AIX 5L Version 5.1

System User’s Guide: Operating System
and Devices

<|ll

AIX 5L Version 5.1

System User’s Guide: Operating System
and Devices

<|ll

Second Edition (April 2001)

Before using the information in this book, read the general information in EAppendix B_Natices” on page 263.

This edition applies to AIX 5L Version 5.1 and to all subsequent releases of this product until otherwise indicated in
new editions.

(c) Copyright KnowledgeSet Corporation, Mountainview, California, 1990.
(c) Copyright AT&T, 1984, 1985, 1986, 1987, 1988, 1989. All rights reserved.

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from
The Regents of the University of California. We acknowledge the following institutions for their role in its
development: the Electrical Engineering and Computer Sciences Department at the Berkeley Campus.

The Rand MH Message Handling System was developed by the Rand Corporation and the University of California.
Portions of the code and documentation described in this book were derived from code and documentation
developed under the auspices of the Regents of the University of California and have been acquired and modified
under the provisions that the following copyright notice and permission notice appear:

Copyright Regents of the University of California, 1986, 1987, 1988, 1989. All rights reserved.

Redistribution and use in source and binary forms are permitted provided that this notice is preserved and that due
credit is given to the University of California at Berkeley. The name of the University may not be used to endorse or
promote products derived from this software without specific prior written permission. This software is provided "as
is" without express or implied warranty.

Copyright (c) 1993, 1994 Hewlett-Packard Company

Copyright (c) 1993, 1994 International Business Machines Corp.

Copyright (c) 1993, 1994 Sun Microsystems, Inc.

Copyright (c) 1993, 1994 Novell, Inc.

All rights reserved. This product and related documentation are protected by copyright and distributed under licenses
restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be
reproduced in any form by any means without prior written authorization.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the
restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

THIS PUBLICATION IS PROVIDED "AS 1S" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. HEWLETT-PACKARD COMPANY, INTERNATIONAL BUSINESS
MACHINES CORP., SUN MICROSYSTEMS, INC., AND UNIX SYSTEMS LABORATORIES, INC., MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS
PUBLICATION AT ANY TIME.

© Copyright International Business Machines Corporation 1997, 2001. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book . . .
Who Should Use This Book
Highlighting

ISO 9000

Related Publications
Trademarks

Chapter 1. Login Names, System IDs, and Passwords .
Related Information . .
Login and Logout Overview . .
Logging In to the Operating System .
Logging in More Than One Time (login Command)
Becoming Another User on a System (su Command).
Suppressing Login Messages

Logging Out of the Operating System (eX|t and Iogout Commands)

Stopping the Operating System (shutdown Command) .
Related Information . e e .
User and System Identification .
Displaying Your Login Name (whoam| and Iogname Commands)
Displaying the Operating System’s Name (uname Command)
Displaying Your System’s Name (uname Command) .
Displaying Who Is Logged In (who Command) .
Displaying User IDs (id Command) .o
Related Information . .
Passwords .
Password Gwdelmes
Changing Your Password (passwd Command)
Setting Your Password to Null (passwd Command)
Related Information.
Command Summary for Login Names System IDs and Passwords
Login and Logout Commands . .
User and System ldentification Commands .
Password Command .
Related Information.

Chapter 2. User Environment and System Information

Listing the Devices in Your System (Iscfg Command)

Displaying the Name of Your Console (Iscons Command).

Displaying the Name of Your Terminal (ty Command) .

Listing Available Displays (Isdisp Command)

Listing the Available Fonts (Isfont Command) .

Listing Keyboard Maps (Iskbd Command)

Listing Software Products (Islpp Command) .

Listing Control Key Assignments for Your Terminal (stty Command)

Listing All Your Environment Variables (env Command)
Related Information.

Displaying the Value of an Enwronment Varlable (pnntenv Command) .

Working with Bidirectional Languages (aixterm Command)
Related Information.

Command Summary for User Enwronment and System Informat|on
Related Information.

Chapter 3. Commands and Processes .

© Copyright IBM Corp. 1997, 2001

. Xiii
. Xiii
. Xiii
. Xiii
. Xiii
. Xiii

©CO0OWOWONNODOOOOUUORABREAPRAWWNNDN =

Related Information.
Commands Overview .
Command Syntax
Reading Usage Statements .
Using Web-based System Manager.
Using the smit Command
Locating a Command or Program (where|s Command)
Displaying Information about a Command (man Command) .
Displaying the Function of a Command (whatis Command) .

Listing Previously Entered Commands (history Shell Command) .

Repeating Commands Using the Shell history Command .
Substituting Strings Using the Shell history Command .
Editing the Command History .
Creating a Command Alias (alias SheII Command)
Working with Text-Formatting Commands
Related Information.

Processes Overview .
Foreground and Background Processes .
Daemons
Zombie Process .
Starting a Process .
Checking Processes (ps Command)
Setting the Initial Priority of a Process (nice Command)
Changing the Priority of a Running Process (renice Command)
Canceling a Foreground Process.
Stopping a Foreground Process .
Restarting a Stopped Process .
Scheduling a Process for Later Operat|on (at Command)
Listing All Scheduled Processes (at or atq Command) .
Removing a Process from the Schedule (at Command)
Removing a Background Process (kill Command)
Related Information.

Command Summary for Commands and Processes
Commands.
Processes .
Related Informat|on

Chapter 4. Input and Output Redirection . .
Standard Input, Standard Output, and Standard Error .
Redirecting Standard Output G
Redirecting Output to a File. .
Redirecting Output and Appending It to a F|Ie . .
Creating a Text File with Redirection from the Keyboard .
Concatenating Text Files .

Redirecting Standard Input . . .

Discarding Output with the /dev/null F|Ie S
Redirecting Standard Error and Other Output .

Inline Input (Here) Documents. -

Pipes and Filters.

Displaying Program Output and Copyrng It to a F|Ie (tee command) .

Clearing Your Screen (clear Command)

Sending a Message to Standard Output (echo Command)

Appending a Single Line of Text to a File (echo Command) .

Copying Your Screen to a File (capture and script Commands).

Displaying Text in Large Letters on Your Screen (banner Command)
Related Information.

iv System User’s Guide: Operating System and Devices

. 20
. 20
. 20
.22
.22
. 23
. 23
. 23
. 24
. 24
. 25
. 26
. 26
.27
. 28
. 29
. 30
. 30
. 31
. 31
. 31
. 32
. 33
. 33
. 34
. 34
. 34
. 35
. 36
. 37
. 37
. 38
. 38
. 38
. 38
. 39

.41
.41
. 42
. 42
. 43
. 43
. 43
. 43
. 44
. 44
. 45
. 45
. 46
. 46
. 47
. 47
. 47
. 48
. 49

Command Summary for Input and Output Redirection .
Related Information.

Chapter 5. File Systems and Directories .

Related Information.

File Systems . .
File System Types .
File System Structure . .
Showing Space Available on Flle System (df Command)
Related Information.

Directory Overview .
Types of Directories
Directory Organization.
Directory Naming Conventions
Directory Path Names.
Directory Abbreviations
Related Information.

Directory Handling Procedures
Creating a Directory (mkdir Command) .
Moving or Renaming a Directory (mvdir Command)
Displaying Your Current Directory (pwd Command) .
Changing to Another Directory (cd Command) .
Copying a Directory (cp Command). .
Displaying Contents of a Directory (Is Command).
Deleting or Removing a Directory (rmdir Command).
Comparing Contents of Directories (dircmp Command).
Related Information. .

Command Summary for File Systems and D|rector|es .
File Systems .
Directory Abbrewatlons
Directory Handling Procedures
Related Information.

Chapter 6. Files.
Types of Files.
Regular Files .
Directory Files.
Special Files .
File Naming Convent|ons
File Path Names. .
Pattern Matching with Wlldcards and Metacharacters .
Pattern Matching versus Regular Expressions .
Related Information.
File Handling Procedures
Deleting Files (rm Command) .
Moving and Renaming Files (mv Command)
Copying Files (cp Command) .
Finding Files (find Command) .
Showing File Type (file Command) .

Displaying File Contents (pg, more, page, and cat Commands)

Finding Strings in Text Files (grep Command) .

Sorting Text Files (sort Command) .

Comparing Files (diff Command) .

Counting Words, Lines, and Bytes in Flles (WC Command)
Displaying the First Lines of Files (head Command).
Displaying the Last Lines of Files (tail Command)

. 49
. 49

. 51
. 51
. 52
. 52
. 53
. 54
. 54
. 55
. 55
. 56
. 56
. 56
. 57
. 57
. 58
. 58
. 59
. 59
. 59
. 60
. 61
. 62
. 63
. 63
. 64
. 64
. 64
. 64
. 64

. 67
. 68
. 68
. 68
. 68
. 69
. 69
. 69
. 70
.71
.71
.72
.72
. 73
. 74
. 75
. 76
.77
.77
. 78
.79
.79
. 80

Contents

\'

Cutting Sections of Text Files (cut Command) .
Pasting Sections of Text Files (paste Command) .
Numbering Lines in Text Files (nl Command)

Removing Columns in Text Files (colrm Command) .

Related Information.
Linking Files and Directories
Types of Links
Linking Files (In Command)
Removing Linked Files
Related Information.
DOS Files .

Copying DOS F|Ies to Base Operatlng System F|Ies.
Copying Base Operating System Files to DOS Files.

Deleting DOS Files .

Listing Contents of a DOS Dlrectory

Related Information. .o
Command Summary for Files .

File Handling Procedures

Linking Files and Directories

DOS Files .

Chapter 7. Printers, Print Jobs, and Queues
Printer Terminology .
Print Job.
Queue
Queue Device.
gdaemon
Print Spooler .
Real Printer
Virtual Printer . .
Local and Remote Pnnters .
Printer Backend .
Starting a Print Job (qgprt Command)
Prerequisites .
gprt Command
smit Command .
Canceling a Print Job (qcan Command) .
Prerequisites .
gcan Command .
smit Command .
Checking Print Job Status (qchk Command)
Prerequisites . .
Web-based System Manager Fast Path .
gchk Command . Ce
smit Command
Printer Status Conditions.
Prioritizing a Print Job (qgpri Command)
Prerequisites . e
gpri Command
smit Command
Holding and Releasing a Pnnt Job (thd Command)
Prerequisites . A
Web-based System Manager Fast Path .
ghld Command e
smit Command .

Moving a Print Job to Another Pnnt Queue (qmov Command)

vi System User’s Guide: Operating System and Devices

. 80
. 81
. 82
. 82
. 83
. 83
. 84
. 84
. 85
. 85
. 86
. 86
. 87
. 87
. 87
. 88
. 88
. 88
. 89
. 89

.9
.9
.9
.9
. 92
.92
. 92
. 92
. 92
. 93
. 93
. 93
. 94
. 94
. 96
. 96
. 96
. 96
. 97
. 97
.97
.97
.97
. 98
. 98
. 98
. 98
. 99
. 99
. 99
. 99
. 99

. 99

. 100
. 100

Prerequisites.
gmov Command
smit Command .
Formatting Files for Prlntlng (pr Command)
Printing ASCII Files on a PostScript Printer
Prerequisites.
Automating the Conversron of ASCII to PostScnpt
Overriding Automatic Determination of Print File Types .
Related Information . .
Command Summary for Prrnters Prrnt Jobs and Queues .
Related Information .

Chapter 8. Backup Files and Storage Media .
Backup Policy . Coe

Backup Media . .
Formatting Diskettes (format or fdformat Command) . .
Checking the Integrity of the File System (fsck Command) .
Copying to or from Diskettes (flcopy Command). .
Copying Files to Tape or Disk (cpio -o Command) .
Copying Files from Tape or Disk (cpio -i Command)
Copying to or from Tapes (tcopy Command) . .
Checking the Integrity of a Tape (tapechk Command) .
Compressing Files (compress and pack Commands) .

compress Command .

pack Command.

Expanding Compressed Flles (uncompress and unpack Commands) .

uncompress Command .
unpack Command .
Backing Up Files (backup Command)
backup Command . Coe .
smit Command .
Restoring Backed-Up F|Ies (restore Command)
restore Command .
smit Command .
Archiving Files (tar Command)
Related Information .
Command Summary for Backup Flles and Storage Medla .
Related Information

Chapter 9. File and System Security .

Security Threats Coe
Basic Security . .

File Ownership and User Groups . .
Changing File or Directory Ownership (chown Command) .
File and Directory Access Modes .

Displaying Group Information (Isgroup Command)

Changing File or Directory Permissions (chmod Command)
Access Control Lists .

Base Permissions .

Extended Permissions .

Access Control List Example .

Access Authorization . .

Displaying Access Control Informatlon (aclget Command) .

Setting Access Control Information (aclput Command)

Editing Access Control Information (acledit Command)
Locking Your Terminal (lock or xlock Command).

. 100
. 100
. 100
. 100
. 102
. 102
. 103
. 103
. 104
. 104
. 104

. 105
. 105
. 106
. 107
. 108
. 109
. 109

Contents

. 110
.11
111
111
. 112
. 112
. 113
. 113
. 113
. 114
. 114
. 115
. 115
. 115
. 116
. 116
. 117
. 117
. 118

. 119
. 119
. 119
. 121
. 121
121
. 123
. 125
. 126
. 126
. 126
. 127
. 128
. 129
. 129
. 130
. 130

Vii

Command Summary for File and System Security .
Related Information .

Chapter 10. Customizing the User Environment.

Related Information . .

System Startup Files Overwew .

/etc/profile File .

/etc/environment File .

.profile File

.env File .

AlXwindows Startup F|Ies OverV|ew .
Xinitrc File
Xdefaults File .

.mwmrc File .
Related Information .

Customization Procedures.

Exporting Shell Variables (export Shell Command)
Changing the Display’s Font (chfont Command).
Changing Control Keys (stty Command).
Changing Your System Prompt .

Related Information .

Customizing the InfoExplorer Wmdows Program
Changing Defaults in the InfoExplorer Window Interface
Changing Preferences in the InfoExplorer Window Interface

Summary for User Environment Customization .
System Startup Files.

AlXwindows Startup Files .
Customization Procedures.
Related Information .

Chapter 11. Shells
Shell Features . .
Available Shells.
Shells Terms.
Creating and Runnmg a SheII Scrlpt
Specifying a Shell for a Script File .
Related Information
Korn Shell or POSIX Shell Commands .
Korn Shell Compound Commands.
Functions
Quoting in the Korn SheII or POSIX SheII Coe
Reserved Words in the Korn Shell or POSIX Shell .
Command Aliasing in the Korn Shell or POSIX Shell .
Tracked Aliases. e e e e
Tilde Substitution .
Parameter Substitution in the Korn SheII or POSIX SheII
Parameters in the Korn Shell.
Parameter Substitution .
Predefined Special Parameters .

Variables Set by the Korn Shell or POSIX SheII .
Variables Used by the Korn Shell or POSIX Shell .
Command Substitution in the Korn Shell or POSIX Shell
Arithmetic Evaluation in the Korn Shell or POSIX Shell .
Field Splitting in the Korn Shell or the POSIX Shell . .
File Name Substitution in the Korn Shell or POSIX Shell

Quote Removal.

Viii System User's Guide: Operating System and Devices

. 130
. 131

. 133
. 133
. 134
. 134
. 135
. 135
. 136
. 136
. 137
. 138
. 139
. 140
141
.14
. 141
. 142
. 143
. 143
. 144
. 144
. 145
. 147
. 147
. 147
. 147
. 147

. 149
. 150
. 151
. 152
. 153
. 154
. 154
. 155
. 156
. 157
. 158
. 159
. 160
. 161
. 161
. 161
. 161
. 162
. 163
. 164
. 164
. 165
. 166
. 168
. 168
. 169

Input and Output Redirection in the Korn Shell or POSIX Shell .

Coprocess Facility. . .
Exit Status in the Korn SheII or POSIX SheII
Korn Shell or POSIX Shell Commands .
Korn Shell Environment.
Shell Startup. . .
Korn Shell or POSIX SheII Command H|story
Korn Shell or POSIX Shell Built-in Commands .
Special Built-in Command Descriptions .
Regular Built-in Command Descriptions. . .
List of Korn Shell or POSIX Shell Built-in Commands
Special Built-in Commands
Regular Built-in Commands . .
Conditional Expressions for the Korn SheII or POSIX Shell
Job Control in the Korn Shell or POSIX Shell.
Signal Handling. . . .
Inline Editing in the Korn Shell or POSIX SheII .
emacs Editing Mode . e
vi Editing Mode. .
Enhanced Korn Shell (ksh93)
Features of ksh93.
Korn Shell Related Information .
Bourne Shell.
Bourne Shell Enwronment
Restricted Shell.
Bourne Shell Commands .
Quoting Characters .
Signal Handling.
Bourne Shell Compound Commands
Reserved Words
Bourne Shell Built-In Commands
Special Command Descriptions .
Command Substitution in the Bourne SheII
Variable and File Name Substitution in the Bourne Shell.
Variable Substitution in the Bourne Shell
User-Defined Variables .
Conditional Substitution.
Positional Parameters
File Name Substitution in the Bourne SheII
Character Classes.
Input and Output Redirection in the Bourne Shell
List of Bourne Shell Built-in Commands .
Bourne Shell Related Information .
C Shell. .
C Shell leltat|ons
Signal Handling.
C Shell Commands . . .
C Shell Built-In Commands
C Shell Command Descriptions .
C Shell Expressions and Operators
Command Substitution in the C Shell.
Nonbuilt-in C Shell Command Execution
History Substitution in the C Shell .
History Lists . Co
Event Specification .
Quoting with Single and Double Quotes.

. 169
171
. 172
. 172
. 173
. 173
. 174
. 174
. 175
. 180
. 184
. 184
. 184
. 185
. 186
. 187
. 187
. 188
. 189
. 192
. 192
. 195
. 196
. 196
. 197
. 198
. 199
. 199
. 200
. 200
. 201
. 201
. 204
. 205
. 205
. 205
. 209
. 210
. 210
. 210
.21
.21
. 212
. 212
. 213
. 214
. 214
. 214
. 215
. 220
. 221
. 222
. 222
. 222
. 223
. 224

Contents

ix

Alias Substitution in the C Shell.

Variable and File Name Substitution in the C Shell
Variable Substitution in the C Shell
File Name Substitution in the C Shell.
File Name Expansion
File Name Abbreviation .
Character Classes.

Environment Variables in the C Shell

Input and Output Redirection in the C Shell
Control Flow. . . . Ce e e

Job Control in the C SheII

List of C Shell Built-in Commands .

C Shell Related Information .

Chapter 12. Miscellaneous Tools and Utilities

Locating a Command by Keyword (apropos Command) .
Displaying a Calendar (cal Command)

Displaying Reminder Messages (calendar Command) .
Displaying Help Information for New Users (help Command) .

Starting Computer-Aided Instruction Courses (learn Command) .

Reminding Yourself When to Leave (leave Command)
Factoring a Number (factor Command) . .
Converting Units of Measure (units Command) .

Sending Messages to Another Logged-In User (write Command)

Related Information . .
Command Summary for Mlscellaneous Tools and Utrlrtres .
Related Information .

Chapter 13. Documentation Library Service

Introduction . .

Using the Documentatlon L|brary Serwce .

How to Change the Documentation Library Serwce Language

Appendix A. Accessing Information with InfoExplorer .
Using the InfoExplorer ASCII Interface .

Using InfoExplorer Screens

Using Menus.

Getting Help .
Getting Started .

Starting the InfoEprorer ASCII Program

Recognizing Screen Types .

Selecting a Hypertext Link.

Scrolling Information .

Selecting a Menu Option

Returning to a Previous Location

Searching for Information .

Printing Information

Accessing Help.

Using Special Keys and Key Sequences

Starting an Alternate InfoExplorer Library .

Stopping the InfoExplorer ASCII Program .
Customizing the InfoExplorer ASCII Program .

Changing Defaults in the InfoExplorer ASCII Interface .

Changing Preferences in the InfoExplorer ASCII Interface .
X Resources Available for the InfoExplorer Program .

X System User’s Guide: Operating System and Devices

. 225
. 226
. 226
. 227
. 227
. 228
. 229
. 229
. 231
. 232
. 232
. 232
. 234

. 235
. 235
. 235
. 236
. 236
. 237
. 237
. 238
. 238
. 240
. 242
. 243
. 243

. 245
. 245
. 245
. 246

. 249
. 249
. 249
. 250
. 250
. 250
. 251
. 251
. 252
. 252
. 253
. 253
. 254
. 256
. 257
. 258
. 259
. 259
. 260
. 260
. 261
. 262

AppendixB. Notices268

Index265

Contents Xi

Xii System User's Guide: Operating System and Devices

About This Book

This book contains information for novice system users who want to acquire greater expertise with the
operating system. It covers information such as running commands, handling processes, handling files and
directories, and printing. In addition, it introduces system commands covering tasks such as securing files,
using storage media, customizing environment files (.profile, .Xdefaults, .mwmrc), and writing shell
scripts. For DOS users, this guide presents procedures on using DOS files in this environment.

Users in a networked environment who are interested in learning more about operating system
communications commands should read the AIX 5L Version 5.1 System User’s Guide: Communications
and Networks.

Who Should Use This Book

This book is intended for all system users.

Highlighting

The following highlighting conventions are used in this book:

Bold Identifies commands, keywords, files, directories, and other items whose names are predefined by
the system.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you might see

displayed, examples of portions of program code similar to what you might write as a programmer,
messages from the system, or information you should actually type.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications

The following books contain pertinent information:

* Quick Beginnings

* AIX 5L Version 5.1 System User’s Guide: Communications and Networks

* AIX 5L Version 5.1 System Management Guide: Operating System and Devices
» AIX 5L Version 5.1 Guide to Printers and Printing

* AIX 5L Version 5.1 Commands Reference

* AIX 5L Version 5.1 Files Reference

* Common Desktop Environment 1.0: User’s Guide

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

* AIX

* AlXwindows

* IBM

+ RS/6000

© Copyright IBM Corp. 1997, 2001 xiii

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be the trademarks or service marks of others.

xiv System User’s Guide: Operating System and Devices

Chapter 1. Login Names, System IDs, and Passwords

The operating system must know who you are in order to provide you with the correct environment. To
identify yourself to the operating system, log in by entering your login name (also known as your user ID
or user name) and a password. Passwords are a form of security. People who know your login name
cannot log in to your system unless they know your password.

If your system is set up as a multiuser system, each authorized user will have an account, password, and
login name on the system. The operating system keeps track of the resources used by each user. This is
known as system accounting. Each user will be given a private area in the storage space of the system,
called the file system. When you log in, the file system appears to contain only your files, although there
are thousands of other files on the system.

It is possible to have more than one valid login name on a system. If you want to change from one login
name to another, you do not have to log out of the system. Rather, you can use the different login names
simultaneously in different shells or consecutively in the same shell without logging out. In addition, if your
system is part of a network with connections to other systems, you can log in to any of the other systems
where you have a login name. This is referred to as a remote login.

When you have finished working on the operating system, you log out to ensure that your files and data
are secure.

This section discusses the following:

] H H ’”

¢ : A ”

— tlogging Qut of the Qperating System (exit and logout Commands)” on page 4 (exit and logout
Commands)

© Copyright IBM Corp. 1997, 2001 1

Related Information

Login and Logout Overview

To use the operating system, your system must be running and you must be logged in. When you log in to
the operating system, you identify yourself to the system and allow the system to set up your environment.

This section describes the following procedures:

Logging In to the Operating System

You need to start a session on your system before beginning to work on your system. After your system is
turned on, just log in to the system to start a session.

Your system might be set up so that you can only log in during certain hours of the day and on certain
days of the week. If you attempt to log in at a time other than the time allowed, your access will be denied.
Your system administrator can verify what your login times are.

You log in at the login prompt. When you log in to the operating system, you are automatically placed into
your home directory (also called your login directory).

If Your Machine Is Not Turned On
1. Set the power switches of each attached device to On.

2. Set the key mode switch on the system unit to Normal.
3. Start the system unit by setting the power switch to On (1).
4

Look at the three-digit display. When the self-tests complete without error, the three-digit display is
blank.

If an error requiring attention occurs, a three-digit code remains, and the system unit stops. Consult your

system administrator or refer to the Messages Guide and Reference for more information about error
codes and recovery.

2 System User's Guide: Operating System and Devices

When the self-tests complete successfully, a login prompt similar to the following appears on your screen:

login:
If the login prompt does not display, consult your system administrator.

If Your System Is Already Turned On
1. Type your login name following the Togin: prompt and press Enter:
login: LoginName

For example, if your login name is denise:
login: denise

2. If the password: prompt appears, type your password and press Enter. (The screen does not display
your password as you type it in.)

password: [your password]

If the password prompt does not appear, you have no password defined; you can begin working in the
operating system.

After you have logged in, depending on how your operating system is set up, your system will start up in a

command line interface (shell) or a graphical interface (for example, AIXwindows or Common Desktop
Environment (CDE)).

Logging in More Than One Time (login Command)

You can have more than one concurrent login. You do this by using the same login name or by using
different login names to log in to your system. This can be useful if you are working on more than one
project and want to maintain separate accounts.

Note: Each system has a maximum number of login names that can be active at any given time.
This number is determined by your license agreement and varies among installations.

For example, if your other login name is denise2, at the prompt, type:

login denise2

If the password: prompt appears, type your password and press Enter. (The screen does not display your
password as you type it in.)

You now have two logins running on your system.

See the m command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Becoming Another User on a System (su Command)

The su (switch user) command enables you to change the user ID associated with a session, if you know
that user’s login name.

For example, if you want to switch and become user joyce, at the prompt type:

su joyce

If the password: prompt appears, type joyce’s password and press Enter. If you don’t know the password,
the request is denied.

Your user ID is now joyce.

Chapter 1. Login Names, System IDs, and Passwords 3

../../cmds/aixcmds3/login.htm#HDRA68V042F7

To verify that your user ID is joyce, use the id command. For more information on the id command, see

See the kU command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Suppressing Login Messages

After a successful login, the login command displays the message of the day, the date and time of the last
successful and unsuccessful login attempts for this user, and the total number of unsuccessful login
attempts for this user since the last change of authentication information (usually a password). These
messages are suppressed if there is a .hushlogin file in your home directory.

At the prompt in your home directory, type:
touch .hushlogin

The touch command creates the empty file named .hushlogin if it doesn’t exist.

The next time you log in, all login messages will be suppressed. You can instruct the system to retain the
message of the day, while suppressing other login messages.

See the kaucH command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Logging Out of the Operating System (exit and logout Commands)

At the prompt, do one of the following:

Press the end-of-file control key-sequence (Ctrl-D keys).

OR

Type exit and press Enter.

OR

Type logout and press Enter.

After you log out, the system displays the Togin: prompt.

See the m command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.
Attention: Do not turn off the system. Turning off the system ends all processes running on the

system. If other users are working on the system, or if jobs are running in the background, data
might be lost. Perform proper shutdown procedures before you stop the system.

Stopping the Operating System (shutdown Command)

If you have root user authority, you can use the shutdown command to stop the system. Do not turn off
the power to your system without using the shutdown command. This can result in lost data. If you are
not authorized to use the shutdown command, simply log out of the operating system and leave it
running. .

At the prompt, type:
shutdown

4 System User's Guide: Operating System and Devices

../../cmds/aixcmds5/su.htm#HDRA248Y99C6D
../../cmds/aixcmds5/touch.htm#HDROHK350CRAW
../../cmds/aixcmds3/logout.htm#HDRA68V042DA

When the shutdown command completes and the operating system stops running, you receive the
following message:

....Shutdown completed....

See the khutdowd command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Related Information

User and System Identification

The following procedures describe different commands available for displaying information that identifies
users on your system and the system you are using.

Displaying Your Login Name (whoami and logname Commands)

When you have more than one concurrent login, it is often easy to lose track of the login names or, in
particular, the login name being used at the time.

whoami Command

To determine which login name is being used, at the prompt, type:
whoami

The system displays information similar to the following:
denise

In this example, the login name is denise.
See the lwhoami command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.
who am i Command

A variation of the who command, the who am i command displays the login name, terminal name, and
time of the login.

At the prompt, type:
who am i

The system displays information similar to the following:
denise pts/0 Jun 21 07:53

Chapter 1. Login Names, System IDs, and Passwords

5

../../cmds/aixcmds5/shutdown.htm#HDRA15793A2
../../cmds/aixcmds6/whoami.htm#HDRA151Z93316

In this example, the login name is denise, the name of the terminal is pts/0, and this user logged in at
7:53 a.m. on June 21.

See the lwhd command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.
logname Command

Another variation of the who command, the logname command displays the same information as the who
command.

At the prompt, type:
logname

The system displays information similar to the following:
denise

In this example, the login name is denise.

See the m command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Displaying the Operating System’s Name (uname Command)
The uname command displays the name of the operating system that you are using.

For example, at the prompt, type:
uname

The system displays information similar to the following:
AIX

In this example, the operating system name is AIX.

See the inamd command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Displaying Your System’s Name (uname Command)

The uname command used with the -n flag displays the name of your system if you are on a network.
Your system name identifies your system to the network, it is not the same as your login ID.

For example, at the prompt, type:

uname -n

The system displays information similar to the following:

barnard
In this example, the system name is barnard.

See the lunamd command in the AIX 5L Version 5.1 Commands Reference Book for more information and
the exact syntax.

Displaying Who Is Logged In (who Command)

The who command displays information about all users currently on the local system. The following
information is displayed: login name, workstation name, and date and time of login.

6 System User's Guide: Operating System and Devices

../../cmds/aixcmds6/who.htm#HDRKAREN7
../../cmds/aixcmds3/logname.htm#HDRA68V043B2
../../cmds/aixcmds5/uname.htm#HDRA133Z92594
../../cmds/aixcmds5/uname.htm#HDRA133Z92594

Note: This command only identifies users on the local node.

To display information about who is using the local system node, type:
who

The system displays information similar to the following:

joe 1ft/0 Jun 8 08:34
denise pts/1 Jun 8 07:07

In this example, the user joe, on terminal 1ft/0, logged in at 8:34 a.m. on June 8.

See the lwhd command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.
Displaying User IDs (id Command)

The id command displays the system identifications (IDs) for a specified user. The system IDs are
numbers that identify users and user groups to the system. The id command displays the following
information, when applicable:

* User name and real user ID
* Name of the user’s group and real group ID
* Name of the user’s supplementary groups and supplementary group IDs, if any.

For example, at the prompt, type:
id
The system displays information similar to the following:

uid=1544(sah) gid=300(build) euid=0(root) egid=9(printq) groups=0(system),10(audit)

In this example, the user has user name sah with an ID number of 1544; a primary group name of build
with an ID number of 300; an effective user name of root with an ID number of 0; an effective group name
of printg with an ID number of 9; and two supplementary group names of system and audit, with ID
numbers 0 and 10, respectively.

For example, at the prompt, type:
id denise

The system displays information similar to the following:
uid=2988(denise) gid=1(staff)

In this example, the user denise has an ID number of 2988 and only has a primary group name of staff
with an ID number of 1.

See the id command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Related Information

Chapter 1. Login Names, System IDs, and Passwords 7

../../cmds/aixcmds6/who.htm#HDRKAREN7
../../cmds/aixcmds3/id.htm#HDRA68V04396

Passwords

Your system associates a password with each account. A unique password provides some system security
for your files. System use and data are valuable resources that require protection. Security is an important
part of computer systems because it keeps unauthorized people from gaining access to the system and
from tampering with other users’ files. Security can also allow some users exclusive privileges to which
commands they can use and which files they can access. For protection, some system administrators only
permit the users access to certain commands or files.

This section describes the following procedures:

Password Guidelines

You should have a unique password. Passwords should not be shared. Protect passwords as any other
company asset. When creating passwords, make sure they are difficult to guess, but not so difficult that
you have to write them down to remember them.

Using obscure passwords keeps your user ID secure. Passwords based on personal information, such as
your name or birthday, are poor passwords. Even common words can be easily guessed.

Good passwords have at least six characters and include nonalphabetic characters. Strange word
combinations and words purposely misspelled are also good.

Note: If your password is so hard to remember that you have to write it down, it is not a good
password.

Use the following guidelines when selecting a password:

* Do not write passwords down. However, if you must write them down, place them in a physically secure
place, such as a locked cabinet.

* Do not use your user ID as a password. Do not use it reversed, doubled, or otherwise modified.
* Do not reuse passwords. The system might be set up to deny the reuse of passwords.

* Do not use any person’s name as your password.

* Do not use words that can be found in the online spelling-check dictionary as your password.

* Do not use passwords shorter than six characters.

* Do not use obscene words; they are some of the first ones checked when guessing passwords.
* Do use passwords that are easy to remember, so you won’t have to write them down.

* Do use passwords that use both letters and numbers and that have both lowercase and uppercase
letters.

* Do use two words, separated by a number, as a password.
» Do use pronounceable passwords. They are easier to remember.

Changing Your Password (passwd Command)

Use the passwd command to change your password.
1. At the prompt, type:
passwd

If you do not have a password, skip step 2.

8 System User's Guide: Operating System and Devices

2. The following prompt appears:

Changing password for UserID
UserID's 01d password:

This request keeps an unauthorized user from changing your password while you are away from your
system. Type your current password and press Enter.

The following prompt appears:

UserID's New password:

Type the new password you want and press Enter.
The following prompt appears, asking for you to reenter your new password.
Enter the new password again:

This request protects you from setting your password to a mistyped string that you can not recreate.

Examples

1.

To change the password of the user denise, type:
passwd

Press Enter.

The system displays information similar to the following:

Changing password for "denise"
denise's 01d password:
denise's New password:

Type the new password again:

The following example enters the current password incorrectly:

$ passwd

Changing password for "denise"

denise's 01d password:

Your entry does not match the old password.

You are not authorized to change "denise's" password.

$
The following example reenters the new password incorrectly:

$ passwd

Changing password for "denise"

denise's 01d password:

denise's New password:

Enter the new password again:

The password entry does not match, please try again.
denise's New password:

Enter the new password again:

$

See the m command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Setting Your Password to Null (passwd Command)

If you do not want to enter a password each time you login, set your password to null.

To set your password to NULL (blank), type:

passwd

When prompted for the new password, press Enter or Cirl-D.

Chapter 1. Login Names, System IDs, and Passwords

9

../../cmds/aixcmds4/passwd.htm#HDROAH1A0CRAW

The passwd command does not prompt again for a password entry. A message verifying the NULL
password is displayed.

See the m command in theAIX 5L Version 5.1 Commands Reference Book for more information and
the exact syntax.

Related Information

Command Summary for Login Names, System IDs, and Passwords

Login and Logout Commands

@ Initiates your session.

m Stops all your processes.

Ehutdowd Ends system operation.

Ed Changes the user ID associated with a session.

toucH Updates the access and modification times of a file, or creates an empty file.

User and System Identification Commands

id Displays the system identifications of a specified user.
m Displays login name.

linamd Displays the name of the current operating system.
luhd Identifies the users currently logged in.

lvhoami Displays your login name.

Password Command

passwd Changes a user’s password.

Related Information

10 System User's Guide: Operating System and Devices

../../cmds/aixcmds4/passwd.htm#HDROAH1A0CRAW
../../cmds/aixcmds3/login.htm#HDRA68V042F7
../../cmds/aixcmds3/logout.htm#HDRA68V042DA
../../cmds/aixcmds5/shutdown.htm#HDRA15793A2
../../cmds/aixcmds5/su.htm#HDRA248Y99C6D
../../cmds/aixcmds5/touch.htm#HDROHK350CRAW
../../cmds/aixcmds3/id.htm#HDRA68V04396
../../cmds/aixcmds3/logname.htm#HDRA68V043B2
../../cmds/aixcmds5/uname.htm#HDRA133Z92594
../../cmds/aixcmds6/who.htm#HDRKAREN7
../../cmds/aixcmds6/whoami.htm#HDRA151Z93316
../../cmds/aixcmds4/passwd.htm#HDROAH1A0CRAW

Chapter 2. User Environment and System Information

Each login name has its own system environment. The system environment is an area where information
common to all processes running in a session is stored. There are also commands you can use to display
information about your system.

This section discusses the following procedures for displaying information about your environment.

Listing the Devices in Your System (Iscfg Command)

You use the Iscfg command to display the name, location, and description of each device found in the
current configuration. The list is sorted by device location.

For example, to list the devices configured in your system, at the prompt, type:
1scfg

Press Enter.

The system displays a message similar to the following:
INSTALLED RESOURCE LIST

The following resources are installed on your machine.

+/- = Added/Deleted from Diagnostic Test List.

* = NOT Supported by Diagnostics.

+ sysplanar@ 00-00 CPU Planar

+ fpal 00-00 Floating Point Processor
+ mem0 00-0A Memory Card

+ meml 00-0B Memory Card

+ ioplanar0 00-00 I/0 Planar

* f2bus0 00-00 Micro Channel Bus

+ rs2320 00-01 RS232 Card

+ tty0 00-01-0-01 RS232 Card Port

ttyl 00-01-0-02 RS232 Card Port

To display information about a specific device, you can use the -l flag. For example, to list the information
on device sysplanar0, at the prompt, type:

1scfg -1 sysplanar@

© Copyright IBM Corp. 1997, 2001 11

Press Enter.

The system displays a message similar to the following:
DEVICE LOCATION DESCRIPTION

sysplanar0 00-00 CPU Planar

You can also use the Iscfg command to display vital product data (VPD), such as part numbers, serial
numbers, and engineering change levels. For some devices, the VPD is collected automatically and added
to the system configuration. For other devices, the VPD is entered manually. An ME preceding the data
signifies that the data was entered manually.

For example, to list the devices configured in your system with vital product data, at the prompt, type:
1scfg -v

Press Enter.

The system displays a message similar to the following:
INSTALLED RESOURCE LIST WITH VPD

The following devices are installed in your system.
sysplanar@ 00-00 CPU Planar

Part Number......... 342522
EC Level....covvn.n. 254921
Serial Number....... 353535

fpa® 00-00 Floating Point Processor
memd 00-0A Memory Card

EC Level...oovvnnnn. 990221

See the Iscfd command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Displaying the Name of Your Console (Iscons Command)

The Iscons command writes the name of the current console device to standard output, usually your
screen.

For example, at the prompt, type:
Iscons

Press Enter.

The system displays a message similar to the following:
/dev/1ft0

See the lscond command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

12 System User's Guide: Operating System and Devices

../../cmds/aixcmds3/lscfg.htm#HDRA31798B0
../../cmds/aixcmds3/lscons.htm#HDRWND290JOYC

Displaying the Name of Your Terminal (ity Command)

The tty command displays the name of your terminal.

For example, at the prompt, type:
tty

Press Enter.

The system displays information similar to the following:
/dev/tty06

In this example, tty06 is the name of the terminal, and /dev/tty06 is the device file that contains the
interface to this terminal.

See the E command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Listing Available Displays (Isdisp Command)

The Isdisp command lists the displays currently available on your system, providing a display identification
name, slot number, display name, and description of each of the displays.

For example, to list all available displays, type:
1sdisp

Press Enter.

Following is an example of the displayed list showing the display identification name, slot number, display
name, and description. The list displays in ascending order according to slot number.

Name Slot Name Description

ppr0 00-01 POWER G4 Midrange Graphics Adapter

gda®@ 00-03 colorgda Color Graphics Display Adapter
pprl 00-04 POWER_Gt3 Midrange Entry Graphics Adapter

See the Isdisgd command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Listing the Available Fonts (Isfont Command)

The Isfont command displays a list of the fonts available to your display.

For example, to list all fonts available to the display in list format, type:
Isfont -1

Press Enter.

Following is an example of the displayed list showing the font identifier, font type, and number of
characters per screen:

ID Name Style Weight Encoding Col X Lines
0 Normal-R-N Roman Normal PC850 80 X 251
1 Normal-I-N Italic Normal PC850 120 X 35
2 Bold-R-Bol Roman Bold PC850 120 X 35

See the Isfand command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Chapter 2. User Environment and System Information 13

../../cmds/aixcmds5/tty.htm#HDRA54K1E0CRAW
../../cmds/aixcmds3/lsdisp.htm#HDRA13298B3
../../cmds/aixcmds3/lsfont.htm#HDROY1340ROLL

Listing Keyboard Maps (Iskbd Command)

The Iskbd command lists the keyboard maps currently available, displaying a predefined keyboard
identifier name and number.

For example, to list all keyboard maps, type:
1skbd

Press Enter.

The following list is displayed showing the predefined keyboard number and name:
0 USA

See the Iskbd command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Listing Software Products (Islpp Command)

The Islpp command displays information about software products available for your system.

For example, to list all the software products in your system, at the system prompt, type:
I1slpp -1 -a

Press Enter.

Following is an example of the displayed list:

Name Fix Id State Description

Path: /usr/1ib/objrepos

INed.obj APPLIED INed Editor
X11_3d.gl.dev.obj APPLIED AIXwindows/3D GL
Development Utilities
Fonts
X11fnt.oldX.fnt APPLIED AIXwindows Miscellaneous
X Fonts
X11mEn_US.msg APPLIED AIXwindows NL Message
files

If the listing is very long, the top portion scrolls off the screen. To prevent this from happening, use the
Islpp command piped to the pg command. At the prompt, type:

1s1pp | pg

Press Enter.

See the m command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

14 System User's Guide: Operating System and Devices

../../cmds/aixcmds3/lskbd.htm#HDRA7R1320ROLL
../../cmds/aixcmds3/lslpp.htm#HDRA228Y9593

Listing Control Key Assignments for Your Terminal (stty Command)

The stty command displays your terminal settings. Most of these settings you can ignore, but the
important information is what keys your terminal uses for control keys.

For example, at the prompt, type:
stty -a

Press Enter.

The system displays information similar to the following:

intr = "C; quit = "\; erase = "H; kill = "U; eof
eol = @ start = Q; stop = S; susp = Z; dsusp_
reprint = R discard = 0; werase = W; lnext =

< I nu

In this example, lines such as intr = "C; quit = "\; erase = H; are your control key settings. The H
key is the Backspace key, and erase is the function it is set to perform. .

If the listing is very long, the top portion scrolls off the screen. To prevent this from happening, use the
stty command piped to the pg command. At the prompt, type:

stty -a | pg
Press Enter.

See the kY command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Listing All Your Environment Variables (env Command)

The env command allows you to display your current environment variables. An environment variable that
is accessible to all your processes is called a global variable.

All variables (with their associated values) known to a command at the beginning of its execution
constitute its environment. This environment includes variables that a command inherits from its parent
process and variables specified as keyword parameters on the command line that calls the command. The
shell interacts with the environment in several ways. When started, the shell scans the environment and
creates a parameter for each name found, giving the parameter the corresponding value and marking it for
export. Executed commands inherit the environment.

For example, to list all environment variables, type:
env

Press Enter.

Following is an example of the displayed list:
TMPDIR=/usr/tmp

myid=denise

LANG=En_US

UNAME=barnard

Chapter 2. User Environment and System Information 15

../../cmds/aixcmds5/stty.htm#HDRA471320ROLL

PAGER=/bin/pg

VISUAL=vi
PATH=/usr/uch:/usr/1pp/X11/bin:/bin:/usr/bin:/etc:/u/denise:/u/denise/bin:/u/binl
MAILPATH=/usr/mail/denise?denise has mail !!!
MAILRECORD=/u/denise/.Outmail

EXINIT=set beautify noflash nomesg report=1 showmode showmatch
EDITOR=vi

PSCH=>

HISTFILE=/u/denise/.history

LOGNAME=denise

MAIL=/usr/mail/denise

PS1=denise@barnard:${PWD}>

PS3=#

pPS2=>

epath=/usr/bin

USER=denise

SHELL=/bin/ksh

HISTSIZE=500

HOME=/u/denise

FCEDIT=vi

TERM=1ft

MAILMSG=+*YOU HAVE NEW MAIL. USE THE mail COMMAND TO SEE YOUR PWD=/u/denise
ENV=/u/denise/.env

If the listing is very long, the top portion scrolls off the screen. To prevent this from happening, use the env
command piped to the pg command. At the prompt, type:

env | pg

Press Enter.

See the knd command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Related Information
Ko Shel Fod - VE|

Displaying the Value of an Environment Variable (printenv Command)

The printenv command displays the values of environment variables. If you specify the Name parameter,
the system only prints the value associated with the parameter you requested. If you do not specify the
Name parameter, the printenv command displays all current environment variables, showing one Name
=Value sequence per line.

For example, to find the current setting of the MAILMSG environment variable, type:
printenv MAILMSG

Press Enter.

The command returns the value of the MAILMSG environment variable. For example:
YOU HAVE NEW MAIL

See the m command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

16 System User's Guide: Operating System and Devices

../../cmds/aixcmds2/env.htm#HDRA133Z92372
../../cmds/aixcmds4/printenv.htm#HDRA151Z9336A

Working with Bidirectional Languages (aixterm Command)

The aixterm command supports Arabic and Hebrew, which are bidirectional languages. Bidirectional
languages have the ability to be read and written in two directions, such as from left to right, and from right
to left. You can work with Arabic and Hebrew applications by opening a window specifying an Arabic or
Hebrew locale.

See the hixterml command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Related Information

Command Summary for User Environment and System Information

hixternd Enables you work with bidirectional languages.

End Displays the current environment or sets the environment for the execution of a command.
E Displays diagnostic information about a device.

{scond Displays the name of the current console.

m Lists the displays currently available on the system.
[stoni Lists the fonts available for use by the display.

[skbd Lists the keyboard maps currently loaded in the system.
Isipg Lists software products.

m Displays the values of environment variables.

E Displays system settings.

E Displays the full path name of your terminal.

Related Information

Chapter 2. User Environment and System Information 17

../../cmds/aixcmds1/aixterm.htm#HDRSW21E0CHER
../../cmds/aixcmds1/aixterm.htm#HDRSW21E0CHER
../../cmds/aixcmds2/env.htm#HDRA133Z92372
../../cmds/aixcmds3/lscfg.htm#HDRA31798B0
../../cmds/aixcmds3/lscons.htm#HDRWND290JOYC
../../cmds/aixcmds3/lsdisp.htm#HDRA13298B3
../../cmds/aixcmds3/lsfont.htm#HDROY1340ROLL
../../cmds/aixcmds3/lskbd.htm#HDRA7R1320ROLL
../../cmds/aixcmds3/lslpp.htm#HDRA228Y9593
../../cmds/aixcmds4/printenv.htm#HDRA151Z9336A
../../cmds/aixcmds5/stty.htm#HDRA471320ROLL
../../cmds/aixcmds5/tty.htm#HDRA54K1E0CRAW

18 System User's Guide: Operating System and Devices

Chapter 3. Commands and Processes

A command is a request to perform an operation or run a program. You use commands to tell the
operating system what task you want it to perform. When commands are entered, they are deciphered by
a command interpreter (also known as a shell) and that task is processed.

A program or command that is actually running on the computer is referred to as a process. The operating
system can run many different processes at the same time.

The operating system allows you to manipulate the input and output (I/O) of data to and from your system
by using specific I/O commands and symbols. You can control input by specifying the location from which
to gather data. For example, you can specify to read input as data is entered on the keyboard (standard
input) or to read input from a file. You can control output by specifying where to display or store data. For
example, you can specify to write output data to the screen (standard output) or to write it to a file.

This section discusses the following:

‘ : ”

© Copyright IBM Corp. 1997, 2001 19

Related Information

‘ . i

Commands Overview

Some commands can be entered simply by typing one word. It is also possible to combine commands so
that the output from one command becomes the input for another command. This is known as

Flags further define the actions of commands. A flag is a modifier used with the command name on the
command line, usually preceded by a dash.

Commands can also be grouped together and stored in a file. These are known as shell procedures or
shell scripts. Instead of executing the commands individually, you execute the file that contains the

commands. More information on scripts and procesures can be found in LCreating and Running a Shell

To enter a command, type in the command name at the prompt, and press Enter.
$ CommandName

This section discusses:

Command Syntax

Although some commands can be entered by simply typing one word, other commands use flags and
parameters. Each command has a syntax that designates the required and optional flags and parameters.
The general format for a command is:

CommandName flag(s) parameter(s)

Some general rules about commands are:
» Spaces between commands, flags, and parameters are important.

» Two commands can be entered on the same line by separating the commands with a semicolon (;). For
example:

$ CommandOne ; CommandTwo

20 System Users Guide: Operating System and Devices

The shell runs the commands sequentially.

+ Commands are case sensitive. The shell distinguishes between uppercase and lowercase letters. To the
shell, print is not the same as PRINT or Print.

» A very long command can be entered on more than one line by using the backslash (\) character. A
backslash signifies line continuation to the shell. The following example is one command that spans two
lines:
$ 1s Mail info temp \

(press Enter)

> diary
(the > prompt appears)

The > character is your secondary prompt ($ is the non-root user’s default primary prompt), indicating
that the current line is the continuation of the previous line. Note that csh gives no secondary prompt,
and the break must be at a word boundary, and its primary prompt is %.

* To run a command, type the command name at the prompt, and press Enter.

Command Name

The first word of every command is the command name. Some commands only have a command name.
Command Flags

After the command name, there might be a number of flags. Flags are sometimes called options. A flag is
set off by spaces or tabs and usually starts with a dash (-). Exceptions are ps, tar, and ar, which do not
require a dash in front of some of the flags. Flags modify the operation of a command. For example, in the
following command:

1s -a -F
1s is the command name and -a -F are the flags.

When a command uses flags, they come directly after the command name. Single-character flags in a
command can be combined with one dash. For example, the previous command can also be written as:

1s -aF

There are some circumstances when a parameter actually begins with a dash (-). In this case, use the
delimiter dash dash (-) before the parameter. The - tells the command that whatever follows is not a flag
but a parameter.

For example, if you wanted to create a directory named -tmp and you entered the following command:
mkdir -tmp

The system would display an error message similar to the following:

mkdir: Not a recognized flag: t

Usage: mkdir [-p] [-m mode] Directory ...

The correct way of entering the command is:
mkdir -- -tmp

Your new directory, -tmp, is now created.

Chapter 3. Commands and Processes 21

Command Parameters

After the command name, there might be a number of flags, followed by parameters. Parameters are
sometimes called arguments or operands. Parameters specify information the command needs in order to
run. If you don’t specify a parameter, the command might assume a default value. For example, in the
following command:

1s -a temp

1s is the command name, -a is the flag, and temp is the parameter. This command displays all (-a) the
files in the directory temp. In the following example:

1s -a

because no parameter is given, the default value is the current directory. In the following example:

1s temp mail

no flags are given, and temp and mail are parameters. In this case, temp and mail are two different
directory names. The Is command will display all but the hidden files in each of these directories.

Whenever a parameter or option-argument is, or contains, a numeric value, the number is interpreted as a
decimal integer, unless otherwise specified. Numerals in the range 0 to INT_MAX, as defined in
lusr/include/sys/limits.h, are syntactically recognized as numeric values.

If a command you want to use accepts negative numbers as parameters or option-arguments, you can use
numerals in the range INT_MIN to INT_MAX, both as defined in /usr/include/sys/limits.h. This does not
necessarily mean that all numbers within that range are semantically correct. Some commands have a
built-in specification permitting a smaller range of numbers, for example, some of the print commands. If
an error is generated, the error message lets you know the value is out of the supported range, not that
the command is syntactically incorrect.

Reading Usage Statements

Usage statements are another way to represent command syntax. Like syntax diagrams, usage
statements tell you how to enter commands from the command line. Although usage statements provide
the same type of syntax information as diagrams, they are not in diagram format. Rather, they consist of
symbols such as brackets ([]), braces ({ }), and vertical bars (l). The following is a sample of a usage
statement for the unget command:

unget[-rSID][-s][-n] File ...

The conventions for bold and italics are the same as for syntax diagrams. The following additional
conventions are used in the command usage statements:

» Parameters enclosed in brackets are optional.
» Parameters enclosed in braces are required.
» Parameters not enclosed in either brackets or braces are required.

» A vertical bar signifies that you choose only one parameter. For example, [a | b] indicates that you
can choose a, b, or nothing. Similarly, { a | b } indicates that you must choose either a or b.

» Ellipses (...) signify the parameter can be repeated on the command line.
* The dash (-) represents standard input.

Using Web-based System Manager

Web-based System Manager is a graphical user interface for managing the system, either from a locally
attached display or remotely from another system or personal computer equipped with a web browser. You
can start Web-based System Manager in a variety of ways:

22 system Users Guide: Operating System and Devices

» from a command line terminal in the Common Desktop Environment (CDE) by entering the wsm
command.

» from a command line terminal in the AIXwindows environment by entering the wsm command.

« from the CDE Application Manager by going to the System_Admin folder and clicking the Management
Console icon.

« from an HTML 3.2-compatible web browser on a personal computer that is configured as described in

the '\Weh-hased System Manager Administration Guide!l

Using the smit Command

The smit command is a tool you can use to run other commands. Command names entered as a
parameter to the smit command might take you to a submenu or panel for that command. For example,
smit 1suser takes you directly to List All Users, which lists the attributes of users on your system.

See the bmifl command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Locating a Command or Program (whereis Command)

The whereis command locates the source, binary, and manuals sections for specified files. The command
attempts to find the desired program from a list of standard locations.

To find files in the current directory that have no documentation, type:

whereis -m -u *
Press Enter.

To find all of the files that contain the name Mail, type:
whereis Mail

Press Enter.

The system displays information similar to the following:
Mail: /usr/bin/Mail /usr/1ib/Mail.rc

See the luhereid command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Displaying Information about a Command (man Command)

The man command displays information on commands, subroutines, and files. The general format for the
man command is:

man CommandName

To obtain information about the pg command, type:

man pg
Press Enter.

The system displays information similar to the following:
pg Command

Purpose

Formats files to the display.

Chapter 3. Commands and Processes 23

../../aixbman/wsmadmn/install.htm
../../cmds/aixcmds5/smit.htm#HDRA1879A27
../../cmds/aixcmds6/whereis.htm#HDRA12991461

Syntax

pg [- Number] [-c] [-e] [-f]1 [-n] [-pString]
[-s 1 [+LineNumber | +/Pattern/] [File ...]

Description

The pg command reads a file name from the File parameter and
writes the file to standard output one screen at a time. If you
specify a - (dash) as the File parameter, or run the pg command
without options, the pg command reads standard input. Each
screen is followed by a prompt. If you press the Enter key,

another page is displayed. Subcommands used with the pg command
let you review or search in the file.

The information the man command provides can also be obtained using the InfoExplorer program.

See the Imanl command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Displaying the Function of a Command (whatis Command)

The whatis command looks up a given command, system call, library function, or special file name, as
specified by the Command parameter, from a database you create using the mﬁ -w command. The
whatis command displays the header line from the manual section. You can then issue the Iman command
to obtain additional information.

The whatis command is equivalent to using the mad -f command.

To find out what the Is command does, type:
whatis Ts

Press Enter.

The system displays information similar to the following:
1s(1) -Displays the contents of a directory.

See the luhatid command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.
Listing Previously Entered Commands (history Shell Command)

The history command is a Korn shell built-in that lists the last 16 commands entered. The Korn shell
saves commands that you entered to a command history file, usually named $HOME/.sh_history. This
saves time when you need to repeat a previous command.

By default, the Korn shell saves the text of the last 128 commands. The history file size (specified by the
HISTSIZE environment variable) is not limited, although a very large history file size can cause the Korn
shell to start up slowly.

Note: The history shell command is not the same history command used with the INed editor. Also
note that the Bourne shell does not support command history.

For detailed information about shells, see "“Chapter 11_Shells” on page 149"

To list the previous commands you entered, at the prompt, type:
history

Press Enter.

24 system Users Guide: Operating System and Devices

../../cmds/aixcmds3/man.htm#HDRBRI1350CRAW
../../cmds/aixcmds1/catman.htm#HDRJYW52B0CRAW
../../cmds/aixcmds3/man.htm#HDRBRI1350CRAW
../../cmds/aixcmds3/man.htm#HDRBRI1350CRAW
../../cmds/aixcmds6/whatis.htm#HDRIQW5130CRAW

The history command entered by itself lists the previous 16 commands entered. The system displays
information similar to the following:

928 s

929 mail

930 printenv MAILMSG
931 whereis Mail

932 whatis Ts

933 cd /usr/include/sys

934 s

935 man pg

936 cd

937 1s | pg

938 1Tscons

939 tty

940 Ts =*.txt

941 printenv MAILMSG
942 pwd

943 history

The listing first displays the position of the command in the $HOME/.sh_history file followed by the
command.

To list the previous five commands, at the prompt, type:
history -5

Press Enter.

A listing similar to the following appears:

939 tty

940 1s =*.txt

941 printenv MAILMSG
942 pwd

943 history

944 history -5

The history command followed by a number lists all the previous commands entered starting at that
number.

To list the commands since 938, at the prompt, type:
history 938

Press Enter.

A listing similar to the following appears:

938 Tscons

939 tty

940 Ts *.txt

941 printenv MAILMSG
942 pwd

943 history

944 history -5

945 history 938

Repeating Commands Using the Shell history Command

Use the r Korn shell alias to repeat previous commands. Type r and press Enter, and you can specify the
number or the first character or characters of the command.

Chapter 3. Commands and Processes 25

If you want to list the displays currently available on the system, you would type Isdisp and press Enter at
the prompt. The system returns the information to you on the screen. If you want the same information
returned to you again, at the prompt, type:

r
Press Enter.

The system runs the most recently entered command again. In this example, the Isdisp command would
run.

To repeat the Is *.txt command, at the prompt, type:
rls

Press Enter.

The r Korn shell alias locates the most recent command that begins with the character or characters
specified.

Substituting Strings Using the Shell history Command

You can also use the r Korn shell alias to modify a command before it is run. In this case, a substitution
parameter of the form Old=New can be used to modify the command before it is run.

For example, if command line 940 is Is *.txt, and you want to run Is *.exe, at the prompt, type:
r txt=exe 940

Press Enter.
This runs command 940, substituting exe for txt.

For example, if the command on line 940 is the most recent command that starts with a lower-case letter
1, you can also type:

r txt=exe 1
Press Enter.

Note: Only the first occurrence of the Old string is replaced by the New string. Entering the r Korn
shell alias without a specific command number or character does the substitution to the previous
command entered.

Editing the Command History

Use the fe Korn shell built-in command to list or edit portions of the command history file. To select a
portion of the file to edit or list, specify the number or the first character or characters of the command.
You can specify a single command or range of commands.

If you do not specify an editor program as an argument to the fc Korn shell built-in command, the editor
specified by the FCEDIT variable is used. If the FCEDIT variable is not defined, then the /usr/bin/ed editor
is used. The edited command or commands are printed and run when you exit the editor. Use the
printenv command to display the value of the FCEDIT variable.

For example, if you want to run the command:
cd /usr/tmp

26 System Users Guide: Operating System and Devices

which is very similar to command line 933, at the prompt type:
fc 933

Press Enter.

At this point, your default editor appears with the command line 933. You would change include/sys to
tmp, and when you exit your editor, the edited command is run.

You can also specify the editor you want to use in the fc command.

For example, if you want to edit a command using the /usr/bin/vi editor, at the prompt, type:
fc -e vi 933

Press Enter.
At this point, the vi editor appears with the command line 933.
You can also specify a range of commands to edit.

For example, if you want to edit the commands 930 through 940, at the prompt, type:
fc 930 940

Press Enter.

At this point, your default editor appears with the command lines 930 through 940. When you exit the
editor, all the commands that appear in your editor are run sequentially.

Creating a Command Alias (alias Shell Command)

An alias lets you create a shortcut name for a command, a file name, or any shell text. By using aliases,
you save a lot of time when doing tasks you do frequently. The Bliad Korn shell built-in command defines
a word as an alias for some command. You can use aliases to redefine built-in commands but not to
redefine reserved words.

The first character of an alias name can be any printable character except the metacharacters. Any
remaining characters must be the same as for a valid file name.

The format for creating an alias is:
alias Name=String

in which the Name parameter specifies the name of the alias and the String parameter specifies a string of
characters. If String contains blank spaces, enclose it in quotation marks.

To create an alias for the command rm -i (prompts you before deleting files), at the prompt, type:

alias rm="/usr/bin/ym -i"
Press Enter.

In this example, whenever you type the command rm and press Enter, the actual command performed is
lusr/bin/rm -i.

To create an alias for the command Is -alF | pg (displays detailed information of all the files in the current
directory, including the invisible files; marks executable files with an * and directories with a /; and scrolls
per screen), at the prompt, type:

alias dir="/usr/bin/1s -alF | pg"

Chapter 3. Commands and Processes 27

../../cmds/aixcmds1/alias.htm#HDRNWNII39BJOY

Press Enter.

In this example, whenever you type the command dir and press Enter, the actual command performed is
lusr/bin/ls -alF | pg.

To display all the aliases you have, at the prompt, type:
alias

Press Enter.

