
AIX 5L Version 5.1

Technical Reference: Base Operating
System and Extensions , Volume 2

���

AIX 5L Version 5.1

Technical Reference: Base Operating
System and Extensions , Volume 2

���

Third Edition (October 2001)

Before using the information in this book, read the general information in “Appendix C. Notices” on page 669.

© Copyright International Business Machines Corporation 1994, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book . xiii
Who Should Use This Book . xiii
Highlighting . xiii
ISO 9000 . xiii
32-Bit and 64-Bit Support for the UNIX98 Specification xiii
Related Publications . xiv
Trademarks . xiv

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 1
qsort Subroutine . 1
quotactl Subroutine . 2
raise Subroutine . 4
rand or srand Subroutine . 5
rand_r Subroutine . 6
random, srandom, initstate, or setstate Subroutine . 8
read, readx, readv, readvx, or pread Subroutine. 9
readdir_r Subroutine . 14
readlink Subroutine . 15
read_real_time or time_base_to_time Subroutine . 17
realpath Subroutine. 19
reboot Subroutine . 20
re_comp or re_exec Subroutine . 21
regcmp or regex Subroutine . 22
regcomp Subroutine . 25
regerror Subroutine . 27
regexec Subroutine . 29
regfree Subroutine . 32
reltimerid Subroutine . 33
remove Subroutine . 34
rename Subroutine . 34
revoke Subroutine . 37
rmdir Subroutine . 38
rpmatch Subroutine. 40
RSiAddSetHot Subroutine . 41
RSiChangeFeed Subroutine . 43
RSiChangeHotFeed Subroutine . 44
RSiClose Subroutine . 45
RSiCreateHotSet Subroutine . 46
RSiCreateStatSet Subroutine . 47
RSiDelSetHot Subroutine . 48
RSiDelSetStat Subroutine . 50
RSiFirstCx Subroutine. 51
RSiFirstStat Subroutine . 52
RSiGetHotItem Subroutine . 54
RSiGetRawValue Subroutine . 56
RSiGetValue Subroutine . 57
RSiInit Subroutine . 58
RSiInstantiate Subroutine . 60
RSiInvite Subroutine . 61
RSiMainLoop Subroutine. 63
RSiNextCx Subroutine. 64
RSiNextStat Subroutine . 65
RSiOpen Subroutine . 67

© Copyright IBM Corp. 1994, 2001 iii

RSiPathAddSetStat Subroutine . 69
RSiPathGetCx Subroutine . 70
RSiStartFeed Subroutine. 71
RSiStartHotFeed Subroutine . 72
RSiStatGetPath Subroutine . 74
RSiStopFeed Subroutine . 75
RSiStopHotFeed Subroutine . 76
rsqrt Subroutine . 77
rstat Subroutines. 79
_safe_fetch Subroutine . 79
scandir or alphasort Subroutine . 80
scanf, fscanf, sscanf, or wsscanf Subroutine . 82
sched_yield Subroutine . 87
select Subroutine . 87
semctl Subroutine . 90
semget Subroutine . 93
semop Subroutine . 96
setacldb or endacldb Subroutine . 98
setaudithostdb or endaudithostdb Subroutine . 99
setbuf, setvbuf, setbuffer, or setlinebuf Subroutine . 100
setcsmap Subroutine. 102
setgid, setrgid, setegid, or setregid Subroutine . 103
setgroups Subroutine . 105
setjmp or longjmp Subroutine . 106
setlocale Subroutine . 107
setpcred Subroutine . 111
setpenv Subroutine . 113
setpgid or setpgrp Subroutine . 117
setpri Subroutine . 118
setpwdb or endpwdb Subroutine . 119
setroledb or endroledb Subroutine . 121
setsid Subroutine . 122
setuid, setruid, seteuid, or setreuid Subroutine . 122
setuserdb or enduserdb Subroutine . 124
sgetl or sputl Subroutine . 125
shmat Subroutine . 126
shmctl Subroutine . 130
shmdt Subroutine . 132
shmget Subroutine . 133
sigaction, sigvec, or signal Subroutine . 135
sigaltstack Subroutine . 146
sigemptyset, sigfillset, sigaddset, sigdelset, or sigismember Subroutine 147
siginterrupt Subroutine . 149
sigpending Subroutine . 150
sigprocmask, sigsetmask, or sigblock Subroutine . 151
sigset, sighold, sigrelse, or sigignore Subroutine. 153
sigsetjmp or siglongjmp Subroutine . 156
sigstack Subroutine . 157
sigsuspend or sigpause Subroutine . 158
sigthreadmask Subroutine . 159
sigwait Subroutine. 161
sin, sinl, cos, cosl, tan, or tanl Subroutine . 162
sinh, sinhl, cosh, coshl, tanh, or tanhl Subroutine . 163
sleep, nsleep or usleep Subroutine . 164
snprintf Subroutine . 166
SpmiAddSetHot Subroutine . 170

iv Technical Reference, Volume 2: Base Operating System and Extensions

SpmiCreateHotSet . 173
SpmiCreateStatSet Subroutine . 174
SpmiDdsAddCx Subroutine . 175
SpmiDdsDelCx Subroutine . 176
SpmiDdsInit Subroutine . 178
SpmiDelSetHot Subroutine . 179
SpmiDelSetStat Subroutine . 181
SpmiExit Subroutine . 182
SpmiFirstCx Subroutine. 183
SpmiFirstHot Subroutine . 184
SpmiFirstStat Subroutine . 185
SpmiFirstVals Subroutine . 186
SpmiFreeHotSet Subroutine . 187
SpmiFreeStatSet Subroutine . 188
SpmiGetCx Subroutine . 189
SpmiGetHotSet Subroutine . 191
SpmiGetStat Subroutine . 192
SpmiGetStatSet Subroutine . 193
SpmiGetValue Subroutine . 195
SpmiInit Subroutine . 196
SpmiInstantiate Subroutine . 197
SpmiNextCx Subroutine . 199
SpmiNextHot Subroutine . 200
SpmiNextHotItem Subroutine. 201
SpmiNextStat Subroutine . 203
SpmiNextVals Subroutine . 204
SpmiNextValue Subroutine . 205
SpmiPathAddSetStat Subroutine . 207
SpmiPathGetCx Subroutine . 209
SpmiStatGetPath Subroutine . 210
sqrt, sqrtl, or cbrt Subroutine . 211
src_err_msg Subroutine . 212
src_err_msg_r Subroutine . 213
srcrrqs Subroutine. 214
srcrrqs_r Subroutine . 216
srcsbuf Subroutine . 217
srcsbuf_r Subroutine . 220
srcsrpy Subroutine . 223
srcsrqt Subroutine . 226
srcsrqt_r Subroutine . 229
srcstat Subroutine . 233
srcstat_r Subroutine . 235
srcstathdr Subroutine . 237
srcstattxt Subroutine . 238
srcstattxt_r Subroutine . 239
srcstop Subroutine . 239
srcstrt Subroutine . 242
ssignal or gsignal Subroutine. 244
statacl or fstatacl Subroutine . 245
statfs, fstatfs, or ustat Subroutine . 248
statvfs or fstatvfs Subroutine . 250
statx, stat, lstat, fstatx, fstat, fullstat, ffullstat, stat64, lstat64, or fstat64 Subroutine 251
strcat, strncat, strxfrm, strcpy, strncpy, or strdup Subroutine 255
strcmp, strncmp, strcasecmp, strncasecmp, or strcoll Subroutine 257
strerror Subroutine . 259
strfmon Subroutine . 260

Contents v

strftime Subroutine . 262
strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, or strtok Subroutine 265
strncollen Subroutine. 268
strtol, strtoul, strtoll, strtoull, atol, or atoi Subroutine 269
strptime Subroutine . 271
stty or gtty Subroutine . 273
swab Subroutine . 274
swapoff Subroutine . 275
swapon Subroutine . 276
swapqry Subroutine . 277
symlink Subroutine . 278
sync Subroutine . 280
_sync_cache_range Subroutine . 281
sysconf Subroutine . 282
sysconfig Subroutine . 286
SYS_CFGDD sysconfig Operation . 288
SYS_CFGKMOD sysconfig Operation . 289
SYS_GETPARMS sysconfig Operation . 290
SYS_KLOAD sysconfig Operation . 291
SYS_KULOAD sysconfig Operation . 296
SYS_QDVSW sysconfig Operation . 297
SYS_QUERYLOAD sysconfig Operation . 298
SYS_SETPARMS sysconfig Operation . 299
SYS_SINGLELOAD sysconfig Operation . 301
syslog, openlog, closelog, or setlogmask Subroutine 301
syslog_r, openlog_r, closelog_r, or setlogmask_r Subroutine 305
sys_parm Subroutine. 308
system Subroutine . 310
tcb Subroutine . 311
tcdrain Subroutine . 312
tcflow Subroutine . 313
tcflush Subroutine . 315
tcgetattr Subroutine . 316
tcgetpgrp Subroutine . 317
tcsendbreak Subroutine. 318
tcsetattr Subroutine . 319
tcsetpgrp Subroutine . 321
termdef Subroutine . 322
timezone Subroutine . 324
thread_post Subroutine . 325
thread_post_many Subroutine . 326
thread_self Subroutine . 327
thread_setsched Subroutine . 327
thread_wait Subroutine . 329
tmpfile Subroutine . 330
tmpnam or tempnam Subroutine . 331
towctrans Subroutine. 332
towlower Subroutine . 333
towupper Subroutine . 334
t_rcvreldata Subroutine . 335
t_rcvv Subroutine . 337
t_rcvvudata Subroutine . 339
t_sndv Subroutine . 341
t_sndreldata Subroutine. 343
t_sndvudata Subroutine. 345
t_sysconf Subroutine. 347

vi Technical Reference, Volume 2: Base Operating System and Extensions

trcgen or trcgent Subroutine . 348
trchook or utrchook Subroutine . 349
trcoff Subroutine . 350
trcon Subroutine . 351
trcstart Subroutine. 352
trcstop Subroutine . 353
truncate, truncate64, ftruncate, or ftruncate64 Subroutine 354
tsearch, tdelete, tfind or twalk Subroutine . 357
ttylock, ttywait, ttyunlock, or ttylocked Subroutine . 359
ttyname or isatty Subroutine . 360
ttyslot Subroutine . 361
ulimit Subroutine . 362
umask Subroutine . 364
umount or uvmount Subroutine . 365
uname or unamex Subroutine . 367
ungetc or ungetwc Subroutine . 368
unlink Subroutine . 369
unload Subroutine . 371
unlockpt Subroutine . 372
usrinfo Subroutine . 373
utimes or utime Subroutine . 375
varargs Macros . 376
vfwprintf, vwprintf Subroutine . 379
vmgetinfo Subroutine . 379
vmount or mount Subroutine . 380
vsnprintf Subroutine . 384
vwsprintf Subroutine . 384
wait, waitpid, wait3, or wait364 Subroutine . 385
wcscat, wcschr, wcscmp, wcscpy, or wcscspn Subroutine 388
wcscoll Subroutine . 390
wcsftime Subroutine . 391
wcsid Subroutine . 392
wcslen Subroutine. 393
wcsncat, wcsncmp, or wcsncpy Subroutine . 394
wcspbrk Subroutine . 395
wcsrchr Subroutine . 396
wcsrtombs Subroutine . 397
wcsspn Subroutine . 398
wcsstr Subroutine . 399
wcstod Subroutine. 399
wcstok Subroutine. 401
wcstol or wcstoll Subroutine . 403
wcstombs Subroutine . 405
wcstoul or wcstoull Subroutine . 406
wcswcs Subroutine . 408
wcswidth Subroutine . 409
wcsxfrm Subroutine . 410
wctob Subroutine . 411
wctomb Subroutine . 412
wctrans Subroutine . 413
wctype or get_wctype Subroutine . 413
wcwidth Subroutine . 415
wlm_assign Subroutine . 416
wlm_change_class Subroutine . 418
wlm_check subroutine . 420
wlm_classify Subroutine . 421

Contents vii

wlm_class2key Subroutine. 423
wlm_create_class Subroutine . 423
wlm_delete_class Subroutine. 425
wlm_endkey Subroutine . 427
wlm_get_bio_stats subroutine . 427
wlm_get_info Subroutine . 430
wlm_init_class_definition Subroutine . 432
wlm_initialize Subroutine . 433
wlm_initkey Subroutine . 434
wlm_key2class Subroutine. 435
wlm_load Subroutine. 436
wlm_read_classes Subroutine . 438
wlm_set Subroutine . 440
wlm_set_tag Subroutine . 441
wmemchr Subroutine. 442
wmemcmp Subroutine . 443
wmemcpy Subroutine . 444
wmemmove Subroutine . 444
wmemset Subroutine. 445
wordexp Subroutine . 446
wordfree Subroutine . 448
write, writex, writev, writevx or pwrite Subroutines . 449
wstring Subroutine . 454
wstrtod or watof Subroutine . 457
wstrtol, watol, or watoi Subroutine . 458
yield Subroutine . 459

Chapter 2. Curses Subroutines . 461
addch, mvaddch, mvwaddch, or waddch Subroutine 461
addnstr, addstr, mvaddnstr, mvaddstr, mvwaddnstr, mvwaddstr, waddnstr, or waddstr Subroutine 462
attroff, attron, attrset, wattroff, wattron, or wattrset Subroutine 464
attron or wattron Subroutine . 466
attrset or wattrset Subroutine. 467
baudrate Subroutine . 468
beep Subroutine . 468
box Subroutine . 469
can_change_color, color_content, has_colors,init_color, init_pair, start_color or pair_content

Subroutine. 470
cbreak, nocbreak, noraw, or raw Subroutine . 473
clear, erase, wclear or werase Subroutine . 475
clearok, idlok, leaveok, scrollok, setscrreg or wsetscrreg Subroutine 476
clrtobot or wclrtobot Subroutine . 479
clrtoeol or wclrtoeol Subroutine . 480
color_content Subroutine . 481
copywin Subroutine . 482
curs_set Subroutine . 483
def_prog_mode, def_shell_mode, reset_prog_mode or reset_shell_mode Subroutine 484
def_shell_mode Subroutine . 485
del_curterm, restartterm, set_curterm, or setupterm Subroutine 486
delay_output Subroutine . 488
delch, mvdelch, mvwdelch or wdelch Subroutine . 489
deleteln or wdeleteln Subroutine . 490
delwin Subroutine . 491
echo or noecho Subroutine . 492
echochar or wechochar Subroutines . 493
endwin Subroutine . 494

viii Technical Reference, Volume 2: Base Operating System and Extensions

erase or werase Subroutine . 494
erasechar, erasewchar, killchar, and killwchar Subroutine 495
filter Subroutine. 496
flash Subroutine . 497
flushinp Subroutine . 498
garbagedlines Subroutine . 499
getbegyx, getmaxyx, getparyx, or getyx Subroutine 500
getch, mvgetch, mvwgetch, or wgetch Subroutine . 501
getmaxyx Subroutine. 505
getnstr, getstr, mvgetnstr, mvgetstr, mvwgetnstr, mvwgetstr, wgetnstr, or wgetstr Subroutine 506
getsyx Subroutine . 508
getyx Macro . 509
halfdelay Subroutine . 510
has_colors Subroutine . 511
has_ic and has_il Subroutine. 512
has_il Subroutine . 513
idlok Subroutine . 513
inch, mvinch, mvwinch, or winch Subroutine . 514
init_color Subroutine . 516
init_pair Subroutine . 517
initscr and newterm Subroutine . 518
insch, mvinsch, mvwinsch, or winsch Subroutine . 519
insertln or winsertln Subroutine . 520
intrflush Subroutine . 521
keyname, key_name Subroutine . 522
keypad Subroutine . 523
killchar or killwchar Subroutine . 524
_lazySetErrorHandler Subroutine . 525
leaveok Subroutine . 526
longname Subroutine . 528
makenew Subroutine. 528
meta Subroutine . 529
move or wmove Subroutine . 530
mvcur Subroutine . 531
mvwin Subroutine . 532
newpad, pnoutrefresh, prefresh, or subpad Subroutine 533
newterm Subroutine . 536
derwin, newwin, or subwin Subroutine . 537
nl or nonl Subroutine. 540
nodelay Subroutine . 540
notimeout, timeout, wtimeout Subroutine . 541
overlay or overwrite Subroutine . 543
pair_content Subroutine. 544
prefresh or pnoutrefresh Subroutine . 545
printw, wprintw, mvprintw, or mvwprintw Subroutine 546
putp, tputs Subroutine . 548
raw or noraw Subroutine . 549
refresh or wrefresh Subroutine . 550
reset_prog_mode Subroutine. 551
reset_shell_mode Subroutine. 552
resetterm Subroutine. 553
resetty, savetty Subroutine. 553
restartterm Subroutine . 554
ripoffline Subroutine . 555
savetty Subroutine . 556
scanw, wscanw, mvscanw, or mvwscanw Subroutine 557

Contents ix

scr_dump, scr_init, scr_restore, scr_set Subroutine 558
scr_init Subroutine . 560
scr_restore Subroutine . 561
scrl, scroll, wscrl Subroutine . 562
scrollok Subroutine . 563
set_curterm Subroutine . 564
setscrreg or wsetscrreg Subroutine . 565
setsyx Subroutine . 566
set_term Subroutine . 567
setupterm Subroutine . 568
_showstring Subroutine . 569
slk_attroff, slk_attr_off, slk_attron, slk_attrset, slk_attr_set, slk_clear, slk_color, slk_init, slk_label,

slk_noutrefresh, slk_refresh, slk_restore, slk_set, slk_touch, slk_wset, Subroutine 570
slk_init Subroutine. 573
slk_label Subroutine . 574
slk_noutrefresh Subroutine . 575
slk_refresh Subroutine . 576
slk_restore Subroutine . 577
slk_set Subroutine. 577
slk_touch Subroutine. 578
standend, standout, wstandend, or wstandout Subroutine 579
start_color Subroutine . 580
subpad Subroutine . 581
subwin Subroutine. 582
tgetent, tgetflag, tgetnum, tgetstr, or tgoto Subroutine 584
tgetflag Subroutine . 585
tgetnum Subroutine . 586
tgetstr Subroutine . 587
tgoto Subroutine . 588
tigetflag, tigetnum, tigetstr, or tparm Subroutine . 588
tigetnum Subroutine . 590
tigetstr Routine . 591
is_linetouched, is_wintouched, touchline, touchwin, untouchwin, or wtouchin Subroutine 592
touchoverlap Subroutine . 594
touchwin Subroutine . 595
tparm Subroutine . 596
tputs Subroutine . 597
typeahead Subroutine . 598
unctrl Subroutine . 599
ungetch, unget_wch Subroutine . 600
vidattr, vid_attr, vidputs, or vid_puts Subroutine . 601
doupdate, refresh, wnoutrefresh, or wrefresh Subroutines 602

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 605
SDOT or DDOT Function . 605
CDOTC or ZDOTC Function . 605
CDOTU or ZDOTU Function . 606
SAXPY, DAXPY, CAXPY, or ZAXPY Subroutine . 607
SROTG, DROTG, CROTG, or ZROTG Subroutine . 607
SROT, DROT, CSROT, or ZDROT Subroutine . 608
SCOPY, DCOPY, CCOPY, or ZCOPY Subroutine . 609
SSWAP, DSWAP, CSWAP, or ZSWAP Subroutine . 610
SNRM2, DNRM2, SCNRM2, or DZNRM2 Function. 611
SASUM, DASUM, SCASUM, or DZASUM Function 612
SSCAL, DSCAL, CSSCAL, CSCAL, ZDSCAL, or ZSCAL Subroutine 612
ISAMAX, IDAMAX, ICAMAX, or IZAMAX Function . 613

x Technical Reference, Volume 2: Base Operating System and Extensions

SDSDOT Function . 614
SROTM or DROTM Subroutine . 615
SROTMG or DROTMG Subroutine . 616
SGEMV, DGEMV, CGEMV, or ZGEMV Subroutine . 617
SGBMV, DGBMV, CGBMV, or ZGBMV Subroutine . 618
CHEMV or ZHEMV Subroutine . 620
CHBMV or ZHBMV Subroutine . 621
CHPMV or ZHPMV Subroutine . 623
SSYMV or DSYMV Subroutine . 624
SSBMV or DSBMV Subroutine . 625
SSPMV or DSPMV Subroutine . 626
STRMV, DTRMV, CTRMV, or ZTRMV Subroutine . 627
STBMV, DTBMV, CTBMV, or ZTBMV Subroutine . 629
STPMV, DTPMV, CTPMV, or ZTPMV Subroutine . 631
STRSV, DTRSV, CTRSV, or ZTRSV Subroutine . 632
STBSV, DTBSV, CTBSV, or ZTBSV Subroutine . 634
STPSV, DTPSV, CTPSV, or ZTPSV Subroutine . 636
SGER or DGER Subroutine . 638
CGERU or ZGERU Subroutine . 639
CGERC or ZGERC Subroutine . 639
CHER or ZHER Subroutine . 640
CHPR or ZHPR Subroutine . 641
CHER2 or ZHER2 Subroutine . 642
CHPR2 or ZHPR2 Subroutine . 643
SSYR or DSYR Subroutine . 644
SSPR or DSPR Subroutine . 645
SSYR2 or DSYR2 Subroutine . 646
SSPR2 or DSPR2 Subroutine . 648
SGEMM, DGEMM, CGEMM, or ZGEMM Subroutine 649
SSYMM, DSYMM, CSYMM, or ZSYMM Subroutine 650
CHEMM or ZHEMM Subroutine . 652
SSYRK, DSYRK, CSYRK, or ZSYRK Subroutine . 654
CHERK or ZHERK Subroutine . 655
SSYR2K, DSYR2K, CSYR2K, or ZSYR2K Subroutine 657
CHER2K or ZHER2K Subroutine . 658
STRMM, DTRMM, CTRMM, or ZTRMM Subroutine 660
STRSM, DTRSM, CTRSM, or ZTRSM Subroutine . 662

Appendix A. Base Operating System Error Codes for Services That Require Path-Name
Resolution . 665

Appendix B. ODM Error Codes . 667

Appendix C. Notices . 669

Index . 673

Contents xi

xii Technical Reference, Volume 2: Base Operating System and Extensions

About This Book

This book provides information on application programming interfaces to the operating system.

This book is part of the six-volume technical reference set, AIX 5L Version 5.1 Technical Reference, that
provides information on system calls, kernel extension calls, and subroutines in the following volumes:

v AIX 5L Version 5.1 Technical Reference: Base Operating System and Extensions Volume 1 and AIX 5L
Version 5.1 Technical Reference: Base Operating System and Extensions Volume 2 provide information
on system calls, subroutines, functions, macros, and statements associated with base operating system
runtime services.

v AIX 5L Version 5.1 Technical Reference: Communications Volume 1 and AIX 5L Version 5.1 Technical
Reference: Communications Volume 2 provide information on entry points, functions, system calls,
subroutines, and operations related to communications services.

v AIX 5L Version 5.1 Technical Reference: Kernel and Subsystems Volume 1 and AIX 5L Version 5.1
Technical Reference: Kernel and Subsystems Volume 2 provide information about kernel services,
device driver operations, file system operations, subroutines, the configuration subsystem, the
communications subsystem, the low function terminal (LFT) subsystem, the logical volume subsystem,
the M-audio capture and playback adapter subsystem, the printer subsystem, the SCSI subsystem, and
the serial DASD subsystem.

Who Should Use This Book
This book is intended for experienced C programmers. To use the book effectively, you should be familiar
with commands, system calls, subroutines, file formats, and special files.

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files,
structures, directories, and other items whose names are
predefined by the system. Also identifies graphical objects
such as buttons, labels, and icons that the user selects.

Italics Identifies parameters whose actual names or values are to
be supplied by the user.

Monospace Identifies examples of specific data values, examples of
text similar to what you might see displayed, examples of
portions of program code similar to what you might write
as a programmer, messages from the system, or
information you should actually type.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

32-Bit and 64-Bit Support for the UNIX98 Specification
Beginning with Version 4.3, the operating system is designed to support The Open Group’s UNIX98
Specification for portability of UNIX-based operating systems. Many new interfaces, and some current
ones, have been added or enhanced to meet this specification, making Version 4.3 even more open and
portable for applications.
At the same time, compatibility with previous releases of the operating system is preserved. This is
accomplished by the creation of a new environment variable, which can be used to set the system
environment on a per-system, per-user, or per-process basis.

© Copyright IBM Corp. 1994, 2001 xiii

To determine the proper way to develop a UNIX98-portable application, you may need to refer to The
Open Group’s UNIX98 Specification, which can be obtained on a CD-ROM by ordering Go Solo 2: The
Authorized Guide to Version 2 of the Single UNIX Specification, ISBN: 0-13-575689-8, a book which
includes The Open Group’s UNIX98 Specification on a CD-ROM.

Related Publications
The following books contain information about or related to application programming interfaces:

v AIX 5L Version 5.1 System Management Guide: Operating System and Devices (“About This Book” on
page xiii)

v AIX 5L Version 5.1 System Management Guide: Communications and Networks

v AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs

v AIX 5L Version 5.1 Communications Programming Concepts

v AIX 5L Version 5.1 Kernel Extensions and Device Support Programming Concepts (“About This Book”
on page xiii)

v AIX 5L Version 5.1 Files Reference (“About This Book” on page xiii)

Trademarks
The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

v AIX

v AIXwindows

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be the trademarks or service marks of others.

xiv Technical Reference, Volume 2: Base Operating System and Extensions

../../aixbman/commadmn/atb.htm
../../aixprggd/genprogc/atb.htm
../../aixprggd/progcomc/atb.htm

Chapter 1. Base Operating System (BOS) Runtime Services
(Q-Z)

qsort Subroutine

Purpose
Sorts a table of data in place.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

void qsort (Base, NumberOfElements, Size, ComparisonPointer)
void * Base;
size_t NumberOfElements, Size;
int (*ComparisonPointer)(const void*, const void*);

Description
The qsort subroutine sorts a table of data in place. It uses the quicker-sort algorithm.

Parameters

Base Points to the element at the base of the table.
NumberOfElements Specifies the number of elements in the table.
Size Specifies the size of each element.
ComparisonPointer Points to the comparison function, which is passed two parameters that point to

the objects being compared. The qsort subroutine sorts the array in ascending
order according to the comparison function.

Return Values
The comparison function compares its parameters and returns a value as follows:

v If the first parameter is less than the second parameter, the ComparisonPointer parameter returns a
value less than 0.

v If the first parameter is equal to the second parameter, the ComparisonPointer parameter returns 0.

v If the first parameter is greater than the second parameter, the ComparisonPointer parameter returns a
value greater than 0.

Because the comparison function need not compare every byte, the elements can contain arbitrary data in
addition to the values being compared.

Note: If two items are the same when compared, their order in the output of this subroutine is
unpredictable.

The pointer to the base of the table should be of type pointer-to-element, and cast to type
pointer-to-character.

© Copyright IBM Corp. 1994, 2001 1

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The bsearch subroutine, lsearch subroutine.

Searching and Sorting Example Program, Subroutines Overview in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

quotactl Subroutine

Purpose

Manipulates disk quotas.

Library
Standard C Library (libc.a)

Syntax
#include <jfs/quota.h>

int quotactl (Path, Cmd, ID, Addr)
int Cmd, ID;
char * Addr, * Path;

Description
The quotactl subroutine enables, disables, and manipulates disk quotas for file systems on which quotas
have been enabled.

Currently, disk quotas are supported only by the Journaled File System (JFS).

Parameters

Path Specifies the path name of any file within the mounted file system to which the quota control command is to
be applied.

2 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/bsearch.htm#HDRA18192C9
../../libs/basetrf1/lsearch.htm#HDRA18192BC
../../aixprggd/genprogc/srch_sort_ie_prg.htm#HDRA17F0112
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

Cmd Specifies the quota control command to be applied and whether it is applied to a user or group quota.

For JFSs, the Cmd parameter can be constructed through use of the QCMD(Cmd, type) macro contained
within the jfs/quota.h file. The Cmd parameter specifies the quota control command. The type parameter
specifies either user (USRQUOTA) or group (GRPQUOTA) quota type.

The valid JFS specific quota control values for the Cmd parameter are:

Q_QUOTAON
Enables disk quotas for the file system specified by the Path parameter. The Addr parameter
specifies a file from which to take the quotas. The quota file must exist; it is normally created with
the quotacheck command. The ID parameter is unused. Root user authority is required to enable
quotas.

Q_QUOTAOFF
Disables disk quotas for the file system specified by the Path parameter. The Addr and ID
arguments are unused. Root user authority is required to disable quotas.

Q_GETQUOTA
Gets disk quota limits and current usage for a user or group specified by the ID parameter. The
Addr parameter points to a dqblk buffer to hold the returned information. The dqblk structure is
defined in the jfs/quota.h file. Root user authority is required if the ID value is not the current ID of
the caller.

Q_SETQUOTA
Sets disk quota limits for the user or group specified by the ID parameter. The Addr parameter
points to a dqblk buffer containing the new quota limits. The dqblk structure is defined in the
jfs/quota.h file. Root user authority is required to set quotas.

Q_SETUSE
Sets disk usage limits for the user or group specified by the ID parameter. The Addr parameter
points to a dqblk buffer containing the new usage limits. The dqblk structure is defined in the
jfs/quota.h file. Root user authority is required to set disk usage limits.

ID Specifies the user or group ID to which the quota control command applies. The ID parameter is interpreted
by the specified quota type. The JFS file system supports quotas for IDs within the range of MINDQUID
through MAXDQID.

Addr Points to the address of an optional, command specific, data structure that is copied in or out of the system.
The interpretation of the Addr parameter for each quota control command is given above.

Return Values
A successful call returns 0, otherwise the value -1 is returned and the errno global variable indicates the
reason for the failure.

Error Codes
A quotactl subroutine will fail when one of the following occurs:

EACCES In the Q_QUOTAON command, the quota file is not a regular file.
EACCES Search permission is denied for a component of a path prefix.
EFAULT An invalid Addr parameter is supplied; the associated structure could not be

copied in or out of the kernel.
EFAULT The Path parameter points outside the process’s allocated address space.
EINVAL The specified quota control command or quota type is invalid.
EINVAL Path name contains a character with the high-order bit set.
EINVAL The ID parameter is outside of the supported range (MINDQID through

MAXDQID).
EIO An I/O error occurred while reading from or writing to a file containing quotas.
ELOOP Too many symbolic links were encountered in translating a path name.
ENAMETOOLONG A component of either path name exceeded 255 characters, or the entire

length of either path name exceeded 1023 characters.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 3

../../cmds/aixcmds4/quotacheck.htm#HDRA84C12E

ENOENT A file name does not exist.
ENOTBLK Mounted file system is not a block device.
ENOTDIR A component of a path prefix is not a directory.
EOPNOTSUPP The file system does not support quotas.
EPERM The quota control commands is privileged and the caller did not have root

user authority.
EROFS In the Q_QUOTAON command, the quota file resides on a read-only file

system.
EUSERS The in-core quota table cannot be expanded.

Related Information
The quotacheck command.

Disk Quota System Overview in AIX 5L Version 5.1 System Management Concepts: Operating System
and Devices.

How to Set Up the Disk Quota System in AIX 5L Version 5.1 System Management Guide: Operating
System and Devices.

raise Subroutine

Purpose
Sends a signal to the currently running program.

Libraries
Standard C Library (libc.a)

Threads Library (libpthreads.a)

Syntax
#include <sys/signal.h>

int raise (Signal)
int Signal;

Description
The raise subroutine sends the signal specified by the Signal parameter to the executing process or
thread, depending if the POSIX threads API (the libpthreads.a library) is used or not. When the program
is not linked with the threads library, the raise subroutine sends the signal to the calling process as
follows:
return kill(getpid(), Signal);

When the program is linked with the threads library, the raise subroutine sends the signal to the calling
thread as follows:
return pthread_kill(pthread_self(), Signal);

Parameter

Signal Specifies a signal number.

4 Technical Reference, Volume 2: Base Operating System and Extensions

../../cmds/aixcmds4/quotacheck.htm#HDRA84C12E
../../aixbman/admnconc/quota_overview.htm
../../aixbman/baseadmn/quota_setup.htm

Return Values
Upon successful completion of the raise subroutine, a value of 0 is returned. Otherwise, a nonzero value
is returned, and the errno global variable is set to indicate the error.

Error Code

EINVAL The value of the sig argument is an invalid signal number

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

When using the threads library, it is important to ensure that the threads library is linked before the
standard C library.

Related Information
The _exit subroutine, kill subroutine, pthread_kill subroutine, sigaction (“sigaction, sigvec, or signal
Subroutine” on page 135) subroutine.

Signal Management in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs provides more information about signal management in multi-threaded processes.

rand or srand Subroutine

Purpose

Generates pseudo-random numbers.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int rand

void srand (Seed)
unsigned int Seed;

Description
Attention: Do not use the rand subroutine in a multithreaded environment. See the multithread
alternative in the rand_r (“rand_r Subroutine” on page 6) subroutine article.

The rand subroutine generates a pseudo-random number using a multiplicative congruential algorithm.
The random-number generator has a period of 2**32, and it returns successive pseudo-random numbers
in the range from 0 through (2**15) -1.

The srand subroutine resets the random-number generator to a new starting point. It uses the Seed
parameter as a seed for a new sequence of pseudo-random numbers to be returned by subsequent calls
to the rand subroutine. If you then call the srand subroutine with the same seed value, the rand
subroutine repeats the sequence of pseudo-random numbers. When you call the rand subroutine before
making any calls to the srand subroutine, it generates the same sequence of numbers that it would if you
first called the srand subroutine with a seed value of 1.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 5

../../libs/basetrf1/exit.htm#HDRA087913E7
../../libs/basetrf1/kill.htm#HDRA199944D
../../libs/basetrf1/pthread_kill.htm#HDRSFEVH61MANU
../../aixprggd/genprogc/signal_mgmt.htm

Note: The rand subroutine is a simple random-number generator. Its spectral properties, a
mathematical measurement of randomness, are somewhat limited. See the drand48 subroutine or
the random subroutine for more elaborate random-number generators that have greater spectral
properties.

Parameter

Seed Specifies an initial seed value.

Return Values
Upon successful completion, the rand subroutine returns the next random number in sequence. The
srand subroutine returns no value.

There are better random number generators, as noted above; however, the rand and srand subroutines
are the interfaces defined for the ANSI C library.

Example
The following functions define the semantics of the rand and srand subroutines, and are included here to
facilitate porting applications from different implementations:
static unsigned int next = 1;
int rand()
{
next = next
*
1103515245 + 12345;

return ((next >>16) & 32767);
}

void srand (Seed)

unsigned
int Seed;
{
next = Seed;
}

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, or lcong48 subroutine,
random, srandom, initstate, or setstate (“random, srandom, initstate, or setstate Subroutine” on page 8)
subroutine.

Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

rand_r Subroutine

Purpose
Generates pseudo-random numbers.

6 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/drand48.htm#HDRA130924B
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

Libraries
Thread-Safe C Library (libc_r.a)

Berkeley Compatibility Library (libbsd.a)

Syntax
#include <stdlib.h>

int rand_r (Seed)
unsigned int * Seed;

Description
The rand_r subroutine generates and returns a pseudo-random number using a multiplicative congruential
algorithm. The random-number generator has a period of 2**32, and it returns successive pseudo-random
numbers.

Note: The rand_r subroutine is a simple random-number generator. Its spectral properties (the
mathematical measurement of the randomness of a number sequence) are limited. See the drand48
subroutine or the random (“random, srandom, initstate, or setstate Subroutine” on page 8) subroutine
for more elaborate random-number generators that have greater spectral properties.

Parameter

Seed Specifies an initial seed value.

Return Values

0 Indicates that the subroutines was successful.
-1 Indicates that the subroutines was not successful.

Error Codes
If the following condition occurs, the rand_r subroutine sets the errno global variable to the corresponding
value.

EINVAL The Seed parameter specifies a null value.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Programs using this subroutine must link to the libpthreads.a library.

File

/usr/include/sys/types.h Defines system macros, data types, and subroutines.

Related Information
The drand48 subroutine, random (“random, srandom, initstate, or setstate Subroutine” on page 8)
subroutine.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 7

../../libs/basetrf1/drand48.htm
../../libs/basetrf1/drand48.htm

Subroutines Overview and List of Multithread Subroutines in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

random, srandom, initstate, or setstate Subroutine

Purpose
Generates pseudo-random numbers more efficiently.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

long random ()

void srandom (Seed)
unsigned int Seed;

char *initstate (Seed, State, Number)
unsigned int Seed;
char *State;
size_t Number;

char *setstate (State)
const char *State;

Description
Attention: Do not use the random, srandom, initstate, or setstate subroutine in a multithreaded
environment.

The random subroutine uses a non-linear additive feedback random-number generator employing a
default-state array size of 31 long integers to return successive pseudo-random numbers in the range from
0 to 2**31-1. The period of this random number generator is very large, approximately 16 * (2**31-1). The
size of the state array determines the period of the random number generator. Increasing the state array
size increases the period.

With a full 256 bytes of state information, the period of the random-number generator is greater than
2**69, which should be sufficient for most purposes.

The random and srandom subroutines have almost the same calling sequence and initialization
properties as the rand and srand subroutines. The difference is that the rand subroutine produces a
much less random sequence; in fact, the low dozen bits generated by the rand subroutine go through a
cyclic pattern. All the bits generated by the random subroutine are usable. For example, random()&01
produces a random binary value.

The srandom subroutine, unlike the srand subroutine, does not return the old seed because the amount
of state information used is more than a single word. The initstate subroutine and setstate subroutine
handle restarting and changing random-number generators. Like the rand subroutine, however, the
random subroutine by default produces a sequence of numbers that can be duplicated by calling the
srandom subroutine with 1 as the seed.

The initstate subroutine allows a state array, passed in as an argument, to be initialized for future use.
The size of the state array (in bytes) is used by the initstate subroutine, to decide how sophisticated a
random-number generator it should use; the larger the state array, the more random are the numbers.
Values for the amount of state information are 8, 32, 64, 128, and 256 bytes. For amounts greater than or

8 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/ls_multi-thread.htm

equal to 8 bytes, or less than 32 bytes, the random subroutine uses a simple linear congruential random
number generator, while other amounts are rounded down to the nearest known value. The Seed
parameter specifies a starting point for the random-number sequence and provides for restarting at the
same point. The initstate subroutine returns a pointer to the previous state information array.

Once a state has been initialized, the setstate subroutine allows rapid switching between states. The array
defined by State parameter is used for further random-number generation until the initstate subroutine is
called or the setstate subroutine is called again. The setstate subroutine returns a pointer to the previous
state array.

After initialization, a state array can be restarted at a different point in one of two ways:

v The initstate subroutine can be used, with the desired seed, state array, and size of the array.

v The setstate subroutine, with the desired state, can be used, followed by the srandom subroutine with
the desired seed. The advantage of using both of these subroutines is that the size of the state array
does not have to be saved once it is initialized.

Parameters

Seed Specifies an initial seed value.
State Points to the array of state information.
Number Specifies the size of the state information array.

Error Codes
If the initstate subroutine is called with less than 8 bytes of state information, or if the setstate subroutine
detects that the state information has been damaged, error messages are sent to standard error.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The drand48, erand48, jrand48, lcong48, lrand48, mrand48, nrand48, seed48, or srand48 subroutine,
rand or srand (“rand or srand Subroutine” on page 5) subroutine.

Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

read, readx, readv, readvx, or pread Subroutine

Purpose
Reads from a file.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

ssize_t read (FileDescriptor,
Buffer, NBytes)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 9

../../libs/basetrf1/drand48.htm#HDRA130924B
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

int FileDescriptor;
void * Buffer;
size_t NBytes;

int readx (FileDescriptor, ;Buffer, NBytes, Extension)
int FileDescriptor;
char * Buffer;
unsigned int NBytes;
int Extension;

#include <sys/uio.h>

ssize_t readv (FileDescriptor, iov, iovCount)
int FileDescriptor;
const struct iovec * iov;
int iovCount;

int readvx (FileDescriptor, iov, iovCount, Extension)
int FileDescriptor;
struct iovec *iov;
int iovCount;
int Extension;

#include <unistd.h>

ssize_t pread (int fildes, void *buf, size_t nbyte, off_t offset);

Description
The read subroutine attempts to read NBytes of data from the file associated with the FileDescriptor
parameter into the buffer pointed to by the Buffer parameter.

The readv subroutine performs the same action but scatters the input data into the iovCount buffers
specified by the array of iovec structures pointed to by the iov parameter. Each iovec entry specifies the
base address and length of an area in memory where data should be placed. The readv subroutine
always fills an area completely before proceeding to the next.

The readx and readvx subroutines are the same as the read and readv subroutines, respectively, with
the addition of an Extension parameter, which is needed when reading from some device drivers and
when reading directories. While directories can be read directly, it is recommended that the opendir and
readdir calls be used instead, as this is a more portable interface.

On regular files and devices capable of seeking, the read starts at a position in the file given by the file
pointer associated with the FileDescriptor parameter. Upon return from the read subroutine, the file pointer
is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current position. The value of a file pointer
associated with such a file is undefined.

On directories, the readvx subroutine starts at the position specified by the file pointer associated with
theFileDescriptor parameter. The value of this file pointer must be either 0 or a value which the file pointer
had immediately after a previous call to the readvx subroutine on this directory. Upon return from the
readvx subroutine, the file pointer increments by a number that may not correspond to the number of
bytes copied into the buffers.

When attempting to read from an empty pipe (first-in-first-out (FIFO)):

v If no process has the pipe open for writing, the read returns 0 to indicate end-of-file.

v If some process has the pipe open for writing:

– If O_NDELAY and O_NONBLOCK are clear (the default), the read blocks until some data is written
or the pipe is closed by all processes that had opened the pipe for writing.

10 Technical Reference, Volume 2: Base Operating System and Extensions

– If O_NDELAY is set, the read subroutine returns a value of 0.

– If O_NONBLOCK is set, the read subroutine returns a value of -1 and sets the global variable errno
to EAGAIN.

When attempting to read from a character special file that supports nonblocking reads, such as a terminal,
and no data is currently available:

v If O_NDELAY and O_NONBLOCK are clear (the default), the read subroutine blocks until data
becomes available.

v If O_NDELAY is set, the read subroutine returns 0.

v If O_NONBLOCK is set, the read subroutine returns -1 and sets the errno global variable to EAGAIN if
no data is available.

When attempting to read a regular file that supports enforcement mode record locks, and all or part of the
region to be read is currently locked by another process:

v If O_NDELAY and O_NONBLOCK are clear, the read blocks the calling process until the lock is
released.

v If O_NDELAY or O_NONBLOCK is set, the read returns -1 and sets the global variable errno
toEAGAIN.

The behavior of an interrupted read subroutine depends on how the handler for the arriving signal was
installed.

Note: A read from a regular file is not interruptible. Only reads from objects that may block
indefinitely, such as FIFOs, sockets, and some devices, are generally interruptible.

If the handler was installed with an indication that subroutines should not be restarted, the read subroutine
returns a value of -1 and the global variable errno is set to EINTR (even if some data was already
consumed).

If the handler was installed with an indication that subroutines should be restarted:

v If no data had been read when the interrupt was handled, this read will not return a value (it is
restarted).

v If data had been read when the interrupt was handled, this read subroutine returns the amount of data
consumed.

The pread function performs the same action as read, except that it reads from a given position in the file
without changing the file pointer. The first three arguments to pread are the same as read with the
addition of a fourth argument offset for the desired position inside the file. An attempt to perform a pread
on a file that is incapable of seeking results in an error.

Note: The pread64 subroutine applies to AIX 4.3 and later.
ssize_t pread64(int filedes , void *buf , size_t nbytes , off64_t offset)

The pread64 subroutines performs the same action as pread but the limit of offset to the maximum file
size for the file associated with the file Descriptor and DEV_OFF_MAX if the file associated with
fileDescriptor is a block special or character special file.

Parameters

FileDescriptor A file descriptor identifying the object to be read.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 11

Extension Provides communication with character device drivers that require additional information
or return additional status. Each driver interprets theExtension parameter in a
device-dependent way, either as a value or as a pointer to a communication area. Drivers
must apply reasonable defaults when the value of the Extension parameter is 0.

For directories, the Extension parameter determines the format in which directory entries
should be returned:

v If the value of the Extension parameter is 0, the format in which directory entries are
returned depends on the value of the real directory read flag (described in the ulimit
(“ulimit Subroutine” on page 362) subroutine).

v If the calling process does not have the real directory read flag set, the buffers are
filled with an array of directory entries truncated to fit the format of the System V
directory structure. This provides compatibility with programs written for UNIX System
V.

v If the calling process has the real directory read flag set (see the ulimit subroutine),
the buffers are filled with an image of the underlying implementation of the directory.

v If the value of the Extension parameter is 1, the buffers are filled with consecutive
directory entries in the format of adirent structure. This is logically equivalent to the
readdir subroutine.

v Other values of the Extension parameter are reserved.

For tape devices, the Extension parameter determines the response of the readx
subroutine when the tape drive is in variable block mode and the read request is for less
than the tape’s block size.

v If the value of the Extension parameter is TAPE_SHORT_READ, the readx subroutine
returns the number of bytes requested and sets the errno global variable to a value of
0.

v If the value of the Extension parameter is 0, the readx subroutine returns a value of 0
and sets the errno global variable to ENOMEM.

iov Points to an array of iovec structures that identifies the buffers into which the data is to
be placed. The iovec structure is defined in the sys/uio.h file and contains the following
members:

caddr_t iov_base;
size_t iov_len;

iovCount Specifies the number of iovec structures pointed to by the iov parameter.
Buffer Points to the buffer.
NBytes Specifies the number of bytes read from the file associated with theFileDescriptor parameter.

Note: When reading tapes, the read subroutines consume a physical tape block on each call
to the subroutine. If the physical data block size is larger than specified by the Nbytes
parameter, an error will be returned, since all of the data from the read will not fit into the buffer
specified by the read.

To avoid read errors due to unknown blocking sizes on tapes, set the NBytes parameter to a
very large value (such as 32K bytes).

Return Values
Upon successful completion, the read, readx, readv, readvx, and pread subroutines return the number of
bytes actually read and placed into buffers. The system guarantees to read the number of bytes requested
if the descriptor references a normal file that has the same number of bytes left before the end of the file
is reached, but in no other case.

A value of 0 is returned when the end of the file has been reached. (For information about communication
files, see the ioctl and termio files.)

12 Technical Reference, Volume 2: Base Operating System and Extensions

Otherwise, a value of -1 is returned, the global variable errno is set to identify the error, and the content of
the buffer pointed to by the Buffer or iov parameter is indeterminate.

Error Codes
The read, readx, readv, readvx, and pread subroutines are unsuccessful if one or more of the following
are true:

EBADMSG The file is a STREAM file that is set to control-normal mode and the message waiting to be read
includes a control part.

EBADF The FileDescriptor parameter is not a valid file descriptor open for reading.
EINVAL The file position pointer associated with the FileDescriptor parameter was negative.
EINVAL The sum of the iov_len values in the iov array was negative or overflowed a 32-bit integer.
EINVAL The value of the iovCount parameter was not between 1 and 16, inclusive.

EINVAL The STREAM or multiplexer referenced by FileDescriptor is linked (directly or indirectly) downstream
from a multiplexer.

EAGAIN The file was marked for non-blocking I/O, and no data was ready to be read.
EFAULT The Buffer or part of the iov points to a location outside of the allocated address space of the process.
EDEADLK A deadlock would occur if the calling process were to sleep until the region to be read was unlocked.
EINTR A read was interrupted by a signal before any data arrived, and the signal handler was installed with

an indication that subroutines are not to be restarted.
EIO An I/O error occurred while reading from the file system.
EIO The process is a member of a background process attempting to read from its controlling terminal, and

either the process is ignoring or blocking the SIGTTIN signal or the process group has no parent
process.

Note: The EOVERFLOW error code applies to AIX 4.2 and later releases.

EOVERFLOW An attempt was made to read from a regular file where NBytes was greater than zero and the
starting offset was before the end-of-file and was greater than or equal to the offset maximum
established in the open file description associated with FileDescriptor.

The read, readx, readv, readvx and pread subroutines may be unsuccessful if the following is true:

ENXIO A request was made of a nonexistent device, or the request was outside the capabilities of the device.
ESPIPE fildes is associated with a pipe or FIFO.

If Network File System (NFS) is installed on the system, the read system call can also fail if the following
is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The fcntl, dup, or dup2 subroutine, ioctl subroutine, lockfx subroutine, lseek subroutine, open, openx,
or creat subroutine, opendir, readdir, or seekdir subroutine, pipe subroutine, poll subroutine, socket
subroutine, socketpair subroutine.

The Input and Output Handling in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 13

../../libs/basetrf1/fcntl.htm#HDRNEM2E0GACO
../../libs/basetrf1/ioctl32.htm#HDRDW73VICHRIS
../../libs/basetrf1/lockfx.htm#HDRA142945D
../../libs/basetrf1/lseek.htm#HDRA21595D1
../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/opendir.htm#HDRA0909AF7
../../libs/basetrf1/pipe.htm#HDRS381F0GACO
../../libs/basetrf1/poll.htm#HDRA1289B55
../../libs/commtrf2/socket.htm
../../libs/commtrf2/socketpair.htm
../../aixprggd/genprogc/io_handling.htm#HDRA9E740A1626CAND

readdir_r Subroutine

Purpose
Reads a directory.

Library
Thread-Safe C Library (libc_r.a)

Syntax
#include <sys/types.h>
#include <dirent.h>

int readdir_r (DirectoryPointer, Entry, Result)
DIR * DirectoryPointer;
struct dirent * Entry;
struct dirent ** Result;

Description
The readdir_r subroutine returns the directory entry in the structure pointed to by the Result parameter.
The readdir_r subroutine returns entries for the . (dot) and .. (dot-dot) directories, if present, but never
returns an invalid entry (with d_ino set to 0). When it reaches the end of the directory, the readdir_r
subroutine returns a 0. When it detects an invalid seekdir operation, the readdir_r subroutine returns a 9.

Note: The readdir subroutine is reentrant when an application program uses different
DirectoryPointer parameter values (returned from the opendir subroutine). Use the readdir_r
subroutine when multiple threads use the same directory pointer.

Using the readdir_r subroutine after the closedir subroutine, for the structure pointed to by the
DirectoryPointer parameter, has an undefined result. The structure pointed to by the DirectoryPointer
parameter becomes invalid for all threads, including the caller.

Parameters

DirectoryPointer Points to the DIR structure of an open directory.
Entry Points to a structure that contains the next directory entry.
Result Points to the directory entry specified by the Entry parameter.

Return Values

0 Indicates that the subroutines was successful.
9 Indicates that the subroutines was not successful.

Error Codes
If the readdir_r subroutine is unsuccessful, the errno global variable is set to one of the following values:

EACCES Search permission is denied for any component of the structure
pointed to by the DirectoryPointer parameter, or read permission is
denied for the structure pointed to by the DirectoryPointer
parameter.

14 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/opendir.htm#HDRA0909AF7
../../libs/basetrf1/opendir.htm#HDRA0909AF7
../../libs/basetrf1/opendir.htm#HDRA0909AF7

ENAMETOOLONG The length of the DirectoryPointer parameter exceeds the value of
the PATH_MAX variable, or a path-name component is longer
than the value of NAME_MAX variable while the
_POSIX_NO_TRUNC variable is in effect.

ENOENT The named directory does not exist.
ENOTDIR A component of the structure pointed to by the DirectoryPointer

parameter is not a directory.
EMFILE Too many file descriptors are currently open for the process.
ENFILE Too many file descriptors are currently open in the system.
EBADF The structure pointed to by the DirectoryPointer parameter does

not refer to an open directory stream.

Examples
To search a directory for the entry name,enter:
len = strlen(name);
DirectoryPointer = opendir(".");
for (readdir_r(DirectoryPointer, &Entry, &Result); Result != NULL;
readdir_r(DirectoryPointer, &Entry, &Result))

if (dp->d_namlen == len && !strcmp(dp->d_name, name)) {
closedir(DirectoryPointer);
return FOUND;

}
closedir(DirectoryPointer);
return NOT_FOUND;

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Programs using this subroutine must link to the libpthreads.a library.

Related Information
The close subroutine, exec subroutines, fork subroutine, lseek subroutine, openx, open, or creat
subroutine, read, readv, readx, or readvx (“read, readx, readv, readvx, or pread Subroutine” on page 9)
subroutine, scandir or alphasort (“scandir or alphasort Subroutine” on page 80) subroutine.

The opendir, readdir, telldir, seekdir, rewinddir, or closedir subroutine.

Subroutines Overview, List of File and Directory Manipulation Services, and List of Multithread Subroutines
in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

readlink Subroutine

Purpose
Reads the contents of a symbolic link.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>
int readlink (Path, Buffer, BufferSize)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 15

../../libs/basetrf1/close.htm#HDRA08793A0
../../libs/basetrf1/exec.htm#HDRPDR80GACO
../../libs/basetrf1/fork.htm#HDRA4F011D
../../libs/basetrf1/lseek.htm#HDRA21595D1
../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/opendir.htm#HDRA0909AF7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/filedir_subr.htm#HDRA10F0292
../../aixprggd/genprogc/ls_multi-thread.htm

const char *Path;
char *Buffer;
size_t BufferSize;

Description
The readlink subroutine copies the contents of the symbolic link named by the Path parameter in the
buffer specified in the Buffer parameter. The BufferSize parameter indicates the size of the buffer in bytes.
If the actual length of the symbolic link is less than the number of bytes specified in the BufferSize
parameter, the string copied into the buffer will be null-terminated. If the actual length of the symbolic link
is greater than the number of bytes specified in the Buffersize parameter, an error is returned. The length
of a symbolic link cannot exceed 1023 characters or the value of the PATH_MAX constant. PATH_MAX is
defined in the limits.h file.

Parameters

Path Specifies the path name of the destination file or directory.
Buffer Points to the user’s buffer. The buffer should be at least as large as the BufferSize parameter.
BufferSize Indicates the size of the buffer. The contents of the link are null-terminated, provided there is

room in the buffer.

Return Values
Upon successful completion, the readlink subroutine returns a count of the number of characters placed in
the buffer (not including any terminating null character). If the readlink subroutine is unsuccessful, the
buffer is not modified, a value of -1 is returned, and the errno global variable is set to indicate the error.

Error Codes
The readlink subroutine fails if one or both of the following are true:

ENOENT The file named by the Path parameter does not exist, or the path points to an empty string.
EINVAL The file named by the Path parameter is not a symbolic link.
ERANGE The path name in the symbolic link is longer than the BufferSize value.

The readlink subroutine can also fail due to additional errors. See ″Base Operating System Error Codes
for Services that Require Path-Name Resolution″ for a list of additional error codes.

The readlink subroutine can also fail due to additional errors. See Appendix A,″Base Operating System
Error Codes for Services That Require Path-Name Resolution″ on page A-1 for a list of additional error
codes.

If Network File System (NFS) is installed on the system, the readlink subroutine can also fail if the
following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

16 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/AppendixA.htm#HDRA4CG230GACO
../../libs/basetrf1/AppendixA.htm#HDRA4CG230GACO

Related Information
The ln command.

The link subroutine, statx, stat, fstatx, fstat, fullstat, or ffullstat (“statx, stat, lstat, fstatx, fstat, fullstat,
ffullstat, stat64, lstat64, or fstat64 Subroutine” on page 251) subroutine, symlink (“symlink Subroutine” on
page 278) subroutine, unlink (“unlink Subroutine” on page 369) subroutine.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

read_real_time or time_base_to_time Subroutine

Purpose
Read the processor real time clock or time base registers to obtain high-resolution elapsed time.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>
#include <sys/systemcfg.h>

int read_real_time(timebasestruct_t *t,
size_t size_of_timebasestruct_t);

int time_base_to_time(timebasestruct_t *t,
size_t size_of_timebasestruct_t);

Description
These subroutines are designed to be used for making high-resolution measurement of elapsed time,
using the processor real time clock or time base registers. The read_real_time subroutine reads the value
of the appropriate registers and stores them in a structure. The time_base_to_time subroutine converts
time base data to real time, if necessary. This process is divided into two steps because the process of
reading the time is usually part of the timed code, and so the conversion from time base to real time can
be moved out of the timed code.

The read_real_time subroutine reads either the processor real time clock (for the POWER family or
PowerPC 601 RISC Microprocessor) or the time base register (in the case of the POWER-based
processors other than the PowerPC 601 RISC Microprocessor). The t argument is a pointer to a
timebasestruct_t, where the time values are recorded.

After calling read_real_time, if running on a processor with a real time clock, t->tb_high and t->tb_low
contain the current clock values (seconds and nanoseconds), and t->flag contains the RTC_POWER.

If running on a processor with a time base register, t->tb_high and t-tb_low contain the current values of
the time base register, and t->flag contains RTC_POWER_PC.

The time_base_to_time subroutine converts time base information to real time, if necessary. It is
recommended that applications unconditionally call the time_base_to_time subroutine rather than
performing a check to see if it is necessary.

If t->flag is RTC_POWER, the subroutine simply returns (the data is already in real time format).

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 17

../../cmds/aixcmds3/ln.htm#HDRA8C1270CRAW
../../libs/basetrf1/link.htm#HDRA169C1F6
../../aixprggd/genprogc/file_sys_dir.htm#HDRFVOWF292JUDY

If t->flag is RTC_POWER_PC, the time base information in t->tb_high and t->tb_low is converted to
seconds and nanoseconds; t->tb_high is replaced by the seconds; t->tb_low is replaced by the
nanoseconds; and t->flag is changed to RTC_POWER.

Parameters

t Points to a timebasestruct_t.

Return Values
The read_real_time subroutine returns RTC_POWER if the contents of the real time clock has been
recorded in the timebasestruct, or returns RTC_POWER_PC if the content of the time base registers has
been recorded in the timebasestruct.

The time_base_to_time subroutine returns 0 if the conversion to real time is successful (or not
necessary), otherwise -1 is returned.

Examples
This example shows the time it takes for print_f to print the comment between the begin and end time
codes:
#include <stdio.h>
#include <sys/time.h>

int
main(void)
{

timebasestruct_t start, finish;
int val = 3;
int secs, n_secs;

/* get the time before the operation begins */
read_real_time(&start, TIMEBASE_SZ);

/* begin code to be timed */
(void) printf("This is a sample line %d \n", val);
/* end code to be timed */

/* get the time after the operation is complete */
read_real_time(&finish, TIMEBASE_SZ);

/*
* Call the conversion routines unconditionally, to ensure
* that both values are in seconds and nanoseconds regardless
* of the hardware platform.
*/
time_base_to_time(&start, TIMEBASE_SZ);
time_base_to_time(&finish, TIMEBASE_SZ);

/* subtract the starting time from the ending time */
secs = finish.tb_high - start.tb_high;
n_secs = finish.tb_low - start.tb_low;

/*
* If there was a carry from low-order to high-order during
* the measurement, we may have to undo it.
*/
if (n_secs < 0) {

secs--;
n_secs += 1000000000;
}

(void) printf("Sample time was %d seconds %d nanoseconds\n",

18 Technical Reference, Volume 2: Base Operating System and Extensions

secs, n_secs);

exit(0);
}

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The gettimer, settimer, restimer, stime, or time subroutines, getrusage, times, or vtimes subroutines.

High-Resolution Time Measurements Using POWER-based Time Base or POWER family Real-Time Clock
in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

realpath Subroutine

Purpose
Resolves path names.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

char *realpath (const char *file_name,
char *resolved_name)

Description
The realpath subroutine performs filename expansion and path name resolution in file_name and stores it
in resolved_name.

The realpath subroutine can handle both relative and absolute path names. For both absolute and relative
path names, the realpath subroutine returns the resolved absolute path name.

The character pointed to by resolved_name must be big enough to contain the fully resolved path name.
The value of PATH_MAX (defined in limits.h header file may be used as an appropriate array size.

Return Values
On successful completion, the realpath subroutine returns a pointer to the resolved name. Otherwise, it
returns a null pointer, and sets errno to indicate the error. If the realpath subroutine encounters an error,
the contents of resolved_name are undefined.

Error Codes
Under the following conditions, the realpath subroutine fails and sets errno to:

EACCES Read or search permission was denied for a component of the
path name.

EINVAL File_name or resolved_name is a null pointer.
ELOOP Too many symbolic links are encountered in translating file_name.
ENAMETOOLONG The length of file_name or resolved_name exceeds PATH_MAX or

a path name component is longer than NAME_MAX.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 19

../../libs/basetrf1/gettimer.htm#HDRA2789BE5
../../libs/basetrf1/getrusage_64.htm#HDRA235Y96C29
../../aixprggd/genprogc/high_res_time_powerpc_realtime_clck.htm

ENOENT The file_name parameter does not exist or points to an empty
string.

ENOTDIR A component of the file_name prefix is not a directory.

The realpath subroutine may fail if:

ENOMEM Insufficient storage space is available.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getcwd or sysconf (“sysconf Subroutine” on page 282) subroutine.

reboot Subroutine

Purpose
Restarts the system.

Library
Standard C Library (libc.a)

Syntax
#include <sys/reboot.h>

void reboot (HowTo, Argument)
int HowTo;
void *Argument;

Description
The reboot subroutine restarts or re-initial program loads (IPL) the system. The startup is automatic and
brings up /unix in the normal, nonmaintenance mode.

Note: The routine may coredump instead of returning EFAULT when an invalid pointer is passed in
case of 64-bit application calling 32-bit kernel interface.

The calling process must have root user authority in order to run this subroutine successfully.

Attention: Users of the reboot subroutine are not portable. The reboot subroutine is intended for
use only by the halt, reboot, and shutdown commands.

20 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/getcwd.htm#HDRA0909EF1

Parameters

HowTo Specifies one of the following values:

RB_SOFTIPL
Soft IPL.

RB_HALT
Halt operator; turn the power off.

RB_POWIPL
Halt operator; turn the power off. Wait a specified length of time, and then turn the power on.

Argument Specifies the amount of time (in seconds) to wait between turning the power off and turning the
power on. This option is not supported on all models. Please consult your hardware technical
reference for more details.

Return Values
Upon successful completion, the reboot subroutine does not return a value. If the reboot subroutine fails,
a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The reboot subroutine is unsuccessful if any of the following is true:

EPERM The calling process does not have root user authority.
EINVAL The HowTo value is not valid.
EFAULT The Argument value is not a valid address.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The halt command, reboot command, shutdown command.

re_comp or re_exec Subroutine

Purpose

Regular expression handler.

Library
Standard C Library (libc.a)

Syntax
char *re_comp(String)
const char *String;

int re_exec(String)
const char *String;

Description
Attention: Do not use the re_comp or re_exec subroutine in a multithreaded environment.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 21

../../cmds/aixcmds2/halt.htm#HDRB6K60MKM
../../cmds/aixcmds4/reboot.htm#HDRA0729174
../../cmds/aixcmds5/shutdown.htm#HDRA15793A2

The re_comp subroutine compiles a string into an internal form suitable for pattern matching. The re_exec
subroutine checks the argument string against the last string passed to the re_comp subroutine.

The re_comp subroutine returns 0 if the string pointed to by the String parameter was compiled
successfully; otherwise a string containing an error message is returned. If the re_comp subroutine is
passed 0 or a null string, it returns without changing the currently compiled regular expression.

The re_exec subroutine returns 1 if the string pointed to by the String parameter matches the last
compiled regular expression, 0 if the string pointed to by the String parameter failed to match the last
compiled regular expression, and -1 if the compiled regular expression was invalid (indicating an internal
error).

The strings passed to both re_comp and re_exec subroutines may have trailing or embedded newline
characters; they are terminated by nulls. The regular expressions recognized are described in the manual
entry for the ed command, given the above difference.

Parameters

String Points to a string that is to be matched or compiled.

Return Values
If an error occurs, the re_exec subroutine returns a -1, while the re_comp subroutine returns one of the
following strings:

v No previous regular expression

v Regular expression too long

v unmatched \(

v missing]

v too many \(\) pairs

v unmatched \)

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The compile, step, or advance subroutine, regcmp or regex (“regcmp or regex Subroutine”) subroutine.

The ed command, sed command, grep command.

List of String Manipulation Services in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

National Language Support Overview for Programming and Subroutines Overview in AIX 5L Version 5.1
General Programming Concepts: Writing and Debugging Programs.

regcmp or regex Subroutine

Purpose
Compiles and matches regular-expression patterns.

22 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/compile.htm#HDRFW4A0SHAD
../../cmds/aixcmds2/ed.htm#HDRA133Z9C66
../../cmds/aixcmds5/sed.htm#HDRA10793B
../../cmds/aixcmds2/grep.htm#HDRKXF1170FISH
../../aixprggd/genprogc/ls_string_subr.htm#HDRA10F0141
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

Libraries
Standard C Library (libc.a)

Programmers Workbench Library (libPW.a)

Syntax
#include <libgen.h>

char *regcmp (String [, String, . . .], (char *) 0)
const char *String, . . . ;

const char *regex (Pattern, Subject [, ret, . . .])
char *Pattern, *Subject, *ret, . . . ;
extern char *__loc1;

Description
The regcmp subroutine compiles a regular expression (or Pattern) and returns a pointer to the compiled
form. The regcmp subroutine allows multiple String parameters. If more than one String parameter is
given, then the regcmp subroutine treats them as if they were concatenated together. It returns a null
pointer if it encounters an incorrect parameter.

You can use the regcmp command to compile regular expressions into your C program, frequently
eliminating the need to call the regcmp subroutine at run time.

The regex subroutine compares a compiled Pattern to the Subject string. Additional parameters are used
to receive values. Upon successful completion, the regex subroutine returns a pointer to the next
unmatched character. If the regex subroutine fails, a null pointer is returned. A global character pointer,
__loc1, points to where the match began.

The regcmp and regex subroutines are borrowed from the ed command; however, the syntax and
semantics have been changed slightly. You can use the following symbols with the regcmp and regex
subroutines:

[] * . | These symbols have the same meaning as they do in the ed command.
- The minus sign (or hyphen) within brackets used with the regex subroutine

means ″through,″ according to the current collating sequence. For example,
[a-z] can be equivalent to [abcd . . . xyz] or [aBbCc . . . xYyZz]. You can use
the - by itself if the - is the last or first character. For example, the character
class expression [] -] matches the] (right bracket) and - (minus) characters.

The regcmp subroutine does not use the current collating sequence, and the
minus sign in brackets controls only a direct ASCII sequence. For example,
[a-z] always means [abc . . . xyz] and [A-Z] always means [ABC . . . XYZ] .
If you need to control the specific characters in a range using the regcmp
subroutine, you must list them explicitly rather than using the minus sign in the
character class expression.

$ Matches the end of the string. Use the \n character to match a new-line
character.

+ A regular expression followed by + (plus sign) means one or more times. For
example, [0-9] + is equivalent to [0-9] [0-9] *.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 23

[m] [m,] [m, u] Integer values enclosed in [] (braces) indicate the number of times to apply the
preceding regular expression. The m character is the minimum number and the
u character is the maximum number. The u character must be less than 256. If
you specify only m, it indicates the exact number of times to apply the regular
expression. [m,] is equivalent to [m,u.] and matches m or more occurrences of
the expression. The + (plus sign) and * (asterisk) operations are equivalent to
[1,] and [0,], respectively.

(. . .)$n This stores the value matched by the enclosed regular expression in the (n+1)th
ret parameter. Ten enclosed regular expressions are allowed. The regex
subroutine makes the assignments unconditionally.

(. . .) Parentheses group subexpressions. An operator, such as *, +, or [] works on a
single character or on a regular expression enclosed in parentheses. For
example, (a*(cb+)*)$0.

All of the preceding defined symbols are special. You must precede them with a \ (backslash) if you want
to match the special symbol itself. For example, \$ matches a dollar sign.

Note: The regcmp subroutine uses the malloc subroutine to make the space for the vector. Always free the
vectors that are not required. If you do not free the unneeded vectors, you can run out of memory if the
regcmp subroutine is called repeatedly. Use the following as a replacement for the malloc subroutine to
reuse the same vector, thus saving time and space:

/* . . . Your Program . . . */
malloc(n)

int n;
{

static int rebuf[256] ;

return ((n <= sizeof(rebuf)) ? rebuf : NULL);
}

The regcmp subroutine produces code values that the regex subroutine can interpret as the regular
expression. For instance, [a-z] indicates a range expression which the regcmp subroutine compiles into a
string containing the two end points (a and z).

The regex subroutine interprets the range statement according to the current collating sequence. The
expression [a-z] can be equivalent either to [abcd . . . xyz] , or to [aBbCcDd . . . xXyYzZ], as long as
the character preceding the minus sign has a lower collating value than the character following the minus
sign.

The behavior of a range expression is dependent on the collation sequence. If you want to match a
specific set of characters, you should list each one. For example, to select letters a, b, or c, use [abc]
rather than [a-c] .

Notes:

1. No assumptions are made at compile time about the actual characters contained in the range.

2. Do not use multibyte characters.

3. You can use the] (right bracket) itself within a pair of brackets if it immediately follows the leading
[(left bracket) or [| (a left bracket followed immediately by a circumflex).

4. You can also use the minus sign (or hyphen) if it is the first or last character in the expression.
For example, the expression [] -0] matches either the right bracket (]), or the characters -
through 0.

Matching a Character Class in National Language Support
A common use of the range expression is matching a character class. For example, [0-9] represents all
digits, and [a-z, A-Z] represents all letters. This form may produce unexpected results when ranges are
interpreted according to the current collating sequence.

24 Technical Reference, Volume 2: Base Operating System and Extensions

Instead of the range expression shown above, use a character class expression within brackets to match
characters. The system interprets this type of expression according to the current character class
definition. However, you cannot use character class expressions in range expressions.

The following exemplifies the syntax of a character class expression:
[:charclass:]

that is, a left bracket followed by a colon, followed by the name of the character class, followed by another
colon and a right bracket.

National Language Support supports the following character classes:

[:upper:] ASCII uppercase letters.
[:lower:] ASCII lowercase letters.
[:alpha:] ASCII uppercase and lowercase letters.
[:digit:] ASCII digits.
[:alnum:] ASCII uppercase and lowercase letters, and digits.
[:xdigit:] ASCII hexadecimal digits.
[:punct:] ASCII punctuation character (neither a control character nor an alphanumeric character).
[:space:] ASCII space, tab, carriage return, new-line, vertical tab, or form feed character.
[:print:] ASCII printing characters.

Parameters

Subject Specifies a comparison string.
String Specifies the Pattern to be compiled.
Pattern Specifies the expression to be compared.
ret Points to an address at which to store comparison data. The regex subroutine allows multiple ret

String parameters.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The ctype subroutine, compile, step, or advance subroutine, malloc, free, realloc, calloc, mallopt,
mallinfo, or alloca subroutine, regcomp (“regcomp Subroutine”) subroutine, regex (“regexec Subroutine”
on page 29) subroutine.

The ed command, regcmp command.

Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

regcomp Subroutine

Purpose
Compiles a specified basic or extended regular expression into an executable string.

Library
Standard C Library (libc. a)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 25

../../libs/basetrf1/ctype.htm#HDRA142927C
../../libs/basetrf1/compile.htm#HDRFW4A0SHAD
../../libs/basetrf1/malloc.htm#HDRA174921E
../../libs/basetrf1/malloc.htm#HDRA174921E
../../cmds/aixcmds2/ed.htm#HDRA133Z9C66
../../cmds/aixcmds4/regcmp.htm#HDRA2099230
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

Syntax
#include <regex.h>

int regcomp (Preg, Pattern, CFlags)
const char *Preg;
const char *Pattern;
int CFlags;

Description
The regcomp subroutine compiles the basic or extended regular expression specified by the Pattern
parameter and places the output in the structure pointed to by the Preg parameter.

Parameters

Preg Specifies the structure to receive the compiled output of the regcomp subroutine.
Pattern Contains the basic or extended regular expression to be compiled by the regcomp subroutine.

The default regular expression type for the Pattern parameter is a basic regular expression. An
application can specify extended regular expressions with the REG_EXTENDED flag.

CFlags Contains the bitwise inclusive OR of 0 or more flags for the regcomp subroutine. These flags are
defined in the regex.h file:

REG_EXTENDED
Uses extended regular expressions.

REG_ICASE
Ignores case in match.

REG_NOSUB
Reports only success or failure in the regexec subroutine. If this flag is not set, the regcomp
subroutine sets the re_nsub structure to the number of parenthetic expressions found in the
Pattern parameter.

REG_NEWLINE
Prohibits . (period) and nonmatching bracket expression from matching a new-line character.
The | (circumflex) and $ (dollar sign) will match the zero-length string immediately following or
preceding a new-line character.

Return Values
If successful, the regcomp subroutine returns a value of 0. Otherwise, it returns another value indicating
the type of failure, and the content of the Preg parameter is undefined.

Error Codes
The following macro names for error codes may be written to the errno global variable under error
conditions:

REG_BADPAT Indicates a basic or extended regular expression that is not valid.
REG_ECOLLATE Indicates a collating element referenced that is not valid.
REG_ECTYPE Indicates a character class-type reference that is not valid.
REG_EESCAPE Indicates a trailing \ in pattern.
REG_ESUBREG Indicates a number in \digit is not valid or in error.
REG_EBRACK Indicates a [] imbalance.
REG_EPAREN Indicates a \(\) or () imbalance.
REG_EBRACE Indicates a \{\} imbalance.
REG_BADBR Indicates the content of \{\} is unusable: not a number, number too large, more than two

numbers, or first number larger than second.
REG_ERANGE Indicates an unusable end point in range expression.

26 Technical Reference, Volume 2: Base Operating System and Extensions

REG_ESPACE Indicates out of memory.
REG_BADRPT Indicates a ? (question mark), * (asterisk), or + (plus sign) not preceded by valid basic or

extended regular expression.

If the regcomp subroutine detects an illegal basic or extended regular expression, it can return either the
REG_BADPAT error code or another that more precisely describes the error.

Examples
The following example illustrates how to match a string (specified in the string parameter) against an
extended regular expression (specified in the Pattern parameter):
#include <sys/types.h>
#include <regex.h>
int
match(char *string, char *pattern)
{

int status;
regex_t re;

if (regcomp(&re, pattern, REG_EXTENDED|REG_NOSUB) != 0) {
return(0) ; /* report error */

}
status = regexec(&re, string, (size_t) 0, NULL, 0);
regfree(&re);
if (status != 0) {

return(0) ; /* report error */
}
return(1);

}

In the preceding example, errors are treated as no match. When there is no match or error, the calling
process can get details by calling the regerror subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The regerror (“regerror Subroutine”) subroutine, regexec (“regexec Subroutine” on page 29) subroutine,
regfree (“regfree Subroutine” on page 32) subroutine.

Subroutines Overview and Understanding Internationalized Regular Expression Subroutines in AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs.

regerror Subroutine

Purpose
Returns a string that describes the ErrCode parameter.

Library
Standard C Library (libc. a)

Syntax
#include <regex.h>

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 27

../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/internationalized_reg_expression_subr.htm#HDRIVYAJ2E8MELA

size_t regerror (ErrCode, Preg, ErrBuf, ErrBuf_Size)
int ErrCode;
const regex_t * Preg;
char * ErrBuf;
size_t ErrBuf_Size;

Description
The regerror subroutine provides a mapping from error codes returned by the regcomp and regexec
subroutines to printable strings. It generates a string corresponding to the value of the ErrCode parameter,
which is the last nonzero value returned by the regcomp or regexec subroutine with the given value of
the Preg parameter. If the ErrCode parameter is not such a value, the content of the generated string is
unspecified. The string generated is obtained from the regex.cat message catalog.

If the ErrBuf_Size parameter is not 0, the regerror subroutine places the generated string into the buffer
specifier by the ErrBuf parameter, whose size in bytes is specified by the ErrBuf_Size parameter. If the
string (including the terminating null character) cannot fit in the buffer, the regerror subroutine truncates
the string and null terminates the result.

Parameters

ErrCode Specifies the error for which a description string is to be returned.
Preg Specifies the structure that holds the previously compiled output of the regcomp subroutine.
ErrBuf Specifies the buffer to receive the string generated by the regerror subroutine.
ErrBuf_Size Specifies the size of the ErrBuf parameter.

Return Values
The regerror subroutine returns the size of the buffer needed to hold the entire generated string, including
the null termination. If the return value is greater than the value of the ErrBuf_Size variable, the string
returned in the ErrBuf buffer is truncated.

Error Codes
If the ErrBuf_Size value is 0, the regerror subroutine ignores the ErrBuf parameter, but returns the one of
the following error codes. These error codes defined in the regex.h file.

REG_NOMATCH Indicates the basic or extended regular expression was unable to find a match.
REG_BADPAT Indicates a basic or extended regular expression that is not valid.
REG_ECOLLATE Indicates a collating element referenced that is not valid.
REG_ECTYPE Indicates a character class-type reference that is not valid.
REG_EESCAPE Indicates a trailing \ in pattern.
REG_ESUBREG Indicates a number in \digit is not valid or in error.
REG_EBRACK Indicates a [] imbalance.
REG_EPAREN Indicates a \(\) or () imbalance.
REG_EBRACE Indicates a \{\} imbalance.
REG_BADBR Indicates the content of \{\} is unusable: not a number, number too large, more than two

numbers, or first number larger than second.
REG_ERANGE Indicates an unusable end point in range expression.
REG_ESPACE Indicates out of memory.
REG_BADRPT Indicates a ? (question mark), * (asterisk), or + (plus sign) not preceded by valid basic or

extended regular expression.
REG_ENEWLINE Indicates a new-line character was found before the end of the regular or extended regular

expression, and REG_NEWLINE was not set.

28 Technical Reference, Volume 2: Base Operating System and Extensions

If the Preg parameter passed to the regexec subroutine is not a compiled basic or extended regular
expression returned by the regcomp subroutine, the result is undefined.

Examples
An application can use the regerror subroutine (with the parameters (Code, Preg, null, (size_t) 0) passed
to it) to determine the size of buffer needed for the generated string, call the malloc subroutine to allocate
a buffer to hold the string, and then call the regerror subroutine again to get the string. Alternately, this
subroutine can allocate a fixed, static buffer that is large enough to hold most strings (perhaps 128 bytes),
and then call the malloc subroutine to allocate a larger buffer if necessary.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The regcomp (“regcomp Subroutine” on page 25) subroutine, regexec (“regexec Subroutine”) subroutine,
regfree (“regfree Subroutine” on page 32) subroutine.

Subroutines Overview and Understanding Internationalized Regular Expression Subroutines in AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs.

regexec Subroutine

Purpose
Compares the null-terminated string specified by the value of the String parameter against the compiled
basic or extended regular expression Preg, which must have previously been compiled by a call to the
regcomp subroutine.

Library
Standard C Library (libc. a)

Syntax
#include <regex.h>

int regexec (Preg, String, NMatch, PMatch, EFlags)
const regex_t * Preg;
const char * String;
size_t NMatch;
regmatch_t * PMatch;
int EFlags;

Description
The regexec subroutine compares the null-terminated string in the String parameter with the compiled
basic or extended regular expression in the Preg parameter initialized by a previous call to the regcomp
subroutine. If a match is found, the regexec subroutine returns a value of 0. The regexec subroutine
returns a nonzero value if it finds no match or it finds an error.

If the NMatch parameter has a value of 0, or if the REG_NOSUB flag was set on the call to the regcomp
subroutine, the regexec subroutine ignores the PMatch parameter. Otherwise, the PMatch parameter
points to an array of at least the number of elements specified by the NMatch parameter. The regexec
subroutine fills in the elements of the array pointed to by the PMatch parameter with offsets of the
substrings of the String parameter. The offsets correspond to the parenthetic subexpressions of the
original pattern parameter that was specified to the regcomp subroutine.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 29

../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/internationalized_reg_expression_subr.htm#HDRIVYAJ2E8MELA

The pmatch.rm_so structure is the byte offset of the beginning of the substring, and the pmatch.rm_eo
structure is one greater than the byte offset of the end of the substring. Subexpression i begins at the i th
matched open parenthesis, counting from 1. The 0 element of the array corresponds to the entire pattern.
Unused elements of the PMatch parameter, up to the value PMatch[NMatch-1], are filled with -1. If more
than the number of subexpressions specified by the NMatch parameter (the pattern parameter itself counts
as a subexpression), only the first NMatch-1 subexpressions are recorded.

When a basic or extended regular expression is being matched, any given parenthetic subexpression of
the pattern parameter might match several different substrings of the String parameter. Otherwise, it might
not match any substring even though the pattern as a whole did match.

The following rules are used to determine which substrings to report in the PMatch parameter when
regular expressions are matched:

v If a subexpression in a regular expression participated in the match several times, the offset of the last
matching substring is reported in the PMatch parameter.

v If a subexpression did not participate in a match, the byte offset in the PMatch parameter is a value of
-1. A subexpression does not participate in a match if any of the following are true:

– An * (asterisk) or \{\} (backslash, left brace, backslash, right brace) appears immediately after the
subexpression in a basic regular expression.

– An * (asterisk), ? (question mark), or { } (left and right braces) appears immediately after the
subexpression in an extended regular expression and the subexpression did not match (matched 0
times).

– A | (pipe) is used in an extended regular expression to select either the subexpression that didn’t
match or another subexpression, and the other subexpression matched.

v If a subexpression is contained in a subexpression, the data in the PMatch parameter refers to the last
such subexpression.

v If a subexpression is contained in a subexpression and the byte offsets in the PMatch parameter have a
value of -1, the pointers in the PMatch parameter also have a value of -1.

v If a subexpression matched a zero-length string, the offsets in the PMatch parameter refer to the byte
immediately following the matching string.

If the REG_NOSUB flag was set in the cflags parameter in the call to the regcomp subroutine, and the
NMatch parameter is not equal to 0 in the call to the regexec subroutine, the content of the PMatch array
is unspecified.

If the REG_NEWLINE flag was not set in the cflags parameter when the regcomp subroutine was called,
then a new-line character in the pattern or String parameter is treated as an ordinary character. If the
REG_NEWLINE flag was set when the regcomp subroutine was called, the new-line character is treated
as an ordinary character except as follows:

v A new-line character in the String parameter is not matched by a period outside of a bracket expression
or by any form of a nonmatching list. A nonmatching list expression begins with a | (circumflex) and
specifies a list that matches any character or collating element and the expression in the list after the
leading caret. For example, the regular expression [|abc] matches any character except a, b, or c. The
circumflex has this special meaning only when it is the first character in the list, immediately following
the left bracket.

v A | (circumflex) in the pattern parameter, when used to specify expression anchoring, matches the
zero-length string immediately after a new-line character in the String parameter, regardless of the
setting of the REG_NOTBOL flag.

v A $ (dollar sign) in the pattern parameter, when used to specify expression anchoring, matches the
zero-length string immediately before a new-line character in the String parameter, regardless of the
setting of the REG_NOTEOL flag.

30 Technical Reference, Volume 2: Base Operating System and Extensions

Parameters

Preg Contains the compiled basic or extended regular expression to compare against the String parameter.
String Contains the data to be matched.
NMatch Contains the number of subexpressions to match.
PMatch Contains the array of offsets into the String parameter that match the corresponding subexpression in the

Preg parameter.
EFlags Contains the bitwise inclusive OR of 0 or more of the flags controlling the behavior of the regexec

subroutine capable of customizing.

The EFlags parameter modifies the interpretation of the contents of the String parameter. It is the bitwise
inclusive OR of 0 or more of the following flags, which are defined in the regex.h file:

REG_NOTBOL
The first character of the string pointed to by the String parameter is not the beginning of the
line. Therefore, the | (circumflex), when used as a special character, does not match the
beginning of the String parameter.

REG_NOTEOL
The last character of the string pointed to by the String parameter is not the end of the line.
Therefore, the $ (dollar sign), when used as a special character, does not match the end of the
String parameter.

Return Values
On successful completion, the regexec subroutine returns a value of 0 to indicate that the contents of the
String parameter matched the contents of the pattern parameter, or to indicate that no match occurred.
The REG_NOMATCH error is defined in the regex.h file.

Error Codes
If the regexec subroutine is unsuccessful, it returns a nonzero value indicating the type of problem. The
following macros for possible error codes that can be returned are defined in the regex.h file:

REG_NOMATCH Indicates the basic or extended regular expression was unable to find a match.
REG_BADPAT Indicates a basic or extended regular expression that is not valid.
REG_ECOLLATE Indicates a collating element referenced that is not valid.
REG_ECTYPE Indicates a character class-type reference that is not valid.
REG_EESCAPE Indicates a trailing \ (backslash) in the pattern.
REG_ESUBREG Indicates a number in \digit is not valid or is in error.
REG_EBRACK Indicates a [] (left and right brackets) imbalance.
REG_EPAREN Indicates a \ (\) (backslash, left parenthesis, backslash, right parenthesis) or () (left and

right parentheses) imbalance.
REG_EBRACE Indicates a \ { \ } (backslash, left brace, backslash, right brace) imbalance.
REG_BADBR Indicates the content of \ { \ } (backslash, left brace, backslash, right brace) is unusable (not a

number, number too large, more than two numbers, or first number larger than second).
REG_ERANGE Indicates an unusable end point in range expression.
REG_ESPACE Indicates out of memory.
REG_BADRPT Indicates a ? (question mark), * (asterisk), or + (plus sign) not preceded by valid basic or

extended regular expression.

If the value of the Preg parameter to the regexec subroutine is not a compiled basic or extended regular
expression returned by the regcomp subroutine, the result is undefined.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 31

Examples
The following example demonstrates how the REG_NOTBOL flag can be used with the regexec
subroutine to find all substrings in a line that match a pattern supplied by a user. (For simplicity, very little
error-checking is done in this example.)
(void) regcomp (&re, pattern, 0) ;
/* this call to regexec finds the first match on the line */
error = regexec (&re, &buffer[0], 1, &pm, 0) ;
while (error = = 0) { /* while matches found */
<subString found between pm.r._sp and pm.rm_ep>
/* This call to regexec finds the next match */
error = regexec (&re, pm.rm_ep, 1, &pm, REG_NOTBOL) ;

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The regcomp (“regcomp Subroutine” on page 25) subroutine, regerror (“regerror Subroutine” on page 27)
subroutine, regfree (“regfree Subroutine”) subroutine.

Subroutines Overview and Understanding Internationalized Regular Expression Subroutines in AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs.

regfree Subroutine

Purpose
Frees any memory allocated by the regcomp subroutine associated with the Preg parameter.

Library
Standard C Library (libc. a)

Syntax
#include <regex.h>

void regfree (Preg)
regex_t *Preg;

Description
The regfree subroutine frees any memory allocated by the regcomp subroutine associated with the Preg
parameter. An expression defined by the Preg parameter is no longer treated as a compiled basic or
extended regular expression after it is given to the regfree subroutine.

Parameters

Preg Structure containing the compiled output of the regcomp subroutine. Memory associated with this structure
is freed by the regfree subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

32 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/internationalized_reg_expression_subr.htm#HDRIVYAJ2E8MELA

Related Information
The regcomp (“regcomp Subroutine” on page 25) subroutine, regerror (“regerror Subroutine” on page 27)
subroutine, regexec (“regexec Subroutine” on page 29) subroutine.

Subroutines Overview and Understanding Internationalized Regular Expression Subroutines in AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs.

reltimerid Subroutine

Purpose
Releases a previously allocated interval timer.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>
#include <sys/events.h>

int reltimerid (TimerID)
timer_t TimerID;

Description
The reltimerid subroutine is used to release a previously allocated interval timer, which is returned by the
gettimerid subroutine. Any pending timer event generated by this interval timer is cancelled when the call
returns.

Parameters

TimerID Specifies the ID of the interval timer being released.

Return Values
The reltimerid subroutine returns a 0 if it is successful. If an error occurs, the value -1 is returned and
errno is set.

Error Codes
If the reltimerid subroutine fails, a -1 is returned and errno is set with the following error code:

EINVAL The timer ID specified by the Timerid parameter is not a valid timer ID.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The gettimerid subroutine.

List of Time Data Manipulation Services in AIX 5L Version 5.1 System Management Concepts: Operating
System and Devices.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 33

../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/internationalized_reg_expression_subr.htm#HDRIVYAJ2E8MELA
../../libs/basetrf1/gettimerid.htm#HDRA2789B83
../../aixbman/admnconc/tdms.htm#HDRA10F0209

Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

remove Subroutine

Purpose
Removes a file.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>

int remove(FileName)
const char *FileName;

Description
The remove subroutine makes a file named by FileName inaccessible by that name. An attempt to open
that file using that name does not work unless you recreate it. If the file is open, the subroutine does not
remove it.

If the file designated by the FileName parameter has multiple links, the link count of files linked to the
removed file is reduced by 1.

Parameters

FileName Specifies the name of the file being removed.

Return Values
Upon successful completion, the remove subroutine returns a value of 0; otherwise it returns a nonzero
value.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The link subroutine, rename (“rename Subroutine”) subroutine.

The link or unlink (“unlink Subroutine” on page 369) command.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

rename Subroutine

Purpose
Renames a directory or a file.

34 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../libs/basetrf1/link.htm#HDRA169C1F6
../../cmds/aixcmds3/link.htm#HDRA10192918
../../aixprggd/genprogc/file_sys_dir.htm#HDRFVOWF292JUDY

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>

int rename (FromPath, ToPath)
const char *FromPath, *ToPath;

Description
The rename subroutine renames a directory or a file within a file system.

To use the rename subroutine, the calling process must have write and search permission in the parent
directories of both the FromPath and ToPath parameters. If the path defined in the FromPath parameter is
a directory, the calling process must have write and search permission to the FromPath directory as well.

If the FromPath and ToPath parameters both refer to the same existing file, the rename subroutine returns
successfully and performs no other action.

The components of both the FromPath and ToPath parameters must be of the same type (that is, both
directories or both non-directories) and must reside on the same file system. If the ToPath file already
exists, it is first removed. Removing it guarantees that a link named ToPath will exist throughout the
operation. This link refers to the file named by either the ToPath or FromPath parameter before the
operation began.

If the final component of the FromPath parameter is a symbolic link, the symbolic link (not the file or
directory to which it points) is renamed. If the ToPath is a symbolic link, the link is destroyed.

If the parent directory of the FromPath parameter has the Sticky bit attribute (described in the sys/mode.h
file), the calling process must have an effective user ID equal to the owner ID of the FromPath parameter,
or to the owner ID of the parent directory of the FromPath parameter.

A user who is not the owner of the file or directory must have root user authority to use the rename
subroutine.

If the FromPath and ToPath parameters name directories, the following must be true:

v The directory specified by the FromPath parameter is not an ancestor of ToPath. For example, the
FromPath path name must not contain a path prefix that names the directory specified by the ToPath
parameter.

v The directory specified in the FromPath parameter must be well-formed. A well-formed directory
contains both . (dot) and .. (dot dot) entries. That is, the . (dot) entry in the FromPath directory refers to
the same directory as that in the FromPath parameter. The .. (dot dot) entry in the FromPath directory
refers to the directory that contains an entry for FromPath.

v The directory specified by the ToPath parameter, if it exists, must be well-formed (as defined
previously).

Parameters

FromPath Identifies the file or directory to be renamed.
ToPath Identifies the new path name of the file or directory to be renamed. If ToPath is an existing file or

empty directory, it is replaced by FromPath. If ToPath specifies a directory that is not empty, the
rename subroutine exits with an error.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 35

../../files/aixfiles/mode.h.htm#HDRA3219701

Return Values
Upon successful completion, the rename subroutine returns a value of 0. Otherwise, a value of -1 is
returned, and the errno global variable is set to indicate the error.

Error Codes
The rename subroutine is unsuccessful and the file or directory name remains unchanged if one or more
of the following are true:

EACCES Creating the requested link requires writing in a directory mode that denies the
process write permission.

EBUSY The directory named by the FromPath or ToPath parameter is currently in use by the
system, or the file named by FromPath or ToPath is a named STREAM.

EDQUOT The directory that would contain the path specified by the ToPath parameter cannot
be extended because the user’s or group’s quota of disk blocks on the file system
containing the directory is exhausted.

EEXIST The ToPath parameter specifies an existing directory that is not empty.
EINVAL The path specified in the FromPath or ToPath parameter is not a well-formed

directory (FromPath is an ancestor of ToPath), or an attempt has been made to
rename . (dot) or .. (dot dot).

EISDIR The ToPath parameter names a directory and the FromPath parameter names a
non-directory.

EMLINK The FromPath parameter names a directory that is larger than the maximum link
count of the parent directory of the ToPath parameter.

ENOENT A component of either path does not exist, the file named by the FromPath
parameter does not exist, or a symbolic link was named, but the file to which it
refers does not exist.

ENOSPC The directory that would contain the path specified in the ToPath parameter cannot
be extended because the file system is out of space.

ENOTDIR The FromPath parameter names a directory and the ToPath parameter names a
non-directory.

ENOTEMPTY The ToPath parameter specifies an existing directory that is not empty.
EROFS The requested operation requires writing in a directory on a read-only file system.
ETXTBSY The ToPath parameter names a shared text file that is currently being used.
EXDEV The link named by the ToPath parameter and the file named by the FromPath

parameter are on different file systems.

If Network File System (NFS) is installed on the system, the rename subroutine can be unsuccessful if the
following is true:

ETIMEDOUT The connection timed out.

The rename subroutine can be unsuccessful for other reasons. See Appendix A, ″Base Operating System
Error Codes For Services That Require Path-Name Resolution″ for a list of additional errors.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The chmod subroutine, link subroutine, mkdir subroutine, rmdir (“rmdir Subroutine” on page 38)
subroutine, unlink (“unlink Subroutine” on page 369) subroutine.

The chmod command, mkdir command, mv command, mvdir command.

36 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/chmod.htm#HDRJK52A0GACO
../../libs/basetrf1/link.htm#HDRA169C1F6
../../libs/basetrf1/mkdir.htm#HDRA3IK150GACO
../../cmds/aixcmds1/chmod.htm#HDRKZF1F0CRAW
../../cmds/aixcmds3/mkdir.htm#HDRZGG270CRAW
../../cmds/aixcmds3/mv.htm#HDRCBG190CRAW
../../cmds/aixcmds3/mvdir.htm#HDRBIG270CRAW

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

revoke Subroutine

Purpose
Revokes access to a file.

Library
Standard C Library (libc.a)

Syntax
int revoke (Path)
char *Path;

Description
The revoke subroutine revokes access to a file by all processes.

All accesses to the file are revoked. Subsequent attempts to access the file using a file descriptor
established before the revoke subroutine fail and cause the process to receive a return value of -1, and
the errno global variable is set to EBADF.

A process can revoke access to a file only if its effective user ID is the same as the file owner ID, or if the
calling process is privileged.

Note: The revoke subroutine has no affect on subsequent attempts to open the file. To assure
exclusive access to the file, the caller should change the access mode of the file before issuing the
revoke subroutine. Currently the revoke subroutine works only on terminal devices. The chmod
subroutine changes file access modes.

Parameters

Path Path name of the file for which access is to be revoked.

Return Values
Upon successful completion, the revoke subroutine returns a value of 0.

If the revoke subroutine fails, a value of -1 returns and the errno global variable is set to indicate the
error.

Error Codes
The revoke subroutine fails if any of the following are true:

ENOTDIR A component of the path prefix is not a directory.
EACCES Search permission is denied on a component of the path prefix.
ENOENT A component of the path prefix does not exist, or the process has the

disallow truncation attribute (see the ulimit subroutine).
ENOENT The path name is null.
ENOENT A symbolic link was named, but the file to which it refers does not exist.
ESTALE The process’s root or current directory is located in a virtual file system that

has been unmounted.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 37

../../aixprggd/genprogc/file_sys_dir.htm#HDRFVOWF292JUDY
../../libs/basetrf1/chmod.htm#HDRJK52A0GACO

EFAULT The Path parameter points outside of the process’s address space.
ELOOP Too many symbolic links were encountered in translating the path name.
ENAMETOOLONG A component of a path name exceeds 255 characters, or an entire path name

exceeds 1023 characters.
EIO An I/O error occurred during the operation.
EPERM The effective user ID of the calling process is not the same as the file’s owner

ID.
EINVAL Access rights revocation is not implemented for this file.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The chmod subroutine, frevoke subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

rmdir Subroutine

Purpose
Removes a directory.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int rmdir (Path)
const char *Path;

Description
The rmdir subroutine removes the directory specified by the Path parameter. If Network File System
(NFS) is installed on your system, this path can cross into another node.

For the rmdir subroutine to execute successfully, the calling process must have write access to the parent
directory of the Path parameter.

In addition, if the parent directory of Path has the Sticky bit attribute (described in the sys/mode.h file), the
calling process must have one of the following:

v An effective user ID equal to the directory to be removed

v An effective user ID equal to the owner ID of the parent directory of Path

v Root user authority.

38 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/chmod.htm#HDRJK52A0GACO
../../libs/basetrf1/frevoke.htm#HDRA0959A1
../../aixprggd/genprogc/ls_sec_audit_subrs.htm#HDRLWURF19CJEFF
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../files/aixfiles/mode.h.htm#HDRA3219701

Parameters

Path Specifies the directory path name. The directory you specify must be:

Empty The directory contains no entries other than . (dot) and .. (dot dot).

Well-formed
If the . (dot) entry in the Path parameter exists, it must refer to the same directory as Path.
Exactly one directory has a link to the Path parameter, excluding the self-referential . (dot). If the ..
(dot dot) entry in Path exists, it must refer to the directory that contains an entry for Path.

Return Values
Upon successful completion, the rmdir subroutine returns a value of 0. Otherwise, a value of -1 is
returned, the specified directory is not changed, and the errno global variable is set to indicate the error.

Error Codes
The rmdir subroutine fails and the directory is not deleted if the following errors occur:

EACCES There is no search permission on a component of the path prefix, or there is no
write permission on the parent directory of the directory to be removed.

EBUSY The directory is in use as a mount point.
EEXIST or ENOTEMPTY The directory named by the Path parameter is not empty.
ENAMETOOLONG The length of the Path parameter exceeds PATH_MAX; or a path-name

component longer than NAME_MAX and POSIX_NO_TRUNC is in effect.
ENOENT The directory named by the Path parameter does not exist, or the Path

parameter points to an empty string.
ENOTDIR A component specified by the Path parameter is not a directory.
EINVAL The directory named by the Path parameter is not well-formed.
EROFS The directory named by the Path parameter resides on a read-only file system.

The rmdir subroutine can be unsuccessful for other reasons. See Appendix A, ″Base Operating System
Error Codes For Services That Require Path-Name Resolution″ on page A-1 for a list of additional errors.

If NFS is installed on the system, the rmdir subroutine fails if the following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The chmod or fchmod subroutine, mkdir subroutine, remove (“remove Subroutine” on page 34)
subroutine, rename (“rename Subroutine” on page 34) subroutine, umask (“umask Subroutine” on
page 364) subroutine, unlink (“unlink Subroutine” on page 369) subroutine.

The rm command, rmdir command.

Files, Directories, and File Systems For Programmers in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 39

../../libs/basetrf1/chmod.htm#HDRJK52A0GACO
../../libs/basetrf1/mkdir.htm#HDRA3IK150GACO
../../cmds/aixcmds4/rm.htm#HDRP4G120FISH
../../cmds/aixcmds4/rmdir.htm#HDRH7G1A0FISH
../../aixprggd/genprogc/file_sys_dir.htm#HDRFVOWF292JUDY

rpmatch Subroutine

Purpose
Determines whether the response to a question is affirmative or negative.

Library
Standard C Library (libc. a)

Syntax
#include <stdlib.h>

int rpmatch (Response)
const char *Response;

Description
The rpmatch subroutine determines whether the expression in the Response parameter matches the
affirmative or negative response specified by the LC_MESSAGES category in the current locale. Both
expressions can be extended regular expressions.

Parameters

Response Specifies input entered in response to a question that requires an affirmative or negative reply.

Return Values
This subroutine returns a value of 1 if the expression in the Response parameter matches the locale’s
affirmative expression. It returns a value of 0 if the expression in the Response parameter matches the
locale’s negative expression. If neither expression matches the expression in the Response parameter, a
-1 is returned.

Examples
The following example shows an affirmative expression in the En_US locale. This example matches any
expression in the Response parameter that begins with a y or Y followed by zero or more alphabetic
characters, or it matches the letter o followed by the letter k.
|[yY][:alpha:]* | ok

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The localeconv subroutine, nl_langinfo subroutine, regcomp (“regcomp Subroutine” on page 25)
subroutine, regexec (“regexec Subroutine” on page 29) subroutine, setlocale (“setlocale Subroutine” on
page 107) subroutine.

National Language Support Overview for Programming and Understanding Locale Subroutines in AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs.

40 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/localeconv.htm#HDRA1509139
../../libs/basetrf1/nl_langinfo.htm#HDRA4F011
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/locale_subrs.htm#HDRA142C198

RSiAddSetHot Subroutine

Purpose
Add a single set of peer statistics to an already defined SpmiHotSet.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

struct SpmiHotVals *RSiAddSetHot(rhandle, HotSet, StatName,
GrandParent,

maxresp, threshold, frequency, feed_type,
except_type, severity, trap_no)

RSiHandle rhandle;
struct SpmiHotSet *HotSet;
char *StatName;
cx_handle GrandParent;
int maxresp;
int threshold;
int frequency;
int feed_type;
int excp_type;
int severity;
int trap_no;

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”
on page 67) subroutine.

HotSetSpecifies a pointer to a valid structure of type SpmiHotSet as created by the RSiCreateHotSet
(“RSiCreateHotSet Subroutine” on page 46) subroutine call.

StatNameSpecifies the name of the statistic within the subcontexts (peer contexts) of the context identified
by the GrandParent parameter.

GrandParentSpecifies a valid cx_handle handle as obtained by another subroutine call. The handle must
identify a context with at least one subcontext, which contains the statistic identified by the StatName
parameter. If the context specified is one of the RTime contexts, no subcontext need to be created at the
time the SpmiAddSetHot subroutine call is issued; the presence of the metric identified by the StatName
parameter is checked against the context class description.

If the context specified has or may have multiple levels of instantiable context below it (such as the FS
and RTime/ARM contexts), the metric is only searched for at the lowest context level. The SpmiHotSet
created is a pseudo hotvals structure used to link together a peer group of SpmiHotVals structures, which
are created under the covers, one for each subcontext of the GrandParent context. In the case of
RTime/ARM, if additional contexts are later added under the GrandParent contexts, additional hotsets are
added to the peer group. This is transparent to the application program, except that the RSiGetHotItem
(“RSiGetHotItem Subroutine” on page 54) subroutine call will return the peer group SpmiHotVals
pointer rather than the pointer to the pseudo structure.

Note that specifying a specific volume group context (such as FS/rootvg) or a specific application context
(such as RTime/ARN/armpeek) is still valid and won’t involve creation of pseudo SpmiHotVals structures.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 41

../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTSET

maxrespMust be non-zero if excp_type specifies that exceptions or SNMP traps must be generated. If
specified as zero, indicates that all SpmiHotItems that meet the criteria specified by threshold must be
returned, up-to a maximum of maxresp items. If both exceptions/traps and feeds are requested, the
maxresp value is used to cap the number of exceptions/alerts as well as the number of items returned. If
feed_type is specified as SiHotAlways, the maxresp parameter is still used to return at most maxresp
items.

Where the GrandParent argument specifies a context that has multiple levels of instantiable contexts
below it, the maxresp is applied to each of the lowest level contexts above the the actual peer contexts at
a time. For example, if the GrandParent context is FS (file systems) and the system has three volume
groups, then a maxresp value of 2 could cause up to a maximum of 2 x 3 = 6 responses to be generated.

thresholdMust be non-zero if excp_type specifies that exceptions or SNMP traps must be generated. If
specified as zero, indicates that all values read qualify to be returned in feeds. The value specified is
compared to the data value read for each peer statistic. If the data value exceeds the threshold, it qualifies
to be returned as an SpmiHotItems element in the SpmiHotVals structure. If the threshold is specified as
a negative value, the value qualifies if it is lower than the numeric value of threshold. If feed_type is
specified as SiHotAlways, the threshold value is ignored for feeds. For peer statistics of type SiCounter,
the threshold must be specified as a rate per second; for SiQuantity statistics the threshold is specified as
a level.

frequencyMust be non-zero if excp_type specifies that exceptions or SNMP traps must be generated.
Ignored for feeds. Specifies the minimum number of minutes that must expire between any two
exceptions/traps generated from this SpmiHotVals structure. This value must be specified as no less than
5 minutes.

feed_typeSpecifies if feeds of SpmiHotItems should be returned for this SpmiHotVals structure. The
following values are valid:

v SiHotNoFeedNo feeds should be generated

v SiHotThresholdFeeds are controlled by threshold.

v SiHotAlwaysAll values, up-to a maximum of maxresp must be returned as feeds.

excp_typeControls the generation of exception data packets and/or the generation of SNMP Traps from
xmservd. Note that these types of packets and traps can only actually be sent if xmservd is running.
Because of this, exception packets and SNMP traps are only generated as long as xmservd is active.
Traps can only be generated on AIX. The conditions for generating exceptions and traps are controlled by
the threshold and frequency parameters. The following values are valid for excp_type:

v SiNoHotExceptionGenerate neither exceptions not traps.

v SiHotExceptionGenerate exceptions but not traps.

v SiHotTrapGenerate SNMP traps but not exceptions.

v SiHotBothGenerate both exceptions and SNMP traps.

severityRequired to be positive and greater than zero if exceptions are generated, otherwise specify as
zero. Used to assign a severity code to the exception for display by exmon.

trap_noRequired to be positive and greater than zero if SNMP traps are generated, otherwise specify as
zero. Used to assign the trap number in the generated SNMP trap.

Return Values
If successful, the subroutine returns a pointer to a structure of type struct SpmiHotVals. If an error
occurs, NULL is returned and an error text may be placed in the external character array RSiEMsg. If you
attempt to add more values to a statset than the current local buffer size allows, RSiErrno is set to

42 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTVALS
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTVALS

RSiTooMany. If you attempt to add more values than the buffer size of the remote host’s xmservd
daemon allows, RSiErrno is set to RSiBadStat and the status field in the returned packet is set to
too_many_values.

The external integer RSiMaxValues holds the maximum number of values acceptable with the
data-consumer’s buffer size.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes .

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see:

v “RSiCreateHotSet Subroutine” on page 46

v “RSiOpen Subroutine” on page 67.

RSiChangeFeed Subroutine

Purpose
Changes the frequency at which the xmservd on the host identified by the first argument daemon is
sending data_feed packets for a statset.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

int RSiChangeFeed(rhandle, statset, msecs)
RSiHandle rhandle;struct SpmiStatSet *statset;int msecs;

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”
on page 67) subroutine.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 43

../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES

statsetMust be a pointer to a structure of type struct SpmiStatSet, which was previously returned by a
successful RSiCreateStatSet subroutine call. Data feeding must have been started for this SpmiStatSet
via a previous RSiStartFeed (“RSiStartFeed Subroutine” on page 71) subroutine call.

msecsThe number of milliseconds between the sending of data_feed packets. This number is rounded to
a multiple of min_remote_int milliseconds by the xmservd daemon on the remote host. This minimum
interval can be modified through the -i command line interval to xmservd.

Return Values
If successful, the subroutine returns zero, otherwise -1. A NULL error text is placed in the external
character array RSiEMsg regardless of the subroutine’s success or failure.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see:

v “RSiCreateStatSet Subroutine” on page 47

v “RSiOpen Subroutine” on page 67

v “RSiStartFeed Subroutine” on page 71.

RSiChangeHotFeed Subroutine

Purpose
Changes the frequency at which the xmservd on the host identified by the first argument daemon is
sending hot_feed packets for a statset or checking if exceptions or SNMP traps should be generated.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

int RSiChangeFeed(rhandle, hotset, msecs)
RSiHandle rhandle;struct SpmiHotSet *hotset;int msecs;

44 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATSET
../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”
on page 67) subroutine.

hotsetMust be a pointer to a structure of type struct SpmiHotSet, which was previously returned by a
successful RsiCreateHotSet (“RSiCreateHotSet Subroutine” on page 46) subroutine call. Data feeding
must have been started for this SpmiHotSet via a previous RSiStartHotFeed (“RSiStartHotFeed
Subroutine” on page 72) subroutine call.

msecsThe number of milliseconds between the sending of Hot_feed packets. This number is rounded to
a multiple of min_remote_int milliseconds by the xmservd daemon on the remote host. This minimum
interval can be modified through the -i command line interval to xmservd.

Return Values
If successful, the subroutine returns zero, otherwise -1. A NULL error text is placed in the external
character array RSiEMsg regardless of the subroutine’s success or failure.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
In the sample program, the SpmiStatSet is created in the local function lststats shown previously in lines
6 through 10.

v “RSiCreateHotSet Subroutine” on page 46

v “RSiOpen Subroutine” on page 67

v “RSiStartHotFeed Subroutine” on page 72.

RSiClose Subroutine

Purpose
Terminates the RSI interface for a remote host connection.

Library
RSI Library (libSpmi.a)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 45

../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTSET
../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES

Syntax
#include sys/Rsi.h

void RSiClose(rhandle)
RSiHandle rhandle;

Description
The RSiClose subroutine is responsible for:

1. Removing the data-consumer program as a known data consumer on a particular host. This is done by
sending a going_down packet to the host.

2. Marking the RSI handle as not active.

3. Releasing all memory allocated in connection with the RSI handle.

4. Terminating the RSI interface for a remote host.

A successful RSiOpen (“RSiOpen Subroutine” on page 67) subroutine creates tables on the remote host
it was issued against. Therefore, a data consumer program that has issued successful RSiOpen
subroutine calls should issue an RSiClose (“RSiClose Subroutine” on page 45) subroutine call for each
RSiOpen call before the program exits so that the tables in the remote xmservd daemon can be released.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen subroutine.

The macro RSiIsOpen can be used to test whether an RSI handle is open. It takes an RSiHandle as
argument and returns true (1) if the handle is open, otherwise false (0).

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files
/usr/include/sys/Rsi.hDeclares the subroutines, data structures, handles, and macros that an application
program can use to access the RSI.

Related Information
For related information, see:

v “RSiInit Subroutine” on page 58

v “RSiOpen Subroutine” on page 67

RSiCreateHotSet Subroutine

Purpose
Creates an empty hotset on the remote host identified by the argument.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

struct SpmiHotSet *RSiCreateHotSet(rhandle)
RSiHandle rhandle;

46 Technical Reference, Volume 2: Base Operating System and Extensions

Description
The RSiCreateHotSet subroutine allocates an SpmiHotSet structure. The structure is initialized as an
empty SpmiHotSet and a pointer to the SpmiHotSet structure is returned.

The SpmiHotSet structure provides the anchor point to a set of peer statistics and must exist before the
RSiAddSetHot (“RSiAddSetHot Subroutine” on page 41) subroutine can be successfully called.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”
on page 67) subroutine.

Return Values
The RSiCreateHotSet subroutine returns a pointer to a structure of type SpmiHotSet if successful. If
unsuccessful, the subroutine returns a NULL value.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes .

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see:

v “RSiOpen Subroutine” on page 67

v “RSiAddSetHot Subroutine” on page 41.

RSiCreateStatSet Subroutine

Purpose
Creates an empty statset on the remote host identified by the argument.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 47

../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTSET
../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES

struct SpmiStatSet *RSiCreateStatSet(rhandle)
RSiHandle rhandle;

Description
The RSiCreateStatSet subroutine allocates an SpmiStatSet structure. The structure is initialized as an
empty SpmiStatSet and a pointer to the SpmiStatSet structure is returned.

The SpmiStatSet structure provides the anchor point to a set of statistics and must exist before the
RSiPathAddSetStat (“RSiPathAddSetStat Subroutine” on page 69) subroutine can be successfully
called.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”
on page 67) subroutine.

Return Values
The RSiCreateStatSet subroutine returns a pointer to a structure of type SpmiStatSet if successful. If
unsuccessful, the subroutine returns a NULL value.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see:

v “RSiOpen Subroutine” on page 67

v “RSiPathAddSetStat Subroutine” on page 69.

RSiDelSetHot Subroutine

Purpose
Deletes a single set of peer statistics identified by an SpmiHotVals structure from an SpmiHotSet.

Library
RSI Library (libSpmi.a)

48 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATSET
../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTVALS
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTSET

Syntax
#include sys/Rsi.h

int RSiDelSetHot(rhandle, hsp, hvp)
RSiHandle rhandle;struct SpmiHotSet *hsp;struct SpmiHotVals*hvp;

Description
The RSiDelSetHot subroutine performs the following actions:

1. Validates that the SpmiHotSet identified by the second argument exists and contains the
SpmiHotVals statistic identified by the third argument.

2. Deletes the SpmiHotVals value from the SpmiHotSet so that future data_feed packets do not include
the deleted statistic.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”
on page 67) subroutine.

hspMust be a pointer to a structure type struct SpmiHotSet, which was previously returned by a
successful RSiCreateHotSet subroutine call.

hvpMust be a handle of type struct SpmiHotVals as returned by a successful RSiAddSetHot
(“RSiAddSetHot Subroutine” on page 41) subroutine call. You cannot specify an SpmiHotVals that was
internally generated by the Spmi library code as described under the GrandParent parameter to
RSiAddSetHot (“RSiAddSetHot Subroutine” on page 41).

Return Values
If successful, the subroutine returns a zero value; otherwise it returns a non-zero value and an error text
may be placed in the external character array RSiEMsg.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see:

v “RSiOpen Subroutine” on page 67

v “RSiAddSetHot Subroutine” on page 41.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 49

../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTSET
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTVALS
../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES

RSiDelSetStat Subroutine

Purpose
Deletes a single statistic identified by an SpmiStatVals pointer from an SpmiStatSet.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

int RSiDelSetStat(rhandle, ssp, svp)
RSiHandle rhandle;struct SpmiStatSet *ssp;struct SpmiStatVals*svp;

Description
The RSiDelSetStat subroutine performs the following actions:

1. Validates the SpmiStatSet identified by the second argument exists and contains the SpmiStatVals
statistic identified by the third argument.

2. Deletes the SpmiStatVals value from the SpmiStatSet so that future data_feed packets do not
include the deleted statistic.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”
on page 67) subroutine.

sspMust be a pointer to a structure type struct SpmiStatSet, which was previously returned by a
successful RSiCreateStatSet (“RSiCreateStatSet Subroutine” on page 47) subroutine call.

svpMust be a handle of type struct SpmiStatVals as returned by a successful RSiPathAddSetStat
(“RSiPathAddSetStat Subroutine” on page 69) subroutine call.

Return Values
If successful, the subroutine returns a zero value; otherwise it returns a non-zero value and an error text
may be placed in the external character array RSiEMsg.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

50 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATVALS
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATSET
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATSET
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATVALS
../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see:

v “RSiCreateStatSet Subroutine” on page 47

v “RSiOpen Subroutine” on page 67

v “RSiPathAddSetStat Subroutine” on page 69.

RSiFirstCx Subroutine

Purpose
Returns the first subcontext of an SpmiCx context.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

struct SpmiCxLink *RSiFirstCx(rhandle, context, name,
descr)
RSiHandle rhandle;
cx_handle *context;
char **name;
char **descr;

Description
The RSiFirstCx subroutine performs the following actions:

1. Validates that the context identified by the second argument exists.

2. Returns a handle to the first element of the list of subcontexts defined for the context.

3. Returns the short name and description of the subcontext.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”
on page 67) subroutine.

contextMust be a handle of type cx_handle, which was previously returned by a successful
RSiPathGetCx (“RSiPathGetCx Subroutine” on page 70) subroutine call.

nameMust be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the short name of the subcontext is
returned in the character array pointer.

descrMust be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the description of the subcontext is
returned in the character array pointer.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 51

../../perftool/prfusrgd/ch16body.htm#HDRSPMICX

Return Values
If successful, the subroutine returns a pointer to a structure of type struct SpmiCxLink. If an error occurs
or if the context doesn’t contain subcontexts, NULL is returned and an error text may be placed in the
external character array RSiEMsg.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see:

v “RSiNextCx Subroutine” on page 64

v “RSiOpen Subroutine” on page 67

v “RSiPathGetCx Subroutine” on page 70.

RSiFirstStat Subroutine

Purpose
Returns the first statistic of an SpmiCx context.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

struct SpmiStatLink *RSiFirstStat(rhandle, context, name,
descr)
RSiHandle rhandle;
cx_handle *context;
char **name;
char **descr;

Description
The RSiFirstStat subroutine performs the following actions:

1. Validates that the context identified by the second argument exists.

52 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRSPMICXLINK
../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRSPMICX

2. Returns a handle to the first element of the list of statistics defined for the context.

3. Returns the short name and description of the statistic.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”
on page 67) subroutine.

contextMust be a handle of type cx_handle, which was previously returned by a successful
RSiPathGetCx (“RSiPathGetCx Subroutine” on page 70) subroutine call.

nameMust be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the short name of the statistics value is
returned in the character array pointer.

descrMust be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the description of the statistics value is
returned in the character array pointer.

Return Values
If successful, the subroutine returns a pointer to a structure of type struct SpmiStatLink. If an error
occurs, NULL is returned and an error text may be placed in the external character array RSiEMsg.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see:

v “RSiNextStat Subroutine” on page 65

v “RSiOpen Subroutine” on page 67

v “RSiPathGetCx Subroutine” on page 70.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 53

../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATLINK
../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES

RSiGetHotItem Subroutine

Purpose
Locates and decodes the next SpmiHotItems element at the current position in an incoming data packet
of type hot_feed.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

struct SpmiHotVals *RSiGetHotItem(rhandle, HotSet, index, value,
absvalue, name)
RSiHandle rhandle;
struct SpmiHotSet **HotSet;
int *index;
float *value;
flost absvalue;
char **name;

Description
The RSiGetHotItem subroutine locates the SpmiHotItems structure in the hot_feed data packet indexed
by the value of the index parameter. The subroutine returns a NULL value if no further SpmiHotItems
structures are found. The RSiGetHotItem subroutine should only be executed after a successful call to the
RSiGetHotSet subroutine.

The RSiGetHotItem subroutine is designed to be used for walking all SpmiHotItems elements returned in
a hot_feed data packet. Because the data packet may contain elements belonging to more than one
SpmiHotSet, the index is purely abstract and is only used to keep position. By feeding the updated integer
pointed to by index back to the next call, the walking of the hot_feed packet can be done in a tight loop.
Successful calls to RSiGetHotItem will decode each SpmiHotItems element and return the data value in
value and the name of the peer context that owns the corresponding statistic in name.

Parameters

rhandle Must be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine” on
page 67) subroutine.

HotSet Used to return a pointer to a valid SpmiHotSet structure as obtained by a previous
RSiCreateHotSet (“RSiCreateHotSet Subroutine” on page 46) subroutine call. The calling program
can use this value to locate the SpmiHotSet if its address was stored by the program after it was
created. The time stamps in the SpmiHotSet are updated with the time stamps of the decoded
SpmiHotItems element.

index A pointer to an integer that contains the desired relative element number in the SpmiHotItems array
across all SpmiStatVals contained in the data packet. A value of zero points to the first element.
When the RSiGetHotItem subroutine returns, the integer contain the index of the next
SpmiHotItems element in the data packet. By passing the returned index parameter to the next call
to RSiGetHotItem, the calling program can iterate through all SpmiHotItems elements in the
hot_feed data packet.

54 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTSET
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTITEMS
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATVALS

value A pointer to a float variable. A successful call will return the decoded data value of the peer statistic.
Before the value is returned, the RSiGetHotItem function:

v Determines the format of the data field as being either SiFloat or SiLong and extracts the data
value for further processing.

v Determines the data value as being either type SiQuantity or type SiCounter and performs one of
the actions listed here:

– If the data value is of type SiQuantity, the subroutine returns the val field of the SpmiHotItems
structure.

– If the data value is of type SiCounter, the subroutine returns the value of the val_change field
of the SpmiHotItems structure divided by the elapsed number of seconds since the previous
time a data value was requested for this set of statistics.

absvalue A pointer to a float variable. A successful call will return the decoded value of the val field of the
SpmiHotItems structure of the peer statistic. In case of a statistic of type SiQuantity, this value will
be the same as the one returned in the argument value. In case of a peer statistic of type SiCounter,
the value returned is the absolute value of the counter.

name A pointer to a character pointer. A successful call will return a pointer to the name of the peer context
for which the data value was read.

Return Values
The RSiGetHotItem subroutine returns a pointer to the current SpmiHotVals structure within the hotset. If
no more SpmiHotItems elements are available, the subroutine returns a NULL value. The structure
returned contains the data, such as threshold, which may be relevant for presentation of the results of an
SpmiGetHotSet subroutine call to end-users. In the returned SpmiHotVals structure, all fields contain the
correct values as declared, except for the following:

stat Declared as SpmiStatHdl, actually points to a valid SpmiStat structure. By casting the handle to a
pointer to SpmiStat, data in the structure can be accessed.

grandpa Contains the cx_handle for the parent context of the peer contexts.
items When using the Spmi interface this is an array of SpmiHotItems structures. When using the

RSiGetHotItem subroutine, the array is empty and attempts to access it will likely result in
segmentation faults or access of not valid data.

path Will contain the path to the parent of the peer contexts. Even when the peer contexts are multiple
levels below the parent context, the path points to the top context because the peer context
identifiers in the SpmiHotItems elements will contain the path name from there and on. For example,
if the hotvals peer set defines all volume groups, the path specified in the returned SpmiHotVals
structure would be “FS” and the path name in one SpmiHotItems element may be “rootvg/lv01”.
When combined with the metric name from the stat field, the full path name can be constructed as,
for example, “FS/rootvg/lv01/%totfree”.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 55

../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTVALS
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTAT
../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see:

v “RSiOpen Subroutine” on page 67

v “RSiCreateHotSet Subroutine” on page 46.

RSiGetRawValue Subroutine

Purpose
Returns a pointer to a valid SpmiStatVals structure for a given SpmiStatVals pointer by extraction from a
data_feed packet. This subroutine call should only be issued from a callback function after it has been
verified that a data_feed packet was received from the host identified by the first argument.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

struct SpmiStatVals RSiGetRawValue(rhandle, svp, index)
RSiHandle rhandle;
struct SpmiStatVals *svp;
int *index;

Description
The RSiGetRawValue subroutine performs the following:

1. Finds an SpmiStatVals structure in the received data packet based upon the second argument to the
subroutine call. This involves a lookup operation in tables maintained internally by the RSi interface.

2. Updates the struct SpmiStat pointer in the SpmiStatVals structure to point at a valid SpmiStat
structure.

3. Returns a pointer to the SpmiStatVals structure. The returned pointer points to a static area and is
only valid until the next execution of RSiGetRawValue.

4. Updates an integer variable with the index into the ValsSet array of the data_feed packet, which
corresponds to the second argument to the call.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”
on page 67) subroutine.

svpA handle of type struct SpmiStatVals, which was previously returned by a successful
RSiPathAddSetStat (“RSiPathAddSetStat Subroutine” on page 69) subroutine call.

indexA pointer to an integer variable. When the subroutine call succeeds, the index into the ValsSet array
of the data feed packet is returned. The index corresponds to the element that matches the svp argument
to the subroutine.

56 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATVALS
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATVALS

Return Values
If successful, the subroutine returns a pointer; otherwise NULL is returned and an error text may be placed
in the external character array RSiEMsg.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes .

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see:

v “RSiOpen Subroutine” on page 67

v “RSiPathAddSetStat Subroutine” on page 69.

RSiGetValue Subroutine

Purpose
Returns a data value for a given SpmiStatVals pointer by extraction from the data_feed packet. This
subroutine call should only be issued from a callback function after it has been verified that a data_feed
packet was received from the host identified by the first argument.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

float RSiGetValue(rhandle, svp)
RSiHandle rhandle;
struct SpmiStatVals *svp;

Description
The RSiGetValue subroutine provides the following:

1. Finds an SpmiStatVals structure in the received data packet based upon the second argument to the
subroutine call. This involves a lookup operation in tables maintained internally by the RSi interface.

2. Determines the format of the data field as being either SiFloat or SiLong and extracts the data value
for further processing based upon its data format.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 57

../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATVALS

3. Determines the value as either of type SiQuantity or SiCounter. If the former is the case, the data
value returned is the val field in the SpmiStatVals structure. If the latter type is found, the value
returned by the subroutine is the val_change field divided by the elapsed number of seconds since the
previous data packet’s time stamp.

Parameters
rhandleMust be an RSiHandle, previously initialized by the RSiOpen (“RSiOpen Subroutine” on
page 67) subroutine.

svpA handle of type struct SpmiStatVals, which was previously returned by a successful
RSiPathAddSetStat (“RSiPathAddSetStat Subroutine” on page 69) subroutine call.

Return Values
If successful, the subroutine returns a non-negative value; otherwise it returns a negative value less than
or equal to -1.0. A NULL error text is placed in the external character array RSiEMsg regardless of the
subroutine’s success or failure.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see:

v “RSiOpen Subroutine” on page 67

v “RSiPathAddSetStat Subroutine” on page 69

RSiInit Subroutine

Purpose
Allocates or changes the table of RSi handles.

Library
RSI Library (libSpmi.a)

58 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATVALS
../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES

Syntax
#include sys/Rsi.h

RSiHandle RSiInit(count)
int count;

Description
Before any other RSi call is executed, a data-consumer program must issue the RSiInit call. Its purpose is
to either:

v Allocate an array of RSiHandleStruct structures and return the address of the array to the
data-consumer program.

v Increase the size of a previously allocated array of RSiHandleStruct structures and initialize the new
array with the contents of the previous one.

Parameters
countMust specify the number of elements in the array of RSi handles. If the call is used to expand a
previously allocated array, this argument must be larger than the current number of array elements. It must
always be larger than zero. Specify the size of the array to be at least as large as the number of hosts
your data-consumer program can talk to at any point in time.

Return Values
If successful, the subroutine returns the address of the allocated array. If an error occurs, an error text is
placed in the external character array RSiEMsg and the subroutine returns NULL. When used to increase
the size of a previously allocated array, the subroutine first allocates the new array, then moves the entire
old array to the new area. Application programs should, therefore, refer to elements in the RSi handle
array by index rather than by address if they anticipate the need for expanding the array. The array only
needs to be expanded if the number of remote hosts a data-consumer program talks to might increase
over the life of the program.

An application that calls RSiInit repeatedly needs to preserve the previous address of the RSiHandle
array while the RSiInit call is re-executed. After the call has completed successfully, the calling program
should free the previous array using the free subroutine.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 59

../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES

Related Information
For related information, see the “RSiClose Subroutine” on page 45.

RSiInstantiate Subroutine

Purpose
Creates (instantiates) all subcontexts of an SpmiCx context object.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

int RSiInstantiate(rhandle, context)
RSiHandle rhandle;
cx_handle *context;

Description
The RSiInstantiate subroutine performs the following actions:

1. Validates that the context identified by the second argument exists.

2. Instantiates the context so that all subcontexts of that context are created in the context hierarchy.
Note that this subroutine call currently only makes sense if the context’s SiInstFreq is set to
SiContInst or SiCfgInst because all other contexts would have been instantiated whenever the
xmservd daemon was started.

The RSiInstantiate subroutine explicitly instantiates the subcontexts of an instantiable context. If the
context is not instantiable, do not call the RSiInstantiate subroutine.

Parameters
rhandleMust point to a structure of type RSiHandle, which was previously initialized by the RSiOpen
(“RSiOpen Subroutine” on page 67) subroutine.

contextMust be a handle of type cx_handle, which was previously returned by a successful
RSiPathGetCx (“RSiPathGetCx Subroutine” on page 70) subroutine call.

Return Values
If successful, the subroutine returns a zero value; otherwise it returns an error code as defined in SiError
and an error text may be placed in the external character array RSiEMsg.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes .

60 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRSPMICX
../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see:

v “RSiFirstCx Subroutine” on page 51

v “RSiOpen Subroutine” on page 67

v “RSiPathGetCx Subroutine” on page 70.

RSiInvite Subroutine

Purpose
Invites data suppliers on the network to identify themselves and returns a table of data-supplier host
names.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

char **RSiInvite(resy_callb, excp_callb)
int (*resy_callb)();
int (*excp_callb)();

Description
The RSiInvite subroutine call broadcasts are_you_there messages on the network to provoke xmservd
daemons on remote hosts to respond and returns a table of all responding hosts.

Parameters
The arguments to the subroutine are:

resy_callbMust be either NULL or a pointer to a function that processes i_am_back packets as they are
received from the xmservd daemons on remote hosts for the duration of the RSiInvite subroutine call.
When the callback function is invoked, it is passed three arguments as described in the following
information.

If this argument is specified as NULL, a callback function internal to the RSiInvite subroutine receives any
i_am_back packets and uses them to build the table of host names the function returns.

excp_callbMust be NULL or a pointer to a function that processes except_rec packets as they are
received from the xmservd daemons on remote hosts. If a NULL pointer is passed, your application does
not receive except_rec messages. When this callback function is invoked, it is passed three arguments as
described in the following information.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 61

This argument always overrides the corresponding argument of any previous RSiInvite or RSiOpen call,
and it can be overridden by subsequent executions of either. In this way, your application can turn
exception monitoring on and off. For an RSiOpen to override the exception processing specified by a
previous open call, the connection must first be closed with the RSiClose call. That’s because an
RSiOpen against an already active handle is treated as a no-operation.

The resy_callb and excp_callb functions in your application are called with the following three arguments:

v An RSiHandle. The RSi handle pointed to is almost certain not to represent the host that sent the
packet. Ignore this argument, and use only the second one: the pointer to the input buffer.

v A pointer of type pack * to the input buffer containing the received packet. Always use this pointer
rather than the pointer in the RSiHandle structure.

v A pointer of type struct sockaddr_in * to the IP address of the originating host.

Return Values
If successful, the subroutine returns an array of character pointers, each of which contains a host name of
a host that responded to the invitation. The returned host names are actually constructed as two “words”
with the first one being the host name returned by the host in response to an are_you_there request; the
second one being the character form of the host’s IP address. The two “words” are separated by one or
more blanks. This format is suitable as an argument to the RSiOpen (“RSiOpen Subroutine” on
page 67) subroutine call. In addition, the external integer variable RSiInvTabActive contains the number
of host names found. The returned pointer to an array of host names must not be freed by the subroutine
call. The calling program should not assume that the pointer returned by this subroutine call remains valid
after subsequent calls to RSiInvite. If the call is not successful, an error text is placed in the external
character array RSiEMsg, an error number is placed in RSiErrno, and the subroutine returns NULL.

The list of host names returned by RSiInvite does not include the hosts your program has already
established a connection with through an RSiOpen call. Your program is responsible for keeping track of
such hosts. If you need a list of both sets of hosts, either let the RSiInvite call be the first one issued from
your program or merge the list of host names returned by the call with the list of hosts to which you have
connections.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see“RSiOpen Subroutine” on page 67.

62 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES

RSiMainLoop Subroutine

Purpose
Allows an application to suspend execution and wait to get awakened when data feeds arrive.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

void RSiMainLoop(msecs)
int msecs;

Description
The RSiMainLoop subroutine:

1. Allows the data-consumer program to suspend processing while waiting for data_feed packets to
arrive from one or more xmservd daemons.

2. Tells the subroutine that waits for data feeds to return control to the data-consumer program so that
the latter can check for and react to other events.

3. Invokes the subroutine to process data_feed packets for each such packet received.

To work properly, the RSiMainLoop subroutine requires that at least one RSiOpen (“RSiOpen
Subroutine” on page 67) call has been successfully completed and that the connection has not been
closed.

Parameters
msecsThe minimum elapsed time in milliseconds that the subroutine should continue to attempt receives
before returning to the caller. Notice that your program releases control for as many milliseconds you
specify but that the callback functions defined on the RSiOpen call may be called repetitively during that
time.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 63

../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES

Related Information
For related information, see “RSiOpen Subroutine” on page 67.

RSiNextCx Subroutine

Purpose
Returns the next subcontext of an SpmiCx context.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

struct SpmiCxLink *RSiNextCx(rhandle, context, link, name,
descr)
RSiHandle rhandle;
cx_handle *context;
struct SpmiCxLink *link;
char **name;
char **descr;

Description
The RSiNextCx subroutine:

1. Validates that the context identified by the second argument exists.

2. Returns a handle to the next element of the list of subcontexts defined for the context.

3. Returns the short name and description of the subcontext.

Parameters
rhandleMust point to a structure of type RSiHandle, which was previously initialized by the RSiOpen
(“RSiOpen Subroutine” on page 67) subroutine.

contextMust be a handle of type cx_handle, which was previously returned by a successful
RSiPathGetCx (“RSiPathGetCx Subroutine” on page 70) subroutine call.

linkMust be a pointer to a structure of type struct SpmiCxLink, which was previously returned by a
successful RSiFirstCx (“RSiFirstCx Subroutine” on page 51) or RSiNextCx subroutine call.

nameMust be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the short name of the subcontext is
returned in the character array pointer.

descrMust be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the description of the subcontext is
returned in the character array pointer.

Return Values
If successful, the subroutine returns a pointer to a structure of type struct SpmiCxLink. If an error occurs,
or if no more subcontexts exist for the context, NULL is returned and an error text may be placed in the
external character array RSiEMsg.

64 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRSPMICX
../../perftool/prfusrgd/ch16body.htm#HDRSPMICXLINK
../../perftool/prfusrgd/ch16body.htm#HDRSPMICXLINK

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see:

v “RSiFirstCx Subroutine” on page 51

v “RSiOpen Subroutine” on page 67

v “RSiPathGetCx Subroutine” on page 70.

RSiNextStat Subroutine

Purpose
Returns the next statistic of an SpmiCx context.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

struct SpmiStatLink *RSiNextStat(rhandle, context, link, name,
descr)
RSiHandle rhandle;
cx_handle *context;
struct SpmiStatLink *link;
char **name;
char **descr;

Description
The RSiNextStat subroutine:

1. Validates that a context identified by the second argument exists.

2. Returns a handle to the next element of the list of statistics defined for the context.

3. Returns the short name and description of the statistic.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 65

../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRSPMICX

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”
on page 67) subroutine.

contextMust be a handle of type cx_handle, which was previously returned by a successful
RSiPathGetCx (“RSiPathGetCx Subroutine” on page 70) subroutine call.

linkMust be a pointer to a structure of type struct SpmiStatLink, which was previously returned by a
successful RSiFirstStat (“RSiFirstStat Subroutine” on page 52) or RSiNextStat subroutine call.

nameMust be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the short name of the statistics value is
returned in the character array pointer.

descrMust be a pointer to a pointer to a character array. The pointer must be initialized to point at a
character array pointer. When the subroutine call is successful, the description of the statistics value is
returned in the character array pointer.

Return Values
If successful, the subroutine returns a pointer to a structure of type struct SpmiStatLink. If an error
occurs, or if no more statistics exists for the context, NULL is returned and an error text may be placed in
the external character array RSiEMsg.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see:

v “RSiFirstStat Subroutine” on page 52

v “RSiOpen Subroutine” on page 67

v “RSiPathGetCx Subroutine” on page 70.

66 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATLINK
../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES

RSiOpen Subroutine

Purpose
Initializes the RSi interface for a remote host.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

int RSiOpen(rhandle, wait, bufsize, hostID, feed_callb,
resy_callb, excp_callb)

RSiHandle rhandle;
int wait;
int bufsize;
char *hostID;
int (*feed_callb)();
int (*resy_callb)();
int (*excp_callb)();

Description
The RSiOpen subroutine performs the following actions:

1. Establishes the issuing data-consumer program as a data consumer known to the xmservd daemon
on a particular host. The subroutine does this by sending an are_you_there packet to the host.

2. Initializes an RSi handle for subsequent use by the data-consumer program.

Parameters
The arguments to the subroutine are:

rhandleMust point to an element of the RSiHandleStruct array, which is returned by a previous RSiInit
(“RSiInit Subroutine” on page 58) call. If the subroutine is successful the structure is initialized and
ready to use as a handle for subsequent RSi interface subroutine calls.

waitMust specify the timeout in milliseconds that the RSi interface shall wait for a response when using
the request-response functions. On LANs, a reasonable value for this argument is 100 milliseconds. If the
response is not received after the specified wait time, the library subroutines retry the receive operation
until five times the wait time has elapsed before returning a timeout indication. The wait time must be zero
or more milliseconds.

bufsizeSpecifies the maximum buffer size to be used for constructing network packets. This size must be
at least 4,096 bytes. The buffer size determines the maximum packet length that can be received by your
program and sets the limit for the number of data values that can be received in one data_feed packet.
There’s no point in setting the buffer size larger than that of the xmservd daemon because both must be
able to handle the packets. If you need large sets of values, you can use the command line argument -b
of xmservd to increase its buffer size up to 16,384 bytes.

The fixed part of a data_feed packet is 104 bytes and each value takes 32 bytes. A buffer size of 4,096
bytes allows up to 124 values per packet.

hostIDMust be a character array containing the identification of the remote host whose xmservd daemon
is the one with which you want to talk. The first characters of the host identification (up to the first white
space) is used as the host name. The full host identification is stored in the RSiHandle field longname

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 67

and may contain any description that helps the end user identify the host used. The host name may be
either in long format (including domain name) or in short format.

feed_callbMust be a pointer to a function that processes data_feed packets as they are received from the
xmservd daemon. When this callback function is invoked, it is passed three arguments as described in
the following information.

resy_callbMust be a pointer to a function that processes i_am_back packets as they are received from
the xmservd daemon. When this callback function is invoked it is passed three arguments as described in
the following information.

excp_callbMust be NULL or a pointer to a function that processes except_rec packets as they are
received from the xmservd daemon. If a NULL pointer is passed, your application does not receive
except_rec messages. When this callback function is invoked, it is passed three arguments as described
in the following information. This argument always overrides the corresponding argument of any previous
RSiInvite (“RSiInvite Subroutine” on page 61) or RSiOpen (“RSiOpen Subroutine” on page 67)
subroutine call and can itself be overridden by subsequent executions of either. In this way, your
application can turn exception monitoring on and off. For an RSiOpen call to override the exception
processing specified by a previous open call, the connection must first be closed with the RSiClose
(“RSiClose Subroutine” on page 45) subroutine call.

The feed_callb, resy_callb, and excp_callb functions are called with the arguments:

RSiHandle. When a data_feed packet is received, the structure pointed to is guaranteed to represent the
host sending the packet. In all other situations the RSiHandle structure may represent any of the hosts to
which your application is talking.

Pointer of type pack * to the input buffer containing the received packet. In callback functions, always use
this pointer rather than the pointer in the RSiHandle structure.

Pointer of type struct sockaddr_in * to the IP address of the originating host.

Return Values
If successful, the subroutine returns zero and initializes the array element of type RSiHandle pointed to by
rhandle. If an error occurs, error text is placed in the external character array RSiEMsg and the
subroutine returns a negative value.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

68 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES

Related Information
For related information, see:

v “RSiClose Subroutine” on page 45

v “RSiInvite Subroutine” on page 61

RSiPathAddSetStat Subroutine

Purpose
Add a single statistics value to an already defined SpmiStatSet.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

struct SpmiStatVals *RSiPathAddSetStat(rhandle, statset,
path)
RSiHandle rhandle;
struct SpmiStatSet *statset;
char *path;

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”
on page 67) subroutine.

statsetMust be a pointer to a structure of type struct SpmiStatSet, which was previously returned by a
successful RSiCreateStatSet (“RSiCreateStatSet Subroutine” on page 47) subroutine call.

pathMust be the full value path name of the statistics value to add to the SpmiStatSet. The value path
name must not include a terminating slash. Note that value path names never start with a slash.

Return Values
If successful, the subroutine returns a pointer to a structure of type struct SpmiStatVals. If an error
occurs, NULL is returned and an error text may be placed in the external character array RSiEMsg. If you
attempt to add more values to a statset than the current local buffer size allows, RSiErrno is set to
RSiTooMany. If you attempt to add more values than the buffer size of the remote host’s xmservd
daemon allows, RSiErrno is set to RSiBadStat and the status field in the returned packet is set to
too_many_values.

The external integer RSiMaxValues holds the maximum number of values acceptable with the
data-consumer’s buffer size.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 69

../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATSET
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATVALS

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see:

v “RSiCreateStatSet Subroutine” on page 47

v “RSiOpen Subroutine” on page 67.

RSiPathGetCx Subroutine

Purpose
Searches the context hierarchy for an SpmiCx context that matches a context path name.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

cx_handle *RSiPathGetCx(rhandle, path)
RSiHandle rhandle;
char *path;

Description
The RSiPathGetCx subroutine performs the following actions:

1. Searches the context hierarchy for a given path name of a context.

2. Returns a handle to be used when subsequently referencing the context.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”
on page 67) subroutine.

pathA path name of a context for which a handle is to be returned. The context path name must be the
full path name and must not include a terminating slash. Note that context path names never start with a
slash.

Return Values
If successful, the subroutine returns a handle defined as a pointer to a structure of type cx_handle. If an
error occurs, NULL is returned and an error text may be placed in the external character array RSiEMsg.

70 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRSPMICX

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see:

v “RSiFirstCx Subroutine” on page 51

v “RSiOpen Subroutine” on page 67

v “RSiNextCx Subroutine” on page 64.

RSiStartFeed Subroutine

Purpose
Tells xmservd to start sending data feeds for a statset.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

int RSiStartFeed(rhandle, statset, msecs)
RSiHandle rhandle;
struct SpmiStatSet *statset;
int msecs;

Description
The RSiStartFeed subroutine performs the following function:

1. Informs xmservd of the frequency with which it is required to send data_feed packets.

2. Tells the xmservd to start sending data_feed packets.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”
on page 67) subroutine.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 71

../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES

statsetMust be a pointer to a structure of type struct SpmiStatSet, which was previously returned by a
successful RSiCreateStatSet (“RSiCreateStatSet Subroutine” on page 47) subroutine call.

msecsThe number of milliseconds between the sending of data_feed packets. This number is rounded to
a multiple of min_remote_int milliseconds by the xmservd daemon on the remote host. This minimum
interval can be modified through the -i command line interval to xmservd.

Return Values
If successful, the subroutine returns zero; otherwise it returns -1 and an error text may be placed in the
external character array RSiEMsg.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see:

v “RSiCreateStatSet Subroutine” on page 47

v “RSiOpen Subroutine” on page 67

v “RSiStopFeed Subroutine” on page 75.

RSiStartHotFeed Subroutine

Purpose
Tells xmservd to start sending hot feeds for a hotset or to start checking for if exceptions or SNMP traps
should be generated.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

int RSiStartFeed(rhandle, hotset, msecs)
RSiHandle rhandle;
struct SpmiHotSet *hotset;
int msecs;

72 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATSET
../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES

Description
The RSiStartHotFeed subroutine performs the following function:

1. Informs xmservd of the frequency with which it is required to send hot_feed packets, if the hotset is
defined to generate hot_feed packets.

2. Informs xmservd of the frequency with which it is required to check if exceptions or SNMP traps
should be generated. This is only done if it is specified for the hotset that exceptions and/or
SNMP traps should be generated.

3. Tells the xmservd to start sending data_feed packets and/or start checking for exceptions or traps.

Parameters
rhandleMust be an RSiHandle, which was previously initialized by the RSiOpen (“RSiOpen Subroutine”
on page 67) subroutine.

hotsetMust be a pointer to a structure of type struc SpmiHotSet, which was previously returned by a
successful RSiCreateHot (“RSiCreateHotSet Subroutine” on page 46) subroutine call.

msecsThe number of milliseconds between the sending of hot_feed packets and/or the number of
milliseconds between checks for if exceptions or SNMP traps should be generated. This number is
rounded to a multiple of min_remote_int milliseconds by the xmservd daemon on the remote host. This
minimum interval can be modified through the -i command line interval to xmservd.

Return Values
If successful, the subroutine returns zero; otherwise it returns -1 and an error text may be placed in the
external character array RSiEMsg.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see:

v “RSiCreateHotSet Subroutine” on page 46

v “RSiOpen Subroutine” on page 67

v “RSiChangeHotFeed Subroutine” on page 44

v “RSiStopHotFeed Subroutine” on page 76.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 73

../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTSET
../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES

RSiStatGetPath Subroutine

Purpose
Finds the full path name of a statistic identified by a SpmiStatVals pointer.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

char *RSiStatGetPath(rhandle, svp)
RSiHandle rhandle;
struct SpmiStatVals *svp;

Description
The RSiStatGetPath subroutine performs the following:

1. Validates that the SpmiStatVals statistic identified by the second argument does exist.

2. Returns a pointer to a character array containing the full value path name of the statistic.

The memory area pointed to by the returned pointer is freed when the RSiStatGetPath subroutine call is
repeated. For each invocation of the subroutine, a new memory area is allocated and its address returned.

If the calling program needs the returned character string after issuing the RSiStatGetPath subroutine call,
the program must copy the returned string to locally allocated memory before reissuing the subroutine call.

Parameters
rhandleMust be an RSiHandle, previously initialized by the RSiOpen (“RSiOpen Subroutine” on
page 67) subroutine.

svpMust be a handle of type struct SpmiStatVals as returned by a successful RSiPathAddSetStat
(“RSiPathAddSetStat Subroutine” on page 69) subroutine call.

Return Values
If successful, the RSiStatGetPath subroutine returns a pointer to a character array containing the full path
name of the statistic. If unsuccessful, the subroutine returns a NULL value and an error text may be
placed in the external character array RSiEMsg.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

74 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATVALS
../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see:

v “RSiOpen Subroutine” on page 67

v “RSiPathAddSetStat Subroutine” on page 69.

RSiStopFeed Subroutine

Purpose
Tells xmservd to stop sending data feeds for a statset.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

int RSiStopFeed(rhandle, statset, erase)
RSiHandle rhandle;
struct SpmiStatSet *statset;
boolean erase;

Description
The RSiStopFeed subroutine instructs the xmservd of a remote system to:

1. Stop sending data_feed packets for a given SpmiStatSet. If the daemon is not told to erase the
SpmiStatSet, feeding of data can be resumed by issuing the RSiStartFeed (“RSiStartFeed
Subroutine” on page 71) subroutine call for the SpmiStatSet.

2. Optionally tells the daemon and the API library subroutines to erase all their information about the
SpmiStatSet. Subsequent references to the erased SpmiStatSet are not valid.

Parameters
rhandleMust point to a structure of type RSiHandle, which was previously initialized by the RSiOpen
(“RSiOpen Subroutine” on page 67) subroutine.

statsetMust be a pointer to a structure of type struct SpmiStatSet, which was previously returned by a
successful RSiCreateStatSet (“RSiCreateStatSet Subroutine” on page 47) subroutine call. Data feeding
must have been started for this SpmiStatSet via a previous RSiStartFeed (“RSiStartFeed Subroutine”
on page 71) subroutine call.

eraseIf this argument is set to true, the xmservd daemon on the remote host discards all information
about the named SpmiStatSet. Otherwise the daemon maintains its definition of the set of statistics.

Return Values
If successful, the subroutine returns zero, otherwise -1. A NULL error text is placed in the external
character array RSiEMsg regardless of the subroutine’s success or failure.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 75

../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATSET

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see:

v “RSiOpen Subroutine” on page 67

v “RSiStartFeed Subroutine” on page 71.

RSiStopHotFeed Subroutine

Purpose
Tells xmservd to stop sending hot feeds for a hotset and to stop checking for exception and SNMP trap
generation.

Library
RSI Library (libSpmi.a)

Syntax
#include sys/Rsi.h

int RSiStopFeed(rhandle, hotset, erase)
RSiHandle rhandle;
struct SpmiHotSet *hotset;
boolean erase;

Description
The RSiStopHotFeed subroutine instructs the xmservd of a remote system to:

1. Stop sending hot_feed packets or check if exceptions or SNMP traps should be generated for a given
SpmiHotSet. If the daemon is not told to erase the SpmiHotSet, feeding of data can be resumed by
issuing the RSiStartHotFeed (“RSiStartHotFeed Subroutine” on page 72) subroutine call for the
SpmiHotSet.

2. Optionally tells the daemon and the API library subroutines to erase all their information about the
SpmiHotSet. Subsequent references to the erased SpmiHotSet are not valid.

76 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTSET

Parameters
rhandleMust point to a structure of type RSiHandle, which was previously initialized by the RSiOpen
(“RSiOpen Subroutine” on page 67) subroutine.

hotsetMust be a pointer to a structure of type struct SpmiHotSet, which was previously returned by a
successful RSiCreateHotSet (“RSiCreateHotSet Subroutine” on page 46) subroutine call. Data feeding
must have been started for this SpmiStatSet via a previous RSiStartHotFeed (“RSiStartHotFeed
Subroutine” on page 72) subroutine call.

eraseIf this argument is set to true, the xmservd daemon on the remote host discards all information
about the named SpmiHotSet. Otherwise the daemon maintains its definition of the set of statistics.

Return Values
If successful, the subroutine returns zero, otherwise -1. A NULL error text is placed in the external
character array RSiEMsg regardless of the subroutine’s success or failure.

Error Codes
All RSI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char RSiEMsg[];

v extern int RSiErrno;

If the subroutine returns without an error, the RSiErrno variable is set to RSiOkay and the RSiEMsg
character array is empty. If an error is detected, the RSiErrno variable returns an error code, as defined in
the enum RSiErrorType. RSi error codes are described in List of RSi Error Codes.

Implementation Specifics
This subroutine is part of the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Rsi.h Declares the subroutines, data structures, handles, and macros that an
application program can use to access the RSI.

Related Information
For related information, see:

v “RSiOpen Subroutine” on page 67

v “RSiStartHotFeed Subroutine” on page 72

v “RSiChangeHotFeed Subroutine” on page 44.

rsqrt Subroutine

Purpose
Computes the reciprocal of the square root of a number.

Libraries
IEEE Math Library (libm.a)

System V Math Library (libmsaa.a)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 77

../../perftool/prfusrgd/ch17body.htm#HDRRSIERRORCODES

Syntax
#include <math.h>

double rsqrt(double x)

Description
The rsqrt command computes the reciprocal of the square root of a number x; that is, 1.0 divided by the
square root of x (1.0/sqrt(x)). On some platforms, using the rsqrt subroutine is faster than computing 1.0 /
sqrt(x). The rsqrt subroutine uses the same rounding mode used by the calling program.

When using the libm.a library, the rsqrt subroutine responds to special values of x in the following ways:

v If x is NaN, then the rsqrt subroutine returns NaN. If x is a signaling Nan (NaNS), then the rsqrt
subroutine returns a quiet NaN and sets the VX and VXSNAN (signaling NaN invalid operation
exception) flags in the FPSCR (Floating-Point Status and Control register) to 1.

v If x is +/- 0.0, then the rsqrt subroutine returns +/- INF and sets the ZX (zero divide exception) flag in
the FPSCR to 1.

v If x is negative, then the rsqrt subroutine returns NaN, sets the errno global variable to EDOM, and
sets the VX and VXSQRT (square root of negative number invalid operation exception) flags in the
FPSCR to 1.

When using the libmsaa.a library, the rsqrt subroutine responds to special values of x in the following
ways:

v If x is +/- 0.0, then the rsqrt subroutine returns +/-HUGE_VAL and sets the errno global variable to
EDOM. The subroutine invokes the matherr subroutine, which prints a message indicating a singularity
error to standard error output.

v If x is negative, then the rsqrt subroutine returns 0.0 and sets the errno global variable to EDOM. The
subroutine invokes the matherr subroutine, which prints a message indicating a domain error to
standard error output.

When compiled with libmsaa.a, a program can use the matherr subroutine to change these error-handling
procedures.

Parameter

x Specifies a double-precision floating-point value.

Return Values
Upon successful completion, the rsqrt subroutine returns the reciprocal of the square root of x.

1.0 If x is 1.0.
+0.0 If x is +INF.

Error Codes
When using either the libm.a or libmsaa.a library, the rsqrt subroutine may return the following error
code:

EDOM The value of x is negative.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

78 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/matherr.htm#HDRJQ4390SHAD

Related Information
The matherr subroutine, sqrt or cbrt (“sqrt, sqrtl, or cbrt Subroutine” on page 211) subroutine.

rstat Subroutines

Purpose
Gets performance data from remote kernels.

Library
(librpcsvc.a)

Syntax
#include <rpcsvc/rstat.h>

rstat (host, statp)
char *host;
struct statstime *statp;

Description
The rstat subroutine gathers statistics from remote kernels. These statistics are available on items such as
paging, swapping and CPU utilization.

Parameters

host Specifies the name of the machine going to be contacted to obtain statistics found in the statp parameter.
statp Contains statistics from host.

Return Values
If successful, the rstat subroutine fills in the statstime for host and returns a value of 0.

Implementation Specifics
These subroutines are part of the Base Operating System (BOS) Runtime.

Files

/usr/include/rpcsvc/rstat.x

Related Information
The rup command.

The rstatd daemon

_safe_fetch Subroutine

Purpose
Reads the value of a single word variable protected by a lock.

Library
Standard C library (libc.a)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 79

../../libs/basetrf1/matherr.htm#HDRJQ4390SHAD
../../cmds/aixcmds4/rup.htm#HDRA131X923FC
../../cmds/aixcmds4/rstatd.htm#HDRPFB280MART

Syntax
#include <sys/atomic_op.h>

int _safe_fetch (word_addr)
atomic_p word_addr;

Parameter

word_addr Specifies the address of the single word variable.

Description
The _safe_fetch subroutine safely reads and returns a single word value that is protected by a lock. This
subroutine is used to read protected data before releasing the lock word with the _clear_lock subroutine.
If _safe_fetch is not used, instructions that access data just before a lock release could actually before
performed after the lock release.

Note: The word variable must be aligned on a full word boundary.

Return Values
This subroutine returns the value of the single word variable.

Implementation Specifics
The _safe_fetch subroutine is part of Base Operating System (BOS) Runtime.

Note that the _safe_fetch subroutine is intended for use only with the _check_lock and _clear_lock
subroutines.

Related Information
The _check_lock subroutine, _clear_lock subroutine.

scandir or alphasort Subroutine

Purpose
Scans or sorts directory contents.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/dir.h>

int scandir(DirectoryName,NameList,Select,Compare)
char * DirectoryName;
struct dirent * (* NameList []);
int (* Select) (struct dirent *);
int (* Compare)(void *, void *);

int alphasort (Directory1,Directory2)
void *Directory1, *Directory2;

80 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/_check_lock.htm#HDRO9CRJ2B6KEN
../../libs/basetrf1/_clear_lock.htm#HDRS8CRJ395KEN

Description
The scandir subroutine reads the directory pointed to by the DirectoryName parameter, and then uses the
malloc subroutine to create an array of pointers to directory entries. The scandir subroutine returns the
number of entries in the array and, through the NameList parameter, a pointer to the array.

The Select parameter points to a user-supplied subroutine that is called by the scandir subroutine to
select which entries to include in the array. The selection routine is passed a pointer to a directory entry
and should return a nonzero value for a directory entry that is included in the array. If the Select parameter
is a null value, all directory entries are included.

The Compare parameter points to a user-supplied subroutine. This routine is passed to the qsort
subroutine to sort the completed array. If the Compare parameter is a null value, the array is not sorted.
The alphasort subroutine provides comparison functions for sorting alphabetically.

