memory management
exceptions and accesses memory operands
used by the FPU. If no exceptions are detected,
the 6x86MX CPU checkpoints the state of the
CPU and, during AC2, dispatches the floating
point instruction to the FPU instruction
queue. The 6x86MX CPU can then complete
any subsequent integer instructions specula-

PRELIMINARY

tively and out of order relative to the FPU
instruction and relative to any potential FPU
exceptions which may occur.

As additional FPU instructions enter the pipe-
line, the 6x86MX CPU dispatches up to four
FPU instructions to the FPU instruction queue.
The 6x86MX CPU continues executing specu-
latively and out of order, relative to the FPU
queue, until the 6x86MX CPU encounters one
of the conditions that causes speculative
execution to halt. As the FPU completes
instructions, the speculation level decreases
and the checkpointed resources are available
for reuse in subsequent operations. The
6x86MX FPU also uses a set of six write buffers
to prevent stalls due to speculative writes.

1.7 Bus Interface Unit

The Bus Interface Unit (BIU) provides the
signals and timing required by external
circuitry. The signal descriptions and bus inter-
face timing information is provided in
Chapters 3 and 4 of this manual.