The system displays information similar to the following:

rm="/usr/bin/rm -i"
dir="/usr/bin/1s -alF | pg"

Working with Text-Formatting Commands

You can use text-formatting commands to work with text composed of the international extended character
set used for European languages.

International Character Support in Text Formatting

The international extended character set provides the characters and symbols used in many European
languages, as well as an ASCII subset composed of English-language characters, digits, and punctuation.

All characters in the European extended character set have ASCII forms. These forms can be used to
represent the extended characters in input, or the characters can be entered directly with a device such as
a keyboard that supports the European extended characters.

The following text-formatting commands support all international languages that use single-byte characters.
These commands are located in /usr/bin. (The commands identified with an asterisk (*) support text
processing for multibyte languages. For more information on multibyte languages, see [i

)

addbib* hyphen pic* pstext
checkmm ibm3812 ps4014 referx
checknr= ibm3816 ps630 roffbib*
col* 1bm5587G* psbanne soelimx
colert 1bm5585H-T* psdit sortbib=
deroff= indxbib* psplot thl*
enscript Tookbib* psrev troffx
eqn* makedev* psroff vgrind
grap* neqn* psrv Xpreviews
hplj nroffx

Text-formatting commands and macro packages not in the preceding list have not been enabled to
process international characters.

Entering Extended Single-Byte Characters

If your input device supports characters from the European-language extended character set, you can
enter them directly. Otherwise, use the following ASCII escape sequence form to represent these
characters:

The form \[N], where N is the 2- or 4-digit hexadecimal code for the character.

Note: The NCesc form \<xx> is no longer supported.

28 System Users Guide: Operating System and Devices

Text containing extended characters is output according to the formatting conventions of the language in
use. Characters that are not defined for the interface to a specific output device produce no output or error
indication.

Although the names of the requests, macro packages, and commands are based on English, most of them
can accept input (such as file names and parameters) containing characters in the European extended
character set.

For the nroff and troff commands and their preprocessors, the command input must be ASCII, or an
irrecoverable syntax error will result. International characters, either single-byte or multibyte, can be
entered when enclosed within quotation marks and without other text to be formatted. For example, using
macros from the pic command:

define foobar % SomeText %

After the define directive, the first name, foobar, must be ASCII. However, the replacement text, SomeText,
can contain non-ASCII characters.

Multibyte Character Support in Text Formatting

Certain text-formatting commands can be used to process text for multibyte languages. These commands
are identified with an asterisk (*) in the list under L i i ing”

. Text-formatting commands not in the list have not been enabled to process international
characters.

Entering Multibyte Characters

If supported by your input device, multibyte characters can be entered directly. Otherwise, you can enter
any multibyte character in the ASCII form \[N], where N is the 2-, 4-, 6-, 7-, or 8-digit hexadecimal
encoding for the character.

Although the names of the requests, macros, and commands are based on English, most of them can
accept input (such as file names and parameters) containing any type of multibyte character.

If you are already familiar with using text-formatting commands with single-byte text, the following list
summarizes characteristics that are noteworthy or unique to the multibyte locales:

» Text is not hyphenated.

» Special format types are required for multibyte numerical output. Japanese format types are available.
« Text is output in horizontal lines, filled from left to right.

» Character spacing is constant, so characters automatically align in columns.

» Characters that are not defined for the interface to a specific output device produce no output or error
indication.

As for the nroff and troff commands and their preprocessors, the command input must be ASCII, or a
syntax error will result. International characters, either single-byte or multibyte, can be entered when
enclosed within quotation marks and within other text to be formatted. For example, using macros from the
pic command:

define foobar % SomeText %

After the define directive, the first name, foobar, must be ASCII. However, the replacement text, SomeText,
can contain non-ASCII characters.

Related Information

Chapter 3. Commands and Processes 29

Processes Overview

A program or command that is actually running on the computer is referred to as a process. Processes
exist in parent-child hierarchies. A process started by a program or command is a parent process; a child
process is the product of the parent process. A parent process can have several child processes, but a
child process can only have one parent.

The system assigns a process identification number (PID number) to each process when it starts. If you
start the same program several times, it will have a different PID number each time.

When a process is started on a system, the process uses a part of the available system resources. When
more than one process is running, a scheduler that is built into the operating system gives each process
its share of the computer’s time, based on established priorities. These priorities can be changed by using
the nice or renice commands.

Note: Only someone with root user authority can change a process priority to a higher one. All users
can lower priorities on a process they start by using the nice command, or on a process they have
already started by using the renice command.

This section discusses:

] A ”

Foreground and Background Processes

Processes that are started from and require a user’s interaction are called foreground processes.
Processes that are run independently of a user are referred to as background processes. Programs and
commands run as foreground processes by default. To run a process in the background, place an
ampersand (&) at the end of the command name that you use to start the process.

30 System Users Guide: Operating System and Devices

Daemons

Daemons are processes that run unattended. They are constantly in the background and are available at
all times. Daemons are usually started when the system starts and run until the system stops. A daemon
process performs system services and is available at all times to more than one task or user. Daemon
processes are started by the root user or root shell and can be stopped only by the root user. For
example, the m process provides access to system resources such as printers. Another common
daemon is the sendmail daemon.

Zombie Process

A zombie process is a dead process that is no longer executing but is still recognized in the process table
(in other words, it has a PID number). It has no other system space allocated to it. Zombie processes
have been killed or have exited and continue to exist in the process table until the parent process dies or
the system is shut down and restarted. Zombie processes show up as <defunct> when listed by the E
command.

Starting a Process

You start a foreground process from a display station by either entering a program name or command
name at the system prompt. Once a foreground process has started, the process interacts with you at your
display station until it is complete. This means no other interaction (for example, entering another
command) can take place at the display station until the process is finished or you halt it.

A single user can run more than one process at a time up to a default maximum of 40 processes per user.

To Start a Process in the Foreground
To run a process in the foreground, type the name of the command with all the appropriate parameters

and flags:
$ CommandName

Press Enter.

To Start a Process in the Background
To run a process in the background, type the name of the command with all the appropriate parameters

and flags, followed by an ampersand (&):

and press Enter.
$ CommandName&

When the process is running in the background, you can perform additional tasks by entering other
commands at your display station.

Generally, background processes are most useful for commands that take a long time to run. However,
because they increase the total amount of work the processor is doing, background processes also slow
down the rest of the system.

Most processes direct their output to standard output, even when they run in the background. Unless
redirected, standard output goes to the display station. Because the output from a background process
can interfere with your other work on the system, it is usually good practice to redirect the output of a
background process to a file or a printer. You can then look at the output whenever you are ready.

Chapter 3. Commands and Processes 31

../../cmds/aixcmds4/qdaemon.htm#HDRW4220JOYC
../../cmds/aixcmds4/ps.htm#HDRA2709234

Note: Under certain circumstances, a process might generate its output in a different sequence when
run in the background than when run in the foreground. Programmers might want to use the
subroutine to ensure that output occurs in the proper order regardless of whether the process runs in
foreground or background.

As long as a background process is running, you can check its status with the ps command.

Checking Processes (ps Command)

Any time the system is running, several processes are also running. You can use the ps command to find
out which processes are running and to display information about those processes.

ps Command
The ps command has several flags that enable you to specify which processes to list and what information

to display about each process.

To show all processes running on your system, at the prompt, type:
ps -ef

Press Enter.

The system displays information similar to the following:

USER PID PPID C STIME TTY TIME CMD

root 1 0 0 Jun 28 - 3:23 /etc/init

root 1588 6963 0 Jun 28 - 0:02 /usr/etc/biod 6

root 2280 1 0 Jun 28 - 1:39 /etc/syncd 60

mary 2413 16998 2 07:57:30 - :05 aixterm

mary 11632 16998 0 07:57:31 1ft/1 xbiff

mary 16260 2413 1 07:57:35 pts/1 :00 /bin/ksh

mary 16469 1 0 07:57:12 1ft/1 :00 ksh /usr/1pp/X11/bin/xinit
mary 19402 16260 20 09:37:21 pts/1 :00 ps -ef

[oNoNoRoNoN o NI
(=]
—

The column heading definitions are as follows:

USER User login name

PID Process ID

PPID Parent process ID

C CPU utilization of process

STIME Start time of process

TTY Controlling workstation for the process
TIME Total execution time for the process

CMD Command
In the previous example, the process ID for the ps -ef command is 19402. Its parent process ID is 16260,
the /bin/ksh command.

If the listing is very long, the top portion scrolls off the screen. To prevent this from happening, use the ps
command piped to the pg command. At the prompt, type:

ps -ef | pg
Press Enter.

To show status information of all processes running on your system, at the prompt, type:
ps gv

Press Enter.

32 system Users Guide: Operating System and Devices

../../libs/basetrf1/fclose.htm#HDRA0909927

This form of the command lists a number of statistics for each active process. Output from this command
looks something like this:

PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND

0 - A 0:44 7 8 8 XX 0 0 0.0 0.0 swapper

1 - A 1:29 518 244 140 XX 21 24 0.1 1.0 /etc/init
771 - A 1:22 0 16 16 XX 0 0 0.0 0.0 kproc
1028 - A 0:00 10 16 8 XX 0 0 0.0 0.0 kproc
1503 - A 0:33 127 16 8 XX 0 0 0.0 0.0 kproc
1679 - A 1:03 282 192 12 32768 130 0 0.7 0.0 pcidossvr
2089 - A 0:22 918 72 28 XX 1 4 0.0 0.0 /etc/sync
2784 - A 0:00 9 16 8 XX 0 0 0.0 0.0 kproc
2816 - A 5:59 6436 2664 616 8 852 156 0.4 4.0 /usr/lpp/
3115 - A 0:27 955 264 128 XX 39 36 0.0 1.0 /usr/1ib/
3451 - A 0:00 0 16 8 XX 0 0 0.0 0.0 kproc
3812 - A 0:00 21 128 12 32768 34 0 0.0 0.0 usr/1ib/1pd/
3970 - A 0:00 0 16 8 XX 0 0 0.0 0.0 kproc
4267 - A 0:01 169 132 72 32768 16 16 0.0 0.0 /etc/sysl
4514 1ft/0 A 0:00 60 200 72 XX 39 60 0.0 0.0 /etc/gett
4776 pts/3 A 0:02 250 108 280 8 303 268 0.0 2.0 -ksh
5050 - A 0:09 1200 424 132 32768 243 56 0.0 1.0 /usr/sbin
5322 - A 0:27 1299 156 192 XX 24 24 0.0 1.0 /etc/cron
5590 - A 0:00 2 100 12 32768 11 0 0.0 0.0 /etc/writ
5749 - A 0:00 0 208 12 XX 13 0 0.0 0.0 /usr/lpp/
6111 -T 0:00 66 108 12 32768 47 0 0.0 0.0 /usr/lpp/

See the E command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Other commands you can use are smit process and smit monitors.
Setting the Initial Priority of a Process (nice Command)

You can set the initial priority of a process to a value lower than the base scheduling priority by using the
hicd command to start the process.

Note: To run a process at a higher priority, you must have root user authority.
nice Command

To set the initial priority of a process, type:
nice -n Number CommandString

where Number is in the range of 0 to 39, with 39 being the lowest priority. The higher the number, the
lower the priority. If you use zero, the process will run at its base scheduling priority. CommandString is
the command and flags and parameters you want to run.

See the hicd command in the AIX 5L Version 5.1 Commands Reference for more information and the
exact syntax.

You can also use the smit nice command to perform this task.

Changing the Priority of a Running Process (renice Command)

You can change the scheduling priority of a running process to a value lower or higher than the base
scheduling priority by using the renice command from the command line. This command changes the nice
value of a process.

Note: To run a process at a higher priority or to change the priority for a process you did not start,
you must have root user authority.

Chapter 3. Commands and Processes 33

../../cmds/aixcmds4/ps.htm#HDRA2709234
../../cmds/aixcmds4/nice.htm#HDRUZE80FISH
../../cmds/aixcmds4/nice.htm#HDRUZE80FISH

From the Command Line

To change the initial priority of a running process, type:

renice Priority -p ProcessID

where Periority is in the range of -20 to 20. The higher the number, the lower the priority. If you use zero,
the process will run at its base scheduling priority. ProcessID is the PID you want to change the priority of.

You can also use the smit renice command to perform this task.

Canceling a Foreground Process

If you start a foreground process and then decide you do not want to let it finish, you can cancel it by
pressing INTERRUPT. This is usually Ctrl-C or Ctrl-Backspace. To find out what your INTERRUPT key is

set to, see U.shnngﬁaU&ey.AssxgnmenistdetmmaL@stmand)_m_pageJﬂ

Note: INTERRUPT (Ctrl-C) does not cancel background processes. To cancel a background process,
you must use the kill command.

Most simple commands are not good examples for demonstrating how to cancel a process-they run so
quickly that they finish before you have time to cancel them. The examples in this section, therefore, use a
command that takes more than a few seconds to run: find / -type f. This command displays the path
names for all files on your system. You do not need to study the find command in order to complete this
section; it is used here simply to demonstrate how to work with processes.

In the following example, the find command starts a process. After the process runs for a few seconds,
you can cancel it by pressing the INTERRUPT key:

$ find / -type f

/usr/sbin/acct/Tastlogin
/usr/sbin/acct/prctmp
/usr/sbin/acct/prdaily
/usr/sbin/acct/runacct
/usr/sbin/acct/sdisk
/usr/sbin/acct/shutacct INTERRUPT (Ctrl-C)
$

The system returns the prompt to the screen. Now you can enter another command.

Stopping a Foreground Process

It is possible for a process to be stopped but not have its process ID (PID) removed from the process
table. You can stop a foreground process with a Ctrl-Z from the keyboard.

Note: Ctrl-Z works in the Korn shell (ksh) and C shell (esh), but not in the Bourne shell (bsh).

Restarting a Stopped Process
This procedure describes how to restart a process that has been stopped with a Ctrl-Z.

Note: Ctrl-Z works in the Korn shell (ksh) and C shell (esh), but not in the Bourne shell (bsh). To
restart a stopped process, you must either be the user who started the process or have root user
authority.

1. To show all the processes running or stopped but not killed on your system, type:
ps -ef

34 system Users Guide: Operating System and Devices

You might want to pipe this command through a grep command to restrict the list to those processes
most likely to be the one you want to restart. For example, if you want to restart a vi session, you
could type:

ps -ef | grep vi

Press Enter. This command would display only those lines from the ps command output that contained
the word vi. The output would look something like this:

uIb PID PPID C STIME TTY TIME COMMAND
root 1234 13682 0 00:59:53 - 0:01 vi test
root 14277 13682 1 01:00:34 - 0:00 grep vi

2. In the ps command output, find the process you want to restart and note its PID number. In the
example, the PID is 1234.

3. To send the CONTINUE signal to the stopped process, type:
ki1l -19 1234

Substitute the PID of your process for the 1234. The -19 indicates the CONTINUE signal. This
command restarts the process in the background. If it is okay for the process to run in the background,
you are finished with the procedure. If the process needs to run in the foreground (as a vi session
would), you must proceed with the next step.

4. To bring the process in to the foreground, type:
fg 1234

Once again, substitute the PID of your process for the 1234. Your process should now be running in
the foreground. (You are now in your vi edit session).

Scheduling a Process for Later Operation (at Command)

You can set up a process as a batch process to run in the background at a scheduled time. The at and
smit commands let you enter the names of commands to be run at a later time and allow you to specify
when the commands should be run.

Note: The /var/adm/cron/at.allow and /var/adm/cron/at.deny files control whether you can use the
at command. A person with root user authority can create, edit, or delete these files. Entries in these
files are user login names with one name to a line. The following is an example of an at.allow file:

root
nick
dee
sarah

If the at.allow file exists, only users whose login names appear in it can use the at command. A system
administrator can explicitly stop a user from using the at command by listing the user’s login name in the
at.deny file. If only the at.deny file exists, any user whose name does not appear in the file can use the at
command.

You cannot use the at command if one of the following is true:

* The at.allow file and the at.deny file do not exist (allows root user only).
» The at.allow file exists but the user’s login name is not listed in it.

* The at.deny file exists and the user’s login name is listed in it.

If the at.allow file does not exist and the at.deny file does not exist or is empty, only someone with root
user authority can submit a job with the at command.

Chapter 3. Commands and Processes 39

The at command syntax allows you to specify a date string, a time and day string, or an increment string
for when you want the process to run. It also allows you to specify which shell or queue to use. The
following examples show some typical uses of the command.

at Command

For example, if your login name is joyce and you have a script named WorkReport that you want to run at
midnight, do the following:

1. Type in the time you want the program to start running.
at midnight

2. Type the names of the programs to run, pressing Enter after each name. After typing the last name,
press the end-of-file character (Ctrl-D) to signal the end of the list.

WorkReport D

After pressing Ctrl-D, the system displays information similar to the following:
job joyce.741502800.a at Fri Jul 6 00:00:00 CDT 1994.

The program WorkReport is given the job number joyce.741502800.a and will run at midnight July 6.

To list the programs you have sent to be run later, type:
at -1

The system displays information similar to the following:
Jjoyce.741502800.a Fri Jul 6 00:00:00 CDT 1994

To cancel a program you have set up to run later, first list the job numbers assigned to your programs with
at -l. Once you know the job number of the program you want to cancel, type:

at -r joyce.741502800.a
This cancels job joyce.741502800.a.
See the Bl command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

You can also use the smit at and smit sjat commands to perform this task.

Listing All Scheduled Processes (at or atq Command)

You can list all scheduled processes with the -l flag of the at command or with the atq command. Both
commands give the same output, but the atq command can order the processes by the time the at
command was issued and can display just the number of processes in the queue.

You can list all scheduled processes in the following ways:
« With the at command from the command line
* With the atqg command

For user restrictions on using the at command, see the Notd .

at Command
To list the scheduled processes, type:

at -1
This command lists all the scheduled processes in your queue. If you are a root user, this command lists
all the scheduled processes for all users. For complete details of the syntax, see the &l command.

36 System Users Guide: Operating System and Devices

../../cmds/aixcmds1/at.htm#HDRCMW110CRAW
../../cmds/aixcmds1/at.htm#HDRCMW110CRAW

atqg Command
To list all scheduled processes in the queue, type:

atq

If you are a root user, you can list the scheduled processes in a particular user’'s queue by typing:
atq UserName

To list the number of scheduled processes in the queue, type:
atqg -n

Removing a Process from the Schedule (at Command)

You can remove a scheduled process with the at command using the -r flag. For user restrictions on using
the at command, see Notd.

From the Command Line
1. To remove a scheduled process, you must know the process number. You can obtain the process

number using the at -l command or the atq command. See EListing All Scheduled Processes (at or atq
Command)” on page 38 for details.

2. When you know the number of the process you want to remove, type:
at -r ProcessNumber

You can also use the smit rmat command to perform this task.

Removing a Background Process (kill Command)

If INTERRUPT does not halt your foreground process or if you decide, after starting a background
process, that you do not want the process to finish, you can cancel the process with the kill command.
Before you can cancel a process using the kill command, you must know its PID number. The general
format for the kill command is:

ki1l ProcessID

Note: To remove a process, you must have root user authority or be the user who started the
process. The default signal to a process from the kill command is -15 (SIGTERM).

kill Command

1. Use the ps command to determine the process ID of the process you want to remove. You might want
to pipe this command through a grep command to list only the process you want. For example, if you
want the process ID of a vi session, you could type:

ps -1 | grep vi

2. In the next example, you issue the find command to run in the background. You then decide to cancel
the process. Issue the ps command to list the PID numbers.

$ find / -type f > dir.paths &
[1] 21593
$ ps
PID TTY TIME COMMAND
1627 pts3 0:00 ps
5461 pts3 0:00 ksh
17565 pts3 0:00 -ksh
21593 pts3 0:00 find / -type f
$ kill 21593
$ ps
PID TTY TIME COMMAND
1627 pts3 0:00 ps

Chapter 3. Commands and Processes 37

5461 pts3 0:00 ksh
17565 pts3 0:00 -ksh
[1] + Terminated 21593 find / -type f > dir.paths &

The command kill 21593 stops the background find process, and the second ps command returns no
status information about PID 21593. The system does not display the termination message until you
enter your next command, unless that command is cd.

The kill command lets you cancel background processes. You might want to do this if you realize that
you have mistakenly put a process in the background or a process is taking too long to run.

Notes:
a. Removing a parent process automatically removes all its child processes.
b. To remove a zombie process, you must remove its parent process.

See the kill command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

You can also use the smit kill command.

Related Information

Command Summary for Commands and Processes

Commands

Shell command that prints a list of aliases to standard output.

Shell command that displays the history event list.

Displays information about commands, subroutines, and files online.
Performs system management from a web browser.

Describes the function a command performs.

Locates the source, binary, or manual for installed programs.

@E]E]E]EE]

Processes

Runs commands at a later time, lists all scheduled processes, or removes a process from the
schedule.

Displays the queue of jobs waiting to be run.

Sends a signal to running processes.

Runs a command at a lower or higher priority.

Shows current status of processes.

Alters priority of running processes.

E]EE]EE'] =

38 System Users Guide: Operating System and Devices

../../cmds/aixcmds3/kill.htm#HDRA1579872
../../cmds/aixcmds1/alias.htm#HDRNWNII39BJOY
../../cmds/aixcmds3/man.htm#HDRBRI1350CRAW
../../aixbman/admnconc/websm.htm
../../cmds/aixcmds6/whatis.htm#HDRIQW5130CRAW
../../cmds/aixcmds6/whereis.htm#HDRA12991461
../../cmds/aixcmds1/at.htm#HDRCMW110CRAW
../../cmds/aixcmds1/atq.htm#HDRGII8340FISH
../../cmds/aixcmds3/kill.htm#HDRA1579872
../../cmds/aixcmds4/nice.htm#HDRUZE80FISH
../../cmds/aixcmds4/ps.htm#HDRA2709234
../../cmds/aixcmds4/renice.htm#HDRMVQ1220CRAW

Related Information

Chapter 3. Commands and Processes 39

40 System Users Guide: Operating System and Devices

Chapter 4. Input and Output Redirection

The operating system allows you to manipulate the input and output (I/O) of data to and from your system
by using specific I/O commands and symbols. You can control input by specifying the location from which
to gather data. For example, you can specify to read input as data is entered on the keyboard (standard
input) or to read input from a file. You can control output by specifying where to display or store data. You
can specify to write output data to the screen (standard output) or to write it to a file.

The operating system, because it is multitasking, is designed to handle processes in combination with
each other. This section discusses the advantages of redirecting input and output and tying processes
together.

This section discusses the following:

Standard Input, Standard Output, and Standard Error

When a command begins running, it usually expects that three files are already open: standard input,
standard output, and standard error (sometimes called error output or diagnostic output). A number, called
a file descriptor, is associated with each of these files, as follows:

File descriptor 0 Standard input
File descriptor 1 Standard output
File descriptor 2 Standard error (diagnostic) output

A child process normally inherits these files from its parent. All three files are initially assigned to the
workstation (0 to the keyboard, 1 and 2 to the display). The shell permits them to be redirected elsewhere
before control is passed to a command.

When you enter a command, if no file name is given, your keyboard is the standard input, sometimes
denoted as stdin. When a command finishes, the results are displayed on your screen.

© Copyright IBM Corp. 1997, 2001 41

Your screen is the standard output, sometimes denoted as stdout. By default, commands take input from
the standard input and send the results to standard output.

Standard error, sometimes denoted as stderr, is where error messages go. By default, this is your screen.

These default actions of input and output can be varied. You can use a file as input and write results of a
command to a file. This is called input/output redirection, which is one of the powerful features of a UNIX
operating system.

The output from a command, which normally goes to the terminal, can easily be redirected to a file
instead. This is known as output redirection. This is useful when you have a lot of output that is difficult to
read on the screen or when you want to put files together to create a larger file.

Though not used as much as output redirection, the input for a command, which normally comes from the
keyboard, can also be redirected from a file. This is known as input redirection. Redirection of input lets
you prepare a file in advance and then have the command read the file.

Redirecting Standard Output

When the notation > filename is added to the end of a command, the output of the command is written to
the specified file name. The > symbol is known as the output redirection operator.

When the notation > filename is added to the end of a command, the output of the command is written to
the specified file name. The > symbol is known as the output redirection operator.

Any command that outputs its results to the screen can have its output sent to a file.

Redirecting Output to a File

For example, to send the results of the who command to a file called users, type:
who > users

Press Enter.

Note: If the file users already exists, it is written over, unless the noclobber option of the set built-in
ksh (Korn shell) or esh (C shell) command is specified.

To see the contents of the file users, type:
cat users

Press Enter.
A list similar to the following appears:
denise 1ft/0 May 13 08:05

marta pts/1 May 13 08:10
endrica pts/2 May 13 09:33

For example, to send the current directory listing to a file, type:
1s > dirlist

Press Enter.

42 system Users Guide: Operating System and Devices

Redirecting Output and Appending It to a File

When the notation > > filename is added to the end of a command, the output of the command is
appended to the specified file name rather than writing over any existing data. The > > symbol is known
as the append redirection operator.

For example, to append file2 to filel, type:
cat file2 > > filel

Press Enter.

Note: If the file filel does not exist, it is created, unless the noclobber option of the set built-in ksh
(Korn shell) or esh (C shell) command is specified.

Creating a Text File with Redirection from the Keyboard

Used alone, the cat command takes whatever you type at the keyboard as input. You can redirect this
input to a file. Enter Ctrl-D on a new line to signal the end of the text.

At the system prompt, type:

cat > filename
This is a test.
D

Concatenating Text Files

Combining various files into one file is known as concatenation.

For example, at the system prompt, type:
cat filel file2 file3 > filed

Press Enter.

The previous example creates file4, which consists of filel, file2, and file3 appended in the order
given.

The following example shows a common error when concatenating files:
cat filel file2 file3 > filel

Attention: In this example, you might think the cat command will append the contents of filel,
file2, and file3 into filel. The cat command creates the output file first, so it actually erases the
contents of filel and then appends file2 and file3 to it.

Redirecting Standard Input

When the notation < filename is added to the end of a command, the input of the command is read from
the specified file name. The < symbol is known as the input redirection operator.

Note: Only commands that normally take their input from the keyboard can have their input
redirected.

For example, to send the file Tetterl as a message to user denise with the mail command, type:

mail denise < Tletterl

Chapter 4. Input and Output Redirection 43

Press Enter.

Discarding Output with the /dev/null File

The /dev/null file is a special file. This file has a unique property; it is always empty. Any data you send to
/dev/null is discarded. This is a useful feature when you run a program or command that generates output
you want to ignore.

For example, you have a program named myprog that accepts input from the screen and generates

messages while it is running that you would rather ignore. To read input from the file myscript and discard
the standard output messages, type:

myprog < myscript >/dev/null
Press Enter.

In this example, myprog uses the file myscript as input and all standard output is discarded.

Redirecting Standard Error and Other Output

In addition to the standard input and standard output, commands often produce other types of output, such
as error or status messages known as diagnostic output. Like standard output, standard error output is
written to the screen unless redirected.

If you want to redirect standard error or other output, you must use a file descriptor. File descriptors can
also be specified to redirect standard input and standard output, but are already the default values.

A file descriptor is a number associated with each of the I/O files a command ordinarily uses. The following
numbers are associated with standard input, output, and error:

0 Standard input (keyboard)
1 Standard output (display)
2 Standard error (display)

To redirect standard error output, type the file descriptor number 2 in front of the output or append
redirection symbols (> or > >) and a file name after the symbol. For example, the following command
takes the standard error output from the cc command where it is used to compile testfile.c and appends
it to the end of the ERRORS file:

cc testfile.c 2 > > ERRORS

Other types of output can also be redirected using the file descriptors from 0 through 9. For example, if the
cmd command writes output to file descriptor 9, you can redirect that output to the savedata file with the
following command:

cmd 9> savedata

If a command writes to more than one output, you can independently redirect each one. Suppose that a
command directs its standard output to file descriptor 1, directs its standard error output to file descriptor
2, and builds a data file on file descriptor 9. The following command line redirects each of these outputs to
a different file:

command > standard 2> error 9> data

44 system Users Guide: Operating System and Devices

Inline Input (Here) Documents

A command in the form of:
command << eofstring

in which eofstring is any string that does not contain pattern-matching characters, the shell takes the
subsequent lines as the standard input of command until the shell reads a line consisting of only eofstring
(possibly preceded by one or more tab characters). The lines between the first eofstring and the second
are frequently referred to as an inline input, or here, document. If a hyphen (-) immediately follows the <<
redirection characters, the shell strips leading tab characters from each line of the here document before it
passes the line to the command.

The shell creates a temporary file containing the here document and performs variable and command
substitution on the contents before passing the file to the command. It performs pattern matching on file
names that are part of command lines in command substitutions. To prohibit all substitutions, quote any
character of the eofstring:

command << \eofstring

The here document is especially useful for a small amount of input data that is more conveniently placed
in the shell procedure rather than kept in a separate file (such as editor scripts). For instance, you could
type:
cat <<- xyz

This message will be shown on the

display with Teading tabs removed.
Xyz

Press Enter.

This feature is most useful in shell procedures.

Pipes and Filters

UNIX lets you connect two or more commands in such a way that the standard output of one command is
used as the standard input of another command. A set of commands connected this way is known as a
pipeline. The connection that joins the commands is known as a pipe. Pipes are another important feature
of UNIX because they let you tie many single-purpose commands into one powerful command.

You can direct the output from one command to become the input for another command using a pipeline.
The commands are connected by a pipe (I) symbol.

When a command takes its input from another command, modifies it, and sends its results to standard
output, it is known as a filter. Filters can be used alone but they are especially useful in pipelines. The
most common filters are:

e sort
* more

* P9

For example, the Is command writes the contents of the current directory to the screen in one scrolling
data stream. When more than one screen of information is presented, some data is lost from view. To
control the output so the contents display screen by screen, you can use a pipeline to direct the output of
the Is command to the pg command, which controls the format of output to the screen as shown in the
following example:

s | pg

Chapter 4. Input and Output Redirection 495

In the example, the output of the Is command is the input for the pg command. Press Enter to continue to
the next screen.

Pipelines operate in one direction only (left to right). Each command in a pipeline runs as a separate
process and all processes can run at the same time. A process pauses when it has no input to read or
when the pipe to the next process is full.

Another example of using pipes is with the grep command. grep searches a file for lines that contain
strings of a certain pattern. To display all your files created or modified in July, type:

Ts -1 | grep Jul
Press Enter.

In the example, the output of the Is command is the input for the grep command.

Displaying Program Output and Copying It to a File (tee command)

The tee command, used with a pipe, reads standard input, then writes the output of a program to standard
output and simultaneously copies it into the specified file or files. This gives you the advantage of viewing
your output immediately and storing it for future use at the same time.

For example, to view and save the output from a command at the same time, type:
ps -ef | tee program.ps

Press Enter.

This displays the standard output of the command ps -ef at the work station, and at the same time saves
a copy of it in the file program.ps. If program.ps already exists, it is deleted and replaced, unless the
noclobber option of the set built-in command is specified.

For example, to view and save the output from a command to an existing file:
1s -1 | tee -a program.ls

This displays the standard output of Is -l at the workstation and at the same time appends a copy of it to
the end of program.1s. If the file program.1s does not exist, it is created, unless the noclobber option of
the set built-in command is specified.

The system displays information similar to the following, and the program.1s file contains the same
information:

-rw-rw-rw- 1 jones staff 2301 Sep 19 08:53 161414
-rw-rw-rw- 1 jones staff 6317 Aug 31 13:17 def.rpt
-rw-rw-rw- 1 jones staff 5550 Sep 10 14:13 try.doc

See the ked command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Clearing Your Screen (clear Command)

You can empty the screen of messages and keyboard input with the clear command.

At the prompt, type:
clear

Press Enter.

46 System Users Guide: Operating System and Devices

../../cmds/aixcmds5/tee.htm#HDREVK1E0CRAW

The system clears the screen and displays the prompt.

See the kleal command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Sending a Message to Standard Output (echo Command)

You can display messages on the screen with the echo command.

For example, to write a message to standard output, at the prompt, type:
echo Please insert diskette . . .

Press Enter.

The system displays the following:
Please insert diskette . . .

For example, to use the echo command with pattern-matching characters, at the prompt, type:
echo The back-up files are: *.bak

Press Enter.

The system displays the message The back-up files are: followed by the file names in the current
directory ending with .bak.

See the eehd command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Appending a Single Line of Text to a File (echo Command)

You can add a single line of text to a file with the echo command, used with the append redirection
operator.

For example, at the prompt, type:
echo Remember to backup mail files by end of week.>

>notes

Press Enter.

This adds the message Remember to backup mail files by end of week. to the end of the file notes.
See the bchd command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

See the bchd command in the AIX 5L Version 5.1 Commands Reference Book for more information and
the exact syntax.

Copying Your Screen to a File (capture and script Commands)

You can copy everything printed on your terminal to a file that you specify with the capture command,
which emulates a VT100 terminal.

The script command also lets you copy everything printed on your terminal to a file that you specify,
without emulating a VT100 terminal.

Both commands are useful for producing hardcopy records of terminal dialogs.

Chapter 4. Input and Output Redirection 47

../../cmds/aixcmds1/clear.htm#HDRA133Z928C6
../../cmds/aixcmds2/echo.htm#HDRML250FISH
../../cmds/aixcmds2/echo.htm#HDRML250FISH
../../cmds/aixcmds2/echo.htm#HDRML250FISH

For example, to capture the screen of a terminal while emulating a VT100, at the prompt, type:

capture screen.01
Press Enter.

The system displays information similar to the following:

Capture command is started. The file is screen.0l.
Use P to dump screen to file screen.0l.

You are now emulating a vt100 terminal.

Press Any Key to continue.

After entering data and dumping the screen contents, stop the capture command by pressing Ctrl-D or
typing exit and pressing Enter. The system displays information similar to the following:

Capture command is complete. The file is screen.0l.
You are NO LONGER emulating a vt100 terminal.
Use the cat command to display the contents of your file.

For example, to capture the screen of a terminal, at the prompt, type:
script

Press Enter.

The system displays information similar to the following:
Script command is started. The file is typescript.

Everything displayed on the screen is now copied to the file typescript.

To stop the script command, press Cirl-D or type exit and press Enter. The system displays information
similar to the following:

Script command is complete. The file is typescript.

Use the cat command to display the contents of your file.

See the kapturd and lscripfl commands in the AIX 5L Version 5.1 Commands Reference for the exact
syntax.

Displaying Text in Large Letters on Your Screen (banner Command)

The banner command displays ASCII characters to your screen in large letters. Each line in the output
can be up to 10 digits or uppercase or lowercase characters in length.

For example, at the prompt, type:
banner GOODBYE!

Press Enter.
The system displays GOODBYE! in large letters at your screen.

See the banned command in theAIX 5L Version 5.1 Commands Reference for the exact syntax.

48 System Users Guide: Operating System and Devices

../../cmds/aixcmds1/capture.htm#HDRA264F037
../../cmds/aixcmds5/script.htm#HDRA167Z94620
../../cmds/aixcmds1/banner.htm#HDRTH2290FISH

Related Information

The bl special file.

Command Summary for Input and Output Redirection

> [Redirecting Standard Quitput” on page 42

>> [Redirecting Output and Appending It to a File” on page 43

I Pipes and Filters” on page 48

banned Writes ASCII character strings in large letters to standard output.
m Allows terminal screens to be dumped to a file.

Elead Clears the terminal screen.

bchd Writes character strings to standard output.

W Allows terminal input and output to be copied to a file.

ted Displays the standard output of a program and copies it into a file.

Related Information

‘ : i

Chapter 4. Input and Output Redirection 49

../../files/aixfiles/null.htm#HDRA287X9243D
../../cmds/aixcmds1/banner.htm#HDRTH2290FISH
../../cmds/aixcmds1/capture.htm#HDRA264F037
../../cmds/aixcmds1/clear.htm#HDRA133Z928C6
../../cmds/aixcmds2/echo.htm#HDRML250FISH
../../cmds/aixcmds5/script.htm#HDRA167Z94620
../../cmds/aixcmds5/tee.htm#HDREVK1E0CRAW

50 System Users Guide: Operating System and Devices

Chapter 5. File Systems and Directories

File systems consist of groups of directories and the files within the directories. File systems are commonly
represented as an inverted tree. The root directory, symbolized by the slash (/) symbol, defines a file
system and appears at the top of a file system tree diagram. Directories branch downward from the root
directory in the tree diagram and contain files and/or subdirectories. Branching creates unique paths
through the directory structure to every object in the file system.

Collections of files are stored in directories. These collections of files are often related to each other;
storing them in a structure of directories keeps them organized.

A file is a collection of data that can be read from or written to. A file can be a program you create, text
you write, data you acquire, or a device you use. Commands, printers, terminals, correspondence, and
application programs are all stored in files. This allows users to access diverse elements of the system in
a uniform way and gives the file system great flexibility.

This section discusses the following:

— FEile chmm Structure” an page 53

Related Information

© Copyright IBM Corp. 1997, 2001 51

File Systems

A file system is a hierarchical structure (file tree) of files and directories. This type of structure resembles
an inverted tree with the roots at the top and the branches at the bottom. This file tree uses directories to
organize data and programs into groups, allowing the management of many directories and files at one
time.

Some tasks are performed more efficiently on a file system than on each directory within the file system.
For example, you can back up, move, or secure an entire file system.

The basic type of file system is called the Journaled File System (JFS). This file system uses database
journaling techniques to maintain its structural consistency. This prevents damage to the file system when
the system is halted abnormally.

Some of the most important system management tasks have to do with file systems, specifically:
» Allocating space for file systems on logical volumes

» Creating file systems

» Making file system space available to system users

* Monitoring file system space usage

» Backing up file systems to guard against data loss if the system fails

* Maintaining file systems in a consistent state

These tasks should be performed by your system administrator.

This section discusses:

3 : : : ”

File System Types

The operating system supports multiple file system types. These include:

Journaled File System (JFS) The basic file system type, it supports the entire set of file
system commands.

Network File System (NFS) A file system type that permits files residing on remote
machines to be accessed as though they reside on the local
machine.

CD-ROM File System (CDRFS) A file system type that allows the contents of a CD-ROM to be
accessed through the normal file system interfaces (open, read,
and close).

B2 system Users Guide: Operating System and Devices

File System Structure

On standalone machines, the following file systems reside on the associated devices by default:

/dev/hd1 /home
/dev/hd2 lusr
/dev/hd3 tmp
/dev/hd4 /(root)
/dev/hd9var /var

The file tree has the following characteristics:
 Files that can be shared by machines of the same hardware architecture are located in the /usr file

system.

» Variable per-client files, for example, spool and mail files, are located in the /var file system.
* The /(root) file system contains files and directories critical for system operation. For example, it

contains

— A device directory (/dev)
— Mount points where file systems can be mounted onto the root file system, for example, /mnt
* The /home file system is the mount point for users’ home directories.

» For servers, the /export directory contains paging-space files, per-client (unshared) root file systems,
dump, home, and /usr/share directories for diskless clients, as well as exported /usr directories.

The following list provides information about the contents of some of the subdirectories of the /(root) file

system.
/bin
/dev

letc

lexport
/home

Nlib

/sbin

tmp
fu

W to the /usr/bin directory. In prior UNIX file systems, the /bin directory contained user

commands that now reside in /usr/bin in the new file structure.

Contains device nodes for special files for local devices. The /dev directory contains special files for

tape drives, printers, disk partitions, and terminals.

Contains configuration files that vary for each machine. Examples include:

+ /etc/hosts

» /etc/passwd
The /etc directory contains the files generally used in system administration. Most of the commands
that used to reside in the /etc directory now reside in the /usr/sbin directory. However, for
compatibility, it contains symbolic links to the new locations of some executable files. Examples
include:

» [etc/chown is a symbolic link to the /usr/bin/chown.

» /etc/exportvg is a symbolic link to the /usr/sbin/exportvg.

Contains the directories and files on a server that are for remote clients.

Serves as a mount point for a file system containing user home directories. The /home file system
contains per-user files and directories.

In a standalone machine, a separate local file system is mounted over the /home directory. In a
network, a server might contain user files that should be accessible from several machines. In this
case, the server’s copy of the /home directory is remotely mounted onto a local /home file system.
Symbolic link to the /usr/lib directory, which contains architecture-independent libraries with names in
the form lib*.a.

Contains files needed to boot the machine and mount the /usr file system. Most of the commands used
during booting come from the boot image’s RAM disk file system; therefore, very few commands reside
in the /sbin directory.

Serves as a mount point for a file system that contains system-generated temporary files.

Symbolic link to the /home directory.

Chapter 5. File Systems and Directories 53

../../libs/basetrf2/symlink.htm

lusr Serves as a mount point for a file system containing files that do not change and can be shared by
machines (such as executables and ASCII documentation).

Standalone machines mount a separate local file system over the /usr directory. Diskless and disk-poor
machines mount a directory from a remote server over the /usr file system.

Ivar Serves as a mount point for files that vary on each machine. The /var file system is configured as a file
system since the files it contains tend to grow. For example, it is a symbolic link to the /usr/tmp
directory, which contains temporary work files.

Showing Space Available on File System (df Command)

The df command displays information about total space and available space on a file system. The
FileSystem parameter specifies the name of the device on which the file system resides, the directory on
which the file system is mounted, or the relative path name of a file system. If you do not specify the
FileSystem parameter, the df command displays information for all currently mounted file systems. If a file
or directory is specified, then the df command displays information for the file system on which it resides.

Normally, the df command uses free counts contained in the superblock. Under certain exceptional
conditions, these counts might be in error. For example, if a file system is being actively modified when the
df command is running, the free count might not be accurate.

See the dil command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Note: On some remote file systems, such as Network File Systems (NFS), columns are blank if the
server does not provide the information.

For example, to display information about all mounted file systems, type:
df

Press Enter.

If your system is configured so the /, /usr, /site, and /usr/venus directories reside in separate file
systems, the output from the df command resembles the following:

Filesystem 512-blocks free %used ijused %iused Mounted on

/dev/hd4 20480 13780 32% 805 13% /
/dev/hd2 385024 15772 95% 27715 28% /usr
/dev/hd9var 40960 38988 4% 115 1% /var
/dev/hd3 20480 18972 7% 81 1% /tmp
/dev/hd1 4096 3724 9% 44 4% /home

For example, to display available space on the file system in which your current directory resides, type:
df .

Press Enter.

Related Information

54 system Users Guide: Operating System and Devices

../../cmds/aixcmds2/df.htm
../../cmds/aixcmds2/df.htm#HDRA10192B83

Directory Overview

A directory is a unique type of file that contains only the information needed to access files or other
directories. As a result, a directory occupies less space than other types of files. It also gives the file
system structure flexibility and depth. Directories enable you to group files and other directories, allowing
you to organize the file system into a modular hierarchy. Unlike other types of files, a special set of
commands control directories.

Directories contain directory entries. Each entry contains a file or subdirectory name and an index node
reference number (i-node number). To increase speed and enhance use of disk space, the data in a file is
stored at various locations in the computer's memory. The i-node number contains the addresses used to
locate all the scattered blocks of data associated with a file. The i-node number also records other
information about the file including time of modification and access, access modes, number of links, file
owner, and file type. It is possible to link several names for a file to the same i-node number by creating
directory entries with the % command.

Because directories often contain information that should not be available to all users of the system,
directory access can be protected. By setting a directory’s permissions, you can control who has access to
the directory, also determining which users (if any) can alter information within the directory. See

i > for more information.

This section discusses:

Types of Directories

Directories can be defined by the operating system, the system administrator, or users. The
system-defined directories contain specific kinds of system files, such as commands. At the top of the file
system hierarchy is the system-defined /(root) directory. The /(root) directory usually contains the following
standard system-related directories:

/dev Contains special files for I/O devices.

letc Contains files for system initialization and system management.

/home Contains login directories for the system users.

tmp Contains files that are temporary and can be deleted in a specified number of days.
lusr Contains the Ipp, include, and other system directories.

lusr/bin Contains user executable programs.

Some directories, such as your login or home directory (SHOME), are defined and customized by the
system administrator. When you log in to the operating system, the login directory is the current directory.

Chapter 5. File Systems and Directories 95

../../cmds/aixcmds3/ln.htm#HDRA8C1270CRAW

Directories that you create are called user-defined directories. These directories help you organize and
maintain your files.

Directory Organization

Directories contain files, subdirectories, or a combination of both. A subdirectory is a directory within a
directory. The directory containing the subdirectory is the parent directory.

For the operating system to track and find directories, each directory has an entry for the parent directory
in which it was created, .. (dot dot), and an entry for the directory itself, . (dot). In most directory listings,
these files are hidden.

Directory Tree
Structures of parent directories, subdirectories, and files are called file systems. Directory structures are

often compared to an inverted tree. The root directory, symbolized by a slash (/), is the base and pictured
at the top of the directory tree. Subdirectories and files branch downward from the root directory.

The file system structure of directories can easily become complex. Attempt to keep the file and directory
structure as simple as possible. Also, create files and directories with easily recognizable names. This
makes working with files easier.

Parent Directory

Each directory, except for /(root), has one parent directory and can have one or more child directories. In
the Example of Directory Structures illustration, C is parent to E, and C is child to /(root).

Home Directory

When you log in, the system puts you in a directory called your home directory or login directory. This
directory is set up by the system administrator for each user. Your home directory is where you keep your
personal files. Normally, directories you create for your own use will be subdirectories of your home
directory. To return to your home directory at any time, type the ecd command and press Enter at the
prompt.

Working Directory

You are always working within a directory. Whichever directory you are currently working in is called your
current or working directory. The m (present working directory) command reports the name of your
working directory. The ked command allows you to change working directories.

Directory Naming Conventions

The name of each directory must be unique within the directory where it is stored. This ensures that the
directory also has a unique path name in the file system. Directories follow the same naming conventions

as files as explained in LEile Naming Conventions” on page 6d.

Directory Path Names

Each file and directory can be reached by a unique path, known as the path name, through the file system
tree structure. The path name specifies the location of a directory or file within the file system.

Note: Path names cannot exceed 1023 characters.

56 System Users Guide: Operating System and Devices

../../cmds/aixcmds4/pwd.htm#HDRDLK1390FISH
../../cmds/aixcmds1/cd.htm#HDRKYI1D0FISH

The file system uses two kinds of path names:

absolute path names Traces the path from the /(root) directory. Absolute path names always begin
with the slash (/) symbol.
relative path name Traces the path from the current directory through its parent or its

subdirectories and files.

An absolute path name represents the complete name of a directory or file from the /(root) directory
downward. Regardless of where you are working in the file system, you can always find a directory or file
by specifying its absolute path name. Absolute path names start with a slash (/), the symbol representing
the root directory. The path name /A/D/9 is the absolute path name for 9. The first slash (/) represents the
/(root) directory, which is the starting place for the search. The remainder of the path name directs the
search to A, then to D, and finally to 9.

There are two files named 9. This is possible because the absolute path names to the files give each file a
unique name within the file system. The path names /A/D/9 and /C/E/G/9 specify two unique files named
9.

Unlike full path names, relative path names specify a directory or file based on the current working
directory. For relative path names, you can use the notation dot dot (..) to move upward in the file system
hierarchy. The dot dot (..) represents the parent directory. Because relative path names specify a path
starting in the current directory, they do not begin with a slash (/). Relative path names are used to specify
the name of a file in the current directory or the path name of a file or directory above or below the level of
the current directory in the file system. If D is the current directory, the relative path name for accessing 10
is F/10, but the absolute path name is always /A/D/F/10. Also, the relative path name for accessing 3 is
./..IB/3.

You can also represent the name of the current directory by using the notation dot (.). The dot (.) notation
is commonly used when running programs that read the current directory name.

Directory Abbreviations

Abbreviations provide a quick and convenient way for specifying certain directories. The following is a list
of abbreviations.

Abbreviation Meaning
The current working directory.
The directory above the current working directory (the parent directory).

Your home directory (this is not true for the [Baurne Shell” on page 194).

$HOME Your home directory (this is true for all shells).

Related Information

g H 2

Chapter 5. File Systems and Directories 57

Directory Handling Procedures

There are a variety of ways to work with directories and their contents.

The command and an example are presented for each of the following directory tasks:

Creating a Directory (mkdir Command)

The mkdir command creates one or more new directories specified by the Directory parameter. Each new
directory contains the standard entries dot (.) and dot dot (..). You can specify the permissions for the new
directories with the -m Mode flag.

When a new directory is created, it is created within the current, or working, directory unless you specify
an absolute path name to another location in the file system.

For example, to create a new directory called Test in the current working directory with default
permissions, type:
mkdir Test

Press Enter.

For example, to create a new directory called Test with rwxr-xr-x permissions in a previously created
/home/demo/subl directory, type:

mkdir -m 755 /home/demo/subl/Test
Press Enter.

For example, to create a new directory called Test with default permissions in the /home/demo/sub2
directory, type:

mkdir -p /home/demo/sub2/Test
Press Enter.
The -p flag creates the /home, /home/demo, and /home/demo/sub?2 directories if they do not already exist.

See the mkdid command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

B8 system Users Guide: Operating System and Devices

../../cmds/aixcmds3/mkdir.htm#HDRZGG270CRAW

Moving or Renaming a Directory (mvdir Command)
The mvdir command moves directories or renames a directory.

For example, to move a directory, type:
mvdir book manual

Press Enter.

This moves the book directory under the directory named manual, if manual exists. Otherwise, the book
directory is renamed to manual.

>For example, to move and rename a directory, type:
mvdir book3 proj4/manual

Press Enter.
This moves book3 to the directory named proj4 and renames it manual (if manual did not previously exist).

See the Imvdid command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Displaying Your Current Directory (pwd Command)

The pwd command writes to standard output the full path name of your current directory (from the /(root)
directory). All directories are separated by a slash (/). The /(root) directory is represented by the first slash
(/), and the last directory named is your current directory.

For example, to display your current directory, type:
pwd

Press Enter.

The full path name of your current directory is displayed similar to the following:
/home/thomas

See the m command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.
Changing to Another Directory (cd Command)

The ¢d command moves you from your present directory to another directory. You must have execute
(search) permission in the specified directory.

If you do not specify a Directory parameter, the cd command moves you to your login directory ($SHOME in
the ksh and bsh environments, or $home in the csh environment). If the specified directory name is a full
path name, it becomes the current directory. A full path name begins with a slash (/) indicating the /(root)
directory, a dot (.) indicating current directory, or a dot dot (..) indicating parent directory. If the directory
name is not a full path name, the ed command searches for it relative to one of the paths specified by the
$CDPATH shell variable (or $cdpath csh variable). This variable has the same syntax as, and similar
semantics to, the $PATH shell variable (or $path csh variable).

For example, to change to your home directory, type:
cd

Press Enter.

Chapter 5. File Systems and Directories 59

../../cmds/aixcmds3/mvdir.htm#HDRBIG270CRAW
../../cmds/aixcmds4/pwd.htm#HDRDLK1390FISH

For example, to change to the /usr/include directory, type:
cd /usr/include

Press Enter.
This changes the current directory to /usr/include.

For example, to go down one level of the directory tree to the sys directory, type:
cd sys

Press Enter.

If the current directory is /usr/include and it contains a subdirectory named sys, then /usr/include/sys
becomes the current directory.

For example, to go up one level of the directory tree, type:
cd ..

Press Enter.

The special file name, dot dor (..), refers to the directory immediately above the current directory, its parent
directory.

See the kd command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.
Copying a Directory (cp Command)

The cp or copy command creates a copy of the contents of the file or directory specified by the
SourceFile or SourceDirectory parameters into the file or directory specified by the TargetFile or
TargetDirectory parameters. If the file specified as the TargetFile exists, the copy writes over the original
contents of the file. If you are coping more than one SourceFile, the target must be a directory.

To place a copy of the SourceFile into a directory, specify a path to an existing directory for the
TargetDirectory parameter. Files maintain their respective names when copied to a directory unless you
specify a new file name at the end of the path. The cp command also copies entire directories into other
directories if you specify the -r or -R flags.

For example, to copy all the files in a directory to a new directory, type:
cp /home/janet/clients/* /home/nick/customers

Press Enter.
This copies only the files in the clients directory to the customers directory.

For example, to copy a directory, including all its files and subdirectories, to another directory, type:
cp -R /home/nick/clients /home/nick/customers

Press Enter.

This copies the clients directory, including all its files, subdirectories, and the files in those subdirectories,
under the customers directory.

See the E command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

60 System Users Guide: Operating System and Devices

../../cmds/aixcmds1/cd.htm#HDRKYI1D0FISH
../../cmds/aixcmds1/cp.htm#HDRA133Z92232

Displaying Contents of a Directory (Is Command)

You can display the contents of a directory by using the Is command.
Is command

The Is command writes to standard output the contents of each specified Directory or the name of each
specified File, along with any other information you ask for with the flags. If you do not specify a File or
Directory, the Is command displays the contents of the current directory.

By default, the Is command displays all information in alphabetic order by file name. If the command is
executed by a user with root authority, it uses the -A flag by default, listing all entries except dot (.) and
dot dot (..). To show all entries for files, including those that begin with a . (dot), use the Is -a command.

There are three main ways to format the output:
 List one entry per line using the -I flag.

+ List entries in multiple columns by specifying either the -C or -x flag. The -C flag is the default format
when output is to a tty.

» List entries in a comma-separated series by specifying the -m flag.

To determine the number of character positions in the output line, the Is command uses the $COLUMNS
environment variable. If this variable is not set, the command reads the terminfo file. If the Is command
cannot determine the number of character positions by either of these methods, it uses a default value of
80.

The information displayed with the -e and -l flags is interpreted as follows:

If the first character is:

d Entry is a directory.

b Entry is a block special file.

c Entry is a character special file.

| Entry is a symbolic link.

p Entry is a first-in, first-out (FIFO) pipe special file.
s Entry is a local socket.

- Entry is an ordinary file.

The next nine characters are divided into three sets of three characters each. The first three characters
show the owner’s permission. The next set of three characters shows the permission of the other users in
the group. The last set of three characters shows the permission of anyone else with access to the file.
The three characters in each set show read, write, and execute permission of the file. Execute permission
of a directory lets you search a directory for a specified file.

Permissions are indicated as follows:

r Read permission granted

t Only the directory owner or the file owner can delete or rename a file within that directory, even if others have
write permission to the directory.

w Write (edit) permission granted

X Execute (search) permission granted

- Corresponding permission not granted.

The information displayed with the -e flag is the same as with the -l flag, except for the addition of an 11th
character interpreted as follows:

Chapter 5. File Systems and Directories 61

+ Indicates a file has extended security information. For example, the file might have extended ACL, TCB, or TP
attributes in the mode.
- Indicates a file does not have extended security information.

When the size of the files in a directory are listed, the Is command displays a total count of blocks,
including indirect blocks.

For example, to list all files in the current directory, type:
1s -a

Press Enter.

This lists all files, including

* dot (.)

* dot dot (..)

» Other files whose names might or might not begin with a dot (.)

For example, to display detailed information, type:
1s -1 chapl .profile

Press Enter.
This displays a long listing with detailed information about chapl and .profiTe.

For example, to display detailed information about a directory, type:
1s -d -1 . manual manual/chapl

Press Enter.
This displays a long listing for the directories . and manual, and for the file manual/chapl. Without the -d
flag, this would list the files in the . and manual directories instead of the detailed information about the

directories themselves.

See the Id command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.
Deleting or Removing a Directory (rmdir Command)

The rmdir command removes the directory, specified by the Directory parameter, from the system. The
directory must be empty (it can only contain . and ..) before you can remove it, and you must have write
permission in its parent directory. Use the Is -a Directory command to check whether the directory is
empty.

For example, to empty and remove a directory, type:

rm mydir/* mydir/.x

rmdir mydir

Press Enter.

This removes the contents of mydir, then removes the empty directory. The rm command displays an error

message about trying to remove the directories dot (.) and dot dot (..), and then the rmdir command
removes them and the directory itself.

62 System Users Guide: Operating System and Devices

../../cmds/aixcmds3/ls.htm#HDRGVB310FISH

Note that rm mydir/* mydir/.* first removes files with names that do not begin with a dot, and then
removes those with names that do begin with a dot. You might not realize that the directory contains file
names that begin with a dot because the Is command does not normally list them unless you use the -a
flag.

For example, to remove the /tmp/jones/demo/mydir directory structure and all the directories beneath it,
type:

cd /tmp

rmdir -p jones/demo/mydir

Press Enter.

This removes the jones/demo/mydir directory from the /tmp directory. If a directory is not empty or you do
not have write permission to it when it is to be removed, the command terminates with appropriate error
messages.

See the kmdid command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.
Comparing Contents of Directories (dircmp Command)

The diremp command compares the two directories specified by the Directory1 and Directory2 parameters
and writes information about their contents to standard output. First, the dircmp command compares the
file names in each directory. If the same file name appears in both, the dircmp command compares the
contents of both files.

In the output, the direcmp command lists the files unique to each directory. It then lists the files with
identical names in both directories, but with different contents. If no flag is specified, it also lists files that
have identical contents as well as identical names in both directories.

For example, to summarize the differences between the files in the proj.verl and proj.ver2 directories,
type:
dircmp proj.verl proj.ver2

Press Enter.
This displays a summary of the differences between the directories proj.verl and proj.ver2. The
summary lists separately the files found only in one directory or the other, and those found in both. If a file

is found in both directories, the diremp command notes whether the two copies are identical.

For example, to show the details of the differences between the files in the proj.verl and proj.ver2
directories, type:

dircmp -d -s proj.verl proj.ver2
Press Enter.

The -s flag suppresses information about identical files. The -d flag displays a diff listing for each of the
differing files found in both directories.

See the m command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Related Information

Chapter 5. File Systems and Directories 63

../../cmds/aixcmds4/rmdir.htm#HDRH7G1A0FISH
../../cmds/aixcmds2/dircmp.htm#HDRQX23B0FISH

Command Summary for File Systems and Directories

File Systems

b Reports information about space on file systems.

Directory Abbreviations

The current working directory.
The directory above the current working directory (the parent directory).

) Your home directory (this is not true for the lBourne Shell” on page 198).

$HOME Your home directory (this is true for all shells).

Directory Handling Procedures

kd Changes the current directory.

E Copies files or directories.

m Compares two directories and the contents of their common files.
id Displays the contents of a directory.

nkdid Creates one or more new directories.

vdid Moves (renames) a directory.

pwd Displays the path name of the working directory.

Emdid Removes a directory.

Related Information

i H ”

64 System Users Guide: Operating System and Devices

../../cmds/aixcmds2/df.htm#HDRA10192B83
../../cmds/aixcmds1/cd.htm#HDRKYI1D0FISH
../../cmds/aixcmds1/cp.htm#HDRA133Z92232
../../cmds/aixcmds2/dircmp.htm#HDRQX23B0FISH
../../cmds/aixcmds3/ls.htm#HDRGVB310FISH
../../cmds/aixcmds3/mkdir.htm#HDRZGG270CRAW
../../cmds/aixcmds3/mvdir.htm#HDRBIG270CRAW
../../cmds/aixcmds4/pwd.htm#HDRDLK1390FISH
../../cmds/aixcmds4/rmdir.htm#HDRH7G1A0FISH

Chapter 5. File Systems and Directories

65

66 System Users Guide: Operating System and Devices

Chapter 6. Files

Files are used for all input and output (I/O) of information in the operating system. This standardizes
access to both software and hardware. Input occurs when the contents of a file is modified or written to.
Output occurs when the contents of one file is read or transferred to another file. For example, to create a
hardcopy printout of a file, the system reads the information from the text file and writes that information to
the file representing the printer.

This section discusses:

T ”

TEPNT] .)

© Copyright IBM Corp. 1997, 2001 67

Types of Files

There are three basic types of files:

regular Stores data (text, binary, and executable).
directory Contains information used to access other files.
special Defines a FIFO (first-in, first-out) pipe file or a physical device.

All file types recognized by the system fall into one of these categories. However, the operating system
uses many variations of these basic types.

Regular Files

Regular files are the most common files. Another name for regular files is ordinary files. Regular files
contain data.

Text Files

Text files are regular files that contain information readable by the user. This information is stored in ASCII.
You can display and print these files. The lines of a text file must not contain NUL characters, and none
can exceed {LINE_MAX} bytes in length, including the new-line character.

The term text file does not prevent the inclusion of control or other nonprintable characters (other than
NUL). Therefore, standard utilities that list text files as inputs or outputs are either able to process the
special characters gracefully or they explicitly describe their limitations within their individual sections.

Binary Files

Binary files are regular files that contain information readable by the computer. Binary files might be
executable files that instruct the system to accomplish a job. Commands and programs are stored in
executable, binary files. Special compiling programs translate ASCII text into binary code.

The only difference between text and binary files is that text files have lines of less than {LINE_MAX}
bytes, with no NUL characters, each terminated by a new-line character.