The memory allocated to the array can be deallocated by freeing each pointer in the array, and the array
itself, with the free subroutine.

The alphasort subroutine treats Directory1 and Directory2 as pointers to dirent pointers and alphabetically
compares them. This subroutine can be passed as the Compare parameter to either the scandir
subroutine or the qsort subroutine, or a user-supplied subroutine can be used.

Parameters

DirectoryName Points to the directory name.
NameList Points to the array of pointers to directory entries.
Select Points to a user-supplied subroutine that is called by the scandir

subroutine to select which entries to include in the array.
Compare Points to a user-supplied subroutine that sorts the completed array.
Directory1, Directory2 Point to dirent structures.

Return Values
The scandir subroutine returns the value -1 if the directory cannot be opened for reading or if the malloc
subroutine cannot allocate enough memory to hold all the data structures. If successful, the scandir
subroutine returns the number of entries found.

The alphasort subroutine returns the following values:

Less than 0 The dirent structure pointed to by the Directory1 parameter is lexically less than the
dirent structure pointed to by the Directory2 parameter.

0 The dirent structures pointed to by the Directory1 parameter and the Directory2
parameter are equal.

Greater than 0 The dirent structure pointed to by the Directory1 parameter is lexically greater than the
dirent structure pointed to by the Directory2 parameter.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The malloc, free, realloc, calloc, mallopt, mallinfo, or alloca subroutine, opendir, readdir, telldir,
seekdir, rewinddir, or closedir subroutine, qsort (“qsort Subroutine” on page 1) subroutine.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 81

../../libs/basetrf1/malloc.htm#HDRA174921E
../../libs/basetrf1/opendir.htm#HDRA0909AF7
../../libs/basetrf1/opendir.htm#HDRA0909AF7
../../aixprggd/genprogc/file_sys_dir.htm#HDRFVOWF292JUDY

scanf, fscanf, sscanf, or wsscanf Subroutine

Purpose

Converts formatted input.

Library

Standard C Library (libc.a)

or (libc128.a)

Syntax
#include <stdio.h>

int scanf (Format [, Pointer, ...])
const char *Format;

int fscanf (Stream, Format [, Pointer, ...])
FILE * Stream;
const char *Format;

int sscanf (String, Format [, Pointer, ...])
const char * String, *Format;

int wsscanf (wcs, Format [, Pointer, ...])
const wchar_t * wcs
const char *Format;

Description
The scanf, fscanf, sscanf, and wsscanf subroutines read character data, interpret it according to a
format, and store the converted results into specified memory locations. If the subroutine receives
insufficient arguments for the format, the results are unreliable. If the format is exhausted while arguments
remain, the subroutine evaluates the excess arguments but otherwise ignores them.

These subroutines read their input from the following sources:

scanf Reads from standard input (stdin).
fscanf Reads from the Stream parameter.
sscanf Reads from the character string specified by the String parameter.
wsscanf Reads from the wide character string specified by the wcs parameter.

The scanf, fscanf, sscanf, and wsscanf subroutines can detect a language-dependent radix character,
defined in the program’s locale (LC_NUMERIC), in the input string. In the C locale, or in a locale that does
not define the radix character, the default radix character is a full stop . (period).

Parameters

wcs Specifies the wide-character string to be read.
Stream Specifies the input stream.
String Specifies input to be read.
Pointer Specifies where to store the interpreted data.

82 Technical Reference, Volume 2: Base Operating System and Extensions

Format Contains conversion specifications used to interpret the input. If there are insufficient arguments for the
Format parameter, the results are unreliable. If the Format parameter is exhausted while arguments remain,
the excess arguments are evaluated as always but are otherwise ignored.

The Format parameter can contain the following:

v Space characters (blank, tab, new-line, vertical-tab, or form-feed characters) that, except in the following
two cases, read the input up to the next nonwhite space character. Unless a match in the control string
exists, trailing white space (including a new-line character) is not read.

v Any character except a % (percent sign), which must match the next character of the input stream.

v A conversion specification that directs the conversion of the next input field. The conversion specification
consists of the following:

– The % (percent sign) or the character sequence %n$.

Note: The %n$ character sequence is an X/Open numbered argument specifier. Guidelines for use
of the %n% specifier are:

- The value of n in %n$ must be a decimal number without leading 0’s and must be in the
range from 1 to the NL_ARGMAX value, inclusive. See the limits.h file for more
information about the NL_ARGMAX value. Using leading 0’s (octal numbers) or a larger n
value can have unpredictable results.

- Mixing numbered and unnumbered argument specifications in a format string can have
unpredictable results. The only exceptions are %% (two percent signs) and %* (percent
sign, asterisk), which can be mixed with the %n$ form.

- Referencing numbered arguments in the argument list from the format string more than
once can have unpredictable results.

– The optional assignment-suppression character * (asterisk).

– An optional decimal integer that specifies the maximum field width.

– An optional character that sets the size of the receiving variable for some flags. Use the following
optional characters:

l Long integer rather than an integer when preceding the d, i, or n conversion codes; unsigned
long integer rather than unsigned integer when preceding the o, u, or x conversion codes;
double rather than float when preceding the e, f, or g conversion codes.

ll Long long integer rather than an integer when preceding the d, i, or n conversion codes;
unsigned long long integer rather than unsigned integer when preceding the o, u, or x
conversion codes.

L A long double rather than a float, when preceding the e, f, or g conversion codes; long integer
rather than an integer when preceding the d, i, or n conversion codes; unsigned long integer
rather than unsigned integer when preceding the o, u, or x conversion codes.

h Short integer rather than an integer when preceding the d, i, and n conversion codes;
unsigned short integer (half integer) rather than an unsigned integer when preceding the o, u,
or x conversion codes.

– A conversion code that specifies the type of conversion to be applied.

The conversion specification takes the form:

%[*][width][size]convcode

Format (Continued)

The results from the conversion are placed in the memory location designated by the Pointer parameter
unless you specify assignment suppression with an * (asterisk). Assignment suppression provides a way to
describe an input field to be skipped. The input field is a string of nonwhite space characters. It extends to
the next inappropriate character or until the field width, if specified, is exhausted.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 83

../../files/aixfiles/limits.h.htm#HDRA139934DA

The conversion code indicates how to interpret the input field. The corresponding Pointer parameter must
be a restricted type. Do not specify the Pointer parameter for a suppressed field. You can use the following
conversion codes:

% Accepts a single % (percent sign) input at this point; no assignment or conversion is done. The
complete conversion specification should be %% (two percent signs).

d Accepts an optionally signed decimal integer with the same format as that expected for the subject
sequence of the strtol subroutine with a value of 10 for the base parameter. If no size modifier is
specified, the Pointer parameter should be a pointer to an integer.

i Accepts an optionally signed integer with the same format as that expected for the subject
sequence of the strtol subroutine with a value of 0 for the base parameter. If no size modifier is
specified, the Pointer parameter should be a pointer to an integer.

u Accepts an optionally signed decimal integer with the same format as that expected for the subject
sequence of the strtoul subroutine with a value of 10 for the base parameter. If no size modifier is
specified, the Pointer parameter should be a pointer to an unsigned integer.

o Accepts an optionally signed octal integer with the same format as that expected for the subject
sequence of the strtoul subroutine with a value of 8 for the base parameter. If no size modifier is
specified, the Pointer parameter should be a pointer to an unsigned integer.

x Accepts an optionally signed hexadecimal integer with the same format as that expected for the
subject sequence of the strtoul subroutine with a value of 16 for the base parameter. If no size
modifier is specified, the Pointer parameter should be a pointer to an integer.

e, f, or g
Accepts an optionally signed floating-point number with the same format as that expected for the
subject sequence of the strtod subroutine. The next field is converted accordingly and stored
through the corresponding parameter; if no size modifier is specified, this parameter should be a
pointer to a float. The input format for floating-point numbers is a string of digits, with some
optional characteristics:

v It can be a signed value.

v It can be an exponential value, containing a decimal rational number followed by an exponent
field, which consists of an E or an e followed by an (optionally signed) integer.

v It can be one of the special values INF, NaNQ, or NaNS. This value is translated into the
IEEE-754 value for infinity, quiet NaN, or signaling NaN, respectively.

p Matches an unsigned hexadecimal integer, the same as the %p conversion of the printf
subroutine. The corresponding parameter is a pointer to a void pointer. If the input item is a value
converted earlier during the same program execution, the resulting pointer compares equal to that
value; otherwise, the results of the %p conversion are unpredictable.

n Consumes no input. The corresponding parameter is a pointer to an integer into which the scanf,
fscanf, sscanf, or wsscanf subroutine writes the number of characters (including wide characters)
read from the input stream. The assignment count returned at the completion of this function is not
incremented.

s Accepts a sequence of nonwhite space characters (scanf, fscanf, and sscanf subroutines). The
wsscanf subroutine accepts a sequence of nonwhite-space wide-character codes; this sequence
is converted to a sequence of characters in the same manner as the wcstombs subroutine. The
Pointer parameter should be a pointer to the initial byte of a char, signed char, or unsigned char
array large enough to hold the sequence and a terminating null-character code, which is
automatically added.

S Accepts a sequence of nonwhite space characters (scanf, fscanf, and sscanf subroutines). This
sequence is converted to a sequence of wide-character codes in the same manner as the
mbstowcs subroutine. The wsscanf subroutine accepts a sequence of nonwhite-space wide
character codes. The Pointer parameter should be a pointer to the initial wide character code of an

84 Technical Reference, Volume 2: Base Operating System and Extensions

array large enough to accept the sequence and a terminating null wide character code, which is
automatically added. If the field width is specified, it denotes the maximum number of characters
to accept.

c Accepts a sequence of bytes of the number specified by the field width (scanf, fscanf and sscanf
subroutines); if no field width is specified, 1 is the default. The wsscanf subroutine accepts a
sequence of wide-character codes of the number specified by the field width; if no field width is
specified, 1 is the default. The sequence is converted to a sequence of characters in the same
manner as the wcstombs subroutine. The Pointer parameter should be a pointer to the initial
bytes of an array large enough to hold the sequence; no null byte is added. The normal skip over
white space does not occur.

C Accepts a sequence of characters of the number specified by the field width (scanf, fscanf, and
sscanf subroutines); if no field width is specified, 1 is the default. The sequence is converted to a
sequence of wide character codes in the same manner as the mbstowcs subroutine. The
wsscanf subroutine accepts a sequence of wide-character codes of the number specified by the
field width; if no field width is specified, 1 is the default. The Pointer parameter should be a pointer
to the initial wide character code of an array large enough to hold the sequence; no null
wide-character code is added.

[scanset]
Accepts a nonempty sequence of bytes from a set of expected bytes specified by the scanset
variable (scanf, fscanf, and sscanf subroutines). The wsscanf subroutine accepts a nonempty
sequence of wide-character codes from a set of expected wide-character codes specified by the
scanset variable. The sequence is converted to a sequence of characters in the same manner as
the wcstombs subroutine. The Pointer parameter should be a pointer to the initial character of a
char, signed char, or unsigned char array large enough to hold the sequence and a terminating
null byte, which is automatically added. In the scanf, fscanf, and sscanf subroutines, the
conversion specification includes all subsequent bytes in the string specified by the Format
parameter, up to and including the] (right bracket). The bytes between the brackets comprise the
scanset variable, unless the byte after the [(left bracket) is a | (circumflex). In this case, the
scanset variable contains all bytes that do not appear in the scanlist between the | (circumflex)
and the] (right bracket). In the wsscanf subroutine, the characters between the brackets are first
converted to wide character codes in the same manner as the mbtowc subroutine. These wide
character codes are then used as described above in place of the bytes in the scanlist. If the
conversion specification begins with [] or [|], the right bracket is included in the scanlist and the
next right bracket is the matching right bracket that ends the conversion specification. You can
also:

v Represent a range of characters by the construct First-Last. Thus, you can express
[0123456789] as [0-9]. The First parameter must be lexically less than or equal to the Last
parameter or else the - (dash) stands for itself. The - also stands for itself whenever it is the first
or the last character in the scanset variable.

v Include the] (right bracket) as an element of the scanset variable if it is the first character of the
scanset. In this case it is not interpreted as the bracket that closes the scanset variable. If the
scanset variable is an exclusive scanset variable, the] is preceded by the | (circumflex) to
make the] an element of the scanset. The corresponding Pointer parameter should point to a
character array large enough to hold the data field and that ends with a null character (\0). The
\0 is added automatically.

A scanf conversion ends at the end-of-file (EOF character), the end of the control string, or when an input
character conflicts with the control string. If it ends with an input character conflict, the conflicting character
is not read from the input stream.

Unless a match in the control string exists, trailing white space (including a new-line character) is not read.

The success of literal matches and suppressed assignments is not directly determinable.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 85

The National Language Support (NLS) extensions to the scanf subroutines can handle a format string that
enables the system to process elements of the argument list in variable order. The normal conversion
character % is replaced by %n$, where n is a decimal number. Conversions are then applied to the
specified argument (that is, the nth argument), rather than to the next unused argument.

The first successful run of the fgetc, fgets, fread, getc, getchar, gets, scanf, or fscanf subroutine using
a stream that returns data not supplied by a prior call to the ungetc (“ungetc or ungetwc Subroutine” on
page 368) subroutine marks the st_atime field for update.

Return Values
These subroutines return the number of successfully matched and assigned input items. This number can
be 0 if an early conflict existed between an input character and the control string. If the input ends before
the first conflict or conversion, only EOF is returned. If a read error occurs, the error indicator for the
stream is set, EOF is returned, and the errno global variable is set to indicate the error.

Error Codes
The scanf, fscanf, sscanf, and wsscanf subroutines are unsuccessful if either the file specified by the
Stream, String, or wcs parameter is unbuffered or data needs to be read into the file’s buffer and one or
more of the following conditions is true:

EAGAIN The O_NONBLOCK flag is set for the file descriptor underlying the file specified by the Stream, String, or
wcs parameter, and the process would be delayed in the scanf, fscanf, sscanf, or wsscanf operation.

EBADF The file descriptor underlying the file specified by the Stream, String, or wcs parameter is not a valid file
descriptor open for reading.

EINTR The read operation was terminated due to receipt of a signal, and either no data was transferred or a
partial transfer was not reported.

Note: Depending upon which library routine the application binds to, this subroutine may return
EINTR. Refer to the signal (“sigaction, sigvec, or signal Subroutine” on page 135) subroutine
regarding SA_RESTART.

EIO The process is a member of a background process group attempting to perform a read from its
controlling terminal, and either the process is ignoring or blocking the SIGTTIN signal or the process
group has no parent process.

EINVAL The subroutine received insufficient arguments for the Format parameter.
EILSEQ A character sequence that is not valid was detected, or a wide-character code does not correspond to a

valid character.
ENOMEM Insufficient storage space is available.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The atof,atoff, strtod, or strtof subroutine, fread subroutine, getc, fgetc,getchar, or getw subroutine,
gets or fgets subroutine, getwc, fgetwc, or getwchar subroutine, mbstowcs subroutine, mbtowc
subroutine, printf, fprintf,sprintf, wsprintf, vprintf, vfprintf,vsprintf, or vwsprintf subroutine, setlocale
(“setlocale Subroutine” on page 107) subroutine, strtol, strtoul, atol, or atoi (“strtol, strtoul, strtoll, strtoull,
atol, or atoi Subroutine” on page 269) subroutine, ungetc (“ungetc or ungetwc Subroutine” on page 368)
subroutine, wcstombs (“wcstombs Subroutine” on page 405) subroutine.

Input and Output Handling Programmer’s Overview, National Language Support Overview for
Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

86 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/getc.htm#HDRA1429390
../../libs/basetrf1/gets.htm#HDRA0909D73
../../libs/basetrf1/fread.htm#HDRA108917A9
../../libs/basetrf1/getc.htm#HDRA1429390
../../libs/basetrf1/getc.htm#HDRA1429390
../../libs/basetrf1/gets.htm#HDRA0909D73
../../libs/basetrf1/atof.htm#HDRA1299EC9
../../libs/basetrf1/fread.htm#HDRA108917A9
../../libs/basetrf1/getc.htm#HDRA1429390
../../libs/basetrf1/gets.htm#HDRA0909D73
../../libs/basetrf1/getwc.htm#HDRA177966E
../../libs/basetrf1/mbstowcs.htm#HDRA152947F
../../libs/basetrf1/mbtowc.htm#HDRA15098DB
../../libs/basetrf1/printf.htm#HDRA8ZED0GACO
../../aixprggd/genprogc/io_handling.htm#HDRA9E740A1626CAND
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/nls.htm#HDRA2919F7

sched_yield Subroutine

Purpose
Yield processor.

Library
Standard Library (libc.a)

Syntax
#include <sched.h>

int sched_yield (void) ;

Description
The sched_yield function forces the running thread to relinquish the processor until it again becomes the
head of its thread list. It takes no arguments.

Return Values
The sched_yield function returns 0 if it completes successfully, or it returns a value of -1 and sets errno to
indicate the error.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

select Subroutine

Purpose
Checks the I/O status of multiple file descriptors and message queues.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>
#include <sys/select.h>
#include <sys/types.h>

int select (Nfdsmsgs, ReadList, WriteList, ExceptList, TimeOut)
int Nfdsmsgs;
struct sellist * ReadList, *WriteList, *ExceptList;
struct timeval * TimeOut;

Description
The select subroutine checks the specified file descriptors and message queues to see if they are ready
for reading (receiving) or writing (sending), or if they have an exceptional condition pending.

When selecting on an unconnected stream socket, select returns when the connection is made. If
selecting on a connected stream socket, then the ready message indicates that data can be sent or
received. Files descriptors of regular files always select true for read, write, and exception conditions. For

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 87

more information on sockets, refer to ″Understanding Socket Connections″ and the related ″Checking for
Pending Connections Example Program″ dealing with pending connections in AIX 5L Version 5.1
Communications Programming Concepts.

Parameters

Nfdsmsgs Specifies the number of file descriptors and the number of message queues to check. The
low-order 16 bits give the length of a bit mask that specifies which file descriptors to check;
the high-order 16 bits give the size of an array that contains message queue identifiers. If
either half of the Nfdsmsgs parameter is equal to a value of 0, the corresponding bit mask or
array is assumed not to be present.

TimeOut Specifies either a null pointer or a pointer to a timeval structure that specifies the maximum
length of time to wait for at least one of the selection criteria to be met. The timeval structure
is defined in the /usr/include/sys/time.h file and it contains the following members:

struct timeval {
int tv_sec; /* seconds */
int tv_usec; /* microseconds */
};

The number of microseconds specified in TimeOut.tv_usec, a value from 0 to 999999, is set
to one millisecond by Version 3 of the operating system if the process does not have root
user authority and the value is less than one millisecond.

If the TimeOut parameter is a null pointer, the select subroutine waits indefinitely, until at
least one of the selection criteria is met. If the TimeOut parameter points to a timeval
structure that contains zeros, the file and message queue status is polled, and the select
subroutine returns immediately.

88 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/progcomc/skt_create.htm#HDRA58C015446
../../aixprggd/progcomc/skt_check_ex.htm#HDRN151190CHER
../../aixprggd/progcomc/skt_check_ex.htm#HDRN151190CHER

ReadList, WriteList,
ExceptList

Specify what to check for reading, writing, and exceptions, respectively. Together, they specify
the selection criteria. Each of these parameters points to a sellist structure, which can
specify both file descriptors and message queues. Your program must define the sellist
structure in the following form:

struct sellist
{
int fdsmask[F]; /* file descriptor bit mask */
int msgids[M]; /* message queue identifiers */
};

The fdsmask array is treated as a bit string in which each bit corresponds to a file descriptor.
File descriptor n is represented by the bit(1 << (n mod bits)) in the array element
fdsmask[n / BITS(int)]. (The BITS macro is defined in the values.h file.) Each bit that is set
to 1 indicates that the status of the corresponding file descriptor is to be checked.

Note: The low-order 16 bits of the Nfdsmsgs parameter specify the number of bits (not
elements) in the fdsmask array that make up the file descriptor mask. If only part of the
last int is included in the mask, the appropriate number of low-order bits are used, and
the remaining high-order bits are ignored. If you set the low-order 16 bits of the
Nfdsmsgs parameter to 0, you must not define an fdsmask array in the sellist structure.

Each int of the msgids array specifies a message queue identifier whose status is to be
checked. Elements with a value of -1 are ignored. The high-order 16 bits of the Nfdsmsgs
parameter specify the number of elements in the msgids array. If you set the high-order 16
bits of the Nfdsmsgs parameter to 0, you must not define a msgids array in the sellist
structure.

Note: The arrays specified by the ReadList, WriteList, and ExceptList parameters are
the same size because each of these parameters points to the same sellist structure
type. However, you need not specify the same number of file descriptors or message
queues in each. Set the file descriptor bits that are not of interest to 0, and set the
extra elements of the msgids array to -1.

You can use the SELLIST macro defined in the sys/select.h file to define the sellist
structure. The format of this macro is:

SELLIST(f, m) declarator . . . ;

where f specifies the size of the fdsmask array, m specifies the size of the msgids array, and
each declarator is the name of a variable to be declared as having this type.

Return Values
Upon successful completion, the select subroutine returns a value that indicates the total number of file
descriptors and message queues that satisfy the selection criteria. The fdsmask bit masks are modified so
that bits set to 1 indicate file descriptors that meet the criteria. The msgids arrays are altered so that
message queue identifiers that do not meet the criteria are replaced with a value of -1.

The return value is similar to the Nfdsmsgs parameter in that the low-order 16 bits give the number of file
descriptors, and the high-order 16 bits give the number of message queue identifiers. These values
indicate the sum total that meet each of the read, write, and exception criteria. Therefore, the same file
descriptor or message queue can be counted up to three times. You can use the NFDS and NMSGS
macros found in the sys/select.h file to separate out these two values from the return value. For example,
if rc contains the value returned from the select subroutine, NFDS(rc) is the number of files selected, and
NMSGS(rc) is the number of message queues selected.

If the time limit specified by the TimeOut parameter expires, the select subroutine returns a value of 0.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 89

If a connection-based socket is specified in the Readlist parameter and the connection disconnects, the
select subroutine returns successfully, but the recv subroutine on the socket will return a value of 0 to
indicate the socket connection has been closed.

If the select subroutine is unsuccessful, it returns a value of -1 and sets the global variable errno to
indicate the error. In this case, the contents of the structures pointed to by the ReadList, WriteList, and
ExceptList parameters are unpredictable.

Error Codes
The select subroutine is unsuccessful if one of the following are true:

EBADF An invalid file descriptor or message queue identifier was specified.
EAGAIN Allocation of internal data structures was unsuccessful.
EINTR A signal was caught during the select subroutine and the signal handler was installed with an indication

that subroutines are not to be restarted.
EINVAL One of the parameters to the select subroutine contained a value that is not valid.
EFAULT The ReadList, WriteList, ExceptList, or TimeOut parameter points to a location outside of the address

space of the process.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

The select subroutine is also supported for compatibility with previous releases of this operating system
and with BSD systems.

Related Information
The poll subroutine.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

semctl Subroutine

Purpose
Controls semaphore operations.

Library
Standard C Library (libc.a)

Syntax
#include <sys/sem.h>

int semctl (SemaphoreID, SemaphoreNumber, Command, arg)
OR
int semctl (SemaphoreID, SemaphoreNumber, Command)

int SemaphoreID;
int SemaphoreNumber;
int Command;
union semun {

int val;

90 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/commtrf2/recv.htm#HDRA213X95E9
../../libs/basetrf1/poll.htm#HDRA1289B55
../../aixprggd/genprogc/io_handling.htm#HDRA9E740A1626CAND

struct semid_ds *buf;
unsigned short *array;

} arg;

If the fourth argument is required for the operation requested, it must be of type union semun and explicitly
declared as shown above.

Description
The semctl subroutine performs a variety of semaphore control operations as specified by the Command
parameter.

The following limits apply to semaphores:

v Maximum number of semaphore IDs is 4096 for operating system releases before AIX 4.3.2 and
131072 for AIX 4.3.2 and following.

v Maximum number of semaphores per ID is 65,535.

v Maximum number of operations per call by the semop (“semop Subroutine” on page 96) subroutine is
1024.

v Maximum number of undo entries per procedure is 1024.

v Maximum semaphore value is 32,767.

v Maximum adjust-on-exit value is 16,384.

Parameters
SemaphoreID

Specifies the semaphore identifier.

SemaphoreNumber
Specifies the semaphore number.

arg.val Specifies the value for the semaphore for the SETVAL command.

arg.buf
Specifies the buffer for status information for the IPC_STAT and IPC_SET commands.

arg.array
Specifies the values for all the semaphores in a set for the GETALL and SETALL commands.

Command
Specifies semaphore control operations.

The following Command parameter values are executed with respect to the semaphore specified
by the SemaphoreID and SemaphoreNumber parameters. These operations get and set the
values of a sem structure, which is defined in the sys/sem.h file.

GETVAL
Returns the semval value, if the current process has read permission.

SETVAL
Sets the semval value to the value specified by the arg.val parameter, if the current
process has write permission. When this Command parameter is successfully executed,
the semadj value corresponding to the specified semaphore is cleared in all processes.

GETPID
Returns the value of the sempid field, if the current process has read permission.

GETNCNT
Returns the value of the semncnt field, if the current process has read permission.

GETZCNT
Returns the value of the semzcnt field, if the current process has read permission.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 91

The following Command parameter values return and set every semval value in the set of
semaphores. These operations get and set the values of a sem structure, which is defined in the
sys/sem.h file.

GETALL
Stores semvals values into the array pointed to by the arg.array parameter, if the current
process has read permission.

SETALL
Sets semvals values according to the array pointed to by the arg.array parameter, if the
current process has write permission. When this Command parameter is successfully
executed, the semadj value corresponding to each specified semaphore is cleared in all
processes.

The following Commands parameter values get and set the values of a semid_ds structure,
defined in the sys/sem.h file. These operations get and set the values of a sem structure, which
is defined in the sys/sem.h file.

IPC_STAT
Obtains status information about the semaphore identified by the SemaphoreID parameter.
This information is stored in the area pointed to by the arg.buf parameter.

IPC_SET
Sets the owning user and group IDs, and the access permissions for the set of
semaphores associated with the SemaphoreID parameter. The IPC_SET operation uses
as input the values found in the arg.buf parameter structure.

IPC_SET sets the following fields:

sem_perm.uid User ID of the owner

sem_perm.gid Group ID of the owner

sem_perm.mode Permission bits only

sem_perm.cuid Creator’s user ID

IPC_SET can only be executed by a process that has root user authority or an effective
user ID equal to the value of the sem_perm.uid or sem_perm.cuid field in the data structure
associated with the SemaphoreID parameter.

IPC_RMID
Removes the semaphore identifier specified by the SemaphoreID parameter from the
system and destroys the set of semaphores and data structures associated with it. This
Command parameter can only be executed by a process that has root user authority or an
effective user ID equal to the value of the sem_perm.uid or sem_perm.cuid field in the data
structure associated with the SemaphoreID parameter.

Return Values
Upon successful completion, the value returned depends on the Command parameter as follows:

Command Return Value
GETVAL Returns the value of the semval field.
GETPID Returns the value of the sempid field.
GETNCNT Returns the value of the semncnt field.
GETZCNT Returns the value of the semzcnt field.
All Others Return a value of 0.

92 Technical Reference, Volume 2: Base Operating System and Extensions

If the semctl subroutine is unsuccessful, a value of -1 is returned and the global variable errno is set to
indicate the error.

Error Codes
The semctl subroutine is unsuccessful if any of the following is true:

EINVAL The SemaphoreID parameter is not a valid semaphore identifier.
EINVAL The SemaphoreNumber parameter is less than 0 or greater than or equal to the sem_nsems value.
EINVAL The Command parameter is not a valid command.
EACCES The calling process is denied permission for the specified operation.
ERANGE The Command parameter is equal to the SETVAL or SETALL value and the value to which semval

value is to be set is greater than the system-imposed maximum.
EPERM The Command parameter is equal to the IPC_RMID or IPC_SET value and the calling process does not

have root user authority or an effective user ID equal to the value of the sem_perm.uid or sem_perm.cuid
field in the data structure associated with the SemaphoreID parameter.

EFAULT The arg.buf or arg.array parameter points outside of the allocated address space of the process.
ENOMEM The system does not have enough memory to complete the subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The semget (“semget Subroutine”) subroutine, semop (“semop Subroutine” on page 96) subroutine.

semget Subroutine

Purpose
Gets a set of semaphores.

Library
Standard C Library (libc.a)

Syntax
#include <sys/sem.h>

int semget (Key, NumberOfSemaphores, SemaphoreFlag)
key_t Key;
int NumberOfSemaphores, SemaphoreFlag;

Description
The semget subroutine returns the semaphore identifier associated with the Key parameter value.

The semget subroutine creates a data structure for the semaphore ID and an array containing the
NumberOfSemaphores parameter semaphores if one of the following conditions is true:

v The Key parameter is equal to the IPC_PRIVATE operation.

v The Key parameter does not already have a semaphore identifier associated with it, and the
IPC_CREAT value is set.

Upon creation, the data structure associated with the new semaphore identifier is initialized as follows:

v The sem_perm.cuid and sem_perm.uid fields are set equal to the effective user ID of the calling process.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 93

v The sem_perm.cgid and sem_perm.gid fields are set equal to the effective group ID of the calling
process.

v The low-order 9 bits of the sem_perm.mode field are set equal to the low-order 9 bits of the
SemaphoreFlag parameter.

v The sem_nsems field is set equal to the value of the NumberOfSemaphores parameter.

v The sem_otime field is set equal to 0 and the sem_ctime field is set equal to the current time.

The data structure associated with each semaphore in the set is not initialized. The semctl (“semctl
Subroutine” on page 90) subroutine (with the Command parameter values SETVAL or SETALL) can be
used to initialize each semaphore.

If the Key parameter value is not IPC_PRIVATE, the IPC_EXCL value is not set, and a semaphore
identifier already exists for the specified Key parameter, the value of the NumberOfSemaphores parameter
specifies the number of semaphores that the current process needs.

If the NumberOfSemaphores parameter has a value of 0, any number of semaphores is acceptable. If the
NumberOfSemaphores parameter is not 0, the semget subroutine is unsuccessful if the set contains fewer
than the value of the NumberOfSemaphores parameter.

The following limits apply to semaphores:

v Maximum number of semaphore IDs is 4096 for operating system releases before AIX 4.3.2 and
131072 for AIX 4.3.2 and following.

v Maximum number of semaphores per ID is 65,535.

v Maximum number of operations per call by the semop subroutine is 1024.

v Maximum number of undo entries per procedure is 1024.

v Maximum semaphore value is 32,767.

v Maximum adjust-on-exit value is 16,384.

Parameters

Key Specifies either the IPC_PRIVATE value or an IPC key constructed by the ftok
subroutine (or a similar algorithm).

NumberOfSemaphores Specifies the number of semaphores in the set.

94 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/ftok.htm#HDRA09099AB

SemaphoreFlag Constructed by logically ORing one or more of the following values:

IPC_CREAT
Creates the data structure if it does not already exist.

IPC_EXCL
Causes the semget subroutine to fail if the IPC_CREAT value is also set
and the data structure already exists.

S_IRUSR
Permits the process that owns the data structure to read it.

S_IWUSR
Permits the process that owns the data structure to modify it.

S_IRGRP
Permits the group associated with the data structure to read it.

S_IWGRP
Permits the group associated with the data structure to modify it.

S_IROTH
Permits others to read the data structure.

S_IWOTH
Permits others to modify the data structure.

Values that begin with the S_I prefix are defined in the sys/mode.h file and are a
subset of the access permissions that apply to files.

Return Values
Upon successful completion, the semget subroutine returns a semaphore identifier. Otherwise, a value of
-1 is returned and the errno global variable is set to indicate the error.

Error Codes
The semget subroutine is unsuccessful if one or more of the following conditions is true:

EACCES A semaphore identifier exists for the Key parameter but operation permission, as specified by the
low-order 9 bits of the SemaphoreFlag parameter, is not granted.

EINVAL A semaphore identifier does not exist and the NumberOfSemaphores parameter is less than or equal to a
value of 0, or greater than the system-imposed value.

EINVAL A semaphore identifier exists for the Key parameter, but the number of semaphores in the set associated
with it is less than the value of the NumberOfSemaphores parameter and the NumberOfSemaphores
parameter is not equal to 0.

ENOENT A semaphore identifier does not exist for the Key parameter and the IPC_CREAT value is not set.
ENOSPC Creating a semaphore identifier would exceed the maximum number of identifiers allowed systemwide.
EEXIST A semaphore identifier exists for the Key parameter, but both the IPC_CREAT and IPC_EXCL values are

set.
ENOMEM There is not enough memory to complete the operation.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ftok subroutine, semctl (“semctl Subroutine” on page 90) subroutine, semop (“semop Subroutine” on
page 96) subroutine.

The mode.h file.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 95

../../files/aixfiles/mode.h.htm#HDRLC42230CLM
../../libs/basetrf1/ftok.htm#HDRA09099AB
../../files/aixfiles/mode.h.htm#HDRLC42230CLM

semop Subroutine

Purpose
Performs semaphore operations.

Library
Standard C Library (libc.a)

Syntax
#include <sys/sem.h>

int semop (SemaphoreID, SemaphoreOperations, NumberOfSemaphoreOperations)
int SemaphoreID;
struct sembuf * SemaphoreOperations;
size_t NumberOfSemaphoreOperations;

Description
The semop subroutine performs operations on the set of semaphores associated with the semaphore
identifier specified by the SemaphoreID parameter. The sembuf structure is defined in the
usr/include/sys/sem.h file.

Each sembuf structure specified by the SemaphoreOperations parameter includes the following fields:

sem_num Semaphore number
sem_op Semaphore operation
sem_flg Operation flags

Each semaphore operation specified by the sem_op field is performed on the semaphore specified by the
SemaphoreID parameter and the sem_num field. The sem_op field specifies one of three semaphore
operations.

1. If the sem_op field is a negative integer and the calling process has permission to alter, one of the
following conditions occurs:

v If the semval variable (see the /usr/include/sys/sem.h file) is greater than or equal to the absolute
value of the sem_op field, the absolute value of the sem_op field is subtracted from the semval
variable. In addition, if the SEM_UNDO flag is set in the sem_flg field, the absolute value of the
sem_op field is added to the semadj value of the calling process for the specified semaphore.

v If the semval variable is less than the absolute value of the sem_op field and the IPC_NOWAIT
value is set in the sem_flg field, the semop subroutine returns immediately.

v If the semval variable is less than the absolute value of the sem_op field and the IPC_NOWAIT
value is not set in the sem_flg field, the semop subroutine increments the semncnt field associated
with the specified semaphore and suspends the calling process until one of the following conditions
occurs:

– The value of the semval variable becomes greater than or equal to the absolute value of the
sem_op field. The value of the semncnt field associated with the specified semaphore is then
decremented, and the absolute value of the sem_op field is subtracted from the semval variable.
In addition, if the SEM_UNDO flag is set in the sem_flg field, the absolute value of the sem_op
field is added to the semadj value of the calling process for the specified semaphore.

– The SemaphoreID parameter for which the calling process is awaiting action is removed from the
system. When this occurs, the errno global variable is set to the EIDRM flag and a value of -1 is
returned.

96 Technical Reference, Volume 2: Base Operating System and Extensions

../../files/aixfiles/sem.h.htm#HDRA298911CB

– The calling process received a signal that is to be caught. When this occurs, the semop
subroutine decrements the value of the semncnt field associated with the specified semaphore.
When the semzcnt field is decremented, the calling process resumes as prescribed by the
sigaction (“sigaction, sigvec, or signal Subroutine” on page 135) subroutine.

2. If the sem_op field is a positive integer and the calling process has alter permission, the value of the
sem_op field is added to the semval variable. In addition, if the SEM_UNDO flag is set in the sem_flg
field, the value of the sem_op field is subtracted from the calling process’s semadj value for the
specified semaphore.

3. If the value of the sem_op field is 0 and the calling process has read permission, one of the following
occurs:

v If the semval variable is 0, the semop subroutine returns immediately.

v If the semval variable is not equal to 0 and IPC_NOWAIT value is set in the sem_flg field, the
semop subroutine returns immediately.

v If the semval variable is not equal to 0 and the IPC_NOWAIT value is set in the sem_flg field, the
semop subroutine increments the semzcnt field associated with the specified semaphore and
suspends execution of the calling process until one of the following occurs:

– The value of the semval variable becomes 0. When this occurs, the value of the semzcnt field
associated with the specified semaphore is decremented.

– The SemaphoreID parameter for which the calling process is awaiting action is removed from the
system. If this occurs, the errno global variable is set to the EIDRM error code and a value of -1
is returned.

– The calling process received a signal that is to be caught. When this occurs, the semop
subroutine decrements the value of the semzcnt field associated with the specified semaphore.
When the semzcnt field is decremented, the calling process resumes execution as prescribed by
the sigaction subroutine.

The following limits apply to semaphores:

v Maximum number of semaphore IDs is 4096 for operating system releases before AIX 4.3.2 and
131072 for AIX 4.3.2 and following.

v Maximum number of semaphores per ID is 65,535.

v Maximum number of operations per call by the semop subroutine is 1024.

v Maximum number of undo entries per procedure is 1024.

v Maximum capacity of a semaphore value is 32,767 bytes.

v Maximum adjust-on-exit value is 16,384 bytes.

Parameters

SemaphoreID Specifies the semaphore identifier.
NumberOfSemaphoreOperations Specifies the number of structures in the array.
SemaphoreOperations Points to an array of structures, each of which specifies a

semaphore operation.

Return Values
Upon successful completion, the semop subroutine returns a value of 0. Also, the SemaphoreID
parameter value for each semaphore that is operated upon is set to the process ID of the calling process.

If the semop subroutine is unsuccessful, a value of -1 is returned and the errno global variable is set to
indicate the error. If the SEM_ORDER flag was set in the sem_flg field for the first semaphore operation in
the SemaphoreOperations array, the SEM_ERR value is set in the sem_flg field for the unsuccessful
operation.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 97

If the SemaphoreID parameter for which the calling process is awaiting action is removed from the system,
the errno global variable is set to the EIDRM error code and a value of -1 is returned.

Error Codes
The semop subroutine is unsuccessful if one or more of the following are true for any of the semaphore
operations specified by the SemaphoreOperations parameter. If the operations were performed individually,
the discussion of the SEM_ORDER flag provides more information about error situations.

EINVAL The SemaphoreID parameter is not a valid semaphore identifier.
EFBIG The sem_num value is less than 0 or it is greater than or equal to the number of semaphores in the set

associated with the SemaphoreID parameter.
E2BIG The NumberOfSemaphoreOperations parameter is greater than the system-imposed maximum.
EACCES The calling process is denied permission for the specified operation.
EAGAIN The operation would result in suspension of the calling process, but the IPC_NOWAIT value is set in the

sem_flg field.
ENOSPC The limit on the number of individual processes requesting a SEM_UNDO flag would be exceeded.
EINVAL The number of individual semaphores for which the calling process requests a SEM_UNDO flag would

exceed the limit.
ERANGE An operation would cause a semval value to overflow the system-imposed limit.
ERANGE An operation would cause a semadj value to overflow the system-imposed limit.
EFAULT The SemaphoreOperations parameter points outside of the address space of the process.
EINTR A signal interrupted the semop subroutine.
EIDRM The semaphore identifier SemaphoreID parameter has been removed from the system.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The exec subroutine, exit subroutine, fork subroutine, semctl (“semctl Subroutine” on page 90)
subroutine, semget (“semget Subroutine” on page 93) subroutine, sigaction (“sigaction, sigvec, or signal
Subroutine” on page 135) subroutine.

setacldb or endacldb Subroutine

Purpose
Opens and closes the SMIT ACL database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int setacldb(Mode)
int Mode;

int endacldb;

Description
These functions may be used to open and close access to the user SMIT ACL database. Programs that
call the getusraclattr or getgrpaclattr subroutines should call the setacldb subroutine to open the
database and the endacldb subroutine to close the database.

98 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/exec.htm#HDRPDR80GACO
../../libs/basetrf1/exit.htm#HDRA087913E7
../../libs/basetrf1/fork.htm#HDRA4F011D

The setacldb subroutine opens the database in the specified mode, if it is not already open. The open
count is increased by 1.

The endacldb subroutine decreases the open count by 1 and closes the database when this count goes
to 0. Any uncommitted changed data is lost.

Parameters

Mode Specifies the mode of the open. This parameter may contain one or more of the following values defined in
the usersec.h file:

S_READ
Specifies read access.

S_WRITE
Specifies update access.

Return Values
The setacldb and endacldb subroutines return a value of 0 to indicate success. Otherwise, a value of -1
is returned and the errno global variable is set to indicate the error.

Error Codes
The setacldb subroutine fails if the following is true:

EACCES Access permission is denied for the data request.

Both subroutines return errors from other subroutines.

Security
Security Files Accessed: The calling process must have access to the SMIT ACL data.

Mode File rw/etc/security/smitacl.user

Related Information
The getgrpaclattr, nextgrpacl, or putgrpaclattr subroutine, getusraclattr, nextusracl, or putusraclattr
subroutine.

setaudithostdb or endaudithostdb Subroutine

Purpose
Opens and closes the host identifier auditing file.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>
int setaudithostdb (int Mode);
int endaudithostdb (void;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 99

../../libs/basetrf1/getgrpaclattr.htm#HDRZGWQO1CDMELA
../../libs/basetrf1/getusraclattr.htm#HDRXCQAO328MELA

Description
These functions can be used to open and close access to the host auditing information database.
Programs that call either the getaudithostattr or putaudithostattr subroutine, call setaudithostdb to
open the host database and the endaudithostdb subroutine to close the host database.

The setaudithostdb subroutine opens the host database in the specified mode, if it is not already open.
The open count is increased by 1.

The enduserdb subroutine decreases the open count by 1 and closes the host database when this count
goes to 0. Any uncommitted changed data is lost.

Parameter

Mode Specifies the mode of the open. This parameter may
contain one or more of the following values defined in the
usersec.h files:

S_READ
Specifies read access.

S_WRITE
Specifies write access.

Return Values
On successful completion, the setaudithostdb or endaudithostdb subroutine returns 0. If unsuccessful,
the subroutine returns non-zero.

Error Codes
The setaudithostdp or endaudithostdb subroutine fails if the following is true:

EINVAL If Mode is not one of the valid values.

Related Information
The auditmerge command, auditpr command, auditselect command, auditstream command.

The auditread subroutine, getaudithostattr, IDtohost, hosttoID, nexthost or putaudithostattr
subroutine.

setbuf, setvbuf, setbuffer, or setlinebuf Subroutine

Purpose
Assigns buffering to a stream.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>

void setbuf (Stream, Buffer)
FILE *Stream;
char *Buffer;

100 Technical Reference, Volume 2: Base Operating System and Extensions

../../cmds/aixcmds1/auditmerge.htm#HDRA021698ABCL
../../cmds/aixcmds1/auditpr.htm#HDRA1169571
../../cmds/aixcmds1/auditselect.htm#HDRA163C11669
../../cmds/aixcmds1/auditstream.htm#HDRA1169478
../basetrf1/auditread.htm#HDRA28295D4
../basetrf1/getaudithostattr.htm#HDRA021698LBCL

int setvbuf (Stream, Buffer, Mode, Size)
FILE *Stream;
char *Buffer;
int Mode;
size_t Size;

void setbuffer (Stream, Buffer, Size)
FILE *Stream;
char *Buffer;
size_t Size;

void setlinebuf (Stream)
FILE *Stream;

Description
The setbuf subroutine causes the character array pointed to by the Buffer parameter to be used instead of
an automatically allocated buffer. Use the setbuf subroutine after a stream has been opened, but before it
is read or written.

If the Buffer parameter is a null character pointer, input/output is completely unbuffered.

A constant, BUFSIZ, defined in the stdio.h file, tells how large an array is needed:
char buf[BUFSIZ];

For the setvbuf subroutine, the Mode parameter determines how the Stream parameter is buffered:

_IOFBF Causes input/output to be fully buffered.
_IOLBF Causes output to be line-buffered. The buffer is flushed when a new line is written, the buffer is full, or

input is requested.
_IONBF Causes input/output to be completely unbuffered.

If the Buffer parameter is not a null character pointer, the array it points to is used for buffering. The Size
parameter specifies the size of the array to be used as a buffer, but all of the Size parameter’s bytes are
not necessarily used for the buffer area. The constant BUFSIZ in the stdio.h file is one buffer size. If
input/output is unbuffered, the subroutine ignores the Buffer and Size parameters. The setbuffer
subroutine, an alternate form of the setbuf subroutine, is used after Stream has been opened, but before
it is read or written. The character array Buffer, whose size is determined by the Size parameter, is used
instead of an automatically allocated buffer. If the Buffer parameter is a null character pointer, input/output
is completely unbuffered.

The setbuffer subroutine is not needed under normal circumstances because the default file I/O buffer
size is optimal.

The setlinebuf subroutine is used to change the stdout or stderr file from block buffered or unbuffered to
line-buffered. Unlike the setbuf and setbuffer subroutines, the setlinebuf subroutine can be used any
time Stream is active.

A buffer is normally obtained from the malloc subroutine at the time of the first getc subroutine or putc
subroutine on the file, except that the standard error stream, stderr, is normally not buffered.

Output streams directed to terminals are always either line-buffered or unbuffered.

Note: A common source of error is allocating buffer space as an automatic variable in a code block,
and then failing to close the stream in the same block.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 101

Parameters

Stream Specifies the input/output stream.
Buffer Points to a character array.
Mode Determines how the Stream parameter is buffered.
Size Specifies the size of the buffer to be used.

Return Values
Upon successful completion, setvbuf returns a value of 0. Otherwise it returns a nonzero value if a value
that is not valid is given for type, or if the request cannot be honored.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

The setbuffer and setlinebuf subroutines are included for compatibility with Berkeley System Distribution
(BSD).

Related Information
The fopen, freopen, or fdopen subroutine, fread subroutine, getc, fgetc, getchar, or getw subroutine,
getwc, fgetwc, or getwchar subroutine, malloc, free, realloc, calloc, mallopt, mallinfo, or alloca
subroutine, putc, putchar, fputc, or putw subroutine, putwc, putwchar, or fputwc subroutine.

The Input and Output Handling in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

setcsmap Subroutine

Purpose
Reads a code-set map file and assigns it to the standard input device.

Library
Standard C Library (libc.a)

Syntax
#include <sys/termios.h>

int setcsmap (Path);
char * Path;

Description
The setcsmap subroutine reads in a code-set map file. The path parameter specifies the location of the
code-set map file. The path is usually composed by forming a string with the csmap directory and the
code set, as in the following example:
n=sprintf(path,"%s%s",CSMAP_DIR,nl_langinfo(CODESET));

The file is processed and according to the included informations, the setcsmap subroutine changes the tty
configuration. Multibyte processing may be enabled, and converter modules may be pushed onto the tty
stream.

102 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/fopen.htm#HDRA0909963
../../libs/basetrf1/fread.htm#HDRA108917A9
../../libs/basetrf1/getc.htm#HDRA1429390
../../libs/basetrf1/getwc.htm#HDRA177966E
../../libs/basetrf1/malloc.htm#HDRA174921E
../../libs/basetrf1/putc.htm#HDRA1429342
../../libs/basetrf1/putwc.htm#HDRA1819432
../../aixprggd/genprogc/io_handling.htm#HDRA9E740A1626CAND

Parameter

Path Names the code-set map file.

Return Values
If a code set-map file is successfully opened and compiled, a value of 0 is returned. If an error occurred, a
value of 1 is returned and the errno global variable is set to identify the error.

Error Codes

EINVAL Indicates an invalid value in the code set map.
EIO An I/O error occurred while the file system was being read.
ENOMEM Insufficient resources are available to satisfy the request.
EFAULT A kernel service, such as copyin, has failed.
ENOENT The named file does not exist.
EACCESS The named file cannot be read.

Implementation Specifics
The setcsmap function is part of Base Operating System (BOS) Runtime.

Related Information
The setmaps command.

The setmaps file format.

tty Subsystem Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

setgid, setrgid, setegid, or setregid Subroutine

Purpose
Sets the process group IDs.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int setgid (GID)
gid_t GID;

int setrgid (RGID)
gid_t RGID;

int setegid (EGID)
gid_t EGID;

int setregid (RGID, EGID)
gid_t RGID;
gid_t EGID;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 103

../../cmds/aixcmds5/setmaps.htm#HDRA18P0178
../../files/aixfiles/setmaps.htm#HDRA163C116FB
../../aixprggd/genprogc/ttysys.htm#HDRA337F9470

Description
The setgid, setrgid, setegid, and setregid subroutines set the process group IDs of the calling process.
The following semantics are supported:

setgid If the effective user ID of the process is the root user, the process’s real, effective, and saved group
IDs are set to the value of the GID parameter. Otherwise, the process effective group ID is reset if
the GID parameter is equal to either the current real or saved group IDs, or one of its supplementary
group IDs. Supplementary group IDs of the calling process are not changed.

setegid The process effective group ID is reset if one of the following conditions is met:

v The EGID parameter is equal to either the current real or saved group IDs.

v The EGID parameter is equal to one of its supplementary group IDs.

v The effective user ID of the process is the root user.
setrgid The EPERM error code is always returned.
setregid The RGID and EGID parameters can have one of the following relationships:

RGID != EGID
If the EGID parameter is equal to either the process’s real or saved group IDs, the process
effective group ID is set to the EGID parameter. Otherwise, the EPERM error code is
returned.

RGID= = EGID
If the effective user ID of the process is the root user, the process’s real and effective group
IDs are set to the EGID parameter. If the EGID parameter is equal to the process’s real or
saved group IDs, the process effective group ID is set to EGID. Otherwise, the EPERM error
code is returned.

The setegid, setrgid, and setregid subroutines are thread-safe.

Parameters

GID Specifies the value of the group ID to set.
RGID Specifies the value of the real group ID to set.
EGID Specifies the value of the effective group ID to set.

Return Values

0 Indicates that the subroutine was successful.
-1 Indicates the subroutine failed. The errno global variable is set to indicate the error.

Error Codes
If either the setgid or setegid subroutine fails, one or more of the following are returned:

EPERM Indicates the process does not have appropriate privileges and the GID or EGID parameter is not equal
to either the real or saved group IDs of the process.

EINVAL Indicates the value of the GID or EGID parameter is invalid.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

The operating system does not support setuid (“setuid, setruid, seteuid, or setreuid Subroutine” on
page 122) or setgid shell scripts.

104 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information
The getgid subroutine, getgroups subroutine, setgroups (“setgroups Subroutine”) subroutine, setuid
(“setuid, setruid, seteuid, or setreuid Subroutine” on page 122) subroutine.

The setgroups command.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

setgroups Subroutine

Purpose
Sets the supplementary group ID of the current process.

Library
Standard C Library (libc.a)

Syntax
#include <grp.h>

int setgroups (NumberGroups, GroupIDSet)
int NumberGroups;
gid_t *GroupIDSet;

Description
The setgroups subroutine sets the supplementary group ID of the process. The setgroups subroutine
cannot set more than NGROUPS_MAX groups in the group set. (NGROUPS_MAX is a constant defined
in the limits.h file.)

Note: The routine may coredump instead of returning EFAULT when an invalid pointer is passed in
case of 64-bit application calling 32-bit kernel interface.

Parameters

GroupIDSet Pointer to the array of group IDs to be established.
NumberGroups Indicates the number of entries in the GroupIDSet parameter.

Return Values
Upon successful completion, the setgroups subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The setgroups subroutine fails if any of the following are true:

EFAULT The NumberGroups and GroupIDSet parameters specify an array that is partially or completely outside of
the process’ allocated address space.

EINVAL The NumberGroups parameter is greater than the NGROUPS_MAX value.
EPERM A group ID in the GroupIDSet parameter is not presently in the supplementary group ID, and the invoker

does not have root user authority.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 105

../../libs/basetrf1/getgid.htm#HDRA2989DAD
../../libs/basetrf1/getgroups.htm#HDRA1519C86
../../cmds/aixcmds5/setgroups.htm#HDRJI21200FRIT
../../aixprggd/genprogc/ls_sec_audit_subrs.htm#HDRLWURF19CJEFF
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

Security
Auditing Events:

Event Information
PROC_SetGroups NumberGroups, GroupIDSet

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getgid subroutine, getgroups subroutine, initgroups subroutine, setgid (“setgid, setrgid, setegid, or
setregid Subroutine” on page 103) subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

setjmp or longjmp Subroutine

Purpose
Saves and restores the current execution context.

Library
Standard C Library (libc.a)

Syntax
#include <setjmp.h>
int setjmp (Context)
jmp_buf Context;

void longjmp (Context, Value)
jmp_buf Context;
int Value;

int _setjmp (Context)
jmp_buf Context;

void _longjmp (Context, Value)
jmp_buf Context;
int Value;

Description
The setjmp subroutine and the longjmp subroutine are useful when handling errors and interrupts
encountered in low-level subroutines of a program.

The setjmp subroutine saves the current stack context and signal mask in the buffer specified by the
Context parameter.

The longjmp subroutine restores the stack context and signal mask that were saved by the setjmp
subroutine in the corresponding Context buffer. After the longjmp subroutine runs, program execution
continues as if the corresponding call to the setjmp subroutine had just returned the value of the Value
parameter. The subroutine that called the setjmp subroutine must not have returned before the completion
of the longjmp subroutine. The setjmp and longjmp subroutines save and restore the signal mask
sigmask (2), while _setjmp and _longjmp manipulate only the stack context.

106 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/getgid.htm#HDRA2989DAD
../../libs/basetrf1/getgroups.htm#HDRA1519C86
../../libs/basetrf1/initgroups.htm#HDRA12897E8
../../aixprggd/genprogc/ls_sec_audit_subrs.htm#HDRLWURF19CJEFF
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

Parameters

Context Specifies an address for a jmp_buf structure.
Value Indicates any integer value.

Return Values
The setjmp subroutine returns a value of 0, unless the return is from a call to the longjmp function, in
which case setjmp returns a nonzero value.

The longjmp subroutine cannot return 0 to the previous context. The value 0 is reserved to indicate the
actual return from the setjmp subroutine when first called by the program. The longjmp subroutine does
not return from where it was called, but rather, program execution continues as if the corresponding call to
setjmp was returned with a returned value of Value.

If the longjmp subroutine is passed a Value parameter of 0, then execution continues as if the
corresponding call to the setjmp subroutine had returned a value of 1. All accessible data have values as
of the time the longjmp subroutine is called.

Attention: If the longjmp subroutine is called with a Context parameter that was not previously set
by the setjmp subroutine, or if the subroutine that made the corresponding call to the setjmp
subroutine has already returned, then the results of the longjmp subroutine are undefined. If the
longjmp subroutine detects such a condition, it calls the longjmperror routine. If longjmperror
returns, the program is aborted. The default version of longjmperror prints the message: longjmp or
siglongjmp used outside of saved context to standard error and returns. Users wishing to exit in
another manner can write their own version of the longjmperror program.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

If a process is using the AT&T System V sigset interface, then the setjmp and longjmp subroutines do
not save and restore the signal mask. In such a case, their actions are identical to those of the _setjmp
and _longjmp subroutines.

Related Information
The sigsetjmp or siglongjmp (“sigsetjmp or siglongjmp Subroutine” on page 156) subroutine.

Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

setlocale Subroutine

Purpose
Changes or queries the program’s entire current locale or portions thereof.

Library
Standard C Library (libc.a)

Syntax
#include <locale.h>

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 107

../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

char *setlocale (Category, Locale)
int Category;
const char *Locale;

Description
The setlocale subroutine selects all or part of the program’s locale specified by the Category and Locale
parameters. The setlocale subroutine then changes or queries the specified portion of the locale. The
LC_ALL value for the Category parameter names the entire locale (all the categories). The other Category
values name only a portion of the program locale.

The Locale parameter specifies a string that provides information needed to set certain conventions in the
Category parameter. The components of the Locale parameter are language and territory. Values allowed
for the locale argument are the predefined language_territory combinations or a user-defined locale.

If a user defines a new locale, a uniquely named locale definition source file must be provided. The
character collation, character classification, monetary, numeric, time, and message information should be
provided in this file. The locale definition source file is converted to a binary file by the localedef
command. The binary locale definition file is accessed in the directory specified by the LOCPATH
environment variable.

Note: All setuid and setgid programs will ignore the LOCPATH environment variable.

The default locale at program startup is the C locale. A call to the setlocale subroutine must be made
explicitly to change this default locale environment. See Understanding Locale Subroutines in AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs for setlocale subroutine
examples.

The locale state is common to all threads within a process.

Parameters

Category Specifies a value representing all or part of the locale for a program. Depending on the value of the
Locale parameter, these categories may be initiated by the values of environment variables with
corresponding names. Valid values for the Category parameter, as defined in the locale.h file, are:

LC_ALL
Affects the behavior of a program’s entire locale.

LC_COLLATE
Affects the behavior of regular expression and collation subroutines.

LC_CTYPE
Affects the behavior of regular expression, character-classification, case-conversion, and
wide character subroutines.

LC_MESSAGES
Affects the content of messages and affirmative and negative responses.

LC_MONETARY
Affects the behavior of subroutines that format monetary values.

LC_NUMERIC
Affects the behavior of subroutines that format nonmonetary numeric values.

LC_TIME
Affects the behavior of time-conversion subroutines.

108 Technical Reference, Volume 2: Base Operating System and Extensions

../../cmds/aixcmds3/localedef.htm#HDRA143C16BE
../../aixprggd/genprogc/locale_subrs.htm#HDRA142C198
../../files/aixfiles/LC_COLLATE.htm#HDRBJQ6320BOB
../../files/aixfiles/LC_CTYPE.htm#HDRA3JQ6380BOB
../../files/aixfiles/LC_MESSAGES.htm#HDRSJQ6200BOB
../../files/aixfiles/LC_MONETARY.htm#HDRFJQ6260BOB
../../files/aixfiles/LC_NUMERIC.htm#HDRUJQ6260BOB
../../files/aixfiles/LC_TIME.htm#HDRLJQ680BOB

Locale Points to a character string containing the required setting for the Category parameter.

The following are special values for the Locale parameter:

″C″ The C locale is the locale all programs inherit at program startup.

″POSIX″
Specifies the same locale as a value of ″C″.

″″ Specifies categories be set according to locale environment variables.

NULL Queries the current locale environment and returns the name of the locale.

The Language Territory Table contains supported language_territory values for the Locale
parameter:

Language Territory Table

Locale Value Language Territory Code Set

Ar_AA Arabic Arabic Countries IBM-1046

ar_AA Arabic Arabic Countries ISO8859-6

bg_BG Bulgarian Bulgaria ISO8856-5

cs_CZ Czech Czech Republic ISO8859-2

Da_DK Danish Denmark IBM-850

da_DK Danish Denmark ISO8859-1

De_CH German Switzerland IBM-850

de_CH German Switzerland ISO8859-1

De_DE German Germany IBM-850

de_DE German Germany ISO8859-1

el_GR Greek Greece ISO8859-7

En_GB English Great Britain IBM-850

en_GB English Great Britain ISO8859-1

En_US English United States IBM-850

en_US English United States ISO8859-1

Es_ES Spanish Spain IBM-850

es_ES Spanish Spain ISO8859-1

Fi_FI Finnish Finland IBM-850

fi_FI Finnish Finland ISO8859-1

Fr_BE French Belgium IBM-850

fr_BE French Belgium ISO8859-1

Fr_CA French Canada IBM-850

fr_CA French Canada ISO8859-1

Fr_FR French France IBM-850

fr_FR French France ISO8859-1

Fr_CH French Switzerland IBM-850

fr_CH French Switzerland ISO8859-1

hr_HR Croatian Croatia ISO8859-2

hu_HU Hungarian Hungary ISO8859-2

Is_IS Icelandic Iceland IBM-850

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 109

is_IS Icelandic Iceland ISO8859-1

It_IT Italian Italy IBM-850

it_IT Italian Italy ISO8859-1

Iw_IL Hebrew Israel IBM-856

iw_IL Hebrew Israel ISO8859-8

Ja_JP Japanese Japan IBM-943

ja_JP Japanese Japan IBM-eucJP

ko_KR Korean Korea IBM-eucKR

mk_MK Macedonian Former Yugoslav Republic
of Macedonia

ISO8859-5

Nl_BE Dutch Belgium IBM-850

nl_BE Dutch Belgium ISO8859-1

Nl_NL Dutch Netherlands IBM-850

nl_NL Dutch Netherlands ISO8859-1

No_NO Norwegian Norway IBM-850

no_NO Norwegian Norway ISO8859-1

pl_PL Polish Poland ISO8859-2

Pt_PT Portuguese Portugal IBM-850

pt_PT Portuguese Portugal ISO8859-1

ro_RO Romanian Romania ISO8859-2

ru_RU Russian Russia ISO8859-5

sh_SP Serbian Latin Yugoslavia ISO8859-2

sl_SI Slovene Slovenia ISO8859-2

sk_SK Slovak Slovakia ISO8859-2

sr_SP Serbian Cyrillic Yugoslavia ISO8859-5

Zh_CN Simplified Chinese PRC GBK

Sv_SE Swedish Sweden IBM-850

sv_SE Swedish Sweden ISO8859-1

tr_TR Turkish Turkey ISO8859-9

zh_TW Chinese (trad) Republic of China IBM-eucTW

Return Values
If a pointer to a string is given for the Locale parameter and the selection can be honored, the setlocale
subroutine returns the string associated with the specified Category parameter for the new locale. If the
selection cannot be honored, a null pointer is returned and the program locale is unchanged.

If a null is used for the Locale parameter, the setlocale subroutine returns the string associated with the
Category parameter for the program’s current locale. The program’s locale is not changed.

A subsequent call with the string returned by the setlocale subroutine, and its associated category, will
restore that part of the program locale. The string returned is not modified by the program, but can be
overwritten by a subsequent call to the setlocale subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

110 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information
The localeconv subroutine, nl_langinfo subroutine, rpmatch (“rpmatch Subroutine” on page 40)
subroutine.

The localedef command.

National Language Support Overview for Programming and Understanding Locale Subroutines in AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs.

Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

setpcred Subroutine

Purpose
Sets the current process credentials.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int setpcred (User, Credentials)
char **Credentials;
char *User;

Description
The setpcred subroutine sets a process’ credentials according to the Credentials parameter. If the User
parameter is specified, the credentials defined for the user in the user database are used. If the
Credentials parameter is specified, the credentials in this string are used. If both the User and Credentials
parameters are specified, both the user’s and the supplied credentials are used. However, the supplied
credentials of the Credentials parameter will override those of the user. At least one parameter must be
specified.

The setpcred subroutine requires the setpenv subroutine to follow it.

Note: If the auditwrite subroutine is to be called from a program invoked from the inittab file, the
setpcred subroutine should be called first to establish the process’ credentials.

User Specifies the user for whom credentials are being established.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 111

../../libs/basetrf1/localeconv.htm#HDRA1509139
../../libs/basetrf1/nl_langinfo.htm#HDRA4F011
../../cmds/aixcmds3/localedef.htm#HDRA143C16BE
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/locale_subrs.htm#HDRA142C198
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../libs/basetrf1/auditwrite.htm#HDRA28295EE
../../files/aixfiles/inittab.htm#HDRA241Y97E94

Credentials Defines specific credentials to be established. This parameter points to an array of
null-terminated character strings that may contain the following values. The last character string
must be null.

LOGIN_USER=%s
Login user name

REAL_USER=%s
Real user name

REAL_GROUP=%s
Real group name

GROUPS=%s
Supplementary group ID

AUDIT_CLASSES=%s
Audit classes

RLIMIT_CPU=%d
Process soft CPU limit

RLIMIT_FSIZE=%d
Process soft file size

RLIMIT_DATA=%d
Process soft data segment size

RLIMIT_STACK=%d
Process soft stack segment size

RLIMIT_CORE=%d
Process soft core file size

RLIMIT_RSS=%d
Process soft resident set size

RLIMIT_CORE_HARD=%d
Process hard core file size

RLIMIT_CPU_HARD=%d
Process hard CPU limit

RLIMIT_DATA_HARD=%d
Process hard data segment size

RLIMIT_FSIZE_HARD=%d
Process hard file size

RLIMIT_RSS_HARD=%d
Process hard resident set size

RLIMIT_STACK_HARD=%d
Process hard stack segment size

UMASK=%o
Process umask (file creation mask)

A process must have root user authority to set all credentials except the UMASK credential.

Resource Hard Soft

RLIMIT_CORE unlimited %d
RLIMIT_CPU %d %d
RLIMIT_DATA unlimited %d
RLIMIT_FSIZE %d %d
RLIMIT_RSS unlimited %d
RLIMIT_STACK unlimited %d

112 Technical Reference, Volume 2: Base Operating System and Extensions

The soft limit credentials will override the equivalent hard limit credentials that may proceed them. To set
the hard limits, the hard limit credentials should follow the soft limit credentials.

Return Values
Upon successful return, the setpcred subroutine returns a value of 0. If setpcred fails, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The setpcred subroutine fails if one or more of the following are true:

EINVAL The Credentials parameter contains invalid credentials specifications.
EINVAL The User parameter is null and the Credentials parameter is either null or points to an empty string.
EPERM The process does not have the proper authority to set the requested credentials.

Other errors may be set by subroutines invoked by the setpcred subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The auditwrite subroutine, ckuseracct subroutine, ckuserID subroutine, getpcred subroutine, getpenv
subroutine, setpenv (“setpenv Subroutine”) subroutine.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

setpenv Subroutine

Purpose
Sets the current process environment.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int setpenv (User, Mode, Environment, Command)
char *User;
int Mode;
char **Environment;
char *Command;

Description
The setpenv subroutine first sets the environment of the current process according to its parameter
values, and then sets the working directory and runs a specified command. If the User parameter is
specified, the process environment is set to that of the specified user, the user’s working directory is set,
and the specified command run. If the User parameter is not specified, then the environment and working
directory are set to that of the current process, and the command is run from this process. The
environment consists of both user-state and system-state environment variables.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 113

../../libs/basetrf1/auditwrite.htm#HDRA28295EE
../../libs/basetrf1/ckuseracct.htm#HDRA166919AF
../../libs/basetrf1/ckuserID.htm#HDRA166919F8
../../libs/basetrf1/getpcred.htm#HDRA166918BE
../../libs/basetrf1/getpenv.htm#HDRA1669195B
../../aixprggd/genprogc/ls_sec_audit_subrs.htm#HDRLWURF19CJEFF
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

Note: The setpenv subroutine requires the setpcred subroutine to precede it.

The setpenv subroutine performs the following steps:

Setting the Process Environment The first step involves changing the user-state and
system-state environment. Since this is dependent on the
values of the Mode and Environment parameters, see the
description for the Mode parameter for more information.

Setting the Process Current Working Directory
After the user-state and system-state environment is set,
the working directory of the process may be set. If the
Mode parameter includes the PENV_INIT value, the
current working directory is changed to the user’s initial
login directory (defined in the /etc/passwd file).
Otherwise, the current working directory is unchanged.

Executing the Initial Program After the working directory of the process is reset, the
initial program (usually the shell interpreter) is executed. If
the Command parameter is null, the shell from the user
database is used. If the parameter is not defined, the shell
from the user-state environment is used and the
Command parameter defaults to the /usr/bin/sh file. If the
Command parameter is not null, it specifies the command
to be executed. If the Mode parameter contains the
PENV_ARGV value, the Command parameter is assumed
to be in the argv structure and is passed to the execve
subroutine. The string contained in the Command
parameter is used as the Path parameter of the execve
subroutine. If the Mode parameter does not contain
PENV_ARGV value, the Command parameter is parsed
into an argv structure and executed. If the Command
parameter contains the $SHELL value, substitution is
done prior to execution.

Note: This step will fail if the Command parameter
contains the $SHELL value but the user-state
environment does not contain the SHELL value.

Parameters
Command

Specifies the command to be executed. If the Mode parameter contains the PENV_ARGV value,
then the Command parameter is assumed to be a valid argument vector for the execv subroutine.

Environment
Specifies the value of user-state and system-state environment variables in the same format
returned by the getpenv subroutine. The user-state variables are prefaced by the keyword
USRENVIRON:, and the system-state variables are prefaced by the keyword SYSENVIRON:.
Each variable is defined by a string of the form var=value, which is an array of null-terminated
character pointers.

Mode Specifies how the setpenv subroutine is to set the environment and run the command. This
parameter is a bit mask and must contain only one of the following values, which are defined in
the usersec.h file:

PENV_INIT
The user-state environment is initialized as follows:

AUTHSTATE
Retained from the current environment. If the AUTHSTATE value is not present, it
is defaulted to the compat value.

114 Technical Reference, Volume 2: Base Operating System and Extensions

../../files/aixfiles/passwd.htm#HDRX9A1F0FRIT
../../libs/basetrf1/exec.htm#HDRPDR80GACO
../../libs/basetrf1/exec.htm#HDRPDR80GACO

KRB5CCNAME
Retained from the current environment. This value is defined if you authenticated
through the Distributed Computing Environment (DCE).

USER Set to the name specified by the User parameter or to the name corresponding to
the current real user ID. The name is shortened to a maximum of 8 characters.

LOGIN
Set to the name specified by the User parameter or to the name corresponding to
the current real user ID. If set by the User parameter, this value is the complete
login name, which may include a DCE cell name.

LOGNAME
Set to the current system environment variable LOGNAME.

TERM Retained from the current environment. If the TERM value is not present, it is
defaulted to an IBM6155.

SHELL
Set from the initial program defined for the real user ID of the current process. If
no program is defined, then the /usr/bin/sh shell is used as the default.

HOME Set from the home directory defined for the real user ID of the current process. If
no home directory is defined, the default is /home/guest.

PATH Set initially to the value for the PATH value in the /etc/environment file. If not set,
it is destructively replaced by the default value of PATH=/usr/bin:$HOME:. (The
final period specifies the working directory). The PATH variable is destructively
replaced by the usrenv attribute for this user in the /etc/security/environ file if
the PATH value exists in the /etc/environment file.

The following files are read for additional environment variables:

/etc/environment
Variables defined in this file are added to the environment.

/etc/security/environ
Environment variables defined for the user in this file are added to the user-state
environment.

The user-state variables in the Environment parameter are added to the user-state
environment. These are preceded by the USRENVIRON: keyword.

The system-state environment is initialized as follows:

LOGNAME
Set to the current LOGNAME value in the protected user environment. The login
(tsm) command passes this value to the setpenv subroutine to ensure
correctness.

NAME Set to the login name corresponding to the real user ID.

TTY Set to the TTY name corresponding to standard input.

The following file is read for additional environment variables:

/etc/security/environ
The system-state environment variables defined for the user in this file are added
to the environment. The system-state variables in the Environment parameter are
added to the environment. These are preceded by the SYSENVIRON keyword.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 115

PENV_DELTA
The existing user-state and system-state environment variables are preserved and the
variables defined in the Environment parameter are added.

PENV_RESET
The existing environment is cleared and totally replaced by the content of the Environment
parameter.

PENV_KLEEN
Closes all open file descriptors, except 0, 1, and 2, before executing the command. This
value must be logically ORed with PENV_DELTA, PENV_RESET, or PENV_INIT. It cannot
be used alone.

PENV_NOPROF
The new shell will not be treated as a login shell. Only valid when used with the
PENV_INIT flag.

For both system-state and user-state environments, variable substitution is performed.

The Mode parameter may also contain:

PENV_ARGV Specifies that the Command parameter is already in argv format and need not be parsed. This
value must be logically ORed with PENV_DELTA, PENV_RESET, or PENV_INIT. It cannot be used
alone.

User Specifies the user name whose environment and working directory is to be set and the specified command
run. If a null pointer is given, the current real uid is used to determine the name of the user.

Return Values
If the environment was successfully established, this function does not return. If the setpenv subroutine
fails, a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The setpenv subroutine fails if one or more of the following are true:

EINVAL The Mode parameter contains values other than PENV_INIT, PENV_DELTA, PENV_RESET, or
PENV_ARGV.

EINVAL The Mode parameter contains more than one of PENV_INIT, PENV_DELTA, or PENV_RESET values.
EINVAL The Environment parameter is neither null nor empty, and does not contain a valid environment string.

EPERM The caller does not have read access to the environment defined for the system, or the user does not have
permission to change the specified attributes.

Other errors may be set by subroutines invoked by the setpenv subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The execl, execv, execle, execve, execlp, execvp, or exect subroutine, getpenv subroutine, setpcred
(“setpcred Subroutine” on page 111) subroutine.

116 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/exec.htm#HDRPDR80GACO
../../libs/basetrf1/getpenv.htm#HDRA1669195B

The login command, su command.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

setpgid or setpgrp Subroutine

Purpose
Sets the process group ID.

Libraries
setpgid: Standard C Library (libc.a)

setpgrp: Standard C Library (libc.a);

Berkeley Compatibility Library (libbsd.a)

Syntax
#include <unistd.h>

int setpgid (ProcessID, ProcessGroupID)
pid_t ProcessID, ProcessGroupID;

int setpgrp ()

Description
The setpgid subroutine is used either to join an existing process group or to create a new process group
within the session of the calling process. The process group ID of a session leader does not change. Upon
return, the process group ID of the process having a process ID that matches the ProcessID value is set
to the ProcessGroupID value. As a special case, if the ProcessID value is 0, the process ID of the calling
process is used. If ProcessGroupID value is 0, the process ID of the indicated process is used.

This function is implemented to support job control.

The setpgrp subroutine in the libc.a library supports a subset of the function of the setpgid subroutine. It
has no parameters. It sets the process group ID of the calling process to be the same as its process ID
and returns the new value.

Parameters

ProcessID Specifies the process whose process group ID is to be changed.
ProcessGroupID Specifies the new value of calling process group ID.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The setpgid subroutine is unsuccessful if one or more of the following is true:

EACCES The value of the ProcessID parameter matches the process ID of a child process of the calling process
and the child process has successfully executed one of the exec subroutines.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 117

../../cmds/aixcmds3/login.htm#HDRA68V042F7
../../cmds/aixcmds5/su.htm#HDRA248Y99C6D
../../aixprggd/genprogc/ls_sec_audit_subrs.htm#HDRLWURF19CJEFF
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

EINVAL The value of the ProcessGroupID parameter is less than 0, or is not a valid value.
ENOSYS The setpgid subroutine is not supported by this implementation.
EPERM The process indicated by the value of the ProcessID parameter is a session leader.
EPERM The value of the ProcessID parameter matches the process ID of a child process of the calling process

and the child process is not in the same session as the calling process.
EPERM The value of the ProcessGroupID parameter is valid, but does not match the process ID of the process

indicated by the ProcessID parameter. There is no process with a process group ID that matches the
value of the ProcessGroupID parameter in the same session as the calling process.

ESRCH The value of the ProcessID parameter does not match the process ID of the calling process of a child
process of the calling process.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

In BSD systems, the setpgrp subroutine is defined with two parameters, as follows:

int setpgrp (ProcessID, ProcessGroup)
int ProcessID, ProcessGroup;

BSD systems set the process group to the value specified by the ProcessGroup parameter. If the
ProcessID value is 0, the call applies to the current process. In AIX 3.1, this version of the setpgrp
subroutine must be compiled with the Berkeley Compatibility Library (libbsd.a) and is implemented as a
call to the setpgid subroutine. The restrictions that apply to the setpgid subroutine also apply to the
setpgrp subroutine.

BSD systems set the process group to the value specified by the ProcessGroup parameter. If the
ProcessID value is 0, the call applies to the current process. In the Version 3 Operating System, this
version of the setpgrp subroutine must be compiled with the Berkeley Compatibility Library (libbsd.a) and
is implemented as a call to the setpgid subroutine. The restrictions that apply to the setpgid subroutine
also apply to the setpgrp subroutine.

Related Information
The getpid subroutine.

setpri Subroutine

Purpose
Sets a process scheduling priority to a constant value.

Library
Standard C Library (libc.a)

Syntax
#include <sys/sched.h>

int setpri (ProcessID, Priority)
pid_t ProcessID;
int Priority;

118 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/getpid.htm#HDRA5F0257

Description
The setpri subroutine sets the scheduling priority of all threads in a process to be a constant. All threads
have their scheduling policies changed to SCHED_RR. A process nice value and CPU usage can no
longer be used to determine a process scheduling priority. Only processes that have root user authority
can set a process scheduling priority to a constant.

Parameters

ProcessID Specifies the process ID. If this value is 0 then the current process scheduling priority is set to a
constant.

Priority Specifies the scheduling priority for the process. A lower number value designates a higher
scheduling priority. The Priority parameter must be in the range PRIORITY_MIN < Priority <
PRIORITY_MAX. (See the sys/sched.h file.)

Return Values
Upon successful completion, the setpri subroutine returns the former scheduling priority of the process
just changed. Otherwise, a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The setpri subroutine is unsuccessful if one or more of the following is true:

EINVAL The priority specified by the Priority parameter is outside the range of acceptable priorities.
EPERM The process executing the setpri subroutine call does not have root user authority.
ESRCH No process can be found corresponding to that specified by the ProcessID parameter.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getpri subroutine.

Performance-Related Subroutines in AIX 5L Version 5.1 Performance Management Guide.

setpwdb or endpwdb Subroutine

Purpose
Opens or closes the authentication database.

Library
Security Library (libc.a)

Syntax
#include <userpw.h>

int setpwdb (Mode)
int Mode;

int endpwdb ()

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 119

../../libs/basetrf1/getpri.htm#HDRA29798DD
../../aixbman/prftungd/2365a13.htm

Description
These functions are used to open and close access to the authentication database. Programs that call
either the getuserpw or putuserpw subroutine should call the setpwdb subroutine to open the database
and the endpwdb subroutine to close the database.

The setpwdb subroutine opens the authentication database in the specified mode, if it is not already open.
The open count is increased by 1.

The endpwdb subroutine decreases the open count by one and closes the authentication database when
this count drops to 0. Subsequent references to individual data items can cause a memory access
violation. The endpwdb subroutine also frees the space that was allocated by either the getuserpw,
putuserpw, or putuserpwhist subroutine. For security reasons, freeing the space clears the password
field. Any uncommitted changed data is lost.

Parameters

Mode Specifies the mode of the open. This parameter may contain one or more of the following values, defined in
the usersec.h file:

S_READ
Specifies read access.

S_WRITE
Specifies update access.

Return Values
The setpwdb and endpwdb subroutines return a value of 0 to indicate success. Otherwise, a value of -1
is returned and the errno global variable is set to indicate the error.

Error Codes
The setpwdb and endpwdb subroutines fail if the following is true:

EACCES Access permission is denied for the data request.

Both of these functions return errors from other subroutines.

Security
Access Control: The calling process must have access to the authentication data.

Files Accessed:

Modes File
rw /etc/security/passwd
rw /etc/passwd

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The getgroupattr subroutine, getuserattr subroutine, getuserpw, putuserpw, or putuserpwhist
subroutine.

120 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/getuserpw.htm#HDRA16691ACA
../../libs/basetrf1/getgroupattr.htm#HDRA16691B0A
../../libs/basetrf1/getuserattr.htm#HDRA16691A89
../../libs/basetrf1/getuserpw.htm#HDRA16691ACA

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

setroledb or endroledb Subroutine

Purpose
Opens and closes the role database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int setroledb(Mode)
int Mode;

int endroledb

Description
These functions may be used to open and close access to the role database. Programs that call the
getroleattr subroutine should call the setroledb subroutine to open the role database and the endroledb
subroutine to close the role database.

The setroledb subroutine opens the role database in the specified mode, if it is not already open. The
open count is increased by 1.

The endroledb subroutine decreases the open count by 1 and closes the role database when this count
goes to 0. Any uncommitted changed data is lost.

Parameters

Mode Specifies the mode of the open. This parameter may contain one or more of the following values defined in
the usersec.h file:

S_READ
Specifies read access.

S_WRITE
Specifies update access.

Return Values
The setroledb and endroledb subroutines return a value of 0 to indicate success. Otherwise, a value of
-1 is returned and the errno global variable is set to indicate the error.

Error Codes
The setroledb subroutine fails if the following is true:

EACCES Access permission is denied for the data request.

Both subroutines return errors from other subroutines.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 121

../../aixprggd/genprogc/ls_sec_audit_subrs.htm#HDRLWURF19CJEFF
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

Security
Files Accessed: The calling process must have access to the role data.

Mode File rw/etc/security/roles

Related Information
The getroleattr, nextrole, or putroleattr subroutine.

setsid Subroutine

Purpose
Creates a session and sets the process group ID.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

pid_t setsid (void)

Description
The setsid subroutine creates a new session if the calling process is not a process group leader. Upon
return, the calling process is the session leader of this new session, the process group leader of a new
process group, and has no controlling terminal. The process group ID of the calling process is set equal to
its process ID. The calling process is the only process in the new process group and the only process in
the new session.

Return Values
Upon successful completion, the value of the new process group ID is returned. Otherwise, (pid_t) -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The setsid subroutine is unsuccessful if the following is true:

EPERM The calling process is already a process group leader, or the process group ID of a process other than the
calling process matches the process ID of the calling process.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The fork subroutine, getpid, getpgrp, or getppid subroutine, setpgid (“setpgid or setpgrp Subroutine” on
page 117) subroutine, setpgrp (“setpgid or setpgrp Subroutine” on page 117) subroutine.

setuid, setruid, seteuid, or setreuid Subroutine

Purpose
Sets the process user IDs.

122 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/getroleattr.htm#HDRJEWQO14AMELA
../../libs/basetrf1/fork.htm#HDRA4F011D
../../libs/basetrf1/getpid.htm#HDRA5F0257

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int setuid (UID)
uid_t UID;

int setruid (RUID)
uid_t RUID;

int seteuid (EUID)
uid_t EUID;

int setreuid (RUID, EUID)
uid_t RUID;
uid_t EUID;

Description
The setuid, setruid, seteuid, and setreuid subroutines reset the process user IDs. The following
semantics are supported:

setuid If the effective user ID of the process is the root user, the process’s real, effective, and saved user
IDs are set to the value of the UID parameter. Otherwise, the process effective user ID is reset if the
UID parameter specifies either the current real or saved user IDs.

seteuid The process effective user ID is reset if the UID parameter is equal to either the current real or saved
user IDs or if the effective user ID of the process is the root user.

setruid The EPERM error code is always returned. Processes cannot reset only their real user IDs.
setreuid The RUID and EUID parameters can have the following two possibilities:

RUID != EUID
If the EUID parameter specifies either the process’s real or saved user IDs, the process
effective user ID is set to the EUID parameter. Otherwise, the EPERM error code is
returned.

RUID= = EUID
If the process effective user ID is the root user, the process’s real and effective user IDs are
set to the EUID parameter. Otherwise, the EPERM error code is returned.

The real and effective user ID parameters can have a value of -1. If the value is -1, the actual value for
the UID parameter is set to the corresponding current the UID parameter of the process.

Parameters

UID Specifies the user ID to set.
EUID Specifies the effective user ID to set.
RUID Specifies the real user ID to set.

Return Values
Upon successful completion, the setuid, seteuid, and setreuid subroutines return a value of 0. Otherwise,
a value of -1 is returned and the errno global variable is set to indicate the error.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 123

Error Codes
The setuid, seteuid, and setreuid subroutines are unsuccessful if either of the following is true:

EINVAL The value of the UID or EUID parameter is not valid.
EPERM The process does not have the appropriate privileges and the UID and EUID parameters are not equal to

either the real or saved user IDs of the process.

Implementation Specifics
The operating system does not support setuid or setgid (“setgid, setrgid, setegid, or setregid Subroutine”
on page 103) shell scripts.

These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The getuid or geteuid subroutine, setgid (“setgid, setrgid, setegid, or setregid Subroutine” on page 103)
subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

setuserdb or enduserdb Subroutine

Purpose

Opens and closes the user database.

Library
Security Library (libc.a)

Syntax
#include <usersec.h>

int setuserdb (Mode)
int Mode;

int enduserdb ()

Description
These functions may be used to open and close access to the user database. Programs that call either
the getuserattr or getgroupattr subroutine should call the setuserdb subroutine to open the user
database and the enduserdb subroutine to close the user database.

The setuserdb subroutine opens the user database in the specified mode, if it is not already open. The
open count is increased by 1.

The enduserdb subroutine decreases the open count by 1 and closes the user database when this count
goes to 0. Any uncommitted changed data is lost.

Note: These subroutines are not safe for use with multiple threads. To call one of these subroutines
from a threaded application, enclose the call with the _libs_rmutex lock. See ″Making a Subroutine
Safe for Multiple Threads″ in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs for more information about this lock.

124 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/getuid.htm#HDRA1519F71
../../aixprggd/genprogc/ls_sec_audit_subrs.htm#HDRLWURF19CJEFF
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../libs/basetrf1/getuserattr.htm#HDRA16691A89

Parameters

Mode Specifies the mode of the open. This parameter may contain one or more of the following values defined in
the usersec.h file:

S_READ
Specifies read access

S_WRITE
Specifies update access.

Return Values
The setuserdb and enduserdb subroutines return a value of 0 to indicate success. Otherwise, a value of
-1 is returned and the errno global variable is set to indicate the error.

Error Codes
The setuserdb subroutine fails if the following is true:

EACCES Access permission is denied for the data request.

Both subroutines return errors from other subroutines.

Security
Files Accessed: The calling process must have access to the user data. Depending on the actual attributes
accessed, this may include:

Modes File
rw /etc/passwd
rw /etc/group
rw /etc/security/user
rw /etc/security/limits
rw /etc/security/group
rw /etc/security/environ

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The getgroupattr subroutine, getuserattr subroutine, getuserpw subroutine, setpwdb (“setpwdb or
endpwdb Subroutine” on page 119) subroutine.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

sgetl or sputl Subroutine

Purpose

Accesses long numeric data in a machine-independent fashion.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 125

../../libs/basetrf1/getgroupattr.htm#HDRA16691B0A
../../libs/basetrf1/getuserattr.htm#HDRA16691A89
../../libs/basetrf1/getuserpw.htm#HDRA16691ACA
../../aixprggd/genprogc/ls_sec_audit_subrs.htm#HDRLWURF19CJEFF
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

Library
Object File Access Routine Library (libld.a)

Syntax
long sgetl (Buffer)
char *Buffer;

void sputl (Value, Buffer)
long Value;
char *Buffer;

Description
The sgetl subroutine retrieves four bytes from memory starting at the location pointed to by the Buffer
parameter. It then returns the bytes as a long Value with the byte ordering of the host machine.

The sputl subroutine stores the four bytes of the Value parameter into memory starting at the location
pointed to by the Buffer parameter. The order of the bytes is the same across all machines.

Using the sputl and sgetl subroutines together provides a machine-independent way of storing long
numeric data in an ASCII file. For example, the numeric data stored in the portable archive file format can
be accessed with the sputl and sgetl subroutines.

Parameters

Value Specifies a 4-byte value to store into memory.
Buffer Points to a location in memory.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The ar command, dump command.

The ar file format, a.out file format.

Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

shmat Subroutine

Purpose
Attaches a shared memory segment or a mapped file to the current process.

Library
Standard C Library (libc.a)

Syntax
#include <sys/shm.h>

126 Technical Reference, Volume 2: Base Operating System and Extensions

../../cmds/aixcmds1/ar.htm#HDRA0949A5B
../../cmds/aixcmds2/dump.htm#HDRA32099C2
../../files/aixfiles/ar_small.htm#HDRA306CLM1
../../files/aixfiles/XCOFF.htm
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

void *shmat (SharedMemoryID, SharedMemoryAddress, SharedMemoryFlag)
int SharedMemoryID, SharedMemoryFlag;
const void * SharedMemoryAddress;

Description
The shmat subroutine attaches the shared memory segment or mapped file specified by the
SharedMemoryID parameter (returned by the shmget subroutine), or file descriptor specified by the
SharedMemoryID parameter (returned by the openx subroutine) to the address space of the calling
process.

The following limits apply to shared memory:

v Maximum shared-memory segment size is:

– 256M bytes before AIX 4.3.1

– 2G bytes for AIX 4.3.1 through AIX 5.1

– 64G bytes for 64-bit applications for AIX 5.1 and later

v Minimum shared-memory segment size is 1 byte.

v Maximum number of shared memory IDs is 4096 for operating system releases before AIX 4.3.2 and
131072 for AIX 4.3.2 and following.

Note: The following applies to AIX 4.2.1 and later releases for 32-bit processes only.

An extended shmat capability is available. If an environment variable EXTSHM=ON is defined then
processes executing in that environment will be able to create and attach more than eleven shared
memory segments.

The segments can be of size from 1 byte to 2GB, although for segments larger than 256MB in size the
environment variable EXTSHM=ON is ignored. The process can attach these segments into the address
space for the size of the segment. Another segment could be attached at the end of the first one in the
same 256MB segment region. The address at which a process can attach is at page boundaries - a
multiple of SHMLBA_EXTSHM bytes. For segments larger than 256MB in size, the address at which a
process can attach is at 256MB boundaries, which is a multiple of SHMLBA bytes.

The segments can be of size from 1 byte to 256MB. The process can attach these segments into the
address space for the size of the segment. Another segment could be attached at the end of the first one
in the same 256MB segment region. The address at which a process can attach will be at page
boundaries - a multiple of SHMLBA_EXTSHM bytes.

The maximum address space available for shared memory with or without the environment variable and
for memory mapping is 2.75GB. An additional segment register ″0xE″ is available so that the address
space is from 0x30000000 to 0xE0000000. However, a 256MB region starting from 0xD0000000 will be
used by the shared libraries and is therefore unavailable for shared memory regions or mmapped regions.

There are some restrictions on the use of the extended shmat feature. These shared memory regions can
not be used as I/O buffers where the unpinning of the buffer occurs in an interrupt handler. The restrictions
on the use are the same as that of mmap buffers.

The smaller region sizes are not supported for mapping files. Regardless of whether EXTSHM=ON or not,
mapping a file will consume at least 256MB of address space.

The SHM_SIZE shmctl command is not supported for segments created with EXTSHM=ON.

A segment created with EXTSHM=ON can be attached by a process without EXTSHM=ON. This will
consume a 256MB area of the address space irrespective of the size of the shared memory region.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 127

../../libs/basetrf1/open.htm#HDRA1509805

A segment created without EXTSHM=ON can be attached by a process with EXTSHM=ON. This will
consume a 256MB area of the address space irrespective of the size of the shared memory region.

The environment variable provides the option of executing an application either with the additional
functionality of attaching more than 11 segments when EXTSHM=ON, or the higher-performance access to
11 or fewer segments when the environment variable is not set.

Parameters

SharedMemoryID Specifies an identifier for the shared memory segment.
SharedMemoryAddress Identifies the segment or file attached at the address specified by the SharedMemoryAddress

parameter, as follows:

v If the SharedMemoryAddress parameter is not equal to 0, and the SHM_RND flag is set in
the SharedMemoryFlag parameter, the segment or file is attached at the next lower
segment boundary. This address is given by (SharedMemoryAddress
-(SharedMemoryAddress modulo SHMLBA_EXTSHM if environment variable
EXTSHM=ON or SHMLBA if not). SHMLBA specifies the low boundary address multiple of
a segment.

v If the SharedMemoryAddress parameter is not equal to 0 and the SHM_RND flag is not
set in the SharedMemoryFlag parameter, the segment or file is attached at the address
given by the SharedMemoryAddress parameter. If this address does not point to a
SHMLBA_EXTSHM boundary if the environment variable EXTSHM=ON or SHMLBA
boundary if not, the shmat subroutine returns the value -1 and sets the errno global
variable to the EINVAL error code. SHMLBA specifies the low boundary address multiple
of a segment.

SharedMemoryFlag Specifies several options. Its value is either 0 or is constructed by logically ORing one or
more of the following values:

SHM_COPY
Changes an open file to deferred update (see the openx subroutine). Included only
for compatibility with previous versions of the operating system.

SHM_MAP
Maps a file onto the address space instead of a shared memory segment. The
SharedMemoryID parameter must specify an open file descriptor in this case.

SHM_RDONLY
Specifies read-only mode instead of the default read-write mode.

SHM_RND
Rounds the address given by the SharedMemoryAddress parameter to the next
lower segment boundary, if necessary.

The shmat subroutine makes a shared memory segment addressable by the current process. The
segment is attached for reading if the SHM_RDONLY flag is set and the current process has read
permission. If the SHM_RDONLY flag is not set and the current process has both read and write
permission, it is attached for reading and writing.

If the SHM_MAP flag is set, file mapping takes place. In this case, the shmat subroutine maps the file
open on the file descriptor specified by the SharedMemoryID onto a segment. The file must be a regular
file. The segment is then mapped into the address space of the process. A file of any size can be mapped
if there is enough space in the user address space.

When file mapping is requested, the SharedMemoryFlag parameter specifies how the file should be
mapped. If the SHM_RDONLY flag is set, the file is mapped read-only. To map read-write, the file must
have been opened for writing.

All processes that map the same file read-only or read-write map to the same segment. This segment
remains mapped until the last process mapping the file closes it.

128 Technical Reference, Volume 2: Base Operating System and Extensions

A mapped file opened with the O_DEFER update has deferred update. That is, changes to the shared
segment do not affect the contents of the file resident in the file system until an fsync subroutine is issued
to the file descriptor for which the mapping was requested. Setting the SHM_COPY flag changes the file to
the deferred state. The file remains in this state until all processes close it. The SHM_COPY flag is
provided only for compatibility with Version 2 of the operating system. New programs should use the
O_DEFER open flag.

A file descriptor can be used to map the corresponding file only once. To map a file several times requires
multiple file descriptors.

When a file is mapped onto a segment, the file is referenced by accessing the segment. The memory
paging system automatically takes care of the physical I/O. References beyond the end of the file cause
the file to be extended in page-sized increments.

Return Values
When successful, the segment start address of the attached shared memory segment or mapped file is
returned. Otherwise, the shared memory segment is not attached, the errno global variable is set to
indicate the error, and a value of -1 is returned.

Error Codes
The shmat subroutine is unsuccessful and the shared memory segment or mapped file is not attached if
one or more of the following are true:

EACCES The calling process is denied permission for the specified operation.
EAGAIN The file to be mapped has enforced locking enabled, and the file is currently locked.
EBADF A file descriptor to map does not refer to an open regular file.
EEXIST The file to be mapped has already been mapped.
EINVAL The SHM_RDONLY and SHM_COPY flags are both set.
EINVAL The SharedMemoryID parameter is not a valid shared memory identifier.
EINVAL The SharedMemoryAddress parameter is not equal to 0, and the value of (SharedMemoryAddress -

(SharedMemoryAddress modulo SHMLBA_EXTSHM if the environment variable EXTSHM=ON or
SHMLBA if not) points outside the address space of the process.

EINVAL The SharedMemoryAddress parameter is not equal to 0, the SHM_RND flag is not set in the
SharedMemoryFlag parameter, and the SharedMemoryAddress parameter points to a location outside of
the address space of the process.

EMFILE The number of shared memory segments attached to the calling process exceeds the system-imposed
limit.

ENOMEM The available data space in memory is not large enough to hold the shared memory segment. ENOMEM
is always returned if a 32-bit process tries to attach a shared memory segment larger than 2GB.

ENOMEM The available data space in memory is not large enough to hold the mapped file data structure.
ENOMEM The requested address and length crosses a segment boundary. This is not supported when the

environment variable EXTSHM=ON.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The exec subroutine, exit subroutine, fclear subroutine, fork subroutine, fsync subroutine,mmap
subroutine, munmap subroutine, openx subroutine, truncate subroutine, readvx subroutine, shmctl
subroutine, shmdt subroutine, shmget subroutine, writevx subroutine.

The ipcs command and ipcrm command.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 129

../../libs/basetrf1/fsync.htm#HDRA164930
../../libs/basetrf1/exec.htm#HDRPDR80GACO
../../libs/basetrf1/exit.htm#HDRA087913E7
../../libs/basetrf1/fclear.htm#HDRXKNA0GACO
../../libs/basetrf1/fork.htm#HDRA4F011D
../../libs/basetrf1/fsync.htm#HDRA164930
../../libs/basetrf1/mmap.htm#HDRA108C1EC9
../../libs/basetrf1/munmap.htm#HDRA108C1F55
../../libs/basetrf1/open.htm#HDRA1509805
../../perftool/prfusrgd/ch16body.htm#HDRHIERARCHY
../../cmds/aixcmds3/ipcrm.htm#HDRA1049A4B

List of Memory Manipulation Services, Subroutines Overview, Understanding Memory Mapping in AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs.

shmctl Subroutine

Purpose
Controls shared memory operations.

Library
Standard C Library (libc.a)

Syntax
#include <sys/shm.h>

int shmctl (SharedMemoryID, Command, Buffer)
int SharedMemoryID, Command;
struct shmid_ds * Buffer;

Description
The shmctl subroutine performs a variety of shared-memory control operations as specified by the
Command parameter.

The following limits apply to shared memory:

v Maximum shared-memory segment size is:

– 256M bytes before AIX 4.3.1

– 2G bytes for AIX 4.3.1 through AIX 5.1

– 64G bytes for 64-bit applications for AIX 5.1 and later

v Minimum shared-memory segment size is 1 byte.

v Maximum number of shared memory IDs is 4096 for operating system releases before AIX 4.3.2 and
131072 for AIX 4.3.2 and following.

Parameters

SharedMemoryID Specifies an identifier returned by the shmget subroutine.
Buffer Indicates a pointer to the shmid_ds structure. The shmid_ds structure is defined in the

sys/shm.h file.

130 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/ls_mem_manipulation_srvcs.htm#HDRA9FD6398242SYLV
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/understanding_mem_mapping.htm#HDRA9CF660C951SYLV

Command The following commands are available:

IPC_STAT
Obtains status information about the shared memory segment identified by the
SharedMemoryID parameter. This information is stored in the area pointed to by the
Buffer parameter. The calling process must have read permission to run this
command.

IPC_ SET
Sets the user and group IDs of the owner as well as the access permissions for the
shared memory segment identified by the SharedMemoryID parameter. This
command sets the following fields:

shm_perm.uid /* owning user ID */
shm_perm.gid /* owning group ID */
shm_perm.mode /* permission bits only */

You must have an effective user ID equal to root or to the value of the
shm_perm.cuid or shm_perm.uid field in the shmid_ds data structure identified by the
SharedMemoryID parameter.

IPC_RMID
Removes the shared memory identifier specified by the SharedMemoryID parameter
from the system and erases the shared memory segment and data structure
associated with it. This command is only executed by a process that has an effective
user ID equal either to that of a process with the appropriate privileges or to the
value of the shm_perm.uid or shm_perm.cuid field in the data structure identified by
the SharedMemoryID parameter.

SHM_SIZE
Sets the size of the shared memory segment to the value specified by the shm_segsz
field of the structure specified by the Buffer parameter. This value can be larger or
smaller than the current size. The limit is the maximum shared-memory segment
size. This command is only executed by a process that has an effective user ID
equal either to that of a process with the appropriate privileges or to the value of the
shm_perm.uid or shm_perm.cuid field in the data structure identified by the
SharedMemoryID parameter. This command is not supported for regions created
with the environment variable EXTSHM=ON. This results in a return value of -1 with
errno set to EINVAL. Attempting to use the SHM_SIZE on a shared memory region
larger than 256MB or attempting to increase the size of a shared memory region
larger than 256MB results in a return value of -1 with errno set to EINVAL.

Return Values
When completed successfully, the shmctl subroutine returns a value of 0. Otherwise, it returns a value of
-1 and the errno global variable is set to indicate the error.

Error Codes
The shmctl subroutine is unsuccessful if one or more of the following are true:

EACCES The Command parameter is equal to the IPC_STAT value and read permission is denied to the calling
process.

EFAULT The Buffer parameter points to a location outside the allocated address space of the process.
EINVAL The SharedMemoryID parameter is not a valid shared memory identifier.
EINVAL The Command parameter is not a valid command.
EINVAL The Command parameter is equal to the SHM_SIZE value and the value of the shm_segsz field of the

structure specified by the Buffer parameter is not valid.
EINVAL The Command parameter is equal to the SHM_SIZE value and the shared memory region was created

with the environment variable EXTSHM=ON.
ENOMEM The Command parameter is equal to the SHM_SIZE value, and the attempt to change the segment size

is unsuccessful because the system does not have enough memory.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 131

EOVERFLOWThe Command parameter is IPC_STAT and the size of the shared memory region is greater than or
equal to 4G bytes. This only happens with 32-bit programs.

EPERM The Command parameter is equal to the IPC_RMID or SHM_SIZE value, and the effective user ID of the
calling process is not equal to the value of the shm_perm.uid or shm_perm.cuid field in the data structure
identified by the SharedMemoryID parameter. The effective user ID of the calling process is not the root
user ID.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The disclaim subroutine, shmat subroutine, shmdt subroutine, shmget subroutine.

The ipcs command and ipcrm command.

List of Memory Manipulation Services, Subroutines Overview, Understanding Memory Mapping in AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs.

shmdt Subroutine

Purpose
Detaches a shared memory segment.

Library
Standard C Library (libc.a)

Syntax
#include <sys/shm.h>

int shmdt (SharedMemoryAddress)
const void * SharedMemoryAddress;

Description
The shmdt subroutine detaches from the data segment of the calling process the shared memory
segment located at the address specified by the SharedMemoryAddress parameter.

Mapped file segments are automatically detached when the mapped file is closed. However, you can use
the shmdt subroutine to explicitly release the segment register used to map a file. Shared memory
segments must be explicitly detached with the shmdt subroutine.

If the file was mapped for writing, the shmdt subroutine updates the mtime and ctime time stamps.

The following limits apply to shared memory:

v Maximum shared-memory segment size is:

– 256M bytes before AIX 4.3.1

– 2G bytes for AIX 4.3.1 through AIX 5.1

– 64G bytes for 64-bit applications for AIX 5.1 and later

v Minimum shared-memory segment size is 1 byte.

v Maximum number of shared memory IDs is 4096 for operating system releases before AIX 4.3.2 and
131072 for AIX 4.3.2 and following.

132 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/disclaim.htm#HDRA087913A6
../../perftool/prfusrgd/ch16body.htm#HDRHIERARCHY
../../cmds/aixcmds3/ipcrm.htm#HDRA1049A4B
../../aixprggd/genprogc/ls_mem_manipulation_srvcs.htm#HDRA9FD6398242SYLV
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/understanding_mem_mapping.htm#HDRA9CF660C951SYLV

Parameters

SharedMemoryAddress Specifies the data segment start address of a shared memory segment.

Return Values
When successful, the shmdt subroutine returns a value of 0. Otherwise, the shared memory segment at
the address specified by the SharedMemoryAddress parameter is not detached, a value of 1 is returned,
and the errno global variable is set to indicate the error.

Error Codes
The shmdt subroutine is unsuccessful if the following condition is true:

EINVAL The value of the SharedMemoryAddress parameter is not the data-segment start address of a shared
memory segment.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The exec subroutine, exit subroutine, fork subroutine, fsync subroutine, mmap subroutine, munmap
subroutine, shmat subroutine, shmctl subroutine, shmget subroutine.

The ipcs command and ipcrm command.

List of Memory Manipulation Services, Subroutines Overview, Understanding Memory Mapping in AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs.

shmget Subroutine

Purpose
Gets shared memory segments.

Library
Standard C Library (libc.a)

Syntax
#include <sys/shm.h>

int shmget (Key, Size, SharedMemoryFlag)
key_t Key;
size_t Size
int SharedMemoryFlag;

Description
The shmget subroutine returns the shared memory identifier associated with the specified Key parameter.

The following limits apply to shared memory:

v Maximum shared-memory segment size is:

– 256M bytes before AIX 4.3.1

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 133

../../libs/basetrf1/exec.htm#HDRPDR80GACO
../../libs/basetrf1/exit.htm#HDRA087913E7
../../libs/basetrf1/fork.htm#HDRA4F011D
../../libs/basetrf1/fsync.htm#HDRA164930
../../libs/basetrf1/mmap.htm#HDRA108C1EC9
../../libs/basetrf1/munmap.htm#HDRA108C1F55
../../perftool/prfusrgd/ch16body.htm#HDRHIERARCHY
../../cmds/aixcmds3/ipcrm.htm#HDRA1049A4B
../../aixprggd/genprogc/ls_mem_manipulation_srvcs.htm#HDRA9FD6398242SYLV
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/understanding_mem_mapping.htm#HDRA9CF660C951SYLV

– 2G bytes for AIX 4.3.1 through AIX 5.1

– 64G bytes for 64-bit applications for AIX 5.1 and later

v Minimum shared-memory segment size is 1 byte.

v Maximum number of shared memory IDs is 4096 for operating system releases before AIX 4.3.2 and
131072 for AIX 4.3.2 and following.

Parameters

Key Specifies either the IPC_PRIVATE value or an IPC key constructed by the ftok subroutine (or
by a similar algorithm).

Size Specifies the number of bytes of shared memory required.
SharedMemoryFlag Constructed by logically ORing one or more of the following values:

IPC_CREAT
Creates the data structure if it does not already exist.

IPC_EXCL
Causes the shmget subroutine to be unsuccessful if the IPC_CREAT flag is also
set, and the data structure already exists.

SHM_LGPAGE
Attempts to create the region so it can be mapped via hardware-supported,
large-page mechanisms, if enabled. This is purely advisory. For the system to
consider this flag, it must be used in conjunction with the SHM_PIN flag and enabled
with the vmtune command (-L to reserve memory for the region (which requires a
reboot) and -S to enable SHM_PIN). This has no effect on shared memory regions
created with the EXTSHM=ON environment variable.

SHM_PIN
Attempts to pin the shared memory region if enabled. This purely advisory. For the
system to consider this flag, the system must be enable with vmtune command. This
has no effect on shared memory regions created with EXTSHM=ON environment
variable.

S_IRUSR
Permits the process that owns the data structure to read it.

S_IWUSR
Permits the process that owns the data structure to modify it.

S_IRGRP
Permits the group associated with the data structure to read it.

S_IWGRP
Permits the group associated with the data structure to modify it.

S_IROTH
Permits others to read the data structure.

S_IWOTH
Permits others to modify the data structure.

Values that begin with the S_I prefix are defined in the sys/mode.h file and are a subset of
the access permissions that apply to files.

A shared memory identifier, its associated data structure, and a shared memory segment equal in number
of bytes to the value of the Size parameter are created for the Key parameter if one of the following is
true:

v The Key parameter is equal to the IPC_PRIVATE value.

v The Key parameter does not already have a shared memory identifier associated with it, and the
IPC_CREAT flag is set in the SharedMemoryFlag parameter.

134 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/ftok.htm#HDRA09099AB

Upon creation, the data structure associated with the new shared memory identifier is initialized as follows:

v The shm_perm.cuid and shm_perm.uid fields are set to the effective user ID of the calling process.

v The shm_perm.cgid and shm_perm.gid fields are set to the effective group ID of the calling process.

v The low-order 9 bits of the shm_perm.mode field are set to the low-order 9 bits of the SharedMemoryFlag
parameter.

v The shm_segsz field is set to the value of the Size parameter.

v The shm_lpid, shm_nattch, shm_atime, and shm_dtime fields are set to 0.

v The shm_ctime field is set to the current time.

Note: Once created, a shared memory segment is deleted only when the system reboots or by issuing
the ipcrm command or using the following shmctl subroutine:
if (shmctl (id, IPC_RMID, 0) == -1)
perror ("error in closing segment"),exit (1);

Return Values
Upon successful completion, a shared memory identifier is returned. Otherwise, the shmget subroutine
returns a value of -1 and sets the errno global variable to indicate the error.

Error Codes
The shmget subroutine is unsuccessful if one or more of the following are true:

EACCES A shared memory identifier exists for the Key parameter, but operation permission as specified by the
low-order 9 bits of the SharedMemoryFlag parameter is not granted.

EEXIST A shared memory identifier exists for the Key parameter, and both the IPC_CREAT and IPC_EXCL flags
are set in the SharedMemoryFlag parameter.

EINVAL A shared memory identifier does not exist and the Size parameter is less than the system-imposed
minimum or greater than the system-imposed maximum.

EINVAL A shared memory identifier exists for the Key parameter, but the size of the segment associated with it is
less than the Size parameter, and the Size parameter is not equal to 0.

ENOENT A shared memory identifier does not exist for the Key parameter, and the IPC_CREAT flag is not set in
the SharedMemoryFlag parameter.

ENOMEM A shared memory identifier and associated shared memory segment are to be created but the amount of
available physical memory is not sufficient to meet the request.

ENOSPC A shared memory identifier will be created, but the system-imposed maximum of shared memory
identifiers allowed will be exceeded.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ftok subroutine, mmap subroutine, munmap subroutine, shmat subroutine, shmctl subroutine,
shmdt subroutine.

The ipcs command and ipcrm command.

List of Memory Manipulation Services, Subroutines Overview, Understanding Memory Mapping in AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs.

sigaction, sigvec, or signal Subroutine

Purpose
Specifies the action to take upon delivery of a signal.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 135

../../libs/basetrf1/ftok.htm#HDRA09099AB
../../libs/basetrf1/mmap.htm#HDRA108C1EC9
../../libs/basetrf1/munmap.htm#HDRA108C1F55
../../perftool/prfusrgd/ch16body.htm#HDRHIERARCHY
../../cmds/aixcmds3/ipcrm.htm#HDRA1049A4B
../../aixprggd/genprogc/ls_mem_manipulation_srvcs.htm#HDRA9FD6398242SYLV
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/understanding_mem_mapping.htm#HDRA9CF660C951SYLV

Libraries

sigaction Standard C Library (libc.a)
signal, sigvec Standard C Library (libc.a);

Berkeley Compatibility Library (libbsd.a)

Syntax
#include <signal.h>

int sigaction (Signal, Action, OAction)
int Signal;
struct sigaction *Action, *OAction;

int sigvec (Signal, Invec, Outvec)
int Signal;
struct sigvec *Invec, *Outvec;

void (*signal (Signal, Action)) ()
int Signal;
void (*Action) (int);

Description
The sigaction subroutine allows a calling process to examine and change the action to be taken when a
specific signal is delivered to the process issuing this subroutine.

In multi-threaded applications using the threads library (libpthreads.a), signal actions are common to all
threads within the process. Any thread calling the sigaction subroutine changes the action to be taken
when a specific signal is delivered to the threads process, that is, to any thread within the process.

Note: The sigaction subroutine must not be used concurrently to the sigwait subroutine on the
same signal.

The Signal parameter specifies the signal. If the Action parameter is not null, it points to a sigaction
structure that describes the action to be taken on receipt of the Signal parameter signal. If the OAction
parameter is not null, it points to asigaction structure in which the signal action data in effect at the time
of the sigaction subroutine call is returned. If the Action parameter is null, signal handling is unchanged;
thus, the call can be used to inquire about the current handling of a given signal.

The sigaction structure has the following fields:

Member Type Member Name Description

void(*) (int) sa_handler SIG_DFL, SIG_IGN or pointer to a
function.

sigset_t sa_mask Additional set of signals to be blocked
during execution of signal-catching
function.

int sa_flags Special flags to affect behaviour of
signal.

void(*) (int, siginfo_t *, void *) sa_sigaction Signal-catching function.

136 Technical Reference, Volume 2: Base Operating System and Extensions

The sa_handler field can have a SIG_DFL or SIG_IGN value, or it can be a pointer to a function. A
SIG_DFL value requests default action to be taken when a signal is delivered. A value of SIG_IGN
requests that the signal have no effect on the receiving process. A pointer to a function requests that the
signal be caught; that is, the signal should cause the function to be called. These actions are more fully
described in ″Parameters″.

When a signal is delivered to a thread, if the action of that signal specifies termination, stop, or continue,
the entire process is terminated, stopped, or continued, respectively.

If the SA_SIGINFO flag (see below) is cleared in the sa_flags field of the sigaction structure, the
sa_handler field identifies the action to be associated with the specified signal. If the SA_SIGINFO flag is
set in the sa_flags field, the sa_sigaction field specifies a signal-catching function. If the SA_SIGINFO bit
is cleared and the sa_handler field specifies a signal-catching function, or if the SA_SIGINFO bit is set, the
sa_mask field identifies a set of signals that will be added to the signal mask of the thread before the
signal-catching function is invoked.

The sa_mask field can be used to specify that individual signals, in addition to those in the process signal
mask, be blocked from being delivered while the signal handler function specified in the sa_handler field is
operating. The sa_flags field can have the SA_ONSTACK, SA_OLDSTYLE, or SA_NOCLDSTOP bits set
to specify further control over the actions taken on delivery of a signal.

If the SA_ONSTACK bit is set, the system runs the signal-catching function on the signal stack specified
by the sigstack subroutine. If this bit is not set, the function runs on the stack of the process to which the
signal is delivered.

If the SA_OLDSTYLE bit is set, the signal action is set to SIG_DFL label prior to calling the
signal-catching function. This is supported for compatibility with old applications, and is not recommended
since the same signal can recur before the signal-catching subroutine is able to reset the signal action and
the default action (normally termination) is taken in that case.

If a signal for which a signal-catching function exists is sent to a process while that process is executing
certain subroutines, the call can be restarted if the SA_RESTART bit is set for each signal. The only
affected subroutines are the following:

v read,readx, readv, or readvx (“read, readx, readv, readvx, or pread Subroutine” on page 9)

v write,writex, writev, or writevx (“write, writex, writev, writevx or pwrite Subroutines” on page 449)

v ioctl orioctlx

v fcntl, lockf, or flock

v wait, wait3, orwaitpid (“wait, waitpid, wait3, or wait364 Subroutine” on page 385)

Other subroutines do not restart and return EINTR label, independent of the setting of the SA_RESTART
bit.

If SA_SIGINFO is cleared and the signal is caught, the signal-catching function will be entered as: void
func(int signo);

where signo is the only argument to the signal catching function. In this case the sa_handler member must
be used to describe the signal catching function and the application must not modify the sa_sigaction
member. If SA_SIGINFO is set and the signal is caught, the signal-catching function will be entered as:
void func(int signo, siginfo_t * info, void * context); where two additional arguments are passed
to the signal catching function. The second argument will point to an object of type siginfo_t explaining the
reason why the signal was generated; the third argument can be cast to a pointer to an object of type
ucontext_t to refer to the receiving process’ context that was interrupted when the signal was delivered. In
this case the sa_sigaction member must be used to describe the signal catching function and the
application must not modify the sa_handler member. The si_signo member contains the
system-generated signal number. The si_errno member may contain implementation-dependent additional

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 137

../../libs/basetrf1/ioctl32.htm#HDRDW73VICHRIS
../../libs/basetrf1/fcntl.htm#HDRNEM2E0GACO
../../libs/basetrf1/lockfx.htm#HDRA142945D

error information; if non-zero, it contains an error number identifying the condition that caused the signal to
be generated. The si_code member contains a code identifying the cause of the signal. If the value of
si_code is less than or equal to 0, then the signal was generated by a process and si_pid and si_uid
respectively indicate the process ID and the real user ID of the sender. The signal.h header description
contains information about the signal specific contents of the elements of the siginfo_t type. If
SA_NOCLDWAIT is set, and sig equals SIGCHLD, child processes of the calling processes will not be
transformed into zombie processes when they terminate. If the calling process subsequently waits for its
children, and the process has no unwaited for children that were transformed into zombie processes, it will
block until all of its children terminate, and wait, wait3, waitid and waitpid will fail and set errno to
ECHILD. Otherwise, terminating child processes will be transformed into zombie processes, unless
SIGCHLD is set to SIG_IGN. If SA_RESETHAND is set, the disposition of the signal will be reset to
SIG_DFL and the SA_SIGINFO flag will be cleared on entry to the signal handler. If SA_NODEFER is set
and sig is caught, sig will not be added to the process’ signal mask on entry to the signal handler unless it
is included in sa_mask. Otherwise, sig will always be added to the process’ signal mask on entry to the
signal handler. If sig is SIGCHLD and the SA_NOCLDSTOP flag is not set in sa_flags , and the
implementation supports the SIGCHLD signal, then a SIGCHLD signal will be generated for the calling
process whenever any of its child processes stop. If sig is SIGCHLD and the SA_NOCLDSTOP flag is set
in sa_flags , then the implementation will not generate a SIGCHLD signal in this way. When a signal is
caught by a signal-catching function installed by sigaction, a new signal mask is calculated and installed
for the duration of the signal-catching function (or until a call to either sigprocmask orsigsuspend is
made). This mask is formed by taking the union of the current signal mask and the value of the sa_mask
for the signal being delivered unless SA_NODEFER or SA_RESETHAND is set, and then including the
signal being delivered. If and when the user’s signal handler returns normally, the original signal mask is
restored. Once an action is installed for a specific signal, it remains installed until another action is
explicitly requested (by another call to sigaction ()), until the SA_RESETHAND flag causes resetting of the
handler, or until one of the exec functions is called. If the previous action for sig had been established by
signal, the values of the fields returned in the structure pointed to by oact are unspecified, and in
particular oact->sa_handler is not necessarily the same value passed to signal. However, if a pointer to
the same structure or a copy thereof is passed to a subsequent call to sigaction via the act argument,
handling of the signal will be as if the original call to signal were repeated. If sigaction fails, no new
signal handler is installed. It is unspecified whether an attempt to set the action for a signal that cannot be
caught or ignored to SIG_DFL is ignored or causes an error to be returned with errno set to EINVAL.

If SA_SIGINFO is not set in sa_flags, then the disposition of subsequent occurrences of sig when it is
already pending is implementation-dependent; the signal-catching function will be invoked with a single
argument.

The sigvec and signal subroutines are provided for compatibility to older operating systems. Their
function is a subset of that available with sigaction.

The sigvec subroutine uses the sigvec structure instead of the sigaction structure. The sigvec structure
specifies a mask as an int instead of a sigset_t. The mask for the sigvec subroutine is constructed by
setting the i-th bit in the mask if signal i is to be blocked. Therefore, the sigvec subroutine only allows
signals between the values of 1 and 31 to be blocked when a signal-handling function is called. The other
signals are not blocked by the signal-handler mask.

The sigvec structure has the following members:
int (*sv_handler)();
/* signal handler */
int sv_mask;
/* signal mask */
int sv_flags;
/* flags */

The sigvec subroutine in the libbsd.a library interprets the SV_INTERRUPT flag and inverts it to the
SA_RESTART flag of thesigaction subroutine. The sigvec subroutine in the libc.a library always sets the
SV_INTERRUPT flag regardless of what was passed in the sigvec structure.

138 Technical Reference, Volume 2: Base Operating System and Extensions

The sigvec subroutine in the libbsd.a library interprets the SV_INTERRUPT flag and inverts it to the
SA_RESTART flag of the sigaction subroutine. The sigvec subroutine in the libc.a library always sets the
SV_INTERRUPT flag regardless of what was passed in the sigvec structure.

The signal subroutine in the libc.a library allows an action to be associated with a signal. The Action
parameter can have the same values that are described for the sv_handler field in the sigaction structure
of thesigaction subroutine. However, no signal handler mask or flags can be specified; the signal
subroutine implicitly sets the signal handler mask to additional signals and the flags to be SA_OLDSTYLE.

Upon successful completion of a signal call, the value of the previous signal action is returned. If the call
fails, a value of -1 is returned and the errno global variable is set to indicate the error as in the sigaction
call.

The signal in libc.a does not set the SA_RESTART flag. It sets the signal mask to the signal whose
action is being specified, and sets flags to SA_OLDSTYLE. The Berkeley Software Distribution (BSD)
version of signal sets the SA_RESTART flag and preserves the current settings of the signal mask and
flags. The BSD version can be used by compiling with the Berkeley Compatibility Library (libbsd.a).

The signal in libc.a does not set the SA_RESTART flag. It sets the signal mask to the signal whose
action is being specified, and sets flags to SA_OLDSTYLE. The Berkeley Software Distribution (BSD)
version of signal sets the SA_RESTART flag and preserves the current settings of the signal mask and
flags. The BSD version can be used by compiling with the Berkeley Compatibility Library (libbsd.a).

Parameters
Signal Defines the signal. The following list describes signal names and the specification for each. The

value of the Signal parameter can be any signal name from this list or its corresponding number
except the SIGKILL name. If you use the signal name, you must include the signal.h file, because
the name is correlated in the file with its corresponding number.

Note: The symbols in the following list of signals represent these actions:

* Specifies the default action that includes creating a core dump file.

@ Specifies the default action that stops the process receiving these signals.

! Specifies the default action that restarts or continues the process receiving these signals.

+ Specifies the default action that ignores these signals.

% Indicates a likely shortage of paging space.

See Terminal Programming for more information on the use of these signals.

SIGHUP
Hang-up. (1)

SIGINT
Interrupt. (2)

SIGQUIT
Quit. (3*)

SIGILL
Invalid instruction (not reset when caught). (4*)

SIGTRAP
Trace trap (not reset when caught). (5*)

SIGIOT
End process (see the abort subroutine). (6*)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 139

SIGEMT
EMT instruction. (7*)

SIGFPE
Arithmetic exception, integer divide by 0, or floating-point exception.(8*)

SIGKILL
Kill (cannot be caught or ignored). (9)

SIGBUS
Specification exception. (10*)

SIGSEGV
Segmentation violation. (11*)

SIGSYS
Parameter not valid to subroutine. (12*)

SIGPIPE
Write on a pipe when there is no process to read it. (13)

SIGALRM
Alarm clock. (14)

SIGTERM
Software termination signal. (15)

SIGURG
Urgent condition on I/O channel. (16+)

SIGSTOP
Stop (cannot be caught or ignored). (17@)

SIGTSTP
Interactive stop. (18@)

SIGCONT
Continue if stopped. (19!)

SIGCHLD
To parent on child stop or exit. (20+)

SIGTTIN
Background read attempted from control terminal. (21@)

SIGTTOU
Background write attempted from control terminal. (22@)

SIGIO Input/output possible or completed. (23+)

SIGXCPU
CPU time limit exceeded (see the setrlimit subroutine). (24)

SIGXFSZ
File size limit exceeded (see the setrlimit subroutine).(25)

reserved
(26)

SIGMSG
Input data has been stored into the input ring buffer. (27#)

SIGWINCH
Window size change. (28+)

SIGPWR
Power-fail restart. (29+)

140 Technical Reference, Volume 2: Base Operating System and Extensions

SIGUSR1
User-defined signal 1. (30)

SIGUSR2
User-defined signal 2. (31)

SIGPROF
Profiling timer expired. (see the setitimer subroutine).(32)

SIGDANGER
Paging space low. (33+%)

SIGVTALRM
Virtual time alarm (see the setitimer subroutine). (34)

SIGMIGRATE
Migrate process. (35)

SIGPRE
Programming exception (user defined). (36)

reserved
(37-58)

SIGGRANT
Monitor access wanted. (60#)

SIGRETRACT
Monitor access should be relinquished. (61#)

SIGSOUND
A sound control has completed execution. (62#)

SIGSAK
Secure attention key. (63)

Action Points to a sigaction structure that describes the action to be taken upon receipt of the Signal
parameter signal.

The three types of actions that can be associated with a signal (SIG_DFL, SIG_IGN, or a pointer
to a function) are described as follows:

v SIG_DFL Default action: signal-specific default action.

Except for those signal numbers marked with a + (plus sign), @ (at sign), or ! (exclamation
point), the default action for a signal ends the receiving process with all of the consequences
described in the _exit subroutine. In addition, a memory image file is created in the current
directory of the receiving process if an asterisk appears with a Signal parameter and the
following conditions are met:

– The saved user ID and the real user ID of the receiving process are equal.

– An ordinary file named core exists in the current directory and is writable, or it can be
created. If the file is created, it must have the following properties:

The access permission code 0666 (0x1B6), modified by the file-creation mask (see the
umask subroutine)

A file owner ID that is the same as the effective user ID of the receiving process

A file group ID that is the same as the effective group ID of the receiving process.

For signal numbers marked with a ! (exclamation point), the default action restarts the receiving
process if it has stopped, or continues to run the receiving process.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 141

For signal numbers marked with a @ (at sign), the default action stops the execution of the
receiving process temporarily. When a process stops, a SIGCHLD signal is sent to its parent
process, unless the parent process has set the SA_NOCLDSTOP bit. While a process has
stopped, any additional signals that are sent are not delivered until the process has started
again. An exception to this is the SIGKILL signal, which always terminates the receiving
process. Another exception is the SIGCONT signal, which always causes the receiving process
to restart or continue running. A process whose parent process has ended is sent a SIGKILL
signal if the SIGTSTP, SIGTTIN, or SIGTTOU signals are generated for that process.

For signal numbers marked with a +, the default action ignores the signal. In this case, the
delivery of a signal does not affect the receiving process.

If a signal action is set to SIG_DFL while the signal is pending, the signal remains pending.

v SIG_IGN Ignore signal.

Delivery of the signal does not affect the receiving process. If a signal action is set to the
SIG_IGN action while the signal is pending, the pending signal is discarded.

An exception to this is the SIGCHLD signal whose SIG_DFL action ignores the signal. If the
action for the SIGCHLD signal is set to SIG_IGN, child processes of the calling processes will
not be transformed into zombie processes when they terminate. If the calling process
subsequently waits for its children, and the process has no unwaited for children that were
transformed into zombie processes, it will block until all of its children terminate, and wait,
wait3, waitid and waitpid will fail and set errno to ECHILD.

Note: The SIGKILL and SIGSTOP signals cannot be ignored.

v Pointer to a function, catch signal.

Upon delivery of the signal, the receiving process runs the signal-catching function specified by
the pointer to function. The signal-handler subroutine can be declared as follows:
handler(Signal, Code, SCP)
int Signal, Code;
struct sigcontext *SCP;

The Signal parameter is the signal number. The Code parameter is provided only for
compatibility with other UNIX-compatible systems. The Code parameter value is always 0. The
SCP parameter points to the sigcontext structure that is later used to restore the previous
execution context of the process. The sigcontext structure is defined in the signal.h file.

A new signal mask is calculated and installed for the duration of the signal-catching function (or
until sigprocmask orsigsuspend subroutine is made). This mask is formed by joining the
process-signal mask (the mask associated with the action for the signal being delivered) and
the mask corresponding to the signal being delivered. The mask associated with the
signal-catching function is not allowed to block those signals that cannot be ignored. This is
enforced by the kernel without causing an error to be indicated. If and when the signal-catching
function returns, the original signal mask is restored (modified by any sigprocmask calls that
were made since the signal-catching function was called) and the receiving process resumes
execution at the point it was interrupted.

The signal-catching function can cause the process to resume in a different context by calling
the longjmp subroutine. When the longjmp subroutine is called, the process leaves the signal
stack, if it is currently on the stack, and restores the process signal mask to the state when the
corresponding setjmp subroutine was made.

Once an action is installed for a specific signal, it remains installed until another action is
explicitly requested (by another call to the sigaction subroutine), or until one of the exec

142 Technical Reference, Volume 2: Base Operating System and Extensions

subroutines is called. An exception to this is when the SA_OLDSTYLE bit is set. In this case
the action of a caught signal gets set to the SIG_DFL action before the signal-catching function
for that signal is called.

If a signal action is set to a pointer to a function while the signal is pending, the signal remains
pending.

When signal-catching functions are invoked asynchronously with process execution, the
behavior of some of the functions defined by this standard is unspecified if they are called from
a signal-catching function. The following set of functions are reentrant with respect to signals;
that is, applications can invoke them, without restriction, from signal-catching functions:

_exit

access

alarm

cfgetispeed

cfgetospeed

cfsetispeed

cfsetospeed

chdir

chmod

chown

close

creat

dup

dup2

exec

execle

execve

fcntl

fork

fpathconf

fstat

getegid

geteuid

getgid

getgroups

getpgrp

getpid

getppid

getuid

kill

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 143

link

lseek

mkdir

mkfifo

open

pathconf

pause

pipe

raise

read

readx

rename

rmdir

setgid

setpgid

setpgrp

setsid

setuid

sigaction

sigaddset

sigdelset

sigemptyset

sigismember

signal

sigpending

sigprocmask

sigsuspend

sleep

stat

statx

sysconf

tcdrain

tcflow

tcflush

tcgetattr

tcgetpgrp

tcsendbreak

144 Technical Reference, Volume 2: Base Operating System and Extensions

tcsetattr

tcsetpgrp

time

times

umask

uname

unlink

ustat

utime

wait

waitpid

write

All other subroutines should not be called from signal-catching functions since their behavior is
undefined.

OAction
Points to a sigaction structure in which the signal action data in effect at the time of the sigaction
subroutine is returned.

Invec Points to a sigvec structure that describes the action to be taken upon receipt of the Signal
parameter signal.

Outvec
Points to a sigvec structure in which the signal action data in effect at the time of the sigvec
subroutine is returned.

Action Specifies the action associated with a signal.

Return Values
Upon successful completion, the sigaction subroutine returns a value of 0. Otherwise, a value of
SIG_ERR is returned and the errno global variable is set to indicate the error.

Error Codes
The sigaction subroutine is unsuccessful and no new signal handler is installed if one of the following
occurs:

EFAULT The Action or OAction parameter points to a location outside of the allocated address space of the
process.

EINVAL The Signal parameter is not a valid signal number.
EINVAL An attempt was made to ignore or supply a handler for theSIGKILL, SIGSTOP, and SIGCONT signals.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The acct subroutine, _exit, exit, or atexit subroutine, getinterval,incinterval, absinterval, resinc,
resabs, alarm,ualarm, getitimer, or setitimer subroutine, getrlimit, setrlimit, or vlimit subroutine, kill

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 145

../../libs/basetrf1/acct.htm#HDRA087914AA
../../libs/basetrf1/exit.htm#HDRA087913E7
../../libs/basetrf1/getinterval.htm#HDRA2789BCE
../../libs/basetrf1/getinterval.htm#HDRA2789BCE
../../libs/basetrf1/getrlimit_64.htm#HDRA215961F
../../libs/basetrf1/kill.htm#HDRA199944D

subroutine, longjmp or setjmp (“setjmp or longjmp Subroutine” on page 106) subroutine, pause
subroutine, ptrace subroutine, sigpause or sigsuspend (“sigsuspend or sigpause Subroutine” on
page 158) subroutine, sigprocmask,sigsetmask, or sigblock (“sigprocmask, sigsetmask, or sigblock
Subroutine” on page 151) subroutine, sigstack (“sigstack Subroutine” on page 157) subroutine, sigwait
(“sigwait Subroutine” on page 161) subroutine, umask (“umask Subroutine” on page 364) subroutine, wait,
waitpid, or wait3 (“wait, waitpid, wait3, or wait364 Subroutine” on page 385) subroutine.

The kill command.

The core file.

Signal Management in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs provides more information about signal management in multi-threaded processes.

sigaltstack Subroutine

Purpose
Allows a process to define and examine the state of an alternate stack for signal handlers.

Library
(libc.a)

Syntax
#include <signal.h>

int sigaltstack(const stack_t *ss, stack_t *oss);

Description
The sigaltstack subroutine allows a process to define and examine the state of an alternate stack for
signal handlers. Signals that have been explicitly declared to execute on the alternate stack will be
delivered on the alternate stack.

If ss is not null pointer, it points to a stack_t structure that specifies the alternate signal stack that will take
effect upon return from sigaltstack subroutine. The ss_flags member specifies the new stack state. If it is
set to SS_DISABLE, the stack is disabled and ss_sp and ss_ssize are ignored. Otherwise the stack will
be enabled, and the ss_sp and ss_size members specify the new address and size of the stack.

The range of addresses starting at ss_sp, up to but not including ss_sp + ss_size, is available to the
implementation for use as the stack.

If oss is not a null pointer, on successful completion it will point to a stack_t structure that specifies the
alternate signal stack that was in effect prior to the sigaltstack subroutine. The ss_sp and ss_size
members specify the address and size of the stack. The ss_flags member specifies the stack’s state, and
may contain one of the following values:

SS_ONSTACK The process is currently executing on the alternate signal stack. Attempts to modify the alternate
signal stack while the process is executing or it fails. This flag must not be modified by
processes.

SS_DISABLE The alternate signal stack is currently disabled.

The value of SIGSTKSZ is a system default specifying the number of bytes that would be used to cover
the usual case when manually allocating an alternate stack area. The value MINSIGSTKSZ is defined to

146 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/pause.htm#HDRA0879F0B
../../libs/basetrf1/ptrace.htm#HDRA2019BB0
../../cmds/aixcmds3/kill.htm#HDRA1579872
../../files/aixfiles/core.htm#HDRFQ280CLM
../../aixprggd/genprogc/signal_mgmt.htm

be the minimum stack size for a signal handler. In computing an alternate stack size, a program should
add that amount to its stack requirements to allow for the system implementation overhead.

After a successful call to one of the exec functions, there are no alternate stacks in the new process
image.

Parameters

ss A pointer to a stack_t structure specifying the alternate stack to use during signal handling.
oss A pointer to a stack_t structure that will indicate the alternate stack currently in use.

Return Values
Upon successful completion, sigaltstack subroutine returns 0. Otherwise, it returns -1 and set errno to
indicate the error.

-1 Not successful and the errno global variable is set to one of the following error codes.

Error Codes

EINVAL The ss parameter is not a null pointer, and the ss_flags member pointed to by ss contains flags other
that SS_DISABLE.

ENOMEM The size of the alternate stack area is less than MINSIGSTKSZ.
EPERM An attempt was made to modify an active stack.

Related Information
The sigaction (“sigaction, sigvec, or signal Subroutine” on page 135) subroutine, sigsetjmp (“sigsetjmp or
siglongjmp Subroutine” on page 156) subroutine.

sigemptyset, sigfillset, sigaddset, sigdelset, or sigismember
Subroutine

Purpose
Creates and manipulates signal masks.

Library
Standard C Library (libc.a)

Syntax
#include <signal.h>

int sigemptyset (Set)
sigset_t *Set;

int sigfillset (Set)
sigset_t *Set;

int sigaddset (Set, SignalNumber)
sigset_t *Set;
int SignalNumber;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 147

int sigdelset (Set, SignalNumber)
sigset_t *Set;
int SignalNumber;

int sigismember (Set, SignalNumber)
sigset_t *Set;
int SignalNumber;

Description
The sigemptyset, sigfillset, sigaddset, sigdelset, and sigismember subroutines manipulate sets of
signals. These functions operate on data objects addressable by the application, not on any set of signals
known to the system, such as the set blocked from delivery to a process or the set pending for a process.

The sigemptyset subroutine initializes the signal set pointed to by the Set parameter such that all signals
are excluded. The sigfillset subroutine initializes the signal set pointed to by the Set parameter such that
all signals are included. A call to either the sigfillset or sigemptyset subroutine must be made at least
once for each object of the sigset_t type prior to any other use of that object.

The sigaddset and sigdelset subroutines respectively add and delete the individual signal specified by
the SignalNumber parameter from the signal set specified by the Set parameter. The sigismember
subroutine tests whether the SignalNumber parameter is a member of the signal set pointed to by the Set
parameter.

Parameters

Set Specifies the signal set.
SignalNumber Specifies the individual signal.

Examples
To generate and use a signal mask that blocks only the SIGINT signal from delivery, enter:
#include <signal.h>

int return_value;
sigset_t newset;
sigset_t *newset_p;
. . .

newset_p = &newset;
sigemptyset(newset);
sigaddset(newset, SIGINT);
return_value = sigprocmask (SIG_SETMASK, newset_p, NULL);

Return Values
Upon successful completion, the sigismember subroutine returns a value of 1 if the specified signal is a
member of the specified set, or the value of 0 if not. Upon successful completion, the other subroutines
return a value of 0. For all the preceding subroutines, if an error is detected, a value of -1 is returned and
the errno global variable is set to indicate the error.

Error Codes
The sigfillset, sigdelset, sigismember, and sigaddset subroutines are unsuccessful if the following is
true:

EINVAL The value of the SignalNumber parameter is not a valid signal number.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

148 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information
The sigaction, sigvec, or signal (“sigaction, sigvec, or signal Subroutine” on page 135) subroutine,
sigprocmask (“sigprocmask, sigsetmask, or sigblock Subroutine” on page 151) subroutine, sigsuspend
(“sigsuspend or sigpause Subroutine” on page 158) subroutine.

siginterrupt Subroutine

Purpose
Sets restart behavior with respect to signals and subroutines.

Library
Standard C Library (libc.a)

Syntax
int siginterrupt (Signal, Flag)
int Signal, Flag;

Description
The siginterrupt subroutine is used to change the subroutine restart behavior when a subroutine is
interrupted by the specified signal. If the flag is false (0), subroutines are restarted if they are interrupted
by the specified signal and no data has been transferred yet.

If the flag is true (1), the restarting of subroutines is disabled. If a subroutine is interrupted by the specified
signal and no data has been transferred, the subroutine will return a value of -1 with the errno global
variable set to EINTR. Interrupted subroutines that have started transferring data return the amount of data
actually transferred. Subroutine interrupt is the signal behavior found on 4.1 BSD and AT&T System V
UNIX systems.

Note that the BSD signal-handling semantics are not altered in any other way. Most notably, signal
handlers always remain installed until explicitly changed by a subsequent sigaction or sigvec call, and
the signal mask operates as documented in the sigaction subroutine. Programs can switch between
restartable and interruptible subroutine operations as often as desired in the running of a program.

Issuing a siginterrupt call during the running of a signal handler causes the new action to take place on
the next signal caught.

Restart does not occur unless it is explicitly specified with the sigaction or sigvec subroutine in the libc.a
library.

Parameters

Signal Indicates the signal.
Flag Indicates true or false.

Return Values
A value of 0 indicates that the call succeeded. A value of -1 indicates that the supplied signal number is
not valid.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 149

This subroutine uses an extension of the sigvec subroutine that is not available in the BSD 4.2; hence, it
should not be used if backward compatibility is needed.

Related Information
The sigaction or sigvec (“sigaction, sigvec, or signal Subroutine” on page 135) subroutine, sigpause
(“sigsuspend or sigpause Subroutine” on page 158) subroutine, sigsetmask or sigblock (“sigprocmask,
sigsetmask, or sigblock Subroutine” on page 151) subroutine.

sigpending Subroutine

Purpose
Returns a set of signals that are blocked from delivery.

Library
Standard C Library (libc.a)

Syntax
#include <signal.h>

int sigpending (Set)
sigset_t *Set;

Description
The sigpending subroutine stores a set of signals that are blocked from delivery and pending for the
calling thread, in the space pointed to by the Set parameter.

Parameters

Set Specifies the set of signals.

Return Values
Upon successful completion, the sigpending subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The sigpending subroutine is unsuccessful if the following is true:

EINVAL The input parameter is outside the user’s address space.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The sigprocmask (“sigprocmask, sigsetmask, or sigblock Subroutine” on page 151) subroutine.

150 Technical Reference, Volume 2: Base Operating System and Extensions

sigprocmask, sigsetmask, or sigblock Subroutine

Purpose
Sets the current signal mask.

Library
Standard C Library (libc.a)

Syntax
#include <signal.h>

int sigprocmask (How, Set, OSet)
int How;
const sigset_t *Set;
sigset *OSet;

int sigsetmask (SignalMask)
int SignalMask;

int sigblock (SignalMask)
int SignalMask;

Description
Note: The sigprocmask, sigsetmask, and sigblock subroutines must not be used in a
multi-threaded application. The sigthreadmask (“sigthreadmask Subroutine” on page 159) subroutine
must be used instead.

The sigprocmask subroutine is used to examine or change the signal mask of the calling thread.

The subroutine is used to examine or change the signal mask of the calling process.

Typically, you should use the sigprocmask(SIG_BLOCK) subroutine to block signals during a critical
section of code. Then use the sigprocmask(SIG_SETMASK) subroutine to restore the mask to the
previous value returned by the sigprocmask(SIG_BLOCK) subroutine.

If there are any pending unblocked signals after the call to the sigprocmask subroutine, at least one of
those signals will be delivered before the sigprocmask subroutine returns.

The sigprocmask subroutine does not allow the SIGKILL or SIGSTOP signal to be blocked. If a program
attempts to block either signal, the sigprocmask subroutine gives no indication of the error.

Parameters

How Indicates the manner in which the set is changed. It can have one of the following values:

SIG_BLOCK
The resulting set is the union of the current set and the signal set pointed to by the Set
parameter.

SIG_UNBLOCK
The resulting set is the intersection of the current set and the complement of the signal
set pointed to by the Set parameter.

SIG_SETMASK
The resulting set is the signal set pointed to by the Set parameter.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 151

Set Specifies the signal set. If the value of the Set parameter is not null, it points to a set of signals
to be used to change the currently blocked set. If the value of the Set parameter is null, the value
of the How parameter is not significant and the process signal mask is unchanged. Thus, the call
can be used to inquire about currently blocked signals.

OSet If the OSet parameter is not the null value, the signal mask in effect at the time of the call is
stored in the space pointed to by the OSet parameter.

SignalMask Specifies the signal mask of the process.

Compatibility Interfaces
The sigsetmask subroutine allows changing the process signal mask for signal values 1 to 31. This
same function can be accomplished for all values with the sigprocmask(SIG_SETMASK) subroutine. The
signal of value i will be blocked if the ith bit of SignalMask parameter is set.

Upon successful completion, the sigsetmask subroutine returns the value of the previous signal mask. If
the subroutine fails, a value of -1 is returned and the errno global variable is set to indicate the error as in
the sigprocmask subroutine.

The sigblock subroutine allows signals with values 1 to 31 to be logically ORed into the current process
signal mask. This same function can be accomplished for all values with the sigprocmask(SIG_BLOCK)
subroutine. The signal of value i will be blocked, in addition to those currently blocked, if the i-th bit of the
SignalMask parameter is set.

It is not possible to block a SIGKILL or SIGSTOP signal using the sigblock or sigsetmask subroutine.
This restriction is silently imposed by the system without causing an error to be indicated.

Upon successful completion, the sigblock subroutine returns the value of the previous signal mask. If the
subroutine fails, a value of -1 is returned and the errno global variable is set to indicate the error as in the
sigprocmask subroutine.

Return Values
Upon completion, a value of 0 is returned. If the sigprocmask subroutine fails, the signal mask of the
process is unchanged, a value of -1 is returned, and the global variable errno is set to indicate the error.

Error Codes
The sigprocmask subroutine is unsuccessful if the following is true:

EPERM The user does not have the privilege to change the signal’s mask.
EINVAL The value of the How parameter is not equal to one of the defined values.
EFAULT The user’s mask is not in the process address space.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Examples
To set the signal mask to block only the SIGINT signal from delivery, enter:

#include <signal.h>

int return_value;
sigset_t newset;
sigset_t *newset_p;
. . .

152 Technical Reference, Volume 2: Base Operating System and Extensions

newset_p = &newset;
sigemptyset(newset_p);
sigaddset(newset_p, SIGINT);
return_value = sigprocmask (SIG_SETMASK, newset_p, NULL);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The kill or killpg subroutine, sigaction, sigvec, or signal (“sigaction, sigvec, or signal Subroutine” on
page 135) subroutine, sigaddset, sigdelset, sigemptyset, sigfillset, sigismember (“sigemptyset,
sigfillset, sigaddset, sigdelset, or sigismember Subroutine” on page 147) subroutine, sigpause
(“sigsuspend or sigpause Subroutine” on page 158) subroutine, sigpending (“sigpending Subroutine” on
page 150) subroutine, sigsuspend (“sigsuspend or sigpause Subroutine” on page 158) subroutine.

sigset, sighold, sigrelse, or sigignore Subroutine

Purpose
Enhance the signal facility and provide signal management.

Library
Standard C Library (libc.a)

Syntax
#include <signal.h>
void (*sigset(Signal, Function))()
int Signal;
void (*Function)();
int sighold (Signal)
int Signal;
int sigrelse (Signal)
int Signal;
int sigignore (Signal)
int Signal;

Description
The sigset, sighold, sigrelse, and sigignore subroutines enhance the signal facility and provide signal
management for application processes.

The sigset subroutine specifies the system signal action to be taken upon receiving a Signal parameter.

The sighld and sigrelse subroutines establish critical regions of code. A call to the sighold subroutine is
analogous to raising the priority level and deferring or holding a signal until the priority is lowered by
sigrelse. The sigrelse subroutine restores the system signal action to the action that was previously
specified by the sigset structure.

The sigignore subroutine sets the action for the Signal parameter to SIG_IGN.

The other signal management routine, signal, should not be used in conjunction with these routines for a
particular signal type.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 153

../../libs/basetrf1/kill.htm#HDRA199944D

Parameters

Signal Specifies the signal. The Signal parameter can be assigned any one of the following signals:

SIGHUP
Hang up

SIGINT Interrupt

SIGQUIT
Quit*

SIGILL Illegal instruction (not reset when caught)*

SIGTRAP
Trace trap (not reset when caught)*

SIGABRT
Abort*

SIGFPE
Floating point exception*, or arithmetic exception, integer divide by 0

SIGSYS
Bad argument to routine*

SIGPIPE
Write on a pipe with no one to read it

SIGALRM
Alarm clock

SIGTERM
Software termination signal

SIGUSR1
User-defined signal 1

SIGUSR2
User-defined signal 2.

* The default action for these signals is an abnormal termination.

For portability, application programs should use or catch only the signals listed above. Other signals are
hardware-dependant and implementation-dependant and may have very different meanings or results
across systems. For example, the System V signals (SIGEMT, SIGBUS, SIGSEGV, and SIGIOT) are
implementation-dependent and are not listed above. Specific implementations may have other
implementation-dependent signals.

154 Technical Reference, Volume 2: Base Operating System and Extensions

Function Specifies the choice. The Function parameter is declared as a type pointer to a function returning
void. The Function parameter is assigned one of four values: SIG_DFL, SIG_IGN, SIG_HOLD, or an
address of a signal-catching function. Definitions of the actions taken by each of the values are:

SIG_DFL
Terminate process upon receipt of a signal.

Upon receipt of the signal specified by the Signal parameter, the receiving process is to be
terminated with all of the consequences outlined in the _exit subroutine. In addition, if Signal
is one of the signals marked with an asterisk above, implementation-dependent abnormal
process termination routines, such as a core dump, can be invoked.

SIG_IGN
Ignore signal.

Any pending signal specified by the Signal parameter is discarded. A pending signal is a
signal that has occurred but for which no action has been taken. The system signal action is
set to ignore future occurrences of this signal type.

SIG_HOLD
Hold signal.

The signal specified by the Signal parameter is to be held. Any pending signal of this type
remains held. Only one signal of each type is held.

address Catch signal.

Upon receipt of the signal specified by the Signal parameter, the receiving process is to execute the
signal-catching function pointed to by the Function parameter. Any pending signal of this type is
released. This address is retained across calls to the other signal management functions, sighold
and sigrelse. The signal number Signal is passed as the only argument to the signal-catching
function. Before entering the signal-catching function, the value of the Function parameter for the
caught signal is set to SIG_HOLD. During normal return from the signal-catching handler, the system
signal action is restored to the Function parameter and any held signal of this type is released. If a
nonlocal goto (see the setjmp subroutine) is taken, the sigrelse subroutine must be invoked to
restore the system signal action and to release any held signal of this type.

Upon return from the signal-catching function, the receiving process will resume execution at the
point at which it was interrupted, except for implementation-defined signals in which this may not be
true.

When a signal to be caught occurs during a nonatomic operation such as a call to the read, write,
open, or ioctl subroutine on a slow device (such as a terminal); during a pause subroutine; during a
wait subroutine that does not return immediately, the signal-catching function is executed. The
interrupted routine then returns a value of -1 to the calling process with the errno global variable set
to EINTR.

Return Values
Upon successful completion, the sigset subroutine returns the previous value of the system signal action
for the specified Signal. Otherwise, it returns SIG_ERR and the errno global variable is set to indicate the
error.

For the sighold, sigrelse, and sigignore subroutines, a value of 0 is returned upon success. Otherwise, a
value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The sigset, sighold, sigrelse, or sigignore subroutine is unsuccessful if the following is true:

EINVAL The Signal value is either an illegal signal number, or the default handling of Signal cannot be changed.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 155

../../libs/basetrf1/exit.htm#HDRA087913E7

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The exit subroutine, kill subroutine, setjmp (“setjmp or longjmp Subroutine” on page 106) subroutine,
signal (“sigaction, sigvec, or signal Subroutine” on page 135) subroutine, wait (“wait, waitpid, wait3, or
wait364 Subroutine” on page 385)subroutine.

sigsetjmp or siglongjmp Subroutine

Purpose

Saves or restores stack context and signal mask.

Library

Standard C Library (libc.a)

Syntax
#include <setjmp.h>

int sigsetjmp (Environment, SaveMask)
sigjmp_buf Environment;
int SaveMask;

void siglongjmp (Environment, Value)
sigjmp_buf Environment;
int Value;

Description
The sigsetjmp subroutine saves the current stack context, and if the value of the SaveMask parameter is
not 0, the sigsetjmp subroutine also saves the current signal mask of the process as part of the calling
environment.

The siglongjmp subroutine restores the saved signal mask only if the Environment parameter was
initialized by a call to the sigsetjmp subroutine with a nonzero SaveMask parameter argument.

Parameters

Environment Specifies an address for a sigjmp_buf structure.
SaveMask Specifies the flag used to determine if the signal mask is to be saved.
Value Specifies the return value from the siglongjmp subroutine.

Return Values
The sigsetjmp subroutine returns a value of 0. The siglongjmp subroutine returns a nonzero value.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

156 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/exit.htm#HDRA087913E7
../../libs/basetrf1/kill.htm#HDRA199944D

Related Information
The setjmp or longjmp (“setjmp or longjmp Subroutine” on page 106) subroutine, sigaction (“sigaction,
sigvec, or signal Subroutine” on page 135) subroutine, sigprocmask (“sigprocmask, sigsetmask, or
sigblock Subroutine” on page 151) subroutine, sigsuspend (“sigsuspend or sigpause Subroutine” on
page 158) subroutine.

sigstack Subroutine

Purpose
Sets and gets signal stack context.

Library
Standard C Library (libc.a)

Syntax
#include <signal.h>

int sigstack (InStack, OutStack)
struct sigstack *InStack, *OutStack;

Description
The sigstack subroutine defines an alternate stack on which signals are to be processed.

When a signal occurs and its handler is to run on the signal stack, the system checks to see if the process
is already running on that stack. If so, it continues to do so even after the handler returns. If not, the signal
handler runs on the signal stack, and the original stack is restored when the handler returns.

Use the sigvec or sigaction subroutine to specify whether a given signal-handler routine is to run on the
signal stack.

Attention: A signal stack does not automatically increase in size as a normal stack does. If the stack
overflows, unpredictable results can occur.

Parameters

InStack Specifies the stack pointer of the new signal stack.

If the value of the InStack parameter is nonzero, it points to a sigstack structure, which has the
following members:

caddr_t ss_sp;
int ss_onstack;

The value of InStack->ss_sp specifies the stack pointer of the new signal stack. Since stacks grow
from numerically greater addresses to lower ones, the stack pointer passed to the sigstack
subroutine should point to the numerically high end of the stack area to be used.
InStack->ss_onstack should be set to a value of 1 if the process is currently running on that stack;
otherwise, it should be a value of 0.

If the value of the InStack parameter is 0 (that is, a null pointer), the signal stack state is not set.
OutStack Points to structure where current signal stack state is stored.

If the value of the OutStack parameter is nonzero, it points to a sigstack structure into which the
sigstack subroutine stores the current signal stack state.

If the value of the OutStack parameter is 0, the previous signal stack state is not reported.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 157

Return Values
Upon successful completion, the sigstack subroutine returns a value of 0. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

Error Codes
The sigstack subroutine is unsuccessful and the signal stack context remains unchanged if the following
is true:

EFAULT The InStack or OutStack parameter points outside of the address space of the process.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Thelongjmp (“setjmp or longjmp Subroutine” on page 106) subroutine, setjmp (“setjmp or longjmp
Subroutine” on page 106) subroutine, sigaction, signal, or sigvec (“sigaction, sigvec, or signal
Subroutine” on page 135) subroutine.

sigsuspend or sigpause Subroutine

Purpose
Automatically changes the set of blocked signals and waits for a signal.

Library
Standard C Library (libc.a)

Syntax
#include <signal.h>

int sigsuspend (SignalMask)
const sigset_t *SignalMask;

int sigpause (SignalMask)
int SignalMask;

Description
The sigsuspend subroutine replaces the signal mask of a thread with the set of signals pointed to by the
SignalMask parameter. It then suspends execution of the thread until a signal is delivered that executes a
signal-catching function or terminates the process. The sigsuspend subroutine does not allow the
SIGKILL or SIGSTOP signal to be blocked. If a program attempts to block one of these signals, the
sigsuspend subroutine gives no indication of the error.

If delivery of a signal causes the process to end, the sigsuspend subroutine does not return. If delivery of
a signal causes a signal-catching function to start, the sigsuspend subroutine returns after the
signal-catching function returns, with the signal mask restored to the set that existed prior to the
sigsuspend subroutine.

The sigsuspend subroutine sets the signal mask and waits for an unblocked signal as one atomic
operation. This means that signals cannot occur between the operations of setting the mask and waiting

158 Technical Reference, Volume 2: Base Operating System and Extensions

for a signal. If a program invokes the sigprocmask (SIG_SETMASK) and pause subroutines separately, a
signal that occurs between these subroutines might not be noticed by the pause subroutine.

In normal usage, a signal is blocked by using the sigprocmask(SIG_BLOCK,...) subroutine for
single-threaded applications, or the sigthreadmask(SIG_BLOCK,...) subroutine for multi-threaded
applications (using the libpthreads.a threads library) at the beginning of a critical section. The
process/thread then determines whether there is work for it to do. If no work is to be done, the
process/thread waits for work by calling the sigsuspend subroutine with the mask previously returned by
the sigprocmask or sigthreadmask subroutine.

Parameter

SignalMask Points to a set of signals.

Return Values
If a signal is caught by the calling thread and control is returned from the signal handler, the calling thread
resumes execution after the sigsuspend or sigpause subroutine, which always return a value of -1 and
set the errno global variable to EINTR.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

The sigpause subroutine is provided for compatibility with older UNIX systems; its function is a subset of
the sigsuspend subroutine.

Related Information
The pause subroutine, sigprocmask (“sigprocmask, sigsetmask, or sigblock Subroutine” on page 151)
subroutine, sigaction or signal (“sigaction, sigvec, or signal Subroutine” on page 135) subroutine,
sigthreadmask (“sigthreadmask Subroutine”) subroutine.

Signal Management in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs provides more information about signal management in multi-threaded processes.

sigthreadmask Subroutine

Purpose
Sets the signal mask of a thread.

Library
Threads Library (libpthreads.a)

Syntax
#include <pthread.h>
#include <signal.h>

int sigthreadmask(how, set, old_set)
int how;
const sigset_t *set;
sigset_t *old_set;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 159

../../libs/basetrf1/pause.htm#HDRA0879F0B
../../aixprggd/genprogc/signal_mgmt.htm

Description
The sigthreadmask subroutine is used to examine or change the signal mask of the calling thread. The
sigprocmask subroutine must not be used in a multi-threaded process.

Typically, the sigthreadmask(SIG_BLOCK) subroutine is used to block signals during a critical section of
code. The sigthreadmask(SIG_SETMASK) subroutine is then used to restore the mask to the previous
value returned by the sigthreadmask(SIG_BLOCK) subroutine.

