
XSelectExtensionEvent, XGetSelectedExtensionEvents− select extension events, get the list of
currently selected extension events

XSelectExtensionEvent(display, w, event_list, event_count)
Display *display;
Window w;
XEventClass *event_list;
int event_count;

XGetSelectedExtensionEvents(display, w, this_client_event_count_return,
this_client_event_list_return, all_clients_event_count_return, all_clients_event_list_return)

Display *display;
Window w;
int this_client_event_count_return;
XEventClass *this_client_event_list_return;
int all_clients_event_count_return;
XEventClass *all_clients_event_list_return;

display Specifies the connection to the X server.w Specifies the window whose events you are
interested in. event_listSpecifies the list of event classes that describe the events you are interested in.
event_countSpecifies the count of event classes in the event list.this_client_event_count_return
Returns the count of event classes selected by this client.this_client_event_list_returnReturns a
pointer to the list of event classes selected by this client.all_clients_event_count_returnReturns the
count of event classes selected by all clients.all_clients_event_list_returnReturns a pointer to the list
of event classes selected by all clients.

The XSelectExtensionEventrequest causes the X server to report the events associated with the
specified list of event classes. Initially, X will not report any of these events. Events are reported rela-
tive to a window. If a window is not interested in a device event, it usually propagates to the closest
ancestor that is interested, unless the do_not_propagate mask prohibits it.

Multiple clients can select for the same events on the same window with the following restrictions:

g Multiple clients can select events on the same window because their event masks are disjoint. When
the X server generates an event, it reports it to all interested clients.

g Only one client at a time can select aDeviceButtonPressevent with automatic passive grabbing
enabled, which is associated with the event classDeviceButtonPressGrab. To receiveDeviceBut-
tonPressevents without automatic passive grabbing, use event classDeviceButtonPressbut do not
specify event classDeviceButtonPressGrab.

The server reports the event to all interested clients.

Information contained in theXDevicestructure returned byXOpenDeviceis used by macros to obtain the
event classes that clients use in makingXSelectExtensionEventrequests. Currently defined macros include
DeviceKeyPress, DeviceKeyRelease, DeviceButtonPress, DeviceButtonRelese, DeviceMotionNotify, Devi-
ceFocusIn, DeviceFocusOut, ProximityIn, ProximityOut, DeviceStateNotify, DeviceMappiingNotify,
ChangeDeviceNotify, DevicePointerMotionHint, DeviceButton1Motion, DeviceButton2Motion,
DeviceButton3Motion, DeviceButton4Motion, DeviceButton5Motion, DeviceButtonMotion, DeviceOwner-
GrabButton, DeviceButtonPressGrab, andNoExtensionEvent.

To obtain the proper event class for a particular device, one of the above macros is invoked using theXDev-
icestructure for that device. For example,

DeviceKeyPress (*device, type, eventclass);

returns theDeviceKeyPressevent type and the eventclass for selectingDeviceKeyPressevents from this
device.



- 2 -

XSelectExtensionEventcan generate aBadWindowor BadClasserror. TheXGetSelectedExtensionEvents
request reports the extension events selected by this client and all clients for the specified window. This
request returns pointers to twoXEventClassarrays. One lists the input extension events selected by this
client from the specified window. The other lists the event classes selected by all clients from the specified
window. You should useXFreeto free these two arrays.

XGetSelectedExtensionEventscan generate aBadWindowerror.

BadWindowA value for a Window argument does not name a defined Window.BadClassA value for
an XEventClass argument is invalid.

Programming with Xlib