Directory Files

Directory files contain information the system needs to access all types of files, but they do not contain the
actual file data. As a result, directories occupy less space than a regular file and give the file system
structure flexibility and depth. Each directory entry represents either a file or a subdirectory. Each entry
contains the name of the file and the file’s index node reference number (i-node number). The i-node
number points to the unique index node assigned to the file. The i-node number describes the location of
the data associated with the file. Directories are created and controlled by a separate set of commands.

See ['Directory Querview” on page 55 for more information.

Special Files

Special files define devices for the system or temporary files created by processes. There are three basic
types of special files: FIFO (first-in, first-out), block, and character. FIFO files are also called pipes. Pipes
are created by one process to temporarily allow communication with another process. These files cease to
exist when the first process finishes. Block and character files define devices.

Every file has a set of permissions (called access modes) that determine who can read, modify, or execute
the file.

To learn more about file access modes, see LEile and Directary Access Mades” on page 121 .

68 System Users Guide: Operating System and Devices

File Naming Conventions

The name of each file must be unique within the directory where it is stored. This ensures that the file also
has a unique path name in the file system. File-naming guidelines are:

» Afile name can be up to 255 characters long and can contain letters, numbers, and underscores.

* The operating system is case-sensitive, which means it distinguishes between uppercase and lowercase
letters in file names. Therefore, FILEA, Filea, and filea are three distinct file names, even if they reside
in the same directory.

» File names should be as descriptive and meaningful as possible.
» Directories follow the same naming conventions as files.

» Certain characters have special meaning to the operating system and should be avoided when naming
files. These characters include the following:

/N ey -2 [1() 1S {Y<>#08 |

* Afile name is hidden from a normal directory listing if it begins with a dot (.). When the Is command is
entered with the -a flag, the hidden files are listed along with regular files and directories.

File Path Names

The path name for each file and directory in the file system consists of the names of every directory that
precedes it in the tree structure.

Since all paths in a file system originate from the /(root) directory, each file in the file system has a unique
relationship to the root directory known as the absolute path name. Absolute path names begin with the
slash (/) symbol. The absolute path name of file h within the Example File System is /B/C/h. Notice that
there are two files named g. Because the absolute paths to these files are different, /B/g and /B/C/g, each
file named g has a unique name within the system. Every component of a path name is a directory except
the final component. The final component of a path name can be a file name.

Note: Path names cannot exceed 1023 characters.

Pattern Matching with Wildcards and Metacharacters

Wildcard characters provide a convenient way for specifying multiple file or directory names with one
character. The two wildcard characters are asterisk (*) and question mark (?). The metacharacters are
open and close square brackets ([]), hyphen (-), and exclamation mark (!).

* Wildcard

Use the * to match any sequence or string of characters. The * means any characters, including no
characters. For example, if you have the following files in your directory:

ltest 2test afilel afile2 bfilel file filel filel0O file2 file3

and you want to refer to only to the files that begin with file, you would use:
filex

The files selected would be: file filel fileld file2 file3

To refer to only the files that contain the word file, you would use:
filex

The files selected would be: afilel afile2 bfilel file filel filel® file2 file3

Chapter 6. Files 69

? Wildcard
Use the ? to match any one character. The ? means any single character.

To refer to only the files that start with file and end with a single character, use:
file?

The files selected would be: filel file2 file3

To refer to only the files that start with file and end with any two characters, use:
file??

The file selected would be: filel0d
[] Shell Metacharacters

Metacharacters offer another type of wildcard notation by enclosing the desired characters within []. It is
like using the ?, but it allows you to choose specific characters to be matched. The [] also allow you to
specify a range of values using the hyphen (-). To specify all the letters in the alphabet, use [[:alpha:]]. To
specify all the lowercase letters in the alphabet, use [[:lower:]].

To refer to only the files that end in 1 or 2, use:
*file[12]

The files selected would be: afilel afile2 filel file2

To refer only to the files that start with any number, use:
[0123456789]* or [0-9]=

The files selected would be: 1test 2test

To refer only to the files that don’t begin with an a, use:
[ta]~*

The files selected would be: 1test 2test bfilel file filel filelO® file2 file3

Pattern Matching versus Regular Expressions

Regular expressions allow you to select specific strings from a set of character strings. The use of regular
expressions is generally associated with text processing.

Regular expressions can represent a wide variety of possible strings. While many regular expressions can
be interpreted differently depending on the current locale, internationalization features provide for
contextual invariance across locales.

See the examples in the following comparison between File Matching Patterns and Regular Expressions:
Pattern Matching Regular Expression

? ..

[1a] ["a]

[abc] [abc]
[[:alpha:]] [[:alpha:]]

See the BwM command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

70 System Users Guide: Operating System and Devices

../../cmds/aixcmds1/awk.htm#HDRA10498FE

Related Information

File Handling Procedures

There are many ways to work with the files on your system. Usually you create a text file with a text editor.
The common editors in the UNIX environment are vi and ed. The operating system also includes its own
text editor, INed. Because several text editors are available, you can choose to edit with the editor you feel
comfortable with.

You can also create files by using input/output redirection, as described in "EChapter 4. lnput and Qutput
Bedirection” on page 41" . The output of a command can be sent to a new file or appended to an existing
file.

After creating and modifying files, you might have to copy or move files from one directory to another,
rename files to distinguish different versions of a file or give different names to the same file. You might
also need to create new directories when working on different projects.

Also, you might need to delete certain files. Your directory can quickly get cluttered with files that contain
old or useless information. Deleting files that are not needed frees up storage space on your system.

This section discusses:

Chapter 6. Files 71

I~ i i i i »

Deleting Files (rm Command)

When you no longer need a file, you can remove it with the rm command. The rm command does not
require user confirmation before removing the file. You can use rm to delete a group of files or to select
certain files from a list for deletion.

rm Command
The rm command removes the entries for the specified file or files from a directory. You do not need read
or write permission for the file you want to remove. However, you must have write permission for the

directory containing that file.

For example, to delete the file named myfile, type:
rm myfile

Press Enter.

To delete all the files in the mydir directory one by one, type:
rm -i mydir/*

Press Enter.

After each file name is displayed, type y and press Enter to delete the file, or press the Enter key to keep
it.

See the kml command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.
Moving and Renaming Files (mv Command)

The mv command moves files and directories from one directory to another or renames a file or directory.
If you move a file or directory to a new directory without specifying a new name, it retains its original
name.

Attention: The mv command can overwrite many existing files unless you specify the -i flag. The -i
flag prompts you to confirm before it overwrites a file. The -f flag does not prompt you. If both the -f
and -i flags are specified in combination, the last flag specified takes effect.

Moving Files with mv Command
For example, to move a file to another directory and give it a new name, type:

mv intro manual/chapl

Press Enter.

This moves intro to manual/chapl. The name intro is removed from the current directory, and the same
file appears as chapl in the directory manual. Note the previous ttentiod note.

For example, to move a file to another directory, keeping the same name, type:

72 System Users Guide: Operating System and Devices

../../cmds/aixcmds4/rm.htm#HDRP4G120FISH

mv chap3 manual
Press Enter.

This moves chap3 to manual/chap3. Note the previous [Attentiod note.

Renaming Files with mv Command
For example, to rename a file, type:

mv appendix apndx.a
Press Enter.

This renames appendix to apndx.a. If a file named apndx.a already exists, its old contents are replaced
with those of appendix. Note the previous ttentiod note.

See the Imd command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.
Copying Files (cp Command)

The cp or copy command creates a copy of the contents of the file or directory specified by the
SourceFile or SourceDirectory parameters into the file or directory specified by the TargetFile or
TargetDirectory parameters. If the file specified as the TargetFile exists, the copy writes over the original
contents of the file without warning. If you are copying more than one SourceFile, the target must be a
directory.

If a file with the same name exists at the new destination, the copied file will overwrite the file at the new
destination. Therefore, it is a good practice to assign a new name for the copy of the file to ensure that a
file of the same name does not exist in the destination directory.

To place a copy of the SourceFile into a directory, specify a path to an existing directory for the
TargetDirectory parameter. Files maintain their respective names when copied to a directory unless you
specify a new file name at the end of the path. The cp command also copies entire directories into other
directories if you specify the -r or -R flags.

You can also copy special-device files. The preferred option for accomplishing this is the -R flag.
Specifying -R causes the special files to be recreated under the new path name. Specifying the -r flag
causes the ecp command to attempt to copy the special files to regular files.

For example, to make a copy of a file in the current directory, type:
cp prog.c prog.bak

Press Enter.

This copies prog.c to prog.bak. If the prog.bak file does not already exist, then the cp command creates
it. If it does exist, then the c¢p command replaces it with a copy of the prog.c file.

For example, to copy a file in your current directory into another directory, type:
cp jones /home/nick/clients

Press Enter.
This copies the jones file to /home/nick/clients/jones.

For example, to copy all the files in a directory to a new directory, type:
cp /home/janet/clients/* /home/nick/customers

Chapter 6. Files 73

../../cmds/aixcmds3/mv.htm#HDRCBG190CRAW

Press Enter.
This copies only the files in the cTients directory to the customers directory.

For example, to copy a specific set of files to another directory, type:
cp jones lewis smith /home/nick/clients

Press Enter.

This copies the jones, Tewis, and smith files in your current working directory to the /home/nick/clients
directory.

For example, to use pattern-matching characters to copy files, type:
cp programs/*.c .

This copies the files in the programs directory that end with .c to the current directory, signified by the
single dot (.). You must type a space between the ¢ and the final dot.

See the E command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.
Finding Files (find Command)

The find command recursively searches the directory tree for each specified Path, seeking files that match
a Boolean expression written using the terms given in the following text. The output from the find
command depends on the terms specified by the Expression parameter.

For example, to list all files in the file system with the name .profile, enter:
find / -name .profile

This searches the entire file system and writes the complete path names of all files named .profile. The
slash (/) tells the find command to search the /(root) directory and all of its subdirectories.To avoid
wasting time, it is best to limit the search by specifying the directories where you think the files might be.

For example, to list files having a specific permission code of 0600 in the current directory tree, enter:
find . -perm 0600

This lists the names of the files that have only owner-read and owner-write permission. The dot (.) tells the
find command to search the current directory and its subdirectories. See the chmod command for an
explanation of permission codes.

For example, to search several directories for files with certain permission codes, enter:
find manual clients proposals -perm -0600

This lists the names of the files that have owner-read and owner-write permission and possibly other
permissions. The manual, clients, and proposals directories and their subdirectories are searched. In the
previous example, -perm 0600 selects only files with permission codes that match 0600 exactly. In this
example, -perm -0600 selects files with permission codes that allow the accesses indicated by 0600 and
other accesses above the 0600 level. This also matches the permission codes 0622 and 2744.

For example, to list all files in the current directory that have been changed during the current 24-hour
period, enter:

find . -ctime 0

For example, to search for regular files with multiple links, enter:

74 System Users Guide: Operating System and Devices

../../cmds/aixcmds1/cp.htm#HDRA133Z92232

find . -type f -links +1
Press Enter.
This lists the names of the ordinary files (-type f) that have more than one link (-1inks +1).

Note: Every directory has at least two links: the entry in its parent directory and its own .(dot) entry.
See the kd command for more information on multiple file links.

For example, to print the path names of all files in or below the current directory, except the directories
named SCCS or files in the SCCS directories, type:

Press Enter.
find . -name SCCS -prune

For example, to search for all files that are exactly 414 bytes long, type:
find . -size 41l4c

Press Enter.

See the find command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Showing File Type (file Command)

The file command reads the files specified by the File or -f FileList parameter, performs a series of tests
on each one, and attempts to classify them by types. The command then writes the file types to standard
output.

If a file appears to be ASCII, the file command examines the first 512 bytes and determines its language.
If a file does not appear to be ASCII, the file command further attempts to determine whether it is a binary
data file or a text file that contains extended characters.

If the File parameter specifies an executable or object module file and the version number is greater than
0, the file command displays the version stamp.

The file command uses the /etc/magic file to identify files that have some sort of magic number, that is,
any file containing a numeric or string constant that indicates type.

For example, to display the type of information the file named myfile contains, type:
file myfile

Press Enter.

This displays the file type of myfile (such as directory, data, ASCII text, C-program source, and archive).
For example, to display the type of each file named in filenames.1st, which contains a list of file names,
type:

file -f filenames.1st

Press Enter.

This displays the type of each file named in the filenames.1st list. Each file name must appear alone on
a line.

Chapter 6. Files 75

../../cmds/aixcmds3/ln.htm#HDRA8C1270CRAW
../../cmds/aixcmds2/find.htm#HDRA133Z92523

For example, to create the file filenames.1st, so that it contains all the file names in the current directory
type:
1s > filenames.1st

Press Enter.
Then edit filenames as desired.

See the fild command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.
Displaying File Contents (pg, more, page, and cat Commands)

The pg, more, and page commands allow you to view the contents of a file and control the speed at
which your files are displayed. You can also use the cat command to display the contents of one or more
files on your screen. Combining the cat command with the pg command allows you to read the contents
of a file one full screen at a time.

You can also display the contents of files by using input/output redirection. See "Input and Output

Redirection Overview (IChapter 4 Input and Qutput Redirection” on page 41l)” for more details on

input/output redirection.

pg Command

The pg command reads the file names from the File parameter and writes them to standard output one
screen at a time. If you specify hyphen (-) as the File parameter, or run the pg command without options,
the pg command reads standard input. Each screen is followed by a prompt. If you press the Enter key,

another screen displays. Subcommands used with the pg command let you review something that has
already passed.

For example, to look at the contents of the file myfile one page at a time, type:
pg myfile

Press Enter.

See the command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

more or page Command

The more or page command displays continuous text one screen at a time. It pauses after each screen
and prints the filename and percent done (for example, myfile (7%)) at the bottom of the screen. If you
then press the Enter key, the more command displays an additional line. If you press the Spacebar, the

more command displays another screen of text.

Note: On some terminal models, the more command clears the screen, instead of scrolling, before
displaying the next screen of data.

For example, to view a file named myfile, type:

more myfile
Press Enter.
Press the Spacebar to view the next screen.

See the mard command in theAIX 5L Version 5.1 Commands Reference for more information and the
exact syntax.

76 System Users Guide: Operating System and Devices

../../cmds/aixcmds2/file.htm#HDRA3D2B0FISH
../../cmds/aixcmds4/pg.htm#HDRYLI150CRAW
../../cmds/aixcmds3/more.htm#HDRTHDA40CRAW

cat Command

The cat command reads each File parameter in sequence and writes it to standard output.

For example, to display the contents of the file notes, type:
cat notes

Press Enter.

If the file is more than 24 lines long, some of it scrolls off the screen. To list a file one page at a time, use
the pg command.

For example, to display the contents of the files notes, notes2, and notes3, type:
cat notes notes2 notes3

Press Enter.

See the kall command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.
Finding Strings in Text Files (grep Command)

The grep command searches for the pattern specified by the Pattern parameter and writes each matching
line to standard output.

For example, to search in a file named pgm.s for a pattern that contains some of the pattern-matching
characters *, , 7, [, 1, \(,), \{, and \}, in this case lines starting with any lower or upper case letter, type:

grep " [a-zA-Z]" pgm.s
Press Enter.
This displays all lines in pgm.s that begin with a letter.

To display all lines in a file named sort.c that do not match a pattern, type:
grep -v bubble sort.c

Press Enter.
This displays all lines that do not contain the word bubble in the file sort.c.

To display lines in the output of the Is command that match the string staff, type:
1s -1 | grep staff

Press Enter.

See the @ command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Sorting Text Files (sort Command)

The sort command alphabetizes or sequences lines in the files specified by the File parameters and writes
the result to standard output. If the File parameter specifies more than one file, the sort command
concatenates the files and alphabetizes them as one file.

Note: The sort command is case-sensitive and orders uppercase letters before lowercase (this is
dependent on the locale).

Chapter 6. Files 77

../../cmds/aixcmds1/cat.htm#HDRNDB390FISH
../../cmds/aixcmds2/grep.htm#HDRKXF1170FISH

In the following examples the contents of the file names are:

marta
denise
joyce
endrica
melanie

and the contents of the file states are:

texas
colorado
ohio

To display the sorted contents of the file named names, type:
sort names

Press Enter.

The system displays information similar to the following:

denise
endrica
joyce
marta
melanie

To display the sorted contents of the two files names and states, type:
sort names states

Press Enter.

The system displays information similar to the following:
colorado

denise

endrica

joyce

marta

melanie

ohio

texas

To replace the original contents of the file named names with its sorted contents, type:
sort -0 names names

Press Enter.
This replaces the file names with the same data but in sorted order.

See the kard command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.
Comparing Files (diff Command)

The diff command compares text files. It can compare single files or the contents of directories.

When the diff command is run on regular files, and when it compares text files in different directories, the
diff command tells which lines must be changed in the files to make them agree.

For example, to compare two files, type:
diff chapl.bak chapl

78 System Users Guide: Operating System and Devices

../../cmds/aixcmds5/sort.htm#HDROOG12B0FISH

Press Enter.
This displays the differences between the files chapl.bak and chapl.

For example, to compare two files while ignoring differences in the amount of white space, type:
diff -w prog.c.bak prog.c

Press Enter.

If two lines differ only in the number of spaces and tabs between words, the diff -w command considers
them to be the same.

See the biff command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.
Counting Words, Lines, and Bytes in Files (wc Command)

By default, the we command counts the number of lines, words, and bytes in the files specified by the File
parameter. If a file is not specified for the File parameter, standard input is used. The command writes the
results to standard output and keeps a total count for all named files. If flags are specified, the ordering of
the flags determines the ordering of the output. A word is defined as a string of characters delimited by
spaces, tabs, or newline characters.

When files are specified on the command line, their names will be printed along with the counts.

For example, to display the line, word, and byte counts of the file named chapl, type:
wc chapl

Press Enter.
This displays the number of lines, words, and bytes in the chapl file.

For example, to display only byte and word counts, type:

wc -cw chap*
Press Enter.

This displays the number of bytes and words in each file where the name starts with chap, and displays
the totals.

See the lud command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.
Displaying the First Lines of Files (head Command)

The head command writes to standard output the first few lines of each of the specified files or of the
standard input. If no flag is specified with the head command, the first 10 lines are displayed by default.

For example, to display the first five lines of the Test file, type:
head -5 Test

Press Enter.

See the head command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Chapter 6. Files 79

../../cmds/aixcmds2/diff.htm#HDRGHI60FILT
../../cmds/aixcmds6/wc.htm#HDRA9T6220FISH
../../cmds/aixcmds2/head.htm#HDRA7FDA120CRAW

Displaying the Last Lines of Files (tail Command)

The tail command writes the file specified by the File parameter to standard output beginning at a
specified point.

For example, to display the last 10 lines of the notes file, type:
tail notes

Press Enter.

For example, to specify the number of lines to start reading from the end of the notes file, type:
tail -20 notes

Press Enter.

For example, to display the notes file one page at a time, beginning with the 200th byte, type:
tail -c +200 notes | pg

Press Enter.

For example, to follow the growth of the file named accounts, type:
tail -f accounts

Press Enter.

This displays the last 10 lines of the accounts file. The tail command continues to display lines as they are
added to the accounts file. The display continues until you press the (Ctrl-C) key sequence to stop it.

See the kail command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

See the kail command in the AIX 5L Version 5.1 Commands Reference for more information and the exact
syntax.

Cutting Sections of Text Files (cut Command)

The cut command writes to standard output selected bytes, characters, or fields from each line of a file.

For example, to display several fields of each line of a file:
cut -f1,5 -d: /etc/passwd

This displays the login name and full user name fields of the system password file. These are the first and
fifth fields (-f1,5) separated by colons (-d:).

For example, if the /etc/passwd file looks like this:

su:*:0:0:User with special privileges:/:/usr/bin/sh
daemon:*:1:1::/etc:

bin:*:2:2::/usr/bin:

sys:*:3:3::/usr/src:

adm:*:4:4:System Administrator:/var/adm:/usr/bin/sh
pierre:*:200:200:Pierre Harper:/home/pierre:/usr/bin/sh
joan:*:202:200:Joan Brown:/home/joan:/usr/bin/sh

the cut command produces:

80 System Users Guide: Operating System and Devices

../../cmds/aixcmds5/tail.htm#HDRMBK140CRAW
../../cmds/aixcmds5/tail.htm#HDRMBK140CRAW

su:User with special privileges
daemon:

bin:

Sys:

adm:System Administrator
pierre:Pierre Harper

joan:Joan Brown

See the kul command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Pasting Sections of Text Files (paste Command)
The paste command merges the lines of up to 12 files into one file.

For example, if you have a file named names that contains the following text:

rachel
jerry
mark
linda
scott

another file named places that contains the following text:

New York
Austin
Chicago
Boca Raton
Seattle

and another file named dates that contains the following text:

February 5
March 13
June 21
July 16
November 4

to paste the text of the files names, places, and dates together, type:

paste names places dates > npd
Press Enter.

This creates a file named npd that contains the data from the names file in one column, the places file in
another, and the dates file in a third. The npd file now contains:

rachel New York February 5
jerry Austin March 13
mark Chicago June 21
linda Boca Raton July 16
scott Seattle November 4

A tab character separates the name, place, and date on each line. These columns do not always line up
because the tab stops are set at every eighth column.

For example, to separate the columns with a character other than a tab, type:
paste -d"!@" names places dates > npd

Press Enter.

This alternates | and @ as the column separators. If the names, places, and dates files are the same as in
example 1, then the npd file contains:

Chapter 6. Files 81

../../cmds/aixcmds1/cut.htm#HDRREG1310FISH

rachel!New York@February 5
jerry!Austin@March 13
mark!Chicago@June 21
linda!Boca Raton@July 16
scott!SeattTe@November 4

For example, to list the current directory in four columns, type:

Is | paste - - - -
Press Enter.

Each hyphen (-) tells the paste command to create a column containing data read from the standard input.
The first line is put in the first column, the second line in the second column, and so on.

See the E command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Numbering Lines in Text Files (nl Command)

The nl command reads the specified file (standard input by default), numbers the lines in the input, and
writes the numbered lines to standard output.

For example, to number only the nonblank lines, type:
n1 chapl

Press Enter.
This displays a numbered listing of chapl, numbering only the nonblank lines in the body sections.

For example, to number all lines:
nl -ba chapl

This numbers all the lines in the file named chapl, including blank lines.

See the Il command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.
Removing Columns in Text Files (colrm Command)

The colrm command removes specified columns from a file. Input is taken from standard input. Output is
sent to standard output.

If called with one parameter, the columns of each line from the specified column to the last column are
removed. If called with two parameters, the columns from the first specified column to the second specified
column are removed.

Note: Column numbering starts with column 1.

For example, to remove columns from the text.fil file, type:
colrm 6 < text.fil

Press Enter.

If text.fil contains:
123456789

then the colrm command displays:

82 System Users Guide: Operating System and Devices

../../cmds/aixcmds4/paste.htm#HDRYGE1A0CRAW
../../cmds/aixcmds4/nl.htm#HDRTNG1250FISH

12345

See the kalrml command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Related Information

‘ H ”

Linking Files and Directories

Links are connections between a file name and an index node reference number (i-node number), the
internal representation of a file. Because directory entries contain file names paired with i-node numbers,
every directory entry is a link. The i-node number actually identifies the file, not the file name. By using
links, any i-node number or file can be known by many different names.

For example, i-node number 798 contains a memo regarding June sales in the Omaha office. Presently,
the directory entry for this memo is:

i-node Number File Name
798 memo

Because this information relates to information stored in the sales and omaha directories, linking is used to
share the information where it is needed. Using the In command, links are created to these directories.
Now the file has three file names:

i-node Number File Name

798 memo
798 sales/june
798 omahal/junesales

When you use the pg or cat command to view the contents of any of the three file names, the same
information is displayed. If you edit the contents of the i-node number from any of the three file names, the
contents of the data displayed by all of the file names will reflect any changes.

Chapter 6. Files 83

../../cmds/aixcmds1/colrm.htm#HDRA167Z9414E

This section discusses:

Types of Links

Links are created with the In command. There are two kinds of links:

hard link Allows access to the data of a file from a new file name. Hard links ensure the existence of a file.
When the last hard link is removed, the i-node number and its data are deleted. Hard links can be
created only between files that are in the same file system.

symbolic link Allows access to data in other file systems from a new file name. The symbolic link is a special
type of file that contains a path name. When a process encounters a symbolic link, the process
may search that path. Symbolic links do not protect a file from deletion from the file system.

Note: The user who creates a file retains ownership of that file no matter how many links are
created. Only the owner of the file or the root user can set the access mode for that file. However,
changes can be made to the file from a linked file name with the proper access mode.

A file or directory exists as long as there is one hard link to the i-node number for that file. In the long
listing displayed by the Is - command, the number of links to each file and subdirectory is given. All hard
links are treated equally by the operating system regardless of which link was created first.

Linking Files (In Command)

Linking files with the In command is a convenient way to work with the same data in more than one place.
Links are created by giving alternate names to the original file. The use of links allows a large file, such as
a database or mailing list, to be shared by several users without making copies of that file. Not only do
links save disk space, but changes made to one file are automatically reflected in all the linked files.

The In command links the file designated in the SourceFile parameter to the file designated by the
TargetFile parameter or to the same file name in another directory specified by the TargetDirectory
parameter. By default, the In command creates hard links. To use the In command to create symbolic
links, designate the -s flag.

If you are linking a file to a new name, you can list only one file. If you are linking to a directory, you can
list more than one file.

The TargetFile parameter is optional. If you do not designate a target file, the In command creates a new
file in your current directory. The new file inherits the name of the file designated in the SourceFile
parameter.

Note: You cannot link files across file systems without using the -s flag.

For example, to create another link to a file named chapl, type:
In -f chapl intro

Press Enter.
This links chapl to the new name, intro. When the -f flag is used, the file name intro is created if it does

not already exist. If intro does exist, the file is replaced by a link to chapl. Then both the chapl and intro
file names will refer to the same file. Any changes made to one also appear in the other.

84 system Users Guide: Operating System and Devices

For example, to link a file named index to the same name in another directory named manual, type:
In index manual

Press Enter.
This links index to the new name, manual/index.

For example, to link several files to names in another directory, type:
In chap2 jim/chap3 /home/manual

Press Enter.
This links chap2 to the new name /home/manual/chap2 and jim/chap3 to /home/manual/chap3.

For example, to use the In command with pattern-matching characters, type:
Tn manual/* .

Press Enter.

This links all files in the manual directory into the current directory, dot (.), giving them the same names
they have in the manual directory.

Note: You must type a space between the asterisk and the period.

For example, to create a symbolic link, type:
In -s /tmp/toc toc

Press Enter.

This creates the symbolic link, toc, in the current directory. The toc file points to the /tmp/toc file. If the
/tmp/toc file exists, the cat toc command lists its contents.

To achieve identical results without designating the TargetFile parameter, type:
In -s /tmp/toc

Press Enter.

See the In command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.
Removing Linked Files

The rm command removes the link from the file name you indicate. When one of several hard-linked file
names is deleted, the file is not completely deleted since it remains under the other name. When the last
link to an i-node number is removed, the data is removed as well. The i-node number is then available for

reuse by the system.

See the bmd command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Related Information

Chapter 6. Files 85

../../cmds/aixcmds3/ln.htm#HDRA8C1270CRAW
../../cmds/aixcmds4/rm.htm#HDRP4G120FISH

DOS Files

This operating system allows you to work with DOS files on your system. Copy to a diskette the DOS files
you want to work with. With the right commands, your system can read these files into a base operating
system directory in the correct format and back onto the diskette in DOS format.

Note: The wildcard characters * and ? (asterisk and question mark) do not work with these
commands (although they do with the base operating system shell). If you do not specify a file name
extension, the file name is matched as if you had specified a blank extension.

This section describes:

Copying DOS Files to Base Operating System Files

The dosread command copies the specified DOS file to the specified base operating system file.
Note: DOS file-naming conventions are used with one exception. Because the backslash (\)
character can have special meaning to the base operating system, use a slash (/) character as the
delimiter to specify subdirectory names in a DOS path name.

For example, to copy a text file named chapl.doc from a DOS diskette to the base operating file system,

type:

dosread -a chapl.doc chapl

Press Enter.

This copies the DOS text file \CHAP1.DOC on default device /dev/fd0 to the base operating system file
chapl in the current directory.

For example, to copy a binary file from a DOS diskette to the base operating file system, type:
dosread -D/dev/fdl /survey/test.dta /home/fran/testdata

Press Enter.

86 System Users Guide: Operating System and Devices

This copies the DOS data file \SURVEY\TEST.DTA on /dev/fd1 to the base operating system file
/home/fran/testdata.

See the Hasread command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.
Copying Base Operating System Files to DOS Files
The doswrite command copies the specified base operating system file to the specified DOS file.
Note: DOS file-naming conventions are used with one exception. Because the backslash (\)
character can have special meaning to the base operating system, use a slash (/) character as the

delimiter to specify subdirectory names in a DOS path name.

For example, to copy a text file named chapl from the base operating file system to a DOS diskette, type:
doswrite -a chapl chapl.doc

Press Enter.

This copies the base operating system file chapl in the current directory to the DOS text file \CHAP1.DOC on
/dev/fdO.

For example, to copy a binary file named /survey/test.dta from the base operating file system to a DOS
diskette, type:

doswrite -D/dev/fdl /home/fran/testdata /survey/test.dta
Press Enter.

This copies the base operating system data file /home/fran/testdata to the DOS file \SURVEY\TEST.DTA on
/dev/fd1.

See the Haswritd command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Deleting DOS Files

The dosdel command deletes the specified DOS file.
Note: DOS file-naming conventions are used with one exception. Because the backslash (\)
character can have special meaning to the base operating system, use a slash (/) character as the
delimiter to specify subdirectory names in a DOS path name.
The dosdel command converts lowercase characters in the file or directory name to uppercase before it
checks the disk. Because all file names are assumed to be full (not relative) path names, you need not
add the initial slash (/).

For example, to delete a DOS file named file.ext on the default device (/dev/fd0), type:
dosdel file.ext

Press Enter.

See the dosdel command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Listing Contents of a DOS Directory

The dosdir command displays information about the specified DOS files or directories.

Chapter 6. Files 87

../../cmds/aixcmds2/dosread.htm#HDRA133Z922E4
../../cmds/aixcmds2/doswrite.htm#HDRB4130FISH
../../cmds/aixcmds2/dosdel.htm#HDRA133Z91EF7

Note: DOS file-naming conventions are used with one exception. Because the backslash (\)
character can have special meaning to the base operating system, use a slash (/) character as the
delimiter to specify subdirectory names in a DOS path name.

The dosdir command converts lowercase characters in the file or directory name to uppercase before it
checks the disk. Because all file names are assumed to be full (not relative) path names, you need not
add the initial / (slash).

For example, to read a directory of the DOS files on /dev/fd0, type:
dosdir

Press Enter.

The command returns the names of the files and disk-space information.

PG3-25.TXT
PG4-25.TXT
PG5-25.TXT
PG6-25.TXT
Free space: 312320 bytes

See the Hasdid command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Related Information

Command Summary for Files

* Wildcard, matches any characters.
? Wildcard, matches any single character.
[1 Metacharacters, matches enclosed characters.

File Handling Procedures

kal Concatenates or displays files.

88 System Users Guide: Operating System and Devices

../../cmds/aixcmds2/dosdir.htm#HDRA5VK2E0CRAW
../../cmds/aixcmds1/cat.htm#HDRNDB390FISH

EIE] Q;EJEJE]H“E]E]@E]E]EI%E]E]EE]

Compares two files.

Extracts columns from a file.

Copies files.

Writes out selected bytes, characters, or fields from each line of a file.
Compares text files.

Determines the file type.

Finds files with a matching expression.

Searches a file for a pattern.

Displays the first few lines or bytes of a file or files.

Displays continuous text one screen at a time on a display screen.
Moves files.

Numbers lines in a file.

Formats files to the display.

Removes (unlinks) files or directories.

Merges the lines of several files or subsequent lines in one file.
Displays continuous text one screen at a time on a display screen.
Sorts files, merges files that are already sorted, and checks files to determine if they have been
sorted.

Writes a file to standard output, beginning at a specified point.

Counts the number of lines, words, and bytes in a file.

Linking Files and Directories

=

DOS Files

Hosdel
Hosdil
Hosread
Hoswrite

Links files and directories.

Deletes DOS files.

Lists the directory for DOS files.

Copies DOS files to Base Operating System files.
Copies Base Operating System files to DOS files.

Chapter 6. Files 89

../../cmds/aixcmds1/cmp.htm#HDRAVZ1F0FISH
../../cmds/aixcmds1/colrm.htm#HDRA167Z9414E
../../cmds/aixcmds1/cp.htm#HDRA133Z92232
../../cmds/aixcmds1/cut.htm#HDRREG1310FISH
../../cmds/aixcmds2/diff.htm#HDRGHI60FILT
../../cmds/aixcmds2/file.htm#HDRA3D2B0FISH
../../cmds/aixcmds2/find.htm#HDRA133Z92523
../../cmds/aixcmds2/grep.htm#HDRKXF1170FISH
../../cmds/aixcmds2/head.htm#HDRA7FDA120CRAW
../../cmds/aixcmds3/more.htm#HDRTHDA40CRAW
../../cmds/aixcmds3/mv.htm#HDRCBG190CRAW
../../cmds/aixcmds4/nl.htm#HDRTNG1250FISH
../../cmds/aixcmds4/pg.htm#HDRYLI150CRAW
../../cmds/aixcmds4/rm.htm#HDRP4G120FISH
../../cmds/aixcmds4/paste.htm#HDRYGE1A0CRAW
../../cmds/aixcmds3/more.htm#HDRTHDA40CRAW
../../cmds/aixcmds5/sort.htm#HDROOG12B0FISH
../../cmds/aixcmds5/tail.htm#HDRMBK140CRAW
../../cmds/aixcmds6/wc.htm#HDRA9T6220FISH
../../cmds/aixcmds3/ln.htm#HDRA8C1270CRAW
../../cmds/aixcmds2/dosdel.htm#HDRA133Z91EF7
../../cmds/aixcmds2/dosdir.htm#HDRA5VK2E0CRAW
../../cmds/aixcmds2/dosread.htm#HDRA133Z922E4
../../cmds/aixcmds2/doswrite.htm#HDRB4130FISH

90 System Users Guide: Operating System and Devices

Chapter 7. Printers, Print Jobs, and Queues

Depending on the printer, you can control the appearance and characteristics of the final output. The
printers need not be located in the same area as the system unit and the system console. A printer can be
attached directly to a local system, or a print job can be sent over a network to a remote system.

To handle print jobs with maximum efficiency, the system places each job into a queue to await printer
availability. The system can save output from one or more files in the queue. As the printer produces the
output from one file, the system processes the next job in the queue. This process continues until each job
in the queue has been printed.

WIX 5l Version 5.1 Guide to Printers and Printing provides detailed information about printers, print jobs,

and queues.

This section discusses:

Printer Terminology

The following describes terms commonly used with printing.

Print Job

A print job is a unit of work to be run on a printer. A print job can consist of printing one or more files,
depending on how the print job is requested. The system assigns a unique job number to each job it runs.

Queue

The queue is where you direct a print job. It is a stanza in the /etc/qconfig file whose name is the name
of the queue and points to the associated queue device. The following is a sample listing:
Msal:

device = Tp0

In the previous example, Msal is the queue name, and 1p0 is the device name.

© Copyright IBM Corp. 1997, 2001 91

../../aixbman/printrgd/printrgd.htm

Queue Device

The queue device is the stanza in the /etc/qconfig file that normally follows the local queue stanza. It
specifies the /dev file (printer device) that should be printed to and the backend that should be used.
Following is a sample listing:
1p0:

file = /dev/1p0

header = never

trailer = never

access = both

backend = /usr/1pd/piobe

In the previous example, 1p0 is the device name and the rest of the lines define how the device is used.

Note: There can be more than one queue device associated with a single queue.

qdaemon

The qdaemon is a process that runs in the background and controls the queues. It is generally started
when the system is turned on.

Print Spooler

The spooler is not specifically a print job spooler. Instead, it provides a generic spooling function that can
be used for queuing various types of jobs, including print jobs queued to a printer.

The spooler does not normally know what type of job it is queuing. When the system administrator defines
a spooler queue, the purpose of the queue is defined by the spooler backend program that is specified for
the queue. For example, if the spooler backend program is the piohd command (the printer /O backend),
the queue is a print queue. Likewise, if the spooler backend program is a compiler, the queue is for
compile jobs. When the spooler's qdaemon command selects a job from a spooler queue, it runs the job
by invoking the backend program specified by the system administrator when the queue was defined.

The main spooler command is the m command. Although you can invoke this command directly to
queue a print job, three front-end commands are defined for submitting a print job: the I, lpd, and bpri
commands. A print request issued by one of these commands is first passed to the enq program, which
then places the information about the file in the queue for the gdaemon to process.

Real Printer

A real printer is the printer hardware attached to a serial or parallel port at a unique hardware device
address. The printer device driver in the kernel communicates with the printer hardware and provides an
interface between the printer hardware and a virtual printer, but it is not aware of the concept of virtual
printers.

Virtual Printer

A virtual printer is a set of attributes that define a specific software view of a real printer. This view of the
virtual printer refers only to the high-level data stream (such as ASCII or PostScript) that the printer
understands. It does not include any information about how the printer hardware is attached to the host
computer or about the protocol used for transferring bytes of data to and from the printer. Virtual printers
are defined by the system manager.

92 System Users Guide: Operating System and Devices

../../cmds/aixcmds4/piobe.htm#HDRA2MB0JOYC
../../cmds/aixcmds2/enq.htm#HDRA200977F
../../cmds/aixcmds3/lp.htm#HDRA30P0499
../../cmds/aixcmds3/lpr.htm#HDRA20093C
../../cmds/aixcmds4/qprt.htm#HDRFO1370ROLL

Local and Remote Printers

When you attach a printer to a node or host, the printer is referred to as a local printer. A remote print
system allows nodes that are not directly linked to a printer to have printer access.

To use remote printing facilities, the individual nodes must be connected to a network using the
Transmission Control Protocol/Internet Protocol (TCP/IP) and must support the required TCP/IP
applications.

Printer Backend

The printer backend is a collection of programs called by the spooler’s m command to manage a
print job that is queued for printing. The printer backend performs the following functions:

* Receives from the gdaemon command a list of one or more files to be printed

» Uses printer and formatting attribute values from the database, overridden by flags entered on the
command line

* Initializes the printer before printing a file

* Runs filters as necessary to convert the print data stream to a format supported by the printer
» Provides filters for simple formatting of ASCII documents

» Provides support for printing national language characters

» Passes the filtered print data stream to the printer device driver

» Generates header and trailer pages

» Generates multiple copies

* Reports paper out, intervention required, and printer error conditions

* Reports problems detected by the filters

» Cleans up after a print job is canceled

* Provides a print environment that a system administrator can customize to address specific printing
needs

Starting a Print Job (qprt Command)
Use the tgprt Command” on page 94 'smit Command” on page 96 to request a print job and specify the

following:

* Name of the file to print

* Print queue name

* Name of the output bin

* Number of copies to print

* Whether to make a copy of the file on the remote host
» Whether to erase the file after printing

* Whether to send notification of the job status

* Whether to send notification of the job status by the system mail
» Burst status

* User name for "Delivery To" label

» Console acknowledgment message for remote print

» File acknowledgment message for remote print

* Priority level.

Chapter 7. Printers, Print Jobs, and Queues 93

../../cmds/aixcmds4/qdaemon.htm#HDRW4220JOYC

Prerequisites
» For local print jobs, the printer must be physically attached to your system.
* For remote print jobs, your system must be configured to communicate with the remote print server.

qprt Command

The gprt command creates and queues a print job to print the file you specify. If you specify more than
one file, all the files together make up one print job. These files are printed in the order specified on the
command line.

Before you can print a file, you must have read access to it. To remove a file after it has printed, you must
have write access to the directory that contains the file.

The basic format of the qprt command is:

-b Number Specifies the bottom margin. The bottom margin is the number of blank lines to be left
at the bottom of each page.
-B Value Specifies whether burst pages (continuous-form pages separated at perforations)

should be printed. The Value variable consists of a two-character string. The first
character applies to header pages. The second character applies to trailer pages.
Each of the two characters can be one of the following:

a Always prints the (header or trailer) page for each file in each print job.
n Never prints the (header or trailer) page.
g Prints the (header or trailer) page once for each print job (group of files).

For example, the -B ga flag specifies that a header page be printed at the beginning
of each print job and that a trailer page be printed after each file in each print job.

Note: In a remote print environment, the default is determined by the remote
queue on the server.

-e Option Specifies whether emphasized print is wanted.

+ Indicates emphasized print is wanted.

! Indicates emphasized print is not wanted.
-E Option Specifies whether double-high print is wanted.

+ Indicates double-high print is wanted.

! Indicates double-high print is not wanted.

-f FilterType A one-character identifier that specifies a filter through which your print file or files are
to be passed before being sent to the printer. The available filter identifiers are p,
which invokes the pr filter, and n, which processes output from the troff command.

-i Number Causes each line to be indented the specified number of spaces. The Number variable
must be included in the page width specified by the -w flag.

-K Option Specifies whether condensed print is wanted.
+ Indicates condensed print is wanted.

! Indicates condensed print is not wanted.

-1 Number Sets the page length to the specified number of lines. If the Number variable is 0,
page length is ignored, and the output is considered to be one continuous page. The
page length includes the top and bottom margins and indicates the printable length of
the paper.

94 system Users Guide: Operating System and Devices

-L Option

-N Number

-p Number

-P Queue[:QueueDevice]

-Q Value

-t Number
-w Number

-W Option

-z Value

-= OutputBin

-# Value

Specifies whether lines wider than the page width should be wrapped to the next line
or truncated at the right margin.

+ Indicates that long lines should wrap to the next line.

! Indicates that long lines should not wrap but instead should be truncated at
the right margin.

Specifies the number of copies to be printed. If this flag is not specified, one copy is

printed.

Sets the pitch to Number characters per inch. Typical values for Number are 10 and

12. The actual pitch of the characters printed is also affected by the values for the -K

(condensed) flag and the -W (double-wide) flag.

Specifies the print queue name and the optional queue device name. If this flag is not

specified, the default printer is assumed.

Specifies paper size for the print job. The Value for paper size is printer-dependent.

Typical values are: 1 for letter-size paper, 2 for legal, and so on. Consult your printer

manual for the values assigned to specific paper sizes.

Specifies the top margin. The top margin is the number of blank lines to be left at the

top of each page.

Sets the page width to the number of characters specified by the Number variable.

The page width must include the number of indention spaces specified with the -i flag.

Specifies whether double-wide print is wanted.

+ Indicates double-wide print is wanted.

! Indicates double-wide print is not wanted.

Rotates page printer output the number of quarter-turns clockwise as specified by the
Value variable. The length (-I) and width (-w) values are automatically adjusted
accordingly.

0 Portrait

1 Landscape right

2 Portrait upside-down
3 Landscape left.

Specifies the output bin destination for a print job. The possible values are listed
below. However, the valid output bins are printer-dependent.

0 Top printer bin

1-49 High Capacity Output (HCO) bins 1 - 49

49 Printer-specific output bins

Specifies a special function.

i Displays the job number for the specified print job.

h Queues the print job, but puts it in the HELD state until it is released again.
' Validates the specified printer backend flag values. This validation is useful in

checking for illegal flag values at the time of submitting a print job. If the
validation is not specified, an incorrect flag value will stop the print job later
when the job is actually being processed.

For example, to request the myfile file to be printed on the first available printer configured for the default
print queue using default values, type:

gprt myfile

For example, to request the file somefile to be printed on a specific queue using specific flag values and
to validate the flag values at the time of print job submission, type:

gprt -f p -e + -Pfastest -# v somefile

Chapter 7. Printers, Print Jobs, and Queues 995

This passes the somefile file through the pr filter command (the -f p flag) and prints it using emphasized
mode (the -e + flag) on the first available printer configured for the queue named fastest (the -Pfastest

flag).

For example, to print myfile on legal-size paper, type:
gprt -Q2 myfile

For example, to print three copies of each of the files new.index.c, print.index.c, and more.c at the print
queue Mspl, type:
gprt -PMspl -N 3 new.index.c print.index.c more.c

For example, to print three copies of the concatenation of three files new.index.c, print.index.c, and
more.c, type:

cat new.index.c print.index.c more.c | gprt -PMspl -N 3
Note: This operating system also supports the BSD UNIX print command (lpr) and the System V
UNIX print command (Ip). See the ﬁpand E commands in the AIX 5L Version 5.1 Commands
Reference for the exact syntax.

See the m command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

smit Command

You can also issue the gprt command with smit. At the prompt, type:
smit gprt

then press Enter.

Canceling a Print Job (gcan Command)

You can cancel any job in the print queue with the 'qcan Command’! or F'smit Command” on page 97.

When you cancel a print job, you are prompted to provide the name of the print queue where the job
resides and the job number to be canceled.

This procedure applies to both local and remote print jobs.

Prerequisites
* For local print jobs, the printer must be physically attached to your system.
* For remote print jobs, your system must be configured to communicate with the remote print server.

qcan Command

The gcan command cancels either a particular job number in a local or remote print queue, or all jobs in a
local print queue. To determine the job number, type the m command.

The basic format of the gqcan command is:

gcan -PQueueName -x JobNumber
See the @ command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

For example, to cancel job number 123 on whichever printer the job is on, type:
qcan -x 123

For example, to cancel all jobs queued on printer 1p0, type:

96 System Users Guide: Operating System and Devices

../../cmds/aixcmds3/lpr.htm#HDRA20093C
../../cmds/aixcmds3/lp.htm#HDRA30P0499
../../cmds/aixcmds4/qprt.htm#HDRFO1370ROLL
../../cmds/aixcmds4/qchk.htm#HDRA226997F
../../cmds/aixcmds4/qcan.htm#HDRA1519D16

gcan -X -P1p0

Note: This operating system also supports the BSD UNIX cancel print command (Iprm) and the
System V UNIX cancel print command (cancel). See the lprm and kcancel commands in the AlX 5L
Version 5.1 Commands Reference for more information and the exact syntax.

smit Command
To cancel a print job using SMIT, type:
smit qcan

Checking Print Job Status (qchk Command)

You can display the current status information for specified job numbers, queues, printers, or users with

the FWehb-bhased System Manager Fast Path’] the Eqchk Command] or Esmit Command” on
bage od.

Prerequisites

» For local print jobs, the printer must be physically attached to your system.
» For remote print jobs, your system must be configured to communicate with the remote print server.

Web-based System Manager Fast Path
To check the status of a print job using the Web-based System Manager fast path, type:

wsm printers

In the Printer Queues container, select the print job, then use the menus to check its status.

qchk Command

The gchk command displays the current status information regarding specified print jobs, print queues, or
users.

The basic format of the gqchk command is:
qchk -P QueueName -# JobNumber -u OwnerName

See the gchK command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

For example, to display the default print queue, type:
qchk -q

For example, to display the long status of all queues until empty, while updating the screen every 5
seconds, type:

qchk -A -L -w 5

For example, to display the status for print queue 1p0, type:
qchk -P 1p0

For example, to display the status for job number 123, type:
qchk -# 123

For example, to check the status of all jobs in all queues, type:
qchk -A

Chapter 7. Printers, Print Jobs, and Queues 97

../../cmds/aixcmds3/lprm.htm#HDRA2009603
../../cmds/aixcmds1/cancel.htm#HDRXW4220ROLL
../../cmds/aixcmds4/qchk.htm#HDRA226997F

Note: This operating system also supports the BSD UNIX check print queue command (lpq) and the
System V UNIX check print queue command (Ipstat). See the lpd and [pstal commands in the AIX
5L Version 5.1 Commands Reference for the exact syntax.

smit Command
To check a print job’s status using SMIT, type:
smit qchk

Printer Status Conditions

Some of the status conditions that a print queue can have are:

DEV_BUSY Indicates that:

» More than one queue is defined to a printer device (Ip0), and another queue is currently using
the printer device.

» gdaemon attempted to use the printer port device (Ip0), but another application is currently
using that printer device.

To recover from a DEV_BUSY, wait until the queue or application has released the printer device
or cancel the job or process that is using the printer port.

DEV_WAIT Indicates that the queue is waiting on the printer because the printer is offline, out of paper,
jammed, or the cable is loose, bad, or wired incorrecily.

To recover from a DEV_WAIT, correct the problem that caused it to wait. Sometimes, the jobs
have to be removed from the queue before the problem can be corrected.

A queue that is in DEV_WAIT for longer than a defined number of seconds will go into a DOWN
state.

DOWN A queue will usually go into a DOWN state after it has been in the DEV_WAIT state. This
situation occurs when the printer device driver cannot tell if the printer is there due to absence of
correct signallng. However, some printers might not have the capability to signal the queuing
system that it is offline, and instead signals that it is off. If the printer device signals or appears to
be off, the queue will go into the DOWN state.

To recover from a DOWN state, correct the problem that has brought the queue down and have
the system administrator bring the queue back up. The queue must be manually brought up
before it can be used again.

HELD Specifies that a print job is held. The print job will not be processed by the spooler until it is
released.

QUEUED Specifies that a print file is queued and is waiting in line to be printed.

READY Specifies that everything involved with the queue is ready to queue and print a job.

RUNNING Specifies that a print file is printing.

Prioritizing a Print Job (qpri Command)

You can change the priority of a job with the Lq.pu_(:nmmandlnn_page_sd Lq.pu_C.nmmand’_ad
page 99, or F'smit Command” on page 99. You can only assign job priority on local queues. Higher

values indicate a higher priority for the print job. The default priority is 15. The maximum priority is 20 for
most users, and 30 for users with root user privilege and members of the printq group (group 0).

Note: You cannot assign priority to a remote print job.

Prerequisites
* For local print jobs, the printer must be physically attached to your system.
* For remote print jobs, your system must be configured to communicate with the remote print server.

98 System Users Guide: Operating System and Devices

../../cmds/aixcmds3/lpq.htm#HDRA200964E
../../cmds/aixcmds3/lpstat.htm#HDRA9V4230ROLL

qpri Command

The qpri command reassigns the priority of a print job that you submitted. If you have root user authority
or belong to the printq group, you can assign priority to any job while it is in the print queue.

The basic format of the qpri command is:
gpri -# JobNumber -a PrioritylLevel

For example, to change job number 123 to priority number 18, type:
gpri -# 123 -a 18

For example, to prioritize a local print job as it is submitted, type:
gprt -PQueueName -R PriorityLevel FileName

See the @ command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

smit Command
To change the priority of a print job using SMIT, type:
smit gpri

Holding and Releasing a Print Job (ghld Command)

After you have sent a print job to a print queue, you can put the print job on hold with the Fweb-hased

System Manager Fast Path’l, the Eighld Command’], or the ‘'smit Command” an page 100. You can

later release the print job for printing with these same commands.

Prerequisites
* For local print jobs, the printer must be physically attached to your system.
» For remote print jobs, your system must be configured to communicate with the remote print server.

Web-based System Manager Fast Path
To hold or release a print job using the Web-based System Manager fast path, type:

wsm printers

In the Printer Queues container, select the print job, then use the menus to put it on hold or to release it
for printing.

ghld Command

The ghld command puts a print job on hold after you have sent it. You can either put a particular print job
on hold, or you can hold all the print jobs on a specified print queue. To determine the print job number,
type the qchk (E i i 2) command.

The basic format of the qhld command is:
ghld [-r] {[-#JobNumber] [-PQueue] [-uUser]}

See the w command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

For example, to hold job number 452 on whichever print queue the job is on, type:
ghld -#452

For example, to hold all jobs queued on print queue hp2, type:
ghld -Php2

Chapter 7. Printers, Print Jobs, and Queues 99

../../cmds/aixcmds4/qpri.htm#HDRA1519DF7
../../cmds/aixcmds4/qhld.htm#HDRFLA2J174JUDY

To release job number 452 on whichever print queue the job is on, type:
ghld -#452 -r

To release all jobs queued on print queue hp2, type:
ghld -Php2 -r

smit Command
To hold or release a print job using SMIT, type:
smit ghld

Moving a Print Job to Another Print Queue (gmov Command)

After you have sent a print job to a print queue, you might want to move the print job to another print

queue. You can move it with the f‘gmav Command’] or the smit Command’l.

Prerequisites
» For local print jobs, the printer must be physically attached to your system.
» For remote print jobs, your system must be configured to communicate with the remote print server.

gmov Command

The gmov moves a print job to another print queue. You can either move a particular print job, or you can
move all the print jobs on a specified print queue or all the print jobs sent by a specified user. To
determine the print job number, type the ﬁﬂ command.

The basic format of the gmov command is:

gmov
-m
NewQueue {[-#JobNumber] [-PQueue] [-uUser]}

See the gmoy command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

For example, to move job number 280 to print queue hp2, type:
gmov -mhp2 -#280

For example, to move all print jobs on print queue hp4D to print queue hp2, type:
gmov -mhp2 -Php4D

smit Command
To move a print job using SMIT, type:

smit gmov

Formatting Files for Printing (pr Command)

The pr command performs simple formatting of the files you sent to be printed. Pipe the output of the pr
command to the qprt command to format your text.

Some useful pr command flags are:

-d Double-spaces the output.
h " String" Displays the specified string, enclosed in quotation marks (" "), instead of the file name as
the page header. The flag and string should be separated by a space.

100 System Users Guide: Operating System and Devices

../../cmds/aixcmds4/qchk.htm#HDRA226997F
../../cmds/aixcmds4/qmov.htm#HDRVKE4J1B1JUDY

-l Lines Overrides the 66-line default and resets the page length to the number of lines specified by
the Lines variable. If the Lines value is smaller than the sum of both the header and trailer
depths (in lines), the header and trailer are suppressed (as if the -t flag were in effect).

-m Merges files. Standard output is formatted so that the pr command writes one line from each
file specified by a File variable, side by side into text columns of equal fixed widths, based on
the number of column positions. This flag should not be used with the -Column flag.

-n [Width][Characten] Provides line numbering based on the number of digits specified by the Width variable. The
default is 5 digits. If the Character (any non-digit character) variable is specified, it is
appended to the line number to separate it from what follows on the line. The default
character separator is the ASCIl TAB character.

-0 Offset Indents each line by the number of character positions specified by the Offset variable. The
total number of character positions per line is the sum of the width and offset. The default
value of Offset is 0.

-sCharacter Separates columns by the single character specified by the Character variable instead of by
the appropriate number of spaces. The default value for Character is an ASCIl TAB
character.

-t Does not display the five-line identifying header and the five-line footer. Stops after the last
line of each file without spacing to the end of the page.

-w Width Sets the number of column positions per line to the value specified by the Width variable.

The default value is 72 for equal-width multicolumn output. There is no limit otherwise. If the
-w flag is not specified and the -s flag is specified, the default width is 512 column positions.

-Column Sets the number of columns to the value specified by the Column variable. The default value
is 1. This option should not be used with the -m flag. The -e and -i flags are assumed for
multicolumn output. A text column should never exceed the length of the page (see the -I
flag). When this flag is used with the -t flag, use the minimum number of lines to write the
output.

+Page Begins the display with the page number specified by the Page variable. The default value is
1.

For example, to print a file named prog.c with headings and page numbers on the printer, type:
pr prog.c | gprt

Press Enter.

This adds page headings to prog.c and sends it to the qprt command. The heading consists of the date
the file was last modified, the file name, and the page number.

For example, to specify a title for a file named prog.c , type:
pr -h "MAIN PROGRAM" prog.c | gprt

Press Enter.

This prints prog.c with the title MAIN PROGRAM in place of the file name. The modification date and page
number are still printed.

For example, to print a file named word.1st in multiple columns, type:
pr -3 word.1st | gprt

Press Enter.
This prints the word. 1st file in three vertical columns.

For example, to print several files side by side on the paper:
pr -m -h "Members and Visitors" member.Ist visitor.lIst | gprt

This prints member.1st and visitor.Ist side by side with the title Members and Visitors.

Chapter 7. Printers, Print Jobs, and Queues 101

For example, to modify a file named prog.c for later use, type:

pr -t -e prog.c > prog.notab.c

Press Enter.

This replaces tab characters in prog.c with spaces and puts the result in prog.notab.c. Tab positions are
at columns 9, 17, 25, 33, and so on. The -e flag tells the pr command to replace the tab characters; the -t

flag suppresses the page headings.

For example, to print a file named myfile in two columns, in landscape, and in 7-point text, type:
pr -166 -wl72 -2 myfile | gqprt -z1 -p7

Press Enter.

See the E command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Printing ASCII Files on a PostScript Printer

The Text Formatting System includes the enscript filter for converting ASCII print files to PostScript for
printing on a PostScript printer. This filter is called by the qprt -da command when submitting a print job to
a PostScript print queue.

Prerequisites

* The printer must be physically attached to your system.

» The printer must be configured and defined.

» The transcript portion of Text Formatting Services must be installed.

There are several flags that might be specified with the gprt command to customize the output when
submitting ASCII files to a PostScript print queue.

-1+ Adds page headings.

-2+ Formats the output in two columns.

-3+ Prints the page headings, dates, and page numbers in a fancy style. This is sometimes referred
to as "gaudy” mode.

-4+ Prints the file, even if it contains unprintable characters.

-5+ Lists characters that are not included in a font.

-h string Specifies a string to be used for page headings. If this flag is not specified, the heading consists
of the file name, modification date, and page number.

-l value Specifies the maximum number of lines printed per page. Depending on the point size, fewer
lines per page might actually appear.

-L! Truncates lines longer than the page width.

-p Specifies the point size. If this flag is not specified, a point size of 10 is assumed, unless
two-column rotated mode (-2+ -z1) is specified, in which case a value of 7 is used.

-s Specifies the font style. If this flag is not specified, the Courier font is used. Acceptable values
are:
Courier-Oblique
Helvetica

Helvetica-Oblique
Helvetica-Narrow
Helvetica-Narrow-Oblique
NewCenturySchlbk-Italic
Optima

Optima-Oblique
Palatino-Roman

102 System User's Guide: Operating System and Devices

../../cmds/aixcmds4/pr.htm#HDRA49I130CRAW

Palatino-Italic
Times-Roman
Times-ltalic

Note: The PostScript printer must have access to the specified font.

-z1 Rotates the output 90 degrees (landscape mode).

For example, to send the ACSII file myfile.ascii to the PostScript printer named Msps1, type:
gprt -da -PMspsl myfile.ascii

Press Enter.

For example, to send the ACSII file myfile.ascii to the PostScript printer named Msps1 and print out in
the Helvetica font, type:

gprt -da -PMspsl -sHelvetica myfile.ascii
Press Enter.

For example, to send the ASCII file myfile.ascii to the PostScript printer named Msps1 and print out in
the point size 9, type:
gprt -da -PMspsl -p9 myfile.ascii

Press Enter.

Automating the Conversion of ASCII to PostScript

Many applications that generate PostScript print files follow the convention of making the first two
characters of the PostScript file %! which identifies the print file as a PostScript print file. To configure the
system to detect ASCII print files submitted to a PostScript print queue and automatically convert them to
PostScript files before sending them to the PostScript printer, perform these steps:

1. At the prompt, type:
smit chpq

Press Enter.
2. Type in the PostScript queue name, or use the List feature to select from a list of queues.
3. Select Printer Setup menu option.
4. Change value of AUTOMATIC detection of print file TYPE to be done? field to yes.

Any of the following commands now convert an ASCII file to a PostScript file and print it on a PostScript
printer. To convert myfile.ascii, you would type any of the following at the command line:

gprt -Pps myfile.ps myfile.ascii
Tpr -Pps myfile.ps myfile.ascii
1p -dps myfile.ps myfile.acsii

where ps is a PostScript print queue.

Overriding Automatic Determination of Print File Types

There are two instances where the automatic determination of print file type for PostScript printing might
need to be overridden.

Chapter 7. Printers, Print Jobs, and Queues 103

For example, to print a PostScript file named myfile.ps that does not begin with %!, type the following at
the command line:

gprt -ds -Pps myfile.ps

For example, to print the source listing of a PostScript file named myfile.ps that begins with %!, type the
following at the command line:

gprt -da -Pps myfile.ps

Related Information

Command Summary for Printers, Print Jobs, and Queues

Cancels requests to a line printer.
Sends requests to a line printer.
Examines the spool queue.

Enqueues print jobs.

Removes jobs from the line printer spooling queue.
Displays line printer status information.
Writes a file to standard output.

Cancels a print job.

Displays the status of a print queue.
Holds or releases a print job.