If there are any pending unblocked signals after the call to the sigthreadmask subroutine, at least one of
those signals will be delivered before the sigthreadmask subroutine returns.

The sigthreadmask subroutine does not allow the SIGKILL or SIGSTOP signal to be blocked. If a
program attempts to block either signal, the sigthreadmask subroutine gives no indication of the error.

Note: The pthread.h header file must be the first included file of each source file using the threads
library.

Parameters

how Indicates the manner in which the set is changed. It can have one of the following values:

SIG_BLOCK
The resulting set is the union of the current set and the signal set pointed to by the set
parameter.

SIG_UNBLOCK
The resulting set is the intersection of the current set and the complement of the signal set
pointed to by the set parameter.

SIG_SETMASK
The resulting set is the signal set pointed to by the set parameter.

set Specifies the signal set. If the value of the Set parameter is not null, it points to a set of signals to be
used to change the currently blocked set. If the value of the Set parameter is null, the value of the How
parameter is not significant and the process signal mask is unchanged. Thus, the call can be used to
inquire about currently blocked signals.

old_set If the old_set parameter is not the null value, the signal mask in effect at the time of the call is stored in
the spaced pointed to by the old_set parameter.

Return Values
Upon completion, a value of 0 is returned. If the sigthreadmask subroutine fails, the signal mask of the
process is unchanged, a value of -1 is returned, and the global variable errno is set to indicate the error.

Error Codes
The sigthreadmask subroutine is unsuccessful if the following is true:

EFAULT The set or old_set pointers are not in the process address space.
EINVAL The value of the how parameter is not supported.
EPERM The calling thread does not have the privilege to change the signal’s mask.

Examples
To set the signal mask to block only the SIGINT signal from delivery, enter:
#include <pthread.h>
#include <signal.h>

int return_value;

160 Technical Reference, Volume 2: Base Operating System and Extensions

sigset_t newset;
sigset_t *newset_p;
. . .
newset_p = &newset;
sigemptyset(newset_p);
sigaddset(newset_p, SIGINT);
return_value = sigthreadmask(SIG_SETMASK, newset_p, NULL);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The kill or killpg subroutine, pthread_kill subroutine, sigaction, sigvec, or signal (“sigaction, sigvec, or
signal Subroutine” on page 135) subroutine, sigpause (“sigsuspend or sigpause Subroutine” on page 158)
subroutine, sigpending (“sigpending Subroutine” on page 150) subroutine, sigwait (“sigwait Subroutine”)
subroutine, sigsuspend (“sigsuspend or sigpause Subroutine” on page 158) subroutine.

Signal Management in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

sigwait Subroutine

Purpose
Blocks the calling thread until a specified signal is received.

Library
Threads Library (libpthreads.a)

Syntax
#include </usr/include/dce/cma_sigwait.h>

int sigwait (set, sig)
const sigset_t *set;
int *sig;

Description
The sigwait subroutine blocks the calling thread until one of the signal in the signal set set is received by
the thread. Only asynchronous signals can be waited for.

The signal can be either sent directly to the thread, using the pthread_kill subroutine, or to the process. In
that case, the signal will be delivered to exactly one thread that has not blocked the signal.

Concurrent use of sigaction and sigwait subroutines on the same signal is forbidden.

Parameters

set Specifies the set of signals to wait on.
sig Points to where the received signal number will be stored.

Return Values
Upon successful completion, the received signal number is returned via the sig parameter, and 0 is
returned. Otherwise, an error code is returned.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 161

../../libs/basetrf1/kill.htm#HDRA199944D
../../libs/basetrf1/pthread_kill.htm#HDRSFEVH61MANU
../../aixprggd/genprogc/signal_mgmt.htm

Error Code
The sigwait subroutine is unsuccessful if the following is true:

EINVAL The set parameter contains an invalid or unsupported signal number.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The kill subroutine, pthread_kill subroutine, sigaction (“sigaction, sigvec, or signal Subroutine” on
page 135) subroutine, sigthreadmask (“sigthreadmask Subroutine” on page 159) subroutine.

Signal Management in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs .

sin, sinl, cos, cosl, tan, or tanl Subroutine

Purpose

Computes the trigonometric functions.

Libraries
IEEE Math Library (libm.a)

or System V Math Library (libmsaa.a)

Syntax
#include <math.h>

double sin (x)
double x;

long double sinl (x)
long double x;

double cos (x)
double x;

long double cosl (x)
long double x;

double tan (x)
double x;

long double tanl (x)
long double x;

Description

The sin, cos, and tan subroutines return the sine, cosine, and tangent, respectively, of their parameters,
which are in radians. The sinl subroutine, cosl subroutine, and tanl subroutine return the same values,
but these subroutines take and return numbers of the long double data type.

162 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/kill.htm#HDRA199944D
../../libs/basetrf1/pthread_kill.htm#HDRSFEVH61MANU
../../aixprggd/genprogc/signal_mgmt.htm

Parameters

x Specifies some double-precision floating-point value. For the sinl, cosl, and tanl subroutines, specifies a long
double-precision floating-point value.

y Specifies some double-precision floating-point value. For the sinl subroutine, cosl subroutine, and tanl
subroutine, specifies a long double-precision floating-point value.

Error Codes
The sin, sinl, cos, cosl, tan, and tanl subroutines lose accuracy when passed a large value for the x
parameter. In the sin subroutine, for example, values of x that are greater than pi are argument-reduced
by first dividing them by the machine value for 2 * pi , and then using the IEEE remainder of this division
in place of x. Since the machine value of pi can only approximate its infinitely precise value, the
remainder of x/(2 * pi) becomes less accurate as x becomes larger. Similar loss of accuracy occurs for the
sinl, cos, cosl, tan, and tanl subroutines during argument reduction of large arguments.

sin, cos, When the x parameter is extremely large, these functions return 0 when there would be a
complete loss of significance. In this case, a message indicating TLOSS error is printed on the
standard error output. For less extreme values causing partial loss of significance, a PLOSS error
is generated but no message is printed. In both cases, the errno global variable is set to a
ERANGE value.

These error-handling procedures may be changed with the matherr subroutine when using the libmsaa.a
(-lmsaa) library.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The matherr subroutine, sinh, sinhl, cosh, coshl, tanh, or tanhl (“sinh, sinhl, cosh, coshl, tanh, or tanhl
Subroutine”) subroutines.

Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

128-Bit long double Floating-Point Format in AIX 5L Version 5.1 General Programming Concepts: Writing
and Debugging Programs.

sinh, sinhl, cosh, coshl, tanh, or tanhl Subroutine

Purpose

Computes hyperbolic functions.

Libraries

IEEE Math Library (libm.a)

or System V Math Library (libmsaa.a)

Syntax
#include <math.h>

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 163

../../libs/basetrf1/matherr.htm#HDRJQ4390SHAD
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/128bit_long_double_floating-point_datatype.htm#HDRCE7AE41923RAGA

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

long double sinhl (x)
double x;

long double coshl (x)
double x;

long double tanhl (x)
double x;

Description
The sinh, cosh, and tanh subroutines compute the hyperbolic trigonometric functions of their parameters.
The sinhl, coshl, and tanhl subroutines compute these functions for parameters expressed in the long
double data type.

Note: Compile any routine that uses subroutines from the libm.a library with the -lm flag. To compile the tanh.c
file, for example, enter:

cc tanh.c -lm

Parameters

x Specifies a double-precision floating-point value.

Error Codes
If the correct value overflows, the sinh, sinhl, cosh, and coshl subroutines return a correctly signed
HUGE_VAL, and the errno global variable is set to ERANGE.

These error-handling procedures should be changed with the matherr subroutine when the libmsaa.a
(-lmsaa) library is used.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The matherr subroutine, sin, cos, tan, asin, acos, atan, or atan2 (“sin, sinl, cos, cosl, tan, or tanl
Subroutine” on page 162) subroutine.

Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

128-Bit long double Floating-Point Format in AIX 5L Version 5.1 General Programming Concepts: Writing
and Debugging Programs.

sleep, nsleep or usleep Subroutine

Purpose
Suspends a current process from execution.

164 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/matherr.htm#HDRJQ4390SHAD
../../libs/basetrf1/matherr.htm#HDRJQ4390SHAD
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/128bit_long_double_floating-point_datatype.htm#HDRCE7AE41923RAGA

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>
unsigned int sleep (Seconds)

#include <sys/time.h>
int nsleep (Rqtp, Rmtp)
struct timestruc_t *Rqtp, *Rmtp;

int usleep (Useconds)
useconds_t Useconds;

Description
The nsleep subroutine is an extended form of the sleep subroutine. The sleep or nsleep subroutines
suspend the current process until:

v The time interval specified by the Rqtp parameter elapses.

v A signal is delivered to the calling process that invokes a signal-catching function or terminates the
process.

v The process is notified of an event through an event notification function.

The suspension time may be longer than requested due to the scheduling of other activity by the system.
Upon return, the location specified by the Rmtp parameter shall be updated to contain the amount of time
remaining in the interval, or 0 if the full interval has elapsed.

Parameters

Rqtp Time interval specified for suspension of execution.
Rmtp Specifies the time remaining on the interval timer or 0.
Seconds Specifies time interval in seconds.
Useconds Specifies time interval in microseconds.

Compatibility Interfaces
The sleep and usleep subroutines are provided to ensure compatibility with older versions of the
operating system, AT&T System V and BSD systems. They are implemented simply as front-ends to the
nsleep subroutine. Programs linking with the libbsd.a library get a BSD compatible version of the sleep
subroutine. The return value from the BSD compatible sleep subroutine has no significance and should be
ignored.

Return Values
The nsleep, sleep, and usleep subroutines return a value of 0 if the requested time has elapsed.

If the nsleep subroutine returns a value of -1, the notification of a signal or event was received and the
Rmtp parameter is updated to the requested time minus the time actually slept (unslept time), and the
errno global variable is set.

If the sleep subroutine returns because of a premature arousal due to delivery of a signal, the return value
will be the unslept amount (the requested time minus the time actually slept) in seconds.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 165

Error Codes
If the nsleep subroutine fails, a value of -1 is returned and the errno global variable is set to one of the
following error codes:

EINTR A signal was caught by the calling process and control has been returned from the signal-catching
routine, or the process has been notified of an event through an event notification function.

EINVAL The Rqtp parameter specified a nanosecond value less than zero or greater than or equal to one
second.

The sleep subroutine is always successful and no return value is reserved to indicate an error.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The alarm subroutine, pause subroutine, sigaction (“sigaction, sigvec, or signal Subroutine” on page 135)
subroutine.

List of Time Data Manipulation Services in AIX 5L Version 5.1 System Management Concepts: Operating
System and Devices.

Subroutines Overview in AIX 5L Version 5.1 System Management Guide: Operating System and Devices.

snprintf Subroutine

Purpose
Print formatted output. int snprintf(char *s, size_t n, const char * format, . . .);

Library
Standard library (libc.a)

Syntax
#include <stdio.h>

int snprintf (char *s, size_t n, const char *format, . . .) ;

Description
The fprintf function places output on the named output stream. The printf function places output on the
standard output stream stdout. The sprintf function places output followed by the null byte, ’\0’, in
consecutive bytes starting at *s; it is the user’s responsibility to ensure that enough space is available.

snprintf is identical to sprintf with the addition of the n argument, which states the size of the buffer
referred to by s.

Each of these functions converts, formats and prints its arguments under control of the format. The
format is a character string, beginning and ending in its initial shift state, if any. The format is composed
of zero or more directives: ordinary characters, which are simply copied to the output stream and
conversion specifications , each of which results in the fetching of zero or more arguments. The results are
undefined if there are insufficient arguments for the format. If the format is exhausted while arguments
remain, the excess arguments are evaluated but are otherwise ignored.

166 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/getinterval.htm#HDRA2789BCE
../../libs/basetrf1/pause.htm#HDRA0879F0B
../../aixbman/admnconc/tdms.htm#HDRA10F0209
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

Conversions can be applied to the nth argument after the format in the argument list, rather than to the
next unused argument. In this case, the conversion character % (see below) is replaced by the sequence
%n$, where n is a decimal integer in the range [1, {NL_ARGMAX}], giving the position of the argument in
the argument list. This feature provides for the definition of format strings that select arguments in an order
appropriate to specific languages (see the EXAMPLES section).

In format strings containing the %n$ form of conversion specifications, numbered arguments in the
argument list can be referenced from the format string as many times as required.

In format strings containing the % form of conversion specifications, each argument in the argument list is
used exactly once.

All forms of the fprintf functions allow for the insertion of a language-dependent radix character in the
output string. The radix character is defined in the program’s locale (category LC_NUMERIC). In the
POSIX locale, or in a locale where the radix character is not defined, the radix character defaults to a
period (.).

Each conversion specification is introduced by the % character or by the character sequence %n$, after
which the following appear in sequence:

v Zero or more flags (in any order), which modify the meaning of the conversion specification.

v An optional minimum field width. If the converted value has fewer bytes than the field width, it will be
padded with spaces by default on the left; it will be padded on the right, if the left-adjustment flag (-),
described below, is given to the field width. The field width takes the form of an asterisk (*), described
below, or a decimal integer.

v An optional precision that gives the minimum number of digits to appear for the d, i, o, u, x and X
conversions; the number of digits to appear after the radix character for the e, E and f conversions; the
maximum number of significant digits for the g and G conversions; or the maximum number of bytes to
be printed from a string in s and S conversions. The precision takes the form of a period (.) followed
either by an asterisk (*), described below, or an optional decimal digit string, where a null digit string is
treated as 0. If a precision appears with any other conversion character, the behavior is undefined.

v An optional h specifying that a following d, i, o, u, x or X conversion character applies to a type short int
or type unsigned short int argument (the argument will have been promoted according to the integral
promotions, and its value will be converted to type short int or unsigned short int before printing); an
optional h specifying that a following n conversion character applies to a pointer to a type short int
argument; an optional l (ell) specifying that a following d, i, o, u, x or X conversion character applies to a
type long int or unsigned long int argument; an optional l (ell) specifying that a following n conversion
character applies to a pointer to a type long int argument; or an optional L specifying that a following e,
E, f, g or G conversion character applies to a type long double argument. If an h, l or L appears with
any other conversion character, the behavior is undefined.

v An optional l specifying that a following c conversion character applies to a wint_t argument; an
optional l specifying that a following s conversion character applies to a pointer to a wchar_t argument.

v A conversion character that indicates the type of conversion to be applied.

A field width, or precision, or both, may be indicated by an asterisk (*). In this case an argument of type int
supplies the field width or precision. Arguments specifying field width, or precision, or both must appear in
that order before the argument, if any, to be converted. A negative field width is taken as a - flag followed
by a positive field width. A negative precision is taken as if the precision were omitted. In format strings
containing the %n$ form of a conversion specification, a field width or precision may be indicated by the
sequence *m$, where m is a decimal integer in the range [1, {NL_ARGMAX}] giving the position in the
argument list (after the format argument) of an integer argument containing the field width or precision, for
example:
printf("%1$d:%2$.*3$d:%4$.*3$d\n", hour, min, precision, sec);

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 167

The format can contain either numbered argument specifications (that is, %n$ and *m$), or unnumbered
argument specifications (that is, % and *), but normally not both. The only exception to this is that %% can
be mixed with the %n$ form. The results of mixing numbered and unnumbered argument specifications in
a format string are undefined. When numbered argument specifications are used, specifying the Nth
argument requires that all the leading arguments, from the first to the (N-1)th, are specified in the format
string.

The flag characters and their meanings are:

’ The integer portion of the result of a decimal conversion (%i, %d, %u, %f, %g or %G) will be formatted
with thousands’ grouping characters. For other conversions the behavior is undefined. The non-monetary
grouping character is used.

- The result of the conversion will be left-justified within the field. The conversion will be right-justified if this
flag is not specified.

+ The result of a signed conversion will always begin with a sign (+ or -). The conversion 8116 will begin with
a sign only when a negative value is converted if this flag is not specified.

space If the first character of a signed conversion is not a sign or if a signed conversion results in no characters,
a space will be prefixed to the result. This means that if the space and + flags both appear, the space flag
will be ignored.

This flag specifies that the value is to be converted to an alternative form. For o conversion, it increases
the precision (if necessary) to force the first digit of the result to be 0. For x or X conversions, a non-zero
result will have 0x (or 0X) prefixed to it. For e, E, f, g or G conversions, the result will always contain a
radix character, even if no digits follow the radix character. Without this flag, a radix character appears in
the result of these conversions only if a digit follows it. For g and G conversions, trailing zeros will not be
removed from the result as they normally are. For other conversions, the behavior is undefined.

0 For d, i, o, u, x, X, e, E, f, g and G conversions, leading zeros (following any indication of sign or base) are
used to pad to the field width; no space padding is performed. If the 0 and - flags both appear, the 0 flag
will be ignored. For d, i, o, u, x and X conversions, if a precision is specified, the 0 flag will be ignored. If
the 0 and ’ flags both appear, the grouping characters are inserted before zero padding. For other
conversions, the behavior is undefined.

The conversion characters and their meanings are:

d, i The int argument is converted to a signed decimal in the style [-]dddd. The precision specifies the minimum
number of digits to appear; if the value being converted can be represented in fewer digits, it will be
expanded with leading zeros. The default precision is 1. The result of converting 0 with an explicit precision
of 0 is no characters.

o The unsigned int argument is converted to unsigned octal format in the style dddd. The precision specifies
the minimum number of digits to appear; if the value being converted can be represented in fewer digits, it
will be expanded with leading zeros. The default precision is 1. The result of converting 0 with an explicit
precision of 0 is no characters.

u The unsigned int argument is converted to unsigned decimal format in the style dddd. The precision
specifies the minimum number of digits to appear; if the value being converted can be represented in fewer
digits, it will be expanded with leading zeros. The default precision is 1. The result of converting 0 with an
explicit precision of 0 is no characters

x The unsigned int argument is converted to unsigned hexadecimal format in the style dddd; the letters
abcdef are used. The precision specifies the minimum number of digits to appear; if the value being
converted can be represented in fewer digits, it will be expanded with leading zeros. The default precision
is 1. The result of converting 0 with an explicit precision of 0 is no characters. /TD>

X Behaves the same as the x conversion character except that letters ABCDEF are used instead of abcdef.
f The double argument is converted to decimal notation in the style [-]ddd.ddd, where the number of digits

after the radix character is equal to the precision specification. If the precision is missing, it is taken as 6; if
the precision is explicitly 0 and no # flag is present, no radix character appears. If a radix character
appears, at least one digit appears before it. The value is rounded to the appropriate number of digits.
The fprintf family of functions may make available character string representations for infinity and NaN.

168 Technical Reference, Volume 2: Base Operating System and Extensions

e, E The double argument is converted in the style [-]d.ddde +/- dd, where there is one digit before the radix
character (which is non-zero if the argument is non-zero) and the number of digits after it is equal to the
precision; if the precision is missing, it is taken as 6; if the precision is 0 and no # flag is present, no radix
character appears. The value is rounded to the appropriate number of digits. The E conversion character
will produce a number with E instead of e introducing the exponent. The exponent always contains at least
two digits. If the value is 0, the exponent is 0
The fprintf family of functions may make available character string representations for infinity and NaN.

g, G The double argument is converted in the style f or e (or in the style E in the case of a G conversion
character), with the precision specifying the number of significant digits. If an explicit precision is 0, it is
taken as 1. The style used depends on the value converted; style e (or E) will be used only if the exponent
resulting from such a conversion is less than -4 or greater than or equal to the precision. Trailing zeros are
removed from the fractional portion of the result; a radix character appears only if it is followed by a digit.
The fprintf family of functions may make available character string representations for infinity and NaN.

c The int argument is converted to an unsigned char, and the resulting byte is written.
If an l (ell) qualifier is present, the wint_t argument is converted as if by an ls conversion specification with
no precision and an argument that points to a two-element array of type wchar_t, the first element of
which contains the wint_t argument to the ls conversion specification and the second element contains a
null wide-character.

s The argument must be a pointer to an array of char. Bytes from the array are written up to (but not
including) any terminating null byte. If the precision is specified, no more than that many bytes are written.
If the precision is not specified or is greater than the size of the array, the array must contain a null byte.
If an l (ell) qualifier is present, the argument must be a pointer to an array of type wchar_t.
Wide-characters from the array are converted to characters (each as if by a call to the wcrtomb function,
with the conversion state described by an mbstate_t object initialized to zero before the first
wide-character is converted) up to and including a terminating null wide-character. The resulting characters
are written up to (but not including) the terminating null character (byte). If no precision is specified, the
array must contain a null wide-character. If a precision is specified, no more than that many characters
(bytes) are written (including shift sequences, if any), and the array must contain a null wide-character if, to
equal the character sequence length given by the precision, the function would need to access a
wide-character one past the end of the array. In no case is a partial character written.

p The argument must be a pointer to void. The value of the pointer is converted to a sequence of printable
characters, in an implementation-dependent manner. n The argument must be a pointer to an integer into
which is written the number of bytes written to the output so far by this call to one of the fprintf functions.
No argument is converted.

C Same as lc.
S Same as ls.
% Print a %; no argument is converted. The entire conversion specification must be %%.

If a conversion specification does not match one of the above forms, the behavior is undefined.

In no case does a non-existent or small field width cause truncation of a field; if the result of a conversion
is wider than the field width, the field is simply expanded to contain the conversion result. Characters
generated by fprintf and printf are printed as if fputc had been called.

The st_ctime and st_mtime fields of the file will be marked for update between the call to a successful
execution of fprintf or printf and the next successful completion of a call to fflush or fclose on the same
stream or a call to exit or abort.

Return Values
Upon successful completion, these functions return the number of bytes transmitted excluding the
terminating null in the case of sprintf or snprintf or a negative value if an output error was encountered.

If the value of n is zero on a call to snprintf, an unspecified value less than 1 is returned.

Error Codes
For the conditions under which fprintf and printf will fail and may fail, refer to fputc or fputwc.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 169

In addition, all forms of fprintf may fail if:

EILSEQ A wide-character code that does not correspond to a valid character has been detected.
EINVAL There are insufficient arguments.

In addition, printf and fprintf may fail if:

ENOMEM Insufficient storage space is available.

Implementation Specifics
If the application calling fprintf has any objects of type wint_t or wchar_t, it must also include the header
wchar.h to have these objects defined. This subroutine is part of the Base Operating System (BOS)
subroutine.

Related Information
The fputc subroutine, fscanf (“scanf, fscanf, sscanf, or wsscanf Subroutine” on page 82) subroutine,
setlocale (“setlocale Subroutine” on page 107) subroutine, wctomb (“wctomb Subroutine” on page 412)
subroutine, wchar.h file.

SpmiAddSetHot Subroutine

Purpose
Adds a set of peer statistics values to a hotset.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiHotVals *SpmiAddSetHot(HotSet, StatName,
GrandParent, maxresp,

threshold, frequency, feed_type,
except_type, severity, trap_no)

struct SpmiHotSet *HotSet;
char *StatName;
SpmiCxHdl GrandParent;
int maxresp;
int threshold;
int frequency;
int feed_type;
int excp_type;
int severity;
int trap_no;

Description
The SpmiAddSetHot subroutine adds a set of peer statistics to a hotset. The SpmiHotSet structure that
provides the anchor point to the set must exist before the SpmiAddSetHot subroutine call can succeed.

Parameters
HotSet

Specifies a pointer to a valid structure of type SpmiHotSet as created by the SpmiCreateHotSet
(“SpmiCreateHotSet” on page 173) subroutine call.

170 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/putc.htm#HDRA1429342
../../aixprggd/genprogc/nls_subr.htm#HDRA181C13
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTSET

StatName

Specifies the name of the statistic within the subcontexts (peer contexts) of the context identified
by the GrandParent parameter.

GrandParent

Specifies a valid SpmiCxHdl handle as obtained by another subroutine call. The handle must
identify a context with at least one subcontext, which contains the statistic identified by the
StatName parameter. If the context specified is one of the RTime contexts, no subcontext need to
exist at the time the SpmiAddSetHot subroutine call is issued; the presence of the metric
identified by the StatName parameter is checked against the context class description.

If the context specified has or may have multiple levels of instantiable context below it (such as
the FS and RTime/ARM contexts), the metric is only searched for at the lowest context level. The
SpmiHotSet created is a pseudo hotvals structure used to link together a peer group of
SpmiHotValsstructures, which are created under the covers, one for each subcontext of the
GrandParent context. In the case of RTime/ARM, if additional contexts are later added under the
GrandParent contexts, additional hotsets are added to the peer group. This is transparent to the
application program, except that the SpmiFirstHot, SpmiNextHot, and SpmiNextHotItem
subroutine calls will return the peer group SpmiHotVals pointer rather than the pointer to the
pseudo structure.

Note that specifying a specific volume group context (such as FS/rootvg) or a specific application
context (such as RTime/ARN/armpeek) is still valid and won’t involve creation of pseudo
SpmiHotVals structures.

maxresp

Must be non-zero if excp_type specifies that exceptions or SNMP traps must be generated. If
specified as zero, indicates that all SPMIHotItems that meet the criteria specified by threshold
must be returned, up-to a maximum of maxresp items. If both exceptions/traps and feeds are
requested, the maxresp value is used to cap the number of exceptions/alerts as well as the
number of items returned. If feed_type is specified as SiHotAlways, the maxresp parameter is still
used to return at most maxresp items.

Where the GrandParent argument specifies a context that has multiple levels of instantiable
contexts below it, the maxresp is applied to each of the lowest level contexts above the the actual
peer contexts at a time. For example, if the GrandParent context is FS (file systems) and the
system has three volume groups, then a maxresp value of 2 could cause up to a maximum of 2 x
3 = 6 responses to be generated.

threshold

Must be non-zero if excp_type specifies that exceptions or SNMP traps must be generated. If
specified as zero, indicates that all values read qualify to be returned in feeds. The value specified
is compared to the data value read for each peer statistic. If the data value exceeds the threshold,
it qualifies to be returned as an SpmiHotItems element in the SpmiHotVals structure. If the
threshold is specified as a negative value, the value qualifies if it is lower than the numeric value
of threshold. If feed_type is specified as SiHotAlways, the threshold value is ignored for feeds.
For peer statistics of type SiCounter, the threshold must be specified as a rate per second; for
SiQuantity statistics the threshold is specified as a level.

frequency

Must be non-zero if excp_type specifies that exceptions or SNMP traps must be generated.
Ignored for feeds. Specifies the minimum number of minutes that must expire between any two
exceptions/traps generated from this SpmiHotVals structure. This value must be specified as no
less than 5 minutes.

feed_type

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 171

../../perftool/prfusrgd/ch16body.htm#HDRSPMICXHDL
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTITEMS

Specifies if feeds of SpmiHotItems should be returned for this SpmiHotVals structure. The
following values are valid:
SiHotNoFeed

No feeds should be generated
SiHotThreshold

Feeds are controlled by threshold.
SiHotAlways

All values, up-to a maximum of maxresp must be returned as feeds.

excp_type

Controls the generation of exception data packets and/or the generation of SNMP Traps from
xmservd. Note that these types of packets and traps can only actually be sent if xmservd is
running. Because of this, exception packets and SNMP traps are only generated as long as
xmservd is active. Traps can only be generated on AIX systems. The conditions for generating
exceptions and traps are controlled by the threshold and frequency parameters. The following
values are valid for excp_type:

SiNoHotException
Generate neither exceptions not traps.

SiHotException
Generate exceptions but not traps.

SiHotTrap
Generate SNMP traps but not exceptions.

SiHotBoth
Generate both exceptions and SNMP traps.

severity

Required to be positive and greater than zero if exceptions are generated, otherwise specify as
zero. Used to assign a severity code to the exception for display by exmon.

trap_no

Required to be positive and greater than zero if SNMP traps are generated, otherwise specify as
zero. Used to assign the trap number in the generated SNMP trap.

Return Values
The SpmiAddSetHot subroutine returns a pointer to a structure of type SpmiHotVals if successful. If
unsuccessful, the subroutine returns a NULL value.

Programming Notes
The SpmiAddSetHot functions in a straight forward manner and as described previously in all cases
where the GrandParent context is a context that has only one level of instantiable contexts below it. This
covers most context types such as CPU, Disk, LAN, etc. In a few cases, currently only the FS (file system)
and RTime/ARM (application response) contexts, the SPMI works by creating pseudo-hotvals structures
that effectively expand the hotset. These pseudo-hotvals structures are created either at the time the
SpmiAddSetHot call is issued or when new subcontexts are created for a context that’s already the
GrandParent of a hotvals peer set. For example:

When a peer set is created for RTime/ARM, maybe only a few or no subcontexts of this context exists. If
two applications were defined at this point, say checking and savings, one valsset would be created for
the RTime/ARM context and a pseudo-valsset for each of RTime/ARM/checking and
RTime/ARM/savings. As new applications are added to the RTime/ARM contexts, new pseudo-valssets
are automatically added to the hotset.

172 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTVALS

Pseudo-valssets represent an implementation convenience and also helps minimize the impact of
retrieving and presenting data for hotsets. As far as the caller of the RSiGetHotItem subroutine call is
concerned, it is completely transparent. All this caller will ever see is the real hotvals structure. That is not
the case for callers of SpmiFirstHot, SpmiNextHot, and SpmiNextHotItem. All of these subroutines will
return pseudo-valssets and the calling program should be prepared to handle this.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

SpmiCreateHotSet

Purpose

Creates an empty hotset.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiHotSet *SpmiCreateHotSet()

Description
The SpmiCreateHotSet subroutine creates an empty hotset and returns a pointer to an SpmiHotSet
structure.This structure provides the anchor point for a hotset and must exist before the SpmiAddSetHot
subroutine can be successfully called.

Return Values
The SpmiCreateHotSet subroutine returns a pointer to a structure of type SpmiHotSet if successful. If
unsuccessful, the subroutine returns a NULL value.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 173

../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTSET

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiDelSetHot Subroutine” on page 179

v “SpmiFreeHotSet Subroutine” on page 187

v “SpmiAddSetHot Subroutine” on page 170

v Understanding SPMI Data Areas

SpmiCreateStatSet Subroutine

Purpose
Creates an empty set of statistics.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiStatSet *SpmiCreateStatSet()

Description
The SpmiCreateStatSet subroutine creates an empty set of statistics and returns a pointer to an
SpmiStatSet structure.

The SpmiStatSet structure provides the anchor point to a set of statistics and must exist before the
SpmiPathAddSetStat subroutine can be successfully called.

Return Values
The SpmiCreateStatSet subroutine returns a pointer to a structure of type SpmiStatSet if successful. If
unsuccessful, the subroutine returns a NULL value.

174 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRDATAAREAS
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATSET

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiDelSetStat Subroutine” on page 181

v “SpmiFreeStatSet Subroutine” on page 188

v “SpmiPathAddSetStat Subroutine” on page 207

v Understanding SPMI Data Areas

SpmiDdsAddCx Subroutine

Purpose
Adds a volatile context to the contexts defined by an application.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

char *SpmiDdsAddCx(Ix, Path, Descr, Asnno)
ushort Ix;
char *Path, *Descr;
int Asnno;

Description
The SpmiDdsAddCx subroutine uses the shared memory area to inform the SPMI that a context is
available to be added to the context hierarchy, moves a copy of the context to shared memory, and
allocates memory for the data area.

Parameters
Ix

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 175

../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRDATAAREAS

Specifies the element number of the added context in the table of dynamic contexts. No context
can be added if the table of dynamic contexts has not been defined in the SpmiDdsInit subroutine
call. The first element of the table is element number 0.

Path

Specifies the full path name of the context to be added. If the context is not at the top-level, the
parent context must already exist.

Descr

Provides the description of the context to be added as it will be presented to data consumers.

Asnno

Specifies the ASN.1 number to be assigned to the new context. All subcontexts on the same level
as the new context must have unique ASN.1 numbers. Typically, each time the SpmiDdsAddCx
subroutine adds a subcontext to the same parent context, the Asnno parameter is incremented.
See Making Dynamic Data-Supplier Statistics Unique for more information about ASN.1 numbers.

Return Values
If successful, the SpmiDdsAddCx subroutine returns the address of the shared memory data area. If an
error occurs, an error text is placed in the external SpmiErrmsg character array, and the subroutine
returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiDdsDelCx Subroutine”

v “SpmiDdsInit Subroutine” on page 178

SpmiDdsDelCx Subroutine

Purpose
Deletes a volatile context.

176 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRUNIQUE
../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

int SpmiDdsDelCx(Area)
char *Area;

Description
The SpmiDdsDelCx subroutine informs the SPMI that a previously added, volatile context should be
deleted.

If the SPMI has not detected that the context to delete was previously added dynamically, the
SpmiDdsDelCx subroutine removes the context from the list of to-be-added contexts and returns the
allocated shared memory to the free list. Otherwise, the SpmiDdsDelCx subroutine indicates to the SPMI
that a context and its associated statistics must be removed from the context hierarchy and any allocated
shared memory must be returned to the free list.

Parameters
Area

Specifies the address of the previously allocated shared memory data area as returned by an
SpmiDdsAddCx subroutine call.

Return Values
If successful, the SpmiDdsDelCx subroutine returns a value of 0. If an error occurs, an error text is placed
in the external SpmiErrmsg character array, and the subroutine returns a nonzero value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiDdsAddCx Subroutine” on page 175

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 177

../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES

v “SpmiDdsInit Subroutine”

v Understanding SPMI Data Areas

SpmiDdsInit Subroutine

Purpose
v Establishes a program as a dynamic data-supplier (DDS) program.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

SpmiShare *SpmiDdsInit(CxTab, CxCnt, IxTab, IxCnt,
FileName)
cx_create *CxTab, *IxTab;
int CxCnt, IxCnt;
char *FileName;

Description
The SpmiDdsInit subroutine establishes a program as a dynamic data-supplier (DDS) program. To do so,
the SpmiDdsInit subroutine:

1. Determines the size of the shared memory required and creates a shared memory segment of that
size.

2. Moves all static contexts and all statistics referenced by those contexts to the shared memory.

3. Calls the SPMI and requests it to add all of the DDS static contexts to the context tree.

Notes:

1. The SpmiDdsInit subroutine issues an SpmiInit subroutine call if the application program has
not issued one.

2. If the calling program uses shared memory for other purposes, including memory mapping of
files, the SpmiDdsInit or the SpmiInit subroutine call must be issued before access is
established to other shared memory areas.

Parameters
CxTab

Specifies a pointer to the table of nonvolatile contexts to be added.

CxCnt

Specifies the number of elements in the table of nonvolatile contexts. Use the CX_L macro to find
this value.

IxTab

Specifies a pointer to the table of volatile contexts the program may want to add later. If no
contexts are defined, specify NULL.

IxCnt

Specifies the number of elements in the table of volatile contexts. Use the CX_L macro to find this
value. If no contexts are defined, specify 0.

FileName

178 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRDATAAREAS

Specifies the fully qualified path and file name to use when creating the shared memory segment.
At execution time, if the file exists, the process running the DDS must be able to write to the file.
Otherwise, the SpmiDdsInit subroutine call does not succeed. If the file does not exist, it is
created. If the file cannot be created, the subroutine returns an error. If the file name includes
directories that do not exist, the subroutine returns an error.

For non-AIX systems, a sixth argument is required to inform the SPMI how much memory to
allocate in the DDS shared memory segment. This is not required for AIX systems because
facilities exist to expand a memory allocation in shared memory. The sixth argument is:

size

Size in bytes of the shared memory area to allocate for the DDS program. This parameter is of
type int.

Return Values
If successful, the SpmiDdsInit subroutine returns the address of the shared memory control area. If an
error occurs, an error text is placed in the external SpmiErrmsg character array, and the subroutine
returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiExit Subroutine” on page 182

v “SpmiInit Subroutine” on page 196

v Understanding SPMI Data Areas

SpmiDelSetHot Subroutine

Purpose
Removes a single set of peer statistics from a hotset.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 179

../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRDATAAREAS

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

int SpmiDelSetHot(HotSet, HotVal)
struct SpmiHotSet *HotSet;
struct SpmiHotVals *HotVal;

Description
The SpmiDelSetHot subroutine removes a single set of peer statistics, identified by the HotVal parameter,
from a hotset, identified by the HotSet parameter.

Parameters
HotSet

Specifies a pointer to a valid structure of type SpmiHotSet, as created by the “SpmiCreateHotSet”
on page 173 subroutine call.

HotVal

Specifies a pointer to a valid structure of type SpmiHotVals, as created by the “SpmiAddSetHot
Subroutine” on page 170 subroutine call. You cannot specify an SpmiHotVals that was internally
generated by the SPMI library code as described under the GrandParent parameter to
SpmiAddSetHot.

Return Values
The SpmiDelSetHot subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns a
nonzero value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

180 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTSET
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTVALS
../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES

Related Information
For related information, see:

v “SpmiCreateHotSet” on page 173

v “SpmiFreeHotSet Subroutine” on page 187

v “SpmiAddSetHot Subroutine” on page 170

v Understanding SPMI Data Areas

SpmiDelSetStat Subroutine

Purpose
Removes a single statistic from a set of statistics.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

int SpmiDelSetStat(StatSet, StatVal)
struct SpmiStatSet *StatSet;
struct SpmiStatVals *StatVal;

Description
The SpmiDelSetStat subroutine removes a single statistic, identified by the StatVal parameter, from a set
of statistics, identified by the StatSet parameter.

Parameters
StatSet

Specifies a pointer to a valid structure of type SpmiStatSet as created by the “SpmiCreateStatSet
Subroutine” on page 174 subroutine call.

StatVal

Specifies a pointer to a valid structure of type SpmiStatVals as created by the
“SpmiPathAddSetStat Subroutine” on page 207 subroutine call.

Return Values
The SpmiDelSetStat subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns
a nonzero value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 181

../../perftool/prfusrgd/ch16body.htm#HDRDATAAREAS
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATSET
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATVALS
../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiCreateStatSet Subroutine” on page 174

v “SpmiFreeStatSet Subroutine” on page 188

v “SpmiPathAddSetStat Subroutine” on page 207

v Understanding SPMI Data Areas

SpmiExit Subroutine

Purpose
Terminates a dynamic data supplier (DDS) or local data consumer program’s association with the SPMI,
and releases allocated memory.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

void SpmiExit()

Description
A successful “SpmiInit Subroutine” on page 196 or “SpmiDdsInit Subroutine” on page 178 call allocates
shared memory. Therefore, a Dynamic Data Supplier (DDS) program that has issued a successful
SpmiInit or SpmiDdsInit subroutine call should issue an SpmiExit subroutine call before the program
exits the SPMI. Allocated memory is not released until the program issues an SpmiExit subroutine call.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiInit Subroutine” on page 196

v “SpmiDdsInit Subroutine” on page 178

182 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRDATAAREAS

SpmiFirstCx Subroutine

Purpose
Locates the first subcontext of a context.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiCxLink *SpmiFirstCx(CxHandle)
SpmiCxHdl CxHandle;

Description
The SpmiFirstCx subroutine locates the first subcontext of a context. The subroutine returns a NULL
value if no subcontexts are found.

The structure pointed to by the returned pointer contains a handle to access the contents of the
corresponding SpmiCx structure through the SpmiGetCxsubroutine call.

Parameters
CxHandle

Specifies a valid SpmiCxHdl handle as obtained by another subroutine call.

Return Values
The SpmiFirstCx subroutine returns a pointer to an SpmiCxLink structure if successful. If unsuccessful,
the subroutine returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 183

../../perftool/prfusrgd/ch16body.htm#HDRSPMICX
../../perftool/prfusrgd/ch16body.htm#HDRSPMICXHDL
../../perftool/prfusrgd/ch16body.htm#HDRSPMICXLINK
../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES

Related Information
For related information, see:

v “SpmiGetCx Subroutine” on page 189

v “SpmiNextCx Subroutine” on page 199

v Understanding SPMI Data Areas

v Understanding the SPMI Data Hierarchy

SpmiFirstHot Subroutine

Purpose
Locates the first of the sets of peer statistics belonging to a hotset.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiHotVals *SpmiFirstHot(HotSet)
struct SpmiHotSet HotSet;

Description
The SpmiFirstHot subroutine locates the first of the SpmiHotVals structures belonging to the specified
SpmiHotSet. Using the returned pointer, the SpmiHotSet can then either be decoded directly by the
calling program, or it can be used to specify the starting point for a subsequent SpmiNextHotItem
subroutine call. The SpmiFirstHot subroutine should only be executed after a successful call to the
SpmiGetHotSet subroutine.

Parameters
HotSet

Specifies a valid SpmiHotSet structure as obtained by another subroutine call.

Return Values
The SpmiFirstHot subroutine returns a pointer to a structure of type SpmiHotVals structure if successful.
If unsuccessful, the subroutine returns a NULL value. A returned pointer may refer to a pseudo-hotvals
structure as described in the SpmiAddSetHot subroutine.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

184 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRDATAAREAS
../../perftool/prfusrgd/ch16body.htm#HDRHIERARCHY
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTVALS
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTSET
../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiCreateHotSet” on page 173

v “SpmiAddSetHot Subroutine” on page 170

v “SpmiNextHot Subroutine” on page 200

v “SpmiNextHotItem Subroutine” on page 201

v Understanding SPMI Data Areas

v Understanding the SPMI Data Hierarchy

SpmiFirstStat Subroutine

Purpose
Locates the first of the statistics belonging to a context.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiStatLink *SpmiFirstStat(CxHandle)
SpmiCxHdl CxHandle;

Description
The SpmiFirstStat subroutine locates the first of the statistics belonging to a context. The subroutine
returns a NULL value if no statistics are found.

The structure pointed to by the returned pointer contains a handle to access the contents of the
corresponding SpmiStat structure through the “SpmiGetStat Subroutine” on page 192 call.

Parameters
CxHandle

Specifies a valid SpmiCxHdl handle as obtained by another subroutine call.

Return Values
The SpmiFirstStat subroutine returns a pointer to a structure of type SpmiStatLink if successful. If
unsuccessful, the subroutine returns a NULL value.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 185

../../perftool/prfusrgd/ch16body.htm#HDRDATAAREAS
../../perftool/prfusrgd/ch16body.htm#HDRHIERARCHY
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTAT
../../perftool/prfusrgd/ch16body.htm#HDRSPMICXHDL
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATLINK

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiGetStat Subroutine” on page 192

v “SpmiNextStat Subroutine” on page 203

v Understanding SPMI Data Areas

v Understanding the SPMI Data Hierarchy

SpmiFirstVals Subroutine

Purpose
Returns a pointer to the first SpmiStatVals structure belonging to a set of statistics.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiStatVals *SpmiFirstVals(StatSet)
struct SpmiStatSet *StatSet;

Description
The SpmiFirstVals subroutine returns a pointer to the first SpmiStatVals structure belonging to the set of
statistics identified by the StatSet parameter. SpmiStatVals structures are accessed in reverse order so
the last statistic added to the set of statistics is the first one returned. This subroutine call should only be
issued after an SpmiGetStatSet subroutine has been issued against the statset.

Parameters
StatSet

186 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRDATAAREAS
../../perftool/prfusrgd/ch16body.htm#HDRHIERARCHY
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATVALS

Specifies a pointer to a valid structure of type SpmiStatSet as created by the SpmiCreateStatSet
subroutine call.

Return Values
The SpmiFirstVals subroutine returns a pointer to an SpmiStatVals structure if successful. If
unsuccessful, the subroutine returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiCreateStatSet Subroutine” on page 174

v “SpmiNextVals Subroutine” on page 204

v Understanding SPMI Data Areas

SpmiFreeHotSet Subroutine

Purpose
Erases a hotset.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

int SpmiFreeHotSet(HotSet)
struct SpmiHotSet *HotSet;

Description
The SpmiFreeHotSet subroutine erases the hotset identified by the HotSet parameter. All SpmiHotVals
structures chained off the SpmiHotSet structure are deleted before the set itself is deleted.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 187

../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRDATAAREAS
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTVALS
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTSET

Parameters
HotSet

Specifies a pointer to a valid structure of type SpmiHotSet as created by the “SpmiCreateHotSet”
on page 173 subroutine call.

Return Values
The SpmiFreeHotSet subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns
a nonzero value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiCreateHotSet” on page 173

v “SpmiDelSetHot Subroutine” on page 179

v “SpmiAddSetHot Subroutine” on page 170

v Understanding SPMI Data Areas

SpmiFreeStatSet Subroutine

Purpose
Erases a set of statistics.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

int SpmiFreeStatSet(StatSet)
struct SpmiStatSet *StatSet;

188 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRDATAAREAS

Description
The SpmiFreeStatSet subroutine erases the set of statistics identified by the StatSet parameter. All
SpmiStatVals structures chained off the SpmiStatSet structure are deleted before the set itself is deleted.

Parameters
StatSet

Specifies a pointer to a valid structure of type SpmiStatSet as created by the SpmiCreateStatSet
subroutine call.

Return Values
The SpmiFreeStatSet subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns
a nonzero value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiCreateStatSet Subroutine” on page 174

v “SpmiDelSetStat Subroutine” on page 181

v “SpmiPathAddSetStat Subroutine” on page 207

v Understanding SPMI Data Areas

SpmiGetCx Subroutine

Purpose
Returns a pointer to the SpmiCx structure corresponding to a specified context handle.

Library
SPMI Library (libSpmi.a)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 189

../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATVALS
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATSET
../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRDATAAREAS
../../perftool/prfusrgd/ch16body.htm#HDRSPMICX

Syntax
#include sys/Spmidef.h

struct SpmiCx *SpmiGetCx(CxHandle)
SpmiCxHdl CxHandle;

Description
The SpmiGetCx subroutine returns a pointer to the SpmiCx structure corresponding to the context handle
identified by the CxHandle parameter.

Parameters
CxHandle

Specifies a valid SpmiCxHdl handle as obtained by another subroutine call.

Return Values
The SpmiGetCx subroutine returns a a pointer to an SpmiCx data structure if successful. If unsuccessful,
the subroutine returns NULL.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiFirstCx Subroutine” on page 183

v “SpmiNextCx Subroutine” on page 199

v Understanding SPMI Data Areas

v Understanding the SPMI Data Hierarchy

190 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRSPMICXHDL
../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRDATAAREAS
../../perftool/prfusrgd/ch16body.htm#HDRHIERARCHY

SpmiGetHotSet Subroutine

Purpose
Requests the SPMI to read the data values for all sets of peer statistics belonging to a specified
SpmiHotSet.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

int SpmiGetHotSet(HotSet, Force);
struct SpmiHotSet *HotSet;
boolean Force;

Description
The SpmiGetHotSet subroutine requests the SPMI to read the data values for all peer sets of statistics
belonging to the SpmiHotSet identified by the HotSet parameter. The Force parameter is used to force the
data values to be refreshed from their source.

The Force parameter works by resetting a switch held internally in the SPMI for all SpmiStatVals and
SpmiHotVals structures, regardless of the SpmiStatSets and SpmiHotSets to which they belong.
Whenever the data value for a peer statistic is requested, this switch is checked. If the switch is set, the
SPMI reads the latest data value from the original data source. If the switch is not set, the SPMI reads the
data value stored in the SpmiHotVals structure. This mechanism allows a program to synchronize and
minimize the number of times values are retrieved from the source. One method programs can use is to
ensure the force request is not issued more than once per elapsed amount of time.

Parameters
HotSet

Specifies a pointer to a valid structure of type SpmiHotSet as created by the “SpmiCreateHotSet”
on page 173 subroutine call.

Force

If set to true, forces a refresh from the original source before the SPMI reads the data values for
the set. If set to false, causes the SPMI to read the data values as they were previously retrieved
from the data source.

When the force argument is set true, the effect is that of marking all statistics known by the SPMI
as obsolete, which causes the SPMI to refresh all requested statistics from kernel memory or other
sources. As each statistic is refreshed, the obsolete mark is reset. Statistics that are not part of the
HotSet specified in the subroutine call remain marked as obsolete. Therefore, if an application
repetitively issues a series of, SpmiGetHotSet and SpmiGetStatSet subroutine calls for multiple
hotsets and statsets, each time, only the first such call need set the force argument to true.

Return Values
The SpmiGetHotSet subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns a
nonzero value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 191

../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTSET
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATVALS
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTVALS
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATSET
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTSET

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiCreateHotSet” on page 173

v “SpmiAddSetHot Subroutine” on page 170

SpmiGetStat Subroutine

Purpose
Returns a pointer to the SpmiStat structure corresponding to a specified statistic handle.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiStat *SpmiGetStat(StatHandle)
SpmiStatHdl StatHandle;

Description
The SpmiGetStat subroutine returns a pointer to the SpmiStat structure corresponding to the statistic
handle identified by the StatHandle parameter.

Parameters
StatHandle

Specifies a valid SpmiStatHdl handle as obtained by another subroutine call.

Return Values
The SpmiGetStat subroutine returns a pointer to a structure of type SpmiStat if successful. If
unsuccessful, the subroutine returns a NULL value.

192 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTAT
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATHDL

Return Values
The SpmiGetStat subroutine returns a pointer to a structure of type SpmiStat if successful. If
unsuccessful, the subroutine returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiFirstStat Subroutine” on page 185

v “SpmiNextStat Subroutine” on page 203

v Understanding SPMI Data Areas

v Understanding the SPMI Data Hierarchy

SpmiGetStatSet Subroutine

Purpose
Requests the SPMI to read the data values for all statistics belonging to a specified set.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

int SpmiGetStatSet(StatSet, Force);
struct SpmiStatSet *StatSet;
boolean Force;

Description
The SpmiGetStatSet subroutine requests the SPMI to read the data values for all statistics belonging to
the SpmiStatSet identified by the StatSet parameter. The Force parameter is used to force the data
values to be refreshed from their source.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 193

../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRDATAAREAS
../../perftool/prfusrgd/ch16body.htm#HDRHIERARCHY
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATSET

The Force parameter works by resetting a switch held internally in the SPMI for all SpmiStatVals and
SpmiHotVals structures, regardless of the SpmiStatSets and SpmiHotSets to which they belong.
Whenever the data value for a statistic is requested, this switch is checked. If the switch is set, the SPMI
reads the latest data value from the original data source. If the switch is not set, the SPMI reads the data
value stored for the SpmiStatVals structure. This mechanism allows a program to synchronize and
minimize the number of times values are retrieved from the source. One method is to ensure the force
request is not issued more than once per elapsed amount of time.

Parameters
StatSet

Specifies a pointer to a valid structure of type SpmiStatSet as created by the SpmiCreateStatSet
subroutine call.

Force

If set to true, forces a refresh from the original source before the SPMI reads the data values for
the set. If set to false, causes the SPMI to read the data values as they were previously retrieved
from the data source.

When the force argument is set true, the effect is that of marking all statistics known by the SPMI
as obsolete, which causes the SPMI to refresh all requested statistics from kernel memory or other
sources. As each statistic is refreshed, the obsolete mark is reset. Statistics that are not part of the
StatSet specified in the subroutine call remain marked as obsolete. Therefore, if an application
repetitively issues the SpmiGetStatSet and SpmiGetHotSet subroutine calls for multiple statsets
and hotsets, each time, only the first such call need set the force argument to true.

Return Values
The SpmiGetStatSet subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns a
nonzero value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiCreateStatSet Subroutine” on page 174

194 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATVALS
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTVALS
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTSET
../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES

v “SpmiPathAddSetStat Subroutine” on page 207

SpmiGetValue Subroutine

Purpose
Returns a decoded value based on the type of data value extracted from the data field of an
SpmiStatVals structure.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

float SpmiGetValue(StatSet, StatVal)
struct SpmiStatSet *StatSet;
struct SpmiStatVals *StatVal;

Description
The SpmiGetValue subroutine performs the following steps:

1. Verifies that an SpmiStatVals structure exists in the set of statistics identified by the StatSet
parameter.

2. Determines the format of the data field as being either SiFloat or SiLong and extracts the data value
for further processing.

3. Determines the data value as being of either type SiQuantity or type SiCounter.

4. If the data value is of type SiQuantity, returns the val field of the SpmiStatVals structure.

5. If the data value is of type SiCounter, returns the value of the val_change field of the SpmiStatVals
structure divided by the elapsed number of seconds since the previous time a data value was
requested for this set of statistics.

This subroutine call should only be issued after an SpmiGetStatSet subroutine has been issued against
the statset.

Parameters
StatSet

Specifies a pointer to a valid structure of type SpmiStatSet as created by the SpmiCreateStatSet
subroutine call.

StatVal

Specifies a pointer to a valid structure of type SpmiStatVals as created by the
SpmiPathAddSetStat subroutine call or returned by the SpmiFirstVals or SpmiNextVals
subroutine calls.

Return Values
The SpmiGetValue subroutine returns the decoded value if successful. If unsuccessful, the subroutine
returns a negative value that has a numerical value of at least 1.1.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 195

../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATVALS
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATSET

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiGetStatSet Subroutine” on page 193

v “SpmiCreateStatSet Subroutine” on page 174

v “SpmiPathAddSetStat Subroutine” on page 207

v Understanding SPMI Data Areas

SpmiInit Subroutine

Purpose
Initializes the SPMI for a local data consumer program.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

int SpmiInit (TimeOut)
int TimeOut;

Description
The SpmiInit subroutine initializes the SPMI. During SPMI initialization, a memory segment is allocated
and the application program obtains basic addressability to that segment. An application program must
issue the SpmiInit subroutine call before issuing any other subroutine calls to the SPMI.

Note: The SpmiInit subroutine is automatically issued by the SpmiDdsInit subroutine call.
Successive SpmiInit subroutine calls are ignored.

Note: If the calling program uses shared memory for other purposes, including memory mapping of
files, the SpmiInit subroutine call must be issued before access is established to other shared
memory areas.

The SPMI entry point called by the SpmiInit subroutine assigns a segment register to be used by the
SPMI subroutines (and the application program) for accessing common shared memory and establishes

196 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRDATAAREAS

the access mode to the common shared memory segment. After SPMI initialization, the SPMI subroutines
are able to access the common shared memory segment in read-only mode.

Parameters
TimeOut

Specifies the number of seconds the SPMI waits for a Dynamic Data Supplier (DDS) program to
update its shared memory segment. If a DDS program does not update its shared memory
segment in the time specified, the SPMI assumes that the DDS program has terminated or
disconnected from shared memory and removes all contexts and statistics added by the DDS
program.

The SPMI saves the largest TimeOut value received from the programs that invoke the SPMI. The
TimeOut value must be zero or must be greater than or equal to 15 seconds and less than or
equal to 600 seconds. A value of zero overrides any other value from any other program that
invokes the SPMI and disables the checking for terminated DDS programs.

Return Values
The SpmiInit subroutine returns a value of 0 if successful. If unsuccessful, the subroutine returns a
nonzero value. If a nonzero value is returned, the application program should not attempt to issue
additional SPMI subroutine calls.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiDdsInit Subroutine” on page 178

v “SpmiExit Subroutine” on page 182

SpmiInstantiate Subroutine

Purpose
Explicitly instantiates the subcontexts of an instantiable context.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 197

../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

int SpmiInstantiate(CxHandle)
SpmiCxHdl CxHandle;

Description
The SpmiInstantiate subroutine explicitly instantiates the subcontexts of an instantiable context. If the
context is not instantiable, do not call the SpmiInstantiate subroutine.

An instantiation is done implicitly by the SpmiPathGetCx and SpmiFirstCx subroutine calls. Therefore,
application programs usually do not need to instantiate explicitly.

Parameters
CxHandle

Specifies a valid context handle SpmiCxHdl as obtained by another subroutine call.

Return Values
The SpmiInstantiate subroutine returns a value of 0 if successful. If the context is not instantiable, the
subroutine returns a nonzero value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiFirstCx Subroutine” on page 183

v “SpmiPathGetCx Subroutine” on page 209

v Understanding the SPMI Data Hierarchy

198 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRSPMICXHDL
../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRHIERARCHY

SpmiNextCx Subroutine

Purpose
Locates the next subcontext of a context.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiCxLink *SpmiNextCx(CxLink)struct SpmiCxLink *CxLink;

Description
The SpmiNextCx subroutine locates the next subcontext of a context, taking the context identified by the
CxLink parameter as the current subcontext. The subroutine returns a NULL value if no further
subcontexts are found.

The structure pointed to by the returned pointer contains an SpmiCxHdl handle to access the contents of
the corresponding SpmiCx structure through the SpmiGetCx subroutine call.

Parameters
CxLink

Specifies a pointer to a valid SpmiCxLink structure as obtained by a previous SpmiFirstCx
subroutine.

Return Values
The SpmiNextCx subroutine returns a pointer to a structure of type SpmiCxLink if successful. If
unsuccessful, the subroutine returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 199

../../perftool/prfusrgd/ch16body.htm#HDRSPMICXHDL
../../perftool/prfusrgd/ch16body.htm#HDRSPMICX
../../perftool/prfusrgd/ch16body.htm#HDRSPMICXLINK
../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES

Related Information
For related information, see:

v “SpmiFirstCx Subroutine” on page 183

v “SpmiGetCx Subroutine” on page 189

v Understanding SPMI Data Areas

v Understanding the SPMI Data Hierarchy

SpmiNextHot Subroutine

Purpose
Locates the next set of peer statistics SpmiHotVals belonging to an SpmiHotSet.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiHotVals *SpmiNextHot(HotSet, HotVals)
struct SpmiHotSet *HotSet;
struct SpmiHotVals *HotVals;

Description
The SpmiNextHot subroutine locates the next SpmiHotVals structure belonging to an SpmiHotSet, taking
the set of peer statistics identified by the HotVals parameter as the current one. The subroutine returns a
NULL value if no further SpmiHotVals structures are found. The SpmiNextHot subroutine should only be
executed after a successful call to the SpmiGetHotSet subroutine and (usually, but not necessarily) a call
to the SpmiFirstHot subroutine and one or more subsequent calls to SpmiNextHot.

The subroutine allows the application programmer to position at the next set of peer statistics in
preparation for using the SpmiNextHotItem subroutine call to traverse this peer set’s array of
SpmiHotItems elements. Use of this subroutine is only necessary if it is desired to skip over some
SpmiHotVals structures in an SpmiHotSet. Under most circumstances, the SpmiNextHotItem will be the
sole means of accessing all elements of the SpmiHotItems arrays of all peer sets belonging to an
SpmiHotSet.

Parameters
HotSet

Specifies a valid pointer to an SpmiHotSet structure as obtained by a previous
“SpmiCreateHotSet” on page 173 call.

HotVals

Specifies a pointer to an SpmiHotVals structure as returned by a previous SpmiFirstHot or
SpmiNextHot subroutine call or as returned by an SpmiAddSetHot subroutine call.

Return Values
The SpmiNextHot subroutine returns a pointer to the next SpmiHotVals structure within the hotset. If no
more SpmiHotVals structures are available, the subroutine returns a NULL value. A returned pointer may
refer to a pseudo-hotvals structure as described the SpmiAddSetHot subroutine.

200 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRDATAAREAS
../../perftool/prfusrgd/ch16body.htm#HDRHIERARCHY
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTVALS
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTSET
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTITEMS
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTSET
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTVALS

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For more information, see:

v “SpmiFirstHot Subroutine” on page 184

v “SpmiGetHotSet Subroutine” on page 191

v “SpmiNextHotItem Subroutine”.

v Data Access Structures and Handles, HotSets

SpmiNextHotItem Subroutine

Purpose
Locates and decodes the next SpmiHotItems element at the current position in an SpmiHotSet.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiHotVals *SpmiNextHotItem(HotSet, HotVals, index,
value, name)
struct SpmiHotSet *HotSet;
struct SpmiHotVals *HotVals;
int *index;
float *value;
char **name;

Description
The SpmiNextHotItem subroutine locates the next SpmiHotItems structure belonging to an SpmiHotSet,
taking the element identified by the HotVals and index parameters as the current one. The subroutine
returns a NULL value if no further SpmiHotItems structures are found. The SpmiNextHotItem subroutine
should only be executed after a successful call to the SpmiGetHotSet subroutine.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 201

../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRACCESS2
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTITEMS
../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTSET

The SpmiNextHotItem subroutine is designed to be used for walking all SpmiHotItems elements returned
by a call to the SpmiGetHotSet subroutine, visiting the SpmiHotVals structures one by one. By feeding
the returned value and the updated integer pointed to by index back to the next call, this can be done in a
tight loop. Successful calls to SpmiNextHotItem will decode each SpmiHotItems element and return the
data value in value and the name of the peer context that owns the corresponding statistic in name.

Parameters
HotSet

Specifies a valid pointer to an SpmiHotSet structure as obtained by a previous
“SpmiCreateHotSet” on page 173 call.

HotVals

Specifies a pointer to an SpmiHotVals structure as returned by a previousSpmiNextHotItem,
SpmiFirstHot, or SpmiNextHot subroutine call or as returned by an SpmiAddSetHot subroutine
call. If this parameter is specified as NULL, the first SpmiHotVals structure of the SpmiHotSet is
used and the index parameter is assumed to be set to zero, regardless of its actual value.

index

A pointer to an integer that contains the desired element number in the SpmiHotItems array of the
SpmiHotVals structure specified by HotVals. A value of zero points to the first element. When the
SpmiNextHotItem subroutine returns, the integer contain the index of the next SpmiHotItems
element within the returned SpmiHotVals structure. If the last element of the array is decoded, the
value in the integer will point beyond the end of the array, and the SpmiHotVals pointer returned
will point to the peer set, which has now been completely decoded. By passing the returned
SpmiHotVals pointer and the index parameter to the next call to SpmiNextHotItem, the
subroutine will detect this and proceed to the first SpmiHotItems element of the next
SpmiHotVals structure if one exists.

value

A pointer to a float variable. A successful call will return the decoded data value for the statistic.
Before the value is returned, the SpmiNextHotItem function:

v Determines the format of the data field as being either SiFloat or SiLong and extracts the data
value for further processing.

v Determines the data value as being either type SiQuantity or type SiCounter and performs one
of the actions listed here:

– If the data value is of type SiQuantity, the subroutine returns the val field of the
SpmiHotItems structure.

– If the data value is of type SiCounter, the subroutine returns the value of the val_change
field of the SpmiHotItems structure divided by the elapsed number of seconds since the
previous time a data value was requested for this set of statistics.

name

A pointer to a character pointer. A successful call will return a pointer to the name of the peer
context for which the data value was read.

Return Values
The SpmiNextHotItem subroutine returns a pointer to the current SpmiHotVals structure within the
hotset. If no more SpmiHotVals structures are available, the subroutine returns a NULL value. The
structure returned contains the data, such as threshold, which may be relevant for presentation of the
results of an SpmiGetHotSet subroutine call to end-users. A returned pointer may refer to a
pseudo-hotvals structure as described in the SpmiAddSetHot subroutine.

202 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRSPMIHOTVALS

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For more information, see:

v “SpmiFirstHot Subroutine” on page 184

v “SpmiNextHot Subroutine” on page 200

v “SpmiGetHotSet Subroutine” on page 191

v Data Access Structures and Handles, HotSets

SpmiNextStat Subroutine

Purpose
Locates the next statistic belonging to a context.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiStatLink *SpmiNextStat(StatLink)
struct SpmiStatLink *StatLink;

Description
The SpmiNextStat subroutine locates the next statistic belonging to a context, taking the statistic identified
by the StatLink parameter as the current statistic. The subroutine returns a NULL value if no further
statistics are found.

The structure pointed to by the returned pointer contains an SpmiStatHdl handle to access the contents of
the corresponding SpmiStat structure through the “SpmiGetStat Subroutine” on page 192 call.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 203

../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRACCESS2
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATHDL
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTAT

Parameters
StatLink

Specifies a valid pointer to a SpmiStatLink structure as obtained by a previous “SpmiFirstStat
Subroutine” on page 185 call.

Return Values
The SpmiNextStat subroutine returns a pointer to a structure of type SpmiStatLink if successful. If
unsuccessful, the subroutine returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiFirstStat Subroutine” on page 185

v “SpmiGetStat Subroutine” on page 192

v Understanding SPMI Data Areas

v Understanding the SPMI Data Hierarchy

SpmiNextVals Subroutine

Purpose
Returns a pointer to the next SpmiStatVals structure in a set of statistics.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

204 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATLINK
../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRDATAAREAS
../../perftool/prfusrgd/ch16body.htm#HDRHIERARCHY
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATVALS

struct SpmiStatVals *SpmiNextVals(StatSet, StatVal)
struct SpmiStatSet *StatSet;
struct SpmiStatVals *StatVal;

Description
The SpmiNextVals subroutine returns a pointer to the next SpmiStatVals structure in a set of statistics,
taking the structure identified by the StatVal parameter as the current structure. The SpmiStatVals
structures are accessed in reverse order so the statistic added before the current one is returned. This
subroutine call should only be issued after an SpmiGetStatSet subroutine has been issued against the
statset.

Parameters
StatSet

Specifies a pointer to a valid structure of type SpmiStatSet as created by the “SpmiCreateStatSet
Subroutine” on page 174 call.

StatVal

Specifies a pointer to a valid structure of type SpmiStatVals as created by the
“SpmiPathAddSetStat Subroutine” on page 207 subroutine call or returned by a previous
“SpmiFirstVals Subroutine” on page 186 or SpmiNextVals subroutine call.

Return Values
The SpmiNextVals subroutine returns a pointer to a SpmiStatVals structure if successful. If unsuccessful,
the subroutine returns a NULL value.

SpmiNextValue Subroutine

Purpose
Returns either the first SpmiStatVals structure in a set of statistics or the next SpmiStatVals structure in a
set of statistics and a decoded value based on the type of data value extracted from the data field of an
SpmiStatVals structure.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiStatVals*SpmiNextValue(StatSet, StatVal, value)
struct SpmiStatSet *StatSet;
struct SpmiStatVals *StatVal;
float *value;

Description
Instead of issuing subroutine calls to “SpmiFirstVals Subroutine” on page 186 / “SpmiNextVals Subroutine”
on page 204 (to get the first or next SpmiStatVals structure) followed by calls to SpmiGetValue (to get
the decoded value from the SpmiStatVals structure), the SpmiNextValue subroutine returns both in one
call. This subroutine call returns a pointer to the first SpmiStatVals structure belonging to the StatSet
parameter if the StatVal parameter is NULL. If the StatVal parameter is not NULL, the next SpmiStatVals
structure is returned, taking the structure identified by the StatVal parameter as the current structure. The
data value corresponding to the returned SpmiStatVals structure is decoded and returned in the field
pointed to by the value argument. In decoding the data value, the subroutine does the following:

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 205

../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATSET
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATVALS

v Determines the format of the data field as being either SiFloat or SiLong and extracts the data value
for further processing.

v Determines the data value as being either type SiQuantity or type SiCounter and performs one of the
actions listed here:

– If the data value is of type SiQuantity, the subroutine returns the val field of the SpmiStatVals
structure.

– If the data value is of type SiCounter, the subroutine returns the value of the val_change field of the
SpmiStatVals structure divided by the elapsed number of seconds since the previous time a data
value was requested for this set of statistics.

Note: This subroutine call should only be issued after an “SpmiGetStatSet Subroutine” on page 193
has been issued against the statset.

Parameters
StatSet

Specifies a pointer to a valid structure of type SpmiStatSet as created by the “SpmiCreateStatSet
Subroutine” on page 174 call.

StatVal

Specifies either a NULL pointer or a pointer to a valid structure of type SpmiStatVals as created
by the “SpmiPathAddSetStat Subroutine” on page 207 call or returned by a previous
SpmiNextValue subroutine call. If StatVal is NULL, then the first SpmiStatVals pointer belonging
to the set of statistics pointed to by StatSet is returned.

valueA pointer used to return a decoded value based on the type of data value extracted from the data
field of the returned SpmiStatVals structure.

Return Value
The SpmiNextValue subroutine returns a pointer to a SpmiStatVals structure if successful. If
unsuccessful, the subroutine returns a NULL value.

If the StatVal parameter is:

NULL
The first SpmiStatVals structure belonging to the StatSet parameter is returned.

not NULL
The next SpmiStatVals structure after the structure identified by the StatVal parameter is returned and the
value parameter is used to return a decoded value based on the type of data value extracted from the
data field of the returned SpmiStatVals structure.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

206 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES

Programming Notes
The SpmiNextValue subroutine maintains internal state information so that retrieval of the next data value
from a statset can be done without traversing linked lists of data structures. The stats information is kept
separate for each process, but is shared by all threads of a process.

If the subroutine is accessed from multiple threads, the state information is useless and the performance
advantage is lost. The same is true if the program is simultaneously accessing two or more statsets. To
benefit from the performance advantage of the SpmiNextValue subroutine, a program should retrieve all
values in order from one stat set before retrieving values from the next statset.

The implementation of the subroutine allows a program to retrieve data values beginning at any point in
the statset if the SpmiStatVals pointer is known. Doing so will cause a linked list traversal. If subsequent
invocations of SpmiNextValue uses the value returned from the first and following invocation as their
second argument, the traversal of the link list can be avoided.

It should be noted that the value returned by a successful SpmiNextValue invocation is always the pointer
to the SpmiStatVals structure whose data value is decoded and returned in the value argument.

Implementation Specifics
v This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also

included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiGetStatSet Subroutine” on page 193

v “SpmiCreateStatSet Subroutine” on page 174

v “SpmiPathAddSetStat Subroutine”.

v Data Access Structures and Handles, StatSets

SpmiPathAddSetStat Subroutine

Purpose
Adds a statistics value to a set of statistics.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

struct SpmiStatVals *SpmiPathAddSetStat(StatSet, StatName,
Parent)
struct SpmiStatSet *StatSet;
char *StatName;
SpmiCxHdl Parent;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 207

../../perftool/prfusrgd/ch16body.htm#HDRACCESS1

Description
The SpmiPathAddSetStat subroutine adds a statistics value to a set of statistics. The SpmiStatSet
structure that provides the anchor point to the set must exist before the SpmiPathAddSetStat subroutine
call can succeed.

Parameters
StatSet

Specifies a pointer to a valid structure of type SpmiStatSet as created by the “SpmiCreateStatSet
Subroutine” on page 174 call.

StatName

Specifies the name of the statistic within the context identified by the Parent parameter.If the
Parent parameter is NULL, you must specify the fully qualified path name of the statistic in the
StatName parameter.

Parent

Specifies either a valid SpmiCxHdl handle as obtained by another subroutine call or a NULL
value.

Return Values
The SpmiPathAddSetStat subroutine returns a pointer to a structure of type SpmiStatVals if successful.
If unsuccessful, the subroutine returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v “SpmiGetStatSet Subroutine” on page 193

v “SpmiCreateStatSet Subroutine” on page 174

v “SpmiDelSetStat Subroutine” on page 181

v “SpmiFreeStatSet Subroutine” on page 188.

v Data Access Structures and Handles, StatSets

208 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATSET
../../perftool/prfusrgd/ch16body.htm#HDRSPMICXHDL
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATVALS
../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRACCESS1

SpmiPathGetCx Subroutine

Purpose
Returns a handle to use when referencing a context.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h

SpmiCxHdl SpmiPathGetCx(CxPath, Parent)
char *CxPath;
SpmiCxHdl Parent;

Description
The SpmiPathGetCx subroutine searches the context hierarchy for a given path name of a context and
returns a handle to use when subsequently referencing the context.

Parameters
CxPath

Specifies the path name of the context to find. If you specify the fully qualified path name in the
CxPath parameter, you must set the Parent parameter to NULL. If the path name is not qualified
or is only partly qualified (that is, if it does not include the names of all contexts higher in the data
hierarchy), the SpmiPathGetCx subroutine begins searching the hierarchy at the context identified
by the Parent parameter. If the CxPath parameter is either NULL or an empty string, the
subroutine returns a handle identifying the Top context.

Parent

Specifies the anchor context that fully qualifies the CxPath parameter. If you specify a fully
qualified path name in the CxPath parameter, you must set the Parent parameter to NULL.

Return Values
The SpmiPathGetCx subroutine returns a handle to a context if successful. If unsuccessful, the subroutine
returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 209

../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v Understanding SPMI Data Areas

v Understanding the SPMI Data Hierarchy

SpmiStatGetPath Subroutine

Purpose
Returns the full path name of a statistic.

Library
SPMI Library (libSpmi.a)

Syntax
#include sys/Spmidef.h>

char *miStatGetPath(Parent, StatHandle, MaxLevels)
SpmiCxHdlSp Parent;
SpmiStatHdl StatHandle;
int MaxLevels;

Description
The SpmiStatGetPath subroutine returns the full path name of a statistic, given a parent context
SpmiCxHdl handle and a statistics SpmiStatHdl handle. The MaxLevels parameter can limit the number
of levels in the hierarchy that must be searched to generate the path name of the statistic.

The memory area pointed to by the returned pointer is freed when the SpmiStatGetPath subroutine call is
repeated. For each invocation of the subroutine, a new memory area is allocated and its address
returned.If the calling program needs the returned character string after issuing the SpmiStatGetPath
subroutine call, the program must copy the returned string to locally allocated memory before reissuing the
subroutine call.

Parameters
Parent

Specifies a valid SpmiCxHdl handle as obtained by another subroutine call.

StatHandle

Specifies a valid SpmiStatHdl handle as obtained by another subroutine call. This handle must
point to a statistic belonging to the context identified by the Parent parameter.

MaxLevels

Limits the number of levels in the hierarchy that must be searched to generate the path name. If
this parameter is set to 0, no limit is imposed.

210 Technical Reference, Volume 2: Base Operating System and Extensions

../../perftool/prfusrgd/ch16body.htm#HDRDATAAREAS
../../perftool/prfusrgd/ch16body.htm#HDRHIERARCHY
../../perftool/prfusrgd/ch16body.htm#HDRSPMICXHDL
../../perftool/prfusrgd/ch16body.htm#HDRSPMISTATHDL

Return Values
If successful, the SpmiStatGetPath subroutine returns a pointer to a character array containing the full
path name of the statistic. If unsuccessful, the subroutine returns a NULL value.

Error Codes
All SPMI subroutines use external variables to provide error information. To access these variables, an
application program must define the following external variables:

v extern char SpmiErrmsg[];

v extern int SpmiErrno;

If the subroutine returns without an error, the SpmiErrno variable is set to 0 and the SpmiErrmsg
character array is empty. If an error is detected, the SpmiErrno variable returns an error code, as defined
in the sys/Spmidef.h file, and the SpmiErrmsg variable contains text, in English, explaining the cause of
the error. See the List of SPMI Error Codes for more information.

Implementation Specifics
This subroutine is part of the server option of the Performance Aide for AIX licensed product and is also
included in the Performance Toolbox for AIX licensed product.

Files

/usr/include/sys/Spmidef.h Declares the subroutines, data structures, handles, and macros
that an application program can use to access the SPMI.

Related Information
For related information, see:

v Understanding SPMI Data Areas

v Understanding the SPMI Data Hierarchy

sqrt, sqrtl, or cbrt Subroutine

Purpose

Computes square root and cube root functions.

Libraries

IEEE Math Library (libm.a)

or System V Math Library (libmsaa.a)

Syntax
#include <math.h>
double sqrt (x)
double x;

long double sqrtl (x)
long double x;

double cbrt (x)
double x;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 211

../../perftool/prfusrgd/ch16body.htm#HDRERRORCODES
../../perftool/prfusrgd/ch16body.htm#HDRDATAAREAS
../../perftool/prfusrgd/ch16body.htm#HDRHIERARCHY

Description
The sqrt subroutine, sqrtl subroutine, and cbrt subroutine compute the square root and cube root,
respectively, of their parameters.

Note: Compile any routine that uses subroutines from the libm.a library with the -lm flag. To compile the sqrt.c
file, for example, enter:

cc sqrt.c -lm

Parameters

x Specifies some double-precision floating-point value.

Return Values
The sqrt (-0.0) = -0.0.

The sqrtl (-0.0) = -0.0.

Error Codes
When using libm.a (-lm):

For the sqrt subroutine, if the value of x is negative, a NaNQ is returned and the errno global variable is
set to a EDOM value.

When using libmsaa.a (-lmsaa):

For the sqrt and the sqrtl subroutines, if the value of x is negative, a 0 is returned and the errno global
variable is set to a EDOM value. A message indicating a DOMAIN error is printed on the standard error
output.

These error-handling procedures may be changed with the matherr subroutine when using the libmsaa.a
(-lmsaa) library.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

The cbrt subroutine is not part of the ANSI C Library.

Related Information
The exp, expm1, log, log10, log1p, or pow subroutine.

Subroutines Overview AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

128-Bit long double Floating-Point Format AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

src_err_msg Subroutine

Purpose
Retrieves a System Resource Controller (SRC) error message.

212 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/exp.htm#HDRA09091271
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/128bit_long_double_floating-point_datatype.htm#HDRCE7AE41923RAGA

Library
System Resource Controller Library (libsrc.a)

Syntax
int src_err_msg (errno, ErrorText)
int errno;
char **ErrorText;

Description
The src_err_msg subroutine retrieves a System Resource Controller (SRC) error message.

Parameters

errno Specifies the SRC error code.
ErrorText Points to a character pointer to place the SRC error message.

Return Values
Upon successful completion, the src_err_msg subroutine returns a value of 0. Otherwise, a value of -1 is
returned. No error message is returned.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The addssys subroutine, chssys subroutine, delssys subroutine, defssys subroutine, getsubsvr
subroutine, getssys subroutine, srcsbuf (“srcsbuf Subroutine” on page 217) subroutine, srcrrqs (“srcrrqs
Subroutine” on page 214) subroutine, srcsrpy (“srcsrpy Subroutine” on page 223) subroutine, srcsrqt
(“srcsrqt Subroutine” on page 226) subroutine, srcstat (“srcstat Subroutine” on page 233) subroutine,
srcstathdr (“srcstathdr Subroutine” on page 237) subroutine, srcstattxt (“srcstattxt Subroutine” on
page 238) subroutine, srcstop (“srcstop Subroutine” on page 239) subroutine, srcstrt (“srcstrt Subroutine”
on page 242) subroutine.

List of SRC Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Programming Subsystem Communication with the SRC in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

System Resource Controller (SRC) Overview for Programmers in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

src_err_msg_r Subroutine

Purpose
Gets the System Resource Controller (SRC) error message corresponding to the specified SRC error
code.

Library
System Resource Controller (libsrc.a)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 213

../../libs/basetrf1/addssys.htm#HDRA2839AF5
../../libs/basetrf1/chssys.htm#HDRA279913A6
../../libs/basetrf1/delssys.htm#HDRA2789CA2
../../libs/basetrf1/defssys.htm#HDRA27991382
../../libs/basetrf1/getsubsvr.htm#HDRA27991365
../../libs/basetrf1/getssys.htm#HDRPRIX14
../../aixprggd/genprogc/src_subr.htm#HDRA305990D
../../aixprggd/genprogc/src_prg_subsys.htm#HDRA64C2290F
../../aixprggd/genprogc/src.htm#HDRA64C22882

Syntax
#include <spc.h>

int src_err_msg_r (srcerrno, ErrorText)
int srcerrno;
char ** ErrorText;

Description
The src_err_msg_r subroutine returns the message corresponding to the input srcerrno value in a
caller-supplied buffer. This subroutine is threadsafe and reentrant.

Parameters

srcerrno Specifies the SRC error code.
ErrorText Pointer to a variable containing the address of a caller-supplied buffer where the message will be

returned. If the length of the message is unknown, the maximum message length can be used
when allocating the buffer. The maximum message length is SRC_BUF_MAX in /usr/include/spc.h
(2048 bytes).

Return Values
Upon successful completion, the src_err_msg_r subroutine returns a value of 0. Otherwise, no error
message is returned and the subroutine returns a value of -1.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The srcsbuf_r (“srcsbuf_r Subroutine” on page 220), srcsrqt_r (“srcsrqt_r Subroutine” on page 229),
srcrrqs_r (“srcrrqs_r Subroutine” on page 216), srcstat_r (“srcstat_r Subroutine” on page 235), and
srcstattxt_r (“srcstattxt_r Subroutine” on page 239) subroutines.

List of SRC Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Programming Subsystem Communication with the SRC in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

System Resource Controller (SRC) Overview for Programmers in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

srcrrqs Subroutine

Purpose
Gets subsystem reply information from the System Resource Controller (SRC) request received.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <spc.h>

214 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/src_subr.htm#HDRA305990D
../../aixprggd/genprogc/src_prg_subsys.htm#HDRA64C2290F
../../aixprggd/genprogc/src.htm#HDRA64C22882

struct srchdr *srcrrqs (Packet)
char *Packet;

Description
The srcrrqs subroutine saves the srchdr information contained in the packet the subsystem received from
the System Resource Controller (SRC). The srchdr structure is defined in the spc.h file. This routine must
be called by the subsystem to complete the reception process of any packet received from the SRC. The
subsystem requires this information to reply to any request that the subsystem receives from the SRC.

Note: The saved srchdr information is overwritten each time this subroutine is called.

Parameters

Packet Points to the SRC request packet received by the subsystem. If the subsystem received the packet on a
message queue, the Packet parameter must point past the message type of the packet to the start of the
request information. If the subsystem received the information on a socket, the Packet parameter points
to the start of the packet received on the socket.

Return Values
The srcrrqs subroutine returns a pointer to the static srchdr structure, which contains the return address
for the subsystem response.

Examples
The following will obtain the subsystem reply information:
int rc;
struct sockaddr addr;
int addrsz;
struct srcreq packet;

/* wait to receive packet from SRC daemon */
rc=recvfrom(0, &packet, sizeof(packet), 0, &addr, &addrsz);
/* grab the reply information from the SRC packet */
if (rc>0)

srchdr=srcrrqs (&packet);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/dev/SRC Specifies the AF_UNIX socket file.
/dev/.SRC-unix Specifies the location for temporary socket files.

Related Information
The srcsbuf (“srcsbuf Subroutine” on page 217) subroutine, srcsrpy (“srcsrpy Subroutine” on page 223)
subroutine, srcsrqt (“srcsrqt Subroutine” on page 226) subroutine, srcstat (“srcstat Subroutine” on
page 233)subroutine, srcstathdr (“srcstathdr Subroutine” on page 237) subroutine, srcstattxt (“srcstattxt
Subroutine” on page 238) subroutine, srcstop (“srcstop Subroutine” on page 239) subroutine, srcstrt
(“srcstrt Subroutine” on page 242) subroutine.

List of SRC Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 215

../../aixprggd/genprogc/src_subr.htm#HDRA305990D

Programming Subsystem Communication with the SRC in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

System Resource Controller (SRC) Overview for Programmers in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

srcrrqs_r Subroutine

Purpose
Copies the System Resource Controller (SRC) request header to the specified buffer. The SRC request
header contains the return address where the caller sends responses for this request.

Library
System Resource Controller (libsrc.a)

Syntax
#include <spc.h>

struct srchdr *srcrrqs_r (Packet, SRChdr)
char * Packet;
struct srchdr * SRChdr;

Description
The srcrrqs_r subroutine saves the SRC request header (srchdr) information contained in the packet the
subsystem received from the Source Resource Controller. The srchdr structure is defined in the spc.h file.
This routine must be called by the subsystem to complete the reception process of any packet received
from the SRC. The subsystem requires this information to reply to any request that the subsystem
receives from the SRC.

This subroutine is threadsafe and reentrant.

Parameters

Packet Points to the SRC request packet received by the subsystem. If the subsystem received the packet on a
message queue, the Packet parameter must point past the message type of the packet to the start of the
request information. If the subsystem received the information on a socket, the Packet parameter points
to the start of the packet received on the socket.

SRChdr Points to a caller-supplied buffer. The srcrrqs_r subroutine copies the request header to this buffer.

Examples
The following will obtain the subsystem reply information:
int rc;
struct sockaddr addr;
int addrsz;
struct srcreq packet;
struct srchdr *header;
struct srchdr *rtn_addr;

/*wait to receive packet from SRC daemon */
rc=recvfrom(0, &packet, sizeof(packet), 0, &addr, &addrsz;
/* grab the reply information from the SRC packet */
if (rc>0)
{

header = (struct srchdr *)malloc(sizeof(struct srchdr));

216 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/src_prg_subsys.htm#HDRA64C2290F
../../aixprggd/genprogc/src.htm#HDRA64C22882

rtn_addr = srcrrqs_r(&packet,header);
if (rtn_addr == NULL)
{

/* handle error */
.
.

}

Return Values
Upon successful completion, the srcrrq_r subroutine returns the address of the caller-supplied buffer.

Error Codes
If either of the input addresses is NULL, the srcrrqs_r subroutine fails and returns a value of NULL.

SRC_PARM One of the input addresses is NULL.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The src_err_msg_r (“src_err_msg_r Subroutine” on page 213), srcsbuf_r (“srcsbuf_r Subroutine” on
page 220), srcsrqt_r (“srcsrqt_r Subroutine” on page 229), srcstat_r (“srcstat_r Subroutine” on page 235),
and srcstattxt_r (“srcstattxt_r Subroutine” on page 239) subroutines.

srcsbuf Subroutine

Purpose
Gets status for a subserver or a subsystem and returns status text to be printed.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <spc.h>

intsrcsbuf(Host,Type,SubsystemName,
SubserverObject,SubsystemPID, StatusType,StatusFrom,StatusText,Continued)

char * Host, * SubsystemName;

char * SubserverObject, ** StatusText;

short Type, StatusType;
int SubsystemPID, StatusFrom, * Continued;

Description
The srcsbuf subroutine gets the status of a subserver or subsystem and returns printable text for the
status in the address pointed to by the StatusText parameter.

When the StatusType parameter is SHORTSTAT and the Type parameter is SUBSYSTEM, the srcstat
subroutine is called to get the status of one or more subsystems. When the StatusType parameter is

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 217

LONGSTAT and the Type parameter is SUBSYSTEM, the srcrsqt subroutine is called to get the long
status of one subsystem. When the Type parameter is not SUBSYSTEM, the srcsrqt subroutine is called
to get the long or short status of a subserver.

Parameters

Host Specifies the foreign host on which this status action is requested. If the host is null,
the status request is sent to the System Resource Controller (SRC) on the local host.
The local user must be running as ″root″. The remote system must be configured to
accept remote System Resource Controller requests. That is, the srcmstr daemon (see
/etc/inittab) must be started with the -r flag and the /etc/hosts.equiv or .rhosts file
must be configured to allow remote requests.

Type Specifies whether the status request applies to the subsystem or subserver. If the Type
parameter is set to SUBSYSTEM, the status request is for a subsystem. If not, the
status request is for a subserver and the Type parameter is a subserver code point.

SubsystemName Specifies the name of the subsystem on which to get status. To get the status of all
subsystems, use the SRCALLSUBSYS constant. To get the status of a group of
subsystems, the SubsystemName parameter must start with the SRCGROUP constant,
followed by the name of the group for which you want status appended. If you specify a
null SubsystemName parameter, you must specify a SubsystemPID parameter.

SubserverObject Specifies a subserver object. The SubserverObject parameter modifies the Type
parameter. The SubserverObject parameter is ignored if the Type parameter is set to
SUBSYSTEM. The use of the SubserverObject parameter is determined by the
subsystem and the caller. This parameter will be placed in the objname field of the
subreq structure that is passed to the subsystem.

SubsystemPID Specifies the process ID of the subsystem on which to get status, as returned by the
srcstrt subroutine. You must specify the SubsystemPID parameter if multiple instances
of the subsystem are active and you request a long subsystem status or subserver
status. If you specify a null SubsystemPID parameter, you must specify a
SubsystemName parameter.

StatusType Specifies LONGSTAT for long status or SHORTSTAT for short status.
StatusFrom Specifies whether status errors and messages are to be printed to standard output or

just returned to the caller. When the StatusFrom parameter is SSHELL, the errors are
printed to standard output.

StatusText Allocates memory for the printable text and sets the StatusText parameter to point to
this memory. After it prints the text, the calling process must free the memory allocated
for this buffer.

Continued Specifies whether this call to the srcsbuf subroutine is a continuation of a status
request. If the Continued parameter is set to NEWREQUEST, a request for status is
sent and the srcsbuf subroutine then waits for another. On return, the srcsbuf
subroutine is updated to the new continuation indicator from the reply packet and the
Continued parameter is set to END or STATCONTINUED by the subsystem. If the
Continued parameter is set to something other than END, this field must remain equal
to that value; otherwise, this function will not be able to receive any more packets for
the original status request. The calling process should not set the value of the
Continued parameter to a value other than NEWREQUEST. The Continued parameter
should not be changed while more responses are expected.

Return Values
If the srcsbuf subroutine succeeds, it returns the size (in bytes) of printable text pointed to by the
StatusText parameter.

Error Codes
The srcsbuf subroutine fails if one or more of the following are true:

SRC_BADSOCK The request could not be passed to the subsystem because of some
socket failure.

218 Technical Reference, Volume 2: Base Operating System and Extensions

SRC_CONT The subsystem uses signals. The request cannot complete.
SRC_DMNA The SRC daemon is not active.
SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv file.
SRC_INET_INVALID_HOST On the remote host, the local host is not known.
SRC_INVALID_USER The user is not root or group system.
SRC_MMRY An SRC component could not allocate the memory it needs.
SRC_NOCONTINUE The Continued parameter was not set to NEWREQUEST, and no

continuation is currently active.
SRC_NORPLY The request timed out waiting for a response.
SRC_NSVR The subsystem is not active.
SRC_SOCK There is a problem with SRC socket communications.
SRC_STPG The request was not passed to the subsystem. The subsystem is

stopping.
SRC_UDP The SRC port is not defined in the /etc/services file.
SRC_UHOST The foreign host is not known.
SRC_WICH There are multiple instances of the subsystem active.

Examples
1. To get the status of a subsystem, enter:

char *status;
int continued=NEWREQUEST;
int rc;

do {
rc=srcsbuf("MaryC", SUBSYSTEM, "srctest", "", 0,

SHORTSTAT, SSHELL, &status, continued);
if (status!=0)
{

printf(status);
free(status);
status=0;

}
} while (rc>0);

This gets short status of the srctest subsystem on the MaryC machine and prints the formatted status
to standard output.

2. To get the status of a subserver, enter:
char *status;
int continued=NEWREQUEST;
int rc;

do {
rc=srcsbuf("", 12345, "srctest", "", 0,

LONGSTAT, SSHELL, &status, continued);
if (status!=0)
{

printf(status);
free(status);
status=0;

}
} while (rc>0);

This gets long status for a specific subserver belonging to subsystem srctest. The subserver is the
one having code point 12345. This request is processed on the local machine. The formatted status is
printed to standard output.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 219

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/etc/services Defines sockets and protocols used for Internet services.
/dev/SRC Specifies the AF_UNIX socket file.
/dev/.SRC-unix Specifies the location for temporary socket files.

Related Information
The srcrrqs (“srcrrqs Subroutine” on page 214) subroutine, srcsrpy (“srcsrpy Subroutine” on page 223)
subroutine, srcsrqt (“srcsrqt Subroutine” on page 226) subroutine, srcstat (“srcstat Subroutine” on
page 233) subroutine, srcstathdr (“srcstathdr Subroutine” on page 237) subroutine, srcstattxt (“srcstattxt
Subroutine” on page 238) subroutine, srcstop (“srcstop Subroutine” on page 239) subroutine, srcstrt
(“srcstrt Subroutine” on page 242) subroutine.

List of SRC Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Programming Subsystem Communication with the SRC in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

System Resource Controller (SRC) Overview for Programmers in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

srcsbuf_r Subroutine

Purpose
Gets status for a subserver or a subsystem and returns status text to be printed.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <spc.h>

int srcsbuf_r(Host, Type, SubsystemName, SubserverObject, SubsystemPID,
StatusType, StatusFrom, StatusText, Continued, SRCHandle)

char * Host, * SubsystemName;
char * SubserverObject, ** StatusText;
short Type, StatusType;
pid_t SubsystemPID;
int StatusFrom * Continued;
char ** SRCHandle;

Description
The srcsbuf_r subroutine gets the status of a subserver or subsystem and returns printable text for the
status in the address pointed to by the StatusText parameter. The srcsbuf_r subroutine supports all the
functions of the srcbuf subroutine except the StatusFrom parameter.

220 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/src_subr.htm#HDRA305990D
../../aixprggd/genprogc/src_prg_subsys.htm#HDRA64C2290F
../../aixprggd/genprogc/src.htm#HDRA64C22882

When the StatusType parameter is SHORTSTAT and the Type parameter is SUBSYSTEM, the srcstat_r
subroutine is called to get the status of one or more subsystems. When the StatusType parameter is
LONGSTAT and the Type parameter is SUBSYSTEM, the srcrsqt_r subroutine is called to get the long
status of one subsystem. When the Type parameter is not SUBSYSTEM, the srcsrqt_r subroutine is
called to get the long or short status of a subserver.

This routine is threadsafe and reentrant.

Parameters

Host Specifies the foreign host on which this status action is requested. If the host is null,
the status request is sent to the System Resource Controller (SRC) on the local host.

Type Specifies whether the status request applies to the subsystem or subserver. If the Type
parameter is set to SUBSYSTEM, the status request is for a subsystem. If not, the
status request is for a subserver and the Type parameter is a subserver code point.

SubsystemName Specifies the name of the subsystem on which to get status. To get the status of all
subsystems, use the SRCALLSUBSYS constant. To get the status of a group of
subsystems, the SubsystemName parameter must start with the SRCGROUP constant,
followed by the name of the group for which you want status appended. If you specify a
null SubsystemName parameter, you must specify a SubsystemPID parameter.

SubserverObject Specifies a subserver object. The SubserverObject parameter modifies the Type
parameter. The SubserverObject parameter is ignored if the Type parameter is set to
SUBSYSTEM. The use of the SubserverObject parameter is determined by the
subsystem and the caller. This parameter will be placed in the objname field of the
subreq structure that is passed to the subsystem.

SubsystemPID Specifies the process ID of the subsystem on which to get status, as returned by the
srcstrt subroutine. You must specify the SubsystemPID parameter if multiple instances
of the subsystem are active and you request a long subsystem status or subserver
status. If you specify a null SubsystemPID parameter, you must specify a
SubsystemName parameter.

StatusType Specifies LONGSTAT for long status or SHORTSTAT for short status.
StatusFrom Specifies whether status errors and messages are to be printed to standard output or

just returned to the caller. When the StatusFrom parameter is SSHELL, the errors are
printed to standard output. The SSHELL value is not recommended in a multithreaded
environment since error messages to standard output may be interleaved in an
unexpected manner.

StatusText Allocates memory for the printable text and sets the StatusText parameter to point to
this memory. After it prints the text, the calling process must free the memory allocated
for this buffer.

Continued Specifies whether this call to the srcsbuf_r subroutine is a continuation of a status
request. If the Continued parameter is set to NEWREQUEST, a request for status is
sent and the srcsbuf_r subroutine then waits for a reply. On return from the srcsbuf_r
subroutine, the Continued parameter is updated to the new continuation indicator from
the reply packet. The continuation indicator in the reply packet will be set to END or
STATCONTINUED by the subsystem. If the Continued parameter is set to something
other than END, the caller should not change that value; otherwise, this function will not
be able to receive any more packets for the original status request. The calling process
should not set the value of the Continued parameter to a value other than
NEWREQUEST. In normal processing, the Continued parameter should not be
changed while more responses are expected. The caller must continue to call the
srcsbuf_r subroutine until END is received. As an alternative, call the srcsbuf_r
subroutine with Continued=SRC_CLOSE to discard the remaining data, close the
socket, and free the internal buffers.

SRCHandle Identifies a request and its associated responses. Set to NULL by the caller for a
NEWREQUEST. The srcsbuf_r subroutine saves a value in SRCHandle to allow
srcsbuf_r continuation calls to use the same socket and internal buffers. The
SRCHandle parameter should not be changed by the caller except for
NEWREQUESTs.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 221

Return Values
If the srcsbuf_r subroutine succeeds, it returns the size (in bytes) of printable text pointed to by the
StatusText parameter.

Error Codes
The srcsbuf_r subroutine fails and returns the corresponding error code if one of the following error
conditions is detected:

SRC_BADSOCK The request could not be passed to the subsystem because of some
socket failure.

SRC_CONT The subsystem uses signals. The request cannot complete.
SRC_DMNA The SRC daemon is not active.
SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv file.
SRC_INET_INVALID_HOST On the remote host, the local host is not known.
SRC_INVALID_USER The user is not root or group system.
SRC_MMRY An SRC component could not allocate the memory it needs.
SRC_NOCONTINUE The Continued parameter was not set to NEWREQUEST, and no

continuation is currently active.
SRC_NORPLY The request timed out waiting for a response.
SRC_NSVR The subsystem is not active.
SRC_SOCK There is a problem with SRC socket communications.
SRC_STPG The request was not passed to the subsystem. The subsystem is

stopping.
SRC_UDP The SRC port is not defined in the /etc/services file.
SRC_UHOST The foreign host is not known.
SRC_WICH There are multiple instances of the subsystem active.

Examples
1. To get the status of a subsystem, enter:

char *status;
int continued=NEWREQUEST;
int rc;
char *handle

do {
rc=srcsbuf_r("MaryC", SUBSYSTEM, "srctest", "", 0,

SHORTSTAT, SDAEMON, &status, continued, &handle);
if (status!=0)
{

printf(status);
free(status);
status=0;

}
} while (rc>0);
if (rc<0)
{

...handle error from srcsbuf_r...
}

This gets short status of the srctest subsystem on the MaryC machine and prints the formatted status
to standard output.

Caution: In a multithreaded environment, the caller must manage the sharing of standard output
between threads. Set the StatusFrom parameter to SDAEMON to prevent unexpected error
messages from being printed to standard output.

2. To get the status of a subserver, enter:

222 Technical Reference, Volume 2: Base Operating System and Extensions

char *status;
int continued=NEWREQUEST;
int rc;
char *handle

do {
rc=srcsbuf_r("", 12345, "srctest", "", 0,

LONGSTAT, SDAEMON, &status, continued, &handle);
if (status!=0)
{

printf(status);
free(status);
status=0;

}
} while (rc>0);
if (rc<0)
{

...handle error from srcsbuf_r...
}

This gets long status for a specific subserver belonging to subsystem srctest. The subserver is the
one having code point 12345. This request is processed on the local machine. The formatted status is
printed to standard output.

Caution: In a multithreaded environment, the caller must manage the sharing of standard output
between threads. Set the StatusFrom parameter to SDAEMON to prevent unexpected error
messages from being printed to standard output.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The src_err_msg_r (“src_err_msg_r Subroutine” on page 213) subroutine, srcsrqt_r (“srcsrqt_r
Subroutine” on page 229) subroutine, srcrrqs_r (“srcrrqs_r Subroutine” on page 216) subroutine, srcstat_r
(“srcstat_r Subroutine” on page 235) subroutine, srcstattxt_r (“srcstattxt_r Subroutine” on page 239)
subroutine.

List of SRC Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Programming Subsystem Communication with the SRC in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

System Resource Controller (SRC) Overview for Programmers in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

srcsrpy Subroutine

Purpose
Sends a reply to a request from the System Resource Controller (SRC) back to the client process.

Library
System Resource Controller Library (libsrc.a)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 223

../../aixprggd/genprogc/src_subr.htm#HDRA305990D
../../aixprggd/genprogc/src_prg_subsys.htm#HDRA64C2290F
../../aixprggd/genprogc/src.htm#HDRA64C22882

Syntax
#include <spc.h>

int srcsrpy (SRChdr, PPacket, PPacketSize, Continued)

struct srchdr *SRChdr;
char *PPacket;
int PPacketSize;
ushort Continued;

Description
The srcsrpy subroutine returns a subsystem reply to a System Resource Controller (SRC) subsystem
request. The format and content of the reply are determined by the subsystem and the requester, but must
start with a srchdr structure. This structure and all others required for subsystem communication with the
SRC are defined in the /usr/include/spc.h file. The subsystem must reply with a pre-defined format and
content for the following requests: START, STOP, STATUS, REFRESH, and TRACE. The START, STOP,
REFRESH, and TRACE requests must be answered with a srcrep structure. The STATUS request must
be answered with a reply in the form of a statbuf structure.

Note: The srcsrpy subroutine creates its own socket to send the subsystem reply packets.

Parameters

SRChdr Points to the reply address buffer as returned by the srcrrqs subroutine.
PPacket Points to the reply packet. The first element of the reply packet is a srchdr structure. The cont

element of the PPacket->srchdr structure is modified on returning from the srcsrpy subroutine.
The second element of the reply packet should be a svrreply structure, an array of statcode
structures, or another format upon which the subsystem and the requester have agreed.

PPacketSize Specifies the number of bytes in the reply packet pointed to by the PPacket parameter. The
PPacketSize parameter may be the size of a short, or it may be between the size of a srchdr
structure and the SRCPKTMAX value, which is defined in the spc.h file.

Continued Indicates whether this reply is to be continued. If the Continued parameter is set to the constant
END, no more reply packets are sent for this request. If the Continued parameter is set to
CONTINUED, the second element of what is indicated by the PPacket parameter must be a
svrreply structure, since the rtnmsg element of the svrreply structure is printed to standard
output. For a status reply, the Continued parameter is set to STATCONTINUED, and the
second element of what is pointed to by the PPacket parameter must be an array of statcode
structures. If a STOP subsystem request is received, only one reply packet can be sent and the
Continued parameter must be set to END. Other types of continuations, as determined by the
subsystem and the requester, must be defined using positive values for the Continued
parameter. Values other than the following must be used:

0 END

1 CONTINUED

2 STATCONTINUED

Return Values
If the srcsrpy subroutine succeeds, it returns the value SRC_OK.

Error Codes
The srcsrpy subroutine fails if one or both of the following are true:

SRC_SOCK There is a problem with SRC socket communications.
SRC_REPLYSZ SRC reply size is invalid.

224 Technical Reference, Volume 2: Base Operating System and Extensions

../../files/aixfiles/spc.h.htm#HDRA9CF832A393SYLV
../../files/aixfiles/spc.h.htm#HDRA9CF832A393SYLV

Examples
1. To send a STOP subsystem reply, enter:

struct srcrep return_packet;
struct srchdr *srchdr;

bzero(&return_packet,sizeof(return_packet));
return_packet.svrreply.rtncode=SRC_OK;
strcpy(return_packet.svrreply,"srctest");

srcsrpy(srchdr,return_packet,sizeof(return_packet),END);

This entry sends a message that the subsystem srctest is stopping successfully.

2. To send a START subserver reply, enter:
struct srcrep return_packet;
struct srchdr *srchdr;

bzero(&return_packet,sizeof(return_packet));
return_packet.svrreply.rtncode=SRC_SUBMSG;
strcpy(return_packet.svrreply,objname,"mysubserver");
strcpy(return_packet.svrreply,objtext,"The subserver,\
mysubserver, has been started");

srcsrpy(srchdr,return_packet,sizeof(return_packet),END);

The resulting message indicates that the start subserver request was successful.

3. To send a status reply, enter:
int rc;
struct sockaddr addr;
int addrsz;
struct srcreq packet;
struct
{

struct srchdr srchdr;
struct statcode statcode[10];

} status;
struct srchdr *srchdr;
struct srcreq packet;

.

.

.
/* grab the reply information from the SRC packet */
srchdr=srcrrqs(&packet);
bzero(&status.statcode[0].objname,

/* get SRC status header */
srcstathdr(status.statcode[0].objname,

status.statcode[0].objtext);
.
.
.

/* send status packet(s) */
srcsrpy(srchdr,&status,sizeof(status),STATCONTINUED);

.

.

.
srcsrpy(srchdr,&status,sizeof(status),STATCONTINUED);

/* send final packet */
srcsrpy(srchdr,&status,sizeof(struct srchdr),END);

This entry sends several status packets.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 225

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/dev/.SRC-unix Specifies the location for temporary socket files.

Related Information
The srcrrqs (“srcrrqs Subroutine” on page 214) subroutine, srcsbuf (“srcsbuf Subroutine” on page 217)
subroutine, srcsrqt (“srcsrqt Subroutine”) subroutine, srcstat (“srcstat Subroutine” on page 233)
subroutine, srcstathdr (“srcstathdr Subroutine” on page 237) subroutine, srcstattxt (“srcstattxt Subroutine”
on page 238) subroutine, srcstop (“srcstop Subroutine” on page 239) subroutine, srcstrt (“srcstrt

Subroutine” on page 242) subroutine.

List of SRC Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Programming Subsystem Communication with the SRC in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

System Resource Controller (SRC) Overview for Programmers in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

Understanding SRC Communication Types in AIX 5L Version 5.1 General Programming Concepts: Writing
and Debugging Programs.

srcsrqt Subroutine

Purpose
Sends a request to a subsystem.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <spc.h> srcsrqt(Host, SubsystemName, SubsystemPID,
RequestLength, SubsystemRequest, ReplyLength, ReplyBuffer, StartItAlso, Continued)

char * Host, * SubsystemName;

char * SubsystemRequest, * ReplyBuffer;

int SubsystemPID, StartItAlso, * Continued;

short RequestLength, * ReplyLength;

Description
The srcsrqt subroutine sends a request to a subsystem, waits for a response, and returns one or more
replies to the caller. The format of the request and the reply is determined by the caller and the
subsystem.

226 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/src_subr.htm#HDRA305990D
../../aixprggd/genprogc/src_prg_subsys.htm#HDRA64C2290F
../../aixprggd/genprogc/src.htm#HDRA64C22882
../../aixprggd/genprogc/src_comm_types.htm#HDRA64C228E9

Note: The srcsrqt subroutine creates its own socket to send a request to the subsystem. The socket
that this function opens remains open until an error or an end packet is received.

Two types of continuation are returned by the srcsrqt subroutine:

No continuation ReplyBuffer->srchdr.continued is set to the END constant.
Reply continuation ReplyBuffer->srchdr.continued is not set to the END constant, but to a positive

value agreed upon by the calling process and the subsystem. The packet is
returned to the caller.

Parameters

SubsystemPID The process ID of the subsystem.
Host Specifies the foreign host on which this subsystem request is to be sent. If the host is

null, the request is sent to the subsystem on the local host. The local user must be
running as ″root″. The remote system must be configured to accept remote System
Resource Controller requests. That is, the srcmstr daemon (see /etc/inittab) must be
started with the -r flag and the /etc/hosts.equiv or .rhosts file must be configured to
allow remote requests.

SubsystemName Specifies the name of the subsystem to which this request is to be sent. You must
specify a SubsystemName if you do not specify a SubsystemPID.

RequestLength Specifies the length, in bytes, of the request to be sent to the subsystem. The
maximum value in bytes for this parameter is 2000 bytes.

SubsystemRequest Points to the subsystem request packet.
ReplyLength Specifies the maximum length, in bytes, of the reply to be received from the

subsystem. On return from the srcsrqt subroutine, the ReplyLength parameter is set
to the actual length of the subsystem reply packet.

ReplyBuffer Points to a buffer for the receipt of the reply packet from the subsystem.
StartItAlso Specifies whether the subsystem should be started if it is nonactive. When nonzero,

the System Resource Controller (SRC) attempts to start a nonactive subsystem, and
then passes the request to the subsystem.

Continued Specifies whether this call to the srcsrqt subroutine is a continuation of a previous
request. If the Continued parameter is set to NEWREQUEST, a request for it is sent
to the subsystem and the subsystem is notified that another response is expected.
The calling process should never set Continued to any value other than
NEWREQUEST. The last response from the subsystem will set Continued to END.

Return Values
If the srcsrqt subroutine is successful, the value SRC_OK is returned.

Error Codes
The srcsrqt subroutine fails if one or more of the following are true:

SRC_BADSOCK The request could not be passed to the subsystem because of a
socket failure.

SRC_CONT The subsystem uses signals. The request cannot complete.
SRC_DMNA The SRC daemon is not active.
SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv file.
SRC_INET_INVALID_HOST On the remote host, the local host is not known.
SRC_INVALID_USER The user is not root or group system.
SRC_MMRY An SRC component could not allocate the memory it needs.
SRC_NOCONTINUE The Continued parameter was not set to NEWREQUEST, and no

continuation is currently active.
SRC_NORPLY The request timed out waiting for a response.
SRC_NSVR The subsystem is not active.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 227

SRC_REQLEN2BIG The RequestLength is greater than the maximum 2000 bytes.
SRC_SOCK There is a problem with SRC socket communications.
SRC_STPG The request was not passed to the subsystem. The subsystem is

stopping.
SRC_UDP The SRC port is not defined in the /etc/services file.
SRC_UHOST The foreign host is not known.

Examples
1. To request long subsystem status, enter:

int cont=NEWREQUEST;
int rc;
short replen;
short reqlen;
struct
{

struct srchdr srchdr;
struct statcode statcode[20];

} statbuf;
struct subreq subreq;

subreq.action=STATUS;
subreq.object=SUBSYSTEM;
subreq.parm1=LONGSTAT;
strcpy(subreq.objname,"srctest");
replen=sizeof(statbuf);
reqlen=sizeof(subreq);
rc=srcsrqt("MaryC", "srctest", 0, reqlen, &subreq, &replen,
&statbuf, SRC_NO, &cont);

This entry gets long status of the subsystem srctest on the MaryC machine. The subsystem keeps
sending status packets until statbuf.srchdr.cont=END.

2. To start a subserver, enter:
int cont=NEWREQUEST;
int rc;
short replen;
short reqlen;
struct
{

struct srchdr srchdr;
struct statcode statcode[20];

} statbuf;
struct subreq subreq;

subreq.action=START;
subreq.object=1234;
replen=sizeof(statbuf);
reqlen=sizeof(subreq);
rc=srcsrqt("", "", 987, reqlen, &subreq, &replen, &statbuf,
SRC_NO, &cont);

This entry starts the subserver with the code point of 1234, but only if the subsystem is already active.

3. To start a subserver and a subsystem, enter:
int cont=NEWREQUEST;
int rc;
short replen;
short reqlen;
struct
{

struct srchdr srchdr;
struct statcode statcode[20];

228 Technical Reference, Volume 2: Base Operating System and Extensions

} statbuf;
struct subreq subreq;
subreq.action=START;
subreq.object=1234;
replen=sizeof(statbuf);
reqlen=sizeof(subreq);
rc=srcsrqt("", "", 987, reqlen, &subreq, &replen, &statbuf, SRC_YES, &cont);

This entry starts the subserver with the code point of 1234. If the subsystem to which this subserver
belongs is not active, the subsystem is started.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/etc/services Defines sockets and protocols used for Internet services.
/dev/SRC Specifies the AF_UNIX socket file.
/dev/.SRC-unix Specifies the location for temporary socket files.

Related Information
The srcrrqs (“srcrrqs Subroutine” on page 214) subroutine, srcsbuf (“srcsbuf Subroutine” on page 217)
subroutine, srcsrpy (“srcsrpy Subroutine” on page 223) subroutine, srcstat (“srcstat Subroutine” on
page 233) subroutine, srcstathdr (“srcstathdr Subroutine” on page 237) subroutine, srcstattxt (“srcstattxt
Subroutine” on page 238) subroutine, srcstop (“srcstop Subroutine” on page 239) subroutine, srcstrt
(“srcstrt Subroutine” on page 242) subroutine.

List of SRC Subroutines, Programming Subsystem Communication with the SRC, System Resource
Controller (SRC) Overview for Programmers in AIX 5L Version 5.1 General Programming Concepts:
Writing and Debugging Programs.

srcsrqt_r Subroutine

Purpose
Sends a request to a subsystem.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <spc.h>

srcsrqt_r(Host, SubsystemName, SubsystemPID, RequestLength,
SubsystemRequest, ReplyLength, ReplyBuffer, StartItAlso,
Continued, SRCHandle)

char * Host, * SubsystemName;
char * SubsystemRequest, * ReplyBuffer;
pid_t SubsystemPID,
int, StartItAlso, * Continued;
short RequestLength, * ReplyLength;
char ** SRCHandle;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 229

../../aixprggd/genprogc/src_subr.htm#HDRA305990D
../../aixprggd/genprogc/src_prg_subsys.htm#HDRA64C2290F
../../aixprggd/genprogc/src.htm#HDRA64C22882
../../aixprggd/genprogc/src.htm#HDRA64C22882

Description
The srcsrqt_r subroutine sends a request to a subsystem, waits for a response and returns one or more
replies to the caller. The format of the request and the reply is determined by the caller and the
subsystem.

Note: For each NEWREQUEST, the srcsrqt_r subroutine creates its own socket to send a request
to the subsystem. The socket that this function opens remains open until an error or an end packet is
received.

This system is threadsafe and reentrant.

Two types of continuation are returned by the srcsrqt_r subroutine:

No continuation ReplyBuffer->srchdr.continued is set to the END constant.
Reply continuation ReplyBuffer->srchdr.continued is not set to the END constant, but to a positive

value agreed upon by the calling process and the subsystem. The packet is
returned to the caller.

Parameters

SubsystemPID The process ID of the subsystem.
Host Specifies the foreign host on which this subsystem request is to be sent. If the

host is null, the request is sent to the subsystem on the local host.
SubsystemName Specifies the name of the subsystem to which this request is to be sent. You

must specify a SubsystemName if you do not specify a SubsystemPID.
RequestLength Specifies the length, in bytes, of the request to be sent to the subsystem. The

maximum length is 2000 bytes.
SubsystemRequest Points to the subsystem request packet.
ReplyLength Specifies the maximum length, in bytes, of the reply to be received from the

subsystem. On return from the srcsrqt subroutine, the ReplyLength parameter is
set to the actual length of the subsystem reply packet.

ReplyBuffer Points to a buffer for the receipt of the reply packet from the subsystem.
StartItAlso Specifies whether the subsystem should be started if it is nonactive. When

nonzero, the System Resource Controller (SRC) attempts to start a nonactive
subsystem, and then passes the request to the subsystem.

Continued Specifies whether this call to the srcsrqt subroutine is a continuation of a
previous request. If the Continued parameter is set to NEWREQUEST, a request
for it is sent to the subsystem and the subsystem is notified that a response is
expected. Under normal circumstances, the calling process should never set
Continued to any value other than NEWREQUEST. The last response from the
subsystem will set Continued to END. The caller must continue to call the
srcsrqt_r subroutine until END is received. Otherwise, the socket will not be
closed and the internal buffers freed. As an alternative, set
Continued=SRC_CLOSE to discard the remaining data, close the socket, and
free the internal buffers.

SRCHandle Identifies a request and its associated responses. Set to NULL by the caller for a
NEWREQUEST. The srcsrqt_r subroutine saves a value in SRCHandle to allow
srcsrqt_r continuation calls to use the same socket and internal buffers. The
SRCHandle parameter should not be changed by the caller except for
NEWREQUESTs.

Return Values
If the srcsrqt_r subroutine is successful, the value SRC_OK is returned.

230 Technical Reference, Volume 2: Base Operating System and Extensions

Error Codes
The srcsrqt_r subroutine fails and returns the corresponding error code if one of the following error
conditions is detected:

SRC_BADSOCK The request could not be passed to the subsystem because of a
socket failure.

SRC_CONT The subsystem uses signals. The request cannot complete.
SRC_DMNA The SRC daemon is not active.
SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv file.
SRC_INET_INVALID_HOST On the remote host, the local host is not known.
SRC_INVALID_USER The user is not root or group system.
SRC_MMRY An SRC component could not allocate the memory it needs.
SRC_NOCONTINUE The Continued parameter was not set to NEWREQUEST, and no

continuation is currently active.
SRC_NORPLY The request timed out waiting for a response.
SRC_NSVR The subsystem is not active.
SRC_REQLEN2BIG The RequestLength is greater than the maximum 2000 bytes.
SRC_SOCK There is a problem with SRC socket communications.
SRC_STPG The request was not passed to the subsystem. The subsystem is

stopping.
SRC_UDP The SRC port is not defined in the /etc/services file.
SRC_UHOST The foreign host is not known.

Examples
1. To request long subsystem status, enter:

int cont=NEWREQUEST;
int rc;
short replen;
short reqlen;
char *handle;
struct
{

struct srchdr srchdr;
struct statcode statcode[20];

} statbuf;
struct subreq subreq;

subreq.action=STATUS;
subreq.object=SUBSYSTEM;
subreq.parm1=LONGSTAT;
strcpy(subreq.objname,"srctest");
replen=sizeof(statbuf);
reqlen=sizeof(subreq);
rc=srcsrqt_r("MaryC", "srctest", 0, reqlen, &subreq, &replen,
&statbuf, SRC_NO, &cont, &handle);

This entry gets long status of the subsystem srctest on the MaryC machine. The subsystem keeps
sending status packets until statbuf.srchdr.cont=END.

2. To start a subserver, enter:
int cont=NEWREQUEST;
int rc;
short replen;
short reqlen;
struct
char *handle;
struct
{

struct srchdr srchdr;
struct statcode statcode[20];

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 231

} statbuf;
struct subreq subreq;

subreq.action=START;
subreq.object=1234;
replen=sizeof(statbuf);
reqlen=sizeof(subreq);
rc=srcsrqt_r("", "", 987, reqlen, &subreq, &replen, &statbuf,
SRC_NO, &cont, &handle);

This entry starts the subserver with the code point of 1234, but only if the subsystem is already active.

3. To start a subserver and a subsystem, enter:
int cont=NEWREQUEST;
int rc;
short replen;
short reqlen;
char *handle;
struct
{

struct srchdr srchdr;
struct statcode statcode[20];

} statbuf;
struct subreq subreq;
subreq.action=START;
subreq.object=1234;
replen=sizeof(statbuf);
reqlen=sizeof(subreq);
rc=srcsrqt("", "", 987, reqlen, &subreq, &replen, &statbuf, SRC_YES, &cont, &handle);

This entry starts the subserver with the code point of 1234. If the subsystem to which this subserver
belongs is not active, the subsystem is started.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/etc/services Defines sockets and protocols used for Internet services.
/dev/SRC Specifies the AF_UNIX socket file.
/dev/.SRC-unix Specifies the location for temporary socket files.

Related Information
The src_err_msg_r (“src_err_msg_r Subroutine” on page 213), srcsbuf_r (“srcsbuf_r Subroutine” on
page 220), srcrrqs_r (“srcrrqs_r Subroutine” on page 216), srcstat_r (“srcstat_r Subroutine” on page 235),
and srcstattxt_r (“srcstattxt_r Subroutine” on page 239) subroutines.

List of SRC Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Programming Subsystem Communication with the SRC in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

System Resource Controller (SRC) Overview for Programmers in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

232 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/src_subr.htm#HDRA305990D
../../aixprggd/genprogc/src_prg_subsys.htm#HDRA64C2290F
../../aixprggd/genprogc/src.htm#HDRA64C22882

srcstat Subroutine

Purpose
Gets short status on a subsystem.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <spc.h>

int srcstat(Host,
SubsystemName,SubsystemPID, ReplyLength, StatusReply,Continued)
char * Host, * SubsystemName;
int SubsystemPID, * Continued;
short * ReplyLength;
struct statrep * StatusReply;

Description
The srcstat subroutine sends a short status request to the System Resource Controller (SRC) and returns
status for one or more subsystems to the caller.

Parameters

Host Specifies the foreign host on which this status action is requested. If the host is null, the
status request is sent to the SRC on the local host. The local user must be running as
″root″. The remote system must be configured to accept remote System Resource
Controller requests. That is, the srcmstr daemon (see /etc/inittab) must be started with the
-r flag and the /etc/hosts.equiv or .rhosts file must be configured to allow remote
requests.

SubsystemName Specifies the name of the subsystem on which to get short status. To get status of all
subsystems, use the SRCALLSUBSYS constant. To get status of a group of subsystems,
the SubsystemName parameter must start with the SRCGROUP constant, followed by the
name of the group for which you want status appended. If you specify a null
SubsystemName parameter, you must specify a SubsystemPID parameter.

SubsystemPID Specifies the PID of the subsystem on which to get status as returned by the srcstat
subroutine. You must specify the SubsystemPID parameter if multiple instances of the
subsystem are active and you request a long subsystem status or subserver status. If you
specify a null SubsystemPID parameter, you must specify a SubsystemName parameter.

ReplyLength Specifies size of a srchdr structure plus the number of statcode structures times the size
of one statcode structure. On return from the srcstat subroutine, this value is updated.

StatusReply Specifies a pointer to a statrep code structure containing a statcode array that receives
the status reply for the requested subsystem. The first element of the returned statcode
array contains the status title line. The statcode structure is defined in the spc.h file.

Continued Specifies whether this call to the srcstat subroutine is a continuation of a previous status
request. If the Continued parameter is set to NEWREQUEST, a request for short
subsystem status is sent to the SRC and srcstat waits for the first status response. The
calling process should never set Continued to a value other than NEWREQUEST. The last
response for the SRC sets Continued to END.

Return Values
If the srcstat subroutine succeeds, it returns a value of 0. An error code is returned if the subroutine is
unsuccessful.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 233

../../files/aixfiles/spc.h.htm#SPTOXYLG2C8JEFF

Error Codes
The srcstat subroutine fails if one or more of the following are true:

SRC_DMNA The SRC daemon is not active.
SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv file.
SRC_INET_INVALID_HOST On the remote host, the local host is not known.
SRC_INVALID_USER The user is not root or group system.
SRC_MMRY An SRC component could not allocate the memory it needs.
SRC_NOCONTINUE Continued was not set to NEWREQUEST and no continuation is

currently active.
SRC_NORPLY The request timed out waiting for a response.
SRC_SOCK There is a problem with SRC socket communications.
SRC_UDP The SRC port is not defined in the /etc/services file.
SRC_UHOST The foreign host is not known.

Examples
1. To request the status of a subsystem, enter:

intcont=NEWREQUEST;
struct statcode statcode[20];
short replen=sizeof(statcode);

srcstat("MaryC","srctest",0,&replen,statcode,&cont);

This entry requests short status of all instances of the subsystem srctest on the MaryC machine.

2. To request the status of all subsystems, enter:
intcont=NEWREQUEST;
struct statcode statcode[20];
short replen=sizeof(statcode);

srcstat("",SRCALLSUBSYS,0,&replen,statcode,&cont);

This entry requests short status of all subsystems on the local machine.

3. To request the status for a group of subsystems, enter:
intcont=NEWREQUEST;
struct statcode statcode[20];
short replen=sizeof(statcode);
char subsysname[30];

strcpy(subsysname,SRCGROUP);
strcat(subsysname,"tcpip");
srcstat("",subsysname,0,&replen,statcode, &cont);

This entry requests short status of all members of the subsystem group tcpip on the local machine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/etc/services Defines the sockets and protocols used for Internet services.
/dev/SRC Specifies the AF_UNIX socket file.
/dev/.SRC-unix Specifies the location for temporary socket files.

234 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information
The srcrrqs (“srcrrqs Subroutine” on page 214) subroutine, srcsbuf (“srcsbuf Subroutine” on page 217)
subroutine, srcsrpy (“srcsrpy Subroutine” on page 223) subroutine, srcsrqt (“srcsrqt Subroutine” on
page 226) subroutine, srcstathdr (“srcstathdr Subroutine” on page 237) subroutine, srcstattxt (“srcstattxt
Subroutine” on page 238) subroutine, srcstop (“srcstop Subroutine” on page 239) subroutine, srcstrt
(“srcstrt Subroutine” on page 242) subroutine.

List of SRC Subroutines, Programming Subsystem Communication with the SRC, System Resource
Controller (SRC) Overview for Programmers in AIX 5L Version 5.1 General Programming Concepts:
Writing and Debugging Programs.

srcstat_r Subroutine

Purpose
Gets short status on a subsystem.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <spc.h>

int srcstat_r(Host, SubsystemName, SubsystemPID, ReplyLength,
StatusReply, Continued, SRCHandle)

char * Host, * SubsystemName;
pid_t SubsystemPID;
int * Continued;
short * ReplyLength;
struct statrep * StatusReply;
char ** SRCHandle;

Description
The srcstat_r subroutine sends a short status request to the System Resource Controller (SRC) and
returns status for one or more subsystems to the caller. This subroutine is threadsafe and reentrant.

Parameters

Host Specifies the foreign host on which this status action is requested. If the host is null, the
status request is sent to the SRC on the local host.

SubsystemName Specifies the name of the subsystem on which to get short status. To get status of all
subsystems, use the SRCALLSUBSYS constant. To get status of a group of subsystems,
the SubsystemName parameter must start with the SRCGROUP constant, followed by the
name of the group for which you want status appended. If you specify a null
SubsystemName parameter, you must specify a SubsystemPID parameter.

SubsystemPID Specifies the PID of the subsystem on which to get status as returned by the srcstat_r
subroutine. You must specify the SubsystemPID parameter if multiple instances of the
subsystem are active and you request a long subsystem status or subserver status. If you
specify a null SubsystemPID parameter, you must specify a SubsystemName parameter.

ReplyLength Specifies size of a srchdr structure plus the number of statcode structures times the size
of one statcode structure. On return from the srcstat_r subroutine, this value is updated.

StatusReply Specifies a pointer to a statrep code structure containing a statcode array that receives
the status reply for the requested subsystem. The first element of the returned statcode
array contains the status title line. The statcode structure is defined in the spc.h file.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 235

../../aixprggd/genprogc/src_subr.htm#HDRA305990D
../../aixprggd/genprogc/src_prg_subsys.htm#HDRA64C2290F
../../aixprggd/genprogc/src.htm#HDRA64C22882
../../aixprggd/genprogc/src.htm#HDRA64C22882
../../files/aixfiles/spc.h.htm#SPTOXYLG2C8JEFF

Continued Specifies whether this call to the srcstat_r subroutine is a continuation of a previous status
request. If the Continued parameter is set to NEWREQUEST, a request for short
subsystem status is sent to the SRC and srcstat_r waits for the first status response.
During NEWREQUEST processing, the srcstat_r subroutine opens a socket, mallocs
internal buffers, and saves a value in SRCHandle. In normal circumstances, the calling
process should never set Continued to a value other than NEWREQUEST. When the
srcstat_r subroutine returns with Continued=STATCONTINUED, call srcstat_r without
changing the Continued and SRCHandle parameters to receive additional data. The last
response from the SRC sets Continued to END. The caller must continue to call srcstat_r
until END is received. Otherwise, the socket will not be closed and the internal buffers
freed. As an alternative, call srcstat_r with Continued=STATCONTINUED to discard the
remaining data, close the socket, and free the internal buffers.

SRCHandle Identifies a request and its associated responses. Set to NULL by the caller for a
NEWREQUEST. The srcstat_r subroutine saves a value in SRCHandle to allow
subsequent srcstat_r calls to use the same socket and internal buffers. The SRCHandle
parameter should not be changed by the caller except for NEWREQUESTs.

Return Values
If the srcstat_r subroutine succeeds, it returns a value of 0. An error code is returned if the subroutine is
unsuccessful.

Error Codes
The srcstat_r subroutine fails and returns the corresponding error code if one of the following error
conditions is detected:

SRC_DMNA The SRC daemon is not active.
SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv file.
SRC_INET_INVALID_HOST On the remote host, the local host is not known.
SRC_INVALID_USER The user is not root or group system.
SRC_MMRY An SRC component could not allocate the memory it needs.
SRC_NOCONTINUE Continued was not set to NEWREQUEST and no continuation is

currently active.
SRC_NORPLY The request timed out waiting for a response.
SRC_SOCK There is a problem with SRC socket communications.
SRC_UDP The SRC port is not defined in the /etc/services file.
SRC_UHOST The foreign host is not known.

Examples
1. To request the status of a subsystem, enter:

int cont=NEWREQUEST;
struct statcode statcode[20];
short replen=sizeof(statcode);
char *handle;

srcstat_r("MaryC","srctest",0,&replen,statcode, &cont, &handle);

This entry requests short status of all instances of the subsystem srctest on the MaryC machine.

2. To request the status of all subsystems, enter:
int cont=NEWREQUEST;
struct statcode statcode[20];
short replen=sizeof(statcode);
char *handle;

srcstat_r("",SRCALLSUBSYS,0,&replen,statcode, &cont, &handle);

236 Technical Reference, Volume 2: Base Operating System and Extensions

This entry requests short status of all subsystems on the local machine.

3. To request the status for a group of subsystems, enter:
int cont=NEWREQUEST;
struct statcode statcode[20];
short replen=sizeof(statcode);
char subsysname[30];
char *handle;

strcpy(subsysname,SRCGROUP);
strcat(subsysname,"tcpip");
srcstat_r("",subsysname,0,&replen,statcode, &cont, &handle);

This entry requests short status of all members of the subsystem group tcpip on the local machine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/etc/services Defines the sockets and protocols used for Internet services.
/dev/SRC Specifies the AF_UNIX socket file.
/dev/.SRC-unix Specifies the location for temporary socket files.

Related Information
The src_err_msg_r (“src_err_msg_r Subroutine” on page 213), srcsbuf_r (“srcsbuf_r Subroutine” on
page 220), srcsrqt_r (“srcsrqt_r Subroutine” on page 229), srcrrqs_r (“srcrrqs_r Subroutine” on page 216),
and srcstattxt_r (“srcstattxt_r Subroutine” on page 239) subroutines.

srcstathdr Subroutine

Purpose
Gets the title line of the System Resource Controller (SRC) status text.

Library
System Resource Controller Library (libsrc.a)

Syntax
void srcstathdr (Title1, Title2)
char *Title1, *Title2;

Description
The srcstathdr subroutine retrieves the title line, or header, of the SRC status text.

Parameters

Title1 Specifies the objname field of a statcode structure. The subsystem name title is placed here.
Title2 Specifies the objtext field of a statcode structure. The remaining titles are placed here.

Return Values
The subsystem name title is returned in the Title1 parameter. The remaining titles are returned in the Title2
parameter.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 237

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The srcrrqs (“srcrrqs Subroutine” on page 214) subroutine, srcsbuf (“srcsbuf Subroutine” on page 217)
subroutine, srcsrpy (“srcsrpy Subroutine” on page 223) subroutine, srcsrqt (“srcsrqt Subroutine” on
page 226) subroutine, srcstat (“srcstat Subroutine” on page 233) subroutine, srcstattxt (“srcstattxt
Subroutine”) subroutine, srcstop (“srcstop Subroutine” on page 239) subroutine, srcstrt (“srcstrt
Subroutine” on page 242) subroutine.

List of SRC Subroutines, Programming Subsystem Communication with the SRC, System Resource
Controller (SRC) Overview for Programmers in AIX 5L Version 5.1 General Programming Concepts:
Writing and Debugging Programs.

srcstattxt Subroutine

Purpose
Gets the System Resource Controller (SRC) status text representation for a status code.

Library
System Resource Controller Library (libsrc.a)

Syntax
char *srcstattxt (StatusCode)
short StatusCode;

Description
The srcstattxt subroutine, given an SRC status code, gets the text representation and returns a pointer to
this text.

Parameters

StatusCode Specifies an SRC status code to be translated into meaningful text.

Return Values
The srcstattxt subroutine returns a pointer to the text representation of a status code.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The srcrrqs (“srcrrqs Subroutine” on page 214) subroutine, srcsbuf (“srcsbuf Subroutine” on page 217)
subroutine, srcsrpy (“srcsrpy Subroutine” on page 223) subroutine, srcsrqt (“srcsrqt Subroutine” on
page 226) subroutine, srcstat (“srcstat Subroutine” on page 233) subroutine, srcstathdr (“srcstathdr
Subroutine” on page 237) subroutine, srcstop (“srcstop Subroutine” on page 239) subroutine, srcstrt
(“srcstrt Subroutine” on page 242) subroutine.

List of SRC Subroutines, Programming Subsystem Communication with the SRC, System Resource
Controller (SRC) Overview for Programmers in AIX 5L Version 5.1 General Programming Concepts:
Writing and Debugging Programs.

238 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/src_subr.htm#HDRA305990D
../../aixprggd/genprogc/src_prg_subsys.htm#HDRA64C2290F
../../aixprggd/genprogc/src.htm#HDRA64C22882
../../aixprggd/genprogc/src.htm#HDRA64C22882
../../aixprggd/genprogc/src_subr.htm#HDRA305990D
../../aixprggd/genprogc/src_prg_subsys.htm#HDRA64C2290F
../../aixprggd/genprogc/src.htm#HDRA64C22882
../../aixprggd/genprogc/src.htm#HDRA64C22882

srcstattxt_r Subroutine

Purpose
Gets the status text representation for an SRC status code.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <spc.h>

char *srcstattxt_r (StatusCode, Text)
short StatusCode;
char *Text;

Description
The srcstattxt_r subroutine, given an SRC status code, gets the text representation and returns it in a
caller-supplied buffer. This routine is threadsafe and reentrant.

Parameters

StatusCode Specifies an SRC status code to be translated into meaningful text.
Text Points to a caller-supplied buffer where the text will be returned. If the length of the text is

unknown, the maximum text length can be used when allocating the buffer. The maximum text
length is SRC_STAT_MAX in /usr/include/spc.h (64 bytes).

Return Values
Upon successful completion, the srcstattxt_r subroutine returns the address of the caller-supplied buffer.
Otherwise, no text is returned and the subroutine returns NULL.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The src_err_msg_r (“src_err_msg_r Subroutine” on page 213), srcsbuf_r (“srcsbuf_r Subroutine” on
page 220), srcsrqt_r (“srcsrqt_r Subroutine” on page 229), srcrrqs_r (“srcrrqs_r Subroutine” on page 216),
and srcstat_r (“srcstat_r Subroutine” on page 235) subroutines.

List of SRC Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Programming Subsystem Communication with the SRC in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

System Resource Controller (SRC) Overview for Programmers in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

srcstop Subroutine

Purpose
Stops a System Resource Controller (SRC) subsystem.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 239

../../aixprggd/genprogc/src_subr.htm#HDRA305990D
../../aixprggd/genprogc/src_prg_subsys.htm#HDRA64C2290F
../../aixprggd/genprogc/src.htm#HDRA64C22882

Library
System Resource Controller Library (libsrc.a)

Syntax
#include <spc.h>

srcstop(Host, SubsystemName, SubsystemPID, StopType)
srcstop(ReplyLength, ServerReply, StopFrom)
char * Host, * SubsystemName;
int SubsystemPID, StopFrom;
short StopType, * ReplyLength;
struct srcrep * ServerReply;

Description
The srcstop subroutine sends a stop subsystem request to a subsystem and waits for a stop reply from
the System Resource Controller (SRC) or the subsystem. The srcstop subroutine can only stop a
subsystem that was started by the SRC.

Parameters

Host Specifies the foreign host on which this stop action is requested. If the host is the null
value, the request is sent to the SRC on the local host. The local user must be running as
″root″. The remote system must be configured to accept remote System Resource
Controller requests. That is, the srcmstr daemon (see /etc/inittab) must be started with the
-r flag and the /etc/hosts.equiv or .rhosts file must be configured to allow remote
requests.

SubsystemName Specifies the name of the subsystem to stop.
SubsystemPID Specifies the process ID of the system to stop as returned by the srcstrt subroutine. If you

specify a null SubsystemPID parameter, you must specify a SubsystemName parameter.
StopType Specifies the type of stop requested of the subsystem. If this parameter is null, a normal

stop is assumed. The StopType parameter must be one of the following values:

CANCEL
Requires a quick stop of the subsystem. The subsystem is sent a SIGTERM
signal. After the wait time defined in the subsystem object, the SRC issues a
SIGKILL signal to the subsystem. This waiting period allows the subsystem to
clean up all its resources and terminate. The stop reply is returned by the SRC.

FORCE
Requests a quick stop of the subsystem and all its subservers. The stop reply is
returned by the SRC for subsystems that use signals and by the subsystem for
other communication types.

NORMAL
Requests the subsystem to terminate after all current subsystem activity has
completed. The stop reply is returned by the SRC for subsystems that use signals
and by the subsystem for other communication types.

ReplyLength Specifies the maximum length, in bytes, of the stop reply. On return from the srcstop
subroutine, this field is set to the actual length of the subsystem reply packet received.

ServerReply Points to an svrreply structure that will receive the subsystem stop reply.
StopFrom Specifies whether the srcstop subroutine is to display stop results to standard output. If the

StopFrom parameter is set to SSHELL, the stop results are displayed to standard output
and the srcstop subroutine returns successfully. If the StopFrom parameter is set to
SDAEMON, the stop results are not displayed to standard output, but are passed back to
the caller.

240 Technical Reference, Volume 2: Base Operating System and Extensions

Return Values
Upon successful completion, the srcstop subroutine returns SRC_OK or SRC_STPOK.

Error Codes
The srcstop subroutine fails if one or more of the following are true:

SRC_BADFSIG The stop force signal is an invalid signal.
SRC_BADNSIG The stop normal signal is an invalid signal.
SRC_BADSOCK The stop request could not be passed to the subsystem on its

communication socket.
SRC_DMNA The SRC daemon is not active.
SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv file.
SRC_INET_INVALID_HOST On the remote host, the local host is not known.
SRC_INVALID_USER The user is not root or group system.
SRC_MMRY An SRC component could not allocate the memory it needs.
SRC_NORPLY The request timed out waiting for a response.
SRC_NOTROOT The SRC daemon is not running as root.
SRC_SOCK There is a problem with SRC socket communications.
SRC_STPG The request was not passed to the subsystem. The subsystem is

stopping.
SRC_SVND The subsystem is unknown to the SRC daemon.
SRC_UDP The remote SRC port is not defined in the /etc/services file.
SRC_UHOST The foreign host is not known.
SRC_PARM Invalid parameter passed.

Examples
1. To stop all instances of a subsystem, enter:

int rc;
struct svrreply svrreply;
short replen=sizeof(svrreply);

rc=srcstop("MaryC","srctest",0,FORCE,&replen,&svrreply,SDAEMON);

This request stops a subsystem with a stop type of FORCE for all instances of the subsystem srctest
on the MaryC machine and does not print a message to standard output about the status of the stop.

2. To stop a single instance of a subsystem, enter:
struct svrreply svrreply;
short replen=sizeof(svrreply);

rc=srcstop("","",999,CANCEL,&replen,&svrreply,SSHELL);

This request stops a subsystem with a stop type of CANCEL, with the process ID of 999 on the local
machine and prints a message to standard output about the status of the stop.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/etc/services Defines sockets and protocols used for Internet services.
/dev/SRC Specifies the AF_UNIX socket file.
/dev/.SRC-unix Specifies the location for temporary socket files.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 241

Related Information
The srcrrqs (“srcrrqs Subroutine” on page 214) subroutine, srcsbuf (“srcsbuf Subroutine” on page 217)
subroutine, srcsrpy (“srcsrpy Subroutine” on page 223) subroutine, srcsrqt (“srcsrqt Subroutine” on
page 226) subroutine, srcstat (“srcstat Subroutine” on page 233) subroutine, srcstathdr (“srcstathdr
Subroutine” on page 237) subroutine, srcstattxt (“srcstattxt Subroutine” on page 238) subroutine, srcstrt
(“srcstrt Subroutine”) subroutine.

List of SRC Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Programming Subsystem Communication with the SRC in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

System Resource Controller (SRC) Overview for Programmers in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

srcstrt Subroutine

Purpose
Starts a System Resource Controller (SRC) subsystem.

Library
System Resource Controller Library (libsrc.a)

Syntax
#include<spc.h>

srcstrt (Host, SubsystemName, Environment, Arguments, Restart, StartFrom)

char * Host, * SubsystemName;

char * Environment, * Arguments;

unsigned int Restart;
int StartFrom;

Description
The srcstrt subroutine sends a start subsystem request packet and waits for a reply from the System
Resource Controller (SRC).

Parameters

Host Specifies the foreign host on which this start subsystem action is requested. If the host is
null, the request is sent to the SRC on the local host. The local user must be running as
″root″. The remote system must be configured to accept remote System Resource
Controller requests. That is, the srcmstr daemon (see /etc/inittab) must be started with the
-r flag and the /etc/hosts.equiv or .rhosts file must be configured to allow remote
requests.

SubsystemName Specifies the name of the subsystem to start.

242 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/src_subr.htm#HDRA305990D
../../aixprggd/genprogc/src_prg_subsys.htm#HDRA64C2290F
../../aixprggd/genprogc/src.htm#HDRA64C22882

Environment Specifies a string that is placed in the subsystem environment when the subsystem is
executed. The combined values of the Environment and Arguments parameters cannot
exceed a maximum of 2400 characters. Otherwise, the srcstrt subroutine will fail. The
environment string is parsed by the SRC according to the same rules used by the shell. For
example, quoted strings are passed as a single Environment value, and blanks outside a
quoted string delimit each environment value.

Arguments Specifies a string that is passed to the subsystem when the subsystem is executed. The
string is parsed from the command line and appended to the command line arguments from
the subsystem object class. The combined values of the Environment and Arguments
parameters cannot exceed a maximum of 2400 characters. Otherwise, the srcstrt
subroutine will fail. The command argument is parsed by the SRC according to the same
rules used by the shell. For example, quoted strings are passed as a single argument, and
blanks outside a quoted string delimit each argument.

Restart Specifies override on subsystem restart. If the Restart parameter is set to SRCNO, the
subsystem’s restart definition from the subsystem object class is used. If the Restart
parameter is set to SRCYES, the restart of a subsystem is not attempted if it terminates
abnormally.

StartFrom Specifies whether the srcstrt subroutine is to display start results to standard output. If the
StartFrom parameter is set to SSHELL, the start results are displayed to standard output,
and the srcstrt subroutine always returns successfully. If the StartFrom parameter is set to
SDAEMON, the start results are not displayed to standard output but are passed back to
the caller.

Return Values
When the StartFrom parameter is set to SSHELL, the srcstrt subroutine returns the value SRC_OK.
Otherwise, it returns the subsystem process ID.

Error Codes
The srcstrt subroutine fails if any of the following are true:

SRC_AUDITID The audit user ID is invalid.
SRC_DMNA The SRC daemon is not active.
SRC_FEXE The subsystem could not be forked and execed.
SRC_INET_AUTHORIZED_HOST The local host is not in the remote /etc/hosts.equiv file.
SRC_INET_INVALID_HOST On the remote host, the local host is not known.
SRC_INVALID_USER The user is not root or group system.
SRC_INPT The subsystem standard input file could not be established.
SRC_MMRY An SRC component could not allocate the memory it needs.
SRC_MSGQ The subsystem message queue could not be created.
SRC_MULT Multiple instance of the subsystem are not allowed.
SRC_NORPLY The request timed out waiting for a response.
SRC_OUT The subsystem standard output file could not be established.
SRC_PIPE A pipe could not be established for the subsystem.
SRC_SERR The subsystem standard error file could not be established.
SRC_SUBSOCK The subsystem communication socket could not be created.
SRC_SUBSYSID The system user ID is invalid.
SRC_SOCK There is a problem with SRC socket communications.
SRC_SVND The subsystem is unknown to the SRC daemon.
SRC_UDP The SRC port is not defined in the /etc/services header file.
SRC_UHOST The foreign host is not known.

Examples
1. To start a subsystem passing the Environment and Arguments parameters, enter:

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 243

rc=srcstrt("","srctest","HOME=/tmpTERM=ibm6155",
"-z\"thezflagargument\"",SRC_YES,SSHELL);

This starts the srctest subsystem on the local host, placing HOME=/tmp, TERM=ibm6155 in the
environment and using -z and thezflagargument as two arguments to the subsystem. This also
displays the results of the start command to standard output and allows the SRC to restart the
subsystem should it end abnormally.

2. To start a subsystem on a foreign host, enter:
rc=srcstrt("MaryC","srctest","","",SRC_NO,SDAEMON);

This starts the srctest subsystem on the MaryC machine. This does not display the results of the start
command to standard output and does not allow the SRC to restart the subsystem should it end
abnormally.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/etc/services Defines sockets and protocols used for Internet services.
/dev/SRC Specifies the AF_UNIX socket file.
/dev/.SRC-unix Specifies the location for temporary socket files.

Related Information
The srcrrqs (“srcrrqs Subroutine” on page 214) subroutine, srcsbuf (“srcsbuf Subroutine” on page 217)
subroutine, srcsrpy (“srcsrpy Subroutine” on page 223) subroutine, srcsrqt (“srcsrqt Subroutine” on
page 226)subroutine, srcstat (“srcstat Subroutine” on page 233) subroutine, srcstathdr (“srcstathdr
Subroutine” on page 237) subroutine, srcstattxt (“srcstattxt Subroutine” on page 238) subroutine, srcstop
(“srcstop Subroutine” on page 239) subroutine.

List of SRC Subroutines, Programming Subsystem Communication with the SRC, System Resource
Controller (SRC) Overview for Programmers in AIX 5L Version 5.1 General Programming Concepts:
Writing and Debugging Programs.

ssignal or gsignal Subroutine

Purpose
Implements a software signal facility.

Library
Standard C Library (libc.a)

Syntax
#include <signal.h>

void (*ssignal (Signal, Action))()
int Signal;
void (*Action)();

int gsignal (Signal)
int Signal;

244 Technical Reference, Volume 2: Base Operating System and Extensions

../../files/aixfiles/services.htm#HDRYS8120SARA
../../aixprggd/genprogc/src_subr.htm#HDRA305990D
../../aixprggd/genprogc/src_prg_subsys.htm#HDRA64C2290F
../../aixprggd/genprogc/src.htm#HDRA64C22882
../../aixprggd/genprogc/src.htm#HDRA64C22882

Description
Attention: Do not use the ssignal or gsignal subroutine in a multithreaded environment.

The ssignal and gsignal subroutines implement a software facility similar to that of the signal and kill
subroutines. However, there is no connection between the two facilities. User programs can use the
ssignal and gsignal subroutines to handle exceptional processing within an application. The signal
subroutine and related subroutines handle system-defined exceptions.

The software signals available are associated with integers in the range 1 through 16. Other values are
reserved for use by the C library and should not be used.

The ssignal subroutine associates the procedure specified by the Action parameter with the software
signal specified by the Signal parameter. The gsignal subroutine raises the Signal, causing the procedure
specified by the Action parameter to be taken.

The Action parameter is either a pointer to a user-defined subroutine, or one of the constants SIG_DFL
(default action) and SIG_IGN (ignore signal). The ssignal subroutine returns the procedure that was
previously established for that signal. If no procedure was established before, or if the signal number is
illegal, then the ssignal subroutine returns the value of SIG_DFL.

The gsignal subroutine raises the signal specified by the Signal parameter by doing the following:

v If the procedure for the Signal parameter is SIG_DFL, the gsignal subroutine returns a value of 0 and
takes no other action.

v If the procedure for the Signal parameter is SIG_IGN, the gsignal subroutine returns a value of 1 and
takes no other action.

v If the procedure for the Signal parameter is a subroutine, the Action value is reset to the SIG_DFL
procedure and the subroutine is called, with the Signal value passed as its parameter. The gsignal
subroutine returns the value returned by the signal-handling routine.

v If the Signal parameter specifies an illegal value or if no procedure is specified for that signal, the
gsignal subroutine returns a value of 0 and takes no other action.

Parameters

Signal Specifies a signal.
Action Specifies a procedure.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The kill or killpg subroutine, signal (“sigaction, sigvec, or signal Subroutine” on page 135) subroutine.

statacl or fstatacl Subroutine

Purpose

Retrieves the access control information for a file.

Library
Standard C Library (libc.a)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 245

../../libs/basetrf1/kill.htm#HDRA199944D

Syntax
#include <sys/acl.h>
#include <sys/stat.h>

int statacl (Path, Command, ACL, ACLSize)
char * Path;
int Command;
struct acl * ACL;
int ACLSize;

int fstatacl (FileDescriptor, Command, ACL, ACLSize)
int FileDescriptor;
int Command;
struct acl *ACL;
int ACLSize;

Description
The statacl and fstatacl subroutines return the access control information for a file system object.

Parameters

Path Specifies a pointer to the path name of a file.
FileDescriptor Specifies the file descriptor of an open file.
Command Specifies the mode of the path interpretation for Path, specifically whether to retrieve

information about a symbolic link or mount point. Valid values for the Command
parameter are defined in the stat.h file and include:

v STX_LINK

v STX_MOUNT

v STX_NORMAL

246 Technical Reference, Volume 2: Base Operating System and Extensions

ACL Specifies a pointer to a buffer to contain the Access Control List (ACL) of the file system
object. The format of an ACL is defined in the sys/acl.h file and includes the following
members:

acl_len
Size of the Access Control List (ACL).

Note: The entire ACL for a file cannot exceed one memory page (4096
bytes).

acl_mode
File mode.

Note: The valid values for the acl_mode are defined in the sys/mode.h file.

u_access
Access permissions for the file owner.

g_access
Access permissions for the file group.

o_access
Access permissions for default class others.

acl_ext[]
An array of the extended entries for this access control list.

The members for the base ACL (owner, group, and others) may contain the following bits,
which are defined in the sys/access.h file:

R_ACC
Allows read permission.

W_ACC
Allows write permission.

X_ACC Allows execute or search permission.
ACLSize Specifies the size of the buffer to contain the ACL. If this value is too small, the first word

of the ACL is set to the size of the buffer needed.

Return Values
On successful completion, the statacl and fstatacl subroutines return a value of 0. Otherwise, a value of
-1 is returned and the errno global variable is set to indicate the error.

Error Codes
The statacl subroutine fails if one or more of the following are true:

ENOTDIR A component of the Path prefix is not a directory.
ENOENT A component of the Path does not exist or has the disallow

truncation attribute (see the ulimit subroutine).
ENOENT The Path parameter was null.
EACCES Search permission is denied on a component of the Path prefix.
EFAULT The Path parameter points to a location outside of the allocated

address space of the process.
ESTALE The process’ root or current directory is located in a virtual file

system that has been unmounted.
ELOOP Too many symbolic links were encountered in translating the Path

parameter.
ENOENT A symbolic link was named, but the file to which it refers does not

exist.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 247

ENAMETOOLONG A component of the Path parameter exceeded 255 characters, or
the entire Path parameter exceeded 1023 characters.

The fstatacl subroutine fails if the following is true:

EBADF The file descriptor FileDescriptor is not valid.

The statacl or fstatacl subroutine fails if one or more of the following are true:

EFAULT The ACL parameter points to a location outside of the allocated address space of the process.
EINVAL The Command parameter is not a value of STX_LINK, STX_MOUNT, STX_NORMAL.
ENOSPC The ACLSize parameter indicates the buffer at ACL is too small to hold the Access Control List. In this

case, the first word of the buffer is set to the size of the buffer required.
EIO An I/O error occurred during the operation.

If Network File System (NFS) is installed on your system, the statacl and fstatacl subroutines can also fail
if the following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The chacl subroutine, stat (“statx, stat, lstat, fstatx, fstat, fullstat, ffullstat, stat64, lstat64, or fstat64
Subroutine” on page 251) subroutine.

The acl_chg subroutine, acl_get subroutine, acl_put subroutine, acl_set subroutine.

The aclget command, aclput command, chmod command.

List of Security and Auditing Subroutines and Subroutines Overview in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

statfs, fstatfs, or ustat Subroutine

Purpose

Gets file system statistics.

Library

Standard C Library (libc.a)

Syntax
#include <sys/statfs.h>

int statfs (Path, StatusBuffer)
char *Path;
struct statfs *StatusBuffer;

248 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/chacl.htm#HDRA227Y9248
../../libs/basetrf1/acl_chg.htm#HDRA227Y91FF
../../libs/basetrf1/acl_get.htm#HDRA227Y916C
../../libs/basetrf1/acl_put.htm#HDRA227Y91B2
../../libs/basetrf1/acl_set.htm#HDRA227Y9125
../../cmds/aixcmds1/aclget.htm#HDRFM2220FRIT
../../cmds/aixcmds1/aclput.htm#HDRYN221F0FRIT
../../cmds/aixcmds1/chmod.htm#HDRKZF1F0CRAW
../../aixprggd/genprogc/ls_sec_audit_subrs.htm#HDRLWURF19CJEFF
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

int fstatfs (FileDescriptor, StatusBuffer)
int FileDescriptor;
struct statfs *StatusBuffer;

#include <sys/types.h>
#include <ustat.h>

int ustat (Device, Buffer)
dev_t Device;
struct ustat *Buffer;

Description
The statfs and fstatfs subroutines return information about the mounted file system that contains the file
named by the Path or FileDescriptor parameters. The returned information is in the format of a statfs
structure, described in the sys/statfs.h file.

The ustat subroutine also returns information about a mounted file system identified by Device. This
device identifier is for any given file and can be determined by examining the st_dev field of the stat
structure defined in the sys/stat.h file. The returned information is in the format of a ustat structure,
described in the ustat.h file. The ustat subroutine is superseded by the statfs and fstatfs subroutines.
Use one of these (statfs and fstatfs) subroutines instead.

Parameters

Path The path name of any file within the mounted file system.
FileDescriptor A file descriptor obtained by a successful open or fcntl subroutine. A file descriptor is a

small positive integer used instead of a file name.
StatusBuffer A pointer to a statfs buffer for the returned information from the statfs or fstatfs

subroutine.
Device The ID of the device. It corresponds to the st_rdev field of the structure returned by the

stat subroutine. The stat subroutine and the sys/stat.h file provide more information
about the device driver.

Buffer A pointer to a ustat buffer to hold the returned information.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned, and the errno
global variable is set to indicate the error.

Error Codes
The statfs, fstatfs, and ustat subroutines fail if the following is true:

EFAULT The Buffer parameter points to a location outside of the allocated address space of the process.

The fstatfs subroutine fails if the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor.
EIO An I/O error occurred while reading from the file system.

The statfs subroutine can be unsuccessful for other reasons. For a list of additional errors, see ″Base
Operating System Error Codes For Services That Require Path-Name Resolution″.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 249

../../files/aixfiles/stat.h.htm#HDRA14293E4
../../files/aixfiles/stat.h.htm#HDRA14293E4
../../libs/basetrf1/AppendixA.htm#HDRA4CG230GACO
../../libs/basetrf1/AppendixA.htm#HDRA4CG230GACO

Related Information
The stat (“statx, stat, lstat, fstatx, fstat, fullstat, ffullstat, stat64, lstat64, or fstat64 Subroutine” on page 251)
subroutine.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

statvfs or fstatvfs Subroutine

Purpose
Returns information about a file system.

Library
Standard C Library (libc.a)

Syntax
#include <sys/statvfs.h>

int statvfs (Path, Buf)
const char *Path;
struct statvfs *Buf;

int fstatvfs (Fildes, Buf)
int Fildes;
struct statvfs *Buf;

Description
The statvfs and fstatvfs subroutines return descriptive information about a mounted file system containing
the file referenced by the Path or Fildes parameters. The Buf parameter is a pointer to a structure which
will by filled by the subroutine call.

The Path and Fildes parameters must reference a file which resides on the file system. Read, write, or
execute permission of the named file is not required, but all directories listed in the pathname leading to
the file must be searchable.

Parameters

Path The path name identifying the file.
Buf A pointer to a statvfs structure in which information is returned. The statvfs structure is described in the

sys/statvfs.h header file.
Fildes The file descriptor identifying the open file.

Return Values

0 Successful completion.
-1 Not successful and errno set to one of the following.

Error Codes

EACCES Search permission is denied on a component of the path.

250 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/file_sys_dir.htm#HDRFVOWF292JUDY

EBADF The file referred to by the Fildes parameter is not an open file
descriptor.

