
XrmGetResource, XrmQGetResource, XrmQGetSearchList, XrmQGetSearchResource− retrieve
database resources and search lists

Bool XrmGetResource(database, str_name, str_class, str_type_return, value_return)
XrmDatabasedatabase;
char *str_name;
char *str_class;
char ** str_type_return;
XrmValue * value_return;

Bool XrmQGetResource(database, quark_name, quark_class, quark_type_return, value_return)
XrmDatabasedatabase;
XrmNameListquark_name;
XrmClassListquark_class;
XrmRepresentation *quark_type_return;
XrmValue *value_return;

typedef XrmHashTable *XrmSearchList;

Bool XrmQGetSearchList(database, names, classes, list_return, list_length)
XrmDatabasedatabase;
XrmNameListnames;
XrmClassListclasses;
XrmSearchListlist_return;
int list_length;

Bool XrmQGetSearchResource(list, name, class, type_return, value_return)
XrmSearchListlist;
XrmNamename;
XrmClassclass;
XrmRepresentation *type_return;
XrmValue *value_return;

class Specifies the resource class.

classes Specifies a list of resource classes.

database Specifies the database that is to be used.

list Specifies the search list returned byXrmQGetSearchList.

list_length Specifies the number of entries (not the byte size) allocated for list_return.

list_return Returns a search list for further use.

name Specifies the resource name.

names Specifies a list of resource names.

quark_class Specifies the fully qualified class of the value being retrieved (as a quark).

quark_name Specifies the fully qualified name of the value being retrieved (as a quark).

quark_type_returnReturns the representation type of the destination (as a quark).

str_class Specifies the fully qualified class of the value being retrieved (as a string).

str_name Specifies the fully qualified name of the value being retrieved (as a string).

str_type_return Returns the representation type of the destination (as a string).

type_return Returns data representation type.

value_return Returns the value in the database.

- 2 -

The XrmGetResourceandXrmQGetResource functions retrieve a resource from the specified database.
Both take a fully qualified name/class pair, a destination resource representation, and the address of a value
(size/address pair). The value and returned type point into database memory; therefore, you must not
modify the data.

The database only frees or overwrites entries onXrmPutResource, XrmQPutResource, or XrmMerge-
Databases. A client that is not storing new values into the database or is not merging the database should
be safe using the address passed back at any time until it exits. If a resource was found, both
XrmGetResourceandXrmQGetResourcereturnTrue ; otherwise, they returnFalse.

The XrmQGetSearchList function takes a list of names and classes and returns a list of database levels
where a match might occur. The returned list is in best-to-worst order and uses the same algorithm as
XrmGetResource for determining precedence. If list_return was large enough for the search list,
XrmQGetSearchList returnsTrue ; otherwise, it returnsFalse.

The size of the search list that the caller must allocate is dependent upon the number of levels and wildcards
in the resource specifiers that are stored in the database. The worst case length is %3 sup n%, wheren is the
number of name or class components in names or classes.

When usingXrmQGetSearchList followed by multiple probes for resources with a common name and
class prefix, only the common prefix should be specified in the name and class list toXrmQGetSearchList.

The XrmQGetSearchResourcefunction searches the specified database levels for the resource that is fully
identified by the specified name and class. The search stops with the first match.XrmQGetSear-
chResourcereturnsTrue if the resource was found; otherwise, it returnsFalse.

A call to XrmQGetSearchList with a name and class list containing all but the last component of a
resource name followed by a call toXrmQGetSearchResourcewith the last component name and class
returns the same database entry asXrmGetResourceandXrmQGetResourcewith the fully qualified
name and class.

The algorithm for determining which resource database entry matches a given query is the heart of
the resource manager. All queries must fully specify the name and class of the desired resource (use
of the characters ‘‘*’’ and ‘‘?’’ are not permitted). The library supports up to 100 components in a
full name or class. Resources are stored in the database with only partially specified names and
classes, using pattern matching constructs. An asterisk (*) is a loose binding and is used to represent
any number of intervening components, including none. A period (.) is a tight binding and is used to
separate immediately adjacent components. A question mark (?) is used to match any single com-
ponent name or class. A database entry cannot end in a loose binding; the final component (which
cannot be the character ‘‘?’’) must be specified. The lookup algorithm searches the database for the
entry that most closely matches (is most specific for) the full name and class being queried. When
more than one database entry matches the full name and class, precedence rules are used to select just
one.

The full name and class are scanned from left to right (from highest level in the hierarchy to lowest), one
component at a time. At each level, the corresponding component and/or binding of each matching entry is
determined, and these matching components and bindings are compared according to precedence rules.
Each of the rules is applied at each level before moving to the next level, until a rule selects a single entry
over all others. The rules, in order of precedence, are:

1. An entry that contains a matching component (whether name, class, or the character ‘‘?’’) takes pre-
cedence over entries that elide the level (that is, entries that match the level in a loose binding).

2. An entry with a matching name takes precedence over both entries with a matching class and entries
that match using the character ‘‘?’’. An entry with a matching class takes precedence over entries
that match using the character ‘‘?’’.

3. An entry preceded by a tight binding takes precedence over entries preceded by a loose binding.

- 3 -

XrmInitialize(3X11), XrmMergeDatabases(3X11), XrmPutResource(3X11), XrmUniqueQuark(3X11)
Xlib − C Language X Interface