Moves a print job to another print queue.
Prioritizes a job in the print queue.
Starts a print job.

i R

Related Information

104 System User's Guide: Operating System and Devices

../../cmds/aixcmds1/cancel.htm#HDRXW4220ROLL
../../cmds/aixcmds3/lp.htm#HDRA30P0499
../../cmds/aixcmds3/lpq.htm#HDRA200964E
../../cmds/aixcmds3/lpr.htm#HDRA20093C
../../cmds/aixcmds3/lprm.htm#HDRA2009603
../../cmds/aixcmds3/lpstat.htm#HDRA9V4230ROLL
../../cmds/aixcmds4/pr.htm#HDRA49I130CRAW
../../cmds/aixcmds4/qcan.htm#HDRA1519D16
../../cmds/aixcmds4/qchk.htm#HDRA226997F
../../cmds/aixcmds4/qhld.htm#HDRFLA2J174JUDY
../../cmds/aixcmds4/qmov.htm#HDRVKE4J1B1JUDY
../../cmds/aixcmds4/qpri.htm#HDRA1519DF7
../../cmds/aixcmds4/qprt.htm#HDRFO1370ROLL

Chapter 8. Backup Files and Storage Media

Once your system is in use, your next consideration should be to back up the file systems, directories, and
files. Files and directories represent a significant investment of time and effort. At the same time, all
computer files are potentially easy to change or erase, either intentionally or by accident. If you take a
careful and methodical approach to backing up your file systems, you should always be able to restore
recent versions of files or file systems with little difficulty.

Note: When a hard disk crashes, the information contained on that disk is destroyed. The only way
to recover the destroyed data is to retrieve the information from your backup copy.

There are several different methods of backing up. The most frequently used method is a regular backup,
which is a copy of a file system, directory, or file that is kept for file transfer or in case the original data is
unintentionally changed or destroyed. Another form of backing up is the archive backup; this method is
used for a copy of one or more files, or an entire database that is saved for future reference, historical
purposes, or for recovery if the original data is damaged or lost. Usually an archive is used when that
specific data is removed from the system.

This section discusses:

Backup Policy

No single backup policy can meet the needs of all users. A policy that works well for a system with one
user, for example, could be inadequate for a system that serves 5 or 10 different users. Likewise, a policy
developed for a system on which many files are changed daily would be inefficient for a system on which
data changes infrequently. Only you can determine the best backup policy for your system, but the
following general guidelines should help:

Make sure you can recover from major losses.

Can your system continue to run after any single fixed disk fails? Can you recover your system if all the
fixed disks should fail? Could you recover your system if you lost your backup diskettes or tape to fire or
theft? Although these things are not likely, any of them are possible. Think through each of these possible
losses and design a backup policy that would enable you to recover your system after any of them.

Check your backups periodically.

© Copyright IBM Corp. 1997, 2001 105

Backup media and its hardware can be unreliable. A large library of backup tapes or diskettes is useless if
their data cannot be read back onto a fixed disk. To make certain that your backups are usable, try to
display the table of contents from the backup tape periodically (using restore -T, or tar -t for archive
tapes). If you use diskettes for your backups and have more than one diskette drive, try to read diskettes
from a different drive than the one on which they were created. You also might want the security of
repeating each level 0 backup with a second set of diskettes. If you use a streaming tape device for
backups, you can use the @ command to perform rudimentary consistency checks on the tape.

Keep old backups.

Develop a regular cycle for reusing your backup media; however, do not reuse all of your backup media.
Sometimes it might be months before you or some other user of your system notices that an important file
is damaged or missing. Do save old backups for such possibilities. For example, you could have the
following three cycles of backup tapes or diskettes:

* Once per week, recycle all daily diskettes except the one for Friday.

* Once per month, recycle all Friday diskettes except for the one from the last Friday of the month. This
makes the last four Friday backups always available.

» Once per quarter, recycle all monthly diskettes except for the last one. Keep the last monthly diskette
from each quarter indefinitely, perhaps in a different building.

Check file systems before backing them up.

A backup that was made from a damaged file system might be useless. Before making your backups, it is
good policy to check the integrity of the file system with the Escld command.

Ensure files are not in use during a backup.

Ensure your system is not in use when you make your backups. If the system is in use, files can change
while they are being backed up, and the backup copy will not be accurate.

Back up your system before major changes are made to the system.

Back up your entire system before any hardware testing or repair work is performed or before you install
any new devices, programs, or other system features.

Other Factors

Other items to consider when planning and implementing a backup strategy are:

* How often does the data change? As pointed out earlier, the operating system data does not change
very often so you do not need to back it up frequently. User data, on the other hand, usually changes
frequently and you should back it up frequently.

* How many users are on the system? The number of users would affect the amount of storage media
and frequency required for backups.

» How difficult would it be to recreate the data? It is important to consider that some data cannot be
recreated if there is not a backup.

Whatever the appropriate backup strategy for your site, it is very important that one exists. Perform
backups frequently and regularly. Recovering from data loss is very difficult if a good backup strategy has
not been implemented.

Backup Media

Several different types of backup media are available for backups. The different types of backup media
available to your specific system configuration depend upon both your software and hardware. The types
most frequently used are the 5.25-inch diskette, 8-mm tape, 9-track tape, and the 3.5-inch diskette.

106 System Users Guide: Operating System and Devices

../../cmds/aixcmds5/tapechk.htm#HDRA10296352
../../cmds/aixcmds2/fsck.htm#HDRA10192C87

Attention: Running the backup command results in the loss of all material previously stored on the
selected output medium.

Diskettes
Diskettes are the standard backup medium. Unless you specify a different device using the backup -f

command, the backup command automatically writes its output to the /dev/rfd0 device, which is the
diskette drive. To back up to the default tape device, type /dev/rmt0 and press Enter.

Be careful with your diskettes. Because each piece of information occupies such a small area on the
diskette, small scratches, dust, food, or tobacco particles can make the information unusable. Be sure to
remember the following:

* Do not touch the recording surfaces.

» Keep diskettes away from magnets and magnetic field sources such as telephones, dictation equipment,
and electronic calculators.

» Keep diskettes away from extreme heat and cold. The recommended temperature range is 10 degrees
Celsius to 60 degrees Celsius (50 degrees Fahrenheit to 140 degrees Fahrenheit).

* Proper care helps prevent loss of information.
* Make back-up copies of your diskettes regularly.

Attention: Diskette drives and diskettes must be the correct type to store data successfully. If you
use the wrong diskette in your 3.5-inch diskette drive, the data on the diskette could be destroyed.

The diskette drive uses the following 3.5-inch diskettes:
* 1MB capacity (stores approximately 720KB of data)
» 2MB capacity (stores approximately 1.44MB of data).

Tapes

Tape is well-suited to certain tasks because of its high capacity and durability. It is often chosen for storing
large files or many files, such as archive copies of file systems. It is also used for transferring many files
from one system to another. Tape is not widely used for storing frequently accessed files because other
media provide much faster access times.

Tape files are created using commands such as backup, cpio, and tar, which open a tape drive, write to
it, and close it.

Formatting Diskettes (format or fdformat Command)

Attention: Formatting a diskette destroys any existing data on that diskette.

You can format diskettes in the diskette drive specified by the Device parameter (the /dev/rfd0 device by
default) with the format and fdformat commands. The format command determines the device type,
which is one of the following:

* 5.25-inch low-density diskette (360KB) containing 40x2 tracks, each with 9 sectors

» 5.25-inch high-capacity diskette (1.2MB) containing 80x2 tracks, each with 15 sectors
» 3.5-inch low-density diskette (720KB) containing 80x2 tracks, each with 9 sectors

» 3.5-inch high-capacity diskette (2.88MB) containing 80x2 tracks, each with 36 sectors.

The sector size is 512 bytes for all diskette types.
The format command formats a diskette for high density unless the Device parameter specifies a different

density.

Chapter 8. Backup Files and Storage Media 107

The fdformat command formats a diskette for low density unless the -h flag is specified. The Device
parameter specifies the device containing the diskette to be formatted (such as the /dev/rfd0 device for
drive 0).

Before formatting a diskette, the format and fdformat commands prompt for verification. This allows you
to end the operation cleanly if necessary.

For example, to format a diskette in the /dev/rfd0 device, type:
format -d /dev/rfd0

Press Enter.

For example, to format a diskette without checking for bad tracks, type:
format -f

Press Enter.

For example, to format a 360KB diskette in a 5.25-inch, 1.2MB diskette drive in the /dev/rfd1 device, type:
format -1 -d /dev/rfdl

Press Enter.

For example, to force high-density formatting of a diskette when using the fdformat command, type:
fdformat -h

Press Enter.

See the farmal command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Checking the Integrity of the File System (fsck Command)

You can check and interactively repair inconsistent file systems with the fsck command. It should be run
on every file system as part of system initialization. You must be able to read the device file on which the
file system resides (for example, the /dev/hd0 device). Normally, the file system is consistent, and the
fsck command merely reports on the number of files, used blocks, and free blocks in the file system. If the
file system is inconsistent, the fsck command displays information about the inconsistencies found and
prompts you for permission to repair them. The fsck command is conservative in its repair efforts and tries
to avoid actions that might result in the loss of valid data. In certain cases, however, the fsck command
recommends the destruction of a damaged file.

Attention: Always run the fsck command on file systems after a system malfunction. Corrective
actions can result in some loss of data. The default action for each consistency correction is to wait
for the operator to enter yes or no. If you do not have write permission for an affected file, the fsck
command defaults to a no response in spite of your actual response.

For example, to check all the default file systems, type:
fsck

Press Enter.
This form of the fsck command asks you for permission before making any changes to a file system.

For example, to fix minor problems with the default file systems automatically, type:
fsck -p

108 System Users Guide: Operating System and Devices

../../cmds/aixcmds2/format.htm#HDRA102962CD

Press Enter.

For example, to check the file system /dev/hdl, type:
fsck /dev/hdl

Press Enter.
This checks the unmounted file system located on the /dev/hdl device.
Note: The fsck command will not make corrections to a mounted file system.

See the scd command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Copying to or from Diskettes (flcopy Command)

You can copy a diskette (opened as /dev/rfd0) to a file named floppy created in the current directory with
the flcopy command. The message: Change floppy, hit return when done appears as needed. The
flcopy command then copies the floppy file to the diskette.

For example, to copy /dev/rfdl to the floppy file in the current directory, type:
flcopy -f /dev/rfdl -r

Press Enter.

For example, to copy the first 100 tracks of the diskette, type:
flcopy -f /dev/rfdl -t 100

Press Enter.

See the m command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Copying Files to Tape or Disk (cpio -o Command)

You can read file path names from standard input and copy these files to standard output, along with path
names and status information with the cpio -o command. Path names cannot exceed 128 characters.
Avoid giving the cpio command path names made up of many uniquely linked files, as it might not have
enough memory to keep track of them and would lose linking information.

For example, to copy files in the current directory whose names end with .c onto diskette, type:
Is *x.c | cpio -ov >/dev/rfd0

Press Enter.
The -v flag displays the names of each file.

For example, to copy the current directory and all subdirectories onto diskette, type:
find . -print | cpio -ov >/dev/rfdo

Press Enter.

This saves the directory tree that starts with the current directory (.) and includes all of its subdirectories
and files. Do this faster by typing:

find . -cpio /dev/rfd0 -print

Chapter 8. Backup Files and Storage Media 109

../../cmds/aixcmds2/fsck.htm#HDRA10192C87
../../cmds/aixcmds2/flcopy.htm#HDRA1029630D

Press Enter.
The -print entry displays the name of each file as it is copied.

See the E command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Copying Files from Tape or Disk (cpio -i Command)

The cpio -i command reads from standard input an archive file created by the cpio -o command and
copies from it the files with names that match the Pattern parameter. These files are copied into the
current directory tree. You can list more than one Pattern parameter, using the file name notation
described in the ksH command. The default for the Pattern parameter is an asterisk (*), selecting all files
in the current directory. In an expression such as [a-z], the hyphen (-) means through according to the
current collating sequence.

Note: The patterns "+.c” and "*.0” must be enclosed in quotation marks to prevent the shell from
treating the asterisk (*) as a pattern-matching character. This is a special case in which the cpio
command itself decodes the pattern-matching characters.

For example, to list the files that have been saved onto a diskette with the cpio command, type:
cpio -itv </dev/rfdo

Press Enter.
This displays the table of contents of the data previously saved onto the /dev/rfdo file in the cpio
command format. The listing is similar to the long directory listing produced by the Is -l command. To list

only the file path names, use only the -it flags.

For example, to copy the files previously saved with the cpio command from a diskette, type:

cpio -idmv </dev/rfd0

Press Enter.

This copies the files previously saved onto the /dev/rfd0 file by the cpio command back into the file
system (specify the -i flag). The -d flag allows the cpio command to create the appropriate directories if a
directory tree is saved. The -m flag maintains the last modification time in effect when the files are saved.
The -v flag causes the cpio command to display the name of each file as it is copied.

For example, to copy selected files from diskette, type:
cpio =i "x.c" "*.0" </dev/rfdo

Press Enter.
This copies the files that end with .c or .o from diskette.

See the m command in the AIX 5L Version 5.1 Commands Reference for more information and the
exact syntax.

110 System Users Guide: Operating System and Devices

../../cmds/aixcmds1/cpio.htm#HDRA10192B06
../../cmds/aixcmds3/ksh.htm#HDRA265912F6
../../cmds/aixcmds1/cpio.htm#HDRA10192B06

Copying to or from Tapes (tcopy Command)

You can copy magnetic tapes with the tcopy command.

For example, to copy from one streaming tape to a 9-track tape, type:
tcopy /dev/rmt® /dev/rmt8

Press Enter.

See the m command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Checking the Integrity of a Tape (tapechk Command)

You can perform rudimentary consistency checking on an attached streaming tape device with the
tapechk command. Some hardware malfunctions of a streaming tape drive can be detected by simply
reading a tape. The tapechk command provides a way to perform tape reads at the file level.

For example, to check the first three files on a streaming tape device, type:
tapechk 3

Press Enter.

See the m command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Compressing Files (compress and pack Commands)

You can compress files for storage with the £ and Epack Command’|
%p and use the I‘_uncnmpress_command_an_pagr:u.d and E ”

to expand the restored files. The process of compressing and expanding files takes time but,
once packed, the data uses less space on the backup medium.

There are several methods of compressing a file system:
* Use the -p option with the backup command.
* Use the compress or pack commands.

There are many reasons for compressing files, but generally they fall into two categories:
» Saving storage and archiving system resources:
— Compress file systems before doing backups to preserve tape space.

— Compress log files created by shell scripts that run at night; it is easy to have the script compress
the file before it exits.

— Compress files that are not currently being accessed. For example, the files belonging to a user who
is away for extended leave can be compressed and placed into a tar archive on disk or to a tape
and later be restored.

» Saving money and time by compressing files before sending them over a network.

Notes:

1. The command might run out of working space in the file system while compressing. The
compress command creates the compressed files before it deletes any of the uncompressed
files so it needs a space about 50% larger than the total size of the files.

2. A file might fail to compress because it is already compressed. If the compress command
cannot reduce file sizes, it fails.

Chapter 8. Backup Files and Storage Media 111

../../cmds/aixcmds5/tcopy.htm#HDRJOYCE1
../../cmds/aixcmds5/tapechk.htm#HDRA10296352

compress Command

The compress command reduces the size of files using adaptive Lempel-Zev coding. Each original file
specified by the File parameter is replaced by a compressed file with a .Z appended to its name. The
compressed file retains the same ownership, modes, and access and modification times of the original file.
If no files are specified, the standard input is compressed to the standard output. If compression does not
reduce the size of a file, a message is written to standard error and the original file is not replaced.

Compressed files can be restored to their original form using the uncompress command.

The amount of compression depends on the size of the input, the number of bits per code specified by the
Bits variable, and the distribution of common substrings. Typically, source code or English text is reduced
by 50 to 60 percent. The compression of the compress command is generally more compact and takes
less time to compute than the compression achieved by the pack command which uses adaptive Huffman
coding.

For example, to compress the foo file and write the percentage compression to standard error, type:
compress -v foo

Press Enter.

See the m command in theAlIX 5L Version 5.1 Commands Reference for the exact syntax.

pack Command

The pack command stores the file or files specified by the File parameter in a compressed form using
Huffman coding. The input file is replaced by a packed file with a name derived from the original file name
(File.z), with the same access modes, access and modification dates, and owner as the original file. The
input file name can contain no more than 253 bytes to allow space for the added .z suffix. If the pack
command is successful, the original file is removed. Packed files can be restored to their original form
using the unpack command.

If the pack command cannot create a smaller file, it stops processing and reports that it is unable to save
space. (A failure to save space generally happens with small files or files with uniform character
distribution.) The amount of space saved depends on the size of the input file and the character frequency
distribution. Because a decoding tree forms the first part of each .z file, you do not save space with files
smaller than three blocks. Typically, text files are reduced 25 to 40 percent.

The exit value of the pack command is the number of files that it could not pack. Packing is not done
under any of the following conditions:

* The file is already packed.

* The input file name has more than 253 bytes.
* The file has links.

* The file is a directory.

* The file cannot be opened.

* No storage blocks are saved by packing.

» Afile called File.z already exists.

» The .z file cannot be created.

* An 1/O error occurred during processing.

For example, to compress the files chapl and chap2, type:
pack chapl chap2

Press Enter.

112 System Users Guide: Operating System and Devices

../../cmds/aixcmds1/compress.htm#HDRA2019D71

This compresses chapl and chap2, replacing them with files named chap1.z and chap2.z. The pack
command displays the percent decrease in size for each file.

See the m command in theAlX 5L Version 5.1 Commands Reference for more information and the
exact syntax.

Expanding Compressed Files (uncompress and unpack Commands)
You can expand compressed files with the uncompress and unpack commands.

uncompress Command

The uncompress command restores original files that were compressed by the compress command.
Each compressed file specified by the File variable is removed and replaced by an expanded copy. The
expanded file has the same name as the compressed version, but without the .Z extension. The expanded
file retains the same ownership, modes, and access and modification times as the original file. If no files
are specified, standard input is expanded to standard output.

Although similar to the uncompress command, the zcat command always writes the expanded output to
standard output.

For example, to uncompress the foo file, type:
uncompress foo

Press Enter.

See the incompresd command in theAIX 5L Version 5.1 Commands Reference for the exact syntax.

unpack Command

The unpack command expands files created by the pack command. For each file specified, the unpack
command searches for a file called File.z. If this file is a packed file, the unpack command replaces it by
its expanded version. The unpack command renames the new file by removing the .z suffix from File. The
new file has the same access modes, access and modification dates, and owner as the original packed
file.

The unpack command operates only on files ending in .z. As a result, when you specify a file name that
does not end in .z, the unpack command adds the suffix and searches the directory for a file name with
that suffix.

The exit value is the number of files the unpack command was unable to unpack. A file cannot be
unpacked if any of the following occurs:

» The file name (exclusive of .z) has more than 253 bytes.
* The file cannot be opened.

* The file is not a packed file.

* A file with the unpacked file name already exists.

» The unpacked file cannot be created.

Note: The unpack command writes a warning to standard error if the file it is unpacking has links.
The new unpacked file has a different i-node number than the packed file from which it was
created. However, any other files linked to the original i-node number of the packed file still exist
and are still packed.

For example, to unpack the packed files chapl.z and chap2, type:
unpack chapl.z chap2

Chapter 8. Backup Files and Storage Media 113

../../cmds/aixcmds4/pack.htm#HDRJVE1310CRAW
../../cmds/aixcmds5/uncompress.htm

Press Enter.

This expands the packed files chapl.z and chap2.z, and replaces them with files named chapl and chap?2.
Note that you can give the unpack command file names either with or without the .z suffix.

See the m command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Backing Up Files (backup Command)

Attention: If you attempt to back up a mounted file system a message is displayed. The backup
command continues, but inconsistencies in the file system can occur. This situation does not apply to
the root (/) file system.

You can create copies of your files on a backup medium, such as a magnetic tape or diskette, with the

Ebackup Command’l o Lsmn_Cnmmandlnn_page_uEl The copies are in one of the two following

backup formats:
» Specific files backed up by name, using the -i flag.
» Entire file system backed up by i-node number, using the -Level and FileSystem parameters.

Notes:

1. There is always the possibility of data corruption when a file is modified during system backup.
Therefore, system activity should be at a minimum during the system backup procedure.

2. If a backup is made to 8-mm tape with the device block size set to 0 (zero), it is not possible
to directly restore from the tape. If you have done backups with the 0 setting, you can restore
from them by using special procedures described under the restore command.

Attention: Be sure the flags you specify match the backup medium. Also, if you attempt to back up a
mounted file system, inconsistencies can occur.

backup Command

For example, to back up selected files in your $HOME directory by name, type:

find $HOME -print | backup -i -v

Press Enter.

The -i flag prompts the system to read from standard input the names of files to be backed up. The find
command generates a list of files in the user's SHOME directory. This list is piped to the backup
command as standard input. The -v flag displays a progress report as each file is copied. The files are
backed up on the default backup device for the local system.

For example, to back up the root file system, type:
backup -0 -u /

Press Enter.
The 0 level and the / tell the system to back up the / (root) file system. The file system is backed up to the
Idev/rfdO0 file. The -u flag tells the system to update the current backup level record in the /etc/dumpdates

file.

For example, to back up all files in the / (root) file system modified since the last O level backup, type:
backup -1 -u /

Press Enter.

114 System Users Guide: Operating System and Devices

../../cmds/aixcmds5/unpack.htm#HDRROE9220CRAW

See the backugd command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

smit Command

The backup command can also be done using smit.
1. At the prompt, type:
smit backup

Press Enter.

2. Type the path name of the directory on which the file system is normally mounted in the DIRECTORY
full pathname field:

/home/bi11l

Press Enter.

3. In the BACKUP device or FILE fields, type the output device name as in the following example for a
raw magnetic tape device:

/dev/rmt0

Press Enter.

4. Use the Tab key to toggle the optional REPORT each phase of the backup field if you want error
messages printed to the screen.

5. In a system management environment, use the default for the MAX number of blocks to write on
backup medium field because this field does not apply to tape backups.

6. Press Enter to back up the named directory or file system.

7. Run the restore -t command. If this command generates an error message, you must repeat the entire
backup.

Restoring Backed-Up Files (restore Command)

You can read files written by the backup command from a backup medium and restore them on your local

system with the ‘restore Command’! or [‘smit Command” on page 116.

Notes:

1. Files must be restored using the same method by which they were backed up. For example, if a
file system was backed up by name, it must be restored by name.

2. When more than one diskette is required, the restore command reads the one mounted, prompts
you for a new one, and waits for your response. After inserting the new diskette, press the Enter
key to continue restoring files.

restore Command
For example, to list the names of files previously backed up, type:
restore -T

Press Enter.

Information is read from the /dev/rfd0 default backup device. If individual files are backed up, only the file
names are displayed. If an entire file system is backed up, the i-node number is also shown.

For example, to restore files to the main file system, type:
restore -x -v

Chapter 8. Backup Files and Storage Media 115

../../cmds/aixcmds1/backup.htm#HDRA10192A8A

Press Enter.

The -x flag extracts all the files from the backup medium and restores them to their proper places in the
file system. The -v flag displays a progress report as each file is restored. If a file system backup is being
restored, the files are named with their i-node numbers. Otherwise, just the names are displayed.

For example, to copy the file /home/mike/manual/chapl , type:
restore -xv /home/mike/manual/chapl

Press Enter.

This command extracts the /home/mike/manual/chapl file from the backup medium and restores it. The
/home/mike/manual/chapl file must be a name that can be displayed by the restore -T command.

For example, to copy all the files in a directory named manual, type:
restore -xdv manual

Press Enter.

This command restores the manual directory and the files in it. If it does not exist, a directory named
manual is created in the current directory to hold the files being restored.

See the kestard command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

smit Command

The restore command can also be done using smit.
1. At the prompt, type:
smit restore

Press Enter.

2. Make your entry in the Target DIRECTORY field. This is the directory where you want the restored files
to reside.

3. Proceed to the BACKUP device or FILE field and type the output device name and press Enter as in
the following example for a raw magnetic tape device:

/dev/rmt0

If the device is not available, a message similar to the following is displayed:
Cannot open /dev/rmtX, no such file or directory.

This message indicates that the system cannot reach the device driver because there is no file for
rmtX in the /dev directory. Only items in the available state are in /dev.

4. For the NUMBER of blocks to read in a single input field, the default is recommended.
5. Press Enter to restore the specified file system or directory.

Archiving Files (tar Command)

You can write files to or retrieve files from an archive storage with the tar command. The tar command
looks for archives on the default device (usually tape), unless you specify another device.

When writing to an archive, the tar command uses a temporary file (the /tmp/tar* file) and maintains in
memory a table of files with several links. You receive an error message if the tar command cannot create
the temporary file or if there is not enough memory available to hold the link tables.

116 System Users Guide: Operating System and Devices

../../cmds/aixcmds4/restore.htm#HDRA1019422A

For example, to write the filel and file2 files to a new archive on the default tape drive, type:

tar -c filel file2

Press Enter.

For example, to extract all files in the /tmp directory from the archive file on the /dev/rmt2 tape device

and use the time of extraction as the modification time, type:

tar -xm -f/dev/rmt2 /tmp

Press Enter.

For example, to display the names of the files in the out.tar disk archive file from the current directory,

type:

tar -vtf out.tar

Press Enter.

See the kad command in the AIX 5L Version 5.1 Commands Reference for more information and the exact

syntax.

Related Information

Command Summary for Backup Files and Storage Media

Backs up files and file systems.
Compresses and expands data.

Copies files into and out of archive storage and directories.

Formats diskettes.
Copies to and from diskettes.
Formats diskettes.

Checks file system consistency and interactively repairs the file system.

Compresses files.

Copies previously backed-up file systems or files, created by the backup command, from a local

device.

Performs consistency checking of the streaming tape device.

Manipulates archives.
Copies a magnetic tape.
Compresses and expands data.

Expands files.

Chapter 8. Backup Files and Storage Media

117

../../cmds/aixcmds5/tar.htm#HDRA101938A7
../../cmds/aixcmds1/backup.htm#HDRA10192A8A
../../cmds/aixcmds1/compress.htm#HDRA2019D71
../../cmds/aixcmds1/cpio.htm#HDRA10192B06
../../cmds/aixcmds2/fdformat.htm#HDRORZ8N392MART
../../cmds/aixcmds2/flcopy.htm#HDRA1029630D
../../cmds/aixcmds2/format.htm#HDRA102962CD
../../cmds/aixcmds2/fsck.htm#HDRA10192C87
../../cmds/aixcmds4/pack.htm#HDRJVE1310CRAW
../../cmds/aixcmds4/restore.htm#HDRA1019422A
../../cmds/aixcmds5/tapechk.htm#HDRA10296352
../../cmds/aixcmds5/tar.htm#HDRA101938A7
../../cmds/aixcmds5/tcopy.htm#HDRJOYCE1
../../cmds/aixcmds5/uncompress.htm#HDRAZFRAN165MART
../../cmds/aixcmds5/unpack.htm#HDRROE9220CRAW

Related Information

118 System Users Guide: Operating System and Devices

Chapter 9. File and System Security

Computer security is very similar to other types of security. Its goal is the protection of information stored
on the computer system, a valuable resource. Information security is aimed at:

Integrity The value of all information depends upon its accuracy. If unauthorized changes are made to data,
this data loses some or all of its value.

Privacy The value of much information depends upon its secrecy.

Availability Information must be readily available.

It is helpful to plan and implement your security policies before you begin using the system. Security
policies are very time consuming to change later, so a little planning now can save a lot of time later.

This section discusses:

Security Threats

Threats to information security arise from three different types of behavior:

Carelessness Information security is often violated due to the carelessness of the authorized users of the
system. If you are careless with your password, for instance, no other security mechanisms
can prevent unauthorized access to your account and data.

Browsing Many security problems are caused by browsers, authorized users of the system exploring
the system looking for carelessly protected data.
Penetration Penetration represents deliberate attacks upon the system. An individual trying to penetrate

the system will study it for security vulnerabilities and deliberately plan attacks designed to
exploit those weaknesses.

The last form of behavior usually represents the greatest threat to information security, but problems
caused by carelessness or browsing should not be underestimated.

Basic Security
Every system should maintain the level of security represented by these basic security policies.

© Copyright IBM Corp. 1997, 2001 119

Backups
Physically secure, reliable, and up-to-date system backups are the single most important security task.

With a good system backup, you can recover from any system problems with minimal loss. Document your
backup policy and include information regarding:

* How often backups will be made

» What types of backups (system, data, or incremental) will be made
* How backup tapes will be verified

* How backup tapes will be stored

For more information, see "‘!Chapter 8 Backup Files and Storage Media” on page 105" .

Identification and Authentication

Identification and authentication establish your identity. You are required to log in to the system. You
supply your user name and a password, if the account has one (in a secure system, all accounts should
either have passwords or be invalidated). If the password is correct, you are logged in to that account; you
acquire the access rights and privilege of the account.

Because the password is the only protection for your account, it is important that you select and guard
your password carefully. Many attempts to break into a system start with attempts to guess passwords.
The operating system provides significant password protection by storing user passwords separately from
other user information. The encrypted passwords and other security-relevant data for users are stored in
the letc/security/passwd file. This file should be accessible only by the root user. With this restricted
access to the encrypted passwords, an attacker cannot decipher the password with a program that simply
cycles through all possible or likely passwords.

It is still possible to guess passwords by repeatedly attempting to log in to an account. If the password is
trivial or is infrequently changed, such attacks might easily succeed.

Login User IDs

The operating system also identifies users by their login user ID. The login user ID allows the system to
trace all user actions to their source. After a user logs in to the system but before running the initial user
program, the system sets the login ID of the process to the user ID found in the user database. All
subsequent processes during the login session are tagged with this ID. These tags provide a trail of all
activities performed by the login user ID.

The user can reset the effective user ID, real user ID, effective group ID, real group ID, and supplementary
group ID during the session, but cannot change the login user ID.

Unattended Terminals
All systems are vulnerable if terminals are left logged in and unattended. The most serious problem occurs

when a system manager leaves a terminal unattended that has been enabled with root authority. In
general, users should log out any time they leave their terminals.

You can force a terminal to log out after a period of inactivity by setting the TMOUT and TIMEOUT
parameters in the /etcm file. The TMOUT parameter works in the ksh (Korn) shell, and the
TIMEOUT parameter works in the bsh (Bourne) shell. For more information about the TMOUT parameter,
see FParameter Substitution in the Korn Shell or POSIX_Shell” on page 161. For more information about

the TIMEOUT parameter, see [\ariable Substitution in the Bourne Shell” on page 205.

The following example, taken from a .profile file, forces the terminal to log out after an hour of inactivity:

T0=3600

echo "Setting Autologout to $TO"
TIMEOUT=$TO

TMOUT=$TO

export TIMEOUT TMOUT

120 System User's Guide: Operating System and Devices

../../files/aixfiles/passwd_security.htm#HDRA1219924
../../files/aixfiles/profile.htm#HDRVPHPE0GSC

Note: Users can override the TMOUT and TIMEOUT values in the /etc/profile file by specifying
different values in the .profile file in your home directory.

File Ownership and User Groups

Initially, a file’s owner is identified by the user ID of the person who created the file. The owner of a file
determines who may read, write (modify), or execute the file. Ownership can be changed with the
command.

Every user ID is assigned to a group with a unique group ID. The system manager creates the groups of
users when setting up the system. When a new file is created, the operating system assigns permissions
to the user ID that created it, to the group ID containing the file owner, and to a group called others,
consisting of all other users. The id command shows your user ID (UID), group ID (GID), and the names
of all groups you belong to.

In file listings (such as the listings shown by the Is command), the three groups of users are always

represented in the following order: user, group, and others. If you need to find out your group name, the
groups command shows all the groups for a user ID.

Changing File or Directory Ownership (chown Command)

You can change the owner of your files with the chown command.

When the -R option is specified, the chown command recursively descends through the directory structure
from the specified directory. When symbolic links are encountered, the ownership of the file or directory

pointed to by the link is changed; the ownership of the symbolic link is not changed.

Note: Only the root user can change the owner of another file. No errors are reported when the -f
option is specified.

For example, to change the owner of the file program.c, type:

chown jim program.c
Press Enter.

The user access permissions for program.c now apply to jim. As the owner, jim can use the Ehmad
command to permit or deny other users access to program.c.

For example, to change the owner and group of all files in the directory /tmp/src to owner john and group
build, type:
chown -R john:build /tmp/src

Press Enter.

See the khowr command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

File and Directory Access Modes

Every file has an owner. For new files, the user who creates the file is the owner of that file. The owner
assigns an access mode to the file. Access modes grant other system users permission to read, modify, or
execute the file. Only the file’s owner or users with root authority can change the access mode of a file.

There are the three classes of users: user/owner, group, and all others. Access is granted to these groups
in some combination of three modes: read, write, or execute. When a new file is created, the default

Chapter 9. File and System Security 121

../../cmds/aixcmds1/chown.htm#HDROY2E0CRAW
../../cmds/aixcmds3/id.htm#HDRA68V04396
../../cmds/aixcmds1/chmod.htm#HDRKZF1F0CRAW
../../cmds/aixcmds1/chown.htm#HDROY2E0CRAW

permissions are read, write, and execute permission for the user who created the file. The other two
groups have read and execute permission. The following table illustrates the default file access modes for
the three sets of user groups:

Classes Read Write Execute
Owner Yes Yes Yes
Group Yes No Yes
Others Yes No Yes

Files can be read (r), written (w), or executed (x). The system determines who has permission and the
level of permission they have for each of these activities. Access modes are represented two ways in the
operating system: symbolically and numerically.

Symbolic Representation of Access Modes

Access modes are represented symbolically, as follows:

r Indicates read permission, which allows users to view the contents of a file.
w Indicates write permission, which allows users to modify the contents of a file.
X Indicates execute permission. For executable files (ordinary files that contain programs), execute permission

means that the program can be run. For directories, execute permission means the contents of the directory
can be searched.

For example, a file with the access modes set to rwxr-xr-x gives read and execute permission to all three
groups, but write permission only to the owner of the file. This is the symbolic representation of the default
setting.

The Id command, when used with the I (lower case L) flag, gives a detailed listing of the current directory.
The first 10 characters in the Is -l listing show the file type and permissions for each of the three groups.
The Is - command also tells you the owner and group associated with each file and directory.

The first character indicates the type of file. The remaining nine characters contain the file permission
information for each of the three classes of users. The following symbols are used to represent the type of
file:

Regular files

Directory

Block special files
Character special files
Pipe special files
Symbolic links
Sockets.

w —oT 606 o'

For example, this is a sample Is - listing:
-rwxrwxr-x 2 janet acct 512 Mar 01 13:33 january

Here, the first hyphen (-) indicates a regular file. Characters 2 through 4, rwx, represent the user’s access
mode (read, write, and execute). Characters 5 through 7, rwx, indicate the group’s access modes (read,
write, and execute). Characters 8 through 10, r-x, indicate read and execute access for all other users.
Hyphens within the last 9 characters indicate no permission is given.

122 System User's Guide: Operating System and Devices

../../cmds/aixcmds3/ls.htm#HDRGVB310FISH

janet is the file owner and acct is the name of Janet’s group. 512 is the file size in bytes, Mar 01 13:33 is
the last date and time of modification, and january is the file name. The 2 indicates how many links exist
to the file.

Numeric Representation of Access Modes

Numerically, read access is represented by a value of 4, write permission is represented by a value of 2,
and execute permission is represented by a value of 1. The total value between 1 and 7 represents the
access mode for each group (user, group, and other). The following table illustrates how to determine the
numerical values for each level of access:

Total Value Read Write Execute
0 - - -
1 - - 1
2 - 2 -
3 - 2 1
4 4 - -
5 4 - 1
6 4 -
7 4 1

When a file is created, the default file access mode is 755. This means the user has read, write, and
execute permissions (4+2+1=7), the group has read and execute permission (4+1=5), and all others have
read and execute permission (4+1=5). Access permission modes can be changed for files you own by
running the (change mode) command.

Displaying Group Information (Isgroup Command)

You can display the attributes of all the groups on the system or of the groups specified with the Isgroup
command. If one or more attributes cannot be read, the Isgroup command lists as much information as
possible. The attribute information displays as Attribute=Value definitions, each separated by a blank
space.

For example, to list all of the groups on the system, type:
Tsgroup ALL

Press Enter.

The system displays each group, group ID, and all of the users in the group in a list similar to the
following:

system 0 arne,pubs,ctw,geo,root,chucka,noer,su,dea,
backup,build,janice,denise

staff 1 john,ryan,flynn,daveb,jzitt,glover,maple,ken
gordon,mbrady

bin 2 root,bin

Sys 3 root,su,bin,sys

To display specific attributes for all groups, you can use one of two styles for listing specific attributes for
all groups:

* You can list attributes in the form Attribute=Value separated by a blank space. This is the default style.
For example, to list the ID and users for all of the groups on the system, type:

1sgroup -a id users ALL | pg

Chapter 9. File and System Security 123

../../cmds/aixcmds1/chmod.htm#HDRKZF1F0CRAW

Press Enter.

A list similar to the following displays:

system id=0
users=arne,pubs,ctw,geo,root,chucka,noer,su,dea,backup,build
staff id=1 users=john,ryan,flynn,daveb,jzitt,glover,maple,ken

* You can also list the information in stanza format. For example, to list the ID and users for all of the
groups on the system in stanza format, type:
1sgroup -a -f id users ALL | pg

Press Enter.

A list similar to the following displays:
system:
id=0
users=pubs,ctw,geo,root,chucka,noer,su,dea,backup,build
staff:
id=1
users=john,ryan,flynn,daveb,jzitt,glover,maple, ken
bin:
id=2
users=root,bin
Sys:
id=3
users=root,su,bin,sys

To display all attributes for a specific group, you can use one of two styles for listing specific attributes for
all groups::

* You can list each attribute in the form Attribute=Value separated by a blank space. This is the default
style. For example, to list all attributes for the group system, type:

1sgroup system
Press Enter.

A list similar to the following displays:

system id=0 users=arne,pubs,ctw,geo,root,chucka,noer,su,dea,
backup,build,janice,denise

* You can also list the information in stanza format. For example, to list all attributes for the group bin in
stanza format, type:

1sgroup -f system

Press Enter.

A list similar to the following displays:

system:
id=0
users=arne,pubs,ctw,geo,root,chucka,noer,su,dea,

backup,build,janice,denise

To list specific attributes for a specific group, type:
Isgroup -a Attributes Group

Press Enter.

124 System User's Guide: Operating System and Devices

For example, to list the ID and users for group bin, type:
Isgroup -a id users bin

Press Enter.

A list similar to the following displays:
bin id=2 users=root,bin

See the w command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.
Changing File or Directory Permissions (chmod Command)

You can modify the read, write, and execute permissions of specified files and modify the search
permission codes of specified directories with the chmod command.

For example, to add a type of permission to files chapl and chap2, type:
chmod g+w chapl chap2

Press Enter.
This adds write permission for group members to the files chapl and chap2.

For example, to make several permission changes at once to the mydir directory, type:

chmod go-w+x mydir
Press Enter.

This denies () group members (g) and others (o) the permission to create or delete files (w) in mydir and
allows (+) group members and others to search mydir or use (x) it in a path name. This is equivalent to
the command sequence:

chmod g-w mydir
chmod o-w mydir
chmod g+x mydir
chmod o+x mydir

For example, to permit only the owner to use a shell procedure named cmd as a command, type:

chmod u=rwx,go= cmd
Press Enter.

This gives read, write, and execute permission to the user who owns the file (u=rwx). It also denies the
group and others the permission to access cmd in any way (go=).

For example, to use the numeric mode form of the chmod command to change the permissions of the file
text, type:
chmod 644 text

Press Enter.
This sets read and write permission for the owner, and it sets read-only mode for the group and others.

See the khmad command in the AIX 5L Version 5.1 Commands Reference for more information and the
exact syntax.

Chapter 9. File and System Security 125

../../cmds/aixcmds3/lsgroup.htm#HDRA093970
../../cmds/aixcmds1/chmod.htm#HDRKZF1F0CRAW

Access Control Lists

Access control is composed of protected information resources that specify who can be granted access to
such resources. The operating system allows for need-to-know or discretionary security. The owner of an
information resource can grant other users read or write access rights for that resource. A user who is
granted access rights to a resource can transfer those rights to other users. This security allows for
user-controlled information flow in the system; the owner of an information resource defines the access
permissions to the object.

Users have user-based access only to the objects they own. Typically, users receive either the group
permissions or the default permissions for a resource. The major task in administering access control is to
define the group memberships of users, because these memberships determine the users’ access rights to
the files they do not own.

Access control lists (ACLs) increase the quality of file access controls by adding extended permissions that
modify the [Base Permissions] assigned to individuals and groups. With lExtended Permissions], you can
permit or deny file access to specific individuals or groups without changing the base permissions.

Note: The access control list for a file cannot exceed one memory page (approximately 4096 bytes)
in size.

Access control lists are maintained by the aclget, acledit, and the aclput commands.

Although the chmod command in numeric mode (with octal notations) can set base permissions and
attributes, the chmod subroutine, which the command calls, disables extended permissions. If you use the
numeric mode of the chmod command on a file that has an ACL, extended permissions are disabled. The
symbolic mode of the chmod command does not disable extended permissions. For information on
numeric and symbolic mode, refer to the chmod command.

Base Permissions

Base permissions are the traditional file access modes assigned to the file owner, file group, and other
users. The access modes are: read (r), write (w), and execute/search (x).

In an access control list, base permissions are in the following format, with the Mode parameter expressed
as rwx (with a hyphen (-) replacing each unspecified permission):

base permissions:
owner(name) : Mode
group(group): Mode
others: Mode

Attributes
Three attributes can be added to an access control list: setuid (SUID), setgid (SGID), and savetext
(SVTX). These attributes are in the following format:

attributes: SUID, SGID, SVTX

Extended Permissions

Extended permissions give the owner of a file the ability to define access to that file more precisely.
Extended permissions modify the base file permissions (owner, group, others) by permitting, denying, or
specifying access modes for specific individuals, groups, or user and group combinations.

The permit, deny, and specify keywords are defined as follows:

permit Grants the user or group the specified access to the file.

126 System User's Guide: Operating System and Devices

deny Restricts the user or group from using the specified access to the file.
specify Precisely defines the file access for the user or group.

If a user is denied a particular access by either a deny or a specify keyword, no other entry can override
that access denial.

The enabled keyword must be specified in the access control list (ACL) for the extended permissions to
take effect. The default value is the disabled keyword.

In an ACL, extended permissions are in the following format:

extended permissions:

enabled | disabled
permit Mode UserInfo...:
deny Mode UserInfo...:
specify Mode UserInfo...:

Use a separate line for each permit, deny, or specify entry. The Mode parameter is expressed as rwx
(with a hyphen (-) replacing each unspecified permission). The Userinfo parameter is expressed as
u:UserName, or g:GroupName, or a comma-separated combination of u:UserName and g:GroupName.

Note: If more than one user name is specified in an entry, that entry cannot be used in an access
control decision, because a process has only one user ID.

Access Control List Example

The following is an example of an ACL:

attributes: SUID
base permissions:
owner(frank): rw-
group(system): r-x
others: ---
extended permissions:
enabled
permit rw- u:dhs
deny r-- u:chas, g:system
specify r-- u:john, g:gateway, g:mail
permit rw- g:account, g:finance

The parts of the ACL and their meanings are the following:
» The first line indicates that the setuid bit is turned on.
* The next line, which introduces the base permissions, is optional.

* The next three lines specify the base permissions. The owner and group names in parentheses are for
information only. Changing these names does not alter the file owner or file group. Only the chown
command and the chgrp command can change these file attributes.

* The next line, which introduces the extended permissions, is optional.
* The next line specifies that the extended permissions that follow are enabled.

* The last four lines are the extended entries. The first extended entry grants user dhs read (r) and write
(w) permission on the file.

* The second extended entry denies read (r) access to user chas when he is a member of the system
group.

» The third extended entry specifies that as long as user john is a member of both the gateway group and
the mail group, he can have read (r) access. If user john is not a member of both groups, this extended
permission does not apply.

Chapter 9. File and System Security 127

* The last extended entry grants any user in both the account group and the finance group read (r) and
write (w) permission.

Note: More than one extended entry can be applied to a process, with restrictive modes taking
precedence over permissive modes.

See the heledil command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Access Authorization

Managing access rights is the responsibility of the owner of the information resource. Resources are
protected by permission bits, which are included in the mode of the object. The permission bits define the
access permissions granted to the owner of the object, the group of the object, and for the others default
class. The operating system supports three different modes of access (read, write, and execute) that can
be granted separately.

When a user logs in to an account (using the @ or & commands), the user IDs and group IDs
assigned to that account are associated with the user’s processes. These IDs determine the access rights
of the process.

For files, directories, named pipes, message queues, shared memory segments, semaphores, and devices
(special files), access is authorized as follows:

* For each access control entry (ACE) in the access control list (ACL), the identifier list is compared to
the identifiers of the process. If there is a match, the process receives the permissions and restrictions
defined for that entry. The logical unions for both permissions and restrictions are computed for each
matching entry in the ACL. If the requesting process does not match any of the entries in the ACL, it
receives the permissions and restrictions of the default entry.

» If the requested access mode is permitted (included in the union of the permissions) and is not
restricted (included in the union of the restrictions), access is granted; otherwise, it is denied.

A process with a user ID of 0 is known as a root user process. These processes are generally allowed all
access permissions. But if a root user process requests execute permission for a program, access is
granted only if execute permission is granted to at least one user.

The identifier list of an ACL matches a process if all identifiers in the list match the corresponding type of
effective identifier for the requesting process. A USER-type identifier matched is equal to the effective user
ID of the process, and a GROUP-type identifier matches if it is equal to the effective group ID of the
process or to one of the supplementary group IDs. For instance, an ACE with an identifier list such as:

USER:fred, GROUP:philosophers, GROUP:yankee_ fans

would match a process with an effective user ID of fred and a group set of:
philosophers, philanthropists, yankee fans, good sports

but would not match for a process with an effective user ID of fred and a group set of:
philosophers, iconoclasts, redsox fans, poor sports

Note that an ACE with an identifier list of the following would match for both processes:
USER:fred, GROUP:philosophers

In other words, the identifier list in the ACE functions is a set of conditions that must hold for the specified
access to be granted.

All access permission checks for these objects are made at the system call level when the object is first
accessed. Since SVIPC objects are accessed statelessly, checks are made for every access. For objects

128 System User's Guide: Operating System and Devices

../../cmds/aixcmds1/acledit.htm#HDRA1429221
../../cmds/aixcmds3/login.htm#HDRA68V042F7
../../cmds/aixcmds5/su.htm#HDRA248Y99C6D

with file system names, it is necessary to be able to resolve the name of the actual object. Names are
resolved either relatively (to the process’ working directory) or absolutely (to the process’ root directory). All
name resolution begins by searching one of these.

The discretionary access control mechanism allows for effective control of access to information resources
and provides for separate protection of the confidentiality and integrity of the information. Owner-controlled
access control mechanisms are only as effective as users make them. All users must understand how
access permissions are granted and denied and how these are set.

Displaying Access Control Information (aclget Command)

You can display the access control information of a file with the aclget command. The information that you
view includes attributes, base permissions, and extended permissions.

For example, to display the access control information for the status file, type:
aclget status

Press Enter.

The access control information that displays includes a list of attributes, base permissions, and extended

permissions. For an example, see lAccess Control | ist Example” on page 127 .

For example, to save the access control information of the plans file in the ac11 file to edit and use later,
type:
aclget -o acll plans

Press Enter.

See the m command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Setting Access Control Information (aclput Command)
You can set the access control information of a file with the aclput command.

Note: The access control list for a file cannot exceed one memory page (approximately 4096 bytes)
in size.

For example, to set the access control information for the status file with information stored in the acldefs
file, type:
aclput -i acldefs status

Press Enter.

For example, to set the access control information for the status file with the same information used for
the plans file, type:

aclget plans | aclput status
Press Enter.

See the m command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Chapter 9. File and System Security 129

../../cmds/aixcmds1/aclget.htm#HDRFM2220FRIT
../../cmds/aixcmds1/aclput.htm#HDRYN221F0FRIT

Editing Access Control Information (acledit Command)

You can change the access control information of a file with the acledit command. The command displays
the current access control information and lets the file owner change it. Before making any changes
permanent, the command asks if you want to proceed.

Note: The EDITOR environment variable must be specified with a complete path name; otherwise,
the acledit command will fail.

The access control information that displays includes a list of attributes, base permissions, and extended

permissions. For an example, see tAccess Control List Example” on page 127 .

For example, to edit the access control information of the plans file, type:
acledit plans

Press Enter.

See the heledif command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Locking Your Terminal (lock or xlock Command)

You can lock your terminal with the lock command. The lock command requests a password from the
user, reads it, and requests the password a second time to verify it. In the interim, the command locks the
terminal and does not relinquish it until the password is received the second time. The timeout default
value is 15 minutes, but this can be changed with the -Number flag.

Note: If your interface is AIXwindows use the xlock command in the same manner.

For example, to lock your terminal under password control, type:

lTock
Press Enter.

You are prompted for the password twice so the system can verify it. If the password is not repeated
within 15 minutes, the command times out.

For example, to reserve a terminal under password control, with a timeout interval of 10 minutes, type:
lock -10

Press Enter.

See the lacl or the klacd command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Command Summary for File and System Security

bBeledit Edits the access control information of a file.

m Displays the access control information of a file.
Belpui Sets the access control information of a file.

Ehmod Changes permission modes.

Ehowd Changes the user associated with a file.

locy Reserves a terminal.

w Displays the attributes of groups.

kiocK Locks the local X display until a password is entered.

130 System User's Guide: Operating System and Devices

../../cmds/aixcmds1/acledit.htm#HDRA1429221
../../cmds/aixcmds3/lock.htm#HDRA2789D0A
../../cmds/aixcmds6/xlock.htm#HDRA365DBA952BLAW
../../cmds/aixcmds1/acledit.htm#HDRA1429221
../../cmds/aixcmds1/aclget.htm#HDRFM2220FRIT
../../cmds/aixcmds1/aclput.htm#HDRYN221F0FRIT
../../cmds/aixcmds1/chmod.htm#HDRKZF1F0CRAW
../../cmds/aixcmds1/chown.htm#HDROY2E0CRAW
../../cmds/aixcmds3/lock.htm#HDRA2789D0A
../../cmds/aixcmds3/lsgroup.htm#HDRA093970
../../cmds/aixcmds6/xlock.htm#HDRA365DBA952BLAW

Related Information

Chapter 9. File and System Security

131

132 System User's Guide: Operating System and Devices

Chapter 10. Customizing the User Environment

The operating system provides various commands and initialization files that enable you to customize the
behavior and the appearance of your user environment to your preferences.

Some of the default resources of the applications you use on your system can also be customized.
Defaults are initiated by the program at startup. When you change the defaults, you must exit and then
restart the program to see the new defaults in effect.

Common Desktop Environment 1.0: Advanced User’s and System Administrator’s Guide provides detailed
information about customizing the behavior and appearance of the Common Desktop Environment.

This section discusses:

° 3 H H ”

— Fletc/lenvironment File” on page 135

— Fenv File” on page 134

‘ i . ”

© Copyright IBM Corp. 1997, 2001 133

System Startup Files Overview

When you log in, the shell defines your user environment after reading the initialization files that you have
set up. The characteristics of your user environment are defined by the values given to your environment
variables. You maintain this environment until you log out of the system.

The shell uses two types of profile files when you log in to the operating system. It evaluates the
commands contained in the files and then executes the commands to set up your system environment.
The files have similar functions except that the /etc/profile file controls profile variables for all users on a
system whereas the .profile file allows you to customize your own environment.

The shell first evaluates the commands contained in the /etc/profile file and then runs the commands to
set up your system environment in the /etc/environment file. After these files are run, the system then
checks to see if you have a .profile file in your home directory. If the .profile file exists, it runs this file.
The .profile file will specify if there also exists an environment file. If an environment file exists, (usually
called .env), the system then runs this file and sets up your environment variables.

The /etc/profile, /etc/environment, and the .profile files are run once at login time. The .env file, on the
other hand, is run every time you open a new shell or a window.

This section discusses the following initialization files:

/etc/profile File

The first file that the operating system uses at login time is the /etc/profile file. This file controls
systemwide default variables such as:

* export variables

+ file creation mask (umask)

» terminal types

* mail messages to indicate when new mail has arrived

The system administrator configures the profile file for all users on the system. Only the system
administrator can change this file.

The following example is typical of an /etc/profile file:

#Set file creation mask

unmask 022

#Tell me when new mail arrives
MAIL=/usr/mail/$LOGNAME

#Add my /bin directory to the shell search sequence
PATH=/usr/bin:/usr/sbin:/etc::

134 System User's Guide: Operating System and Devices

#Set terminal type

TERM=1ft

#Make some environment variables global
export MAIL PATH TERM

See lprofile File Formal in the AIX 5L Version 5.1 Files Reference for detailed information about the
letc/profile file.

/etc/environment File

The second file that the operating system uses at login time is the /etc/environment file. The
letc/environment file contains variables specifying the basic environment for all processes. When a new
process begins, the exec subroutine makes an array of strings available that have the form Name=Value.
This array of strings is called the environment. Each name defined by one of the strings is called an
environment variable or shell variable. The exec subroutine allows the entire environment to be set at one
time.

When you log in, the system sets environment variables from the environment file before reading your
login profile, .profile. The following variables make up the basic environment:

HOME The full path name of the user’s login or HOME directory. The login program sets this to the name
specified in the /etc/passwd file.
LANG The locale name currently in effect. The LANG variable is initially set in the /etc/profile file at

installation time.
NLSPATH The full path name for message catalogs.
LOCPATH The full path name of the location of National Language Support tables.

PATH The sequence of directories that commands, such as sh, time, nice and nohup, search when looking
for a command whose path name is incomplete.
TZ The time zone information. The TZ environment variable is initially set by the /etc/profile file, the

system login profile.

See lenvironment Fild in the AIX 5L Version 5.1 Files Reference for detailed information about the
/etc/environment file.

.profile File

The third file that the operating system uses at login time is the .profile file. The .profile file is present in
your home ($HOME) directory and enables you to customize your individual working environment.
Because the .profile file is hidden, use the Id -a command to list it.

After the login program adds the LOGNAME (login name) and HOME (login directory) variables to the
environment, the commands in the SHOME/.profile file are executed if the file is present. The .profile file
contains your individual profile that overrides the variables set in the /etc/profile file. The .profile file is
often used to set exported environment variables and terminal modes. You can tailor your environment as
desired by modifying the .profile file. Use the .profile file to control the following defaults:

» shells to open

* prompt appearance

* keyboard sound

The following example shows a typical .profile file:

PATH=/usr/bin:/etc:/home/binl:/usr/1pp/tps4.0/user::
epath=/home/gsc/e3:

export PATH epath

csh

Chapter 10. Customizing the User Environment 135

../../files/aixfiles/profile.htm#HDRVPHPE0GSC
../../files/aixfiles/environment.htm#HDRA243Y98FF1
../../cmds/aixcmds3/ls.htm#HDRGVB310FISH

This example has defined two path variables (PATH and epath), exported them, and opened a C shell
(csh).

You can also use the .profile file (or if it is not present, the /etc/profile file) to determine login shell
variables. You can also customize other shell environments. For example, use the .cshrc file and .kshrec
file to tailor a C shell and a Korn shell, respectively, when each type of shell is started.

.env File

A fourth file that the operating system uses at login time is the .env file, if your .profile has the following
line: export ENV=$HOME/.env

The .env file enables you to customize your individual working environment variables. Because the .env
file is hidden, use theé -a command to list it. The .env file contains the individual user environment
variables that override the variables set in the /etc/environment file. You can tailor your environment
variables as desired by modifying your .env file. The following example shows a typical .env file:

export myid="id | sed -n -e 's/).x$//' -e 's/ .x(//p" \
bold="tput smso’ \
norm="tput rmso’
#set prompt: Togin & system name (reverse video) & path (normal)
if [$myid = root]
then typeset -x PSCH='${bold}#:${norm}\${PWD}> '
PS1="${bold}#:${norm}\${PWD}> "
else typeset -x PSCH='>'
PS1="${bold}$LOGNAME@SUNAME : $ {norm}\${PWD}> "
PSZ=II>II
pS3="#2"
fi
export PS1 PS2 PS3
#setup my command aliases
alias 1s="/bin/1s -CF" \
d="/bin/1s -Fal | pg" \
rm="/bin/rm -i" \
up="cd .."

Note: When modifying the .env file, ensure that newly created environment variables do not conflict
with standard variables such as MAIL, PS1, PS2, and IFS.

AlXwindows Startup Files Overview

Because different computer systems have different ways of starting the X server and AlXwindows, you
should consult with your system administrator to learn how to get started. Usually, the X server and
AlXwindows are started from a shell script that runs automatically when you log in. You might, however,
find that you need to start the X server or AIXwindows or both.

If you log in and find that your display is functioning as a single terminal, with no windows displayed, you
can start X by typing:

xinit

Press Enter.

If this command does not start X, check with your system administrator to ensure that the X11 directory
containing executable programs is in your search path. The appropriate path might differ from one system
to another.

If you log in and find one or more windows without frames, you can start AIXwindows Window Manager by
typing:

mwm &

136 System Users Guide: Operating System and Devices

../../cmds/aixcmds3/ls.htm#HDRGVB310FISH

Press Enter.

Note: Before entering this command, make sure that the pointer rests within a window that has a
system prompt.

Because AlXwindows permits customization both by programmers writing AIXwindows applications and by
users, you might find that mouse buttons or other functions do not operate as you might expect from
reading this documentation. You can reset your AIXwindows environment to the default behavior by
pressing and holding the following four keys:

Alt-Ctrl-Shift-!

You can return to the customized behavior by pressing this key sequence again. If your system does not
permit this combination of keystrokes, you can also restore default behavior from the default root menu.

This section discusses the following initialization files:

Xinitrc File

The xinit command uses a customizable shell script file that lists the X client programs to start. The
Xinitrc file in your home directory controls the windows and applications that start up when you start
AlXwindows.

The xinit command first looks for the $XINITRC environment variable to start AIXwindows. If the
$XINITRC environment variable is not found, it looks for the $HOME/.xinitrc shell script. If the
$HOME/.xinitrc shell script is not found, the xinit command starts the /usr/lib/X11/$LANG/xinitrc shell
script. If fusr/lib/X11/$LANG/xinitrc is not found, it looks for the /usr/lpp/X11/defaults /SLANG/xinitrc
shell script. If that script is not found, it searches for the /usr/lpp/X11/defaults/xinitrc shell script.

The xinitre shell script starts commands, such as the mwm (AlXwindows Window Manager), aixterm, and
xclock commands.

The xinit command performs the following operations:

+ Starts an X Server on the current display

« Sets up the $DISPLAY environment variable

* Runs the xinitre file to start the X client programs

» Automatically loads the Display PostScript (DPS) extension

Note: To prevent DPS from automatically loading, the /usr/Ipp/X11/xinit file must be modified.

The following example shows the part of the xinitrc file you can customize:
This script is invoked by /usr/1pp/X11l/bin/xinit

#***
Start the X clients. Change the following lines to *
whatever command(s) you desire! *

The default clients are an analog clock (xclock), an 1ft =*

terminal emulator (aixterm), the X Desktop Manager (xdt), *
#

#

and the Motif Window Manager (mwm). *
KhRRAAAAAAAAAAA Ak hhhkhhhhkhhhhhhhhhhkhkhhhkkk*k

Chapter 10. Customizing the User Environment 137

If not X-Station then invoke the DPS copyright
if [-z "$XSTATION"]
then

/usr/1pp/DPS/bin/copyright -x &
fi
aixterm =80x25+0-0 -fg Wheat -bg MidnightBlue &
if [-z "$XSTATION"]

then
sleep 3 # allow for DPS copyright to show up
fi
if [-x /usr/lpp/X11/bin/xdt3]
then
/usr/1pp/X11/bin/xdt3 &
fi
exec mwm

.Xdefaults File

If you work in an AlXwindows interface, you can customize this interface with the .Xdefaults file.
AlXwindows allows you to specify your preferences for visual characteristics, such as colors and fonts.

Many aspects of a windows-based application’s appearance and behavior are controlled by sets of
variables called resources. The visual or behavioral aspect of a resource is determined by its assigned
value. There are several different types of values for resources. For example, resources that control color
can be assigned predefined values such as DarkSlateBlue or Black. Resources that specify dimensions
are assigned numeric values. Some resources take Boolean values (True or False).

If you do not have a .Xdefaults file in your home directory, you can create one with any text editor. Once
you have this file in your home directory, you can set resource values in it as you wish. A sample default
file called Xdefaults.tmpl is in the /usr/lpp/X11/defaults directory.