EIO An I/O error occurred while reading from the filesystem.
ELOOP Too many symbolic links encountered in translating path.
ENAMETOOLONG The length of the pathname exceeds PATH_MAX, or name

component is longer than NAME_MAX.
ENOENT The file referred to by the Path parameter does not exist.
ENOMEM A memory allocation failed during information retrieval.
ENOTDIR A component of the Path parameter prefix is not a directory.
EOVERFLOW One of the values to be returned cannot be represented correctly

in the structure pointed to by buf.

Related Information
The stat (“statx, stat, lstat, fstatx, fstat, fullstat, ffullstat, stat64, lstat64, or fstat64 Subroutine”) subroutine,
statfs (“statfs, fstatfs, or ustat Subroutine” on page 248) subroutine.

statx, stat, lstat, fstatx, fstat, fullstat, ffullstat, stat64, lstat64, or fstat64
Subroutine

Purpose

Provides information about a file.

Library

Standard C Library (libc.a)

Syntax
#include <sys/stat.h>

int stat (Path, Buffer)
const char *Path;
struct stat *Buffer;

int lstat (Path, Buffer)
const char *Path;
struct stat *Buffer;

int fstat (FileDescriptor, Buffer)
int FileDescriptor;
struct stat *Buffer;

int statx (Path, Buffer, Length, Command)
char *Path;
struct stat *Buffer;
int Length;
int Command;

int fstatx (FileDescriptor, Buffer, Length, Command)
int FileDescriptor;
struct stat *Buffer;
int Length;
int Command;

#include <sys/fullstat.h>

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 251

int fullstat (Path, Command, Buffer)
struct fullstat *Buffer;
char *Path;
int Command;

int ffullstat (FileDescriptor, Command, Buffer)
struct fullstat *Buffer;
int FileDescriptor;
int Command;

Note: The stat64, lstat64, and fstat64 subroutines apply to AIX 4.2 and later releases.

int stat64 (Path, Buffer)
const char *Path;
struct stat64 *Buffer;

int lstat64 (Path, Buffer)
const char *Path;
struct stat64 *Buffer;

int fstat64 (FileDescriptor, Buffer)
int FileDescriptor;
struct stat64 *Buffer;

Description
Note: The stat64, lstat64, and fstat64 subroutines apply to AIX 4.2 and later releases.

The stat subroutine obtains information about the file named by the Path parameter. Read, write, or
execute permission for the named file is not required, but all directories listed in the path leading to the file
must be searchable. The file information, which is a subset of the stat structure, is written to the area
specified by the Buffer parameter.

The lstat subroutine obtains information about a file that is a symbolic link. The lstat subroutine returns
information about the link, while the stat subroutine returns information about the file referenced by the
link.

The fstat subroutine obtains information about the open file referenced by the FileDescriptor parameter.
The fstatx subroutine obtains information about the open file referenced by the FileDescriptor parameter,
as in the fstat subroutine.

The st_mode, st_dev, st_uid, st_gid, st_atime, st_ctime, and st_mtime fields of the stat structure have
meaningful values for all file types. The statx, stat, lstat, fstatx, fstat, fullstat, or ffullstat subroutine sets
the st_nlink field to a value equal to the number of links to the file.

The statx subroutine obtains a greater set of file information than the stat subroutine. The Path parameter
is processed differently, depending on the contents of the Command parameter. The Command parameter
provides the ability to collect information about symbolic links (as with the lstat subroutine) as well as
information about mount points and hidden directories. The statx subroutine returns the amount of
information specified by the Length parameter.

The fullstat and ffullstat subroutines are interfaces maintained for backward compatibility. With the
exception of some field names, the fullstat structure is identical to the stat structure.

The stat64, lstat64, and fstat64 subroutines are similar to the stat, lstat, fstat subroutines except that
they return file information in a stat64 structure instead of a stat structure. The information is identical
except that the st_size field is defined to be a 64-bit size. This allows stat64, lstat64, and fstat64 to
return file sizes which are greater than OFF_MAX (2 gigbytes minus 1).

252 Technical Reference, Volume 2: Base Operating System and Extensions

In the large file enabled programming environment, stat is redefined to be stat64, lstat is redefined to be
lstat64 and fstat is redefined to be fstat64.

Parameters
Path Specifies the path name identifying the file. This name is interpreted differently depending on the

interface used.

FileDescriptor
Specifies the file descriptor identifying the open file.

Buffer Specifies a pointer to the stat structure in which information is returned. The stat structure is
described in the sys/stat.h file.

Length
Indicates the amount of information, in bytes, to be returned. Any value between 0 and the value
returned by the STATXSIZE macro, inclusive, may be specified. The following macros may be
used:

STATSIZE
Specifies the subset of the stat structure that is normally returned for a stat call.

FULLSTATSIZE
Specifies the subset of the stat (fullstat) structure that is normally returned for a fullstat
call.

STATXSIZE
Specifies the complete stat structure. 0 specifies the complete stat structure, as if
STATXSIZE had been specified.

Command
Specifies a processing option. For the statx subroutine, the Command parameter determines how
to interpret the path name provided, specifically, whether to retrieve information about a symbolic
link, hidden directory, or mount point. Flags can be combined by logically ORing them together.
The following options are possible values:

STX_LINK
If the Command parameter specifies the STX_LINK flag and the Path parameter is a path
name that refers to a symbolic link, the statx subroutine returns information about the
symbolic link. If the STX_LINK flag is not specified, the statx subroutine returns
information about the file to which the link refers.

If the Command parameter specifies the STX_LINK flag and the Path value refers to a
symbolic link, the st_mode field of the returned stat structure indicates that the file is a
symbolic link.

STX_HIDDEN
If the Command parameter specifies the STX_HIDDEN flag and the Path value is a path
name that refers to a hidden directory, the statx subroutine returns information about the
hidden directory. If the STX_HIDDEN flag is not specified, the statx subroutine returns
information about a subdirectory of the hidden directory.

If the Command parameter specifies the STX_HIDDEN flag and Path refers to a hidden
directory, the st_mode field of the returned stat structure indicates that this is a hidden
directory.

STX_MOUNT
If the Command parameter specifies the STX_MOUNT flag and the Path value is the
name of a file or directory that has been mounted over, the statx subroutine returns

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 253

../../files/aixfiles/stat.h.htm#HDRBWI1170CLM

information about the mounted-over file. If the STX_MOUNT flag is not specified, the statx
subroutine returns information about the mounted file or directory (the root directory of a
virtual file system).

If the Command parameter specifies the STX_MOUNT flag, the FS_MOUNT bit in the
st_flag field of the returned stat structure is set if, and only if, this file is mounted over.

If the Command parameter does not specify the STX_MOUNT flag, the FS_MOUNT bit in
the st_flag field of the returned stat structure is set if, and only if, this file is the root
directory of a virtual file system.

STX_NORMAL
If the Command parameter specifies the STX_NORMAL flag, then no special processing
is performed on the Path value. This option should be used when STX_LINK,
STX_HIDDEN, and STX_MOUNT flags are not desired.

For the fstatx subroutine, there are currently no special processing options. The only valid
value for the Command parameter is the STX_NORMAL flag.

For the fullstat and ffullstat subroutines, the Command parameter may specify the
FL_STAT flag, which is equivalent to the STX_NORMAL flag, or the FL_NOFOLLOW flag,
which is equivalent to STX_LINK flag.

Note: The STX_64 flag applies to AIX 4.2 and later releases.

STX_64
If the Command parameter specifies the STX_64 flag and the file size is greater than
OFF_MAX, then statx succeeds and returns the file size. Otherwise, statx fails and sets
the errno to EOVERFLOW.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The stat, lstat, statx, and fullstat subroutines are unsuccessful if one or more of the following are true:

EACCES Search permission is denied for one component of the path prefix.
ENAMETOOLONG The length of the path prefix exceeds the PATH_MAX flag value or

a path name is longer than the NAME_MAX flag value while the
POSIX_NO_TRUNC flag is in effect.

ENOTDIR A component of the path prefix is not a directory.
EFAULT Either the Path or the Buffer parameter points to a location outside

of the allocated address space of the process.
ENOENT The file named by the Path parameter does not exist.
EOVERFLOW The size of the file is larger than can be represented in the stat

structure pointed to by the Buffer parameter.

The stat, lstat, statx, and fullstat subroutines can be unsuccessful for other reasons. See ″Base
Operating System Error Codes for Services that Require Path-Name Resolution″ for a list of additional
errors.

The fstat, fstatx, and ffullstat subroutines fail if one or more of the following are true:

EBADF The FileDescriptor parameter is not a valid file descriptor.

254 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/AppendixA.htm#HDRA4CG230GACO
../../libs/basetrf1/AppendixA.htm#HDRA4CG230GACO

EFAULT The Buffer parameter points to a location outside the allocated address space of the
process.

EIO An input/output (I/O) error occurred while reading from the file system.

The statx and fstatx subroutines are unsuccessful if one or more of the following are true:

EINVAL The Length value is not between 0 and the value returned by the STATSIZE macro, inclusive.
EINVAL The Command parameter contains an unacceptable value.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Files

/usr/include/sys/fullstat.h Contains the fullstat structure.
/usr/include/sys/mode.h Defines values on behalf of the stat.h file.

Related Information
The chmod subroutine, chown subroutine, link subroutine, mknod subroutine, mount (“vmount or mount
Subroutine” on page 380) subroutine, openx, open, or creat subroutine, pipe subroutine, symlink
(“symlink Subroutine” on page 278) subroutine, vtimes subroutine.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

strcat, strncat, strxfrm, strcpy, strncpy, or strdup Subroutine

Purpose

Copies and appends strings in memory.

Library
Standard C Library (libc.a)

Syntax
#include <string.h>

char * strcat (String1, String2)
char *String1;
const char *String2;

char * strncat (String1, String2, Number)
char *String1;
const char *String2;
size_t Number;

size_t strxfrm (String1, String2, Number)
char *String1;
const char *String2;
size_t Number;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 255

../../files/aixfiles/fullstat.h.htm#HDRA7632CLM
../../files/aixfiles/mode.h.htm#HDRLC42230CLM
../../libs/basetrf1/chmod.htm#HDRJK52A0GACO
../../libs/basetrf1/chown.htm#HDRA9F01
../../libs/basetrf1/link.htm#HDRA169C1F6
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/pipe.htm#HDRS381F0GACO
../../libs/basetrf1/getrusage_64.htm#HDRA235Y96C29
../../aixprggd/genprogc/file_sys_dir.htm#HDRFVOWF292JUDY

char * strcpy (String1, String2)
char *String1;
const char *String2;

char * strncpy (String1, String2, Number)
char *String1;
const char *String2;
size_t Number;

char * strdup (“strcat, strncat, strxfrm, strcpy, strncpy, or strdup Subroutine” on page 255) (String1)
const char *String1;

Description
The strcat, strncat, strxfrm, strcpy, strncpy, and strdup subroutines copy and append strings in
memory.

The String1 and String2 parameters point to strings. A string is an array of characters terminated by a null
character. The strcat, strncat, strcpy, and strncpy subroutines all alter the string in the String1
parameter. However, they do not check for overflow of the array to which the String1 parameter points.
String movement is performed on a character-by-character basis and starts at the left. Overlapping moves
toward the left work as expected, but overlapping moves to the right may give unexpected results. All of
these subroutines are declared in the string.h file.

The strcat subroutine adds a copy of the string pointed to by the String2 parameter to the end of the
string pointed to by the String1 parameter. The strcat subroutine returns a pointer to the null-terminated
result.

The strncat subroutine copies a number of bytes specified by the Number parameter from the String2
parameter to the end of the string pointed to by the String1 parameter. The subroutine stops copying
before the end of the number of bytes specified by the Number parameter if it encounters a null character
in the String2 parameter’s string. The strncat subroutine returns a pointer to the null-terminated result.
The strncat subroutine returns the value of the String1 parameter.

The strxfrm subroutine transforms the string pointed to by the String2 parameter and places it in the array
pointed to by the String1 parameter. The strxfrm subroutine transforms the entire string if possible, but
places no more than the number of bytes specified by the Number parameter in the array pointed to by
the String1 parameter. Consequently, if the Number parameter has a value of 0, the String1 parameter can
be a null pointer. The strxfrm subroutine returns the length of the transformed string, not including the
terminating null byte. If the returned value is equal to or more than that of the Number parameter, the
contents of the array pointed to by the String1 parameter are indeterminable. If the number of bytes
specified by the Number parameter is 0, the strxfrm subroutine returns the length required to store the
transformed string, not including the terminating null byte. The strxfrm subroutine is determined by the
LC_COLLATE category.

The strcpy subroutine copies the string pointed to by the String2 parameter to the character array pointed
to by the String1 parameter. Copying stops after the null character is copied. The strcpy subroutine
returns the value of the String1 parameter, if successful. Otherwise, a null pointer is returned.

The strncpy subroutine copies the number of bytes specified by the Number parameter from the string
pointed to by the String2 parameter to the character array pointed to by the String1 parameter. If the
String2 parameter value is less than the specified number of characters, then the strncpy subroutine pads
the String1 parameter with trailing null characters to a number of bytes equaling the value of the Number
parameter. If the String2 parameter is exactly the specified number of characters or more, then only the
number of characters specified by the Number parameter are copied and the result is not terminated with
a null byte. The strncpy subroutine returns the value of the String1 parameter.

256 Technical Reference, Volume 2: Base Operating System and Extensions

The strdup subroutine returns a pointer to a new string, which is a duplicate of the string pointed to by the
String1 parameter. Space for the new string is obtained by using the malloc subroutine. A null pointer is
returned if the new string cannot be created.

Parameters

Number Specifies the number of bytes in a string to be copied or transformed.
String1 Points to a string to which the specified data is copied or appended.
String2 Points to a string which contains the data to be copied, appended, or transformed.

Error Codes
The strcat, strncat, strxfrm, strcpy, strncpy, and strdup subroutines fail if the following occurs:

EFAULT A string parameter is an invalid address.

In addition, the strxfrm subroutine fails if:

EINVAL A string parameter contains characters outside the domain of the collating sequence.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The memccpy, memchr, memcmp, memcpy, or memmove subroutine, setlocale (“setlocale Subroutine”
on page 107) subroutine, strcmp, strncmp, strcasecmp, strncasecmp, or strcoll (“strcmp, strncmp,
strcasecmp, strncasecmp, or strcoll Subroutine”) subroutine, strlen, strchr, strrchr, strpbrk, strspn,
strcspn, strstr, or strtok (“strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, or strtok Subroutine” on
page 265) subroutine, swab (“swab Subroutine” on page 274) subroutine.

National Language Support Overview for Programming, Understanding Multibyte and Wide Character
String Collation Subroutines, Understanding Multibyte and Wide Character String Comparison Subroutines,
Subroutines Overview, List of String Manipulation Services in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

strcmp, strncmp, strcasecmp, strncasecmp, or strcoll Subroutine

Purpose

Compares strings in memory.

Library
Standard C Library (libc.a)

Syntax
#include <string.h>

int strcmp (String1, String2)
const char *String1, *String2;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 257

../../libs/basetrf1/memccpy.htm#HDRA108915ED
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRN959220BOB
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRN959220BOB
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRL859220BOB
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/ls_string_subr.htm#HDRA10F0141

int strncmp (String1, String2, Number)
const char *String1, *String2;
size_t Number;

int strcoll (String1, String2)
const char *String1, *String2;

#include <strings.h>

int strcasecmp (String1, String2)
const char *String1, *String2;

int strncasecmp (String1, String2, Number)
const char *String1, *String2;
size_t Number;

Description
The strcmp, strncmp, strcasecmp, strncasecmp, and strcoll subroutines compare strings in memory.

The String1 and String2 parameters point to strings. A string is an array of characters terminated by a null
character.

The strcmp subroutine performs a case-sensitive comparison of the string pointed to by the String1
parameter and the string pointed to by the String2 parameter, and analyzes the extended ASCII character
set values of the characters in each string. The strcmp subroutine compares unsigned char data types.
The strcmp subroutine then returns a value that is:

v Less than 0 if the value of string String1 is lexicographically less than string String2.

v Equal to 0 if the value of string String1 is lexicographically equal to string String2.

v Greater than 0 if the value of string String1 is lexicographically greater than string String2.

The strncmp subroutine makes the same comparison as the strcmp subroutine, but compares up to the
maximum number of pairs of bytes specified by the Number parameter.

The strcasecmp subroutine performs a character-by-character comparison similar to the strcmp
subroutine. However, the strcasecmp subroutine is not case-sensitive. Uppercase and lowercase letters
are mapped to the same character set value. The sum of the mapped character set values of each string
is used to return a value that is:

v Less than 0 if the value of string String1 is lexicographically less than string String2.

v Equal to 0 if the value of string String1 is lexicographically equal to string String2.

v Greater than 0 if the value of string String1 is lexicographically greater than string String2.

The strncasecmp subroutine makes the same comparison as the strcasecmp subroutine, but compares
up to the maximum number of pairs of bytes specified by the Number parameter.

Note: Both the strcasecmp and strncasecmp subroutines only work with 7-bit ASCII characters.

The strcoll subroutine works the same as the strcmp subroutine, except that the comparison is based on
a collating sequence determined by the LC_COLLATE category. If the strcmp subroutine is used on
transformed strings, it returns the same result as the strcoll subroutine for the corresponding
untransformed strings.

Parameters

Number The number of bytes in a string to be examined.

258 Technical Reference, Volume 2: Base Operating System and Extensions

String1 Points to a string which is compared.
String2 Points to a string which serves as the source for comparison.

Error Codes
The strcmp, strncmp, strcasecmp, strncasecmp, and strcoll subroutines fail if the following occurs:

EFAULT A string parameter is an invalid address.

In addition, the strcoll subroutine fails if:

EINVAL A string parameter contains characters outside the domain of the collating sequence.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The memccpy, memchr, memcmp, memcpy, or memmove subroutine, setlocale (“setlocale Subroutine”
on page 107) subroutine, strcat, strncat, strxfrm, strcpy, strncpy, or strdup (“strcat, strncat, strxfrm,
strcpy, strncpy, or strdup Subroutine” on page 255) subroutine, strlen, strchr, strrchr, strpbrk, strspn,
strcspn, strstr, or strtok (“strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, or strtok Subroutine” on
page 265) subroutine, swab (“swab Subroutine” on page 274) subroutine.

List of String Manipulation Subroutines, National Language Support, Multibyte and Wide Character String
Collation Subroutines, Multibyte and Wide Character String Comparison Subroutines, Subroutines,
Example Programs, and Libraries in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

strerror Subroutine

Purpose
Maps an error number to an error message string.

Library
Standard C Library (libc.a)

Syntax
#include <string.h>

char *strerror (ErrorNumber)
int ErrorNumber;

Description
Attention: Do not use the strerror subroutine in a multithreaded environment.

The strerror subroutine maps the error number in the ErrorNumber parameter to the error message string.
The strerror subroutine retrieves an error message based on the current value of the LC_MESSAGES
category. If the specified message catalog cannot be opened, the default message is returned. The
returned message does not contain a new line (″\n″).

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 259

../../libs/basetrf1/memccpy.htm#HDRA108915ED
../../aixprggd/genprogc/ls_string_subr.htm#HDRA10F0141
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRN959220BOB
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRN959220BOB
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRL859220BOB
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

Parameters

ErrorNumber Specifies the error number to be associated with the error message.

Return Values
The strerror subroutine returns a pointer to the error message.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The perror subroutine.

The clearerr macro, feof macro, ferror macro, fileno macro.

Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

strfmon Subroutine

Purpose
Formats monetary strings.

Library
Standard C Library (libc. a)

Syntax
#include <monetary.h>

ssize_t strfmon (S, MaxSize, Format, ...)
char *S;
size_t MaxSize;
const char *Format, ...;

Description
The strfmon subroutine converts numeric values to monetary strings according to the specifications in the
Format parameter. This parameter also contains numeric values to be converted. Characters are placed
into the S array, as controlled by the Format parameter. The LC_MONETARY category governs the format
of the conversion.

The strfmon subroutine can be called multiple times by including additional format structures, as specified
by the Format parameter.

The Format parameter specifies a character string that can contain plain characters and conversion
specifications. Plain characters are copied to the output stream. Conversion specifications result in the
fetching of zero or more arguments, which are converted and formatted.

If there are insufficient arguments for the Format parameter, the results are undefined. If arguments remain
after the Format parameter is exhausted, the excess arguments are ignored.

260 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/perror.htm#HDRA2719668
../../libs/basetrf1/feof.htm#HDRA0909C37
../../libs/basetrf1/feof.htm#HDRA0909C37
../../libs/basetrf1/feof.htm#HDRA0909C37
../../libs/basetrf1/feof.htm#HDRA0909C37
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

A conversion specification consists of the following items in the following order: a % (percent sign),
optional flags, optional field width, optional left precision, optional right precision, and a required
conversion character that determines the conversion to be performed.

Parameters

S Contains the output of the strfmon subroutine.
MaxSize Specifies the maximum number of bytes (including the null terminating byte) that may be placed in the

S parameter.
Format Contains characters and conversion specifications.

Flags
One or more of the following flags can be specified to control the conversion:

=f An = (equal sign) followed by a single character that specifies the numeric fill character. The default
numeric fill character is the space character. This flag does not affect field-width filling, which always
uses the space character. This flag is ignored unless a left precision is specified.

| Does not use grouping characters when formatting the currency amount. The default is to insert grouping
characters if defined for the current locale.

+ or (Determines the representation of positive and negative currency amounts. Only one of these flags may
be specified. The locale’s equivalent of + (plus sign) and - (negative sign) are used if + is specified. The
locale’s equivalent of enclosing negative amounts within parentheses is used if ((left parenthesis) is
specified. If neither flag is included, a default specified by the current locale is used.

- Left-justifies all fields (pads to the right). The default is right-justification.
! Suppresses the currency symbol from the output conversion.

Field Width

w The decimal-digit string w specifies the minimum field width in which the result of the conversion is
right-justified. If -w is specified, the result is left-justified. The default is a value of 0.

Left Precision

#n A # (pound sign) followed by a decimal-digit string, n, specifies the maximum number of digits to be formatted
to the left of the radix character. This option can be specified to keep formatted output from multiple calls to the
strfmon subroutine aligned in the same columns. It can also be used to fill unused positions with a special
character (for example, $***123.45). This option causes an amount to be formatted as if it has the number of
digits specified by the n variable. If more than n digit positions are required, this option is ignored. Digit
positions in excess of those required are filled with the numeric fill character set with the =f flag.

If defined for the current locale and not suppressed with the | flag, the subroutine inserts grouping characters
before fill characters (if any). Grouping characters are not applied to fill characters, even if the fill character is a
digit. In the example:

$0000001,234.56

grouping characters do not appear after the first or fourth 0 from the left.

To ensure alignment, any characters appearing before or after the number in the formatted output, such as
currency or sign symbols, are padded as necessary with space characters to make their positive and negative
formats equal in length.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 261

Right Precision

.p A . (period) followed by a decimal digit string, p, specifies the number of digits after the radix character. If the
value of the p variable is 0, no radix character is used. If a right precision is not specified, a default specified
by the current locale is use. The amount being formatted is rounded to the specified number of digits prior to
formatting.

Conversion Characters

i The double argument is formatted according to the current locale’s international currency format; for example,
in the U.S.: 1,234.56.

n The double argument is formatted according to the current locale’s national currency format; for example, in
the U.S.: $1,234.56.

% No argument is converted; the conversion specification %% is replaced by a single %.

Return Values
If successful, and if the number of resulting bytes (including the terminating null character) is not more
than the number of bytes specified by the MaxSize parameter, the strfmon subroutine returns the number
of bytes placed into the array pointed to by the S parameter (not including the terminating null byte).
Otherwise, a value of -1 is returned and the contents of the S array are indeterminate.

Error Codes
The strfmon subroutine may fail if the following is true:

E2BIG Conversion stopped due to lack of space in the buffer.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The scanf (“scanf, fscanf, sscanf, or wsscanf Subroutine” on page 82) subroutine, strftime (“strftime
Subroutine”) subroutine, strptime (“strptime Subroutine” on page 271) subroutine, wcsftime (“wcsftime
Subroutine” on page 391) subroutine.

National Language Support Overview for Programming, Understanding Time and Monetary Formatting
Subroutines, Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

strftime Subroutine

Purpose
Formats time and date.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>

size_t strftime (String, Length, Format, TmDate)
char *String;

262 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/monetary_formatting_subr.htm#HDRXZ6EJDMELA
../../aixprggd/genprogc/monetary_formatting_subr.htm#HDRXZ6EJDMELA
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

size_t Length;
const char *Format;
const struct tm *TmDate;

Description
The strftime subroutine converts the internal time and date specification of the tm structure, which is
pointed to by the TmDate parameter, into a character string pointed to by the String parameter under the
direction of the format string pointed to by the Format parameter. The actual values for the format
specifiers are dependent on the current settings for the LC_TIME category. The tm structure values may
be assigned by the user or generated by the localtime or gmtime subroutine. The resulting string is
similar to the result of the printf Format parameter, and is placed in the memory location addressed by the
String parameter. The maximum length of the string is determined by the Length parameter and terminates
with a null character.

Many conversion specifications are the same as those used by the date command. The interpretation of
some conversion specifications is dependent on the current locale of the process.

The Format parameter is a character string containing two types of objects: plain characters that are
simply placed in the output string, and conversion specifications that convert information from the TmDate
parameter into readable form in the output string. Each conversion specification is a sequence of this form:
% type

v A % (percent sign) introduces a conversion specification.

v The type of conversion is specified by one or two conversion characters. The characters and their
meanings are:

%a Represents the locale’s abbreviated weekday name (for example, Sun) defined by the abday statement in the
LC_TIME category.

%A Represents the locale’s full weekday name (for example, Sunday) defined by the day statement in the
LC_TIME category.

%b Represents the locale’s abbreviated month name (for example, Jan) defined by the abmon statement in the
LC_TIME category.

%B Represents the locale’s full month name (for example, January) defined by the mon statement in the LC_TIME
category.

%c Represents the locale’s date and time format defined by the d_t_fmt statement in the LC_TIME category.
%C Represents the century number (the year divided by 100 and truncated to an integer) as a decimal number (00

through 99).
%d Represents the day of the month as a decimal number (01 to 31).
%D Represents the date in %m/%d/%y format (for example, 01/31/91).
%e Represents the day of the month as a decimal number (01 to 31). The %e field descriptor uses a two-digit

field. If the day of the month is not a two-digit number, the leading digit is filled with a space character.
%E Represents the locale’s combined alternate era year and name, respectively, in %o %N format.
%h Represents the locale’s abbreviated month name (for example, Jan) defined by the abmon statement in the

LC_TIME category. This field descriptor is a synonym for the %b field descriptor.
%H Represents the 24-hour-clock hour as a decimal number (00 to 23).
%I Represents the 12-hour-clock hour as a decimal number (01 to 12).
%j Represents the day of the year as a decimal number (001 to 366).
%m Represents the month of the year as a decimal number (01 to 12).
%M Represents the minutes of the hour as a decimal number (00 to 59).
%n Specifies a new-line character.
%N Represents the locale’s alternate era name.
%o Represents the alternate era year.
%p Represents the locale’s a.m. or p.m. string defined by the am_pm statement in the LC_TIME category.
%r Represents 12-hour clock time with a.m./p.m. notation as defined by the t_fmt_ampm statement. The usual

format is %I:%M:%S %p.
%R Represents 24-hour clock time in %H:%M format.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 263

../../files/aixfiles/LC_TIME.htm#HDRLJQ680BOB

%S Represents the seconds of the minute as a decimal number (00 to 59).
%t Specifies a tab character.
%T Represents 24-hour-clock time in the format %H:%M:%S (for example, 16:55:15).
%u Represents the weekday as a decimal number (1 to 7). Monday or its equivalent is considered the first day of

the week for calculating the value of this field descriptor.
%U Represents the week of the year as a decimal number (00 to 53). Sunday, or its equivalent as defined by the

day statement in the LC_TIME category, is considered the first day of the week for calculating the value of this
field descriptor.

%V Represents the week number of the year (with Monday as the first day of the week) as a decimal number (01
to 53). If the week containing January 1 has four or more days in the new year, then it is considered week 1;
otherwise, it is considered week 53 of the previous year, and the next week is week 1 of the new year.

%w Represents the day of the week as a decimal number (0 to 6). Sunday, or its equivalent as defined by the day
statement, is considered as 0 for calculating the value of this field descriptor.

%W Represents the week of the year as a decimal number (00 to 53). Monday, or its equivalent as defined by the
day statement, is considered the first day of the week for calculating the value of this field descriptor.

%x Represents the locale’s date format as defined by the d_fmt statement.
%X Represents the locale’s time format as defined by the t_fmt statement.
%y Represents the year of the century.

Note: When the environment variable XPG_TIME_FMT=ON, %y is the year within the century. When a
century is not otherwise specified, values in the range 69-99 refer to years in the twentieth century (1969
to 1999, inclusive); values in the range 00-68 refer to 2000 to 2068, inclusive.

%Y Represents the year as a decimal number (for example, 1989).
%Z Represents the time-zone name if one can be determined (for example, EST). No characters are displayed if a

time zone cannot be determined.
%% Specifies a % (percent sign).

Some conversion specifiers can be modified by the E or O modifier characters to indicate that an
alternative format or specification should be used. If the alternative format or specification does not exist
for the current locale, the behavior will be the same as with the unmodified conversion specification. The
following modified conversion specifiers are supported:

%Ec Represents the locale’s alternative appropriate date and time as defined by the era_d_t_fmt statement.
%EC Represents the name of the base year (or other time period) in the locale’s alternative form as defined by the

era statement under the era_name category of the current era.
%Ex Represents the locale’s alternative date as defined by the era_d_fmt statement.
%EX Represents the locale’s alternative time as defined by the era_t_fmt statement.
%Ey Represents the offset from the %EC modified conversion specifier (year only) in the locale’s alternative form.
%EY Represents the full alternative-year form.
%Od Represents the day of the month, using the locale’s alternative numeric symbols, filled as needed with leading

0’s if an alternative symbol for 0 exists. If an alternative symbol for 0 does not exist, the %Od modified
conversion specifier uses leading space characters.

%Oe Represents the day of the month, using the locale’s alternative numeric symbols, filled as needed with leading
0’s if an alternative symbol for 0 exists. If an alternative symbol for 0 does not exist, the %Oe modified
conversion specifier uses leading space characters.

%OH Represents the hour in 24-hour clock time, using the locale’s alternative numeric symbols.
%OI Represents the hour in 12-hour clock time, using the locale’s alternative numeric symbols.
%Om Represents the month, using the locale’s alternative numeric symbols.
%OM Represents the minutes, using the locale’s alternative numeric symbols.
%OS Represents the seconds, using the locale’s alternative numeric symbols.
%Ou Represents the weekday as a number using the locale’s alternative numeric symbols.
%OU Represents the week number of the year, using the locale’s alternative numeric symbols. Sunday is considered

the first day of the week. Use the rules corresponding to the %U conversion specifier.
%OV Represents the week number of the year (Monday as the first day of the week, rules corresponding to %V)

using the locale’s alternative numeric symbols.

264 Technical Reference, Volume 2: Base Operating System and Extensions

%Ow Represents the number of the weekday (with Sunday equal to 0), using the locale’s alternative numeric
symbols.

%OW Represents the week number of the year using the locale’s alternative numeric symbols. Monday is considered
the first day of the week. Use the rules corresponding to the %W conversion specifier.

%Oy Represents the year (offset from %C) using the locale’s alternative numeric symbols.

Parameters

String Points to the string to hold the formatted time.
Length Specifies the maximum length of the string pointed to by the String parameter.
Format Points to the format character string.
TmDate Points to the time structure that is to be converted.

Return Values
If the total number of resulting bytes, including the terminating null byte, is not more than the Length value,
the strftime subroutine returns the number of bytes placed into the array pointed to by the String
parameter, not including the terminating null byte . Otherwise, a value of 0 is returned and the contents of
the array are indeterminate.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The localtime subroutine, gmtime subroutine, mbstowcs subroutine, printf subroutine, strfmon (“strfmon
Subroutine” on page 260) subroutine, strptime (“strptime Subroutine” on page 271) subroutine, wcsftime
(“wcsftime Subroutine” on page 391) subroutine.

The date command.

LC_TIME Category for the Locale Definition Source File Format in AIX 5L Version 5.1 Files Reference.

List of Time Data Manipulation Services in AIX 5L Version 5.1 System Management Concepts: Operating
System and Devices.

National Language Support Overview for Programming, Subroutines Overview in AIX 5L Version 5.1
General Programming Concepts: Writing and Debugging Programs.

strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, or strtok
Subroutine

Purpose

Determines the size, location, and existence of strings in memory.

Library

Standard C Library (libc.a)

Syntax
#include <string.h>

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 265

../../libs/basetrf1/ctime.htm#HDRA181939B
../../libs/basetrf1/ctime.htm#HDRA181939B
../../libs/basetrf1/mbstowcs.htm#HDRA152947F
../../libs/basetrf1/printf.htm#HDRA8ZED0GACO
../../cmds/aixcmds2/date.htm#HDRA270961
../../files/aixfiles/LC_TIME.htm#HDRLJQ680BOB
../../aixbman/admnconc/tdms.htm#HDRA10F0209
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

size_t strlen (String)
const char * String;

char * strchr (String, Character)
const char *String;
int Character;

char * strrchr (String, Character)
const char *String;
int Character;

char * strpbrk (String1, String2)
const char *String1, *String2;

size_t strspn (String1, String2)
const char *String1, *String2;

size_t strcspn (String1, String2)
const char *String1, *String2;

char * strstr (String1, String2)
const char * String1, *String2;

char * strtok (String1, String2)
char *String1;
const char *String2;

char *index (String, Character)
const char *String;
int Character;

char *rindex (String, Character)
const char *String;
int Character;

Description
Attention: Do not use the strtok subroutine in a multithreaded environment.

The strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, and strtok subroutines determine such
values as size, location, and the existence of strings in memory.

The String1, String2, and String parameters point to strings. A string is an array of characters terminated
by a null character.

The strlen subroutine returns the number of bytes in the string pointed to by the String parameter, not
including the terminating null bytes.

The strchr subroutine returns a pointer to the first occurrence of the character specified by the Character
(converted to an unsigned character) parameter in the string pointed to by the String parameter. A null
pointer is returned if the character does not occur in the string. The null byte that terminates a string is
considered to be part of the string.

266 Technical Reference, Volume 2: Base Operating System and Extensions

The strrchr subroutine returns a pointer to the last occurrence of the character specified by the Character
(converted to a character) parameter in the string pointed to by the String parameter. A null pointer is
returned if the character does not occur in the string. The null byte that terminates a string is considered to
be part of the string.

The strpbrk subroutine returns a pointer to the first occurrence in the string pointed to by the String1
parameter of any bytes from the string pointed to by the String2 parameter. A null pointer is returned if no
bytes match.

The strspn subroutine returns the length of the initial segment of the string pointed to by the String1
parameter, which consists entirely of bytes from the string pointed to by the String2 parameter.

The strcspn subroutine returns the length of the initial segment of the string pointed to by the String1
parameter, which consists entirely of bytes not from the string pointed to by the String2 parameter.

The strstr subroutine finds the first occurrence in the string pointed to by the String1 parameter of the
sequence of bytes specified by the string pointed to by the String2 parameter (excluding the terminating
null character). It returns a pointer to the string found in the String1 parameter, or a null pointer if the string
was not found. If the String2 parameter points to a string of 0 length, the strstr subroutine returns the
value of the String1 parameter.

The strtok subroutine breaks the string pointed to by the String1 parameter into a sequence of tokens,
each of which is delimited by a byte from the string pointed to by the String2 parameter. The first call in
the sequence takes the String1 parameter as its first argument and is followed by calls that take a null
pointer as their first argument. The separator string pointed to by the String2 parameter may be different
from call to call.

The first call in the sequence searches the String1 parameter for the first byte that is not contained in the
current separator string pointed to by the String2 parameter. If no such byte is found, no tokens exist in
the string pointed to by the String1 parameter, and a null pointer is returned. If such a byte is found, it is
the start of the first token.

The strtok subroutine then searches from the first token for a byte that is contained in the current
separator string. If no such byte is found, the current token extends to the end of the string pointed to by
the String1 parameter, and subsequent searches for a token return a null pointer. If such a byte is found,
the strtok subroutine overwrites it with a null byte, which terminates the current token. The strtok
subroutine saves a pointer to the following byte, from which the next search for a token will start. The
subroutine returns a pointer to the first byte of the token.

Each subsequent call with a null pointer as the value of the first argument starts searching from the saved
pointer, using it as the first token. Otherwise, the subroutine’s behavior does not change.

Parameters

Character Specifies a character for which to return a pointer.
String Points to a string from which data is returned.
String1 Points to a string from which an operation returns results.
String2 Points to a string which contains source for an operation.

Error Codes
The strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, and strtok subroutines fail if the following
occurs:

EFAULT A string parameter is an invalid address.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 267

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

The index and rindex subroutines are included for compatibility with BSD and are not part of the ANSI C
Library. The index subroutine is implemented as a call to the strchr subroutine. The rindex subroutine is
implemented as a call to the strrchr subroutine.

Related Information
The memccpy, memchr, memcmp, memcpy, or memmove subroutine, setlocale (“setlocale Subroutine”
on page 107) subroutine, strcat, strncat, strxfrm, strcpy, strncpy, or strdup (“strcat, strncat, strxfrm,
strcpy, strncpy, or strdup Subroutine” on page 255) subroutine, strcmp, strncmp, strcasecmp,
strncasecmp, or strcoll (“strcmp, strncmp, strcasecmp, strncasecmp, or strcoll Subroutine” on page 257)
subroutine, swab (“swab Subroutine” on page 274) subroutine.

List of String Manipulation Services in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

National Language Support Overview for Programming in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

strncollen Subroutine

Purpose
Returns the number of collation values for a given string.

Library
Standard C Library (libc.a)

Syntax
include <string.h>

int strncollen (String, Number)
const char *String;
const int Number;

Description
The strncollen subroutine returns the number of collation values for a given string pointed to by the String
parameter. The count of collation values is terminated when either a null character is encountered or when
the number of bytes indicated by the Number parameter have been examined.

The collation values are set by the setlocale subroutine for the LC_COLLATE category. For example, if
the locale is set to Es_ES (Spanish spoken in Spain) for the LC_COLLATE category, where ′ch’ has one
collation value, then strncollen (’abchd’, 5) returns 4.

In German, the <Sharp-S> character has two collation values, so substituting the <Sharp-S> character for
B in the following example, strncollen (’straBa’, 6) returns 7.

If a character has no collation value, its collation length is 0.

268 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/memccpy.htm#HDRA108915ED
../../aixprggd/genprogc/ls_string_subr.htm#HDRA10F0141
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

Parameters

Number The number of bytes in a string to be examined.
String Pointer to a string to be examined for collation value.

Return Values
Upon successful completion, the strncollen subroutine returns the collation value for a given string,
pointed to by the String parameter.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The setlocale (“setlocale Subroutine” on page 107) subroutine, strcat, strncat, strxfrm, strcpy, strncpy,
or strdup (“strcat, strncat, strxfrm, strcpy, strncpy, or strdup Subroutine” on page 255) subroutine, strcmp,
strncmp, strcasecmp, strncasecmp, or strcoll (“strcmp, strncmp, strcasecmp, strncasecmp, or strcoll
Subroutine” on page 257) subroutine, strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, or strtok
(“strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, or strtok Subroutine” on page 265) subroutine.

National Language Support Overview for Programming in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

strtol, strtoul, strtoll, strtoull, atol, or atoi Subroutine

Purpose

Converts a string to a signed or unsigned long integer or long long integer.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

long strtol (String, EndPointer, Base)
const char *String;
char **EndPointer;
int Base;

unsigned long strtoul (String, EndPointer, Base)
const char *String;
char **EndPointer;
int Base;

extern long long int strtoll (String, EndPointer, Base)
char *String, **EndPointer;
int Base;

extern long long int strtoull (String, EndPointer, Base)
char *String, **EndPointer;
int Base;

long atol (String)
const char *String;

int atoi (String)
const char *String;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 269

../../aixprggd/genprogc/nls.htm#HDRA2919F7

Description
The strtol subroutine returns a long integer whose value is represented by the character string to which
the String parameter points. The strtol subroutine scans the string up to the first character that is
inconsistent with the Base parameter. Leading white-space characters are ignored, and an optional sign
may precede the digits.

The strtoul subroutine provides the same functions but returns an unsigned long integer.

The strtoll and strtoull subroutines provide the same functions but return long long integers.

The atol subroutine is equivalent to the strtol subroutine where the value of the EndPointer parameter is a
null pointer and the Base parameter is a value of 10.

The atoi subroutine is equivalent to the strtol subroutine where the value of the EndPointer parameter is a
null pointer and the Base parameter is a value of 10.

If the value of the EndPointer parameter is not null, then a pointer to the character that ended the scan is
stored in EndPointer. If an integer cannot be formed, the value of the EndPointer parameter is set to that
of the String parameter.

If the Base parameter is a value between 2 and 36, the subject sequence’s expected form is a sequence
of letters and digits representing an integer whose radix is specified by the Base parameter. This
sequence is optionally preceded by a + (positive) or - (negative) sign. Letters from a (or A) to z (or Z)
inclusive are ascribed the values 10 to 35; only letters whose ascribed values are less than that of the
Base parameter are permitted. If the Base parameter has a value of 16, the characters 0x or 0X optionally
precede the sequence of letters and digits, following the + (positive) or - (negative) sign if present.

If the value of the Base parameter is 0, the string determines the base. Thus, after an optional leading
sign, a leading 0 indicates octal conversion, and a leading 0x or 0X indicates hexadecimal conversion. The
default is to use decimal conversion.

Parameters

String Points to the character string to be converted.
EndPointer Points to a character string that contains the first character not converted.
Base Specifies the base to use for the conversion.

Return Values
Upon successful completion, the strtol, strtoul, strtoll, and strtoull subroutines return the converted
value. If no conversion could be performed, 0 is returned, and the errno global variable is set to indicate
the error. If the correct value is outside the range of representable values, the strtol subroutine returns a
value of LONG_MAX or LONG_MIN according to the sign of the value, while the strtoul subroutine
returns a value of ULONG_MAX.

Error Codes
The strtol and strtoul subroutines return the following error codes:

ERANGE The correct value of the converted number causes underflow or overflow.
EINVAL The value of the Base parameter is not valid.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

270 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information
The atof, atoff, strtod, or strtof subroutine, scanf, fscanf, sscanf, or wsscanf (“scanf, fscanf, sscanf, or
wsscanf Subroutine” on page 82) subroutine, setlocale (“setlocale Subroutine” on page 107) subroutine,
wstrtod or watof (“wstrtod or watof Subroutine” on page 457) subroutine, wstrtol, watol, or watoi
(“wstrtol, watol, or watoi Subroutine” on page 458) subroutine.

Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

strptime Subroutine

Purpose
Converts a character string to a time value.

Library
Standard C Library (libc.a)

Syntax
#include <time.h>

char *strptime (Buf, Format, Tm)
const char *Buf, *Format;
struct tm *Tm;

Description
The strptime subroutine converts the characters in the Buf parameter to values that are stored in the Tm
structure, using the format specified by the Format parameter.

Parameters

Buf Contains the character string to be converted by the strptime subroutine.
Format Contains format specifiers for the strptime subroutine. The Format parameter contains 0 or more

specifiers. Each specifier is composed of one of the following elements:

v One or more white-space characters

v An ordinary character (neither % [percent sign] nor a white-space character)

v A format specifier

Note: If more than one format specifier is present, they must be separated by white space or a
non-% [percent sign]/non-alphanumeric ordinary character.

The LC_TIME category defines the locale values for the format specifiers. The following format specifiers
are supported:

%a Represents the weekday name, either abbreviated as specified by the abday statement or full as specified by
the day statement.

%A Represents the weekday name, either abbreviated as specified by the abday statement or full as specified by
the day statement.

%b Represents the month name, either abbreviated as specified by the abmon statement or full as specified by
the month statement.

%B Represents the month name, either abbreviated as specified by the abmon statement or full as specified by
the month statement.

%c Represents the date and time format defined by the d_t_fmt statement in the LC_TIME category.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 271

../../libs/basetrf1/atof.htm#HDRA1299EC9
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../files/aixfiles/LC_TIME.htm#HDRLJQ680BOB

%C Represents the century number (0 through 99); leading zeros are permitted but not required.
%d Represents the day of the month as a decimal number (01 to 31).
%D Represents the date in %m/%d/%y format (for example, 01/31/91).
%e Represents the day of the month as a decimal number (01 to 31).
%E Represents the combined alternate era year and name, respectively, in %o %N format.
%h Represents the month name, either abbreviated as specified by the abmon statement or full as specified by

the month statement.
%H Represents the 24-hour-clock hour as a decimal number (00 to 23).
%I Represents the 12-hour-clock hour as a decimal number (01 to 12).
%j Represents the day of the year as a decimal number (001 to 366).
%m Represents the month of the year as a decimal number (01 to 12).
%M Represents the minutes of the hour as a decimal number (00 to 59).
%n Represents any white space.
%N Represents the alternate era name.
%o Represents the alternate era year.
%p Represents the a.m. or p.m. string defined by the am_pm statement in the LC_TIME category.
%r Represents 12-hour-clock time with a.m./p.m. notation as defined by the t_fmt_ampm statement, usually in the

format %I:%M:%S %p.
%S Represents the seconds of the minute as a decimal number (00 to 61). The decimal number range of 00 to 61

provides for leap seconds.
%t Represents any white space.
%T Represents 24-hour-clock time in the format %H:%M:%S (for example, 16:55:15).
%U Represents the week of the year as a decimal number (00 to 53). Sunday, or its equivalent as defined by the

day statement, is considered the first day of the week for calculating the value of this field descriptor.
%w Represents the day of the week as a decimal number (0 to 6). Sunday, or its equivalent as defined by the day

statement in the LC_TIME category, is considered to be 0 for calculating the value of this field descriptor.
%W Represents the week of the year as a decimal number (00 to 53). Monday, or its equivalent as defined by the

day statement in the LC_TIME category, is considered the first day of the week for calculating the value of this
field descriptor.

%x Represents the date format defined by the d_fmt statement in the LC_TIME category.
%X Represents the time format defined by the t_fmt statement in the LC_TIME category.
%y Represents the year within century.

Note: When the environment variable XPG_TIME_FMT=ON, %y is the year within the century. When a
century is not otherwise specified, values in the range 69-99 refer to years in the twentieth century (1969
to 1999, inclusive); values in the range 00-68 refer to 2000 to 2068, inclusive.

%Y Represents the year as a decimal number (for example, 1989).
%Z Represents the time-zone name, if one can be determined (for example, EST). No characters are displayed if a

time zone cannot be determined.
%% Specifies a % (percent sign) character.

Some format specifiers can be modified by the E and O modifier characters to indicate an alternative
format or specification. If the alternative format or specification does not exist in the current locale, the
behavior will be as if the unmodified format specifier were used. The following modified format specifiers
are supported:

%Ec Represents the locale’s alternative appropriate date and time as defined by the era_d_t_fmt statement.
%EC Represents the base year (or other time period) in the locale’s alternative form as defined by the era statement

under the era_name category of the current era.
%Ex Represents the alternative date as defined by the era_d_fmt statement.
%EX Represents the locale’s alternative time as defined by the era_t_fmt statement.
%Ey Represents the offset from the %EC format specifier (year only) in the locale’s alternative form.
%EY Represents the full alternative-year format.
%Od Represents the month using the locale’s alternative numeric symbols. Leading 0’s are permitted but not

required.

272 Technical Reference, Volume 2: Base Operating System and Extensions

%Oe Represents the month using the locale’s alternative numeric symbols. Leading 0’s are permitted but not
required.

%OH Represents the hour in 24-hour-clock time using the locale’s alternative numeric symbols.
%OI Represents the hour in 12-hour-clock time using the locale’s alternative numeric symbols.
%Om Represents the month using the locale’s alternative numeric symbols.
%OM Represents the minutes using the locale’s alternative numeric symbols.
%OS Represents the seconds using the locale’s alternative numeric symbols.
%OU Represents the week number of the year using the locale’s alternative numeric symbols. Sunday is considered

the first day of the week. Use the rules corresponding to the %U format specifier.
%Ow Represents the day of the week using the locale’s alternative numeric symbols. Sunday is considered the first

day of the week.
%OW Represents the week number of the year using the locale’s alternative numeric symbols. Monday is considered

the first day of the week. Use the rules corresponding to the %W format specifier.
%Oy Represents the year (offset from %C) using the locale’s alternative numeric symbols.

A format specification consisting of white-space characters is performed by reading input until the first
nonwhite-space character (which is not read) or up to no more characters can be read.

A format specification consisting of an ordinary character is performed by reading the next character from
the Buf parameter. If this character differs from the character comprising the directive, the directive fails
and the differing character and any characters following it remain unread. Case is ignored when matching
Buf items, such as month or weekday names.

A series of directives composed of %n format specifiers, %t format specifiers, white-space characters, or
any combination of the three items is processed by reading up to the first character that is not white space
(which remains unread), or until no more characters can be read.

Tm Specifies the structure to contain the output of the strptime subroutine. If a conversion fails, the contents of
the Tm structure are undefined.

Return Values
If successful, the strptime subroutine returns a pointer to the character following the last character parsed.
Otherwise, a null pointer is returned.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The scanf (“scanf, fscanf, sscanf, or wsscanf Subroutine” on page 82) subroutine, “strfmon Subroutine” on
page 260, strftime (“strftime Subroutine” on page 262) subroutine, time subroutine, wcsftime (“wcsftime
Subroutine” on page 391) subroutine.

LC_TIME Category in the Locale Definition Source File Format in AIX 5L Version 5.1 Files Reference.

National Language Support Overview for Programming, Understanding Time and Monetary Formatting
Subroutines, Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

stty or gtty Subroutine

Purpose
Sets or gets terminal state.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 273

../../libs/basetrf1/gettimer.htm#HDRA2789BE5
../../files/aixfiles/LC_TIME.htm#HDRLJQ680BOB
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/monetary_formatting_subr.htm#HDRXZ6EJDMELA
../../aixprggd/genprogc/monetary_formatting_subr.htm#HDRXZ6EJDMELA
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

Library
Standard C Library (libc.a)

Syntax
#include <sgtty.h>

stty (FileDescriptor, Buffer)
int FileDescriptor;
struct sgttyb *Buffer;

gtty (FileDescriptor, Buffer)
int FileDescriptor;
struct sgttyb *Buffer;

Description
These subroutines have been made obsolete by the ioctl subroutine.

The stty subroutine sets the state of the terminal associated with the FileDescriptor parameter. The gtty
subroutine retrieves the state of the terminal associated with FileDescriptor. To set the state of a terminal,
the calling process must have write permission.

Use of the stty subroutine is equivalent to the ioctl (FileDescriptor, TIOSETP, Buffer) subroutine, while
use of the gtty subroutine is equivalent to the ioctl (FileDescriptor, TIOGETP, Buffer) subroutine.

Parameters

FileDescriptor Specifies an open file descriptor.
Buffer Specifies the buffer.

Return Values
If the stty or gtty subroutine is successful, a value of 0 is returned. Otherwise, a value of -1 is returned
and the errno global variable is set to indicate the error.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The ioctl subroutine.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

swab Subroutine

Purpose
Copies bytes.

Library
Standard C Library (libc.a)

274 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/ioctl32.htm
../../aixprggd/genprogc/io_handling.htm#HDRA9E740A1626CAND

Syntax
#include <unistd.h>

void swab (From, To, NumberOfBytes)
const void *From;
void *To;
ssize_t NumberOfBytes;

Description
The swab subroutine copies the number of bytes pointed to by the NumberOfBytes parameter from the
location pointed to by the From parameter to the array pointed to by the To parameter, exchanging
adjacent even and odd bytes.

The NumberOfBytes parameter should be even and nonnegative. If the NumberOfBytes parameter is odd
and positive, the swab subroutine uses NumberOfBytes -1 instead. If the NumberOfBytes parameter is
negative, the swab subroutine does nothing.

Parameters

From Points to the location of data to be copied.
To Points to the array to which the data is to be copied.
NumberOfBytes Specifies the number of even and nonnegative bytes to be copied.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The memccpy, memchr, memcmp, memmove, or memset subroutine, string (“strlen, strchr, strrchr,
strpbrk, strspn, strcspn, strstr, or strtok Subroutine” on page 265) subroutine.

List of Interfaces for Input and Output Handling in AIX 5L Version 5.1 System Management Guide:
Operating System and Devices.

Input and Output Handling Programmer’s Overview in AIX 5L Version 5.1 General Programming Concepts:
Writing and Debugging Programs.

swapoff Subroutine

Purpose
Deactivates paging or swapping to a designated block device.

Library
Standard C Library (libc.a)

Syntax
int swapoff (PathName)
char *PathName;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 275

../../libs/basetrf1/memccpy.htm#HDRA108915ED
../../aixuser/usrosdev/input_output_redir.htm
../../aixprggd/genprogc/io_handling.htm#HDRA9E740A1626CAND

Description
The swapoff subroutine deactivates a block device or logical volume that is actively being used for paging
and swapping. There must be sufficient space to satisfy the system’s paging space requirements in the
remaining devices after this device is deactivated or swapoff will fail.

Parameters

PathName Specifies the full path name of the block device or logical volume.

Error Codes
If an error occurs, the errno global variable is set to indicate the error:

EBUSY The deactivation is already running.
EINTR The signal was received during the processing of a request.
ENODEV The PathName file does not exist.
ENOMEM No memory is available.
ENOSPC There is not enough space in other paging spaces to satisfy the system’s requirements.
ENOTBLK The device must be a block device or logical volume.
ENOTDIR A component of the PathName prefix is not a directory.
EPERM Caller does not have proper authority.

Other errors are from calls to the device driver’s open subroutine or ioctl subroutine.

Related Information
The swapoff command.

The Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

swapon Subroutine

Purpose
Activates paging or swapping to a designated block device.

Library
Standard C Library (libc.a)

Syntax
#include <sys/vminfo.h>

int swapon (PathName)
char *PathName;

Description
The swapon subroutine makes the designated block device available to the system for allocation for
paging and swapping.

The specified block device must be a logical volume on a disk device. The paging space size is
determined from the current size of the logical volume.

276 Technical Reference, Volume 2: Base Operating System and Extensions

../../cmds/aixcmds5/swapoff.htm
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

Parameters

PathName Specifies the full path name of the block device.

Error Codes
If an error occurs, the errno global variable is set to indicate the error:

EINTR Signal was received during processing of a request.
EINVAL Invalid argument (size of device is invalid).
ENOENT The PathName file does not exist.
ENOMEM The maximum number of paging space devices (16) are already defined, or no memory is available.
ENOTBLK Block device required.
ENOTDIR A component of the PathName prefix is not a directory.
ENXIO No such device address.

Other errors are from calls to the device driver’s open subroutine or ioctl subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The swapoff subroutine,swapqry subroutine.

The swapoff command, swapon command.

The Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

swapqry Subroutine

Purpose
Returns paging device status.

Library
Standard C Library (libc.a)

Syntax
#include <sys/vminfo.h>

int swapqry (PathName, Buffer)
char *PathName;
struct pginfo *Buffer;

Description
The swapqry subroutine returns information to a user-designated buffer about active paging and swap
devices.

Parameters

PathName Specifies the full path name of the block device.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 277

../../cmds/aixcmds5/swapoff.htm
../../cmds/aixcmds5/swapon.htm#HDRA324913C
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

Buffer Points to the buffer into which the status is stored.

Return Values
The swapqry subroutine returns 0 if the PathName value is an active paging device. If the Buffer value is
not null, it also returns status information.

Error Codes
If an error occurs, the subroutine returns -1 and the errno global variable is set to indicate the error, as
follows:

EFAULT Buffer pointer is invalid.
EINVAL Invalid argument.
EINTR Signal was received while processing request.
ENODEV Device is not an active paging device.
ENOENT The PathName file does not exist.
ENOTBLK Block device required.
ENOTDIR A component of the PathName prefix is not a directory.
ENXIO No such device address.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The swapoff subroutine, swapon subroutine.

The swapoff command, swapon command.

Paging Space Overview in AIX 5L Version 5.1 System Management Concepts: Operating System and
Devices.

Subroutines Overview and Understanding Paging Space Programming Requirements in AIX 5L Version
5.1 General Programming Concepts: Writing and Debugging Programs.

symlink Subroutine

Purpose
Makes a symbolic link to a file.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int symlink (Path1, Path2)
const char *Path1;
const char *Path2;

278 Technical Reference, Volume 2: Base Operating System and Extensions

../../cmds/aixcmds5/swapoff.htm
../../cmds/aixcmds5/swapon.htm#HDRA324913C
../../aixbman/admnconc/pag_overview.htm
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/paging_space_prg_req.htm#HDRA9E4A864034SYLV

Description
The symlink subroutine creates a symbolic link with the file named by the Path2 parameter, which refers
to the file named by the Path1 parameter.

As with a hard link (described in the link subroutine), a symbolic link allows a file to have multiple names.
The presence of a hard link guarantees the existence of a file, even after the original name has been
removed. A symbolic link provides no such assurance. In fact, the file named by the Path1 parameter need
not exist when the link is created. In addition, a symbolic link can cross file system boundaries.

When a component of a path name refers to a symbolic link rather than a directory, the path name
contained in the symbolic link is resolved. If the path name in the symbolic link starts with a / (slash), it is
resolved relative to the root directory of the process. If the path name in the symbolic link does not start
with / (slash), it is resolved relative to the directory that contains the symbolic link.

If the symbolic link is not the last component of the original path name, remaining components of the
original path name are resolved from the symbolic-link point.

If the last component of the path name supplied to a subroutine refers to a symbolic link, the symbolic link
path name may or may not be traversed. Most subroutines always traverse the link; for example, the
chmod, chown, link, and open subroutines. The statx subroutine takes an argument that determines
whether the link is to be traversed.

The following subroutines refer only to the symbolic link itself, rather than to the object to which the link
refers:

mkdir
Fails with the EEXIST error code if the target is a symbolic link.

mknod
Fails with the EEXIST error code if a symbolic link exists with the
same name as the target file as specified by the Path parameter in
the mknod and mkfifo subroutines.

open
Fails with EEXIST error code when the O_CREAT and O_EXCL
flags are specified and a symbolic link exists for the path name
specified.

readlink (“readlink Subroutine” on page 15)
Applies only to symbolic links.

rename (“rename Subroutine” on page 34)
Renames the symbolic link if the file to be renamed (the FromPath
parameter for the rename subroutine) is a symbolic link. If the new
name (the ToPath parameter for the rename subroutine) refers to
an existing symbolic link, the symbolic link is destroyed.

rmdir (“rmdir Subroutine” on page 38)
Fails with the ENOTDIR error code if the target is a symbolic link.

symlink Running this subroutine causes an error if a symbolic link named by
the Path2 parameter already exists. A symbolic link can be created
that refers to another symbolic link; that is, the Path1 parameter can
refer to a symbolic link.

unlink (“unlink Subroutine” on page 369)
Removes the symbolic link.

Since the mode of a symbolic link cannot be changed, its mode is ignored during the lookup process. Any
files and directories referenced by a symbolic link are checked for access normally.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 279

../../libs/basetrf1/mkdir.htm#HDRA3IK150GACO
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/basetrf1/open.htm#HDRA1509805

Parameters

Path1 Specifies the contents of the Path2 symbolic link. This value is a null-terminated string representing the
object to which the symbolic link will point. Path1 cannot be the null value and cannot be more than
PATH_MAX characters long. PATH_MAX is defined in the limits.h file.

Path2 Names the symbolic link to be created.

Return Values
Upon successful completion, the symlink subroutine returns a value of 0. If the symlink subroutine fails, a
value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The symlink subroutine fails if one or more of the following are true:

EEXIST Path2 already exists.
EACCES The requested operation requires writing in a directory with a mode that denies write permission.
EROFS The requested operation requires writing in a directory on a read-only file system.
ENOSPC The directory in which the entry for the symbolic link is being placed cannot be extended because there

is no space left on the file system containing the directory.
EDQUOT The directory in which the entry for the new symbolic link is being placed cannot be extended or disk

blocks could not be allocated for the symbolic link because the user’s or group’s quota of disk blocks on
the file system containing the directory has been exhausted.

The symlink subroutine can be unsuccessful for other reasons. See ″Base Operating System Error Codes
For Services That Require Path-Name Resolution″ for a list of additional errors.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The chown, fchown, chownx, or fchown subroutine, link subroutine, mkdir subroutine, mknod
subroutine, openx, open, or create subroutine, readlink (“readlink Subroutine” on page 15) subroutine,
rename (“rename Subroutine” on page 34) subroutine, rmdir (“rmdir Subroutine” on page 38) subroutine,
statx (“statx, stat, lstat, fstatx, fstat, fullstat, ffullstat, stat64, lstat64, or fstat64 Subroutine” on page 251)
subroutine, unlink (“unlink Subroutine” on page 369) subroutine.

The ln command.

The limits.h file.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

sync Subroutine

Purpose
Updates all file systems.

Library
Standard C Library (libc.a)

280 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/AppendixA.htm#HDRA4CG230GACO
../../libs/basetrf1/AppendixA.htm#HDRA4CG230GACO
../../libs/basetrf1/chown.htm#HDRA9F01
../../libs/basetrf1/link.htm#HDRA169C1F6
../../libs/basetrf1/mkdir.htm#HDRA3IK150GACO
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/basetrf1/open.htm#HDRA1509805
../../cmds/aixcmds3/ln.htm#HDRA8C1270CRAW
../../files/aixfiles/limits.h.htm#HDRA139934DA
../../aixprggd/genprogc/file_sys_dir.htm#HDRFVOWF292JUDY

Syntax
#include <unistd.h>

void sync ()

Description
The sync subroutine causes all information in memory that should be on disk to be written out. The
writing, although scheduled, is not necessarily complete upon return from this subroutine. Types of
information to be written include modified superblocks, i-nodes, data blocks, and indirect blocks.

The sync subroutine should be used by programs that examine a file system, such as the df and fsck
commands.

If Network File System (NFS) is installed on your system, information in memory that relates to remote
files is scheduled to be sent to the remote node.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The fsync subroutine.

The df command, sync command.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

_sync_cache_range Subroutine

Purpose
Synchronizes the I cache with the D cache.

Library
Standard C Library (libc.a)

Syntax
void _sync_cache_range (eaddr, count)
caddr_t eaddr;
uint count;

Description
The _sync_cache_range subroutine synchronizes the I cache with the D cache, given an effective
address and byte count. Programs performing instruction modification can call this routine to ensure that
the most recent instructions are fetched for the address range.

Parameters

eaddr Specifies the starting effective address of the address range.
count Specifies the byte count of the address range.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 281

../../libs/basetrf1/fsync.htm#HDRA164930
../../cmds/aixcmds2/df.htm#HDRA10192B83
../../cmds/aixcmds5/sync.htm#HDRA15791CA
../../aixprggd/genprogc/file_sys_dir.htm#HDRFVOWF292JUDY

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The clf (Cache Line Flush) Instruction in AIX 5L for POWER-based Systems Assembler Language
Reference.

sysconf Subroutine

Purpose
Determines the current value of a specified system limit or option.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

long int sysconf (Name)
int Name;

Description
The sysconf subroutine determines the current value of certain system parameters, the configurable
system limits, or whether optional features are supported. The Name parameter represents the system
variable to be queried.

Parameters

Name Specifies which system variable setting should be
returned. The valid values for the Name parameter are
defined in the limits.h, time.h, and unistd.h files and are
described below:

_SC_AIO_LISTIO_MAX Maximum number of Input and Output operations that can
be specified in a list Input and Output call.

_SC_AIO_MAX Maximum number of outstanding asynchronous Input and
Output operations.

_SC_ASYNCHRONOUS_IO Implementation supports the Asynchronous Input and
Output option.

_SC_ARG_MAX Specifies the maximum byte length of the arguments for
one of the exec functions, including environment data.

_SC_BC_BASE_MAX Specifies the maximum number ibase and obase
variables allowed by the bc command.

_SC_BC_DIM_MAX Specifies the maximum number of elements permitted in
an array by the bc command.

_SC_BC_SCALE_MAX Specifies the maximum scale variable allowed by the bc
command.

_SC_BC_STRING_MAX Specifies the maximum length of a string constant allowed
by the bc command.

_SC_CHILD_MAX Specifies the number of simultaneous processes per real
user ID.

282 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixassem/alangref/clf.htm#HDRA2869179
../../cmds/aixcmds1/bc.htm#HDRBC

_SC_CLK_TCK Indicates the clock-tick increment as defined by the
CLK_TCK in the time.h file.

_SC_COLL_WEIGHTS_MAX Specifies the maximum number of weights that can be
assigned to an entry of the LC_COLLATE keyword in the
locale definition file.

_SC_DELAYTIMER_MAX Maximum number of Timer expiration overruns.
_SC_EXPR_NEST_MAX Specifies the maximum number of expressions that can

be nested within parentheses by the expr command.
_SC_JOB_CONTROL If this symbol is defined, job control is supported.
_SC_IOV_MAX Specifies the maximum number of iovec structures one

process has available for use with the readv and writev
subroutines.

_SC_LINE_MAX Specifies the maximum byte length of a command’s input
line (either standard input or another file) when a
command is described as processing text files. The length
includes room for the trailing new-line character.

_SC_LOGIN_NAME_MAX Maximum length of a login name.
_SC_MQ_OPEN_MAX Maximum number of open message queue descriptors.
_SC_MQ_PRIO_MAX Maximum number of message priorities.
_SC_MEMLOCK Implementation supports the Process Memory Locking

option.
_SC_MEMLOCK_RANGE Implementation supports the Range Memory Locking

option.
_SC_MEMORY_PROTECTION Implementation supports the Memory Protection option.
_SC_MESSAGE_PASSING Implementation supports the Message Passing option.
_SC_NGROUPS_MAX Specifies the maximum number of simultaneous

supplementary group IDs per process.
_SC_OPEN_MAX Specifies the maximum number of files that one process

can have open at any one time.
_SC_PASS_MAX Specifies the maximum number of significant characters in

a password (not including the terminating null character).
_SC_PASS_MAX Maximum number of significant bytes in a password.
_SC_PAGESIZE Equivalent to _SC_PAGE_SIZE.
_SC_PAGE_SIZE Size in bytes of a page.
_SC_PRIORITIZED_IO Implementation supports the Prioritized Input and Output

option.
_SC_PRIORITY_SCHEDULING Implementation supports the Process Scheduling option.
_SC_RE_DUP_MAX Specifies the maximum number of repeated occurrences

of a regular expression permitted when using the
\{ m, n \} interval notation.

_SC_RTSIG_MAX Maximum number of Realtime Signals reserved for
applications use.

_SC_REALTIME_SIGNALS Implementation supports the Realtime Signals Extension
option.

_SC_SAVED_IDS If this symbol is defined, each process has a saved
set-user ID and set-group ID.

_SC_SEM_NSEMS_MAX Maximum number of Semaphores per process.
_SC_SEM_VALUE_MAX Maximum value a Semaphore may have.
_SC_SEMAPHORES Implementation supports the Semaphores option.
_SC_SHARED_MEMORY_OBJECTS Implementation supports the Shared Memory Objects

option.
_SC_SIGQUEUE_MAX Maximum number of signals a process may send and

have pending at any time.
_SC_STREAM_MAX Specifies the maximum number of streams that one

process can have open simultaneously.
_SC_SYNCHRONIZED_IO Implementation supports the Synchronised Input and

Output option.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 283

../../cmds/aixcmds2/expr.htm#HDRA2059AFA

_SC_TIMER_MAX Maximum number of per-process Timers.
_SC_TIMERS Implementation supports the Timers option.
_SC_TZNAME_MAX Specifies the maximum number of bytes supported for the

name of a time zone (not of the TZ value).
_SC_VERSION Indicates that the version or revision number of the POSIX

standard is implemented to indicate the 4-digit year and
2-digit month that the standard was approved by the IEEE
Standards Board. This value is currently the long integer
198808.

_SC_XBS5_ILP32_OFF32 Implementation provides a C-language compilation
environment with 32-bit int, long, pointer and off_t types.

_SC_XBS5_ILP32_OFFBIG Implementation provides a C-language compilation
environment with 32-bit int, long and pointer types and an
off_t type using at least 64 bits.

_SC_XBS5_LP64_OFF64 Implementation provides a C-language compilation
environment with 32-bit int and 64-bit long, pointer and
off_t types.

_SC_XBS5_LPBIG_OFFBIG Implementation provides a C-language compilation
environment with an int type using at least 32 bits and
long, pointer and off_t types using at least 64 bits.

_SC_XOPEN_CRYPT Indicates that the system supports the X/Open Encryption
Feature Group.

_SC_XOPEN_LEGACY The implementation supports the Legacy Feature Group.
_SC_XOPEN_REALTIME The implementation supports the X/Open Realtime

Feature Group.
_SC_XOPEN_REALTIME_THREADS The implementation supports the X/Open Realtime

Threads Feature Group.
_SC_XOPEN_ENH_I18N Indicates that the system supports the X/Open Enhanced

Internationalization Feature Group.
_SC_XOPEN_SHM Indicates that the system supports the X/Open Shared

Memory Feature Group.
_SC_XOPEN_VERSION Indicates that the version or revision number of the

X/Open standard is implemented.
_SC_XOPEN_XCU_VERSION Specifies the value describing the current version of the

XCU specification.
_SC_ATEXIT_MAX Specifies the maximum number of register functions for

the atexit subroutine.
_SC_PAGE_SIZE Specifies page-size granularity of memory.
_SC_AES_OS_VERSION Indicates OSF AES version.
_SC_2_VERSION Specifies the value describing the current version of

POSIX.2.
_SC_2_C_BIND Indicates that the system supports the C Language

binding option.
_SC_2_C_CHAR_TERM Indicates that the system supports at least one terminal

type.
_SC_2_C_DEV Indicates that the system supports the C Language

Development Utilities Option.
_SC_2_C_VERSION Specifies the value describing the current version of

POSIX.2 with the C Language binding.
_SC_2_FORT_DEV Indicates that the system supports the FORTRAN

Development Utilities Option.
_SC_2_FORT_RUN Indicates that the system supports the FORTRAN

Development Utilities Option.
_SC_2_LOCALEDEF Indicates that the system supports the creation of locales.
_SC_2_SW_DEV Indicates that the system supports the Software

Development Utilities Option.
_SC_2_UPE Indicates that the system supports the User Portability

Utilities Option.

284 Technical Reference, Volume 2: Base Operating System and Extensions

_SC_NPROCESSORS_CONF Number of processors configured.
_SC_NPROCESSORS_ONLN Number of processors online.
_SC_THREAD_DATAKEYS_MAX Maximum number of data keys that can be defined in a

process.

_SC_THREAD_DESTRUCTOR_ITERATIONS Maximum number attempts made to destroy a thread’s
thread-specific data.

_SC_THREAD_KEYS_MAX Maximum number of data keys per process.
_SC_THREAD_STACK_MIN Minimum value for the threads stack size.
_SC_THREAD_THREADS_MAX Maximum number of threads within a process.
_SC_REENTRANT_FUNCTIONS System supports reentrant functions (reentrant functions

must be used in multi-threaded applications).
_SC_THREADS System supports POSIX threads.
_SC_THREAD_ATTR_STACKADDR System supports the stack address option for POSIX

threads (stackaddr attribute of threads).
_SC_THREAD_ATTR_STACKSIZE System supports the stack size option for POSIX threads

(stacksize attribute of threads).
_SC_THREAD_PRIORITY_SCHEDULING System supports the priority scheduling for POSIX

threads.
_SC_THREAD_PRIO_INHERIT System supports the priority inheritance protocol for

POSIX threads (priority inversion protocol for mutexes).
_SC_THREAD_PRIO_PROTECT System supports the priority ceiling protocol for POSIX

threads (priority inversion protocol for mutexes).
_SC_THREAD_PROCESS_SHARED System supports the process sharing option for POSIX

threads (pshared attribute of mutexes and conditions).
_SC_TTY_NAME_MAX Maximum length of a terminal device name.
Note: The _SYNCHRONIZED_IO, _SC_FSYNC, and SC_MAPPED_FILES commands apply to operating system
version 4.3 and later releases.
_SC_SYNCHRONIZED_IO Implementation supports the Synchronized Input and

Output option.
_SC_FSYNC Implementation supports the File Synchronization option.
_SC_MAPPED_FILES Implementation supports the Memory Mapped Files

option.

The values returned for the variables supported by the system do not change during the lifetime of the
process making the call.

Return Values
If the sysconf subroutine is successful, the current value of the system variable is returned. The returned
value cannot be more restrictive than the corresponding value described to the application by the limits.h,
time.h, or unistd.h file at compile time. The returned value does not change during the lifetime of the
calling process. If the sysconf subroutine is unsuccessful, a value of -1 is returned.

Error Codes
If the Name parameter is invalid, a value of -1 is returned and the errno global variable is set to indicate
the error. If the Name parameter is valid but is a variable not supported by the system, a value of -1 is
returned, and the errno global variable is set to a value of EINVAL.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 285

File

/usr/include/limits.h Contains system-defined limits.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The confstr subroutine, pathconf subroutine.

The bc command, expr command.

Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

sysconfig Subroutine

Purpose
Provides a service for controlling system/kernel configuration.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/sysconfig.h>

int sysconfig (Cmd, Parmp, Parmlen)
int Cmd;
void *Parmp;
int Parmlen;

Description
The sysconfig subroutine is used to customize the operating system. This subroutine provides a means of
loading, unloading, and configuring kernel extensions. These kernel extensions can be additional kernel
services, system calls, device drivers, or file systems. The sysconfig subroutine also provides the ability
to read and set system run-time operating parameters.

Use of the sysconfig subroutine requires appropriate privilege.

The particular operation that the sysconfig subroutine provides is defined by the value of the Cmd
parameter. The following operations are defined:

SYS_KLOAD
(“SYS_KLOAD sysconfig
Operation” on page 291)

Loads a kernel extension object file into kernel memory.

SYS_SINGLELOAD
(“SYS_SINGLELOAD
sysconfig Operation” on
page 301)

Loads a kernel extension object file only if it is not already loaded.

286 Technical Reference, Volume 2: Base Operating System and Extensions

../../files/aixfiles/limits.h.htm#HDRA139934DA
../../libs/basetrf1/confstr.htm#HDRA101C1218A
../../libs/basetrf1/pathconf.htm#HDRA161C177
../../cmds/aixcmds1/bc.htm#HDRBC
../../cmds/aixcmds2/expr.htm#HDRA2059AFA
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/kernextc/kern_svcs.htm#HDREOG1B0JEAN
../../aixprggd/kernextc/kern_svcs.htm#HDREOG1B0JEAN
../../aixprggd/kernextc/system_calls.htm#HDRYRK1350CHRI
../../aixbman/admnconc/fs_overview.htm

SYS_QUERYLOAD
(“SYS_QUERYLOAD
sysconfig Operation” on
page 298)

Determines if a specified kernel object file is loaded.

SYS_KULOAD
(“SYS_KULOAD sysconfig
Operation” on page 296)

Unloads a previously loaded kernel object file.

SYS_QDVSW
(“SYS_QDVSW sysconfig
Operation” on page 297)

Checks the status of a device switch entry in the device switch table.

SYS_CFGDD
(“SYS_CFGDD sysconfig
Operation” on page 288)

Calls the specified device driver configuration routine (module entry point).

SYS_CFGKMOD
(“SYS_CFGKMOD
sysconfig Operation” on
page 289)

Calls the specified module at its module entry point for configuration purposes.

SYS_GETPARMS
(“SYS_GETPARMS
sysconfig Operation” on
page 290)

Returns a structure containing the current values of run-time system parameters found in
the var structure.

SYS_SETPARMS
(“SYS_SETPARMS
sysconfig Operation” on
page 299)

Sets run-time system parameters from a caller-provided structure.

In addition, the SYS_64BIT flag can be bitwise or’ed with the Cmd parameter (if the Cmd parameter is
SYS_KLOAD or SYS_SINGLELOAD). For kernel extensions, this indicates that the kernel extension does
not export 64-bit system calls, but that all 32-bit system calls also work for 64-bit applications. For device
drivers, this indicates that the device driver can be used by 64-bit applications.

“Loader Symbol Binding Support” on page 292 explains the symbol binding support provided when loading
kernel object files.

Parameters

Cmd Specifies the function that the sysconfig subroutine is to perform.
Parmp Specifies a user-provided structure.
Parmlen Specifies the length of the user-provided structure indicated by the Parmp parameter.

Return Values
These sysconfig operations return a value of 0 upon successful completion of the subroutine. Otherwise, a
value of -1 is returned and the errno global variable is set to indicate the error.

Any sysconfig operation requiring a structure from the caller fails if the structure is not entirely within
memory addressable by the calling process. A return value of -1 is passed back and the errno global
variable is set to EFAULT.

Related Information
The ddconfig device driver entry point.

Device Configuration Subsystem, Kernel Environment, Understanding Kernel Extension Binding in AIX 5L
Version 5.1 Kernel Extensions and Device Support Programming Concepts.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 287

../../libs/ktechrf1/ddconfig.htm
../../libs/ktechrf1/ddconfig.htm
../../aixprggd/kernextc/device_config_subsys.htm
../../aixprggd/kernextc/kern_enviro.htm#HDRA23C0F19A
../../aixprggd/kernextc/kernex_binding.htm#HDRA23C0F1A0

SYS_CFGDD sysconfig Operation

Purpose
Calls a previously loaded device driver at its module entry point.

Description
The SYS_CFGDD sysconfig operation calls a previously loaded device driver at its module entry point.
The device driver’s module entry point, by convention, is its ddconfig entry point. The SYS_CFGDD
operation is typically invoked by device configure or unconfigure methods to initialize or terminate a device
driver, or to request device vital product data.

The sysconfig subroutine puts no restrictions on the command code passed to the device driver. This
allows the device driver’s ddconfig entry point to provide additional services, if desired.

The parmp parameter on the SYS_CFGDD operation points to a cfg_dd structure defined in the
sys/sysconfig.h file. The parmlen parameter on the sysconfig system call should be set to the size of
this structure.

If the kmid variable in the cfg_dd structure is 0, the desired device driver is assumed to be already
installed in the device switch table. The major portion of the device number (passed in the devno field in
the cfg_dd structure) is used as an index into the device switch table. The device switch table entry
indexed by this devno field contains the device driver’s ddconfig entry point to be called.

If the kmid variable is not 0, it contains the module ID to use in calling the device driver. A uio structure is
used to pass the address and length of the device-dependent structure, specified by the cfg_dd.ddsptr
and cfg_dd.ddslen fields, to the device driver being called.

The ddconfig device driver entry point provides information on how to define the ddconfig subroutine.

The device driver to be called is responsible for using the appropriate routines to copy the
device-dependent structure (DDS) from user to kernel space.

Return Values
If the SYS_CFGDD operation successfully calls the specified device driver, the return code from the
ddconfig subroutine determines the value returned by this subroutine. If the ddconfig routine’s return
code is 0, then the value returned by the sysconfig subroutine is 0. Otherwise the value returned is a -1,
and the errno global variable is set to the return code provided by the device driver ddconfig subroutine.

Error Codes
Errors detected by the SYS_CFGDD operation result in the following values for the errno global variable:

EACESS The calling process does not have the required privilege.
EFAULT The calling process does not have sufficient authority to access the data area described by the parmp

and parmlen parameters provided on the system call. This error is also returned if an I/O error occurred
when accessing data in this area.

EINVAL Invalid module ID.
ENODEV Module ID specified by the cfg_dd.kmid field was 0, and an invalid or undefined devno value was

specified.

288 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/ktechrf1/ddconfig.htm
../../libs/ktechrf1/uio.htm
../../aixprggd/kernextc/dds_over.htm#HDRA8BG1160MARY

Related Information
The sysconfig (“sysconfig Subroutine” on page 286) subroutine.

The ddconfig device driver entry point.

The uio structure.

Device Configuration Subsystem Programming Introduction, Device Dependent Structure (DDS) Overview,
Device Driver Kernel Extension Overview, Programming in the Kernel Environment Overview,
Understanding Kernel Extension Binding, Understanding the Device Switch Table in AIX 5L Version 5.1
Kernel Extensions and Device Support Programming Concepts.

SYS_CFGKMOD sysconfig Operation

Purpose
Invokes a previously loaded kernel object file at its module entry point.

Description
The SYS_CFGKMOD sysconfig operation invokes a previously loaded kernel object file at its module entry
point, typically for initialization or termination functions. The SYS_CFGDD (“SYS_CFGDD sysconfig
Operation” on page 288) operation performs a similar function for device drivers.

The parmp parameter on the sysconfig subroutine points to a cfg_kmod structure, which is defined in the
sys/sysconfig.h file. The kmid field in this structure specifies the kernel module ID of the module to
invoke. This value is returned when using the SYS_KLOAD (“SYS_KLOAD sysconfig Operation” on
page 291) or SYS_SINGLELOAD (“SYS_SINGLELOAD sysconfig Operation” on page 301) operation to
load the object file.

The cmd field in the cfg_kmod structure is a module-dependent parameter specifying the action that the
routine at the module’s entry point should perform. This is typically used for initialization and termination
commands after loading and prior to unloading the object file.

The mdiptr field in the cfg_kmod structure points to a module-dependent structure whose size is specified
by the mdilen field. This field is used to provide module-dependent information to the module to be called.
If no such information is needed, the mdiptr field can be null.

If the mdiptr field is not null, then the SYS_CFGKMOD operation builds a uio structure describing the
address and length of the module-dependent information in the caller’s address space. The mdiptr and
mdilen fields are used to fill in the fields of this uio structure. The module is then called at its module entry
point with the cmd parameter and a pointer to the uio structure. If there is no module-dependent
information to be provided, the uiop parameter passed to the module’s entry point is set to null.

The module’s entry point should be defined as follows:
int module_entry(cmd, uiop)
int cmd;
struct uio *uiop;

The definition of the module-dependent information and its length is specific to the module being
configured. The called module is responsible for using the appropriate routines to copy the
module-dependent information from user to kernel space.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 289

../../libs/ktechrf1/ddconfig.htm
../../libs/ktechrf1/uio.htm
../../aixprggd/kernextc/device_config_subsys.htm#HDRA4D56110CHRI
../../aixprggd/kernextc/dds_over.htm#HDRA8BG1160MARY
../../aixprggd/kernextc/kern_enviro.htm#HDRA23C0F19A
../../aixprggd/kernextc/kernex_binding.htm#HDRA23C0F1A0
../../libs/ktechrf1/uio.htm

Return Values
If the kernel module to be invoked is successfully called, its return code determines the value that is
returned by the SYS_CFGKMOD operation. If the called module’s return code is 0, then the value returned
by the sysconfig subroutine is 0. Otherwise the value returned is -1 and the errno global variable is set to
the called module’s return code.

Error Codes
Errors detected by the SYS_CFGKMOD operation result in the following values for the errno global
variable:

EINVAL Invalid module ID.
EACESS The calling process does not have the required privilege.
EFAULT The calling process does not have sufficient authority to access the data area described by the parmp

and parmlen parameters provided on the system call. This error is also returned if an I/O error occurred
when accessing data in this area.

File

sys/sysconfig.h Contains structure definitions.

Related Information
The sysconfig (“sysconfig Subroutine” on page 286) subroutine.

The SYS_CFGDD (“SYS_CFGDD sysconfig Operation” on page 288) sysconfig operation, SYS_KLOAD
(“SYS_KLOAD sysconfig Operation” on page 291) sysconfig operation, SYS_SINGLELOAD
(“SYS_SINGLELOAD sysconfig Operation” on page 301) sysconfig operation.

The uio structure.

Device Configuration Subsystem Programming Introduction in AIX 5L Version 5.1 Kernel Extensions and
Device Support Programming Concepts

Programming in the Kernel Environment Overview in AIX 5L Version 5.1 Kernel Extensions and Device
Support Programming Concepts

Understanding Kernel Extension Binding in AIX 5L Version 5.1 Kernel Extensions and Device Support
Programming Concepts

SYS_GETPARMS sysconfig Operation

Purpose
Copies the system parameter structure into a user-specified buffer.

Description
The SYS_GETPARMS sysconfig operation copies the system parameter var structure into a
user-allocated buffer. This structure may be used for informational purposes alone or prior to setting
specific system parameters.

In order to set system parameters, the required fields in the var structure must be modified, and then the
SYS_SETPARMS (“SYS_SETPARMS sysconfig Operation” on page 299) operation can be called to
change the system run-time operating parameters to the desired state.

290 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/ktechrf1/uio.htm
../../aixprggd/kernextc/device_config_subsys.htm#HDRA4D56110CHRI
../../aixprggd/kernextc/kern_enviro.htm#HDRA23C0F19A
../../aixprggd/kernextc/kernex_binding.htm#HDRA23C0F1A0

The parmp parameter on the sysconfig subroutine points to a buffer that is to contain all or part of the var
structure defined in the sys/var.h file. The fields in the var_hdr part of the var structure are used for
parameter update control.

The parmlen parameter on the system call should be set to the length of the var structure or to the
number of bytes of the structure that is desired. The complete definition of the system parameters
structure can be found in the sys/var.h file.

Return Values
The SYS_GETPARMS operation returns a value of -1 if an error occurs and the errno global variable is
set to one of the following error codes.

Error Codes

EACCES The calling process does not have the required privilege.
EFAULT The calling process does not have sufficient authority to access the data area described by the parmp

and parmlen parameters provided on the subroutine. This error is also returned if an I/O error occurred
when accessing data in this area.

File

sys/var.h Contains structure definitions.

Related Information
The sysconfig (“sysconfig Subroutine” on page 286) subroutine and sys_parm (“sys_parm Subroutine” on
page 308) subroutine.

The SYS_SETPARMS (“SYS_SETPARMS sysconfig Operation” on page 299) sysconfig operation.

Programming in the Kernel Environment Overview in AIX 5L Version 5.1 Kernel Extensions and Device
Support Programming Concepts.

SYS_KLOAD sysconfig Operation

The SYS_KLOAD sysconfig operation includes information for SYS_KLOAD on a POWER-based platform
and an SYS_KLOAD on an Itanium-based platform.

SYS_KLOAD sysconfig operation on POWER-based Platform

Purpose
Loads a kernel extension into the kernel.

Description
The SYS_KLOAD sysconfig operation is used to load a kernel extension object file specified by a path
name into the kernel. A kernel module ID for that instance of the module is returned. The SYS_KLOAD
operation loads a new copy of the object file into the kernel even though one or more copies of the
specified object file may have already been loaded into the kernel. The returned module ID can then be
used for any of these three functions:

v Subsequent invocation of the module’s entry point (using the SYS_CFGKMOD (“SYS_CFGKMOD
sysconfig Operation” on page 289) operation)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 291

../../aixprggd/kernextc/kern_enviro.htm#HDRA23C0F19A

v Invocation of a device driver’s ddconfig subroutine (using the SYS_CFGDD (“SYS_CFGDD sysconfig
Operation” on page 288) operation)

v Unloading the kernel module (using the SYS_KULOAD (“SYS_KULOAD sysconfig Operation” on
page 296) operation).

The parmp parameter on the sysconfig subroutine must point to a cfg_load structure, (defined in the
sys/sysconfig.h file), with the path field specifying the path name for a valid kernel object file. The
parmlen parameter should be set to the size of the cfg_load structure.

Note: A separate sysconfig operation, the SYS_SINGLELOAD (“SYS_SINGLELOAD sysconfig
Operation” on page 301) operation, also loads kernel extensions. This operation, however, only loads
the requested object file if not already loaded.

Loader Symbol Binding Support
The following information describes the symbol binding support provided when loading kernel object files.

Importing Symbols
Symbols imported from the kernel name space are resolved with symbols that exist in the kernel name
space at the time of the load. (Symbols are imported from the kernel name space by specifying the
#!/unix character string as the first field in an import list at link-edit time.)

Kernel modules can also import symbols from other kernel object files. These other kernel object files are
loaded along with the specified object file if they are required to resolve the imported symbols.

Finding Directory Locations for Unqualified File Names: If the module header contains an unqualified
base file name for the symbol (that is, no / [slash] characters in the name), a libpath search string is used
to find the location of the shared object file required to resolve imported symbols. This libpath search string
can be taken from one of two places. If the libpath field in the cfg_load structure is not null, then it points
to a character string specifying the libpath to be used. However, if the libpath field is null, then the libpath
is taken from the module header of the object file specified by the path field in the same (cfg_load)
structure.

The libpath specification found in object files loaded in order to resolve imported symbols is not used.

The kernel loader service does not support deferred symbol resolution. The load of the kernel object file is
terminated with an error if any imported symbols cannot be resolved.

Exporting Symbols
Any symbols exported by the specified kernel object file are added to the kernel name space. This makes
these symbols available to other subsequently loaded kernel object files. Any symbols specified with the
SYSCALL keyword in the export list at link-edit time are added to the system call table at load time. These
symbols are then available to application programs as a system call. Symbols can be added to the 32-bit
and 64-bit system call tables separately by using the syscall32 and syscall64 keywords. Symbols can be
added to both system call tables by using the syscall3264 keyword. A kernel extension that just exports
32-bit system calls can have all its system calls exported to 64-bit as well by passing the SYS_64BIT flag
or’ed with the SYS_KLOAD command to sysconfig.

Kernel object files loaded on behalf of the specified kernel object file to resolve imported symbols do not
have their exported symbols added to the kernel name space.

These object files are considered private since they do not export symbols to the global kernel name
space. For these types of object files, a new copy of the object file is loaded on each SYS_KLOAD
operation of a kernel extension that imports symbols from the private object file. In order for a kernel
extension to add its exported symbols to the kernel name space, it must be explicitly loaded with the

292 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/ktechrf1/ddconfig.htm

SYS_KLOAD operation before any other object files using the symbols are loaded. For kernel extensions
of this type (those exporting symbols to the kernel name space), typically only one copy of the object file
should ever be loaded.

Return Values
If the object file is loaded without error, the module ID is returned in the kmid variable within the cfg_load
structure and the subroutine returns a value of 0.

Error Codes
On error, the subroutine returns a value of -1 and the errno global variable is set to one of the following
values:

EACESS One of the following reasons applies:

v The calling process does not have the required privilege.

v An object module to be loaded is not an ordinary file.

v The mode of the object module file denies read-only permission.
EFAULT The calling process does not have sufficient authority to access the data area described by the parmp

and parmlen parameters provided on the system call. This error is also returned if an I/O error occurred
when accessing data in this area.

ENOEXEC The program file has the appropriate access permission, but has an invalid XCOFF object file indication
in its header. The SYS_KLOAD operation only supports loading of XCOFF object files. This error is
also returned if the loader is unable to resolve an imported symbol.

EINVAL The program file has a valid XCOFF indicator in its header, but the header is damaged or is incorrect
for the machine on which the file is to be run.

ENOMEM The load requires more kernel memory than is allowed by the system-imposed maximum.
ETXTBSY The object file is currently open for writing by some process.

File

sys/sysconfig.h Contains structure definitions.

Related Information
The sysconfig (“sysconfig Subroutine” on page 286) subroutine.

The SYS_SINGLELOAD (“SYS_SINGLELOAD sysconfig Operation” on page 301) sysconfig operation,
SYS_KULOAD (“SYS_KULOAD sysconfig Operation” on page 296) sysconfig operation, SYS_CFGDD
(“SYS_CFGDD sysconfig Operation” on page 288) sysconfig operation, SYS_CFGKMOD
(“SYS_CFGKMOD sysconfig Operation” on page 289) sysconfig operation.

The ddconfig device driver entry point.

Device Configuration Subsystem Programming Introduction in AIX 5L Version 5.1 Kernel Extensions and
Device Support Programming Concepts.

Programming in the Kernel Environment Overview in AIX 5L Version 5.1 Kernel Extensions and Device
Support Programming Concepts.

Understanding Kernel Extension Binding in AIX 5L Version 5.1 Kernel Extensions and Device Support
Programming Concepts.

SYS_KLOAD sysconfig operation on Itanium-based Platform

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 293

../../libs/ktechrf1/ddconfig.htm
../../aixprggd/kernextc/device_config_subsys.htm#HDRA4D56110CHRI
../../aixprggd/kernextc/kern_enviro.htm#HDRA23C0F19A
../../aixprggd/kernextc/kernex_binding.htm#HDRA23C0F1A0

Purpose
Loads a kernel extension into the kernel.

Description
The SYS_KLOAD sysconfig operation is used to load a kernel extension object file specified by a path
name into the kernel. A kernel module ID for that instance of the module is returned. The SYS_KLOAD
operation loads a new copy of the object file into the kernel even though one or more copies of the
specified object file may have already been loaded into the kernel. The returned module ID can then be
used for any of these three functions:

v Subsequent invocation of the module’s entry point (using the SYS_CFGKMOD (“SYS_CFGKMOD
sysconfig Operation” on page 289) operation)

v Invocation of a device driver’s ddconfig subroutine (using the SYS_CFGDD (“SYS_CFGDD sysconfig
Operation” on page 288) operation)

v Unloading the kernel module (using the SYS_KULOAD (“SYS_KULOAD sysconfig Operation” on
page 296) operation).

The parmp parameter on the sysconfig subroutine must point to a cfg_load structure, (defined in the
sys/sysconfig.h file), with the path field specifying the path name for a valid kernel object file. The
parmlen parameter should be set to the size of the cfg_load structure.

Note: A separate sysconfig operation, the SYS_SINGLELOAD (“SYS_SINGLELOAD sysconfig
Operation” on page 301) operation, also loads kernel extensions. This operation, however, only loads
the requested object file if not already loaded.

Loader Symbol Binding Support
The following information describes the symbol binding support provided when loading kernel object files.

Importing Symbols
Symbols imported from the kernel name space are resolved with symbols that exist in the kernel name
space at the time of the load. (Symbols are imported from the kernel name space by specifying the
%soname /unix character string as the first field in an import list at link-edit time.)

Kernel modules can also import symbols from other kernel object files. These other kernel object files are
loaded along with the specified object file if they are required to resolve the imported symbols.

Finding Directory Locations for Unqualified File Names: Dependent modules must have a fully
qualified base filename.

The kernel loader service does not support deferred symbol resolution. The load of the kernel object file is
terminated with an error if any imported symbols cannot be resolved.

Exporting Symbols
Any symbols exported by the specified kernel object file are added to the kernel name space. This makes
these symbols available to other subsequently loaded kernel object files. Any symbols specified with the
syscall keyword in the export list at link-edit time are added to the system call table at load time. These
symbols are then available to application programs as a system call.

Kernel object files loaded on behalf of the specified kernel object file to resolve imported symbols do not
have their exported symbols added to the kernel name space.

These object files are considered private since they do not export symbols to the global kernel name
space. For these types of object files, a new copy of the object file is loaded on each SYS_KLOAD
operation of a kernel extension that imports symbols from the private object file. In order for a kernel
extension to add its exported symbols to the kernel name space, it must be explicitly loaded with the

294 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/ktechrf1/ddconfig.htm

SYS_KLOAD operation before any other object files using the symbols are loaded. For kernel extensions
of this type (those exporting symbols to the kernel name space), typically only one copy of the object file
should ever be loaded.

Return Values
If the object file is loaded without error, the module ID is returned in the kmid variable within the cfg_load
structure and the subroutine returns a value of 0.

Error Codes
On error, the subroutine returns a value of -1 and the errno global variable is set to one of the following
values:

EACESS One of the following reasons applies:

v The calling process does not have the required privilege.

v An object module to be loaded is not an ordinary file.

v The mode of the object module file denies read-only permission.
EFAULT The calling process does not have sufficient authority to access the data area described by the parmp

and parmlen parameters provided on the system call. This error is also returned if an I/O error occurred
when accessing data in this area.

ENOEXEC The program file has the appropriate access permission, but has an invalid ELF object file indication in
its header. The SYS_KLOAD operation only supports loading of ELF object files. This error is also
returned if the loader is unable to resolve an imported symbol.

EINVAL The program file has a valid ELF indicator in its header, but the header is damaged or is incorrect for
the machine on which the file is to be run.

ENOMEM The load requires more kernel memory than is allowed by the system-imposed maximum.
ETXTBSY The object file is currently open for writing by some process.

File

sys/sysconfig.h Contains structure definitions.

Related Information
The sysconfig (“sysconfig Subroutine” on page 286) subroutine.

The SYS_SINGLELOAD (“SYS_SINGLELOAD sysconfig Operation” on page 301) sysconfig operation,
SYS_KULOAD (“SYS_KULOAD sysconfig Operation” on page 296) sysconfig operation, SYS_CFGDD
(“SYS_CFGDD sysconfig Operation” on page 288) sysconfig operation, SYS_CFGKMOD
(“SYS_CFGKMOD sysconfig Operation” on page 289) sysconfig operation.

The ddconfig device driver entry point.

Device Configuration Subsystem Programming Introduction in AIX 5L Version 5.1 Kernel Extensions and
Device Support Programming Concepts.

Programming in the Kernel Environment Overview in AIX 5L Version 5.1 Kernel Extensions and Device
Support Programming Concepts.

Understanding Kernel Extension Binding in AIX 5L Version 5.1 Kernel Extensions and Device Support
Programming Concepts.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 295

../../libs/ktechrf1/ddconfig.htm
../../aixprggd/kernextc/device_config_subsys.htm#HDRA4D56110CHRI
../../aixprggd/kernextc/kern_enviro.htm#HDRA23C0F19A
../../aixprggd/kernextc/kernex_binding.htm#HDRA23C0F1A0

SYS_KULOAD sysconfig Operation

Purpose
Unloads a loaded kernel object file and any imported kernel object files that were loaded with it.

Description
The SYS_KULOAD sysconfig operation unloads a previously loaded kernel file and any imported kernel
object files that were automatically loaded with it. It does this by decrementing the load and use counts of
the specified object file and any object file having symbols imported by the specified object file.

The parmp parameter on the sysconfig subroutine should point to a cfg_load structure, as described for
the SYS_KLOAD (“SYS_KLOAD sysconfig Operation” on page 291) operation. The kmid field should
specify the kernel module ID that was returned when the object file was loaded by the SYS_KLOAD or
SYS_SINGLELOAD (“SYS_SINGLELOAD sysconfig Operation” on page 301) operation. The path and
libpath fields are not used for this command and can be set to null. The parmlen parameter should be set
to the size of the cfg_load structure.

Upon successful completion, the specified object file (and any other object files containing symbols that
the specified object file imports) will have their load and use counts decremented. If there are no users of
any of the module’s exports and its load count is 0, then the object file is immediately unloaded.

However, if there are users of this module (that is, modules bound to this module’s exported symbols), the
specified module is not unloaded. Instead, it is unloaded on some subsequent unload request, when its
use and load counts have gone to 0. The specified module is not in fact unloaded until all current users
have been unloaded.

Notes:

1. Care must be taken to ensure that a subroutine has freed all of its system resources before being
unloaded. For example, a device driver is typically prepared for unloading by using the
SYS_CFGDD (“SYS_CFGDD sysconfig Operation” on page 288) operation and specifying
termination.

2. If the use count is not 0, and you cannot force it to 0, the only way to terminate operation of the
kernel extension is to reboot the machine.

“Loader Symbol Binding Support” on page 294 explains the symbol binding support provided when loading
kernel object files.

Return Values
If the unload operation is successful or the specified object file load count is successfully decremented, a
value of 0 is returned.

Error Codes
On error, the specified file and any imported files are not unloaded, nor are their load and use counts
decremented. A value of -1 is returned and the errno global variable is set to one of the following:

EACESS The calling process does not have the required privilege.
EINVAL Invalid module ID or the specified module is no longer loaded or already has a load count of 0.
EFAULT The calling process does not have sufficient authority to access the data area described by the parmp

and parmlen parameters provided to the subroutine. This error is also returned if an I/O error occurred
when accessing data in this area.

296 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information
The SYS_CFGDD (“SYS_CFGDD sysconfig Operation” on page 288) sysconfig operation, SYS_KLOAD
(“SYS_KLOAD sysconfig Operation” on page 291) sysconfig operation, SYS_SINGLELOAD
(“SYS_SINGLELOAD sysconfig Operation” on page 301) sysconfig operation.

The sysconfig (“sysconfig Subroutine” on page 286) subroutine.

Device Configuration Subsystem Programming Introduction in AIX 5L Version 5.1 Kernel Extensions and
Device Support Programming Concepts.

Programming in the Kernel Environment Overview in AIX 5L Version 5.1 Kernel Extensions and Device
Support Programming Concepts.

Understanding Kernel Extension Binding in AIX 5L Version 5.1 Kernel Extensions and Device Support
Programming Concepts.

SYS_QDVSW sysconfig Operation

Purpose
Checks the status of a device switch entry in the device switch table.

Description
The SYS_QDVSW sysconfig operation checks the status of a device switch entry in the device switch
table.

The parmp parameter on the sysconfig subroutine points to a qry_devsw structure defined in the
sys/sysconfig.h file. The parmlen parameter on the subroutine should be set to the length of the
qry_devsw structure.

The qry_devsw field in the qry_devsw structure is modified to reflect the status of the device switch entry
specified by the qry_devsw field. (Only the major portion of the devno field is relevant.) The following flags
can be returned in the status field:

DSW_UNDEFINED The device switch entry is not defined if this flag has a value of 0 on return.
DSW_DEFINED The device switch entry is defined.
DSW_CREAD The device driver in this device switch entry provides a routine for character reads or raw

input. This flag is set when the device driver provides a ddread entry point.
DSW_CWRITE The device driver in this device switch entry provides a routine for character writes or raw

output. This flag is set when the device driver provides a ddwrite entry point.
DSW_BLOCK The device switch entry is defined by a block device driver. This flag is set when the device

driver provides a ddstrategy entry point.
DSW_MPX The device switch entry is defined by a multiplexed device driver. This flag is set when the

device driver provides a ddmpx entry point.
DSW_SELECT The device driver in this device switch entry provides a routine for handling the select

(“select Subroutine” on page 87) or poll subroutines. This flag is set when the device driver
provides a ddselect entry point.

DSW_DUMP The device driver defined by this device switch entry provides the capability to support one
or more of its devices as targets for a kernel dump. This flag is set when the device driver
has provided a dddump entry point.

DSW_CONSOLE The device switch entry is defined by the console device driver.
DSW_TCPATH The device driver in this device switch entry supports devices that are considered to be in

the trusted computing path and provides support for the revoke (“revoke Subroutine” on
page 37) and frevoke subroutines. This flag is set when the device driver provides a
ddrevoke entry point.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 297

../../aixprggd/kernextc/device_config_subsys.htm#HDRA4D56110CHRI
../../aixprggd/kernextc/kern_enviro.htm#HDRA23C0F19A
../../aixprggd/kernextc/kernex_binding.htm#HDRA23C0F1A0
../../libs/ktechrf1/ddread.htm
../../libs/ktechrf1/ddwrite.htm
../../libs/ktechrf1/ddstrategy.htm
../../libs/ktechrf1/ddmpx.htm
../../libs/basetrf1/poll.htm#HDRA1289B55
../../libs/ktechrf1/ddselect.htm
../../libs/ktechrf1/dddump.htm
../../files/aixfiles/console.htm#HDRA53C0147A9
../../libs/basetrf1/frevoke.htm#HDRA0959A1
../../libs/ktechrf1/ddrevoke.htm

DSW_OPENED The device switch entry is defined and the device has outstanding opens. This flag is set
when the device driver has at least one outstanding open.

The DSW_UNDEFINED condition is indicated when the device switch entry has not been defined or has
been defined and subsequently deleted. Multiple status flags may be set for other conditions of the device
switch entry.

Return Values
If no error is detected, this operation returns with a value of 0. If an error is detected, the return value is
set to a value of -1.

Error Codes
When an error is dected, the errno global variable is also set to one of the following values:

EACESS The calling process does not have the required privilege.
EINVAL Device number exceeds the maximum allowed by the kernel.
EFAULT The calling process does not have sufficient authority to access the data area described by the parmp

and parmlen parameters provided on the system call. This error is also returned if an I/O error occurred
when accessing data in this area.

File

sys/sysconfig.h Contains structure definitions.

Related Information
The sysconfig (“sysconfig Subroutine” on page 286) subroutine.

The ddread device driver entry point, ddwrite device driver entry point, ddstrategy device driver entry
point, ddmpx device driver entry point, ddselect device driver entry point, dddump device driver entry
point, ddrevoke device driver entry point.

The console special file.

Device Configuration Subsystem Programming Introduction in AIX 5L Version 5.1 Kernel Extensions and
Device Support Programming Concepts.

Programming in the Kernel Environment Overview in AIX 5L Version 5.1 Kernel Extensions and Device
Support Programming Concepts.

Understanding Kernel Extension Binding in AIX 5L Version 5.1 Kernel Extensions and Device Support
Programming Concepts.

SYS_QUERYLOAD sysconfig Operation

Purpose
Determines if a kernel object file has already been loaded.

Description
The SYS_QUERYLOAD sysconfig operation performs a query operation to determine if a given object file
has been loaded. This object file is specified by the path field in the cfg_load structure passed in with the

298 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/ktechrf1/ddread.htm
../../libs/ktechrf1/ddwrite.htm
../../libs/ktechrf1/ddstrategy.htm
../../libs/ktechrf1/ddmpx.htm
../../libs/ktechrf1/ddselect.htm
../../libs/ktechrf1/dddump.htm
../../libs/ktechrf1/ddrevoke.htm
../../files/aixfiles/console.htm#HDRA53C0147A9
../../aixprggd/kernextc/device_config_subsys.htm#HDRA4D56110CHRI
../../aixprggd/kernextc/kern_enviro.htm#HDRA23C0F19A
../../aixprggd/kernextc/kernex_binding.htm#HDRA23C0F1A0

parmp parameter. This operation utilizes the same cfg_load structure that is specified for the
SYS_KLOAD (“SYS_KLOAD sysconfig Operation” on page 291) operation.

If the specified object file is not loaded, the kmid field in the cfg_load structure is set to a value of 0 on
return. Otherwise, the kernel module ID of the module is returned in the kmid field. If multiple instances of
the module have been loaded into the kernel, the module ID of the one most recently loaded is returned.

The libpath field in the cfg_load structure is not used for this option.

Note: A path-name comparison is done to determine if the specified object file has been loaded.
However, this operation will erroneously return a not loaded condition if the path name to the object
file is expressed differently than it was on a previous load request.

“Loader Symbol Binding Support” on page 294 explains the symbol binding support provided when loading
kernel object files.

Return Values
If the specified object file is found, the module ID is returned in the kmid variable within the cfg_load
structure and the subroutine returns a 0. If the specified file is not found, a kmid variable of 0 is returned
with a return code of 0.

Error Codes
On error, the subroutine returns a -1 and the errno global variable is set to one of the following values:

EACCES The calling process does not have the required privilege.
EFAULT The calling process does not have sufficient authority to access the data area described by the parmp

and parmlen parameters provided on the subroutine. This error is also returned if an I/O error occurred
when accessing data in this area.

EFAULT The path parameter points to a location outside of the allocated address space of the process.
EIO An I/O error occurred during the operation.

Related Information
The sysconfig (“sysconfig Subroutine” on page 286) subroutine.

The SYS_SINGLELOAD (“SYS_SINGLELOAD sysconfig Operation” on page 301) sysconfig operation,
SYS_KLOAD (“SYS_KLOAD sysconfig Operation” on page 291) sysconfig operation.

Programming in the Kernel Environment Overview in AIX 5L Version 5.1 Kernel Extensions and Device
Support Programming Concepts.

Understanding Kernel Extension Binding Overview in AIX 5L Version 5.1 Kernel Extensions and Device
Support Programming Concepts.

SYS_SETPARMS sysconfig Operation

Purpose
Sets the kernel run-time tunable parameters.

Description
The SYS_SETPARMS sysconfig operation sets the current system parameters from a copy of the system
parameter var structure provided by the caller. Only the run-time tunable parameters in the var structure
can be set by this subroutine.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 299

../../aixprggd/kernextc/kern_enviro.htm#HDRA23C0F19A
../../aixprggd/kernextc/kernex_binding.htm#HDRA23C0F1A0

If the var_vers and var_gen values in the caller-provided structure do not match the var_vers and var_gen
values in the current system var structure, no parameters are modified and an error is returned. The
var_vers, var_gen, and var_size fields in the structure should not be altered. The var_vers value is
assigned by the kernel and is used to insure that the correct version of the structure is being used. The
var_gen value is a generation number having a new value for each read of the structure. This provides
consistency between the data read by the SYS_GETPARMS (“SYS_GETPARMS sysconfig Operation” on
page 290) operation and the data written by the SYS_SETPARMS operation.

The parmp parameter on the sysconfig subroutine points to a buffer that contains all or part of the var
structure as defined in the sys/var.h file.

The parmlen parameter on the subroutine should be set either to the length of the var structure or to the
size of the structure containing the parameters to be modified. The number of system parameters modified
by this operation is determined either by the parmlen parameter value or by the var_size field in the
caller-provided var structure. (The smaller of the two values is used.)

The structure provided by the caller must contain at least the header fields of the var structure. Otherwise,
an error will be returned. Partial modification of a parameter in the var structure can occur if the caller’s
data area does not contain enough data to end on a field boundary. It is up to the caller to ensure that this
does not happen.

Return Values
The SYS_SETPARMS sysconfig operation returns a value of -1 if an error occurred.

Error Codes
When an error occurs, the errno global variable is set to one of the following values:

EACESS The calling process does not have the required privilege.
EINVAL One of the following error situations exists:

v The var_vers version number of the provided structure does not match the version number of the
current var structure.

v The structure provided by the caller does not contain enough data to specify the header fields within
the var structure.

v One of the specified variable values is invalid or not allowed. On the return from the subroutine, the
var_vers field in the caller-provided buffer contains the byte offset of the first variable in the structure
that was detected in error.

EAGAIN The var_gen generation number in the structure provided does not match the current generation number
in the kernel. This occurs if consistency is lost between reads and writes of this structure. The caller
should repeat the read, modify, and write operations on the structure.

EFAULT The calling process does not have sufficient authority to access the data area described by the parmp
and parmlen parameters provided to the subroutine. This error is also returned if an I/O error occurred
when accessing data in this area.

File

sys/var.h Contains structure definitions.

Related Information
The sysconfig (“sysconfig Subroutine” on page 286) subroutine and sys_parm (“sys_parm Subroutine” on
page 308) subroutine.

The SYS_GETPARMS (“SYS_GETPARMS sysconfig Operation” on page 290) sysconfig operation.

300 Technical Reference, Volume 2: Base Operating System and Extensions

Programming in the Kernel Environment Overview in AIX 5L Version 5.1 Kernel Extensions and Device
Support Programming Concepts.

SYS_SINGLELOAD sysconfig Operation

Purpose
Loads a kernel extension module if it is not already loaded.

Description
The SYS_SINGLELOAD sysconfig operation is identical to the SYS_KLOAD (“SYS_KLOAD sysconfig
Operation” on page 291) operation, except that the SYS_SINGLELOAD operation loads the object file only
if an object file with the same path name has not already been loaded into the kernel.

If an object file with the same path name has already been loaded, the module ID for that object file is
returned in the kmid field and its load count incremented. If the object file is not loaded, this operation
performs the load request exactly as defined for the SYS_KLOAD operation.

This option is useful in supporting global kernel routines where only one copy of the routine and its data
can be present. Typically routines that export symbols to be added to the kernel name space are of this
type.

Note: A path name comparison is done to determine if the same object file has already been loaded.
However, this function will erroneously load a new copy of the object file into the kernel if the path
name to the object file is expressed differently than it was on a previous load request.

“Loader Symbol Binding Support” on page 294 explains the symbol binding support provided when loading
kernel object files.

Return Values
The SYS_SINGLELOAD operation returns the same set of error codes that the SYS_KLOAD operation
returns.

Related Information
The sysconfig (“sysconfig Subroutine” on page 286) subroutine.

The SYS_KLOAD (“SYS_KLOAD sysconfig Operation” on page 291) sysconfig operation.

Programming in the Kernel Environment Overview, and Understanding Kernel Extension Binding in AIX 5L
Version 5.1 Kernel Extensions and Device Support Programming Concepts.

syslog, openlog, closelog, or setlogmask Subroutine

Purpose

Controls the system log.

Library
Standard C Library (libc.a)

Syntax
#include <syslog.h>

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 301

../../aixprggd/kernextc/kern_enviro.htm#HDRA23C0F19A
../../aixprggd/kernextc/kern_enviro.htm#HDRA23C0F19A
../../aixprggd/kernextc/kernex_binding.htm#HDRA23C0F1A0

void openlog (ID, LogOption, Facility)
const char *ID;
int LogOption, Facility;

void syslog (Priority, Value,...)
int Priority;
const char *Value;

void closelog ()

int setlogmask(MaskPriority)
int MaskPriority;

void bsdlog (Priority, Value,...)
int Priority;
const char *Value;

Description

Attention: Do not use the syslog, openlog, closelog, or setlogmask subroutine in a multithreaded
environment. See the multithread alternatives in the syslog_r (“syslog_r, openlog_r, closelog_r, or
setlogmask_r Subroutine” on page 305), openlog_r, closelog_r, or setlogmask_r subroutine article.
The syslog subroutine is not threadsafe; for threadsafe programs the syslog_r subroutine should be
used instead.

The syslog subroutine writes messages onto the system log maintained by the syslogd command.

Note: Messages passed to syslog that are longer than 900 bytes may be truncated by syslogd
before being logged.

The message is similar to the printf fmt string, with the difference that %m is replaced by the current error
message obtained from the errno global variable. A trailing new-line can be added to the message if
needed.

Messages are read by the syslogd command and written to the system console or log file, or forwarded to
the syslogd command on the appropriate host.

If special processing is required, the openlog subroutine can be used to initialize the log file.

Messages are tagged with codes indicating the type of Priority for each. A Priority is encoded as a Facility,
which describes the part of the system generating the message, and as a level, which indicates the
severity of the message.

If the syslog subroutine cannot pass the message to the syslogd command, it writes the message on the
/dev/console file, provided the LOG_CONS option is set.

The closelog subroutine closes the log file.

The setlogmask subroutine uses the bit mask in the MaskPriority parameter to set the new log priority
mask and returns the previous mask.

The LOG_MASK and LOG_UPTO macros in the sys/syslog.h file are used to create the priority mask.
Calls to the syslog subroutine with a priority mask that does not allow logging of that particular level of
message causes the subroutine to return without logging the message.

302 Technical Reference, Volume 2: Base Operating System and Extensions

../../cmds/aixcmds5/syslogd.htm#HDRA262B9C4

Parameters

ID Contains a string that is attached to the beginning of every message. The Facility parameter
encodes a default facility from the previous list to be assigned to messages that do not have
an explicit facility encoded.

LogOption Specifies a bit field that indicates logging options. The values of LogOption are:

LOG_CONS
Sends messages to the console if unable to send them to the syslogd command.
This option is useful in daemon processes that have no controlling terminal.

LOG_NDELAY
Opens the connection to the syslogd command immediately, instead of when the
first message is logged. This option is useful for programs that need to manage the
order in which file descriptors are allocated.

LOG_NOWAIT
Logs messages to the console without waiting for forked children. Use this option for
processes that enable notification of child termination through SIGCHLD; otherwise,
the syslog subroutine may block, waiting for a child process whose exit status has
already been collected.

LOG_ODELAY
Delays opening until the syslog subroutine is called.

LOG_PID
Logs the process ID with each message. This option is useful for identifying
daemons.

Facility Specifies which of the following values generated the message:

LOG_AUTH
Indicates the security authorization system: the login command, the su command,
and so on.

LOG_DAEMON
Logs system daemons.

LOG_KERN
Logs messages generated by the kernel. Kernel processes should use the bsdlog
routine to generate syslog messages. The syntax of bsdlog is identical to syslog.
The bsdlog messages can only be created by kernel processes and must be of
LOG_KERN priority.

LOG_LPR
Logs the line printer spooling system.

LOG_LOCAL0 through LOG_LOCAL7
Reserved for local use.

LOG_MAIL
Logs the mail system.

LOG_NEWS
Logs the news subsystem.

LOG_RFS
Logs the remote file systems (Andrew File System and RVD).

LOG_UUCP
Logs the UUCP subsystem.

LOG_USER
Logs messages generated by user processes. This is the default facility when none
is specified.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 303

Priority Specifies the part of the system generating the message, and as a level, indicates the
severity of the message. The level of severity is selected from the following list:

LOG_ALERT
Indicates a condition that should be corrected immediately; for example, a corrupted
database.

LOG_CRIT
Indicates critical conditions; for example, hard device errors.

LOG_DEBUG
Displays messages containing information useful to debug a program.

LOG_EMERG
Indicates a panic condition reported to all users; system is unusable.

LOG_ERR
Indicated error conditions.

LOG_INFO
Indicates general information messages.

LOG_NOTICE
Indicates a condition requiring special handling, but not an error condition.

LOG_WARNING
Logs warning messages.

MaskPriority Enables logging for the levels indicated by the bits in the mask that are set and disabled
where the bits are not set. The default mask allows all priorities to be logged.

Value Specifies the values given in the Value parameters and follows the the same syntax as the
printf subroutine Format parameter.

Examples
1. To log an error message concerning a possible security breach, such as the following, enter:

syslog (LOG_ALERT, "who:internal error 23");

2. To initialize the log file, set the log priority mask, and log an error message, enter:
openlog ("ftpd", LOG_PID, LOG_DAEMON);
setlogmask (LOG_UPTO (LOG_ERR));
syslog (LOG_INFO);

3. To log an error message from the system, enter:
syslog (LOG_INFO | LOG_LOCAL2, "foobar error: %m");

Implementation Specifics
These subroutines are part of the operating system.

Related Information
The profil subroutine.

The prof command.

The syslogd daemon.

_end, _etext, or edata identifiers.

Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

304 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/printf.htm#HDRA8ZED0GACO
../../libs/basetrf1/profil.htm#HDRSI5260MJPA
../../cmds/aixcmds4/prof.htm#HDRA09496A1
../../cmds/aixcmds5/syslogd.htm#HDRA262B9C4
../../libs/basetrf1/_end.htm#HDRA09098AD
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

syslog_r, openlog_r, closelog_r, or setlogmask_r Subroutine

Purpose
Controls the system log.

Library
Standard C Library (libc.a)

Syntax
#include <syslog.h>

int syslog_r (Priority, SysLogData, Format, . . .)
int Priority;
struct syslog_data * SysLogData;
const char * Format;

int openlog_r (ID, LogOption, Facility, SysLogData)
const char * ID;
int LogOption;
int Facility;

struct syslog_data *SysLogData;
void closelog_r (SysLogData)
struct syslog_data *SysLogData;

int setlogmask_r (MaskPriority, SysLogData)
int MaskPriority;
struct syslog_data *SysLogData;

Description
The syslog_r subroutine writes messages onto the system log maintained by the syslogd daemon.

The messages are similar to the Format parameter in the printf subroutine, except that the %m field is
replaced by the current error message obtained from the errno global variable. A trailing new-line
character can be added to the message if needed.

Messages are read by the syslogd daemon and written to the system console or log file, or forwarded to
the syslogd daemon on the appropriate host.

If a program requires special processing, you can use the openlog_r subroutine to initialize the log file.

The syslog_r subroutine takes as a second parameter a variable of the type struct syslog_data, which
should be provided by the caller. When that variable is declared, it should be set to the
SYSLOG_DATA_INIT value, which specifies an initialization macro defined in the sys/syslog.h file.
Without initialization, the data structure used to support the thread safety is not set up and the syslog_r
subroutine does not work properly.

Messages are tagged with codes indicating the type of Priority for each. A Priority is encoded as a Facility,
which describes the part of the system generating the message, and as a level, which indicates the
severity of the message.

If the syslog_r subroutine cannot pass the message to the syslogd daemon, it writes the message the
/dev/console file, provided the LOG_CONS option is set.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 305

../../cmds/aixcmds5/syslogd.htm#HDRA262B9C4
../../libs/basetrf1/printf.htm#HDRA8ZED0GACO

The closelog_r subroutine closes the log file.

The setlogmask_r subroutine uses the bit mask in the MaskPriority parameter to set the new log priority
mask and returns the previous mask.

The LOG_MASK and LOG_UPTO macros in the sys/syslog.h file are used to create the priority mask.
Calls to the syslog_r subroutine with a priority mask that does not allow logging of that particular level of
message causes the subroutine to return without logging the message.

Parameters

Priority Specifies the part of the system generating the message and indicates the level of severity of
the message. The level of severity is selected from the following list:

v A condition that should be corrected immediately, such as a corrupted database.

v A critical condition, such as hard device errors.

v A message containing information useful to debug a program.

v A panic condition reported to all users, such as an unusable system.

v An error condition.

v A general information message.

v A condition requiring special handling, other than an error condition.

v A warning message.
SysLogData Specifies a structure that contains the following information:

v The file descriptor for the log file.

v The status bits for the log file.

v A string for tagging the log entry.

v The mask of priorities to be logged.

v The default facility code.

v The address of the local logger.
Format Specifies the format, given in the same format as for the printf subroutine.
ID Contains a string attached to the beginning of every message. The Facility parameter

encodes a default facility from the previous list to be assigned to messages that do not have
an explicit facility encoded.

LogOption Specifies a bit field that indicates logging options. The values of LogOption are:

LOG_CONS
Sends messages to the console if unable to send them to the syslogd command.
This option is useful in daemon processes that have no controlling terminal.

LOG_NDELAY
Opens the connection to the syslogd command immediately, instead of when the
first message is logged. This option is useful for programs that need to manage the
order in which file descriptors are allocated.

LOG_NOWAIT
Logs messages to the console without waiting for forked children. Use this option for
processes that enable notification of child termination through SIGCHLD; otherwise,
the syslog subroutine may block, waiting for a child process whose exit status has
already been collected.

LOG_ODELAY
Delays opening until the syslog subroutine is called.

LOG_PID
Logs the process ID with each message. This option is useful for identifying
daemons.

306 Technical Reference, Volume 2: Base Operating System and Extensions

Facility Specifies which of the following values generated the message:

LOG_AUTH
Indicates the security authorization system: the login command, the su command,
and so on.

LOG_DAEMON
Logs system daemons.

LOG_KERN
Logs messages generated by the kernel. Kernel processes should use the bsdlog
routine to generate syslog messages. The syntax of bsdlog is identical to syslog.
The bsdlog messages can only be created by kernel processes and must be of
LOG_KERN priority.

LOG_LPR
Logs the line printer spooling system.

LOG_LOCAL0 through LOG_LOCAL7
Reserved for local use.

LOG_MAIL
Logs the mail system.

LOG_NEWS
Logs the news subsystem.

LOG_RFS
Logs the remote file systems (Andrew File System and RVD).

LOG_UUCP
Logs the UUCP subsystem.

LOG_USER
Logs messages generated by user processes. This is the default facility when none
is specified.

v Remote file systems, such as the Andrew File System (AFS).

v The UUCP subsystem.

v Messages generated by user processes. This is the default facility when none is
specified.

MaskPriority Enables logging for the levels indicated by the bits in the mask that are set, and disables
logging where the bits are not set. The default mask allows all priorities to be logged.

Return Values

0 Indicates that the subroutine was successful.
-1 Indicates that the subroutine was not successful.

Examples
1. To log an error message concerning a possible security breach, enter:

syslog_r (LOG_ALERT, syslog_data_struct, "%s", "who:internal error 23");

2. To initialize the log file, set the log priority mask, and log an error message, enter:
openlog_r ("ftpd", LOG_PID, LOG_DAEMON, syslog_data_struct);
setlogmask_r (LOG_UPTO (LOG_ERR), syslog_data_struct);
syslog_r (LOG_INFO, syslog_data_struct, "");

3. To log an error message from the system, enter:
syslog_r (LOG_INFO | LOG_LOCAL2, syslog_data_struct, "system error: %m");

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 307

Implementation Specifics
These subroutines are part of the operating system.

Programs using this subroutine must link to the libpthreads.a library.

Related Information
The prof command.

The syslogd daemon.

The printf, fprintf, sprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf subroutine.

Subroutines Overview and List of Multithread Subroutines in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

sys_parm Subroutine

Purpose
Provides a service for examining or setting kernel run-time tunable parameters.

Library
Standard C Library (libc.a)

Syntax
#include <sys/types.h>
#include <sys/var.h>

int sys_parm (cmd, parmflag, parmp)
int cmd;
int parmflag;
struct vario *parmp;

Description
The sys_parm subroutine is used to query and/or customize run-time operating system parameters.

Note: This is a replacement service for sysconfig with respect to querying or changing information in
the var structure.

The sys_parm subroutine:

v Works on both 32 bit and 64 bit platforms

v Requires appropriate privilege for its use.

The following operations are supported:

SYSP_GET Returns a structure containing the current value of the
specified run-time parameter found in the var structure.

SYSP_SET Sets the value of the specfied run-time parameter.

The run-time parameters that can be returned or set are found in the var structure as defined in var.h

308 Technical Reference, Volume 2: Base Operating System and Extensions

../../cmds/aixcmds4/prof.htm#HDRA09496A1
../../cmds/aixcmds5/syslogd.htm#HDRA262B9C4
../../libs/basetrf1/printf.htm#HDRA8ZED0GACO
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/ls_multi-thread.htm

Parameters

cmd Specifies the SYSP_GET or SYSP_SET function.
parmflag Specifies the parameter upon which the function will act.
parmp Points to the user specified structure from which or to

which the system parameter value is copied. parmp points
to a structure of type vario as defined in var.h.

The vario structure is an abstraction of the various fields in the var structure for which each field is size
invariant. The size of the data does not depend on the execution environment of the kernel being 32 or 64
bit or the calling application being 32 or 64 bit.

Examples
1. To examine the value of v.v_iostrun (collect disk usage statistics).

#include <sys/var.h>
#include <stdio.h>
struct vario myvar;
rc=sys_parm(SYSP_GET,SYSP_V_IOSTRUN,);
if(rc==0)

printf("v.v_iostrun is set to %d\n",myvar.v.v_iostrun.value);

2. To change the value of v.v_iostrun (collect disk usage statistics).
#include <sys/var.h>
#include <stdio.h>
struct vario myvar;
myvar.v.v_iostrun.value=0; /* initialize to false */
rc=sys_parm(SYSP_SET,SYSP_V_IOSTRUN,);
if(rc==0)

printf("disk usage statistics are not being collected\n");

Other parameters may be examined or set by changing the parmflag parameter.

Return Values
These operations return a value of 0 upon succesful completion of the subroutine. Otherwise or a value of
-1 is returned and the errno global variable is set to indicate the error.

Error Codes

EACCES The calling process does not have the required privilege.
EINVAL One of the following is true:

v The command is neither SYSP_GET nor SYSP_SET

v parmflag is out of range of parameters defined in var.h

v The value specified in the parmp parameter is not a
valid value for the field indicated by the parmflag
parameter.

EFAULT An invalid address was specified by the parmp parameter.

File

sys/var.h Contains structure definitions.

Related Information
The SYS_GETPARMS (“SYS_GETPARMS sysconfig Operation” on page 290) sysconfig Operation, and
SYS_SETPARMS (“SYS_SETPARMS sysconfig Operation” on page 299) sysconfig Operation

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 309

system Subroutine

Purpose
Runs a shell command.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int system (String)
const char *String;

Description
The system subroutine passes the String parameter to the sh command as input. Then the sh command
interprets the String parameter as a command and runs it.

The system subroutine calls the fork subroutine to create a child process that in turn uses the exec l
subroutine to run the /usr/bin/sh command, which interprets the shell command contained in the String
parameter. When invoked on the Trusted Path, the system subroutine runs the Trusted Path shell
(/usr/bin/tsh). The current process waits until the shell has completed, then returns the exit status of the
shell. The exit status of the shell is returned in the same manner as a call to the wait or waitpid
subroutine, using the structures in the sys/wait.h file.

The system subroutine ignores the SIGINT and SIGQUIT signals, and blocks the SIGCHILD signal while
waiting for the command specified by the String parameter to terminate. If this might cause the application
to miss a signal that would have killed it, the application should use the value returned by the system
subroutine to take the appropriate action if the command terminated due to receipt of a signal. The
system subroutine does not affect the termination status of any child of the calling process unless that
process was created by the system subroutine. The system subroutine does not return until the child
process has terminated.

Parameters

String Specifies a valid sh shell command.

Note: The system subroutine runs only sh shell commands. The results are unpredictable if the
String parameter is not a valid sh shell command.

Return Values
Upon successful completion, the system subroutine returns the exit status of the shell. The exit status of
the shell is returned in the same manner as a call to the wait or waitpid subroutine, using the structures
in the sys/wait.h file.

If the String parameter is a null pointer and a command processor is available, the system subroutine
returns a nonzero value. If the fork subroutine fails or if the exit status of the shell cannot be obtained, the
system subroutine returns a value of -1. If the exec l subroutine fails, the system subroutine returns a
value of 127. In all cases, the errno global variable is set to indicate the error.

310 Technical Reference, Volume 2: Base Operating System and Extensions

Error Codes
The system subroutine fails if any of the following are true:

EAGAIN The system-imposed limit on the total number of running processes, either systemwide or by a single
user ID, was exceeded.

EINTR The system subroutine was interrupted by a signal that was caught before the requested process was
started. The EINTR error code will never be returned after the requested process has begun.

ENOMEM Insufficient storage space is available.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The execl subroutine, exit subroutine, fork subroutine, pipe subroutine, wait (“wait, waitpid, wait3, or
wait364 Subroutine” on page 385) subroutine, waitpid (“wait, waitpid, wait3, or wait364 Subroutine” on
page 385) subroutine.

The sh command.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

tcb Subroutine

Purpose
Alters the Trusted Computing Base (TCB) status of a file.

Library
Security Library (libc.a)

Syntax
#include <sys/tcb.h>

int tcb (Path, Flag)
char *Path;
int Flag;

Description
The tcb subroutine provides a mechanism to query or set the TCB attributes of a file.

This subroutine is not safe for use with multiple threads. To call this subroutine from a threaded
application, enclose the call with the _libs_rmutex lock. See ″Making a Subroutine Safe for Multiple
Threads″ in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs for
more information about this lock.

Parameters

Path Specifies the path name of the file whose TCB status is to be changed.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 311

../../libs/basetrf1/exec.htm#HDRPDR80GACO
../../libs/basetrf1/exit.htm#HDRA087913E7
../../libs/basetrf1/fork.htm#HDRA4F011D
../../libs/basetrf1/pipe.htm#HDRS381F0GACO
../../cmds/aixcmds5/sh.htm#HDRA66F011A
../../aixprggd/genprogc/ls_sec_audit_subrs.htm#HDRLWURF19CJEFF
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

Flag Specifies the function to be performed. Valid values are defined in the sys/tcb.h file and include the
following:

TCB_ON
Enables the TCB attribute of a file.

TCB_OFF
Disables the Trusted Process and TCB attributes of a file.

TCB_QUERY
Queries the TCB status of a file. This function returns one of the preceding values.

Return Values
Upon successful completion, the tcb subroutine returns a value of 0 if the Flags parameter is either
TCB_ON or TCB_OFF. If the Flags parameter is TCB_QUERY, the current status is returned. If the tcb
subroutine fails, a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The tcb subroutine fails if one of the following is true:

EINVAL The Flags parameter is not one of TCB_ON, TCB_OFF, or TCB_QUERY.
EPERM Not authorized to perform this operation.
ENOENT The file specified by the Path parameter does not exist.
EROFS The file system is read-only.
EBUSY The file specified by the Path parameter is currently open for writing.
EACCES Access permission is denied for the file specified by the Path parameter.

Security
Access Control: The calling process must have search permission for the object named by the Path
parameter. Only the root user can set the tcb attributes of a file.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The chmod or fchmod subroutine, statx, stat, lstat, fstatx, fstat, fullstat, or ffullstat (“statx, stat, lstat,
fstatx, fstat, fullstat, ffullstat, stat64, lstat64, or fstat64 Subroutine” on page 251) subroutine.

The chmod command.

List of Security and Auditing Subroutines, Subroutines Overview in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

tcdrain Subroutine

Purpose
Waits for output to complete.

Library
Standard C Library (libc.a)

312 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/chmod.htm#HDRJK52A0GACO
../../cmds/aixcmds1/chmod.htm#HDRKZF1F0CRAW
../../aixprggd/genprogc/ls_sec_audit_subrs.htm#HDRLWURF19CJEFF
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

Syntax
#include <termios.h>

int tcdrain(FileDescriptor)
int FileDescriptor;

Description
The tcdrain subroutine waits until all output written to the object referred to by the FileDescriptor
parameter has been transmitted.

Parameter

FileDescriptor Specifies an open file descriptor.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The tcdrain subroutine is unsuccessful if one of the following is true:

EBADF The FileDescriptor parameter does not specify a valid file descriptor.
EINTR A signal interrupted the tcdrain subroutine.
EIO The process group of the writing process is orphaned, and the writing process does not ignore or block

the SIGTTOU signal.
ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Example
To wait until all output has been transmitted, enter:
rc = tcdrain(stdout);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The tcflow (“tcflow Subroutine”) subroutine, tcflush (“tcflush Subroutine” on page 315) subroutine,
tcsendbreak (“tcsendbreak Subroutine” on page 318) subroutine.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

tcflow Subroutine

Purpose
Performs flow control functions.

Library
Standard C Library (libc.a)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 313

../../aixprggd/genprogc/io_handling.htm#HDRA9E740A1626CAND

Syntax
#include <termios.h>

int tcflow(FileDescriptor, Action)
int FileDescriptor;
int Action;

Description
The tcflow subroutine suspends transmission or reception of data on the object referred to by the
FileDescriptor parameter, depending on the value of the Action parameter.

Parameters

FileDescriptor Specifies an open file descriptor.
Action Specifies one of the following:

TCOOFF
Suspend output.

TCOON
Restart suspended output.

TCIOFF
Transmit a STOP character, which is intended to cause the terminal device to
stop transmitting data to the system. See the description of IXOFF in the Input
Modes section of the termios.h file.

TCION Transmit a START character, which is intended to cause the terminal device to
start transmitting data to the system. See the description of IXOFF in the Input
Modes section of the termios.h file.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The tcflow subroutine is unsuccessful if one of the following is true:

EBADF The FileDescriptor parameter does not specify a valid file descriptor.
EINVAL The Action parameter does not specify a proper value.
EIO The process group of the writing process is orphaned, and the writing process does not ignore or block

the SIGTTOU signal.
ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Example
To restart output from a terminal device, enter:
rc = tcflow(stdout, TCION);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The tcdrain (“tcdrain Subroutine” on page 312) subroutine, tcflush (“tcflush Subroutine” on page 315)
subroutine, tcsendbreak (“tcsendbreak Subroutine” on page 318) subroutine.

314 Technical Reference, Volume 2: Base Operating System and Extensions

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

tcflush Subroutine

Purpose
Discards data from the specified queue.

Library
Standard C Library (libc.a)

Syntax
#include <termios.h>

int tcflush(FileDescriptor, QueueSelector)
int FileDescriptor;
int QueueSelector;

Description
The tcflush subroutine discards any data written to the object referred to by the FileDescriptor parameter,
or data received but not read by the object referred to by FileDescriptor, depending on the value of the
QueueSelector parameter.

Parameters

FileDescriptor Specifies an open file descriptor.
QueueSelector Specifies one of the following:

TCIFLUSH
Flush data received but not read.

TCOFLUSH
Flush data written but not transmitted.

TCIOFLUSH
Flush both of the following:

v Data received but not read

v Data written but not transmitted

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The tcflush subroutine is unsuccessful if one of the following is true:

EBADF The FileDescriptor parameter does not specify a valid file descriptor.
EINVAL The QueueSelector parameter does not specify a proper value.
EIO The process group of the writing process is orphaned, and the writing process does not ignore or block

the SIGTTOU signal.
ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 315

../../aixprggd/genprogc/io_handling.htm#HDRA9E740A1626CAND

Example
To flush the output queue, enter:
rc = tcflush(2, TCOFLUSH);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The tcdrain (“tcdrain Subroutine” on page 312) subroutine, tcflow (“tcflow Subroutine” on page 313)
subroutine, tcsendbreak (“tcsendbreak Subroutine” on page 318) subroutine.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

tcgetattr Subroutine

Purpose
Gets terminal state.

Library
Standard C Library (libc.a)

Syntax
#include <termios.h>

int tcgetattr (FileDescriptor, TermiosPointer)
int FileDescriptor;
struct termios *TermiosPointer;

Description
The tcgetattr subroutine gets the parameters associated with the object referred to by the FileDescriptor
parameter and stores them in the termios structure referenced by the TermiosPointer parameter. This
subroutine is allowed from a background process; however, the terminal attributes may subsequently be
changed by a foreground process.

Whether or not the terminal device supports differing input and output baud rates, the baud rates stored in
the termios structure returned by the tcgetattr subroutine reflect the actual baud rates, even if they are
equal.

Note: If differing baud rates are not supported, returning a value of 0 as the input baud rate is
obsolete.

Parameters

FileDescriptor Specifies an open file descriptor.
TermiosPointer Points to a termios structure.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

316 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/io_handling.htm#HDRA9E740A1626CAND
../../files/aixfiles/termios.h.htm#HDRA2839B1D

Error Codes
The tcgetattr subroutine is unsuccessful if one of the following is true:

EBADF The FileDescriptor parameter does not specify a valid file descriptor.
ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Examples
To get the current terminal state information, enter:
rc = tcgetattr(stdout, &my_termios);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The tcsetattr (“tcsetattr Subroutine” on page 319) subroutine.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

tcgetpgrp Subroutine

Purpose
Gets foreground process group ID.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

pid_t tcgetpgrp (FileDescriptor)
int FileDescriptor;

Description
The tcgetpgrp subroutine returns the value of the process group ID of the foreground process group
associated with the terminal. The function can be called from a background process; however, the
foreground process can subsequently change the information.

Parameters

FileDescriptor Indicates the open file descriptor for the terminal special file.

Return Values
Upon successful completion, the process group ID of the foreground process is returned. If there is no
foreground process group, a value greater than 1 that does not match the process group ID of any existing
process group is returned. Otherwise, a value of -1 is returned and the errno global variable is set to
indicate the error.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 317

../../aixprggd/genprogc/io_handling.htm#HDRA9E740A1626CAND

Error Codes
The tcgetpgrp subroutine is unsuccessful if one of the following is true:

EBADF The FileDescriptor argument is not a valid file descriptor.
EINVAL The function is not appropriate for the file associated with the FileDescriptor argument.
ENOTTY The calling process does not have a controlling terminal or the file is not the controlling terminal.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The setpgid (“setpgid or setpgrp Subroutine” on page 117) subroutine, setsid (“setsid Subroutine” on
page 122) subroutine, tcsetpgrp (“tcsetpgrp Subroutine” on page 321) subroutine.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

tcsendbreak Subroutine

Purpose
Sends a break on an asynchronous serial data line.

Library
Standard C Library (libc.a)

Syntax
#include <termios.h>

int tcsendbreak(FileDescriptor, Duration)
int FileDescriptor;
int Duration;

Description
If the terminal is using asynchronous serial data transmission, the tcsendbreak subroutine causes
transmission of a continuous stream of zero-valued bits for a specific duration.

If the terminal is not using asynchronous serial data transmission, the tcsendbreak subroutine returns
without taking any action.

Parameters

FileDescriptor Specifies an open file descriptor.
Duration Specifies the number of milliseconds that zero-valued bits are transmitted. If the value of

the Duration parameter is 0, it causes transmission of zero-valued bits for at least 250
milliseconds and not longer than 500 milliseconds. If Duration is not 0, it sends
zero-valued bits for Duration milliseconds.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

318 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/io_handling.htm#HDRA9E740A1626CAND

Error Codes
The tcsendbreak subroutine is unsuccessful if one or both of the following are true:

EBADF The FileDescriptor parameter does not specify a valid open file descriptor.
EIO The process group of the writing process is orphaned, and the writing process does not ignore or block

the SIGTTOU signal.
ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Examples
1. To send a break condition for 500 milliseconds, enter:

rc = tcsendbreak(stdout,500);

2. To send a break condition for 25 milliseconds, enter:
rc = tcsendbreak(1,25);

This could also be performed using the default Duration by entering:
rc = tcsendbreak(1, 0);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Pseudo-terminals and LFT do not generate a break condition. They return without taking any action.

Related Information
The tcdrain (“tcdrain Subroutine” on page 312) subroutine, tcflow (“tcflow Subroutine” on page 313)
subroutine, tcflush (“tcflush Subroutine” on page 315) subroutine.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

tcsetattr Subroutine

Purpose
Sets terminal state.

Library
Standard C Library (libc.a)

Syntax
#include <termios.h>

int tcsetattr (FileDescriptor, OptionalActions, TermiosPointer)
int FileDescriptor, OptionalActions;
const struct termios * TermiosPointer;

Description
The tcsetattr subroutine sets the parameters associated with the object referred to by the FileDescriptor
parameter (unless support required from the underlying hardware is unavailable), from the termios
structure referenced by the TermiosPointer parameter.

The value of the OptionalActions parameter determines how the tcsetattr subroutine is handled.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 319

../../aixprggd/genprogc/io_handling.htm#HDRA9E740A1626CAND

The 0 baud rate (B0) is used to terminate the connection. If B0 is specified as the output baud rate when
the tcsetattr subroutine is called, the modem control lines are no longer asserted. Normally, this
disconnects the line.

Using 0 as the input baud rate in the termios structure to cause tcsetattr to change the input baud rate to
the same value as that specified by the value of the output baud rate, is obsolete.

If an attempt is made using the tcsetattr subroutine to set:

v An unsupported baud rate

v Baud rates, such that the input and output baud rates differ and the hardware does not support that
combination

v Other features not supported by the hardware

but the tcsetattr subroutine is able to perform some of the requested actions, then the subroutine returns
successfully, having set all supported attributes and leaving the above unsupported attributes unchanged.

If no part of the request can be honored, the tcsetattr subroutine returns a value of -1 and the errno
global variable is set to EINVAL.

If the input and output baud rates differ and are a combination that is not supported, neither baud rate is
changed. A subsequent call to the tcgetattr subroutine returns the actual state of the terminal device
(reflecting both the changes made and not made in the previous tcsetattr call). The tcsetattr subroutine
does not change the values in the termios structure whether or not it actually accepts them.

If the tcsetattr subroutine is called by a process which is a member of a background process group on a
FileDescriptor associated with its controlling terminal, a SIGTTOU signal is sent to the background process
group. If the calling process is blocking or ignoring SIGTTOU signals, the process performs the operation
and no signal is sent.

Parameters

FileDescriptor Specifies an open file descriptor.
OptionalActions Specifies one of the following values:

TCSANOW
The change occurs immediately.

TCSADRAIN
The change occurs after all output written to the object referred to by
FileDescriptor has been transmitted. This function should be used when
changing parameters that affect output.

TCSAFLUSH
The change occurs after all output written to the object referred to by
FileDescriptor has been transmitted. All input that has been received but not
read is discarded before the change is made.

TermiosPointer Points to a termios structure.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
The tcsetattr subroutine is unsuccessful if one of the following is true:

EBADF The FileDescriptor parameter does not specify a valid file descriptor.

320 Technical Reference, Volume 2: Base Operating System and Extensions

EINTR A signal interrupted the tcsetattr subroutine.
EINVAL The OptionalActions argument is not a proper value, or an attempt was made to change an attribute

represented in the termios structure to an unsupported value.
EIO The process group of the writing process is orphaned, and the writing process does not ignore or block

the SIGTTOU signal.
ENOTTY The file associated with the FileDescriptor parameter is not a terminal.

Example
To set the terminal state after the current output completes, enter:
rc = tcsetattr(stdout, TCSADRAIN, &my_termios);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The cfgetispeed subroutine, tcgetattr (“tcgetattr Subroutine” on page 316) subroutine.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

tcsetpgrp Subroutine

Purpose
Sets foreground process group ID.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int tcsetpgrp (FileDescriptor, ProcessGroupID)
int FileDescriptor;
pid_t ProcessGroupID;

Description
If the process has a controlling terminal, the tcsetpgrp subroutine sets the foreground process group ID
associated with the terminal to the value of the ProcessGroupID parameter. The file associated with the
FileDescriptor parameter must be the controlling terminal of the calling process, and the controlling
terminal must be currently associated with the session of the calling process. The value of the
ProcessGroupID parameter must match a process group ID of a process in the same session as the
calling process.

Parameters

FileDescriptor Specifies an open file descriptor.
ProcessGroupID Specifies the process group identifier.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 321

../../libs/basetrf1/cfgetospeed.htm#HDRA17F016D
../../aixprggd/genprogc/io_handling.htm#HDRA9E740A1626CAND

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Error Codes
This function is unsuccessful if one of the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor.
EINVAL The ProcessGroupID parameter is invalid.
ENOTTY The calling process does not have a controlling terminal, or the file is not the controlling terminal, or the

controlling terminal is no longer associated with the session of the calling process.
EPERM The ProcessGroupID parameter is valid, but does not match the process group ID of a process in the

same session as the calling process.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The tcgetpgrp (“tcgetpgrp Subroutine” on page 317) subroutine.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

termdef Subroutine

Purpose
Queries terminal characteristics.

Library
Standard C Library (libc.a)

Syntax
char *termdef (FileDescriptor, Characteristic)
int FileDescriptor;
char Characteristic;

Description
The termdef subroutine returns a pointer to a null-terminated, static character string that contains the
value of a characteristic defined for the terminal specified by the FileDescriptor parameter.

Asynchronous Terminal Support
Shell profiles usually set the TERM environment variable each time you log in. The stty command allows
you to change the lines and columns (by using the lines and cols options). This is preferred over changing
the LINES and COLUMNS environment variables, since the termdef subroutine examines the
environment variables last. You consider setting LINES and COLUMNS environment variables if:

v You are using an asynchronous terminal and want to override the lines and cols setting in the terminfo
database
OR

322 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/io_handling.htm#HDRA9E740A1626CAND
../../cmds/aixcmds5/stty.htm#HDRA471320ROLL

v Your asynchronous terminal has an unusual number of lines or columns and you are running an
application that uses the termdef subroutine but not an application which uses the terminfo database
(for example, curses).

This is because the curses initialization subroutine, setupterm (“setupterm Subroutine” on page 568),
calls the termdef subroutine to determine the number of lines and columns on the display. If the
termdef subroutine cannot supply this information, the setupterm subroutine uses the values in the
terminfo database.

Parameters

FileDescriptor Specifies an open file descriptor.
Characteristic Specifies the characteristic that is to be queried. The following values can be specified:

c Causes the termdef subroutine to query for the number of ″columns″ for the
terminal. This is determined by performing the following actions:

1. It requests a copy of the terminal’s winsize structure by issuing the
TIOCGWINSZ ioctl. If ws_col is not 0, the ws_col value is used.

2. If the TIOCGWINSZ ioctl is unsuccessful or if ws_col is 0, the termdef
subroutine attempts to use the value of the COLUMNS environment variable.

3. If the COLUMNS environment variable is not set, the termdef subroutine
returns a pointer to a null string.

l Causes the termdef subroutine to query for the number of ″lines″ (or rows) for
the terminal. This is determined by performing the following actions:

1. It requests a copy of the terminal’s winsize structure by issuing the
TIOCGWINSZ ioctl. If ws_row is not 0, the ws_row value is used.

2. If the TIOCGWINSZ ioctl is unsuccessful or if ws_row is 0, the termdef
subroutine attempts to use the value of the LINES environment variable.

3. If the LINES environment variable is not set, the termdef subroutine returns
a pointer to a null string.

Characters other than c or l
Cause the termdef subroutine to query for the ″terminal type″ of the terminal.
This is determined by performing the following actions:

1. The termdef subroutine attempts to use the value of the TERM environment
variable.

2. If the TERM environment variable is not set, the termdef subroutine returns
a pointer to string set to ″dumb″.

Examples
1. To display the terminal type of the standard input device, enter:

printf("%s\n", termdef(0, 't'));

2. To display the current lines and columns of the standard output device, enter:
printf("lines\tcolumns\n%s\t%s\n", termdef(2, 'l'),

termdef(2, 'c'));

Note: If the termdef subroutine is unable to determine a value for lines or columns, it returns
pointers to null strings.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 323

../../aixprggd/genprogc/ttysys.htm#HDRA337F9470

Related Information
The setupterm (“setupterm Subroutine” on page 568) subroutine.

The stty command.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

timezone Subroutine

Attention: Do not use the tzset subroutine, from libc.a, when linkning libc.a libbsd.a. The tzset
subroutine uses the global external variable timezone which conflicts with the timezone subroutine in
libbsd.a. This name collision can cause unpredictable results.

Purpose
Returns the name of the timezone associated with the first arguement.

Library
Berkeley compatability library (libbsd.a) (for timezone only)

Syntax
#include <time.h>
char *timezone(zone, dst)
int zone;
int dst;

#include <time.h>
#include <limits.h>
int zone;
int dst;
char czone[TZNAME_MAX+1];

Description
The timezone subroutine returns the name of the timezone associated with the first argument which is
measured in minutes westward frow Greenwich. If the environment variable TZ is set, the first argument is
ignored and the current timezone is calculated from the value of TZ. If the second argument is 0, the
standard name is returned otherwise the Daylight Saving Time name is returned. If TZ is not set, then the
internal table is searched for a matching timezone. If the timezone does not appear in the built in table
then difference from GMT is produced.

Timezone returns a pointer to static data that will be overwritten by subsequent calls.

Parameters

zone Specifies minutes westward from Greenwich.
dst Specifies whether to return Standard time or Daylight Savings time.
czone Specifies a buffer of size TZNAME_MAX+1, that the result is placed in.

Return Values
timezone returns a pointer to static data that contains the name of the timezone.

Errors
There are no errors defined.

324 Technical Reference, Volume 2: Base Operating System and Extensions

../../cmds/aixcmds5/stty.htm#HDRA471320ROLL
../../aixprggd/genprogc/io_handling.htm#HDRA9E740A1626CAND

Implementations Specifics
These subroutines are part of Base Operation System (BOS) Runtime.

Related Information
Subroutines Overview

List of Multi-threaded Programming Subroutines

thread_post Subroutine

Purpose
Posts a thread of an event completion.

Library
Standard C library (libc.a)

Syntax
#include <sys/thread.h>

int thread_post(tid)
tid_t tid;

Description
The thread_post subroutine posts the thread whose thread ID is indicated by the value of the tid
parameter, of the occurrence of an event. If the posted thread is waiting in thread_wait, it will be
awakened immediately. If it not waiting in thread_wait, the next call to thread_wait does not block but
returns with success immediately.

Multiple posts to the same thread without an intervening wait by the specified thread will only count as a
single post. The posting remains in effect until the indicated thread calls the thread_wait subroutine upon
which the posting gets cleared.

The thread_wait and the thread_post subroutine can be used by applications to implement a fast IPC
mechanism between threads in different processes.

Parameters

tid Specifies the thread ID of the thread to be posted.

Return Values
On successful completion, the thread_post subroutine returns a value of 0. If unsuccessful, a value of -1
is returned and the global variable errno is set to indicate the error.

Error Codes

ESRCH This indicated thread is non-existent or the thread has
exited or is exiting.

EPERM The real or effective user ID does not match the real or
effective user ID of the thread being posted, or else the
calling process does not have root user authority.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 325

../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/ls_multi-thread.htm

Related Information
The thread_wait (“thread_wait Subroutine” on page 329) subroutine, and thread_post_many
(“thread_post_many Subroutine”) subroutine.

thread_post_many Subroutine

Purpose
Posts one or more threads of an event completion.

Library
Standard C library (libc.a)

Syntax
#include <sys/thread.h>

int thread_post_many(nthreads, tidp, erridp)
int nthreads;
tid_t * tidp;
tid_t * erridp;

Description
The thread_post_many subroutine posts one or more threads of the occurrence of the event. The
number of threads to be posted is specified by the value of the nthreads parameter, while the tidp
parameter points to an array of thread IDs of threads that need to be posted. The subroutine works just
like the thread_post subroutine but can be used to post to multiple threads at the same time.

A maximum of 512 threads can be posted in one call to the thread_post_many subroutine.

An optional address to a thread ID field may be passed in the erridp parameter. This field is normally
ignored by the kernel unless the subroutine fails because the calling process has no permissions to post to
any one of the specified threads. In this case, the kernel posts all threads in the array pointed at by the
tidp parameter up to the first failing thread and fills the erridp parameter with the failing thread’s ID.

Parameters

nthreads Specifies the number of threads to be posted.
tidp Specifies the address of an array of thread IDs

corresponding to the list of threads to be posted.
erridp Either NULL or specifies the pointer to a thread ID

variable in which the kernel will return the thread ID of the
first failing thread when an errno of EPERM is set.

Return Values
On successful completion, the thread_post_many subroutine returns a value of 0. If unsuccessful, a value
of -1 is returned and the global variable errno is set to indicate the error.

Error Codes
The thread_post_many subroutine is unsuccessful when one of the following is true:

ESRCH None of the indicated threads are existent or they have all
exited or are exiting.

326 Technical Reference, Volume 2: Base Operating System and Extensions

EPERM The real or effective user ID does not match the real or
effective user ID of one or more threads being posted, or
else the calling process does not have root user authority.

EFAULT The tidp parameter points to a location outside of the
address space of the process.

EINVAL A negative value or a value greater than 512 was was
specified in the nthreads parameter.

Related Information
The thread_wait (“thread_wait Subroutine” on page 329) subroutine, and thread_post (“thread_post
Subroutine” on page 325) subroutine.

thread_self Subroutine

Purpose
Returns the caller’s kernel thread ID.

Library
Standard C library (libc.a)

Syntax
#include <sys/thread.h>

tid_t thread_self ()

Description
The thread_self subroutine returns the caller’s kernel thread ID. The kernel thread ID may be useful for
the bindprocessor and ptrace subroutines. The ps, trace, and vmstat commands also report kernel
thread IDs, thus this subroutine can be useful for debugging multi-threaded programs.

The kernel thread ID is unrelated with the thread ID used in the threads library (libpthreads.a) and
returned by the pthread_self subroutine.

Return Values
The thread_self subroutine returns the caller’s kernel thread ID.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Related Information
The bindprocessor subroutine, pthread_self subroutine, ptrace subroutine.

thread_setsched Subroutine

Purpose
Changes the scheduling policy and priority of a kernel thread.

Library
Standard C library (libc.a)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 327

../../libs/basetrf1/bindprocessor.htm#HDRQTKXI49THOM
../../libs/basetrf1/pthread_self.htm#HDRR3IVH17CMANU
../../libs/basetrf1/ptrace.htm#HDRA2019BB0

Syntax
#include <sys/sched.h>
#include <sys/pri.h>
#include <sys/types.h>

int thread_setsched (tid, priority, policy)
tid_t tid;
int priority;
int policy;

Description
The thread_setsched subroutine changes the scheduling policy and priority of a kernel thread. User
threads (pthreads) have their own scheduling attributes that in some cases allow a pthread to execute on
top of multiple kernel threads. Therefore, if the policy or priority change is being granted on behalf of a
pthread, then the pthreads contention scope should be PTHREAD_SCOPE_SYSTEM.

Note: Caution must be exercised when using the thread_setsched subroutine, since improper use
may result in system hangs. See sys/pri.h for restrictions on thread priorities.