The following example shows part of a typical .Xdefaults file:

*AutoRaise: on

*DelconifyWarp: on

*warp:on

*TitleFont:andysans12

*scrol1Bar: true

*font: Roml0.500
Mwm*menu*foreground: black
Mwm*menuxbackground: CornflowerBlue
Mwm*menuxRootMenu*foreground: black
Mwm*menu*RootMenu*background: CornflowerBlue
Mwm*icon*foreground: grey25
Mwm*icon*background: LightGray
Mwm*foreground: black
Mwm*background: LightSkyBlue
Mwm*bottomShadowColor: Bluel
Mwm*topShadowColor: CornflowerBlue
Mwm*activeForeground: white
Mwm*activeBackground: Bluel
Mwm*activeBottomShadowColor: black
Mwm*activeTopShadowColor: LightSkyBlue
Mwmxborder: black
Mwm*highlight:white

aixterm.foreground: green
aixterm.background: black
aixterm.fullcursor: true
aixterm.ScrollKey: on
aixterm.autoRaise: true
aixterm.autoRaiseDelay: 2
aixterm.boldFont:Rom10.500
aixterm.geometry: 80x25
aixterm.iconFont: Rom8.500

138 System Users Guide: Operating System and Devices

aixterm.iconStartup: false
aixterm.jumpScroll: true
aixterm.reverselrap: true
aixterm.savelLines: 500
aixterm.scrollInput: true
aixterm.scrollKey: false
aixterm.title: AIX

.mwmrc File

Most of the features that you want to customize can be set with resources in your .Xdefaults file.
However, key bindings, mouse button bindings, and menu definitions for your window manager are
specified in the supplementary .mwmrc file, which is referenced by resources in the .Xdefaults file.

If you do not have a .mwmrc file in your home directory, you can copy it as follows:

cp /usr/1ib/X11/system.mwmrc .mwmrc

Because the .mwmrc file overrides the systemwide effects of the system.mwmrc file, your specifications
do not interfere with the specifications of other users.

The following example shows part of the typical system.mwmrc file:

DEFAULT mwm RESOURCE DESCRIPTION FILE (system.mwmrc)

#
menu pane descriptions
#
Root Menu Description

Menu RootMenu

{ "Root Menu" f.title
no-Tlabel f.separator
"New Window" f.exec "aixterm &"
"Shuffle Up" f.circle_up
"Shuffle Down" f.circle_down
"Refresh" f.refresh
no-1label f.separator
"Restart" f.restart
"Quit" f.quit_mwm

Default Window Menu Description

Menu DefaultWindowMenu MwmWindowMenu

{ "Restore" R Alt<Key>F5
"Move" M Alt<Key>F7
"Size" S Alt<Key>F8
"Minimize" _n Alt<Key>F9
"Maximize" _x Alt<Key>F10
"Lower" L Alt<Key>F3
no-label
"Close" C Alt<Key>F4

}

no acclerator window menu
Menu NoAccWindowMenu

{

"Restore" R f.normalize
"Move" M f.move
"Size" S f.resize
"Minimize" _n f.minimize
"Maximize" _x f.maximize
“Lower" L f.lower
no-label f.separator
“Close" C f.kill

f.normalize
f.move
f.resize
f.minimize
f.maximize
f.lower
f.separator
f.kill

Chapter 10. Customizing the User Environment

139

Keys DefaultKeyBindings

{

—~— T S 3 H ——

}

Shift<Key>Escape icon
Meta<Key>space icon
Meta<Key>Tab root
Meta Shift<Key>Tab root
Meta<Key>Escape root
Meta Shift<Key>Escape root
Meta Ctrl Shift<Key>exclam root
button binding descriptions
uttons DefaultButtonBindings
<BtnlDown> frame|icon
<Btn3Down> frame|icon
<BtnlDown> root
<Btn3Down> root
Meta<BtnlDown> icon|window
Meta<Btn2Down> window|icon
Meta<Btn3Down> window

Buttons PointerButtonBindings

{

H FH FH

Related Information

<BtnlDown>
<Btn2Down>
<Btn3Down>
<Btn1Down>
Meta<Btn2Down>
Meta<Btn3Down>

icon
icon
icon

frame
frame
frame
root

window
window

icon
icon

window f.post_wmenu
window f.post_wmenu
icon|window f.next_key
icon|window f.prev_key
icon|window f.next_key
icon|window f.prev_key
icon|window f.set_behavior

f.raise

f.post_wmenu

f.menu RootMenu

f.menu RootMenu

f.lower

f.resize

f.move

f.raise

f.post_wmenu

f.lower

f.menu RootMenu

f.resize

f.move

END OF mwm RESOURCE DESCRIPTION FILE

140 System Users Guide: Operating System and Devices

Customization Procedures

There are many ways to customize your system environment. This section discusses the following
procedures:

Exporting Shell Variables (export Shell Command)

A local shell variable is a variable known only to the shell that created it. If you start a new shell, the old
shell’'s variables are unknown to it. If you want the new shells that you open to know the variables from an
old shell, you need to make the variables global by exporting them.

You can use the export command to make local variables global. To make your local shell variables global
automatically, export them in your .profile file.

Note: Variables can be exported down to child shells but not exported up to parent shells.

For example, to make the local shell variable PATH global, type:
export path

Press Enter.

For example, to list all your exported variables, type:
export

Press Enter.

The system displays information similar to the following:

DISPLAY=unix:0

EDITOR=vi

ENV=$HOME/ .env

HISTFILE=/u/denise/.history

HISTSIZE=500

HOME=/u/denise

LANG=En_US

LOGNAME=denise

MAIL=/usr/mail/denise

MAILCHECK=0

MATLMSG=**YOU HAVE NEW MAIL. USE THE mail COMMAND TO SEE YOUR MAILPATH=/usr/mail/denise?denise has mail !!!
MAILRECORD=/u/denise/.Outmail
PATH=/usr/ucb:/usr/1pp/X11/bin:/bin:/usr/bin:/etc:/u/denise:/u/denise/bin:/u/binl
PWD=/u/denise

SHELL=/bin/ksh

Changing the Display’s Font (chfont Command)

You can change the default font at system startup with the chfont or smit command. A font palette is a file
that the system uses to define and identify the fonts it has available.

Note: You must have root authority to run the chfont command.

Chapter 10. Customizing the User Environment 141

chfont Command

For example, to change the active font to the fifth font in the font palette, type:
chfont -a5

Press Enter.

Font ID 5 becomes the primary font.

For example, to change the font to an italic, roman, and bold face of the same size, type:
chfont -n /usr/1pp/fonts/It114.snf /usr/1pp/fonts/B1d1l4.snf /usr/1pp/fonts/Roml4.snf

Press Enter.

See the khfoni command in the AIX 5L Version 5.1 Commands Reference for more information and the

exact syntax. See also LListing the Available Fonts (Isfont Command)” on page 13

smit Command
The chfont command can also be run using smit.

To select the active font, type:
smit chfont

Press Enter.

To select the font palette, type:
smit chfontpl

Press Enter.

Changing Control Keys (stty Command)

You can change the keys your terminal uses for control keys with the stty command. Your changes to
control keys last until you log out. To make your changes permanent, place them in your .profile file.

For example, to assign Ctrl-Z as the interrupt key, type:
stty intr 'Z

Press Enter.

For example, to reset all control keys to their default values, type:
stty sane

Press Enter.

For example, to display your current settings, type:
stty -a

Press Enter.

See the E command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

142 System User's Guide: Operating System and Devices

../../cmds/aixcmds1/chfont.htm#HDRA8V1A0ROLL
../../cmds/aixcmds5/stty.htm#HDRA471320ROLL

Changing Your System Prompt

Your shell uses three prompt variables:

PS1 Prompt used as the normal system prompt.
PS2 Prompt used when the shell expects more input.
PS3 Prompt used when you have root authority.

You can change any of your prompt characters by changing the value of its shell variable. Your changes to
your prompts last until you log out. To make your changes permanent, place them in your .env file.

For example, to display the current value of the PS1 variable, type:
echo "prompt is $PS1"

Press Enter.

The system displays information similar to the following:
prompt is $

For example, to change your prompt to Ready> , type:
PS1="Ready> "

Press Enter.

For example, to change your continuation prompt to Enter more-> , type:
PS2="Enter more->"

Press Enter.

For example, to change your root prompt to Root-> , type:
PS3="Root-> "

Press Enter.

Related Information

] : ”

Chapter 10. Customizing the User Environment 143

Customizing the InfoExplorer Windows Program

You can customize the InfoExplorer program by setting defaults and preferences. For example, you can
specify which information bases and printer to use by default. You can also specify such things as the
number of history events to track and the type of print output.

The primary difference between defaults and preferences is that the InfoExplorer program initiates defaults
at startup. When setting defaults, you must exit and restart the program to have the changes take effect
(except for default printer settings). When setting preferences, the changes take place immediately.

The following sections describe customizing the InfoExplorer Window Interface:

Changing Defaults in the InfoExplorer Window Interface

In InfoExplorer, you can set many defaults. The InfoExplorer program uses the default settings at startup.
Use the Defaults option in the Options pull-down menu to set defaults for:

Changing the Default Window Size

When you start the InfoExplorer program, window size is determined by system default. You can
customize the default window size to suit your needs. Specifically, you can set the default window size for
navigation and reading windows using the Window Size option in the Options pull-down menu. The new
default then determines the window size for current and future InfoExplorer sessions.

For procedural information, see Setting Window Size with the InfoExplorer Program (InfoExplorer Help).
For information on changing window size using the .Xdefaults file, see Setting Window Size with X
Resources (InfoExplorer Help).

Designating a Default Navigation Article
By system default, the InfoExplorer program initially displays the Topic & Task Index as the primary
navigation article. You can change this default to the navigation article that best suits your purposes. Then,

at startup, the InfoExplorer program automatically displays the new default navigation article.

For procedural information, see Setting Defaults (InfoExplorer Windows).

144 System User's Guide: Operating System and Devices

Designating Default Files

You might want a trainee to follow a specific path while using the InfoExplorer program, or you might want
to retrace your path from a previous session. To handle this, you can designate a specific history file as
the default history file. Then, when you use the History option, the default history file leads you or the
trainee down the designated path.

You can also designate a bookmarks file or a notes file as the default bookmarks or notes file and follow
those specific paths in subsequent sessions.

For procedural information, see Setting Defaults (InfoExplorer Help).
Designating a Default Note Template File

When you create a note in InfoExplorer, the note editor window is initially blank. You can type the note into
the blank window or paste in selected text from the reading window. To use a specific form when writing
notes, you can specify a note template. If you have built and saved many note templates, you can
designate one of them as the default. Then, when you use the Note option, the InfoExplorer program
displays the default note template.

For procedural information, see Setting Defaults (InfoExplorer Help).
Changing the Default Search Information Base

By default, when you search with the InfoExplorer program, the search includes all information bases
loaded with the program. However, it is not always necessary to include every information base in your
search. To make your searches more efficient, you can specify which information bases to search during
current and future sessions. You can also easily reset the selection to its original form (system default) so
that the information bases loaded with the program are again included in a search.

For procedural information, see Setting Defaults (InfoExplorer Help).
Designating Default Printers

You might have printers that are better suited for artwork or pretty print. The Pretty Print option uses the
troff program to convert a document to output for a phototypesetter. With the InfoExplorer program, you
can designate a default printer for each of the different types of print: simple (text print), pretty (more
elaborate print, retaining text font and style characteristics), or artwork. When you issue a print command
for a screen containing one type of print or artwork, the printer you have designated automatically receives
that particular command.

For example, when you choose the Print Graphic option of the info pull-down menu, the print job is
automatically sent to the printer you designated for artwork.

Note: The kroff document-formatting program must be installed on your system before you can use
the pretty print feature.

For procedural information, see Setting Defaults (InfoExplorer Help).
Changing Preferences in the InfoExplorer Window Interface

In InfoExplorer, you can set many preferences. You use the Preferences option in the Customize
pull-down menu to set defaults for:

Chapter 10. Customizing the User Environment 145

../../cmds/aixcmds5/troff.htm#HDRAC15370HOLL

Changing the Font Size

If the font size in the reading and navigation windows is too large or too small, you can change the default
font size. The system default font size is medium. However, you can change it to X-small, small, large, or
X-large. You can then apply the changes to the current session or both current and future sessions.

For procedural information, see Setting Preferences (InfoExplorer Help).
Changing the Artwork Display

Some hypertext articles have artwork. You determine whether to display this artwork in an artwork window
or in the reading window. To do this, you select one of the Inline, Separate Window, or Don’t Care
options of the Customize pull-down menu. If you choose the Don’t Care option, artwork appears in a
separate artwork window unless specifically designed to appear in the reading window.

After determining how to display artwork, you can apply the changes to the current session only or to
current and future sessions.

For procedural information, see Setting Preferences (InfoExplorer Help).
Auto-Holding Articles

The Auto-Hold option of the Customize pull-down menu determines whether the InfoExplorer program
opens a new reading window for each new article. By system default, the InfoExplorer program replaces
the contents of a reading window when you link to another article. To keep articles open as you move
through the information base, you use the Auto-Hold option. When you set the Auto-Hold option to 0n,
you can follow links without losing the articles from which you have linked. You can apply the changes to
the current session only or to current and future sessions.

For procedural information, see Setting Preferences (InfoExplorer Help).
Designating Print Article

You can select between Simple Print and Pretty Print. Simple Print does not support graphics. The Pretty
Print option uses the troff program to convert a document to output for a phototypesetter.

For procedural information, see Setting Preferences (InfoExplorer Help).
Changing the History Event Size

A history list can range in size from 0 (zero) to 500 events. For example, if the history list size is set at 10
events, the history list contains your last 10 links.

The system default for the history event size is 100 events. You can change the default size to fit your
particular situation. You can then apply the changes to the current session only or to current and future
sessions.

For procedural information, see Setting Preferences (InfoExplorer Help).

Changing the Preferred Library

You can designate one of the defined libraries as a "preferred library” to be used if InfoExplorer is started
without a library specified at the command line.

146 System Users Guide: Operating System and Devices

For procedural information, see Setting Preferences (InfoExplorer Help).

Summary for User Environment Customization

System Startup Files

[etclprafild

[etc/environment
$HOME/.profile
hage 138)

$HOME/.env

)

System file that contains commands that the system executes when you log in.
System file that contains variables specifying the basic environment for all
processes.

File in your home directory that contains commands that override the system
letc/profile when you log in.

File in your home directory that overrides the system /etc/environment and
contains variables specifying the basic environment for all processes.

AlXwindows Startup Files

$HOME/.xinitrc (Lxinitrc File” on
)

$HOME/.Xdefaults EXdefaultd

Eile” on page 13d)

$HOME/.mwmrc (Emwmrc Filef

bn page 13d)

File in your home directory that controls the windows and applications that start
up when you start AIXwindows.

File in your home directory that controls the visual or behavioral aspect of
AlXwindows resources.

File in your home directory that defines key bindings, mouse button bindings, and
menu definitions for your window manager.

Customization Procedures

PS1 Normal system prompt.

PS2 More input system prompt.

PS3 Root system prompt.

Ehfoni Changes the font used by a display at system restart.

E Sets, resets, and reports workstation operating parameters.

Related Information

‘ : 3

Chapter 10. Customizing the User Environment 147

../../files/aixfiles/profile.htm#HDRVPHPE0GSC
../../files/aixfiles/environment.htm#HDRA243Y98FF1
../../cmds/aixcmds1/chfont.htm#HDRA8V1A0ROLL
../../cmds/aixcmds5/stty.htm#HDRA471320ROLL

148 System Users Guide: Operating System and Devices

Chapter 11. Shells

Your interface to the operating system is called a shell. The shell is the outermost layer of the operating
system. Shells incorporate a programming language to control processes and files, as well as to start and
control other programs. The shell manages the interaction between you and the operating system by
prompting you for input, interpreting that input for the operating system, and then handling any resulting
output from the operating system.

Shells provide a way for you to communicate with the operating system. This communication is carried out
either interactively (input from the keyboard is acted upon immediately) or as a shell script. A shell script is
a sequence of shell and operating system commands that is stored in a file.

When you log in to the system, the system locates the name of a shell program to execute. Once
executed, the shell displays a command prompt. This prompt is usually a $ (dollar sign). When you type a
command at the prompt and press the Enter key, the shell evaluates the command and attempts to carry it
out. Depending on your command instructions, the shell writes the command output to the screen or
redirects the output. It then returns the command prompt and waits for you to type another command.

A command line is the line on which you type. It contains the shell prompt. The basic format for each line
is:

$ Command Argument(s)

The shell considers the first word of a command line (up to the first blank space) as the command, and all
words after that as arguments.

This section discusses:

° ‘ ”

°] ”

‘ : H ”

« FReserved Words in the Korn Shell or POSIX Shell” on page 159

” . . . %

" . i i 7]

n i . . m

n - i . - m

n i ot i]

© Copyright IBM Corp. 1997, 2001 149

7] . ”

Shell Features

The primary advantages of interfacing to the system through a shell are:
* Wildcard substitution in file names (pattern matching)

Carries out commands on a group of files by specifying a pattern to match, rather than an actual file
name.

For more information, see:

» Background processing

Sets up lengthy tasks to run in the background, freeing the terminal for concurrent interactive
processing.

For more information, see the bg command in:

¢ A ”

Note: The Bourne shell does not support job control.
+ Command aliasing

Gives an alias name to a command or phrase. When the shell encounters an alias on the command line
or in a shell script, it substitutes the text to which the alias refers.

For more information, see:

Note: The Bourne shell does not support command aliasing.
+ Command history

Records the commands you enter in a history file. You can use this file to easily access, modify, and
reissue any listed command.

For more information, see the history command in:

¢ H ”

150 System Users Guide: Operating System and Devices

Note: The Bourne shell does not support command history.
* File name substitution
Automatically produces a list of file names on a command line using pattern-matching characters.
For more information, see:

* Input and output redirection

Redirects input away from the keyboard and redirects output to a file or device other than the terminal.
For example, input to a program can be provided from a file and redirected to the printer or to another
file.

For more information, see:

* Piping
Links any number of commands together to form a complex program. The standard output of one
program becomes the standard input of the next.
For more information, see the m definition in the "Shells Terms” section.
» Shell variable substitution
Stores data in user-defined variables and predefined shell variables.
For more information, see:

Available Shells

The following shells are provided with this version of the operating system:

« Korn shell (started with the ksH command)

* Bourne shell (started with the bsH command)

* Restricted shell (a limited version of the Bourne shell started with the command)
* POSIX shell (also known as the Korn Shell, and started with the psh command)

» Default shell (started with the command)

« C shell (started with the EsH command)

» Trusted shell (a limited version of the Korn shell started with the ksH command)

* Remote shell (started with the ksH command).

The login shell refers to the shell loaded when you log in to the computer system. Your login shell is set in
the Em file. The Karn shell is the standard operating system login shell and is backwardly

compatible with the tBourne Shell” on page 194,

The default or standard shell refers to the shell linked to and started with the [use/bin/sH command. The
Bourne shell is set up as the default shell and is a subset of the Korn shell.

The default or standard shell refers to the shell linked to and started with the [use/bin/sd command. The
Korn shell, also known as the POSIX shell, is set up as the default shell. The POSIX shell is called the
lusr/bin/psh and is linked to the lusr/bin/ksH command.

Chapter 11. Shells 151

../../cmds/aixcmds3/ksh.htm#HDRA265912F6
../../cmds/aixcmds1/bsh.htm#HDRA27991201
../../cmds/aixcmds4/brsh.htm
../../cmds/aixcmds5/sh.htm#HDRA66F011A
../../cmds/aixcmds1/csh.htm#HDRA27991075
../../cmds/aixcmds5/tsh.htm#HDRTK420FRIT
../../cmds/aixcmds4/rsh.htm#HDRA2049833
../../files/aixfiles/passwd.htm#HDRX9A1F0FRIT
../../cmds/aixcmds5/sh.htm#HDRA66F011A
../../cmds/aixcmds5/sh.htm#HDRA66F011A
../../cmds/aixcmds3/ksh.htm#HDRA265912F6

Shells Terms

The following definitions are helpful in understanding shells:

blank
built-in command

command

comment

identifier

list

metacharacter

parameter assighment
list

A blank is one of the characters in the blank character class defined in the LC_CTYPE
category. In the POSIX shell, a blank is either a tab or space.

A command that the shell executes without searching for it and creating a separate
process.

A sequence of characters in the syntax of the shell language. The shell reads each
command and carries out the desired action either directly or by invoking separate
utilities.

Any word that begins with pound sign (#). The word and all characters that follow it, until
the next new-line character, are ignored.

A sequence of letters, digits, or underscores from the portable character set, starting with
a letter or underscore. The first character of an identifier must not be a digit. Identifiers
are used as names for aliases, functions, and named parameters.

A sequence of one or more pipelines separated by one of these four symbols: semicolon
(;), ampersand (&), double ampersand (&&), or double bar (Il). The list is optionally
ended by one of the following symbols: semicolon (;), ampersand (&), or bar ampersand
(I &).

; Sequentially processes the preceding pipeline. The shell carries out each
command in turn and waits for the last command to complete.

& Asynchronously processes the preceding pipeline. The shell carries out each
command in turn, processing the pipeline in the background without waiting for
it to complete.

1& Asynchronously processes the preceding pipeline and establishes a two-way
pipe to the parent shell. The shell carries out each command in turn, processing
the pipeline in the background without waiting for it to complete. The parent
shell can read from and write to the standard input and output of the spawned
command by using the read -p and print -p commands. Only one such
command can be active at any given time.

&& Processes the list that follows this symbol only if the preceding pipeline returns
an exit value of zero (0).

] Processes the list that follows this symbol only if the preceding pipeline returns
a nonzero exit value.

The semicolon (;), ampersand (&), and bar ampersand (1&) have a lower priority than the
double ampersand (&&) and double bar (Il). The ;, &, and 1& symbols have equal priority
among themselves. The && and Il symbols are equal in priority. One or more new-line
characters can be used instead of a semicolon to delimit two commands in a list.

Note: The |1& symbol is valid only in the Korn shell.
Each metacharacter has a special meaning to the shell and causes termination of a word
unless it is quoted. Metacharacters are: pipe (I), ampersand (&), semicolon (;), less-than
sign (<), greater-than sign (>), left parenthesis ((), right parenthesis ()), dollar sign ($),
backquote ('), backslash (\), right quote ('), double quotation marks ("), new-line
character, space character, and tab character. All characters enclosed between single
quotation marks are considered quoted and are interpreted literally by the shell. The
special meaning of metacharacters is retained if not quoted. (Metacharacters are also
known as parser metacharacters in the C shell.)
Includes one or more words of the form Identifier=Value in which spaces surrounding the
equal sign (=) must be balanced. That is, leading and trailing blanks, or no blanks, must
be used.

Note: In the C shell, the parameter assignment list is of the form set /dentifier =
Value. The spaces surrounding the equal sign (=) are required.

152 System User's Guide: Operating System and Devices

pipeline A sequence of one or more commands separated by pipe (l). Each command in the
pipeline, except possibly the last command, is run as a separate process. However, the
standard output of each command that is connected by a pipe becomes the standard
input of the next command in the sequence. If a list is enclosed with parentheses, it is
carried out as a simple command that operates in a separate subshell.

If the reserved word ! does not precede the pipeline, the exit status will be the exit status
of the last command specified in the pipeline. Otherwise, the exit status is the logical
NOT of the exit status of the last command. In other words, if the last command returns
zero, the exit status will be 1. If the last command returns greater than zero, the exit
status will be zero.

The format for a pipeline is:
[!'] commandl [| command2 ...]

Note: Early versions of the Bourne shell used the caret (') to indicate a pipe.

shell variable A name or parameter to which a value is assigned. Assign a variable by typing the
variable name, an equal sign (=), and then the value. The variable name can be
substituted for the assigned value by preceding the variable name with a dollar sign ($).
Variables are particularly useful for creating a short notation for a long path name, such
as $HOME for the home directory. A predefined variable is one whose value is assigned
by the shell. A user-defined variable is one whose value is assigned by a user.

simple command A sequence of optional parameter assignment lists and redirections, in any sequence.
They are optionally followed by commands, words, and redirections. They are terminated
by ;, I, &, I, &&, |1&, or a new-line character. The command name is passed as
parameter 0 (as defined by the exec subroutine). The value of a simple command is its
exit status of zero if it terminates normally or nonzero if it terminates abnormally. The

kigaction_sigvec_or signal Subroutind in the AIX 5L Version 5.1 Technical Reference:

Base Operating System and Extensions Volume 2 includes a list of signal-exit status

values.
subshell A shell that is running as a child of the login shell or the current shell.
wildcard character Also known as a pattern-matching character. The shell associates them with assigned

values. The basic wildcards are ?, *, [set], and [!set]. Wildcard characters are particularly
useful when performing file name substitution.

word A sequence of characters that does not contain any blanks. Words are separated by one
or more metacharacters.

Creating and Running a Shell Script

Shell scripts provide an easy way to carry out tedious commands, large or complicated sequences of
commands, and routine tasks. A shell script is a file that contains one or more commands. When you type
the name of a shell script file, the system executes the command sequence contained by the file.

You can create a shell script using a text editor. Your script can contain both operating system commands
and shell built-in commands.

The following steps are general guidelines for writing shell scripts:

1. Using a text editor, create and save a file. You can include any combination of shell and operating
system commands in the shell script file.

By convention, shell scripts that are not set up for use by many users are stored in the $HOME/bin
directory.

Note: The operating system does not support the ketuid or ketgid subroutines within a shell script.

1. Use the thmad command to allow only the owner to run (or execute) the file. For example, if your file
is named scriptl, type:

Chapter 11. Shells 153

../../libs/basetrf2/sigaction.htm#HDRA5F01CB
../../libs/basetrf2/setuid.htm#HDRA2089A65
../../libs/basetrf2/setgid.htm#HDRA2989D6B
../../cmds/aixcmds1/chmod.htm#HDRKZF1F0CRAW

chmod u=rwx scriptl

Press Enter.

2. Enter the script name on the command line to run the shell script. To run the shell script, scriptl,
type:
scriptl

Press Enter.

Note: You can run a shell script without making it executable if a shell command (ksh, bsh, or
csh) precedes the shell script file name on the command line. For example, to run a
nonexecutable file named scriptl under the control of the Korn shell, type:

ksh scriptl
Specifying a Shell for a Script File

When you run an executable shell script in either the Korn (the POSIX Shell) or Bourne shell, the
commands in the script are carried out under the control of the current shell (the shell from which the
script is started) unless you specify a different shell. When you run an executable shell script in the C
shell, the commands in the script are carried out under the control of the Bourne shell (/fusr/bin/bsh)
unless you specify a different shell.

You can cause a shell script to run in a specific shell by including the shell within the shell script. To run an
executable shell script under a specific shell, type #!Path on the first line of the shell script, and press
Enter. The #! characters identify the file type. The Path variable specifies the path name of the shell from
which to run the shell script. For example, if the first line in a shell script is #!/usr/bin/bsh, the script is
run under control of the Bourne shell.

When you precede a shell script file name with a shell command, the shell specified on the command line
overrides any shell specified within the script file itself. Therefore, typing ksh myfile and pressing Enter
runs the file named myfile under the control of the Korn shell, even if the first line of myfile is
#1/usr/bin/csh.

Related Information

154 System User's Guide: Operating System and Devices

Korn Shell or POSIX Shell Commands

A Korn shell command is one of the following:
* Akimple command

« A hipelind

- Alisi

+ A ktompound command

« Alunctiod

When you issue a command in the Korn shell or POSIX shell , the shell evaluates the command and acts
as follows:

* Makes all indicated substitutions.

» Determines whether the command contains a /. If it does, the shell runs the program named by the
specified path name.

If the command does not contain a /, the Korn shell or POSIX shell continues with the following actions:

» Determines whether the command is a special built-in command. If it is, the shell runs the command
within the current shell process.

See "lKarn Shell ar POSIX Shell Built-ln Commands” on page 174" for information about special built-in

commands.

» Compares the command to user-defined functions. If the command matches a user-defined function, the
positional parameters are saved and then reset to the arguments of the function call. When the
function completes or issues a return, the positional parameter list is restored, and any trap set on EXIT
within the function is carried out. The value of a function is the value of the last command executed. A
function is carried out in the current shell process.

 |If the command name matches the name of a regular built-in command, that regular built-in command
will be invoked.

See "IKarn Shell or POSIX Shell Built-ln Commands” on page 174" for information about regular built-in

commands.

» Creates a process and attempts to carry out the command by using the exec command (if the
command is neither a built-in command nor a user-defined function).

The Korn shell, or POSIX shell, searches each directory in a specified path for an executable file. The
PATH shell variable defines the search path for the directory containing the command. Alternative directory
names are separated with a :. The default path is /usr/bin: (specifying the /usr/bin directory, and the
current directory, in that order). The current directory is specified by two or more adjacent colons, or by a
colon at the beginning or end of the path list.

If the file has execute permission but is not a directory or an a.out file, the shell assumes that it contains
shell commands. The current shell process spawns a subshell to read the file. All nonexported aliases,
functions, and named parameters are removed from the file. If the shell command file has read
permission, or if the setuid or setgid bits are set on the file, then the shell runs an agent that sets up the
permissions and carries out the shell with the shell command file passed down as an open file. A
parenthesized command is run in a subshell without removing nonexported quantities.

This section discusses:

Chapter 11. Shells 155

Korn Shell Compound Commands

A compound command is a list of simple commands, a pipeline, or it can begin with a reserved word. Most
of the time you will use compound commands such as if, while, and for when you are writing shell scripts.

List of Korn Shell or POSIX Shell Compound Commands

for Udentifier [in Word ...] ;do
[ist ;done

select lldentifies [in lAlord ...]
;do List ;done

case Word in (] Pattern [|
Pattern] ...") ;3] ... esac

if sk ;then List [elif List ;then
Lisf] ... [;else Lisf] ;fi

while [l ;do List ;done
until Lisl ;do List ;done

(Lish

{ Lisk}

[[Expression]]

Each time a for command is executed, the Identifier parameter is set to the next
word taken from the in Word ... list. If the in Word ... command is omitted, then the
for command executes the do List command once for each positional parameter that
is set. Execution ends when there are no more words in the list. Refer to
Bubstitution in the Korn Shell or POSIX Shell” on page 161" for more information on
positional parameters.

A select command prints on standard error (file descriptor 2) the set of words
specified, each preceded by a number. If the in Word ... command is omitted, then
the positional parameters are used instead. The PS3 prompt is printed and a line is
read from the standard input. If this line consists of the number of one of the listed
words, then the value of the Identifier parameter is set to the word corresponding to
this number.

If the line read from standard input is empty, the selection list is printed again.
Otherwise, the value of the Identifier parameter is set to null. The contents of the line
read from standard input is saved in the REPLY parameter. The List parameter is
executed for each selectlon unt|I a break or an end-of-file character is encountered.
Refer to "L - " for
more information on positional parameters.

A case command executes the List parameter associated with the first Pattern
parameter that matches the Word parameter. The form of the patterns is the same as
that used for file name substitution.

The List parameter specifies a list of commands to be run. The shell executes the if
List command first. If a zero exit status is returned, it executes the then List
command. Otherwise, the commands specified by the List parameter following the
elif command are executed.

If the value returned by the last command in the elif List command is zero, the then
List command is executed. If the value returned by the last command in the then List
command is zero, the else List command is executed. If no commands specified by
the List parameters are executed for the else or then command, the if command
returns a zero exit status.

The List parameter specifies a list of commands to be run. The while command
repeatedly executes the commands specified by the List parameter. If the exit status
of the last command in the while List command is zero, the do List command is
executed. If the exit status of the last command in the while List command is not
zero, the loop terminates. If no commands in the do List command are executed,
then the while command returns a zero exit status. The until command might be
used in place of the while command to negate the loop termination test.

The List parameter specifies a list of commands to run. The shell executes the List
parameter in a separate environment.

Note: If two adjacent open parentheses are needed for nesting, you must
insert a space between them in order to differentiate between the command
and arithmetic evaluation.
The List parameter specifies a list of commands to run. The List parameter is simply
executed.

Note: Unlike the metacharacters (), { } denote reserved words (used for
special purposes, not as user-declared identifiers). To be recognized, these
reserved words must appear at the beginning of a line or after a ;.
Evaluates the Expression parameter. If the expression is true, the command returns
a zero exit status.

156 System User's Guide: Operating System and Devices

function [dentifidr { st 3} or Defines a function that is referenced by the Identifier parameter. The body of the

function /dentifier () {List ;} function is the specified list of commands enclosed by { }. The () consists of two
operators, so mixing blank characters with the identifier, (and) is permitted, but is
not necessary.

time m Executes the Pipeline parameter. The elapsed time, user time, and system time are
printed to standard error.

Functions

The function reserved word defines shell functions. The shell reads and stores functions internally. Alias

names are resolved when the function is read. The shell executes functions in the same manner as

commands, with the arguments passed as positional parameters. Refer to tParameter Substitution in the
for more information on positional parameters.

The Korn shell or POSIX shell executes functions in the environment from which functions are invoked. All
of the following are shared by the function and the invoking script, and side effects can be produced:

» Variable values and attributes (unless you use typeset within the function to declare a local variable)
* Working directory

* Aliases, function definitions, and attributes

» Special parameter $

* Open files

The following are not shared between the function and the invoking script, and there are no side effects:
* Positional parameters.

» Special parameter #.

» Variables in a variable assignment list when the function is invoked.

» Variables declared using typeset within the function.

» Options.

» Traps. However, signals ignored by the invoking script will also be ignored by the function.

Note: In earlier versions of the Korn shell, traps other than EXIT and ERR were shared by the
function as well as the invoking script.

If trap on 0 or EXIT is executed inside the body of a function, the action is executed after the function
completes, in the environment that called the function. If the trap is executed outside the body of a
function, the action is executed upon exit from the Korn shell. In earlier versions of the Korn shell, no trap
on 0 or EXIT outside the body of a function was executed upon exit from the function.

When a function is executed, it has the same syntax-error and variable-assignment properties described in

The compound command is executed whenever the function name is specified as the name of a simple
command. The operands to the command temporarily will become the positional parameters during the
execution of the compound command. The special parameter # will also change to reflect the number of
operands. The special parameter 0 will not change.

The return special command is used to return from function calls. Errors within functions return control to
the caller.

Function identifiers are listed with the -f or +f option of the typeset special command. The -f option also
lists the text of functions. Functions are undefined with the -f option of the unset special command.

Chapter 11. Shells 157

Ordinarily, functions are unset when the shell executes a shell script. The -xf option of the typeset special
command allows a function to be exported to scripts that are executed without a separate invocation of the
shell. Functions that must be defined across separate invocations of the shell should be specified in the
ENV file with the -xf option of the typeset special command.

The exit status of a function definition is zero if the function was not successfully declared. Otherwise, it
will be greater than zero. The exit status of a function invocation is the exit status of the last command
executed by the function.

Quoting in the Korn Shell or POSIX Shell

When you want the Korn shell or POSIX shell to read a character as a regular character, rather than with
any normally associated meaning, you must quote it. To negate the special meaning of a metacharacter,
use one of the quoting mechanisms in the following list.

Each metacharacter has a special meaning to the shell and, unless quoted, causes termination of a word.
The following characters are considered metacharacters by the Korn shell or POSIX shell and must be
quoted if they are to represent themselves:

* pipe (I)

* ampersand (&)

* semicolon (;)

* less-than sign ($It;) and greater-than sign (>)

* left parenthesis (() and right parenthesis ())

« dollar sign ($)

» backquote (') and single quotation mark (’)

* backslash (\)

» double-quotation marks (")

* new-line character

* space character

» tab character.

The quoting mechanisms are the backslash (\), single quotation mark ('), and double quotation marks (").

Backslash (\)) A backslash (\) that is not quoted preserves the literal value of the
following character, with the exception of a new-line character. If a
new-line character follows the backslash, the shell interprets this as line
continuation.

Single Quotation Marks Enclosing characters in single quotation marks (' ’) preserves the literal
value of each character within the single quotation marks. A single
quotation mark cannot occur within single quotation marks.

A backslash cannot be used to escape a single quotation mark in a string
that is set in single-quotation marks. An embedded quotation mark can be
created by writing, for example: *a’\"’b’, which yields a’b.

158 System Users Guide: Operating System and Devices

Double Quotation Marks Enclosing characters in double quotation marks (" ") preserves the literal

value of all characters within the double quotation marks, with the
exception of the characters dollar sign, backquote, and backslash, as
follows:

$ The dollar sign retains its special meaning introducing parameter
expansion, a form of command substitution, and arithmetic
expansion.

The input characters within the quoted string that are also
enclosed between $(and the matching) will not be affected by
the double quotation marks, but define that command whose
output replaces the $(...) when the word is expanded.

Within the string of characters from an enclosed ${ to the
matching }, there must be an even number of unescaped double
quotation marks or single quotation marks, if any. A preceding
backslash character must be used to escape a literal { or }.

' The backquote retains its special meaning introducing the other
form of command substitution. The portion of the quoted string,
from the initial backquote and the characters up to the next
backquote that is not preceded by a backslash, defines that
command whose output replaces ' ... ' when the word is
expanded.

\ The backslash retains its special meaning as an escape
character only when followed by one of the following characters:
$,’, ", \, or a new-line character.

A double quotation mark must be preceded by a backslash to be included within double quotation marks.
When you use double quotation marks, if a backslash is immediately followed by a character that would be
interpreted as having a special meaning, the backslash is deleted, and the subsequent character is taken
literally. If a backslash does not precede a character that would have a special meaning, it is left in place
unchanged, and the character immediately following it is also left unchanged. For example:

"\§" -> $

Il\all > \a

The following conditions apply to metacharacters and quoting characters in the Korn or POSIX shell:

The meanings of dollar sign, asterisk ($*) and dollar sign, at sign ($@) are identical when not quoted,
when used as a parameter assignment value, or when used as a file name.

When used as a command argument, double quotation marks, dollar sign, asterisk, double quotation
marks ("$*") is equivalent to "$1d$2d...", where d is the first character of the IFS parameter.

double quotation marks, at sign, asterisk, double quotation marks ("$@") is equivalent to "$1” "$2"

Inside backquotes ("), the backslash quotes the characters backslash (\), single quotation mark ('), and
dollar sign ($). If the backquotes occur within double quotation marks (" "), the backslash also quotes
the double quotation marks character.

Parameter and command substitution occurs inside double quotation marks (" ").

The special meaning of reserved words or aliases is removed by quoting any character of the reserved
word. You cannot quote function names or built-in command names.

] H ”

Reserved Words in the Korn Shell or POSIX Shell

The following reserved words have special meaning to the shell:

Chapter 11. Shells 159

! case do

done elif else
esac fi for
function if in

select then time
until while {
} [[1]

The reserved words are recognized only when they appear without quotation marks and when the word is
used as the:

* First word of a command
» First word following one of the reserved words other than case, for, or in
* Third word in a case or for command (only in is valid in this case).

Command Aliasing in the Korn Shell or POSIX Shell

The Korn shell, or POSIX shell, allows you to create aliases to customize commands. The command
defines a word of the form Name=String as an alias. When you use an alias as the first word of a
command line, ksh checks to see if it is already processing an alias with the same name. If it is, ksh does
not replace the alias name. If an alias with the same name is not already being processed, ksh replaces
the alias name by the value of the alias.

The first character of an alias name can be any printable character, except the metacharacters. The
remaining characters must be the same as for a valid identifier. The replacement string can contain any
valid shell text, including the metacharacters.

If the last character of the alias value is a blank, the shell also checks the word following the alias for alias
substitution. You can use aliases to redefine special built-in commands, but not to redefine reserved
words. Alias definitions are not inherited across invocations of ksh. However, if you specify alias -x, the
alias stays in effect for scripts invoked by name, that do not invoke a separate shell. To export an alias
definition and to cause child processes to have access to them, you must specify the alias -x as well as
the alias definition in your environment file.

To create, list, and export aliases, use the alias command. Remove aliases with the unalias command.

The format for creating an alias is:

alias Name=String

in which the Name parameter specifies the name of the alias and the String parameter specifies the value
of the alias.

The following exported aliases are predefined by the Korn shell, but can be unset or redefined. We
recommend that you do not change them, because this might later confuse anyone who expects the alias
to work as predefined by ksh.

autoload='typeset -fu'
false='let 0'
functions="'typeset -f'
hash='alias -t'
history='fc -1'
integer="'typeset -i'
nohup="nohup '

r='fc -e -'

true=":"'

type='whence -v'

Aliases are not supported on noninteractive invocations of the Korn shell (ksh); for example, in a shell
script, or with the -c option in ksh, as in:

160 System Users Guide: Operating System and Devices

../../cmds/aixcmds1/alias.htm#HDRNWNII39BJOY

ksh -c alias

For more information about aliasing, see Creating a Command Alias (fCreating a Command Alias (aliad
Bhell Command)” on page 27) and the Bliad command in the AIX 5L Version 5.1 Commands Reference.

Tracked Aliases

Frequently, aliases are used as shorthand for full path names. One aliasing facility option allows you to
automatically set the value of an alias to the full path name of a corresponding command. This special
type of alias is a tracked alias. Tracked aliases speed execution by eliminating the need for the shell to
search the PATH variable for a full path name.

The set -h command turns on command fracking so that each time a command is referenced, the shell
defines the value of a tracked alias. This value is undefined each time you reset the PATH variable.

These aliases remain tracked so that the next subsequent reference will redefine the value. Several
tracked aliases are compiled into the shell.

Tilde Substitution

After the shell performs alias substitution, it checks each word to see if it begins with an unquoted tilde ().
If it does, the shell checks the word, up to the first slash (/), to see if it matches a user name in the
letc/passwd file. If the shell finds a match, it replaces the ~ character and the name with the login
directory of the matched user. This process is called tilde substitution.

The shell does not change the original text if it does not find a match. The Korn shell also makes special
replacements if the character is the only character in the word or followed by plus sign (+) or hyphen (-):

Replaced by the value of the HOME variable.
+ Replaced by the $PWD variable (the full path name of the current directory).
) Replaced by the $OLDPWD variable (the full path name of the previous directory).

In addition, the shell attempts tilde substitution when the value of a variable assignment parameter begins
with a tilde character.

° 1] ”

Parameter Substitution in the Korn Shell or POSIX Shell

The Korn Shell, or POSIX shell, enables you to do parameter substitutions.

This section discusses:

Parameters in the Korn Shell

A parameter is categorized as an:

* |dentifier of any of the characters asterisk (*), at sign (@), pound sign (#), question mark (?), hyphen (-),
dollar sign ($), and exclamation point (!). These are called special parameters.

* Argument denoted by a number (positional parameter)

Chapter 11. Shells 161

../../cmds/aixcmds1/alias.htm#HDRNWNII39BJOY

» Parameter denoted by an identifier, with a value and zero or more attributes (named
parameter/variables).

The typeset special built-in command assigns values and attributes to named parameters. The attributes
supported by the Korn shell are described with the typeset special built-in command. Exported parameters
pass values and attributes to the environment.

The value of a named parameter is assigned by:
Name=Value [Name=Value] ...

If the -i integer attribute is set for the Name parameter, the Value parameter is subject to arithmetic
evaluation. Refer to Arithmetic Evaluation in the Korn Shell or POSIX Shell (EAri ion |

Korn Shell or PQSIX _Shell” on page 168) for more information about arithmetic expression evaluation.

The shell supports a one-dimensional array facility. An element of an array parameter is referenced by a
subscript. A subscript is denoted by an arithmetic expression enclosed by brackets ([]). To assign values
to an array, use set -A Name Value The value of all subscripts must be in the range of 0 through 511.
Arrays need not be declared. Any reference to a named parameter with a valid subscript is legal and an
array will be created, if necessary. Referencing an array without a subscript is equivalent to referencing the
element 0.

Positional parameters are assigned values with the set special command. The $0 parameter is set from
argument O when the shell is invoked. The $ character is used to introduce substitutable parameters.

Parameter Substitution
The following are substitutable parameters:

${Parameter} The shell reads all the characters from the ${ to the matching } as part of the same
word, even if that word contains braces or metacharacters. The value, if any, of the
specified parameter is substituted. The braces are required when the Parameter
parameter is followed by a letter, digit, or underscore that is not to be interpreted as
part of its name, or when a named parameter is subscripted.

If the specified parameter contains one or more digits, it is a positional parameter. A
positional parameter of more than one digit must be enclosed in braces. If the value
of the variable is an * or an @), each positional parameter, starting with $1, is
substituted (separated by a field separator character). If an array identifier with a
subscript * or an @ is used, then the value for each of the elements (separated by
a field separator character) is substituted.

${#Parameter} If the value of the Parameter parameter is an * or an @, the number of positional
parameters is substituted. Otherwise, the length specified by the Parameter
parameter is substituted.

${#Identifier*} The number of elements in the array specified by the Identifier parameter is
substituted.

${Parameter:-Word} If the Parameter parameter is set and is not null, then its value is substituted;
otherwise, the value of the Word parameter is substituted.

${Parameter-=Word} If the Parameter parameter is not set or is null, then it is set to the value of the
Word parameter. Positional parameters cannot be assigned in this way.

${Parameter:? Word} If the Parameter parameter is set and is not null, then substitute its value.

Otherwise, print the value of the Word variable and exit from the shell. If the Word
variable is omitted, then a standard message is printed.

${Parameter:+Word} If the Parameter parameter is set and is not null, then substitute the value of the
Word variable. Otherwise, substitute nothing.

162 System User's Guide: Operating System and Devices

${Parameter#Pattern} | If the specified shell Pattern parameter matches the beginning of the value of the
${Parametenri#Pattern} Parameter parameter, then the value of this substitution is the value of the

Parameter parameter with the matched portion deleted. Otherwise, the value of the
Parameter parameter is substituted. In the first form, the smallest matching pattern
is deleted. In the second form, the largest matching pattern is deleted.

${Parameter% Pattern} | If the specified shell Pattern matches the end of the value of the Parameter
${Parameter%% Pattern} variable, then the value of this substitution is the value of the Parameter variable

with the matched part deleted; otherwise, substitute the value of the Parameter
variable. In the first form, the smallest matching pattern is deleted; in the second
form, the largest matching pattern is deleted.

In the previous expressions, the Word variable is not evaluated unless it is to be
used as the substituted string. Thus, in the following example the pwd command is
executed only if the -d flag is not set or is null:

echo ${d:-$(pwd)}

Note: If the : is omitted from the previous expressions, the shell checks only whether the Parameter
parameter is set.

Predefined Special Parameters
The following parameters are automatically set by the shell:

@

!
zero (0)

Expands the positional parameters, beginning with $1. Each parameter is separated by a space.

If you place " around $@, the shell considers each positional parameter a separate string. If no
positional parameters exist, the shell expands the statement to an unquoted null string.

Expands the positional parameters, beginning with $1. The shell separates each parameter with the
first character of the m value.

If you place " around $*, the shell includes the positional parameter values in double quotation
marks. Each value is separated by the first character of the IFS parameter.

Specifies the number (in decimals) of positional parameters passed to the shell, not counting the
name of the shell procedure itself. The $# parameter thus yields the number of the highest-numbered
positional parameter that is set. One of the primary uses of this parameter is to check for the
presence of the required number of arguments.

Supplies flags to the shell on invocation or with the set command.

Specifies the exit value of the last command executed. Its value is a decimal string. Most commands
return 0 to indicate successful completion. The shell itself returns the current value of the $?
parameter as its exit value.

Identifies the process number of this shell. Because process numbers are unique among all existing
processes, this string of up to 5 digits is often used to generate unique names for temporary files.

The following example illustrates the recommended practice of creating temporary files in a directory
used only for that purpose:

temp=$HOME/temp/$$
1s >$temp

rm $temp
Specifies the process number of the last background command invoked.
Expands to the name of the shell or shell script.

Chapter 11. Shells 163

Variables Set by the Korn Shell or POSIX Shell

The following variables are set by the shell:

underscore (_)

ERRNO
LINENO
OLDPWD
OPTARG
OPTIND
PPID
PWD
RANDOM
REPLY

SECONDS

Indicates initially the absolute path name of the shell or script being executed as passed
in the environment. Subsequently, it is assigned the last argument of the previous
command. This parameter is not set for commands that are asynchronous. This
parameter is also used to hold the name of the matching MAIL file when checking for
mail.

Specifies a value that is set by the most recently failed subroutine. This value is
system-dependent and is intended for debugging purposes.

Specifies the line number of the current line within the script or function being executed.
Indicates the previous working directory set by the ed command.

Specifies the value of the last option argument processed by the getopts regular built-in
command.

Specifies index of the last option argument processed by the getopts regular built-in
command.

Identifies the process number of the parent of the shell.

Indicates the present working directory set by the ed command.

Generates a random integer, uniformly distributed between 0 and 32767. The sequence
of random numbers can be initialized by assigning a numeric value to the RANDOM
variable.

Set by the select statement and by the read regular built-in command when no
arguments are supplied.

Specifies the number of seconds since shell invocation is returned. If this variable is
assigned a value, then the value returned upon reference will be the value that was
assigned plus the number of seconds since the assignment.

Variables Used by the Korn Shell or POSIX Shell

The following variables are used by the shell:

CDPATH
COLUMNS
EDITOR

ENV

FCEDIT
FPATH

HISTFILE

HISTSIZE

HOME

IFS

Indicates the search path for the ed (change directory) command.

Defines the width of the edit window for the shell edit modes and for printing select lists.

If the value of this parameter ends in emacs, gmacs, or vi, and the VISUAL variable is not set
with the set special built-in command, then the corresponding option is turned on.

If this variable is set, then parameter substitution is performed on the value to generate the
path name of the script that will be executed when the shell is invoked. This file is typically
used for alias and function definitions.

Specifies the default editor name for the fc regular built-in command.

Specifies the search path for function definitions. This path is searched when a function with
the -u flag is referenced and when a command is not found. If an executable file is found, then
it is read and executed in the current environment.

If this variable is set when the shell is invoked, then the value is the path name of the file that
will be used to store the command history.

If this variable is set when the shell is invoked, then the number of previously entered
commands that are accessible by this shell will be greater than or equal to this number. The
default is 128.

Indicates the name of your login directory, which becomes the current directory upon
completion of a login. The login program initializes this variable. The ed command uses the
value of the SHOME parameter as its default value. Using this variable rather than an explicit
path name in a shell procedure allows the procedure to be run from a different directory without
alterations.

Specifies internal field separators (normally space, tab, and new line) used to separate
command words that result from command or parameter substitution and for separating words
with the regular built-in command read. The first character of the IFS parameter is used to
separate arguments for the $* substitution.

164 System User's Guide: Operating System and Devices

LANG

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MESSAGES
LINES

MAIL

MAILCHECK

MAILPATH

NLSPATH
PATH

PS1

PS2
PS3
PS4

SHELL
TMOUT

VISUAL

Provides a default value for the LC_* variables.

Overrides the value of the LANG and LC_* variables.

Determines the behavior of range expression within pattern matching.

Defines character classification, case conversion, and other character attributes.

Determines the language in which messages are written.

Determines the column length for printing select lists. Select lists print vertically until about
two-thirds of lines specified by the LINES variable are filled.

Specifies the file path name used by the mail system to detect the arrival of new mail. If this
variable is set to the name of a mail file and the MAILPATH variable is not set, then the shell
informs the user of new mail in the specified file.

Specifies how often (in seconds) the shell checks for changes in the modification time of any of
the files specified by the MAILPATH or MAIL variables. The default value is 600 seconds.
When the time has elapsed, the shell checks before issuing the next prompt.

Specifies a list of file names separated by colons. If this variable is set, then the shell informs
the user of any modifications to the specified files that have occurred during the period, in
seconds, specified by the MAILCHECK variable. Each file name can be followed by a ? and a
message that will be printed. The message will undergo variable substitution with the $_
variable defined as the name of the file that has changed. The default message is you have
mail in $_.

Determines the location of message catalogs for the processing of LC_MESSAGES.

Indicates the search path for commands, which is an ordered list of directory path names
separated by colons. The shell searches these directories in the specified order when it looks
for commands. A null string anywhere in the list represents the current directory.

Specifies the string to be used as the primary system prompt. The value of this parameter is
expanded for parameter substitution to define the primary prompt string, which is a $ by default.
The ! character in the primary prompt string is replaced by the command number.

Specifies the value of the secondary prompt string, which is a > by default.

Specifies the value of the selection prompt string used within a select loop, which is #? by
default.

The value of this variable is expanded for parameter substitution and precedes each line of an
execution trace. If omitted, the execution trace prompt is a +.

Specifies the path name of the shell, which is kept in the environment.

Specifies the number of seconds a shell waits inactive before exiting. If the TMOUT variable is
set to a value greater than zero (0), the shell exits if a command is not entered within the
prescribed number of seconds after issuing the PS1 prompt. (Note that the shell can be
compiled with a maximum boundary that cannot be exceeded for this value.)

Note: After the timeout period has expired, there is a 60-second pause before the shell
exits.
If the value of this variable ends in emacs, gmacs, or vi, then the corresponding option is
turned on.

The shell gives default values to the PATH, PS1, PS2, MAILCHECK, TMOUT, and IFS parameters, but
the HOME, SHELL, ENV, and MAIL parameters are not set by the shell (although the HOME parameter is
set by the login command).

Command Substitution in the Korn Shell or POSIX Shell

The Korn Shell, or POSIX Shell, enables you to do command substitution.

In command substitution, the shell executes a specified command in a subshell environment and replaces
that command with its output. To execute command substitution in the Korn shell or POSIX shell, perform

the following:

$ (command)

or, for the backquoted version, use:

Chapter 11. Shells 165

'command’

Note: Although the backquote syntax is accepted by ksh, it is considered obsolete by the XPG4 and
POSIX standards. These standards recommend that portable applications use the $(command) syntax.

The shell expands the command substitution by executing command in a subshell environment and
replacing the command substitution (the text of command plus the enclosing $() or backquotes) with the
standard output of the command, removing sequences of one or more new-line characters at the end of
the substitution.

In the following example, the $() surrounding the command indicates that the output of the whoami
command is substituted:

echo My name is: $(whoami)

You can perform the same command substitution with:
echo My name is: 'whoami’

The output from both examples for user dee is:
My name is: dee

You can also substitute arithmetic expressions by enclosing them in (). For example, the command:
echo Each hour contains $((60 * 60)) seconds

produces the following result:
Each hour contains 3600 seconds

The Korn shell or POSIX shell removes all trailing new-line characters when performing command
substitution. For example, if your current directory contains the filel, file2, and file3 files, the
command:

echo $(1s)

removes the new-line characters and produces the following output:
filel file2 file3

To preserve new-line characters, insert the substituted command in " ":
echo "$(1s)"

Arithmetic Evaluation in the Korn Shell or POSIX Shell

The Korn shell or POSIX shell regular built-in command let enables you to perform integer arithmetic.
Constants are of the form [Base]Number. The Base parameter is a decimal number between 2 and 36
inclusive, representing the arithmetic base. The Number parameter is a number in that base. If you omit
the Base parameter, the shell uses a base of 10.

Arithmetic expressions use the same syntax, precedence, and associativity of expression as the C
language. All of the integral operators, other than double plus (++), double hyphen (—), question mark,
colon (?:), and comma (,), are supported. The following Korn Shell Arithmetic Operators table lists valid
Korn shell or POSIX shell operators in decreasing order of precedence:

Korn Shell Arithmetic Operators

Operator Definition

- Unary minus

! Logical negation

166 System Users Guide: Operating System and Devices

i Bitwise negation

* Multiplication

/ Division

% Remainder

+ Addition

- Subtraction

<<, >> Left shift, right shift
<=,>=, <>, ==, |= Comparison

& Bitwise AND

’ Bitwise exclusive OR
| Bitwise OR

&& Logical AND

Il Logical OR

=*=, |=, &= 4=, -=, <<=, > >=, &=, =, |= Assignment

Many arithmetic operators, such as *, &, <, and >, have special meaning to the Korn shell or POSIX shell.
These characters must be quoted. For example, to multiply the current value of y by 5 and reassign the
new value to y, use the expression:

]et IIy = y * 5II
Enclosing the expression in quotation marks removes the special meaning of the * character.

You can group operations inside let command expressions to force grouping. For example, in the
expression:

let "z =q* (z - 10)"
the command multiplies q by the reduced value of z.

The Korn shell or POSIX shell includes an alternative form of the let command if only a single expression
is to be evaluated. The shell treats commands enclosed in (()) as quoted expressions. Therefore, the
expression:

((x = x/3))

is equivalent to:
let "x = x / 3"

Named parameters are referenced by name within an arithmetic expression without using the parameter
substitution syntax. When a named parameter is referenced, its value is evaluated as an arithmetic
expression.

Specify an internal integer representation of a named parameter with the -i flag of the typeset special
built-in command. Using the -i flag, arithmetic evaluation is performed on the value of each assignment to
a named parameter. If you do not specify an arithmetic base, the first assignment to the parameter
determines the arithmetic base. This base is used when parameter substitution occurs.

Chapter 11. Shells 167

Field Splitting in the Korn Shell or the POSIX Shell

After performing command substitution, the Korn shell scans the results of substitutions for those field
separator characters found in the IFS (Internal Field Separator) variable. Where such characters are
found, the shell splits the substitutions into distinct arguments. The shell retains explicit null arguments ("”
or ”’) and removes implicit null arguments (those resulting from parameters that have no values).

» If the value of IFS is a space, tab and new-line character, or if it is not set, any sequence of space, tab
and new-line characters at the beginning or end of the input will be ignored and any sequence of those
characters within the input will delimit a field. For example, the following input yields two fields, school
and days:
<newline><space><tab>school<tab><tab>days<space>

» Otherwise, and if the value of IFS is not null, the following rules apply in sequence. "IFS white space” is
used to mean any sequence (zero or more instances) of white-space characters that are in the IFS
value (for example, if IFS contains space/comma/tab, any sequence of space and tab characters is
considered IFS white space).

1. IFS white space is ignored at the beginning and end of the input.

2. Each occurrence in the input of an IFS character that is not IFS white space, along with any
adjacent IFS white space, delimits a field.

3. Non-zero length IFS white space delimits a field.

File Name Substitution in the Korn Shell or POSIX Shell

The Korn shell, or POSIX shell, performs file name substitution by scanning each command word specified
by the Word variable for certain characters. If a command word includes the *), ? or [characters, and the
-f flag has not been set, the shell regards the word as a pattern. The shell replaces the word with file
names, sorted according to the collating sequence in effect in the current locale, that match that pattern. If
the shell does not find a file name to match the pattern, it does not change the word.

When the shell uses a pattern for file name substitution, the . and / characters must be matched explicitly.
Note: The Korn shell does not treat these characters specially in other instances of pattern matching.

These pattern-matching characters indicate the following substitutions:

* Matches any string, including the null string.
? Matches any single character.
[..] Matches any one of the enclosed characters. A pair of characters separated by a - matches any character

lexically within the inclusive range of that pair, according to the collating sequence in effect in the current
locale. If the first character following the opening [is an !, then any character not enclosed is matched. A -
can be included in the character set by putting it as the first or last character.

You can also use the [:charclass:] notation to match file names within a range indication. This format
instructs the system to match any single character belonging to class. The definition of which characters
constitute a specific character class is present through the LC_CTYPE category of the setlocale
subroutine. All character classes specified in the current locale are recognized.

The names of some of the character classes are:
e alnum

* alpha

* cntrl

+ digit

« graph

168 System Users Guide: Operating System and Devices

* lower
e print

* punct
* space
* upper
» xdigit.

For example, [[:upper:]] matches any uppercase letter.

The Korn shell supports file name expansion based on collating elements or symbols, or equivalence
classes.

A PatternList is a list of one or more patterns separated from each other with a I. Composite patterns are
formed with one or more of the following:

?(PatternList) Optionally matches any one of the given patterns.
*(PatternList) Matches zero or more occurrences of the given patterns.
+(PatternList) Matches one or more occurrences of the given patterns.
@(PatternList) Matches exactly one of the given patterns.

I(PatternList) Matches anything, except one of the given patterns.

Pattern matching has some restrictions. If the first character of a file name is a dot (.), it can be matched
only by a pattern that also begins with a dot. For example, * matches the file names myfile and yourfile
but not the file names .myfile and .yourfile. To match these files, use a pattern such as the following:

*file

If a pattern does not match any file names, then the pattern itself is returned as the result of the attempted
match.

File and directory names should not contain the characters *, ? , [, or] because they can cause infinite
recursion (that is, infinite loops) during pattern-matching attempts.

Quote Removal

The quote characters, backslash (\), single quote (’), and double quote (") that were present in the original
word will be removed unless they have themselves been quoted.

Input and Output Redirection in the Korn Shell or POSIX Shell

Before the Korn shell executes a command, it scans the command line for redirection characters. These
special notations direct the shell to redirect input and output. Redirection characters can appear anywhere
in a simple command or can precede or follow a command. They are not passed on to the invoked
command.