Parameters

tid Specifies the kernel thread ID of the thread whose priority and policy are to be changed.
priority Specifies the priority to use for this kernel thread. The priority parameter is ignored if the policy is

being set to SCHED_OTHER. The priority parameter must have a value in the range 0 to PRI_LOW.
PRI_LOW is defined in sys/pri.h. See sys/pri.h for more information on thread priorities.

policy Specifies the policy to use for this kernel thread. The policy parameter can be one of the following
values, which are defined in sys/sched.h:

SCHED_OTHER
Default operating system scheduling policy.

SCHED_FIFO
First in-first out scheduling policy.

SCHED_FIFO2
Allows a thread that sleeps for a relatively short amount of time to be requeued to the head,
rather than the tail, of its priority run queue.

SCHED_FIFO3
Causes threads to be enqueued to the head of their run queues.

SCHED_RR
Round-robin scheduling policy.

Return Values
Upon successful completion, the thread_setsched subroutine returns a value of zero. If the
thread_setsched subroutine is unsuccessful, a value of -1 is returned and the errno global variable is set
to indicate the error.

Error Codes
The thread_setsched subroutine is unsuccessful if one or more of the following is true:

ESRCH The kernel thread id tid is invalid.
EINVAL The policy or priority is invalid.
EPERM The caller does not have enough privilege to change the policy or priority.

328 Technical Reference, Volume 2: Base Operating System and Extensions

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

thread_wait Subroutine

Purpose
Suspends the thread until it receives a post or times out.

Library
Standard C library (libc.a)

Syntax
#include <sys/thread.h>

int thread_wait(timeout)
int timeout;

Description
The thread_wait subroutine allows a thread to wait or block until another thread posts it with the
thread_post or the thread_post_many subroutine or until the time limit specified by the timeout value
expires. It returns immediately if there is a pending post for this thread or if a timeout value of 0 is
specified.

If the event for which the thread is waiting and for which it will be posted will occur only in the future, the
thread_wait subroutine may be called with a timeout value of 0 to clear any pending posts.

The thread_wait and the thread_post subroutine can be used by applications to implement a fast IPC
mechanism between threads in different processes.

Parameters

timeout Specifies the maximum length of time, in milliseconds, to
wait for a posting. If the timeout parameter value is -1, the
thread_wait subroutine does not return until a posting
actually occurs. If the value of the timeout parameter is 0,
the thread_wait subroutine does not wait for a post to
occur but returns immediately, even if there are no
pending posts. For a non-privileged user, the minimum
timeout value is 10 msec and any value less than that is
automatically increased to 10 msec.

Return Values
On successful completion, the thread_wait subroutine returns a value of 0. The thread_wait subroutine
completes successfully if there was a pending post or if the calling thread was posted before the time limit
specified by the timeout parameter expires.

A return value of THREAD_WAIT_TIMEDOUT indicates that the thread_wait subroutine timed out.

If unsuccessful, a value of -1 is returned and the global variable errno is set to indicate the error.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 329

Error Codes
The thread_wait subroutine is unsuccessful when one of the following is true:

EINTR This subroutine was terminated by receipt of a signal.
ENOMEM There is not enough memory to allocate a timer

Related Information
The thread_post (“thread_post Subroutine” on page 325) subroutine, and thread_post_many
(“thread_post_many Subroutine” on page 326) subroutine.

tmpfile Subroutine

Purpose
Creates a temporary file.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>

FILE *tmpfile ()

Description
The tmpfile subroutine creates a temporary file and opens a corresponding stream. The file is opened for
update. The temporary file is automatically deleted when all references (links) to the file have been closed.

The stream refers to a file which has been unlinked. If the process ends in the period between file creation
and unlinking, a permanent file may remain.

Return Values
The tmpfile subroutine returns a pointer to the stream of the file that is created if the call is successful.
Otherwise, it returns a null pointer and sets the errno global variable to indicate the error.

Error Codes
The tmpfile subroutine fails if one of the following occurs:

EINTR A signal was caught during the tmpfile subroutine.
EMFILE The number of file descriptors currently open in the calling process is already equal to OPEN_MAX.
ENFILE The maximum allowable number of files is currently open in the system.
ENOSPEC The directory or file system which would contain the new file cannot be expanded.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The fopen, freopen, fdopen subroutines, mktemp subroutine, tmpnam or tempnam (“tmpnam or
tempnam Subroutine” on page 331) subroutine, unlink (“unlink Subroutine” on page 369) subroutine.

330 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/fopen.htm#HDRA0909963
../../libs/basetrf1/mktemp.htm#HDRLJ4E0SHAD

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

tmpnam or tempnam Subroutine

Purpose
Constructs the name for a temporary file.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>
char *tmpnam (String)
char *String;

char *tempnam (Directory, FileXPointer)
const char *Directory, *FileXPointer;

Description
Attention: The tmpnam and tempnam subroutines generate a different file name each time they are
called. If called more than 16,384 (TMP_MAX) times by a single process, these subroutines recycle
previously used names.

The tmpnam and the tempnam subroutines generate file names for temporary files. The tmpnam
subroutine generates a file name using the path name defined as P_tmpdir in the stdio.h file.

Files created using the tmpnam subroutine reside in a directory intended for temporary use. The file
names are unique. The application must create and remove the file.

The tempnam subroutine enables you to define the directory. The Directory parameter points to the name
of the directory in which the file is to be created. If the Directory parameter is a null pointer or points to a
string that is not a name for a directory, the path prefix defined as P_tmpdir in the stdio.h file is used. For
an application that has temporary files with initial letter sequences, use the FileXPointer parameter to
define the sequence. The FileXPointer parameter (a null pointer or a string of up to 5 bytes) is used as the
beginning of the file name.

Between the time a file name is created and the file is opened, another process can create a file with the
same name. Name duplication is unlikely if the other process uses these subroutines or the mktemp
subroutine, and if the file names are chosen to avoid duplication by other means.

Parameters

String Specifies the address of an array of at least the number of bytes specified by L_tmpnam, a
constant defined in the stdio.h file.

If the String parameter has a null value, the tmpnam subroutine places its result into an
internal static area and returns a pointer to that area. The next call to this subroutine destroys
the contents of the area.

If the String parameter’s value is not null, the tmpnam subroutine places its results into the
specified array and returns the value of the String parameter.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 331

../../aixprggd/genprogc/file_sys_dir.htm#HDRFVOWF292JUDY

Directory Points to the path name of the directory in which the file is to be created.

The tempnam subroutine controls the choice of a directory. If the Directory parameter is a
null pointer or points to a string that is not a path name for an appropriate directory, the path
name defined as P_tmpdir in the stdio.h file is used. If that path name is not accessible, the
/tmp directory is used. You can bypass the selection of a path name by providing an
environment variable, TMPDIR, in the user’s environment. The value of the TMPDIR
environment variable is a path name for the desired temporary-file directory.

FileXPointer A pointer to an initial character sequence with which the file name begins. The FileXPointer
parameter value can be a null pointer, or it can point to a string of characters to be used as
the first characters of the temporary-file name. The number of characters allowed is file
system dependent, but 5 bytes is the maximum allowed.

Return Values
Upon completion, the tempnam subroutine allocates space for the string using the malloc subroutine,
puts the generated path name in that space, and returns a pointer to the space. Otherwise, it returns a null
pointer and sets the errno global variable to indicate the error. The pointer returned by tempnam may be
used in the free subroutine when the space is no longer needed.

Error Codes
The tempnam subroutine returns the following error code if unsuccessful:

ENOMEM Insufficient storage space is available.

ENINVAL Indicates an invalid string value.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The fopen, freopen, fdopen subroutine, malloc, free, realloc, calloc, mallopt, mallinfo, or alloca
subroutine, mktemp or mkstemp subroutine, openx, open, creat subroutine, tmpfile (“tmpfile Subroutine”
on page 330) subroutine, unlink (“unlink Subroutine” on page 369) subroutine.

The environment file.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

Input and Output Handling Programmer’s Overview in AIX 5L Version 5.1 General Programming Concepts:
Writing and Debugging Programs.

towctrans Subroutine

Purpose
Character transliteration.

Library
Standard library (libc.a)

332 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/fopen.htm
../../libs/basetrf1/malloc.htm#HDRA174921E
../../libs/basetrf1/mktemp.htm#HDRLJ4E0SHAD
../../libs/basetrf1/open.htm#HDRA1509805
../../files/aixfiles/environment.htm#HDRA243Y98FF1
../../aixprggd/genprogc/file_sys_dir.htm#HDRFVOWF292JUDY
../../aixprggd/genprogc/io_handling.htm#HDRA9E740A1626CAND

Syntax
#include <wctype.h>

wint_t towctrans (wint_t wc, wctrans_t desc) ;

Description
The towctrans function transliterates the wide-character code wc using the mapping described by desc.
The current setting of the LC_CTYPE category should be the same as during the call to wctrans that
returned the value desc. If the value of desc is invalid (that is, not obtained by a call to wctrans or desc is
invalidated by a subsequent call to setlocale that has affected category LC_CTYPE) the result is
implementation-dependent.

Return Values
If successful, the towctrans function returns the mapped value of wc using the mapping described by
desc. Otherwise it returns wc unchanged.

Error Codes
The towctrans function may fail if:

EINVAL desc contains an invalid transliteration descriptor.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The towlower (“towlower Subroutine”) subroutine, towupper (“towupper Subroutine” on page 334)
subroutine, wctrans (“wctrans Subroutine” on page 413) subroutine.

The wctype.h file.

towlower Subroutine

Purpose

Converts an uppercase wide character to a lowercase wide character.

Library
Standard C Library (libc.a)

Syntax
#include <wchar.h>

wint_t towlower (WC)
wint_t WC;

Description
The towlower subroutine converts the uppercase wide character specified by the WC parameter into the
corresponding lowercase wide character. The LC_CTYPE category affects the behavior of the towlower
subroutine.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 333

../../files/aixfiles/wctype.h.htm

Parameters

WC Specifies the wide character to convert to lowercase.

Return Values
If the WC parameter contains an uppercase wide character that has a corresponding lowercase wide
character, that wide character is returned. Otherwise, the WC parameter is returned unchanged.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The iswalnum subroutine, iswalpha subroutine, iswcntrl subroutine, iswctype subroutine, iswdigit
subroutine, iswgraph subroutine, iswlower subroutine, iswprint subroutine, iswpunct subroutine,
iswspace subroutine, iswupper subroutine, iswxdigit subroutine, setlocale (“setlocale Subroutine” on
page 107) subroutine, towupper (“towupper Subroutine”) subroutine, wctype (“wctype or get_wctype
Subroutine” on page 413) subroutine.

National Language Support Overview for Programming, Subroutines Overview, Understanding Wide
Character Classification Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

towupper Subroutine

Purpose

Converts a lowercase wide character to an uppercase wide character.

Library
Standard C Library (libc.a)

Syntax
#include <wchar.h>

wint_t towupper (WC)
wint_t WC;

Description
The towupper subroutine converts the lowercase wide character specified by the WC parameter into the
corresponding uppercase wide character. The LC_CTYPE category affects the behavior of the towupper
subroutine.

Parameters

WC Specifies the wide character to convert to uppercase.

Return Values
If the WC parameter contains a lowercase wide character that has a corresponding uppercase wide
character, that wide character is returned. Otherwise, the WC parameter is returned unchanged.

334 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswctype.htm#HDRA143C1474
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRMC59120BOB
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRMC59120BOB

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The iswalnum subroutine, iswalpha subroutine, iswcntrl subroutine, iswctype subroutine, iswdigit
subroutine, iswgraph subroutine, iswlower subroutine, iswprint subroutine, iswpunct subroutine,
iswspace subroutine, iswupper subroutine, iswxdigit subroutine, setlocale (“setlocale Subroutine” on
page 107) subroutine, towlower (“towlower Subroutine” on page 333) subroutine, wctype (“wctype or
get_wctype Subroutine” on page 413) subroutine.

Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

t_rcvreldata Subroutine

Purpose
Receive an orderly release indication or confirmation containing user data.

Library

Syntax
#include <xti.h>

int t_rcvreldata(
int fd,
struct t_discon *discon)

Description
This function is used to receive an orderly release indication for the incoming direction of data transfer and
to retrieve any user data sent with the release. The argument fd identifies the local transport endpoint
where the connection exists, and discon points to a t_discon structure containing the following members:
struct netbuf udata;
int reason;
int sequence;

After receipt of this indication, the user may not attempt to receive more data via t_rcv or t_rcvv (“t_rcvv
Subroutine” on page 337). Such an attempt will fail with t_error set to [TOUTSTATE]. However, the user
may continue to send data over the connection if t_sndrel or t_sndreldata (“t_sndreldata Subroutine” on
page 343) has not been called by the user.

The field reason specifies the reason for the disconnection through a protocol-dependent reason code, and
udata identifies any user data that was sent with the disconnection; the field sequence is not used.

If a user does not care if there is incoming data and does not need to know the value of reason, discon
may be a null pointer, and any user data associated with the disconnection will be discarded.

If discon->udata.maxlen is greater than zero and less than the length of the value, t_rcvreldata fails with
t_errno set to [TBUFOVFLW].

This function is an optional service of the transport provider, only supported by providers of service type
T_COTS_ORD. The flag T_ORDRELDATA in the info->flag field returned by t_open or t_getinfo indicates
that the provider supports orderly release user data; when the flag is not set, this function behaves as
t_rcvrel and no user data is returned.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 335

../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswctype.htm#HDRA143C1474
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../libs/commtrf2/t_rcv_Transport.htm#HDRJRA480MARI
../../libs/commtrf2/t_sndrel_Transport.htm#HDRA141C11672
../../libs/commtrf2/t_open_Transport.htm#HDRJ3H480MARI
../../libs/commtrf2/t_getinfo_Transport.htm#HDRR9E450MARI
../../libs/commtrf2/t_rcvrel_Transport.htm#HDRVVA42A0MARI

This function may not be available on all systems.

Parameters Before call After call
fd x /
discon-> udata.maxlen x
discon-> udata.len /
discon-> udata.buf ?
discon-> reason /
discon-> sequence /

Valid States
T_DATAXFER, T_OUTREL

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and t_errno is
set to indicate an error.

Error Codes
On failure, the t_errno subroutine is set to one of the following:

TBADF
The specified file descriptor does not refer to a transport endpoint.

TBUFOVFLW
The number of bytes allocated for incoming data (maxlen) is greater than 0 but not sufficient to
store the data, and the disconnection information to be returned in discon will be discarded. The
provider state, as seen by the user, will be changed as if the data was successfully retrieved.

TLOOK
An asynchronous event has occurred on this transport endpoint and requires immediate attention.

TNOREL
No orderly release indication currently exists on the specified transport endpoint.

TNOTSUPPORT
Orderly release is not supported by the underlying transport provider.

TOUTSTATE
The communications endpoint referenced by fd is not in one of the states in which a call to this
function is valid.

TPROTO
This error indicates that a communication problem has been detected between XTI and the
transport provider for which there is no other suitable XTI error (t_errno).

TSYSERR
A system error has occurred during execution of this function.

Related Information
The t_getinfo, t_open, t_sndreldata (“t_sndreldata Subroutine” on page 343), t_rcvrel, t_sndrel
subroutines.

336 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/commtrf2/t_getinfo_Transport.htm#HDRR9E450MARI
../../libs/commtrf2/t_open_Transport.htm#HDRJ3H480MARI
../../libs/commtrf2/t_rcvrel_Transport.htm#HDRVVA42A0MARI
../../libs/commtrf2/t_sndrel_Transport.htm#HDRA141C11672

t_rcvv Subroutine

Purpose
Receive data or expedited data sent over a connection and put the data into one or more non-contiguous
buffers.

Library
libxti.*

Syntax
#include <xti.h>

int t_rcvv (int fd, struct t_iovec *iov, unsigned int iovcount, int *flags) ;

Description
This function receives either normal or expedited data. The argument fd identifies the local transport
endpoint through which data will arrive, iov points to an array of buffer address/buffer size pairs (iov_base,
iov_len). The t_rcvv function receives data into the buffers specified by iov[0].iov_base, iov[1].iov_base,
through iov[iovcount-1].iov_base, always filling one buffer before proceding to the next.

Note: The limit on the total number of bytes available in all buffers passed (that is, iov(0).iov_len + . .
+ iov(iovcount-1).iov_len) may be constrained by implementation limits. If no other constraint applies,
it will be limited by [INT_MAX]. In practice, the availability of memory to an application is likely to
impose a lower limit on the amount of data that can be sent or received using scatter/gather
functions.

The argument iovcount contains the number of buffers which is limited to T_IOV_MAX (an
implementation-defined value of at least 16). If the limit is exceeded, the function will fail with
[TBADDATA].

The argument flags may be set on return from t_rcvv and specifies optional flags as described below.

By default, t_rcvv operates in synchronous mode and will wait for data to arrive if none is currently
available. However, if O_NONBLOCK is set (via t_open or fcntl, t_rcvv will execute in asynchronous
mode and will fail if no data is available (see [TNODATA] below).

On return from the call, if T_MORE is set in flags, this indicates that there is more data, and the current
transport service data unit (TSDU) or expedited transport service data unit (ETSDU) must be received in
multiple t_rcvv or t_rcv calls. In the asynchronous mode, or under unusual conditions (for example, the
arrival of a signal or T_EXDATA event), the T_MORE flag may be set on return from the t_rcvv call even
when the number of bytes received is less than the total size of all the receive buffers. Each t_rcvv with
the T_MORE flag set indicates that another t_rcvv must follow to get more data for the current TSDU. The
end of the TSDU is identified by the return of a t_rcvv call with the T_MORE flag not set. If the transport
provider does not support the concept of a TSDU as indicated in the info argument on return from t_open
ort_getinfo , the T_MORE flag is not meaningful and should be ignored. If the amount of buffer space
passed in iov is greater than zero on the call to t_rcvv, then t_rcvv will return 0 only if the end of a TSDU
is being returned to the user.

On return, the data is expedited if T_EXPEDITED is set in flags. If T_MORE is also set, it indicates that
the number of expedited bytes exceeded nbytes, a signal has interrupted the call, or that an entire ETSDU
was not available (only for transport protocols that support fragmentation of ETSDUs). The rest of the
ETSDU will be returned by subsequent calls to t_rcvv which will return with T_EXPEDITED set in flags.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 337

The end of the ETSDU is identified by the return of a t_rcvv call with T_EXPEDITED set and T_MORE
cleared. If the entire ETSDU is not available it is possible for normal data fragments to be returned
between the initial and final fragments of an ETSDU.

If a signal arrives, t_rcvv returns, giving the user any data currently available. If no data is available,
t_rcvv returns -1, sets t_errno to [TSYSERR] and errno to [EINTR]. If some data is available, t_rcvv
returns the number of bytes received and T_MORE is set in flags.

In synchronous mode, the only way for the user to be notified of the arrival of normal or expedited data is
to issue this function or check for the T_DATA or T_EXDATA events using the t_look function. Additionally,
the process can arrange to be notified via the EM interface.

Parameters Before call After call

fd X /

iov X/

iovcount X /

iov[0].iov_base X(/) =(X)

iov[0].iov_len X =

. . . .

iov[iovcount-1].iov_base X(/) =(X)

iov[iovcount-1].iov_len X =

Return Values
On successful completion, t_rcvv returns the number of bytes received. Otherwise, it returns -1 on failure
and t_errno is set to indicate the error.

Error Codes
On failure, t_errno is set to one of the following:

TBADDATA iovcount is greater than T_IOV_MAX.
TBADF The specified file descriptor does not refer to a transport endpoint.
TLOOK An asynchronous event has occurred on this transport endpoint and requires immediate

attention.
TNODATA O_NONBLOCK was set, but no data is currently available from the transport provider.
TNOTSUPPORT This function is not supported by the underlying transport provider.
TOUTSTATE The communications endpoint referenced by fd is not in one of the states in which a call to this

function is valid.
TPROTO This error indicates that a communication problem has been detected between XTI and the

transport provider for which there is no other suitable XTI error (t_errno).
TSYSERR A system error has occurred during execution of this function.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The fcntl subroutine, t_getinfo subroutine, t_look subroutine, t_open subroutine, t_rcv subroutine, t_snd
subroutine, and t_sndv (“t_sndv Subroutine” on page 341) subroutine.

338 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/fcntl.htm
../../libs/commtrf2/t_getinfo.htm
../../libs/commtrf2/t_look.htm
../../libs/commtrf2/t_open.htm
../../libs/commtrf2/t_rcv.htm
../../libs/commtrf2/t_snd.htm

t_rcvvudata Subroutine

Purpose
Receive a data unit into one or more noncontiguous buffers.

Library
Standard library (libxti.a)

Syntax
#include <xti.h>
int t_rcvvudata (

int fd, struct t_unitdata *unitdata, struct t_iovec *iov, unsigned int iovcount, int *flags)

Description
This function is used in connectionless mode to receive a data unit from another transport user. The
argument fd identifies the local transport endpoint through which data will be received, unitdata holds
information associated with the received data unit, iovcount contains the number of non-contiguous udata
buffers which is limited to T_IOV_MAX (an implementation-defined value of at least 16), and flags is set
on return to indicate that the complete data unit was not received. If the limit on iovcount is exceeded, the
function fails with [TBADDATA]. The argument unitdata points to a t_unitdata structure containing the
following members:

struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

The maxlen field of addr and opt must be set before calling this function to indicate the maximum size of
the buffer for each. The udata field of t_unitdata is not used. The iov_len and iov_base fields of iov[0]
through iov[iovcount-1] must be set before calling t_rcvvudata to define the buffer where the userdata
will be placed. If the maxlen field of addr or opt is set to zero then no information is returned in the buf
field for this parameter.

On return from this call, addr specifies the protocol address of the sending user, opt identifies options that
were associated with this data unit, and iov[0].iov_base through iov[iovcount-1]. iov_base contains the
user data that was received. The return value of t_rcvvudata is the number of bytes of user data given to
the user.

Note: The limit on the total number of bytes available in all buffers passed (that is,
iov(0).iov_len + . . + iov(iovcount-1).iov_len) may be constrained by implementation limits. If no
other constraint applies, it will be limited by [INT_MAX]. In practice, the availability of memory to an
application is likely to impose a lower limit on the amount of data that can be sent or received using
scatter/gather functions.

By default, t_rcvvudata operates in synchronous mode and waits for a data unit to arrive if none is
currently available. However, if O_NONBLOCK is set (via t_open or fcntl), t_rcvvudata executes in
asynchronous mode and fails if no data units are available. If the buffers defined in the iov[] array are not
large enough to hold the current data unit, the buffers will be filled and T_MORE will be set in flags on
return to indicate that another t_rcvvudata should be called to retrieve the rest of the data unit.
Subsequent calls to t_rcvvudata will return zero for the length of the address and options, until the full
data unit has been received.

Parameters Before call After call

fd X /

unitdata->addr.maxlen X =

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 339

Parameters Before call After call

unitdata->addr.len / X

unitdata->addr.buf ?(/) =(/)

unitdata->opt.maxlen X =

unitdata->opt.len / X

unitdata->opt.buf ?(/) =(?)

unitdata->udata.maxlen / =

unitdata->udata.len / =

unitdata->udata.buf / =

iov[0].iov_base X =(X)

iov[0].iov_len X =

. . . .

iov[iovcount-1].iov_base X(/) =(X)

iov[iovcount-1].iov_len X =

iovcoun X /

flags / /

Return Values
On successful completion, t_rcvvudata returns the number of bytes received. Otherwise, it returns -1 on
failure and t_errno is set to indicate the error.

Error Codes
On failure, t_errno is set to one of the following:

TBADDATA iovcount is greater than T_IOV_MAX.
TBADF The specified file descriptor does not refer to a transport endpoint.
TBUFOVFLW The number of bytes allocated for the incoming protocol address or options (maxlen) is greater

than 0 but not sufficient to store the information. The unit data information to be returned in
unitdata will be discarded.

TLOOK An asynchronous event has occurred on this transport endpoint and requires immediate
attention.

TNODATA O_NONBLOCK was set, but no data units are currently available from the transport provider.
TNOTSUPPORT This function is not supported by the underlying transport provider.
TOUTSTATE The communications endpoint referenced by fd is not in one of the states in which a call to this

function is valid.
TPROTO This error indicates that a communication problem has been detected between XTI and the

transport provider for which there is no other suitable XTI error (t_errno).
TSYSERR A system error has occurred during execution of this function.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The fcntl subroutine, t_alloc subroutine, t_open subroutine, t_rcvudata subroutine, t_rcvuderr
subroutine, t_sndudata subroutine, t_sndvudata (“t_sndvudata Subroutine” on page 345) subroutine.

340 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/fcntl.htm
../../libs/commtrf2/t_alloc.htm
../../libs/commtrf2/t_open.htm
../../libs/commtrf2/t_rcvudata.htm
../../libs/commtrf2/t_rcvuderr.htm
../../libs/commtrf2/t_sndudata.htm

t_sndv Subroutine

Purpose
Send data or expedited data, from one or more non-contiguous buffers, on a connection.

Library
Standard library (libxti.a)

Syntax
#include <xti.h>
int t_sndv (int fd, const struct t_iovec *iov, unsigned it iovcount, int flags)

Description

Parameters Before call After call

fd X /

iovec X /

iovcount X /

iov[0].iov_base X(X) /

iov[0].iov_len X /

. . . .

iov[iovcount-1].iov_base X(X) /

iov[iovcount-1].iov_len X =

flags X /

This function is used to send either normal or expedited data. The argument fd identifies the local
transport endpoint over which data should be sent, iov points to an array of buffer address/buffer length
pairs. t_sndv sends data contained in buffers iov[0], iov[1], through iov[iovcount-1]. iovcount contains
the number of non-contiguous data buffers which is limited to T_IOV_MAX (an implementation-defined
value of at least 16). If the limit is exceeded, the function fails with [TBADDATA].

Note: The limit on the total number of bytes available in all buffers passed (that is: iov(0).iov_len + .
. + iov(iovcount-1).iov_len) may be constrained by implementation limits. If no other constraint
applies, it will be limited by [INT_MAX]. In practice, the availability of memory to an application is
likely to impose a lower limit on the amount of data that can be sent or received using scatter/gather
functions.

The argument flags specifies any optional flags described below:

T_EXPEDITED
If set in flags, the data will be sent as expedited data and will be subject to the interpretations of
the transport provider.

T_MORE
If set in flags, this indicates to the transport provider that the transport service data unit (TSDU)
(or expedited transport service data unit ETSDU) is being sent through multiple t_sndv calls. Each
t_sndv with the T_MORE flag set indicates that another t_sndv (or t_snd) will follow with more
data for the current TSDU (or ETSDU).

The end of the TSDU (or ETSDU) is identified by a t_sndv call with the T_MORE flag not set. Use
of T_MORE enables a user to break up large logical data units without losing the boundaries of

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 341

those units at the other end of the connection. The flag implies nothing about how the data is
packaged for transfer below the transport interface. If the transport provider does not support the
concept of a TSDU as indicated in the info argument on return from t_open ort_getinfo, the
T_MORE flag is not meaningful and will be ignored if set.

The sending of a zero-length fragment of a TSDU or ETSDU is only permitted where this is used
to indicate the end of a TSDU or ETSDU, that is, when the T_MORE flag is not set. Some
transport providers also forbid zero-length TSDUs and ETSDUs. See Appendix A for a fuller
explanation.

If set in flags, requests that the provider transmit all data that it has accumulated but not sent. The request
is a local action on the provider and does not affect any similarly named protocol flag (for example, the
TCP PUSH flag). This effect of setting this flag is protocol-dependent, and it may be ignored entirely by
transport providers which do not support the use of this feature.

Note: The communications provider is free to collect data in a send buffer until it accumulates a
sufficient amount for transmission.

By default, t_sndv operates in synchronous mode and may wait if flow control restrictions prevent the data
from being accepted by the local transport provider at the time the call is made. However, if
O_NONBLOCK is set (via t_open or fcntl), t_sndv executes in asynchronous mode, and will fail
immediately if there are flow control restrictions. The process can arrange to be informed when the flow
control restrictions are cleared via either t_look or the EM interface.

On successful completion, t_sndv returns the number of bytes accepted by the transport provider.
Normally this will equal the total number of bytes to be sent, that is,
(iov[0].iov_len + . . + iov[iovcount-1].iov_len)

However, the interface is constrained to send at most INT_MAX bytes in a single send. When t_sndv has
submitted INT_MAX (or lower constrained value, see the note above) bytes to the provider for a single
call, this value is returned to the user. However, if O_NONBLOCK is set or the function is interrupted by a
signal, it is possible that only part of the data has actually been accepted by the communications provider.
In this case, t_sndv returns a value that is less than the value of nbytes. If t_sndv is interrupted by a
signal before it could transfer data to the communications provider, it returns -1 with t_errno set to
[TSYSERR] and errno set to [EINTR].

If the number of bytes of data in the iov array is zero and sending of zero octets is not supported by the
underlying transport service, t_sndv returns -1 with t_errno set to [TBADDATA].

The size of each TSDU or ETSDU must not exceed the limits of the transport provider as specified by the
current values in the TSDU or ETSDU fields in the info argument returned by t_getinfo.

The error [TLOOK] is returned for asynchronous events. It is required only for an incoming disconnect
event but may be returned for other events.

Return Values
On successful completion, t_sndv returns the number of bytes accepted by the transport provider.
Otherwise, -1 is returned on failure and t_errno is set to indicate the error.

Notes:

1. In synchronous mode, if more than INT_MAX bytes of data are passed in the iov array, only the
first INT_MAX bytes will be passed to the provider.

342 Technical Reference, Volume 2: Base Operating System and Extensions

2. If the number of bytes accepted by the communications provider is less than the number of
bytes requested, this may either indicate that O_NONBLOCK is set and the communications
provider is blocked due to flow control, or that O_NONBLOCK is clear and the function was
interrupted by a signal.

Error Codes
On failure, t_errno is set to one of the following:

TBADDATA Illegal amount of data:

v A single send was attempted specifying a TSDU (ETSDU) or fragment TSDU (ETSDU) greater than that
specified by the current values of the TSDU or ETSDU fields in the info argument.

v A send of a zero byte TSDU (ETSDU) or zero byte fragment of a TSDU (ETSDU) is not supported by
the provider.

v Multiple sends were attempted resulting in a TSDU (ETSDU) larger than that specified by the current
value of the TSDU or ETSDU fields in the info argument the ability of an XTI implementation to detect
such an error case is implementation-dependent (see CAVEATS, below).

v iovcount is greater than T_IOV_MAX.

TBADF The specified file descriptor does not refer to a transport endpoint.
TBADFLAG An invalid flag was specified.
TFLOW O_NONBLOCK was set, but the flow control mechanism prevented the transport provider from

accepting any data at this time.
TLOOK An asynchronous event has occurred on this transport endpoint.
TNOTSUPPORT This function is not supported by the underlying transport provider.
TOUTSTATE The communications endpoint referenced by fd is not in one of the states in which a call to this

function is valid.
TPROTO This error indicates that a communication problem has been detected between XTI and the

transport provider for which there is no other suitable XTI error (t_errno).
TSYSERR A system error has occurred during execution of this function.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The t_getinfo subroutine, t_open subroutine, t_rcvv (“t_rcvv Subroutine” on page 337) subroutine, t_rcv
subroutine, t_snd subroutine.

t_sndreldata Subroutine

Purpose
Initiate/respond to an orderly release with user data.

Library

Syntax
#include <xti.h>

int t_sndreldata(int fd, struct t_discon *discon)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 343

../../libs/commtrf2/t_getinfo.htm
../../libs/commtrf2/t_open.htm
../../libs/commtrf2/t_rcv.htm
../../libs/commtrf2/t_snd.htm

Description
This function is used to initiate an orderly release of the outgoing direction of data transfer and to send
user data with the release. The argument fd identifies the local transport endpoint where the connection
exists, and discon points to a t_discon structure containing the following members:
struct netbuf udata;
int reason;
int sequence;

After calling t_sndreldata, the user may not send any more data over the connection. However, a user
may continue to receive data if an orderly release indication has not been received.

The field reason specifies the reason for the disconnection through a protocol-dependent reason code,
and udata identifies any user data that is sent with the disconnection; the field sequence is not used.

The udata structure specifies the user data to be sent to the remote user. The amount of user data must
not exceed the limits supported by the transport provider, as returned in the discon field of the info
argument of t_open or t_getinfo. If the len field of udata is zero or if the provider did not return
T_ORDRELDATA in the t_open flags, no data will be sent to the remote user.

If a user does not wish to send data and reason code to the remote user, the value of discon may be a
null pointer.

This function is an optional service of the transport provider, only supported by providers of service type
T_COTS_ORD. The flag T_ORDRELDATA in the info->flag field returned by t_open or t_getinfo
indicates that the provider supports orderly release user data; when the flag is not set, this function
behaves as t_rcvrel and no user data is returned.

This function may not be available on all systems.

Parameters Before call After call
fd x /
discon-> udata.maxlen /
discon-> udata.len x
discon-> udata.buf ?(?)
discon-> reason ?
discon-> sequence /

Valid States
T_DATAXFER, T_INREL

Error Codes
On failure, t_errno is set to one of the following:

[TBADDATA]
The amount of user data specified was not within the bounds allowed by the transport provider, or
user data was supplied and the provider did not return T_ORDRELDATA in the t_open flags.

[TBADF]
The specified file descriptor does not refer to a transport endpoint.

[TFLOW]
O_NONBLOCK was set, but the flow control mechanism prevented the transport provider from
accepting the function at this time.

[TLOOK]
An asynchronous event has occurred on this transport endpoint and requires immediate attention.

344 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/commtrf2/t_open_Transport.htm#HDRJ3H480MARI
../../libs/commtrf2/t_getinfo_Transport.htm#HDRR9E450MARI
../../libs/commtrf2/t_rcvrel_Transport.htm#HDRVVA42A0MARI

[TNOTSUPPORT]
Orderly release is not supported by the underlying transport provider.

[TOUTSTATE]
The communications endpoint referenced by fd is not in one of the states in which a call to this
function is valid.

[TPROTO]
This error indicates that a communication problem has been detected between XTI and the
transport provider for which there is no other suitable XTI error (t_errno).

[TSYSERR]
A system error has occurred during execution of this function.

Return Value
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and t_errno is
set to indicate an error.

Related Information
The t_getinfo, t_open, t_rcvreldata (“t_rcvreldata Subroutine” on page 335), t_rcvrel, and t_sndrel
subroutines.

t_sndvudata Subroutine

Purpose
Send a data unit from one or more noncontiguous buffers.

Library

Syntax
#include <xti.h>

int t_sndvudata(
int fd,
struct t_unitdata *unitdata,
struct t_iovec *iov,
unsigned int iovcount)

Description
This function is used in connectionless mode to send a data unit to another transport user. The argument
fd identifies the local transport endpoint through which data will be sent, iovcount contains the number of
non-contiguous udata buffers and is limited to an implementation-defined value given by T_IOV_MAX,
which is at least 16, and unitdata points to a t_unitdata structure containing the following members:
struct netbuf addr;
struct netbuf opt;
struct netbuf udata;

If the limit on iovcount is exceeded, the function fails with [TBADDATA].

In unitdata, addr specifies the protocol address of the destination user, and opt identifies options that the
user wants associated with this request. The udata field is not used. The user may choose not to specify
what protocol options are associated with the transfer by setting the len field of opt to zero. In this case,
the provider may use default options.

The data to be sent is identified by iov[0] through iov[iovcount-1].

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 345

../../libs/commtrf2/t_getinfo_Transport.htm#HDRR9E450MARI
../../libs/commtrf2/t_open_Transport.htm#HDRJ3H480MARI
../../libs/commtrf2/t_rcvrel_Transport.htm#HDRVVA42A0MARI
../../libs/commtrf2/t_sndrel_Transport.htm#HDRA141C11672

The limit on the total number of bytes available in all buffers passed (that is:
iov(0).iov_len + . . + iov(iovcount-1).iov_len)

may be constrained by implementation limits. If no other constraint applies, it will be limited by
[INT_MAX]. In practice, the availability of memory to an application is likely to impose a lower limit on
the amount of data that can be sent or received using scatter/gather functions.

By default, t_sndvudata operates in synchronous mode and may wait if flow control restrictions prevent
the data from being accepted by the local transport provider at the time the call is made. However, if
O_NONBLOCK is set (via t_open or fcntl, t_sndvudata executes in asynchronous mode and will fail
under such conditions. The process can arrange to be notified of the clearance of a flow control restriction
via either t_look or the EM interface.

If the amount of data specified in iov[0] through iov[iovcount-1] exceeds the TSDU size as returned in
the tsdu field of the info argument of t_open or t_getinfo, or is zero and sending of zero octets is not
supported by the underlying transport service, a [TBADDATA] error is generated. If t_sndvudata is called
before the destination user has activated its transport endpoint (see t_bind), the data unit may be
discarded.

If it is not possible for the transport provider to immediately detect the conditions that cause the errors
[TBADDADDR] and [TBADOPT], these errors will alternatively be returned by t_rcvuderr. An application
must therefore be prepared to receive these errors in both of these ways.

Parameters Before call After call
fd x /
unitdata-> addr.maxlen /
unitdata-> addr.len x
unitdata-> addr.buf x(x)
unitdata-> opt.maxlen /
unitdata-> opt.len x
unitdata-> opt.buf ?(?)
unitdata-> udata.maxlen /
unitdata-> udata.len /
unitdata-> udata.buf /
iov[0].iov_base x(x) =(=)
left>iov[0].iov_len x =
. . . .
iov[iovcount-1].iov_base x(x) =(=)
iov[iovcount-1].iov_len x =
iovcount x /

Valid States
T_IDLE

Error Codes
On failure, t_errno is set to one of the following:

[TBADADDR] The specified protocol address was in an incorrect format or contained illegal information.
[TBADDATA] Illegal amount of data.

v A single send was attempted specifying a TSDU greater than that specified in the info
argument, or a send of a zero byte TSDU is not supported by the provider.

v iovcount is greater than T_IOV_MAX.
[TBADF] The specified file descriptor does not refer to a transport endpoint.
[TBADOPT] The specified options were in an incorrect format or contained illegal information.

346 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/commtrf2/t_open_Transport.htm#HDRJ3H480MARI
../../libs/basetrf1/fcntl.htm#HDRNEM2E0GACO
../../libs/commtrf2/t_look_Transport.htm#HDRA1UG4240MARI
../../libs/commtrf2/t_getinfo_Transport.htm#HDRR9E450MARI
../../libs/commtrf2/t_bind_Transport.htm#HDRA4DD190MARI
../../libs/commtrf2/t_rcvuderr_Transport.htm#HDRQYA480MARI

[TFLOW] O_NONBLOCK was set, but the flow control mechanism prevented the transport provider
from accepting any data at this time.

[TLOOK] An asynchronous event has occurred on this transport endpoint.
[TNOTSUPPORT] This function is not supported by the underlying transport provider.
[TOUTSTATE] The communications endpoint referenced by fd is not in one of the states in which a call to

this function is valid.
[TPROTO] This error indicates that a communication problem has been detected between XTI and the

transport provider for which there is no other suitable XTI error (t_errno).
[TSYSERR] A system error has occurred during execution of this function.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and t_errno is
set to indicate an error.

Related Information
The fcntl, t_alloc, t_open, t_rcvudata, t_rcvvudata (“t_rcvvudata Subroutine” on page 339), t_rcvuderr,
t_sndudata subroutines.

t_sysconf Subroutine

Purpose
Get configurable XTI variables.

Library
Standard library (libxti.a)

Syntax
#include <xti.h>

int t_sysconf (int name)

Description

Parameters Before call After call

name X /

The t_sysconf function provides a method for the application to determine the current value of
configurable and implementation-dependent XTI limits or options.

The name argument represents the XTI system variable to be queried. The following table lists the
minimal set of XTI system variables from xti.h that can be returned by t_sysconf, and the symbolic
constants, defined in xti.h that are the corresponding values used for name.

Variable Value of Name

T_IOV_MAX _SC_T_IOV_MAX

Return Values
If name is valid, t_sysconf returns the value of the requested limit/option (which might be -1) and leaves
t_errno unchanged. Otherwise, a value of -1 is returned and t_errno is set to indicate an error.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 347

../../libs/basetrf1/fcntl.htm#HDRNEM2E0GACO
../../libs/commtrf2/t_alloc_Transport.htm#HDRA7FD1240MARI
../../libs/commtrf2/t_open_Transport.htm#HDRJ3H480MARI
../../libs/commtrf2/t_rcvudata_Transport.htm#HDRA3XA4120MARI
../../libs/commtrf2/t_rcvuderr_Transport.htm#HDRQYA480MARI
../../libs/commtrf2/t_sndudata_Transport.htm#HDRA141C11692

Error Codes
On failure, t_errno is set to the following:

TBADFLAG name has an invalid value.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The t_rcvv (“t_rcvv Subroutine” on page 337) subroutine, t_rcvvudata (“t_rcvvudata Subroutine” on
page 339) subroutine, t_sndv (“t_sndv Subroutine” on page 341) subroutine, t_sndvudata (“t_sndvudata
Subroutine” on page 345) subroutine.

trcgen or trcgent Subroutine

Purpose
Records a trace event for a generic trace channel.

Library
Runtime Services Library (librts.a)

Syntax
#include <sys/trchkid.h>

void trcgen(Channel, HkWord, DataWord, Length, Buffer)
unsigned int Channel, HkWord, DataWord, Length;
char * Buffer;

void trcgent(Channel, HkWord, DataWord, Length, Buffer)
unsigned int Channel, HkWord, DataWord, Length;
char *Buffer;

Description
The trcgen subroutine records a trace event for a generic trace entry consisting of a hook word, a data
word, and a variable number of bytes of trace data. The trcgent subroutine records a trace event for a
generic trace entry consisting of a hook word, a data word, a variable number of bytes of trace data, and a
time stamp.

The trcgen subroutine and trcgent subroutine are located in pinned kernel memory.

Parameters

Buffer Specifies a pointer to a buffer of trace data. The maximum size of the trace data is 4096 bytes.
Channel Specifies a channel number for the trace session, obtained from the trcstart subroutine.
DataWord Specifies a word of user-defined data.

348 Technical Reference, Volume 2: Base Operating System and Extensions

HkWord Specifies an integer consisting of two bytes of user-defined data (HkData), a hook ID (HkID), and a
hook type (Hk_Type).

HkData Specifies two bytes of user-defined data.

HkID Specifies a hook identifier. For user programs, the hook ID value ranges from 010 to 0FF.

Hk_Type
Specifies a 4-bit value that identifies the amount of trace data to be recorded:

Value Records

1 Hook word

9 Hook word and a time stamp

2 Hook word and one data word

A Hook word, one data word, and a time stamp

6 Hook word and up to five data words

E Hook word, up to five data words, and a time stamp.

Length Specifies the length in bytes of the Buffer parameter.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The trchook (“trchook or utrchook Subroutine”) subroutine, trcoff (“trcoff Subroutine” on page 350)
subroutine, trcon (“trcon Subroutine” on page 351) subroutine, trcstart (“trcstart Subroutine” on page 352)
subroutine, trcstop (“trcstop Subroutine” on page 353) subroutine.

The trace daemon.

The trcgenk kernel service, trcgenkt kernel service.

trchook or utrchook Subroutine

Purpose
Records a trace event.

Library
Runtime Services Library (librts.a)

Syntax
#include <sys/trchkid.h>

void trchook(HkWord, d1, d2, d3, d4, d5)
unsigned int HkWord, d1, d2, d3, d4, d5;

void utrchook(HkWord, d1, d2, d3, d4, d5)
unsigned int HkWord, d1, d2, d3, d4, d5;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 349

../../cmds/aixcmds5/trace.htm#HDRA236Y977A8
../../libs/ktechrf1/trcgenk.htm
../../libs/ktechrf1/trcgenkt_Kernel.htm

Description
The trchook subroutine records a trace event if a trace session is active. Input parameters include a hook
word (HkWord) and from 0 to 5 words of data.

The utrchook subroutine uses a special FAST-SVC path to improve performance and is intended for
programs running at user (application) level.

Parameters

d1, d2, d3, d4, d5 Up to 5 words of data from the calling program.
HkWord An unsigned integer consisting of a hook ID (HkID), a hook type (Hk_Type), and

two bytes of data from the calling program (HkData).

HkID A hook ID is a 12-bit value. For user programs, the hook ID may be a
value from 0x010 to 0x0FF. Hook identifiers are defined in the
/usr/include/sys/trchkid.h file.

Hk_Type
A 4-bit value that identifies the amount of trace data to be recorded:

Value Records

1 Hook word

9 Hook word and a time stamp

2 Hook word and one data word

A Hook word, one data word, and a time stamp

6 Hook word and up to five data words

E Hook word, up to five data words, and a time stamp.

HkData Two bytes of data from the calling program.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The trcgen (“trcgen or trcgent Subroutine” on page 348) subroutine, trcgent (“trcgen or trcgent
Subroutine” on page 348) subroutine, trcoff (“trcoff Subroutine”) subroutine, trcon (“trcon Subroutine” on
page 351) subroutine, trcstart (“trcstart Subroutine” on page 352) subroutine, trcstop (“trcstop Subroutine”
on page 353) subroutine.

The trace daemon.

The trcgenk kernel service, trcgenkt kernel service.

trcoff Subroutine

Purpose
Halts the collection of trace data from within a process.

Library
Runtime Services Library (librts.a)

350 Technical Reference, Volume 2: Base Operating System and Extensions

../../cmds/aixcmds5/trace.htm#HDRA236Y977A8
../../libs/ktechrf1/trcgenk.htm
../../libs/ktechrf1/trcgenkt_Kernel.htm

Syntax
int trcoff(Channel)
int Channel;

Description
The trcoff subroutine issues an ioctl subroutine to the trace device driver to stop trace data collection for
a particular trace channel. The trace session must have already been started using the trace command or
the trcstart subroutine.

Parameters

Channel Channel number for the trace session.

Return Values

0 The ioctl subroutine was successful. Trace data collection stops.
-1 The ioctl subroutine was not successful.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ioctl subroutine, trcgen (“trcgen or trcgent Subroutine” on page 348) subroutine, trchook (“trchook or
utrchook Subroutine” on page 349) subroutine, trcon (“trcon Subroutine”) subroutine, trcstart (“trcstart
Subroutine” on page 352) subroutine, trcstop (“trcstop Subroutine” on page 353) subroutine.

The trace daemon.

trcgenk kernel service, trcgenkt kernel service.

trcon Subroutine

Purpose
Starts the collection of trace data.

Library
Runtime Services Library (librts.a)

Syntax
int trcon(Channel)
int Channel;

Description
The trcon subroutine issues an ioctl subroutine to the trace device driver to start trace data collection for
a particular trace channel. The trace session must have already been started using the trace command or
the trcstart (“trcstart Subroutine” on page 352) subroutine.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 351

../../libs/basetrf1/ioctl32.htm
../../libs/basetrf1/ioctl32.htm
../../cmds/aixcmds5/trace.htm#HDRA236Y977A8
../../libs/ktechrf1/trcgenk.htm
../../libs/ktechrf1/trcgenkt_Kernel.htm

Parameters

Channel Specifies one of eight trace channels. Channel number 0 always refers to the Event/Performance trace.
Channel numbers 1 through 7 specify generic trace channels.

Return Values

0 The ioctl subroutine was successful. Trace data collection starts.
-1 The ioctl subroutine was not successful.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ioctl subroutine, trcgen (“trcgen or trcgent Subroutine” on page 348) subroutine, trchook (“trchook or
utrchook Subroutine” on page 349) subroutine, trcoff (“trcoff Subroutine” on page 350) subroutine, trcstart
(“trcstart Subroutine”) subroutine, trcstop (“trcstop Subroutine” on page 353) subroutine.

The trace daemon.

The trcgenk kernel service, trcgenkt kernel service.

trcstart Subroutine

Purpose
Starts a trace session.

Library
Runtime Services Library (librts.a)

Syntax
int trcstart(Argument)
char *Argument;

Description
The trcstart subroutine starts a trace session. The Argument parameter points to a character string
containing the flags invoked with the trace daemon. To specify that a generic trace session is to be
started, include the -g flag.

Parameters

Argument Character pointer to a string holding valid arguments from the trace daemon.

Return Values
If the trace daemon is started successfully, the channel number is returned. Channel number 0 is returned
if a generic trace was not requested. If the trace daemon is not started successfully, a value of -1 is
returned.

352 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/ioctl32.htm
../../cmds/aixcmds5/trace.htm#HDRA236Y977A8
../../libs/ktechrf1/trcgenk.htm
../../libs/ktechrf1/trcgenkt_Kernel.htm
../../cmds/aixcmds5/trace.htm#HDRA236Y977A8

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Files

/dev/trace Trace special file.

Related Information
The trcon (“trcon Subroutine” on page 351) subroutine.

The trace daemon.

trcstop Subroutine

Purpose
Stops a trace session.

Library
Runtime Services Library (librts.a)

Syntax
int trcstop(Channel)
int Channel;

Description
The trcstop subroutine stops a trace session for a particular trace channel.

Parameters

Channel Specifies one of eight trace channels. Channel number 0 always refers to the Event/Performance trace.
Channel numbers 1 through 7 specify generic trace channels.

Return Values

0 The trace session was stopped successfully.
-1 The trace session did not stop.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The ioctl subroutine, trcgen (“trcgen or trcgent Subroutine” on page 348) subroutine, trchook (“trchook or
utrchook Subroutine” on page 349) subroutine, trcoff (“trcoff Subroutine” on page 350) subroutine, trcon
(“trcon Subroutine” on page 351) subroutine, trcstart (“trcstart Subroutine” on page 352) subroutine.

The trace daemon.

The trcgenk kernel service, trcgenkt kernel service.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 353

../../cmds/aixcmds5/trace.htm#HDRA236Y977A8
../../libs/basetrf1/ioctl32.htm
../../cmds/aixcmds5/trace.htm#HDRA236Y977A8
../../libs/ktechrf1/trcgenk.htm
../../libs/ktechrf1/trcgenkt_Kernel.htm

truncate, truncate64, ftruncate, or ftruncate64 Subroutine

Purpose

Changes the length of regular files.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

int truncate (Path, Length)
const char *Path;
off_t Length;

int ftruncate (FileDescriptor, Length)
int FileDescriptor;
off_t Length;

Note: The truncate64 and ftruncate64 subroutines apply to AIX 4.2 and later releases.

int truncate64 (Path, Length)
const char *Path;
off64_t Length;

int ftruncate64 (FileDescriptor, Length)
int FileDescriptor;
off64_t Length;

Description
Note: The truncate64 and ftruncate64 subroutines apply to AIX 4.2 and later releases.

The truncate and ftruncate subroutines change the length of regular files.

The Path parameter must point to a regular file for which the calling process has write permission. The
Length parameter specifies the desired length of the new file in bytes.

The Length parameter measures the specified file in bytes from the beginning of the file. If the new length
is less than the previous length, all data between the new length and the previous end of file is removed. If
the new length in the specified file is greater than the previous length, data between the old and new
lengths is read as zeros. Full blocks are returned to the file system so that they can be used again, and
the file size is changed to the value of the Length parameter.

If the file designated in the Path parameter names a symbolic link, the link will be traversed and
path-name resolution will continue.

These subroutines do not modify the seek pointer of the file.

These subroutines cannot be applied to a file that a process has open with the O_DEFER flag.

354 Technical Reference, Volume 2: Base Operating System and Extensions

Successful completion of the truncate or ftruncate subroutine updates the st_ctime and st_mtime fields
of the file. Successful completion also clears the SetUserID bit (S_ISUID) of the file if any of the following
are true:

v The calling process does not have root user authority.

v The effective user ID of the calling process does not match the user ID of the file.

v The file is executable by the group (S_IXGRP) or others (S_IXOTH).

These subroutines also clear the SetGroupID bit (S_ISGID) if:

v The file does not match the effective group ID or one of the supplementary group IDs of the process

v OR

v The file is executable by the owner (S_IXUSR) or others (S_IXOTH).

Note: Clearing of the SetUserID and SetGroupID bits can occur even if the subroutine fails
because the data in the file was modified before the error was detected.

truncate and ftruncate can be used to specify any size up to OFF_MAX. truncate64 and ftruncate64
can be used to specify any length up to the maximum file size for the file.

In the large file enabled programming environment, truncate is redefined to be truncate64 and ftruncate
is redefined to be ftruncate64.

Parameters

Path Specifies the name of a file that is opened, truncated, and then closed.
FileDescriptor Specifies the descriptor of a file that must be open for writing.
Length Specifies the new length of the truncated file in bytes.

Return Values
Upon successful completion, a value of 0 is returned. If the truncate or ftruncate subroutine is
unsuccessful, a value of -1 is returned and the errno global variable is set to indicate the nature of the
error.

Error Codes
The truncate and ftruncate subroutines fail if the following is true:

EROFS An attempt was made to truncate a file that resides on a read-only file system.

Note: In addition, the truncate subroutine can return the same errors as the open subroutine if there
is a problem opening the file.

The truncate and ftruncate subroutines fail if one of the following is true:

EAGAIN The truncation operation fails due to an enforced write lock on a portion of the file being truncated.
Because the target file was opened with the O_NONBLOCK or O_NDELAY flags set, the subroutine
fails immediately rather than wait for a release.

EDQUOT New disk blocks cannot be allocated for the truncated file. The quota of the user’s or group’s allotted
disk blocks has been exhausted on the target file system.

EFBIG An attempt was made to write a file that exceeds the process’ file size limit or the maximum file size. If
the user has set the environment variable XPG_SUS_ENV=ON prior to execution of the process, then
the SIGXFSZ signal is posted to the process when exceeding the process’ file size limit.

EFBIG The file is a regular file and length is greater than the offset maximum established in the open file
description associated with fildes.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 355

EINVAL The file is not a regular file.
EINVAL The Length parameter was less than zero.
EISDIR The named file is a directory.
EINTR A signal was caught during execution.
EIO An I/O error occurred while reading from or writing to the file system.
EMFILE The file is open with O_DEFER by one or more processes.
ENOSPC New disk blocks cannot be allocated for the truncated file. There is no free space on the file system

containing the file.
ETXTBSY The file is part of a process that is running.
EROFS The named file resides on a read-only file system.

Notes:

1. The truncate subroutine can also be unsuccessful for other reasons. For a list of additional
errors, see ″Base Operating System Error Codes For Services That Require Path-Name
Resolution″ .

2. The truncate subroutine can return the same errors as the open subroutine if there is a problem
opening the file.

The ftruncate subroutine fails if the following is true:

EBADF The FileDescriptor parameter is not a valid file descriptor open for writing.
EINVAL The FileDescriptor argument references a file that was opened without write permission.

The truncate function will fail if:

EACCES A component of the path prefix denies search permission, or write permission
is denied on the file.

EISDIR The named file is a directory.
ELOOP Too many symbolic links were encountered in resolving path.
ENAMETOOLONG The length of the specified pathname exceeds PATH_MAX bytes, or the length

of a component of the pathname exceeds NAME_MAX bytes.
ENOENT A component of path does not name an existing file or path is an empty string.
ENTDIR A component of the path prefix of path is not a directory.
EROFS The named file resides on a read-only file system.

The truncate function may fail if:

ENAMETOOLONG Pathname resolution of a symbolic link
produced an intermediate result
whose length exceeds PATH_MAX.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The fclear subroutine, openx, open, or creat subroutine.

“Appendix A. Base Operating System Error Codes for Services That Require Path-Name Resolution” on
page 665.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

356 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/AppendixA.htm#HDRA4CG230GACO
../../libs/basetrf1/AppendixA.htm#HDRA4CG230GACO
../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/fclear.htm#HDRXKNA0GACO
../../libs/basetrf1/open.htm#HDRA1509805
../../aixprggd/genprogc/file_sys_dir.htm#HDRFVOWF292JUDY

tsearch, tdelete, tfind or twalk Subroutine

Purpose
Manages binary search trees.

Library
Standard C Library (libc.a)

Syntax
#include <search.h>

void *tsearch (Key, RootPointer, ComparisonPointer)
const void *Key;
void **RootPointer;
int (*ComparisonPointer) (const void *Element1, const void *Element2);

void *tdelete (Key, RootPointer, ComparisonPointer)
const void *Key;
void **RootPointer;
int (*ComparisonPointer) (const void *Element1, const void *Element2);

void *tfind (Key, RootPointer, ComparisonPointer)
const void *Key;
void *const *RootPointer;
int (*ComparisonPointer) (const void *Element1, const void *Element2);

void twalk (Root, Action)
const void *Root;
void (*Action) (const void *Node, VISIT Type, int Level);

Description
The tsearch, tdelete, tfind and twalk subroutines manipulate binary search trees. Comparisons are made
with the user-supplied routine specified by the ComparisonPointer parameter. This routine is called with
two parameters, the pointers to the elements being compared.

The tsearch subroutine performs a binary tree search, returning a pointer into a tree indicating where the
data specified by the Key parameter can be found. If the data specified by the Key parameter is not found,
the data is added to the tree in the correct place. If there is not enough space available to create a new
node, a null pointer is returned. Only pointers are copied, so the calling routine must store the data. The
RootPointer parameter points to a variable that points to the root of the tree. If the RootPointer parameter
is the null value, the variable is set to point to the root of a new tree. If the RootPointer parameter is the
null value on entry, then a null pointer is returned.

The tdelete subroutine deletes the data specified by the Key parameter. The RootPointer and
ComparisonPointer parameters perform the same function as they do for the tsearch subroutine. The
variable pointed to by the RootPointer parameter is changed if the deleted node is the root of the binary
tree. The tdelete subroutine returns a pointer to the parent node of the deleted node. If the data is not
found, a null pointer is returned. If the RootPointer parameter is null on entry, then a null pointer is
returned.

The tfind subroutine searches the binary search tree. Like the tsearch subroutine, the tfind subroutine
searches for a node in the tree, returning a pointer to it if found. However, if it is not found, the tfind
subroutine will return a null pointer. The parameters for the tfind subroutine are the same as for the
tsearch subroutine.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 357

The twalk subroutine steps through the binary search tree whose root is pointed to by the RootPointer
parameter. (Any node in a tree can be used as the root to step through the tree below that node.) The
Action parameter is the name of a routine to be invoked at each node. The routine specified by the Action
parameter is called with three parameters. The first parameter is the address of the node currently being
pointed to. The second parameter is a value from an enumeration data type:
typedef enum [preorder, postorder, endorder, leaf] VISIT;

(This data type is defined in the search.h file.) The actual value of the second parameter depends on
whether this is the first, second, or third time that the node has been visited during a depth-first,
left-to-right traversal of the tree, or whether the node is a leaf. A leaf is a node that is not the parent of
another node. The third parameter is the level of the node in the tree, with the root node being level zero.

Although declared as type pointer-to-void, the pointers to the key and the root of the tree should be of type
pointer-to-element and cast to type pointer-to-character. Although declared as type pointer-to-character, the
value returned should be cast into type pointer-to-element.

Parameters

Key Points to the data to be located.
ComparisonPointer Points to the comparison function, which is called with two parameters that point to

the elements being compared.
RootPointer Points to a variable that in turn points to the root of the tree.
Action Names a routine to be invoked at each node.
Root Points to the roots of a binary search node.

Return Values
The comparison function compares its parameters and returns a value as follows:

v If the first parameter is less than the second parameter, the ComparisonPointer parameter returns a
value less than 0.

v If the first parameter is equal to the second parameter, the ComparisonPointer parameter returns a
value of 0.

v If the first parameter is greater than the second parameter, the ComparisonPointer parameter returns a
value greater than 0.

The comparison function need not compare every byte, so arbitrary data can be contained in the elements
in addition to the values being compared.

If the node is found, the tsearch and tfind subroutines return a pointer to it. If the node is not found, the
tsearch subroutine returns a pointer to the inserted item and the tfind subroutine returns a null pointer. If
there is not enough space to create a new node, the tsearch subroutine returns a null pointer.

If the RootPointer parameter is a null pointer on entry, a null pointer is returned by the tsearch and
tdelete subroutines.

The tdelete subroutine returns a pointer to the parent of the deleted node. If the node is not found, a null
pointer is returned.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The bsearch subroutine, hsearch subroutine, lsearch subroutine.

358 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/bsearch.htm#HDRA18192C9
../../libs/basetrf1/hsearch.htm#HDRA18192B8
../../libs/basetrf1/lsearch.htm#HDRA18192BC

Searching and Sorting Example Program, Subroutines Overview in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

ttylock, ttywait, ttyunlock, or ttylocked Subroutine

Purpose
Controls tty locking functions.

Library
Standard C Library (libc.a)

Syntax
int ttylock (DeviceName)
char *DeviceName;

int ttywait (DeviceName)
char *DeviceName;

int ttyunlock (DeviceName)
char *DeviceName;

int ttylocked (DeviceName)
char *DeviceName;

Description
The ttylock subroutine creates the LCK..DeviceName file in the /etc/locks directory and writes the
process ID of the calling process in that file. If LCK..DeviceName exists and the process whose ID is
contained in this file is active, the ttylock subroutine returns an error.

There are programs like uucp and connect that create tty locks in the /etc/locks directory. The
convention followed by these programs is to call the ttylock subroutine with an argument of DeviceName
for locking the /dev/DeviceName file. This convention must be followed by all callers of the ttylock
subroutine to make the locking mechanism work.

The ttywait subroutine blocks the calling process until the lock file associated with DeviceName, the
/etc/locks/LCK..DeviceName file, is removed.

The ttyunlock subroutine removes the lock file, /etc/locks/LCK..DeviceName, if it is held by the current
process.

The ttylocked subroutine checks to see if the lock file, /etc/locks/LCK..DeviceName, exists and the
process that created the lock file is still active. If the process is no longer active, the lock file is removed.

Parameters

DeviceName Specifies the name of the device.

Return Values
Upon successful completion, the ttylock subroutine returns a value of 0. Otherwise, a value of -1 is
returned.

The ttylocked subroutine returns a value of 0 if no process has a lock on device. Otherwise, a value of -1
is returned.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 359

../../aixprggd/genprogc/srch_sort_ie_prg.htm#HDRA17F0112
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../files/aixfiles/locks.htm#HDRKZ1350KAYE

Examples
1. To create a lock for /dev/tty0, use the following statement:

rc = ttylock("tty0");

2. To lock /dev/tty0 device and wait for lock to be cleared if it exists, use the following statements:
if (ttylock("tty0"))

ttywait("tty0");
rc = ttylock("tty0");

3. To remove the lock file for device /dev/tty0 created by a previous call to the ttylock subroutine, use
the following statement:
ttyunlock("tty0");

4. To check for a lock on /dev/tty0, use the following statement:
rc = ttylocked("tty0");

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The /etc/locks directory.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

ttyname or isatty Subroutine

Purpose
Gets the name of a terminal or determines if the device is a terminal.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

char *ttyname(FileDescriptor)
int FileDescriptor;

int isatty(FileDescriptor)
int FileDescriptor;

Description
Attention: Do not use the ttyname subroutine in a multithreaded environment.

The ttyname subroutine gets the path name of a terminal.

The isatty subroutine determines if the file descriptor specified by the FileDescriptor parameter is
associated with a terminal.

The isatty subroutine does not necessarily indicate that a person is available for interaction, since
nonterminal devices may be connected to the communications line.

360 Technical Reference, Volume 2: Base Operating System and Extensions

../../files/aixfiles/locks.htm#HDRKZ1350KAYE
../../aixprggd/genprogc/io_handling.htm#HDRA9E740A1626CAND

Parameters

FileDescriptor Specifies an open file descriptor.

Return Values
The ttyname subroutine returns a pointer to a string containing the null-terminated path name of the
terminal device associated with the file descriptor specified by the FileDescriptor parameter. A null pointer
is returned and the errno global variable is set to indicate the error if the file descriptor does not describe
a terminal device in the /dev directory.

The return value of the ttyname subroutine may point to static data whose content is overwritten by each
call.

If the specified file descriptor is associated with a terminal, the isatty subroutine returns a value of 1. If the
file descriptor is not associated with a terminal, a value of 0 is returned and the errno global variable is set
to indicate the error.

Error Codes
The ttyname and isatty subroutines are unsuccessful if one of the following is true:

EBADF The FileDescriptor parameter does not specify a valid file descriptor.
ENOTTY The FileDescriptor parameter does not specify a terminal device.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Files

/dev/* Terminal device special files.

Related Information
The ttyslot (“ttyslot Subroutine”) subroutine.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

ttyslot Subroutine

Purpose
Finds the slot in the utmp file for the current user.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>
int ttyslot (void)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 361

../../aixprggd/genprogc/io_handling.htm#HDRA9E740A1626CAND

Description
The ttyslot subroutine returns the index of the current user’s entry in the /etc/utmp file. The ttyslot
subroutine scans the /etc/utmp file for the name of the terminal associated with the standard input, the
standard output, or the error output file descriptors (0, 1, or 2).

The ttyslot subroutine returns -1 if an error is encountered while searching for the terminal name, or if
none of the first three file descriptors (0, 1, and 2) is associated with a terminal device.

Files

/etc/inittab The path to the inittab file, which controls the initialization process.
/etc/utmp The path to the utmp file, which contains a record of users logged in to the system.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getutent subroutine, ttyname or isatty (“ttyname or isatty Subroutine” on page 360) subroutine.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

ulimit Subroutine

Purpose
Sets and gets user limits.

Library
Standard C Library (libc.a)

Syntax
The syntax for the ulimit subroutine when the Command parameter specifies a value of GET_FSIZE or
SET_FSIZE is:
#include <ulimit.h>

long int ulimit (Command, NewLimit)
int Command;
off_t NewLimit;

The syntax for the ulimit subroutine when the Command parameter specifies a value of GET_DATALIM,
SET_DATALIM, GET_STACKLIM, SET_STACKLIM, GET_REALDIR, or SET_REALDIR is:
#include <ulimit.h>

long int ulimit (Command, NewLimit)
int Command;
int NewLimit;

Description
The ulimit subroutine controls process limits.

Even with remote files, the ulimit subroutine values of the process on the client node are used.

362 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/getutent.htm#HDRA0909CF4
../../aixprggd/genprogc/io_handling.htm#HDRA9E740A1626CAND

Note: Raising the data ulimit does not necessarily raise the program break value. If the proper
memory segments are not initialized at program load time, raising your memory limit will not allow
access to this memory. Also, without these memory segments initialized, the value returned after
such a change may not be the proper break value. If your data limit is RLIM_INFINITY, this value will
never advance past the segment size, even if that data is available. Use the -bmaxdata flag of the ld
command to set up these segments at load time.

Parameters

Command Specifies the form of control. The following Command parameter values require that the NewLimit
parameter be declared as an off_t structure:

GET_FSIZE (1)
Returns the process file size limit. The limit is in units of UBSIZE blocks (see the
sys/param.h file) and is inherited by child processes. Files of any size can be read. The
process file size limit is returned in the off_t structure specified by the NewLimit
parameter.

SET_FSIZE (2)
Sets the process file size limit to the value in the off_t structure specified by the NewLimit
parameter. Any process can decrease this limit, but only a process with root user authority
can increase the limit. The new file size limit is returned.

The following Command parameter values require that the NewLimit parameter be declared as an
integer:

GET_DATALIM (3)
Returns the maximum possible break value (as described in the brk or sbrk subroutine).

SET_DATALIM (1004)
Sets the maximum possible break value (described in the brk and sbrk subroutines).
Returns the new maximum break value, which is the NewLimit parameter rounded up to
the nearest page boundary.

GET_STACKLIM (1005)
Returns the lowest valid stack address.

Note: Stacks grow from high addresses to low addresses.

SET_STACKLIM (1006)
Sets the lowest valid stack address. Returns the new minimum valid stack address, which
is the NewLimit parameter rounded down to the nearest page boundary.

GET_REALDIR (1007)
Returns the current value of the real directory read flag. If this flag is a value of 0, a read
system call (or readx with Extension parameter value of 0) against a directory returns
fixed-format entries compatible with the System V UNIX operating system. Otherwise, a
read system call(or readx with Extension parameter value of 0) against a directory returns
the underlying physical format.

SET_REALDIR (1008)
Sets the value of the real directory read flag. If the NewLimit parameter is a value of 0,
this flag is cleared; otherwise, it is set. The old value of the real directory read flag is
returned.

NewLimit Specifies the new limit. The value and data type or structure of the NewLimit parameter depends
on the Command parameter value that is used.

Examples
To increase the size of the stack by 4096 bytes (use 4096 or PAGESIZE), and set the rc to the new lowest
valid stack address, enter:
rc = ulimit(SET_STACKLIM, ulimit(GET_STACKLIM, 0) - 4096);

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 363

../../cmds/aixcmds3/ld.htm#HDRA09493AC
../../cmds/aixcmds3/ld.htm#HDRA09493AC

Return Values
Upon successful completion, the value of the requested limit is returned. Otherwise, a value of -1 is
returned and the errno global variable is set to indicate the error.

All return values are permissible if the ulimit subroutine is successful. To check for error situations, an
application should set the errno global variable to 0 before calling the ulimit subroutine. If the ulimit
subroutine returns a value of -1, the application should check the errno global variable to verify that it is
nonzero.

Error Codes
The ulimit subroutine is unsuccessful and the limit remains unchanged if one of the following is true:

EPERM A process without root user authority attempts to increase the file size limit.
EINVAL The Command parameter is a value other than GET_FSIZE, SET_FSIZE, GET_DATALIM,

SET_DATALIM, GET_STACKLIM, SET_STACKLIM, GET_REALDIR, or SET_REALDIR.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The brk subroutine, sbrk subroutine, getrlimit or setrlimit subroutine, pathconf subroutine, read (“read,
readx, readv, readvx, or pread Subroutine” on page 9) subroutines, vlimit subroutine, write (“write, writex,
writev, writevx or pwrite Subroutines” on page 449) subroutine.

umask Subroutine

Purpose
Sets and gets the value of the file creation mask.

Library
Standard C Library (libc.a)

Syntax
#include <sys/stat.h>

mode_t umask (CreationMask)
mode_t CreationMask;

Description
The umask subroutine sets the file-mode creation mask of the process to the value of the CreationMask
parameter and returns the previous value of the mask.

Whenever a file is created (by the open, mkdir, or mknod subroutine), all file permission bits set in the
file mode creation mask are cleared in the mode of the created file. This clearing allows users to restrict
the default access to their files.

The mask is inherited by child processes.

364 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/brk.htm#HDRA08791427
../../libs/basetrf1/brk.htm#HDRA08791427
../../libs/basetrf1/getrlimit_64.htm#HDRA215961F
../../libs/basetrf1/pathconf.htm#HDRA161C177
../../libs/basetrf1/getrlimit_64.htm#HDRA215961F

Parameters

CreationMask Specifies the value of the file mode creation mask. The CreationMask parameter is
constructed by logically ORing file permission bits defined in the sys/mode.h file. Nine bits of
the CreationMask parameter are significant.

Return Values
If successful, the file permission bits returned by the umask subroutine are the previous value of the
file-mode creation mask. The CreationMask parameter can be set to this value in subsequent calls to the
umask subroutine, returning the mask to its initial state.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The chmod subroutine, mkdir subroutine, mkfifo subroutine, mknod subroutine, openx, open, or creat
subroutine, stat (“statx, stat, lstat, fstatx, fstat, fullstat, ffullstat, stat64, lstat64, or fstat64 Subroutine” on
page 251) subroutine.

The sh command, ksh command.

The sys/mode.h file.

Shells Overview in AIX 5L Version 5.1 System User’s Guide: Operating System and Devices.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

umount or uvmount Subroutine

Purpose

Removes a virtual file system from the file tree.

Library
Standard C Library (libc.a)

Syntax
int umount (Device)
char *Device;

#include <sys/vmount.h>

int uvmount (VirtualFileSystemID, Flag)
int VirtualFileSystemID;
int Flag;

Description
The umount and uvmount subroutines remove a virtual file system (VFS) from the file tree.

The umount subroutine unmounts only file systems mounted from a block device (a special file identified
by its path to the block device).

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 365

../../files/aixfiles/mode.h.htm#HDRLC42230CLM
../../libs/basetrf1/chmod.htm#HDRJK52A0GACO
../../libs/basetrf1/mkdir.htm#HDRA3IK150GACO
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/basetrf1/open.htm#HDRA1509805
../../cmds/aixcmds5/sh.htm#HDRA66F011A
../../cmds/aixcmds3/ksh.htm#HDRA265912F6
../../files/aixfiles/mode.h.htm#HDRLC42230CLM
../../aixuser/usrosdev/shells.htm
../../aixprggd/genprogc/file_sys_dir.htm#HDRFVOWF292JUDY

In addition to local devices, the uvmount subroutine unmounts local or remote directories, identified by the
VirtualFileSystemID parameter.

Only a calling process with root user authority or in the system group and having write access to the
mount point can unmount a device, file and directory mount.

Parameters

Device The path name of the block device to be unmounted for the umount
subroutine.

VirtualFileSystemID The unique identifier of the VFS to be unmounted for the uvmount subroutine.
This value is returned when a VFS is created by the vmount subroutine and
may subsequently be obtained by the mntctl subroutine. The
VirtualFileSystemID is also reported in the stat subroutine st_vfs field.

Flag Specifies special action for the uvmount subroutine. Currently only one value is
defined:

UVMNT_FORCE
Force the unmount. This flag is ignored for device mounts.

Return Values
Upon successful completion a value of 0 is returned. Otherwise, a value of -1 is returned, and the errno
global variable is set to indicate the error.

Error Codes
The uvmount subroutine fails if one of the following is true:

EPERM The calling process does not have write permission to the root of the VFS, the mounted object is a
device or remote, and the calling process does not have root user authority.

EINVAL No VFS with the specified VirtualFileSystemID parameter exists.
EBUSY A device that is still in use is being unmounted.

The umount subroutine fails if one of the following is true:

EPERM The calling process does not have root user authority.
ENOENT The Device parameter does not exist.
ENOBLK The Device parameter is not a block device.
EINVAL The Device parameter is not mounted.
EINVAL The Device parameter is not local.
EBUSY A process is holding a reference to a file located on the file system.

The umount subroutine can be unsuccessful for other reasons. For a list of additional errors, see ″Base
Operating System Error Codes For Services That Require Path-Name Resolution″.

The umount subroutine can be unsuccessful for other reasons. For a list of additional errors, see
Appendix A, ″Base Operating System Error Codes for Services That Require Path-Name Resolution.″

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

366 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/AppendixA.htm#HDRA4CG230GACO
../../libs/basetrf1/AppendixA.htm#HDRA4CG230GACO

Related Information
The mount (“vmount or mount Subroutine” on page 380) subroutine.

The mount command, umount command.

Mounting Overview in AIX 5L Version 5.1 System Management Concepts: Operating System and Devices.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

uname or unamex Subroutine

Purpose
Gets the name of the current operating system.

Library
Standard C Library (libc.a)

Syntax
#include <sys/utsname.h>
int uname (Name)
struct utsname *Name;
int unamex (Name)
struct xutsname *Name;

Description
The uname subroutine stores information identifying the current system in the structure pointed to by the
Name parameter.

The uname subroutine uses the utsname structure, which is defined in the sys/utsname.h file, and
contains the following members:
char sysname[SYS_NMLN];
char nodename[SYS_NMLN];
char release[SYS_NMLN];
char version[SYS_NMLN];
char machine[SYS_NMLN];

On Itanium-based platforms, the utsname structure contains the additional member:
char procserial[SYS_NMLM];

The uname subroutine returns a null-terminated character string naming the current system in the sysname
character array. The nodename array contains the name that the system is known by on a communications
network. The release and version arrays further identify the system. The machine array identifies the
system unit hardware being used.

The unamex subroutine uses the xutsname structure, which is defined in the sys/utsname.h file, and
contains the following members:
unsigned long nid;
long reserved[3];

The xutsname.nid field is the binary form of the utsname.machine field. For local area networks in which a
binary node name is appropriate, the xutsname.nid field contains such a name.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 367

../../cmds/aixcmds3/mount.htm#HDRA1019286A
../../cmds/aixcmds5/umount.htm#HDRA10192813
../../aixbman/admnconc/mount_overview.htm
../../aixprggd/genprogc/file_sys_dir.htm#HDRFVOWF292JUDY

Release and version variable numbers returned by the uname and unamex subroutines may change
when new BOS software levels are installed. This change affects applications using these values to
access licensed programs. Machine variable changes are due to hardware fixes or upgrades.

Contact the appropriate support organization if your application is affected.

Parameters

Name A pointer to the utsname or xutsname structure.

Return Values
Upon successful completion, the uname or unamex subroutine returns a nonnegative value. Otherwise, a
value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The uname and unamex subroutines is unsuccessful if the following is true:

EFAULT The Name parameter points outside of the process address space.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The uname command.

ungetc or ungetwc Subroutine

Purpose
Pushes a character back into the input stream.

Library
Standard C Library (libc.a)

Syntax
#include <stdio.h>

int ungetc (Character, Stream)
int Character;
FILE *Stream;

wint_t ungetwc (Character, Stream)
wint_t Character;
FILE *Stream;

Description
The ungetc and ungetwc subroutines insert the character specified by the Character parameter
(converted to an unsigned character in the case of the ungetc subroutine) into the buffer associated with
the input stream specified by the Stream parameter. This causes the next call to the getc or getwc
subroutine to return the Character value. A successful intervening call (with the stream specified by the
Stream parameter) to a file-positioning subroutine (fseek, fsetpos, or rewind) discards any inserted

368 Technical Reference, Volume 2: Base Operating System and Extensions

../../cmds/aixcmds5/uname.htm#HDRA133Z92594

characters for the stream. The ungetc and ungetwc subroutines return the Character value, and leaves
the file (in its externally stored form) specified by the Stream parameter unchanged.

You can always push one character back onto a stream, provided that something has been read from the
stream or the setbuf subroutine has been called. If the ungetc or ungetwc subroutine is called too many
times on the same stream without an intervening read or file-positioning operation, the operation may not
be successful. The fseek subroutine erases all memory of inserted characters.

The ungetc and ungetwc subroutines return a value of EOF or WEOF if a character cannot be inserted.

A successful call to the ungetc or ungetwc subroutine clears the end-of-file indicator for the stream
specified by the Stream parameter. The value of the file-position indicator after all inserted characters are
read or discarded is the same as before the characters were inserted. The value of the file-position
indicator is decreased after each successful call to the ungetc or ungetwc subroutine. If its value was 0
before the call, its value is indeterminate after the call.

Parameters

Character Specifies a character.
Stream Specifies the input stream.

Return Values
The ungetc and ungetwc subroutines return the inserted character if successful; otherwise, EOF or
WEOF is returned, respectively.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
Other wide character I/O subroutines: fgetwc subroutine, fgetws subroutine, fputwc subroutine, fputws
subroutine, getwc subroutine, getwchar subroutine, getws subroutine, putwc subroutine, putwchar
subroutine, putws subroutine.

Related standard I/O subroutines: fdopen subroutine, fgets subroutine, fopen subroutine, fprintf
subroutine, fputc subroutine, fputs subroutine, fread subroutine, freopen subroutine, fwrite subroutine,
gets subroutine, printf subroutine, putc subroutine, putchar subroutine, puts subroutine, putw
subroutine, sprintf subroutine.

National Language Support Overview for Programming, Subroutines Overview, Understanding Wide
Character Input/Output Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

unlink Subroutine

Purpose
Removes a directory entry.

Library
Standard C Library (libc.a)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 369

../../libs/basetrf1/getwc.htm#HDRA177966E
../../libs/basetrf1/getws.htm#HDRA19191CB
../../libs/basetrf1/putwc.htm#HDRA1819432
../../libs/basetrf1/putws.htm#HDRA19191B1
../../libs/basetrf1/getwc.htm#HDRA177966E
../../libs/basetrf1/getwc.htm#HDRA177966E
../../libs/basetrf1/getws.htm#HDRA19191CB
../../libs/basetrf1/putwc.htm#HDRA1819432
../../libs/basetrf1/putwc.htm#HDRA1819432
../../libs/basetrf1/putws.htm#HDRA19191B1
../../libs/basetrf1/fopen.htm#HDRA0909963
../../libs/basetrf1/gets.htm#HDRA0909D73
../../libs/basetrf1/fopen.htm#HDRA0909963
../../libs/basetrf1/printf.htm#HDRA8ZED0GACO
../../libs/basetrf1/putc.htm#HDRA1429342
../../libs/basetrf1/puts.htm#HDRHP590SHAD
../../libs/basetrf1/fread.htm#HDRA108917A9
../../libs/basetrf1/fopen.htm#HDRA0909963
../../libs/basetrf1/fread.htm#HDRA108917A9
../../libs/basetrf1/gets.htm#HDRA0909D73
../../libs/basetrf1/printf.htm#HDRA8ZED0GACO
../../libs/basetrf1/putc.htm#HDRA1429342
../../libs/basetrf1/putc.htm#HDRA1429342
../../libs/basetrf1/puts.htm#HDRHP590SHAD
../../libs/basetrf1/putc.htm#HDRA1429342
../../libs/basetrf1/printf.htm#HDRA8ZED0GACO
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/multi-byte_widechar_subr.htm
../../aixprggd/genprogc/multi-byte_widechar_subr.htm

Syntax
#include <unistd.h>

int unlink (Path)
const char *Path;

Description
The unlink subroutine removes the directory entry specified by the Path parameter and decreases the link
count of the file referenced by the link. If Network File System (NFS) is installed on your system, this path
can cross into another node.

Attention: Removing a link to a directory requires root user authority. Unlinking of directories is
strongly discouraged since erroneous directory structures can result. The rmdir subroutine should be
used to remove empty directories.

When all links to a file are removed and no process has the file open, all resources associated with the file
are reclaimed, and the file is no longer accessible. If one or more processes have the file open when the
last link is removed, the directory entry disappears. However, the removal of the file contents is postponed
until all references to the file are closed.

If the parent directory of Path has the sticky attribute (described in the mode.h file), the calling process
must have root user authority or an effective user ID equal to the owner ID of Path or the owner ID of the
parent directory of Path.

The st_ctime and st_mtime fields of the parent directory are marked for update if the unlink subroutine is
successful. In addition, if the file’s link count is not 0, the st_ctime field of the file will be marked for
update.

Applications should use the rmdir subroutine to remove a directory. If the Path parameter names a
symbolic link, the link itself is removed.

Parameters

Path Specifies the directory entry to be removed.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned, the errno global
variable is set to indicate the error, and the specified file is not changed.

Error Codes
The unlink subroutine fails and the named file is not unlinked if one of the following is true:

ENOENT The named file does not exist.
EACCES Write permission is denied on the directory containing the link to be removed.
EPERM The named file is a directory, and the calling process does not have root user authority.
EBUSY The entry to be unlinked is the mount point for a mounted filesystem, or the file named by Path is a

named STREAM.
EPERM The file specified by the Path parameter is a directory, and the calling process does not have root user

authority.
EROFS The entry to be unlinked is part of a read-only file system.

The unlink subroutine can be unsuccessful for other reasons. For a list of additional errors, see Appendix
A, ″Base Operating System Error Codes for Service That Require Path-Name Resolution″

370 Technical Reference, Volume 2: Base Operating System and Extensions

../../files/aixfiles/mode.h.htm#HDRA3219701
../../libs/basetrf1/AppendixA.htm#HDRA4CG230GACO

If NFS is installed on the system, the unlink subroutine can also fail if the following is true:

ETIMEDOUT The connection timed out.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The close subroutine, link subroutine, open subroutine, remove (“remove Subroutine” on page 34)
subroutine, rmdir (“rmdir Subroutine” on page 38) subroutine.

The rm command.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

unload Subroutine

Purpose
Unloads a module.

Library
Standard C Library (libc.a)

Syntax
#include <sys/ldr.h>

int unload(FunctionPointer)
int (*FunctionPointer)();

Description
The unload subroutine unloads the specified module and its dependents. The value returned by the load
subroutine is passed to the unload subroutine as FunctionPointer.

If the program calling the unload subroutine was linked on 4.2 or a later release, the unload subroutine
calls termination routines (fini routines) for the specified module and any of its dependents that are not
being used by any other module.

The unload subroutine frees the storage used by the specified module only if the module is no longer in
use. A module is in use as long as any other module that is in use imports symbols from it.

When a module is unloaded, any deferred resolution symbols that were bound to the module remain
bound. These bindings create references to the module that cannot be undone, even with the unload
subroutine.

(This paragraph only applies to AIX 4.3.1 and previous releases.) When a process is executing under
ptrace control, portions of the process’s address space are recopied after the unload processing
completes. For a 32-bit process, the main program text (loaded in segment 1) and shared library modules
(loaded in segment 13) are recopied. Any breakpoints or other modifications to these segments must be
reinserted after the unload call. For a 64-bit process, shared library modules are recopied after an unload
call. The debugger will be notified by setting the W_SLWTED flag in the status returned by wait, so that it
can reinsert breakpoints.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 371

../../libs/basetrf1/close.htm#HDRA08793A0
../../libs/basetrf1/link.htm#HDRA169C1F6
../../libs/basetrf1/open.htm#HDRA1509805
../../cmds/aixcmds4/rm.htm#HDRP4G120FISH
../../aixprggd/genprogc/file_sys_dir.htm#HDRFVOWF292JUDY

(This paragraph only applies to AIX 4.3.2 and later releases.) When a process executing under ptrace
control calls unload, the debugger is notified by setting the W_SLWTED flag in the status returned by
wait. If a module loaded in the shared library is no longer in use by the process, the module is deleted
from the process’s copy of the shared library segment by freeing the pages containing the module.

Parameters

FunctionPointer Specifies the name of the function returned by the load subroutine.

Return Values
Upon successful completion, the unload subroutine returns a value of 0, even if the module couldn’t be
unloaded because it is still in use.

Error Codes
If the unload subroutine fails, a value of -1 is returned, the program is not unloaded, and errno is set to
indicate the error. errno may be set to one of the following:

EINVAL The FunctionPointer parameter does not correspond to a program loaded by the load subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The load subroutine, loadbind subroutine, loadquery subroutine, dlclose subroutine.

The ld command.

Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

unlockpt Subroutine

Purpose
Unlocks a pseudo-terminal device.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int unlockpt (FileDescriptor)
int FileDescriptor;

Description
The unlockpt subroutine unlocks the slave peudo-terminal device associated with the master
peudo-terminal device defined by the FileDescriptor parameter. This subroutine has no effect if the
environment variable XPG_SUS_ENV is not set equal to the string ″ON″, or if the BSD PTY driver is used.

372 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/load.htm#HDRA1289A2C
../../libs/basetrf1/loadbind.htm#HDRA262B9118
../../libs/basetrf1/loadquery.htm#HDRA12F03C
../../libs/basetrf1/dlclose.htm#HDRHC5JN225MELA
../../cmds/aixcmds3/ld.htm#HDRA09493AC
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

Parameters

FileDescriptor Specifies the file descriptor of the master pseudo-terminal device.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned and the errno
global variable is set to indicate the error.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The grantpt subroutine.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

usrinfo Subroutine

Purpose
Gets and sets user information about the owner of the current process.

Library
Standard C Library (libc.a)

Syntax
#include <uinfo.h>

int usrinfo (Command, Buffer, Count)
int Command;
char *Buffer;
int Count;

Description
The usrinfo subroutine gets and sets information about the owner of the current process. The information
is a sequence of null-terminated name=value strings. The last string in the sequence is terminated by two
successive null characters. A child process inherits the user information of the parent process.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 373

../../libs/basetrf1/grantpt.htm#HDRA6OUJM1C5MCS
../../aixprggd/genprogc/io_handling.htm#HDRA9E740A1626CAND

Parameters

Command Specifies one of the following constants:

GETUINFO
Copies user information, up to the number of bytes specified by the Count parameter, into the
buffer pointed to by the Buffer parameter.

SETUINFO
Sets the user information for the process to the number of bytes specified by the Count
parameter in the buffer pointed to by the Buffer parameter. The calling process must have root
user authority to set the user information.

The minimum user information consists of four strings typically set by the login program:

NAME=UserName

LOGIN=LoginName

LOGNAME=LoginName

TTY=TTYName

If the process has no terminal, the TTYName parameter should be null.
Buffer Specifies a pointer to a user buffer. This buffer is usually UINFOSIZ bytes long.
Count Specifies the number of bytes of user information copied from or to the user buffer.

Return Values
If successful, the usrinfo subroutine returns a non-negative integer giving the number of bytes transferred.
Otherwise, a value of -1 is returned and the errno global variable is set to indicate the error.

Error Codes
The usrinfo subroutine fails if one of the following is true:

EPERM The Command parameter is set to SETUINFO, and the calling process does not have root user authority.
EINVAL The Command parameter is not set to SETUINFO or GETUINFO.
EINVAL The Command parameter is set to SETUINFO, and the Count parameter is larger than UINFOSIZ.
EFAULT The Buffer parameter points outside of the address space of the process.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getuinfo subroutine, setpenv (“setpenv Subroutine” on page 113) subroutine.

The login command.

List of Security and Auditing Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing
and Debugging Programs.

Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

374 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/getuinfo.htm#HDRA0909D3A
../../cmds/aixcmds3/login.htm#HDRA68V042F7
../../aixprggd/genprogc/ls_sec_audit_subrs.htm#HDRLWURF19CJEFF
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

utimes or utime Subroutine

Purpose

Sets file-access and modification times.

Library
Standard C Library (libc.a)

Syntax
#include <sys/time.h>

int utimes (Path, Times)
char *Path;
struct timeval Times[2];

#include <utime.h>

int utime (Path, Times)
const char *Path;
const struct utimbuf *Times;

Description
The utimes subroutine sets the access and modification times of the file pointed to by the Path parameter
to the value of the Times parameter. This subroutine allows time specifications accurate to the second.

The utime subroutine also sets file access and modification times. Each time is contained in a single
integer and is accurate only to the nearest second. If successful, the utime subroutine marks the time of
the last file-status change (st_ctime) to be updated.

Parameters

Path Points to the file.
Times Specifies the date and time of last access and of last modification. For the utimes subroutine, this is an

array of timeval structures, as defined in the sys/time.h file. The first array element represents the date
and time of last access, and the second element represents the date and time of last modification. The
times in the timeval structure are measured in seconds and microseconds since 00:00:00 Greenwich
Mean Time (GMT), 1 January 1970, rounded to the nearest second.

For the utime subroutine, this parameter is a pointer to a utimbuf structure, as defined in the utime.h file.
The first structure member represents the date and time of last access, and the second member
represents the date and time of last modification. The times in the utimbuf structure are measured in
seconds since 00:00:00 Greenwich Mean Time (GMT), 1 January 1970.

If the Times parameter has a null value, the access and modification times of the file are set to the current
time. If the file is remote, the current time at the remote node, rather than the local node, is used. To use
the call this way, the effective user ID of the process must be the same as the owner of the file or must
have root authority, or the process must have write permission to the file.

If the Times parameter does not have a null value, the access and modification times are set to the values
contained in the designated structure, regardless of whether those times are the same as the current time.
Only the owner of the file or a user with root authority can use the call this way.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 375

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned, the errno global
variable is set to indicate the error, and the file times are not changed.

Error Codes
The utimes or utime subroutine fails if one of the following is true:

EPERM The Times parameter is not null and the calling process neither owns the file nor has root user authority.
EACCES The Times parameter is null, effective user ID is neither the owner of the file nor has root authority, or

write access is denied.
EROFS The file system that contains the file is mounted read-only.

The utimes or utime subroutine can be unsuccessful for other reasons. For a list of additional errors, see
″Base Operating System Error Codes For Services That Require Path-Name Resolution.″

The utimes or utime subroutine can be unsuccessful for other reasons. For a list of additional errors, see
Appendix A, ″Base Operating System Error Codes For Services That Require Path-Name Resolution.″

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Microsecond time stamps are not implemented, even though the utimes subroutine provides a way to
specify them.

Related Information
The stat (“statx, stat, lstat, fstatx, fstat, fullstat, ffullstat, stat64, lstat64, or fstat64 Subroutine” on page 251)
subroutine.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

varargs Macros

Purpose
Handles a variable-length parameter list.

Library
Standard C Library (libc.a)

Syntax
#include <stdarg.h>

type va_arg (Argp, Type)
va_list Argp;

void va_start (Argp, ParmN)
va_list Argp;

void va_end (Argp)
va_list Argp;

376 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/AppendixA.htm#HDRA4CG230GACO
../../aixprggd/genprogc/file_sys_dir.htm#HDRFVOWF292JUDY

OR

#include <varargs.h>

va_alist Argp;
va_dcl

void va_start (Argp)
va_list Argp;

type va_arg (Argp, Type)
va_list Argp;

void va_end (Argp)
va_list Argp;

Description
The varargs set of macros allows you to write portable subroutines that accept a variable number of
parameters. Subroutines that have variable-length parameter lists (such as the printf subroutine), but that
do not use the varargs macros, are inherently nonportable because different systems use different
parameter-passing conventions.

Note: Do not include both <stdarg.h> and <varargs.h>. Use of <varargs.h> is not recommended. It
is supplied for backwards compatibility.

For <stdarg.h>

va_start Initializes the Argp parameter to point to the beginning of the list. The ParmN parameter identifies the
rightmost parameter in the function definition. For compatibility with previous programs, it defaults to
the address of the first parameter on the parameter list. Acceptable parameters include: integer,
double, and pointer. The va_start macro is started before any access to the unnamed arguments.

For <varargs.h>

va_alist A variable used as the parameter list in the function header.
va_argp A variable that the varargs macros use to keep track of the current location in the parameter list. Do

not modify this variable.
va_dcl Declaration for va_alist. No semicolon should follow va_dcl.
va_start Initializes the Argp parameter to point to the beginning of the list.

For <stdarg.h> and <varargs.h>

va_list Defines the type of the variable used to traverse the list.
va_arg Returns the next parameter in the list pointed to by the Argp parameter.
va_end Cleans up at the end.

Your subroutine can traverse, or scan, the parameter list more than once. Start each traversal with a call
to the va_start macro and end it with the va_end macro.

Note: The calling routine is responsible for specifying the number of parameters because it is not
always possible to determine this from the stack frame. For example, execl is passed a null pointer
to signal the end of the list. The printf subroutine determines the number of parameters from its
Format parameter.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 377

Parameters

Argp Specifies a variable that the varargs macros use to keep track of the current location in the parameter list.
Do not modify this variable.

Type Specifies the type to which the expected argument will be converted when passed as an argument. In C,
arguments that are char or short should be accessed as int; unsigned char or short arguments are
converted to unsigned int, and float arguments are converted to double. Different types can be mixed, but it
is up to the routine to know what type of argument is expected, because it cannot be determined at
runtime.

ParmN Specifies a parameter that is the identifier of the rightmost parameter in the function definition.

Examples
The following execl system call implementations are examples of the varargs macros usage.

1. The following example includes <stdarg.h>:
#include <stdarg.h>
#define MAXargs 31
int execl (const char *path, ...)
{

va_list Argp;
char *array [MAXargs];
int argno=0;
va_start (Argp, path);
while ((array[argno++] = va_arg(Argp, char*)) != (char*)0)

;
va_end(Argp);
return(execv(path, array));

}
main()
{

execl("/usr/bin/echo", "ArgV[0]", "This", "Is", "A", "Test", "\0");
/* ArguementV[0] will be discarded by the execv in main(): */
/* by convention ArgV[0] should be a copy of path parameter */

}

2. The following example includes <varargs.h>:
#include <varargs.h>
#define MAXargS 100
/*
** execl is called by
** execl(file, arg1, arg2, . . . , (char *) 0);
*/
execl(va_alist)

va_dcl
{ va_list ap;

char *file;
char *args[MAXargS];
int argno = 0;
va_start(ap);
file = va_arg(ap, char *);
while ((args[argno++] = va_arg(ap, char *)) != (char *) 0)

; /* Empty loop body */
va_end(ap);
return (execv(file, args));

}

Implementation Specifics
These macros are part of Base Operating System (BOS) Runtime.

378 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information
The exec subroutines.

The printf subroutine.

List of String Manipulation Services in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

vfwprintf, vwprintf Subroutine

Purpose
Wide-character formatted output of a stdarg argument list.

Library
Standard library (libc.a)

Syntax
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

int vwprintf ((const wchar_t * format, va_list arg) ;
int vfwprintf(FILE * stream, const wchar_t * format, va_list arg);
int vswprintf (wchar_t * s, size_t n, const wchar_t * format, va_list arg);

Description
The vwprintf, vfwprintf and vswprintf functions are the same as wprintf, fwprintf and swprintf
respectively, except that instead of being called with a variable number of arguments, they are called with
an argument list as defined by stdarg.h.

These functions do not invoke the va_end macro. However, as these functions do invoke the va_arg
macro, the value of ap after the return is indeterminate.

Return Values
Refer to fwprintf.

Error Codes
Refer to fwprintf.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The fwprintf subroutine.

The wchar.h file.

vmgetinfo Subroutine

Purpose
Retrieves Virtual Memory Manager information.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 379

../../libs/basetrf1/exec.htm#HDRPDR80GACO
../../libs/basetrf1/printf.htm#HDRA8ZED0GACO
../../aixprggd/genprogc/ls_string_subr.htm#HDRA10F0141
../basetrf1/fwprintf.htm
../basetrf1/fwprintf.htm
../basetrf1/fwprintf.htm
../../aixprggd/genprogc/nls_subr.htm#HDRA181C13

Library
Standard C Library (libc.a)

Syntax
#include <sys/vminfo.h>

int vmgetinfo(void *out, int command, int arg)

Description
The vmgetinfo subroutine returns the current value of certain Virtual Memory Manager parameters.

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) Runtime.

Parameters

arg Additional parameter which depends on the command parameter.
command Specifies which information should be returned. The command parameter has the following

valid value:

VMINFO
The content of vminfo structure (described in sys/vminfo.h) is returned. out should
point to a struct vminfo and arg should be the size of this structure. The smaller of
arg or sizeof (struct vminfo) will be copied.

out Specifies the address where VMM information should be returned.

Return Values
If the vmgetinfo subroutine is successful, a value of 0 is returned. Otherwise, a value of -1 is returned,
and the errno global variable is set to indicate the error.

Error Codes
The vmgetinfo does not succeed if the following are true:

EFAULT The copy operation to the buffer was not successful.
ENOSYS The command parameter is not valid (or not yet implemented).

vmount or mount Subroutine

Purpose
Makes a file system available for use.

Library
Standard C Library (libc.a)

Syntax
#include <sys/vmount.h>

int vmount (VMount, Size)
struct vmount *VMount;
int Size;

380 Technical Reference, Volume 2: Base Operating System and Extensions

int mount
(Device, Path, Flags)
char *Device;
char *Path;
int Flags;

Description
The vmount subroutine mounts a file system, thereby making the file available for use. The vmount
subroutine effectively creates what is known as a virtual file system. After a file system is mounted,
references to the path name that is to be mounted over refer to the root directory on the mounted file
system.

A directory can only be mounted over a directory, and a file can only be mounted over a file. (The file or
directory may be a symbolic link.)

Therefore, the vmount subroutine can provide the following types of mounts:

v A local file over a local or remote file

v A local directory over a local or remote directory

v A remote file over a local or remote file

v A remote directory over a local or remote directory.

A mount to a directory or a file can be issued if the calling process has root user authority or is in the
system group and has write access to the mount point.

To mount a block device, remote file, or remote directory, the calling process must also have root user
authority.

The mount subroutine only allows mounts of a block device over a local directory with the default file
system type. The mount subroutine searches the /etc/filesystems file to find a corresponding stanza for
the desired file system.

Note: The mount subroutine interface is provided only for compatibility with previous releases of the
operating system. The use of the mount subroutine is strongly discouraged by normal application
programs.

If the directory you are trying to mount over has the sticky bit set to on, you must either own that directory
or be the root user for the mount to succeed. This restriction applies only to directory-over-directory
mounts.

Parameters
Device

A path name identifying the block device (also called a special file) that contains the physical file
system.

Path A path name identifying the directory on which the file system is to be mounted.

Flags Values that define characteristics of the object to be mounted. Currently these values are defined
in the /usr/include/sys/vmount.h file:

MNT_READONLY
Indicates that the object to be mounted is read-only and that write access is not allowed. If
this value is not specified, writing is permitted according to individual file accessibility.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 381

MNT_NOSUID
Indicates that setuid and setgid programs referenced through the mount should not be
executable. If this value is not specified, setuid and setgid programs referenced through
the mount may be executable.

MNT_NODEV
Indicates that opens of device special files referenced through the mount should not
succeed. If this value is not specified, opens of device special files referenced through the
mount may succeed.

VMount
A pointer to a variable-length vmount structure. This structure is defined in the sys/vmount.h file.

The following fields of the VMount parameter must be initialized before the call to the vmount
subroutine:

vmt_revision
The revision code in effect when the program that created this virtual file system was
compiled. This is the value VMT_REVISION.

vmt_length
The total length of the structure with all its data. This must be a multiple of the word size
(4 bytes) and correspond with the Size parameter.

vmt_flags
Contains the general mount characteristics. The following value may be specified:

MNT_READONLY
A read-only virtual file system is to be created.

vmt_gfstype
The type of the generic file system underlying the VMT_OBJECT. Values for this field are
defined in the sys/vmount.h file and include:

MNT_JFS
Indicates the native file system.

MNT_NFS
Indicates a Network File System client.

MNT_CDROM
Indicates a CD-ROM file system.

vmt_data
An array of structures that describe variable length data associated with the vmount
structure. The structure consists of the following fields:

vmt_off
The offset of the data from the beginning of the vmount structure.

vmt_size
The size, in bytes, of the data.

The array consists of the following fields:

vmt_data[VMT_OBJECT]
Specifies he name of the device, directory, or file to be mounted.

382 Technical Reference, Volume 2: Base Operating System and Extensions

vmt_data[VMT_STUB]
Specifies the name of the device, directory, or file to be mounted over.

vmt_data[VMT_HOST]
Specifies the short (binary) name of the host that owns the mounted object. This
need not be specified if VMT_OBJECT is local (that is, it has the same
vmt_gfstype as / (root), the root of all file systems).

vmt_data[VMT_HOSTNAME]
Specifies the long (character) name of the host that owns the mounted object.
This need not be specified if VMT_OBJECT is local.

vmt_data[VMT_INFO]
Specifies binary information to be passed to the generic file-system
implementation that supports VMT_OBJECT. The interpretation of this field is
specific to the gfs_type.

vmt_data[VMT_ARGS]
Specifies a character string representation of VMT_INFO.

On return from the vmount subroutine, the following additional fields of the VMount parameter are
initialized:

vmt_fsid
Specifies the two-word file system identifier; the interpretation of this identifier depends on
the gfs_type.

vmt_vfsnumber
Specifies the unique identifier of the virtual file system. Virtual file systems do not survive
the IPL; neither does this identifier.

vmt_time
Specifies the time at which the virtual file system was created.

Size Specifies the size, in bytes, of the supplied data area.

Return Values
Upon successful completion, a value of 0 is returned. Otherwise, a value of -1 is returned, and the errno
global variable is set to indicate the error.

Error Codes
The mount and vmount subroutines fail and the virtual file system is not created if any of the following is
true:

EACCES The calling process does not have write permission on the stub directory (the directory to be mounted
over).

EBUSY VMT_OBJECT specifies a device that is already mounted or an object that is open for writing, or the
kernel’s mount table is full.

EFAULT The VMount parameter points to a location outside of the allocated address space of the process.
EFBIG The size of the file system is too big.
EFORMAT An internal inconsistency has been detected in the file system.
EINVAL The contents of the VMount parameter are unintelligible (for example, the vmt_gfstype is

unrecognizable, or the file system implementation does not understand the VMT_INFO provided).
ENOSYS The file system type requested has not been configured.
ENOTBLK The object to be mounted is not a file, directory, or device.
ENOTDIR The types of VMT_OBJECT and VMT_STUB are incompatible.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 383

EPERM VMT_OBJECT specifies a block device, and the calling process does not have root user authority.
EROFS An attempt has been made to mount a file system for read/write when the file system cannot support

writing.

The mount and vmount subroutines can also fail if additional errors occur.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The mntctl subroutine, umount (“umount or uvmount Subroutine” on page 365) subroutine.

The mount command, umount command.

Files, Directories, and File Systems for Programmers in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

vsnprintf Subroutine

Purpose
Print formatted output.

Library
Standard library (libc.a)

Syntax
#include <stdarg.h>
#include <stdio.h>

int vsnprintf(char * s, size_t n, const char * format, va_list ap)

Description
Refer to vfprintf.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

vwsprintf Subroutine

Purpose
Writes formatted wide characters.

Library
Standard C Library (libc.a)

Syntax
#include <wchar.h>
#include <stdarg.h>

384 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/AppendixA.htm#HDRA4CG230GACO
../../libs/basetrf1/mntctl.htm#HDRISL60MARC
../../cmds/aixcmds3/mount.htm#HDRA1019286A
../../cmds/aixcmds5/umount.htm#HDRA10192813
../../aixprggd/genprogc/file_sys_dir.htm#HDRFVOWF292JUDY

int vwsprintf (wcs, Format, arg)
wchar_t * wcs;
const char * Format;
va_list arg;

Description
The vwsprintf subroutine writes formatted wide characters. It is structured like the vsprintf subroutine
with a few differences. One difference is that the wcs parameter specifies a wide character array into
which the generated output is to be written, rather than a character array. The second difference is that the
meaning of the S conversion specifier is always the same in the case where the # flag is specified. If
copying takes place between objects that overlap, the behavior is undefined.

Parameters

wcs Specifies the array of wide characters where the output is to be written.
Format Specifies a multibyte character sequence composed of zero or more directives (ordinary multibyte

characters and conversion specifiers). The new formats added to handle the wide characters are:

%C Formats a single wide character.

%S Formats a wide character string.
arg Specifies the parameters to be printed.

Return Values
The vwsprintf subroutine returns the number of wide characters (not including the terminating wide
character null) written into the wide character array and specified by the wcs parameter.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The vsprintf subroutine.

The printf command.

National Language Support Overview for Programming in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

wait, waitpid, wait3, or wait364 Subroutine

Purpose
Waits for a child process to stop or terminate.

Library
Standard C Library (libc.a)

Syntax
#include <sys/wait.h>
pid_t wait (StatusLocation)
int *StatusLocation;
pid_t wait ((void *) 0)

#include <sys/wait.h>

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 385

../../libs/basetrf1/printf.htm#HDRA8ZED0GACO
../../cmds/aixcmds4/printf.htm#HDRA94C12
../../aixprggd/genprogc/nls.htm#HDRA2919F7

pid_t waitpid (ProcessID,
StatusLocation, Options)

int *StatusLocation;
pid_t ProcessID;
int Options;

#include <sys/time.h>
#include <sys/resource.h>
#include <sys/wait.h>

pid_t wait3 (StatusLocation, Options, ResourceUsage)

int *StatusLocation;
int Options;
struct rusage *ResourceUsage;

pid_t wait364 (StatusLocation, Options, ResourceUsage)

int *StatusLocation;
int Options;
struct rusage64 *ResourceUsage;

Description
The wait subroutine suspends the calling thread until the process receives a signal that is not blocked or
ignored, or until any one of the calling process’ child processes stops or terminates. The wait subroutine
returns without waiting if the child process that has not been waited for has already stopped or terminated
prior to the call.

Note: The effect of the wait subroutine can be modified by the setting of the SIGCHLD signal. See
the sigaction (“sigaction, sigvec, or signal Subroutine” on page 135) subroutine for details.

The waitpid subroutine includes a ProcessID parameter that allows the calling thread to gather status
from a specific set of child processes, according to the following rules:

v If the ProcessID value is equal to a value of -1, status is requested for any child process. In this
respect, the waitpid subroutine is equivalent to the wait subroutine.

v A ProcessID value that is greater than 0 specifies the process ID of a single child process for which
status is requested.

v If the ProcessID parameter is equal to 0, status is requested for any child process whose process group
ID is equal to that of the calling thread’s process.

v If the ProcessID parameter is less than 0, status is requested for any child process whose process
group ID is equal to the absolute value of the ProcessID parameter.

The waitpid, wait3, and wait364 subroutine variants provide an Options parameter that can modify the
behavior of the subroutine. Two values are defined, WNOHANG and WUNTRACED, which can be
combined by specifying their bitwise-inclusive OR. The WNOHANG option prevents the calling thread from
being suspended even if there are child processes to wait for. In this case, a value of 0 is returned
indicating there are no child processes that have stopped or terminated. If the WUNTRACED option is set,
the call should also return information when children of the current process are stopped because they
received a SIGTTIN, SIGTTOU, SIGSSTP, or SIGTSTOP signal.

The wait364 subroutine can be called to make 64-bit rusage counters explicitly available in a 32-bit
environment.

In AIX 5.1 and later, 64-bit quantities are also available to 64-bit applications through the wait3() interface
in the ru_utime and ru_stime fields of struct rusage.

386 Technical Reference, Volume 2: Base Operating System and Extensions

When a 32-bit process is being debugged with ptrace, the status location is set to W_SLWTED if the
process calls load, unload, or loadbind. When a 64-bit process is being debugged with ptrace, the status
location is set to W_SLWTED if the process calls load or unload.

If multiprocessing debugging mode is enabled, the status location is set to W_SEWTED if a process is
stopped during an exec subroutine and to W_SFWTED if the process is stopped during a fork subroutine.

If more than one thread is suspended awaiting termination of the same child process, exactly one thread
returns the process status at the time of the child process termination.

If the WCONTINUED option is set, the call should return information when the children of the current
process have been continued from a job control stop but whose status has not yet been reported.

Parameters

StatusLocation Points to integer variable that contains (or will contain) the child process termination
status, as defined in the sys/wait.h file.

ProcessID Specifies the child process.
Options Modifies behavior of subroutine.
ResourceUsage Specifies the location of a structure to be filled in with resource utilization information for

terminated children.

Macros
The value pointed to by StatusLocation when wait, waitpid, or wait3 subroutines are returned, can be
used as the ReturnedValue parameter for the following macros defined in the sys/wait.h file to get more
information about the process and its child process.
WIFCONTINUED(ReturnedValue)
pid_t ReturnedValue;

Returns a nonzero value if status returned for a child process that has continued from a job control stop.
WIFSTOPPED(ReturnedValue)
int ReturnedValue;

Returns a nonzero value if status returned for a stopped child.
int
WSTOPSIG(ReturnedValue)
int ReturnedValue;

Returns the number of the signal that caused the child to stop.
WIFEXITED(ReturnedValue)
int ReturnedValue;

Returns a nonzero value if status returned for normal termination.
int
WEXITSTATUS(ReturnedValue)
int ReturnedValue;

Returns the low-order 8 bits of the child exit status.
WIFSIGNALED(ReturnedValue)
int ReturnedValue;

Returns a nonzero value if status returned for abnormal termination.
int
WTERMSIG(ReturnedValue)
int ReturnedValue;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 387

Returns the number of the signal that caused the child to terminate.

Return Values
If the wait subroutine is unsuccessful, a value of -1 is returned and the errno global variable is set to
indicate the error. In addition, the waitpid, wait3, and wait364 subroutines return a value of 0 if there are
no stopped or exited child processes, and the WNOHANG option was specified. The wait subroutine
returns a 0 if there are no stopped or exited child processes, also.

Error Codes
The wait, waitpid, wait3, and wait364 subroutines are unsuccessful if one of the following is true:

ECHILD The calling thread’s process has no existing unwaited-for child processes.
EINTR This subroutine was terminated by receipt of a signal.
EFAULT The StatusLocation or ResourceUsage parameter points to a location outside of the address space of the

process.

The waitpid subroutine is unsuccessful if the following is true:

ECHILD The process or process group ID specified by the ProcessID parameter does not exist or is not a child
process of the calling process.

The waitpid and wait3 subroutines are unsuccessful if the following is true:

EINVAL The value of the Options parameter is not valid.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The exec subroutine, _exit, exit, or atexit subroutine, fork subroutine, getrusage subroutine, pause
subroutine, ptrace subroutine, sigaction (“sigaction, sigvec, or signal Subroutine” on page 135)
subroutine.

wcscat, wcschr, wcscmp, wcscpy, or wcscspn Subroutine

Purpose

Performs operations on wide-character strings.

Library

Standard C Library (libc.a)

Syntax
#include <string.h>

wchar_t * wcscat(WcString1, WcString2)
wchar_t * WcString1;
const wchar_t * WcString2;

388 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/exec.htm#HDRPDR80GACO
../../libs/basetrf1/exit.htm#HDRA087913E7
../../libs/basetrf1/fork.htm#HDRA4F011D
../../libs/basetrf1/getrusage_64.htm#HDRA235Y96C29
../../libs/basetrf1/pause.htm#HDRA0879F0B
../../libs/basetrf1/ptrace.htm#HDRA2019BB0

wchar_t * wcschr(WcString, WideCharacter)
const wchar_t *WcString;
wchar_t WideCharacter;

int * wcscmp (WcString1, WcString2)
const wchar_t *WcString1, *WcString2;

wchar_t * wcscpy(WcString1, WcString2)
wchar_t *WcString1;
const wchar_t
*
WcString2;

size_t wcscspn(WcString1, WcString2)
const wchar_t *WcString1, *WcString2;

Description

The wcscat, wcschr, wcscmp, wcscpy, or wcscspn subroutine operates on null-terminated wchar_t
strings. These subroutines expect the string arguments to contain a wchar_t null character marking the
end of the string. A copy or concatenation operation does not perform boundary checking.

The wcscat subroutine appends a copy of the wide-character string pointed to by the WcString2
parameter (including the terminating null wide-character code) to the end of the wide-character string
pointed to by the WcString1 parameter. The initial wide-character code of the WcString2 parameter
overwrites the null wide-character code at the end of the WcString1 parameter. If successful, the wcscat
subroutine returns the WcString1 parameter.

The wcschr subroutine returns a pointer to the first occurrence of the WideCharacter parameter in the
WcString parameter. The character value may be a wchar_t null character. The wchar_t null character at
the end of the string is included in the search. The wcschr subroutine returns a pointer to the wide
character code, if found, or returns a null pointer if the wide character is not found.

The wcscmp subroutine compares two wchar_t strings. It returns an integer greater than 0 if the
WcString1 parameter is greater than the WcString2 parameter. It returns 0 if the two strings are equivalent.
It returns a number less than 0 if the WcString1 parameter is less than the WcString2 parameter. The sign
of the difference in value between the first pair of wide-character codes that differ in the objects being
compared determines the sign of a nonzero return value.

The wcscpy subroutine copies the contents of the WcString2 parameter (including the ending wchar_t
null character) into the WcString1 parameter. If successful, the wcscpy subroutine returns the WcString1
parameter. If the wcscpy subroutine copies between overlapping objects, the result is undefined.

The wcscspn subroutine computes the number of wchar_t characters in the initial segment of the string
pointed to by the WcString1 parameter that do not appear in the string pointed to by the WcString2
parameter. If successful, the wcscspn subroutine returns the number of wchar_t characters in the
segment.

Parameters

WcString1 Points to a wide-character string.
WcString2 Points to a wide-character string.
WideCharacter Specifies a wide character for location.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 389

Return Values
Upon successful completion, the wcscat and wcscpy subroutines return a value of ws1. The wcschr
subroutine returns a pointer to the wide character code. Otherwise, a null pointer is returned.

The wcscmp subroutine returns an integer greater than, equal to, or less than 0, if the wide character
string pointed to by the WcString1 parameter is greater than, equal to, or less than the wide character
string pointed to by the WcString2 parameter.

The wcscspn subroutine returns the length of the segment.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The mbscat subroutine, mbschr subroutine, mbscmp subroutine, mbscpy subroutine, mbsrchr
subroutine, wcsncat (“wcsncat, wcsncmp, or wcsncpy Subroutine” on page 394) subroutine, wcsncmp
(“wcsncat, wcsncmp, or wcsncpy Subroutine” on page 394) subroutine, wcsncpy (“wcsncat, wcsncmp, or
wcsncpy Subroutine” on page 394) subroutine, wcsrchr (“wcsrchr Subroutine” on page 396) subroutine.

National Language Support Overview for Programming, Subroutines Overview, Understanding Wide
Character String Comparison Subroutines, Understanding Wide Character String Copy Subroutines,
Understanding Wide Character String Search Subroutines in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

wcscoll Subroutine

Purpose
Compares wide character strings.

Library
Standard C Library (libc.a)

Syntax
#include <string.h>

int wcscoll (WcString1, WcString2)
const wchar_t *WcString1, *WcString2;

Description
The wcscoll subroutine compares the two wide-character strings pointed to by the WcString1 and
WcString2 parameters based on the collation values specified by the LC_COLLATE environment variable
of the current locale.

Note: The wcscoll subroutine differs from the wcscmp subroutine in that the wcscoll subroutine
compares wide characters based on their collation values, while the wcscmp subroutine compares
wide characters based on their ordinal values. The wcscoll subroutine uses more time than the
wcscmp subroutine because it obtains the collation values from the current locale.

The wcscoll subroutine may be unsuccessful if the wide character strings specified by the WcString1 or
WcString2 parameter contains characters outside the domain of the current collating sequence.

390 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/mbscat.htm#HDRA1519B83
../../libs/basetrf1/mbschr.htm#HDRA15099D3
../../libs/basetrf1/mbscat.htm#HDRA1519B83
../../libs/basetrf1/mbscat.htm#HDRA1519B83
../../libs/basetrf1/mbsrchr.htm#HDRA152940A
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRL859220BOB
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRL859220BOB
../../aixprggd/genprogc/multi-byte_widechar_subr.htm
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRD959C0BOB

Parameters

WcString1 Points to a wide-character string.
WcString2 Points to a wide-character string.

Return Values
The wcscoll subroutine returns the following values:

< 0 The collation value of the WcString1 parameter is less than that of the WcString2 parameter.
=0 The collation value of the WcString1 parameter is equal to that of the WcString2 parameter.
>0 The collation value of the WcString1 parameter is greater than that of the WcString2 parameter.

The wcscoll subroutine indicates error conditions by setting the errno global variable. However, there is
no return value to indicate an error. To check for errors, the errno global variable should be set to 0, then
checked upon return from the wcscoll subroutine. If the errno global variable is nonzero, an error
occurred.

Error Codes

EINVAL The WcString1 or WcString2 arguments contain wide-character codes outside the domain of the collating
sequence.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The wcscmp (“wcscat, wcschr, wcscmp, wcscpy, or wcscspn Subroutine” on page 388) subroutine.

National Language Support Overview for Programming, Subroutines Overview, Understanding Wide
Character String Collation Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

wcsftime Subroutine

Purpose
Converts date and time into a wide character string.

Library
Standard C Library (libc. a)

Syntax
#include <time.h>

size_t wcsftime (WcString, Maxsize, Format, TimPtr)
wchar_t * WcString;
size_t Maxsize;
const wchar_t * Format;
const struct tm * TimPtr;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 391

../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRN959220BOB
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRN959220BOB

Description
The wcsftime function is equivalent to the strftime function, except that:

v The argument wcs points to the initial element of an array of wide-characters into which the generated
output is to be placed.

v The argument maxsize indicates the maximum number of wide-characters to be placed in the output
array.

v The argument format is a wide-character string and the conversion specifications are replaced by
corresponding sequences of wide-characters.

v The return value indicates the number of wide-characters placed in the output array.

If copying takes place between objects that overlap, the behavior is undefined.

Parameters

WcString Contains the output of the wcsftime subroutine.
Maxsize Specifies the maximum number of bytes (including the wide character null-terminating byte) that may

be placed in the WcString parameter.
Format Specifiers are the same as in strftime (“strftime Subroutine” on page 262) function.
TimPtr Contains the data to be converted by the wcsftime subroutine.

Return Values
If successful, and if the number of resulting wide characters (including the wide character null-terminating
byte) is no more than the number of bytes specified by the Maxsize parameter, the wcsftime subroutine
returns the number of wide characters (not including the wide character null-terminating byte) placed in the
WcString parameter. Otherwise, 0 is returned and the contents of the WcString parameter are
indeterminate.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbstowcs subroutine, strfmon (“strfmon Subroutine” on page 260) subroutine, strftime (“strftime
Subroutine” on page 262) subroutine, strptime (“strptime Subroutine” on page 271) subroutine.

National Language Support Overview for Programming, Understanding Time and Monetary Formatting
Subroutines, Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

wcsid Subroutine

Purpose
Returns the charsetID of a wide character.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

392 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/mbstowcs.htm#HDRA152947F
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/monetary_formatting_subr.htm#HDRXZ6EJDMELA
../../aixprggd/genprogc/monetary_formatting_subr.htm#HDRXZ6EJDMELA
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

int wcsid (WC)
const wchar_t WC;

Description
The wcsid subroutine returns the charsetID of the wchar_t character. No validation of the character is
performed. The parameter must point to a value in the character range of the current code set defined in
the current locale.

Parameters

WC Specifies the character to be tested.

Return Values
Successful completion returns an integer value representing the charsetID of the character. This integer
can be a number from 0 through n, where n is the maximum character set defined in the CHARSETID field of
the charmap. See ″Understanding the Character Set Description (charmap) Source File″ in AIX 5L
Version 5.1 System Management Concepts: Operating System and Devices for more information.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The csid subroutine, mbstowcs subroutine.

National Language Support Overview for Programming, Subroutines Overview, Understanding Multibyte
Code and Wide Character Code Conversion Subroutines, Understanding the Character Set Description
(charmap) Source File in AIX 5L Version 5.1 System Management Concepts: Operating System and
Devices.

wcslen Subroutine

Purpose
Determines the number of characters in a wide-character string.

Library
Standard C Library (libc.a)

Syntax
#include <wcstr.h>

size_t wcslen(WcString)
const wchar_t *WcString;

Description
The wcslen subroutine computes the number of wchar_t characters in the string pointed to by the
WcString parameter.

Parameters

WcString Specifies a wide-character string.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 393

../../aixbman/admnconc/charmap.htm
../../libs/basetrf1/csid.htm#HDRA9D75789337HOWA
../../libs/basetrf1/mbstowcs.htm#HDRA152947F
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRIDL93B0BOB
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRIDL93B0BOB
../../aixbman/admnconc/charmap.htm
../../aixbman/admnconc/charmap.htm

Return Values
The wcslen subroutine returns the number of wchar_t characters that precede the terminating wchar_t
null character.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbslen subroutine, wctomb (“wctomb Subroutine” on page 412) subroutine.

National Language Support Overview for Programming, Subroutines Overview, Understanding Multibyte
Code and Wide Character Code Conversion Subroutines in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

wcsncat, wcsncmp, or wcsncpy Subroutine

Purpose

Performs operations on a specified number of wide characters from one string to another.

Library
Standard C Library (libc.a)

Syntax
#include <wcstr.h>

wchar_t * wcsncat (WcString1, WcString2, Number)
wchar_t * WcString1;
const wchar_t * WcString2;
size_t Number;

wchar_t * wcsncmp (WcString1, WcString2, Number)
const wchar_t *WcString1, *WcString2;
size_t Number;

wchar_t * wcsncpy (WcString1, WcString2, Number)
wchar_t *WcString1;
const wchar_t *WcString2;
size_t Number;

Description
The wcsncat, wcsncmp and wcsncpy subroutines operate on null-terminated wide character strings.

The wcsncat subroutine appends characters from the WcString2 parameter, up to the value of the
Number parameter, to the end of the WcString1 parameter. It appends a wchar_t null character to the
result and returns the WcString1 value.

The wcsncmp subroutine compares wide characters in the WcString1 parameter, up to the value of the
Number parameter, to the WcString2 parameter. It returns an integer greater than 0 if the value of the

394 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/mbslen.htm#HDRA233Y95737
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRIDL93B0BOB
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRIDL93B0BOB

WcString1 parameter is greater than the value of the WcString2 parameter. It returns a 0 if the strings are
equivalent. It returns an integer less than 0 if the value of the WcString1 parameter is less than the value
of the WcString2 parameter.

The wcsncpy subroutine copies wide characters from the WcString2 parameter, up to the value of the
Number parameter, to the WcString1 parameter. It returns the value of the WcString1 parameter. If the
number of characters in the WcString2 parameter is less than the Number parameter, the WcString1
parameter is padded out with wchar_t null characters to a number equal to the value of the Number
parameter.

Parameters

WcString1 Specifies a wide-character string.
WcString2 Specifies a wide-character string.
Number Specifies the range of characters to process.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The mbsncat subroutine, mbsncmp subroutine, mbsncpy subroutine, wcscat (“wcscat, wcschr, wcscmp,
wcscpy, or wcscspn Subroutine” on page 388) subroutine, wcscmp (“wcscat, wcschr, wcscmp, wcscpy, or
wcscspn Subroutine” on page 388) subroutine, wcscpy (“wcscat, wcschr, wcscmp, wcscpy, or wcscspn
Subroutine” on page 388) subroutine.

National Language Support Overview for Programming, Subroutines Overview, Understanding Wide
Character String Comparison Subroutines, Understanding Wide Character String Copy Subroutines in AIX
5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

wcspbrk Subroutine

Purpose
Locates the first occurrence of characters in a string.

Library
Standard C Library (libc.a)

Syntax
#include <string.h>

wchar_t *wcspbrk(WcString1, WcString2)
const wchar_t *WcString1;
const wchar_t *WcString2;

Description
The wcspbrk subroutine locates the first occurrence in the wide character string pointed to by the
WcString1 parameter of any wide character from the string pointed to by the WcString2 parameter.

Parameters

WcString1 Points to a wide-character string being searched.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 395

../../libs/basetrf1/mbsncat.htm#HDRA1519BCC
../../libs/basetrf1/mbsncat.htm#HDRA1519BCC
../../libs/basetrf1/mbsncat.htm#HDRA1519BCC
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRL859220BOB
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRL859220BOB
../../aixprggd/genprogc/multi-byte_widechar_subr.htm

WcString2 Points to a wide-character string.

Return Values
If no wchar_t character from the WcString2 parameter occurs in the WcString1 parameter, the wcspbrk
subroutine returns a pointer to the wide character, or a null value.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbspbrk subroutine, wcschr (“wcscat, wcschr, wcscmp, wcscpy, or wcscspn Subroutine” on
page 388) subroutine, wcscspn (“wcscat, wcschr, wcscmp, wcscpy, or wcscspn Subroutine” on page 388)
subroutine, wcsrchr (“wcsrchr Subroutine”) subroutine, wcsspn (“wcsspn Subroutine” on page 398)
subroutine, wcstok (“wcstok Subroutine” on page 401) subroutine, wcswcs (“wcswcs Subroutine” on
page 408) subroutine.

National Language Support Overview for Programming, Subroutines Overview, Understanding Wide
Character String Search Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

wcsrchr Subroutine

Purpose
Locates a wchar_t character in a wide-character string.

Library
Standard C Library (libc.a)

Syntax
#include <wcstr.h>

wchar_t *wcsrchr (WcString, WideCharacter)
const wchar_t *WcString;
wint_t WideCharacter;

Description
The wcsrchr subroutine locates the last occurrence of the WideCharacter value in the string pointed to by
the WcString parameter. The terminating wchar_t null character is considered to be part of the string.

Parameters

WcString Points to a string.
WideCharacter Specifies a wchar_t character.

Return Values
The wcsrchr subroutine returns a pointer to the WideCharacter parameter value, or a null pointer if that
value does not occur in the specified string.

396 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/mbspbrk.htm#HDRA15293A6
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRD959C0BOB
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRD959C0BOB

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbschr subroutine, mbsrchr subroutine, wcschr (“wcscat, wcschr, wcscmp, wcscpy, or wcscspn
Subroutine” on page 388) subroutine, wcscspn (“wcscat, wcschr, wcscmp, wcscpy, or wcscspn
Subroutine” on page 388) subroutine, wcspbrk (“wcspbrk Subroutine” on page 395) subroutine, wcsspn
(“wcsspn Subroutine” on page 398) subroutine, wcstok (“wcstok Subroutine” on page 401) subroutine,
wcswcs (“wcswcs Subroutine” on page 408) subroutine.

National Language Support Overview for Programming, Subroutines Overview, Understanding Wide
Character String Search Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

wcsrtombs Subroutine

Purpose
Convert a wide-character string to a character string (restartable).

Library
Standard library (libc.a)

Syntax
#include <wchar.h>

size_t wcsrtombs (char * dst, const wchar_t ** src, size_t len, mbstate_t * ps);

Description
The wcsrtombs function converts a sequence of wide-characters from the array indirectly pointed to by
src into a sequence of corresponding characters, beginning in the conversion state described by the
object pointed to by ps.If dst is not a null pointer, the converted characters are then stored into the array
pointed to by dst. Conversion continues up to and including a terminating null wide-character, which is
also stored. Conversion stops earlier in the following cases:

v When a code is reached that does not correspond to a valid character.

v When the next character would exceed the limit of len total bytes to be stored in the array pointed to
by dst (and dst is not a null pointer).

Each conversion takes place as if by a call to the wcrtomb function.

If dst is not a null pointer, the pointer object pointed to by src is assigned either a null pointer (if
conversion stopped due to reaching a terminating null wide-character) or the address just past the last
wide-character converted (if any). If conversion stopped due to reaching a terminating null wide-character,
the resulting state described is the initial conversion state.

If ps is a null pointer, the wcsrtombs function uses its own internal mbstate_t object, which is initialised at
program startup to the initial conversion state. Otherwise, the mbstate_t object pointed to by ps is used to
completely describe the current conversion state of the associated character sequence. The
implementation will behave as if no function defined in this specification calls wcsrtombs.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 397

../../libs/basetrf1/mbschr.htm#HDRA15099D3
../../libs/basetrf1/mbsrchr.htm#HDRA152940A
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRD959C0BOB
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRD959C0BOB

Return Values
If conversion stops because a code is reached that does not correspond to a valid character, an encoding
error occurs. In this case, the wcsrtombs function stores the value of the macro EILSEQ in errno and
returns (size_t)-1; the conversion state is undefined. Otherwise, it returns the number of bytes in the
resulting character sequence, not including the terminating null (if any).

Error Codes
The wcsrtombs function may fail if:

EINVAL ps points to an object that contains an invalid conversion state.
EILSEQ A wide-character code does not correspond to a valid character.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The wctomb (“wctomb Subroutine” on page 412) subroutine.

The wchar.h file.

wcsspn Subroutine

Purpose
Returns the number of wide characters in the initial segment of a string.

Library
Standard C Library (libc.a)

Syntax
#include <wcstr.h>

size_t wcsspn(WcString1, WcString2)
const wchar_t *WcString1, *WcString2;

Description
The wcsspn subroutine computes the number of wchar_t characters in the initial segment of the string
pointed to by the WcString1 parameter. The WcString1 parameter consists entirely of wchar_t characters
from the string pointed to by the WcString2 parameter.

Parameters

WcString1 Points to the initial segment of a string.
WcString2 Points to a set of characters string.

Return Values
The wcsspn subroutine returns the number of wchar_t characters in the segment.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

398 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/nls_subr.htm#HDRA181C13

Related Information
The wcschr (“wcscat, wcschr, wcscmp, wcscpy, or wcscspn Subroutine” on page 388) subroutine,
wcscspn (“wcscat, wcschr, wcscmp, wcscpy, or wcscspn Subroutine” on page 388) subroutine, wcspbrk
(“wcspbrk Subroutine” on page 395) subroutine, wcsrchr (“wcsrchr Subroutine” on page 396) subroutine,
wcstok (“wcstok Subroutine” on page 401) subroutine, wcswcs (“wcswcs Subroutine” on page 408)
subroutine.

National Language Support Overview for Programming, Subroutines Overview, Understanding Wide
Character String Search Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

wcsstr Subroutine

Purpose
Find a wide-character substring.

Library
Standard library (libc.a)

Syntax
#include <wchar.h>

wchar_t *wcsstr (const wchar_t * ws1, const wchar_t * ws2);

Description
The wcsstr function locates the first occurrence in the wide-character string pointed to by ws1 of the
sequence of wide-characters (excluding the terminating null wide-character) in the wide- character string
pointed to by ws2.

Return Values
On successful completion, wcsstr returns a pointer to the located wide-character string, or a null pointer if
the wide-character string is not found.

If ws2 points to a wide-character string with zero length, the function returns ws1.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The wchar.h file.

wcstod Subroutine

Purpose
Converts a wide character string to a double-precision number.

Library
Standard C Library (libc.a)

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 399

../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRD959C0BOB
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRD959C0BOB
../../aixprggd/genprogc/nls_subr.htm#HDRA181C13

Syntax
#include <stdlib.h>

double wcstod (Nptr, Endptr)
const wchar_t *Nptr;
wchar_t **Endptr;

Description
The wcstod subroutine converts the initial portion of the wide character string pointed to by the Nptr
parameter to a double-precision number. The input wide character string is first broken down into three
parts:

1. An initial, possibly empty, sequence of white-space wide character codes (as specified by the
iswspace subroutine)

2. A subject sequence interpreted as a floating-point constant

3. A final wide character string of one or more unrecognized wide character codes (including the
terminating wide character null)

The subject sequence is then (if possible) converted to a floating-point number and returned as the result
of the wcstod subroutine.

The subject sequence is expected to consist of an optional + (plus sign) or - (minus sign), a non-empty
sequence of digits (which may contain a radix), and an optional exponent. The exponent consists of e or
E, followed by an optional sign, followed by one or more decimal digits. The subject sequence is the
longest initial sub-sequence of the input wide character string (starting with the first non-white-space wide
character code) that is of the expected form. The subject sequence contains no wide character codes if
the input wide character string is empty or consists entirely of white-space wide character codes, or if the
first non-white-space wide character code is other than a sign, a digit, or a radix.

If the subject sequence is valid, the sequence of wide character codes starting with the first digit or radix
(whichever occurs first) is interpreted as a float or double constant. If the radix is used in place of a period,
and if either an exponent or radix does not appear, a radix is assumed to follow the last digit in the wide
character string. If the subject sequence begins with a - (minus sign), the conversion value is negated. A
pointer to the final wide character string is stored in the object pointed to by the Endptr parameter, unless
it specifies a null pointer. The radix is defined by the LC_NUMERIC category. In the C locale, or in a
locale where the radix is not defined, the radix defaults to a period.

Parameters

Nptr Contains a pointer to the wide character string to be converted to a double-precision value.
Endptr Contains a pointer to the position in the string specified by the Nptr parameter where a wide character is

found that is not a valid character for the purpose of this conversion.

Return Values
The wcstod subroutine returns a converted double-precision value if a valid floating-point constant is
found. If no conversion could be performed, a value of 0 is returned. If the converted value is outside the
range (either too high or too low), the errno global variable is set to ERANGE. In case of overflow, plus or
minus HUGE_VAL is returned. In the case of underflow, a value of 0 is returned. If the subject sequence
is empty or does not have the expected form, no conversion is performed. In this case, the value specified
by the Nptr parameter is stored in the object pointed to by the Endptr parameter, provided that the Endptr
parameter is not a null pointer.

400 Technical Reference, Volume 2: Base Operating System and Extensions

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The iswspace subroutine, wcstol (“wcstol or wcstoll Subroutine” on page 403) subroutine, wcstoul
(“wcstoul or wcstoull Subroutine” on page 406) subroutine.

National Language Support Overview for Programming, Subroutines Overview, Understanding Wide
Character String Conversion Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing
and Debugging Programs.

wcstok Subroutine

Purpose
Converts wide-character strings to tokens.

Library
Standard C Library (libc.a)

Syntax
#include <wchar.h>

wchar_t *wcstok (WcString1, WcString2, ptr)
wchar_t *WcString1;
const wchar_t *WcString2;
wchar_t **ptr

Description
A sequence of calls to the wcstok subroutine breaks the wide-character string pointed to by WcString1
into a sequence of tokens, each of which is delimited by a wide-character code from the wide-character
string pointed to by WcString2. The third argument points to a caller-provided wchar_t pointer where
wcstok stores information necessary for it to continue scanning the same wide-character string.

The first call in the sequence has WcString1 as its first argument and is followed by calls with a nullpointer
as their first argument. The separator string pointed to by WcString2 may be different from call to call.

The first call in the sequence searches the wide-character string pointed to by WcString1 for the first
wide-character code that is not contained in the current separator string pointed to by WcString2. If no
such wide-character code is found, then there are no tokens in the wide-character string pointed to by
WcString1 and wcstok returns a null pointer. If such a wide-character code is found, it is the start of the
first token.

The wcstok subroutine then searches from there for a wide-character code that is contained in the current
separator string. If no such wide-character code is found, the current token extends to the end of the
wide-character string pointed to by WcString1, and subsequent searches for a token returns a null pointer.
If such a wide-character code is found, it is overwritten by a null wide-character, which terminates the
current token. The wcstok subroutine saves a pointer to the following wide-character code, from which the
next search for a token starts.

Each subsequent call, with a null pointer as the value of the first argument, starts searching from the
saved pointer and behaves as described above.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 401

../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/multi-byte_widechar_subr.htm
../../aixprggd/genprogc/multi-byte_widechar_subr.htm

The implementation behaves as if no function calls wcstok.

Parameters

ptr Contains a pointer to a caller-provided wchar_t pointer where wcstok stores information necessary
for it to continue scanning the same wide-character string.

WcString1 Contains a pointer to the wide-character string to be searched.
WcString2 Contains a pointer to the string of wide-character token delimiters.

Return Values
Upon successful completion, wcstok returns a pointer to the first wide-character code of a token.
Otherwise, if there is no token, wcstok returns a null pointer.

Examples
To convert a wide-character string to tokens, use the following:
#include <wchar.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *WCString1 = L"?a???b,,,#c";
wchar_t *ptr;
wchar_t *pwcs;

(void)setlocale(LC_ALL, "");
pwcs = wcstok(WCString1, L"?", &ptr);

/* pwcs points to the token L"a"*/
pwcs = wcstok((wchar_t *)NULL, L",", &ptr);

/* pwcs points to the token L"??b"*/
pwcs = wcstok((wchar_t *)NULL, L"#,", &ptr);

/* pwcs points to the token L"c"*/

}

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The wcschr (“wcscat, wcschr, wcscmp, wcscpy, or wcscspn Subroutine” on page 388) subroutine,
wcscspn (“wcscat, wcschr, wcscmp, wcscpy, or wcscspn Subroutine” on page 388) subroutine, wcspbrk
(“wcspbrk Subroutine” on page 395) subroutine, wcsrchr (“wcsrchr Subroutine” on page 396) subroutine,
wcsspn (“wcsspn Subroutine” on page 398) subroutine, wcstod (“wcstod Subroutine” on page 399)
subroutine, wcstol (“wcstol or wcstoll Subroutine” on page 403) subroutine, wcstoul (“wcstoul or wcstoull
Subroutine” on page 406) subroutine, wcswcs (“wcswcs Subroutine” on page 408) subroutine.

The wchar.h file.

National Language Support Overview for Programming, Subroutines Overview, Understanding Wide
Character String Search Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

402 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/nls_subr.htm#HDRA181C13
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRD959C0BOB
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRD959C0BOB

wcstol or wcstoll Subroutine

Purpose
Converts a wide-character string to a long integer representation.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

long int wcstol (Nptr, Endptr, Base)
const wchar_t *Nptr;
wchar_t **Endptr;
int Base;

long long int wcstoll (*Nptr, **Endptr, Base)
const wchar_t *Nptr;
wchar_t **Endptr:
int Base

Description
The wcstol subroutine converts a wide-character string to a long integer representation. The wcstoll
subroutine converts a wide-character string to a long long integer representation.

1. An initial, possibly empty, sequence of white-space wide-character codes (as specified by the
iswspace subroutine)

2. A subject sequence interpreted as an integer and represented in a radix determined by the Base
parameter

3. A final wide-character string of one or more unrecognized wide-character codes, including the
terminating wide-character null of the input wide-character string

If possible, the subject is then converted to an integer, and the result is returned.

The Base parameter can take the following values: 0 through 9, or a (or A) through z (or Z). There are
potentially 36 values for the base. If the base value is 0, the expected form of the subject string is that of a
decimal, octal, or hexadecimal constant, any of which can be preceded by a + (plus sign) or - (minus
sign). A decimal constant starts with a non zero digit, and is composed of a sequence of decimal digits. An
octal constant consists of the prefix 0 optionally followed by a sequence of the digits 0 to 7. A hexadecimal
constant is defined as the prefix 0x (or 0X) followed by a sequence of decimal digits and the letters a (or
A) to f (or F) with values ranging from 10 (for a or A) to 15 (for f or F).

If the base value is between 2 and 36, the expected form of the subject sequence is a sequence of letters
and digits representing an integer in the radix specified by the Base parameter, optionally preceded by a +
or -, but not including an integer suffix. The letters a (or A) through z (or Z) are ascribed the values of 10
to 35. Only letters whose values are less than that of the base are permitted. If the value of base is 16,
the characters 0x or 0X may optionally precede the sequence of letters or digits, following the sign, if
present.

The wide-character string is parsed to skip the initial space characters (as determined by the iswspace
subroutine). Any non-space character signifies the start of a subject string that may form an integer in the
radix specified by the Base parameter. The subject sequence is defined to be the longest initial substring
that is a long integer of the expected form. Any character not satisfying this form begins the final portion of
the wide-character string pointed to by the Endptr parameter on return from the call to the wcstol or
wcstoll subroutine.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 403

Parameters

Nptr Contains a pointer to the wide-character string to be converted to a long integer number.
Endptr Contains a pointer to the position in the Nptr parameter string where a wide-character is found that is not

a valid character.
Base Specifies the radix in which the characters are interpreted.

Return Values
The wcstol and wcstoll subroutines return the converted value of the long or long long integer if the
expected form is found. If no conversion could be performed, a value of 0 is returned. If the converted
value is outside the range of representable values, LONG_MAX or LONG_MIN is returned (according to
the sign of the value), and the value of errno is set to ERANGE. If the base value specified by the Base
parameter is not supported, EINVAL is returned.

If the subject sequence has the expected form, it is interpreted as an integer constant in the appropriate
base. A pointer to the final string is stored in the Endptr parameter if that parameter is not a null pointer.

If the subject sequence is empty or does not have a valid form, no conversion is done. The value of the
Nptr parameter is stored in the Endptr parameter if that parameter is not a null pointer.

Since 0, LONG_MIN, and LONG_MAX are returned in the event of an error and are also valid returns if
the wcstol or wcstoll subroutine is successful, applications should set the errno global variable to 0
before calling either subroutine, and then check errno after return. If the errno global value has changed,
an error occurred.

Examples
To convert a wide-character string to a signed long integer, use the following code:
#include <stdlib.h>
#include <locale.h>
#include <errno.h>

main()
{

wchar_t *WCString, *endptr;
long int retval;
(void)setlocale(LC_ALL, "");
/**Set errno to 0 so a failure for wcstol can be
**detected */
errno=0;
/*
**Let WCString point to a wide character null terminated
** string containing a signed long integer value
**

*/retval = wcstol (WCString &endptr, 0);
/* Check errno, if it is non-zero, wcstol failed */
if (errno != 0) {

/*Error handling*/
}
else if (&WCString == endptr) {

/* No conversion could be performed */
/* Handle this case accordingly. */

}
/* retval contains long integer */

}

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

404 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information
The iswspace subroutine, wcstod (“wcstod Subroutine” on page 399) subroutine, wcstoul (“wcstoul or
wcstoull Subroutine” on page 406) subroutine.

National Language Support Overview for Programming, Subroutines Overview, Understanding Wide
Character String Conversion Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing
and Debugging Programs.

wcstombs Subroutine

Purpose

Converts a sequence of wide characters into a sequence of multibyte characters.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

size_t wcstombs (String, WcString, Number)
char *String;
const wchar_t *WcString;
size_t Number;

Description
The wcstombs subroutine converts the sequence of wide characters pointed to by the WcString
parameter to a sequence of corresponding multibyte characters and places the results in the area pointed
to by the String parameter. The conversion is terminated when the null wide character is encountered or
when the number of bytes specified by the Number parameter (or the value of the Number parameter
minus 1) has been placed in the area pointed to by the String parameter. If the amount of space available
in the area pointed to by the String parameter would cause a partial multibyte character to be stored, the
subroutine uses a number of bytes equalling the value of the Number parameter minus 1, because only
complete multibyte characters are allowed.

Parameters

String Points to the area where the result of the conversion is stored. If the String parameter is a null
pointer, the subroutine returns the number of bytes required to hold the conversion.

WcString Points to a wide-character string.
Number Specifies a number of bytes to be converted.

Return Values
The wcstombs subroutine returns the number of bytes modified. If a wide character is encountered that is
not valid, a value of -1 is returned.

Error Codes
The wcstombs subroutine is unsuccessful if the following error occurs:

EILSEQ An invalid character sequence is detected, or a wide-character code does not correspond to a valid
character.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 405

../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/multi-byte_widechar_subr.htm
../../aixprggd/genprogc/multi-byte_widechar_subr.htm

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbstowcs subroutine, mbtowc subroutine, wcslen (“wcslen Subroutine” on page 393) subroutine,
wctomb (“wctomb Subroutine” on page 412) subroutine.

National Language Support Overview for Programming, Subroutines Overview, Understanding Multibyte
Code and Wide Character Code Conversion Subroutines in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

wcstoul or wcstoull Subroutine

Purpose
Converts wide character strings to unsigned long or long long integer representation.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

unsigned long int wcstoul (Nptr, Endptr, Base)
const wchar_t * Nptr;
wchar_t ** Endptr;
int Base;

unsigned long long int wcstoull (Nptr, Endptr, Base)
const wchar_t *Nptr;
wchar_t **Endptr;
int Base;

Description
The wcstoul and wcstoull subroutines convert the initial portion of the wide character string pointed to by
the Nptr parameter to an unsigned long or long long integer representation. To do this, it parses the wide
character string pointed to by the Nptr parameter to obtain a valid string (that is, subject string) for the
purpose of conversion to an unsigned long integer. It then points the Endptr parameter to the position
where an unrecognized character, including the terminating null, is found.

The base specified by the Base parameter can take the following values: 0 through 9, a (or A) through z
(or Z). There are potentially 36 values for the base. If the base value is 0, the expected form of the subject
string is that of an unsigned integer constant, with an optional + (plus sign) or - (minus sign), but not
including the integer suffix. If the base value is between 2 and 36, the expected form of the subject
sequence is a sequence of letters and digits representing an integer with the radix specified by the Base
parameter, optionally preceded by a + or -, but not including an integer suffix.

The letters a (or A) through z (or Z) are ascribed the values of 10 to 35. Only letters whose values are less
than that of the base are permitted. If the value of the base is 16, the characters 0x (or 0X) may optionally
precede the sequence of letters or digits, following a + or - . present.

The wide character string is parsed to skip the initial white-space characters (as determined by the
iswspace subroutine). Any nonspace character signifies the start of a subject string that may form an
unsigned long integer in the radix specified by the Base parameter. The subject sequence is defined to be

406 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/mbstowcs.htm#HDRA152947F
../../libs/basetrf1/mbtowc.htm#HDRA15098DB
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRIDL93B0BOB
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRIDL93B0BOB

the longest initial substring that is an unsigned long integer of the expected form. Any character not
satisfying this expected form begins the final portion of the wide character string pointed to by the Endptr
parameter on return from the call to this subroutine.

Parameters

Nptr Contains a pointer to the wide character string to be converted to an unsigned long integer.
Endptr Contains a pointer to the position in the Nptr string where a wide character is found that is not a valid

character for the purpose of this conversion.
Base Specifies the radix in which the wide characters are interpreted.

Return Values
The wcstoul and wcstoull subroutines return the converted value of the unsigned long or long long
integer if the expected form is found. If no conversion could be performed, a value of 0 is returned. If the
converted value is outside the range of representable values, a ULONGLONG_MAX value is returned,
and the value of the errno global variable is set to a ERANGE value.

If the subject sequence has the expected form, it is interpreted as an integer constant in the appropriate
base. A pointer to the final string is stored in the Endptr parameter if that parameter is not a null pointer. If
the subject sequence is empty or does not have a valid form, no conversion is done and the value of the
Nptr parameter is stored in the Endptr parameter if it is not a null pointer.

If the radix specified by the Base parameter is not supported, an EINVAL value is returned. If the value to
be returned is not representable, an ERANGE value is returned.

Examples
To convert a wide character string to an unsigned long integer, use the following code:
#include <stdlib.h>
#include <locale.h>
#include <errno.h>
extern int errno;

main()
{

wchar_t *WCString, *EndPtr;
unsigned long int retval;

(void)setlocale(LC_ALL, "");
/*
** Let WCString point to a wide character null terminated
** string containing an unsigned long integer value.
**
*/

retval = wcstoul (WCString &EndPtr, 0);
if(retval==0) {

/* No conversion could be performed */
/* Handle this case accordingly. */

} else if(retval == ULONG_MAX) {
/* Error handling */

}
/* retval contains the unsigned long integer value. */

}

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 407

Related Information
National Language Support Overview for Programming, Subroutines Overview, Understanding Wide
Character String Conversion Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing
and Debugging Programs.

wcswcs Subroutine

Purpose
Locates first occurrence of a wide character in a string.

Library
Standard C Library (libc.a)

Syntax
#include <string.h>

wchar_t *wcswcs(WcString1, WcString2)
const wchar_t *WcString1, *WcString2;

Description
The wcswcs subroutine locates the first occurrence, in the string pointed to by the WcString1 parameter,
of a sequence of wchar_t characters (excluding the terminating wchar_t null character) from the string
pointed to by the WcString2 parameter.

Parameters

WcString1 Points to the wide-character string being searched.
WcString2 Points to a wide-character string, which is a source string.

Return Values
The wcswcs subroutine returns a pointer to the located string, or a null value if the string is not found. If
the WcString2 parameter points to a string with 0 length, the function returns the WcString1 value.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbspbrk subroutine, wcschr (“wcscat, wcschr, wcscmp, wcscpy, or wcscspn Subroutine” on
page 388) subroutine, wcscspn (“wcscat, wcschr, wcscmp, wcscpy, or wcscspn Subroutine” on page 388)
subroutine, wcspbrk (“wcspbrk Subroutine” on page 395) subroutine, wcsrchr (“wcsrchr Subroutine” on
page 396) subroutine, wcsspn (“wcsspn Subroutine” on page 398) subroutine, wcstok (“wcstok
Subroutine” on page 401) subroutine.

National Language Support Overview for Programming, Subroutines Overview, Understanding Wide
Character String Search Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

408 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/multi-byte_widechar_subr.htm
../../aixprggd/genprogc/multi-byte_widechar_subr.htm
../../libs/basetrf1/mbspbrk.htm#HDRA15293A6
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRD959C0BOB
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRD959C0BOB

wcswidth Subroutine

Purpose
Determines the display width of wide character strings.

Library
Standard C Library (libc.a)

Syntax
#include <string.h>

int wcswidth (* Pwcs, n)
const wchar_t *Pwcs;
size_t n;

Description
The wcswidth subroutine determines the number of display columns to be occupied by the number of
wide characters specified by the N parameter in the string pointed to by the Pwcs parameter. The
LC_CTYPE category affects the behavior of the wcswidth subroutine. Fewer than the number of wide
characters specified by the N parameter are counted if a null character is encountered first.

Parameters

N Specifies the maximum number of wide characters whose display width is to be determined.
Pwcs Contains a pointer to the wide character string.

Return Values
The wcswidth subroutine returns the number of display columns to be occupied by the number of wide
characters (up to the terminating wide character null) specified by the N parameter (or fewer) in the string
pointed to by the Pwcs parameter. A value of zero is returned if the Pwcs parameter is a wide character
null pointer or a pointer to a wide character null (that is, Pwcs or *Pwcs is null). If the Pwcs parameter
points to an unusable wide character code, -1 is returned.

Examples
To find the display column width of a wide character string, use the following:
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs;
int retval, n ;

(void)setlocale(LC_ALL, "");
/* Let pwcs point to a wide character null terminated
** string. Let n be the number of wide characters whose
** display column width is to be determined.
*/
retval= wcswidth(pwcs, n);
if(retval == -1){

/* Error handling. Invalid wide character code

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 409

** encountered in the wide character string pwcs.
*/

}
}

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The wcwidth (“wcwidth Subroutine” on page 415) subroutine.

National Language Support Overview for Programming, Subroutines Overview, Understanding Wide
Character Display Column Width Subroutines in AIX 5L Version 5.1 General Programming Concepts:
Writing and Debugging Programs.

wcsxfrm Subroutine

Purpose
Transforms wide-character strings to wide-character codes of current locale.

Library
Standard C Library (libc.a)

Syntax
#include <string.h>

size_t wcsxfrm (WcString1, WcString2, Number)
wchar_t *WcString1;
const wchar_t *WcString2;
size_t Number;

Description
The wcsxfrm subroutine transforms the wide-character string specified by the WcString2 parameter into a
string of wide-character codes, based on the collation values of the wide characters in the current locale
as specified by the LC_COLLATE category. No more than the number of character codes specified by the
Number parameter are copied into the array specified by the WcString1 parameter. When two such
transformed wide-character strings are compared using the wcscmp subroutine, the result is the same as
that obtained by a direct call to the wcscoll subroutine on the two original wide-character strings.

Parameters

WcString1 Points to the destination wide-character string.
WcString2 Points to the source wide-character string.
Number Specifies the maximum number of wide-character codes to place into the array specified by

WcString1. To determine the necessary size specification, set the Number parameter to a value
of 0, so that the WcString1 parameter becomes a null pointer. The return value plus 1 is the size
necessary for the conversion.

Return Values
If the WcString1 parameter is a wide-character null pointer, the wcsxfrm subroutine returns the number of
wide-character elements (not including the wide-character null terminator) required to store the
transformed wide character string. If the count specified by the Number parameter is sufficient to hold the

410 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/multi-byte_widechar_subr.htm
../../aixprggd/genprogc/multi-byte_widechar_subr.htm

transformed string in the WcString1 parameter, including the wide character null terminator, the return
value is set to the actual number of wide character elements placed in the WcString1 parameter, not
including the wide character null. If the return value is equal to or greater than the value specified by the
Number parameter, the contents of the array pointed to by the WcString1 parameter are indeterminate.
This occurs whenever the Number value parameter is too small to hold the entire transformed string. If an
error occurs, the wcsxfrm subroutine returns the size_t data type with a value of -1 and sets the errno
global variable to indicate the error.

If the wide character string pointed to by the WcString2 parameter contains wide character codes outside
the domain of the collating sequence defined by the current locale, the wcsxfrm subroutine returns a
value of EINVAL.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The wcscmp (“wcscat, wcschr, wcscmp, wcscpy, or wcscspn Subroutine” on page 388) subroutine,
wcscoll (“wcscoll Subroutine” on page 390) subroutine.

National Language Support Overview for Programming, Subroutines Overview, Understanding Wide
Character String Collation Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

wctob Subroutine

Purpose
Wide-character to single-byte conversion.

Library
Standard library (libc.a)

Syntax
#include <stdio.h>
#include <wchar.h>

int wctob (wint_t c);

Description
The wctob function determines whether c corresponds to a member of the extended character set whose
character representation is a single byte when in the initial shift state.

The behavior of this function is affected by the LC_CTYPE category of the current locale.

Return Values
The wctob function returns EOF if c does not correspond to a character with length one in the initial shift
state. Otherwise, it returns the single-byte representation of that character.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 411

../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRN959220BOB
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRN959220BOB

Related Information
The btowc subroutine.