The shell performs command and parameter substitution before using the Word or Digit parameter except
as noted. File name substitution occurs only if the pattern matches a single file and blank interpretation is
not performed.

<Word Uses the file specified by the Word parameter as standard input (file descriptor 0).

>Word Uses the file specified by the Word parameter as standard output (file descriptor 1). If the file does
not exist, the shell creates it. If the file exists and the noclobber option is on, an error results;
otherwise, the file is truncated to zero length.

Chapter 11. Shells 169

>|Word Same as the >Word command, except that this redirection statement overrides the noclobber
option.

> >Word Uses the file specified by the Word parameter as standard output. If the file currently exists, the
shell appends the output to it (by first seeking the end-of-file character). If the file does not exist,
the shell creates it.

<>Word Opens the file specified by the Word parameter for reading and writing as standard input.

<<[-]Word Reads each line of shell input until it locates a line containing only the value of the Word parameter
or an end-of-file character. The shell does not perform parameter substitution, command
substitution, or file name substitution on the file specified. The resulting document, called a [herd

, becomes the standard input. For more information on a here document, see "[nlind

Input (Here) Documents” on page 48", If any character of the Word parameter is quoted, no

interpretation is placed upon the characters of the document.

The here document is treated as a single word that begins after the next new-line character and continues
until there is a line containing only the delimiter, with no trailing blank characters. Then the next here
document, if any, starts. The format is:

[n]<<word

here document
deTimiter

If any character in word is quoted, the delimiter is formed by removing the quote on word. The here
document lines will not be expanded. Otherwise, the delimiter is the word itself. If no characters in word
are quoted, all lines of the here document will be expanded for parameter expansion, command
substitution, and arithmetic expansion.

The shell performs parameter substitution for the redirected data. To prevent the shell from interpreting the
\, $, and single quotation mark (') characters and the first character of the Word parameter, precede the
characters with a \ character.

If a - is appended to <<, the shell strips all leading tabs from the Word parameter and the document.

<&Digit Duplicates standard input from the file descriptor specified by the Digit parameter.
>& Digit Duplicates standard output in the file descriptor specified by the Digit parameter.
<&- Closes standard input.

>&- Closes standard output.

<&p Moves input from the coprocess to standard input.

>&p Moves output to the coprocess to standard output.

If one of these redirection options is preceded by a digit, then the file descriptor number referred to is
specified by the digit (instead of the default 0 or 1). In the following example, the shell opens file descriptor
2 for writing as a duplicate of file descriptor 1:

. 2>81

The order in which redirections are specified is significant. The shell evaluates each redirection in terms of
the (FileDescriptor, File) association at the time of evaluation. For example, in the statement:

. 1>File 2>&1

the file descriptor 1 is associated with the file specified by the File parameter. The shell associates file
descriptor 2 with the file associated with file descriptor 1 (File). If the order of redirections were reversed,
file descriptor 2 would be associated with the terminal (assuming file descriptor 1 had previously been) and
file descriptor 1 would be associated with the file specified by the File parameter.

If a command is followed by an & and job control is not active, the default standard input for the command
is the empty file, /dev/null. Otherwise, the environment for the execution of a command contains the file
descriptors of the invoking shell as modified by input and output specifications.

170 System User's Guide: Operating System and Devices

For more information about redirection, see "f'Chapter 4. Input and Output Redirection” on page 41"
Coprocess Facility

The Korn shell, or POSIX shell, allows you to run one or more commands as background processes.
These commands, run from within a shell script, are called coprocesses. Coprocesses are useful when
you want to communicate with a program.

Designate a coprocess by placing the 1& operator after a command. Both standard input and output of the
command are piped to your script.

A coprocess must meet the following restrictions:
* Include a new-line character at the end of each message
» Send each output message to standard output
» Clear its standard output after each message.

The following example demonstrates how input is passed to and returned from a coprocess:

echo "Initial process"

./FileB.sh |&

read -p abcd

echo "Read from coprocess: $a $b $c $d"

print -p "Passed to the coprocess"

read -pabcd

echo "Passed back from coprocess: $a $b $c $d"

FileB.sh
echo "The coprocess is running"
read a bcd
echo $a $b $c $d

The resulting standard output is:

Initial process
Read from coprocess: The coprocess is running
Passed back from coprocess: Passed to the coprocess

The print -p command lets you write to the coprocess. To read from the coprocess, issue the read -p
command.

Redirecting Coprocess Input and Output

The standard input and output of a coprocess is reassigned to a numbered file descriptor by using I/0
redirection. For example, the command:

exec 5>&p
moves the input of the coprocess to file descriptor 5.
Once this is done, you can use standard redirection syntax to redirect command output to the coprocess.

You can also start another coprocess. Output from both coprocesses is connected to the same pipe and is
read with the read -p command. To stop the coprocess, type:

read -ub

Chapter 11. Shells 171

Exit Status in the Korn Shell or POSIX Shell

Errors detected by the shell, such as syntax errors, cause the shell to return a nonzero exit status.
Otherwise, the shell returns the exit status of the last command carried out. The shell reports detected
run-time errors by printing the command or function name and the error condition. If the number of the line
on which an error occurred is greater than 1, then the line number is also printed in [] (brackets) after the
command or function name.

For a non-interactive shell, an error encountered by a special built-in or other type of command will cause
the shell to write a diagnostic message as shown in the following table:

Error Special Built-In Other Utilities
Shell language syntax error will exit will exit

Utility syntax error (option or operand error) will exit will not exit
Redirection error will exit will not exit
Variable assignment error will exit will not exit
Expansion error will exit will exit
Command not found not applicable may exit

Dot script not found will exit not applicable

If any of the errors shown as "will (may) exit” occur in a subshell, the subshell will (may) exit with a
nonzero status, but the script containing the subshell will not exit because of the error.

In all cases shown in the table, an interactive shell will write a diagnostic message to standard error,
without exiting.

For more information about redirection see "tlnput and Output Redirection in the Korn Shell or POSIX

Korn Shell or POSIX Shell Commands

The Korn shell is an interactive command interpreter and command programming language. It conforms to
the Portable Operating System Interface for Computer Environments (POSIX), an international standard for
operating systems. POSIX is not an operating system, but is a standard aimed at portability of
applications, at the source level, across many systems. POSIX features are built on top of the Korn shell.
The Korn shell (also known as the POSIX shell) offers many of the same features as the Bourne and C
shells, such as I/O redirection capabilities, variable substitution, and file name substitution. It also includes
several additional command and programming language features:

Arithmetic evaluation The Korn shell, or POSIX shell, can perform integer arithmetic using the built-in let

command, using any base from 2 to 36. tArithmetic Fvaluation in the Korn Shell or POSIX
Bhell” on page 166 further describes this feature.

Command history The Korn shell, or POSIX shell, stores a file that records all of the commands you enter. You
can use a text editor to alter a command in this history file and then reissue the command.
For more |nformat|on about the command history feature, see tKaorn Shell or POSIX Shell

Coprocess facility The L ilify” enables you to run programs in the background and
send and receive information to these background processes.
Editing The Korn shell, or POSIX shell, offers inline editing options that enable you to edit the

command line. Editors similar to emacs, gmacs, and vi are available. Elnline Editing in thel

kam.SheLLaLEQSJx.SheULm.page_LBj further describes this feature.

172 System User's Guide: Operating System and Devices

This section discusses the following:

Korn Shell Environment

All variables (with their associated values) known to a command at the beginning of its execution
constitute its environment. This environment includes variables that a command inherits from its parent
process and variables specified as keyword parameters on the command line that calls the command. The
shell interacts with the environment in several ways. When it is started, the shell scans the environment
and creates a parameter for each name found, giving the parameter the corresponding value and marking
it for export. Executed commands inherit the environment.

If you modify the values of the shell parameters or create new ones using the export or typeset -x
commands, the parameters become part of the environment. The environment seen by any executed
command is therefore composed of any name-value pairs originally inherited by the shell, whose values
might be modified by the current shell, plus any additions that resulted from using the export or typeset -x
commands. The executed command (subshell) will see any modifications it makes to the environment
variables it has inherited, but it needs to export these variables for its child shells or processes to see the
modified values.

The environment for any simple command or function is changed by prefixing with one or more parameter
assignments. A parameter assignment argument is a word of the form Identifier=Value. Thus, the two
following expressions are equivalent (as far as the execution of the command is concerned).

TERM=450 Command arguments
(export TERM; TERM=450; Command arguments)

If the -k flag is set, all parameter assignment arguments are placed in the environment, even if they occur
after the command name. The following first prints a=b ¢ and then c:
echo a=b ¢

set -k
echo a=b ¢

Note: This feature is intended for use with scripts written for early versions of the shell. Its use in
new scripts is strongly discouraged.

Shell Startup

You can start the Korn shell with either the ksh command or the psh command (POSIX shell).

If the shell is started by the exec command, and the first character of zero argument ($0) is the hyphen
(-), then the shell is assumed to be a login shell. The shell first reads commands from the /etc/profile file,
and then from either the .profile file in the current directory or from the $SHOME/.profile file, if either file
exists. Next, the shell reads commands from the file named by performing parameter substitution on the
value of the ENV environment variable, if the file exists.

If you specify the File [Parameter] parameter when invoking the Korn shell or POSIX shell , the shell runs
the script file identified by the File parameter, including any parameters specified. The script file specified
must have read permission; any setuid and setgid settings are ignored. The shell then reads the
commands.

Chapter 11. Shells 173

Note: Do not specify a script file with the -¢ or -s flags.

Refer to FParameter Substitution in the Korn Shell or POSIX Shell” on page 161 for more information on

positional parameters.

Shell Prompt

When used interactively, the shell prompts with the value of the PS1 parameter before reading a
command. If at any time a new line is entered and the shell requires further input to complete a command,
the shell issues the secondary prompt (the value of the PS2 parameter).

Korn Shell or POSIX Shell Command History

The Korn shell or POSIX shell saves commands entered from your terminal device to a history file. If set,
the HISTFILE variable value is the name of the history file. If the HISTFILE variable is not set or cannot
be written, the history file used is SHOME/.sh_history. If the history file does not exist and the Korn shell
cannot create it, or if it does exist and the Korn shell does not have permission to append to it, then the
Korn shell uses a temporary file as the history file. The shell accesses the commands of all interactive
shells using the same named history file with appropriate permissions.

By default, the Korn shell or POSIX shell saves the text of the last 128 commands entered from a terminal
device. The history file size (specified by the HISTSIZE variable) is not limited, although a very large
history file can cause the Korn shell to start up slowly.

Command History Substitution

Use the fc built-in command to list or edit portions of the history file. To select a portion of the file to edit or
list, specify the number or the first character or characters of the command. You can specify a single
command or range of commands.

If you do not specify an editor program as an argument to the fc regular built-in command, the editor
specified by the FCEDIT variable is used. If the FCEDIT variable is not defined, then the /usr/bin/ed file is
used. The edited command or commands are printed and run when you exit the editor.

The editor name hyphen (-)is used to skip the editing phase and run the command again. In this case, a
substitution parameter of the form Old=New can be used to modify the command before it is run. For
example, if r is aliased to fc -e -, then typing r bad=good c runs the most recent command that starts
with the letter ¢, and replaces the first occurrence of the bad string with the good string.

For more information about using the history shell command, see EListing Previously Fntered Commandsd
[history Shell Command)” on page 24 and the fd command in the AIX 5L Version 5.1 Commands

Reference.

Korn Shell or POSIX Shell Built-in Commands

Special commands are built in to the Korn shell and POSIX shell and executed in the shell process.
Unless otherwise indicated, the output is written to file descriptor 1 and the exit status is zero (0) if the
command does not contain any syntax errors. Input and output redirection is permitted. There are two

types of built-in commands, lspecial built-in commands and lregular built-in commands.
Refer to the EList of Karn Shell or PQSIX_Shell Built-in Commands” an page 184 for an alphabetical listing

of these commands.

Special built-in commands differ from regular built-in commands in the following ways:

» A syntax error in a special built-in command might cause the shell executing the command to end. This
does not happen if you have a syntax error in a regular built-in command. If a syntax error in a special
built-in command does not end the shell program, the exit value is non-zero.

174 System User's Guide: Operating System and Devices

../../cmds/aixcmds2/fc.htm#HDRCE52B56987CAND

» Variable assignments specified with special built-in commands remain in effect after the command
completes. This is not the situation with regular built-in commands.

» |/O redirections are processed after parameter assignments.

In addition, words that are in the form of a parameter assignment following the export, readonly, and
typeset special commands are expanded with the same rules as a parameter assignment. This means
that tilde substitution is performed after the =, and word splitting and file name substitution are not

performed.

Special Built-in Command Descriptions
The Korn Shell provides the following special built-in commands:

H

0

breal
Eontinud

: [Argument ...]

. File [Argument ...]

break [n]

continue [n]

eval [Argument ...]

exec [Argument ...]

exit [n]

export -p [Name[=

Value]] ...

newgrp [Group]

o e B
Eid Eeturd

Expands only arguments. It is used when a command is necessary, as in the then condition
of an if command, but nothing is to be done by the command.
Reads the complete specified file and then executes the commands. The commands are
executed in the current shell environment. The search path specified by the BATH variable is
used to find the directory containing the specified file. If any arguments are specified, they
become the positional parameters. Otherwise, the positional parameters are unchanged. The
exit status is the exit status of the last command executed. Refer to L ituti

- for more information on positional parameters.

Note: The .File [Argument ...] command reads the entire file before any commands are
carried out. Therefore, the alias and unalias commands in the file do not apply to any
functions defined in the file.
Exits from the enclosing for, while, until, or select loop, if one exists. If you specify the n
parameter, the command breaks the number of levels specified by the n parameter. The
value of nis any integer equal to or greater than 1.
Resumes the next iteration of the enclosing for, while, until, or select loop. If you specify
the n variable, the command resumes at the nth enclosing loop. The value of n is any integer
equal to or greater than 1.
Reads the specified arguments as input to the shell and executes the resulting command or
commands.
Executes the command specified by the argument in place of this shell (without creating a
new process). Input and output arguments can appear and affect the current process. If you
do not specify an argument, the exec command modifies file descriptors as prescribed by the
input and output redirection list. In this case, any file descriptor numbers greater than 2 that
are opened with this mechanism are closed when invoking another program.
Exits the shell with the exit status specified by the n parameter. The n parameter must be an
unsigned decimal integer with range 0-255. If you omit the n parameter, the exit status is that
of the last command executed. An end-of-file character also exits the shell, unless the
ignoreeof option of the Eel special command is turned on.
Marks the specified names for automatic export to the environment of subsequently executed
commands.

-p writes to standard output the names and values of all exported variables, in the following
format:

"export %s= %s\n", <name> <value>
Equivalent to the exec/usr/bin/newgrp [Group] command.

Note: This command does not return.

Chapter 11. Shells 175

readonly -p [Name[=
Value]] ...

return [n]

set [+
[-abCefhkmnostuvx]
[+ |-o Option]... [+ I-A
Name] [Argument ...]

Marks the names specified by the Name parameter as read-only. These names cannot be
changed by subsequent assignment.

-p writes to standard output the names and values of all exported variables, in the following
format:

"export %s= %s\n", <name> <value>

Causes a shell function to return to the invoking script. The return status is specified by the n
variable. If you omit the n variable, the return status is that of the last command executed. If
you invoke the return command outside of a function or a script, then it is the same as an
exit command.

If no options or arguments are specified, the set command writes the names and values of all
shell variables in the collation sequence of the current locale. When options are specified,
they will set or unset attributes of the shell, as described below. When arguments are
specified, they will cause positional parameters to be set or unset, as described below. The
flags for this command are interpreted as follows:

-A
Array assignment. Unsets the Name parameter and assigns values sequentially from
the specified Argument parameter list. If the +A flag is used, the Name parameter is
not unset first.

-a Exports automatically all subsequent parameters that are defined.

-b Notifies the user asynchronously of background job completions.

-C Equivalent to set -o noclobber.

-e Executes the ERR trap, if set, and exits if a command has a nonzero exit status.
This mode is disabled while reading profiles.

-f Disables file name substitution.

-h Designates each command as a tracked alias when first encountered.

-k Places all parameter assignment arguments in the environment for a command, not
just those arguments that precede the command name.

-m Runs background jobs in a separate process and prints a line upon completion. The

exit status of background jobs is reported in a completion message. On systems
with job control, this flag is turned on automatically for interactive shells (refer to
"Job Control in the Korn Shell or POSIX Shell” (Lloh Control in the Korn Shell of

PQSIX Shell” on page 186) .)

-n Reads commands and checks them for syntax errors, but does not execute them.
This flag is ignored for interactive shells.

176 System Users Guide: Operating System and Devices

-0 Option
Prints current option settings and an error message if you do not specify an
argument. You can set more than one option on a single ksh command line. If the
+o flag is used, the specified option is unset. Arguments, as specified by the Option
variable, can be one of the following:

allexport
Same as the -a flag.

errexit Same as the -e flag.

bgnice
Runs all background jobs at a lower priority. This is the default mode.

emacs
Enters an emacs-style inline editor for command entry.

gmacs
Enters a gmacs-style inline editor for command entry.

ignoreeof
Does not exit the shell when it encounters an end-of-file character. To exit
the shell, you must use the exit command, or press the Ctrl-D key
sequence more than 11 times.

keyword
Same as the -k flag.

Note: This flag is for backward compatibility with the Bourne shell
only. Its use is strongly discouraged.

markdirs
Appends a / to all directory names that are a result of file name
substitution.

monitor
Same as the -m flag.

noclobber
Prevents redirection from truncating existing files. When you specify this
option, a vertical bar must follow the redirection symbol (>1) to truncate a
file.

noexec
Same as the -n flag.

noglob
Same as the -f flag.

nolog Prevents function definitions from being saved in the history file.

nounset
Same as the -u flag.

privileged
Same as the -p flag.

Chapter 11. Shells 177

verbose
Same as the -v flag.

trackall
Same as the -h flag.

Vi Enters the insert mode of a vi-style inline editor for command entry.
Entering escape character 033 puts the editor into the move mode. A return
sends the line.

viraw Processes each character as it is typed in vi mode.
xtrace Same as the -x flag.

-p Disables processing of the $SHOME/.profile file and uses the /etc/suid _profile file
instead of the ENV file. This mode is enabled whenever the effective user ID (UID)
or group ID (GID) is not equal to the real UID or GID. Turning off this option sets the
effective UID or GID to the real UID and GID.

Note: The system does not support the -p option since the operating system
does not support setuid shell scripts.

-S Sorts the positional parameters lexicographically.

-t Exits after reading and executing one command.

Note: This flag is for backward compatibility with the Bourne shell only. Its use
is strongly discouraged.

-u
Treats unset parameters as errors when substituting.
-V Prints shell input lines as they are read.
-X Prints commands and their arguments as they are executed.

- Turns off the -x and -v flags and stops examining arguments for flags.

—_ Prevents any flags from being changed. This option is useful in setting the $1
parameter to a value beginning with a -. If no arguments follow this flag, the
positional parameters are not set.

Preceding any of the set command flags with a + rather than a - turns off the flag. You can
use these flags when you invoke the shell. The current set of flags is found in the $-
parameter. Unless you specify the -A flag, the remaining arguments are positional parameters
and are assigned, in order, to $1, $2, ..., and so forth. If no arguments are given, the names
and values of all named parameters are printed to standard output.

shift [n] Renames the positional parameters, beginning with $n+1 ... through $1 The default value
of the n parameter is 1. The n parameter is any arithmetic expression that evaluates to a
nonnegative number less than or equal to the $# parameter.

times Prints the accumulated user and system times for the shell and for processes run from the
shell.

178 System User's Guide: Operating System and Devices

trap [Command]
[Signal] ...

typeset [+HLRZfilrtux
[n]] [Name[= Value]] ...

Runs the specified command when the shell receives the specified signal or signals. The
Command parameter is read once when the trap is set and once when the trap is taken. The
Signal parameter can be given as a number or as the name of the signal. Trap commands
are executed in order of signal number. Any attempt to set a trap on a signal that was
ignored on entry to the current shell is ineffective.

If the command is a -, all traps are reset to their original values. If you omit the command and
the first signal is a numeric signal number, then the ksh command resets the value of the
Signal parameter or parameters to the original values.

Note: If you omit the command and the first signal is a symbolic name, the signal is
interpreted as a command.

If the value of the Signal parameter is the ERR signal, the specified command is carried out
whenever a command has a nonzero exit status. If the signal is DEBUG, then the specified
command is carried out after each command. If the value of the Signal parameter is the 0 or
EXIT signal and the trap command is executed inside the body of a function, the specified
command is carried out after the function completes. If the Signal parameter is 0 or EXIT for
a trap command set outside any function, the specified command is carried out on exit from
the shell. The trap command with no arguments prints a list of commands associated with
each signal number.

For a complete list of Signal parameter values, used in the trap command without the SIG
prefix, refer to the kigaction sigvec_or signal subroutind in the AIX 5L Version 5.1
Technical Reference: Base Operating System and Extensions Volume 2.

Sets attributes and values for shell parameters. When invoked inside a function, a new
instance of the Name parameter is created. The parameter value and type are restored when
the function completes. You can specify the following flags with the typeset command:

-H Provides AlX-to-host-file mapping on non-AIX machines.

-L Left-justifies and removes leading blanks from the Value parameter. If the n
parameter has a nonzero value, it defines the width of the field; otherwise, it is
determined by the width of the value of its first assignment. When the parameter is
assigned, it is filled on the right with blanks or truncated, if necessary, to fit into the
field. Leading zeros are removed if the -Z flag is also set. The -R flag is turned off.

-R Right-justifies and fills with leading blanks. If the n parameter has a nonzero value, it
defines the width of the field; otherwise, it is determined by the width of the value of
its first assignment. The field remains filled with blanks or is truncated from the end
if the parameter is reassigned. The L flag is turned off.

-Z Right-justifies and fills with leading zeros if the first nonblank character is a digit and
the -L flag has not been set. If the n parameter has a nonzero value, it defines the
width of the field; otherwise, it is determined by the width of the value of its first
assignment.

-f Indicates that the names refer to function, rather than parameter, names. No
assignments can be made and the only other valid flags are -t, -u, and -x . The -t
flag turns on execution tracing for this function. The -u flag causes this function to
be marked undefined. The FPATH variable is searched to find the function definition
when the function is referenced. The -x flag allows the function definition to remain
in effect across shell scripts that are not a separate invocation of the ksh command.

-i Identifies the parameter as an integer, making arithmetic faster. If the n parameter
has a nonzero value, it defines the output arithmetic base; otherwise, the first
assignment determines the output base.

-l Converts all uppercase characters to lowercase. The -u uppercase conversion flag is
turned off.

-r Marks the names specified by the Name parameter as read-only. These names
cannot be changed by subsequent assignment.

Chapter 11. Shells 179

../../libs/basetrf2/sigaction.htm#HDRA5F01CB

unset [-fv | Name ...

-t Tags the named parameters. Tags can be defined by the user and have no special
meaning to the shell.

-u Converts all lowercase characters to uppercase characters. The -l lowercase flag is
turned off.
-X Marks the name specified by the Name parameter for automatic export to the

environment of subsequently executed commands.

Using a + rather than a - turns off the typeset command flags. If you do not specify
Name parameters but do specify flags, a list of names (and optionally the values) of
the parameters that have these flags set is printed. (Using a + rather than a - keeps
the values from being printed.) If you do not specify any names or flags, the names
and attributes of all parameters are printed.
Unsets the values and attributes of the parameters given by the list of names. If -v is
specified, Name refers to a variable name, and the shell will unset it and remove it from the
environment. Read-only variables cannot be unset. Unsetting the ERRNO, LINENO,
MAILCHECK, OPTARG, OPTIND, RANDOM, SECONDS, TMOUT, and underscore (_)
variables removes their special meanings even if they are subsequently assigned.

If the -f flag is set, then Name refers to a function name, and the shell will unset the function
definition.

Regular Built-in Command Descriptions
The Korn Shell provides the following regular built-in commands:

Bliad

Ed
Eommand
bchd
Ed

alias [t] [-x]
[AliasNamel[= String]]

bg [JobID...]

cd [Argument]
cd Old New

|E

betoptd
fhd
ki1l
fLed]

o [
ud sl
Fead [maliad
Eergrad laid
Eesd lhencd

Creates or redefines alias definitions or writes existing alias definitions to standard output.

For more information, refer to the Bliad command in the AIX 5L Version 5.1 Commands
Reference.

Puts each specified job into the background. The current job is put in the background if a
JoblID parameter is not specified. Refer to "L i

M” for more information about job control.

For more information about running jobs in the background, refer to the E command in the
AIX 5L Version 5.1 Commands Reference.

This command can be in either of two forms. In the first form, it changes the current directory
to the one specified by the Argument parameter. If the value of the Argument parameter is -,
the directory is changed to the previous directory. The HOME shell variable is the default
value of the Argument parameter. The PWD variable is set to the current directory.

The CDPATH shell variable defines the search path for the directory containing the value of
the Argument parameter. Alternative directory names are separated by a :. The default path is
null, specifying the current directory. The current directory is specified by a null path name,
which appears immediately after the equal sign or between the colon delimiters anywhere in
the path list. If the specified argument begins with a /, the search path is not used. Otherwise,
each directory in the path is searched for the argument.

The second form of the ed command substitutes the string specified by the New variable for
the string specified by the Old variable in the current directory name, PWD, and tries to
change to this new directory.

180 System User's Guide: Operating System and Devices

../../cmds/aixcmds1/alias.htm#HDRNWNII39BJOY
../../cmds/aixcmds1/bg.htm#HDROV6II365JOY

command [-p]
CommandName
[Argument ...]
command [-v | -V]
CommandName

echo [String ...]

fc [-r] [-e Editon] [First
[Last]]

fc -1 [-n] [-r] [First
[Last]]

fc -s [Old= New] [First]

fg [JoblID]

getopts OptionString
Name [Argument ...]

jobs [-I|-nl-p]
[JobID ...]

kill [-s { SignalName |
SignalNumber}]
ProcessID...

kill [-SignalName |
-SignalNumber |
ProcessID...

kill -1 [ExitStatus]

let Expression ...

Command causes the shell to treat the specified command and arguments as a simple
command, suppressing shell function lookup.

For more information, refer to the Eammand command in the AIX 5L Version 5.1 Commands
Reference.

Writes character strings to standard output. Refer to the chd command for usage and
description. The Ed flag is not supported.

Displays the contents of your command history file or invokes an editor to modify and
re-executes commands previously entered in the shell.

For more information, refer to the Ed command in the AIX 5L Version 5.1 Commands
Reference.

Brings each job specified into the foreground. If you do not specify any jobs, the command
brings the current job into the foreground.

For more information about running jobs in the foreground, refer to the E command in the
AIX 5L Version 5.1 Commands Reference.
Checks the Argument parameter for legal options.

For more information, refer to the m command in the AIX 5L Version 5.1 Commands
Reference.

Displays the status of jobs started in the current shell environment. If no specific job is
specified with the JoblID parameter, status information for all active jobs is displayed. If a job
termination is reported, the shell removes that job’s process ID from the list of those known
by the current shell environment.

For more information, refer to the m command in the AIX 5L Version 5.1 Commands
Reference.

Sends a signal (by default, the SIGTERM signal) to a running process. This default action
normally stops processes. If you want to stop a process, specify the process ID (PID) in the
ProcessID variable. The shell reports the PID of each process that is running in the
background (unless you start more than one process in a pipeline, in which case the shell
reports the number of the last process). You can also use the ps command to find the
process ID number of commands.

Lists signal names.

For more information, refer to the kill command in the AIX 5L Version 5.1 Commands
Reference.

Evaluates specified arithmetic expressions. The exit status is 0 if the value of the last
expression is nonzero, and 1 otherwise. Refer to "FArithmetic Fvaluation in the Karn Shell ot
[POSIX Shell” on page 166" for more information.

Chapter 11. Shells 181

../../cmds/aixcmds1/command.htm#HDRIC8IIE2JOY
../../cmds/aixcmds2/echo.htm#HDRML250FISH
../../cmds/aixcmds3/ksh.htm#SPTA271958F
../../cmds/aixcmds2/fc.htm#HDRCE52B56987CAND
../../cmds/aixcmds2/fg.htm#HDRBW7HI351JOY
../../cmds/aixcmds2/getopts.htm#HDRE54F993193MART
../../cmds/aixcmds3/jobs.htm#HDRGX7HI282JOY
../../cmds/aixcmds3/kill.htm#HDRA1579872

print [-Rnprsu [n]]
[Argument ...]

pwd Equivalent to
print -r - $PWD.
read [-prsu [n]]
[Name?Prompf]
[Name...]

setgroups

test

Prints shell output. If you do not specify any flags, or if the hyphen (-) or double hyphen (—)
flags are specified, the arguments are printed to standard output as described by the echo
command. The flags do the following:

-R Prints in raw mode (the escape conventions of the echo command are ignored). The
-R Flag prints all subsequent arguments and flags other than -n.

-n Prevents a new-line character from being added to the output.

-p Writes the arguments to the pipe of the process run with & instead of to standard
output.

-r Prints in raw mode. The escape conventions of the echo command are ignored.

-s Writes the arguments to the history file instead of to standard output.

-u Specifies a one-digit file descriptor unit number, n, on which the output is placed.

The default is 1.
Note: The internal Korn shell pwd command does not support symbolic links.

Takes shell input. One line is read and broken up into fields, using the characters in the IFS
variable as separators.

For more information, refer to the tead command in the AIX 5L Version 5.1 Commands
Reference.
Executes the /usr/bin/setgroups command, which runs as a separate shell. See the
command for information on how this command works. There is one difference,
however. The setgroups built-in command invokes a subshell, but the setgroups command
replaces the currently executing shell. Since the built-in command is supported only for
compatibility, it is recommended that scripts use the absolute path name /usr/bin/setgroups
rather than the shell built-in command.

Same as [expression). See "lCanditional Expressions for the Karn Shell or POQSIX Shell” or

" for usage and description.

182 System User's Guide: Operating System and Devices

../../cmds/aixcmds4/read.htm#HDRA143C17A0
../../cmds/aixcmds5/setgroups.htm#HDRJI21200FRIT

ulimit [-HSacdfmst] Sets or displays user-process resource limits as defined in the /etc/security/limits file. This
[Limif] file contains six default limits:

fsize = 2097151
core = 2048

cpu = 3600

data = 131072
rss = 65536
stack = 8192

These values are used as default settings when a new user is added to the system. The
values are set with the mkuser command when the user is added to the system, or changed
with the chuser command.

Limits are categorized as either soft or hard. Users might change their soft limits, up to the
maximum set by the hard limits, with the ulimit command. You must have root user authority
to change resource hard limits.

Many systems do not contain one or more of these limits. The limit for a specified resource is
set when the Limit parameter is specified. The value of the Limit parameter can be a number
in the unit specified with each resource, or the value unlimited. You can specify the following
ulimit command flags:

-H Specifies that the hard limit for the given resource is set. If you have root user
authority, you can increase the hard limit. Anyone can decrease it.

-S Specifies that the soft limit for the given resource is set. A soft limit can be increased
up to the value of the hard limit. If neither the -H or -S options are specified, the limit
applies to both.

-a Lists all of the current resource limits.

-C Specifies the number of 512-byte blocks on the size of core dumps.

-d Specifies the size, in KB, of the data area.

-f Specifies the number of 512-byte blocks for files written by child processes (files of
any size can be read).

-m Specifies the number of KB for the size of physical memory.

-n Specifies the limit on the number of file descriptors a process might have open.

-S Specifies the number of KB for the size of the stack area.

-t Specifies the number of seconds to be used by each process.

The current resource limit is printed when you omit the Limit variable. The soft limit is printed
unless you specify the -H flag. When you specify more than one resource, the limit name and
unit is printed before the value. If no option is given, the -f flag is assumed. When you
change the value, set both hard and soft limits to Limit unless you specify -H or -S.

For more information about user and system resource limits, refer to the lgetrlimit, setrlimit]
lor vlimit subrouting in the AIX 5L Version 5.1 Technical Reference: Base Operating System
and Extensions Volume 1.

umask [-S] [Mask] Determines file permissions. This value, along with the permissions of the creating process,
determines a file’s permissions when the file is created. The default is 022. If the Mask
parameter is not specified, the umask command displays to standard output the file mode
creation mask of the current shell environment.

For more information about file permissions, refer to the umasK command in the AIX 5L
Version 5.1 Commands Reference.

unalias { -a | Removes the definition for each alias name specified, or removes all alias definitions if the -a
AliasName... } flag is used. Alias definitions are removed from the current shell environment.

For more information, refer to the linaliad command in the AIX 5L Version 5.1 Commands
Reference.

Chapter 11. Shells 183

../../libs/basetrf1/getrlimit_64.htm#HDRA215961F
../../libs/basetrf1/getrlimit_64.htm#HDRA215961F
../../cmds/aixcmds5/umask.htm#HDRCE28D7A997CAND
../../cmds/aixcmds5/unalias.htm#HDRCEA867C979CAND

wait [ProcessID...] Waits for the specified job and terminates. If you do not specify a job, the command waits for

all currently active child processes. The exit status from this command is that of the process
for which it waits.

For more information, refer to the lvail command in the AIX 5L Version 5.1 Commands
Reference.

whence [-pv] Name Indicates, for each name specified, how it would be interpreted if used as a command name.

When used without either flag, whence will display the absolute pathname, if any, that
corresponds to each name.

-p Does a path search for the specified name or names even if these are aliases,
functions, or reserved words.

-V Produces a more verbose report that specifies which type each name is.

List of Korn Shell or POSIX Shell Built-in Commands

Special Built-in Commands

: (colon)
. (dot)

Expands only arguments.

Reads a specified file and then executes the commands.

Exits from the enclosing for, while, until, or select loop, if one exists.

Resumes the next iteration of the enclosing for, while, until, or select loop.

Reads the arguments as input to the shell and executes the resulting command or commands.
Executes the command specified by the Argument parameter, instead of this shell, without creating
a new process.

Exits the shell whose exit status is specified by the n parameter.

Marks names for automatic export to the environment of subsequently executed commands.
Equivalent to the exec /usr/bin/newgrp [Group ...] command.

Marks the specified names read-only.

Causes a shell to return to the invoking script.

Unless options or arguments are specified, writes the names and values of all shell variables in the
collation sequence of the current locale.

Renames positional parameters.

Prints the accumulated user and system times for both the shell and the processes run from the
shell.

Runs a specified command when the shell receives a specified signal or signals.

Sets attributes and values for shell parameters.

Unsets the values and attributes of the specified parameters.

Regular Built-in Commands

Prints a list of aliases to standard output.

Puts specified jobs in the background.

Changes the current directory to the specified directory or substitutes the current string with the
specified string.

Writes character strings to standard output.

Selects a range of commands from the last HISTSIZE variable command typed at the terminal.
Re-executes the specified command after old-to-new substitution is performed.

Brings the specified job to the foreground.

Checks the Argument parameter for legal options.

Lists information for the specified jobs.

Sends the TERM (terminate) signal to specified jobs or processes.

Evaluates specified arithmetic expressions.

Prints shell output.

184 System User's Guide: Operating System and Devices

../../cmds/aixcmds6/wait.htm#HDRA169C1178
../../cmds/aixcmds1/alias.htm#HDRNWNII39BJOY
../../cmds/aixcmds3/kill.htm#HDRA1579872

m Equivalent to the print -r -$PWD command.

kead Takes shell input.

Ltimid Sets or displays user process resource limits as defined in the /etc/security/limits file.
Lmasi Determines file permissions.

Linaliad Removes the parameters in the list of names from the alias list.

lvail Waits for the specified job and terminates.

lxhencd Indicates how each specified name would be interpreted if used as a command name.

See Karn Shell or PQSIX Shell Built-ln Commands” on page 174 for more information.
Conditional Expressions for the Korn Shell or POSIX Shell

A conditional expression is used with the [[compound command to test attributes of files and to compare
strings. Word splitting and file name substitution are not performed on words appearing between [[and]].
Each expression is constructed from one or more of the following unary or binary expressions:

-a File True, if the specified file is a symbolic link that points to another file that does exist.

-b File True, if the specified file exists and is a block special file.

-c File True, if the specified file exists and is a character special file.

-d File True, if the specified file exists and is a directory.

-e File True, if the specified file exists.

-f File True, if the specified file exists and is an ordinary file.

-g File True, if the specified file exists and its setgid bit is set.

-h File True, if the specified file exists and is a symbolic link.

-k File True, if the specified file exists and its sticky bit is set.

-n String True, if the length of the specified string is nonzero.

-0 Option True, if the specified option is on.

-p File True, if the specified file exists and is a FIFO special file or a pipe.

-r File True, if the specified file exists and is readable by the current process.

-s File True, if the specified file exists and has a size greater than 0.

-t FileDescriptor True, if specified file descriptor number is open and associated with a terminal device.

-u File True, if the specified file exists and its setuid bit is set.

-w File True, if the specified file exists and the write bit is on. However, the file will not be writable on
a read-only file system even if this test indicates true.

-X File True, if the specified file exists and the execute flag is on. If the specified file exists and is a
directory, then the current process has permission to search in the directory.

-z String True, if length of the specified string is 0.

-L File True, if the specified file exists and is a symbolic link.

-0 File True, if the specified file exists and is owned by the effective user ID of this process.

-G File True, if the specified file exists and its group matches the effective group ID of this process.

-S File True, if the specified file exists and is a socket.

File1 -nt File2 True, if File1 exists and is newer than File2.

File1 -ot File2 True, if File1 exists and is older than File2.

File1 -ef File2 True, if File1 and File2 exist and refer to the same file.

String1 = String2 True, if String1 is equal to String2.

String1 1= String2 True, if String1 is not equal to String2.

String = Pattern True, if the specified string matches the specified pattern.

String = Pattern True, if the specified string does not match the specified pattern.

String1 < String2 True, if String1 comes before String2 based on the ASCII value of their characters.

String1 > String2 True, if String1 comes after String2 based on the ASCII value of their characters.

Expression1 -eq True, if Expression1 is equal to Expression2.

Expression2

Expression1 -ne True, if Expression1 is not equal to ExpressionZ2.

Expression2

Chapter 11. Shells 185

../../cmds/aixcmds5/unalias.htm#HDRCEA867C979CAND

Expression1 -It True, if Expressiont is less than Expression2.

Expression2

Expression1 -gt True, if Expression1 is greater than Expression2.
Expression2

Expression1 -le True, if Expression1 is less than or equal to Expression2.
Expression2

Expression1 -ge True, if Expression1 is greater than or equal to Expression2.
Expression2

Note: In each of the previous expressions, if the File variable is similar to /dev/fd/n, where n is an
integer, then the test is applied to the open file whose descriptor number is n.

You can construct a compound expression from these primitives by using any of the following expressions,
listed in decreasing order of precedence:

(Expression) True, if the specified expression is true. Used to group expressions.
! Expression True, if the specified expression is false.

Expression1 && Expression2 True, if Expression1 and Expression2 are both true.

Expression1 || Expression2 True, if either Expression1 or Expression2 is true.

Job Control in the Korn Shell or POSIX Shell

The Korn shell, or POSIX shell, provides a facility to control command sequences, or jobs. When you
execute the ke -m special command, the Korn shell associates a job with each pipeline. It keeps a table
of current jobs, printed by the jobs command, and assigns them small integer numbers.

When a job is started in the background with an & , the shell prints a line that looks like:
[1] 1234

This indicates that the job, which was started in the background, was job number 1. It also shows that the
job had one (top-level) process with a process ID of 1234.

If you are running a job and want to do something else, use the Ctrl-Z key sequence. This key sequence
sends a STOP signal to the current job. The shell normally indicates that the job has been stopped, and
then displays a shell prompt. You can then manipulate the state of this job (putting it in the background
with the bg command), run other commands, and then eventually bring the job back into the foreground
with the fg command. The Ctrl-Z key sequence takes effect immediately, and is like an interrupt in that the
shell discards pending output and unread input when you type the sequence.

A job being run in the background stops if it tries to read from the terminal. Background jobs are normally
allowed to produce output. You can disable this option by issuing the @ tostop command. If you set this
terminal option, then background jobs stop when they try to produce output or read input.

You can refer to jobs in the Korn shell in several ways. A job is referenced by the process ID of any of its
processes, or in one of the following ways:

%Number Specifies the job with the given number.

% String Specifies any job whose command line begins with the String variable.
%? String Specifies any job whose command line contains the String variable.
%% Specifies the current job.

%o+ Equivalent to %%.

Yo~ Specifies the previous job.

186 System Users Guide: Operating System and Devices

../../cmds/aixcmds5/stty.htm#HDRA471320ROLL

This shell learns immediately whenever a process changes state. It normally informs you whenever a job
becomes blocked so that no further progress is possible. The shell does this just before it prints a prompt
so that it does not otherwise disturb your work.

When the monitor mode is on, each completed background job triggers traps set for the CHLD signal.

If you try to leave the shell (either by typing exit or using the Ctrl-D key sequence) while jobs are stopped
or running, the system warns you with the message There are stopped (running) jobs. Use the jobs
command to see which jobs are affected. If you immediately try to exit again, the shell terminates the
stopped and running jobs without warning.

Signal Handling

The SIGINT and SIGQUIT signals for an invoked command are ignored if the command is followed by &
and the job monitor option is not active. Otherwise, signals have the values that the shell inherits from its
parent.

When a signal for which a trap has been set is received while the shell is waiting for the completion of a
foreground command, the trap associated with that signal will not be executed until after the foreground
command has completed. Therefore, a trap on a CHILD signal is not performed until the foreground job
terminates.

° ‘ ”

Inline Editing in the Korn Shell or POSIX Shell

Normally, you type each command line from a terminal device and follow it by a new-line character
(RETURN or LINE FEED). When you activate the emacs, gmacs, or vi inline editing option, you can edit
the command line.

The following commands enter edit modes:

set -o emacs Enters temacs Fditing Made” on page 188 and initiates an emacs-style inline editor.
set -o gmacs Enters kemacs FEditing Mode” an page 188 and initiates a gmacs-style inline editor.
set -0 vi Enters Evi Editing Made” on page 189 and initiates a vi-style inline editor.

An editing option is automatically selected each time the VISUAL or EDITOR variable is assigned a value
ending in any of these option names.

Note: To use the editing features, your terminal must accept RETURN as a carriage return without
line feed. A space must overwrite the current character on the screen.

Each editing mode opens a window at the current line. The window width is the value of the COLUMNS
variable if it is defined; otherwise, the width is 80 character spaces. If the line is longer than the window
width minus two, the system notifies you by displaying a mark at the end of the window. As the cursor
moves and reaches the window boundaries, the window is centered about the cursor. The marks displayed
are:

> Indicates that the line extends on the right side of the window.
< Indicates that the line extends on the left side of the window.
* Indicates that the line extends on both sides of the window.

The search commands in each edit mode provide access to the Korn shell history file. Only strings are
matched. If the leading character in the string is a , the match must begin at the first character in the line.

Chapter 11. Shells 187

This section discusses:

emacs Editing Mode

The emacs mode is entered when you enable either the emacs or gmacs option. The only difference
between these two modes is the way each handles the Ctrl-T edit command. To edit, move the cursor to
the point needing correction and insert or delete characters or words, as needed. All of the editing
commands are control characters or escape sequences.

Edit commands operate from any place on a line (not just at the beginning). Do not press the Enter key or
line-feed (Down Arrow) key after edit commands, except as noted.

Ctrl-F
Esc-F

Ctrl-B
Esc-B
Ctrl-A
Ctrl-E

Ctrl-] ¢
Esc-Ctrl-] ¢
Ctrl-X Ctrl-X
ERASE

Ctrl-D

Esc-D
Esc-Backspace
Esc-H
Esc-Delete

Ctrl-T

Ctrl-C
Esc-C
Esc-L
Ctrl-K

Ctrl-w
Esc-P
KILL

Ctrl-Y
Ctrl-L
Ctrl-@
Esc-space
Ctrl-J
Ctrl-M
EOF

Moves the cursor forward (right) one character.

Moves the cursor forward one word (a string of characters consisting of only letters, digits,
and underscores).

Moves the cursor backward (left) one character.

Moves the cursor backward one word.

Moves the cursor to the beginning of the line.

Moves the cursor to the end of the line.

Moves the cursor forward on the current line to the indicated character.

Moves the cursor backward on the current line to the indicated character.

Interchanges the cursor and the mark.

Deletes the previous character. (User-defined erase character as defined by the stty
command, usually the Ctrl-H key sequence.)

Deletes the current character.

Deletes the current word.

Deletes the previous word.

Deletes the previous word.

Deletes the previous word. If your interrupt character is the Delete key, then this command
does not work.

Transposes the current character with the next character in emacs mode. Transposes the
two previous characters in gmacs mode.

Capitalizes the current character.

Capitalizes the current word.

Changes the current word to lowercase.

Deletes from the cursor to the end of the line. If preceded by a numerical parameter whose
value is less than the current cursor position, this editing command deletes from the given
position up to the cursor. If preceded by a numerical parameter whose value is greater than
the current cursor position, this editing command deletes from the cursor up to the given
cursor position.

Deletes from the cursor to the mark.

Pushes the region from the cursor to the mark on the stack.

User-defined kill character as defined by the stty command, usually the Ctrl-G key
sequence or an @. Kills the entire current line. If two kill characters are entered in
succession, all subsequent kill characters cause a line feed (useful when using paper
terminals).

Restores the last item removed from the line. (Yanks the item back to the line.)

Line feeds and prints the current line.

(Null character) Sets a mark.

Sets a mark.

(New line) Executes the current line.

(Return) Executes the current line.

Processes the end-of-file character, normally the Ctrl-D key sequence, as an end-of-file
only if the current line is null.

188 System Users Guide: Operating System and Devices

Ctrl-P

Esc-<
Esc->
CtrI-N

Ctrl-R String

Ctrl-O

Esc Digits

Esc Letter

Esc-[Letter

Esc-.

Esc-_

Esc-*

Esc-Esc

Esc-=

Ctrl-U

Ctrl-v
Esc-#

vi Editing Mode

Fetches the previous command. Each time the Ctrl-P key sequence is entered, the
previous command back in time is accessed. Moves back one line when not on the first line
of a multiple-line command.

Fetches the least recent (oldest) history line.

Fetches the most recent (youngest) history line.

Fetches the next command line. Each time the Ctrl-N key sequence is entered, the next
command line forward in time is accessed.

Reverses search history for a previous command line containing the string specified by the
String parameter. If a value of 0 is given, the search is forward. The specified string is
terminated by an Enter or new-line character. If the string is preceded by a , the matched
line must begin with the String parameter. If the String parameter is omitted, then the next
command line containing the most recent String parameter is accessed. In this case, a
value of 0 reverses the direction of the search.

(Operate) Executes the current line and fetches the next line relative to the current line
from the history file.

(Escape) Defines the numeric parameter. The digits are taken as a parameter to the next
command. The commands that accept a parameter are Ctrl-F, Ctrl-B, ERASE, Ctrl-C,
Ctrl-D, Ctrl-K, Ctrl-R, Ctrl-P, Ctrl-N, Ctrl-], Esc-., Esc-Ctrl-], Esc-_, Esc-B, Esc-C,
Esc-D, Esc-F, Esc-H, Esc-L, and Esc-Ctrl-H.

(Soft-key) Searches the alias list for an alias named _Letter. If an alias of this name is
defined, its value is placed into the input queue. The Letter parameter must not specify one
of the escape functions.

(Soft-key) Searches the alias list for an alias named double underscore Letter (__Letter). If
an alias of this name is defined, its value is placed into the input queue. This command can
be used to program function keys on many terminals.

Inserts on the line the last word of the previous command. If preceded by a numeric
parameter, the value of this parameter determines which word to insert rather than the last
word.

Same as the Esc-. key sequence.

Attempts file name substitution on the current word. An asterisk is appended if the word
does not match any file or contain any special pattern characters.

File name completion. Replaces the current word with the longest common prefix of all file
names that match the current word with an asterisk appended. If the match is unique, a / is
appended if the file is a directory and a space is appended if the file is not a directory.
Lists the files that match the current word pattern as if an asterisk were appended.
Multiplies the parameter of the next command by 4.

Escapes the next character. Editing characters and the ERASE, KILL and INTERRUPT
(normally the Delete key) characters can be entered in a command line or in a search
string if preceded by a \. The backslash removes the next character’s editing features, if
any.

Displays the version of the shell.

Inserts a # at the beginning of the line and then executes the line. This causes a comment
to be inserted in the history file.

The vi editing mode has two typing modes. When you enter a command, you are in Input mode. To edit,
you must enter the Control mode by pressing the Esc key.

Most control commands accept an optional repeat Count parameter prior to the command. When in vi
mode on most systems, canonical processing is initially enabled. The command is echoed again if:

* The speed is 1200 baud or greater.
* The command contains any control characters.
* Less than one second has elapsed since the prompt was printed.

Chapter 11. Shells 189

The Esc character terminates canonical processing for the remainder of the command, and you can then
modify the command line. This scheme has the advantages of canonical processing with the type-ahead
echoing of raw mode. If the viraw option is also set, canonical processing is always disabled. This mode
is implicit for systems that do not support two alternate end-of-line delimiters and might be helpful for
certain terminals.

Available vi edit commands are grouped in the following categories:

Input Edit Commands

Note: By default, the editor is in input mode.

ERASE (User-defined erase character as defined by the stty command, usually Ctrl-H or #.) Deletes the previous
character.

Ctrl-w Deletes the previous blank separated word.

Ctrl-D Terminates the shell.

Ctrl-v Escapes the next character. Editing characters, such as the ERASE or KILL characters, can be entered

in a command line or in a search string if preceded by a Ctrl-V key sequence. The Ctrl-V key sequence
removes the next character’s editing features (if any).
\ Escapes the next ERASE or KILL character.

Motion Edit Commands
Motion edit commands move the cursor:

[Countl Moves the cursor forward (right) one character.

[Counflw Moves the cursor forward one alphanumeric word.

[CounflW Moves the cursor to the beginning of the next word that follows a blank.

[Countle Moves the cursor to the end of the current word.

[CounflE Moves the cursor to the end of the current blank-separated word.

[Counflh Moves the cursor backward (left) one character.

[Countlb Moves the cursor backward one word.

[Count]B Moves the cursor to the previous blank-separated word.

[Count]l Moves the cursor to the column specified by the Count parameter.

[Countlfc Finds the next character c in the current line.

[CounflFc Finds the previous character c in the current line.

[Countltc Equivalent to f followed by h.

[CounflTe Equivalent to F followed by I.

[Count]; Repeats for the number of times specified by the Count parameter the last single-character find
command: f, F, t, or T.

[Count], Reverses the last single-character find command the number of times specified by the Count
parameter.

0 Moves the cursor to the start of a line.

’ Moves the cursor to the first nonblank character in a line.

$ Moves the cursor to the end of a line.

Search Edit Commands
Search edit commands access your command history:

[Counflk Fetches the previous command.
[Count]- Equivalent to the k command.

190 System Users Guide: Operating System and Devices

[Count]j
[Countl+
[CounflG

/String

?String
n
N

Fetches the next command. Each time the j command is entered, the next command is accessed.
Equivalent to the j command.

Fetches the command whose number is specified by the Count parameter. The default is the least
recent history command.

Searches backward through history for a previous command containing the specified string. The
string is terminated by a RETURN or new-line character. If the specified string is preceded by a ,
the matched line must begin with the String parameter. If the value of the String parameter is null, the
previous string is used.

Same as /String except that the search is in the forward direction.

Searches for the next match of the last pattern to /String or ? commands.

Searches for the next match of the last pattern to /String or ? commands, but in the opposite
direction. Searches history for the string entered by the previous /String command.

Text-Modification Edit Commands
Text-modification edit commands modify the line:

a
A

[Counfle Motion
c[Counf]Motion

[CountldMotion

d[Counf]lMotion

i

I
[CounflP
[Counflp
R
[Counflrc

[Counflx
[CounflX
[Count].

[Count]”

[Count]_

*

Enters the input mode and enters text after the current character.
Appends text to the end of the line. Equivalent to the $a command.

Deletes the current character through the character to which the Motion parameter
specifies to move the cursor, and enters input mode. If the value of the Motion
parameter is ¢, the entire line is deleted and the input mode is entered.

Deletes the current character through the end of the line and enters input mode.
Equivalent to the ¢$ command.

Equivalent to the ec command.

Deletes the current character through the end of line. Equivalent to the d$ command.

Deletes the current character up to and including the character specified by the
Motion parameter. If Motion is d, the entire line is deleted.

Enters the input mode and inserts text before the current character.

Inserts text before the beginning of the line. Equivalent to the 0i command.

Places the previous text modification before the cursor.

Places the previous text modification after the cursor.

Enters the input mode and types over the characters on the screen.

Replaces the number of characters specified by the Count parameter, starting at the
current cursor position, with the characters specified by the ¢ parameter. This
command also advances the cursor after the characters are replaced.

Deletes the current character.

Deletes the preceding character.

Repeats the previous text-modification command.

Inverts the case of the number of characters specified by the Count parameter,
starting at the current cursor position, and advances the cursor.

Appends the word specified by the Count parameter of the previous command and
enters input mode. The last word is used if the Count parameter is omitted.
Appends an * to the current word and attempts file name substitution. If no match is
found, it rings the bell. Otherwise, the word is replaced by the matching pattern and
input mode is entered.

File name completion. Replaces the current word with the longest common prefix of
all file names matching the current word with an asterisk appended. If the match is
unique, a / is appended if the file is a directory. A space is appended if the file is not
a directory.

Chapter 11. Shells 191

Miscellaneous Edit Commands
Miscellaneous edit commands include:

[CounflyMotion
y[Counf]Motion

Y
u
U
[Counflv

Ctrl-L

Ctrl-J

Ctrl-M
#

@ Letter

Yanks the current character up to and including the character marked by the cursor
position specified by the Motion parameter and puts all of these characters into the delete
buffer. The text and cursor are unchanged.

Yanks from the current position to the end of the line. Equivalent to the y$ command.
Undoes the last text-modifying command.

Undoes all the text-modifying commands performed on the line.

Returns the command fc -e $§{VISUAL:-${EDITOR:-vi}} Count in the input buffer. If the
Count parameter is omitted, then the current line is used.

Line feeds and prints the current line. This command is effective only in control mode.
(New line) Executes the current line, regardless of the mode.

(Return) Executes the current line, regardless of the mode.

Sends the line after inserting a # in front of the line. Useful if you want to insert the
current line in the history without executing it.

If the command line contains a pipe or semicolon or new-line character, then additional
#s will be inserted in front of each of these symbols. To delete all pound signs, retrieve
the command line from history and enter another #.

Lists the file names that match the current word as if an asterisk were appended to it.
Searches the alias list for an alias named _Letter. If an alias of this name is defined, its
value is placed into the input queue for processing.

Enhanced Korn Shell (ksh93)

In addition to the default system Korn shell (/usr/bin/ksh), AlX provides an enhanced version available as
lusr/bin/ksh93. This enhanced version is upwardly compatible with the current default version, and
includes a few additional features that are not available in /usr/bin/ksh. The following table contains an
overview of these additional features.

Features of ksh93

The following features are available in /usr/bin/ksh93:

Arithmetic You can use libm functions (math functions typically found in the C programming language),
Enhancements within arithmetic expressions, such as § value=$((sqrt(9))). More arithmetic operators are
available, including the unary +, ++, --, and the ?: construct (for example, "x ? y : z"), as well
as the , (comma) operator. Arithmetic bases are supported up to base 64. Floating point
arithmetic is also supported. "typeset -E” (exponential) can be used to specify the number of
significant digits and "typeset -F” (float) can be used to specify the number of decimal places
for an arithmetic variable. The SECONDS variable now displays to the nearest hundredth of a
second, rather than to the nearest second.
Compound Compound variables are supported in ksh93. A compound variable allows a user to specify
Variables multiple values within a single variable name. The values are each assigned with a subscript
variable, separated from the parent variable with a . (period). For example:
$ myvar=(x=1 y=2)
$ print "${myvar.x}"
1
Compound Compound assignments are supported when initializing arrays, both for indexed arrays and
Assignments associative arrays. The assignment values are placed in parentheses as shown in the following
example:
$ numbers=(zero one two three)
$ print ${numbers[0]} ${numbers[3]}
zero three

192 System User's Guide: Operating System and Devices

Associative An associative array is an array with a string as an index.

Arrays
The typeset command used with the -A flag allows you to specify associative arrays within
ksh93. For example:
$ typeset -A teammates
§ teammates=([john]=smith [mary]=jones)
$ print ${teammates[mary]}
jones
Variable Name The typeset command used with the -n flag allows you to assign one variable name as a
References reference to another. In this way, modifying the value of a variable will in turn modify the value
of the variable that is referenced. For example:
$ greeting="hello"
$ typeset -n welcome=greeting # establishes the reference
$ welcome="hi there" # overrides previous value
§ print $greeting
hi there
Parameter The following parameter-expansion constructs are available in ksh93:
Expansions « ${lvarname} is the name of the variable itself.

{

e ${!varname[@]} names the indexes for the varname array.

* ${param:offset} is a substring of param, starting at offset.
$

{param:offset:num} is a substring of param, starting at offset, for num number of
characters.

* ${@:offset} indicates all positional parameters starting at offset.
* ${@:offset:num} indicates num positional parameters starting at offset.

* ${param/pattern/repl} evaluates to param, with the first occurrence of pattern replaced by
repl.

* ${param//pattern/repl} evaluates to param, with every occurrence of pattern replaced by
repl.

o ${param/#pattern/repl} if param begins with pattern, then param is replaced by repl.

* ${param/%pattern/repl} if param ends with pattern, then param is replaced by repl.

Chapter 11. Shells 193

Discipline A discipline function is a function that is associated with a specific variable. This allows you to

Functions define and call a function every time that variable is referenced, set, or unset. These functions
take the form of varname.function, where varname is the name of the variable and function is
the discipline function. There are three predefined discipline functions: get, set, and unset.

« The varname.get function is invoked every time varname is referenced. If the special variable
.sh.value is set within this function, then the value of varname is changed to this value. A
simple example is the time of day:
$ function time.get
>
> .sh.value=$(date +%r)
>}
$ print $time
09:15:58 AM
$ print $time # it will change in a few seconds
09:16:04 AM

» The varname.set function is invoked every time varname is set. The .sh.value variable is
given the value that was assigned. The value assigned to varname is the value of .sh.value
when the function completes. For example:
$ function adder.set
> |
> let .sh.value="
$ {.sh.value} + 1"
>}
$ adder=0
$ echo $adder
1
$ adder=$adder
$ echo $adder
2

» The varname.unset function is executed every time varname is unset. The variable does not
actually get unset unless it is unset within the function itself; otherwise it retains its value.

Within all discipline functions, the special variable .sh.name is set to the name of the variable,

while .sh.subscript is set to the value of the variables subscript, if applicable.

Function Functions declared with the function myfunc format are executed in a separate function

Environments

environment. Functions declared as myfunc() execute with the same environment as the parent
shell.

Variables

Variables beginning with .sh. are reserved by the shell and have special meaning. See the
description of Discipline Functiond above for an explanation of .sh.name, .sh.value, and
.sh.subscript. Also available is .sh.version, which represents the version of the shell.

Note: The variable ERRNO is no longer available.

Command Return
Values

Return values of commands in ksh93 are as follows:
« |If the command to be executed is not found, the return value is set to 127.
« |f the command to be executed is found, but not executable, the return value is 126.

+ If the command is executed, but is terminated by a signal, the return value is 256 plus the
signal number.

PATH Search

Special built-in commands are searched for first, followed by all functions (including those in

Rules FPATH directories), followed by other built-ins. Previously, all built-ins were searched before all
functions, and FPATH functions were not searched until after everything in PATH.
Shell History The hist command allows you to display and edit the shells command history. In the ksh shell,

the fc command was used. The fc command is now an alias to hist. Variables are HISTCMD,
which increments once for each command executed in the shells current history, and HISTEDIT,
which specifies which editor to use when using the hist command.

194 System User's Guide: Operating System and Devices

Built-In * The built-in command builtin has been added. The builtin command lists all available built-in
Commands commands.

e The m command has been added as a built-in. This functions much as the printf() C
library routine does. Refer to the printf command manual page.

* The disown built-in command has been added. disown blocks the shell from sending a
SIGHUP to the specified command.

e The m command has been added as a built-in. It functions in the same way as the
stand-alone command /usr/bin/getconf. Refer to the getconf command manual page.

« The kead built-in command has two flags:
— read -d {char} allows you to specify a character delimiter instead of the default newline.

— read -t {seconds} allows you to specify a time limit in seconds after which the read
command will time out. If read times out, it will return FALSE.