The wchar.h file.

wctomb Subroutine

Purpose
Converts a wide character into a multibyte character.

Library
Standard C Library (libc.a)

Syntax
#include <stdlib.h>

int wctomb (Storage, WideCharacter)
char *Storage;
wchar_t WideCharacter;

Description
The wctomb subroutine determines the number of bytes required to represent the wide character
specified by the WideCharacter parameter as the corresponding multibyte character. It then converts the
WideCharacter value to a multibyte character and stores the results in the area pointed to by the Storage
parameter. The wctomb subroutine can store a maximum of MB_CUR_MAX bytes in the area pointed to
by the Storage parameter. Thus, the length of the area pointed to by the Storage parameter should be at
least MB_CUR_MAX bytes. The MB_CUR_MAX macro is defined in the stdlib.h file.

Parameters

Storage Points to an area where the result of the conversion is stored.
WideCharacter Specifies a wide-character value.

Return Values
The wctomb subroutine returns a 0 if the Storage parameter is a null pointer. If the WideCharacter
parameter does not correspond to a valid multibyte character, a -1 is returned. Otherwise, the number of
bytes that comprise the multibyte character is returned.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The mbtowc subroutine, mbstowcs subroutine, wcslen (“wcslen Subroutine” on page 393) subroutine,
wcstombs (“wcstombs Subroutine” on page 405) subroutine.

National Language Support Overview for Programming, Subroutines Overview, Understanding Multibyte
Code and Wide Character Code Conversion Subroutines in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

412 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/btowc.htm
../../aixprggd/genprogc/nls_subr.htm#HDRA181C13
../../libs/basetrf1/mbtowc.htm#HDRA15098DB
../../libs/basetrf1/mbstowcs.htm#HDRA152947F
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRIDL93B0BOB
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRIDL93B0BOB

wctrans Subroutine

Purpose
Define character mapping.

Library
Standard library (libc.a)

Syntax
#include <wctype.h>

wctrans_t wctrans (const char * charclass);

Description
The wctrans function is defined for valid character mapping names identified in the current locale. The
charclass is a string identifying a generic character mapping name for which codeset-specific information
is required. The following character mapping names are defined in all locales ″tolower″ and ″toupper″.

The function returns a value of type wctrans_t, which can be used as the second argument to subsequent
calls of towctrans. The wctrans function determines values of wctrans_t according to the rules of the
coded character set defined by character mapping information in the program’s locale (category
LC_CTYPE). The values returned by wctrans are valid until a call to setlocale that modifies the category
LC_CTYPE.

Return Values
The wctrans function returns 0 if the given character mapping name is not valid for the current locale
(category LC_CTYPE), otherwise it returns a non-zero object of type wctrans_t that can be used in calls
to towctrans.

Error Codes
The wctrans function may fail if:

EINVAL The character mapping name pointed to by charclass is not valid in the current locale.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The towctrans (“towctrans Subroutine” on page 332) subroutine.

The wctype.h file.

wctype or get_wctype Subroutine

Purpose

Obtains a handle for valid property names in the current locale for wide characters.

Library
Standard C library (libc.a).

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 413

../../aixprggd/genprogc/nls_subr.htm#HDRA181C13

Syntax
#include <wchar.h>

wctype_t wctype (Property)
const char *Property;

wctype_t get_wctype (Property)
char *Property;

Description
The wctype subroutine obtains a handle for valid property names for wide characters as defined in the
current locale. The handle is of data type wctype_t and can be used as the WC_PROP parameter in the
iswctype subroutine. Values returned by the wctype subroutine are valid until the setlocale subroutine
modifies the LC_CTYPE category. The get_wctype subroutine is identical to the wctype subroutine.

Parameters

Property Points to a string that identifies a generic character class for which code set-specific information is
required. The basic character classes are:

alnum Alphanumeric character.

alpha Alphabetic character.

blank Space and tab characters.

cntrl Control character. No characters in alpha or print are included.

digit Numeric digit character.

graph Graphic character for printing. Does not include the space character or cntrl characters, but
does include all characters in digit and punct.

lower Lowercase character. No characters in cntrl, digit, punct, or space are included.

print Print character. Includes characters in graph, but does not include characters in cntrl.

punct Punctuation character. No characters in alpha, digit, or cntrl, or the space character are
included.

space Space characters.

upper Uppercase character.

xdigit Hexadecimal character.

Return Values
Upon successful completion, the subroutine returns a value of type wctype_t, which is a handle for valid
property names in the current locale. Otherwise, it returns a value or - 1 if the Property parameter
specifies a character class that is not valid for the current locale.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

The wctype subroutine adheres to Systems Interface and Headers, Issue 4 of X/Open.

Related Information
The iswalnum subroutine, iswalpha subroutine, iswcntrl subroutine, iswctype subroutine, iswdigit
subroutine, iswgraph subroutine, iswlower subroutine, iswprint subroutine, iswpunct subroutine,

414 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswctype.htm#HDRA143C1474
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8

iswspace subroutine, iswupper subroutine, iswxdigit subroutine, setlocale (“setlocale Subroutine” on
page 107) subroutine, towlower (“towlower Subroutine” on page 333) subroutine, towupper (“towupper
Subroutine” on page 334) subroutine.

National Language Support Overview for Programming, Subroutines Overview, Understan ding Wide
Character Classification Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

wcwidth Subroutine

Purpose
Determines the display width of wide characters.

Library
Standard C Library (libc.a)

Syntax
#include <string.h>

int wcwidth (WC)

wchar_t WC;

Description
The wcwidth subroutine determines the number of display columns to be occupied by the wide character
specified by the WC parameter. The LC_CTYPE subroutine affects the behavior of the wcwidth
subroutine.

Parameters

WC Specifies a wide character.

Return Values
The wcwidth subroutine returns the number of display columns to be occupied by the WC parameter. If
the WC parameter is a wide character null, a value of 0 is returned. If the WC parameter points to an
unusable wide character code, -1 is returned.

Examples
To find the display column width of a wide character, use the following:
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t wc;
int retval;

(void)setlocale(LC_ALL, "");
/* Let wc be the wide character whose
** display width is to be found.
*/
retval= wcwidth(wc);
if(retval == -1){

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 415

../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRMC59120BOB
../../aixprggd/genprogc/multi-byte_widechar_subr.htm#HDRMC59120BOB

/*
** Error handling. Invalid wide character in wc.
*/

}
}

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The wcswidth (“wcswidth Subroutine” on page 409) subroutine.

National Language Support Overview for Programming, Subroutines Overview, Understanding Wide
Character Display Column Width Subroutines in AIX 5L Version 5.1 General Programming Concepts:
Writing and Debugging Programs.

wlm_assign Subroutine

Purpose
Manually assigns processes to a class or cancels prior manual assignments for processes.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_assign (args)

struct wlm_assign *args;

Description
The wlm_assign subroutine:

v Assigns a set of processes specified by their process IDs (PIDS) or process group IDs (PGID) to a
specified superclass or subclass, thus overriding the automatic class assignment or a prior manual
assignment.

v Cancels a previous manual assignment for the specified processes, allowing the processes to be
subjected to the automatic assignment rules again.

The target processes are identified by their process ID (pid) or by their process group ID (pgid). The
wlm_assign subroutine allows specifying processes using a list of pids, a list of pgids, or both.

The name of a valid superclass or subclass must be specified to manually assign the target processes to
a class. If the target class is a superclass, each process is assigned to one of the subclasses of the
specified superclass according to the assignment rules for the subclasses of this superclass.

A manual assignment remains in effect (and a process remains in its manually assigned class) until:

v The process terminates.

v The Workload Manager (WLM) is stopped. When WLM is restarted, the manual assignments in effect
when WLM was stopped are lost.

v The class the process has been assigned to is deleted.

v The manual assignment for the process is canceled.

416 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../aixprggd/genprogc/multi-byte_widechar_subr.htm
../../aixprggd/genprogc/multi-byte_widechar_subr.htm

v A new manual assignment overrides a prior one.

The name of a valid superclass or subclass must be specified to manually assign the target processes to
a class. The assignment can be done or canceled at the superclass level, the subclass level, or both. The
interactions between automatic assignment, inheritance and manual assignment are detailed in the Manual
Assignment in AIX 5L Version 5.1 System Management Concepts: Operating System and Devices.

Flags in the wa_versflags field described below are used to specify if the requested operation is an
assignment or cancellation and at which level.

To assign a process to a class or cancel a prior manual assignment, the caller must have authority both on
the process and on the target class. These constraints translate into the following:

v The root user can assign any process to any class.

v A user with administration privileges on the subclasses of a given superclass (that is, the user or group
name matches the user or group names specified in the attributes adminuser and admingroup of the
superclass) can manually reassign any process from one of the subclasses of this superclass to another
subclass of the superclass.

v A user can manually assign the user’s own processes (same real or effective user ID) to a superclass
or a subclass, for which the user has manual assignment privileges (that is, the user or group name
matches the user or group names specified in the attributes authuser and authgroup of the superclass
or the subclass).

This defines three levels of privilege among the persons who can manually assign processes to classes,
root being the highest. For a user to modify or terminate a manual assignment, the user must be at the
same level of privilege as the person who issued the last manual assignment, or higher.

Parameter

args Specifies the address of the struct wlm_assign data
structure containing the parameters for the desired class
assignment.

The following fields of the wlm_args structure and the embedded substructures can be provided:

wa_versflags Needs to be initialized with WLM_VERSION. The flags
values available, defined in the sys/wlm.h header file,
are:

v WLM_ASSIGN_SUPER

v WLM_ASSIGN_SUB

v WLM_ASSIGN_BOTH

v WLM_UNASSIGN_SUPER

v WLM_UNASSIGN_SUB

v WLM_UNASSIGN_BOTH
wa_pids Specifies the address of the array containing the process

IDs of processes to be manually assigned. When this list
is empty, a NULL pointer can be passed together with a
count of zero (0).

wa_pid_count Specifies the number of PIDS in the above array. Could
be zero (0) if using only pgids to identify the processes.

wa_pgids Specifies the address of the array containing the process
group identifiers (pids) of processes to be manually
assigned. When this list is empty, a NULL pointer can be
passed together with a count of zero (0).

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 417

../../aixbman/admnconc/wlm_assign_co.htm
../../aixbman/admnconc/wlm_assign_co.htm

wa_pgid_count Specifies the number of PGIDs in the above array. Could
be zero (0) if using only pids to identify the processes. If
both pids and pgids counts are zero (0), no process is
assigned, but the operation is considered successful.

wa_classname Specifies the full name of the superclass (super_name) or
the subclass (super_name.sub_name) of the class you
want to manually assign processes to. The class name
field is ignored when canceling an existing manual
assignment.

Return Values
Upon successful completion, the wlm_assign subroutine returns a value of 0. If the wlm_assign
subroutine is unsuccessful, a non-0 value is returned. The routine is considered successful if some of the
target processes are not found, (to account for process terminations) or are not assigned/deassigned due
to a lack of privileges, for instance. If none of the processes in the lists can be assigned/deassigned, this
is considered an error.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

Related Information
Manual Assignment and Workload Manager Application Programming Interface in AIX 5L Version 5.1
System Management Concepts: Operating System and Devices.

wlm_change_class Subroutine

Purpose
Changes some of the attributes of a class.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_change_class (wlmargs)

struct wlm_args *wlmargs;

Description
The wlm_change_class subroutine changes attributes of an existing superclass or subclass. Except for
its name, any of the attributes of the class can be modified by a call to wlm_change_class.

v If the name of a valid configuration is passed in the confdir field, the subroutine updates the Workload
Manager (WLM) properties files for the target configuration.

v If a null string (’\0’) is passed in the confdir field, the changes are applied only to the in-core WLM data.
No WLM properties file is updated.

The structure of type structclass_definition, which is part of struct wlm_args, has normally been
initialized with a call to wlm_init_class_definition. Once this has been done, initialize the required fields
of this structure (such as the name of the class to be modified) and the fields corresponding to the class

418 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixbman/admnconc/wlm_assign_co.htm
../../aixbman/admnconc/wlm_api.htm

attributes you want to modify. For a description of the possible values for the various class attributes and
their default values, refer to the description of wlm.h in the AIX 5L Version 5.1 Files Reference.

The caller must have root authority to change the attributes of a superclass and must have administrator
authority on a superclass to change the attributes of a subclass of the superclass.

Parameter

wlmargs Specifies the address of the struct wlm_args data
structure containing the class_definition structure for the
new class to be created.

The following fields of the wlm_args structure and the embedded substructures need to be provided:

versflags Needs to be initialized with WLM_VERSION.
confdir Specifies the name of the WLM configuration the target

class belongs to. It must be either the name of a valid
subdirectory of /etc/wlm or an empty string (starting with
’\0’).

If the name is a valid subdirectory, the relevant class
description file in the given configuration are modified.

If the name is a null string, no description files are
updated. The modified class attributes are passed to the
kernel similarly to a call to wlm_load.

name Specifies the name of the superclass or of the subclass to
be modified. If this is a subclass name, it must be of the
form super_name.sub_name. There is no default for this
field.

All the other fields can be left at their initial value as set by wlm_init_class_definition if the user does not
wish to change the current values.

Return Values
Upon successful completion, the wlm_change_class subroutine returns a value of 0. If the
wlm_change_class subroutine is unsuccessful, a non-0 value is returned.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

Related Information
The wlm.h header file.

The wlm_create_class (“wlm_create_class Subroutine” on page 423) subroutine, wlm_delete_class
(“wlm_delete_class Subroutine” on page 425) subroutine.

Workload Manager Application Programming Interface in AIX 5L Version 5.1 System Management
Concepts: Operating System and Devices.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 419

../../files/aixfiles/wlm.h.htm
../../files/aixfiles/wlm.h.htm
../../files/aixfiles/wlm.h.htm
../../aixbman/admnconc/wlm_api.htm

wlm_check subroutine

Purpose
Check a WLM configuration

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_check (config)

char *config;

Description
The wlm_check subroutine checks the class definitions and the coherency of the assignment rules file(s)
(syntax, existence of the classes, validity of user and group names, application path names, etc.) for the
configuration whose name is passed as an argument.

If config is a null pointer or points to an empty string, wlm_check performs the checks on the
configuration files, in the configuration pointed to by /etc/wlm/current.

Parameter

config A pointer to a character string. This pointer should be:

v The address of a character string representing the
name of a valid configuration (a subdirectory of
/etc/wlm)

v A null pointer

v A pointer to a null string (″″)

If config is a null pointer or a pointer to a null string, the
configuration files in the directory pointed to by
/etc/wlm/current (active configuration) is checked for
errors. Otherwise, the configuration files in directory
/etc/wlm/<config_name> is checked.

Return Values
Upon successful completion, a value of 0 is returned. If the wlm_checksubroutine is unsuccessful a non 0
value is returned.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the header
file sys/wlm.h.

Related Information
The wlm.h header file.

System Management Concepts: Operating System and Devices, Chapter 13 Workload Manager,
Automatic class Assignment.

420 Technical Reference, Volume 2: Base Operating System and Extensions

../../files/aixfiles/wlm.h.htm
../../aixbman/admnconc/wlm_concepts.htm

The rules file.

wlm_classify Subroutine

Purpose
Determines which classes a process is assigned to.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_classify (config, attributes, class, len)

char *config;

char *attributes;

char *class;

int *len;

Description
The wlm_classify subroutine must be passed the name of a valid configuration and a set of process
attributes in a format identical to the format of the rules file (assignment rules). The names of the classes
are copied into the area pointed to by class. The integer pointed to by len contains the size of the class
names area on input and the number of matches on output. If the area pointed to by class is not big
enough to contain the names of all the potential matches, an error is returned.

The normal use of the wlm_classify routine is to explicitly provide all the process classification attributes:
user name, group name, application pathname, type, and tag when applicable. This gives a match to a
single class. To implement ″what if″ scenarios, the interface allows you to leave some of the attributes
unspecified by using a hyphen (’-’) instead. This may lead to multiple classes the process could be
assigned to, depending on the values of the unspecified attributes. If all the attributes are left unspecified,
an error is returned.

The attributes string is provided in a format identical to the format of the attributes in the rules file: a list of
attribute values separated by spaces. The order of the attributes in the assignment rules is:

1. reserved: must be a hyphen (’-’)

2. user name

3. group name

4. application pathname

5. type of application

6. tag

Each field can have at most one value. Exclusion (!), comma separated lists and wild cards are not
allowed. For the type field, the AND operator ″+″ is allowed, since a process can have several of the
possible values for the type attribute at the same time. For instance a process can be a 32 bit process and
call plock, or be a 64 bit fixed priority process.

Here are examples of valid attributes strings:

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 421

../../files/aixfiles/rules.htm
../../files/aixfiles/rules.htm

"- bob staff /usr/bin/emacs - -"

"- - - /usr/sbin/dbserv - _DB1"

"- - devlt - 32bit+fixed"

"- sally"

The class name(s) returned by the function in the class buffer is fully-qualified, null-terminated class
names of the form supername.subname.

This function does not require any special privileges and can be called by all users.

Parameters

config Specifies a pointer to a string containing the name of a
valid Workload Manager (WLM) configuration (the name of
a subdirectory of /etc/wlm). If a null string (’\0’) is given,
the wlm_classify subroutine uses current as the default
configuration.

attributes Specifies the address of a string, with the format
described above, containing a list of values for the
process attributes used for automatic classification of
processes.

class Specifies a pointer to a buffer where the name of the
class the process could be assigned to is returned as
consecutive null-terminated character strings.

len Specifies a pointer to an integer containing the length in
bytes of the buffer pointed to by class when calling
wlm_classify and the actual number of class names
copied into the class buffer upon successful return.

Return Values
Upon successful completion, the wlm_classify subroutine returns a value of 0. In case of error, a non-0
value is returned.

When a non-0 value is returned, the content of the class buffer and the value of the integer pointed to by
len are unspecified.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

Related Information
The wlmcheck command.

The wlm.h header file.

Workload Manager rules File in AIX 5L Version 5.1 Files Reference.

Automatic assignment (“wlm_classify Subroutine” on page 421) in AIX 5L Version 5.1 System Management
Concepts: Operating System and Devices.

422 Technical Reference, Volume 2: Base Operating System and Extensions

../../files/aixfiles/wlm.h.htm
../../cmds/aixcmds6/wlmcheck.htm
../../files/aixfiles/wlm.h.htm
../../files/aixfiles/rules.htm

wlm_class2key Subroutine

Purpose
Class name to key translation.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_class2key (struct wlm_args *args, wlm_key_t *key)

Description
The wlm_class2key subroutine generates a 64-bit numeric key from a WLM class name. The
wlm_class2key subroutine is provided for applications gathering high volumes of per-class usage
statistics or accounting data and allows those applications to save storage space by compressing the class
name (up to 34 characters long) into a 64-bit integer. The wlm_key2class subroutine can then get the
key-to-class name conversion for data reporting purposes

Parameters

wlm_args Only 2 fields need to be initialized in the wlm_args structure pointed to by args:

v cl_def.data.descr.name specifies the null terminated full name of the class
(<super_name>.<subname> for a subclass).

v versflags initialized with WLM_VERSION and optionally WLM_MUTE.

Return Values
If the wlm_class2key subroutine is successful, a value of 0 is returned. If the wlm_class2key subroutine
is unsuccessful, an error code is returned.

Error Codes
If the wlm_class2key subroutine is unsuccessful, one of the following error codes is returned:

WLM_NOT_INITED Missing call to wlm_init.
WLM_EFAULT Invalid key or args pointer.
WLM_BADCNAME The class name contains invalid characters.

Related Information
The wlm_endkey subroutine.

The wlm_initkey subroutine.

The wlm_key2class subroutine.

wlm_create_class Subroutine

Purpose
Creates a new Workload Manager (WLM) class.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 423

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_create_class (wlmargs)

struct wlm_args *wlmargs;

Description
The wlm_create_class subroutine creates a new class for a given WLM configuration using the values
passed in the data structure of type structwlm_args pointed to by wlmargs.

v If the name of a configuration is passed in the confdir field, the subroutine updates the WLM properties
files for the target configuration. When creating the first subclass of a superclass, the subroutine creates
a subdirectory of /etc/wlm/<confdir> with the name of the superclass and create the WLM properties
files in this new directory. The newly created properties files have entries for the Default and Shared
subclass automatically created in addition to entries for the new subclass.

v If a null string (’\0’) is passed in the confdir field, the new superclass or subclass is created only in the
in-core WLM data. No WLM properties file are updated. In that case, the new class definition is lost if
WLM is stopped and restarted, or if the system reboots.

The structure of type struct class_definition, which is part of struct wlm_args, has normally been
initialized with a call to wlm_init_class_definition. Once this has been done, initialize the fields of this
structure which have no default value (such as the name of the new class) or for which the desired value
is different from the default value. For a description of the possible values for all the class attributes and
their default values, refer to the description of wlm.h in the AIX 5L Version 5.1 Files Reference.

The caller must have root authority to create a superclass and must have administrator authority on a
superclass to create a subclass of the superclass.

Parameter

wlmargs Specifies the address of the struct wlm_args data
structure containing the class_definition structure for the
new class to be created.

The following fields of the wlm_args structure and the embedded substructures need to be provided:

versflags Needs to be initialized with WLM_VERSION.
confdir Specifies the name of the WLM configuration the new

class is to be added to. It must be either the name of a
valid subdirectory of /etc/wlm or an empty string (starting
with ’\0’).

If the name is a valid subdirectory, the new class data is
added to the given WLM configuration’s class description
files.

If the name is a null string, no description files are
updated. The new class is created and the data is passed
to the kernel immediately.

424 Technical Reference, Volume 2: Base Operating System and Extensions

../../files/aixfiles/wlm.h.htm

name Specifies the name of the superclass or of the subclass to
be created. If this is a subclass name, it must be of the
form super_name.sub_name. There is no default for this
field.

All the other fields can be left at their default value if the user does not wish to use specific values.

Return Values
Upon successful completion, the wlm_create_class subroutine returns a value of 0. If the
wlm_create_class subroutine is unsuccessful, a non-0 value is returned.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

Related Information
The mkclass command, chclass command, rmclass command.

The wlm.h header file.

The wlm_change_class (“wlm_change_class Subroutine” on page 418) subroutine, wlm_delete_class
(“wlm_delete_class Subroutine”) subroutine.

Workload Management in AIX 5L Version 5.1 System Management Concepts: Operating System and
Devices.

wlm_delete_class Subroutine

Purpose
Deletes a class.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_delete_class (wlmargs)

struct wlm_args *wlmargs;

Description
The wlm_delete_class subroutine deletes an existing superclass or subclass. A superclass cannot be
deleted if it still has subclasses other than Default and Shared defined.

v If the name of a valid configuration is passed in the confdir field, the subroutine updates the Workload
Manager (WLM) properties files for the target configuration, removing all references to the class to be
deleted.

v If a null string (’\0’) is passed in the confdir field, the class is deleted only from the in-core WLM data
structures. No WLM properties file is updated. This is normally used to delete a class which was also

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 425

../../files/aixfiles/wlm.h.htm
../../cmds/aixcmds3/mkclass.htm
../../cmds/aixcmds1/chclass.htm
../../cmds/aixcmds4/rmclass.htm
../../files/aixfiles/wlm.h.htm
../../aixbman/admnconc/wlm_concepts.htm

only created in the in-core WLM data structures. Otherwise, the class deletion is temporary and the
class will be created again when WLM is updated or restarted with a configuration where the class
exists in the classes file.

The caller must have root authority to delete a superclass and must have administrator authority on a
superclass to delete a subclass of the superclass.

Parameter

wlmargs Specifies the address of the struct wlm_args data
structure containing the information about the class to be
deleted.

The following fields of the wlm_args structure and the embedded substructures need to be provided:

versflags Needs to be initialized with WLM_VERSION.
confdir Specifies the name of the WLM configuration the target

class belongs to. It must be either the name of a valid
subdirectory of /etc/wlm or an empty string (starting with
’\0’).

If the name is a valid subdirectory, the relevant class
description files in the specified configuration are modified.

If the name is a null string, no description files are
updated. The class is removed from the kernel WLM data
structures.

name Specifies the name of the superclass or of the subclass to
be deleted. If this is a subclass name, it must be of the
form super_name.sub_name. There is no default for this
field.

All the other fields can be left uninitialized for this call.

Return Values
Upon successful completion, the wlm_delete_class subroutine returns a value of 0. If the
wlm_delete_class subroutine is unsuccessful, a non-0 value is returned.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

Related Information
The mkclass command, chclass command, rmclass command.

The wlm.h header file.

The wlm_change_class (“wlm_change_class Subroutine” on page 418) subroutine, wlm_create_class
(“wlm_create_class Subroutine” on page 423) subroutine.

Workload Management in AIX 5L Version 5.1 System Management Concepts: Operating System and
Devices.

426 Technical Reference, Volume 2: Base Operating System and Extensions

../../files/aixfiles/wlm.h.htm
../../cmds/aixcmds3/mkclass.htm
../../cmds/aixcmds1/chclass.htm
../../cmds/aixcmds4/rmclass.htm
../../files/aixfiles/wlm.h.htm
../../aixbman/admnconc/wlm_concepts.htm

wlm_endkey Subroutine

Purpose
Frees the classes to keys translation table.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_endkey(struct wlm_args *args, void *ctx)

Description
The wlm_endkey subroutine frees the classes to the keys translation table. The memory area pointed to
by ctx is freed.

Parameters

- ctx Points to the memory area to be freed.
wlm_args A pointer to a wlm_args structure:

versflag field is the only field in the structure that needs to be initialized with WLM_VERSION
and optionally WLM_MUTE.

Return Values
When the wlm_endkey operation is successful, it returns a value of 0, and if it is unsuccessful, it returns
an error code.

Error Codes
If the wlm_endkey subroutine is unsuccessful, one of the following error codes is returned:

WLM_BADVERS Bad version number.
WLM_NOT_INITED Missing call to wlm_init.
WLM_EFAULT Invalid ctx or args argument.

Related Information
The wlm_class2key subroutine.

The wlm_initkey subroutine.

The wlm_key2class subroutine.

wlm_get_bio_stats subroutine

Purpose
Read the WLM disk I/O statistics per class or per device

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 427

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/types.h>

#include <sys/wlm.h>

int wlm_get_bio_stats (dev, array, count, class, flags)

dev_t dev;

void *array;

int *count;

char *class;

int flags;

Description
The wlm_get_bio_stats subroutine is used to get the WLM disk IO statistics. There are two types of
statistics available:

v The statistics about disk IO utilization per class and per devices, returned by wlm_get_bio_stats in
wlm_bio_class_info_t structures,

v The statistics about the disk IO utilization per device, all classes combined, returned by
wlm_get_bio_stats in wlm_bio_dev_info_t structures.

The type of statistics returned by the function is predicated on the value of the flags argument. The flags
argument, together with the dev and class arguments, are used to restrict the scope of the function to a
class or a set of classes and/or a device or a set of devices. If the value passed to the routine in the count
argument is equal to zero (0), wlm_get_bio_stats does not copy any device statistics (and, in this case,
the array argument can be a NULL pointer but sets this count to the number of elements in scope for the
specific set of parameters. This is a way of finding out how big an array is needed to get all the
information for a given set of classes and devices.

wlm_get_bio_stats does not require any special privileges and is accessible to all users.
wlm_get_bio_stats fails if WLM is off.

428 Technical Reference, Volume 2: Base Operating System and Extensions

Parameters

flags Need to be initialized with WLM_VERSION. Optionally, the
following flag values can be or’ed to WLM_VERSION:

WLM_SUPER_ONLY
Limits the scope to superclasses only

WLM_SUB_ONLY
Limits the scope to subclasses only

WLM_BIO_CLASS_INFO
Per class statistics requested

WLM_BIO_DEV_INFO
Per device statistics requested

WLM_BIO_ALL_DEV
Requests statistics for all devices. When this flag
is set, the value passed in the dev argument is
ignored.

WLM_BIO_ALL_MINOR
Requests statistics for all devices associated with
a given major number. When this flag is set, only
the major number part of the value passed in the
dev argument is used.

WLM_VERBOSE_MODE
Shows the system defined subclasses (Default
and Shared)even if they have not been modified
by a WLM administrator.

One of the flags WLM_BIO_CLASS_INFO or
WLM_BIO_DEV_INFO (and only one) must be specified.
WLM_SUPER_ONLY and WLM_SUB_ONLYare mutually
exclusive.

dev Device identification (major, minor) of a disk device.

v If dev is equal to 0, the statistics for all devices are
returned (even if WLM_BIO_ALL_DEV is not specified
in the flags argument).

v If dev is not equal to 0 and WLM_BIO_ALL_MINOR is
specified in the flags argument, the statistics for all disk
devices with the same major number specified in dev
are returned.

v If dev is not equal to 0 and WLM_BIO_ALL_MINOR is
not specified in the flags argument, only the statistics
for the disk device with the major and minor numbers
specified in dev are returned.

array Pointer to an array of wlm_bio_class_info_t structures
(when WLM_BIO_CLASS_INFO is specified in the flags
argument) or an array of wlm_bio_dev_info_t structures
(when WLM_BIO_DEV_INFO is specified in the flags
argument). A NULL pointer can be passed together with a
count of 0 to determine how many elements are in scope
for the set of arguments passed.

count The address of an integer containing the maximum
number of elements to be copied into the array above. If
the call to wlm_get_bio_stats is successful, this integer
will contain the number of elements actually copied. If the
initial value is equal to zero (0), wlm_get_bio_stats sets
this value to the number elements selected by the
specified combination of flags and class.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 429

class A pointer to a character string containing the name of a
superclass or subclass. If class is a pointer to an empty
string (″″), the information for all classes are returned. The
class parameter is taken into account only when the flag
WLM_BIO_CLASS_INFO is set.

Return Values
Upon successful completion, a value of 0 is returned and the value pointed to by count is set to the
number of elements copied into the array of structures pointed to by array. If the wlm_get_bio_stats
subroutine is unsuccessful a non 0 value is returned.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the header
file sys/wlm.h.

Related Information
The wlm.h header file.

wlm_get_info Subroutine

Purpose
Read the characteristics of superclasses or subclasses.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_get_info (wlmargs, info, count)

struct wlm_args *wlmargs;

struct wlm_info *info

int *count

Description
The wlm_get_info subroutine is used to get the characteristics of the classes defined in the active
Workload Manager (WLM) configuration, together with their current resource usage statistics. For a
detailed description of the fields of the structure wlm_info, refer to the description of the wlm.h header file
in the AIX 5L Version 5.1 Files Reference documentation.

By default, the scope of the wlm_get_info subroutine is all the superclasses and all the subclasses. This
scope can be limited to a subset of the classes using flags in the versflags field of wlm_args or a
superclass or subclass name in the name field of the substructure class_definition of wlm_args.

The information related to the superclasses and subclasses within the scope of wlm_get_info are copied
to the array of wlm_info structures pointed to by info. The total number of classes for which information is
copied to the array at info is limited to the value of the integer pointed to by count. If the routine is
successful, the value of the integer pointed to by count is set to the actual number of classes copied. If the

430 Technical Reference, Volume 2: Base Operating System and Extensions

../../files/aixfiles/wlm.h.htm
../../files/aixfiles/wlm.h.htm
../../files/aixfiles/wlm.h.htm

value passed to the routine for the count is equal to zero (0), wlm_get_info does not copy any class
statistics but sets this count to the number of classes in scope for the specific set of parameters. This is a
way of finding out how big an array is needed to get all the information for a given set of classes
(superclasses or subclasses).

This is a way of finding out how big an array is needed to get all the information for a given set of classes
(superclasses or subclasses).

The wlm_get_info subroutine does not require any special privileges and is accessible to all users.
wlm_get_info fails if WLM is off.

Parameters
wlmargs

The address of a struct wlm_args data structure.

The following fields of the wlm_args structure and the embedded substructures need to be
provided:

versflags
Needs to be initialized with WLM_VERSION. Optionally, the following flag value can be
or’ed to WLM_VERSION:

WLM_SUPER_ONLY
Limits the scope to superclasses only

WLM_SUB_ONLY
Limits the scope to subclasses only

WLM_VERBOSE_MODE
Shows the system-defined subclasses (Default and Shared) even if they have not
been modified by a WLM administrator.

WLM_SUPER_ONLY and WLM_SUB_ONLY are mutually exclusive.

name Contains either a null string or the name of a valid superclass or subclass (in the form
Super.Sub). This field can be used in conjunction with the flags to further narrow the
scope of wlm_get_info:

v If the name of a subclass is provided, wlm_get_info returns the statistics only for the
specified subclass.

v If the name of a superclass is provided or if none of the WLM_SUPER_ONLY and
WLM_SUB_ONLY flag is provided, wlm_get_info returns the statistics for the specified
superclass and all its subclasses.

v If the name of a superclass is provided together with WLM_SUPER_ONLY,
wlm_get_info returns only the statistics for the specified superclass.

v If the name of a superclass is provided together with WLM_SUB_ONLY, wlm_get_info
returns the statistics for all the subclasses of the specified superclass.

All the other fields of the wlm_args structure can be left uninitialized.

info The address of an array of structures of type struct wlm_info. Upon successful return from
wlm_get_info, this array contains the WLM statistics for the classes selected.

count The address of an integer containing the maximum number of element (of type wlm_info) for
wlm_get_info to copy into the array above. If the call to wlm_get_info is successful, this integer

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 431

contains the number of elements actually copied. If the initial value is equal to zero (0),
wlm_get_info sets this value to the number of classes selected by the specified combination of
versflags and name above.

Return Values
Upon successful completion, the wlm_get_info subroutine returns a value of 0. If the wlm_get_info
subroutine is unsuccessful a non-0 value is returned.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

Related Information
The wlmstat command.

The wlm.h header file.

wlm_init_class_definition Subroutine

Purpose
Initializes a variable of type struct class_definition, defined in <sys/wlm.h> for use as an argument to
Workload Manager (WLM) API function calls.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_init_class_definition (wlmargs)

struct wlm_args *wlmargs;

Description
The wlm_init_class_definition subroutine initializes or reinitializes the data structure of type struct
class_definition, which is part of the argument of type struct wlm_args pointed to by wlmargs (field
class), so that this data structure can be used as an argument for the class management subroutines of
the WLM API library. The purpose of this call is to allow applications to initialize only the fields that are
relevant for the operation they execute. For example, to change a CPU limit or share for an existing class
after a call to wlm_init_class_definition, the application has to initialize the fields corresponding to the
values it wishes to modify.

This routine initializes all values to specific invalid values so that the WLM library routines can find out
which fields have been explicitly initialized by the user. This way, they can set or modify only the
corresponding attributes. When creating a class, for instance, it is different to leave a class attribute at its
invalid value set by wlm_initialize than setting its value to the current default value for the attribute. In the
former case, the attribute will not appear in the property file. In the latter, it will appear and will be set with
the value passed.

This makes a difference if a WLM administrator decides to change the default value for an attribute using
the special stanza default in a property file. For instance, the system default for the inheritance attribute is
no. If a WLM administrator wants the inheritance to be yes by default, using this special stanza, all the

432 Technical Reference, Volume 2: Base Operating System and Extensions

../../files/aixfiles/wlm.h.htm
../../cmds/aixcmds6/wlmstat.htm
../../files/aixfiles/wlm.h.htm

classes in the classes property file, for which the inheritance attribute has not been specified, will now
use the default of yes. Those for which the inheritance attribute has been specified with its old default of
no will not have inheritance.

Parameter

wlmargs Specifies the address of the struct wlm_args data
structure containing the class_definition structure to be
initialized.

Only the versflags field of the wlm_args structure passed need to be initialized with WLM_VERSION.

Return Values
Upon successful completion, the wlm_init_class_definition subroutine returns a value of 0. If the
wlm_init_class_definition subroutine is unsuccessful a non-0 value is returned.

Error Codes
There are two possible error code returned by wlm_init_class_definition:

BADVERSION Specifies the value of the flags parameter is not a supported
version number.

NOTINITED Specifies the WLM API has not been initialized by a prior call to
wlm_init.

Related Information
The wlm.h header file.

The wlm_change_class (“wlm_change_class Subroutine” on page 418) subroutine, wlm_create_class
(“wlm_create_class Subroutine” on page 423) subroutine, wlm_delete_class (“wlm_delete_class
Subroutine” on page 425) subroutine.

wlm_initialize Subroutine

Purpose
Prepares Workload Manager (WLM) for use by an application.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_initialize (flags)

int flags;

Description
The wlm_initialize subroutine initializes the WLM API for use with an application program. It is mandatory
to call wlm_initialize prior to using the WLM API. Otherwise, all other WLM API function calls return an
error.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 433

../../files/aixfiles/wlm.h.htm

Parameter

flags Specifies that the format is the same as the versflag field
of the wlm_args structure. The value for the argument
must have the version number in the upper 4 bits
(WLM_VERSION) possibly or’ed with a flag in the lower
28 bits.

Return Values
Upon successful completion, the wlm_initialize subroutine returns a value of 0. If the wlm_initialize
subroutine is unsuccessful a non-0 value is returned.

Error Codes
There are two possible error codes returned by wlm_initialize:

BADVERSION The value of the flags parameter is not a supported version
number.

WLMINITED There has already been a previous call to wlm_initialize.

Related Information
The wlm.h header file.

wlm_initkey Subroutine

Purpose
Allocates and initializes the classes to keys translation table.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_initkey (struct wlm_args *args, void **ctx)

Description
The wlm_initkey subroutine allocates a block of memory, builds the keys <==> class names translation
table and returns its address into the ctx argument.

Parameters

args Only 2 fields need to be initialized in the wlm_args structure pointed to by args:

v confdir specifies the null-terminated name of the WLM configuration to be searched (the
name can be ″current″ to specify the current configuration). If the configuration name
passed is an empty string (starts with ’\0’), then all the configurations in /etc/wlm are
searched.

v versflags initialized with WLM_VERSION and optionally WLM_MUTE.

434 Technical Reference, Volume 2: Base Operating System and Extensions

../../files/aixfiles/wlm.h.htm

Return Values
If the wlm_initkey subroutine is successful, a value of 0 is returned. If the wlm_initkey subroutine is
unsuccessful, an error code is returned.

Error Codes
If the wlm_initkey subroutine is unsuccessful, one of the following error codes is returned:

WLM_BADVERS Bad version number.
WLM_NOT_INITED Missing call to wlm_init.
WLM_NOMEM Not enough memory.
WLM_NOCLASS Specified configuration does not exist.
WLM_EFAULT Invalid ctx or args argument.

Related Information
The wlm_endkey subroutine.

The wlm_class2key subroutine.

The wlm_key2class subroutine.

wlm_key2class Subroutine

Purpose
Retrieves a class name from a key.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_key2class (struct wlm_args *args, wlm_key_t key, void *ctx)

Description
The wlm_key2class subroutine retrieves a class name from a 64-bit key calculated using the
wlm_class2key subroutine. The key-to-class translation is made by going through the WLM configuration
files for the configuration named in the wlm_args structure pointed to by args (or all the WLM
configuration files, if no configuration name is given), and translating all the class names to a 64-bit key
until the matching key is found.

This process is time consuming and WLM offers the subroutines wlm_initkey and wlm_endkey for
applications needing to translate several 64-bit keys back to class names. These subroutines can be used
in conjunction with the wlm_key2class subroutine to speed up searches.

The wlm_initkey subroutine allocates a block of memory, calculates the keys corresponding to the class
names in the configuration(s) in scope, stores the names with the corresponding keys in the memory
buffer, and returns its address. This address is passed to the wlm_key2class subroutine using the ctx
argument, so that wlm_key2class only needs to search through the memory buffer.

After all keys have been translated into class names, the application must call wlm_endkey to free the
memory buffer. Alternatively, for an application translating only one key, it is possible to call

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 435

wlm_key2class directly using a null pointer in the ctx argument. This causes the wlm_key2class
subroutine to internally call wlm_initkey and wlm_endkey.

The method of retrieving class names through the WLM configuration files implies that if a class has been
deleted between the time the class name was converted into a key and the call to the wlm_key2class
subroutine, the name corresponding to the key will not be found and the wlm_key2class subroutine
returns an error.

Parameters

- args A pointer to a wlm_args structure:

v confdir field needs to be initialized as described in wlm_initkey if wlm_initkey has not
been previously invoked (ctx == NULL). Otherwise, the confdir field is ignored.

v versflags field needs to be initialized with WLM_VERSION and optionally WLM_MUTE.
- ctx The context handler returned by wlm_initkey, or a NULL pointer otherwise. .
- key The search key.

Return Values
When the wlm_key2class operation is successful, the first class name matching the value of the key is
returned in the name sub-field of the wlm_args structure pointed to by args.

Error Codes
If the wlm_key2class subroutine is unsuccessful, one of the following error codes is returned:

WLM_BADVERS Bad version number.
WLM_NOT_INITED Missing call to wlm_init.
WLM_NOMEM Not enough memory.
WLM_NOCLASS No class matching the key was found.
WLM_EFAULT Invalid ctx or args argument.

Related Information
The wlm_class2key subroutine.

The wlm_endkey subroutine.

The wlm_initkey subroutine.

wlm_load Subroutine

Purpose
Loads a Workload Manager (WLM) configuration into the kernel.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_load (wlmargs)

struct wlm_args *wlmargs;

436 Technical Reference, Volume 2: Base Operating System and Extensions

Description
The wlm_load subroutine loads into the kernel the property files for the WLM configuration passed in the
confdir field of the wlmargs structure. If no superclass name is given in the name field of the
class_definition substructure, the routine loads the class properties for all the superclasses of the target
configuration. If a superclass name is given, then only the subclasses of the given superclass are
refreshed. Flags passed in the flags portion of the versflags field can be used to modify the mode of
operation of WLM. The values are identical to the flags values passed to the wlm_set API routine. Not all
combinations of parameters are allowed, and different combinations may require a different level of
privilege as explained below:

v To start or update WLM, the name of a configuration must be passed in the confdir field. wlm_load
updates or starts WLM using the properties files from the given configuration. Only root can specify the
name of a configuration different from the currently active configuration (specified as current in confdir).

v When WLM is on (the operation is an update) and the name of the configuration passed in the confdir
field of the wlm_args structure is the name of the currently active configuration, the name of a
superclass can be given in the name field to update only the subclasses of the given superclass. This
functionality is accessible to root and to users with administration privileges on the subclasses of the
superclass. The wlm_load subroutine cannot be used in this context to alter the state of WLM (start,
stop, or switch between active and passive modes).

v If the caller of wlm_load has root privileges and does not specify a superclass, the flags passed in
versflags can be used to alter WLM’s mode of operation: start WLM in active or passive mode, switch
between active and passive modes, or enable/disable the rset bindings.

Parameter

wlmargs Specifies the address of the struct wlm_args data
structure containing the class_definition structure for the
new class to be created.

The following fields of the wlm_args structure and the embedded substructures can be provided:

versflags Needs to be initialized with WLM_VERSION. Optionally,
some of the flags used when calling wlm_set to change
the mode of operation of WLM can be given by the root
user. The valid values are WLM_ACTIVE,
WLM_PASSIVE, and WLM_BIND_RSETS. Of course,
WLM_ACTIVE and WLM_PASSIVE are mutually
exclusive.

confdir Specifies the name of the WLM configuration to be loaded
into the kernel. It must be either the name of a valid
subdirectory of /etc/wlm or the string current to refer to
the active configuration.

name Specifies the name of a superclass. This is used to
refresh only the subclasses of a given superclass.

Return Values
Upon successful completion, the wlm_load subroutine returns a value of 0. If the wlm_load subroutine is
unsuccessful, a non-0 value is returned.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 437

../../files/aixfiles/wlm.h.htm

Related Information
The wlmcntrl command.

The wlm_set (“wlm_set Subroutine” on page 440) subroutine.

The wlm.h header file.

wlm_read_classes Subroutine

Purpose
Reads the characteristics of superclasses or subclasses.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_read_classes (wlmargs, class_tbl, nclass)

struct wlm_args *wlmargs;

struct class_definition *class_tbl

int *nclass

Description
The wlm_read_classes subroutine is used to get the characteristics of the superclasses or the subclasses
of a given subclass of a Workload Manager (WLM) configuration.

v If the name of a configuration is passed in the confdir field, the wlm_read_classes subroutine reads
the property files of the classes of the specified configuration. If confdir is set to a null string (’\0’),
wlm_read classes reads reads the classes’ characteristics from the in-core WLM data structures when
WLM is on (and returns an error when WLM is off).

Note: These values may be different from the values in the property files of the configuration
pointed to by /etc/wlm/current. For instance when a WLM administrator has modified the property
files for the configuration pointed to by /etc/wlm/current but has not refreshed WLM yet. Another
example is if applications dynamically created or modified classes through the API without saving
the changes in the current configuration property files.

If your application specifically needs to access the properties of the classes as described in the
/etc/wlm/current configuration, you must specify current as the configuration name in confdir.

v If the name of a valid superclass of the given configuration is passed in the name field of the
class_descr substructure of wlmargs, wlm_read_classes reads the property files for the subclasses of
this superclass. If a null string (’\0’) is passed in the name field, wlm_read_classes reads the property
files for the superclasses of the WLM configuration described above.

v When wlm_read_classes is successful, the characteristics of the superclasses or subclasses are
copied into the array of class_definition structures pointed to by class_tbl. The integer value pointed to
by nclass indicates the maximum number of class definitions to be copied. Upon successful return from
the function, this value reflects the actual number of classes read.

438 Technical Reference, Volume 2: Base Operating System and Extensions

../../cmds/aixcmds6/wlmcntrl.htm
../../files/aixfiles/wlm.h.htm

If the number of elements copied by wlm_read_classes is strictly smaller than the number of elements
passed as an argument, all the classes have been read. If it is equal, it may mean that some classes
were not copied into the class_tbl array because its size is too small.

The maximum number of classes read by wlm_read_classes is 32 when reading superclasses and 12
when reading subclasses characteristics.

v Upon successful return from wlm_read_classes, the substructure class of type struct class_definition
of the structure pointed to by wlmargs contains the default values of various class attributes for the
returned set of classes.

This operation does not require any special privileges and is accessible to all users.

Parameter

wlmargs Specifies the address of a struct wlm_args data
structure.

The following fields of the wlm_args structure and the
embedded substructures need to be provided:

versflags
Needs to be initialized with WLM_VERSION.

confdir Specifies the name of a WLM configuration. It
must be either the name of a valid subdirectory
of /etc/wlm or a null string (starting with ’\0’).

name Specifies the name of a superclass existing in the
specified configuration or a null string.

All the other fields can be left uninitialized.

class_tbl Specifies the address of an array of structures of type
struct class_definition. Upon successful return from
wlm_read_classes, this array contains the characteristics
of the classes read.

nclass Specifies the address of an integer containing the
maximum number of element (class definitions) for
wlm_read_classes to copy into the array above. If the
call to wlm_read_classes is successful, this integer
contains the number of elements actually copied.

Return Values
Upon successful completion, the wlm_read_classes subroutine returns a value of 0. If the
wlm_read_classes subroutine is unsuccessful, a non-0 value is returned.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

Related Information
The lsclass command.

The wlm.h header file.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 439

../../files/aixfiles/wlm.h.htm
../../cmds/aixcmds3/lsclass.htm
../../files/aixfiles/wlm.h.htm

wlm_set Subroutine

Purpose
Loads a Workload Manager (WLM) configuration into the kernel.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

int wlm_set (flags)

int *flags;

Description
The wlm_set subroutine is used to set, change, or query the mode of operations of WLM. The state of
WLM can be:

OFF Does not classify processes, monitor or regulate resource utilization.
ON in passive mode Classifies the processes and monitors their resource usage but does no regulation.
ON in active mode Specifies the normal operating mode where WLM classifies processes, monitors and

regulates the resource usage.

Parameters

flags Specifies the address of an integer interpreted in a manner similar to the versflags field of the
wlmargs structure passed to the other API routines. The integer pointed to by flags should be
initialized with WLM_VERSION. In addition, one or more of the following values can be or’ed to
WLM_VERSION:

WLM_TEST_ON
Queries the state of WLM without altering it.

WLM_OFF
Turns WLM off.

WLM_ACTIVE
Turns WLM on in active mode or transitions from passive to active mode.

WLM_PASSIVE
Turns WLM on in passive mode or transitions from active to passive mode.

WLM_BIND_RSETS
Requests that WLM takes the resource set bindings into account.

All combinations of the flags above are not legal:

v WLM_OFF, WLM_ACTIVE, and WLM_PASSIVE are mutually exclusive.

v WLM_BIND_RSETS is ineffective when used together with WLM_OFF.

v Only WLM_TEST_ON is allowed to non-root users.

440 Technical Reference, Volume 2: Base Operating System and Extensions

Return Values
Upon successful completion, the wlm_set subroutine returns a value of 0, and the current state of WLM is
returned in the integer pointed to by flags. The return value is WLM_OFF, WLM_ACTIVE, or
WLM_PASSIVE. When WLM is on in either active or passive mode, the WLM_BIND_RSETS flag is added
when WLM uses resource sets bindings.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

Related Information
The wlmcntrl command.

The wlm.h header file.

The wlm_load (“wlm_load Subroutine” on page 436) subroutine.

wlm_set_tag Subroutine

Purpose
Sets the current process’s tag and related flags.

Library
Workload Manager Library (libwlm.a)

Syntax
#include <sys/wlm.h>

#include <sys/user.h>

int wlm_set_tag (tag, flags)

char *tag;

int *flags;

Description
The tag attribute is a new attribute of a process that can be set using the Workload Manager (WLM)
wlm_set_tag subroutine. This tag is a character string with a maximum length of WLM_TAG_LENGTH
(not including the null terminator). Process tags can be displayed using the ps command.

The tag attribute is also one of the process attributes used in the assignment rules to automatically
assign a process to a given class. The syntax of the assignment rules precludes the use of special
characters in the application tag string. Thus, application tags should be comprised only of upper and
lower case letters, numbers and underscores (’_’).

The main use of the tag attribute is to allow WLM administrators to discriminate between several instances
of the same application, which typically have the same user and group ids, execute the same binary, and,
therefore, end up in the same class using the standard classification criteria.

For more details about application tags, refer to Workload Manager Application Programming Interface.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 441

../../files/aixfiles/wlm.h.htm
../../cmds/aixcmds6/wlmcntrl.htm
../../files/aixfiles/wlm.h.htm
../../cmds/aixcmds4/ps.htm
../../aixbman/admnconc/wlm_api.htm

When an application sets its tag using wlm_set_tag, it is automatically reclassified according to the
current assignment rules and the new tag is taken into account when doing this reclassification.

In addition to the tag itself, the application can also specify flags indicating to WLM if a child process
should inherit the tag from its parent after a fork or an exec subroutine.

A process does not require any special privileges to set its tag.

Parameters

tag Specifies the address of a character string. An error is
returned if this tag is too long.

flags Specifies the address of an integer interpreted in a
manner similar to the versflags field of the wlmargs
structure passed to other API routines. The integer pointed
to by flags should be initialized with WLM_VERSION. In
addition, one or more of the following values can be or’ed
to WLM_VERSION:

SWLMTAGINHERITFORK
Specifies that the children of this process inherit
the parent’s tag on the fork subroutine.

SWLMTAGINHERITEXEC
Specifies that the process retains its tag after a
call to the exec subroutine.

Both flags can be set to specify that the children of a
tagged process inherits the tag on the fork subroutine and
then retains it on the exec subroutine.

Return Values
Upon successful completion, the wlm_set_tag subroutine returns a value of 0. In case of error, a non-0
value is returned.

Error Codes
For a list of the possible error codes returned by the WLM API functions, see the description of the wlm.h
header file.

Related Information
The wlm.h header file.

Workload Manager rules File in AIX 5L Version 5.1 Files Reference.

wmemchr Subroutine

Purpose
Find a wide-character in memory.

Library
Standard library (libc.a)

442 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/fork.htm
../../libs/basetrf1/exec.htm
../../files/aixfiles/wlm.h.htm
../../files/aixfiles/wlm.h.htm
../../files/aixfiles/rules.htm

Syntax
#include <wchar.h>

wchar_t *wmemchr (const wchar_t * ws, wchar_t wc, size_t n) ;

Description
The wmemchr function locates the first occurrence of wc in the initial n wide-characters of the object
pointed to be ws. This function is not affected by locale and all wchar_t values are treated identically. The
null wide-character and wchar_t values not corresponding to valid characters are not treated specially.

If n is zero, ws must be a valid pointer and the function behaves as if no valid occurrence of wc is found.

Return Values
The wmemchr function returns a pointer to the located wide-character, or a null pointer if the
wide-character does not occur in the object.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The wmemcmp (“wmemcmp Subroutine”) subroutine, wmemcpy (“wmemcpy Subroutine” on page 444)
subroutine, wmemmove (“wmemmove Subroutine” on page 444) subroutine, wmemset (“wmemset
Subroutine” on page 445) subroutine.

The wchar.h file.

wmemcmp Subroutine

Purpose
Compare wide-characters in memory.

Library
Standard library (libc.a)

Syntax
#include <wchar.h>

int wmemcmp (const wchar_t * ws1, const wchar_t * ws2, size_t n);

Description
The wmemcmp function compares the first n wide-characters of the object pointed to by ws1 to the first n
wide-characters of the object pointed to by ws2. This function is not affected by locale and all wchar_t
values are treated identically. The null wide-character and wchar_t values not corresponding to valid
characters are not treated specially.

If n is zero, ws1 and ws2 must be a valid pointers and the function behaves as if the two objects compare
equal.

Return Values
The wmemcmp function returns an integer greater than, equal to, or less than zero, accordingly as the
object pointed to by ws1 is greater than, equal to, or less than the object pointed to by ws2.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 443

../../aixprggd/genprogc/nls_subr.htm#HDRA181C13

Implementation Specifics
This subroutine is part of the Base Operating System (BOS) subroutine.

Related Information
The wmemchr (“wmemchr Subroutine” on page 442) subroutine, wmemcpy (“wmemcpy Subroutine”)
subroutine, wmemmove (“wmemmove Subroutine”) subroutine, wmemset (“wmemset Subroutine” on
page 445) subroutine.

The wchar.h file.

wmemcpy Subroutine

Purpose
Copy wide-characters in memory.

Library
Standard library (libc.a)

Syntax
#include <wchar.h>

wchar_t *wmemcpy (wchar_t * ws1, const wchar_t * ws2, size_t n) ;

Description
The wmemcpy function copies n wide-characters from the object pointed to by ws2 to the object pointed
to be ws1. This function is not affected by locale and all wchar_t values are treated identically. The null
wide-character and wchar_t values not corresponding to valid characters are not treated specially.

If n is zero, ws1 and ws2 must be a valid pointers, and the function copies zero wide-characters.

Return Values
The wmemcpy function returns the value of ws1.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The wmemchr (“wmemchr Subroutine” on page 442) subroutine, wmemcmp (“wmemcmp Subroutine” on
page 443) subroutine, wmemmove (“wmemmove Subroutine”) subroutine, wmemset (“wmemset
Subroutine” on page 445) subroutine.

The wchar.h file.

wmemmove Subroutine

Purpose
Copy wide-characters in memory with overlapping areas.

Library
Standard library (libc.a)

444 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/nls_subr.htm#HDRA181C13
../../aixprggd/genprogc/nls_subr.htm#HDRA181C13

Syntax
#include <wchar.h>

wchar_t *wmemmove (wchar_t * ws1, const wchar_t * ws2, size_t n) ;

Description
The wmemmove function copies n wide-characters from the object pointed to by ws2 to the object
pointed to by ws1. Copying takes place as if the n wide-characters from the object pointed to by ws2 are
first copied into a temporary array of n wide-characters that does not overlap the objects pointed to by
ws1 or ws2, and then the n wide-characters from the temporary array are copied into the object pointed to
by ws1.

This function is not affected by locale and all wchar_t values are treated identically. The null
wide-character and wchar_t values not corresponding to valid characters are not treated specially.

If n is zero, ws1 and ws2 must be a valid pointers, and the function copies zero wide-characters.

Return Values
The wmemmove function returns the value of ws1.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) subroutine.

Related Information
The wmemchr (“wmemchr Subroutine” on page 442) subroutine, wmemcmp (“wmemcmp Subroutine” on
page 443) subroutine, wmemcpy (“wmemcpy Subroutine” on page 444) subroutine, wmemset (“wmemset
Subroutine”) subroutine.

The wchar.h file.

wmemset Subroutine

Purpose
Set wide-characters in memory.

Library
Standard library (libc.a)

Syntax
#include <wchar.h>

wchar_t *wmemset (wchar_t * ws, wchar_t wc, size_t n);

Description
The wmemset function copies the value of wc into each of the first n wide-characters of the object pointed
to by ws. This function is not affected by locale and all wchar_t values are treated identically. The null
wide-character and wchar_t values not corresponding to valid characters are not treated specially. If n is
zero, ws must be a valid pointer and the function copies zero wide-characters.

Return Values
The wmemset functions returns the value of ws.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 445

../../aixprggd/genprogc/nls_subr.htm#HDRA181C13

Implementation Specifics
This subroutine is part of Base Operating Systems (BOS) subroutine.

Related Information
The wmemchr (“wmemchr Subroutine” on page 442) subroutine, wmemcmp (“wmemcmp Subroutine” on
page 443) subroutine, wmemcpy (“wmemcpy Subroutine” on page 444) subroutine, wmemmove
(“wmemmove Subroutine” on page 444) subroutine.

The wchar.h file.

wordexp Subroutine

Purpose
Expands tokens from a stream of words.

Library
Standard C Library (libc.a)

Syntax
#include <wordexp.h>

int wordexp (Words, Pwordexp, Flags)
const char *Words;
wordexp_t *Pwordexp;
int Flags;

Description
The wordexp subroutine performs word expansions equivalent to the word expansion that would be
performed by the shell if the contents of the Words parameter were arguments on the command line. The
list of expanded words are placed in the Pwordexp parameter. The expansions are the same as that which
would be performed by the shell if the Words parameter were the part of a command line representing the
parameters to a command. Therefore, the Words parameter cannot contain an unquoted <newline>
character or any of the unquoted shell special characters | (pipe), & (ampersand), ; (semicolon), < (less
than sign), or > (greater than sign), except in the case of command substitution. The Words parameter
also cannot contain unquoted parentheses or braces, except in the case of command or variable
substitution. If the Words parameter contains an unquoted comment character # (number sign) that is the
beginning of a token, the wordexp subroutine may treat the comment character as a regular character, or
may interpret it as a comment indicator and ignore the remainder of the expression in the Words
parameter.

The wordexp subroutine allows an application to perform all of the shell’s expansions on a word or words
obtained from a user. For example, if the application prompts for a file name (or a list of file names) and
then uses the wordexp subroutine to process the input, the user could respond with anything that would
be valid as input to the shell.

The wordexp subroutine stores the number of generated words and a pointer to a list of pointers to words
in the Pwordexp parameter. Each individual field created during the field splitting or path name expansion
is a separate word in the list specified by the Pwordexp parameter. The first pointer after the last last token
in the list is a null pointer. The expansion of special parameters * (asterisk), @ (at sign), # (number sign), ?
(question mark), - (minus sign), $ (dollar sign), ! (exclamation point), and 0 is unspecified.

The words are expanded in the order shown below:

446 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/nls_subr.htm#HDRA181C13

1. Tilde expansion is performed first.

2. Parameter expansion, command substitution, and arithmetic expansion are performed next, from
beginning to end.

3. Field splitting is then performed on fields generated by step 2, unless the IFS (input field separators) is
full.

4. Path-name expansion is performed, unless the set -f command is in effect.

5. Quote removal is always performed last.

Parameters

Flags Contains a bit flag specifying the configurable aspects of the wordexp subroutine.
Pwordexp Contains a pointer to a wordexp_t structure.
Words Specifies the string containing the tokens to be expanded.

The value of the Flags parameter is the bitwise, inclusive OR of the constants below, which are defined in
the wordexp.h file.

WRDE_APPEND Appends words generated to those generated by a previous call to the wordexp subroutine.
WRDE_DOOFFS Makes use of the we_offs structure. If the WRDE_DOOFFS flag is set, the we_offs structure

is used to specify the number of null pointers to add to the beginning of the we_words
structure. If the WRDE_DOOFFS flag is not set in the first call to the wordexp subroutine
with the Pwordexp parameter, it should not be set in subsequent calls to the wordexp
subroutine with the Pwordexp parameter.

WRDE_NOCMD Fails if command substitution is requested.
WRDE_REUSE The Pwordexp parameter was passed to a previous successful call to the wordexp

subroutine. Therefore, the memory previously allocated may be reused.
WRDE_SHOWERR Does not redirect standard error to /dev/null.
WRDE_UNDEF Reports error on an attempt to expand an undefined shell variable.

The WRDE_ APPEND flag can be used to append a new set of words to those generated by a previous
call to the wordexp subroutine. The following rules apply when two or more calls to the wordexp
subroutine are made with the same value of the Pwordexp parameter and without intervening calls to the
wordfree subroutine:

1. The first such call does not set the WRDE_ APPEND flag. All subsequent calls set it.

2. For a single invocation of the wordexp subroutine, all calls either set the WRDE_DOOFFS flag, or do
not set it.

3. After the second and each subsequent call, the Pwordexp parameter points to a list containing the
following:

a. Zero or more null characters, as specified by the WRDE_DOOFFS flag and the we_offs structure.

b. Pointers to the words that were in the Pwordexp parameter before the call, in the same order as
before.

c. Pointers to the new words generated by the latest call, in the specified order.

4. The count returned in the Pwordexp parameter is the total number of words from all of the calls.

5. The application should not modify the Pwordexp parameter between the calls.

The WRDE_NOCMD flag is provided for applications that, for security or other reasons, want to prevent a
user from executing shell commands. Disallowing unquoted shell special characters also prevents
unwanted side effects such as executing a command or writing to a file.

Unless the WRDE_SHOWERR flag is set in the Flags parameter, the wordexp subroutine redirects
standard error to the /dev/null file for any utilities executed as a result of command substitution while

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 447

expanding the Words parameter. If the WRDE_SHOWERR flag is set, the wordexp subroutine may write
messages to standard error if syntax errors are detected while expanding the Words parameter.

The Pwordexp structure is allocated by the caller, but memory to contain the expanded tokens is allocated
by the wordexp subroutine and added to the structure as needed.

The Words parameter cannot contain any <newline> characters, or any of the unquoted shell special
characters |, &, ;, (), {}, <, or >, except in the context of command substitution.

Return Values
If no errors are encountered while expanding the Words parameter, the wordexp subroutine returns a
value of 0. If an error occurs, it returns a nonzero value indicating the error.

Errors
If the wordexp subroutine terminates due to an error, it returns one of the nonzero constants below, which
are defined in the wordexp.h file.

WRDE_BADCHAR One of the unquoted characters |, &, ;, <, >, parenthesis, or braces appears in the Words
parameter in an inappropriate context.

WRDE_BADVAL Reference to undefined shell variable when the WRDE_UNDEF flag is set in the Flags
parameter.

WRDE_CMDSUB Command substitution requested when the WRDE_NOCMD flag is set in the Flags
parameter.

WRDE_NOSPACE Attempt to allocate memory was unsuccessful.
WRDE_SYNTAX Shell syntax error, such as unbalanced parentheses or unterminated string.

If the wordexp subroutine returns the error value WRDE_SPACE, then the expression in the Pwordexp
parameter is updated to reflect any words that were successfully expanded. In other cases, the Pwordexp
parameter is not modified.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The glob subroutine, wordfree (“wordfree Subroutine”) subroutine.

For more information on basic and extended regular expressions, see Manipulating Strings with sed.

wordfree Subroutine

Purpose
Frees all memory associated with the Pwordexp parameter.

Library
Standard C Library (libc.a)

Syntax
#include <wordexp.h>

void wordfree (Pwordexp)
wordexp_t *Pwordexp;

448 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/glob.htm#HDRA143C1420
../../aixprggd/genprogc/manip_strings_sed.htm#HDRA3149514

Description
The wordfree subroutine frees any memory associated with the Pwordexp parameter from a previous call
to the wordexp subroutine.

Parameters

Pwordexp Structure containing a list of expanded words.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The wordexp (“wordexp Subroutine” on page 446) subroutine.

write, writex, writev, writevx or pwrite Subroutines

Purpose
Writes to a file.

Library
Standard C Library (libc.a)

Syntax
#include <unistd.h>

ssize_t write (FileDescriptor, Buffer, NBytes)
int FileDescriptor;
const void * Buffer;
size_t NBytes;

int writex (FileDescriptor, Buffer, NBytes, Extension)
int FileDescriptor;
char *Buffer;
unsigned int NBytes;
int Extension;

#include <sys/uio.h>

ssize_t writev (FileDescriptor, iov, iovCount)
int FileDescriptor;
const struct iovec * iov;
int iovCount;

int writevx (FileDescriptor, iov, iovCount, Extension)
int FileDescriptor;
struct iovec *iov;
int iovCount;
int Extension;

ssize_t pwrite (FileDescriptor, Buffer, NBytes, Offset)
int FileDescriptor;
const void * Buffer;
size_t NBytes;
off_t Offset;

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 449

Description
The write subroutine attempts to write the number of bytes of data specified by the NBytes parameter to
the file associated with the FileDescriptor parameter from the buffer pointed to by the Buffer parameter.

The writev subroutine performs the same action but gathers the output data from the iovCount buffers
specified by the array of iovec structures pointed to by the iov parameter. Each iovec entry specifies the
base address and length of an area in memory from which data should be written. The writev subroutine
always writes a complete area before proceeding to the next.

The writex and writevx subroutines are the same as the write and writev subroutines, respectively, with
the addition of an Extension parameter, which is used when writing to some device drivers.

With regular files and devices capable of seeking, the actual writing of data proceeds from the position in
the file indicated by the file pointer. Upon return from the write subroutine, the file pointer increments by
the number of bytes actually written.

With devices incapable of seeking, writing always takes place starting at the current position. The value of
a file pointer associated with such a device is undefined.

If a write requests that more bytes be written than there is room for (for example, the ulimit or the
physical end of a medium), only as many bytes as there is room for will be written. For example, suppose
there is space for 20 bytes more in a file before reaching a limit. A write of 512 bytes will return 20. The
next write of a non-zero number of bytes will give a failure return (except as noted below) and the
implementation will generate a SIGXFSZ signal for the thread.

Fewer bytes can be written than requested if there is not enough room to satisfy the request. In this case
the number of bytes written is returned. The next attempt to write a nonzero number of bytes is
unsuccessful (except as noted in the following text). The limit reached can be either that set by the ulimit
subroutine or the end of the physical medium.

Successful completion of a write subroutine clears the SetUserID bit (S_ISUID) of a file if all of the
following are true:

v The calling process does not have root user authority.

v The effective user ID of the calling process does not match the user ID of the file.

v The file is executable by the group (S_IXGRP) or other (S_IXOTH).

The write subroutine clears the SetGroupID bit (S_ISGID) if all of the following are true:

v The calling process does not have root user authority.

v The group ID of the file does not match the effective group ID or one of the supplementary group IDs of
the process.

v The file is executable by the owner (S_IXUSR) or others (S_IXOTH).

Note: Clearing of the SetUserID and SetGroupID bits can occur even if the write subroutine is
unsuccessful, if file data was modified before the error was detected.

If the O_APPEND flag of the file status is set, the file offset is set to the end of the file prior to each write.

If the FileDescriptor parameter refers to a regular file whose file status flags specify O_SYNC, this is a
synchronous update (as described in the open subroutine).

If the FileDescriptor parameter refers to a regular file that a process has opened with the O_DEFER file
status flag set, the data and file size are not updated on permanent storage until a process issues an
fsync subroutine or performs a synchronous update. If all processes that have the file open with the

450 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/fsync.htm#HDRA164930

O_DEFER file status flag set close the file before a process issues an fsync subroutine or performs a
synchronous update, the data and file size are not updated on permanent storage.

Write requests to a pipe (or first-in-first-out (FIFO)) are handled the same as a regular file with the
following exceptions:

v There is no file offset associated with a pipe; hence, each write request appends to the end of the pipe.

v If the size of the write request is less than or equal to the value of the PIPE_BUF system variable
(described in the pathconf routine), the write subroutine is guaranteed to be atomic. The data is not
interleaved with data from other write processes on the same pipe. Writes of greater than PIPE_BUF
bytes can have data interleaved, on arbitrary boundaries, with writes by other processes, whether or not
the O_NDELAY or O_NONBLOCK file status flags are set.

v If the O_NDELAY and O_NONBLOCK file status flags are clear (the default), a write request to a full
pipe causes the process to block until enough space becomes available to handle the entire request.

v If the O_NDELAY file status flag is set, a write to a full pipe returns a 0.

v If the O_NONBLOCK file status flag is set, a write to a full pipe returns a value of -1 and sets the errno
global variable to EAGAIN.

When attempting to write to a character special file that supports nonblocking writes, such as a terminal,
and no data can currently be written:

v If the O_NDELAY and O_NONBLOCK flags are clear (the default), the write subroutine blocks until
data can be written.

v If the O_NDELAY flag is set, the write subroutine returns 0.

v If the O_NONBLOCK flag is set, the write subroutine returns -1 and sets the errno global variable to
EAGAIN if no data can be written.

When attempting to write to a regular file that supports enforcement-mode record locks, and all or part of
the region to be written is currently locked by another process, the following can occur:

v If the O_NDELAY and O_NONBLOCK file status flags are clear (the default), the calling process blocks
until the lock is released.

v If the O_NDELAY or O_NONBLOCK file status flag is set, then the write subroutine returns a value of
-1 and sets the errno global variable to EAGAIN.

Note: The fcntl subroutine provides more information about record locks.

If fildes refers to a STREAM, the operation of write is determined by the values of the minimum and
maximum nbyte range (″packet size″) accepted by the STREAM. These values are determined by the
topmost STREAM module. If nbyte falls within the packet size range, nbyte bytes will be written. If nbyte
does not fall within the range and the minimum packet size value is 0, write will break the buffer into
maximum packet size segments prior to sending the data downstream (the last segment may contain less
than the maximum packet size). If nbyte does not fall within the range and the minimum value is non-zero,
write will fail with errno set to ERANGE. Writing a zero-length buffer (nbyte is 0) to a STREAMS device
sends 0 bytes with 0 returned. However, writing a zero-length buffer to a STREAMS-based pipe or FIFO
sends no message and 0 is returned. The process may issue I_SWROPT ioctl to enable zero-length
messages to be sent across the pipe or FIFO.

When writing to a STREAM, data messages are created with a priority band of 0. When writing to a
STREAM that is not a pipe or FIFO:

v If O_NONBLOCK is clear, and the STREAM cannot accept data (the STREAM write queue is full due to
internal flow control conditions), write will block until data can be accepted.

v If O_NONBLOCK is set and the STREAM cannot accept data, write will return -1 and set errno to
EAGAIN.

v If O_NONBLOCK is set and part of the buffer has been written while a condition in which the STREAM
cannot accept additional data occurs, write will terminate and return the number of bytes written.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 451

../../libs/basetrf1/pathconf.htm#HDRA161C177

In addition, write and writev will fail if the STREAM head had processed an asynchronous error before
the call. In this case, the value of errno does not reflect the result of write or writev but reflects the prior
error.

The writev function is equivalent to write, but gathers the output data from the iovcnt buffers specified by
the members of the iov array: iov[0], iov[1], ..., iov[iovcnt - 1]. iovcnt is valid if greater than 0 and less than
or equal to {IOV_MAX}, defined in limits.h.

Each iovec entry specifies the base address and length of an area in memory from which data should be
written. The writev function will always write a complete area before proceeding to the next.

If fildes refers to a regular file and all of the iov_len members in the array pointed to by iov are 0, writev
will return 0 and have no other effect. For other file types, the behaviour is unspecified.

If the sum of the iov_len values is greater than SSIZE_MAX, the operation fails and no data is transferred.

The behavior of an interrupted write subroutine depends on how the handler for the arriving signal was
installed. The handler can be installed in one of two ways, with the following results:

v If the handler was installed with an indication that subroutines should not be restarted, the write
subroutine returns a value of -1 and sets the errno global variable to EINTR (even if some data was
already written).

v If the handler was installed with an indication that subroutines should be restarted, and:

– If no data had been written when the interrupt was handled, the write subroutine will not return a
value (it is restarted).

– If data had been written when the interrupt was handled, this write subroutine returns the amount of
data already written.

Note: A write to a regular file is not interruptible. Only writes to objects that may block indefinitely,
such as FIFOs, sockets, and some devices, are generally interruptible.

The pwrite function performs the same action as write, except that it writes into a given position without
changing the file pointer. The first three arguments to pwrite are the same as write with the addition of a
fourth argument offset for the desired position inside the file.

Note: The pwrite64 subroutine applies to AIX 4.3 and later.
ssize_t pwrite64(int fd , const void *buf , size_t nbytes , off64_t offset)

The pwrite64 subroutine performs the same action as pwrite but the limit of offset to the maximum file
size for the file associated with the fileDescriptor and DEV_OFF_MAX if the file associated with
fileDescriptor is a block special or character special file.

Parameters

Buffer Identifies the buffer containing the data to be written.
Extension Provides communication with character device drivers that require additional information

or return additional status. Each driver interprets the Extension parameter in a
device-dependent way, either as a value or as a pointer to a communication area. Drivers
must apply reasonable defaults when the Extension parameter value is 0.

FileDescriptor Identifies the object to which the data is to be written.
iov Points to an array of iovec structures, which identifies the buffers containing the data to

be written. The iovec structure is defined in the sys/uio.h file and contains the following
members:

caddr_t iov_base;
size_t iov_len;

iovCount Specifies the number of iovec structures pointed to by the iov parameter.

452 Technical Reference, Volume 2: Base Operating System and Extensions

NBytes Specifies the number of bytes to write.

Return Values
Upon successful completion, the write, writex, writev, and writevx subroutines return the number of
bytes that were actually written. The number of bytes written is never greater than the value specified by
the NBytes parameter. Otherwise, a value of -1 is returned and the errno global variable is set to indicate
the error.

Error Codes
The write, writex, writev, and writevx subroutines are unsuccessful when one of the following is true:

EAGAIN The O_NONBLOCK flag is set on this file and the process would be delayed in the write operation; or an
enforcement-mode record lock is outstanding in the portion of the file that is to be written.

EBADF The FileDescriptor parameter does not specify a valid file descriptor open for writing.
EDQUOT New disk blocks cannot be allocated for the file because the user or group quota of disk blocks has been

exhausted on the file system.
EFAULT The Buffer parameter or part of the iov parameter points to a location outside of the allocated address

space of the process.
EFBIG (AIX 4.2 and later) An attempt was made to write a file that exceeds the process’ file size limit or the

maximum file size. If the user has set the environment variable XPG_SUS_ENV=ON prior to execution of
the process, then the SIGXFSZ signal is posted to the process when exceeding the process’ file size
limit.

EINVAL The file position pointer associated with the FileDescriptor parameter was negative; the iovCount
parameter value was not between 1 and 16, inclusive; or one of the iov_len values in the iov array was
negative or the sum overflowed a 32-bit integer.

EINVAL The STREAM or multiplexer referenced by FileDescriptor is linked (directly or indirectly) downstream from
a multiplexer.

EINTR A signal was caught during the write operation, and the signal handler was installed with an indication
that subroutines are not to be restarted.

EIO An I/O error occurred while writing to the file system; or the process is a member of a background
process group attempting to write to its controlling terminal, TOSTOP is set, the process is neither
ignoring nor blocking SIGTTOU, and the process group has no parent process.

ENOSPC No free space is left on the file system containing the file.
ENXIO A hangup occurred on the STREAM being written to.
EPIPE An attempt was made to write to a file that is not opened for reading by any process, or to a socket of

type SOCK_STREAM that is not connected to a peer socket; or an attempt was made to write to a pipe
or FIFO that is not open for reading by any process. If this occurs, a SIGPIPE signal will also be sent to
the process.

ERANGE The transfer request size was outside the range supported by the STREAMS file associated with
FileDescriptor.

The write, writex, writev, and writevx subroutines may be unsuccessful if the following is true:

ENXIO A request was made of a nonexistent device, or the request was outside the capabilities of the device.
EFBIG An attempt was made to write to a regular file where NBytes greater than zero and the starting offset is

greater than or equal to the offset maximum established in the open file description associated with
FileDescriptor.

EINVAL The offset argument is invalid. The value is negative.
ESPIPE fildes is associated with a pipe or FIFO.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 453

Related Information
The fcntl, dup, or dup2 subroutine, fsync subroutine, ioctl subroutine, lockfx subroutine, lseek
subroutine, open, openx, or creat subroutine, pathconf subroutine, pipe subroutine, poll subroutine,
select (“select Subroutine” on page 87) subroutine, ulimit (“ulimit Subroutine” on page 362) subroutine.

The limits.h file, unistd.h file.

The Input and Output Handling Programmer’s Overview in AIX 5L Version 5.1 General Programming
Concepts: Writing and Debugging Programs.

wstring Subroutine

Purpose
Perform operations on wide character strings.

Library
Standard C Library (libc.a)

Syntax
#include <wstring.h>

wchar_t *wstrcat (“wstring Subroutine”) (XString1, XString2)
wchar_t *XString1, *XString2;

wchar_t * wstrncat (XString, XString2, Number)
wchar_t *XString1, *XString2;
int Number;

int wstrcmp (XString1, XString2)
wchar_t *XString1, *XString2;

int wstrncmp (XString1, XString2, Number)
wchar_t *XString1, *XString2;
int Number;

wchar_t * wstrcpy (XString1, XString2)
wchar_t *XString1, *XString2;

wchar_t * wstrncpy (XString1, XString2, Number)
wchar_t *XString1, *XString2;
int Number;

int wstrlen (XString)
wchar_t *XString;

wchar_t * wstrchr (XString, Number)
wchar_t *XString;
int Number;

wchar_t * wstrrchr (XString, Number)
wchar_t *XString;
int Number;

454 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/fcntl.htm#HDRNEM2E0GACO
../../libs/basetrf1/fsync.htm#HDRA164930
../../libs/basetrf1/ioctl32.htm
../../libs/basetrf1/lockfx.htm#HDRA142945D
../../libs/basetrf1/lseek.htm#HDRA21595D1
../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/pathconf.htm#HDRA161C177
../../libs/basetrf1/pipe.htm#HDRS381F0GACO
../../libs/basetrf1/poll.htm#HDRA1289B55
../../files/aixfiles/limits.h.htm
../../files/aixfiles/unistd.h.htm
../../aixprggd/genprogc/io_handling.htm#HDRA9E740A1626CAND

wchar_t * wstrpbrk (XString1, XString2)
wchar_t *XString1, XString2;

int wstrspn (XString1, XString2)
wchar_t *XString1, XString2;

int wstrcspn (XString1, XString2)
wchar_t *XString1, XString2;

wchar_t * wstrtok (XString1, XString2)
wchar_t *XString1, XString2;

wchar_t * wstrdup (XString1)
wchar_t *XString1;

Description
The wstring subroutines copy, compare, and append strings in memory, and determine location, size, and
existence of strings in memory. For these subroutines, a string is an array of wchar_t characters,
terminated by a null character. The wstring subroutines parallel the string subroutines, but operate on
strings of type wchar_t rather than on type char, except as specifically noted below.

The parameters XString1, XString2, and XString point to strings of type wchar_t (arrays of wchar
characters terminated by a wchar_t null character).

The subroutines wstrcat, wstrncat, wstrcpy, and wstrncpy all alter the XString1 parameter. They do not
check for overflow of the array pointed to by XString1. All string movement is performed wide character by
wide character. Overlapping moves toward the left work as expected, but overlapping moves to the right
may give unexpected results. All of these subroutines are declared in the wstring.h file.

The wstrcat subroutine appends a copy of the wchar_t string pointed to by the XString2 parameter to the
end of the wchar_t string pointed to by the XString1 parameter. The wstrcat subroutine returns a pointer
to the null-terminated result.

The wstrncat subroutine copies, at most, the value of the Number parameter of wchar_ t characters in
the XString2 parameter to the end of the wchar_t string pointed to by the XString1 parameter. Copying
stops before Number wchar_t character if a null character is encountered in the string pointed to by the
XString2 parameter. The wstrncat subroutine returns a pointer to the null-terminated result.

The wstrcmp subroutine lexicographically compares the wchar_t string pointed to by the XString1
parameter to the wchar_t string pointed to by the XString2 parameter. The wstrcmp subroutine returns a
value that is:

v Less than 0 if XString1 is less than XString2

v Equal to 0 if XString1 is equal to XString2

v Greater than 0 if XString1 is greater than XString2

The wstrncmp subroutine makes the same comparison as wstrcmp, but it compares, at most, the value
of the Number parameter of pairs of wchar characters. The comparisons are based on collation values as
determined by the locale category LC_COLLATE and the LANG variable.

The wstrcpy subroutine copies the string pointed to by the XString2 parameter to the array pointed to by
the XString1 parameter. Copying stops when the wchar_t null is copied. The wstrcpy subroutine returns
the value of the XString1 parameter.

The wstrncpy subroutine copies the value of the Number parameter of wchar_t characters from the string
pointed to by the XString2 parameter to the wchar_t array pointed to by the XString1 parameter. If

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 455

XString2 is less than Number wchar_t characters long, then wstrncpy pads XString1 with trailing null
characters to fill Number wchar_t characters. If XString2 is Number or more wchar_t characters long, only
the first Number wchar_t characters are copied; the result is not terminated with a null character. The
wstrncpy subroutine returns the value of the XString1 parameter.

The wstrlen subroutine returns the number of wchar_t characters in the string pointed to by the XString
parameter, not including the terminating wchar_t null.

The wstrchr subroutine returns a pointer to the first occurrence of the wchar_t specified by the Number
parameter in the wchar_t string pointed to by the XString parameter. A null pointer is returned if the
wchar_t does not occur in the wchar_t string. The wchar_t null that terminates a string is considered to
be part of the wchar_t string.

The wstrrchr subroutine returns a pointer to the last occurrence of the character specified by the Number
parameter in the wchar_t string pointed to by the XString parameter. A null pointer is returned if the
wchar_t does not occur in the wchar_t string. The wchar_t null that terminates a string is considered to
be part of the wchar_t string.

The wstrpbrk subroutine returns a pointer to the first occurrence in the wchar_t string pointed to by the
XString1 parameter of any code point from the string pointed to by the XString2 parameter. A null pointer
is returned if no character matches.

The wstrspn subroutine returns the length of the initial segment of the string pointed to by the XString1
parameter that consists entirely of code points from the wchar_t string pointed to by the XString2
parameter.

The wstrcspn subroutine returns the length of the initial segment of the wchar_t string pointed to by the
XString1 parameter that consists entirely of code points not from the wchar_t string pointed to by the
XString2 parameter.

The wstrtok subroutine returns a pointer to an occurrence of a text token in the string pointed to by the
XString1 parameter. The XString2 parameter specifies a set of code points as token delimiters. If the
XString1 parameter is anything other than null, then the wstrtok subroutine reads the string pointed to by
the XString1 parameter until it finds one of the delimiter code points specified by the XString2 parameter. It
then stores a wchar_t null into the wchar_t string, replacing the delimiter code point, and returns a pointer
to the first wchar_t of the text token. The wstrtok subroutine keeps track of its position in the wchar_t
string so that subsequent calls with a null XString1 parameter step through the wchar_t string. The
delimiters specified by the XString2 parameter can be changed for subsequent calls to wstrtok. When no
tokens remain in the wchar_t string pointed to by the XString1 parameter, the wstrtok subroutine returns
a null pointer.

The wstrdup subroutine returns a pointer to a wchar_t string that is a duplicate of the wchar_t string to
which the XString1 parameter points. Space for the new string is allocated using the malloc subroutine.
When a new string cannot be created, a null pointer is returned.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The malloc subroutine, strcat, strncat, strxfrm, strcpy, strncpy, or strdup (“strcat, strncat, strxfrm,
strcpy, strncpy, or strdup Subroutine” on page 255) subroutine, strcmp, strncmp, strcasecmp,
strncasecmp, or strcoll (“strcmp, strncmp, strcasecmp, strncasecmp, or strcoll Subroutine” on page 257)
subroutine, strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, or strtok (“strlen, strchr, strrchr,
strpbrk, strspn, strcspn, strstr, or strtok Subroutine” on page 265) subroutine.

456 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/malloc.htm#HDRA174921E

List of String Manipulation Services in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

National Language Support Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

wstrtod or watof Subroutine

Purpose
Converts a string to a double-precision floating-point.

Library
Standard C Library

Syntax
#include <wstring.h>

double wstrtod (String, Pointer)
wchar_t *String, **Pointer;

double watof (String)
wchar_t *String;

Description
The wstrtod subroutine returns a double-precision floating-point number that is converted from an
wchar_t string pointed to by the String parameter. The system searches the String until it finds the first
unrecognized character.

The wstrtod subroutine recognizes a string that starts with any number of white-space characters (defined
by the iswspace subroutine), followed by an optional sign, a string of decimal digits that may include a
decimal point, e or E, an optional sign or space, and an integer.

When the value of Pointer is not (wchar_t **) null, a pointer to the search terminating character is returned
to the address indicated by Pointer. When the resulting number cannot be created, *Pointer is set to String
and 0 (zero) is returned.

The watof (String) subroutine functions like the wstrtod (String (wchar_t **) null).

Parameters

String Specifies the address of the string to scan.
Pointer Specifies the address at which the pointer to the terminating character is stored.

Error Codes
When the value causes overflow, HUGE_VAL (defined in the math.h file) is returned with the appropriate
sign, and the errno global variable is set to ERANGE. When the value causes underflow, 0 is returned
and the errno global variable is set to ERANGE.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 457

../../aixprggd/genprogc/ls_string_subr.htm#HDRA10F0141
../../aixprggd/genprogc/nls.htm#HDRA2919F7
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The atof, atoff, strtod, strtof subroutine, scanf, fscanf, sscanf (“scanf, fscanf, sscanf, or wsscanf
Subroutine” on page 82) subroutine, strtol, strtoul, atol, atoi (“strtol, strtoul, strtoll, strtoull, atol, or atoi
Subroutine” on page 269) subroutine, wstrtol, watol, watoi (“wstrtol, watol, or watoi Subroutine”)
subroutine.

Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

wstrtol, watol, or watoi Subroutine

Purpose
Converts a string to an integer.

Library
Standard C Library (libc.a)

Syntax
#include <wstring.h>

long wstrtol (String, Pointer, Base)
wchar_t *String, **Pointer;
int Base;

long watol (String)
wchar_t *String;

int watoi (String)
wchar_t *String;

Description
The wstrtol subroutine returns a long integer that is converted from the string pointed to by the String
parameter. The string is searched until a character is found that is inconsistent with Base. Leading
white-space characters defined by the ctype subroutine iswspace are ignored.

When the value of Pointer is not (wchar_t **) null, a pointer to the terminating character is returned to the
address indicated by Pointer. When an integer cannot be created, the address indicated by Pointer is set
to String, and 0 is returned.

When the value of Base is positive and not greater than 36, that value is used as the base during
conversion. Leading zeros that follow an optional leading sign are ignored. When the value of Base is 16,
0x and 0X are ignored.

When the value of Base is 0, the system chooses an appropriate base after examining the actual string.
An optional sign followed by a leading zero signifies octal, and a leading 0x or 0X signifies hexadecimal. In
all other cases, the subroutines assume a decimal base.

Truncation from long data type to int data type occurs by assignment, and also by explicit casting.

The watol (String) subroutine functions like wstrtol (String, (wchar_t **) null, 10).

458 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/atof.htm#HDRA1299EC9
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../libs/basetrf1/iswalnum.htm#HDRA143C17B8

The watoi (String) subroutine functions like (int) wstrtol (String, (wchar_t **) null, 10).

Note: Even if overflow occurs, it is ignored.

Parameters

String Specifies the address of the string to scan.
Pointer Specifies the address at which the pointer to the terminating character is stored.
Base Specifies an integer value used as the base during conversion.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The atof, atoff, strtod, strtof subroutine, scanf, fscanf, sscanf (“scanf, fscanf, sscanf, or wsscanf
Subroutine” on page 82) subroutine, strtol, strtoul, atol, atoi (“strtol, strtoul, strtoll, strtoull, atol, or atoi
Subroutine” on page 269) subroutine, wstrtod, watof (“wstrtod or watof Subroutine” on page 457)
subroutine.

Subroutines Overview in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

yield Subroutine

Purpose
Yields the processor to processes with higher priorities.

Library
Standard C library (libc.a)

Syntax
void yield (void);

Description
The yield subroutine forces the current running process or thread to relinquish use of the processor. If the
run queue is empty when the yield subroutine is called, the calling process or kernel thread is immediately
rescheduled. If the calling process has multiple threads, only the calling thread is affected. The process or
thread resumes execution after all threads of equal or greater priority are scheduled to run.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getpriority, setpriority, or nice subroutine, setpri (“setpri Subroutine” on page 118) subroutine.

Chapter 1. Base Operating System (BOS) Runtime Services (Q-Z) 459

../../libs/basetrf1/atof.htm#HDRA1299EC9
../../aixprggd/genprogc/subr_prgs_libs.htm#HDRA10F0E2
../../libs/basetrf1/getpriority.htm#HDRA2199106C
../../libs/basetrf1/getpriority.htm#HDRA2199106C
../../libs/basetrf1/getpriority.htm#HDRA2199106C

460 Technical Reference, Volume 2: Base Operating System and Extensions

Chapter 2. Curses Subroutines

addch, mvaddch, mvwaddch, or waddch Subroutine

Purpose
Adds a single-byte character and rendition to a window and advances the cursor.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int addch(const chtype ch);

int mvaddch(int y,
int x,
const chtype ch);

int mvwaddch(WINDOW *in,
const chtype ch);

int waddch(WINDOW *win,
const chtype ch);

Description
The addch, waddch, mvaddch, and mvwaddch subroutines add a character to a window at the logical
cursor location. After adding the character, curses advances the position of the cursor one character. At
the right margin, an automatic new line is performed.

The addch subroutine adds the character to the stdscr at the current logical cursor location. To add a
character to a user-defined window, use the waddch and mvwaddch subroutines. The mvaddch and
mvwaddch subroutines move the logical cursor before adding a character.

If you add a character to the bottom of a scrolling region, curses automatically scrolls the region up one
line from the bottom of the scrolling region if scrollok is enabled. If the character to add is a tab, new-line,
or backspace character, curses moves the cursor appropriately in the window to reflect the addition. Tabs
are set at every eighth column. If the character is a new-line, curses first uses the wclrtoeol subroutine to
erase the current line from the logical cursor position to the end of the line before moving the cursor.

You can also use the addch subroutines to add control characters to a window. Control characters are
drawn in the |X notation.

Adding Video Attributes and Text
Because the Char parameter is an integer, not a character, you can combine video attributes with a
character by ORing them into the parameter. The video attributes are also set. With this capability you can
copy text and video attributes from one location to another using the inch (“inch, mvinch, mvwinch, or
winch Subroutine” on page 514) and addch subroutines.

Parameters

ch
y
x
*win

© Copyright IBM Corp. 1994, 2001 461

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To add the character H represented by variable x to stdscr at the current cursor location, enter:

chtype x;
x='H';
addch(x);

2. To add the x character to stdscr at the coordinates y = 10, x = 5, enter:
mvaddch(10, 5, 'x');

3. To add the x character to the user-defined window my_window at the coordinates y = 10, x = 5, enter:
WINDOW *my_window;
mvwaddch(my_window, 10, 5, 'x');

4. To add the x character to the user-defined window my_window at the current cursor location, enter:
WINDOW *my_window;
waddch(my_window, 'x');

5. To add the character x in standout mode, enter:
waddch(my_window, 'x' | A_STANDOUT);

This allows ’x’ to be highlighted, but leaves the rest of the window alone.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The inch, winch, mvinch, or mvwinch (“inch, mvinch, mvwinch, or winch Subroutine” on page 514)
subroutines, wclrtoeol (“clrtoeol or wclrtoeol Subroutine” on page 480) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

addnstr, addstr, mvaddnstr, mvaddstr, mvwaddnstr, mvwaddstr,
waddnstr, or waddstr Subroutine

Purpose
Adds a string of multi-byte characters without rendition to a window and advances the cursor.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int addnstr(const char *str,
int n);

int addstr(const char *str);

int mvaddnstr(int y,
int x,
const char *str,
int n);

462 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

int mvaddstr(int y,
int x,
const char *str);

int mvwaddnstr(WINDOW *win,
int y,
int x,
const char *str,
int n);

int mvwaddstr(WINDOW *win,
int y,
int x,
const char *str);

int waddnstr(WINDOW *win,
const char *str,
int n);

int waddstr(WINDOW *win,
const char *str);

Description
These subroutines write the characters of the string str on the current or specified window starting at the
current or specified position using the background rendition.

These subroutines advance the cursor position, perform special character processing, and perform
wrapping.

The addstr, mvaddstr, mvwaddstr and waddstr subroutines are similar to calling mbstowcs on str, and
then calling addwstr, mvaddwstr, mvwaddwstr, and waddwstr, respectively.

The addnstr, mvaddnstr, mvwaddnstr and waddnstr subroutines use at most, n bytes from str. These
subroutines add the entire string when n is -1.

Parameters

Column Specifies the horizontal position to move the cursor to before adding the string.
Line Specifies the vertical position to move the cursor to before adding the string.
String Specifies the string to add.
Window Specifies the window to add the string to.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To add the string represented by xyz to the stdscr at the current cursor location, enter:

char *xyz;
xyz="Hello!";
addstr(xyz);

2. To add the ″Hit a Key″ string to the stdscr at the coordinates y=10, x=5, enter:
mvaddstr(10, 5, "Hit a Key");

3. To add the xyz string to the user-defined window my_window at the coordinates y=10, x=5, enter:
mvwaddstr(my_window, 10, 5, "xyz");

4. To add the xyz string to the user-defined string at the current cursor location, enter:
waddstr(my_window, "xyz");

Chapter 2. Curses Subroutines 463

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The addch (“addch, mvaddch, mvwaddch, or waddch Subroutine” on page 461) subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Manipulating Characters with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

attroff, attron, attrset, wattroff, wattron, or wattrset Subroutine

Purpose
Restricted window attribute control functions.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int attroff (int *attrs);

int attron (int *attrs);

int attrset (int *attrs);

int wattroff (WINDOW *win, int *attsr);

int wattron (WINDOW *win, int *attrs);

int wattrset (WINDOW *win, int *attsr);

Description
These subroutines manipulate the window attributes of the current or specified window.

464 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

The attroff and wattroff subroutines turn off attrs in the current or specified specified window without
affecting any others.

The attron and wattron subroutines turn on attrs in the current or specified specified window without
affecting any others.

The attrset and wattrset subroutines set the background attributes of the current or specified specified
window to attrs.

It unspecified whether these subroutines can be used to manipulate attributes than A_BLINK, A_BOLD,
A_DIM, A_REVERSE, A_STANDOUT and A_UNDERLINE.

Parameters

*attrs Specifies which attributes to turn off.
*win Specifies the window in which to turn off the specified attributes.

Return Values
These subroutines always return either OK or 1.

Examples
For the attroff or wattroff subroutines:

1. To turn the off underlining attribute in stdscr, enter:
attroff(A_UNDERLINE);

2. To turn off the underlining attribute in the user-defined window my_window, enter:
wattroff(my_window, A_UNDERLINE);

For the attron or wattron subroutines:

1. To turn on the underlining attribute in stdscr, enter:
attron(A_UNDERLINE);

2. To turn on the underlining attribute in the user-defined window my_window, enter:
wattron(my_window, A_UNDERLINE);

For the attrset or wattrset subroutines:

1. To set the current attribute in the stdscr global variable to blink, enter:
attrset(A_BLINK);

2. To set the current attribute in the user-defined window my_window to blinking, enter:
wattrset(my_window, A_BLINK);

3. To turn off all attributes in the stdscr global variable, enter:
attrset(0);

4. To turn off all attributes in the user-defined window my_window, enter:
wattrset(my_window, 0);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The standend (“standend, standout, wstandend, or wstandout Subroutine” on page 579) subroutine.

Chapter 2. Curses Subroutines 465

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Setting Video Attributes and Curses Options in AIX 5L Version 5.1 General Programming Concepts:
Writing and Debugging Programs.

attron or wattron Subroutine

Purpose
Turns on specified attributes.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

attron(Attributes)
char *Attributes;

wattron(Window, Attributes)
WINDOW *Window;
char *Attributes;

Description
The attron and wattron subroutines turn on specified attributes without affecting any others. The attron
subroutine turns the specified attributes on in stdscr. The wattron subroutine turns the specified attributes
on in the specified window.

Parameters

Attributes Specifies which attributes to turn on.
Window Specifies the window in which to turn on the specified attributes.

Examples
1. To turn on the underlining attribute in stdscr, enter:

attron(A_UNDERLINE);

2. To turn on the underlining attribute in the user-defined window my_window, enter:
wattron(my_window, A_UNDERLINE);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

466 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD
../../aixprggd/genprogc/curses.htm#HDRA277A9E8

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Setting Video Attributes and Curses Options in AIX 5L Version 5.1 General Programming Concepts:
Writing and Debugging Programs.

attrset or wattrset Subroutine

Purpose
Sets the current attributes of a window to the specified attributes.

Libraries
Curses Library (libcurses.a)

Syntax
#include <curses.h>

attrset(Attributes)
char *Attributes;
wattrset(Window, Attributes)
WINDOW *Window;
char *Attributes;

Description
The attrset and wattrset subroutines set the current attributes of a window to the specified attributes. The
attrset subroutine sets the current attribute of stdscr. The wattrset subroutine sets the current attribute of
the specified window.

Parameters

Attributes Specifies which attributes to set.
Window Specifies the window in which to set the attributes.

Examples
1. To set the current attribute in the stdscr global variable to blink, enter:

attrset(A_BLINK);

2. To set the current attribute in the user-defined window my_window to blinking, enter:
wattrset(my_window, A_BLINK);

3. To turn off all attributes in the stdscr global variable, enter:
attrset(0);

4. To turn off all attributes in the user-defined window my_window, enter:
wattrset(my_window, 0);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

Chapter 2. Curses Subroutines 467

../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD
../../aixprggd/genprogc/curses.htm#HDRA277A9E8

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Setting Video Attributes and Curses Options in AIX 5L Version 5.1 General Programming Concepts:
Writing and Debugging Programs.

baudrate Subroutine

Purpose
Gets the terminal baud rate.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int baudrate(void)

Description
The baudrate subroutine extracts the output speed of the terminal in bits per second.

Return Values
The baudrate subroutine returns the output speed of the terminal.

Examples
To query the baud rate and place the value in the user-defined integer variable BaudRate, enter:
BaudRate = baudrate();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The tcgetattr (“tcgetattr Subroutine” on page 316) subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Obsolete Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

beep Subroutine

Purpose
Sounds the audible alarm on the terminal.

468 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/obsolete_curses_subr.htm#HDRA55C21B83

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int beep(void);

Description
The beep subroutine alerts the user. It sounds the audible alarm on the terminal, or if that is not possible,
it flashes the screen (visible bell). If neither signal is possible, nothing happens.

Return Values
The beep subroutine always returns OK.

Examples
To sound an audible alarm, enter:
beep();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The flash (“flash Subroutine” on page 497) subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Setting Video Attributes and Curses Options in AIX 5L Version 5.1 General Programming Concepts:
Writing and Debugging Programs.

box Subroutine

Purpose
Draws borders from single-byte characters and renditions.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int box(WINDOW *win,
chtype verch,
chtype horch);

Chapter 2. Curses Subroutines 469

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD

Description
The box subroutine draws a border around the edges of the specified window. This subroutine does not
advance the cursor position. This subroutine does not perform special character processing or perform
wrapping.

The box subroutine (*win, verch, horch) has an effect equivalent to:
wborder(win, verch, verch, horch, horch, 0, 0, 0, 0);

Parameters

horch Specifies the character to draw the horizontal lines of the box. The character must be a 1-column
character.

verch Specifies the character to draw the vertical lines of the box. The character must be a 1-column character.
*win Specifies the window to draw the box in or around.

Return Values
Upon successful completion, the box function returns OK. Otherwise, it returns ERR.

Examples
1. To draw a box around the user-defined window, my_window, using | (pipe) as the vertical character and

- (minus sign) as the horizontal character, enter:
WINDOW *my_window;
box(my_window, '|', '-');

2. To draw a box around my_window using the default characters ACS_VLINE and ACS_HLINE, enter:
WINDOW *my_window;
box(my_window, 0, 0);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming, List of Curses Subroutines, and Windows in the Curses Environment
in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

can_change_color, color_content, has_colors,init_color, init_pair,
start_color or pair_content Subroutine

Purpose
Color manipulation functions and external variables for color support.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

bool can_change_color(void);

int color_content(short color,
short *red,
short *green,

470 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/windows_curses_envir.htm#HDRA51C21888

short *blue);

int COLOR_PAIR(int n);

bool has_colors(void);

int init_color
(short color,
short red,
short green,
short blue);

int init_pair
(short pair,
short f,
short b);

int pair_content
(short pair,
short *f,
short *b);

int PAIR_NUMBER
(int value);
int start_color
(void);

extern int COLOR_PAIRS;
extern int COLORS;

Description
These functions manipulate color on terminals that support color.

Querying Capabilities
The has_colors subroutine indicates whether the terminal is a color terminal. The can_change_color
subroutine indicates whether the terminal is a color terminal on which colors can be redefined.

Initialisation
The start_color subroutine must be called in order to enable use of colors and before any color
manipulation function is called. This subroutine initializes eight basic colors (black, blue, green, cyan, red,
magenta, yellow, and white) that can be specified by the color macros (such as COLOR_BLACK) defined
in <curses.h>. The initial appearance of these eight colors is not specified.

The function also initialises two global external variables:

v COLORS defines the number of colors that the terminal supports. If COLORS is 0, the terminal does
not support redefinition of colors (and can_change_color subroutine will return FALSE).

v COLOR_PAIRS defines the maximum number of color-pairs that the terminal supports.

Color Identification
The init_color subroutine redefines color number color, on terminals that support the redefinition of colors,
to have the red, green, and blue intensity components specified by red, green, and blue, respectively.
Calling init_color subroutine also changes all occurrences of the specified color on the screen to the new
definition.

The color_content subroutine identifies the intensity components of color number color. It stores the red,
green, and blue intensity components of this color in the addresses pointed to by red, green, and blue,
respectively.

Chapter 2. Curses Subroutines 471

For both functions, the color argument must be in the range from 0 to and including COLORS -1. Valid
intensity values range from 0 (no intensity component) up to and including 1000 (maximum intensity in that
component).

User-Defined Color Pairs
Calling init_pair defines or redefines color-pair number pair to have foreground color f and background
color b. Calling init_pair changes any characters that were displayed in the color pair’s old definition to the
new definition and refreshes the screen.

After defining the color pair, the macro COLOR_PAIR(n) returns the value of color pair n. This value is the
color attribute as it would be extracted from a chtype. Conversely, the macro PAIR_NUMBER(value)
returns the color pair number associated with the color attribute value.

The pair_content subroutine retrieves the component colors of a color-pair number pair. It stores the
foreground and background color numbers in the variables pointed to by f and b, respectively.

With init_pair and pair_content subroutines, the value of pair must be in a range from 0 to and including
COLOR_PAIRS -1. (There may be an implementation-specific upper limit on the valid value of pair, but
any such limit is at least 63.) Valid values for f and b are the range from 0 to and including COLORS -1.

The can_change_color subroutine returns TRUE if the terminal supports colors and can change their
definitions; otherwise, it returns FALSE.

Parameters

color
*red
*green
*blue
pair
f
b
value

Return Values
The has_colors subroutine returns TRUE if the terminal can manipulate colors; otherwise, it returns
FALSE.

Upon successful completion, the other functions return OK. Otherwise, they return ERR.

Examples
For the can_change_color subroutine:

To test whether or not a terminal can change its colors, enter the following and check the return for TRUE
or FALSE:
can_change_color();

For the color_content subroutine:

To obtain the RGB component information for color 10 (assuming the terminal supports at least 11 colors),
use:
short *r, *g, *b;
color_content(10,r,g,b);

472 Technical Reference, Volume 2: Base Operating System and Extensions

For the has_color subroutine:

To determine whether or not a terminal supports color, use:
has_colors();

For the pair_content subroutine:

To obtain the foreground and background colors for color-pair 5, use:
short *f, *b;
pair_content(5,f,b);

For this subroutine to succeed, you must have already initialized the color pair. The foreground and
background colors will be stored at the locations pointed to by f and b.

For the start_color subroutine:

To enable the color support for a terminal that supports color, use:
start_color();

For the init_pair subroutine:

To initialize the color definition for color-pair 2 to a black foreground (color 0) with a cyan background
(color 3), use:
init_pair(2,COLOR_BLACK, COLOR_CYAN);

For the init_color subroutine:

To initialize the color definition for color 11 to violet on a terminal that supports at least 12 colors, use:
init_color(11,500,0,500);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The attroff (“attroff, attron, attrset, wattroff, wattron, or wattrset Subroutine” on page 464) subroutine.

Curses Overview for Programming and Manipulating Video Attributes in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

cbreak, nocbreak, noraw, or raw Subroutine

Purpose
Puts the terminal into or out of CBREAK mode.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int cbreak(void);

int nocbreak(void);

int noraw(void);

Chapter 2. Curses Subroutines 473

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD

int raw(void);

Description
The cbreak subroutine sets the input mode for the current terminal to cbreak mode and overrides a call to
the raw subroutine.

The nocbreak subroutine sets the input mode for the current terminal to Cooked Mode without changing
the state of the ISIG and IXON flags.

The noraw subroutine sets the input mode for the current terminal to Cooked Mode and sets the ISIG and
IXON flags.

The raw subroutine sets the input mode for the current terminal to Raw Mode.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
For the cbreak and nocbreak subroutines:

1. To put the terminal into CBREAK mode, enter:
cbreak();

2. To take the terminal out of CBREAK mode, enter:
nocbreak();

3. To place the terminal into raw mode, use:
raw();

4. To place the terminal out of raw mode, use:
noraw();

For the noraw and raw subroutines:

1. To place the terminal into raw mode, use:
raw();

2. To place the terminal out of raw mode, use:
noraw();

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The getch (“getch, mvgetch, mvwgetch, or wgetch Subroutine” on page 501) subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

474 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

clear, erase, wclear or werase Subroutine

Purpose
Clears a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int clear(void);

int erase(void);

int wclear(WINDOW *win);

int werase(WINDOW *win);

Description
The clear, erase, wclear, and werase subroutines clear every position in the current or specified window.

The clear and wclear subroutines also achieve the same effect as calling the clearok subroutine, so that
the window is cleared completely on the next call to the wrefresh subroutine for the window and is
redrawn in its entirety.

Parameters

*win Specifies the window to clear.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
For the clear and wclear subroutines:

1. To clear stdscr and set a clear flag for the next call to the refresh subroutine, enter:
clear();

2. To clear the user-defined window my_window and set a clear flag for the next call to the wrefresh
subroutine, enter:
WINDOW *my_window;
wclear(my_window);
waddstr (my_window, "This will be cleared.");
wrefresh (my_window);

3. To erase the standard screen structure, enter:
erase();

4. To erase the user-defined window my_window, enter:
WINDOW *my_window;
werase (my_window);

Note: After the wrefresh, the window will be cleared completely. You will not see the string ″This
will be cleared.″

For the erase and werase subroutines:

Chapter 2. Curses Subroutines 475

1. To erase the standard screen structure, enter:
erase();

2. To erase the user-defined window my_window, enter:
WINDOW *my_window;
werase(my_window);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The doupdate (“doupdate, refresh, wnoutrefresh, or wrefresh Subroutines” on page 602) subroutine, erase
(“erase or werase Subroutine” on page 494) and werase (“erase or werase Subroutine” on page 494)
subroutines, clearok (“clearok, idlok, leaveok, scrollok, setscrreg or wsetscrreg Subroutine”) subroutine,
refresh (“refresh or wrefresh Subroutine” on page 550) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

clearok, idlok, leaveok, scrollok, setscrreg or wsetscrreg Subroutine

Purpose
Terminal output control subroutines.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int clearok(WINDOW *win,
bool bf);

int idlok(WINDOW *win,
bool bf);

int leaveok(WINDOW *win,
bool bf);

int scrollok(WINDOW *win,
bool bf);

int setscrreg(int top,
int bot);

int wsetscrreg(WINDOW *win,
int top,
int bot);

Description
These subroutines set options that deal with output within Curses.

The clearok subroutine assigns the value of bf to an internal flag in the specified window that governs
clearing of the screen during a refresh. If, during a refresh operation on the specified window, the flag in

476 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

curscr is TRUE or the flag in the specified window is TRUE, then the implementation clears the screen,
redraws it in its entirety, and sets the flag to FALSE in curscr and in the specified window. The initial state
is unspecified.

The idlok subroutine specifies whether the implementation may use the hardware insert-line, delete-line,
and scroll features of terminals so equIpped. If bf is TRUE, use of these features is enabled. If bf is
FALSE, use of these features is disabled and lines are instead redrawn as required. The initial state is
FALSE.

The leaveok subroutine controls the cursor position after a refresh operation. If bf is TRUE, refresh
operations on the specified window may leave the terminal’s cursor at an arbitrary position. If bf is FALSE,
then at the end of any refresh operation, the terminal’s cursor is positioned at the cursor position contained
in the specified window. The initial state is FALSE.

The scrollok subroutine controls the use of scrolling. If bf is TRUE, then scrolling is enabled for the
specified window, with the consequences discussed in Truncation, Wrapping and Scrolling on page 28. If
bf is FALSE, scrolling is disabled for the specified window. The initial state is FALSE.

The setscrreg and wsetscrreg subroutines define a software scrolling region in the current or specified
window. The top and bot arguments are the line numbers of the first and last line defining the scrolling
region. (Line 0 is the top line of the window.) If this option and the scrollok subroutine are enabled, an
attempt to move off the last line of the margin causes all lines in the scrolling region to scroll one line in
the direction of the first line. Only characters in the window are scrolled. If a software scrolling region is set
and the scrollok subroutine is not enabled, an attempt to move off the last line of the margin does not
reposition any lines in the scrolling region.

Parameters
The parameters for the clearok subroutine are:

Flag Sets the window clear flag. If TRUE, curses clears the window on the next call to the wrefresh or
refresh subroutines. If FALSE, curses does not clear the window.

Window Specifies the window to clear.

The parameters for the idlok subroutine are:

Flag Specifies whether to enable curses to use the hardware insert/delete line feature (TRUE) or not (FALSE).
Window Specifies the window it will affect.

The parameters for the leaveok subroutine are:

Flag Specifies whether to leave the physical cursor alone after a refresh (TRUE) or to move the physical
cursor to the logical cursor after a refresh (FALSE).

Window Specifies the window for which to set the Flag parameter.

The parameters for the scrollok subroutine are:

Flag Enables scrolling when set to TRUE. Otherwise, set the Flag parameter to FALSE to disable scrolling.
Window Identifies the window in which to enable or disable scrolling.

The parameters for the setscrreg and wsetscrreg subroutines are:

Bmargin Specifies the last line number in the scrolling region.
Tmargin Specifies the first line number in the scrolling region (0 is the top line of the window.).

Chapter 2. Curses Subroutines 477

Window Specifies the window in which to place the scrolling region. You specify this parameter only with the
wsetscrreg subroutine.

Return Values
Upon successful completion, the setscrreg and wsetscrreg subroutines return OK. Otherwise, they return
ERR.

The other subroutines always return OK.

Examples
Examples for the clearok subroutine are:

1. To set the user-defined screen my_screen to clear on the next call to the wrefresh subroutine, enter:
WINDOW *my_screen;
clearok(my_screen, TRUE);

2. To set the standard screen structure to clear on the next call to the refresh subroutine, enter:
clearok(stdscr, TRUE);

Examples for the idlok subroutine are:

1. To enable curses to use the hardware insert/delete line feature in stdscr, enter:
idlok(stdscr, TRUE);

2. To force curses not to use the hardware insert/delete line feature in the user-defined window my_window
, enter:
idlok(my_window, FALSE);

Examples for the leaveok subroutine are:

1. To move the physical cursor to the same location as the logical cursor after refreshing the user-defined
window my_window, enter:
WINDOW *my_window;
leaveok(my_window, FALSE);

2. To leave the physical cursor alone after refreshing the user-defined window my_window, enter:
WINDOW *my_window;
leaveok(my_window, TRUE);

Examples for the scrollok subroutine are:

1. To turn scrolling on in the user-defined window my_window, enter:
WINDOW *my_window;
scrollok(my_window, TRUE);

2. To turn scrolling off in the user-defined window my_window, enter:
WINDOW *my_window;
scrollok(my_window, FALSE);

Examples for the setscrreg or wsetscrreg subroutine are:

1. To set a scrolling region starting at the 10th line and ending at the 30th line in the stdscr, enter:
setscrreg(9, 29);

Note: Zero is always the first line.

2. To set a scrolling region starting at the 10th line and ending at the 30th line in the user-defined window
my_window, enter:
WINDOW *my_window;
wsetscrreg(my_window, 9, 29);

478 Technical Reference, Volume 2: Base Operating System and Extensions

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The doupdate (“doupdate, refresh, wnoutrefresh, or wrefresh Subroutines” on page 602) subroutine, scrl
(“scrl, scroll, wscrl Subroutine” on page 562) subroutine.

The clear subroutine, refresh or wrefresh (“refresh or wrefresh Subroutine” on page 550) subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines and Manipulating Characters with Curses in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

clrtobot or wclrtobot Subroutine

Purpose
Erases the current line from the logical cursor position to the end of the window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int clrtobot(void);

int wclrtobot(WINDOW *win);

Description
The clrtobot and wclrtobot subroutines erase all lines following the cursor in the current or specified
window, and erase the current line from the cursor to the end of the line, inclusive. These subroutines do
not update the cursor.

Parameters

*win Specifies the window in which to erase lines.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To erase the lines below and to the right of the logical cursor in the stdscr, enter:

clrtobot();

2. To erase the lines below and to the right of the logical cursor in the user-defined window my_window,
enter:
WINDOW *my_window;
wclrtobot(my_window);

Chapter 2. Curses Subroutines 479

../../libs/gl32tref/clear.htm#HDRCEH1160MARJ
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The doupdate (“doupdate, refresh, wnoutrefresh, or wrefresh Subroutines” on page 602) subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Manipulating Characters with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

clrtoeol or wclrtoeol Subroutine

Purpose
Erases the current line from the logical cursor position to the end of the line.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int clrtoeol(void);

int wclrtoeol(WINDOW * win);

Description
The clrtoeol and wclrtoeol subroutines erase the current line from the cursor to the end of the line,
inclusive, in the current or specified window. These subroutines do not update the cursor.

Parameters

*win Specifies the window in which to clear the line.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To clear the line to the right of the logical cursor in the stdscr, enter:

clrtoeol();

2. To clear the line to the right of the logical cursor in the user-defined window my_window, enter:
WINDOW *my_window;
wclrtoeol(my_window);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

480 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

Related Information
The doupdate (“doupdate, refresh, wnoutrefresh, or wrefresh Subroutines” on page 602) subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Manipulating Characters with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

color_content Subroutine

Purpose
Returns the current intensity of the red, green, and blue (RGB) components of a color.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>
color_content(Color, R, G,
B)
short Color;
short *R, * G, * B;

Description
The color_content subroutine, given a color number, returns the current intensity of its red, green, and
blue (RGB) components. This subroutine stores the information in the address specified by the R, G, and
B arguments. If successful, this returns OK. Otherwise, this subroutine returns ERR if the color does not
exist, is outside the valid range, or the terminal cannot change its color definitions.

To determine if you can change the color definitions for a terminal, use the can_change_color subroutine.
You must call the start_color subroutine before you can call the color_content subroutine.

Note: The values stored at the addresses pointed to by R, G, and B are between 0 (no component)
and 1000 (maximum amount of component) inclusive.

Return Values

OK Indicates the subroutine was successful.
ERR Indicates the color does not exist, is outside the valid range, or the terminal cannot change its color definitions.

Parameters

B Points to the address that stores the intensity value of the blue component.
Color Specifies the color number. The color parameter must be a value between 0 and COLORS-1 inclusive.
R Points to the address that stores the intensity value of the red component.
G Points to the address that stores the intensity value of the green component.

Chapter 2. Curses Subroutines 481

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

Example
To obtain the RGB component information for color 10 (assuming the terminal supports at least 11 colors),
use:
short *r, *g, *b; color_content(10,r,g,b);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The start_color (“start_color Subroutine” on page 580) subroutine.

Curses Overview for Programming, Manipulating Video Attributes,

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

copywin Subroutine

Purpose
Copies a region of a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int copywin(const WINDOW *scrwin,
WINDOW *dstwin,
int sminrow,
int smincol,
int dminrow,
int dmincol,
int dmaxrow,
int dmaxcol,
int overlay);

Description
The copywin subroutine provides a finer granularity of control over the overlay and overwrite
subroutines. As in the prefresh subroutine, a rectangle is specified in the destination window, (dimrow,
dimincol) and (dmaxrow, dmaxcol), and the upper-left-corner coordinates of the source window, (sminrow,
smincol). If the overlay subroutine is TRUE, then copying is non-destructive, as in the overlay subroutine.
If the overlay subroutine is FALSE, then copying is destructive, as in the overwrite subroutine.

Parameters

*srcwin Points to the source window containing the region to copy.
*dstwin Points to the destination window to copy into.
sminrow Specifies the upper left row coordinate of the source region.
smincol Specifies the upper left column coordinate of the source region.
dminrow Specifies the upper left row coordinate of the destination region.

482 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D

dmincol Specifies the upper left column coordinate for the destination region.
dmaxrow Specifies the lower right row coordinate for the destination region.
dmaxcol Specifies the lower right column coordinate for the destination region.
overlay Sets the type of copy. If set to TRUE the copy is nondestructive. Otherwise, if set to FALSE, the copy

is destructive.

Return Values
Upon successful completion, the copywin subroutine returns OK. Otherwise, it returns ERR.

Examples
To copy to an area in the destination window defined by coordinates (30,40), (30,49), (39,40), and (39,49)
beginning with coordinates (0,0) in the source window, enter the following:
WINDOW *srcwin, *dstwin;

copywin(srcwin, dstwin,
0, 0, 30,40, 39, 49,
TRUE);

The example copies ten rows and ten columns from the source window beginning with coordinates (0,0) to
the region in the destination window defined by the upper left coordinates (30, 40) and lower right
coordinates (39, 49). Because the Overlay parameter is set to TRUE, the copy is nondestructive and
blanks from the source window are not copied.

Implementation Specifics
This routine is part of Base Operating System (BOS) Runtime.

Related Information
The newpad (“newpad, pnoutrefresh, prefresh, or subpad Subroutine” on page 533) and overlay or
overwrite (“overlay or overwrite Subroutine” on page 543) subroutines.

Curses Overview for Programming, Manipulating Window Data with Curses Manipulating Characters with
Curses, List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs

curs_set Subroutine

Purpose
Sets the cursor visibility.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int curs_set(int visibility);

Description
The curs_set subroutine sets the appearance of the cursor based on the value of visibility:
Value of visibility Appearance of Cursor

Chapter 2. Curses Subroutines 483

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/manip_window_data_wcurses.htm#HDRULXTI23BMARY
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D

0 invisible
1 terminal-specific normal mode
2 terminal-specific high visibility mode

The terminal does not necessarily support all the above values.

Parameters

Visibility Sets the cursor state. You can set the cursor state to one of the following:

0 Invisible

1 Visible

2 Very visible

Return Values
If the terminal supports the cursor mode specified by visibility, then the cur_set subroutine returns the
previous cursor state. Otherwise, the subroutine returns ERR.

Examples
To set the cursor state to invisible, use:
curs_set(0);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs

Setting Video Attributes in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs

def_prog_mode, def_shell_mode, reset_prog_mode or
reset_shell_mode Subroutine

Purpose
Saves/restores the program or shell terminal modes.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int def_prog_mode
(void);

484 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA55C21AD5

int def_shell_mode
(void);

int reset_prog_mode
(void);

int reset_shell_mode
(void);

Description
The def_prog_mode subroutine saves the current terminal modes as the ″program″ (in Curses) state for
use by the reset_prog_mode subroutine.

The def_shell_mode subroutine saves the current terminal modes as the ″shell″ (not in Curses) state for
use by the reset_shell_mode subroutine.

The reset_prog_mode subroutine restores the terminal to the ″program″ (in Curses) state.

The reset_shell_mode subroutine restores the terminal to the ″shell″ (not in Curses) state.

These subroutines affect the mode of the terminal associated with the current screen.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
For the def_prog_mode subroutine:

To save the ″in curses″ state, enter:
def_prog_mode();

For the def_shell_mode subroutine:

To save the ″out of curses″ state, enter:
def_shell_mode();

This routine saves the ″out of curses″ state.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The doupdate (“doupdate, refresh, wnoutrefresh, or wrefresh Subroutines” on page 602), endwin (“endwin
Subroutine” on page 494), initscr (“initscr and newterm Subroutine” on page 518), and the setupterm
(“setupterm Subroutine” on page 568) subroutines.

Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

def_shell_mode Subroutine

Purpose
Saves the current terminal modes as shell mode (″out of curses″).

Chapter 2. Curses Subroutines 485

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

def_shell_mode()

Description
The def_shell_mode subroutine saves the current terminal driver line discipline modes in the current
terminal structure for later use by reset_shell_mode(). The def_shell_mode subroutine is called
automatically by the setupterm subroutine.

This routine would normally not be called except by a library routine.

Example
To save the ″out of curses″ state, enter:
def_shell_mode();

This routine saves the ″out of curses″ state.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The setupterm (“setupterm Subroutine” on page 568) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

del_curterm, restartterm, set_curterm, or setupterm Subroutine

Purpose
Interfaces to the terminfo database.

Library
Curses Library (libcurses.a)

Syntax
#include <term.h>

int del_curterm(TERMINAL *oterm);

int restartterm(char *term,
int fildes,
int *erret);

TERMINAL *set_curterm(TERMINAL *nterm);

int setupterm(char *term,
int fildes,
int *erret);

486 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

Description
The del_curterm, restartterm, set_curterm, setupterm subroutines retrieve information from the
terminfo database.

To gain access to the terminfo database, the setupterm subroutine must be called first. It is automatically
called by the initscr and newterm subroutines. The setupterm subroutine initialises the other subroutines
to use the terminfo record for a specified terminal (which depends on whether the use_env subroutine
was called). It sets the dur_term external variable to a TERMINAL structure that contains the record from
the terminfo database for the specified terminal.

The terminal type is the character string term; if term is a null pointer, the environment variable TERM is
used. If TERM is not set or if its value is an empty string, the ″unknown″ is used as the terminal type. The
application must set the fildes parameter to a file descriptor, open for output, to the terminal device, before
calling the setupterm subroutine. If the erret parameter is not null, the integer it points to is set to one of
the following values to report the function outcome:

-1 The terminfo database was not found (function fails).
0 The entry for the terminal was not found in terminfo (function fails).
1 Success.

A simple call to the setupterm subroutine that uses all the defaults and sends the output to stdout is:
setupterm(char *)0, fileno(stdout), (int *)0);

The set_curterm subroutine sets the variable cur_term to nterm, and makes all of the terminfo boolean,
numeric, and string variables use the values from nterm.

The del_curterm subroutine frees the space pointed to by oterm and makes it available for further use. If
oterm is the same as cur_term, references to any of the terminfo boolean, numeric, and string variables
thereafter may refer to invalid memory locations until the setupterm subroutine is called again.

The restartterm subroutine assumes a previous call to the setupterm subroutine (perhaps from the
initscr or newterm subroutine). It lets the application specify a different terminal type in term and updates
the information returned by the baudrate subroutine based on the fildes parameter, but does not destroy
other information created by the initscr, newterm, or setupterm subroutines.

Parameters

*oterm
*term
fildes
*erret
*nterm

Return Values
Upon successful completion, the set_curterm subroutine returns the previous value of cur_term.
Otherwise, it returns a null pointer.

Upon successful completion, the other subroutines return OK. Otherwise, they return ERR.

Examples
To free the space occupied by a TERMINAL structure called my_term, use:

Chapter 2. Curses Subroutines 487

TERMINAL *my_term; del_curterm(my_term);

For the restartterm subroutine:

To restart an aixterm after a previous memory save and exit on error with a message, enter:
restartterm("aixterm", 1, (int*)0);

For the set_curterm subroutine:

To set the cur_term variable to point to the my_term terminal, use:

TERMINAL *newterm; set_curterm(newterm);

For the setupterm subroutine:

To determine the current terminal’s capabilities using $TERM as the terminal name, standard output as
output, and returning no error codes, enter:
setupterm((char*) 0, 1, (int*) 0);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The baudrate (“baudrate Subroutine” on page 468) subroutine, longname (“longname Subroutine” on
page 528) subroutine, putc subroutine, tgetent (“tgetent, tgetflag, tgetnum, tgetstr, or tgoto Subroutine” on
page 584) subroutine, tigetflag (“tigetflag, tigetnum, tigetstr, or tparm Subroutine” on page 588) subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

delay_output Subroutine

Purpose
Sets the delay output.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int delay_output(int ms);

488 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/putc.htm#HDRA1429342
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

Description
On terminals that support pad characters, the delay_output subroutine pauses the output for at least ms
milliseconds. Otherwise, the length of the delay is unspecified.

Parameters

ms Specifies the number of milliseconds to delay output.

Return Values
Upon successful completion, the delay_output subroutine returns OK. Otherwise, it returns ERR.

Examples
To set the output to delay 250 milliseconds, enter:
delay_output(250);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

delch, mvdelch, mvwdelch or wdelch Subroutine

Purpose
Deletes the character from a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int delch(void);

int mvdelch
(int y
int x);

mvwdelch
(WINDOW *win;
int y
int x);

wdelch
(WINDOW *win);

Description
The delch, mvdelch, mvwdelch, and wdelch subroutines delete the character at the current or specified
position in the current or specified window. This subroutine does not change the cursor position.

Chapter 2. Curses Subroutines 489

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

Parameters

x
y
*win Identifies the window from which to delete the character.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To delete the character at the current cursor location in the standard screen structure, enter:

mvdelch();

2. To delete the character at cursor position y=20 and x=30 in the standard screen structure, enter:
mvwdelch(20, 30);

3. To delete the character at cursor position y=20 and x=30 in the user-defined window my_window, enter:
wdelch(my_window, 20, 30);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

deleteln or wdeleteln Subroutine

Purpose
Deletes lines in a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int deleteln(void);

int wdeleteln(WINDOW *win);

Description
The deleteln and wdeleteln subroutines delete the line containing the cursor in the current or specified
window and move all lines following the current line one line toward the cursor. The last line of the window
is cleared. The cursor position does not change.

Parameters

*win Specifies the window in which to delete the line.

490 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To delete the current line in stdscr, enter:

deleteln();

2. To delete the current line in the user-defined window my_window, enter:
WINDOW *my_window;
wdeleteln(my_window);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Manipulating Characters with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

delwin Subroutine

Purpose
Deletes a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int delwin(WINDOW *win);

Description
The delwin subroutine deletes win, freeing all memory associated with it. The application must delete
subwindows before deleting the main window.

Parameters

*win Specifies the window to delete.

Return Values
Upon successful completion, the delwin subroutine returns OK. Otherwise, it returns ERR.

Examples
To delete the user-defined window my_window and its subwindow my_sub_window, enter:

Chapter 2. Curses Subroutines 491

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

WINDOW *my_sub_window, *my_window;
delwin(my_sub_window);

delwin(my_window);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The derwin (“derwin, newwin, or subwin Subroutine” on page 537) subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Manipulating Window Data with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

echo or noecho Subroutine

Purpose
Enables/disables terminal echo.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int echo(void);

int noecho(void);

Description
The echo subroutine enables Echo mode for the current screen. The noecho subroutine disables Echo
mode for the current screen. Initially, curses software echo mode is enabled and hardware echo mode of
the tty driver is disabled. The echo and noecho subroutines control software echo only. Hardware echo
must remain disabled for the duration of the application, else the behaviour is undefined.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To turn echoing on, use:

echo();

2. To turn echoing off, use:
noecho();

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

492 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_window_data_wcurses.htm#HDRULXTI23BMARY

Related Information
The wgetch (“getch, mvgetch, mvwgetch, or wgetch Subroutine” on page 501) subroutine

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines and Understanding Terminals with Curses in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

echochar or wechochar Subroutines

Purpose
Echos single-byte character and rendition to a window and refreshes the window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int echochar(const chtype ch);

int wechochar(WINDOW *win,
const chtype ch);

Description
The echochar subroutine is equivalent to a call to the addch soubroutine followed by a call to the refresh
subroutine.

The wechochar subroutine is equivalent to a call to the waddch subroutine followed by a call to the
wrefresh subroutine.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Example
To output the character I to the stdscr at the present cursor location and to update the physical screen, do
the following:
echochar('I');

Implementation Specifics
This routine is part of Base Operating System (BOS) Runtime.

Related Information
The addch, doupdate, echo_wchar, waddch, wmvaddch, and mvaddch (“addch, mvaddch, mvwaddch,
or waddch Subroutine” on page 461) subroutines.

Curses Overview for Programming and List of Curses Subroutines in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

Manipulating Characters with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

Chapter 2. Curses Subroutines 493

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

endwin Subroutine

Purpose
Suspends curses session.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int endwin(void)

Description
The endwin subroutine restores the terminal after Curses activity by at least restoring the saved shell
terminal mode, flushing any output to the terminal and moving the cursor to the first column of the last line
of the screen. Refreshing a window resumes program mode. The application must call the endwin
subroutine for each terminal being used before exiting. If the newterm subroutine is called more than once
for the same terminal, the first screen created must be the last one for which the endwin subroutine is
called.

Return Values
Upon successful completion, the endwin subroutine returns OK. Otherwise, it returns ERR.

Examples
To terminate curses permanently or temporarily, enter:
endwin();

Implementation Specifics
The endwin subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The doupdate (“doupdate, refresh, wnoutrefresh, or wrefresh Subroutines” on page 602) subroutine,
initscr (“initscr and newterm Subroutine” on page 518) subroutine, and isendwin subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Starting and Stopping Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

erase or werase Subroutine

Purpose
Copies blank spaces to every position in a window.

494 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/isendwin.htm
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/init_curses.htm#HDRA51C21875

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

erase()

werase(Window)
WINDOW *Window;

Description
The erase and werase subroutines copy blank spaces to every position in the specified window. Use the
erase subroutine with the stdscr and the werase subroutine with user-defined windows.

Parameters

Window Specifies the window to erase.

Examples
1. To erase the standard screen structure, enter:

erase();

2. To erase the user-defined window my_window, enter:
WINDOW *my_window;
werase(my_window);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Manipulating Characters with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

erasechar, erasewchar, killchar, and killwchar Subroutine

Purpose
Terminal environment query functions.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

char erasechar(void);

Chapter 2. Curses Subroutines 495

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

int erasewchar(wchar_t *ch);

char killchar(void);

int killwchar(wchar_t
*ch);

Description
The erasechar subroutine returns the current character. chosen by the user. The erasechar subroutine
stores the current erase character in the object pointed to by the ch parameter. If no erase character has
been defined, the subroutine will fail and the object pointed to by ch will not be changed.

The killchar subroutine returns the current line.

The killchar subroutine stores the current line kill character in the object pointed to by ch. If no line kill
character has been defined, the subroutine will fail and the object pointed to by ch will not be changed.

Return Values
The erasechar subroutine returns the erase character and the killchar subroutine returns the line kill
character. The return value is unspecified when these characters are multi-byte characters.

Upon successful completion, the erasechar subroutine and the killchar subroutine return OK. Otherwise,
they return ERR.

Examples
To retrieve a user’s erase character and return it to the user-defined variable myerase, enter:
myerase = erasechar();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The clearok (“clearok, idlok, leaveok, scrollok, setscrreg or wsetscrreg Subroutine” on page 476)
subroutine, tcgetattr (“tcgetattr Subroutine” on page 316) subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Obsolete Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs describes how to query baud rate, set user-defined characters, and flush type-ahead
characters.

filter Subroutine

Purpose
Disables use of certain terminal capabilities.

Library
Curses Library (libcurses.a)

496 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/obsolete_curses_subr.htm#HDRA55C21B83

Syntax
#include <curses.h>

void filter(void);

Description
The filter subroutine changes the algorithm for initialising terminal capabilities that assume that the
terminal has more than one line. A subsequent call to the initscr or newterm subroutine performs the
following actions:

v Disables use of clear, cud, cud1, cup, cuu1, and vpa.

v Sets the value of the home string to the value of the cr. string.

v Sets lines equal to 1.

Any call to the filter subroutine must precede the call to the initscr or newterm subroutine.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The initscr (“initscr and newterm Subroutine” on page 518) subroutine, newterm (“newterm Subroutine” on
page 536) subroutine.

Curses Overview for Programming and List of Curses Subroutines in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

flash Subroutine

Purpose
Flashes the screen.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int flash(void);

Description
The flash subroutine alerts the user. It flashes the screen, or if that is not possible, it sounds the audible
alarm on the terminal. If neither signal is possible, nothing happens.

Return Values
The flash subroutine always returns OK.

Examples
To cause the terminal to flash, enter:
flash();

Chapter 2. Curses Subroutines 497

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The beep (“beep Subroutine” on page 468) subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Setting Video Attributes and Curses Options in AIX 5L Version 5.1 General Programming Concepts:
Writing and Debugging Programs.

flushinp Subroutine

Purpose
Discards input.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int flushinp(void);

Description
The flushinp subroutine discards (flushes) any characters in the input buffers associated with the current
screen.

Return Values
The flushinp subroutine always returns OK.

Examples
To flush all type-ahead characters typed by the user but not yet read by the program, enter:
flushinp();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Obsolete Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

498 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/obsolete_curses_subr.htm#HDRA55C21B83

garbagedlines Subroutine

Purpose
Discards and replaces a number of lines in a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

garbagedlines(Window, BegLine, NumLines)
WINDOW * Window;
int BegLine, NumLines;

Description
The garbagedlines subroutine discards and replaces lines in a window. The Begline parameter specifies
the beginning line number and the Numlines parameter specifies the number of lines to discard. Curses
discards and replaces the specified lines before adding more data.

Uses this subroutine for applications that need to redraw a line that is garbled. Lines may become garbled
as the result of noisy communication lines. Instead of refreshing the entire display, use the garbagedlines
subroutine to refresh a portion of the display and to avoid even more communication noise.

Parameters

Window Points to a window.
BegLine Identifies the beginning line in a range of lines to discard.
NumLines Specifies the total number of lines in a range of lines to discard and replace.

Examples
To discard and replace 5 lines in the mywin window starting with line 10, use:

WINDOW *mywin; garbagedlines(mywin, 10, 5);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Manipulating Window Data with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

Chapter 2. Curses Subroutines 499

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_window_data_wcurses.htm#HDRULXTI23BMARY

getbegyx, getmaxyx, getparyx, or getyx Subroutine

Purpose
Gets the cursor and window coordinates.

Library
Curses Library (libcurses.a)

Syntax
include <curses.h>

void getbegyx(WINDOW *win,
int y,
int x);

void getmaxyx(WINDOW *win,
int y,
int x);

void getparyx(WINDOW *win,
int y,
int x);

void getyx(WINDOW *win,
int y,
int x);

Description
The getbegyx macro stores the absolute screen coordinates of the specified window’s origin in y and x.

The getmaxyx macro stores the number of rows of the specified window in y and x and stores the
window’s number of columns in x.

The getparyx macro, if the specified window is a subwindow, stores in y and x the coordinates of the
window’s origin relative to its parent window. Otherwise, -1 is stored in y and x.

The getyx macro stores the cursor position of the specified window in y and x.

Parameters

*win Identifies the window to get the coordinates from.
Y Returns the row coordinate.
X Returns the column coordinate.

Examples
For the getbegyx subroutine:

To obtain the beginning coordinates for the my_win window and store in integers y and x, use:
WINDOW *my_win;
int y, x;
getbegyx(my_win, y, x);

For the getmaxyx subroutine:

To obtain the size of the my_win window, use:

500 Technical Reference, Volume 2: Base Operating System and Extensions

WINDOW *my_win;

int y,x;
getmaxyx(my_win, y, x);

Integers y and x will contain the size of the window.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Controlling the Cursor with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

getch, mvgetch, mvwgetch, or wgetch Subroutine

Purpose

Gets a single-byte character from the terminal.

Library

Curses Library (libcurses.a)

Syntax
#include <curses.h>

int getch(void)

int mvgetch(int y,
int x);

int mvwgetch(WINDOW *win,
int y,
int x);

int wgetch(WINDOW *win);

Description
The getch, wgetch, mvgetch, and mvwgetch subroutines read a single-byte character from the terminal
associated with the current or specified window. The results are unspecified if the input is not a single-byte
character. If the keypad subroutine is enabled, these subroutines respond to the corresponding KEY_
value defined in <curses.h>.

Processing of terminal input is subject to the general rules described in Section 3.5 on page 34.

If echoing is enabled, then the character is echoed as though it were provided as an input argument to the
addch subroutine, except for the following characters:
<backspace>,

Chapter 2. Curses Subroutines 501

../../aixprggd/genprogc/control_cursor_wcurses.htm#HDRA51C218A3
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D

<left-arrow> and

the current erase character:

The input is interpreted as specified in Section 3.4.3 on page 31 and then the character at the resulting
cursor position is deleted as though the delch subroutine was called, except that if the cursor was
originally in the first column of the line, then the user is alerted as though the beep subroutine was called.

The user is alerted as though the beep subroutine was called. Information concerning the function keys is
not returned to the caller.

Function Keys
If the current or specified window is not a pad, and it has been moved or modified since the last refresh
operation, then it will be refreshed before another character is read.

The Importance of Terminal Modes
The output of the getch subroutines is, in part, determined by the mode of the terminal. The following
describes the action of the getch subroutines in each type of terminal mode:

Mode Action of getch Subroutines
NODELAY Returns a value of ERR if there is no input waiting.
DELAY Halts execution until the system passes text through the program. If CBREAK mode is also set,

the program stops after receiving one character. If NOCBREAK mode is set, the getch
subroutine stops reading after the first new line character.

HALF-DELAY Halts execution until a character is typed or a specified time out is reached. If echo is set, the
character is also echoed to the window.

Note: When using the getch subroutines do not set both the NOCBREAK mode and the ECHO
mode at the same time. This can cause undesirable results depending on the state of the tty driver
when each character is typed.

Getting Function Keys
If your program enables the keyboard with the keypad subroutine, and the user presses a function key,
the token for that function key is returned instead of raw characters. The possible function keys are
defined in the /usr/include/curses.h file. Each #define macro begins with a KEY_ prefix.

If a character is received that could be the beginning of a function key (such as an Escape character)
curses sets a timer. If the remainder of the sequence is not received before the timer expires, the
character is passed through. Otherwise, the function key’s value is returned. For this reason, after a user
presses the Esc key there is a delay before the escape is returned to the program. Programmers should
not use the Esc key for a single character routine.

Within the getch subroutine, a structure of type timeval, defined in the /usr/include/sys/time.h file,
indicates the maximum number of microseconds to wait for the key response to complete.

The ESCDELAY environment variable sets the length of time to wait before timing out and treating the
ESC keystroke as the ESC character rather than combining it with other characters in the buffer to create
a key sequence. The ESCDELAY environment variable is measured in fifths of a millisecond. If
ESCDELAY is 0, the system immediately composes the ESCAPE response without waiting for more
information from the buffer. The user may choose any value between 0 and 99,999, inclusive. The default
setting for the ESCDELAY environment variable is 500 (one tenth of a second).

Programs that do not want the getch subroutines to set a timer can call the notimeout subroutine. If
notimeout is set to TRUE, curses does not distinguish between function keys and characters when
retrieving data.

502 Technical Reference, Volume 2: Base Operating System and Extensions

The getch subroutines might not be able to return all function keys because they are not defined in the
terminfo database or because the terminal does not transmit a unique code when the key is pressed. The
following function keys may be returned by the getch subroutines:

KEY_MIN Minimum curses key.
KEY_BREAK Break key (unreliable).
KEY_DOWN Down Arrow key.
KEY_UP Up Arrow key.
KEY_LEFT Left Arrow key.
KEY_RIGHT Right Arrow key.
KEY_HOME Home key.
KEY_BACKSPACE Backspace.
KEY_F(n) Function key Fn, where n is an integer from 0 to 64.
KEY_DL Delete line.
KEY_IL Insert line.
KEY_DC Delete character.
KEY_IC Insert character or enter insert mode.
KEY_EIC Exit insert character mode.
KEY_CLEAR Clear screen.
KEY_EOS Clear to end of screen.
KEY_EOL Clear to end of line.
KEY_SF Scroll 1 line forward.
KEY_SR Scroll 1 line backwards (reverse).
KEY_NPAGE Next page.
KEY_PPAGE Previous page.
KEY_STAB Set tab.
KEY_CTAB Clear tab.
KEY_CATAB Clear all tabs.
KEY_ENTER Enter or send (unreliable).
KEY_SRESET Soft (partial) reset (unreliable).
KEY_RESET Reset or hard reset (unreliable).
KEY_PRINT Print or copy.
KEY_LL Home down or bottom (lower left).
KEY_A1 Upper-left key of keypad.
KEY_A3 Upper-right key of keypad.
KEY_B2 Center-key of keypad.
KEY_C1 Lower-left key of keypad.
KEY_C3 Lower-right key of keypad.
KEY_BTAB Back tab key.
KEY_BEG beg(inning) key
KEY_CANCEL cancel key
KEY_CLOSE close key
KEY_COMMAND cmd (command) key
KEY_COPY copy key
KEY_CREATE create key
KEY_END end key
KEY_EXIT exit key
KEY_FIND find key
KEY_HELP help key
KEY_MARK mark key
KEY_MESSAGE message key
KEY_MOVE move key
KEY_NEXT next object key
KEY_OPEN open key
KEY_OPTIONS options key
KEY_PREVIOUS previous object key

Chapter 2. Curses Subroutines 503

KEY_REDO redo key
KEY_REFERENCE ref(erence) key
KEY_REFRESH refresh key
KEY_REPLACE replace key
KEY_RESTART restart key
KEY_RESUME resume key
KEY_SAVE save key
KEY_SBEG shifted beginning key
KEY_SCANCEL shifted cancel key
KEY_SCOMMAND shifted command key
KEY_SCOPY shifted copy key
KEY_SCREATE shifted create key
KEY_SDC shifted delete char key
KEY_SDL shifted delete line key
KEY_SELECT select key
KEY_SEND shifted end key
KEY_SEOL shifted clear line key
KEY_SEXIT shifted exit key
KEY_SFIND shifted find key
KEY_SHELP shifted help key
KEY_SHOME shifted home key
KEY_SIC shifted input key
KEY_SLEFT shifted left arrow key
KEY_SMESSAGE shifted message key
KEY_SMOVE shifted move key
KEY_SNEXT shifted next key
KEY_SOPTIONS shifted options key
KEY_SPREVIOUS shifted prev key
KEY_SPRINT shifted print key
KEY_SREDO shifted redo key
KEY_SREPLACE shifted replace key
KEY_SRIGHT shifted right arrow
KEY_SRSUME shifted resume key
KEY_SSAVE shifted save key
KEY_SSUSPEND shifted suspend key
KEY_SUNDO shifted undo key
KEY_SUSPEND suspend key
KEY_UNDO undo key

Parameters

Column Specifies the horizontal position to move the logical cursor to before getting the character.
Line Specifies the vertical position to move the logical cursor to before getting the character.
Window Identifies the window to get the character from and echo it into.

Return Values
Upon successful completion, the getch, mvwgetch, and wgetch subroutines, CURSES, and Curses
Interface return the single-byte character, KEY_ value, or ERR. When in the nodelay mode and no data is
available, ERR is returned.

Examples
1. To get a character and echo it to the stdscr, use:

mvgetch();

504 Technical Reference, Volume 2: Base Operating System and Extensions

2. To get a character and echo it into stdscr at the coordinates y=20, x=30, use:
mvgetch(20, 30);

3. To get a character and echo it into the user-defined window my_window at coordinates y=20, x=30, use:
WINDOW *my_window;
mvwgetch(my_window, 20, 30);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The cbreak (“cbreak, nocbreak, noraw, or raw Subroutine” on page 473), doupdate (“doupdate, refresh,
wnoutrefresh, or wrefresh Subroutines” on page 602), and insch (“insch, mvinsch, mvwinsch, or winsch
Subroutine” on page 519) subroutines, keypad (“keypad Subroutine” on page 523) subroutine, meta
(“meta Subroutine” on page 529) subroutine, nodelay (“nodelay Subroutine” on page 540) subroutine,
echo or noecho (“echo or noecho Subroutine” on page 492) subroutine, notimeout (“notimeout, timeout,
wtimeout Subroutine” on page 541)subroutine, ebreak or nocbreak (“cbreak, nocbreak, noraw, or raw
Subroutine” on page 473) subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

Manipulating Characters with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

getmaxyx Subroutine

Purpose
Returns the size of a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

getmaxyx(Window, Y, X);
WINDOW *Window;
int Y, X;

Description
The getmaxyx subroutine returns the size of a window. The size is returned as the number of rows and
columns in the window. The values are stored in integers Y and X.

Parameters

Window Identifies the window whose size to get.
Y Contains the number of rows in the window.
X Contains the number of columns in the window.

Chapter 2. Curses Subroutines 505

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D

Example
To obtain the size of the my_win window, use:
WINDOW *my_win;

int y,x;
getmaxyx(my_win, y, x);

Integers y and x will contain the size of the window.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Controlling the Cursor with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

getnstr, getstr, mvgetnstr, mvgetstr, mvwgetnstr, mvwgetstr, wgetnstr,
or wgetstr Subroutine

Purpose

Gets a multi-byte character string from the terminal.

Library

Curses Library (libcurses.a)

Syntax

#include <curses.h>

int getnstr(char *str,
int n);

int getstr(char *str);

int mvgetnstr(int y,
int x,
char *st,
int n);

int mvgetstr(int y,
int x,
char *str);

int mvwgetnstr(WINDOW *win,
int y,

506 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/control_cursor_wcurses.htm#HDRA51C218A3
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D

int x,
char *str,
int n);

int mvwgetstr(WINDOW *win,
int y,
int x,
char *str);

int wgetnstr(WINDOW *win,
char *str,
int n);

int wgetstr(WINDOW *win,
char *str);

Description
The effect of the getstr subroutine is as though a series of calls to the getch subroutine was made, until a
newline subroutine, carriage return, or end-of-file is received. The resulting value is placed in the area
pointed to by str. The string is then terminated with a null byte. The getnstr, mvgetnstr, mvwgetnstr, and
wgetnsrt subroutines read at most n bytes, thus preventing a possible overflow of the input buffer. The
user’s erase and kill characters are interpreted, as well as any special keys (such as function keys, home
key, clear key, and so on).

The mvgetstr subroutines is identical to the getstr subroutine except that it is as though it is a call to the
move subroutine and then a series of calls to the getch subroutine. The mvwgetstr subroutine is identical
to the getstr subroutine except that it is as though it is a call to the wmove subroutine and then a series
of calls to the wgetch subroutine.

The mvgetnstr subroutines is identical to the getstr subroutine except that it is as though it is a call to the
move subroutine and then a series of calls to the getch subroutine. The mvwgetnstr subroutine is
identical to the getstr subroutine except that it is as though it is a call to the wmove subroutine and then a
series of calls to the wgetch subroutine.

The getstr, wgetstr, mvgetstr, and mvwgetstr subroutines will only return the entire multi-byte sequence
associated with a character. If the array is large enough to contain at least one character, the subroutines
fill the array with complete characters. If the array is not large enough to contain any complete characters,
the function fails.

Parameters

n
x
y
*str Identifies where to store the string.
*win Identifies the window to get the string from and echo it into.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To get a string, store it in the user-defined variable my_string, and echo it into the stdscr, enter:

Chapter 2. Curses Subroutines 507

char *my_string;
getstr(my_string);

2. To get a string, echo it into the user-defined window my_window, and store it in the user-defined variable
my_string, enter:
WINDOW *my_window;
char *my_string;
wgetstr(my_window, my_string);

3. To get a string in the stdscr at coordinates y=20, x=30, and store it in the user-defined variable
my_string, enter:
char *string;
mvgetstr(20, 30, string);

4. To get a string in the user-defined window my_window at coordinates y=20, x=30, and store it in the
user-defined variable my_string, enter:
WINDOW *my_window;
char *my_string;
mvwgetstr(my_window, 20, 30, my_string);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The beep (“beep Subroutine” on page 468) subroutine, getch (“getch, mvgetch, mvwgetch, or wgetch
Subroutine” on page 501) subroutine, keypad (“keypad Subroutine” on page 523) subroutine, nodelay
(“nodelay Subroutine” on page 540) subroutine, wgetch (“getch, mvgetch, mvwgetch, or wgetch
Subroutine” on page 501) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

getsyx Subroutine

Purpose
Retrieves the current coordinates of the virtual screen cursor.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

getsyx(Y, X)
int * Y, * X;

Description
The getsyx subroutine retrieves the current coordinates of the virtual screen cursor and stores them in the
location specified by Y and X. The current coordinates are those where the cursor was placed after the
last call to the wnoutrefresh, pnoutrefresh, or wrefresh, subroutine. If the leaveok subroutine was
TRUE for the last window refreshed, then the getsyx subroutine returns -1 for both X and Y.

If lines have been removed from the top of the screen using the ripoffline subroutine, Y and X include
these lines. Y and X should only be used as arguments for the setsyx subroutine.

508 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

The getsyx subroutine, along with the setsyx subroutine, is meant to be used by a user-defined function
that manipulates curses windows but wants the position of the cursor to remain the same. Such a function
would do the following:

v Call the getsyx subroutine to obtain the current virtual cursor coordinates.

v Continue manipulating the windows.

v Call the wnoutrefresh subroutine on each window manipulated.

v Reset the current virtual cursor coordinates to the original values with the setsyx subroutine.

v Refresh the display with a call to the doupdate subroutine.

Parameters

X Points to the current row position of the virtual screen cursor. A value of -1 indicates the leaveok subroutine
was TRUE for the last window refreshed.

Y Points to the current column position of the virtual screen cursor. A value of -1 indicates the leaveok subroutine
was TRUE for the last window refreshed.

Implementation Specifics
This routine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

Controlling the Cursor with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

getyx Macro

Purpose
Returns the coordinates of the logical cursor in the specified window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

getyx(Window, Line, Column)
WINDOW *Window;
int Line, Column;

Description
The getyx macro returns the coordinates of the logical cursor in the specified window.

Parameters

Window Identifies the window to get the cursor location from.

Chapter 2. Curses Subroutines 509

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/control_cursor_wcurses.htm#HDRA51C218A3
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D

Column Holds the column coordinate of the logical cursor.
Line Holds the line or row coordinate of the logical cursor.

Example
To get the location of the logical cursor in the user-defined window my_window and then put these
coordinates in the user-defined integer variables Line and Column, enter:
WINDOW *my_window;
int line, column;
getyx(my_window, line, column);

Implementation Specifics
This macro is part of Base Operating System (BOS) Runtime.

Related Information
Controlling the Cursor with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

halfdelay Subroutine

Purpose
Controls input character delay mode.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int halfdelay(int tenths);

Description
The halfdelay subroutine sets the input mode for the current window to Half-Delay Mode and specifies
tenths of seconds as the half-delay interval. The tenths argument must be in a range from 1 up to and
including 255.

Flag

x Instructs wgetch to wait x tenths of a second for input before timing out.

Parameters

tenths

510 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/control_cursor_wcurses.htm#HDRA51C218A3
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D

Return Values
Upon successful completion, the halfdelay subroutine returns OK. Otherwise, it returns ERR.

Related Information
The cbreak (“cbreak, nocbreak, noraw, or raw Subroutine” on page 473) subroutine.

has_colors Subroutine

Purpose
Determines whether a terminal supports color.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

has_colors()

Description
The has_colors subroutine determines whether a terminal supports color. If the terminal supports color,
the has_colors subroutine returns TRUE. Otherwise, it returns FALSE. Because this subroutine tests for
color, you can call it before the start_color subroutine.

The has_colors routine makes writing terminal-independent programs easier because you can use the
subroutine to determine whether to use color or another video attribute.

Use the can_change_colors subroutine to determine whether a terminal that supports colors also
supports changing its color definitions.

Examples
To determine whether or not a terminal supports color, use:
has_colors();

Implementation Specifics
This routine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Manipulating Video Attributes in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

Chapter 2. Curses Subroutines 511

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD

has_ic and has_il Subroutine

Purpose
Query functions for terminal insert and delete capability.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

bool has_ic(void);

bool has_il(void);

Description
The has_ic subroutine indicates whether the terminal has insert- and delete-character capabilities.

The has_il subroutine indicates whether the terminal has insert- and delete-line capabilities, or can
simulate them using scrolling regions.

Return Values
The has_ic subroutine returns a value of TRUE if the terminal has insert- and delete-character
capabilities. Otherwise, it returns FALSE.

The has_il subroutine returns a value of TRUE if the terminal has insert- and delete-line capabilities.
Otherwise, it returns FALSE.

Examples
For the has_ic subroutine:

To determine the insert capability of a terminal by returning TRUE or FALSE into the user-defined variable
insert_cap, enter:
int insert_cap;
insert_cap = has_ic();

For the has_il subroutine:

To determine the insert capability of a terminal by returning TRUE or FALSE into the user-defined variable
insert_line, enter:
int insert_line;
insert_line = has_il();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

512 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D

Understanding Terminals with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

has_il Subroutine

Purpose
Determines whether the terminal has insert-line capability.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

has_il()

Description
The has_il subroutine determines whether a terminal has insert-line capability.

Return Values
The has_il subroutine returns TRUE if terminal has insert-line capability and FALSE, if not.

Examples
To determine the insert capability of a terminal by returning TRUE or FALSE into the user-defined variable
insert_line, enter:
int insert_line;
insert_line = has_il();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

idlok Subroutine

Purpose
Allows curses to use the hardware insert/delete line feature.

Library
Curses Library (libcurses.a)

Chapter 2. Curses Subroutines 513

../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

Syntax
#include <curses.h>

idlok(Window, Flag)
WINDOW *Window;
bool Flag;

Description
The idlok subroutine enables curses to use the hardware insert/delete line feature for terminals so
equipped. If this feature is disabled, curses cannot use it. The insert/delete line feature is always
considered. Enable this option only if your application needs the insert/delete line feature; for example, for
a screen editor. If the insert/delete line feature cannot be used, curses will redraw the changed portions of
all lines that do not match the desired line.

Parameters

Flag Specifies whether to enable curses to use the hardware insert/delete line feature (True) or not (False).
Window Specifies the window it will affect.

Examples
1. To enable curses to use the hardware insert/delete line feature in stdscr, enter:

idlok(stdscr, TRUE);

2. To force curses not to use the hardware insert/delete line feature in the user-defined window my_window
, enter:
idlok(my_window, FALSE);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Setting Video Attributes and Curses Options in AIX 5L Version 5.1 General Programming Concepts:
Writing and Debugging Programs.

inch, mvinch, mvwinch, or winch Subroutine

Purpose
Inputs a single-byte character and rendition from a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

chtype inch(void);

514 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD

chtype mvinch(int y,
int x);

chtype mvwinch(WINDOW *win,
int y,
int x);

chtype winch(WINDOW *win);

Description
The inch, winch, mvinch, and mvwinch subroutines return the character and rendition, of type chtype, at
the current or specified position in the current or specified window.

Parameters

*win Specifies the window from which to get the character.
x
y

Return Values
Upon successful completion, these subroutines return the specified character and rendition. Otherwise,
they return (chtype) ERR.

Examples
1. To get the character at the current cursor location in the stdscr, enter:

chtype character;

character = inch();

2. To get the character at the current cursor location in the user-defined window my_window, enter:
WINDOW *my_window;
chtype character;

character = winch(my_window);

3. To move the cursor to the coordinates y = 0, x = 5 and then get that character, enter:
chtype character;

character = mvinch(0, 5);

4. To move the cursor to the coordinates y = 0, x = 5 in the user-defined window my_window and then get
that character, enter:
WINDOW *my_window;
chtype character;

character = mvwinch(my_window, 0, 5);

Implementation Specifics
These subroutines are part of Base Operating System (BOS).

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Chapter 2. Curses Subroutines 515

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D

Manipulating Characters with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

init_color Subroutine

Purpose
Changes a color definition.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

init_color(Color, R,
G, B)
register short Color, R, G, B;

Description
The init_color subroutine changes a color definition. A single color is defined by the combination of its
red, green, and blue components. The init_color subroutine changes all the occurrences of the color on
the screen immediately. If the color is changed successfully, this subroutines returns OK. Otherwise, it
returns ERR.

Note: The values for the red, green, and blue components must be between 0 (no component) and
1000 (maximum amount of component). The init_color subroutine sets values less than 0 to 0 and
values greater than 1000 to 1000.

To determine if you can change a terminal’s color definitions, see the can_change_color subroutine.

Return Values

OK Indicates the color was changed successfully.
ERR Indicates the color was not changed.

Parameters

Color Identifies the color to change. The value of the parameter must be between 0 and COLORS-1.
R Specifies the desired intensity of the red component.
G Specifies the desired intensity of the green component.
B Specifies the desired intensity of the blue component.

Examples
To initialize the color definition for color 11 to violet on a terminal that supports at least 12 colors, use:
init_color(11,500,0,500);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

516 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

Related Information
The start_color (“start_color Subroutine” on page 580) subroutine.

Curses Overview for Programming and Manipulating Video Attributes in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

init_pair Subroutine

Purpose
Changes a color-pair definition.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

init_pair(Pair, F, B)
register short Pair, F, B;

Description
The init_pair subroutine changes a color-pair definition. A color pair is a combination of a foreground and
a background color. If you specify a color pair that was previously initialized, curses refreshes the screen
and changes all occurrences of that color pair to the new definition. You must call the start_color
subroutine before you call this subroutine.

Return Values

OK Indicates successful completion.
ERR Indicates the subroutine failed.

Parameters

Pair Identifies the color-pair number. The value of the Pair parameter must be between 1 and COLORS_PAIRS-1.
F Specifies the foreground color number. This number must be between 0 and COLORS-1.
B Specifies the background color number. This number must be between 0 and COLORS-1.

Examples
To initialize the color definition for color-pair 2 to a black foreground (color 0) with a cyan background
(color 3), use:
init_pair(2,COLOR_BLACK, COLOR_CYAN);

Implementation Specifics
This routine is part of Base Operating System (BOS) Runtime.

Related Information
The init_color (“init_color Subroutine” on page 516) subroutine, start_color (“start_color Subroutine” on
page 580) subroutine.

Chapter 2. Curses Subroutines 517

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD

Curses Overview for Programming, List of Curses Subroutines, Manipulating Video Attributes in AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs.

initscr and newterm Subroutine

Purpose
Initializes curses and its data structures.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

WINDOW *initscr(void);

SCREEN *newterm(char *type,
FILE *outfile,
FILE *infile);

Description
The initscr subroutine determines the terminal type and initializes all implementation data structures. The
TERM environment variable specifies the terminal type. The initscr subroutine also causes the first refresh
operation to clear the screen. If errors occur, initscr writes an appropriate error message to standard error
and exits. The only subroutines that can be called before initscr or newterm are the filter, ripoffline,
slk_init, use_env, and the subroutines whose prototypes are defined in <term.h>. Portable applications
must not call initscr twice.

The newterm subroutine can be called as many times as desired to attach a terminal device. The type
argument points to a string specifying the terminal type, except that, if type is a null pointer, the TERM
environment variable is used. The outfile and infile arguments are file pointers for output to the terminal
and input from the terminal, respectively. It is unspecified whether Curses modifies the buffering mode of
these file pointers. The newterm subroutine should be called once for each terminal.

The initscr subroutine is equivalent to:
newterm(gentenv("TERM"), stdout, stdin); return stdscr;

If the current disposition for the signals SIGINT, SIGQUIT or SIGTSTP is SIGDFL, then the initscr
subroutine may also install a handler for the signal, which may remain in effect for the life of the process
or until the process changes the disposition of the signal.

The initscr and newterm subroutines initialise the cur_term external variable.
initscr CURSES Curses Interfaces

Return Values
Upon successful completion, the initscr subroutine returns a pointer to stdscr. Otherwise, it does not
return.

Upon successful completion, the newterm subroutine returns a pointer to the specified terminal.
Otherwise, it returns a null pointer.

Example
To initialize curses so that other curses subroutines can be called, use:
initscr();

518 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The doupdate (“doupdate, refresh, wnoutrefresh, or wrefresh Subroutines” on page 602) subroutine,
del_curterm (“del_curterm, restartterm, set_curterm, or setupterm Subroutine” on page 486) subroutine,
filter (“filter Subroutine” on page 496) subroutine, slk_attroff (“slk_attroff, slk_attr_off, slk_attron,
slk_attrset, slk_attr_set, slk_clear, slk_color, slk_init, slk_label, slk_noutrefresh, slk_refresh, slk_restore,
slk_set, slk_touch, slk_wset, Subroutine” on page 570) subroutine, setupterm (“setupterm Subroutine” on
page 568) subroutine.

Curses Overview for Programming, Initializing Curses, List of Curses Subroutines in AIX 5L Version 5.1
General Programming Concepts: Writing and Debugging Programs.

insch, mvinsch, mvwinsch, or winsch Subroutine

Purpose
Inserts a single-byte character and rendition in a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int insch(chtype ch);

int mvinsch(int y,
chtype h);

int mvwinsch(WINDOW *win,
int x,
int y,
chtype h);

int winsch(WINDOW *win,
chtype h);

Description
These subroutines insert the character and rendition into the current or specified window at the current or
specified position.

These subroutines do not perform wrapping or advance the cursor position. These functions perform
special-character processing, with the exception that if a newline is inserted into the last line of a window
and scrolling is not enabled, the behavior is unspecified.

Parameters

ch
y
x
*win Specifies the window in which to insert the character.

Chapter 2. Curses Subroutines 519

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/init_curses.htm#HDRA51C21875
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To insert the character x in the stdscr, enter:

chtype x;
insch(x);

2. To insert the character x into the user-defined window my_window, enter:
WINDOW *my_window
chtype x;
winsch(my_window, x);

3. To move the logical cursor to the coordinates Y=10, X=5 prior to inserting the character x in the stdscr,
enter:
chtype x;
mvinsch(10, 5, x);

4. To move the logical cursor to the coordinates y=10, X=5 prior to inserting the character x in the
user-defined window my_window, enter:
WINDOW *my_window;
chtype x;
mvwinsch(my_window, 10, 5, x);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Manipulating Characters with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

insertln or winsertln Subroutine

Purpose
Inserts a blank line above the current line in a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int insertln(void)

int winsertln(WINDOW *win);

Description
The insertln and winsertln subroutines insert a blank line before the current line in the current or
specified window. The bottom line is no longer displayed. The cursor position does not change.

520 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

Parameters

*win Specifies the window in which to insert the blank line.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To insert a blank line above the current line in the stdscr, enter:

insertln();

2. To insert a blank line above the current line in the user-defined window my_window, enter:
WINDOW *mywindow;
winsertln(my_window);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Manipulating Characters with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

intrflush Subroutine

Purpose
Enables or disables flush on interrupt.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int intrflush(WINDOW * win,
bool bf);

Description
The intrflush subroutine specifies whether pressing an interrupt key (interrupt, suspend, or quit) will flush
the input buffer associated with the current screen. If the value of bf is TRUE, then flushing of the output
buffer associated with the current screen will occur when an interrupt key (interrupt, suspend, or quit) is
pressed. If the value of bf is FALSE then no flushing of the buffer will occur when an interrupt key is
pressed. The default for the option is inherited from the display driver settings. The win argument is
ignored.

Chapter 2. Curses Subroutines 521

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

Parameters

bf
*win Specifies the window for which to enable or disable queue flushing.

Return Values
Upon successful completion, the intrflush subroutine returns OK. Otherwise, it returns ERR.

Examples
1. To enable queue flushing in the user-defined window my_window, enter:

intrflush(my_window, TRUE);

2. To disable queue flushing in the user-defined window my_window, enter:
intrflush(my_window, FALSE);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Setting Video Attributes and Curses Options in AIX 5L Version 5.1 General Programming Concepts:
Writing and Debugging Programs.

keyname, key_name Subroutine

Purpose
Gets the name of keys.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

char *keyname(int c);

char *key_name(wchar_t c);

Description
The keyname and key_name subroutines generate a character string whose value describes the key c.
The c argument of keyname can be an 8-bit character or a key code. The c argument of key_name must
be a wide character.

The string has a format according to the first applicable row in the following table:

Input Format of Returned String

Visible character The same character

Control character |X

522 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD

Meta-character (keyname only) M-X

Key value defined in <curses.h> (keyname only) KEY_name

None of the above UNKNOWN KEY

The meta-character notation shown above is used only, if meta-characters are enabled.

Parameter
c

Return Values
Upon successful completion, the keyname subroutine returns a pointer to a string as described above,
Otherwise, it returns a null pointer.

Examples
int key;
char *name;
keypad(stdscr, TRUE);
addstr("Hit a key");
key=getch();
name=keyname(key);

Note: If the Page Up key is pressed, keyname will return KEY_PPAGE.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The meta (“meta Subroutine” on page 529) and wgetch (“getch, mvgetch, mvwgetch, or wgetch
Subroutine” on page 501) subroutines.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

keypad Subroutine

Purpose
Enables or disables abbreviation of function keys.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int keypad(WINDOW *win,
bool bf);

Description
The keypad subroutine controls keypad translation. If bf is TRUE, keypad translation is turned on. If bf is
FALSE, keypad translation is turned off. The initial state is FALSE.

Chapter 2. Curses Subroutines 523

../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D

This subroutine affects the behavior of any function that provides keyboard input.

If the terminal in use requires a command to enable it to transmit distinctive codes when a function key is
pressed, then after keypad translation is first enabled, the implemenation transmits this command to the
terminal before an affected input function tries to read any characters from that terminal.

Parameters

bf
*win Specifies the window in which to enable or disable the keypad.

Return Values
Upon successful completion, the keypad subroutine returns OK. Otherwise, it returns ERR.

Examples
To turn on the keypad in the user-defined window my_window, use:
WINDOW *my_window;
keypad(my_window, TRUE);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getch (“getch, mvgetch, mvwgetch, or wgetch Subroutine” on page 501) subroutine.

The terminfo file format.

Curses Overview for Programming, List of Curses Subroutines, Setting Video Attributes and Curses
Options in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

killchar or killwchar Subroutine

Purpose
Terminal environment query functions.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

char killchar(void);

int killwchar(wchar_t *ch);

Description
The killchar subroutine returns the current line.

The killchar subroutine stores the current line kill character in the object pointed to by ch. If no line kill
character has been defined, the subroutine will fail and the object pointed to by ch will not be changed.

524 Technical Reference, Volume 2: Base Operating System and Extensions

../../files/aixfiles/terminfo.htm#HDRA72P01A
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD

Parameters
*ch

Return Values
The killchar subroutine returns the line kill character. The return value is unspecified when this character
is a multi-byte character.

Upon successful completion, the killchar subroutine returns OK. Otherwise, it returns ERR.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Portability with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs describes how to query baud rate, set user-defined characters, and flush type-ahead characters.

_lazySetErrorHandler Subroutine

Purpose
Installs an error handler into the lazy loading runtime system for the current process.

Library
Curses Library (libcurses.a)

Syntax
#include <sys/ldr.h>

#include <sys/errno.h>

typedef void *handler_t
char *module;
char *symbol;
unsigned int errval;

handler_t *_lazySetErrorHandler
handler_t *err_handler;

Description
This function allows a process to install a custom error handler to be called when a lazy loading reference
fails to find the required module or function. This function should only be used when the main program or
one of its dependent modules was linked with the -blazy option. To call _lazySetErrorHandler from a
module that is not linked with the -blazy option, you must use the -lrtl option. If you use -blazy, you do not
need to specify -lrtl.

This function is not thread safe. The calling program should ensure that _lazySetErrorHandler is not
called by multiple threads at the same time.

Chapter 2. Curses Subroutines 525

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/obsolete_curses_subr.htm#HDRA55C21B83

The user-supplied error handler may print its own error message, provide a substitute function to be used
in place of the called function, or call longjmp subroutine. To provide a substitute function that will be
called instead of the originally referenced function, the error handler should return a pointer

Parameters

Column Specifies the horizontal position to move the logical cursor to before getting the character.
Line Specifies the vertical position to move the logical cursor to before getting the character.
Window Identifies the window to get the character from and echo it into.

Return Values
Upon completion, the character code for the data key or one of the following values is returned:

KEY_xxxx The keypad subroutine is set to TRUE and a control key was recognized. See the curses. h file for
a complete list of the key codes that can be returned.

Examples
1. To get a character and echo it to the stdscr, use:

mvgetch();

2. To get a character and echo it into stdscr at the coordinates y=20, x=30, use:
mvgetch(20, 30);

3. To get a character and echo it into the user-defined window my_window at coordinates y=20, x=30, use:
WINDOW *my_window;
mvwgetch(my_window, 20, 30);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The keypad (“keypad Subroutine” on page 523) subroutine, meta (“meta Subroutine” on page 529)
subroutine, nodelay (“nodelay Subroutine” on page 540) subroutine, echo or noecho (“echo or noecho
Subroutine” on page 492) subroutine,notimeout (“notimeout, timeout, wtimeout Subroutine” on
page 541)subroutine, ebreak or nocbreak (“cbreak, nocbreak, noraw, or raw Subroutine” on page 473)
subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

Manipulating Characters with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

leaveok Subroutine

Purpose
Controls physical cursor placement after a call to the refresh subroutine.

526 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

leaveok(Window, Flag)
WINDOW *Window;
bool Flag;

Description
The leaveok subroutine controls cursor placement after a call to the refresh (“refresh or wrefresh
Subroutine” on page 550) subroutine. If the Flag parameter is set to FALSE, curses leaves the physical
cursor in the same location as logical cursor when the window is refreshed.

If the Flag parameter is set to TRUE, curses leaves the cursor as is and does not move the physical
cursor when the window is refreshed. This option is useful for applications that do not use the cursor,
because it reduces physical cursor motions.

By default leaveok is FALSE, and the physical cursor is moved to the same position as the logical cursor
after a refresh.

Parameters

Flag Specifies whether to leave the physical cursor alone after a refresh (TRUE) or to move the physical
cursor to the logical cursor after a refresh (FALSE).

Window Identifies the window to set the Flag parameter for.

Return Values

OK Indicates the subroutine completed. The leaveok subroutine always returns this value.

Examples
1. To move the physical cursor to the same location as the logical cursor after refreshing the user-defined

window my_window, enter:
WINDOW *my_window;
leaveok(my_window, FALSE);

2. To leave the physical cursor alone after refreshing the user-defined window my_window, enter:
WINDOW *my_window;
leaveok(my_window, TRUE);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The refresh (“refresh or wrefresh Subroutine” on page 550) subroutine.

Controlling the Cursor with Curses, Curses Overview for Programming, List of Curses Subroutines in AIX
5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

Chapter 2. Curses Subroutines 527

../../aixprggd/genprogc/control_cursor_wcurses.htm#HDRA51C218A3
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D

longname Subroutine

Purpose
Returns the verbose name of a terminal.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

char *longname(void);

Description
The longname subroutine generates a verbose description for the current terminal. The maximum length
of a verbose description is 128 bytes. It is defined only after the call to the initscr or newterm
subroutines.

The area is overwritten by each call to the newterm subroutine, so the value should be saved if you plan
on using the longname subroutine with multiple terminals.

Return Values
Upon successful completion, the longname subroutine returns a pointer to the description specified above.
Otherwise, it returns a null pointer on error.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The initscr (“initscr and newterm Subroutine” on page 518) subroutine, newterm (“newterm Subroutine” on
page 536) subroutine, setupterm (“setupterm Subroutine” on page 568) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

makenew Subroutine

Purpose
Creates a new window buffer and returns a pointer.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

WINDOW *makenew()

528 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

Description
The makenew subroutine creates a new window buffer and returns a pointer to it. The makenew
subroutine is called by the newwin subroutine to create the window structure. The makenew subroutine
should not be called directly by a program.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Understanding Windows with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

meta Subroutine

Purpose
Enables/disables meta-keys.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int meta(WINDOW *win,
bool bf);

Description
Initially, whether the terminal returns 7 or 8 significant bits on input depends on the control mode of the
display driver. To force 8 bits to be returned, invoke the meta subroutine (win, TRUE). To force 7 bits to be
returned, invoke the meta subroutine (win, FALSE). The win argument is always ignored.

If the terminfo capabilities smm (meta_on) and rmm (meta_off) are defined for the terminal, smm is sent
to the terminal when meta (win, TRUE) is called and rmm is sent when meta (win, FALSE) is called.

Parameters

bf
*win

Return Values
Upon successful completion, the meta subroutine returns OK. Otherwise, it returns ERR.

Examples
1. To request an 8-bit character return when using a getch routine, enter:

Chapter 2. Curses Subroutines 529

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

WINDOW *some_window;
meta(some_window, TRUE);

2. To strip the highest bit off the character returns in the user-defined window my_window, enter:
WINDOW *some_window;
meta(some_window, FALSE);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getch (“getch, mvgetch, mvwgetch, or wgetch Subroutine” on page 501) subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Manipulating Characters with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

move or wmove Subroutine

Purpose
Window location cursor functions.

Library
Curses Library (libcurses.a)

Syntax
int (x);

int wmove (WINDOW *win,
int y,
int x);

Description
The move and wmove subroutines move the logical cursor associated with the current or specified
window to (y, x) relative to the window’s origin. This subroutine does not move the cursor of the terminal
until the next refresh (“refresh or wrefresh Subroutine” on page 550) operation.

Parameters

y
x
*win

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

530 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

Examples
1. To move the logical cursor in the stdscr to the coordinates y = 5, x = 10, use:

move(5, 10);

2. To move the logical cursor in the user-defined window my_window to the coordinates y = 5, x = 10, use:
WINDOW *my_window;
wmove(my_window, 5, 10);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The getch (“getch, mvgetch, mvwgetch, or wgetch Subroutine” on page 501) and refresh (“refresh or
wrefresh Subroutine” on page 550) subroutines.

Controlling the Cursor with Curses, Curses Overview for Programming, List of Curses Subroutines in AIX
5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

mvcur Subroutine

Purpose
Output cursor movement commands to the terminal.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int mvcur(int oldrow,
int oldcol,
int newrow,
int newcol);

Description
The mvcur subroutine outputs one or more commands to the terminal that move the terminal’s cursor to
(newrow, newcol), an absolute position on the terminal screen. The (oldrow, oldcol) arguments specify the
former cursor position. Specifying the former position is necessary on terminals that do not provide
coordinate-based movement commands. On terminals that provide these commands, Curses may select a
more efficient way to move the cursor based on the former position. If (newrow, newcol) is not a valid
address for the terminal in use, the mvcur subroutine fails. If (oldrow, oldcol) is the same as (newrow,
newcol), mvcur succeeds without taking any action. If mvcur outputs a cursor movement command, it
updates its information concerning the location of the cursor on the terminal.

Parameters

newcol
newrow
oldcol
oldrow

Chapter 2. Curses Subroutines 531

../../aixprggd/genprogc/control_cursor_wcurses.htm#HDRA51C218A3
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D

Return Values
Upon successful completion, the mvcur subroutine returns OK. Otherwise, it returns ERR.

Examples
1. To move the physical cursor from the coordinates y = 5, x = 15 to y = 25, x = 30, use:

mvcur(5, 15, 25, 30);

2. To move the physical cursor from unknown coordinates to y = 5, x = 0, use:
mvcur(50, 50, 5, 0);

In this example, the physical cursor’s current coordinates are unknown. Therefore, arbitrary values are
assigned to the OldLine and OldColumn parameters and the desired coordinates are assigned to the
NewLine and NewColumn parameters. This is called an absolute move.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The doupdate (“doupdate, refresh, wnoutrefresh, or wrefresh Subroutines” on page 602) subroutine,
is_linetouched (“is_linetouched, is_wintouched, touchline, touchwin, untouchwin, or wtouchin Subroutine”
on page 592) subroutine, move (“move or wmove Subroutine” on page 530) subroutine, refresh (“refresh

or wrefresh Subroutine” on page 550) subroutine.

Controlling the Cursor with Curses, Curses Overview for Programming, List of Curses Subroutines in AIX
5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

mvwin Subroutine

Purpose
Moves a window or subwindow to the specified coordinates.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int mvwin
(WINDOW *win,
int y,
int x);

Description
The mvwin subroutine moves the specified window so that its origin is at position (y, x). If the move
causes any portion of the window to extend past any edge of the screen, the function fails and the window
is not moved.

Parameters

*win
x
y

532 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/control_cursor_wcurses.htm#HDRA51C218A3
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D

Return Values
Upon successful completion, the mvwin subroutine returns OK. Otherwise, it returns ERR.

Examples
1. To move the user-defined window my_window from its present location to the upper left corner of the

terminal, enter:
WINDOW *my_window;
mvwin(my_window, 0, 0);

2. To move the user-defined window my_window from its present location to the coordinates y = 20, x = 10,
enter:
WINDOW *my_window;
mvwin(my_window, 20, 10);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The derwin (“derwin, newwin, or subwin Subroutine” on page 537) subroutine, doupdate (“doupdate,
refresh, wnoutrefresh, or wrefresh Subroutines” on page 602) subroutine, is_linetouched (“is_linetouched,
is_wintouched, touchline, touchwin, untouchwin, or wtouchin Subroutine” on page 592) subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Manipulating Window Data with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

newpad, pnoutrefresh, prefresh, or subpad Subroutine

Purpose
Pad management functions

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

WINDOW *newpad
(int nlines,
int ncols);

int
pnoutrefresh
(WINDOW *pad,
int pminrow,
int pmincol,
int sminrow,
int smincol,
int smaxrorw,
int smaxcol);

Chapter 2. Curses Subroutines 533

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_window_data_wcurses.htm#HDRULXTI23BMARY

int
prefresh
(WINDOW *pad,
int pminrow,
int pmincol,
int sminrow,
int smincol,
int smaxrorw,
int smaxcol);

WINDOW
*subpad
(WINDOW *orig,
int nlines,
int ncols,
int begin_y,
int begin_x);

Description
The newpad subroutine creates a specialised WINDOW data structure with nlines lines and ncols
columns. A pad is similar to a window, except that it is not associated with a viewable part of the screen.
Automatic refreshes of pads do not occur.

The subpad subroutine creates a subwindow within a pad with nlines lines and ncols columns. Unlike the
subwin subroutine, which uses screen coordinates, the window is at a position (begin_y, begin_x) on the
pad. The window is made in the middle of the window orig, so that changes made to one window affects
both windows.

The prefresh (“prefresh or pnoutrefresh Subroutine” on page 545) or pnoutrefresh (“prefresh or
pnoutrefresh Subroutine” on page 545) subroutines are analogous to the wrefresh and wnoutrefresh
subroutines except that they relate to pads instead of windows. The additional arguments indicate what
part of the pad and screen are involved. The pminrow and pmincol arguments specify the origin of the
rectangle to be displayed in the screen. The lower right-hand corner of the rectangle to be displayed in the
pad is calculated from the screen coordinates, since the rectangles must be the same size. Both
rectangles must be entirely contained within their respective structures. Negative values of pminrow,
pmincol, sminrow or smincol are treated as if they were zero.

Parameters

ncols
nlines
begin_x
begin_y
*orig
*pad
pminrow
pmincol
sminrow
smincol
smaxrorw
smaxcol

Return Values
Upon successful completion, the newpad and subpad subroutines return a pointer to the pad structure.
Otherwise, they return a null pointer.

534 Technical Reference, Volume 2: Base Operating System and Extensions

Upon successful completion, the pnoutrefresh and prefresh subroutines return OK. Otherwise, they
return ERR.

Examples
For the newpad subroutine:

1. To create a new pad and save the pointer to it in my_pad, enter:
WINDOW *my_pad;

my_pad = newpad(5, 10);

my_pad is now a pad 5 lines deep, 10 columns wide.

2. To create a pad and save the pointer to it in my_pad, which is flush with the right side of the terminal,
enter:
WINDOW *my_pad;

my_pad = newpad(5, 0);

my_pad is now a pad 5 lines deep, extending to the far right side of the terminal.

3. To create a pad and save the pointer to it in my_pad, which fills the entire terminal, enter:
WINDOW *my_pad;

my_pad = newpad(0, 0);

my_pad is now a pad that fills the entire terminal.

4. To create a very large pad and display part of it on the screen, enter;
WINDOW *my_pad;

my_pal = newpad(120,120);

prefresh (my_pal, 0,0,0,0,20,30);

This causes the first 21 rows and first 31 columns of the pad to be displayed on the screen. The upper
left coordinates of the resulting rectangle are (0,0) and the bottom right coordinates are (20,30).

For the prefresh or pnoutrefresh subroutines:

1. To update the user-defined my_pad pad from the upper-left corner of the pad on the terminal with the
upper-left corner at the coordinates Y=20, X=10 and the lower-right corner at the coordinates Y=30,
X=25 enter
WINDOW *my_pad;
prefresh(my_pad, 0, 0, 20, 10, 30, 25);

2. To update the user-defined my_pad1 and my_pad2 pads and output them both to the terminal in one
burst of output, enter:
WINDOW *my_pad1; *my_pad2;
pnoutrefresh(my_pad1, 0, 0, 20, 10, 30, 25);
pnoutrefresh(my_pad2, 0, 0, 0, 0, 10, 5);
doupdate();

For the subpad subroutine:

To create a subpad, use:
WINDOW *orig, *mypad;
orig = newpad(100, 200);
mypad = subpad(orig, 30, 5, 25, 180);

Chapter 2. Curses Subroutines 535

The parent pad is 100 lines by 200 columns. The subpad is 30 lines by 5 columns and starts in line 25,
column 180 of the parent pad.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The derwin (“derwin, newwin, or subwin Subroutine” on page 537) subroutine, doupdate (“doupdate,
refresh, wnoutrefresh, or wrefresh Subroutines” on page 602) subroutine, is_linetouched (“is_linetouched,
is_wintouched, touchline, touchwin, untouchwin, or wtouchin Subroutine” on page 592) subroutine,
prefresh (“prefresh or pnoutrefresh Subroutine” on page 545) or pnoutrefresh (“prefresh or pnoutrefresh
Subroutine” on page 545) subroutine, and subpad (“subpad Subroutine” on page 581) subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Windows in the Curses Environment in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

newterm Subroutine

Purpose
Initializes curses and its data structures for a specified terminal.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

SCREEN *newterm(
Type,
OutFile, InFile)
char *Type;
FILE *OutFile, *InFile;

Description
The newterm subroutine initializes curses and its data structures for a specified terminal. Use this
subroutine instead of the initscr subroutine if you are writing a program that sends output to more than
one terminal. You should also use this subroutine if your program requires indication of error conditions so
that it can run in a line-oriented mode on terminals that do not support a screen-oriented program.

If you are directing your program’s output to more than one terminal, you must call the newterm
subroutine once for each terminal. You must also call the endwin subroutine for each terminal to stop
curses and restore the terminal to its previous state.

Parameters

InFile Identifies the input device file.

536 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/windows_curses_envir.htm#HDRA51C21888

OutFile Identifies the output device file.
Type Specifies the type of output terminal. This parameter is the same as the $TERM environment variable

for that terminal.

Return Values
The newterm subroutine returns a variable of type SCREEN *. You should save this reference to the
terminal within your program.

Examples
1. To initialize curses on a terminal represented by the lft device file as both the input and output terminal,

open the device file with the following:
fdfile = fopen("/dev/lft0", "r+");

Then, use the newterm subroutine to initialize curses on the terminal and save the new terminal in the
my_terminal variable as follows:
char termname [] = "terminaltype";
SCREEN *my_terminal;
my_terminal = newterm(termname,fdfile, fdfile);

2. To open the device file /dev/lft0 as the input terminal and the /dev/tty0 (an ibm3151) as the output
terminal, do the following:
fdifile = fopen("/dev/lft0", "r");
fdofile = fopen("/dev/tty0", "w");

SCREEN *my_terminal2;
my_terminal2 = newterm("ibm3151",fdofile, fdifile);

3. To use stdin for input and stdout for output, do the following:
char termname [] = "terminaltype";
SCREEN *my_terminal;
my_terminal = newterm(termname,stdout,stdin);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The endwin (“endwin Subroutine” on page 494) subroutine, initscr (“initscr and newterm Subroutine” on
page 518) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Initializing Curses in AIX 5L Version 5.1
General Programming Concepts: Writing and Debugging Programs.

derwin, newwin, or subwin Subroutine

Purpose
Window creation subroutines.

Library
Curses Library (libcurses.a)

Chapter 2. Curses Subroutines 537

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/init_curses.htm#HDRA51C21875

Syntax
#include <curses.h>

WINDOW *derwin(WINDOW *orig,
int nlines,
int ncols,
int begin_y,
int begin_x);

WINDOW *newwin(int nlines,
int ncols,
int begin_y,
int begin_x);

WINDOW *subwin(WINDOW *orig,
int nlines,
int ncols,
int begin_y,
int begin_x);

Description
The derwin subroutine is the same as the subwin subroutine except that begin_y and begin_x are relative
to the origin of the window orig rather than absolute screen positions.

The newwin subroutine creates a new window with nlines lines and ncols columns, positioned so that the
origin is at (begin_y, begin_x). If nlines is zero, it defaults to LINES - begin_y; if ncols is zero, it defaults to
COLS - begin_x.

The subwin subroutine creates a new window with nlines lines and ncols columns, positioned so that the
origin is at (begin_y, begin_x). (This position is an absolute screen position, not a position relative to the
window orig.) If any part of the new window is outside orig, the subroutine fails and the window is not
created.

Parameters

ncols
nlines
begin_y
begin_x

Return Values
Upon successful completion, these subroutines return a pointer to the new window. Otherwise, they return
a null pointer.

Examples
For the derwin and newwin subroutines:

1. To create a new window, enter:
WINDOW *my_window;

my_window = newwin(5, 10, 20, 30);

my_window is now a window 5 lines deep, 10 columns wide, starting at the coordinates y = 20, x = 30.
That is, the upper left corner is at coordinates y = 20, x = 30, and the lower right corner is at
coordinates y = 24, x = 39.

2. To create a window that is flush with the right side of the terminal, enter:

538 Technical Reference, Volume 2: Base Operating System and Extensions

WINDOW *my_window;

my_window = newwin(5, 0, 20, 30);

my_window is now a window 5 lines deep, extending all the way to the right side of the terminal, starting
at the coordinates y = 20, x = 30. The upper left corner is at coordinates y = 20, x = 30, and the lower
right corner is at coordinates y = 24, x = lastcolumn.

3. To create a window that fills the entire terminal, enter:
WINDOW *my_window;

my_window = newwin(0, 0, 0, 0);

my_window is now a screen that is a window that fills the entire terminal’s display.

For the subwin subroutine:

1. To create a subwindow, use:

WINDOW *my_window, *my_sub_window;
my_window = newwin (“derwin, newwin, or subwin Subroutine” on page 537)

(5, 10, 20, 30);

my_sub_window is now a subwindow 2 lines deep, 5 columns wide, starting at the same coordinates of
its parent window my_window. That is, the subwindow’s upper-left corner is at coordinates y = 20, x =
30 and lower-right corner is at coordinates y = 21, x = 34.

2. To create a subwindow that is flush with the right side of its parent, use

WINDOW *my_window, *my_sub_window;
my_window =
newwin (“derwin, newwin, or subwin Subroutine” on page 537)(5, 10, 20, 30);
my_sub_window = subwin(my_window, 2, 0, 20, 30);

my_sub_window is now a subwindow 2 lines deep, extending all the way to the right side of its parent
window my_window, and starting at the same coordinates. That is, the subwindow’s upper-left corner is
at coordinates y = 20, x = 30 and lower-right corner is at coordinates y = 21, x = 39.

3. To create a subwindow in the lower-right corner of its parent, use:

WINDOW *my_window, *my_sub_window
my_window = newwwin (“derwin, newwin, or subwin Subroutine” on page 537)

(5, 10, 20, 30);
my_sub_window = subwin(my_window, 0, 0, 22, 35);

my_sub_window is now a subwindow that fills the bottom right corner of its parent window, my_window,
starting at the coordinates y = 22, x = 35. That is, the subwindow’s upper-left corner is at coordinates y
= 22, x = 35 and lower-right corner is at coordinates y = 24, x = 39.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The endwin (“endwin Subroutine” on page 494), initscr (“initscr and newterm Subroutine” on page 518)
subroutines.

Curses Overview for Programming, List of Curses Subroutines, Windows in the Curses Enviroment in AIX
5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

Chapter 2. Curses Subroutines 539

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/windows_curses_envir.htm#HDRA51C21888

nl or nonl Subroutine

Purpose
Enables/disables newline translation.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int nl(void);

int nonl(void);

Description
The nl subroutine enables a mode in which carriage return is translated to newline on input. The nonnl
subroutine disables the above translation. Initially, the above translation is enabled.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To instruct wgetch to translate the carriage return into a newline, enter:

nl();

2. To instruct wgetch not to translate the carriage return, enter:
nonl();

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The refresh (“refresh or wrefresh Subroutine” on page 550) subroutine, waddch (“addch, mvaddch,
mvwaddch, or waddch Subroutine” on page 461) subroutine.

Curses Overview for Programming, Understanding Terminals with Curses, List of Curses Subroutines in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

nodelay Subroutine

Purpose
Enables or disables block during read.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int nodelay(WINDOW *win,
bool bf);

540 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D

Description
The nodelay subroutine specifies whether Delay Mode or No Delay Mode is in effect for the screen
associated with the specified window. If bf is TRUE, this screen is set to No Delay Mode. If bf is FALSE,
this screen is set to Delay Mode. The initial state is FALSE.

Parameters

bf
*win

Return Values
Upon successful completion, the nodelay subroutine returns OK. Otherwise, it returns ERR.

Examples
1. To cause the wgetch subroutine to return an error message, if no input is ready in the user-defined

window my_window, use:
nodelay(my_window, TRUE);

2. To allow for a delay when retrieving a character in the user-defined window my_window, use:
WINDOW *my_window;
nodelay(my_window, FALSE);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The halfdelay (“halfdelay Subroutine” on page 510) subroutine, wgetch (“getch, mvgetch, mvwgetch, or
wgetch Subroutine” on page 501) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs

notimeout, timeout, wtimeout Subroutine

Purpose
Controls blocking on input.

Library
Curses Library (libcurses.a)

Curses Syntax
#include <curses.h>

int notimeout
(WINDOW *win,
bool bf);

void timeout
(int delay);

void wtimeout
(WINDOW *win,
int delay);

Chapter 2. Curses Subroutines 541

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

Description
The notimeout subroutine specifies whether Timeout Mode or No Timeout Mode is in effect for the screen
associated with the specified window. If bf is TRUE, this screen is set to No Timeout Mode. If bf is FALSE,
this screen is set to Timeout Mode. The initial state is FALSE.

The timeout and wtimeout subroutines set blocking or non-blocking read for the current or specified
window based on the value of delay:

delay < 0 One or more blocking reads (indefinite waits for input) are used.
delay = 0 One or more non-blocking reads are used. Any Curses input subroutine will fail if every

character of the requested string is not immediately available.
delay > 0 Any Curses input subroutine blocks for delay milliseconds and fails if there is still no input.

Parameters

*win
bf

Return Values
Upon successful completion, the notimeout subroutine returns OK. Otherwise, it returns ERR.

The timeout and wtimeout subroutines do not return a value.

Examples
To set the flag so that the wgetch subroutine does not set the timer when getting characters from the
my_win window, use:
WINDOW *my_win;
notimeout(my_win, TRUE);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The getch (“getch, mvgetch, mvwgetch, or wgetch Subroutine” on page 501), halfdelay (“halfdelay
Subroutine” on page 510), nodelay (“nodelay Subroutine” on page 540), and notimeout (“notimeout,
timeout, wtimeout Subroutine” on page 541) subroutines.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Manipulating Characters with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

Getting Characters in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

542 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21AB3

overlay or overwrite Subroutine

Purpose
Copies one window on top of another.

Library
Curses Library (libcurses.a)

Syntax
WINDOW *dstwin);

int overwrite(const WINDOW *srcwin,
WINDOW *dstwin);

Description
The overlay and overwrite subroutines overlay srcwin on top of dstwin. The scrwin and dstwin arguments
need not be the same size; only text where the two windows overlap is copied.

The overwrite subroutine copies characters as though a sequence of win_wch and wadd_wch
subroutines were performed with the destination window’s attributes and background attributes cleared.

The overlay subroutine does the same thing, except that, whenever a character to be copied is the
background character of the source window. the overlay subroutine does not copy the character but
merely moves the destination cursor the width of the source background character.

If any portion of the overlaying window border is not the first column of a multi-column character then all
the column positions will be replaced with the background character and rendition before the overlay is
done. If the default background character is a multi-column character when this occurs, then these
subroutines fail.

Parameters

srcwin
deswin

Return Values
Upon successful completion. these subroutines return OK. Otherwise, they return ERR.

Examples
1. To copy my_window on top of other_window, excluding spaces, use:

WINDOW *my_window, *other_window;
overlay(my_window, other_window);

2. To copy my_window on top of other_window, including spaces, use:
WINDOW *my_window, *other_window;
overwrite(my_window, other_window);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The copywin (“copywin Subroutine” on page 482) subroutine.

Chapter 2. Curses Subroutines 543

Curses Overview for Programming, List of Curses Subroutines, Manipulating Window Data with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

pair_content Subroutine

Purpose
Returns the colors in a color pair.

Library
Curses Library (libcurses.a)

Curses Syntax
#include <curses.h>

pair_content (Pair, F, B)
short Pair;
short *F, *B;

Description
The pair_content subroutine returns the colors in a color pair. A color pair is made up of a foreground and
background color. You must call the start_color subroutine before calling the pair_content subroutine.

Note: The color pair must already be initialized before calling the pair_content subroutine.

Return Values

OK Indicates the subroutine completed successfully.
ERR Indicates the pair has not been initialized.

Parameters

Pair Identifies the color-pair number. The Pair parameter must be between 1 and COLORS_PAIRS-1.
F Points to the address where the foreground color will be stored. The F parameter will be between 0 and

COLORS-1.
B Points to the address where the background color will be stored. The B parameter will be between 0 and

COLORS-1.

Example
To obtain the foreground and background colors for color-pair 5, use:
short *f, *b;
pair_content(5,f,b);

For this subroutine to succeed, you must have already initialized the color pair. The foreground and
background colors will be stored at the locations pointed to by f and b.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

544 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_window_data_wcurses.htm#HDRULXTI23BMARY

Related Information
The start_color (“start_color Subroutine” on page 580) subroutine, init_pair (“init_pair Subroutine” on
page 517) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Video Attributes, Working
with Color in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

prefresh or pnoutrefresh Subroutine

Purpose
Updates the terminal and curscr (current screen) to reflect changes made to a pad.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

prefresh(Pad, PY, PX, TTY, TTX, TBY, TBX)
WINDOW * Pad;
int PY, PX, TTY;
int TTX, TBY, TBX;

pnoutrefresh(Pad, PY, PX, TTY, TTX, TBY, TBX)
WINDOW *Pad;
int PY, PX, TTY;
int TTX, TBY, TBX;

Description
The prefresh and pnoutrefresh subroutines are similar to the wrefresh (“refresh or wrefresh Subroutine”
on page 550) and wnoutrefresh (“doupdate, refresh, wnoutrefresh, or wrefresh Subroutines” on
page 602) subroutines. They are different in that pads, instead of windows, are involved, and additional
parameters are necessary to indicate what part of the pad and screen are involved.

The PX and PY parameters specify the upper left corner, in the pad, of the rectangle to be displayed. The
TTX, TTY, TBX, and TBY parameters specify the edges, on the screen, for the rectangle to be displayed
in. The lower right corner of the rectangle to be displayed is calculated from the screen coordinates, since
both rectangle and pad must be the same size. Both rectangles must be entirely contained within their
respective structures.

The prefresh subroutine copies the specified portion of the pad to the physical screen. if you wish to
output several pads at once, call pnoutrefresh for each pad and then issue one call to doupdate. This
updates the physical screen once.

Parameters

Pad Specifies the pad to be refreshed.
PX (Pad’s x-coordinate) Specifies the upper-left column coordinate, in the pad, of the rectangle to be displayed.
PY (Pad’s y-coordinate) Specifies the upper-left row coordinate, in the pad, of the rectangle to be displayed.

TBX (Terminal’s Bottom x-coordinate) Specifies the lower-right column coordinate, on the terminal, for the pad to be
displayed in.

Chapter 2. Curses Subroutines 545

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD
../../aixprggd/genprogc/working_wcolor.htm#HDRDLDSIBMARY
../../aixprggd/genprogc/working_wcolor.htm#HDRDLDSIBMARY

TBY (Terminal’s Bottom y-coordinate) Specifies the lower-right row coordinate, on the terminal, for the pad to be
displayed in.

TTX (Terminal’s Top x-coordinate) Specifies the upper-left column coordinate, on the terminal, for the pad to be
displayed in.

TTY (Terminal’s Top Y coordinate) Specifies the upper-left row coordinate, on the terminal, for the pad to be
displayed in.

Examples
1. To update the user-defined my_pad pad from the upper-left corner of the pad on the terminal with the

upper-left corner at the coordinates Y=20, X=10 and the lower-right corner at the coordinates Y=30,
X=25 enter
WINDOW *my_pad;
prefresh(my_pad, 0, 0, 20, 10, 30, 25);

2. To update the user-defined my_pad1 and my_pad2 pads and output them both to the terminal in one
burst of output, enter:
WINDOW *my_pad1; *my_pad2; pnoutrefresh(my_pad1, 0, 0, 20, 10, 30, 25);
pnoutrefresh(my_pad2, 0, 0, 0, 0, 10, 5);
doupdate();

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Manipulating Window Data with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

printw, wprintw, mvprintw, or mvwprintw Subroutine

Purpose
Performs a printf command on a window using the specified format control string.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

printw(Format, [Argument ...])
char *Format, *Argument;

wprintw(Window, Format, [Argument ...])
WINDOW *Window;
char *Format, *Argument;

546 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_window_data_wcurses.htm#HDRULXTI23BMARY

mvprintw(Line, Column, Format, [Argument ...])
int Line, Column;
char *Format, *Argument;

mvwprintw(Window, Line, Column, Format, [Argument ...])

WINDOW *Window;
int Line, Column;
char *Format, *Argument;

Description
The printw, wprintw, mvprintw, and mvwprintw subroutines perform output on a window by using the
specified format control string. However, the waddch (“addch, mvaddch, mvwaddch, or waddch
Subroutine” on page 461) subroutine is used to output characters in a given window instead of invoking
the printf subroutine. The mvprintw and mvwprintw subroutines move the logical cursor before
performing the output.

Use the printw and mvprintw subroutines on the stdscr and the wprintw and mvwprintw subroutines on
user-defined windows.

Note: The maximum length of the format control string after expansion is 512 bytes.

Parameters

Argument Specifies the item to print. See the printf subroutine for more details.
Column Specifies the horizontal position to move the cursor to before printing.
Format Specifies the format for printing the Argument parameter. See the printf subroutine.
Line Specifies the vertical position to move the cursor to before printing.
Window Specifies the window to print into.

Examples
1. To print the user-defined integer variables x and y as decimal integers in the stdscr, enter:

int x, y;
printw("%d%d", x, y);

2. To print the user-defined integer variables x and y as decimal integers in the user-defined window
my_window, enter:
int x, y;
WINDOW *my_window;
wprintw(my_window, "%d%d", x, y);

3. To move the logical cursor to the coordinates y = 5, x = 10 before printing the user-defined integer
variables x and y as decimal integers in the stdscr, enter:
int x, y;
mvprintw(5, 10, "%d%d", x, y);

4. To move the logical cursor to the coordinates y = 5, x = 10 before printing the user-defined integer
variables x and y as decimal integers in the user-defined window my_window, enter:
int x, y;
WINDOW *my_window;
mvwprintw(my_window, 5, 10, "%d%d", x, y);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Chapter 2. Curses Subroutines 547

../../libs/basetrf1/printf.htm#HDRA8ZED0GACO

Related Information
The waddch (“addch, mvaddch, mvwaddch, or waddch Subroutine” on page 461) subroutine, printf
subroutine.

The printf command.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

putp, tputs Subroutine

Purpose
Outputs commands to the terminal.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int putp(const char *str);

int tputs(const char *str,
int affcnt,
int (*putfunc)(int));

Description
These subroutines output commands contained in the terminfo database to the terminal.

The putp subroutine is equivalent to tputs(str, 1, putchar). The output of the putp subroutine always goes
to stdout, not to the fildes specified in the setupterm subroutine.

The tputs subroutine outputs str to the terminal. The str argument must be a terminfo string variable or the
return value from the tgetstr, tgoto, tigestr, or tparm subroutines. The affcnt argument is the number of
lines affected, or 1 if not applicable. If the terminfo database indicates that the terminal in use requires
padding after any command in the generated string, the tputs subroutine inserts pad characters into the
string that is sent to the terminal, at positions indicated by the terminfo database. The tputs subroutine
outputs each character of the generated string by calling the user-supplied putfunc subroutine (see
below).

The user-supplied putfunc subroutine (specified as an argument to the tputs subroutine is either putchar
or some other subroutine with the same prototype. The tputs subroutine ignores the return value of the
putfunc subroutine.

Parameters

*str
affcnt
*putfunc

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

548 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/printf.htm#HDRA8ZED0GACO
../../cmds/aixcmds4/printf.htm#HDRA94C12
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

Examples
For the putp subroutine:

To call the tputs(my_string, 1, putchar) subroutine, enter:
char *my_string;
putp(my_string);

For the tputs subroutine:

1. To output the clear screen sequence using the user-defined putchar-like subroutine my_putchar,
enter:
int_my_putchar();
tputs(clear_screen, 1 ,my_putchar);

2. To output the escape sequence used to move the cursor to the coordinates x=40, y=18 through the
user-defined putchar-like subroutine my_putchar, enter:
int_my_putchar();
tputs(tparm(cursor_address, 18, 40), 1, my_putchar);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The doupdate (“doupdate, refresh, wnoutrefresh, or wrefresh Subroutines” on page 602) subroutine,
is_linetouched (“is_linetouched, is_wintouched, touchline, touchwin, untouchwin, or wtouchin Subroutine”
on page 592) subroutine, putchar subroutine, tgetent (“tgetent, tgetflag, tgetnum, tgetstr, or tgoto
Subroutine” on page 584) subroutine, tigetflag (“tigetflag, tigetnum, tigetstr, or tparm Subroutine” on
page 588) subroutine, tputs (“putp, tputs Subroutine” on page 548) subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

raw or noraw Subroutine

Purpose
Places the terminal into or out of raw mode.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>
raw()
noraw()

Description
The raw or noraw subroutine places the terminal into or out of raw mode, respectively. RAW mode is
similar to CBREAK mode (cbreak or nocbreak (“cbreak, nocbreak, noraw, or raw Subroutine” on
page 473

Chapter 2. Curses Subroutines 549

../../libs/basetrf1/putc.htm#HDRA1429342
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

page 473) subroutine). In RAW mode, the system immediately passes typed characters to the user
program. The interrupt, quit, and suspend characters are passed uninterrupted, instead of generating a
signal. RAW mode also causes 8-bit input and output.

To get character-at-a-time input without echoing, call the cbreak and noecho subroutines. Most interactive
screen-oriented programs require this sort of input.

Return Values

OK Indicates the subroutine completed. The raw and noraw routines always return this value.

Examples
1. To place the terminal into raw mode, use:

raw();

2. To place the terminal out of raw mode, use:
noraw();

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The getch (“getch, mvgetch, mvwgetch, or wgetch Subroutine” on page 501) subroutine, cbreak or
nocbreak (“cbreak, nocbreak, noraw, or raw Subroutine” on page 473) subroutine

Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

refresh or wrefresh Subroutine

Purpose
Updates the terminal’s display and the curscr to reflect changes made to a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

refresh()

wrefresh(Window)
WINDOW *Window;

Description
The refresh or wrefresh subroutines update the terminal and the curscr to reflect changes made to a
window. The refresh subroutine updates the stdscr. The wrefresh subroutine refreshes a user-defined
window.

Other subroutines manipulate windows but do not update the terminal’s physical display to reflect their
changes. Use the refresh or wrefresh subroutines to update a terminal’s display after internal window
representations change. Both subroutines check for possible scroll errors at display time.

550 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

Note: The physical terminal cursor remains at the location of the window’s cursor during a refresh,
unless the leaveok (“leaveok Subroutine” on page 526) subroutine is enabled.

The refresh and wrefresh subroutines call two other subroutines to perform the refresh operation. First,
the wnoutrefresh (“doupdate, refresh, wnoutrefresh, or wrefresh Subroutines” on page 602) subroutine
copies the designated window structure to the terminal. Then, the doupdate (“doupdate, refresh,
wnoutrefresh, or wrefresh Subroutines” on page 602) subroutine updates the terminal’s display and the
cursor.

Parameters

Window Specifies the window to refresh.

Examples
1. To update the terminal’s display and the current screen structure to reflect changes made to the

standard screen structure, use:
refresh();

2. To update the terminal and the current screen structure to reflect changes made to a user-defined
window called my_window, use:
WINDOW *my_window;
wrefresh(my_window);

3. To restore the terminal to its state at the last refresh, use:
wrefresh(curscr);

This subroutine is useful if the terminal becomes garbled for any reason.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The doupdate (“doupdate, refresh, wnoutrefresh, or wrefresh Subroutines” on page 602) subroutine,
leaveok (“leaveok Subroutine” on page 526) subroutine, wnoutrefresh (“leaveok Subroutine” on page 526)
subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

reset_prog_mode Subroutine

Purpose
Restores the terminal to program mode.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

reset_prog_mode()

Chapter 2. Curses Subroutines 551

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

Description
The reset_prog_mode subroutine restores the terminal to program or in curses mode.

The reset_prog_mode subroutine is a low-level routine and normally would not be called directly by a
program.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

reset_shell_mode Subroutine

Purpose
Restores the terminal to shell mode.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

reset_shell_mode()

Description
The reset_shell_mode subroutine restores the terminal into shell , or ″out of curses,″ mode. This happens
automatically when the endwin subroutine is called.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The endwin (“endwin Subroutine” on page 494) subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

Understanding Terminals with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

552 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D

resetterm Subroutine

Purpose
Resets terminal modes to what they were when the saveterm subroutine was last called.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

resetterm()

Description
The resetterm subroutine resets terminal modes to what they were when the saveterm subroutine was
last called.

The resetterm subroutine is called by the endwin (“endwin Subroutine” on page 494) subroutine, and
should normally not be called directly by a program.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

resetty, savetty Subroutine

Purpose
Saves/restores the terminal mode.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int resetty(void);

int savetty(void):

Description
The resetty subroutine restores the program mode as of the most recent call to the savetty subroutine.

Chapter 2. Curses Subroutines 553

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

The savetty subroutine saves the state that would be put in place by a call to the reset_prog_mode
subroutine.

Return Values
Upon successful completion, these subroutines return OK. Otherwise. they return ERR.

Examples
To restore the terminal to the state it was in at the last call to savetty, enter:
resetty();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The def_prog_mode (“def_prog_mode, def_shell_mode, reset_prog_mode or reset_shell_mode
Subroutine” on page 484) subroutine, endwin (“endwin Subroutine” on page 494) subroutine, savetty
(“savetty Subroutine” on page 556) subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

restartterm Subroutine

Purpose
Re-initializes the terminal structures after a restore.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>
#include <term.h>

restartterm (Term, FileNumber, ErrorCode)
char *Term;
int FileNumber;
int *ErrorCode;

Description
The restartterm subroutine is similar to the setupterm subroutine except that it is called after restoring
memory to a previous state. For example, you would call the restartterm subroutine after a call to
scr_restore if the terminal type has changed. The restartterm subroutine assumes that the windows and
the input and output options are the same as when memory was saved, but the terminal type and baud
rate may be different.

554 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

Parameters

Term Specifies the terminal name to obtain the terminal for. If 0 is passed for the parameter, the value
of the $TERM environment variable is used.

FileNumber Specifies the output file’s file descriptor (1 equals standard out).
ErrorCode Specifies a pointer to an integer to return the error code to. If 0, then the restartterm subroutine

exits with an error message instead of returning.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Example
To restart an aixterm after a previous memory save and exit on error with a message, enter:
restartterm("aixterm", 1, (int*)0);

Implementation Specifics
This routine is part of Base Operating System (BOS) Runtime

Prerequisite Information
Curses Overview for Programming and Understanding Terminals with Curses in AIX 5L Version 5.1
General Programming Concepts: Writing and Debugging Programs .

Related Information
The setupterm (“setupterm Subroutine” on page 568) subroutine.

ripoffline Subroutine

Purpose
Reserves a line for a dedicated purpose.

Library
Curses Library (libcurses.a)

Syntax
#include
<curses.h>

int
ripoffline(int line,
int (*init)(WINDOW *win,
int columns));

Description
The ripoffline subroutine reserves a screen line for use by the application.

Any call to the ripoffline subroutine must precede the call to the initscr or newterm subroutine. If line is
positive, one line is removed from the beginning of stdstr; if line is negative, one line is removed from the
end. Removal occurs during the subsequent call to the initscr or newterm subroutine. When the
subsequent call is made, the subroutine pointed to by init is called with two arguments: a WINDOW pointer
to the one-line window that has been allocated and an integer with the number of columns in the window.

Chapter 2. Curses Subroutines 555

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

The initialisation subroutine cannot use the LINES and COLS external variables and cannot call the
wrefresh or doupdate subroutine, but may call the wnoutrefresh subroutine.

Up to five lines can be ripped off. Calls to the ripoffline subroutine above this limit have no effect, but
report success.

Parameters

line
*init
columns
*win

Return Values
The ripoffline subroutine returns OK.

Example
To remove three lines from the top of the screen, enter:
#include <curses.h>

ripoffline(1,initfunc);
ripoffline(1,initfunc);
ripoffline(1,initfunc);

initscr();

Implementation Specifics
This routine is part of Base Operating System (BOS) Runtime.

Related Information
The doupdate (“doupdate, refresh, wnoutrefresh, or wrefresh Subroutines” on page 602) subroutine,
slk_attroff, slk_init (“slk_attroff, slk_attr_off, slk_attron, slk_attrset, slk_attr_set, slk_clear, slk_color,
slk_init, slk_label, slk_noutrefresh, slk_refresh, slk_restore, slk_set, slk_touch, slk_wset, Subroutine” on
page 570) subroutine, initscr (“initscr and newterm Subroutine” on page 518) subroutine, newterm
(“newterm Subroutine” on page 536) subroutine.

Curses Overview for Programming and List of Curses Subroutines in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

savetty Subroutine

Purpose
Saves the state of the tty modes.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>
savetty()

556 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D

Description
The savetty subroutine saves the current state of the tty modes in a buffer. It saves the current state in a
buffer that the resetty subroutine then reads to reset the tty state.

The savetty subroutine is called by the initscr subroutine and normally should not be called directly by
the program.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The initscr (“initscr and newterm Subroutine” on page 518) subroutine, resetty (“resetty, savetty
Subroutine” on page 553) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

scanw, wscanw, mvscanw, or mvwscanw Subroutine

Purpose

Calls the wgetstr subroutine on a window and uses the resulting line as input for a scan.

Library

Curses Library (libcurses.a)

Syntax
#include <curses.h>

scanw(Format, Argument1, Argument2, ...)
char *Format, *Argument1, ...;

wscanw(Window, Format, Argument1, Argument2, ...)
WINDOW *Window;
char *Format, *Argument1, ...;

mvscanw(Line, Column, Format, Argument1, Argument2, ...)
int Line, Column;
char *Format, *Argument1, ...;

mvwscanw(Window, Line, Column, Format, Argument1, Argument2, ...)
WINDOW *Window;
int Line, Column;
char *Format, *Argument1, ...;

Description
The scanw, wscanw, mvscanw, and mvwscanw subroutines call the wgetstr subroutine on a window
and use the resulting line as input for a scan. The mvscanw and mvwscanw subroutines move the cursor
before performing the scan function. Use the scanw and mvscanw subroutines on the stdscr and the
wscanw and mvwscanw subroutines on the user-defined window.

Chapter 2. Curses Subroutines 557

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

Parameters

Argument Specifies the input to read.
Column Specifies the vertical coordinate to move the logical cursor to before performing the scan.
Format Specifies the conversion specifications to use to interpret the input. For more information about this

parameter, see the discussion of the Format parameter in the scanf (“scanf, fscanf, sscanf, or
wsscanf Subroutine” on page 82) subroutine.

Line Specifies the horizontal coordinate to move the logical cursor to before performing the scan.
Window Specifies the window to perform the scan in. You only need to specify this parameter with the

wscanw and mvwscanw subroutines.

Example
The following shows how to read input from the keyboard using the scanw subroutine.
int id;
char deptname[25];

mvprintw(5,0,"Enter your i.d. followed by the department name:\n");
refresh();
scanw("%d %s", &id, deptname);
mvprintw(7,0,"i.d.: %d, Name: %s\n", id, deptname);
refresh();

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The wgetstr (“getnstr, getstr, mvgetnstr, mvgetstr, mvwgetnstr, mvwgetstr, wgetnstr, or wgetstr Subroutine”
on page 506) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

scr_dump, scr_init, scr_restore, scr_set Subroutine

Purpose
File input/output functions.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int scr_dump
(const char *filename);

int scr_init
(const char *filename);

int scr_restore
(const char *filename);

int scr_set
(const char *filename);

558 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

Description
The scr_dump subroutine writes the current contents of the virtual screen to the file named by filename in
an unspecified format.

The scr_restore subroutine sets the virtual screen to the contents of the file named by filename, which
must have been written using the scr_dump subroutine. The next refresh operation restores the screen to
the way it looked in the dump file.

The scr_init subroutine reads the contents of the file named by filename and uses them to initialize the
Curses data structures to what the terminal currently has on its screen. The next refresh operation bases
any updates of this information, unless either of the following conditions is true:

v The terminal has been written to since the virtual screen was dumped to filename.

v The terminfo capabilities rmcup and nrrmc are defined for the current terminal.

The scr_set subroutine is a combination of scr_restore and scr_init subroutines. It tells the program that
the information i the file named by filename is what is currently on the screen, and also what the program
wants on the screen. This can be thought of as a screen inheritance function.

Parameters

filename

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
For the scr_dump subroutine:

To write the contents of the virtual screen to /tmp/virtual.dump file, use:
scr_dump("/tmp/virtual.dump");

For the scr_restrore subroutine:

To restore the contents of the virtual screen from the /tmp/virtual.dump file and update the terminal
screen, use:
scr_restore("/tmp/virtual.dump");
doupdate();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The doupdate (“doupdate, refresh, wnoutrefresh, or wrefresh Subroutines” on page 602) subroutine,
endwin (“endwin Subroutine” on page 494) subroutine, open subroutine, read (“read, readx, readv,
readvx, or pread Subroutine” on page 9) subroutine, write (“write, writex, writev, writevx or pwrite
Subroutines” on page 449) subroutine, scr_init (“scr_init Subroutine” on page 560) subroutine, scr_restore
(“scr_restore Subroutine” on page 561) subroutine.

Curses Overview for Programming, Manipulating Window Data with Curses, Understanding Terminals with
Curses and List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

Chapter 2. Curses Subroutines 559

../../libs/basetrf1/open.htm
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/manip_window_data_wcurses.htm#HDRULXTI23BMARY
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D

scr_init Subroutine

Purpose
Initializes the curses data structures from a dump file.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

scr_init(Filename)
char *Filename;

Description
The scr_init subroutine initializes the curses data structures from a dump file. You create dump files with
the scr_dump subroutine. If the file’s data is valid, the next screen update is based on the contents of the
file rather than clearing the screen and starting from scratch. The data is invalid if the terminfo database
boolean capability nrrmc is TRUE or the contents of the terminal differ from the contents of the dump file.

Note: If nrrmc is TRUE, avoid calling the putp subroutine with the exit_ca_mode value before
calling scr_init subroutine in your application.

You can call the scr_init subroutine after the initscr subroutine to update the screen with the dump file
contents. Using the keypad, meta, slk_clear, curs_set, flash, and beep subroutines do not affect the
contents of the screen, but cause the terminal’s modification time to change.

You can allow more than one process to share screen dumps. Both processes must be run from the same
terminal. The scr_init subroutine first ensures that the process that created the dump is in sync with the
current terminal data. If the modification time of the terminal is not the same as that specified in the dump
file, the scr_init subroutine assumes that the screen image on the terminal has changed from that in the
file, and the file’s data is invalid.

If you are allowing two processes to share a screen dump, it is important to understand that one process
starts up another process. The following activities happen:

v The second process creates the dump file with the scr_init subroutine.

v The second process exits without causing the terminal’s time stamp to change by calling the endwin
subroutine followed by the scr_dump subroutine, and then the exit subroutine.

v Control is passed back to the first process.

v The first process calls the scr_init subroutine to update the screen contents with the dump file data.

Return Values

ERR Indicates the dump file’s time stamp is old or the boolean capability nrrmc is TRUE.
OK Indicates that the curses data structures were successfully initialized using the contents of the dump file.

Parameters

Filename Points to a dump file.

560 Technical Reference, Volume 2: Base Operating System and Extensions

Related Information
The scr_dump (“scr_dump, scr_init, scr_restore, scr_set Subroutine” on page 558) subroutine,
scr_restore (“scr_restore Subroutine”) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Window Data with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

scr_restore Subroutine

Purpose
Restores the virtual screen from a dump file.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

scr_restore(FileName)
char *FileName;

Description
The scr_restore subroutine restores the virtual screen from the contents of a dump file. You create a
dump file with the scr_dump subroutine. To update the terminal’s display with the restored virtual screen,
call the wrefresh or doupdate subroutine after restoring from a dump file.

To communicate the screen image across processes, use the scr_restore subroutine along with the
scr_dump subroutine.

Return Values

ERR Indicates the content of the dump file is incompatible with the current release of curses.
OK Indicates that the virtual screen was successfully restored from a dump file.

Parameters

FileName Identifies the name of the dump file.

Example
To restore the contents of the virtual screen from the /tmp/virtual.dump file and update the terminal
screen, use:
scr_restore("/tmp/virtual.dump");
doupdate();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Chapter 2. Curses Subroutines 561

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_window_data_wcurses.htm#HDRULXTI23BMARY

Related Information
The scr_dump (“scr_dump, scr_init, scr_restore, scr_set Subroutine” on page 558) subroutine, scr_init
(“scr_init Subroutine” on page 560) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals with Curses,
Manipulating Video Attributes in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

scrl, scroll, wscrl Subroutine

Purpose
Scrolls a Curses window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int scrl
(int n);

int scroll
(WINDOW *win);

int wscrl
(WINDOW *win,
int n);

Description
The scroll subroutine scrolls win one line in the direction of the first line

The scrl and wscrl subroutines scroll the current or specified window. If n is positive, the window scrolls n
lines toward the first line. Otherwise, the window scrolls -n lines toward the last line.

Theses subroutines do not change the cursor position. If scrolling is disabled for the current or specified
window, these subroutines have no effect. The interaction of these subroutines with the setsccreg
subroutine is currently unspecified.

Parameters

*win Specifies the window to scroll.
n

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
To scroll the user-defined window my_window up one line, enter:
WINDOW *my_window;
scroll(my_window);

562 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The scrollok (“scrollok Subroutine”) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

scrollok Subroutine

Purpose

Enables or disables scrolling.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

scrollok(Window, Flag)
WINDOW *Window;
bool Flag;

Description
The scrollok subroutine enables or disables scrolling. Scrolling occurs when a program or user:

v Moves the cursor off the window’s bottom edge.

v Enters a new-line character on the last line.

v Types the last character of the last line.

If enabled, curses calls a refresh as part of the scrolling action on both the window and the physical
display. To get the physical scrolling effect on the terminal, it is also necessary to call the idlok (“idlok
Subroutine” on page 513) subroutine.

If scrolling is disabled, the cursor is left on the bottom line at the location where the character was entered.

Parameters

Flag Enables scrolling when set to TRUE. Otherwise, set the Flag parameter to FALSE to disable scrolling.
Window Identifies the window to enable or disable scrolling in.

Examples
1. To turn scrolling on in the user-defined window my_window, enter:

WINDOW *my_window;
scrollok(my_window, TRUE);

2. To turn scrolling off in the user-defined window my_window, enter:
WINDOW *my_window;
scrollok(my_window, FALSE);

Chapter 2. Curses Subroutines 563

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The idlok (“idlok Subroutine” on page 513) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

set_curterm Subroutine

Purpose
Sets the current terminal variable to the specified terminal.

Library
Curses Library (libcurses.a)

Curses Syntax
#include <curses.h>
#include <term.h>

set_curterm(Newterm)
TERMINAL *Newterm;

Description
The cur_term subroutine sets the cur_term variable to the terminal specified by the Newterm parameter.
The cur_term subroutine is useful when the setupterm subroutine is called more than once. The
set_curterm subroutine allows the programmer to toggle back and forth between terminals.

When information for a particular terminal is no longer required, remove it using the del_curterm
subroutine.

Note: The cur_term subroutine is a low-level subroutine. You should use this subroutine only if your
application must deal directly with the terminfo database to handle certain terminal capabilities. For
example, use this subroutine if your application programs function keys.

Parameters

Newterm Points to a TERMINAL structure. This structure contains information about a specific terminal.

Examples
To set the cur_term variable to point to the my_term terminal, use:
TERMINAL *newterm;
set_curterm(newterm);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The setupterm (“setupterm Subroutine” on page 568) subroutine.

564 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

Curses Overview for Programming and List of Curses Subroutines in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

Understanding Terminals with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

setscrreg or wsetscrreg Subroutine

Purpose
Creates a software scrolling region within a window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

setscrreg(Tmargin, Bmargin)
int Tmargin, Bmargin;

wsetscrreg(Window, Tmargin, Bmargin)
WINDOW *Window;
int Tmargin, Bmargin;

Description
The setscrreg and wsetscrreg subroutines create a software scrolling region within a window. Use the
setscrreg subroutine with the stdscr and the the wsetscrreg subroutine with user-defined windows.

You pass the setscrreg subroutines values for the top line and bottom line of the region. If the setscrreg
subroutine and scrollok subroutine are enabled for the region, any attempt to move off the line specified
by the Bmargin parameter causes all the lines in the region to scroll up one line.

Note: Unlike the idlok subroutine, the setscrreg subroutines have nothing to do with the use of a
physical scrolling region capability that the terminal may or may not have.

Parameters

Bmargin Specifies the last line number in the scrolling region.
Tmargin Specifies the first line number in the scrolling region (0 is the top line of the window.)
Window Specifies the window to place the scrolling region in. You specify this parameter only with the

wsetscrreg subroutine.

Examples
1. To set a scrolling region starting at the 10th line and ending at the 30th line in the stdscr, enter:

setscrreg(9, 29);

Note: Zero is always the first line.

2. To set a scrolling region starting at the 10th line and ending at the 30th line in the user-defined window
my_window, enter:
WINDOW *my_window;
wsetscrreg(my_window, 9, 29);

Chapter 2. Curses Subroutines 565

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The idlok (“idlok Subroutine” on page 513) subroutine, scrollok (“scrollok Subroutine” on page 563)
subroutine, wrefresh (“refresh or wrefresh Subroutine” on page 550) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

setsyx Subroutine

Purpose
Sets the coordinates of the virtual screen cursor.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

setsyx(Y, X)
int Y, X;

Description
The setsyx subroutine sets the coordinates of the virtual screen cursor to the specified row and column
coordinates. If Y and X are both -1, then the leaveok flag is set. (leaveok may be set by applications that
do not use the cursor.)

The setsyx subroutine is intended for use in combination with the getsyx subroutine. These subroutines
should be used by a user-defined function that manipulates curses windows but wants the position of the
cursor to remain the same. Such a function would do the following:

v Call the getsyx subroutine to obtain the current virtual cursor coordinates.

v Continue processing the windows.

v Call the wnoutrefresh subroutine on each window manipulated.

v Call the setsyx subroutine to reset the current virtual cursor coordinates to the original values.

v Refresh the display by calling the doupdate subroutine.

Parameters

X Specifies the column to set the virtual screen cursor to.
Y Specifies the row to set the virtual screen cursor to.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

566 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

Related Information
The doupdate (“doupdate, refresh, wnoutrefresh, or wrefresh Subroutines” on page 602) subroutine,
getsyx (“getsyx Subroutine” on page 508) subroutine, leaveok (“leaveok Subroutine” on page 526)
subroutine, wnoutrefresh (“doupdate, refresh, wnoutrefresh, or wrefresh Subroutines” on page 602)
subroutine.

Controlling the Cursor with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

Curses Overview for Programming and List of Curses Subroutines in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

set_term Subroutine

Purpose
Switches between screens.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

SCREEN *set_term
(SCREEN *new);

Description
The set_term subroutine switches between different screens. The new argument specifies the current
screen.

Parameters

*new

Return Values
Upon successful completion, the set_term subroutine returns a pointer to the previous screen. Otherwise,
it returns a null pointer.

Examples
To make the terminal stored in the user-defined SCREEN variable my_terminal the current terminal and
then store a pointer to the old terminal in the user-defined variable old_terminal, enter:
SCREEN *old_terminal, *my_terminal;
old_terminal = set_term(my_terminal);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The initscr (“initscr and newterm Subroutine” on page 518) subroutine, newterm (“newterm Subroutine” on
page 536) subroutine.

Chapter 2. Curses Subroutines 567

../../aixprggd/genprogc/control_cursor_wcurses.htm#HDRA51C218A3
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

setupterm Subroutine

Purpose
Initializes the terminal structure with the values in the terminfo database.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

#include <term.h>

setupterm(Term, FileNumber, ErrorCode)
char *Term;
int FileNumber;
int *ErrorCode;

Description
The setupterm subroutine determines the number of lines and columns available on the output terminal.
The setupterm subroutine calls the termdef subroutine to define the number of lines and columns on the
display. If the termdef subroutine cannot supply this information, the setupterm subroutine uses the
values in the terminfo database.

The setupterm subroutine initializes the terminal structure with the terminal-dependent capabilities from
terminfo. This routine is automatically called by the initscr and newterm subroutines. The setupterm
subroutine deals directly with the terminfo database.

Two of the terminal-dependent capabilities are the lines and columns. The setupterm subroutine
populates the lines and column fields in the terminal structure in the following manner:

1. If the environment variables LINES and COLUMNS are set, the setupterm subroutine uses these
values.

2. If the environment variables are not set, the setupterm subroutine obtains the lines and columns
information from the tty subsystem.

3. As a last resort, the setupterm subroutine uses the values defined in the terminfo database.

Note: These may or may not be the same as the values in the terminfo database.

The simplest call is setupterm((char*) 0, 1, (int*) 0), which uses all defaults.

After the call to the setupterm subroutine, the cur_term global variable is set to point to the current
structure of terminal capabilities. A program can use more than one terminal at a time by calling the
setupterm subroutine for each terminal and then saving and restoring the cur_term variable.

568 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

Parameters

ErrorCode Specifies a pointer to an integer to return the error code to. If a null pointer (0) is passed for this
parameter, no status is returned. An error causes the setupterm subroutine to print an error
message and exit instead of returning.

FileNumber Specifies the output files file descriptor (1 equals standard output).
Term Specifies the terminal name. If 0 is passed for this parameter, the value of the $TERM

environment variable is used.

Return Values
One of the following status values is stored into the integer pointed to by the ErrorCode parameter:

1 Successful completion.
0 No such terminal.
-1 An error occurred while locating the terminfo database.

Example
To determine the current terminal’s capabilities using $TERM as the terminal name, standard output as
output, and returning no error codes, enter:
setupterm((char*) 0, 1, (int*) 0);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The termdef (“termdef Subroutine” on page 322) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

_showstring Subroutine

Purpose

Dumps the string in the specified string address to the terminal at the specified location.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

_showstring(Line, Column, First, Last, String)
int Line, Column, First, Last;
char * String;

Description
The _showstring subroutine dumps the string in the specified string address to the terminal at the
specified location. This is an internal extended curses subroutine and should not normally be called
directly by the program.

Chapter 2. Curses Subroutines 569

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

Parameters

Column Specifies the horizontal coordinate of the terminal at which to dump the string.
First Specifies the beginning string address of the string to dump to the terminal.
Last Specifies the end string address of the string to dump to the terminal.
Line Specifies the vertical coordinate of the terminal at which to dump the string.
String Specifies the string to dump to the terminal.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming, List of Curses Subroutines, Manipulating Characters with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

slk_attroff, slk_attr_off, slk_attron, slk_attrset, slk_attr_set, slk_clear,
slk_color, slk_init, slk_label, slk_noutrefresh, slk_refresh, slk_restore,
slk_set, slk_touch, slk_wset, Subroutine

Purpose
Soft label subroutines.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int slk_attroff
(const chtype attrs);

int slk_attr_off
(const attr_t attrs,
void *opts);

int slk_attron
(const chtype attrs);

int slk_attr_on
(const attr_t attrs,
void *opts);

int slk_attrset
(const chtype attrs);

int slk_attr_set
(const attr_t attrs,
short color_pair_number,
void *opts);

int slk_clear
(void);

int slk_color
(short color_pair_number);

570 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

int slk_init
(int fmt);

char *slk_label
(int labnum);

int slk_noutrefresh
(void);

int slk_refresh
(void);

int slk_restore
(void);

int slk_set
(int labnum,
const char *label,
int justify);

int slk_touch
(void);

int slk_wset
(int labnum,
const wchar_t *label,
int justify);

Description
The Curses interface manipulates the set of soft function-key labels that exist on many terminals. For
those terminals that do not have sort labels, Curses takes over the bottom line of stdscr, reducing the size
of stdscr and the value of the LINES external variable. There can be up to eight labels of up to eight
display columns each.

To use soft labels, the slk_init subroutine must be called before initscr, newterm, or ripoffline is called.
If initscr eventually uses a line from stdscr to emulate the soft labels, then fmt determines how the labels
are arranged on the screen. Setting fmt to 0 indicates a 3-2-3 arrangement of the labels; 1 indicates a 4-4
arrangement. Other values for fmt are unspecified.

The slk_init subroutine has the effect of calling the ripoffline subroutine to reserve one screen line to
accommodate the requested format.

The slk_set and slk_wset subroutines specify the text of soft label number labnum, within the range from
1 to and including 8. The label argument is the string to be put on the label. With slk_set and slk_wset,
the width of the label is limited to eight column positions. A null string or a null pointer specifies a blank
label. The justify argument can have the following values to indicate how to justify label within the space
reserved for it:

0 Align the start of label with the start of the space.
1 Center label within the space.
2 Align the end of label with the end of the space.

The slk_refresh and slk_noutrefresh subroutines correspond to the wrefresh and wnoutrefresh
subroutines.

The slk_label subroutine obtains soft label number labnum.

The slk_clear subroutine immediately clears the soft labels from the screen.

Chapter 2. Curses Subroutines 571

The slk_touch subroutine forces all the soft labels to be output the next time slk_noutrefresh or
slk_refresh subroutines is called.

The slk_attron, slk_attrset and slk_attroff subroutines correspond to the attron, attrset, and attroff
subroutines. They have an effect only if soft labels are simulated on the bottom line of the screen.

The slk_attr_off, slk_attr_on, slk_sttr_set, and slk_attroff subroutines correspond to the slk_attroff,
slk_attron, slk_attrset, and color_set and thus support the attribute constants with the WA_prefix and
color.

The opts argument is reserved for definition in a future edition of this document. Currently, the application
must provide a null pointer as opts.

Parameters

attrs
*opts
color_pair_number
fmt
labnum
justify
*label

Examples
For the slk_init subroutine:

To initialize soft labels on a terminal that does not support soft labels internally, do the following:
slk_init(1);

This example arranges the labels so that four labels appear on the right of the screen and four appear on
the left.

For the slk_label subroutine:

To obtain the label name for soft label 3, use:
char *label_name;
label_name = slk_label(3);

For the slk_noutrefresh subroutine:

To refresh soft label 8 on the virtual screen but not on the physical screen, use:
slk_set(8, "Insert", 1);
slk_noutrefresh();

For the slk_refresh subroutine:

To set and left-justify the soft labels and then refresh the physical screen, use:
slk_init(0);
initscr();
slk_set(1, "Insert", 0);
slk_set(2, "Quit", 0);
slk_set(3, "Add", 0);
slk_set(4, "Delete", 0);
slk_set(5, "Undo", 0);

572 Technical Reference, Volume 2: Base Operating System and Extensions

slk_set(6, "Search", 0);
slk_set(7, "Replace", 0);
slk_set(8, "Save", 0);
slk_refresh();

For the slk_set subroutine:
slk_set(2, "Quit", 1);

Return Values
Upon successful completion, the slk_label subroutine returns the requested label with leading and trailing
blanks stripped. Otherwise, it returns a null pointer.

Upon successful completion, the other subroutines return OK. Otherwise, they return ERR.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The attroff (“attroff, attron, attrset, wattroff, wattron, or wattrset Subroutine” on page 464) subroutine,
ripoffline (“ripoffline Subroutine” on page 555) subroutine, wcswidth (“wcswidth Subroutine” on page 409)
subroutine, slk_init (“slk_init Subroutine”) subroutine, slk_set (“slk_set Subroutine” on page 577)
subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Video Attributes in AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs.

slk_init Subroutine

Purpose
Initializes soft function-key labels.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

slk_init(Labfmt)
int Labfmt;

Description
The slk_init subroutine initializes soft function-key labels. This is one of several subroutines curses
provides for manipulating soft function-key labels. These labels appear at the bottom of the screen and
give applications, such as editors, a more user-friendly look. To use soft labels, you must call the slk_init
subroutine before calling the initscr or newterm subroutine.

Some terminals support soft labels, others do not. For terminals that do not support soft labels. Curses
emulates soft labels by using the bottom line of the stdscr. To accommodate soft labels, curses reduces
the size of the stdscr and the LINES environment variable as required.

Chapter 2. Curses Subroutines 573

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD

Parameter

Labfmt Simulates soft labels. To arrange three labels on the right, two in the center, and three on the right of the
screen, specify a 0 for this parameter. To arrange four labels on the left and four on the right of the
screen, specify a 1 for this parameter.

Example
To initialize soft labels on a terminal that does not support soft labels internally, do the following:
slk_init(1);

This example arranges the labels so that four labels appear on the right of the screen and four appear on
the left.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The initscr (“initscr and newterm Subroutine” on page 518) subroutine, newterm (“newterm Subroutine” on
page 536) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Soft Labels in AIX 5L Version
5.1 General Programming Concepts: Writing and Debugging Programs.

slk_label Subroutine

Purpose
Returns the label name for a specified soft label.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

char *slk_label(LabNum)
int LabNum;

Description
The slk_label subroutine returns the label name for a specified soft function-key label. These labels
appear at the bottom of the screen and give applications, such as editors, a more user-friendly look. The
slk_label subroutine returns the name in the format it was in when passed to the slk_set subroutine. If
the name was justified by the slk_set subroutine, the justification is removed.

Parameters

LabNum Specifies the label number. This parameter must be in the range 1 to 8.

574 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_soft_labels.htm#HDRD722C05325MELA

Example
To obtain the label name for soft label 3, use:
char *label_name;

label_name = slk_label(3);

Return Values

NULL Indicates a label number that is not valid or a label number not set with the slk_set subroutine.
OK Indicates that the label name was successfully retrieved.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The slk_init (“slk_init Subroutine” on page 573) subroutine and slk_set (“slk_set Subroutine” on page 577)
subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Video Attributes in AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs.

slk_noutrefresh Subroutine

Purpose
Updates the soft labels on the virtual screen.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

slk_noutrefresh()

Description
The slk_noutrefresh subroutine updates the soft function-key labels on the virtual screen. These labels
appear at the bottom of the screen and give applications, such as editors, a more user-friendly look. This
subroutine is useful for updating multiple labels. You can use the slk_noutrefresh subroutine to update all
soft labels on the virtual screen with no updates to the physic al screen. To update the physical screen,
use the slk_refresh or refresh subroutine.

Example
To refresh soft label 8 on the virtual screen but not on the physical screen, use:
slk_set(8, "Insert", 1);
slk_noutrefresh();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Chapter 2. Curses Subroutines 575

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD

Related Information
The slk_init (“slk_init Subroutine” on page 573) subroutine, slk_refresh (“slk_refresh Subroutine”)
subroutine, wrefresh (“refresh or wrefresh Subroutine” on page 550) subroutine.

Curses Overview for Programming, Manipulating Video Attributes, List of Curses Subroutines in AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs.

slk_refresh Subroutine

Purpose
Updates soft labels on the virtual and physical screens.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

slk_refresh()

Description
The slk_refresh subroutine refreshes the virtual and physical screens after an update to soft function-key
labels. These labels appear at the bottom of the screen and give applications, such as editors, a more
user-friendly look.

Example
To set and left-justify the soft labels and then refresh the physical screen, use:
slk_init(0);
initscr();
slk_set(1, "Insert", 0);
slk_set(2, "Quit", 0);
slk_set(3, "Add", 0);
slk_set(4, "Delete", 0);
slk_set(5, "Undo", 0);
slk_set(6, "Search", 0);
slk_set(7, "Replace", 0);
slk_set(8, "Save", 0);
slk_refresh();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The slk_init routine (“slk_init Subroutine” on page 573) subroutine, slk_set routine (“slk_set Subroutine”
on page 577) subroutine, slk_noutrefresh (“slk_noutrefresh Subroutine” on page 575) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Video Attributes in AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs.

576 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD

slk_restore Subroutine

Purpose
Restores soft function-key labels to the screen.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

slk_restore()

Description
The slk_restore subroutine restores the soft function-key labels to the screen after a call to the slk_clear
subroutine. The label names are not restored. These labels appear at the bottom of the screen and give
applications, such as editors, a more user-friendly look. You must call the slk_init subroutine before you
can use soft labels.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The slk_init (“slk_init Subroutine” on page 573) subroutine, slk_clear (“slk_attroff, slk_attr_off, slk_attron,
slk_attrset, slk_attr_set, slk_clear, slk_color, slk_init, slk_label, slk_noutrefresh, slk_refresh, slk_restore,
slk_set, slk_touch, slk_wset, Subroutine” on page 570) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Soft Labels in AIX 5L Version
5.1 General Programming Concepts: Writing and Debugging Programs.

slk_set Subroutine

Purpose
Sets up soft function-key labels.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

slk_set(LabNum, LabStr, LabFmt)
int LabNum;
char * LabStr;
int LabFmt;

Description
The slk_set subroutine sets up each soft function-key label with the appropriate name. These labels
appear at the bottom of the screen and give applications, such as editors, a more user-friendly look. Label
names are restricted to 8 characters each.

Chapter 2. Curses Subroutines 577

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD

Parameters

LabNum Specifies the label number. The value can range from 1 to 8.
LabStr Specifies the string (name) to put on the label. If the string is NULL, the label is blank.
LabFmt Specifies the label alignment. The following values are valid:

0 Left-justified

1 Centered

2 Right-justified

Example
slk_set(2, "Quit", 1);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The slk_init (“slk_init Subroutine” on page 573) routine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Video Attributes in AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs.

slk_touch Subroutine

Purpose
Forces an update of the soft function-key labels.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

slk_touch()

Description
The slk_touch subroutine forces an update of the soft function-key labels on the physical screen the next
time the slk_noutrefresh subroutine is called. These labels appear at the bottom of the screen and give
applications, such as editors, a more user-friendly look. You must call the slk_init subroutine before using
soft labels.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The slk_init (“slk_init Subroutine” on page 573) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Video Attributes in AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs.

578 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD

standend, standout, wstandend, or wstandout Subroutine

Purpose

Sets and clears window attributes.

Library

Curses Library (libcurses.a)

Syntax

#include <curses.h>

int standend
(void);

int standout
(void);

int wstandend
(WINDOW *win);

int wstandout
(WINDOW *win);

Description
The standend and standout subroutines turn off all attributes of the current or specified window.

The wstandout and wstandend subroutines turn on the standout attribute of the current or specified
window.

Parameters

*win Specifies the window in which to set the attributes.

Return Values
These subroutines always return 1.

Examples
1. To turn on the standout attribute in the stdscr, enter:

standout();

This example is functionally equivalent to:
attron(A_STANDOUT);

2. To turn on the standout attribute in the user-defined window my_window, enter:
WINDOW *my_window;
wstandout(my_window);

This example is functionally equivalent to:
wattron(my_window, A_STANDOUT);

Chapter 2. Curses Subroutines 579

3. To turn off the standout attribute in the default window, enter:
standend();

This example is functionally equivalent to:
attroff(A_STANDOUT);

4. To turn off the standout attribute in the user-defined window my_window, enter:
WINDOW *my_window;
wstandend(my_window);

This example is functionally equivalent to:
wattroff(my_window, A_STANDOUT);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The attroff, attron, or wattroff (“attroff, attron, attrset, wattroff, wattron, or wattrset Subroutine” on
page 464) subroutines.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Video Attributes in AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs.

start_color Subroutine

Purpose
Initializes color.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

start_color()

Description
The start_color subroutine initializes color. This subroutine requires no arguments. You must call the
start_color subroutine if you intend to use color in your application. Except for the has_colors and
can_change_color subroutines, you must call the start_color subroutine before any other color
manipulation subroutine. A good time to call start_color is right after calling the initscr routine and after
establishing whether the terminal supports color.

The start_color routine initializes the following basic colors:

COLOR_BLACK 0
COLOR_BLUE 1
COLOR_GREEN 2
COLOR_CYAN 3
COLOR_RED 4
COLOR_MAGENTA 5
COLOR_YELLOW 6
COLOR_WHITE 7

580 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD

The subroutine also initializes two global variables: COLORS and COLOR_PAIRS. The COLORS variable
is the maximum number of colors supported by the terminal. The COLOR_PAIRS variable is the maximum
number of color-pairs supported by the terminal.

The start_color subroutine also restores the terminal’s colors to the original values right after the terminal
was turned on.

Return Values

ERR Indicates the terminal does not support colors.
OK Indicates the terminal does support colors.

Example
To enable the color support for a terminal that supports color, use:
start_color();

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The has_colors (“has_colors Subroutine” on page 511) subroutine, can_change_color
(“can_change_color, color_content, has_colors,init_color, init_pair, start_color or pair_content Subroutine”
on page 470) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Manipulating Video Attributes in AIX 5L
Version 5.1 General Programming Concepts: Writing and Debugging Programs.

subpad Subroutine

Purpose
Creates a subwindow within a pad.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

WINDOW *subpad(Orig, NLines, NCols, Begin_Y, Begin_X)
WINDOW * Orig;
int NCols, NLines, Begin_Y, Begin_X;

Description
The subpad subroutine creates and returns a pointer to a subpad. A subpad is a window within a pad.
You specify the size of the subpad by supplying a starting coordinate and the number of rows and
columns within the subpad. Unlike the subwin subroutine, the starting coordinates are relative to the pad
and not the terminal’s display.

Changes to the subpad affect the character image of the parent pad, as well. If you change a subpad, use
the touchwin or touchline subroutine on the parent pad before refreshing the parent pad. Use the
prefresh subroutine to refresh a pad.

Chapter 2. Curses Subroutines 581

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD

Parameters

Orig Points to the parent pad.
NLines Specifies the number of lines (rows) in the subpad.
NCols Specifies the number of columns in the subpad.
Begin_Y Identifies the upper left-hand row coordinate of the subpad relative to the parent pad.
Begin_X Identifies the upper left-hand column coordinate of the subpad relative to the parent pad.

Examples
To create a subpad, use:
WINDOW *orig, *mypad;

orig = newpad(100, 200);

mypad = subpad(orig, 30, 5, 25, 180);

The parent pad is 100 lines by 200 columns. The subpad is 30 lines by 5 columns and starts in line 25,
column 180 of the parent pad.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming, List of Curses Subroutines, Windows in the Curses Environment in AIX
5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

subwin Subroutine

Purpose
Creates a subwindow within an existing window.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>
WINDOW *subwin (ParentWindow, NumLines, NumCols,Line,Column)
WINDOW * ParentWindow ;
int NumLines, NumCols, Line, Column;

Description
The subwin subroutine creates a subwindow within an existing window. You must supply coordinates for
the subwindow relative to the terminal’s display. Recall that the subwindow shares its parent’s window
buffer. Changes made to the shared window buffer in the area covered by a subwindow, through either the
parent window or any of its subwindows, affects all windows sharing the window buffer.

When changing the image of a subwindow, it is necessary to call the touchwin (“touchwin Subroutine” on
page 595) or touchline subroutine on the parent window before calling the wrefresh (“refresh or wrefresh
Subroutine” on page 550) subroutine on the parent window.

Changes to one window will affect the character image of both windows.

582 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/windows_curses_envir.htm#HDRA51C21888

Parameters

NumCols Indicates the number of vertical columns in the subwindow’s width. If 0 is passed as the
NumCols value, the subwindow runs from the Column to the right edge of its parent window.

NumLines Indicates the number of horizontal lines in the subwindow’s height. If 0 is passed as the
NumLines parameter, then the subwindow runs from the Line to the bottom of its parent
window.

ParentWindow Specifies the subwindow’s parent.
Column Specifies the horizontal coordinate for the upper-left corner of the subwindow. This coordinate

is relative to the (0, 0) coordinates of the terminal, not the (0, 0) coordinates of the parent
window.

Note: The upper-left corner of the terminal is referenced by the coordinates (0, 0).
Line Specifies the vertical coordinate for the upper-left corner of the subwindow. This coordinate is

relative to the (0, 0) coordinates of the terminal, not the (0, 0) coordinates of the parent
window.

Note: The upper-left corner of the terminal is referenced by the coordinates (0, 0).

Return Values
When the subwin subroutine is successful, it returns a pointer to the subwindow structure. Otherwise, it
returns the following:

ERR Indicates one or more of the parameters is invalid or there is insufficient storage available for the new
structure.

Examples
1. To create a subwindow, use:

WINDOW *my_window, *my_sub_window;

my_window = newwin (“derwin, newwin, or subwin Subroutine” on page 537)
(5, 10, 20, 30);

my_sub_window = subwin(my_window, 2, 5, 20, 30);

my_sub_window is now a subwindow 2 lines deep, 5 columns wide, starting at the same coordinates of
its parent window my_window. That is, the subwindow’s upper-left corner is at coordinates y = 20,
x = 30 and lower-right corner is at coordinates y = 21, x = 34.

2. To create a subwindow that is flush with the right side of its parent, use:

WINDOW *my_window, *my_sub_window;

my_window = newwin (“derwin, newwin, or subwin Subroutine” on page 537)
(5, 10, 20, 30);

my_sub_window = subwin(my_window, 2, 0, 20, 30);

my_sub_window is now a subwindow 2 lines deep, extending all the way to the right side of its parent
window my_window, and starting at the same coordinates. That is, the subwindow’s upper-left corner is
at coordinates y = 20, x = 30 and lower-right corner is at coordinates y = 21, x = 39.

3. To create a subwindow in the lower-right corner of its parent, use:

Chapter 2. Curses Subroutines 583

WINDOW *my_window, *my_sub_window

my_window = newwwin (“derwin, newwin, or subwin Subroutine” on page 537)
(5, 10, 20, 30);

my_sub_window = subwin(my_window, 0, 0, 22, 35);

my_sub_window is now a subwindow that fills the bottom right corner of its parent window, my_window,
starting at the coordinates y = 22, x = 35. That is, the subwindow’s upper-left corner is at coordinates
y = 22, x = 35 and lower-right corner is at coordinates y = 24, x = 39.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The touchwin (“touchwin Subroutine” on page 595), newwin (“derwin, newwin, or subwin Subroutine” on
page 537), and wrefresh (“refresh or wrefresh Subroutine” on page 550) subroutines.

Curses Overview for Programming, List of Curses Subroutines, Windows in the Curses Environment in AIX
5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

tgetent, tgetflag, tgetnum, tgetstr, or tgoto Subroutine

Purpose
Termcap database emulation

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int tgetent
(char *bp,
const char *name);

int tgetflag
(char id[2]);

int tgetnum
(char id[2]);

char *tgetstr
(char id[2],
char **area);

char *tgoto
(char *cap,
int col,
int row);

Description
The tgetent subroutine looks up the termcap entry for name, The emulation ignores the buffer pointer bp.

The tgetflag subroutine gets the boolean entry for id.

584 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/windows_curses_envir.htm#HDRA51C21888

The tgetnum subroutine gets the numeric entry for id.

The tgetstr subroutine gets the string entry for id. If area is not a null pointer and does not point to a null
pointer, the tgetstr subroutine copies the string entry into the buffer pointed to by *area and advances the
variable pointed to by area to the first byte after the copy of the string entry.

The tgoto subroutine instantiates the parameters col and row into the capability cap and returns a pointer
to the resulting string.

All of the information available in the terminfo database need not be available through these subroutines.

Parameters

bp
name
col
row
**area
cap id[2]

Return Values
Upon successful completion, subroutines that return an integer return OK. Otherwise, they return ERR.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The putc, setupterm (“setupterm Subroutine” on page 568), tigetflg (“tigetflag, tigetnum, tigetstr, or tparm
Subroutine” on page 588) subroutines.

Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

tgetflag Subroutine

Purpose

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

bool tgetflag(ID)
char *ID;

Description
The tgetflag subroutine returns the boolean entry for the specified termcap identifier. This subroutine is
provided for binary compatibility with applications that use the termcap file.

Chapter 2. Curses Subroutines 585

../../libs/basetrf1/putc.htm#HDRA1429342
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

Parameters

ID Specifies the 2-character string that contains a termcap identifier.

Return Values
The tgetflag subroutine returns the boolean entry for the specified termcap identifier. If ID is not found, on
not a boolean, 0 is returned.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

tgetnum Subroutine

Purpose
Returns the numeric entry for the specified termcap identifier.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int tgetnum(ID)
char *ID;

Description
The tgetnum subroutine returns the numeric entry for the specified termcap identifier. This subroutine is
provided for binary compatibility with applications that use the termcap file.

Parameters

ID Specifies the 2-character string that contains a termcap identifier.

Return Values
The tgetnum subroutine returns the numeric entry for the specified termcap identifier.

-1 Returned if the ID is not found or not numeric.

586 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

tgetstr Subroutine

Purpose
Returns the string entry for the specified termcap identifier.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

char *tgetstr(ID, Area)
char *ID, **Area;

Description
The tgetstr subroutine returns the string entry for the specified termcap identifier. This subroutine is
provided for binary compatibility with applications that use the termcap file.

Parameters

Area Contains the string entry for the specified termcap identifier. This also is returned to the calling program.
ID Specifies the 2-character string that contains the termcap identifier.

Return Values
The tgetstr subroutine returns the string entry for the ID parameter, which is a 2-character string that
contains a termcap identifier.

0 Returned if ID is not found or not a string capability.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

Chapter 2. Curses Subroutines 587

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E
../../aixprggd/genprogc/curses.htm#HDRA277A9E8

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

tgoto Subroutine

Purpose
Duplicates the tparm subroutine.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

#include <term.h>

char *tgoto(Capability, Column, Row)
char *Capability;
int Column, Row;

Description
The tgoto subroutine calls the tparm (“tparm Subroutine” on page 596) subroutine. This subroutine is
provided for binary compatibility with applications that use the termcap file.

Parameters

Capability Specifies the termcap capability to apply the parameters to.
Column Specifies which column to apply to the capability.
Row Specifies which row to apply to the capability.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The tparm (“tparm Subroutine” on page 596) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

tigetflag, tigetnum, tigetstr, or tparm Subroutine

Purpose
Retrieves capabilities from the terminfo database.

Library
Curses Library (libcurses.a)

588 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

Syntax
#include <term.h>

int tigetflag(char *capname,);

int tigetnum(char *capname);

char *tigetstr(char *capname);

char *tparm(char *cap,
long p1, long p2, long p3,
long p4, long p5, long p6
long p7, long p8, long p9);

Description
The tigetflag, tigetnum, and tigetstr subroutines obtain boolean, numeric, and string capabilities,
respectively, from the selected record of the terminfo database. For each capability, the value to use as
capname appears in the Capname column in the table in Section 6.1.3 on page 296.

The tparm subroutine takes as cap a string capability. If cap is parameterised (as described in Section
A.1.2 on page 313), the tparm subroutine resolves the parameterisation. If the parameterised string refers
to parameters %p1 through %p9, then the tparm subroutine substitutes the values of p1 through p9,
respectively.

Return Values
Upon successful completion, the tigetflag, tigetnum, and tigetstr subroutines return the specified
capability. The tigetflag subroutine returns -1 if capname is not a boolean capability. The tigetnum
subroutine returns -2 if capname is not a numeric capability. The tigetstr subroutine returns (char*)-1 if
capname is not a string capability.

Upon successful completion, the tparm subroutine returns str with parameterisation resolved. Otherwise, it
returns a null pointer.

Parameters

*capname
*tparm
long p1
long p2
long p3
long p4
long p5
long p6
long p7
long p8
long p9

Examples
For the tigetflag subroutine:

To determine if erase overstrike is a defined boolean capability for the current terminal, use:
rc = tigetflag("eo");

For the tigetnum subroutine:

Chapter 2. Curses Subroutines 589

To determine if number of labels is a defined numeric capability for the current terminal, use:
rc = tigetnum("nlab");

For the tigetstr subroutine:

To determine if ″turn on soft labels″ is a defined string capability for the current terminal, do the
following:
char *rc;
rc = tigetstr("smln");

For the tparm subroutine:

1. To save the escape sequence used to home the cursor in the user-defined variable home_sequence,
enter:
home_sequence = tparm(cursor_home);

2. To save the escape sequence used to move the cursor to the coordinates X=40, Y=18 in the
user-defined variable move_sequence, enter:
move_sequence = tparm(cursor_address, 18, 40);

Implementation Specifics
This routine is part of Base Operating System (BOS) Runtime.

Related Information
The def_prog_mode (“def_prog_mode, def_shell_mode, reset_prog_mode or reset_shell_mode
Subroutine” on page 484), tgetent (“tgetent, tgetflag, tgetnum, tgetstr, or tgoto Subroutine” on page 584),
and putp (“putp, tputs Subroutine” on page 548) subroutines.

Curses Overview for Programming, List of Curses Subroutines

Understanding Terminals with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

tigetnum Subroutine

Purpose
Gets the value of terminal’s numeric capability.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>
#include <term.h>

tigetnum(CapName)
register char *CapName;

Description
The tigetnum subroutine returns the value of terminal’s numeric capability. Use this subroutine to get a
capability for the current terminal. When successful, this subroutine returns the current value of the
capability specified by the CapName parameter. Otherwise, if it is not a numeric value, this subroutine
returns -2.

590 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

Note: The tigetnum subroutine is a low-level routine. Use this subroutine only if your application
must deal directly with the terminfo database to handle certain terminal capabilities (for example,
programming function keys).

Return Values
Upon successful completion, the tigetnum subroutine returns the value of terminal’s numeric capability.

-2 Indicates the value specified by the CapName parameter is not numeric.

Parameters

CapName Identifies the terminal capability to check for.

Example
To determine if number of labels is a defined numeric capability for the current terminal, use:
rc = tigetnum("nlab");

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

tigetstr Routine

Purpose
Returns the value of a terminal’s string capability.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>
#include <term.h>

tigetstr(Capname)
register char *Capname;

Description
The tigetstr subroutine returns the value of terminal’s string capability. Use this subroutine to get a
capability for the current terminal pointed to by cur_term. When successful, this subroutine returns the
current value of the capability specified by the Capname parameter. Otherwise, if it is not a string value,
this subroutine returns (char*) -1.

Chapter 2. Curses Subroutines 591

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

Note: The tigetstr subroutine is a low-level routine. Use this subroutine only if your application must
deal directly with the terminfo database to handle certain terminal capabilities (for example,
programming function keys).

Parameters

Capname Identifies the terminal capability to check.

Example
To determine if ″turn on soft labels″ is a defined string capability for the current terminal, do the
following:
char *rc;

rc = tigetstr("smln");

Return Values
Upon successful completion, the tigetstr subroutine returns the value of terminal’s string capability.

(char *)-1 Indicates the value specified by the Capname parameter is not a string.

Implementation Specifics
This routine is part of Base Operating System (BOS) Runtime.

Files

/usr/include/curses.h Contains C language subroutines and define statements for curses.

Related Information
List of Curses Subroutines, Curses Overview for Programming, Understanding Terminals with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

is_linetouched, is_wintouched, touchline, touchwin, untouchwin, or
wtouchin Subroutine

Purpose
Window refresh control functions.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

bool is_linetouched(WINDOW *win,
int line);

bool is_wintouched(WINDOW *win);

int touchline(WINDOW *win,
int start,
int count);

592 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

int touchwin(WINDOW *win);

int untouchwin(WINDOW *win);

int wtouchln(WINDOW *win,
int y,
int n,
int changed);

Description
The touchline subroutine touches the specified window (that is, marks it as having changed more recently
than the last refresh operation). The touchline subroutine only touches count lines, beginning with line
start.

The untouchwin subroutine marks all lines in the window as unchanged since the last refresh operation.

Calling the wtouchln subroutine, if changed is 1, touches n lines in the specified window, starting at line y.
If changed is 0, wtouchln marks such lines as unchanged since the last refresh operation.

The is_wintouchwin subroutine determines whether the specified window is touched. The is_linetouched
subroutine determines whether line line of the specified window is touched.

Parameters

line
start
count
changed
y
n
*win

Return Values
The is_linetouched and is_wintouched subroutines return TRUE if any of the specified lines, or the
specified window, respectively, has been touched since the last refresh operation. Otherwise, they return
FALSE.

Upon successful completion, the other subroutines return OK. Otherwise, they return ERR. Exceptions to
this are noted in the preceding subroutine.

Examples
For the touchline subroutine:

To set 10 lines for refresh starting from line 5 of the user-defined window my_window, use:
WINDOW *my_window;
touchline(my_window, 5, 10);
wrefresh(my_window);

This forces curses to disregard any optimization information it may have for lines 0-4 in my_window.
curses assumes all characters in lines 0-4 have changed.

For the touchwin subroutine:

To refresh a user-defined parent window, parent_window, that has been edited through its subwindows,
use:

Chapter 2. Curses Subroutines 593

WINDOW *parent_window;
touchwin(parent_window);

wrefresh(parent_window);

This forces curses to disregard any optimization information it may have for my_window. curses assumes
all lines and columns have changed for my_window.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The doupdate (“doupdate, refresh, wnoutrefresh, or wrefresh Subroutines” on page 602) subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Understanding Windows with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

touchoverlap Subroutine

Purpose

Marks the overlap of two windows as changed and makes arrangements for their refresh.

Library

Curses Library (libcurses.a)

Syntax

#include <curses.h>

touchoverlap(Window1, Window2)
WINDOW *Window1, Window2;

Description
The touchoverlap subroutine marks the overlap of two windows as changed and makes arrangements for
their refresh.

Parameters

Window1 Specifies the first window as changed.
Window2 Specifies the second window as changed.

Examples
To mark the overlap of the two user-defined windows my_window and my_new_window as changed, enter:
touchoverlap(my_window, my_new_window);

594 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/windows_curses_envir.htm#HDRA51C21888

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Understanding Windows with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

touchwin Subroutine

Purpose
Forces every character in a window’s buffer to be refreshed at the next call to the wrefresh subroutine.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

touchwin(Window)
WINDOW *Window;

Description
The touchwin (“touchwin Subroutine”) subroutine forces every character in the specified window to be
refreshed during the next call to the refresh or wrefresh subroutine. To force a specific range of lines to
be refreshed, use the touchline (“is_linetouched, is_wintouched, touchline, touchwin, untouchwin, or
wtouchin Subroutine” on page 592) subroutine.

The combined usage of the touchwin and wrefresh subroutines is helpful when dealing with subwindows
or overlapping windows. When dealing with overlapping windows, it may become necessary to bring the
back window to the front. A call to the wrefresh subroutine does not change the terminal because none of
the characters in the window were changed. Calling the touchwin subroutine on the back window before
the wrefresh subroutine redisplays the window on the terminal and, effectively, brings it to the front.

Parameters

Window Specifies the window to be touched.

Example
To refresh a user-defined parent window, parent_window, that has been edited through its subwindows,
use:
WINDOW *parent_window;
touchwin(parent_window);

wrefresh(parent_window);

Chapter 2. Curses Subroutines 595

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/windows_curses_envir.htm#HDRA51C21888

This forces curses to disregard any optimization information it may have for my_window. curses assumes
all lines and columns have changed for my_window.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The touchline (“is_linetouched, is_wintouched, touchline, touchwin, untouchwin, or wtouchin Subroutine”
on page 592) subroutine, wrefresh (“refresh or wrefresh Subroutine” on page 550) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Windows in the Curses Environment in AIX
5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

tparm Subroutine

Purpose
Applies parameters (padding) to a terminal capability.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

char *tparm(TermCap, Parm1, Parm2, . . . Parm9)
char *TermCap;
int Parm1, Parm2, . . . Parm9;

Description
The tparm subroutine applies parameters (padding) to a terminal capability.

Note: If the tparm subroutine is called with less than 10 paramameters, then the
-D_TPARM_COMPAT option should be used when compiling the program. Otherwise the compiler
gives the following error.
1506-098 (E) Missing argument(s)

Parameters

Parm# Specifies the parameters (up to nine) to instantiate.
TermCap Specifies the terminal capability to apply the parameters to. These terminal capabilities are defined in

the term.h file.

Return Values
The tparm subroutine returns the escape sequence specified by the TermCap parameter with the
specified parameters applied. After the escape sequence is received, it can be output by a subroutine like
the tputs (“tputs Subroutine” on page 597) subroutine.

Examples
1. To save the escape sequence used to home the cursor in the user-defined variable home_sequence,

enter:

596 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/windows_curses_envir.htm#HDRA51C21888

home_sequence = tparm(cursor_home);

2. To save the escape sequence used to move the cursor to the coordinates X=40, Y=18 in the
user-defined variable move_sequence, enter:
move_sequence = tparm(cursor_address, 18, 40);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Understanding Terminals with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

tputs Subroutine

Purpose
Outputs a string with padding information.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

#include <term.h>

tputs(String, LinesAffected, PutcLikeSub)
char *String;
int LinesAffected;
int (*PutcLikeSub) ();

Description
The tputs subroutine outputs a string with padding information applied. String must be a terminfo string
variable or the return value from tparm, tgetstr, tigetstr, or tgoto subroutines.

Parameters

LinesAffected Specifies the number of lines affected, or specifies 1 if not applicable.
PutcLikeSub Specifies a putchar-like subroutine through which the characters are passed one at a time.
String Specifies the string to which to add padding information.

Examples
1. To output the clear screen sequence using the user-defined putchar-like subroutine my_putchar,

enter:
int_my_putchar();
tputs(clear_screen, 1 ,my_putchar);

Chapter 2. Curses Subroutines 597

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

2. To output the escape sequence used to move the cursor to the coordinates x=40, y=18 through the
user-defined putchar-like subroutine my_putchar, enter:
int_my_putchar();
tputs(tparm(cursor_address, 18, 40), 1, my_putchar);

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The tparm (“tparm Subroutine” on page 596) subroutine.

Curses Overview for Programming, List of Curses Subroutines, Understanding Terminals with Curses in
AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

typeahead Subroutine

Purpose
Controls checking for typeahead.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int typeahead
(int fildes);

Description
The typeahead subroutine controls the detection of typeahead during a refresh, based on the value of
fildes:

v If fildes is a valid file descriptor, the typeahead subroutine is enabled during refresh; Curses periodically
checks fildes for input and aborts refresh if any character is available. (This is the initial setting, and the
typeahead file descriptor corresponds to the input file associated with the screen created by the initscr
or newterm subroutine.) The value of fildes need not be the file descriptor on which the refresh is
occurring.

v If fildes is -1, Curses does not check for typeahead during refresh.

Parameters

fildes

Return Value
Upon successful completion, the typeahead subroutine returns OK. Otherwise, it returns ERR.

Example
To turn typeahead checking on, enter:
typeahead(1);

598 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/understanding_terminals_wcurses.htm#HDRA55C21C8E

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The doupdate (“doupdate, refresh, wnoutrefresh, or wrefresh Subroutines” on page 602), getch (“getch,
mvgetch, mvwgetch, or wgetch Subroutine” on page 501), and initscr (“initscr and newterm Subroutine” on
page 518) subroutines.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Setting Video Attributes and Curses Options in AIX 5L Version 5.1 General Programming Concepts:
Writing and Debugging Programs.

unctrl Subroutine

Purpose
Generates a printable representation of a character.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

char *unctrl
(chtype c);

Description
The unctrl subroutine generates a character string that is a printable representation of c. If c is a control
character, it is converted to the |X notation. If c contains rendition information, the effect is undefined.

Parameters

c

Return Values
Upon successful completion, the unctrl subroutine returns the generated string. Otherwise, it returns a null
pointer.

Examples
To display a printable representation of the newline character, enter:
char *new_line;
int my_character;
addstr ("Hit the enter key.");
my_character=getch();
new_line=unctrl (my_character);
printw (Newline=%s", new_line);
refresh();

Chapter 2. Curses Subroutines 599

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD

This prints, ″newline=|J″.

Implementation Specifics
This subroutine is part of Base Operating System (BOS) Runtime.

Related Information
The keyname (“keyname, key_name Subroutine” on page 522) subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Manipulating Characters with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

ungetch, unget_wch Subroutine

Purpose
Pushes a character onto the input queue.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int ungetch
(int ch);

int unget_wch
(const wchar_t wch);

Description
The ungetch subroutine pushes the single-byte character ch onto the head of the input queue.

The unget_wch subroutine pushes the wide character wch onto the head of the input queue.

One character of push-back is guaranteed. The result of successive calls without an intervening call to the
getch or get_wch subroutine are unspecified.

Parameters

ch
wch

Examples
To force the key KEY_ENTER back into the queue, use:
ungetch(KEY_ENTER);

600 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

Implementation Specifics
This subroutine is part of Base Operation System (BOS) Runtime.

Related Information
The getch or wgetch (“getch, mvgetch, mvwgetch, or wgetch Subroutine” on page 501) subroutine.

Curses Overview for Programming and List of Curses Subroutines in AIX 5L Version 5.1 General
Programming Concepts: Writing and Debugging Programs.

Manipulating Characters with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

vidattr, vid_attr, vidputs, or vid_puts Subroutine

Purpose
Outputs attributes to the terminal.

Library
Curses Library (libcurses.a)

Syntax
#include <curses.h>

int vidattr
(chtype attr);

int vid_attr
(attr_t attr,
short color_pair_number,
void *opt);

int vidputs
(chtype attr,
int (*putfunc)(int));

int vid_puts
(attr_t attr,
short color_pair_number,
void *opt,
int (*putfunc)(int));

Description
These subroutines output commands to a terminal that changes the terminal’s attributes.

If the terminfo database indicates that the terminal in use can display characters in the rendition specified
by attr, then the vadattr subroutine outputs one or more commands to request that the terminal display
subsequent characters in that rendition. The subroutine outputs by calling the putchar subroutine. The
vidattr subroutine neither relies on nor updates the model that Curses maintains of the prior rendition
mode.

The vidputs subroutine computes the same terminal output string that vidattr does, based on attr, but the
vidputs subroutine outputs by calling the user-supplied subroutine putfunc. The vid_attr and vid_puts
subroutines correspond to vidattr and vidputs respectively, but take a set of arguments, one of type attr_t
for the attributes, short for the color pair number and a void *, and thus support the attribute constants with
the WA_prefix.

Chapter 2. Curses Subroutines 601

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_charac_wcurses.htm#HDRA55C21A5F

The opts argument is reserved for definition in a future edition of this document. Currently, the application
must provide a null pointer as opts.

The user-supplied putfunc subroutine (which can be specified as an argument to either vidputs or
vid_puts is either putchar or some other subroutine with the same prototype. Both the vidputs and the
vid_puts subroutines ignore the return value of putfunc.

Parameters

att
color_pair_number
*opt
*putfunc

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
1. To output the string that puts the terminal in its best standout mode through the putchar subroutine,

enter
vidattr(A_STANDOUT);

2. To output the string that puts the terminal in its best standout mode through the putchar-like
subroutine my_putc, enter
int (*my_putc) ();
vidputs(A_STANDOUT, my_putc);

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The doupdate (“doupdate, refresh, wnoutrefresh, or wrefresh Subroutines”), is_linetouched
(“is_linetouched, is_wintouched, touchline, touchwin, untouchwin, or wtouchin Subroutine” on page 592),
putchar, putwchar and tigetflag (“tigetflag, tigetnum, tigetstr, or tparm Subroutine” on page 588)
subroutines.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Setting Video Attributes and Curses Options in AIX 5L Version 5.1 General Programming Concepts:
Writing and Debugging Programs.

doupdate, refresh, wnoutrefresh, or wrefresh Subroutines

Purpose

Refreshes windows and lines.

602 Technical Reference, Volume 2: Base Operating System and Extensions

../../libs/basetrf1/putc.htm#HDRA1429342
../../libs/basetrf1/putwc.htm#HDRA1819432
../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_video_attrs.htm#HDRA51C218CD

Library

Curses Library (libcurses.a)

Syntax

#include <curses.h>

int doupdate(void);

int refresh(void);

int wnoutrefresh(WINDOW *win);

int wrefresh(WINDOW *win);

Description
The refresh and wrefresh subroutines refresh the current or specified window. The subroutines position
the terminal’s cursor at the cursor position of the window, except that, if the leaveok mode has been
enabled, they may leave the cursor at an arbitrary position.

The wnoutrefresh subroutine determines which parts of the terminal may need updating.

The doupdate subroutine sends to the terminal the commands to perform any required changes.

Parameters

*win Specifies the window to be refreshed.

Return Values
Upon successful completion, these subroutines return OK. Otherwise, they return ERR.

Examples
For the doupdate or wnoutrefresh subroutine:

To update the user-defined windows my_window1 and my_window2, enter:
WINDOW *my_window1, my_window2;
wnoutrefresh(my_window1);
wnoutrefresh(my_window2);
doupdate();

For the refresh or wrefresh subroutine:

1. To update the terminal’s display and the current screen structure to reflect changes made to the
standard screen structure, use:
refresh();

2. To update the terminal and the current screen structure to reflect changes made to a user-defined
window called my_window, use:
WINDOW *my_window;
wrefresh(my_window);

3. To restore the terminal to its state at the last refresh, use:
wrefresh(curscr);

Chapter 2. Curses Subroutines 603

This subroutine is useful if the terminal becomes garbled for any reason.

Implementation Specifics
These subroutines are part of Base Operating System (BOS) Runtime.

Related Information
The clearok (“clearok, idlok, leaveok, scrollok, setscrreg or wsetscrreg Subroutine” on page 476)
subroutine.

Curses Overview for Programming in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

List of Curses Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging
Programs.

Manipulating Window Data with Curses in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

604 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/curses.htm#HDRA277A9E8
../../aixprggd/genprogc/ls_curses.htm#HDRA51C2196D
../../aixprggd/genprogc/manip_window_data_wcurses.htm#HDRULXTI23BMARY

Chapter 3. FORTRAN Basic Linear Algebra Subroutines
(BLAS)

SDOT or DDOT Function

Purpose

Returns the dot product of two vectors.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
REAL FUNCTION SDOT(N, X, INCX, Y, INCY)
INTEGER INCX, INCY, N
REAL X(*), Y(*)

DOUBLE PRECISION FUNCTION DDOT(N, X, INCX, Y, INCY)
INTEGER INCX, INCY, N
DOUBLE PRECISION X(*), Y(*)

Description
The SDOT or DDOT function returns the dot product of vectors X and Y.

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged on exit.
X Vector of dimension at least (1 + (N-1) * abs(INCX)); unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; unchanged on exit.
Y Vector of dimension at least (1 + (N-1) * abs(INCY)); unchanged on exit.
INCY On entry, INCY specifies the increment for the elements of Y; unchanged on exit.

Error Codes
For values of N <= 0, a value of 0 is returned.

CDOTC or ZDOTC Function

Purpose

Returns the complex dot product of two vectors, conjugating the first.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
COMPLEX FUNCTION CDOTC(N, X, INCX, Y, INCY)
INTEGER INCX, INCY, N
COMPLEX X(*), Y(*)

© Copyright IBM Corp. 1994, 2001 605

DOUBLE COMPLEX FUNCTION ZDOTC(N, X, INCX, Y, INCY)
INTEGER INCX, INCY, N
COMPLEX*16 X(*), Y(*)

Description
The CDOTC or ZDOTC function returns the complex dot product of two vectors, conjugating the first.

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged on exit.
X Vector of dimension at least (1 + (N-1) * abs(INCX)); unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; unchanged on exit.
Y Vector of dimension at least (1 + (N-1) * abs(INCY)); unchanged on exit.
INCY On entry, INCY specifies the increment for the elements of Y; unchanged on exit.

Error Codes
For values of N <= 0, a value of 0 is returned.

CDOTU or ZDOTU Function

Purpose

Returns the complex dot product of two vectors.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
COMPLEX FUNCTION CDOTU(N, X, INCX, Y, INCY)
INTEGER INCX, INCY, N
COMPLEX X(*), Y(*)

DOUBLE COMPLEX FUNCTION ZDOTU(N, X, INCX, Y, INCY)
INTEGER INCX, INCY, N
COMPLEX*16 X(*), Y(*)

Description
The CDOTU or ZDOTU function returns the complex dot product of two vectors.

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged on exit.
X Vector of dimension at least (1 + (N-1) * abs(INCX)); unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; unchanged on exit.
Y Vector of dimension at least (1 + (N-1) * abs(INCY)); unchanged on exit.
INCY On entry, INCY specifies the increment for the elements of Y; unchanged on exit.

Error Codes
For values of N <= 0, a value of 0 is returned.

606 Technical Reference, Volume 2: Base Operating System and Extensions

SAXPY, DAXPY, CAXPY, or ZAXPY Subroutine

Purpose

Computes a constant times a vector plus a vector.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SAXPY(N,A,X,INCX,Y,INCY)
INTEGER INCX, INCY, N
REAL A
REAL X(*), Y(*)

SUBROUTINE DAXPY(N,A,X,INCX,Y,INCY)
INTEGER INCX,INCY,N
DOUBLE PRECISION A
DOUBLE PRECISION X(*),Y(*)

SUBROUTINE CAXPY(N,A,X,INCX,Y,INCY)
INTEGER INCX,INCY,N
COMPLEX A
COMPLEX X(*),Y(*)

SUBROUTINE ZAXPY(N,A,X,INCX,Y,INCY)
INTEGER INCX,INCY,N
COMPLEX*16 A
COMPLEX*16 X(*),Y(*)

Description
The SAXPY, DAXPY, CAXPY, or ZAXPY subroutine computes a constant times a vector plus a vector:

Y = A * X + Y

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged on exit.
A On entry, A contains a constant to be multiplied by the X vector; unchanged on exit.
X Vector of dimension at least (1 + (N-1) * abs(INCX)); unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; unchanged on exit.
Y Vector of dimension at least (1 + (N-1) * abs(INCY)); the result is returned in vector Y.
INCY On entry, INCY specifies the increment for the elements of Y; unchanged on exit.

Error Codes
If SA = 0 or N <= 0, the subroutine returns immediately.

SROTG, DROTG, CROTG, or ZROTG Subroutine

Purpose

Constructs Givens plane rotation.

Library
BLAS Library (libblas.a)

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 607

FORTRAN Syntax
SUBROUTINE SROTG(A,B,C,S)
REAL A, B, C, S

SUBROUTINE DROTG(A,B,C,S)
DOUBLE PRECISION A,B,C,S

SUBROUTINE CROTG(A,B,C,S)
REAL C
COMPLEX A,B,S

SUBROUTINE ZROTG(A,B,C,S)
DOUBLE PRECISION C
COMPLEX*16 A,B,S

Description
Given vectors A and B, the SROTG, DROTG, CROTG, or ZROTG subroutine computes:

A B
a = ---------, b = ---------

|A| + |B| |A| + |B|

2 2 1/2
roe = { a if |A| > |B| } r = roe (a + b),

{ b if |B| >= |A| }

C = { A/r if r not = 0} S = { B/r if r not = 0 }
{ 1 if r = 0 } { 0 if r = 0 }

The numbers C, S, and r then satisfy the matrix equation:
--- --- --- --- --- ---
C S		A		r
	.		=	
-S C		B		0
--- --- --- --- --- ---

The subroutines also compute:
{ S if |A| > |B|,

z = { 1/C if |B| >= |A| and C not = 0,
{ 1 if C = 0.

The subroutines return r overwriting A and z overwriting B, as well as returning C and S.

Parameters

A On entry, contains a scalar constant; on exit, contains the value r.
B On entry, contains a scalar constant; on exit, contains the value z.
C Can contain any value on entry; the value C returned on exit.
S Can contain any value on entry; the value S returned on exit.

SROT, DROT, CSROT, or ZDROT Subroutine

Purpose

Applies a plane rotation.

Library

BLAS Library (libblas.a)

608 Technical Reference, Volume 2: Base Operating System and Extensions

FORTRAN Syntax
SUBROUTINE SROT(N,X,INCX,Y,INCY,C,S)
INTEGER INCX, INCY, N
REAL C, S
REAL X(*), Y(*)

SUBROUTINE DROT(N,X,INCX,Y,INCY,C,S)
INTEGER INCX,INCY,N
DOUBLE PRECISION C,S
DOUBLE PRECISION X(*),Y(*)

SUBROUTINE CSROT(N,X,INCX,Y,INCY,C,S)
INTEGER INCX,INCY,N
REAL C,S
COMPLEX X(*),Y(*)

SUBROUTINE ZDROT(N,X,INCX,Y,INCY,C,S)
INTEGER INCX,INCY,N
DOUBLE PRECISION C,S
COMPLEX*16 X(*),Y(*)

Description
The SROT, DROT, CSROT, or ZDROT subroutine computes:
--- --- --- --- --- ---
| X | | C S | | X |
| i | | | | i |
| | := | | . | | for i = 1, ..., N.
| Y | | | | Y |
| i | | -S C | | i |
--- --- --- --- --- ---

The subroutines return the modified X and Y.

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged on exit.
X Vector of dimension at least (1 + (N-1) * abs (INCX)); unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; unchanged on exit.
Y Vector of dimension at least (1 + (N-1) * abs(INCY)); modified on exit.
INCY On entry, INCY specifies the increment for the elements of Y; unchanged on exit.
C Scalar constant; unchanged on exit.
S Scalar constant; unchanged on exit.

Error Codes
If N <= 0, or if C = 1 and S = 0, the subroutines return immediately.

SCOPY, DCOPY, CCOPY, or ZCOPY Subroutine

Purpose

Copies vector X to Y.

Library
BLAS Library (libblas.a)

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 609

FORTRAN Syntax
SUBROUTINE SCOPY(N,X,INCX,Y,INCY)
INTEGER INCX, INCY, N
REAL X(*), Y(*)

SUBROUTINE DCOPY(N,X,INCX,Y,INCY)
INTEGER INCX,INCY,N
DOUBLE PRECISION X(*),Y(*)

SUBROUTINE CCOPY(N,X,INCX,Y,INCY)
INTEGER INCX,INCY,N
COMPLEX X(*),Y(*)

SUBROUTINE ZCOPY(N,X,INCX,Y,INCY)
INTEGER INCX,INCY,N
COMPLEX*16 X(*),Y(*)

Description
The SCOPY, DCOPY, CCOPY, or ZCOPY subroutine copies vector X to vector Y.

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged on exit.
X Vector of dimension at least (1 + (N-1) * abs(INCX)); unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; unchanged on exit.
Y Vector of dimension at least (1 + (N-1) * abs(INCY)) or greater; can contain any values on entry; on exit,

contains the same values as X.
INCY On entry, INCY specifies the increment for the elements of Y; unchanged on exit.

Error Codes
For values of N <= 0, the subroutines return immediately.

SSWAP, DSWAP, CSWAP, or ZSWAP Subroutine

Purpose

Interchanges vectors X and Y.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSWAP(N,X,INCX,Y,INCY)
INTEGER INCX, INCY, N
REAL X(*), Y(*)

SUBROUTINE DSWAP(N,X,INCX,Y,INCY)
INTEGER INCX,INCY,N
DOUBLE PRECISION X(*),Y(*)

SUBROUTINE CSWAP(N,X,INCX,Y,INCY)
INTEGER INCX,INCY,N
COMPLEX X(*),Y(*)

SUBROUTINE ZSWAP(N,X,INCX,Y,INCY)
INTEGER INCX,INCY,N
COMPLEX*16 X(*),Y(*)

610 Technical Reference, Volume 2: Base Operating System and Extensions

Description
The SSWAP, DSWAP, CSWAP, or ZSWAP subroutine interchanges vector X and vector Y.

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged on exit.
X Vector of dimension at least (1 + (N-1) * abs(INCX)); on exit, contains the elements of vector Y.
INCX On entry, INCX specifies the increment for the elements of X; unchanged on exit.
Y Vector of dimension at least (1 + (N-1) * abs(INCY)); on exit, contains the elements of vector X.
INCY On entry, INCY specifies the increment for the elements of Y; unchanged on exit.

Error Codes
For values of N <= 0, the subroutines return immediately.

SNRM2, DNRM2, SCNRM2, or DZNRM2 Function

Purpose

Computes the Euclidean length of the N-vector stored in X() with storage increment INCX.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
REAL FUNCTION SNRM2(N,X,INCX)
INTEGER INCX, N
REAL X(*)

DOUBLE PRECISION FUNCTION DNRM2(N,X,INCX)
INTEGER INCX,N
DOUBLE PRECISION X(*)

REAL FUNCTION SCNRM2(N,X,INCX)
INTEGER INCX,N
COMPLEX X(*)

DOUBLE PRECISION FUNCTION DZNRM2(N,X,INCX)
INTEGER INCX,N
COMPLEX*16 X(*)

Description
The SNRM2, DNRM2, SCNRM2, or DZNRM2 function returns the Euclidean norm of the N-vector stored
in X() with storage increment INCX.

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged on exit.
X Vector of dimension at least (1 + (N-1) * abs(INCX)); unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; INCX must be greater than 0; unchanged on

exit.

Error Codes
For values of N <= 0, a value of 0 is returned.

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 611

SASUM, DASUM, SCASUM, or DZASUM Function

Purpose

Returns the sum of absolute values of vector components.

Library

BLAS Library (libblas.a)

FORTRAN Syntax

REAL FUNCTION SASUM(N,X,INCX)
INTEGER INCX, N
REAL X(*)

DOUBLE PRECISION FUNCTION DASUM(N,X,INCX)
INTEGER INCX,N
DOUBLE PRECISION X(*)

REAL FUNCTION SCASUM(N,X,INCX)
INTEGER INCX,N
COMPLEX X(*)

DOUBLE PRECISION FUNCTION DZASUM(N,X,INCX)
INTEGER INCX,N
COMPLEX*16 X(*)

Description
The SASUM, DASUM, SCASUM, or DZASUM function returns the sum of absolute values of vector
components.

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged on exit.
X Vector of dimension at least (1 + (N-1) * abs(INCX)); unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; INCX must be greater than 0; unchanged on

exit.

Error Codes
For values of N <= 0, a value of 0 is returned.

SSCAL, DSCAL, CSSCAL, CSCAL, ZDSCAL, or ZSCAL Subroutine

Purpose

Scales a vector by a constant.

Library
BLAS Library (libblas.a)

612 Technical Reference, Volume 2: Base Operating System and Extensions

FORTRAN Syntax
SUBROUTINE SSCAL(N,A,X,INCX)
INTEGER INCX, N
REAL A
REAL X(*)

SUBROUTINE DSCAL(N,A,X,INCX)
INTEGER INCX,N
DOUBLE PRECISION A
DOUBLE PRECISION X(*)

SUBROUTINE CSSCAL(N,A,X,INCX)
INTEGER INCX,N
REAL A
COMPLEX X(*)

SUBROUTINE CSCAL
INTEGER INCX,N
COMPLEX A
COMPLEX X(*)

SUBROUTINE ZDSCAL
INTEGER INCX,N
DOUBLE PRECISION A
COMPLEX*16 X(*)

SUBROUTINE ZSCAL(
INTEGER INCX,N
COMPLEX*16 A
COMPLEX*16 X(*)

Description
The SSCAL, DSCAL, CSSCAL, CSCAL, ZDSCAL, or ZSCAL subroutine scales a vector by a constant:
X := X * A

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged on exit.
A Scaling constant; unchanged on exit.
X Vector of dimension at least (1 + (N-1) * abs(INCX)); on exit, contains the scaled vector.
INCX On entry, INCX specifies the increment for the elements of X; INCX must be greater than 0; unchanged on

exit.

Error Codes
For values of N <= 0, the subroutines return immediately.

ISAMAX, IDAMAX, ICAMAX, or IZAMAX Function

Purpose

Finds the index of element having maximum absolute value.

Library
BLAS Library (libblas.a)

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 613

FORTRAN Syntax
INTEGER FUNCTION ISAMAX(N,X,INCX)
INTEGER INCX, N
REAL X(*)

INTEGER FUNCTION IDAMAX(N,X,INCX)
INTEGER INCX,N
DOUBLE PRECISION X(*)

INTEGER FUNCTION ICAMAX(N,X,INCX)
INTEGER INCX,N
COMPLEX X(*)

INTEGER FUNCTION IZAMAX(N,X,INCX)
INTEGER INCX,N
COMPLEX*16 X(*)

Description
The ISAMAX, IDAMAX, ICAMAX, or IZAMAX function returns the index of element having maximum
absolute value.

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged on exit.
X Vector of dimension at least (1 + (N-1) * abs(INCX)); unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; unchanged on exit.

Error Codes
For values of N <= 0, a value of 0 is returned.

SDSDOT Function

Purpose

Returns the dot product of two vectors plus a constant.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
REAL FUNCTION SDSDOT(N,B,X,INCX,Y,INCY)
INTEGER N, INCX, INCY
REAL B, X(*), Y(*)

Purpose
The SDSDOT function computes the sum of constant B and dot product of vectors X and Y.

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged on exit.
B Scalar; unchanged on exit.
X Vector of dimension at least (1 + (N-1) * abs(INCX)); unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; INCX must be greater than zero; unchanged

on exit.

614 Technical Reference, Volume 2: Base Operating System and Extensions

Y Vector of dimension at least (1 + (N-1) * abs(INCY)); unchanged on exit.
INCY On entry, INCY specifies the increment for the elements of Y; INCY must be greater than 0; unchanged on

exit.

Error Codes
For values of N <= 0, the subroutine returns immediately.

Implementation Specifics
Computation is performed in double precision.

SROTM or DROTM Subroutine

Purpose

Applies the modified Givens transformation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SROTM(N,X,INCX,Y,INCY,PARAM)
INTEGER N, INCX, INCY
REAL X(*), Y(*), PARAM(5)

SUBROUTINE DROTM(N,X,INCX,Y,INCY,PARAM)
INTEGER N,INCX,INCY
DOUBLE PRECISION X(*),Y(*),PARAM(5)

Description
Let H denote the modified Givens transformation defined by the parameter array PARAM. The SROTM or
DROTM subroutine computes:
--- --- --- ---
x		x
	:= H *	
y		y
--- --- --- ---

where H is a 2 x 2 matrix with the components defined by the elements of the array PARAM as follows:
if PARAM(1) == 0.0

H(1,1) = H(2,2) = 1.0
H(2,1) = PARAM(3)
H(1,2) = PARAM(4)

if PARAM(1) == 1.0
H(1,2) = H(2,1) = -1.0
H(1,1) = PARAM(2)
H(2,2) = PARAM(5)

if PARAM(1) == -1.0
H(1,1) = PARAM(2)
H(2,1) = PARAM(3)
H(1,2) = PARAM(4)
H(2,2) = PARAM(5)

if PARAM(1) == -2.0
H = I (Identity matrix)

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 615

Parameters

N On entry, N specifies the number of elements in X and Y; unchanged on exit.
X Vector of dimension at least (1 + (N-1) * abs(INCX)); on exit, modified as described above.
INCX On entry, INCX specifies the increment for the elements of X; INCX must be greater than 0; unchanged on

exit.
Y Vector of dimension at least (1 + (N-1) * abs(INCY)); on exit, modified as described above.
INCY On entry, INCY specifies the increment for the elements of Y; INCY must be greater than 0; unchanged on

exit.
PARAM Vector of dimension (5); on entry, must be set as described above. Specifically, PARAM(1) is a flag and

must have value of either 0.0, -1.0, 1.0, or 2.0; unchanged on exit.

Implementation Specifics
If N <= 0 or H is an identity matrix, the subroutines return immediately.

Related information
The SROTMG or DROTMG (“SROTMG or DROTMG Subroutine”) subroutine builds the PARAM array
prior to use by the SROTM or DROTM subroutine.

SROTMG or DROTMG Subroutine

Purpose

Constructs a modified Givens transformation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SROTMG(D1,D2,X1,X2,PARAM)
REAL D1, D2, X1, X2, PARAM(5)

SUBROUTINE DROTMG(D1,D2,X1,X2,PARAM)
DOUBLE PRECISION D1,D2,X1,X2,PARAM(5)

Description
The SROTMG or DROTMG subroutine constructs a modified Givens transformation. The input quantities
D1, D2, X1, and X2 define a 2-vector in partitioned form:
--- --- --- --- --- ---
a1		sqrt(D1) 0		X1
	=			
a2		0 sqrt(D2)		X2
--- --- --- --- --- ---

The subroutines determine the modified Givens rotation matrix H that transforms X2 and, thus, a2 to 0. A
representation of this matrix is stored in the array PARAM as follows:
Case 1: PARAM(1) = 1.0

PARAM(2) = H(1,1)
PARAM(5) = H(2,2)

Case 2: PARAM(1) = 0.0
PARAM(3) = H(2,1)
PARAM(4) = H(1,2)

616 Technical Reference, Volume 2: Base Operating System and Extensions

Case 3: PARAM(1) = -1.0
H(1,1) = PARAM(2)
H(2,1) = PARAM(3)
H(1,2) = PARAM(4)
H(2,2) = PARAM(5)

Case 4: PARAM(1) = -2.0
H = I (Identity matrix)

Note: Locations in PARAM not listed are left unchanged.

Parameters

D1 Nonnegative scalar; modified on exit to reflect the results of the transformation.
D2 Scalar; can be negative on entry; modified on exit to reflect the results of the transformation.
X1 Scalar; modified on exit to reflect the results of the transformation.
X2 Scalar; unchanged on exit.
PARAM Vector of dimension (5); values on entry are unused; modified on exit as described above.

Related Information
The SROTM and DROTM (“SROTM or DROTM Subroutine” on page 615) subroutines apply the Modified
Givens Transformation.

SGEMV, DGEMV, CGEMV, or ZGEMV Subroutine

Purpose

Performs matrix-vector operation with general matrices.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SGEMV(TRANS, M, N, ALPHA, A, LDA, X,
INCX, BETA, Y, INCY)
REAL ALPHA, BETA
INTEGER INCX, INCY, LDA, M, N
CHARACTER*1 TRANS
REAL A(LDA,*), X(*), Y(*)

SUBROUTINE DGEMV(TRANS, M, N, ALPHA, A, LDA, X,
INCX, BETA, Y, INCY)
DOUBLE PRECISION ALPHA,BETA
INTEGER INCX,INCY,LDA,M,N
CHARACTER*1 TRANS
DOUBLE PRECISION A(LDA,*), X(*), Y(*)

SUBROUTINE CGEMV(TRANS, M, N, ALPHA, A, LDA, X,
INCX, BETA, Y, INCY)
COMPLEX ALPHA,BETA
INTEGER INCX,INCY,LDA,M,N
CHARACTER*1 TRANS
COMPLEX A(LDA,*), X(*), Y(*)

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 617

SUBROUTINE ZGEMV(TRANS, M, N, ALPHA, A, LDA, X,
INCX, BETA, Y, INCY)
COMPLEX*16 ALPHA,BETA
INTEGER INCX,INCY,LDA,M,N
CHARACTER*1 TRANS
COMPLEX*16 A(LDA,*), X(*), Y(*)

Description
The SGEMV, DGEMV, CGEMV, or ZGEMV subroutine performs one of the following matrix-vector
operations:

y := alpha * A * x + beta * y

OR

y := alpha * A’ * x + beta * y

where alpha and beta are scalars, x and y are vectors, and A is an M by N matrix.

Parameters

TRANS On entry, TRANS specifies the operation to be performed as follows:

TRANS = ’N’ or ’n’
y := alpha * A * x + beta * y

TRANS = ’T’ or ’t’
y := alpha * A’ * x + beta * y

TRANS = ’C’ or ’c’
y := alpha * A’ * x + beta * y

Unchanged on exit.
M On entry, M specifies the number of rows of the matrix A; M must be at least 0; unchanged on exit.
N On entry, N specifies the number of columns of the matrix A; N must be at least 0; unchanged on exit.
ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
A An array of dimension (LDA, N); on entry, the leading M by N part of the array A must contain the matrix

of coefficients; unchanged on exit.
LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program; LDA must be at

least max(1, M); unchanged on exit.
X A vector of dimension at least (1 + (N-1) * abs(INCX)) when TRANS = ’N’ or ’n’, otherwise, at least (1 +

(M-1) * abs(INCX)); on entry, the incremented array X must contain the vector x; unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.
BETA On entry, BETA specifies the scalar beta; when BETA is supplied as 0, Y need not be set on input;

unchanged on exit.
Y A vector of dimension at least 1 + (M-1) * abs(INCY)) when TRANS = ’N’ or ’n’, otherwise at least (1 +

(N-1) * abs(INCY)); on entry, with BETA nonzero, the incremented array Y must contain the vector y; on
exit, Y is overwritten by the updated vector y.

INCY On entry, INCY specifies the increment for the elements of Y; INCY must not be 0; unchanged on exit.

SGBMV, DGBMV, CGBMV, or ZGBMV Subroutine

Purpose
Performs matrix-vector operations with general banded matrices.

Library
BLAS Library (libblas.a)

618 Technical Reference, Volume 2: Base Operating System and Extensions

FORTRAN Syntax
SUBROUTINE SGBMV(TRANS, M, N, KL, KU, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
REAL ALPHA, BETA
INTEGER INCX, INCY, KL, KU, LDA, M, N
CHARACTER*1 TRANS
REAL A(LDA,*), X(*), Y(*)

SUBROUTINE DGBMV(TRANS, M, N, KL, KU, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
DOUBLE PRECISION ALPHA,BETA
INTEGER INCX,INCY,KL,KU,LDA,M,N
CHARACTER*1 TRANS
DOUBLE PRECISION A(LDA,*), X(*), Y(*)

SUBROUTINE CGBMV(TRANS, M, N, KL, KU, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
COMPLEX ALPHA,BETA
INTEGER INCX,INCY,KL,KU,LDA,M,N
CHARACTER*1 TRANS
COMPLEX A(LDA,*), X(*), Y(*)

SUBROUTINE ZGBMV(TRANS, M, N, KL, KU, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
COMPLEX*16 ALPHA,BETA
INTEGER INCX,INCY,KL,KU,LDA,M,N
CHARACTER*1 TRANS
COMPLEX*16 A(LDA,*), X(*), Y(*)

Description
The SGBMV, DGBMV, CGBMV, or ZGBMV subroutine performs one of the following matrix-vector
operations:

y := alpha * A * x + beta * y

OR

y := alpha * A’ * x + beta * y

where alpha and beta are scalars, x and y are vectors and A is an M by N band matrix, with KL
subdiagonals and KU superdiagonals.

Parameters

TRANS On entry, TRANS specifies the operation to be performed as follows:

TRANS = ’N’ or ’n’
y := alpha * A * x + beta * y

TRANS = ’T’ or ’t’
y := alpha * A’ * x + beta * y

TRANS = ’C’ or ’c’
y := alpha * A’ * x + beta * y

Unchanged on exit.
M On entry, M specifies the number of rows of the matrix A; M must be at least 0; unchanged on exit.
N On entry, N specifies the number of columns of the matrix A; N must be at least 0; unchanged on exit.
KL On entry, KL specifies the number of subdiagonals of the matrix A; KL must satisfy 0 .le. KL; unchanged on

exit.
KU On entry, KU specifies the number of superdiagonals of the matrix A; KU must satisfy 0 .le. KU; unchanged

on exit.

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 619

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
A A vector of dimension (LDA, N); on entry, the leading (KL + KU + 1) by N part of the array A must

contain the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row
(KU + 1) of the array, the first superdiagonal starting at position 2 in row KU, the first subdiagonal starting
at position 1 in row (KU + 2), and so on. Elements in the array A that do not correspond to elements in
the band matrix (such as the top left KU by KU triangle) are not referenced. The following program
segment transfers a band matrix from conventional full matrix storage to band storage:

DO 20, J = 1, N
K = KU + 1 - J
DO 10, I = MAX(1, J - KU), MIN(M, J + KL)

A(K + I, J) = matrix(I, J)
10 CONTINUE
20 CONTINUE

Unchanged on exit.
LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at

least (KL + KU + 1); unchanged on exit.
X A vector of dimension at least (1 + (N-1) * abs(INCX)) when TRANS = ’N’ or ’n’, otherwise, at least (1 +

(M-1) * abs(INCX)); on entry, the incremented array X must contain the vector x; unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.
BETA On entry, BETA specifies the scalar beta; when BETA is supplied as 0 then Y need not be set on input;

unchanged on exit.
Y A vector of dimension at least (1 + (M-1) * abs(INCY)) when TRANS = ’N’ or ’n’ , otherwise, at least (1 +

(N-1) * abs(INCY)); on entry, the incremented array Y must contain the vector y; on exit, Y is overwritten
by the updated vector y.

INCY On entry, INCY specifies the increment for the elements of Y; INCY must not be 0; unchanged on exit.

CHEMV or ZHEMV Subroutine

Purpose
Performs matrix-vector operations using Hermitian matrices.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CHEMV(UPLO, N, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
COMPLEX ALPHA, BETA
INTEGER INCX, INCY, LDA, N
CHARACTER*1 UPLO
COMPLEX A(LDA,*), X(*), Y(*)

SUBROUTINE ZHEMV(UPLO, N, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
COMPLEX*16 ALPHA,BETA
INTEGER INCX,INCY,LDA,N
CHARACTER*1 UPLO
COMPLEX*16 A(LDA,*), X(*), Y(*)

Description
The CHEMV or ZHEMV subroutine performs the matrix-vector operation:

y := alpha * A * x + beta * y

where alpha and beta are scalars, x and y are N element vectors and A is an N by N Hermitian matrix.

620 Technical Reference, Volume 2: Base Operating System and Extensions

Parameters

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as
follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of A is to be referenced; unchanged on exit.

UPLO = ’L’ or ’l’
Only the lower triangular part of A is to be referenced; unchanged on exit.

N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on exit.
ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
A An array of dimension (LDA, N); on entry with UPLO = ’U’ or ’u’, the leading N by N upper triangular part

of the array A must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular
part of A is not referenced; on entry with UPLO = ’L’ or ’l’, the leading N by N lower triangular part of the
array A must contain the lower triangular part of the Hermitian matrix and the strictly upper triangular part
of A is not referenced. The imaginary parts of the diagonal elements need not be set and are assumed to
be 0; unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program; LDA must be at
least max(1, N); unchanged on exit.

X A vector of dimension at least (1 + (N-1) * abs(INCX)); on entry, the incremented array X must contain
the N element vector x; unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.
BETA On entry, BETA specifies the scalar beta; when BETA is supplied as 0 then Y need not be set on input;

unchanged on exit.
Y A vector of dimension at least (1 + (N-1) * abs(INCY)); on entry, the incremented array Y must contain

the N element vector y; on exit, Y is overwritten by the updated vector y.
INCY On entry, INCY specifies the increment for the elements of Y; INCY must not be 0; unchanged on exit.

CHBMV or ZHBMV Subroutine

Purpose
Performs matrix-vector operations using a Hermitian band matrix.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CHBMV(UPLO, N, K, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
COMPLEX ALPHA, BETA
INTEGER INCX, INCY, K, LDA, N
CHARACTER*1 UPLO
COMPLEX A(LDA,*), X(*), Y(*)

SUBROUTINE ZHBMV(UPLO, N, K, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
COMPLEX*16 ALPHA,BETA
INTEGER INCX,INCY,K,LDA,N
CHARACTER*1 UPLO
COMPLEX*16 A(LDA,*), X(*), Y(*)

Description
The CHBMV or ZHBMV subroutine performs the matrix-vector operation:

y := alpha * A * x + beta * y

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 621

where alpha and beta are scalars, x and y are N element vectors, and A is an N by N Hermitian band
matrix with K superdiagonals.

Parameters

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the band matrix A is being supplied
as follows:

UPLO = ’U’ or ’u’
The upper triangular part of A is being supplied.

UPLO = ’L’ or ’l’
The lower triangular part of A is being supplied.

Unchanged on exit.
N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on exit.
K On entry, K specifies the number of superdiagonals of the matrix A; K must satisfy 0 .le. K; unchanged on

exit.
ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
A An array of dimension (LDA, N). On entry with UPLO = ’U’ or ’u’, the leading (K + 1) by N part of the

array A must contain the upper triangular band part of the Hermitian matrix, supplied column by column,
with the leading diagonal of the matrix in row (K + 1) of the array, the first superdiagonal starting at
position 2 in row K, and so on. The top left K by K triangle of the array A is not referenced. The following
program segment transfers the upper triangular part of a Hermitian band matrix from conventional full
matrix storage to band storage:

DO 20, J = 1, N
M = K + 1 - J
DO 10, I = MAX(1, J - K), J

A(M + I, J) = matrix(I, J)
10 CONTINUE
20 CONTINUE

Note: On entry with UPLO = ’L’ or ’l’, the leading (K + 1) by N part of the array A must contain the
lower triangular band part of the Hermitian matrix, supplied column by column, with the leading
diagonal of the matrix in row 1 of the array, the first subdiagonal starting at position 1 in row 2, and
so on. The bottom right K by K triangle of the array A is not referenced. The following program
segment transfers the lower triangular part of a Hermitian band matrix from conventional full matrix
storage to band storage:

DO 20, J = 1, N
M = 1 - J
DO 10, I = J, MIN(N, J + K)

A(M + I, J) = matrix(I, J)
10 CONTINUE
20 CONTINUE

The imaginary parts of the diagonal elements need not be set and are assumed to be 0. Unchanged on
exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program; LDA must be at
least (K + 1); unchanged on exit.

X A vector of dimension at least (1 + (N-1) * abs(INCX)); on entry, the incremented array X must contain
the vector x; unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0 unchanged on exit.
BETA On entry, BETA specifies the scalar beta unchanged on exit.
Y A vector of dimension at least (1 + (N-1) * abs(INCY)); on entry, the incremented array Y must contain

the vector y; on exit, Y is overwritten by the updated vector y.
INCY On entry, INCY specifies the increment for the elements of Y; INCY must not be 0; unchanged on exit.

622 Technical Reference, Volume 2: Base Operating System and Extensions

CHPMV or ZHPMV Subroutine

Purpose
Performs matrix-vector operations using a packed Hermitian matrix.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CHPMV(UPLO, N, ALPHA, AP, X,
INCX, BETA, Y, INCY)
COMPLEX ALPHA, BETA
INTEGER INCX, INCY, N
CHARACTER*1 UPLO
COMPLEX AP(*), X(*), Y(*)

SUBROUTINE ZHPMV
COMPLEX*16 ALPHA,BETA
INTEGER INCX,INCY,N
CHARACTER*1 UPLO
COMPLEX*16 AP(*), X(*), Y(*)

Description
The CHPMV or ZHPMV subroutine performs the matrix-vector operation:

y := alpha * A * x + beta * y

where alpha and beta are scalars, x and y are N element vectors and A is an N by N Hermitian matrix,
supplied in packed form.

Parameters

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the
packed array AP as follows:

UPLO = ’U’ or ’u’
The upper triangular part of A is supplied in AP.

UPLO = ’L’ or ’l’
The lower triangular part of A is supplied in AP.

Unchanged on exit.
N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on exit.
ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
AP A vector of dimension at least ((N * (N+1))/2); on entry with UPLO = ’U’ or ’u’, the array AP must contain

the upper triangular part of the Hermitian matrix packed sequentially, column by column, so that AP(1)
contains A(1,1), AP(2) and AP(3) contain A(1,2) and A(2,2) respectively, and so on; on entry with UPLO =
’L’ or ’l’, the array AP must contain the lower triangular part of the Hermitian matrix packed sequentially,
column by column, so that AP(1) contains A(1,1), AP(2) and AP(3) contain A(2,1) and A(3,1) respectively,
and so on. The imaginary parts of the diagonal elements need not be set and are assumed to be 0;
unchanged on exit.

X A vector of dimension at least (1 + (N-1) * abs(INCX)); on entry, the incremented array X must contain
the N element vector x; unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.
BETA On entry, BETA specifies the scalar beta; when BETA is supplied as 0 then Y need not be set on input;

unchanged on exit.

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 623

Y A vector of dimension at least (1 + (N-1) * abs(INCY)); on entry, the incremented array Y must contain
the N element vector y; on exit, Y is overwritten by the updated vector y.

INCY On entry, INCY specifies the increment for the elements of Y; INCY must not be 0; unchanged on exit.

SSYMV or DSYMV Subroutine

Purpose
Performs matrix-vector operations using a symmetric matrix.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSYMV(UPLO, N, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
REAL ALPHA, BETA
INTEGER INCX, INCY, LDA, N
CHARACTER*1 UPLO
REAL A(LDA,*), X(*), Y(*)

SUBROUTINE DSYMV(UPLO, N, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
DOUBLE PRECISION ALPHA,BETA
INTEGER INCX,INCY,LDA,N
CHARACTER*1 UPLO
DOUBLE PRECISION A(LDA,*), X(*), Y(*)

Description
The SSYMV or DSYMV subroutine performs the matrix-vector operation:

y := alpha * A * x + beta * y

where alpha and beta are scalars, x and y are N element vectors and A is an N by N symmetric matrix.

Parameters

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as
follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of A is to be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of A is to be referenced.

Unchanged on exit.
N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on exit.
ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
A An array of dimension (LDA, N); on entry with UPLO = ’U’ or ’u’, the leading N by N upper triangular part

of the array A must contain the upper triangular part of the symmetric matrix; the strictly lower triangular
part of A is not referenced; on entry with UPLO = ’L’ or ’l’, the leading N by N lower triangular part of the
array A must contain the lower triangular part of the symmetric matrix; the strictly upper triangular part of A
is not referenced; unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program; LDA must be at
least max(1, N); unchanged on exit.

624 Technical Reference, Volume 2: Base Operating System and Extensions

X A vector of dimension at least (1 + (N-1) * abs(INCX)); on entry, the incremented array X must contain
the N element vector x; unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.
BETA On entry, BETA specifies the scalar beta; when BETA is supplied as 0 then Y need not be set on input;

unchanged on exit.
Y A vector of dimension at least (1 + (N-1) * abs(INCY)); on entry, the incremented array Y must contain

the N element vector y; on exit, Y is overwritten by the updated vector y.
INCY On entry, INCY specifies the increment for the elements of Y; INCY must not be 0; unchanged on exit.

SSBMV or DSBMV Subroutine

Purpose
Performs matrix-vector operations using symmetric band matrix.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSBMV(UPLO, N, K, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
REAL ALPHA, BETA
INTEGER INCX, INCY, K, LDA, N
CHARACTER*1 UPLO
REAL A(LDA,*), X(*), Y(*)

SUBROUTINE DSBMV(UPLO, N, K, ALPHA, A, LDA,
X, INCX, BETA, Y, INCY)
DOUBLE PRECISION ALPHA,BETA
INTEGER INCX,INCY,K,LDA,N
CHARACTER*1 UPLO
DOUBLE PRECISION A(LDA,*), X(*), Y(*)

Description
The SSBMV or DSBMV subroutine performs the matrix-vector operation:

y := alpha * A * x + beta * y

where alpha and beta are scalars, x and y are N element vectors, and A is an N by N symmetric band
matrix with K super-diagonals.

Parameters

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the band matrix A is being supplied
as follows:

UPLO = ’U’ or ’u’
The upper triangular part of A is being supplied.

UPLO = ’L’ or ’l’
The lower triangular part of A is being supplied.

Unchanged on exit.
N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on exit.
K On entry, K specifies the number of superdiagonals of the matrix A; K must satisfy 0 .le. K; unchanged on

exit.
ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 625

A An array of dimension (LDA, N); on entry with UPLO = ’U’ or ’u’, the leading (K + 1) by N part of the
array A must contain the upper triangular band part of the symmetric matrix, supplied column by column,
with the leading diagonal of the matrix in row (K + 1) of the array, the first superdiagonal starting at
position 2 in row K, and so on. The top left K by K triangle of the array A is not referenced. The following
program segment transfers the upper triangular part of a symmetric band matrix from conventional full
matrix storage to band storage:

DO 20, J = 1, N
M = K + 1 - J
DO 10, I = MAX(1, J - K), J

A(M + I, J) = matrix(I, J)
10 CONTINUE
20 CONTINUE

On entry with UPLO = ’L’ or ’l’, the leading (K + 1) by N part of the array A must contain the lower
triangular band part of the symmetric matrix, supplied column by column, with the leading diagonal of the
matrix in row 1 of the array, the first subdiagonal starting at position 1 in row 2, and so on. The bottom right
K by K triangle of the array A is not referenced. The following program segment transfers the lower
triangular part of a symmetric band matrix from conventional full matrix storage to band storage:

DO 20, J = 1, N
M = 1 - J
DO 10, I = J, MIN(N, J + K)

A(M + I, J) = matrix(I, J)
10 CONTINUE
20 CONTINUE

Unchanged on exit.
LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program; LDA must be at

least (K + 1); unchanged on exit.
X A vector of dimension at least (1 + (N-1) * abs(INCX)); on entry, the incremented array X must contain

the vector x; unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.
BETA On entry, BETA specifies the scalar beta; unchanged on exit.
Y A vector of dimension at least (1 + (N-1) * abs(INCY)); on entry, the incremented array Y must contain

the vector y; on exit, Y is overwritten by the updated vector y.
INCY On entry, INCY specifies the increment for the elements of Y; INCY must not be 0; unchanged on exit.