* The exec built-in command has two flags:
— exec -a {name} {cmd} specifies that argument 0 of cmd be replaced with name.
— exec -¢ {cmd} tells exec to clear the environment before executing cmd.

« The kill built-in command has two flags:

— kill -n {signum} is used for specifying a signal number to send to a process, while kill -s
{signame} is used to specify a signal name.

— kill -1, with no arguments, lists all signal names but not their numbers.
* The whence built-in command has two flags.

— The -a flag displays all matches, not just the first one found.

— The -f flag tells whence not to search for any functions.

* An escape character sequence has been added for use by the print and echo commands.
The Esc (Escape) key can be represented by the sequence \E.

» All regular built-in commands recognize the -? flag, which shows the syntax for the specified
command.

Korn Shell Related Information

‘ ”

Chapter 11. Shells 195

../../cmds/aixcmds4/printf.htm
../../cmds/aixcmds2/getconf.htm
../../cmds/aixcmds4/read.htm#HDRA143C17A0
../../cmds/aixcmds3/kill.htm#HDRA1579872

The ksh and Etty commands.
The kliad, bd, bxpod, kd, Getoptd, kead, ket and typesel Korn shell commands.

The letclpasswd file.
[Bourne Shelll

¢ ”

Bourne Shell

The Bourne shell is an interactive command interpreter and command programming language. The bsh
command runs the Bourne shell.

The Bourne shell can be run either as a login shell or as a subshell under the login shell. Only the login
command can call the Bourne shell as a login shell. It does this by using a special form of the bsh
command name: -bsh. When called with an initial hyphen (-), the shell first reads and runs commands
found in the system /etc/profile file and your $SHOME/.profile, if one exists. The /etc/profile file sets
variables needed by all users. Finally, the shell is ready to read commands from your standard input.

If the File [Parameter] parameter is specified when the Bourne shell is started, the shell runs the script file
identified by the File parameter, including any parameters specified. The script file specified must have
read permission; any setuid and setgid settings are ignored. The commands are then read. A script file
should not be specified if either the -c or -s flag is used.

Bourne Shell Environment

All variables (with their associated values) known to a command at the beginning of its execution
constitute its environment. This environment includes variables that a command inherits from its parent
process and variables specified as keyword parameters on the command line that calls the command.

The shell passes to its child processes the variables named as arguments to the built-in export command.
This command places the named variables in the environments of both the shell and all its future child
processes.

Keyword parameters are variable-value pairs that appear in the form of assignments, normally before the
procedure name on a command line (but see also the flag for the set command). Such variables are
placed in the environment of the procedure being called.

For example, consider the following simple procedure, which displays the values of two variables (saved in
a command file named key command):

key_command
echo $a $b

The following command lines produce the output shown:

Input Output
a=keyl b=key2 key_command keyl key?2
a=tom b=john key command tom john

A procedure’s keyword parameters are not included in the parameter count stored in $#.

196 System Users Guide: Operating System and Devices

../../cmds/aixcmds3/ksh.htm#HDRA265912F6
../../cmds/aixcmds5/stty.htm#HDRA471320ROLL
../../cmds/aixcmds1/alias.htm#HDRNWNII39BJOY
../../files/aixfiles/passwd.htm#HDRX9A1F0FRIT
../../cmds/aixcmds1/bsh.htm#HDRA27991201

A procedure can access the values of any variables in its environment. If it changes any of these values,
however, the changes are not reflected in the shell environment. They are local to the procedure in
question. To place the changes in the environment that the procedure passes to its child processes, you
must export the new values within that procedure.

To obtain a list of variables that are exportable from the current shell, type:
export

Press Enter.

To obtain a list of read-only variables from the current shell, type:
readonly

Press Enter.

To obtain a list of variable-value pairs in the current environment, type:
env

Press Enter.

For more information about user environments, see [etc/environment File” on page 135
Restricted Shell

The restricted shell is used to set up login names and execution environments whose capabilities are more
controlled than those of the regular Bourne shell. The or bshl -r command opens the restricted shell.
The behavior of these commands is identical to those of the bsh command, except that the following
actions are not allowed:

» Changing the directory (with the cd command)

Setting the value of PATH or SHELL variables

» Specifying path or command names containing a slash (/)
» Redirecting output

If the restricted shell determines that a command to be run is a shell procedure, it uses the Bourne shell to
run the command. In this way, it is possible to provide an end user with shell procedures that access the
full power of the Bourne shell while imposing a limited menu of commands. This scheme assumes that the
end user does not have write and execute permissions in the same directory.

If the File [Parameter] parameter is specified when the Bourne shell is started, the shell runs the script file
identified by the File parameter, including any parameters specified. The script file specified must have
read permission. Any setuid and setgid settings for script files are ignored. The shell then reads the
commands.

Note: You should not specify a script file if using either the -c or -s flag.

When started with the Rsh command, the shell enforces restrictions after interpreting the .profile and
letc/environment files. Therefore, the writer of the .profile file has complete control over user actions by
performing setup actions and leaving the user in an appropriate directory (probably not the login directory).
An administrator can create a directory of commands in the /usr/rbin directory that the Rsh command can
use by changing the PATH variable to contain the directory. If started with the bsh -r command, the shell
applies restrictions when interpreting the .profile files.

Chapter 11. Shells 197

../../cmds/aixcmds4/brsh.htm
../../cmds/aixcmds1/bsh.htm#HDRA27991201

When called with the name Rsh, the restricted shell reads the user’s .profile file (SHOME/.profile). It acts
as the regular Bourne shell while doing this, except that an interrupt causes an immediate exit instead of a
return to command level.

Bourne Shell Commands

When you issue a command in the Bourne shell, it first evaluates the command and makes all indicated
substitutions. It then runs the command provided that:

* The command name is a Bourne shell special built-in command
OR

* The command name matches the name of a defined function. If this is the case, the shell sets the
positional parameters to the parameters of the function.

If the command name matches neither a built-in command nor the name of a defined function and the
command names an executable file that is a compiled (binary) program, the shell (as parent) spawns a
new (child) process that immediately runs the program. If the file is marked executable but is not a
compiled program, the shell assumes that it is a shell procedure. In this case, the shell spawns another
instance of itself (a subshell), to read the file and execute the commands included in it. The shell also runs
a parenthesized command in a subshell. To the end user, a compiled program is run in exactly the same
way as a shell procedure. The shell normally searches for commands in file system directories, in this
order:

/usr/bin

letc

lusr/sbin
lusr/ucb
$HOME/bin
lusr/bin/X11
/sbin

Current directory

© N oA N

The shell searches each directory, in turn, continuing with the next directory if it fails to find the command.

Note: The order in which the shell searches directories is determined by the PATH variable. You can
change the particular sequence of directories searched by resetting the PATH variable.

If you give a specific path name when you run a command (for example, /usr/bin/sort), the shell does
not search any directories other than the one you specify. If the command name contains a slash (/), the
shell does not use the search path.

You can give a full path name that begins with the root directory (such as /usr/bin/sort). You can also
specify a path name relative to the current directory. If you specify, for example:

bin/myfile
the shell looks in the current directory for a directory named bin and in that directory for the file myfile.
Note: The restricted shell does not run commands containing a / (slash).

The shell remembers the location in the search path of each executed command (to avoid unnecessary
exec commands later). If it finds the command in a relative directory (one whose name does not begin

198 System User's Guide: Operating System and Devices

with /), the shell must redetermine the command’s location whenever the current directory changes. The
shell forgets all remembered locations each time you change the PATH variable or run the hash -r
command.

This section discusses:

Quoting Characters

Many characters have a special meaning to the shell. Sometimes you want to conceal that meaning.
Single (') and double (") quotation marks surrounding a string, or a backslash (\) before a single character
allow you to conceal the character's meaning.

All characters, except the enclosing single quotation marks, are taken literally, with any special meaning
removed. Thus, the command:

stuff="echo $? $*; 1s * | wc'

assigns the literal string echo $? $*; 1s * | wc to the variable stuff. The shell does not execute the
echo, Is, and we commands or expand the $? and $* variables and the * (asterisk) special character.

Within double quotation marks, the special meaning of the $ (dollar sign), ' (backquote), and " (double
quotation) characters remains in effect, while all other characters are taken literally. Thus, within double
quotation marks, command and variable substitution takes place. In addition, the quotation marks do not
affect the commands within a command substitution that is part of the quoted string, so characters there
retain their special meanings.

Consider the following sequence:

1s *

filel file2 file3

message="This directory contains 'Is = " "
echo $message

This directory contains filel file2 file3

This shows that the * (asterisk) special character inside the command substitution was expanded.

To hide the special meaning of the $ (dollar sign), ' (backquote), and " (double quotation) characters
within double quotation marks, precede these characters with a \ (backslash). When you do not use
double quotation marks, preceding a character with a backslash is equivalent to placing it within single
quotation marks. Hence, a backslash immediately preceding a new-line character (that is, a backslash at
the end of the line) hides the new-line character and allows you to continue the command line on the next
physical line.

Signal Handling
The shell ignores INTERRUPT and QUIT signals for an invoked command if the command is terminated
with an & (ampersand); that is, if it is running in the background. Otherwise, signals have the values

inherited by the shell from its parent, with the exception of the SEGMENTATION VIOLATION signal. For
more information, refer to the Bourne shell built-in ﬁ command.

Chapter 11. Shells 199

Bourne Shell Compound Commands

A compound command is one of the following:

* Pipeline (one or more simple commands separated by the | (pipe) symbol)
» List of simple commands

« Command beginning with a reserved word

« Command beginning with the control operator ((left parenthesis).

Unless otherwise stated, the value returned by a compound command is that of the last simple command
executed.

Reserved Words

The following reserved words are recognized only when they appear without quotation marks as the first
word of a command:

for do done

case esac

if then fi

elif else

while until

{ }

()

for Identifier [in Word . . .] do Sets the Identifier parameter to the word or words specified by the Word parameter

List done (one at a time) and runs the commands specified in the List parameter. If you omit in
Word . . ., then the for command runs the List parameter for each positional
parameter that is set, and processing ends when all positional parameters have been
used.

case Word in Pattern Runs the commands specified in the List parameter that are associated with the first

[|[Pattern] . . .) List;; [Pattern Pattern parameter that matches the value of the Word parameter. Uses the same

[|Pattern] . . .) List;] ... character-matching notation in patterns that are used for file name substitution,

esac except that a / (slash), leading . (dot), or a dot immediately following a slash do not

need to match explicitly.

if List then List [elif Listthen Runs the commands specified in the List parameter following the if command. If the

Lisf] . . . [else Lisf] fi command returns a zero exit value, the shell runs the List parameter following the
first then command. Otherwise, it runs the List parameter following the elif command
(if it exists). If this exit value is zero, the shell runs the List parameter following the
next then command. If the command returns a non-zero exit value, the shell runs the
List parameter following the else command (if it exists). If no else List or then List is
performed, the if command returns a zero exit value.

while List do List done Runs the commands specified in the List parameter following the while command. If
the exit value of the last command in the while List is zero, the shell runs the List
parameter following the do command. It continues looping through the lists until the
exit value of the last command in the while List is non-zero. If no commands in the
do List are performed, the while command returns a zero exit value.

until List do List done Runs the commands specified in the List parameter following the until command. If
the exit value of the last command in the until List is non-zero, runs the List following
the do command. Continues looping through the lists until the exit value of the last
command in the until Listis zero. If no commands in the do List are performed, the
until command returns a zero exit value.

(List) Runs the commands in the List parameter in a subshell.

{ List; } Runs the commands in the List parameter in the current shell process and does not
start a subshell.

Name () { List} Defines a function that is referenced by the Name parameter. The body of the

function is the list of commands between the braces specified by the List parameter.

200 system User's Guide: Operating System and Devices

Bourne Shell Built-in Commands

Special commands are built in to the Bourne shell and run in the shell process. Unless otherwise
indicated, output is written to file descriptor 1 (stdout) and the exit status is O (zero) if the command does
not contain any syntax errors. Input and output redirection is permitted.

Refer to the EList of Bourne Shell Built-in Commands” on page 211 for an alphabetical listing of these

commands.

The following special commands are treated somewhat differently from other special built-in commands:

: (colon) exec shift
. (dot) exit times
break export trap
continue readonly wait
eval return

The Bourne shell processes these commands as follows:

» Keyword parameter assignment lists preceding the command remain in effect when the command
completes.

/O redirections are processed after parameter assignments.
» Errors in a shell script cause the script to stop processing.

Special Command Descriptions
The Bourne shell provides the following special built-in commands:

Built-ln Commands

: Returns a zero exit value.

. File Reads and runs commands from the File parameter, and returns. Does not start a subshell.
The shell uses the search path specified by the PATH variable to find the directory containing
the specified file.

break [n] Exits from the enclosing for, while, or until command loops, if any. If you specify the n
variable, the break command breaks the number of levels specified by the n variable.

continue [n] Resumes the next iteration of the enclosing for, while, or until command loops. If you
specify the n variable, the command resumes at the nth enclosing loop.

cd Directory] Changes the current directory to Directory. If you do not specify Directory, the value of the

HOME shell variable is used. The CDPATH shell variable defines the search path for
Directory. CDPATH is a colon-separated list of alternative directory names. A null path name
specifies the current directory (which is the default path). This null path name appears
immediately after the equal sign in the assignment or between the colon delimiters anywhere
else in the path list. If Directory begins with a / (slash), the shell does not use the search
path. Otherwise, the shell searches each directory in the CDPATH shell variable.

Note: The restricted shell cannot run the cd shell command.

echo String . . .] Writes character strings to standard output. Refer to the echo command for usage and
parameter information. The Ed flag is not supported.

eval [Reads arguments as input to the shell and runs the resulting command or commands.

Argument . . .]

exec [Runs the command specified by the Argument parameter in place of this shell without

Argument . . .] creating a new process. Input and output arguments can appear and, if no other arguments
appear, cause the shell input or output to be modified. This is not recommended for your
login shell.

exit[n] Causes a shell to exit with the exit value specified by the n parameter. If you omit this

parameter, the exit value is that of the last command executed (the Ctrl-D key sequence also
causes a shell to exit). The value of the n parameter can be from 0 to 255, inclusive.

Chapter 11. Shells 201

Built-In Commands
export [Name . . .]

hash [-r][
Command . . .]

pwd

read [Name . . .]

readonly |
Name . . .]

return [n]

Marks the specified names for automatic export to the environments of subsequently
executed commands. If you do not specify the Name parameter, the export command
displays a list of all names that are exported in this shell. You cannot export function names.
Finds and remembers the location in the search path of each Command specified. The -r flag
causes the shell to forget all locations. If you do not specify the flag or any commands, the
shell displays information about the remembered commands in the following format:

Hits Cost Command

Hits indicates the number of times a command has been run by the shell process. Cost is a
measure of the work required to locate a command in the search path. Command shows the
path names of each specified command. Certain situations require that the stored location of
a command be recalculated; for example, the location of a relative path name when the
current directory changes. Commands for which that might be done are indicated by an *
(asterisk) next to the Hits information. Cost is incremented when the recalculation is done.
Displays the current directory. Refer to the m command for a discussion of command
options.

Reads one line from standard input. Assigns the first word in the line to the first Name
parameter, the second word to the second Name parameter, and so on, with leftover words
assigned to the last Name parameter. This command returns a value of 0 unless it
encounters an end-of-file character.

Marks the name specified by the Name parameter as read-only. The value of the name
cannot be reset. If you do not specify any Name, the readonly command displays a list of all
read-only names.

Causes a function to exit with a return value of n. If you do not specify the n variable, the
function returns the status of the last command performed in that function. This command is
valid only when run within a shell function.

202 system User's Guide: Operating System and Devices

../../cmds/aixcmds4/pwd.htm#HDRDLK1390FISH

Built-iIn Commands
set [Flag [Argument
1...1

shift [n]

test Expression | |
Expression |
times

Sets one or more of the following flags:

-a

-e

=X

Marks for export all variables to which an assignment is performed. If the
assignment precedes a command name, the export attribute is effective only for that
command execution environment, except when the assignment precedes one of the
special built-in commands. In this case, the export attribute persists after the built-in
command has completed. If the assignment does not precede a command name, or
if the assignment is a result of the operation of the getopts or read commands, the
export attribute persists until the variable is unset.

Exits immediately if all of the following conditions exist for a command:

|t exits with a return value greater than 0 (zero).

* It is not part of the compound list of a while, until, or if command.

* It is not being tested using AND or OR lists.

* ltis not a pipeline preceded by the ! (exclamation point) reserved word.
Disables file name substitution.

Locates and remembers the commands called within functions as the functions are
defined. (Normally these commands are located when the function is performed; see
the hasH command.)

Places all keyword parameters in the environment for a command, not just those
preceding the command name.

Reads commands but does not run them. The -n flag can be used to check for shell
script syntax errors.

Exits after reading and executing one command.

Treats an unset variable as an error and immediately exits when performing variable
substitution. An interactive shell does not exit.

Displays shell input lines as they are read.
Displays commands and their arguments before they are run.

Does not change any of the flags. This is useful in setting the $1 positional
parameter to a string beginning with a hyphen (-).

Using a plus sign (+) rather than a hyphen (-) unsets flags. You can also specify these flags
on the shell command line. The $- special variable contains the current set of flags.

Any Argument to the set command becomes a positional parameter and is assigned, in
order, to $1, $2, and so on. If you do not specify a flag or Argument, the set command
displays all the names and values of the current shell variables.

Shifts command line arguments to the left; that is, reassigns the value of the positional
parameters by discarding the current value of $1 and assigning the value of $2 to $1, of $3 to
$2, and so on. If there are more than 9 command line arguments, the 10th is assigned to $9
and any that remain are still unassigned (until after another shift). If there are 9 or fewer
arguments, the shift command unsets the highest-numbered positional parameter that has a

value.

The $0 positional parameter is never shifted. The shift n command is a shorthand notation
specifying n number of consecutive shifts. The default value of the n parameter is 1.
Evaluates conditional expressions. Refer to the test command for a discussion of command
flags and parameters. The -h flag is not supported by the built-in test command in bsh.
Displays the accumulated user and system times for processes run from the shell.

Chapter 11. Shells 203

Built-In Commands
trap [Command][n

1. ..

type [Name . . .]
ulimit [-HS] [-c | -d |
-fl-m | -s | -t] [limif]

umask [nnn]

unset [Name . .]

wait [n]

Runs the command specified by the Command parameter when the shell receives the signal
or signals specified by the n parameter. The trap commands are run in order of signal
number. Any attempt to set a trap on a signal that was ignored on entry to the current shell is
ineffective.

Note: The shell scans the Command parameter once when the trap is set and again
when the trap is taken.

If you do not specify a command, then all traps specified by the n parameter are reset to their
current values. If you specify a null string, this signal is ignored by the shell and by the
commands it invokes. If the n parameter is zero (0), the specified command is run when you
exit from the shell. If you do not specify either a command or a signal, the trap command
displays a list of commands associated with each signal number.

For each Name specified, indicates how the shell would interpret it as a command name.
Displays or adjusts allocated shell resources. There are two modes for displaying the shell
resource settings, which can either be displayed individually or as a group. The default mode
is to display resources set to the soft setting, or the lower bound, as a group.

The setting of shell resources depends on the effective user ID of the current shell. The hard
level of a resource can be set only if the effective user ID of the current shell is root. You will
get an error if you are not root and you are attempting to set the hard level of a resource. By
default, the root user sets both the hard and soft limits of a particular resource. The root user
should therefore be careful in using the -S, -H, or default flag usage of limit settings. Unless
you are a root user, you can set only the soft limit of a resource. Once a limit has been
decreased by a non-root user, it cannot be increased, even back to the original system limit.

To set a resource limit, select the appropriate flag and the limit value of the new resource,
which should be an integer. You can set only one resource limit at a time. If more than one
resource flag is specified, you receive undefined results. By default, ulimit with only a new
value on the command line sets the file size of the shell. Use of the -f flag is optional.

You can specify the following ulimit command flags:

-C Sets or displays core segment for shell.

-d Sets or displays data segment for shell.

-f Sets or displays file size for shell.

-H Sets or displays hard resource limit (root user only)
-m Sets or displays memory for shell.

-s Sets or displays stack segment for shell.

-S Sets or displays soft resource limit.

-t Sets or displays CPU time maximum for shell.

Determines file permissions. This value, along with the permissions of the creating process,
determines a file’s permissions when the file is created. The default is 022. When no value is
entered, umask displays the current value.

Removes the corresponding variable or function for each name specified by the Name
parameter. The PATH, PS1, PS2, MAILCHECK, and IFS shell variables cannot be unset.
Waits for the child process whose process number is specified by the n parameter to exit and
then returns the exit status of that process. If you do not specify the n parameter, the shell
waits for all currently active child processes and the return value is 0.

Command Substitution in the Bourne Shell

Command substitution allows you to capture the output of any command as an argument to another
command. When you place a command line within backquotes ("), the shell first runs the command or

204 system User's Guide: Operating System and Devices

commands, and then replaces the entire expression, including the backquotes, with the output. This
feature is often used to give values to shell variables. For example, the statement:

today='date’

assigns the string representing the current date to the today variable. The following assignment saves, in
the files variable, the number of files in the current directory:

files='ls | wc -1’
You can perform command substitution on any command that writes to standard output.

To nest command substitutions, precede each of the nested backquotes with a backslash (\), as in:
Togmsg="echo Your login directory is \'pwd\”

You can also give values to shell variables indirectly by using the kead special command. This command
takes a line from standard input (usually your keyboard) and assigns consecutive words on that line to any
variables named. For example:

read first init last

takes an input line of the form:
J. Q. Public

and has the same effect as if you had typed:
first=J. init=Q. last=Public

The read special command assigns any excess words to the last variable.

Variable and File Name Substitution in the Bourne Shell

The Bourne shell permits you to do variable and file name substitutions.

The following sections offer information about creating and substituting variables in the Bourne shell:

T i T i m

Variable Substitution in the Bourne Shell

The Bourne shell has several mechanisms for creating variables (assigning a string value to a name).
Certain variables, positional parameters and keyword parameters, are normally set only on a command
line. Other variables are simply names to which you or the shell can assign string values.

User-Defined Variables

The shell recognizes alphanumeric variables to which string values can be assigned. To assign a string
value to a name, type:

Name=String

Press Enter.

Chapter 11. Shells 205

A name is a sequence of letters, digits, and underscores that begins with an underscore or a letter. To use
the value that you have assigned to a variable, add a dollar sign ($) to the beginning of its name. Thus,
the $Name variable yields the value specified by the String variable. Note that no spaces are on either
side of the equal sign (=) in an assignment statement. (Positional parameters cannot appear in an
assignment statement. They can be set only as described in EPositional Parameters” on page 210.) You
can put more than one assignment on a command line, but remember that the shell performs the
assignments from right to left.

If you enclose the String variable with double or single quotation marks (" or ’), the shell does not treat
blanks, tabs, semicolons, and new-line characters within the string as word delimiters, but imbeds them
literally in the string.

If you enclose the String variable with double quotation marks ("), the shell still recognizes variable names
in the string and performs variable substitution; that is, it replaces references to positional parameters and
other variable names that are prefaced by dollar sign ($) with their corresponding values, if any. The shell
also performs command substitution within strings that are enclosed in double quotation marks.

If you enclose the String variable with single quotation marks (’), the shell does not substitute variables or
commands within the string. The following sequence illustrates this difference:
You: num=875

numberl="Add $num"

number2="'Add $num’

echo $numberl

System: Add 875
You: echo $number2
System: Add $num

The shell does not reinterpret blanks in assignments after variable substitution. Thus, the following
assignments result in $first and $second having the same value:

first='a string with embedded blanks'
second=$first

When you reference a variable, you can enclose the variable name (or the digit designating a positional
parameter) in { } to delimit the variable name from any string following. In particular, if the character
immediately following the name is a letter, digit, or underscore, and the variable is not a positional
parameter, then the braces are required:

You: a='This is a'

echo "${a}n example"
System: This is an example
You: echo "$a test"
System: This is a test

Refer to I'Conditional Substitution” on page 20d for a different use of braces in variable substitutions.
Variables Used by the Shell

The shell uses the following variables. Although the shell sets some of them, you can set or reset all of
them:

CDPATH Specifies the search path for the ed (change directory) command.

HOME Indicates the name of your login directory, the directory that becomes the current directory
upon completion of a login. The login program initializes this variable. The cd command uses
the value of the $SHOME variable as its default value. Using this variable rather than an explicit
path name in a shell procedure allows the procedure to be run from a different directory without
alterations.

IFS The characters that are internal field separators (the characters that the shell uses during blank

interpretation; see Blank Interpretation” on page 208). The shell initially sets the IFS variable

to include the blank, tab, and new-line characters.

206 system User's Guide: Operating System and Devices

LANG

LC_ALL

LC_COLLATE

LC_CTYPE

LC_MESSAGES

LIBPATH

LOGNAME

MAIL

MAILCHECK

MAILMSG

MAILPATH

PATH

Determines the locale to use for the locale categories when both the LC_ALL variable and the
corresponding environment variable (beginning with LC_) do not specify a locale. For more
information about locales, see ﬁﬁm in AIX 5L Version 5.1 System Management
Concepts: Operating System and Devices.

Determines the locale to be used to override any values for locale categories specified by the
settings of the LANG environment variable or any environment variables beginning with LC_.
For more information about locales and the LANG environment variable, see ’

Bverview” in AIX 5L Version 5.1 System Management Concepts: Operating System and
Devices.

Defines the collating sequence to use when sorting names and when character ranges occur in
patterns. For information about locales and the LANG environment variable, see "Lacald
Dverview” in AIX 5L Version 5.1 System Management Concepts: Operating System and
Devices.

Determines the locale for the interpretation of sequences of bytes of text data as characters
(that is, single- versus multibyte characters in arguments and input files), which characters are
defined as letters (alpha character class), and the behavior of character classes within pattern
matching. For more information about locales, see ” " in AIX 5L Version 5.1
System Management Concepts: Operating System and Devices.

Determines the language in which messages should be written. For information about locales
and the LANG environment variable, see ” " in AIX 5L Version 5.1 System
Management Concepts: Operating System and Devices.

Specifies the search path for shared libraries.

Specifies your login name, marked readonly in the /etc/profile file.

Indicates the path name of the file used by the mail system to detect the arrival of new mail. If
this variable is set, the shell periodically checks the modification time of this file and displays
the value of SMAILMSG if the time changes and the length of the file is greater than 0. Set the
MAIL variable in the .profile file. The value normally assigned to it by users of the mail
command is /usr/spool/mail/SLOGNAME.

The number of seconds that the shell lets elapse before checking again for the arrival of mail in
the files specified by the MAILPATH or MAIL variables. The default value is 600 seconds (10
minutes). If you set the MAILCHECK variable to 0, the shell checks before each prompt.

The mail notification message. If you explicitly set the MAILMSG variable to a null string
(MATILMSG=""), no message is displayed.

A list of file names separated by colons. If this variable is set, the shell informs you of the
arrival of mail in any of the files specified in the list. You can follow each file name by a % and a
message to be displayed when mail arrives. Otherwise, the shell uses the value of the
MAILMSG variable or, by default, the message [YOU HAVE NEW MAIL].

Note: When the MAILPATH variable is set, these files are checked instead of the file set
by the MAIL variable. To check the files set by the MAILPATH variable and the file set by
the MAIL variable, specify the MAIL file in your list of MAILPATH files.
The search path for commands, which is an ordered list of directory path names separated by
colons. The shell searches these directories in the specified order when it looks for commands.
A null string anywhere in the list represents the current directory.

The PATH variable is normally initialized in the /etc/environment file, usually to
lusr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin. You can reset this variable to suit your own
needs. The PATH variable provided in your .profile file also includes $HOME/bin and your
current directory.

If you have a project-specific directory of commands, for example, /project/bin, that you want
searched before the standard system directories, set your PATH variable as follows:

PATH=/project/bin:$PATH

The best place to set your PATH variable to a value other than the default value is in your
$SHOME/.profile file. You cannot reset the PATH variable if you are executing commands under
the restricted shell.

Chapter 11. Shells 207

../../aixbman/admnconc/locale_overview.htm#HDRA3LM7370BOB
../../aixbman/admnconc/locale_overview.htm#HDRA3LM7370BOB
../../aixbman/admnconc/locale_overview.htm#HDRA3LM7370BOB
../../aixbman/admnconc/locale_overview.htm#HDRA3LM7370BOB
../../aixbman/admnconc/locale_overview.htm#HDRA3LM7370BOB
../../aixbman/admnconc/locale_overview.htm#HDRA3LM7370BOB
../../aixbman/admnconc/locale_overview.htm#HDRA3LM7370BOB

PS1

PS2

The string to be used as the primary system prompt. An interactive shell displays this prompt
string when it expects input. The default value of the PS1 variable is $ followed by a blank
space, for nonroot users.

The value of the secondary prompt string. If the shell expects more input when it encounters a
new-line character in its input, it prompts with the value of the PS2 variable. The default value
of the PS2 variable is >, followed by a blank space.

SHACCT The name of a file that you own. If this variable is set, the shell writes an accounting record in

SHELL

the file for each shell script executed. You can use accounting programs such as acctcom and
acctcms to analyze the data collected.

The path name of the shell, which is kept in the environment. This variable should be set and
exported by the SHOME/.profile file of each restricted login.

TIMEOUT The number of minutes a shell remains inactive before it exits. If this variable is set to a value

greater than zero (0), the shell exits if a command is not entered within the prescribed number
of seconds after issuing the PS1 prompt. (Note that the shell can be compiled with a maximum
boundary that cannot be exceeded for this value.) A value of zero indicates no time limit.

Predefined Special Variables

Several variables have special meanings. The following variables are set only by the shell.

s$e

$*

$#

$?

$$

$!
$-

Expands the positional parameters, beginning with $1. Each parameter is separated by a space.

If you place " " around $@, the shell considers each positional parameter a separate string. If no positional
parameters exist, the Bourne shell expands the statement to an unquoted null string.

Expands the positional Earameters, beginning with $1. The shell separates each parameter with the first
character of the value.

If you place " " around $*, the shell includes the positional parameter values, in double quotation marks. Each
value is separated by the first character of the IFS variable.

Specifies the number of positional parameters passed to the shell, not counting the name of the shell
procedure itself. The $# variable thus yields the number of the highest-numbered positional parameter that is
set. One of the primary uses of this variable is to check for the presence of the required number of arguments.
Only positional parameters $0 through $9 are accessible through the shell. See "tPasitional Parameters” ol
Egﬁ” for more information.

Specifies the exit value of the last command executed. Its value is a decimal string. Most commands return a
value of 0 to indicate successful completion. The shell itself returns the current value of the $? variable as its
exit value.

Identifies the process number of the current process. Because process numbers are unique among all existing
processes, this string is often used to generate unique names for temporary files.

The following example illustrates the recommended practice of creating temporary files in a directory used only
for that purpose:

temp=/tmp/$$
1s >$temp

rm $temp
Specifies the process number of the last process run in the background using the & terminator.
A string consisting of the names of the execution flags currently set in the shell.

Blank Interpretation
After the shell performs variable and command substitution, it scans the results for internal field separators

(those

defined in the IFS shell variable). The shell splits the line into distinct words at each place it finds

one or more of these characters separating each distinct word with a single space. It then retains explicit
null arguments ("” or) and discards implicit null arguments (those resulting from parameters that have no

values

208

)-

System User’s Guide: Operating System and Devices

Conditional Substitution

Normally, the shell replaces the expression $Variable with the string value assigned to the Variable
variable, if there is one. However, there is a special notation that allows conditional substitution, depending
on whether the variable is set or not null, or both. By definition, a variable is set if it has ever been
assigned a value. The value of a variable can be the null string, which you can assign to a variable in any
one of the following ways:

A=

bcd=//7/

Efg=" Assigns the null string to the A, bed, and Efg.

set 77 " Sets the first and second positional parameters to the null string and unsets all other positional

parameters.

The following is a list of the available expressions you can use to perform conditional substitution:

${Variable- String} If the variable is set, substitute the Variable value in place of this expression.
Otherwise, replace this expression with the String value.

${Variable:-String} If the variable is set and not null, substitute the Variable value in place of this
expression. Otherwise, replace this expression with the String value.

${Variable=String} If the variable is set, substitute the Variable value in place of this expression.

Otherwise, set the Variable value to the String value and then substitute the
Variable value in place of this expression. You cannot assign values to
positional parameters in this fashion.

${Variable:=String} If the variable is set and not null, substitute the Variable value in place of this
expression. Otherwise, set the Variable value to the String value and then
substitute the Variable value in place of this expression. You cannot assign
values to positional parameters in this fashion.

${Variable? String} If the variable is set, substitute the Variable value in place of this expression.
Otherwise, display a message of the form:

Variable: String

and exit from the current shell (unless the shell is the login shell). If you do not
specify a value for the String variable, the shell displays the following message:

Variable: parameter null or not set
${Variable:? String} If the variable is set and not null, substitute the Variable value in place of this
expression. Otherwise, display a message of the form:

Variable: String

and exit from the current shell (unless the shell is the login shell). If you do not
specify the String value, the shell displays the following message:

Variable: parameter null or not set

${Variable+String} If the variable is set, substitute the String value in place of this expression.
Otherwise, substitute the null string.
${Variable:+ String} If the variable is set and not null, substitute the String value in place of this

expression. Otherwise, substitute the null string.

In conditional substitution, the shell does not evaluate the String variable until the shell uses this variable
as a substituted string. Thus, in the following example, the shell executes the pwd command only if d is
not set or is null:

echo ${d:-'pwd’}

Chapter 11. Shells 209

Positional Parameters

When you run a shell procedure, the shell implicitly creates positional parameters that reference each
word on the command line by its position on the command line. The word in position 0 (the procedure
name) is called $0, the next word (the first parameter) is called $1, and so on, up to $9. To refer to
command line parameters numbered higher than 9, use the built-in command.

You can reset the values of the positional parameters explicitly by using the built-in kefcommand.

Note: When an argument for a position is not specified, its positional parameter is set to null.
Positional parameters are global and can be passed to nested shell procedures.

File Name Substitution in the Bourne Shell

Command parameters are often file names. You can automatically produce a list of file names as
parameters on a command line. To do this, specify a character that the shell recognizes as a
pattern-matching character. When a command includes such a character, the shell replaces it with the file
names in a directory.

Note: The Bourne shell does not support file name expansion based on equivalence classification of
characters.

Most characters in such a pattern match themselves, but you can also use some special pattern-matching
characters in your pattern. These special characters are:

* Matches any string, including the null string.
? Matches any one character.
cea] Matches any one of the characters enclosed in square brackets.
M...1 Matches any character within square brackets other than one of the characters that follow the

exclamation mark.

Within square brackets, a pair of characters separated by a - specifies the set of all characters lexically
within the inclusive range of that pair, according to the binary ordering of character values.

Pattern matching has some restrictions. If the first character of a file name is a dot (.), it can be matched
only by a pattern that also begins with a dot. For example, * matches the file names myfile and yourfile
but not the file names .myfile and .yourfile. To match these files, use a pattern such as the following:

*file

If a pattern does not match any file names, then the pattern itself is returned as the result of the attempted
match.

File and directory names should not contain the characters *, ?, [, or] because they can cause infinite
recursion (that is, infinite loops) during pattern-matching attempts.

Character Classes
You can also use character classes to match file names:
[[:charclass:]]

This format instructs the system to match any single character belonging to the specified class. The
defined classes correspond to ctype subroutines. They are:

Character Class Definition
alnum Alphanumeric characters

210 system User's Guide: Operating System and Devices

Character Class
alpha
blank
cntrl
digit
graph
lower
print
punct
space
upper
xdigit

Definition

Uppercase and lowercase letters
Space or horizontal tab

Control characters

Digits

Graphic characters

Lowercase letters

Printable characters

Punctuation characters

Space, horizontal tab, carriage return, new-line, vertical tab or form-feed character
Uppercase characters
Hexadecimal digits.

Input and Output Redirection in the Bourne Shell

In general, most commands do not know or care whether their input or output is associated with the
keyboard, the display screen, or a file. Thus, a command can be used conveniently either at the keyboard

or in a pipeline.

The following redirection options can appear anywhere in a simple command. They can also precede or
follow a command, but are not passed to the command.

<File
>File

> >File

<<[-]eofstr

Uses the specified file as standard input.

Uses the specified file as standard output. Creates the file if it does not exist; otherwise,
truncates it to zero length.

Uses the specified file as standard output. Creates the file if it does not exist; otherwise, adds
the output to the end of the file.

Reads as standard input all lines from the eofstr variable up to a line containing only eofstr or
up to an end-of-file character. If any character in the eofstr variable is quoted, the shell does
not expand or interpret any characters in the input lines. Otherwise, it performs variable and
command substitution and ignores a quoted new-line character (\new-line). Use a \ to quote
characters within the eofstr variable or within the input lines.

If you add a - to the << redirection option, then all leading tabs are stripped from the eofstr
variable and from the input lines.

Associates standard input with the file descriptor specified by the Digit variable.

Associates standard output with the file descriptor specified by the Digit variable.

Closes standard input.

Closes standard output.

Note: The restricted shell does not allow output redirection.

”

For more information about redirection, see EChapter 4_lnput and Quiput Redirection” on page 41 and

List of Bourne Shell Built-in Commands

EE]EF@"’

Returns a zero exit value

Reads and executes commands from a file parameter and then returns.

Exists from the enclosing for, while, or until command loops, if any.

Changes the current directory to the specified directory.

Resumes the next iteration of the enclosing for, while, or until command loops.

Writes character strings to standard output.

Reads the arguments as input to the shell and executes the resulting command or commands.

Chapter 11. Shells 211

bxed Executes the command specified by the Argument parameter, instead of this shell, without creating a
new process.

bxit Exits the shell whose exit status is specified by the n parameter.

W Marks names for automatic export to the environment of subsequently executed commands.
hasH Finds and remembers the location in the search path of specified commands.
hwd Displays the current directory.

kead Reads one line from standard input.

keadoniy Marks name specified by Name parameter as read-only.

keturn Causes a function to exit with a specified return value.

kel Controls the display of various parameters to standard output.

Ehifi Shifts command-line arguments to the left.

tesi Evaluates conditional expressions.

timed Displays the accumulated user and system times for processes run from the shell.
trag Runs a specified command when the shell receives a specified signal or signals.
W Interprets how the shell would interpret a specified name as a command name.
Llimid Displays or adjusts allocated shell resources.

Limasil Determines file permissions.

Linsel Removes the variable or function corresponding to a specified name.

lvail Waits for the specified child process to end and reports its termination status.

See [Baurne Shell Built-ln Commands” on page 201l for more information.

Bourne Shell Related Information

The bsH or command, lagin command.
The Bourne shell kead special command.
The lsetuid subroutine, Betgid subroutine.
The bul special file.

The lenvironment file, profild file format.

[C Shelll

C Shell

The C shell is an interactive command interpreter and a command programming language. It uses syntax
that is similar to the C programming language. The ecsh command starts the C shell.

212 system User's Guide: Operating System and Devices

../../cmds/aixcmds1/bsh.htm#HDRA27991201
../../cmds/aixcmds4/brsh.htm
../../cmds/aixcmds3/login.htm#HDRA68V042F7
../../cmds/aixcmds4/read.htm#HDRA143C17A0
../../libs/basetrf2/setuid.htm#HDRA2089A65
../../libs/basetrf2/setgid.htm#HDRA2989D6B
../../files/aixfiles/null.htm#HDRA287X9243D
../../files/aixfiles/environment.htm#HDRA243Y98FF1
../../files/aixfiles/profile.htm#HDRVPHPE0GSC

When you log in, it first searches the systemwide setup file /etc/csh.cshre. If it is there, the C shell
executes the commands stored in that file. Next, the C shell executes the systemwide setup file
letc/csh.login if it is available. Then, it searches your home directory for the .cshrc and .login files. If
they exist, they contain any customized user information pertinent to running the C shell. All variables set
in the /etc/csh.cshrc and /etc/csh.login files might be overridden by your .cshrc and .login files in your
$HOME directory. Only the root user can modify the /etc/csh.cshrc and /etc/csh.login files.

The /etc/csh.login and $HOME/.login files are executed only once at login time. They are generally used
to hold environment variable definitions, commands that you want executed once at login, or commands
that set up terminal characteristics.

The /etc/csh.cshrc and $HOME/.cshrc files are executed at login time, and every time the csh command
or a C shell script is invoked. They are generally used to define C shell characteristics like aliases and C
shell variables (for example, history, noclobber, or ignoreeof). It is recommended that you only use the kd

Shell Built-In Commands” on page 214l in the /etc/csh.cshrc and $HOME/.cshre files because using other

commands increases the startup time for shell scripts.

This section discusses the following:

C Shell Limitations

The following are limitations of the C shell:
» Words can be no longer than 1024 bytes.

* Argument lists are limited to ARG_MAX bytes. Values for the ARG_MAX variable are found in the
lust/include/sys/limits.h file.

» The number of arguments to a command that involves file name expansion is limited to 1/6th the
number of bytes allowed in an argument list.

Chapter 11. Shells 213

« Command substitutions can substitute no more bytes than are allowed in an argument list.
» To detect looping, the shell restricts the number of alias substitutions on a single line to 20.

* The esh command does not support file name expansion based on equivalence classification of
characters.

Signal Handling

The C shell normally ignores quit signals. Jobs running detached are immune to signals generated from
the keyboard (INTERRUPT, QUIT, and HANGUP). Other signals have the values the shell inherits from its
parent. You can control the shell’s handling of INTERRUPT and TERMINATE signals in shell procedures
with onintr. Login shells catch or ignore TERMINATE signals depending on how they are set up. Shells
other than login shells pass TERMINATE signals on to the child processes. In no cases are INTERRUPT
signals allowed when a login shell is reading the .logout file.

C Shell Commands

A simple command is a sequence of words separated by blanks or tabs.

A word is a sequence of characters or numerals, or both, that does not contain blanks without quotation
marks. In addition, the following characters and doubled characters also form single words when used as
command separators or terminators:

& H

& | << > >

<

> ()

These special characters can be parts of other words. Preceding them with a \, however, prevents the
shell from interpreting them as special characters. Strings enclosed in’ ’ or " " (matched pairs of
quotation characters) or backquotes can also form parts of words. Blanks, tab characters, and special
characters do not form separate words when they are enclosed in these marks. In addition, you can
enclose a new-line character within these marks by preceding it with a \.

The first word in the simple command sequence (numbered 0) usually specifies the name of a command.
Any remaining words, with a few exceptions, are passed to that command. If the command specifies an
executable file that is a compiled program, the shell immediately runs that program. If the file is marked
executable but is not a compiled program, the shell assumes that it is a shell script. In this case, the shell
starts another instance of itself (a subshell) to read the file and execute the commands included in it.

This section discusses:

C Shell Built-in Commands

Built-in commands are run within the shell. If a built-in command occurs as any component of a pipeline,
except the last, the command runs in a subshell.

Note: If you enter a command from the C shell prompt, the system searches for a built-in command

first. If a built-in command does not exist, the system searches the directories specified by the path
shell variable for a system-level command. Some C shell built-in commands and operating system

214 system User's Guide: Operating System and Devices

commands have the same name. However, these commands do not necessarily work the same way.
Check the appropriate command description for information on how the command works.

If you run a shell script from the shell and the first line of the shell script begins with #!/Shel1Pathname, the
C shell runs the shell specified in the comment to process the script. Otherwise, it runs the default shell
(the shell linked to /usr/bin/sh). If run by the default shell, C shell built-in commands might not be
recognized. To get the system to run C shell commands, make the first line of the script #!/usr/bin/csh.

Refer to the EList of C Shell Built-in Commands” on page 239 for an alphabetic listing of the built-in

commands.

C Shell Command Descriptions
The C shell provides the following built-in commands:

alias [Name [WordLisf]]

bg [%Job ...]
break
breaksw
case Label:

cd[Name]
chdir [Name]

continue
default:
dirs
echo

else

end

endif

Displays all aliases if you do not specify any parameters. Otherwise, the
command displays the alias for the specified Name. If WordList is specified,
this command assigns the value of WordList to the alias Name. The specified
alias Name cannot be alias or unalias.

Puts the current job or job specified by Job into the background, continuing
the job if it was stopped.

Resumes running after the end of the nearest enclosing foreach or while
command.

Breaks from a switch command; resumes after the endsw command.
Defines a Label in a switch command.

Equivalent to the chdir command (see following description).

Changes the current directory to that specified by the Name variable. If you do
not specify Name, the command changes to your home directory. If the value
of the Name variable is not a subdirectory of the current directory and does
not begin with /, ./, or ../, the shell checks each component of the cdpath shell
variable to see if it has a subdirectory matching the Name variable. If the
Name variable is a shell variable with a value that begins with /, the shell tries
this to see if it is a directory. The chdir command is equivalent to the cd
command.

Continues execution at the end of the nearest enclosing while or foreach
command.

Labels the default case in a switch statement. The default should come after
all other case labels.

Displays the directory stack.

Writes character strings to the standard output of the shell.

Runs the commands that follow the second else in an if (Expression) then
...else if (Expression2) then ... else ... endif command sequence.
Successively sets the Name variable to each member specified by the List
variable and runs the sequence of Commands between the foreach and the
matching end statements. The foreach and end statements must appear
alone on separate lines.

Uses the continue statement to continue the loop and the break statement to
end the loop prematurely. When the foreach command is read from the
terminal, the C shell prompts with a ? to allow Commands to be entered.
Commands within loops, prompted for by ?, are not placed in the history list.

If the Expression variable is true, runs the Commands that follow the first then
statement. If the else if Expression2 is true, runs the Commands that follow
the second then statement. If the else if Expression2 is false, runs the
Commands that follow the else. Any number of else if pairs are possible.
Only one endif statement is needed. The else segment is optional. The words
else and endif can be used only at the beginning of input lines. The if
segment must appear alone on its input line or after an else command.

Chapter 11. Shells 215

endsw

eval Parameter . . .

exec Command
exit [(Expression)

fg [%Job ...]

foreach Name (List) Command. . .

glob List

goto Word

hashstat

history [-r | -h] [n]

if (Expression) Command

jobs [-I]

kill -1 | [[-Signal] % Job...|PID...]

Successively matches each case label against the value of the string variable.
The string is command and file name expanded first. Use the
pattern-matching characters *, ?, and [. . .]in the case labels, which are
variable-expanded. If none of the labels match before a default label is found,
the execution begins after the default label. The case label and the default
label must appear at the beginning of the line. The breaksw command causes
execution to continue after the endsw command. Otherwise, control might fall
through the case and default labels, as in the C programming language. If no
label matches and there is no default, execution continues after the endsw
command.

Reads the value of the Parameter variable as input to the shell and runs the
resulting command or commands in the context of the current shell. Use this
command to run commands generated as the result of command or variable
substitution, since parsing occurs before these substitutions.

Runs the specified Command in place of the current shell.

Exits the shell with either the value of the status shell variable (if no
Expression is specified) or with the value of the specified Expression.

Brings the current job or job specified by Job into the foreground, continuing
the job if it was stopped.

Successively sets a Name variable for each member specified by the List
variable and a sequence of commands, until reaching an end command.
Displays List using history, variable, and file name expansion. Puts a null
character between words and does not include a carriage return at the end.
Continues to run after the line specified by the Word variable. The specified
Word is file name and command expanded to yield a string of the form
specified by the Label: variable. The shell rewinds its input as much as
possible and searches for a line of the form Label:, possibly preceded by
blanks or tabs.

Displays statistics indicating how successful the hash table has been at
locating commands.

Displays the history event list. The oldest events are displayed first. If you
specify a number n, only the specified number of the most recent events are
displayed. The -r flag reverses the order in which the events are displayed so
the most recent is displayed first. The -h flag displays the history list without
leading numbers. Use this flag to produce files suitable for use with the -h flag
of the source command.

Runs the specified Command (including its arguments) if the specified
Expression is true. Variable substitution on the Command variable happens
early, at the same time as the rest of the if statement. The specified
Command must be a simple command (rather than a pipeline, command list,
or parenthesized command list).

Note: Input and output redirection occurs even if the Expression
variable is false and the Command is not executed.
Lists the active jobs. With the -l (lowercase L) flag, the jobs command lists
process IDs in addition to the job number and name.
Sends either the TERM (terminate) signal or the signal specified by Signal to
the specified Job or PID (process). Specify signals either by number or by
name (as given in the /usr/include/sys/signal.h file, stripped of the SIG
prefix). The -l (lowercase L) flag lists the signal names.

216 System User's Guide: Operating System and Devices

limit [-h] [Resource [Max-Usel]]

login

logout
nice [+n] [Command)]

nohup [Command]

notify [%Job...]

Limits the usage of the specified resource by the current process and each
process it creates. Process resource limits are defined in the
letc/security/limits file. Controllable resources are the central processing unit
(CPU) time, file size, data size, core dump size, and memory use. Maximum
allowable values for these resources are set with the mkuser command when
the user is added to the system. They are changed with the chuser
command.

Limits are categorized as either soft or hard. Users may increase their soft
limits up to the ceiling imposed by the hard limits. You must have root user
authority to increase a soft limit above the hard limit, or to change hard limits.
The -h flag displays hard limits instead of the soft limits.

If a Max-Use parameter is not specified, the limit command displays the
current limit of the specified resource. If the Resource parameter is not
specified, the limit command displays the current limits of all resources. For
more information about the resources controlled by the limit subcommand,

see the getrlimit,_setrlimit_or vlimit subroutine in the AIX 5L Version 5.1

Technical Reference: Base Operating System and Extensions Volume 1.

The Max-Use parameter for CPU time is specified in the hh:mm:ss format.
The Max-Use parameter for other resources is specified as a floating-point
number or an integer optionally followed by a scale factor. The scale factor is:
k or kilobytes (1024 bytes), m or megabytes, or b or blocks (the units used by
the Ei subroutine as explained in the AIX 5L Version 5.1 Technical
Reference: Base Operating System and Extensions Volume 2). If you do not
specify a scale factor, k is assumed for all resources. For both resource
names and scale factors, unambiguous prefixes of the names suffice.

Note: This command limits the physical memory (memory use) available

for a process only if there is contention for system memory by other

active processes.
Ends a login shell and replaces it with an instance of the /usr/bin/login
command. This is one way to log out (included for compatibility with the ksh
and bsh commands).
Ends a login shell. This command must be used if the ignoreeof option is set.
If no values are specified, sets the priority of commands run in this shell to 24.
If the +n flag is specified, sets the priority plus the specified number. If the +n
flag and Command are specified, runs Command at priority 24 plus the
specified number. If you have root user authority, you can run the nice
statement with a negative number. The Command always runs in a subshell,
and the restrictions placed on commands in simple if statements apply.
Causes hangups to be ignored for the remainder of the script when no
Command is specified. If Command is specified, causes the specified
Command to be run with hangups ignored. To run a pipeline or list of
commands, put the pipeline or list in a shell script, give the script execute
permission, and use the shell script as the value of the Command variable. All
processes run in the background with & are effectively protected from being
sent a hangup signal when you log out. However, these processes are still
subject to explicitly sent hangups unless the nohup statement is used.
Causes the shell to notify you asynchronously when the status of the current
job or specified Job changes. Normally, the shell provides notification just
before it presents the shell prompt. This feature is automatic if the notify shell
variable is set.

Chapter 11. Shells 217

../../libs/basetrf1/getrlimit_64.htm#HDRA215961F
../../libs/basetrf2/ulimit.htm#HDRIXO2F0GACO

onintr [- | Label]

popd [+n]

pushd [+nlName]

rehash

repeat Count Command

set [[Name[n]] [= Word]] | [Name =

(List)]

setenvName Value

shift [Variable)

source[-h] Name

stop [%Job ...]
suspend

Controls the action of the shell on interrupts. If no arguments are specified,
restores the default action of the shell on interrupts, which ends shell scripts
or returns to the command input level. If a - flag is specified, causes all
interrupts to be ignored. If Label is specified, causes the shell to run a goto
Label statement when the shell receives an interrupt or when a child process
ends due to an interruption. In any case, if the shell is running detached and
interrupts are being ignored, all forms of the onintr statement have no
meaning. Interrupts continue to be ignored by the shell and all invoked
commands.

Pops the directory stack and changes to the new top directory. If you specify a
+n variable, the command discards the nth entry in the stack. The elements of
the directory stack are numbered from the top, starting at 0.

With no arguments, exchanges the top two elements of the directory stack.
With the Name variable, the command changes to the new directory and
pushes the old current directory (as given in the cwd shell variable) onto the
directory stack. If you specify a +n variable, the command rotates the nth
component of the directory stack around to be the top element and changes
to it. The members of the directory stack are numbered from the top, starting
at 0.

Causes recomputation of the internal hash table of the contents of the
directories in the path shell variable. This action is needed if new commands
are added to directories in the path shell variable while you are logged in. The
rehash command is necessary only if commands are added to one of the
user’'s own directories or if someone changes the contents of one of the
system directories.

Runs the specified Command, subject to the same restrictions as commands
in simple if statements, the number of times specified by Count.

Note: I/O redirections occur exactly once, even if the Count variable
equals 0.
Shows the value of all shell variables when used with no arguments. Variables
that have more than a single word as their value are displayed as a
parenthesized word list. If only Name is specified, the C shell sets the Name
variable to the null string. Otherwise, sets Name to the value of the Word
variable, or sets the Name variable to the list of words specified by the List
variable. When n is specified, the nth component of the Name variable is set
to the value of the Word variable; the nth component must already exist. In all
cases, the value is command and file name expanded. These arguments may
be repeated to set multiple values in a single set command. However, variable
expansion happens for all arguments before any setting occurs.
Sets the value of the environment variable specified by the Name variable to
Value, a single string. The most commonly used environment variables,
USER, TERM, HOME, and PATH, are automatically imported to and exported
from the C shell variables user, term, home, and path. There is no need to
use the setenv statement for these.
Shifts the members of the argv shell variable or the specified Variable to the
left. An error occurs if the argv shell variable or specified Variable is not set or
has less than one word as its value.
Reads commands specified by the Name variable. You can nest the source
commands. However, if they are nested too deeply, the shell might run out of
file descriptors. An error in a source command at any level ends all nested
source commands. Normally, input during source commands is not placed on
the history list. The -h flag causes the commands to be placed in the history
list without executing them.
Stops the current job or specified Job running in the background.
Stops the shell as if a STOP signal had been received.

218 System User's Guide: Operating System and Devices

switch (string)

time [Command]

umask [Value]

unalias *| Pattern

unhash
unlimit [-h][Resource]

unset *|Pattern
unsetenv Pattern

wait

Starts a switch (String) case String : ... breaksw default: ... breaksw endsw
command sequence. This command sequence successively matches each
case label against the value of the String variable. If none of the labels match
before a default label is found, the execution begins after the default label.
The time command controls automatic timing of commands. If you do not
specify the Command variable, the time command displays a summary of
time used by this shell and its children. If you specify a command with the
Command variable, it is timed. The shell then displays a time summary, as
described under the kimd shell variable. If necessary, an extra shell is created
to display the time statistic when the command completes.

Here is an example using time with the sleep command:
time sleep

The output from this command might look like:
0.0u 0.0s 0:00 100% 44+4k 0+0io Opf+Ow

The seven fields in the output are described below:
Field Description
First Number of seconds of CPU time devoted to the user process

Second
Number of seconds of CPU time consumed by the kernel on behalf
of the user process

Third Elapsed (wall clock) time for the command

Fourth Total user CPU Time plus system time, as a percentage of elapsed
time

Fifth Average amount of shared memory used, plus average amount of
unshared data space used, in kilobytes

Sixth Number of block input and output operations

Seventh

Page faults plus number of swaps
Determines file permissions. This Value, along with the permissions of the
creating process, determines a file’s permissions when the file is created. The
default is 022. The current setting will be displayed if no Value is specified.
Discards all aliases with names that match the Pattern variable. All aliases are
removed by the unalias * command. The absence of aliases does not cause
an error.
Disables the use of the internal hash table to locate running programs.
Removes the limitation on the Resource variable. If no Resource variable is
specified, all resource limitations are removed. See the description of the limit
command for the list of Resource names.

The -h flag removes corresponding hard limits. Only a user with root user
authority can change hard limits.

Removes all variables with names that match the Pattern variable. Use unset
* to remove all variables. If no variables are set, it does not cause an error.
Removes all variables from the environment whose name matches the
specified Pattern. (See the setenv built-in command.)

Waits for all background jobs. If the shell is interactive, an INTERRUPT
(usually the Citrl-C key sequence) disrupts the wait. The shell then displays
the names and job numbers of all jobs known to be outstanding.

Chapter 11. Shells 219

while (Expression) Command. . .
end

@ [Name[n] = Expression]

Evaluates the Commands between the while and the matching end
statements while the expression specified by the Expression variable
evaluates nonzero. You can use the break statement to end and the continue
statement to continue the loop prematurely. The while and end statements
must appear alone on their input lines. If the input is from a terminal, prompts
occur after the while (Expression) similar to the foreach statement.

Displays the values of all the shell variables when used with no arguments.
Otherwise, sets the name specified by the Name variable to the value of the
Expression variable. If the expression contains <, >, &, or | characters, this
part of the expression must be placed within parentheses. When n is
specified, the nth component of the Name variable is set to the Expression
variable. Both the Name variable and its nth component must already exist.

C language operators, such as *= and +=, are available. The space
separating the Name variable from the assignment operator is optional.
Spaces are, however, required in separating components of the Expression
variable, which would otherwise be read as a single word. Special suffix
operators, double plus sign (++) and double hyphen (- -) increase and
decrease, respectively, the value of the Name variable.

C Shell Expressions and Operators

The @ built-in command and the exit, if, and while statements accept expressions that include operators
similar to those of C language, with the same precedence. The following operators are available:

Operator What it Means

() change precedence

i complement

! negation

*/ % multiply, divide, modulo
+ - add, subtract

< > > left shift, right shift

relational operators
= string comparison/pattern matching
& bitwise "and”

bitwise "exclusive or”
| bitwise "inclusive or”

&& logical "and”

[logical "or”

In the above list, precedence of the operators decreases down the list - left to right, top to bottom.

Note: The operators + and - are right associative. For example, evaluation of a + b - ¢ is performed

as follows:
a+ (b-oc)

and not:
(a+b) -c

The ==, |=, =, and | operators compare their arguments as strings; all others operate on numbers. The
=" and ! operators are similar to == and !=, except that the rightmost side is a pattern against which the
leftmost operand is matched. This reduces the need for use of the switch statement in shell procedures
when all that is really needed is pattern matching.

220 system User's Guide: Operating System and Devices

The logical operators or (ll) and and (&&) are available as well. They can be used, for example, to check
for a range of numbers:

if ($#argv > 2 && $#argv < 7) then
In the preceding example, the number of arguments must be greater than 2 and less than 7.

Strings beginning with zero (0) are considered octal numbers. Null or missing arguments are considered 0.
All expressions result in strings representing decimal numbers. Note that two components of an expression
can appear in the same word. Except when next to components of expressions that are syntactically
significant to the parser (& | < > (')), expression components should be surrounded by spaces.

Also available in expressions as primitive operands are command executions enclosed in () and file
inquiries of the form (-operator Filename), where operator is one of the following:

Read access
Write access
Execute access
Existence
Ownership
Zero size

Plain file
Directory

2 *"NO®XTZ5g =

The specified Filename is command and file name expanded and then tested to see if it has the specified
relationship to the real user. If Filename does not exist or is inaccessible, then all inquiries return false(0).
If the command runs successfully, the inquiry returns a value of true(1). Otherwise, if the command fails,
the inquiry returns a value of false(0). If more detailed status information is required, run the command
outside an expression and then examine the status shell variable.

Command Substitution in the C Shell

In command substitution, the shell executes a specified command and replaces that command with its
output. To perform command substitution in the C shell, enclose the command or command string in
backquotes ('). The shell normally breaks the output from the command into separate words at blanks,
tabs, and new-line characters. It then replaces the original command with this output.

In the following example, the backquotes (' ') around the date command indicate that the output of the
command will be substituted:

echo The current date and time is: 'date’

The output from this command might look like:
The current date and time is: Wed Apr 8 13:52:14 CDT 1992

The C shell performs command substitution selectively on the arguments of built-in shell commands. This
means that it does not expand those parts of expressions that are not evaluated. For commands that are
not built-in, the shell substitutes the command name separately from the argument list. The substitution
occurs in a child of the main shell, only after the shell performs input or output redirection.

If a command string is surrounded by " ”, the shell treats only new-line characters as word separators,

thus preserving blanks and tabs within the word. In all cases, the single final new-line character does not
force a new word.