SSPMV or DSPMV Subroutine

Purpose
Performs matrix-vector operations using a packed symmetric matrix.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSPMV(UPLO, N, ALPHA, AP, X,
INCX, BETA, Y, INCY)
REAL ALPHA, BETA
INTEGER INCX, INCY, N
CHARACTER*1 UPLO
REAL AP(*), X(*), Y(*)

626 Technical Reference, Volume 2: Base Operating System and Extensions

SUBROUTINE DSPMV(UPLO, N, ALPHA, AP, X,
INCX, BETA, Y, INCY)
DOUBLE PRECISION ALPHA,BETA
INTEGER INCX,INCY,N
CHARACTER*1 UPLO
DOUBLE PRECISION AP(*), X(*), Y(*)

Description
The SSPMV or DSPMV subroutine performs the matrix-vector operation:

y := alpha * A * x + beta * y

where alpha and beta are scalars, x and y are N element vectors and A is an N by N symmetric matrix,
supplied in packed form.

Parameters

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the
packed array AP as follows:

UPLO = ’U’ or ’u’
The upper triangular part of A is supplied in AP.

UPLO = ’L’ or ’l’
The lower triangular part of A is supplied in AP.

Unchanged on exit.
N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on exit.
ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
AP A vector of dimension at least ((N * (N+1))/2); on entry with UPLO = ’U’ or ’u’, the array AP must contain

the upper triangular part of the symmetric matrix packed sequentially, column by column, so that AP(1)
contains A(1,1), AP(2) and AP(3) contain A(1,2) and A(2,2) respectively, and so on; on entry with UPLO =
’L’ or ’l’, the array AP must contain the lower triangular part of the symmetric matrix packed sequentially,
column by column, so that AP(1) contains A(1,1), AP(2) and AP(3) contain A(2,1) and A(3,1) respectively,
and so on; unchanged on exit.

X A vector of dimension at least (1 + (N-1) * abs(INCX)); on entry, the incremented array X must contain
the N element vector x; unchanged on exit.

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.
BETA On entry, BETA specifies the scalar beta; when BETA is supplied as 0 then Y need not be set on input;

unchanged on exit.
Y A vector of dimension at least (1 + (N-1) * abs(INCY)); on entry, the incremented array Y must contain

the N element vector y; on exit, Y is overwritten by the updated vector y.
INCY On entry, INCY specifies the increment for the elements of Y; INCY must not be 0; unchanged on exit.

STRMV, DTRMV, CTRMV, or ZTRMV Subroutine

Purpose
Performs matrix-vector operations using a triangular matrix.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE STRMV(UPLO, TRANS, DIAG, N,
A, LDA, X, INCX)

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 627

INTEGER INCX, LDA, N
CHARACTER*1 DIAG, TRANS, UPLO
REAL A(LDA,*), X(*)

SUBROUTINE DTRMV(UPLO, TRANS, DIAG, N,
A, LDA, X, INCX)
INTEGER INCX,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
DOUBLE PRECISION A(LDA,*), X(*)

SUBROUTINE CTRMV(UPLO, TRANS, DIAG, N,
A, LDA, X, INCX)
INTEGER INCX,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX A(LDA,*), X(*)

SUBROUTINE ZTRMV(UPLO, TRANS, DIAG, N,
A, LDA, X, INCX)
INTEGER INCX,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX*16 A(LDA,*),X(*)

Description
The STRMV, DTRMV, CTRMV, or ZTRMV subroutine performs one of the matrix-vector operations:

x := A * x

OR

x := A’ * x

where x is an N element vector and A is an N by N unit, or non-unit, upper or lower triangular matrix.

Parameters

UPLO On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows:

UPLO = ’U’ or ’u’
A is an upper triangular matrix.

UPLO = ’L’ or ’l’
A is a lower triangular matrix.

Unchanged on exit.
TRANS On entry, TRANS specifies the operation to be performed as follows:

TRANS = ’N’ or ’n’
x := A * x

TRANS = ’T’ or ’t’
x := A’ * x

TRANS = ’C’ or ’c’
x := A’ * x

Unchanged on exit.
DIAG On entry, DIAG specifies whether or not A is unit triangular as follows:

DIAG = ’U’ or ’u’
A is assumed to be unit triangular.

DIAG = ’N’ or ’n’
A is not assumed to be unit triangular.

Unchanged on exit.

628 Technical Reference, Volume 2: Base Operating System and Extensions

N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on exit.
A An array of dimension (LDA, N); on entry with UPLO = ’U’ or ’u’, the leading N by N upper triangular part

of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not
referenced; on entry with UPLO = ’L’ or ’l’, the leading N by N lower triangular part of the array A must
contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. When DIAG
= ’U’ or ’u’, the diagonal elements of A are not referenced, but are assumed to be unity; unchanged on
exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at
least max(1, N); unchanged on exit.

X A vector of dimension at least (1 + (N-1) * abs(INCX)). On entry, the incremented array X must contain
the N element vector x; on exit, X is overwritten with the transformed vector x.

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.

STBMV, DTBMV, CTBMV, or ZTBMV Subroutine

Purpose
Performs matrix-vector operations using a triangular band matrix.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE STBMV(UPLO, TRANS, DIAG, N,
K, A, LDA, X, INCX)
INTEGER INCX, K, LDA, N
CHARACTER*1 DIAG, TRANS, UPLO
REAL A(LDA,*), X(*)

SUBROUTINE DTBMV(UPLO, TRANS, DIAG, N,
K, A, LDA, X, INCX)
INTEGER INCX,K,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
DOUBLE PRECISION A(LDA,*), X(*)

SUBROUTINE CTBMV(UPLO, TRANS, DIAG, N,
K, A, LDA, X, INCX)
INTEGER INCX,K,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX A(LDA,*), X(*)

SUBROUTINE ZTBMV(UPLO, TRANS, DIAG, N,
K, A, LDA, X, INCX)
INTEGER INCX,K,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX*16 A(LDA,*), X(*)

Description
The STBMV, DTBMV, CTBMV, or ZTBMV subroutine performs one of the matrix-vector operations:

x := A * x

OR

x := A’ * x

where x is an N element vector and A is an N by N unit, or non-unit, upper or lower triangular band matrix,
with (K + 1) diagonals.

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 629

Parameters

UPLO On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows:

UPLO = ’U’ or ’u’
A is an upper triangular matrix.

UPLO = ’L’ or ’l’
A is a lower triangular matrix.

Unchanged on exit.
TRANS On entry, TRANS specifies the operation to be performed as follows:

TRANS = ’N’ or ’n’
x := A * x

TRANS = ’T’ or ’t’
x := A’ * x

TRANS = ’C’ or ’c’
x := A’ * x

Unchanged on exit.
DIAG On entry, DIAG specifies whether or not A is unit triangular as follows:

DIAG = ’U’ or ’u’
A is assumed to be unit triangular.

DIAG = ’N’ or ’n’
A is not assumed to be unit triangular.

Unchanged on exit.
N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on exit.
K On entry with UPLO = ’U’ or ’u’, K specifies the number of superdiagonals of the matrix A; on entry with

UPLO = ’L’ or ’l’, K specifies the number of subdiagonals of the matrix A. K must satisfy 0 .le. K;
unchanged on exit.

A An array of dimension (LDA, N). On entry with UPLO = ’U’ or ’u’, the leading (K + 1) by N part of the
array A must contain the upper triangular band part of the matrix of coefficients, supplied column by
column, with the leading diagonal of the matrix in row (K + 1) of the array, the first superdiagonal starting
at position 2 in row K, and so on. The top left K by K triangle of the array A is not referenced. The
following program segment will transfer an upper triangular band matrix from conventional full matrix
storage to band storage:

DO 20, J = 1, N
M = K + 1 - J
DO 10, I = MAX(1, J - K), J

A(M + I, J) = matrix(I, J)
10 CONTINUE
20 CONTINUE

DO 20, J = 1, N
M = 1 - J
DO 10, I = J, MIN(N, J + K)

A(M + I, J) = matrix(I, J)
10 CONTINUE
20 CONTINUE

On entry with UPLO = ’L’ or ’l’, the leading (K + 1) by N part of the array A must contain the lower
triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of
the matrix in row 1 of the array, the first subdiagonal starting at position 1 in row 2, and so on. The bottom
right K by K triangle of the array A is not referenced. The following program segment will transfer a lower
triangular band matrix from conventional full matrix storage to band storage:

When DIAG = ’U’ or ’u’ the elements of the array A corresponding to the diagonal elements of the matrix
are not referenced, but are assumed to be unity; unchanged on exit.

630 Technical Reference, Volume 2: Base Operating System and Extensions

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program; LDA must be at
least (K + 1); unchanged on exit.

X A vector of dimension at least (1 + (N-1) * abs(INCX)); on entry, the incremented array X must contain the
N element vector x; on exit, X is overwritten with the transformed vector x.

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.

STPMV, DTPMV, CTPMV, or ZTPMV Subroutine

Purpose
Performs matrix-vector operations on a packed triangular matrix.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE STPMV(UPLO, TRANS, DIAG,
N, AP, X, INCX)
INTEGER INCX, N
CHARACTER*1 DIAG, TRANS, UPLO
REAL AP(*), X(*)

SUBROUTINE DTPMV(UPLO, TRANS, DIAG,
N, AP, X, INCX)
INTEGER INCX,N
CHARACTER*1 DIAG,TRANS,UPLO
DOUBLE PRECISION AP(*), X(*)

SUBROUTINE CTPMV(UPLO, TRANS, DIAG,
N, AP, X, INCX)
INTEGER INCX,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX AP(*), X(*)

SUBROUTINE ZTPMV(UPLO, TRANS, DIAG,
N, AP, X, INCX)
INTEGER INCX,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX*16 AP(*), X(*)

Description
The STPMV, DTPMV, CTPMV, or ZTPMV subroutine performs one of the matrix-vector operations:

x := A * x

OR

x := A’ * x

where x is an N element vector and A is an N by N unit, or non-unit, upper or lower triangular matrix,
supplied in packed form.

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 631

Parameters

UPLO On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows:

UPLO = ’U’ or ’u’
A is an upper triangular matrix.

UPLO = ’L’ or ’l’
A is a lower triangular matrix.

Unchanged on exit.
TRANS On entry, TRANS specifies the operation to be performed as follows:

TRANS = ’N’ or ’n’
x := A * x

TRANS = ’T’ or ’t’
x := A’ * x

TRANS = ’C’ or ’c’
x := A’ * x

Unchanged on exit.
DIAG On entry, DIAG specifies whether or not A is unit triangular as follows:

DIAG = ’U’ or ’u’
A is assumed to be unit triangular.

DIAG = ’N’ or ’n’
A is not assumed to be unit triangular.

Unchanged on exit.
N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on exit.
AP A vector of dimension at least ((N * (N+1))/2). On entry with UPLO = ’U’ or ’u’, the array AP must

contain the upper triangular matrix packed sequentially, column by column, so that AP(1) contains A(1,1),
AP(2) and AP(3) contain A(1,2) and A(2,2) respectively, and so on. On entry with UPLO = ’L’ or ’l’, the
array AP must contain the lower triangular matrix packed sequentially, column by column, so that AP(1)
contains A(1,1), AP(2) and AP(3) contain A(2,1) and A(3,1) respectively, and so on. When DIAG = ’U’ or
’u’, the diagonal elements of A are not referenced, but are assumed to be unity; unchanged on exit.

X A vector of dimension at least (1 + (N-1) * abs(INCX)); on entry, the incremented array X must contain
the N element vector x; on exit, X is overwritten with the transformed vector x.

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.

STRSV, DTRSV, CTRSV, or ZTRSV Subroutine

Purpose
Solves system of equations.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE STRSV(UPLO, TRANS, DIAG,
N, A, LDA, X, INCX)
INTEGER INCX, LDA, N
CHARACTER*1 DIAG, TRANS, UPLO
REAL A(LDA,*), X(*)

632 Technical Reference, Volume 2: Base Operating System and Extensions

SUBROUTINE DTRSV(UPLO, TRANS, DIAG,
N, A, LDA, X, INCX)
INTEGER INCX,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
DOUBLE PRECISION A(LDA,*), X(*)

SUBROUTINE CTRSV(UPLO, TRANS, DIAG,
N, A, LDA, X, INCX)
INTEGER INCX,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX A(LDA,*), X(*)

SUBROUTINE ZTRSV(UPLO, TRANS, DIAG,
N, A, LDA, X, INCX)
INTEGER INCX,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX*16 A(LDA,*), X(*)

Description
The STRSV, DTRSV, CTRSV, or ZTRSV subroutine solves one of the systems of equations:

A * x = b

OR

A’ * x = b

where b and x are N element vectors and A is an N by N unit, or non-unit, upper or lower triangular
matrix.

Parameters

UPLO On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows:

UPLO = ’U’ or ’u’
A is an upper triangular matrix.

UPLO = ’L’ or ’l’
A is a lower triangular matrix.

Unchanged on exit.
TRANS On entry, TRANS specifies the equations to be solved as follows:

TRANS = ’N’ or ’n’
A * x = b

TRANS = ’T’ or ’t’
A’ * x = b

TRANS = ’C’ or ’c’
A’ * x = b

Unchanged on exit.
DIAG On entry, DIAG specifies whether or not A is unit triangular as follows:

DIAG = ’U’ or ’u’
A is assumed to be unit triangular.

DIAG = ’N’ or ’n’
A is not assumed to be unit triangular.

Unchanged on exit.
N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on exit.

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 633

A An array of dimension (LDA, N); on entry with UPLO = ’U’ or ’u’, the leading N by N upper triangular part
of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not
referenced. On entry with UPLO = ’L’ or ’l’, the leading N by N lower triangular part of the array A must
contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. When DIAG
= ’U’ or ’u’, the diagonal elements of A are not referenced, but are assumed to be unity; unchanged on
exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program; LDA must be at
least max(1, N); unchanged on exit.

X A vector of dimension at least (1 + (N-1) * abs(INCX)); on entry, the incremented array X must contain the
N element right-hand side vector b; on exit, X is overwritten with the solution vector x.

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.

Implementation Specifics
No test for singularity or near-singularity is included in this routine. Such tests must be performed before
calling this routine.

STBSV, DTBSV, CTBSV, or ZTBSV Subroutine

Purpose
Solves system of equations.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE STBSV(UPLO, TRANS, DIAG,
N, K, A, LDA, X, INCX)
INTEGER INCX, K, LDA, N
CHARACTER*1 DIAG, TRANS, UPLO
REAL A(LDA,*), X(*)

SUBROUTINE DTBSV(UPLO, TRANS, DIAG,
N, K, A, LDA, X, INCX)
INTEGER INCX,K,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
DOUBLE PRECISION A(LDA,*), X(*)

SUBROUTINE CTBSV(UPLO, TRANS, DIAG,
N, K, A, LDA, X, INCX)
INTEGER INCX,K,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX A(LDA,*), X(*)

SUBROUTINE ZTBSV(UPLO, TRANS, DIAG,
N, K, A, LDA, X, INCX)
INTEGER INCX,K,LDA,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX*16 A(LDA,*), X(*)

Description
The STBSV, DTBSV, CTBSV, or ZTBSV subroutine solves one of the systems of equations:

A * x = b

OR

A’ * x = b

634 Technical Reference, Volume 2: Base Operating System and Extensions

where b and x are N element vectors and A is an N by N unit, or non-unit, upper or lower triangular band
matrix, with (K + 1) diagonals.

Parameters

UPLO On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows:

UPLO = ’U’ or ’u’
A is an upper triangular matrix.

UPLO = ’L’ or ’l’
A is a lower triangular matrix.

Unchanged on exit.
TRANS On entry, TRANS specifies the equations to be solved as follows:

TRANS = ’N’ or ’n’
A * x = b

TRANS = ’T’ or ’t’
A’ * x = b

TRANS = ’C’ or ’c’
A’ * x = b

Unchanged on exit.
DIAG On entry, DIAG specifies whether A is unit triangular as follows:

DIAG = ’U’ or ’u’
A is assumed to be unit triangular.

DIAG = ’N’ or ’n’
A is not assumed to be unit triangular.

Unchanged on exit.
N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on exit.
K On entry with UPLO = ’U’ or ’u’, K specifies the number of superdiagonals of the matrix A. On entry with

UPLO = ’L’ or ’l’, K specifies the number of subdiagonals of the matrix A; K must satisfy 0 .le. K;
unchanged on exit.

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 635

A An array of dimension (LDA, N). On entry with UPLO = ’U’ or ’u’, the leading (K + 1) by N part of the
array A must contain the upper triangular band part of the matrix of coefficients, supplied column by
column, with the leading diagonal of the matrix in row (K + 1) of the array, the first superdiagonal starting
at position 2 in row K, and so on. The top left K by K triangle of the array A is not referenced.

The following program segment will transfer an upper triangular band matrix from conventional full matrix
storage to band storage:

DO 20, J = 1, N
M = K + 1 - J
DO 10, I = MAX(1, J - K), J

A(M + I, J) = matrix(I, J)
10 CONTINUE
20 CONTINUE

On entry with UPLO = ’L’ or ’l’, the leading (K + 1) by N part of the array A must contain the lower
triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of
the matrix in row 1 of the array, the first subdiagonal starting at position 1 in row 2, and so on. The bottom
right K by K triangle of the array A is not referenced.

The following program segment will transfer a lower triangular band matrix from conventional full matrix
storage to band storage:

DO 20, J = 1, N
M = 1 - J
DO 10, I = J, MIN(N, J + K)

A(M + I, J) = matrix(I, J)
10 CONTINUE
20 CONTINUE

When DIAG = ’U’ or ’u’ the elements of the array A corresponding to the diagonal elements of the matrix
are not referenced, but are assumed to be unity. Unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program; LDA must be at
least (K + 1); unchanged on exit.

X A vector of dimension at least (1 + (N-1) * abs(INCX)); on entry, the incremented array X must contain the
N element right-hand side vector b; on exit, X is overwritten with the solution vector x.

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.

Implementation Specifics
No test for singularity or near-singularity is included in this routine. Such tests must be performed before
calling this routine.

STPSV, DTPSV, CTPSV, or ZTPSV Subroutine

Purpose
Solves systems of equations.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE STPSV(UPLO, TRANS, DIAG,
N, AP, X, INCX)
INTEGER INCX, N
CHARACTER*1 DIAG, TRANS, UPLO
REAL AP(*), X(*)

636 Technical Reference, Volume 2: Base Operating System and Extensions

SUBROUTINE DTPSV(UPLO, TRANS, DIAG,
N, AP, X, INCX)
INTEGER INCX,N
CHARACTER*1 DIAG,TRANS,UPLO
DOUBLE PRECISION AP(*), X(*)

SUBROUTINE CTPSV(UPLO, TRANS, DIAG,
N, AP, X, INCX)
INTEGER INCX,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX AP(*), X(*)

SUBROUTINE ZTPSV(UPLO, TRANS, DIAG,
N, AP, X, INCX)
INTEGER INCX,N
CHARACTER*1 DIAG,TRANS,UPLO
COMPLEX*16 AP(*), X(*)

Description
The STPSV, DTPSV, DTPSV, or ZTPSV subroutine solves one of the systems of equations:

A * x = b

OR

A’ * x = b

where b and x are N element vectors and A is an N by N unit, or non-unit, upper or lower triangular
matrix, supplied in packed form.

Parameters

UPLO On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows:

UPLO = ’U’ or ’u’
A is an upper triangular matrix.

UPLO = ’L’ or ’l’
A is a lower triangular matrix.

Unchanged on exit.
TRANS On entry, TRANS specifies the equations to be solved as follows:

TRANS = ’N’ or ’n’
A * x = b

TRANS = ’T’ or ’t’
A’ * x = b

TRANS = ’C’ or ’c’
A’ * x = b

Unchanged on exit.
DIAG On entry, DIAG specifies whether or not A is unit triangular as follows:

DIAG = ’U’ or ’u’
A is assumed to be unit triangular.

DIAG = ’N’ or ’n’
A is not assumed to be unit triangular.

Unchanged on exit.
N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on exit.

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 637

AP A vector of dimension at least ((N * (N+1))/2); on entry with UPLO = ’U’ or ’u’, the array AP must contain
the upper triangular matrix packed sequentially, column by column, so that AP(1) contains A(1,1), AP(2)
and AP(3) contain A(1,2) and A(2,2) respectively, and so on. Before entry with UPLO = ’L’ or ’l’, the array
AP must contain the lower triangular matrix packed sequentially, column by column, so that AP(1) contains
A(1,1), AP(2) and AP(3) contain A(2,1) and A(3,1) respectively, and so on. When DIAG = ’U’ or ’u’, the
diagonal elements of A are not referenced, but are assumed to be unity; unchanged on exit.

X A vector of dimension at least (1 + (N-1) * abs(INCX)); on entry, the incremented array X must contain the
N element right-hand side vector b; on exit, X is overwritten with the solution vector x.

INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.

Implementation Specifics
No test for singularity or near-singularity is included in this routine. Such tests must be performed before
calling this routine.

SGER or DGER Subroutine

Purpose
Performs the rank 1 operation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SGER(M, N, ALPHA, X,
INCX, Y, INCY, A, LDA)
REAL ALPHA
INTEGER INCX, INCY, LDA, M, N
REAL A(LDA,*), X(*), Y(*)

SUBROUTINE DGER(M, N, ALPHA, X,
INCX, Y, INCY, A, LDA)
DOUBLE PRECISION ALPHA
INTEGER INCX,INCY,LDA,M,N
DOUBLE PRECISION A(LDA,*), X(*), Y(*)

Description
The SGER or DGER subroutine performs the rank 1 operation:

A := alpha * x * y’ + A

where alpha is a scalar, x is an M element vector, y is an N element vector and A is an M by N matrix.

Parameters

M On entry, M specifies the number of rows of the matrix A; M must be at least 0; unchanged on exit.
N On entry, N specifies the number of columns of the matrix A; N must be at least 0; unchanged on exit.
ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
X A vector of dimension at least (1 + (M-1) * abs(INCX)); on entry, the incremented array X must contain the

M element vector x; unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.
Y A vector of dimension at least (1 + (N-1) * abs(INCY)); on entry, the incremented array Y must contain the

N element vector y; unchanged on exit.
INCY On entry, INCY specifies the increment for the elements of Y; INCY must not be 0; unchanged on exit.

638 Technical Reference, Volume 2: Base Operating System and Extensions

A An array of dimension (LDA, N); on entry, the leading M by N part of the array A must contain the matrix
of coefficients; on exit, A is overwritten by the updated matrix.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program; LDA must be at
least max(1, M); unchanged on exit.

CGERU or ZGERU Subroutine

Purpose
Performs the rank 1 operation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CGERU(M, N, ALPHA, X, INCX,
Y, INCY, A, LDA)
COMPLEX ALPHA
INTEGER INCX, INCY, LDA, M, N
COMPLEX A(LDA,*), X(*), Y(*)

SUBROUTINE ZGERU
COMPLEX*16 ALPHA
INTEGER INCX,INCY,LDA,M,N
COMPLEX*16 A(LDA,*), X(*), Y(*)

Description
The CGERU or ZGERU subroutine performs the rank 1 operation:

A := alpha * x * y’ + A

where alpha is a scalar, x is an M element vector, y is an N element vector and A is an M by N matrix.

Parameters

M On entry, M specifies the number of rows of the matrix A; M must be at least 0; unchanged on exit.
N On entry, N specifies the number of columns of the matrix A; N must be at least 0; unchanged on exit.
ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
X A vector of dimension at least (1 + (M-1) * abs(INCX)); on entry, the incremented array X must contain the

M element vector x; unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.
Y A vector of dimension at least (1 + (N-1) * abs(INCY)); on entry, the incremented array Y must contain the

N element vector y; unchanged on exit.
INCY On entry, INCY specifies the increment for the elements of Y; INCY must not be 0; unchanged on exit.
A An array of dimension (LDA, N); on entry, the leading M by N part of the array A must contain the matrix

of coefficients; on exit, A is overwritten by the updated matrix.
LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program; LDA must be at

least max(1, M); unchanged on exit.

CGERC or ZGERC Subroutine

Purpose
Performs the rank 1 operation.

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 639

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CGERC(M, N, ALPHA, X, INCX,
Y, INCY, A, LDA)
COMPLEX ALPHA
INTEGER INCX, INCY, LDA, M, N
COMPLEX A(LDA,*), X(*), Y(*)

SUBROUTINE ZGERC
COMPLEX*16 ALPHA
INTEGER INCX,INCY,LDA,M,N
COMPLEX*16 A(LDA,*), X(*), Y(*)

Description
The CGERC or ZGERC subroutine performs the rank 1 operation:

A := alpha * x * conjg(y’) + A

where alpha is a scalar, x is an M element vector, y is an N element vector and A is an M by N matrix.

Parameters

M On entry, M specifies the number of rows of the matrix A; M must be at least 0; unchanged on exit.
N On entry, N specifies the number of columns of the matrix A; N must be at least 0; unchanged on exit.
ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
X A vector of dimension at least (1 + (M-1) * abs(INCX)); on entry, the incremented array X must contain the

M element vector x; unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.
Y A vector of dimension at least (1 + (N-1) * abs(INCY)); on entry, the incremented array Y must contain the

N element vector y; unchanged on exit.
INCY On entry, INCY specifies the increment for the elements of Y; INCY must not be 0; unchanged on exit.
A An array of dimension (LDA, N); on entry, the leading M by N part of the array A must contain the matrix

of coefficients; on exit, A is overwritten by the updated matrix.
LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program; LDA must be at

least max(1, M); unchanged on exit.

CHER or ZHER Subroutine

Purpose
Performs the Hermitian rank 1 operation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CHER(UPLO, N, ALPHA,
X, INCX, A, LDA)
REAL ALPHA
INTEGER INCX, LDA, N
CHARACTER*1 UPLO
COMPLEX A(LDA,*), X(*)

640 Technical Reference, Volume 2: Base Operating System and Extensions

SUBROUTINE ZHER(UPLO, N, ALPHA,
X, INCX, A, LDA)
DOUBLE PRECISION ALPHA
INTEGER INCX,LDA,N
CHARACTER*1 UPLO
COMPLEX*16 A(LDA,*), X(*)

Description
The CHER or ZHER subroutine performs the Hermitian rank 1 operation:

A := alpha * x * conjg(x’) + A

where alpha is a real scalar, x is an N element vector and A is an N by N Hermitian matrix.

Parameters

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as
follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of A is to be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of A is to be referenced.

Unchanged on exit.
N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on exit.
ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
X A vector of dimension at least (1 + (N-1) * abs(INCX)); on entry, the incremented array X must contain the

N element vector x; unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.
A An array of dimension (LDA, N); on entry with UPLO = ’U’ or ’u’, the leading N by N upper triangular part

of the array A must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular
part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper
triangular part of the updated matrix. On entry with UPLO = ’L’ or ’l’, the leading N by N lower triangular
part of the array A must contain the lower triangular part of the Hermitian matrix and the strictly upper
triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the
lower triangular part of the updated matrix. The imaginary parts of the diagonal elements need not be set,
they are assumed to be 0, and on exit they are set to 0.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program; LDA must be at
least max(1, N); unchanged on exit.

CHPR or ZHPR Subroutine

Purpose
Performs the Hermitian rank 1 operation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CHPR(UPLO, N, ALPHA,
X, INCX, AP)
REAL ALPHA

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 641

INTEGER INCX, N
CHARACTER*1 UPLO
COMPLEX AP(*), X(*)

SUBROUTINE ZHPR(UPLO, N, ALPHA,
X, INCX, AP)
DOUBLE PRECISION ALPHA
INTEGER INCX,N
CHARACTER*1 UPLO
COMPLEX*16 AP(*), X(*)

Description
The CHPR or ZHPR subroutine performs the Hermitian rank 1 operation:

A := alpha * x * conjg(x’) + A

where alpha is a real scalar, x is an N element vector and A is an N by N Hermitian matrix, supplied in
packed form.

Parameters

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the
packed array AP as follows:

UPLO = ’U’ or ’u’
The upper triangular part of A is supplied in AP.

UPLO = ’L’ or ’l’
The lower triangular part of A is supplied in AP.

Unchanged on exit.
N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on exit.
ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
X A vector of dimension at least (1 + (N-1) * abs(INCX)); on entry, the incremented array X must contain the

N element vector x; unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.
AP A vector of dimension at least ((N * (N+1))/2); on entry with UPLO = ’U’ or ’u’, the array AP must contain

the upper triangular part of the Hermitian matrix packed sequentially, column by column, so that AP(1)
contains A(1,1), AP(2) and AP(3) contain A(1,2) and A(2,2) respectively, and so on. On exit, the array AP is
overwritten by the upper triangular part of the updated matrix. On entry with UPLO = ’L’ or ’l’, the array AP
must contain the lower triangular part of the Hermitian matrix packed sequentially, column by column, so
that AP(1) contains A(1,1), AP(2) and AP(3) contain A(2,1) and A(3,1) respectively, and so on. On exit, the
array AP is overwritten by the lower triangular part of the updated matrix. The imaginary parts of the
diagonal elements need not be set, they are assumed to be 0, and on exit they are set to 0.

CHER2 or ZHER2 Subroutine

Purpose
Performs the Hermitian rank 2 operation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CHER2(UPLO, N, ALPHA,
X, INCX, Y, INCY, A, LDA)

642 Technical Reference, Volume 2: Base Operating System and Extensions

COMPLEX ALPHA
INTEGER INCX, INCY, LDA, N
CHARACTER*1 UPLO
COMPLEX A(LDA,*), X(*), Y(*)

SUBROUTINE ZHER2(UPLO, N, ALPHA,
X, INCX, Y, INCY, A, LDA)
COMPLEX*16 ALPHA
INTEGER INCX,INCY,LDA,N
CHARACTER*1 UPLO
COMPLEX*16 A(LDA,*), X(*), Y(*)

Description
The CHER2 or ZHER2 subroutine performs the Hermitian rank 2 operation:

A := alpha * x * conjg(y’) + conjg(alpha) * y * conjy(x’) + A

where alpha is a scalar, x and y are N element vectors and A is an N by N Hermitian matrix.

Parameters

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as
follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of A is to be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of A is to be referenced.

Unchanged on exit.
N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on exit.
ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
X A vector of dimension at least (1 + (N-1) * abs(INCX)); on entry, the incremented vector X must contain

the N element vector x; unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.
Y A vector of dimension at least (1 + (N-1) * abs(INCY)); on entry, the incremented vector Y must contain

the N element vector y; unchanged on exit.
INCY On entry, INCY specifies the increment for the elements of Y; INCY must not be 0; unchanged on exit.
A An array of dimension (LDA, N); on entry with UPLO = ’U’ or ’u’, the leading N by N upper triangular part

of the array A must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular
part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper
triangular part of the updated matrix. On entry with UPLO = ’L’ or ’l’, the leading N by N lower triangular
part of the array A must contain the lower triangular part of the Hermitian matrix and the strictly upper
triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the
lower triangular part of the updated matrix. The imaginary parts of the diagonal elements need not be set;
they are assumed to be 0, and on exit they are set to 0.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program; LDA must be at
least max(1, N); unchanged on exit.

CHPR2 or ZHPR2 Subroutine

Purpose
Performs the Hermitian rank 2 operation.

Library
BLAS Library (libblas.a)

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 643

FORTRAN Syntax
SUBROUTINE CHPR2 (UPLO, N, ALPHA,
X, INCX, Y, INCY, AP)
COMPLEX ALPHA
INTEGER INCX, INCY, N
CHARACTER*1 UPLO
COMPLEX AP(*), X(*), Y(*)

SUBROUTINE
ZHPR2
COMPLEX*16 ALPHA
INTEGER INCX,INCY,N
CHARACTER*1 UPLO
COMPLEX*16 AP(*), X(*), Y(*)

Description
The CHPR2 or ZHPR2 subroutine performs the Hermitian rank 2 operation:

A := alpha * x * conjg(y’) + conjg(alpha) * y * conjg(x’) + A

where alpha is a scalar, x and y are N element vectors and A is an N by N Hermitian matrix, supplied in
packed form.

Parameters

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the
packed array AP as follows:

UPLO = ’U’ or ’u’
The upper triangular part of A is supplied in AP.

UPLO = ’L’ or ’l’
The lower triangular part of A is supplied in AP.

Unchanged on exit.
N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on exit.
ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
X A vector of dimension at least (1 + (N-1) * abs(INCX)); on entry, the incremented array X must contain the

N element vector x; unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.
Y A vector of dimension at least (1 + (N-1) * abs(INCY)); on entry, the incremented array Y must contain

the N element vector y; unchanged on exit.
INCY On entry, INCY specifies the increment for the elements of Y; INCY must not be 0; unchanged on exit.
AP A vector of dimension at least ((N * (N+1))/2); on entry with UPLO = ’U’ or ’u’, the array AP must contain

the upper triangular part of the Hermitian matrix packed sequentially, column by column, so that AP(1)
contains A(1,1), AP(2) and AP(3) contain A(1,2) and A(2,2) respectively, and so on. On exit, the array AP
is overwritten by the upper triangular part of the updated matrix. On entry with UPLO = ’L’ or ’l’, the array
AP must contain the lower triangular part of the Hermitian matrix packed sequentially, column by column,
so that AP(1) contains A(1,1), AP(2) and AP(3) contain A(2,1) and A(3,1) respectively, and so on. On exit,
the array AP is overwritten by the lower triangular part of the updated matrix. The imaginary parts of the
diagonal elements need not be set, they are assumed to be 0, and on exit they are set to 0.

SSYR or DSYR Subroutine

Purpose
Performs the symmetric rank 1 operation.

644 Technical Reference, Volume 2: Base Operating System and Extensions

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSYR(UPLO, N, ALPHA,
X, INCX, A, LDA)
REAL ALPHA
INTEGER INCX, LDA, N
CHARACTER*1 UPLO
REAL A(LDA,*), X(*)

SUBROUTINE DSYR(UPLO, N, ALPHA,
X, INCX, A, LDA)
DOUBLE PRECISION ALPHA
INTEGER INCX,LDA,N
CHARACTER*1 UPLO
DOUBLE PRECISION A(LDA,*), X(*)

Description
The SSYR or DSYR subroutine performs the symmetric rank 1 operation:

A := alpha * x * x’ + A

where alpha is a real scalar, x is an N element vector and A is an N by N symmetric matrix.

Parameters

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as
follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of A is to be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of A is to be referenced.

Unchanged on exit.
N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on exit.
ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
X A vector of dimension at least (1 + (N-1) * abs(INCX)); on entry, the incremented array X must contain the

N element vector x; unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.
A An array of dimension (LDA, N); on entry with UPLO = ’U’ or ’u’, the leading N by N upper triangular part

of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower
triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the
upper triangular part of the updated matrix. On entry with UPLO = ’L’ or ’l’, the leading N by N lower
triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly
upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten
by the lower triangular part of the updated matrix.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program; LDA must be at
least max(1, N); unchanged on exit.

SSPR or DSPR Subroutine

Purpose
Performs the symmetric rank 1 operation.

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 645

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSPR(UPLO, N, ALPHA,
X, INCX, AP)
REAL ALPHA
INTEGER INCX, N
CHARACTER*1 UPLO
REAL AP(*), X(*)

SUBROUTINE DSPR(UPLO, N, ALPHA,
X, INCX, AP)
DOUBLE PRECISION ALPHA
INTEGER INCX,N
CHARACTER*1 UPLO
DOUBLE PRECISION AP(*), X(*)

Description
The SSPR or DSPR subroutine performs the symmetric rank 1 operation:

A := alpha * x * x’ + A

where alpha is a real scalar, x is an N element vector and A is an N by N symmetric matrix, supplied in
packed form.

Parameters

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the
packed array AP as follows:

UPLO = ’U’ or ’u’
The upper triangular part of A is supplied in AP.

UPLO = ’L’ or ’l’
The lower triangular part of A is supplied in AP.

Unchanged on exit.
N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on exit.
ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
X A vector of dimension at least (1 + (N-1) * abs(INCX)); on entry, the incremented array X must contain the

N element vector x; unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.
AP A vector of dimension at least ((N * (N+1))/2); on entry with UPLO = ’U’ or ’u’, the array AP must contain

the upper triangular part of the symmetric matrix packed sequentially, column by column, so that AP(1)
contains A(1,1), AP(2) and AP(3) contain A(1,2) and A(2,2) respectively, and so on. On exit, the array AP
is overwritten by the upper triangular part of the updated matrix. On entry with UPLO = ’L’ or ’l’, the array
AP must contain the lower triangular part of the symmetric matrix packed sequentially, column by column,
so that AP(1) contains A(1,1), AP(2) and AP(3) contain A(2,1) and A(3,1) respectively, and so on. On exit,
the array AP is overwritten by the lower triangular part of the updated matrix.

SSYR2 or DSYR2 Subroutine

Purpose
Performs the symmetric rank 2 operation.

646 Technical Reference, Volume 2: Base Operating System and Extensions

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSYR2(UPLO, N, ALPHA, X,
INCX, Y, INCY, A, LDA)
REAL ALPHA
INTEGER INCX, INCY, LDA, N
CHARACTER*1 UPLO
REAL A(LDA,*), X(*), Y(*)

SUBROUTINE DSYR2(UPLO, N, ALPHA, X,
INCX, Y, INCY, A, LDA)
DOUBLE PRECISION ALPHA
INTEGER INCX,INCY,LDA,N
CHARACTER*1 UPLO
DOUBLE PRECISION A(LDA,*), X(*), Y(*)

Description
The SSYR2 or DSYR2 subroutine performs the symmetric rank 2 operation:

A := alpha * x * y’ + alpha * y * x’ + A

where alpha is a scalar, x and y are N element vectors and A is an N by N symmetric matrix.

Parameters

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as
follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of A is to be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of A is to be referenced.

Unchanged on exit.
N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on exit.
ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
X A vector of dimension at least (1 + (N-1) * abs(INCX)); on entry, the incremented array X must contain the

N element vector x; unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.
Y A vector of dimension at least (1 + (N-1) * abs(INCY)); on entry, the incremented array Y must contain the

N element vector y; unchanged on exit.
INCY On entry, INCY specifies the increment for the elements of Y; INCY must not be 0; unchanged on exit.
A An array of dimension (LDA, N); on entry with UPLO = ’U’ or ’u’, the leading N by N upper triangular part

of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower
triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the
upper triangular part of the updated matrix. On entry with UPLO = ’L’ or ’l’, the leading N by N lower
triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly
upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten
by the lower triangular part of the updated matrix.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program; LDA must be at
least max(1, N); unchanged on exit.

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 647

SSPR2 or DSPR2 Subroutine

Purpose
Performs the symmetric rank 2 operation.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSPR2(UPLO, N, ALPHA, X,
INCX, Y, INCY, AP)
REAL ALPHA
INTEGER INCX, INCY, N
CHARACTER*1 UPLO
REAL AP(*), X(*), Y(*)

SUBROUTINE DSPR2(UPLO, N, ALPHA, X,
INCX, Y, INCY, AP)
DOUBLE PRECISION ALPHA
INTEGER INCX,INCY,N
CHARACTER*1 UPLO
DOUBLE PRECISION AP(*), X(*), Y(*)

Description
The SSPR2 or DSPR2 subroutine performs the symmetric rank 2 operation:

A := alpha * x * y’ + alpha * y * x’ + A

where alpha is a scalar, x and y are N element vectors and A is an N by N symmetric matrix, supplied in
packed form.

Parameters

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the
packed array AP as follows:

UPLO = ’U’ or ’u’
The upper triangular part of A is supplied in AP.

UPLO = ’L’ or ’l’
The lower triangular part of A is supplied in AP.

Unchanged on exit.
N On entry, N specifies the order of the matrix A; N must be at least 0; unchanged on exit.
ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
X A vector of dimension at least (1 + (N-1) * abs(INCX)); on entry, the incremented array X must contain the

N element vector x; unchanged on exit.
INCX On entry, INCX specifies the increment for the elements of X; INCX must not be 0; unchanged on exit.
Y A vector of dimension at least (1 + (N-1) * abs(INCY)); on entry, the incremented array Y must contain the

N element vector y; unchanged on exit.
INCY On entry, INCY specifies the increment for the elements of Y; INCY must not be 0; unchanged on exit.

648 Technical Reference, Volume 2: Base Operating System and Extensions

AP A vector of dimension at least ((N * (N+1))/2); on entry with UPLO = ’U’ or ’u’, the array AP must contain
the upper triangular part of the symmetric matrix packed sequentially, column by column, so that AP(1)
contains A(1,1), AP(2) and AP(3) contain A(1,2) and A(2,2) respectively, and so on. On exit, the array AP
is overwritten by the upper triangular part of the updated matrix. On entry with UPLO = ’L’ or ’l’, the array
AP must contain the lower triangular part of the symmetric matrix packed sequentially, column by column,
so that AP(1) contains A(1,1), AP(2) and AP(3) contain A(2,1) and A(3,1) respectively, and so on. On exit,
the array AP is overwritten by the lower triangular part of the updated matrix.

SGEMM, DGEMM, CGEMM, or ZGEMM Subroutine

Purpose
Performs matrix-matrix operations on general matrices.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SGEMM(TRANSA, TRANSB, M, N, K,
ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 TRANSA, TRANSB
INTEGER M, N, K, LDA, LDB, LDC
REAL ALPHA, BETA
REAL A(LDA,*), B(LDB,*), C(LDC,*)

SUBROUTINE DGEMM(TRANSA, TRANSB, M, N, K,
ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 TRANSA,TRANSB
INTEGER M,N,K,LDA,LDB,LDC
DOUBLE PRECISION ALPHA,BETA
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*)

SUBROUTINE CGEMM(TRANSA, TRANSB, M, N, K,
ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 TRANSA,TRANSB
INTEGER M,N,K,LDA,LDB,LDC
COMPLEX ALPHA,BETA
COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)

SUBROUTINE ZGEMM(TRANSA, TRANSB, M, N, K,
ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 TRANSA,TRANSB
INTEGER M,N,K,LDA,LDB,LDC
COMPLEX*16 ALPHA,BETA
COMPLEX*16 A(LDA,*), B(LDB,*), C(LDC,*)

Description
The SGEMM, DGEMM, CGEMM, or ZGEMM subroutine performs one of the matrix-matrix operations:

C := alpha * op(A) * op(B) + beta * C

where op(X) is one of op(X) = X or op(X) = X’,alpha and beta are scalars, and A, B and C are
matrices, with op(A) an M by K matrix, op(B) a K by N matrix and C an M by N matrix.

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 649

Parameters

TRANSA On entry, TRANSA specifies the form of op(A) to be used in the matrix multiplication as follows:

TRANSA = ’N’ or ’n’
op(A) = A

TRANSA = ’T’ or ’t’
op(A) = A’

TRANSA = ’C’ or ’c’
op(A) = A’

Unchanged on exit.
TRANSB On entry, TRANSB specifies the form of op(B) to be used in the matrix multiplication as follows:

TRANSB = ’N’ or ’n’
op(B) = B

TRANSB = ’T’ or ’t’
op(B) = B’

TRANSB = ’C’ or ’c’
op(B) = B’

Unchanged on exit.
M On entry, M specifies the number of rows of the matrix op(A) and of the matrix C; M must be at least 0;

unchanged on exit.
N On entry, N specifies the number of columns of the matrix op(B) and the number of columns of the

matrix C; N must be at least 0; unchanged on exit.
K On entry, K specifies the number of columns of the matrix op(A) and the number of rows of the matrix

op(B); K must be at least 0; unchanged on exit.
ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
A An array of dimension (LDA, KA), where KA is K when TRANSA = ’N’ or ’n’, and is M otherwise; on

entry with TRANSA = ’N’ or ’n’, the leading M by K part of the array A must contain the matrix A,
otherwise the leading K by M part of the array A must contain the matrix A; unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANSA
= ’N’ or ’n’ then LDA must be at least max(1, M), otherwise LDA must be at least max(1, K);
unchanged on exit.

B An array of dimension (LDB, KB) where KB is N when TRANSB = ’N’ or ’n’, and is K otherwise; on
entry with TRANSB = ’N’ or ’n’, the leading K by N part of the array B must contain the matrix B,
otherwise the leading N by K part of the array B must contain the matrix B; unchanged on exit.

LDB On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANSB
= ’N’ or ’n’ then LDB must be at least max(1, K), otherwise LDB must be at least max(1, N);
unchanged on exit.

BETA On entry, BETA specifies the scalar beta. When BETA is supplied as 0 then C need not be set on input;
unchanged on exit.

C An array of dimension (LDC, N); on entry, the leading M by N part of the array C must contain the
matrix C, except when beta is 0, in which case C need not be set on entry; on exit, the array C is
overwritten by the M by N matrix (alpha * op(A) * op(B) + beta * C).

LDC On entry, LDC specifies the first dimension of C as declared in the calling (sub) program; LDC must be at
least max(1, M); unchanged on exit.

SSYMM, DSYMM, CSYMM, or ZSYMM Subroutine

Purpose
Performs matrix-matrix matrix operations on symmetric matrices.

650 Technical Reference, Volume 2: Base Operating System and Extensions

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSYMM(SIDE, UPLO, M, N, ALPHA,
A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 SIDE, UPLO
INTEGER M, N, LDA, LDB, LDC
REAL ALPHA, BETA
REAL A(LDA,*), B(LDB,*), C(LDC,*)

SUBROUTINE DSYMM(SIDE, UPLO, M, N, ALPHA,
A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 SIDE,UPLO
INTEGER M,N,LDA,LDB,LDC
DOUBLE PRECISION ALPHA,BETA
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*)

SUBROUTINE CSYMM(SIDE, UPLO, M, N, ALPHA,
A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 SIDE,UPLO
INTEGER M,N,LDA,LDB,LDC
COMPLEX ALPHA,BETA
COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)

SUBROUTINE ZSYMM(SIDE, UPLO, M, N, ALPHA,
A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 SIDE,UPLO
INTEGER M,N,LDA,LDB,LDC
COMPLEX*16 ALPHA,BETA
COMPLEX*16 A(LDA,*), B(LDB,*), C(LDC,*)

Description
The SSYMM, DSYMM, CSYMM, or ZSYMM subroutine performs one of the matrix-matrix operations:

C := alpha * A * B + beta * C

OR

C := alpha * B * A + beta * C

where alpha and beta are scalars, A is a symmetric matrix and B and C are M by N matrices.

Parameters

SIDE On entry, SIDE specifies whether the symmetric matrix A appears on the left or right in the operation as
follows:

SIDE = ’L’ or ’l’
C := alpha * A * B + beta * C

SIDE = ’R’ or ’r’
C := alpha * B * A + beta * C

Unchanged on exit.

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 651

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the symmetric matrix A is to be
referenced as follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of the symmetric matrix is to be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of the symmetric matrix is to be referenced.

Unchanged on exit.
M On entry, M specifies the number of rows of the matrix C; M must be at least 0; unchanged on exit.
N On entry, N specifies the number of columns of the matrix C; N must be at least 0; unchanged on exit.
ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
A An array of dimension (LDA, KA), where KA is M when SIDE = ’L’ or ’l’ and is N otherwise; on entry with

SIDE = ’L’ or ’l’, the M by M part of the array A must contain the symmetric matrix, such that when UPLO =
’U’ or ’u’, the leading M by M upper triangular part of the array A must contain the upper triangular part of
the symmetric matrix and the strictly lower triangular part of A is not referenced, and when UPLO = ’L’ or
’l’, the leading M by M lower triangular part of the array A must contain the lower triangular part of the
symmetric matrix and the strictly upper triangular part of A is not referenced. On entry with SIDE = ’R’ or
’r’, the N by N part of the array A must contain the symmetric matrix, such that when UPLO = ’U’ or ’u’, the
leading N by N upper triangular part of the array A must contain the upper triangular part of the symmetric
matrix and the strictly lower triangular part of A is not referenced, and when UPLO = ’L’ or ’l’, the leading N
by N lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and
the strictly upper triangular part of A is not referenced; unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = ’L’
or ’l’ then LDA must be at least max(1, M), otherwise LDA must be at least max(1, N); unchanged on
exit.

B An array of dimension (LDB, N); on entry, the leading M by N part of the array B must contain the matrix
B; unchanged on exit.

LDB On entry, LDB specifies the first dimension of B as declared in the calling (sub) program; LDB must be at
least max(1, M); unchanged on exit.

BETA On entry, BETA specifies the scalar beta; when BETA is supplied as 0 then C need not be set on input;
unchanged on exit.

C An array of dimension (LDC, N); on entry, the leading M by N part of the array C must contain the matrix
C, except when beta is 0, in which case C need not be set on entry; on exit, the array C is overwritten by
the M by N updated matrix.

LDC On entry, LDC specifies the first dimension of C as declared in the calling (sub) program; LDC must be at
least max(1, M); unchanged on exit.

CHEMM or ZHEMM Subroutine

Purpose
Performs matrix-matrix operations on Hermitian matrices.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CHEMM(SIDE, UPLO, M, N, ALPHA, A,
LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 SIDE, UPLO
INTEGER M, N, LDA, LDB, LDC
COMPLEX ALPHA, BETA
COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)

652 Technical Reference, Volume 2: Base Operating System and Extensions

SUBROUTINE ZHEMM(SIDE, UPLO, M, N, ALPHA, A,
LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 SIDE,UPLO
INTEGER M,N,LDA,LDB,LDC
COMPLEX*16 ALPHA,BETA
COMPLEX*16 A(LDA,*), B(LDB,*), C(LDC,*)

Purpose
The CHEMM or ZHEMM subroutine performs one of the matrix-matrix operations:
C := alpha * A * B + beta * C

OR
C := alpha * B * A + beta * C

where alpha and beta are scalars, A is an Hermitian matrix, and B and C are M by N matrices.

Parameters

SIDE On entry, SIDE specifies whether the Hermitian matrix A appears on the left or right in the operation as
follows:

SIDE = ’L’ or ’l’
C := alpha * A * B + beta * C

SIDE = ’R’ or ’r’
C := alpha * B * A + beta * C

Unchanged on exit.
UPLO On entry, UPLO specifies whether the upper or lower triangular part of the Hermitian matrix A is to be

referenced as follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of the Hermitian matrix is to be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of the Hermitian matrix is to be referenced.

Unchanged on exit.
M On entry, M specifies the number of rows of the matrix C; M must be at least 0; unchanged on exit.
N On entry, N specifies the number of columns of the matrix C; N must be at least 0; unchanged on exit.
ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
A An array of dimension (LDA, KA), where KA is M when SIDE = ’L’ or ’l’ and is N otherwise; on entry

with SIDE = ’L’ or ’l’, the M by M part of the array A must contain the Hermitian matrix, such that when
UPLO = ’U’ or ’u’, the leading M by M upper triangular part of the array A must contain the upper
triangular part of the Hermitian matrix and the strictly lower triangular part of A is not referenced, and
when UPLO = ’L’ or ’l’, the leading M by M lower triangular part of the array A must contain the lower
triangular part of the Hermitian matrix and the strictly upper triangular part of A is not referenced; on
entry with SIDE = ’R’ or ’r’, the N by N part of the array A must contain the Hermitian matrix, such that
when UPLO = ’U’ or ’u’, the leading N by N upper triangular part of the array A must contain the upper
triangular part of the Hermitian matrix and the strictly lower triangular part of A is not referenced, and
when UPLO = ’L’ or ’l’, the leading N by N lower triangular part of the array A must contain the lower
triangular part of the Hermitian matrix and the strictly upper triangular part of A is not referenced. The
imaginary parts of the diagonal elements need not be set, they are assumed to be 0; unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE =
’L’ or ’l’ then LDA must be at least max(1, M), otherwise LDA must be at least max(1, N); unchanged
on exit.

B An array of dimension (LDB, N); on entry, the leading M by N part of the array B must contain the
matrix B; unchanged on exit.

LDB On entry, LDB specifies the first dimension of B as declared in the calling (sub) program; LDB must be at
least max(1, M); unchanged on exit.

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 653

BETA On entry, BETA specifies the scalar beta. When BETA is supplied as 0 then C need not be set on input;
unchanged on exit.

C An array of dimension (LDC, N); on entry, the leading M by N part of the array C must contain the
matrix C, except when beta is 0, in which case C need not be set on entry; on exit, the array C is
overwritten by the M by N updated matrix.

LDC On entry, LDC specifies the first dimension of C as declared in the calling (sub) program; LDC must be at
least max(1, M); unchanged on exit.

SSYRK, DSYRK, CSYRK, or ZSYRK Subroutine

Purpose
Perform symmetric rank k operations.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSYRK(UPLO, TRANS, N, K, ALPHA,
A, LDA, BETA, C, LDC)
CHARACTER*1 UPLO, TRANS
INTEGER N, K, LDA, LDC
REAL ALPHA, BETA
REAL A(LDA,*), C(LDC,*)

SUBROUTINE DSYRK(UPLO, TRANS, N, K, ALPHA,
A, LDA, BETA, C, LDC)
CHARACTER*1 UPLO,TRANS
INTEGER N,K,LDA,LDC
DOUBLE PRECISION ALPHA,BETA
DOUBLE PRECISION A(LDA,*), C(LDC,*)

SUBROUTINE CSYRK(UPLO, TRANS, N, K, ALPHA,
A, LDA, BETA, C, LDC)
CHARACTER*1 UPLO,TRANS
INTEGER N,K,LDA,LDC
COMPLEX ALPHA,BETA
COMPLEX A(LDA,*), C(LDC,*)

SUBROUTINE ZSYRK(UPLO, TRANS, N, K, ALPHA,
A, LDA, BETA, C, LDC)
CHARACTER*1 UPLO,TRANS
INTEGER N,K,LDA,LDC
COMPLEX*16 ALPHA,BETA
COMPLEX*16 A(LDA,*), C(LDC,*)

Description
The SSYRK, DSYRK, CSYRK or ZSYRK subroutine performs one of the symmetric rank k operations:

C := alpha * A * A’ + beta * C

OR

C := alpha * A’ * A + beta * C

where alpha and beta are scalars, C is an N by N symmetric matrix, and A is an N by K matrix in the first
case and a K by N matrix in the second case.

654 Technical Reference, Volume 2: Base Operating System and Extensions

Parameters

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as
follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of C is to be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of C is to be referenced.

Unchanged on exit.
TRANS On entry, TRANS specifies the operation to be performed as follows:

TRANS = ’N’ or ’n’
C := alpha * A * A’ + beta * C

TRANS = ’T’ or ’t’
C := alpha * A’ * A + beta * C

TRANS = ’C’ or ’c’
C := alpha * A’ * A + beta * C

Unchanged on exit.
N On entry, N specifies the order of the matrix C; N must be at least 0; unchanged on exit.
K On entry with TRANS = ’N’ or ’n’, K specifies the number of columns of the matrix A, and on entry with

TRANS = ’T’ or ’t’ or ’C’ or ’c’, K specifies the number of rows of the matrix A; K must be at least 0;
unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
A An array of dimension (LDA, KA), where KA is K when TRANS = ’N’ or ’n’, and is N otherwise; on entry

with TRANS = ’N’ or ’n’, the leading N by K part of the array A must contain the matrix A, otherwise the
leading K by N part of the array A must contain the matrix A; unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS =
’N’ or ’n’, LDA must be at least max(1, N); otherwise LDA must be at least max(1, K); unchanged on
exit.

BETA On entry, BETA specifies the scalar beta; unchanged on exit.
C An array of dimension (LDC, N); on entry with UPLO = ’U’ or ’u’, the leading N by N upper triangular part

of the array C must contain the upper triangular part of the symmetric matrix and the strictly lower
triangular part of C is not referenced; on exit, the upper triangular part of the array C is overwritten by the
upper triangular part of the updated matrix; on entry with UPLO = ’L’ or ’l’, the leading N by N lower
triangular part of the array C must contain the lower triangular part of the symmetric matrix and the strictly
upper triangular part of C is not referenced; on exit, the lower triangular part of the array C is overwritten
by the lower triangular part of the updated matrix.

LDC On entry, LDC specifies the first dimension of C as declared in the calling (sub) program; LDC must be at
least max(1, N); unchanged on exit.

CHERK or ZHERK Subroutine

Purpose
Performs Hermitian rank k operations.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CHERK(UPLO, TRANS, N, K, ALPHA,
A, LDA, BETA, C, LDC)
CHARACTER*1 UPLO, TRANS

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 655

INTEGER N, K, LDA, LDC
REAL ALPHA, BETA
COMPLEX A(LDA,*), C(LDC,*)

SUBROUTINE ZHERK(UPLO, TRANS, N, K, ALPHA,
A, LDA, BETA, C, LDC)
CHARACTER*1 UPLO,TRANS
INTEGER N,K,LDA,LDC
DOUBLE PRECISION ALPHA,BETA
COMPLEX*16 A(LDA,*), C(LDC,*)

Description
The CHERK or ZHERK subroutine performs one of the Hermitian rank k operations:

C := alpha * A * conjg(A’) + beta * C

OR

C := alpha * conjg(A’) * A + beta * C

where alpha and beta are real scalars, C is an N by N Hermitian matrix, and A is an N by K matrix in the
first case and a K by N matrix in the second case.

Parameters

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as
follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of C is to be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of C is to be referenced.

Unchanged on exit.
TRANS On entry, TRANS specifies the operation to be performed as follows:

TRANS = ’N’ or ’n’
C := alpha * A * conjg(A’) + beta * C

TRANS = ’C’ or ’c’
C := alpha * conjg(A’) * A + beta * C

Unchanged on exit.
N On entry, N specifies the order of the matrix C; N must be at least 0; unchanged on exit.
K On entry with TRANS = ’N’ or ’n’, K specifies the number of columns of the matrix A, and on entry with

TRANS = ’C’ or ’c’, K specifies the number of rows of the matrix A; K must be at least 0; unchanged on
exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
A An array of dimension (LDA, KA), where KA is K when TRANS = ’N’ or ’n’, and is N otherwise; on entry

with TRANS = ’N’ or ’n’, the leading N by K part of the array A must contain the matrix A, otherwise the
leading K by N part of the array A must contain the matrix A; unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS =
’N’ or ’n’, LDA must be at least max(1, N), otherwise LDA must be at least max(1, K); unchanged on
exit.

BETA On entry, BETA specifies the scalar beta; unchanged on exit.

656 Technical Reference, Volume 2: Base Operating System and Extensions

C An array of dimension (LDC, N); on entry with UPLO = ’U’ or ’u’, the leading N by N upper triangular part
of the array C must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular
part of C is not referenced; on exit, the upper triangular part of the array C is overwritten by the upper
triangular part of the updated matrix; on entry with UPLO = ’L’ or ’l’, the leading N by N lower triangular
part of the array C must contain the lower triangular part of the Hermitian matrix and the strictly upper
triangular part of C is not referenced; on exit, the lower triangular part of the array C is overwritten by the
lower triangular part of the updated matrix. The imaginary parts of the diagonal elements need not be set,
they are assumed to be 0, and on exit they are set to 0.

LDC On entry, LDC specifies the first dimension of C as declared in the calling (sub) program; LDC must be at
least max(1, N); unchanged on exit.

SSYR2K, DSYR2K, CSYR2K, or ZSYR2K Subroutine

Purpose
Performs symmetric rank 2k operations.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE SSYR2K(UPLO, TRANS, N, K, ALPHA,
A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 UPLO, TRANS
INTEGER N, K, LDA, LDB, LDC
REAL ALPHA, BETA
REAL A(LDA,*), B(LDB,*), C(LDC,*)

SUBROUTINE DSYR2K(UPLO, TRANS, N, K, ALPHA,
A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 UPLO,TRANS
INTEGER N,K,LDA,LDB,LDC
DOUBLE PRECISION ALPHA,BETA
DOUBLE PRECISION A(LDA,*), B(LDB,*), C(LDC,*)

SUBROUTINE CSYR2K(UPLO, TRANS, N, K, ALPHA,
A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 UPLO,TRANS
INTEGER N,K,LDA,LDB,LDC
COMPLEX ALPHA,BETA
COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)

SUBROUTINE ZSYR2K(UPLO, TRANS, N, K, ALPHA,
A, LDA, B, LDB, BETA, C, LDC)
CHARACTER*1 UPLO,TRANS
INTEGER N,K,LDA,LDB,LDC
COMPLEX*16 ALPHA,BETA
COMPLEX*16 A(LDA,*), B(LDB,*), C(LDC,*)

Description
The SSYR2K, DSYR2K, CSYR2K, or ZSYR2K subroutine performs one of the symmetric rank 2k
operations:

C := alpha * A * B’ + alpha * B * A’ + beta * C

OR

C := alpha * A’ * B + alpha * B’ * A + beta * C

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 657

where alpha and beta are scalars, C is an N by N symmetric matrix, and A and B are N by K matrices in
the first case and K by N matrices in the second case.

Parameters

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as
follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of C is to be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of C is to be referenced.

Unchanged on exit.
TRANS On entry, TRANS specifies the operation to be performed as follows:

TRANS = ’N’ or ’n’
C := alpha * A * B’ + alpha * B * A’ + beta * C

TRANS = ’T’ or ’t’
C := alpha * A’ * B + alpha * B’ * A + beta * C

Unchanged on exit.
N On entry, N specifies the order of the matrix C; N must be at least 0; unchanged on exit.
K On entry with TRANS = ’N’ or ’n’, K specifies the number of columns of the matrices A and B, and on entry

with TRANS = ’T’ or ’t’, K specifies the number of rows of the matrices A and B; K must be at least 0;
unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.
A An array of dimension (LDA, KA), where KA is K when TRANS = ’N’ or ’n’, and is N otherwise; on entry

with TRANS = ’N’ or ’n’, the leading N by K part of the array A must contain the matrix A, otherwise the
leading K by N part of the array A must contain the matrix A; unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS =
’N’ or ’n’, LDA must be at least max(1, N); otherwise LDA must be at least max(1, K); unchanged on
exit.

B An array of dimension (LDB, KB), where KB is K when TRANS = ’N’ or ’n’, and is N otherwise; on entry
with TRANS = ’N’ or ’n’, the leading N by K part of the array B must contain the matrix B, otherwise the
leading K by N part of the array B must contain the matrix B; unchanged on exit.

LDB On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANS =
’N’ or ’n’, LDB must be at least max(1, N); otherwise LDB must be at least max(1, K); unchanged on
exit.

BETA On entry, BETA specifies the scalar beta; unchanged on exit.
C An array of dimension (LDC, N); on entry with UPLO = ’U’ or ’u’, the leading N by N upper triangular part

of the array C must contain the upper triangular part of the symmetric matrix and the strictly lower
triangular part of C is not referenced; on exit, the upper triangular part of the array C is overwritten by the
upper triangular part of the updated matrix. On entry with UPLO = ’L’ or ’l’, the leading N by N lower
triangular part of the array C must contain the lower triangular part of the symmetric matrix and the strictly
upper triangular part of C is not referenced; on exit, the lower triangular part of the array C is overwritten
by the lower triangular part of the updated matrix.

LDC On entry, LDC specifies the first dimension of C as declared in the calling (sub) program; LDC must be at
least max(1, N); unchanged on exit.

CHER2K or ZHER2K Subroutine

Purpose
Performs Hermitian rank 2k operations.

658 Technical Reference, Volume 2: Base Operating System and Extensions

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE CHER2K(UPLO, TRANS, N, K, ALPHA,
A, LDA, B, LDB, C, LDC)
CHARACTER*1 UPLO, TRANS
INTEGER N, K, LDA, LDB, LDC
REAL BETA
COMPLEX ALPHA
COMPLEX A(LDA,*), B(LDB,*), C(LDC,*)

SUBROUTINE ZHER2K(UPLO, TRANS, N, K, ALPHA,
A, LDA, B, LDB, C, LDC)
CHARACTER*1 UPLO,TRANS
INTEGER N,K,LDA,LDB,LDC
DOUBLE PRECISION BETA
COMPLEX*16 ALPHA
COMPLEX*16 A(LDA,*), B(LDB,*), C(LDC,*)

Description
The CHER2K or ZHER2K subroutine performs one of the Hermitian rank 2k operations:

C := alpha * A * conjg(B’) + conjg(alpha) * B * conjg(A’) + beta * C

OR

C := alpha * conjg(A’) * B + conjg(alpha) * conjg(B’) * A + beta * C

where alpha and beta are scalars with beta real, C is an N by N Hermitian matrix, and A and B are N by K
matrices in the first case and K by N matrices in the second case.

Parameters

UPLO On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as
follows:

UPLO = ’U’ or ’u’
Only the upper triangular part of C is to be referenced.

UPLO = ’L’ or ’l’
Only the lower triangular part of C is to be referenced.

Unchanged on exit.
TRANS On entry, TRANS specifies the operation to be performed as follows:

TRANS = ’N’ or ’n’
C := alpha * A * conjg(B’) + conjg(alpha) * B * conjg(A’) + beta * C

TRANS = ’C’ or ’c’
C := alpha * conjg(A’) * B + conjg(alpha) * conjg(B’) * A + beta * C

Unchanged on exit.
N On entry, N specifies the order of the matrix C; N must be at least 0; unchanged on exit.
K On entry with TRANS = ’N’ or ’n’, K specifies the number of columns of the matrices A and B, and on entry

with TRANS = ’C’ or ’c’, K specifies the number of rows of the matrices A and B; K must be at least 0;
unchanged on exit.

ALPHA On entry, ALPHA specifies the scalar alpha; unchanged on exit.

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 659

A An array of dimension (LDA, KA), where KA is K when TRANS = ’N’ or ’n’, and is N otherwise; on entry
with TRANS = ’N’ or ’n’, the leading N by K part of the array A must contain the matrix A, otherwise the
leading K by N part of the array A must contain the matrix A; unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS =
’N’ or ’n’, LDA must be at least max(1, N); otherwise LDA must be at least max(1, K); unchanged on
exit.

B An array of dimension (LDB, KB), where KB is K when TRANS = ’N’ or ’n’, and is N otherwise; on entry
with TRANS = ’N’ or ’n’, the leading N by K part of the array B must contain the matrix B, otherwise the
leading K by N part of the array B must contain the matrix B; unchanged on exit.

LDB On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANS =
’N’ or ’n’, LDB must be at least max(1, N); otherwise LDB must be at least max(1, K); unchanged on
exit.

BETA On entry, BETA specifies the scalar beta; unchanged on exit.
C An array of dimension (LDC, N); on entry with UPLO = ’U’ or ’u’, the leading N by N upper triangular part

of the array C must contain the upper triangular part of the Hermitian matrix and the strictly lower triangular
part of C is not reference; on exit, the upper triangular part of the array C is overwritten by the upper
triangular part of the updated matrix; on entry with UPLO = ’L’ or ’l’, the leading N by N lower triangular
part of the array C must contain the lower triangular part of the Hermitian matrix and the strictly upper
triangular part of C is not referenced; on exit, the lower triangular part of the array C is overwritten by the
lower triangular part of the updated matrix. The imaginary parts of the diagonal elements need not be set,
they are assumed to be 0, and on exit they are set to 0.

LDC On entry, LDC specifies the first dimension of C as declared in the calling (sub) program; LDC must be at
least max(1, N); unchanged on exit.

STRMM, DTRMM, CTRMM, or ZTRMM Subroutine

Purpose
Performs matrix-matrix operations on triangular matrices.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE STRMM(SIDE, UPLO, TRANSA, DIAG,
M, N, ALPHA, A, LDA, B, LDB)
CHARACTER*1 SIDE, UPLO, TRANSA, DIAG
INTEGER M, N, LDA, LDB
REAL ALPHA
REAL A(LDA,*), B(LDB,*)

SUBROUTINE DTRMM(SIDE, UPLO, TRANSA, DIAG,
M, N, ALPHA, A, LDA, B, LDB)
CHARACTER*1
SIDE,UPLO,TRANSA,DIAG
INTEGER M,N,LDA,LDB
DOUBLE PRECISION ALPHA
DOUBLE PRECISION A(LDA,*), B(LDB,*)

SUBROUTINE CTRMM(SIDE, UPLO, TRANSA, DIAG,
M, N, ALPHA, A, LDA, B, LDB)
CHARACTER*1
SIDE,UPLO,TRANSA,DIAG
INTEGER M,N,LDA,LDB
COMPLEX ALPHA
COMPLEX A(LDA,*), B(LDB,*)

SUBROUTINE ZTRMM(SIDE, UPLO, TRANSA, DIAG,
M, N, ALPHA, A, LDA, B, LDB)
CHARACTER*1

660 Technical Reference, Volume 2: Base Operating System and Extensions

SIDE,UPLO,TRANSA,DIAG
INTEGER M,N,LDA,LDB
COMPLEX*16 ALPHA
COMPLEX*16 A(LDA,*), B(LDB,*)

Description
The STRMM, DTRMM, CTRMM, or ZTRMM subroutine performs one of the matrix-matrix operations:

B := alpha * op(A) * B

OR

B := alpha * B * op(A)

where alpha is a scalar, B is an M by N matrix, A is a unit, or non-unit, upper or lower triangular matrix,
and op(A) is either op(A) = A or op(A) = A’.

Parameters

SIDE On entry, SIDE specifies whether op(A) multiplies B from the left or right as follows:

SIDE = ’L’ or ’l’
B := alpha * op(A) * B

SIDE = ’R’ or ’r’
B := alpha * B * op(A)

Unchanged on exit.
UPLO On entry, UPLO specifies whether the matrix A is an upper or lower triangular matrix as follows:

UPLO = ’U’ or ’u’
A is an upper triangular matrix.

UPLO = ’L’ or ’l’
A is a lower triangular matrix.

Unchanged on exit.
TRANSA On entry, TRANSA specifies the form of op(A) to be used in the matrix multiplication as follows:

TRANSA = ’N’ or ’n’
op(A) = A

TRANSA = ’T’ or ’t’
op(A) = A’

TRANSA = ’C’ or ’c’
op(A) = A’

Unchanged on exit.
DIAG On entry, DIAG specifies whether or not A is unit triangular as follows:

DIAG = ’U’ or ’u’
A is assumed to be unit triangular.

DIAG = ’N’ or ’n’
A is not assumed to be unit triangular.

Unchanged on exit.
M On entry, M specifies the number of rows of B; M must be at least 0; unchanged on exit.
N On entry, N specifies the number of columns of B; N must be at least 0; unchanged on exit.
ALPHA On entry, ALPHA specifies the scalar alpha. When alpha is 0 then A is not referenced and B need not be

set before entry; unchanged on exit.

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 661

A An array of dimension (LDA, k), where k is M when SIDE = ’L’ or ’l’ and is N when SIDE = ’R’ or ’r’; on
entry with UPLO = ’U’ or ’u’, the leading k by k upper triangular part of the array A must contain the
upper triangular matrix and the strictly lower triangular part of A is not referenced; on entry with UPLO =
’L’ or ’l’, the leading k by k lower triangular part of the array A must contain the lower triangular matrix
and the strictly upper triangular part of A is not referenced. When DIAG = ’U’ or ’u’, the diagonal
elements of A are not referenced either, but are assumed to be unity; unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE =
’L’ or ’l’ then LDA must be at least max(1, M), when SIDE = ’R’ or ’r’ then LDA must be at least max(1,
N); unchanged on exit.

B An array of dimension (LDB, N); on entry, the leading M by N part of the array B must contain the
matrix B, and on exit is overwritten by the transformed matrix.

LDB On entry, LDB specifies the first dimension of B as declared in the calling (sub) program; LDB must be at
least max(1, M); unchanged on exit.

STRSM, DTRSM, CTRSM, or ZTRSM Subroutine

Purpose
Solves certain matrix equations.

Library
BLAS Library (libblas.a)

FORTRAN Syntax
SUBROUTINE STRSM(SIDE, UPLO, TRANSA, DIAG,
M, N, ALPHA, A, LDA, B, LDB)
CHARACTER*1 SIDE, UPLO, TRANSA, DIAG
INTEGER M, N, LDA, LDB
REAL ALPHA
REAL A(LDA,*), B(LDB,*)

SUBROUTINE DTRSM(SIDE, UPLO, TRANSA, DIAG,
M, N, ALPHA, A, LDA, B, LDB)
CHARACTER*1 SIDE,UPLO,TRANSA,DIAG
INTEGER M,N,LDA,LDB
DOUBLE PRECISION ALPHA
DOUBLE PRECISION A(LDA,*), B(LDB,*)

SUBROUTINE CTRSM(SIDE, UPLO, TRANSA, DIAG,
M, N, ALPHA, A, LDA, B, LDB)
CHARACTER*1 SIDE,UPLO,TRANSA,DIAG
INTEGER M,N,LDA,LDB
COMPLEX ALPHA
COMPLEX A(LDA,*), B(LDB,*)

SUBROUTINE ZTRSM(SIDE, UPLO, TRANSA, DIAG,
M, N, ALPHA, A, LDA, B, LDB)
CHARACTER*1 SIDE,UPLO,TRANSA,DIAG
INTEGER M,N,LDA,LDB
COMPLEX*16 ALPHA
COMPLEX*16 A(LDA,*), B(LDB,*)

Description
The STRSM, DTRSM, CTRSM, or ZTRSM subroutine solves one of the matrix equations:

v op(A) * X = alpha * B

v X * op(A) = alpha * B

662 Technical Reference, Volume 2: Base Operating System and Extensions

where alpha is a scalar, X and B are M by N matrices, A is a unit, or non-unit, upper or lower triangular
matrix, and op(A) is either op(A) = A or op(A) = A’. The matrix X is overwritten on B.

Parameters

SIDE On entry, SIDE specifies whether op(A) appears on the left or right of X as follows:

SIDE = ’L’ or ’l’
op(A) * X = alpha * B

SIDE = ’R’ or ’r’
X * op(A) = alpha * B

Unchanged on exit.
UPLO On entry, UPLO specifies whether the matrix A is an upper or lower triangular matrix as follows:

UPLO = ’U’ or ’u’
A is an upper triangular matrix.

UPLO = ’L’ or ’l’
A is a lower triangular matrix.

Unchanged on exit.
TRANSA On entry, TRANSA specifies the form of op(A) to be used in the matrix multiplication as follows:

TRANSA = ’N’ or ’n’
op(A) = A

TRANSA = ’T’ or ’t’
op(A) = A’

TRANSA = ’C’ or ’c’
op(A) = A’

Unchanged on exit.
DIAG On entry, DIAG specifies whether or not A is unit triangular as follows:

DIAG = ’U’ or ’u’
A is assumed to be unit triangular.

DIAG = ’N’ or ’n’
A is not assumed to be unit triangular.

Unchanged on exit.
M On entry, M specifies the number of rows of B; M must be at least 0; unchanged on exit.
N On entry, N specifies the number of columns of B; N must be at least 0; unchanged on exit.
ALPHA On entry, ALPHA specifies the scalar alpha. When alpha is 0 then A is not referenced and B need not be

set before entry; unchanged on exit.
A An array of dimension (LDA, k), where k is M when SIDE = ’L’ or ’l’ and is N when SIDE = ’R’ or ’r’. On

entry with UPLO = ’U’ or ’u’, the leading k by k upper triangular part of the array A must contain the
upper triangular matrix and the strictly lower triangular part of A is not referenced; on entry with UPLO =
’L’ or ’l’, the leading k by k lower triangular part of the array A must contain the lower triangular matrix
and the strictly upper triangular part of A is not referenced. When DIAG = ’U’ or ’u’, the diagonal
elements of A are not referenced, but are assumed to be unity; unchanged on exit.

LDA On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE =
’L’ or ’l’, LDA must be at least max(1, M); when SIDE = ’R’ or ’r’, LDA must be at least max(1, N);
unchanged on exit.

B An array of dimension (LDB, N); on entry, the leading M by N part of the array B must contain the
right-hand side matrix B, and on exit is overwritten by the solution matrix X.

LDB On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at
least max(1, M); unchanged on exit.

Chapter 3. FORTRAN Basic Linear Algebra Subroutines (BLAS) 663

664 Technical Reference, Volume 2: Base Operating System and Extensions

Appendix A. Base Operating System Error Codes for Services
That Require Path-Name Resolution

The following errors apply to any service that requires path name resolution:

EACCES Search permission is denied on a component of the path prefix.
EFAULT The Path parameter points outside of the allocated address space

of the process.
EIO An I/O error occurred during the operation.
ELOOP Too many symbolic links were encountered in translating the Path

parameter.
ENAMETOOLONG A component of a path name exceeded 255 characters and the

process has the DisallowTruncation attribute (see the ulimit
subroutine) or an entire path name exceeded 1023 characters.

ENOENT A component of the path prefix does not exist.
ENOENT A symbolic link was named, but the file to which it refers does not

exist.
ENOENT The path name is null.
ENOTDIR A component of the path prefix is not a directory.
ESTALE The root or current directory of the process is located in a virtual

file system that is unmounted.

Related Information

List of File and Directory Manipulation Services.

© Copyright IBM Corp. 1994, 2001 665

../../aixprggd/genprogc/filedir_subr.htm#HDRA10F0292

666 Technical Reference, Volume 2: Base Operating System and Extensions

Appendix B. ODM Error Codes

When an ODM subroutine is unsuccessful, a value of -1 is returned and the odmerrno variable is set to
one of the following values:

ODMI_BAD_CLASSNAME The specified object class name does not match the object class name in the
file. Check path name and permissions.

ODMI_BAD_CLXNNAME The specified collection name does not match the collection name in the file.
ODMI_BAD_CRIT The specified search criteria is incorrectly formed. Make sure the criteria

contains only valid descriptor names and the search values are correct. For
information on qualifying criteria, see ″Understanding ODM Object Searches″
in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs.

ODMI_BAD_LOCK Cannot set a lock on the file. Check path name and permissions.
ODMI_BAD_TIMEOUT The time-out value was not valid. It must be a positive integer.
ODMI_BAD_TOKEN Cannot create or open the lock file. Check path name and permissions.
ODMI_CLASS_DNE The specified object class does not exist. Check path name and permissions.
ODMI_CLASS_EXISTS The specified object class already exists. An object class must not exist when

it is created.
ODMI_CLASS_PERMS The object class cannot be opened because of the file permissions.
ODMI_CLXNMAGICNO_ERR The specified collection is not a valid object class collection.
ODMI_FORK Cannot fork the child process. Make sure the child process is executable and

try again.
ODMI_INTERNAL_ERR An internal consistency problem occurred. Make sure the object class is valid

or contact the person responsible for the system.
ODMI_INVALID_CLASS The specified file is not an object class.
ODMI_INVALID_CLXN Either the specified collection is not a valid object class collection or the

collection does not contain consistent data.
ODMI_INVALID_PATH The specified path does not exist on the file system. Make sure the path is

accessible.
ODMI_LINK_NOT_FOUND The object class that is accessed could not be opened. Make sure the linked

object class is accessible.
ODMI_LOCK_BLOCKED Cannot grant the lock. Another process already has the lock.
ODMI_LOCK_ENV Cannot retrieve or set the lock environment variable. Remove some

environment variables and try again.
ODMI_LOCK_ID The lock identifier does not refer to a valid lock. The lock identifier must be

the same as what was returned from the odm_lock subroutine.
ODMI_MAGICNO_ERR The class symbol does not identify a valid object class.
ODMI_MALLOC_ERR Cannot allocate sufficient storage. Try again later or contact the person

responsible for the system.
ODMI_NO_OBJECT The specified object identifier did not refer to a valid object.
ODMI_OPEN_ERR Cannot open the object class. Check path name and permissions.
ODMI_OPEN_PIPE Cannot open a pipe to a child process. Make sure the child process is

executable and try again.
ODMI_PARAMS The parameters passed to the subroutine were not correct. Make sure there

are the correct number of parameters and that they are valid.
ODMI_READ_ONLY The specified object class is opened as read-only and cannot be modified.
ODMI_READ_PIPE Cannot read from the pipe of the child process. Make sure the child process

is executable and try again.
ODMI_TOOMANYCLASSES Too many object classes have been accessed. An application can only

access less than 1024 object classes.
ODMI_UNLINKCLASS_ERR Cannot remove the object class from the file system. Check path name and

permissions.
ODMI_UNLINKCLXN_ERR Cannot remove the object class collection from the file system. Check path

name and permissions.
ODMI_UNLOCK Cannot unlock the lock file. Make sure the lock file exists.

© Copyright IBM Corp. 1994, 2001 667

../../aixprggd/genprogc/odm.htm#HDRA16891F3E
../../libs/basetrf1/odm_lock.htm#HDRA265912D3

Related Information

List of ODM Commands and Subroutines in AIX 5L Version 5.1 General Programming Concepts: Writing
and Debugging Programs.

668 Technical Reference, Volume 2: Base Operating System and Extensions

../../aixprggd/genprogc/odm_cmds_subrs.htm#HDRA98C1235

Appendix C. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.
IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.
This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:
IBM Corporation
Dept. LRAS/Bldg. 003
11400 Burnet Road
Austin, TX 78758-3498
U.S.A.
Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.
The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and

© Copyright IBM Corp. 1994, 2001 669

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

This edition applies to AIX 5L Version 5.1 and to all subsequent releases of this product until otherwise
indicated in new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed,
address comments to Publications Department, Internal Zip 9561, 11400 Burnet Road, Austin, Texas
78758-3493. To send comments electronically, use this commercial Internet address:
aix6kpub@austin.ibm.com. Any information that you supply may be used without incurring any obligation
to you.

(c) Copyright AT&T, 1984, 1985, 1986, 1987, 1988, 1989. All rights reserved.

(c) Copyright KnowledgeSet Corporation, Mountainview, California, 1990.

Copyright (c) 1993, 1994 Hewlett-Packard Company
Copyright (c) 1993, 1994 International Business Machines Corp.
Copyright (c) 1993, 1994 Sun Microsystems, Inc.
Copyright (c) 1993, 1994 Novell, Inc.
All rights reserved. This product and related documentation are protected by copyright and distributed
under licenses restricting its use, copying, distribution, and decompilation. No part of this product or related
documentation may be reproduced in any form by any means without prior written authorization.
RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is
subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.
THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.
THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. HEWLETT-PACKARD COMPANY,
INTERNATIONAL BUSINESS MACHINES CORP., SUN MICROSYSTEMS, INC., AND UNIX SYSTEMS
LABORATORIES, INC., MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

(c) Copyright Graphic Software Systems Incorporated, 1984, 1990. All rights reserved.

(c) Cornell University, 1989, 1990.

(c) Copyright Carnegie Mellon, 1988. All rights reserved.
(c) Copyright Stanford University, 1988. All rights reserved.
Permission to use, copy, modify, and distribute this program for any purpose and without fee is hereby
granted, provided that this copyright and permission notice appear on all copies and supporting
documentation, the name of Carnegie Mellon and Stanford University not be used in advertising or
publicity pertaining to distribution of the program without specific prior permission, and notice be given in
supporting documentation that copying and distribution is by permission of Carnegie Mellon and Stanford
University. Carnegie Mellon and Stanford University make no representations about the suitability of this
software for any purpose. It is provided "as is" without express or implied warranty.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under
license from The Regents of the University of California. We acknowledge the following institutions for their

670 Technical Reference, Volume 2: Base Operating System and Extensions

role in its development: the Electrical Engineering and Computer Sciences Department at the Berkeley
Campus.
The Rand MH Message Handling System was developed by the Rand Corporation and the University of
California.
Portions of the code and documentation described in this book were derived from code and documentation
developed under the auspices of the Regents of the University of California and have been acquired and
modified under the provisions that the following copyright notice and permission notice appear:
Copyright Regents of the University of California, 1986, 1987, 1988, 1989. All rights reserved.
Redistribution and use in source and binary forms are permitted provided that this notice is preserved and
that due credit is given to the University of California at Berkeley. The name of the University may not be
used to endorse or promote products derived from this software without specific prior written permission.
This software is provided "as is" without express or implied warranty.

Portions of the code and documentation described in this book were derived from code and documentation
developed by Massachusetts Institute of Technology, Cambridge, Massachusetts, and Digital Equipment
Corporation, Maynard, Massachusetts, and have been acquired and modified under the provision that the
following copyright notice and permission notice appear:
(c) Copyright Digital Equipment Corporation, 1985, 1988, 1990, 1991. All rights reserved.
(c) Copyright 1985, 1986, 1987, 1988, 1989 Massachusetts Institute of Technology. All rights reserved.
Permission to use, copy, modify, and distribute this program and its documentation for any purpose and
without fee is hereby granted, provided that this copyright, permission, and disclaimer notice appear on all
copies and supporting documentation; the name of M.I.T. or Digital not be used in advertising or publicity
pertaining to distribution of the program without specific prior permission. M.I.T. and Digital make no
representations about the suitability of this software for any purpose. It is provided "as is" without express
or implied warranty.

(c) Copyright Apollo Computer, Inc., 1987. All rights reserved.

(c) Copyright TITN, Inc., 1984, 1989. All rights reserved.

Appendix C. Notices 671

672 Technical Reference, Volume 2: Base Operating System and Extensions

Index

Special Characters
_lazySetErrorHanhler subroutine 525
_safe_fetch subroutine 79
_showstring subroutine 569
_sync_cache_range subroutine 281

Numerics
8-bit character capability 529

A
absolute values

finding index of element with maximum value 613
access control information

retrieving 245
access control subroutines

fstatacl 245
revoke 37
statacl 245

addch subroutine 461
addstr subroutine 462
alarm signals

beeping 468
flashing 497

alphasort subroutine 80
alternate stack 146
asynchronous serial data line

sending breaks on 318
atoi subroutine 269
atol subroutine 269
attroff subroutine 464
attron subroutine 466
attrset subroutine 467
authentication database

opening and closing 119
authentication subroutines

endpwdb 119
enduserdb 124
setpwdb 119
setuserdb 124
tcb 311

B
backspace character

returning 495
baudrate subroutine 468
beep subroutine 468
Berkeley Compatibility Library

subroutines
rand_r 7

binary trees, manipulating 357
BLAS matrix-matrix operations 655
BLAS matrix-matrix subroutines 649, 650, 652, 654,

657, 658, 660, 662

BLAS matrix-vector subroutines 617, 618, 620, 621,
623, 624, 625, 626, 627, 629, 631, 632, 634, 636,
638, 639, 640, 641, 642, 643, 644, 645, 646, 648

BLAS vector-vector functions 605, 606, 611, 612, 613,
614

BLAS vector-vector subroutines 607, 608, 609, 610,
612, 615, 616

box subroutine 469
buffers

assigning to streams 100
bytes

copying 274

C
carriage return 540
CAXPY subroutine 607
cbox subroutine 469
cboxalt subroutine 469
CBREAK mode 473
cbreak subroutine 473
cbrt subroutine 211
CCOPY subroutine 609
CDOTC function 605
CDOTU function 606
CGBMV subroutine 618
CGEMM subroutine 649
CGEMV subroutine 617
CGERC subroutine 639
CGERU subroutine 639
change color definition 516
change color-pair definition 517
change terminal capabilities 496
character conversion

wide characters
lowercase to uppercase 334
to double-precision number 399
to long integer 403
to multibyte 405, 412
to tokens 401
to unsigned long integer 406
uppercase to lowercase 333

character data
interpreting 82
reading 82

character manipulation subroutines
vwsprintf 384

character mapping 413
character transliteration 332
characters

adding
lines 520
single characters 461, 519
strings 462

backspace 495
clearing screen 475, 476
controlling text scrolling 562, 563, 565
deleting 489

© Copyright IBM Corp. 1994, 2001 673

characters (continued)
dumping strings 569
echoing 492
erasing lines 479, 480, 490
erasing window 494
getting single characters 501
getting strings 506
handling input 529, 540
line-kill 524
placing at cursor location 514
reading formatted input 557
refreshing 592, 595
type ahead 598
typeahead 498
writing 384
writing formatted output 546

charsetID
wide character 392

CHBMV subroutine 621
CHEMM subroutine 652
CHEMV subroutine 620
CHER subroutine 640
CHER2 subroutine 642
CHER2K subroutine 658
CHERK subroutine 655
CHPMV subroutine 623
CHPR subroutine 641
CHPR2 subroutine 643
clear subroutine 475
clearok subroutine 476
close role database 121
close SMIT ACL database 98
closelog_r subroutine 305
closelog subroutine 301
clrtobot subroutine 479
clrtoeol subroutine 480
code sets

reading map files 102
color, initialize 580
color definition 516
color intensity 481
color manipulation 470
color pair 544
color-pair definition 517
color support 511
columns

determining number 568, 584
compare wide character 443
complex dot products

determining 605, 606
control characters

specifying 599
control input characters 510
convert wide character 411
converter subroutines

wcsrtombs 397
copy a window region 482
copy wide character 444
cos subroutine 162
cosh subroutine 163
coshl subroutine 163

cosl subroutine 162
create subwindows 581
cresetty subroutine 553
CROTG subroutine 607
CSCAL subroutine 612
CSROT subroutine 608
CSSCAL subroutine 612
CSWAP subroutine 610
CSYMM subroutine 650
CSYR2K subroutine 657
CSYRK subroutine 654
CTBMV subroutine 629
CTBSV subroutine 634
CTPMV subroutine 631
CTPSV subroutine 636
CTRMM subroutine 660
CTRMV subroutine 627
CTRSM subroutine 662
CTRSV subroutine 632
cube roots

computing 211
current process credentials

setting 111
current process environment

setting 113
current processes

group ID
setting 105

suspending 164
user information 373

current screen
refreshing 550, 603

current screens
refreshing 545

curses
initializing 518
terminating 494

curses character control subroutines
_showstring 569
addch 461
addstr 462
clear 475
clearok 476
clrtobot 479
clrtoeol 480
delch 489
deleteln 490
erase 494
getch 501
getstr 506
inch 514
insch 519
insertln 520
meta 529
mvaddch 461
mvaddstr 462
mvdelch 489
mvgetch 501
mvgetstr 506
mvinch 514
mvinsch 519

674 Technical Reference, Volume 2: Base Operating System and Extensions

curses character control subroutines (continued)
mvscanw 557
mvwaddch 461
mvwaddstr 462
mvwdelch 489
mvwgetch 501
mvwgetstr 506
mvwinch 514
mvwinsch 519
mvwscanw 557
nodelay 540
scanw 557
scroll 562
scrollok 563
setscrreg 565
unctrl 599
waddch 461
waddstr 462
wclear 475
wclrtobot 479
wclrtoeol 480
wdelch 489
wdeleteln 490
werase 494
wgetch 501
wgetstr 506
winch 514
winsch 519
winsertln 520
wscanw 557
wsetscrreg 565

curses cursor control subroutines
getyx 509
leaveok 526
move 530
mvcur 531
wmove 530

curses data structure 560
curses options setting subroutines

idlok 513
intrflush 521
keypad 523
typeahead 598

curses portability subroutines
baudrate 468
erasechar 495
flushinp 498
killchar 524

curses subroutine
getbegyx 500
getmaxyx 505

curses subroutines
character locations

echochar, wechochar, pechochar 493
endwin 494
initscr 518
switching input/output to different terminals 567

curses terminal manipulation subroutines
cbreak 473
cresetty 553
def_prog_mode 484

curses terminal manipulation subroutines (continued)
def_shell_mode 485
delay_output 488
echo 492
has_ic 512
has_il 513
longname 528
newterm 536
nl 540
nocbreak 473
noecho 492
nonl 540
noraw 549
putp 548
raw 549
reset_prog_mode 551
reset_shell_mode 552
resetterm 553
resetty 553
set_term 567
setupterm 568
tgetent 584
tgetflag 585
tgetnum 586
tgetstr 587
tgoto 588
tparm 596
tputs 597

curses video attributes subroutines
attroff 464
attron 466
attrset 467
beep 468
flash 497
standend 579
standout 579
vidattr 601
vidputs 601
wattroff 464
wattron 466
wattrset 467
wstandend 579
wstandout 579

curses window manipulation subroutines
box 469
delwin 491
doupdate 603
makenew 528
mvwin 532
newpad 533
newwin 537
overlay 543
overwrite 543
pnoutrefresh 545
prefresh 545
refresh 550
subwin 582
touchline 592
touchoverlap 594
touchwin 595
wnoutrefresh 602

Index 675

curses window manipulation subroutines (continued)
wrefresh 550

cursor control
moving logical cursor 530
moving physical cursor 531
placing cursor 526
returning logical cursor coordinates 509

cursor coordinates 500
cursor visibility 483

D
D cache 281
DASUM subroutine 612
data

sorting with quicker-sort algorithms 1
data sorting subroutines

qsort 1
tdelete 357
tfind 357
tsearch 357
twalk 357

data transmissions
suspending 313
waiting for completion 312

data words
trace 348

databases
authentication

opening and closing 119
date

format conversions 262
date format conversions 271, 391
DAXPY subroutine 607
DCOPY subroutine 609
DDOT function 605
def_prog_mode subroutine 484
def_shell_mode subroutine 485
defect 220643 332
define character mapping 413
delay mode 510
delay_output subroutine 488
delch subroutine 489
deleteln subroutine 490
delwin subroutine 491
determine terminal color support 511
device driver

calling 288
device switch tables

checking entry status 297
DGBMV subroutine 618
DGEMM subroutine 649
DGEMV subroutine 617
DGER subroutine 638
directories

reading 14
removing 38
removing entries 369
renaming 34
scanning contents 80
sorting contents 80

directory subroutines
alphasort 80

directory subroutines (continued)
readlink 15
rmdir 38
scandir 80
symlink 278
unlink 369

disable terminal capabilities 496
discard lines in windows 499
disk quotas

manipulating 2
DNRM2 function 611
dot products

determining 605, 614
doupdate subroutine 603
drawbox subroutine 469
drawboxalt subroutine 469
DROT subroutine 608
DROTG subroutine 607
DROTM subroutine 615
DROTMG subroutine 616
DSBMV subroutine 625
DSCAL subroutine 612
DSPMV subroutine 626
DSPR subroutine 645
DSPR2 subroutine 648
DSWAP subroutine 610
DSYMM subroutine 650
DSYMV subroutine 624
DSYR subroutine 644
DSYR2 subroutine 646
DSYR2K subroutine 657
DSYRK subroutine 654
DTBMV subroutine 629
DTBSV subroutine 634
DTPMV subroutine 631
DTPSV subroutine 636
DTRMM subroutine 660
DTRMV subroutine 627
DTRSM subroutine 662
DTRSV subroutine 632
dump file, data structure 560
dump file, restore screen 561
DZASUM subroutine 612
DZNRM2 function 611

E
echo subroutine 492
echochar subroutine 493
echoing characters 492
endpwdb subroutine 119
endroledb subroutine 121
enduserdb subroutine 124
endwin subroutine 494
equations

solving systems 632, 634, 636
erase subroutine 494
erasechar subroutine 495
error codes 665
error codes, ODM 667
error handler, install 525
error handling

controlling system logs 301

676 Technical Reference, Volume 2: Base Operating System and Extensions

error handling (continued)
numbering error message string 259

errorlogging_r subroutines 305
errorlogging subroutines

closelog 301
openlog 301
setlogmask 301
syslog 301

Euclidean lengths
determining 611

examine state of alternate stack 146
execution control

saving and restoring context 106
execution control subroutines

longjmp 106
setjmp 106

extended curses
initializing 518

extended curses character control subroutines
_showstring 569
getch 501
inch 514
insch 519
meta 529
mvgetch 501
mvinch 514
mvinsch 519
mvscanw 557
mvwgetch 501
mvwinch 514
mvwinsch 519
mvwscanw 557
printw 546
scanw 557
scroll 562
scrollok 563
wgetch 501
winch 514
winsch 519
wscanw 557

extended curses options setting subroutines
idlok 513
intrflush 521

extended curses portability subroutines
baudrate 468
erasechar 495
flushinp 498
killchar 524

extended curses subroutines
initscr 518

extended curses terminal manipulation subroutines
delay_output 488
has_ic 512
has_il 513
newterm 536
putp 548
resetterm 553
set_term 567
setupterm 568
tgentent 584
tgetflag 585

extended curses terminal manipulation subroutines
(continued)

tgetnum 586
tparm 596

extended curses video attributes subroutines
attroff 464
attron 466
attrset 467
standend 579
standout 579
vidputs 601
wattroff 464
wattron 466
wattrset 467
wstandend 579
wstandout 579

extended curses window manipulation subroutines
box 469
cbox 469
cboxalt 469
delwin 491
doupdate 602
drawbox 469
drawboxalt 469
fullbox 469
makenew 528
mvwin 532
newwin 537
overlay 543
overwrite 543
superbox 469
superbox1 469
touchline 592
touchoverlap 594
wnoutrefresh 602

F
ffullstat subroutine 251
file, input/output 558
file access times

setting 375
file creation masks

getting or setting values 364
file descriptors

checking I/O status 87
file modification times

setting 375
file subroutines

ffullstat 251
fstat 251
fstatx 251
ftruncate 354
fullstat 251
lstat 251
remove 34
rename 34
stat 251
statx 251
tempnam 331
tmpfile 330

Index 677

file subroutines (continued)
tmpnam 331
truncate 354
umask 364
utime 375
utimes 375

file system information 250
file system subroutines

fstatfs 248
mount 380
quotactl 2
statfs 248
sync 280
sysconf 282
umount 365
ustat 248
uvmount 365
vmount 380

file systems
manipulating disk quotas 2
mounting 380
returning statistics 248
unmounting 365
updating 280

files
changing length of regular 354
constructing names for temporary 331
creating symbolic links 278
creating temporary 330
deleting 34
providing status information 251
reading 9
removing 34
renaming 34
revoking access 37
writing to 449

find wide character 442
find wide character substring 399
flash subroutine 497
flow control

performing 313
flushing

typeahead characters 498
flushinp subroutine 498
foreground process group IDs

getting 317
setting 321

formatted input
converting 82

fscanf subroutine 82
fstat subroutine 251
fstatacl subroutine 245
fstatfs subroutine 248
fstatvfs subroutine 250
fstatx subroutine

described 251
ftruncate subroutine 354
fullbox subroutine 469
fullstat subroutine 251

G
get capabilities, terminfo 588
get key name 522
get terminals numeric value 590
get terminals string capabiltiy 591
get_wctype subroutine 413
get XTI variables 347
getbegyx subroutine 500
getch subroutine 501, 529, 540
getmaxyx subroutine 505
getstr subroutine 506
getyx macro 509
Givens plane rotations

constructing 607
Givens transformations

applying 615
constructing 616

gsignal subroutine 244
gtty subroutine 273

H
half-delay mode 510
has_ic subroutine 512
has_il subroutine 513
Hermitian operations

performing rank 1 640, 641
performing rank 2 642, 643
performing rank 2k 658
performing rank k 655

highlight mode 579
hook words

trace 348
hyperbolic functions

computing 163

I
I cache 281
I/O asynchronous subroutines

select 87
I/O low-level subroutines 9, 449

readvx 9
readx 9
writevx 449
writex 449

I/O stream subroutines
fscanf 82
scanf 82
setbuf 100
setbuffer 100
setlinebuf 100
setvbuf 100
sscanf 82
ungetc 368
ungetwc 368
wsscanf 82

I/O terminal subroutines
gtty 273
isatty 360
stty 273

678 Technical Reference, Volume 2: Base Operating System and Extensions

I/O terminal subroutines (continued)
tcdrain 312
tcflow 313
tcflush 315
tcgetattr 316
tcgetpgrp 317
tcsendbreak 318
tcsetattr 319
tcsetpgrp 321
termdef 322
ttylock 359
ttylocked 359
ttyname 360
ttyslot 361
ttyunlock 359
ttywait 359

ICAMAX subroutine 613
IDAMAX subroutine 613
idlok subroutine 513
idxpg4 255
inch subroutine 514
index subroutine 266
initialize color 580
initscr subroutine 518
initstate subroutine 8
input streams

pushing single character into 368
insch subroutine 519
insert-character capability 512
insert/delete line option 513
insert-line capability 513
insertln subroutine 520
interval timers

releasing 33
intrflush subroutine 521
ISAMAX subroutine 613
isatty subroutine 360
IZAMAX subroutine 613

J
JFS

manipulating disk quotas 2

K
kernel configurations

customizing 286
kernel extension modules

loading 301
kernel extensions

loading 291
kernel object files

determining status 298
invoking 289
unloading 296

kernel parameters
setting 299

key name 522
keypad

enabling 523
keypad subroutine 523

killchar subroutine 524

L
label name, return 574
lazy loading runtime system 525
LC_ALL environment variable 108
LC_COLLATE category 108
LC_CTYPE category 108
LC_MESSAGES category 108
LC_MONETARY category 108
LC_NUMERIC category 108
LC_TIME category 108
leaveok subroutine 526
line-kill character 524
lines

adding 520
determining number 568, 584
erasing 479, 480, 490

links
creating symbolic 278
reading contents of symbolic 15

locale subroutines
rpmatch 40
setlocale 107

locales
changing or querying 107
response matching 40

localization subroutines
strfmon 260
strftime 262
strptime 271

locking functions
controlling tty 359

logical cursor 509, 530
long integers, converting

from character strings 269
from wide-character strings 403

long numeric data 125
longjmp subroutine 106
longname subroutine 528
lowercase characters

converting from uppercase 333
converting to uppercase 334

lstat subroutine 251

M
m_initscr subroutine 518
makenew subroutine 528
mapped files

attaching to process 126
mapping, character 413
matrices

performing matrix-matrix operations with
general matrices 649
Hermitian matrices 652
symmetric matrices 650
triangular matrices 660

performing matrix-vector operations with
general banded matrices 618
general matrices 617

Index 679

matrices (continued)
Hermitian band matrices 621
Hermitian matrices 620
packed Hermitian matrices 623
packed symmetric matrices 626
packed triangular matrices 631
symmetric band matrices 625
symmetric matrices 624
triangular band matrices 629
triangular matrices 627

solving equations 662
memory

freeing 448
memory management

activating paging or swapping 275, 276
controlling shared memory operations 130
returning paging device status 277
returning shared memory segments 133

memory management subroutines
shmat 126
shmctl 130
shmdt 132
shmget 133
swapoff 275
swapon 276
swapqry 277

memory mapping
attaching segment or file to process 126

message queues
checking I/O status 87

meta subroutine 529
minicurses

initializing 518
minicurses subroutines

attrset 467
baudrate 468
erasechar 495
flushinp 498
getch 501
m_initscr 518

monetary strings 260
mount subroutine 380
mounted file systems

returning statistics 248
move subroutine 530
multibyte characters

converting from wide 405, 412
mvaddch subroutine 461
mvaddstr subroutine 462
mvcur subroutine 531
mvdelch subroutine 489
mvgetch subroutine 501
mvgetstr subroutine 506
mvinch subroutine 514
mvinsch subroutine 519
mvprintw subroutine 546
mvscanw subroutine 557
mvwaddch subroutine 461
mvwaddstr subroutine 462
mvwdelch subroutine 489
mvwgetch subroutine 501

mvwgetstr subroutine 506
mvwin subroutine 532
mvwinch subroutine 514
mvwinsch subroutine 519
mvwprintw subroutine 546
mvwscanw subroutine 557

N
new-line character 540
newpad subroutine 533
newterm subroutine 536
newwin subroutine 537
nl subroutine 540
no timeout mode 541
nocbreak subroutine 473
nodelay subroutine 540
noecho subroutine 492
nonl subroutine 540
noraw subroutine 549
nsleep subroutine 164
numbers

generating
pseudo-random 5
random 5, 8

numerical data
generating pseudo-random numbers 6

numerical manipulation subroutines
atoi 269
atol 269
cbrt 211
cos 162
cosh 163
coshl 163
cosl 162
initstate 8
rand 5
random 8
rsqrt 77
setstate 8
sgetl 125
sin 162
sinh 163
sinhl 163
sinl 162
sputl 125
sqrt 211
sqrtl 211
srand 5
srandom 8
strtol 269
strtoul 269
tan 162
tanh 163
tanhl 163
tanl 162
watof 457
watoi 458
watol 458
wstrtod 457
wstrtol 458

680 Technical Reference, Volume 2: Base Operating System and Extensions

O
object file access subroutines

sgetl 125
sputl 125

object file subroutines
unload 371

object files
unloading 371

Obtaining high-resolution elapsed time
read_real_time or time_base_to_time 17

ODM error codes 667
open role database 121
open SMIT ACL database 98
openlog_r subroutine 305
openlog subroutine 301
operating system

customizing configurations 286
identifying 367

output
waiting for completion 312

output, print 166
overlay subroutine 543
overwrite subroutine 543

P
paging memory

activating 275, 276
returning information on devices 277

parameter lists
handling variable-length 376

parameter structures
copying into buffers 290

path name
resolve 19

path-name resolution 665
pechochar subroutine 493
performance data from remote kernels 79
physical cursor 531
plane rotations

applying 608
pnoutrefresh subroutine 545
prefresh subroutine 545
print formatted output 166, 384
printf subroutine 546
printw subroutine 546
process credentials

setting 111
process environments

setting 113
process group IDs

returning 317
setting 103, 117, 122, 321
supplementary IDs

setting 105
process identification

current operating system name 367
process initiation

restarting system 20
process priorities

setting scheduled priorities 118

process priorities (continued)
yielding to higher priorities 459

process resource allocation
setting and getting user limits 362

process signals
blocked signal sets

changing 158
returning 150

changing subroutine restart behavior 149
enhancement and management 153
handling system-defined exceptions 135
implementing software signal facility 244
manipulating signal sets 147
sending to executing program 4
signal masks

replacing 158
saving or restoring 156
setting 151

specifying action upon delivery 135
stacks

defining alternate 157
saving or restoring context 156

process subroutines (security and auditing)
setegid 103
seteuid 122
setgid 103
setgroups 105
setpcred 111
setpenv 113
setregid 103
setreuid 122
setrgid 103
setruid 122
setuid 122
system 310
usrinfo 373

process user IDs
setting 122

processes
handling user information 373
suspending 164, 385

processes subroutines
gsignal 244
raise 4
reboot 20
semctl 90
semget 93
semop 96
setpgid 117
setpgrp 117
setpri 118
setsid 122
sigaddset 147
sigblock 151
sigdelset 147
sigemptyset 147
sigfillset 147
sighold 153
sigignore 153
siginterrupt 149
sigismember 147

Index 681

processes subroutines (continued)
siglongjmp 156
sigpause 158
sigpending 150
sigprocmask 151
sigreise 153
sigset 153
sigsetjmp 156
sigsetmask 151
sigstack 157
sigsuspend 158
ssignal 244
ulimit 362
uname 367
unamex 367
wait 385
wait3 385
waitpid 385
yield 459

program mode 551
pseudo-random numbers

generating 5
pthread_kill subroutine 4
push character to input queue 600
putp subroutine 548

Q
qsort subroutine 1
queues

discarding data 315
quotactl subroutine 2

R
raise subroutine 4
rand_r subroutine 6
rand subroutine 5
random numbers

generating 5, 8
random subroutine 8
rank 1 operations 638, 639
raw mode 549
raw subroutine 549
re_comp subroutine 21
re_exec subroutine 21
re-initializest terminal structures 554
read operations

from a file 9
read protected data 79
read_real_time Subroutine 17
read subroutine 9
readdir_r subroutine 14
readlink subroutine 15
readv subroutine

described 9
readvx subroutine 9
readx subroutine

described 9
realpath subroutine 19
reboot subroutine 20
receive data unit 339

reception of data
suspending 313

reciprocals of square roots
computing 77

refresh subroutine 550
refreshing

characters 592, 595
current screen 545, 550, 603
standard screen 603
terminal 545, 550
windows 594, 603

regcmp subroutine 22
regcomp subroutine 25
regerror subroutine 27
regex subroutine 22
regexec subroutine 29
regfree subroutine 32
regular expression subroutines

regcmp 22
regcomp 25
regerror 27
regex 22
regexec 29
regfree 32

regular expressions
comparing 29
compiling 22, 25
error messages 27
freeing memory 32
matching 22

regular files
changing length 354

release indication
user data 335

relinquish processor 87
reltimerid subroutine 33
remote hosts

rstat subroutine 79
Remote Statistics Interface

subroutines
RSiChangeFeed 43
RSiChangeHotFeed 44
RSiClose 45
RSiCreateStatSet 47
RSiDelSetHot 48
RSiDelSetStat 50
RSiFirstCx 51
RSiFirstStat 52
RSiGetHotItem 54
RSiGetRawValue 56
RSiGetValue 57
RSiInit 58
RSiInstantiate 60
RSiMainLoop 63
RSiNextCx 64
RSiNextStat 65
RSiOpen 67
RSiPathAddSetStat 69
RSiPathGetCx 70
RSiStartFeed 71
RSiStartHotFeed 72

682 Technical Reference, Volume 2: Base Operating System and Extensions

Remote Statistics Interface (continued)
RSiStatGetPath 74
RSiStopHotFeed 76

remove subroutine 34
rename subroutine 34
replace lines in windows 499
reserve a screen line 555
reset_prog_mode subroutine 551
reset_shell_mode subroutine 552
resetterm subroutine 553
resetty subroutine 553
restore soft function key 577
restore virtual screen 561
retrieves information from terminfo 486
return color intensity 481
return file system information 250
return label, soft label 574
return window size 505
returns color to color pair 544
revoke subroutine 37
rindex subroutine 266
ripoffline subtoutine 555
rmdir subroutine 38
rpmatch subroutine 40
rsqrt subroutine 77
rstat subroutine 79
runtime tunable parameters

setting 299

S
SASUM subroutine 612
savetty subroutine 556
SAXPY subroutine 607
scandir subroutine 80
scanf subroutine 82, 557
scanw subroutine 557
SCASUM subroutine 612
sched_yield subtoutine 87
scheduling policy and priority

kernel thread 327
SCNRM2 function 611
SCOPY subroutine 609
scr_dump subtoutine 558
scr_init subtoutine 560
scr_restore subtoutine 561
screen line 555
screens

refreshing 545, 550, 603
scroll subroutine 562
scrollok subroutine 563
SDOT function 605
SDSDOT function 614
select subroutine 87
semaphore identifiers 93
semaphore operations 90, 96
semctl subroutine 90
semget subroutine 93
semop subroutine 96
send data 341

serial data lines
sending breaks on 318

sessions
creating 122

set blocking or non-blocking read 541
set cursor visibility 483
set_curterm subtoutine 564
set_term subroutine 567
set terminal variables 564
set wide character 445
setaudithostdb or endaudithostdb subroutine 99
setbuf subroutine 100
setbuffer subroutine 100
setcsmap subroutine 102
setegid subroutine 103
seteuid subroutine 122
setgid subroutine 103
setgroups subroutine 105
setjmp subroutine 106
setlinebuf subroutine 100
setlocale subroutine 107
setlogmask_r subroutine 305
setlogmask subroutine 301
setpcred subroutine 111
setpenv subroutine 113
setpgid subroutine 117
setpgrp subroutine 117
setpri subroutine 118
setpwdb subroutine 119
setregid subroutine 103
setreuid subroutine 122
setrgid subroutine 103
setroledb subtoutine 121
setruid subroutine 122
setscrreg subroutine 565
setsid subroutine 122
setstate subroutine 8
setsyx subroutine 566
setuid subroutine 122
setup soft labels 577
setupterm subroutine 568
setuserdb subroutine 124
setvbuf subroutine 100
SGBMV subroutine 618
SGEMM subroutine 649
SGEMV subroutine 617
SGER subroutine 638
sgetl subroutine 125
shared memory segments

attaching to process 126
detaching 132
operations on 130
returning 133

shell commands
running 310

shell mode 485, 552
shmat subroutine 126
shmctl subroutine 130
shmdt subroutine 132
shmget subroutine 133

Index 683

short status requests
sending 233, 235

sigaddset subroutine 147
sigaltstack subroutine 146
sigblock subroutine 151
sigdelset subroutine 147
sigemptyset subroutine 147
sigfillset subroutine 147
sighold subroutine 153
sigignore subroutine 153
siginterrupt subroutine 149
sigismember subroutine 147
siglongjmp subroutine 156
signal masks

replacing 158
saving or restoring 156
setting 151

signal stacks
defining alternate 157
saving or restoring context 156

sigpause subroutine 158
sigpending subroutine 150
sigprocmask subroutine 151
sigrelse subroutine 153
sigset subroutine 153
sigsetjmp subroutine 156
sigsetmask subroutine 151
sigstack subroutine 157
sigsuspend subroutine 158
sigwait subroutine 161
sin subroutine 162
single-byte conversion 411
sinh subroutine 163
sinhl subroutine 163
sinl subroutine 162
sleep subroutine 164
slk_attroff subroutine 570
slk_init subroutine 573
slk_label subroutine 574
slk_noutrefresh subroutine 575
slk_refresh subroutine 576
slk_restore subroutine 577
slk_set subroutine 577
slk_touch subroutine 578
SMIT ACL database 98
snprintf subroutine 166
SNRM2 function 611
soft function key, setup 577
soft function key, update 578
soft function key-label 573
soft function key label, restore 577
soft label, label name 574
soft label, update 575, 576
soft label subroutines 570
sputl subroutine 125
sqrt subroutine 211
sqrtl subroutine 211
square roots

computing 211
srand subroutine 5
srandom subroutine 8

src_err_msg_r subroutine 213
src_err_msg subroutine 212
src error message

src error code 213
SRC error messages

retrieving 212
src request headers

return address 216
SRC requests

getting subsystem reply information 214
sending replies 223

SRC status text
returning title line 237

SRC status text representations
getting 238, 239

SRC subroutines
src_err_msg 212
srcrrqs 214
srcsbuf 217
srcsbuf_r 220
srcsrpy 223
srcsrqt 226
srcsrqt_r 229
srcstat 233
srcstat_r 235
srcstathdr 237
srcstattxt 238
srcstattxt_r 239
srcstop 239
srcstrt 242

srcrrqs_r subroutine 216
srcrrqs subroutine 214
srcsbuf_r subroutine 220
srcsbuf subroutine 217
srcsrpy subroutine 223
srcsrqt_r subroutine 229
srcsrqt subroutine 226
srcstat_r subroutine 235
srcstat subroutine 233
srcstathdr subroutine 237
srcstattxt_r subroutine 239
srcstattxt subroutine 238
srcstop subroutine 239
srcstrt subroutine 242
SROT subroutine 608
SROTG subroutine 607
SROTM subroutine 615
SROTMG subroutine 616
SSBMV subroutine 625
SSCAL subroutine 612
sscanf subroutine 82
ssignal subroutine 244
SSPMV subroutine 626
SSPR subroutine 645
SSPR2 subroutine 648
SSWAP subroutine 610
SSYMM subroutine 650
SSYMV subroutine 624
SSYR subroutine 644
SSYR2 subroutine 646
SSYR2K subroutine 657

684 Technical Reference, Volume 2: Base Operating System and Extensions

SSYRK subroutine 654
stack, alternate 146
standard screen

clearing 475
refreshing 603

standend subroutine 579
standout subroutine 579
start_color subroutine 580
stat subroutine 251
statacl subroutine 245
statfs subroutine 248
statvfs subroutine 250
statx subroutine 251
STBMV subroutine 629
STBSV subroutine 634
store screen coordinates 500
STPMV subroutine 631
STPSV subroutine 636
strcasecmp subroutine 258
strcat subroutine 255
strchr subroutine 266
strcmp subroutine 257
strcoll subroutine 258
strcpy subroutine 256
strcspn subroutine 266
strdup subroutine 256
streams

assigning buffers 100
strerror subroutine 259
strfmon subroutine 260
strftime subroutine 262
string conversion

to double-precision floating points 457
to integers 269, 458
to long integers 458

string manipulation macros
varargs 376

string manipulation subroutines
re_comp 21
re_exec 21
strncollen 268
wordexp 446
wordfree 448
wstring 454

string operations
appending strings 255
comparing strings 257
copying strings 255
determining existence of strings 265
determining string location 265
determining string size 265
splitting strings into tokens 265

string subroutines
index 266
rindex 266
strcasecmp 258
strcat 255
strchr 266
strcmp 257
strcoll 258
strcpy 256

string subroutines (continued)
strcspn 266
strdup 256
strerror 259
strlen 266
strncasecmp 258
strncat 255
strncmp 258
strncpy 256
strpbrk 266
strrchr 266
strspn 266
strstr 266
strtok 266
strxfrm 255

strings
compiling for pattern matching 21
performing operations on type wchar 454
returning number of collation values 268

strlen subroutine 266
STRMM subroutine 660
STRMV subroutine 627
strncasecmp subroutine 258
strncat subroutine 255
strncmp subroutine 258
strncollen subroutine 268
strncpy subroutine 256
strpbrk subroutine 266
strptime subroutine 271
strrchr subroutine 266
STRSM subroutine 662
strspn subroutine 266
strstr subroutine 266
STRSV subroutine 632
strtok subroutine 266
strtol subroutine 269
strtoul subroutine 269
strxfrm subroutine 255
stty subroutine 273
subpad subroutine 581
subroutines

remote statistics interface
RSiChangeFeed 43
RSiChangeHotFeed 44
RSiClose 45
RSiCreateStatSet 47
RSiDelSetHot 48
RSiDelSetStat 50
RSiFirstCx 51
RSiFirstStat 52
RSiGetHotItem 54
RSiGetRawValue 56
RSiGetValue 57
RSiInit 58
RSiInstantiate 60
RSiMainLoop 63
RSiNextCx 64
RSiNextStat 65
RSiOpen 67
RSiPathAddSetStat 69
RSiPathGetCx 70

Index 685

subroutines (continued)
RSiStartFeed 71
RSiStartHotFeed 72
RSiStatGetPath 74
RSiStopHotFeed 76

restart behavior 149
SPMI interface

SpmiAddSetHot 170
SpmiCreateHotSet 173
SpmiCreateStatSet 174
SpmiDdsAddCx 175
SpmiDdsDelCx 176
SpmiDdsInit 178
SpmiDelSetHot 179
SpmiDelSetStat 181
SpmiExit 182
SpmiFirstCx 183
SpmiFirstHot 184
SpmiFirstStat 185
SpmiFirstVals 186
SpmiFreeHotSet 187
SpmiFreeStatSet 188
SpmiGetCx 189
SpmiGetHotSet 191
SpmiGetStat 192
SpmiGetStatSet 193
SpmiGetValue 195
SpmiInit 196
SpmiInstantiate 197
SpmiNextCx 199
SpmiNextHot 200
SpmiNextHotItem 201
SpmiNextStat 203
SpmiNextVals 204
SpmiNextValue 205
SpmiPathAddSetStat 207
SpmiPathGetCx 209
SpmiStatGetPath 210

subservers 217, 220
substring, wide character 399
subsystems

getting status 217, 220
returning status 233, 235
sending requests 226, 229
starting 242
stopping 239

subwin subroutine 582
subwindows 581
superbox subroutine 469
superbox1 subroutine 469
supplementary process group IDs

setting 105
swab subroutine 274
swapoff subroutine 275
swapon subroutine 276
swapping memory

activating 275, 276
returning information on devices 277

swapqpry subroutine 277
symbolic links

creating 278

symbolic links (continued)
reading contents 15

symlink subroutine 278
symmetric operations

performing rank 1 644, 645
performing rank 2 646, 648
performing rank 2k 657
performing rank k 654

sync subroutine 280
synchronize I cache with D cache 281
SYS_CFGDD operation 288
SYS_CFGKMOD operation 289
SYS_GETPARMS operation 290
SYS_KLOAD operation 291
SYS_KULOAD operation 296
SYS_QDVSW operation 297
SYS_QUERYLOAD operation 298
SYS_SETPARMS operation 299
SYS_SINGLELOAD operation 301
sysconf subroutine 282
sysconfig operations

SYS_CFGDD 288
SYS_CFGKMOD 289
SYS_GETPARMS 290
SYS_KLOAD 291
SYS_KULOAD 296
SYS_QDVSW 297
SYS_QUERYLOAD 298
SYS_SETPARMS 299
SYS_SINGLELOAD 301

sysconfig subroutine 286
syslog_r subroutine 305
syslog subroutine 301
system limits

determining values 282
System Performance Measurement Interface

subroutines
SpmiAddSetHot 170
SpmiCreateHotSet 173
SpmiCreateStatSet 174
SpmiDdsAddCx 175
SpmiDdsDelCx 176
SpmiDdsInit 178
SpmiDelSetHot 179
SpmiDelSetStat 181
SpmiExit 182
SpmiFirstCx 183
SpmiFirstHot 184
SpmiFirstStat 185
SpmiFirstVals 186
SpmiFreeHotSet 187
SpmiFreeStatSet 188
SpmiGetCx 189
SpmiGetHotSet 191
SpmiGetStat 192
SpmiGetStatSet 193
SpmiGetValue 195
SpmiInit 196
SpmiInstantiate 197
SpmiNextCx 199
SpmiNextHot 200

686 Technical Reference, Volume 2: Base Operating System and Extensions

System Performance Measurement Interface
(continued)

SpmiNextHotItem 201
SpmiNextStat 203
SpmiNextVals 204
SpmiNextValue 205
SpmiPathAddSetStat 207
SpmiPathGetCx 209
SpmiStatGetPath 210

system subroutine 310

T
t_rcvreldata

subroutine 335
t_rcvv subroutine 337
t_rcvvudata subroutine 339
t_sndreldata

subroutine 343
t_sndv subroutine 341
t_sndvudata

subroutine 345
t_sysconf subroutine 347
tables

sorting data 1
tahn subroutine 163
tan subroutine 162
tanhl subroutine 163
tanl subroutine 162
TCB attributes

querying or setting 311
tcb subroutine 311
tcdrain subroutine 312
tcflow subroutine 313
tcflush subroutine 315
tcgetattr subroutine 316
tcgetpgrp subroutine 317
tcsendbreak subroutine 318
tcsetattr subroutine 319
tcsetpgrp subroutine 321
tdelete subroutine 357
tempnam subroutine 331
temporary files

constructing names 331
creating 330

termcap identifiers
returning Boolean entry 585
returning numeric entry 586
returning string entry 587

termdef subroutine 322
terminal attributes

getting 316
setting 319

terminal capabilities
applying parameters to 588, 596
insert-character capability 512
insert-line capability 513

terminal capabilities, disable 496
terminal color support 511
terminal manipulation

determining number of lines and columns 568, 584
echoing characters 492

terminal manipulation (continued)
outputting string with padding information 548, 597
switching input/output of curses subroutines 567
toggling new-line and return translation 540

terminal modes
CBREAK 473
program 551
raw 549
resetting 553
saving 484
shell 485, 552

terminal names 360
terminal numeric capability 590
terminal speed 468
terminal srting capability 591
terminal states

getting 273, 316
setting 273, 319

terminal structures 554
terminal variables 564
terminals

beeping 468
delaying output to 488
determining type 360
flashing 497
getting names 360
putting in video attribute mode 601
querying characteristics 322
refreshing 545, 550
setting up 536
verbose name 528

terminfo database 588
tfind subroutine 357
tgetent subroutine 584
tgetflag subroutine 585
tgetnum subroutine 586
tgetstr subroutine 587
tgoto subroutine 588
Thread-Safe C Library

subroutines
rand_r 7
readdir_r 14

thread_self subroutine 327
thread_setsched subroutine 327
Threads Library

signal, sleep, and timer handling
raise subroutine 4
sithreadmask subroutine 159

sigwait subroutine 161
tigetflag subroutine 588
tigetnum subroutine 590
tigetstr subroutine 591
time_base_to_time Subroutine 17
time format conversions 262, 271, 391
time manipulation subroutines

nsleep 164
reltimerid 33
sleep 164
usleep 164

time stamps
trace 348

Index 687

time subroutines
read_real_time 17
time_base_to_time 17

timeout mode 541
timezone subroutine 324
tmpfile subroutine 330
tmpnam subroutine 331
touchline subroutine 592
touchoverlap subroutine 594
touchwin subroutine 595
towctrans subroutine 332
towlower subroutine 333
towupper subroutine 334
tparm subroutine 596
tputs subroutine 597
trace channels

halting data collection 350
recording trace event for 348
starting data collection 351

trace data
halting collection 350
recording 348
starting collection 351

trace events
recording 348, 349

trace sessions
starting 352
stopping 353

trace subroutines
trcgen 348
trcgent 348
trchook 349
trcoff 350
trcon 351
trcstart 352
trcstop 353
utrchook 349

transmission of data
suspending 313
waiting for completion 312

trcgen subroutine 348
trcgent subroutine 348
trchook subroutine 349
trcoff subroutine 350
trcon subroutine 351
trcstart subroutine 352
trcstop subroutine 353
trigonometric functions

computing 162
computing hyperbolic 163

truncate subroutine 354
Trusted Computing Base attributes

querying or setting 311
tsearch subroutine 357
tty (teletypewriter)

flushing driver queue 521
tty devices

determining 360
tty locking functions

controlling 359

tty modes
restoring state 553
saving state 556

tty subroutines
setcsmap 102

ttylock subroutine 359
ttylocked subroutine 359
ttyname subroutine 360
ttyslot subroutine 361
ttyunlock subroutine 359
ttywait subroutine 359
twalk subroutine 357
type-ahead characters

flushing 498
type ahead check 598
typeahead subroutine 598

U
ulimit subroutine 362
umask subroutine 364
umount subroutine 365
uname subroutine 367
unamex subroutine 367
unctrl subroutine 599
ungetc subroutine 368
ungetch subroutine 600
ungetwc subroutine 368
unlink subroutine 369
unload subroutine 371
unlockpt subroutine 372
unsigned long integers

converting wide-character strings to 406
update soft labels 575, 576, 578
uppercase characters

converting from lowercase 334
converting to lowercase 333

user database
opening and closing 124

user information
getting and setting 373

usleep subroutine 164
usrinfo subroutine 373
ustat subroutine 248
utime subroutine 375
utimes subroutine 375
utmp file

finding current user slot in 361
utrchook subroutine 349
uvmount subroutine 365

V
varargs macros 376
vectors

computing constant times vector plus vector 607
copying X to Y 609
interchanging X and Y 610
returning complex dot products 605, 606
returning dot products 605, 614
returning sum of absolute values 612
scaling by constants 612

688 Technical Reference, Volume 2: Base Operating System and Extensions

VFS (Virtual File System)
mounting 380
unmounting 365

vfwprintf subroutine 379
vidattr subroutine 601
video attributes

alarm signals
beeping 468
flashing 497

highlight mode 579
putting terminal in specified mode 601
setting 467
turning off 464
turning on 466

vidputs subroutine 601
Virtual File System 380
virtual screen cursor coordinates 508
vmount subroutine 380
vsnprintf subroutine 384
vwsprintf subroutine 384

W
waddch subroutine 461
waddstr subroutine 462
wait subroutine 385
wait3 subroutine 385
waitpid subroutine 385
watof subroutine 457
watoi subroutine 458
watol subroutine 458
wattroff subroutine 464
wattron subroutine 466
wattrset subroutine 467
wclear subroutine 475
wclrtobot subroutine 479
wclrtoeol subroutine 480
wcscat subroutine 388
wcschr subroutine 388
wcscmp subroutine 388
wcscoll subroutine 390
wcscpy subroutine 388
wcscspn subroutine 388
wcsftime subroutine 391
wcsid subroutine 392
wcslen subroutine 393
wcsncat subroutine 394
wcsncmp subroutine 394
wcsncpy subroutine 394
wcspbrk subroutine 395
wcsrchr subroutine 396
wcsrtombs subroutine 397
wcsspn subroutine 398
wcsstr subroutine 399
wcstod subroutine 399
wcstok subroutine 401
wcstol subroutine 403
wcstoll subroutine 403
wcstombs subroutine 405
wcstoul subroutine 406
wcswcs subroutine 408
wcswidth subroutine 409

wcsxfrm subroutine 410
wctob subroutine 411
wctomb subroutine 412
wctrans subroutine 413
wctype subroutine 413
wcwidth subroutine 415
wdelch subroutine 489
wdeleteln subroutine 490
wechochar subroutine 493
werase subroutine 494
wgetch subroutine 501
wgetstr subroutine 506
wide character, memory 442, 443, 444, 445
wide character output 379
wide character subroutines

get_wctype 413
towlower 333
towupper 334
ungetc 368
ungetwc 368
wcscat 388
wcschr 388
wcscmp 388
wcscoll 390
wcscpy 388
wcscspn 389
wcsftime 391
wcsid 392
wcslen 393
wcsncat 394
wcsncmp 394
wcsncpy 394
wcspbrk 395
wcsrchr 396
wcsspn 398
wcstod 399
wcstok 401
wcstol 403
wcstoll 403
wcstombs 405
wcstoul 406
wcswcs 408
wcswidth 409
wcsxfrm 410
wctomb 412
wctype 413
wcwidth 415

wide character substring 399
wide character to single-byte 411
wide characters

comparing strings 390
converting

from date and time 391
lowercase to uppercase 334
to double-precision number 399
to long integer 403
to multibyte 405, 412
to tokens 401
to unsigned long integer 406
uppercase to lowercase 333

determining display width 409, 415

Index 689

wide characters (continued)
determining number in string 393
locating character sequences 408
locating single characters 396
obtaining handle for valid property names 413
operations on null-terminated strings 389, 394
pushing into input stream 368
returning charsetID 392
returning number in initial string segment 398
transforming strings to codes 410

winch subroutine 514
window, copy 482
window coordinates 500
window manipulation

creating structures
pad 533
subwindow 582
window 537
window buffer 528

drawing boxes 469
marking changed overlap 594
overwriting window 543
refreshing

characters 592, 595
current screen 545, 550, 603
standard screen 603
terminal 545, 550, 603
window 594, 602

window size 505
windows 499

clearing 475, 476
creating 537, 582
deleting 491
erasing 494
moving 532
refreshing 594, 602
scrolling 562, 563, 565
setting standout bit pattern 490

winsch subroutine 519
winsertln subroutine 520
wmemchr subroutine 442
wmemcmp subroutine 443
wmemcpy subroutine 444
wmemmove subroutine 444
wmemmset subroutine 445
wmove subroutine 530
wnoutrefresh subroutine 602
word expansions

performing 446
wordexp subroutine 446, 448
wordfree subroutine 448
wprintw subroutine 546
wrefresh subroutine 550
write contents of virtual screen 558
write operations

writing to files 449
write subroutine

described 449
writev subroutine

described 449
writevx subroutine 449

writex subroutine
described 449

wscanw subroutine 557
wsetscrreg subroutine 565
wsscanf subroutine 82
wstandend subroutine 579
wstandout subroutine 579
wstring subroutines 454
wstrtod subroutine 457
wstrtol subroutine 458

X
XTI variables 347

Y
yield processor 87
yield subroutine 459

Z
ZAXPY subroutine 607
ZCOPY subroutine 609
ZDOTC function 605
ZDOTU function 606
ZDROT subroutine 608
ZDSCAL subroutine 612
ZGBMV subroutine 618
ZGEMM subroutine 649
ZGEMV subroutine 617
ZGERC subroutine 639
ZGERU subroutine 639
ZHBMV subroutine 621
ZHEMM subroutine 652
ZHEMV subroutine 620
ZHER subroutine 640
ZHER2 subroutine 642
ZHER2K subroutine 658
ZHERK subroutine 655
ZHPMV subroutine 623
ZHPR subroutine 641
ZHPR2 subroutine 643
ZROTG subroutine 607
ZSCAL subroutine 612
ZSWAP subroutine 610
ZSYMM subroutine 650
ZSYR2K subroutine 657
ZSYRK subroutine 654
ZTBMV subroutine 629
ZTBSV subroutine 634
ZTPMV subroutine 631
ZTPSV subroutine 636
ZTRMM subroutine 660
ZTRMV subroutine 627
ZTRSM subroutine 662
ZTRSV subroutine 632

690 Technical Reference, Volume 2: Base Operating System and Extensions

Readers’ Comments — We’d Like to Hear from You

AIX 5L Version 5.1
Technical Reference: Base Operating System and Extensions , Volume 2

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
���

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Corporation
Publications Department
Internal Zip 9561
11400 Burnet Road
Austin, TX
78758-3493

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

���

Printed in U.S.A

	Contents
	About This Book
	Who Should Use This Book
	Highlighting
	ISO 9000
	32-Bit and 64-Bit Support for the UNIX98 Specification
	Related Publications
	Trademarks

	Chapter 1. Base Operating System (BOS) Runtime Services(Q-Z)
	qsort Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	quotactl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	raise Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameter
	Return Values
	Error Code
	Implementation Specifics
	Related Information

	rand or srand Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Example
	Implementation Specifics
	Related Information

	rand_r Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Implementation Specifics
	File
	Related Information

	random, srandom, initstate, or setstate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Implementation Specifics
	Related Information

	read, readx, readv, readvx, or pread Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	readdir_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	readlink Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Implementation Specifics
	Related Information

	read_real_time or time_base_to_time Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	realpath Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	reboot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	re_comp or re_exec Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	regcmp or regex Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Implementation Specifics
	Related Information

	regcomp Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	regerror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	regexec Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	regfree Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Implementation Specifics
	Related Information

	reltimerid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	remove Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	rename Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	revoke Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	rmdir Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	rpmatch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	RSiAddSetHot Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiChangeFeed Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiChangeHotFeed Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiClose Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Implementation Specifics
	Files
	Related Information

	RSiCreateHotSet Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiCreateStatSet Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiDelSetHot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiDelSetStat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiFirstCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiFirstStat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiGetHotItem Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiGetRawValue Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiGetValue Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiInit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiInstantiate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiInvite Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiMainLoop Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiNextCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiNextStat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiOpen Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiPathAddSetStat Subroutine
	Purpose
	Library
	Syntax
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiPathGetCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiStartFeed Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiStartHotFeed Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiStatGetPath Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiStopFeed Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	RSiStopHotFeed Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	rsqrt Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	rstat Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Files
	Related Information

	_safe_fetch Subroutine
	Purpose
	Library
	Syntax
	Parameter
	Description
	Return Values
	Implementation Specifics
	Related Information

	scandir or alphasort Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	scanf, fscanf, sscanf, or wsscanf Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	sched_yield Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Implementation Specifics

	select Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	semctl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	semget Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	semop Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	setacldb or endacldb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	setaudithostdb or endaudithostdb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	setbuf, setvbuf, setbuffer, or setlinebuf Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	setcsmap Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	setgid, setrgid, setegid, or setregid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	setgroups Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Implementation Specifics
	Related Information

	setjmp or longjmp Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	setlocale Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	setpcred Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	setpenv Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	setpgid or setpgrp Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	setpri Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	setpwdb or endpwdb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Implementation Specifics
	Related Information

	setroledb or endroledb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Related Information

	setsid Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	setuid, setruid, seteuid, or setreuid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	setuserdb or enduserdb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Implementation Specifics
	Related Information

	sgetl or sputl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Implementation Specifics
	Related Information

	shmat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	shmctl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	shmdt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	shmget Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	sigaction, sigvec, or signal Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	sigaltstack Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	sigemptyset, sigfillset, sigaddset, sigdelset, or sigismemberSubroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	siginterrupt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	sigpending Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	sigprocmask, sigsetmask, or sigblock Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Compatibility Interfaces
	Return Values
	Error Codes
	Implementation Specifics
	Examples
	Implementation Specifics
	Related Information

	sigset, sighold, sigrelse, or sigignore Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	sigsetjmp or siglongjmp Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	sigstack Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	sigsuspend or sigpause Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Implementation Specifics
	Related Information

	sigthreadmask Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	sigwait Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Code
	Implementation Specifics
	Related Information

	sin, sinl, cos, cosl, tan, or tanl Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Error Codes
	Implementation Specifics
	Related Information

	sinh, sinhl, cosh, coshl, tanh, or tanhl Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Error Codes
	Implementation Specifics
	Related Information

	sleep, nsleep or usleep Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Compatibility Interfaces
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	snprintf Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	SpmiAddSetHot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Programming Notes
	Error Codes
	Implementation Specifics
	Files

	SpmiCreateHotSet
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiCreateStatSet Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiDdsAddCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiDdsDelCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiDdsInit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiDelSetHot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiDelSetStat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiExit Subroutine
	Purpose
	Library
	Syntax
	Description
	Implementation Specifics
	Files
	Related Information

	SpmiFirstCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiFirstHot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiFirstStat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiFirstVals Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiFreeHotSet Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiFreeStatSet Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiGetCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiGetHotSet Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiGetStat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiGetStatSet Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiGetValue Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiInit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiInstantiate Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiNextCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiNextHot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiNextHotItem Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiNextStat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiNextVals Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values

	SpmiNextValue Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Value
	Error Codes
	Programming Notes
	Implementation Specifics
	Files
	Related Information

	SpmiPathAddSetStat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiPathGetCx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	SpmiStatGetPath Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	sqrt, sqrtl, or cbrt Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	src_err_msg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	src_err_msg_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	srcrrqs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Files
	Related Information

	srcrrqs_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	srcsbuf Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Files
	Related Information

	srcsbuf_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	srcsrpy Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Files
	Related Information

	srcsrqt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Files
	Related Information

	srcsrqt_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Files
	Related Information

	srcstat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Files
	Related Information

	srcstat_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Files
	Related Information

	srcstathdr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	srcstattxt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	srcstattxt_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	srcstop Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Files
	Related Information

	srcstrt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Files
	Related Information

	ssignal or gsignal Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Implementation Specifics
	Related Information

	statacl or fstatacl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	statfs, fstatfs, or ustat Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	statvfs or fstatvfs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	statx, stat, lstat, fstatx, fstat, fullstat, ffullstat, stat64, lstat64, or fstat64Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	strcat, strncat, strxfrm, strcpy, strncpy, or strdup Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Implementation Specifics
	Related Information

	strcmp, strncmp, strcasecmp, strncasecmp, or strcoll Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Implementation Specifics
	Related Information

	strerror Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	strfmon Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Flags
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	strftime Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, or strtokSubroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Implementation Specifics
	Related Information

	strncollen Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	strtol, strtoul, strtoll, strtoull, atol, or atoi Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	strptime Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	stty or gtty Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	swab Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Implementation Specifics
	Related Information

	swapoff Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Related Information

	swapon Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Implementation Specifics
	Related Information

	swapqry Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	symlink Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	sync Subroutine
	Purpose
	Library
	Syntax
	Description
	Implementation Specifics
	Related Information

	_sync_cache_range Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Implementation Specifics
	Related Information

	sysconf Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	File
	Implementation Specifics
	Related Information

	sysconfig Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	SYS_CFGDD sysconfig Operation
	Purpose
	Description
	Return Values
	Error Codes
	Related Information

	SYS_CFGKMOD sysconfig Operation
	Purpose
	Description
	Return Values
	Error Codes
	File
	Related Information

	SYS_GETPARMS sysconfig Operation
	Purpose
	Description
	Return Values
	Error Codes
	File
	Related Information

	SYS_KLOAD sysconfig Operation
	Purpose
	Description
	Loader Symbol Binding Support
	Return Values
	Error Codes
	File
	Related Information
	Purpose
	Description
	Loader Symbol Binding Support
	Return Values
	Error Codes
	File
	Related Information

	SYS_KULOAD sysconfig Operation
	Purpose
	Description
	Return Values
	Error Codes
	Related Information

	SYS_QDVSW sysconfig Operation
	Purpose
	Description
	Return Values
	Error Codes
	File
	Related Information

	SYS_QUERYLOAD sysconfig Operation
	Purpose
	Description
	Return Values
	Error Codes
	Related Information

	SYS_SETPARMS sysconfig Operation
	Purpose
	Description
	Return Values
	Error Codes
	File
	Related Information

	SYS_SINGLELOAD sysconfig Operation
	Purpose
	Description
	Return Values
	Related Information

	syslog, openlog, closelog, or setlogmask Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Implementation Specifics
	Related Information

	syslog_r, openlog_r, closelog_r, or setlogmask_r Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	sys_parm Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Return Values
	Error Codes
	File
	Related Information

	system Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	tcb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Security
	Implementation Specifics
	Related Information

	tcdrain Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Example
	Implementation Specifics
	Related Information

	tcflow Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Example
	Implementation Specifics
	Related Information

	tcflush Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Example
	Implementation Specifics
	Related Information

	tcgetattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	tcgetpgrp Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	tcsendbreak Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Examples
	Implementation Specifics
	Related Information

	tcsetattr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Example
	Implementation Specifics
	Related Information

	tcsetpgrp Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	termdef Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Implementation Specifics
	Related Information

	timezone Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Errors
	Implementations Specifics
	Related Information

	thread_post Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	thread_post_many Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	thread_self Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Implementation Specifics
	Related Information

	thread_setsched Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics

	thread_wait Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	tmpfile Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	tmpnam or tempnam Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	towctrans Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	towlower Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	towupper Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	t_rcvreldata Subroutine
	Purpose
	Library
	Syntax
	Description
	Valid States
	Return Values
	Error Codes
	Related Information

	t_rcvv Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	t_rcvvudata Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	t_sndv Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	t_sndreldata Subroutine
	Purpose
	Library
	Syntax
	Description
	Valid States
	Error Codes
	Return Value
	Related Information

	t_sndvudata Subroutine
	Purpose
	Library
	Syntax
	Description
	Valid States
	Error Codes
	Return Values
	Related Information

	t_sysconf Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	trcgen or trcgent Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Implementation Specifics
	Related Information

	trchook or utrchook Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Implementation Specifics
	Related Information

	trcoff Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	trcon Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	trcstart Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Files
	Related Information

	trcstop Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	truncate, truncate64, ftruncate, or ftruncate64 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	tsearch, tdelete, tfind or twalk Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	ttylock, ttywait, ttyunlock, or ttylocked Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	ttyname or isatty Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Files
	Related Information

	ttyslot Subroutine
	Purpose
	Library
	Syntax
	Description
	Files
	Implementation Specifics
	Related Information

	ulimit Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	umask Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	umount or uvmount Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	uname or unamex Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	ungetc or ungetwc Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	unlink Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	unload Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	unlockpt Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	usrinfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	utimes or utime Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	varargs Macros
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Implementation Specifics
	Related Information

	vfwprintf, vwprintf Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	vmgetinfo Subroutine
	Purpose
	Library
	Syntax
	Description
	Implementation Specifics
	Parameters
	Return Values
	Error Codes

	vmount or mount Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	vsnprintf Subroutine
	Purpose
	Library
	Syntax
	Description
	Implementation Specifics

	vwsprintf Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	wait, waitpid, wait3, or wait364 Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Macros
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	wcscat, wcschr, wcscmp, wcscpy, or wcscspn Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	wcscoll Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	wcsftime Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	wcsid Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	wcslen Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	wcsncat, wcsncmp, or wcsncpy Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Implementation Specifics
	Related Information

	wcspbrk Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	wcsrchr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	wcsrtombs Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	wcsspn Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	wcsstr Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Implementation Specifics
	Related Information

	wcstod Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	wcstok Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	wcstol or wcstoll Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	wcstombs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	wcstoul or wcstoull Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	wcswcs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	wcswidth Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	wcsxfrm Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	wctob Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Implementation Specifics
	Related Information

	wctomb Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	wctrans Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	wctype or get_wctype Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	wcwidth Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	wlm_assign Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	wlm_change_class Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	wlm_check subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	wlm_classify Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wlm_class2key Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wlm_create_class Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	wlm_delete_class Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	wlm_endkey Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wlm_get_bio_stats subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wlm_get_info Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wlm_init_class_definition Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	wlm_initialize Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	wlm_initkey Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wlm_key2class Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wlm_load Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	wlm_read_classes Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Error Codes
	Related Information

	wlm_set Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wlm_set_tag Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Related Information

	wmemchr Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Implementation Specifics
	Related Information

	wmemcmp Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Implementation Specifics
	Related Information

	wmemcpy Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Implementation Specifics
	Related Information

	wmemmove Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Implementation Specifics
	Related Information

	wmemset Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Implementation Specifics
	Related Information

	wordexp Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Errors
	Implementation Specifics
	Related Information

	wordfree Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Implementation Specifics
	Related Information

	write, writex, writev, writevx or pwrite Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Error Codes
	Implementation Specifics
	Related Information

	wstring Subroutine
	Purpose
	Library
	Syntax
	Description
	Implementation Specifics
	Related Information

	wstrtod or watof Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Error Codes
	Implementation Specifics
	Related Information

	wstrtol, watol, or watoi Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Implementation Specifics
	Related Information

	yield Subroutine
	Purpose
	Library
	Syntax
	Description
	Implementation Specifics
	Related Information

	Chapter 2. Curses Subroutines
	addch, mvaddch, mvwaddch, or waddch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	addnstr, addstr, mvaddnstr, mvaddstr, mvwaddnstr, mvwaddstr,waddnstr, or waddstr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	attroff, attron, attrset, wattroff, wattron, or wattrset Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	attron or wattron Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Implementation Specifics
	Related Information

	attrset or wattrset Subroutine
	Purpose
	Libraries
	Syntax
	Description
	Parameters
	Examples
	Implementation Specifics
	Related Information

	baudrate Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Implementation Specifics
	Related Information

	beep Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Implementation Specifics
	Related Information

	box Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	can_change_color, color_content, has_colors,init_color, init_pair,start_color or pair_content Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	cbreak, nocbreak, noraw, or raw Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Implementation Specifics
	Related Information

	clear, erase, wclear or werase Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	clearok, idlok, leaveok, scrollok, setscrreg or wsetscrreg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	clrtobot or wclrtobot Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	clrtoeol or wclrtoeol Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	color_content Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Parameters
	Example
	Implementation Specifics
	Related Information

	copywin Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	curs_set Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	def_prog_mode, def_shell_mode, reset_prog_mode orreset_shell_mode Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Implementation Specifics
	Related Information

	def_shell_mode Subroutine
	Purpose
	Library
	Syntax
	Description
	Example
	Implementation Specifics
	Related Information

	del_curterm, restartterm, set_curterm, or setupterm Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	delay_output Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	delch, mvdelch, mvwdelch or wdelch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	deleteln or wdeleteln Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	delwin Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	echo or noecho Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Implementation Specifics
	Related Information

	echochar or wechochar Subroutines
	Purpose
	Library
	Syntax
	Description
	Return Values
	Example
	Implementation Specifics
	Related Information

	endwin Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Implementation Specifics
	Related Information

	erase or werase Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Implementation Specifics
	Related Information

	erasechar, erasewchar, killchar, and killwchar Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Implementation Specifics
	Related Information

	filter Subroutine
	Purpose
	Library
	Syntax
	Description
	Implementation Specifics
	Related Information

	flash Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Implementation Specifics
	Related Information

	flushinp Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Implementation Specifics
	Related Information

	garbagedlines Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Implementation Specifics
	Related Information

	getbegyx, getmaxyx, getparyx, or getyx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Implementation Specifics
	Related Information

	getch, mvgetch, mvwgetch, or wgetch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	getmaxyx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Example
	Implementation Specifics
	Related Information

	getnstr, getstr, mvgetnstr, mvgetstr, mvwgetnstr, mvwgetstr, wgetnstr,or wgetstr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	getsyx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Implementation Specifics
	Related Information

	getyx Macro
	Purpose
	Library
	Syntax
	Description
	Parameters
	Example
	Implementation Specifics
	Related Information

	halfdelay Subroutine
	Purpose
	Library
	Syntax
	Description
	Flag
	Parameters
	Return Values
	Related Information

	has_colors Subroutine
	Purpose
	Library
	Syntax
	Description
	Examples
	Implementation Specifics
	Related Information

	has_ic and has_il Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Implementation Specifics
	Related Information

	has_il Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Implementation Specifics
	Related Information

	idlok Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Implementation Specifics
	Related Information

	inch, mvinch, mvwinch, or winch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	init_color Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Parameters
	Examples
	Implementation Specifics
	Related Information

	init_pair Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Parameters
	Examples
	Implementation Specifics
	Related Information

	initscr and newterm Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Example
	Implementation Specifics
	Related Information

	insch, mvinsch, mvwinsch, or winsch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	insertln or winsertln Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	intrflush Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	keyname, key_name Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Return Values
	Examples
	Implementation Specifics
	Related Information

	keypad Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	killchar or killwchar Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	_lazySetErrorHandler Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	leaveok Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	longname Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Implementation Specifics
	Related Information

	makenew Subroutine
	Purpose
	Library
	Syntax
	Description
	Implementation Specifics
	Related Information

	meta Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	move or wmove Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	mvcur Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	mvwin Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	newpad, pnoutrefresh, prefresh, or subpad Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	newterm Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	derwin, newwin, or subwin Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	nl or nonl Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Implementation Specifics
	Related Information

	nodelay Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	notimeout, timeout, wtimeout Subroutine
	Purpose
	Library
	Curses Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	overlay or overwrite Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	pair_content Subroutine
	Purpose
	Library
	Curses Syntax
	Description
	Return Values
	Parameters
	Example
	Implementation Specifics
	Related Information

	prefresh or pnoutrefresh Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Implementation Specifics
	Related Information

	printw, wprintw, mvprintw, or mvwprintw Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Implementation Specifics
	Related Information

	putp, tputs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	raw or noraw Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Implementation Specifics
	Related Information

	refresh or wrefresh Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Implementation Specifics
	Related Information

	reset_prog_mode Subroutine
	Purpose
	Library
	Syntax
	Description
	Implementation Specifics
	Related Information

	reset_shell_mode Subroutine
	Purpose
	Library
	Syntax
	Description
	Implementation Specifics
	Related Information

	resetterm Subroutine
	Purpose
	Library
	Syntax
	Description
	Implementation Specifics
	Related Information

	resetty, savetty Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Examples
	Implementation Specifics
	Related Information

	restartterm Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Implementation Specifics
	Example
	Implementation Specifics
	Prerequisite Information
	Related Information

	ripoffline Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Example
	Implementation Specifics
	Related Information

	savetty Subroutine
	Purpose
	Library
	Syntax
	Description
	Implementation Specifics
	Related Information

	scanw, wscanw, mvscanw, or mvwscanw Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Example
	Implementation Specifics
	Related Information

	scr_dump, scr_init, scr_restore, scr_set Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	scr_init Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Parameters
	Related Information

	scr_restore Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Parameters
	Example
	Implementation Specifics
	Related Information

	scrl, scroll, wscrl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	scrollok Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Implementation Specifics
	Related Information

	set_curterm Subroutine
	Purpose
	Library
	Curses Syntax
	Description
	Parameters
	Examples
	Implementation Specifics
	Related Information

	setscrreg or wsetscrreg Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Implementation Specifics
	Related Information

	setsyx Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Implementation Specifics
	Related Information

	set_term Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	setupterm Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Example
	Implementation Specifics
	Related Information

	_showstring Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Implementation Specifics
	Related Information

	slk_attroff, slk_attr_off, slk_attron, slk_attrset, slk_attr_set, slk_clear,slk_color, slk_init, slk_label, slk_noutrefresh, slk_refresh, slk_restore,slk_set, slk_touch, slk_wset, Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Return Values
	Implementation Specifics
	Related Information

	slk_init Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameter
	Example
	Implementation Specifics
	Related Information

	slk_label Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Example
	Return Values
	Implementation Specifics
	Related Information

	slk_noutrefresh Subroutine
	Purpose
	Library
	Syntax
	Description
	Example
	Implementation Specifics
	Related Information

	slk_refresh Subroutine
	Purpose
	Library
	Syntax
	Description
	Example
	Implementation Specifics
	Related Information

	slk_restore Subroutine
	Purpose
	Library
	Syntax
	Description
	Implementation Specifics
	Related Information

	slk_set Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Example
	Implementation Specifics
	Related Information

	slk_touch Subroutine
	Purpose
	Library
	Syntax
	Description
	Implementation Specifics
	Related Information

	standend, standout, wstandend, or wstandout Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	start_color Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Example
	Implementation Specifics
	Related Information

	subpad Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Implementation Specifics
	Related Information

	subwin Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	tgetent, tgetflag, tgetnum, tgetstr, or tgoto Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	tgetflag Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	tgetnum Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	tgetstr Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Implementation Specifics
	Related Information

	tgoto Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Implementation Specifics
	Related Information

	tigetflag, tigetnum, tigetstr, or tparm Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Parameters
	Examples
	Implementation Specifics
	Related Information

	tigetnum Subroutine
	Purpose
	Library
	Syntax
	Description
	Return Values
	Parameters
	Example
	Implementation Specifics
	Related Information

	tigetstr Routine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Example
	Return Values
	Implementation Specifics
	Files
	Related Information

	is_linetouched, is_wintouched, touchline, touchwin, untouchwin, orwtouchin Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	touchoverlap Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Implementation Specifics
	Related Information

	touchwin Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Example
	Implementation Specifics
	Related Information

	tparm Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	tputs Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Implementation Specifics
	Related Information

	typeahead Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Value
	Example
	Implementation Specifics
	Related Information

	unctrl Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	ungetch, unget_wch Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Examples
	Implementation Specifics
	Related Information

	vidattr, vid_attr, vidputs, or vid_puts Subroutine
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	doupdate, refresh, wnoutrefresh, or wrefresh Subroutines
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Examples
	Implementation Specifics
	Related Information

	Chapter 3. FORTRAN Basic Linear Algebra Subroutines(BLAS)
	SDOT or DDOT Function
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	CDOTC or ZDOTC Function
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	CDOTU or ZDOTU Function
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	SAXPY, DAXPY, CAXPY, or ZAXPY Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	SROTG, DROTG, CROTG, or ZROTG Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SROT, DROT, CSROT, or ZDROT Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	SCOPY, DCOPY, CCOPY, or ZCOPY Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	SSWAP, DSWAP, CSWAP, or ZSWAP Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	SNRM2, DNRM2, SCNRM2, or DZNRM2 Function
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	SASUM, DASUM, SCASUM, or DZASUM Function
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	SSCAL, DSCAL, CSSCAL, CSCAL, ZDSCAL, or ZSCAL Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	ISAMAX, IDAMAX, ICAMAX, or IZAMAX Function
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Error Codes

	SDSDOT Function
	Purpose
	Library
	FORTRAN Syntax
	Purpose
	Parameters
	Error Codes
	Implementation Specifics

	SROTM or DROTM Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Implementation Specifics
	Related information

	SROTMG or DROTMG Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Related Information

	SGEMV, DGEMV, CGEMV, or ZGEMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SGBMV, DGBMV, CGBMV, or ZGBMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CHEMV or ZHEMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CHBMV or ZHBMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CHPMV or ZHPMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SSYMV or DSYMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SSBMV or DSBMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SSPMV or DSPMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	STRMV, DTRMV, CTRMV, or ZTRMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	STBMV, DTBMV, CTBMV, or ZTBMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	STPMV, DTPMV, CTPMV, or ZTPMV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	STRSV, DTRSV, CTRSV, or ZTRSV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Implementation Specifics

	STBSV, DTBSV, CTBSV, or ZTBSV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Implementation Specifics

	STPSV, DTPSV, CTPSV, or ZTPSV Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters
	Implementation Specifics

	SGER or DGER Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CGERU or ZGERU Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CGERC or ZGERC Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CHER or ZHER Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CHPR or ZHPR Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CHER2 or ZHER2 Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CHPR2 or ZHPR2 Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SSYR or DSYR Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SSPR or DSPR Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SSYR2 or DSYR2 Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SSPR2 or DSPR2 Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SGEMM, DGEMM, CGEMM, or ZGEMM Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SSYMM, DSYMM, CSYMM, or ZSYMM Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CHEMM or ZHEMM Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Purpose
	Parameters

	SSYRK, DSYRK, CSYRK, or ZSYRK Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CHERK or ZHERK Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	SSYR2K, DSYR2K, CSYR2K, or ZSYR2K Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	CHER2K or ZHER2K Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	STRMM, DTRMM, CTRMM, or ZTRMM Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	STRSM, DTRSM, CTRSM, or ZTRSM Subroutine
	Purpose
	Library
	FORTRAN Syntax
	Description
	Parameters

	Appendix A. Base Operating System Error Codes for ServicesThat Require Path-Name Resolution
	Appendix B. ODM Error Codes
	Appendix C. Notices
	Index
	Readers’ Comments — We'd Like to Hear from You