Chapter 11. Shells 221

Nonbuilt-in C Shell Command Execution

When the C shell determines that a command is not a built-in shell command, it attempts to run the
command with the bExecd system call. Each word in the path shell variable names a directory from which
the shell attempts to run the command. If given neither the -c nor -t flag, the shell hashes the names in
these directories into an internal table. The shell tries to call the exec system call on a directory only if
there is a possibility that the command resides there. If you turn off this mechanism with the unhash
command or give the shell the -¢ or -t flag, the shell concatenates with the given command name to form
a path name of a file. The shell also does this in any case for each directory component of the path
variable that does not begin with a /. The shell then attempts to run the command.

Parenthesized commands always run in a subshell. For example:
(cd 5 pwd) ; pwd

displays the home directory without changing the current directory location. However, the command:
cd ;3 pwd

changes the current directory location to the home directory. Parenthesized commands are most often
used to prevent the chdir command from affecting the current shell.

If the file has execute permission, but is not an executable binary to the system, then the shell assumes it
is a file containing shell commands and runs a new shell to read it.

If there is an alias for the shell, then the words of the alias are prefixed to the argument list to form the
shell command. The first word of the alias should be the full path name of the shell.

History Substitution in the C Shell

History substitution lets you modify individual words from previous commands to create new commands.
History substitution makes it easy to repeat commands, repeat the arguments of a previous command in
the current command, or fix spelling mistakes in the previous command with little typing.

History substitutions begin with the ! character and can appear anywhere on the command line, provided
they do not nest (in other words, a history substitution cannot contain another history substitution). You can
precede the ! with a \ to cancel the exclamation point’s special meaning. In addition, if you place the !
before a blank, tab, new-line character, =, or (, history substitution does not occur.

History substitutions also occur when you begin an input line with a ~. The shell echoes any input line
containing history substitutions at the workstation before it executes that line.

This section discusses:
o FHistorv Lists?

History Lists

The history list saves commands that the shell reads from the command line that consist of one or more
words. History substitution reintroduces sequences of words from these saved commands into the input
stream.

The history shell variable controls the size of the history list. You must set the history shell variable either
in the .cshrc file or on the command line with the built-in set command. The previous command is always

222 System User's Guide: Operating System and Devices

../../libs/basetrf1/exec.htm#HDRPDR80GACO

retained regardless of the value of the history variable. Commands in the history list are numbered
sequentially starting from 1. The built-in history command produces output of the type:

9 write michael

10 ed write.c

11 cat oldwrite.c
12 diff *write.c

The shell displays the command strings with their event numbers. It is not usually necessary to use event
numbers to refer to events, but you can have the current event number displayed as part of your system
prompt by placing an ! in the prompt string assigned to the prompt environment variable.

A full history reference contains an event specification, a word designator, and one or more modifiers in
the following general format:

Event[.]Word:Modifier[:Modifier] . . .
Note: Only one word can be modified. A string that contains blanks is not allowed.

In the previous sample of history command output, the current event number is 13. Using this example,
the following refer to previous events:

110 Event number 10.

1-2 Event number 11 (the current event minus 2).

'd Command word beginning with d (event number 12).
1?7mic? Command word containing the string mic (event number 9).

These forms, without further modification, simply reintroduce the words of the specified events, each
separated by a single blank. As a special case, !! refers to the previous command; the command !! alone
on an input line reruns the previous command.

Event Specification

To select words from an event, follow the event specification with a : and one of the following word
designators (the words of an input line are numbered sequentially starting from 0):

0 First word (the command name).

n nth argument.

i First argument.

$ Last argument.

% Word matched by an immediately preceding ?string? search.

x-y Range of words from the xth word to the yth word.
-y Range of words from the first word (0) to the yth word.

* First through the last argument, or nothing if there is only one word (the command name) in the event.
x* xth argument through the last argument.
X- Like x* but omitting the last argument.

You can omit the colon thgt separates the event specification from the word designator if the word
designator begins with a , $, *, -, or %. You can also place a sequence of the following modifiers after the
optional word designator, each preceded by a colon:

h Removes a trailing path name extension, leaving the head.

r Removes a trailing .xxx component, leaving the root name.

e Removes all but the .xxx trailing extension.

s/OldWordlNewWord/ Substitutes the value of the NewWord variable for the value of the OldWord
variable.

Chapter 11. Shells 223

The left side of a substitution is not a pattern in the sense of a string recognized by an editor; rather, it is a
word, a single unit without blanks. Normally, a / delimits the original word (OldWord) and its replacement
(NewWord). However, you can use any character as the delimiter. In the following example, using the % as
a delimiter allows a / to be included in the words:

s%/home/myfile%/home/yourfile%

The shell replaces an & with the OldWord text in the NewWord variable. In the following example,
/home/myfile becomes /temp/home/myfile.

s%/home/myfile%/tempd%

The shell replaces a null word in a substitution with either the last substitution or with the last string used
in the contextual scan !?String?. You can omit the trailing delimiter (/) if a new-line character follows
immediately. Use the following modifiers to delimit the history list:

Removes all leading path name components, leaving the tail.

Repeats the previous substitution.

Applies the change globally; that is, all occurrences for each line.

Displays the new command, but does not run it.

Quotes the substituted words, thus preventing further substitutions.

Acts like the q modifier, but breaks into words at blanks, tabs, and new-line characters.

X 0T Q@ @

Unless the g modifier precedes the above modifiers, the change applies only to the first modifiable word.

If you give a history reference without an event specification (for example, !$), the shell uses the previous
command as the event. If a previous history reference occurs on the same line, the shell repeats the
previous reference. Thus, the following sequence gives the first and last arguments of the command that
matches ?foo?.

17fo0?” 1§

A special abbreviation of a history reference occurs when the first nonblank character of an input line is a
. This is equivalent to !:s , thus providing a convenient shorthand for substitutions on the text of the
previous line. The command 1b 1ib corrects the spelling of lib in the previous command.

If necessary, you can enclose a history substitution in { } to insulate it from the characters that follow. For
example, if you want to use a reference to the command:

1s -1d “paul

to perform the command:
1s -1d paula

use the following construction:
1{1}a

In this example, !{1}a looks for a command starting with 1 and appends a to the end.

Quoting with Single and Double Quotes

Enclose strings in single and double quotation marks in order to prevent all or some of the substitutions
that remain. Enclosing strings in’ ’ prevents further interpretation, while enclosing strings in ” " allows
further expansion. In both cases, the text that results becomes (all or part of) a single word.

224 system User's Guide: Operating System and Devices

Alias Substitution in the C Shell

An alias is a name assigned to a command or command string. The C shell allows you to assign aliases
and use them just as you would commands. The shell maintains a list of the aliases you define.

After the shell scans the command line, it divides it into distinct words and checks the first word of each
command, left to right, to see if it has an alias. If it does, the shell uses the history mechanism to replace
the text of the alias with the text of the command referenced by the alias. The resulting words replace the
command and argument list. If no reference is made to the history list, the argument list is left unchanged.

For information about the C shell history mechanism, see History Substitution in the C Shell” on page 222

The alias and unalias built-in commands establish, display, and modify the alias list. Use the alias
command in the following format:

alias [Name [WordList]]

The optional Name variable specifies the alias for the specified name. If you specify a word list with the
WordList variable, the command assigns it as the alias of the Name variable. If you issue the alias
command without either optional variable, it displays all C shell aliases.

If the alias for the Is command is 1s -1, the command:
1s /usr

is replaced by the command:
Ts -1 /usr

The argument list is undisturbed because there is no reference to the history list in the command with an
alias. Similarly, if the alias for the lookup command is:

grep \!" /etc/passwd

then the shell replaces Tookup bill with:
grep bill /etc/passwd

In this example, !~ refers to the history list and the shell replaces it with the first argument in the input line,
in this case bill.

You can use special pattern-matching characters in an alias. The command:

alias Tprint 'pr &bslash2.!* >
> print'

creates a command that formats its arguments to the line printer. The ! character is protected from the
shell in the alias by use of single quotation marks so that it is not expanded until the pr command runs.

If the shell locates an alias, it performs the word transformation of the input text and begins the alias
process again on the reformed input line. If the first word of the next text is the same as the old, looping is
prevented by flagging it to terminate the alias process. Other subsequent loops are detected and result in
an error.

° 3 H ”

Chapter 11. Shells 225

Variable and File Name Substitution in the C Shell

The C Shell permits you to do variable and file name substitutions.

The following sections offer information about creating and substituting variables in the C shell:

Variable Substitution in the C Shell

The C shell maintains a set of variables, each of which has as its value a list of zero or more words. Some
of these variables are set by the shell or referred to by it. For instance, the argv variable is an image of
the shell variable list, and words that comprise the value of this variable are referred to in special ways.

You can change and display the values of variables with the set and unset commands. Of the variables
referred to by the shell, a number are toggles (variables that turn something on and off). The shell does
not examine toggles for a value, only for whether they are set or unset. For instance, the verbose shell
variable is a toggle that causes command input to be echoed. The setting of this variable results from
issuing the -v flag on the command line.

Other operations treat variables numerically. The @ command performs numeric calculations and the
result is assigned to a variable. Variable values are, however, always represented as (zero or more)
strings. For numeric operations, the null string is considered to be zero, and the second and subsequent
words of multiword values are ignored.

When you issue a command, the shell parses the input line and performs alias substitution. Next, before
running the command, it performs variable substitution. The $ character keys the substitution. It is,
however, passed unchanged if followed by a blank, tab, or new-line character. Preceding the $ character
with a \ prevents this expansion, except in two cases:

* The command is enclosed in " ". In this case, the shell always performs the substitution.
* The command is enclosed in’ . In this case, the shell never performs the substitution. Strings enclosed

by ’ ’ are interpreted for command substitution. (See ECommand Substitution in the C Shell” or
lage 221

The shell recognizes input and output redirection before variable expansion, and expands each separately.
Otherwise, the command name and complete argument list expands together. It is therefore possible for
the first (command) word to generate more than one word, the first of which becomes the command name
and the rest of which become parameters.

Unless enclosed in " " or given the :q modifier, the results of variable substitution might eventually be
subject to command and file name substitution. When enclosed by double quotation marks, a variable with
a value that consists of multiple words expands to a single word or a portion of a single word, with the
words of the variable’s value separated by blanks. When you apply the :q modifier to a substitution, the
variable expands to multiple words. Each word is separated by a blank and enclosed in double quotation
marks to prevent later command or file name substitution.

The notations below allow you to introduce variable values into the shell input. Except as noted, it is an
error to reference a variable that is not set with the set command.

226 System User's Guide: Operating System and Devices

You can apply the modifiers :gh, :gt, :gr, :h, :r, :q, and :x to the following substitutions. If { } appear in the
command form, then the modifiers must appear within the braces. The current implementation allows only
one : modifier on each variable expansion.

$Name

${Name} Replaced by the words assigned to the Name variable, each separated by a blank. Braces
insulate the Name variable from any following characters that would otherwise be part of it.
Shell variable names start with a letter and consist of up to 20 letters and digits, including the
underline (_) character. If the Name variable does not specify a shell variable but is set in the
environment, then its value is returned. The modifiers preceded by colons, as well as the other
forms described here, are not available in this case.

$Name[number]

${Name[number]} Selects only some of the words from the value of the Name variable. The number is subjected
to variable substitution and might consist of a single number, or two numbers separated by a -.
The first word of a variable’s string value is numbered 1. If the first number of a range is
omitted, it defaults to 1. If the last number of a range is omitted, it defaults to $#Name. The *
symbol selects all words. It is not an error for a range to be empty if the second argument is
omitted or is in a range.

$#Name

${#Name} Gives the number of words in the Name variable. This is useful for use in a [number] as shown
above. For example, $Name[$#Name].

$0 Substitutes the name of the file from which command input is being read. An error occurs if the
name is not known.

$number

${number} Equivalent to $argv[number].

$* Equivalent to $argv[+].

The following substitutions may not be changed with : modifiers:

$?name

${?name} Substitutes the string 1 if the name variable is set, zero (0) if this variable is not set.

$?0 Substitutes 1 if the current input file name is known, zero (0) if the file name is not known.

$$ Substitutes the (decimal) process number of the parent shell.

$< Substitutes a line from standard input, without further interpretation. Use this substitution to read from

the keyboard in a shell procedure.

File Name Substitution in the C Shell

The C shell provides several abridgment features to save time and keystrokes. If a word contains any of
the characters *, 2, [], or { }, or begins with a tilde ("), that word is a candidate for file name substitution.
The C shell regards the word as a pattern and replaces the word with an alphabetically sorted list of file
names matching the pattern.

The current collating sequence is used, as specified by the LC_COLLATE or LANG environment
variables. In a list of words specifying file name substitution, an error results if no patterns match an
existing file name. However, it is not required that every pattern match. Only the character-matching
symbols *, ?, and [] indicate pattern-matching, or file name expansion. The tilde (') and { } characters
indicate file name abbreviation.

File Name Expansion

The * character matches any string of characters, including the null string. For example, in a directory
containing the files:

a aa aax alice b bb ¢ cc
the command echo a* prints all files names beginning with the character a:

Chapter 11. Shells 227

a aa aax alice
Note: When file names are matched, the characters DOT (.) and / must be matched explicitly.

The ? character matches any single character. The command:
1s a?x

lists every file name beginning with the letter a, followed by a single character, and ending with the letter x:
aax

To match a single character or a range of characters, enclose the character or characters inside of []. The
command:

1s [abc]

lists all file names exactly matching one of the enclosed characters:
abec

Within brackets, a lexical range of characters is indicated by [a-z]. The characters matching this pattern
are defined by the current collating sequence.

File Name Abbreviation

The tilde (*) and { characters indicate file name abbreviation. A " at the beginning of a file name is used to
represent home directories. Standing alone, the character expands to your home directory as reflected in
the value of the home shell variable. For example, the command:

Ts ~
lists all files and directories located in your SHOME directory.

When followed by a name consisting of letters, digits, and - characters, the shell searches for a user with
that name and substitutes that user's $SHOME directory.

Note: If the ~ character is followed by a character other than a letter or /, or appears anywhere
except at the beginning of a word, it does not expand.

To match characters in file names without typing the entire file name, use { } around the file names. The
pattern a{b,c,d}e is shorthand for abe ace ade. The shell preserves the left-to-right order and separately
stores the results of matches at a low level to preserve this order. This construct might be nested. Thus:

“source/s1/{oldls,1s}.c

expands to:
/usr/source/s1/oldls.c /usr/source/sl/1s.c

if the home directory for source is /usr/source. Similarly:
../ {memo,*box}

might expand to:
../memo ../box ../mbox

Note: memo is not sorted with the results of matching *box. As a special case, the {, }, and { }
characters are passed undisturbed.

228 System User's Guide: Operating System and Devices

Character Classes
You can also use character classes to match file names within a range indication:

[:charclass:]

This format instructs the system to match any single character belonging to the specified class. The
defined classes correspond to ctype subroutines.

Character Class Definition

alnum Alphanumeric characters

alpha Uppercase and lowercase letters
cntrl Control characters

digit Digits

graph Graphic characters

lower Lowercase letters

print Printable characters

punct Punctuation character

space Space, horizontal tab, carriage return, new-line, vertical tab, or form-feed character
upper Uppercase characters

xdigit Hexadecimal digits.

Suppose you are in a directory containing the following files:
a aa aax Alice b bb ¢ cc

Type the following command at a C shell prompt:
1s [:lower:]

Press Enter.

The C shell lists all file names that begin with lowercase characters:
a aa aax b bb ¢ cc

For more information about character class expressions, refer to the kd command.

Environment Variables in the C Shell

Certain variables have special meaning to the C shell. Of these, argv, cwd, home, path, prompt, shell,
and status are always set by the shell. Except for the cwd and status variables, this action occurs only at
initialization. These variables maintain their settings unless you explicitly reset them.

The csh command copies the USER, TERM, HOME, and PATH environment variables into the csh
variables, user, term, home, and path, respectively. The values are copied back into the environment
whenever the normal shell variables are reset. the path variable cannot set in other than in the .cshrc file,
because csh subprocesses import the path definition from the environment and reexport it if changed.

The following variables have special meanings:

argv Contains the arguments passed to shell scripts. Positional parameters are substituted from this
variable.

cdpath Specifies a list of alternate directories to be searched by the chdir or cd command to find
subdirectories.

cwd Specifies the full path name of the current directory.

Chapter 11. Shells 229

../../cmds/aixcmds2/ed.htm#HDRA133Z9C66

echo

histchars

history

home
ignoreeof

mail

noclobber
noglob
nonomatch
notify

path

prompt

savehist

shell

status

time

Set when the -x command line flag is used; when set, causes each command and its arguments to
echo just before being run. For commands that are not built-in, all expansions occur before
echoing. Built-in commands are echoed before command and file name substitution because these
substitutions are then done selectively.

Specifies a string value to change the characters used in history substitution. Use the first
character of its value as the history substitution character, this replaces the default character, !. The
second character of its value replaces the ~ character in quick substitutions.

Note: Setting the histchars value to a character used in command or file names might cause

unintentional history substitution.
Contains a numeric value to control the size of the history list. Any command that is referenced in
this many events is not discarded. Very large values of the history variable might cause the shell
to run out of memory. Regardless of whether this variable is set, the C shell always saves the last
command that ran on the history list.
Indicates your home directory, initialized from the environment. The file name expansion of the tilde
(") character refers to this variable.
Specifies that the shell ignore an end-of-file character from input devices that are workstations. This
prevents shells from accidentally being killed when it reads an end-of-file character (Ctrl-D).
Specifies the files where the shell checks for mail. This is done after each command completion
which results in a prompt if a specified time interval has elapsed. The shell displays the message
Mail in file. if the file exists with an access time less than its change time.
If the first word of the value of the mail variable is numeric, it specifies a different mail checking
time interval (in seconds); the default is 600 (10 minutes). If you specify multiple mail files, the shell
displays the message New mail in file, when there is mail in the specified file.
Places restrictions on output redirection to ensure that files are not accidentally destroyed and that
redirections append to existing files.
Inhibits file name expansion. This is most useful in shell scripts that are not dealing with file names,
or when a list of file names has been obtained and further expansions are not desirable.
Specifies that no error results if a file name expansion does not match any existing files; rather, the
primitive pattern returns. It is still an error for the primitive pattern to be malformed.
Specifies that the shell send asynchronous notification of changes in job status. The default
presents status changes just before displaying the shell prompt.
Specifies directories in which commands are sought for execution. A null word specifies the current
directory. If there is no path variable set, then only full path names can run. The default search
path (from the /etc/environment file used during login) is:

/usr/bin /etc /usr/sbin /usr/ucb /usr/bin/X11 /sbin

A shell given neither the -¢ nor the -t flag normally hashes the contents of the directories in the
path variable after reading the .cshrc and also each time the path variable is reset. If new
commands are added to these directories while the shell is active, you must give the rehash
command, or the commands might not be found.

Specifies the string displayed before each command is read from an interactive workstation input. If
an ! appears in the string, it is replaced by the current event number. If the ! character is in a
quoted string enclosed by single or double quotation marks, the ! character must be preceded by a
\. The default prompt for users without root authority is % . The default prompt for the root user is
#.

Specifies a numeric value to control the number of entries of the history list that are saved in the
“Lhistory file when you log out. Any command referenced in this number of events is saved.
During startup, the shell reads "/.history into the history list, enabling history to be saved across
logins. Very large values of the savehist variable slow down the shell startup.

Specifies the file in which the C shell resides. This is used in forking shells to interpret files that
have execute bits set, but which are not executable by the system. This is initialized to the home of
the C shell.

Specifies the status returned by the last command. If the command ends abnormally, 0200 is
added to the status. Built-in commands that are unsuccessful return an exit status of 1. Successful
built-in commands set status to a value of 0.

Controls automatic timing of commands. If this variable is set, any command that takes more than
the specified number of CPU seconds will display a line of resources used, at the end of execution.
For more information about the default outputs, see the built-in timd command.

230 System User's Guide: Operating System and Devices

verbose Set by the -v command line flag, this variable causes the words of each command to display after
history substitution.

Input and Output Redirection in the C Shell

Before the C shell executes a command, it scans the command line for redirection characters. These
special notations direct the shell to redirect input and output.

You can redirect the standard input and output of a command with the following syntax statements:

< File Opens the specified File (which is first variable, command, and file name expanded) as the
standard input.
<<Word Reads the shell input up to the line that matches the value of the Word variable. The Word

variable is not subjected to variable, file name, or command substitution. Each input line is
compared to the Word variable before any substitutions are done on the line. Unless a
quoting character (\, ", ’ or '.) appears in the Word variable, the shell performs variable and
command substitution on the intervening lines, allowing the \ character to quote the $, \, and ’
characters. Commands that are substituted have all blanks, tabs, and new-line characters
preserved, except for the final new-line character, which is dropped. The resultant text is
placed in an anonymous temporary file, which is given to the command as standard input.

> File
>1File
>& File
>&! File Uses the specified File as standard output. If File does not exist, it is created. If File exists, it
is truncated, and its previous contents are lost. If the noclobber shell variable is set, File
must not exist or be a character special file, or an error results. This helps prevent accidental
destruction of files. In this case, use the forms including an ! to suppress this check. File is
expanded in the same way as < input file names. The form >& redirects both standard output
and standard error to the specified File. The following example shows how to separately
redirect standard output to /dev/tty and standard error to /dev/null. The parentheses are
required to allow standard output and standard error to be separate.
% (find / -name vi -print > /dev/tty) >& /dev/null
> >File
> >! File
> >& File
> >&! File Uses the specified File as standard output like >, but appends output to the end of File. If

the noclobber shell variable is set, an error results if File does not exist, unless one of
the forms including an ! is given. Otherwise, it is similar to >.

A command receives the environment in which the shell was invoked, as changed by the input/output
parameters and the presence of the command as a pipeline. Thus, unlike some previous shells,
commands that run from a shell script do not have access to the text of the commands by default. Rather,
they receive the original standard input of the shell. Use the << mechanism to present inline data. This lets
shell command files function as components of pipelines and also lets the shell block read its input. Note

Chapter 11. Shells 231

that the default standard input for a command run detached is not changed to the empty /dev/null file.
Rather, the standard input remains the original standard input of the shell.

To redirect the standard error through a pipe with the standard output, use the form [& rather than just the
l.

Control Flow

The shell contains commands that can be used to regulate the flow of control in command files (shell
scripts) and (in limited but useful ways) from shell command-line input. These commands all operate by
forcing the shell to repeat, or skip, in its input.

The foreach, switch, and while statements, and the if-then-else form of the if statement, require that the
major keywords appear in a single simple command on an input line.

If the shell input is not searchable, the shell buffers input whenever a loop is being read and searches the
internal buffer to do the rereading implied by the loop. To the extent that this is allowed, backward gotos
succeed on inputs that you cannot search.

‘ H ”

Job Control in the C Shell

The shell associates a job number with each process. It keeps a table of current jobs and assigns them
small integer numbers. When you start a job in the background with an & , the shell prints a line that looks
like:

[1] 1234

This line indicates that the job number is 1 and that the job is composed of a single process with a
process ID of 1234. Use the built-in m command to see the table of current jobs.

A job running in the background competes for input if it tries to read from the workstation. Background jobs
can also produce output for the workstation that gets interleaved with the output of other jobs.

There are several ways to refer to jobs in the shell. Use the % character to introduce a job name. This
name can be either the job number or the command name that started the job, if this name is unique. So,
for example, if a make process is running as job 1, you can refer to it as %1. You can also refer to it as
%make, if there is only one suspended job with a name that begins with the string make. You can also use:

%7?String
to specify a job whose name contains the String variable, if there is only one such job.

The shell detects immediately whenever a process changes state. If a job becomes blocked so that further
progress is impossible, the shell sends a message to the workstation. This message is displayed only after
you press the Enter key. If, however, the notify shell variable is set, the shell immediately issues a
message that indicates changes in the status of background jobs. Use the built-in m command to
mark a single process so that its status changes are promptly reported. By default, the notify command
marks the current process.

List of C Shell Built-in Commands

Displays specified aliases or all aliases.
@ Puts the current or specified jobs into the background.
breald Resumes running after the end of the nearest enclosing foreach or while command.

232 system User's Guide: Operating System and Devices

QEEQEE E EEE% QEEEQE EEEEEEE EE EIE] E] E e B ﬁgﬁagam@g

Breaks from a switch command.

Defines a label in a switch command.

Changes the current directory to the specified directory.

Changes the current directory to the specified directory.

Continues execution of the nearest enclosing foreach or while command.

Labels the default case in a switch statement.

Displays the directory stack.

Writes character strings to the standard output of the shell.

Runs the commands that follow the second else in an if (Expression) then ...else if (Expression2)
then ... else ... endif command sequence.

Signifies the end of a sequence of commands preceded by the foreach command. Also see the
while command.

Runs the commands that follow the second then statement in an if (Expression) then ... else if
(Expression2) then ... else ... endif command sequence.

Marks the end of a switch (String) case String : ... breaksw default: ... breaksw endsw command
sequence. This command sequence successively matches each case label against the value of the
String variable. Execution continues after the endsw command if a breaksw command is executed
or if no label matches and there is no default.

Reads variable values as input to the shell and executes the resulting command or commands in the
context of the current shell.

Runs the specified command in place of the current shell.

Exits the shell with either the value of the status shell variable or the value of the specified
expression.

Brings the current or specified jobs into the foreground, continuing them if they are stopped.
Successively sets a Name variable for each member specified by the List variable and a sequence of
commands, until reaching an end command.

Displays list using history, variable, and file name expansion.

Continues to run after a specified line.

Displays statistics indicating how successful the hash table has been at locating commands.
Displays the history event list.

Runs a specified command if a specified expression is true.

Lists the active jobs.

Sends either the TERM (terminate) signal or the signal specified by the Signal variable to the
specified job or process.

Limits usage of a specified resource by the current process and each process it creates.

Ends a login shell and replaces it with an instance of the /usr/sbin/login command.

Ends a login shell.

Sets the priority of commands run in the shell.

Causes hangups to be ignored for the remainder of a procedure.

Causes the shell to notify you asynchronously when the status of the current or a specified job
changes.

Controls the action of the shell on interrupts.

Pops the directory stack and returns to the new top directory.

Exchanges elements of the directory stack.

Causes recomputation of the internal hash table containing the contents of the directories in the path
shell variable.

Runs the specified command, subject to the same restrictions as the if command, the number of
times specified.

Shows the value of all shell variables.

Modifies the value of the specified environment variable.

Shifts the specified variable to the left.

Reads command specified by the Name variable.

Stops the current or specified jobs running in the background.

Stops the shell as if a STOP signal has been received.

Chapter 11. Shells 233

Starts a switch (String) case String : ... breaksw default: ... breaksw endsw command sequence.
This command sequence successively matches each case label against the value of the String
variable. If none of the labels match before a default label is found, the execution begins after the
default label.

Displays a summary of the time used by the shell and its child processes.

Determines file permissions.

Discards all aliases with names that match the Pattern variable.

Disables the use of the internal hash table to locate running programs.

Removes resource limitations.

Removes all variables having names that match the Pattern variable.

Removes all variables from the environment whose names match the specified Pattern variable.
Waits for all background jobs.

Evaluates the commands between the while and the matching end command sequence while an
expression specified by the Expression variable evaluates nonzero.

G) Displays the value of specified shell variables.

LI

See ['C_Shell Built-In Commands” on page 214 for more information.

C Shell Related Information

The keshl command, Bd command.

The bliad, Linaliad, jobd, hatify and kel C Shell built-in commands.

234 system User's Guide: Operating System and Devices

../../cmds/aixcmds1/csh.htm#HDRA27991075
../../cmds/aixcmds2/ed.htm#HDRA133Z9C66

Chapter 12. Miscellaneous Tools and Utilities

The following are some common tasks that you can perform by using operating system commands. The
command and an example of how to use the command are presented for each of the following:

] . ”

Locating a Command by Keyword (apropos Command)

You can display the manual sections that contain any of the given Keywords in their title with the apropos
command. The apropos command considers each word separately and does not take into account if a
letter is in uppercase or lowercase. Words that are part of other words are also displayed. For example,
when looking for the word compile, the apropos command also finds all instances of the word compiler.
The apropos command is equivalent to using the Imard command with the -k option.

For example, to find the manual sections that contain the word password in their titles, type:
apropos password

Press Enter.

See the m command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Displaying a Calendar (cal Command)

The keal command writes to standard output a calendar for the specified year or month.

The Month parameter names the month for which you want the calendar. It can be a number from 1
through 12 for January through December, respectively. If no Month is specified, the cal command defaults
to the current month.

The Year parameter names the year for which you want the calendar. Because the cal command can
display a calendar for any year from 1 through 9999, type the full year rather than just the last two digits. If
no Year is specified, the cal command defaults to the present year.

For example, to display a calendar for February 1984 at your workstation, type:
cal 2 1984

Press Enter.

For example, to print a calendar for 1984, type:
cal 1984 | gprt

© Copyright IBM Corp. 1997, 2001 235

../../cmds/aixcmds3/man.htm#HDRBRI1350CRAW
../../cmds/aixcmds1/apropos.htm#HDRUW3A0CRAW
../../cmds/aixcmds1/cal.htm#HDRAW4100FISH

Press Enter.

For example, to display a calendar for the year 84 A.D., type:
cal 84

Press Enter.

See the kal command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Displaying Reminder Messages (calendar Command)

You can read a file named calendar, which you create in your home directory with the calendar
command. The command writes to standard output any line in the file that contains today’s or tomorrow’s
date.

The calendar command recognizes date formats such as Dec. 7 or 12/7. It also recognizes the special
character * (asterisk) when it is followed by a / (slash). It interprets */7, for example, as signifying the
seventh day of every month.

On Fridays, the calendar command writes all lines containing the dates for Friday, Saturday, Sunday, and
Monday. It does not, however, recognize holidays, so it will function as usual and give only the next day’s
schedule.

A typical calendar file might look like the following:

x/25 - Prepare monthly report

Aug. 12 - Fly to Denver

aug 23 - board meeting

Martha out of town - 8/23, 8/24, 8/25
8/24 - Mail car payment

sat aug/25 - beach trip

August 27 - Meet with Simmons

August 28 - Meet with Wilson

If today is Friday, August 24, then the calendar command displays the following:

x/25 - Prepare monthly report

Martha out of town - 8/23, 8/24, 8/25
8/24 - Mail car payment

sat aug/25 - beach trip

August 27 - Meet with Simmons

See the kalendal command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Displaying Help Information for New Users (help Command)

You can present a one-page display of information with the @ command.

At the prompt, type:
help

Press Enter.
The system displays information similar to the following:
Look in a printed manual for general help if you can. You should

have someone show you some things and then read "Using and Managing
AIX" manual.

236 System User's Guide: Operating System and Devices

../../cmds/aixcmds1/cal.htm#HDRAW4100FISH
../../cmds/aixcmds1/calendar.htm#HDRIE5A0FISH
../../cmds/aixcmds2/help.htm#HDRA3IX52A0CRAW

The commands:

man -k keyword lists commands relevant to a keyword
man command prints out the manual pages for a command
are helpful; other basic commands are:
cat - concatenates files (and just prints them out)
ex - text editor
1s - lists contents of directory
mail - sends and receives mail
passwd - changes Togin password
sccshelp - views information on the Source Code Control System
smit - system management interface tool
tset - sets terminal modes
who - who is on the system
write - writes to another user
You could find programs about mail by the command: man -k mail
and print out the man command documentation via: man mail

You can log out by typing "exit".

See the @ command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Starting Computer-Aided Instruction Courses (learn Command)

You can practice using files, editors, macros, and other features with the learn command, which provides
computer-aided instruction courses. The first time you use the learn command, you are guided through a
series of questions to determine what type of instruction you want to receive. After the first time, you are
positioned at the place where you ended your previous learn command session.

The learn command searches for the first lesson containing the subject you specified. You can specify any
of the following as subjects:

* Files

» Editor

* More files
* Macros
« EQN

- C.

For example, to take the online lesson about files, type:
learn files

Press Enter.
You will then be prompted for further input.

See the leard command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Reminding Yourself When to Leave (leave Command)

You can have the system remind you to leave at a specified time with the leave command. You are
reminded at 5 minutes and 1 minute before the actual time, then again at the specified time, and at every
minute thereafter. When you log out, the leave command exits just before it would have displayed the next
message.

If you do not specify a time, the leave command prompts with When do you have to Teave? A reply of

newline causes the leave command to exit; otherwise, the reply is assumed to be a time. This form is
suitable for inclusion in a .login or .profile file.

Chapter 12. Miscellaneous Tools and Utilites 237

../../cmds/aixcmds2/help.htm#HDRA3IX52A0CRAW
../../cmds/aixcmds3/learn.htm#HDRDAW5100CRAW

Enter the time in the hhmm format. All times are converted to a 12-hour clock and assumed to relate to
the next 12 hours. You can use the + flag to set the number of hours and minutes from the current time for
the alarm to go off.

Note: The leave command ignores interrupt, quit, and terminate operations. To clear the leave
command, you should either log out or use the kill -9 command and provide the process ID.

For example, to remind yourself to leave at 3:45, type:
leave 345

Press Enter.

For example, to remind yourself to leave in 20 minutes, type:
leave +0020

Press Enter.

See the leavd command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Factoring a Number (factor Command)

You can factor numbers with the factor command. When called without specifying a value for the Number
parameter, the factor command waits for you to enter a positive number less than 1E14
(100,000,000,000,000). It then writes the prime factors of that number to standard output. It displays each
factor the proper number of times. To exit, enter 0 (zero) or any non-numeric character.

When called with an argument, the factor command determines the prime factors of the Number
parameter, writes the results to standard output, and exits.

For example, to calculate the prime factors of 123, type:
factor 123

Press Enter.
The following is displayed:
123

3
41

See the factad command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Converting Units of Measure (units Command)

You can convert quantities expressed in one measurement to their equivalents in another with the units
command. The units command is an interactive command. It prompts you for the unit you want to convert
from and the unit you want to convert to.

Note: This command only does multiplicative scale changes. That is, it can convert from one value to
another only when the conversion involves a multiplication. For example, it cannot convert between
degrees Fahrenheit and degrees Celsius because the value of 32 must be added or subtracted in the
conversion.

The units command recognizes Ib as a unit of mass, but considers pound to be the British pound
sterling. Compound names are run together (such as lightyear). Prefix British units differing from their

238 System User's Guide: Operating System and Devices

../../cmds/aixcmds3/leave.htm#HDRA151Z932DC
../../cmds/aixcmds2/factor.htm#HDRA133Z924E4

American counterparts with br (brgallon, for instance). The /usr/share/lib/unittab file contains a complete
list of the units that the units command uses. You can also define new units in the unittab file or create
and use your own File that overrides the standard conversion factor values in the unittab file.

Most familiar units, abbreviations, and metric prefixes are recognized by the units command, as well as
the following:

pi Ratio of circumference to diameter

c Speed of light

e Charge on an electron

g Acceleration of gravity

force Same as g

mole Avogadro’s number

water Pressure head per unit height of water
au Astronomical unit

For example, to display conversion factors for inches to centimeters, type:
units

you have: in
you want: cm

Press Enter.

The units command returns the following values:

* 2.540000e+00
/ 3.937008e-01

The output tells you to multiply the number of inches by 2.540000e+00 to get centimeters, and to multiply
the number of centimeters by 3.937008e-01 to get inches.

These numbers are in standard exponential notation, so 3.937008e-01 means 3.937008 x 10", which is
the same as 0.3937008.

Note: The second number is always the reciprocal of the first; for example, 2.54 equals 1/0.3937008.

For example, to convert a measurement to different units, type:

units
you have: 5 years
you want: microsec

Press Enter.

The units command returns the following values:
* 1.577846e+14

/ 6.337753e-15

The output shows that 5 years equals 1.577846 x 10'* microseconds, and that one microsecond equals
6.337753 x 107'° years.

For example, to give fractions in measurements, type:
units

you have: 1|3 mi
you want: km

Press Enter.

Chapter 12. Miscellaneous Tools and Utilites 239

The units command returns the following values:

* 5.364480e-01
/ 1.864114e+00

The | (vertical bar) indicates division, so 1|3 means one-third. This shows that one-third mile is the same
as 0.536448 kilometers.

For example, to include exponents in measurements, type:

units
you have: 1.2-5 gal
you want: floz

Press Enter.

The units command returns the following values:

* 1.536000e-03
/ 6.510417e+02

The expression 1.2-5 gal is the equivalent of 1.2 x 10°. Do not type an e before the exponent (that is,
1.2e-5 gal is not valid). This example shows that 1.2 x 10 (0.000012) gallons equal 1.536 x 103
(0.001536) fluid ounces.

If the units you specify after you have: and you want: are incompatible:

you have: ft
you want: 1b

The units command returns the following message and values:

conformability
3.048000e-01 m
4.535924e-01 kg

The conformability message means the units you specified cannot be converted. Feet measure length,
and pounds measure mass, so converting from one to the other does not make sense. Therefore, the
units command displays the equivalent of each value in standard units.

In other words, this example shows that one foot equals 0.3048 meters and that one pound equals
0.4535924 kilograms.

See the Linitd command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Sending Messages to Another Logged-In User (write Command)

You can send messages to other users over the system in real time with the write command. It provides
conversation-like communication with another logged-in user. Each user alternately sends and receives
short messages from the other workstation. Long messages can be sent by putting the complete message
in a file and then redirecting that file as input to the write command.

When the write command is issued, it immediately sends the following message, along with an
attention-getting sound (the ASCII BEL character) to the message recipient or target:

Message from SenderID on SenderHostname (ttynn) [Date] ...
With a successful connection, the write command sends two ASCII BEL characters to both workstations.

The beep alerts the sender that the message can begin, and it alerts the receiving user that a message is
coming.

240 system User's Guide: Operating System and Devices

../../cmds/aixcmds5/units.htm#HDRA133Z92427

For example, to write a message to user june who is logged in, type:
write june

Press Enter.

Type:

I need to see you! Meet me in the computer room at 12:30.
Press Enter.
Then press the Ctrl-D key sequence to terminate the write command mode.

If your user ID is karen and you are using workstation tty3, june’s workstation displays:

Message from karen on trek tty3 Aug 17 11:55:24
I need to see you! Meet me in the computer room at 12:30.

<EQT>

For example, to hold a conversation with user june, type:
write june

Press Enter.

Type:

Meet me in the computer room at 12:30.0
Press Enter.

This starts the conversation. The o at the beginning of the next line means the message is over. It tells
June that you are waiting for a response. Do not press Ctrl-D if you wish to continue.

Now June replies by typing:
write karen

She presses the Enter key and types:

I'm running tests at 12:30. Can we meet at 37
0

And you might respond:
O0K--the computer room at 3.

00

The oo means "over and out,” telling June that you have nothing more to say. If June is also finished oo,
then you both press Ctrl-D to end the conversation.

For example, to write user june a prepared message, type:
write june < message.text

Press Enter.
This writes the contents of the message.text file to june’s workstation.

For example, to write to the person using the workstation console, type:

write console

Chapter 12. Miscellaneous Tools and Utilites 241

Press Enter.

Type:

The printer in building 998 has jammed.

Please send help.

Press Enter.

Then press the Ctrl-D key sequence.

This writes the message to the person logged in at the workstation /dev/console.

You can use the write command to converse with users on other hosts. You can identify a user on a
remote host by using the -nHostname flag or the User@ Host parameter. In order to write to a user on a

remote host, the writesrv daemon must be running on both the current host and the remote host.

For example, to send a message to user spuds at remote host partya, type:
write -n partya spuds

Press Enter.
Type:
Your new tape has just arrived,

come see me to pick it up.
Thanks!

Press Enter.
Then press the Ctrl-D key sequence.

OR

write spuds@partya

Type:

Your new tape has just arrived,

come see me to pick it up.
Thanks!

Press Enter.
Then press the Ctrl-D key sequence.

See the luritd command in the AIX 5L Version 5.1 Commands Reference for the exact syntax.

Related Information

‘ H]

242 system User's Guide: Operating System and Devices

../../cmds/aixcmds6/write.htm#HDRA07297BE

Command Summary for Miscellaneous Tools and Utilities

Bpropod Locates commands by keyword lookup.

Eal Displays a calendar.

Ealendad Writes reminder messages to standard output.

factod Factors a number.

m Provides help information for new users.

leard Provides computer-aided instruction courses and practice for using files, editors, macros, and other
features.

leavd Provides reminder messages.

Uinitd Converts units in one measure to equivalent units in another measure.

luritd Sends messages to other users on the system.

Related Information

‘ : i

Chapter 12. Miscellaneous Tools and Utilites 243

../../cmds/aixcmds1/apropos.htm#HDRUW3A0CRAW
../../cmds/aixcmds1/cal.htm#HDRAW4100FISH
../../cmds/aixcmds1/calendar.htm#HDRIE5A0FISH
../../cmds/aixcmds2/factor.htm#HDRA133Z924E4
../../cmds/aixcmds2/help.htm#HDRA3IX52A0CRAW
../../cmds/aixcmds3/learn.htm#HDRDAW5100CRAW
../../cmds/aixcmds3/leave.htm#HDRA151Z932DC
../../cmds/aixcmds5/units.htm#HDRA133Z92427
../../cmds/aixcmds6/write.htm#HDRA07297BE

244 system User's Guide: Operating System and Devices

Chapter 13. Documentation Library Service

Introduction

The Documentation Library Service allows you to read, search, and print online HTML documents. It
provides a library application that appears in your web browser. The application includes links to read
installed documents and a search form that you can use to search for text. When you search, a results
page displays the results of the search with links to the documents containing the search target words.

Starting with AIX 5.1, you can also download printable versions of books by using the Print Tool button in
the documentation library service form.

Two types of forms are provided: a global search form that shows all the volumes installed on a search
server, and a specific search form that just searches a specific set of volumes such as the manuals for an
application.

The documentation library service allows you to search documents that have been registered with the
search service. Registration is done by the system administrator. You cannot search the Internet or any
unregistered documents on your search server.

If you write HTML documents at your site, your system administrator can add these documents to the
documentation library so that you can read, search, and print the documents.

Using the Documentation Library Service

To use the Library:
* To read the documentation installed in your system’s default library, do one of the following:
— Type docsearch at the command line.

— Open the CDE Desktop Help subpanel. Click on the documentation search service icon, which looks
like binoculars.

Note: If you have a copy of the AIX 4.3 (or later version) CD, you can read it on a PC. Insert
the CD into the CD-ROM drive on your PC. If the documentation CD is AlX 4.3.3 or newer, use
a web browser to open the CD file called readme.htm that is in the top directory of the CD. If
you have a AlX 4.3.0 to AIX 4.3.2 version of the Base Documentation CD, open the
usr/share/man/info/en_US/a_doc_lib/aixgen/topnav/topnav.htm file:

» To open a library stored on a remote documentation server, in your browser’s location bar type the
following URL:

http://server_name[:port_number]/cgi-bin/ds_form

This URL opens the global search form to search the documents stored on the server with the name
you specified in server_name.

Note: You only need to type the port_number if the port is not the standard 80.

For example, if you want to search the registered documents on a search server named hinson
and it uses port 80, type:

http://hinson/cgi-bin/ds_form
Once the search form for a server appears in your browser, you can create a bookmark that takes

you back to the server. Your system administrator can also create a web page that contains links
to all the different documentation servers in an organization.

© Copyright IBM Corp. 1997, 2001 245

The documentation is also available for reading and searching at the Internet site
www.ibm.com/servers/aix/library. Note that while this site contains the base operating system manuals, it
might not contain other documentation installed on your local documentation server.

» Specific search forms are usually launched from search links inside HTML documents. They typically
appear on the pages of applications manuals or help files. For example, a "search” link is on each page
in the library. Clicking on one of these search links launches a specific search form that allows you to
search just the library volumes.

» Select the volumes you want to search. Click on the checkbox next to each volume name displayed. By
default, all volumes are searched unless you specify otherwise.

After the library application opens, you can click on the Help link in the upper right corner for instructions
on how to use the library.

How to Change the Documentation Library Service Language

By default, when you open the CDE Desktop icons for the operating system Documentation Search
Service or the Base Library, the documents that are displayed appear in the same language as your CDE
Desktop.

However, you might need to see the documentation in a language that is different than your desktop
language. For example, your desktop runs in your native language but the manuals may only be available
in English. You can change your documentation language so that documents appear in a different
language than that used in your desktop.

Notes:

1. These techniques do not affect the language used if you are opening a document or search form
from an HTML link inside another document. These techniques only affect the language used for
the Documentation Search Service or the Base Library desktop icons.

2. Make sure there is documentation installed for the language you want to use.

You can change your documentation language by running the following command:
/usr/bin/chdoclang locale

Where locale is replaced by the locale name that is the new language for viewing and searching

documentation. Locale names can be found in the Lacale Naming Conventiond inAlIX 5L Version 5.1
System Management Concepts: Operating System and Devices.

Notes:
1. You must log out and then log back in to see the language change take effect.

2. If you are using the CDE Desktop, you must also edit your Desktop file $HOME/.dtprofile so that
your documentation language setting in your SHOME/.profile file will be read during CDE login.
To do this, complete the following steps:

* Open your .dtprofile file in the dtpad editor by typing the following command:
dtpad $HOME/.dtprofile

» Find the line that contains the text:
DTSOURCEPROFILE=true

 If there are any comment (#) characters at the start of that line, delete just the # characters,
not the entire line. If there are no comment characters, close the editor.

» Save your changed .dtprofile file.
* Log out and log back in.

For example, if you want to change your documentation language to Spanish (es_ES), type the following
command:

246 System User's Guide: Operating System and Devices

../../aixbman/admnconc/locale.htm#HDRA189C157

/usr/bin/chdoclang es_ES
Log out and log back in to your desktop.
After you change your documentation language, you can delete the language setting so that

documentation will again appear in the same language as your desktop. To delete your language setting,
type the following command:

/usr/bin/chdoclang -d

Log out and log back in to your desktop.

Chapter 13. Documentation Library Service 247

248 system User's Guide: Operating System and Devices

Appendix A. Accessing Information with InfoExplorer

Note: InfoExplorer is no longer shipped with the base operating system. Documentation is now
viewed using the Documenation Library Service. This section is included for legacy users who are
still using InfoExplorer from a previous release.

This section describes the different types of documentation available in the Hypertext Information Base
Library and how you can use InfoExplorer to access information.

Using the InfoExplorer ASCII Interface

The InfoExplorer program ASCII interface provides a tutorial for first-time users and contains procedures
for performing other tasks as described in the following overview.

The InfoExplorer program is the tool you use to learn about this operating system and other software. As
an ASCII interface user, you have access to many volumes of software and hardware documentation.
Because InfoExplorer information is hypertext, you can read this information without turning a single page.
Instead, you view the information on your display and select links to move from one "article” to another.
This way, you can choose your own path through the hypertext documentation.

Using InfoExplorer Screens

In the InfoExplorer ASCII interface, different screens contain different types of information. For example,
you use some screens specifically for moving around. These screens, which include the Topic & Task
Index and the Books, are navigation screens. The InfoExplorer program displays one navigation screen at
a time. The contents of this screen are replaced each time you select a function that displays its
information in this location.

Another type of screen contains the text you want to read. These are called reading screens. Reading
screens provide conceptual, procedural, or reference information. They display articles that teach you
about a topic, explain how to do something, or provide you with information about commands, calls,
subroutines, files, or file formats.

From navigation and reading screens you can open other screens to perform specific tasks. The
InfoExplorer program provides the following task-oriented screens:

Simple Search Handles searches on a title or information base for a single set of words.

Compound Search Handles searches on compound search strings within one or more selected
information bases.

Search Matches List Displays where search matches were found, how many matches were found,
and the number of articles in which they were found.

Glossary Displays a glossary term or phrase selected from a reading screen.

Defaults Editor Allows you to set default values for various InfoExplorer functions.

Preferences Editor Provides a way to customize InfoExplorer program options.

List of Links Allows you to select a previous link and access the information, delete a
previous link from the list, clear all of the lists, or rename a previous link.

List of Files Allows you to load a previously saved file, save a list to a file, or delete a file.

When you start a session, the InfoExplorer program displays first the navigation screen and then the
reading screen. The reading screen contains the "Welcome to the InfoExplorer ASCII Interface” article,
which shows you how to perform basic operations and explains how to access InfoExplorer Help,
copyrights, and trademarks. Return to the navigation screen by typing Ctrl-w.

© Copyright IBM Corp. 1997, 2001 249

Using Menus

The InfoExplorer ASCII interface displays a menu bar at the top of each screen. You select options in the
menus to access specific InfoExplorer features.

Getting Help

To get more information on how to use the InfoExplorer program, you can use InfoExplorer Help. By using
Help, you can find out more information on using the current screen. Or you can move to a list of articles
that explain how the InfoExplorer program works.

To get Help, press the Ctrl-O key sequence, use the arrow keys to highlight the word Help, and press the
Enter key. You can then choose between the following options:

On Screen Displays specific help information for the screen you are viewing, including links to articles
that describe the screen, as well as functions available from that screen and a list of menus
available in the screen, with links to descriptions of the menu options.

You can select links to display information that you want to read. To return to the help
information screen after selecting a link, use the Path or .History menu option on the menu
bar.

List of Helps Displays the List of Helps, a list of hypertext links to articles that describe key aspects of
the InfoExplorer program and documentation, along with links to the helps for each
individual screen.

Getting Started

Note: InfoExplorer is no longer shipped with the base operating system. Documentation is now
viewed using the Documenation Library Service. This section is included for legacy users who are
still using InfoExplorer from a previous release.

The InfoExplorer program is a powerful text retrieval tool with several information navigation aids to help
you find and manage information. Learning just a few of these aids, however, is all you need to begin
using it. Use the basic procedures that you learn in this section to explore in the InfoExplorer information
base where you will find useful information.

Follow the tutorial step-by-step using the Page Up and Page Down keys on the keyboard, or link to
individual procedures.

In this article you learn about:

250 system User's Guide: Operating System and Devices

Starting the InfoExplorer ASCIlI Program

To start the InfoExplorer program, type info at an operating system command prompt and press the Enter
key.

Note: If you want to start InfoExplorer ASCII within a window, type info -a at an operating system
prompt, and press the Enter key.

Either the "Welcome to the InfoExplorer ASCII Interface” article or the ENavigation Screen’ displays in the
reading screen. The welcome screen explains how to do basic screen operations and how to access
InfoExplorer Help, copyrights, and trademarks.

Recognizing Screen Types
Two primary screen types exist in the InfoExplorer program: the Navigation Screen’l, and the m

Navigation Screen

The navigation screen is the starting point for finding documentation about the operating system and other
programs available on your workstation and contains information designed to assist you in finding the
desired documentation. Information is organized by topic and task, by book, or alphabetically by
commands or programming reference item. The primary navigation routes display in the navigation screen:

Topic & Task Index Displays information by task. It is the default navigation article.

Commands Displays an alphabetical list of available commands.

Books Displays articles in book order.

Programming Reference Displays lists of programming functions in alphabetical order by functional
categories.

Note: The navigation information in this section applies to the InfoExplorer program. The navigation
information might or might not apply to other libraries.

The first line of the screen contains the menu bar, and the second line displays a reverse-video title bar.
The title of the screen displays at the right end of the title bar. This title bar also separates the menu
options from the article text.

While you are viewing the InfoExplorer program through the ASCII interface, only one navigation screen is
available at a time. Each time you select a link to another navigation article, the contents of the article you
select replace the contents of the original article. For example, if you are viewing the Topic &Task Index
and decide to view Commands, a list of commands replaces the Topic & Task index in the navigation
screen.

Reading Screen

The reading screen contains procedural, conceptual, and reference information. Procedural information
explains how to accomplish a task, conceptual information discusses various topics, and reference
information provides you with information about commands, subroutines, and so on.

As in the navigation screen, the first line of the screen displays the menu options, and the second line
displays a reverse-video title bar. "Info Document” displays at the right end of the title bar. This title bar
also separates the menu options from the article text.

While you are viewing the InfoExplorer program through the ASCII interface, only one reading screen is

available at a time. Each time you select a link to another article, the contents of the article you select
replace the contents of the original article. For example, if you are viewing the "Starting the InfoExplorer

Appendix A. Accessing Information with InfoExplorer 251

Program (ASCII Interface)” article and decide to view the info command article, the info command article
replaces the "Starting the InfoExplorer Program (ASCII Interface)” article in the reading screen.

To Move between the Screens

To display the navigation screen from the reading screen (or to go back to a current reading screen from
the navigation screen), press and hold the Control key (Ctrl) and press the w key (Ctrl-w). The Ctrl-w key
sequence toggles between the navigation screen and the reading screen. You can also move between the
screens using menu options available on the menu bar.

Before you continue, toggle back and forth a few times between the navigation and reading screens. Note
the differences between them.

Some additional screen types are search, glossary, file, and utility. To find out more about the various
screen types, see the online InfoExplorer article [To Access Help on a Specific Screen” on page 257

Selecting a Hypertext Link

Suppose you need information about how to print a file on a line printer. You could start the search with a
primary navigation route such as the List of Tasks. From the List of Tasks, you can follow hypertext links
until you reach the screen containing the information you want.

A hypertext link is a connection between one piece of information and another. These links display as
underlined text. When you move to a link, the link changes to reverse video. To display the target or
connected piece of information, press the Enter key.

The Welcome screen displays five links. They appear as a list of five underlined items.

To move to the next hypertext link, press either the Tab key or the Cirl-f key sequence. If the next link is
not currently visible on the screen, the screen is updated to show the link. To move back to the previous
link, press the Ctrl-b key sequence.

To select a hypertext link, follow these steps:

1. If the text cursor is not in the text area of the screen, press the Cirl-o key sequence.
2. Move to the next hypertext link by pressing the Tab key or the Ctrl-f key sequence.
3. Move to the previous link by pressing the Ctrl-b key sequence.

4. To select the link, press the Enter key. The target text appears on the screen.

Practice moving the cursor from one link to another with the Ctrl-f and Ctrl-b key sequences. Before you
continue with the next section, try selecting one of the links in the Welcome screen. Remember that you
can return to the primary navigation screen by pressing the Ctrl-w key sequence.

Note: To avoid losing this screen, do not select any links in this article.

You cannot display artwork on an ASCII terminal. When a link to a piece of artwork is selected, a pop-up
panel displays with a message that the artwork cannot be displayed. The message prompts you to press a
key to continue. For example, command articles contain syntax diagrams that can only be viewed on a
graphics display. However, you can view the brackets-and-braces version of the syntax on an ASCII
terminal.

Scrolling Information

You can move forward and backward through text displayed in either the navigation screen or in the
reading screen by using keys and key sequences that have been defined for this purpose. For more

information, see "llsing Special Keys and Key Sequences” on page 258"

252 system User's Guide: Operating System and Devices

« To move to the previous screen, use either the Page Up key or the Ctrl-P key sequence.
« To move to the next screen, use either the Page Down key or the Ctrl-N key sequence.
» To move the text cursor up one line, press the Up Arrow key.

* To move the text cursor down one line, press the Down Arrow key.

Before you continue, try moving up and down through the text on the terminal screen.

Selecting a Menu Option

Each InfoExplorer screen contains a menu bar that is located across the top of the screen. The menu bars
contain many of the menus that you need to use InfoExplorer features. For example, the Display menu
allows you to choose the navigation document you want to display in the navigation screen and the Help
menu provides you with help on using the InfoExplorer program.

To select a menu option, do the following:
1. Activate the menu bar by pressing the Ctrl-O key sequence.

2. Use the Left and Right Arrow keys to highlight the title of the menu you want to display and press
Enter, or type the underlined character in the menu title. The menu is displayed as a pull-down panel
with several options.

3. Use the Up and Down Arrow keys to highlight a menu option and press Enter, or type the underlined
character in the menu option. The option you select is invoked or another menu is displayed in a
pop-up panel. The menu options are displayed in the menu bar of this menu.

After you display a menu, you might want to remove it without selecting an option. To do this, press the
Ctrl-O key sequence. The cursor returns to the screen.

To select an option in a pop-up panel, do the following:
1. Activate the menu bar as you normally would, using the Ctrl-O key sequence.

2. Highlight an option by either typing the underlined character in the option that you want, or by using
the Left and Right Arrow keys.

3. Select the option by pressing the Enter key. The pop-up panel closes and the appropriate action is
taken.

After you display a pop-up panel, you might want to remove it without selecting an option. To do this,
press the Ctrl-O key sequence and select Quit in the menu bar.

Before you continue with the next section, practice using menus. Try displaying the Path menu and
selecting the Show List option. A pop-up panel displays the Path list. To close the pop-up panel, select
Quit in the menu bar.

Note: To avoid losing this article, do not select a location from the Path list.

Returning to a Previous Location

During the InfoExplorer session, the InfoExplorer program keeps two different records of where you have
previously been: the History List and the Path List. These lists enable you to return to previous locations in
the information base.

The History List records every location that you have been in the information base. To view the History
List, display the .History menu and select the List All option. To learn how to use the History List, go to
the Help menu and select the List of Helps from the pull-down menu. Finding Information in
InfoExplorer in the List of Helps provides information about the History function.

Appendix A. Accessing Information with InfoExplorer 253

The Path List keeps track of your navigation route starting with a primary navigation article (Topic & Task
Index, Books, Commands, or Programming Reference). Every time you return to a primary navigation
screen, your previous path list is overwritten.

The Path menu contains three options: Show List, Previous, and Next. Use the Show List option to
display the Path List. Use the Previous and Next options to jump to the previous or next location without
displaying the Path List.

To return to a previous location in the InfoExplorer program, do the following:
1. Activate the menu bar by pressing the Ctrl-O key sequence.
2. Type P to display the Path menu.

3. Type S to display the Path List. A pop-up box displays a list of locations in the path. If you are in a
primary navigation screen, you receive a message stating that the Path List is empty.

4. Highlight the location that you want to return by using the Up and Down Arrow keys.
5. Select the Go to option in the menu bar. The text displays in the reading screen.

Before you continue, try following the path up and down using the Next and Previous options. Remember,
if you follow the path back to a primary navigation article (such as the Task Index), your path list is wiped
out and you are unable to follow a path down until you start a new path. If you want to return to a location
that is not in the current path, use the History function.

Note: To avoid losing this screen, do not use the Path function from this screen.

Searching for Information

The early part of this chapter described how to find information using primary navigation routes. But what if
you do not know what the task or command is or in which book the information might be? You can search
on virtually every word in the InfoExplorer information base. Using the InfoExplorer search facility, you can
look for information by word or phrase.

Two types of searches are available in the InfoExplorer program: the simple search and the compound
search. The simple search allows you to search on a word or string of words (in exact order) in text, article
titles, or both. (In the ASCII version of InfoExplorer, the Article Title selection on the Search menu gives
you a simple search of article titles.) The compound search allows you to search on a word, set of words,
or several sets of words. You can further specify the search with the following options:

* AND, OR, and BUT NOT connective options
* Proximity options
» Search categories

You can specify the information bases to be searched for both simple and compound searches. There are
two ways to specify an information base selection:

* You can specify a temporary information base selection from the Compound Search window. This
selection applies to both simple and compound searches, and stays in effect for the current session of
InfoExplorer, or until you change it during the session.

* You can specify an information base selection as a default by choosing Defaults from the info menu,
and selecting the DBselect option. An information base selection made from the Defaults window
applies to both simple and compound searches, and stays in effect for future sessions of Info.
(Temporary information base selections made from the Compound Search window can override the
default selection during an InfoExplorer session, but the default selection returns when you restart
InfoExplorer.)

As an example, the following steps take you through a simple search for the qprt command, and then
further specify the search with a database selection from the Compound Search menu.

254 system User's Guide: Operating System and Devices

Note: To avoid losing this article, do not attempt to perform a search from this screen. If your system
is set up to print, you can print a copy of this article using the info menu by selecting the Print
Article option. Use the printed copy to follow the procedure.

To perform a simple search for the qprt command, follow these steps:

1.
2.
3.

Display the Search menu in the menu bar.

Select the Simple option in the Search menu. The Simple Search pop-up panel displays.

In the Find field, type gprt command and press the Enter key. The Search Match List pop-up panel
displays the following information:

* Information bases where search matches were found

* The number of matches that were found

e The number of articles in which they were found

Using the Up and Down Arrow keys, highlight User Guides, System Management Guides, and
Commands Reference from the list of information bases and press the Enter key. The Search: List of
Titles pop-up panel displays with the list of article titles that contain the search string (qprt).

Note: If only one article contains the search string, that article displays in a reading screen (no
pop-up panels are displayed).
Select the second title on the list gprt Command, and press the Enter key. The article displays in the
reading screen. Notice that the phrase "qprt Command” is highlighted to show where the word is
discussed in the article.

To display the next match, go to the menu bar and select the Search menu.

Select the Next Match menu option and press the Enter key. The next match for "qprt command”
displays. This function lets you move up and down through the information base to other places in the
article or to other articles where the phrase "gprt command” is discussed.

To display the previous match, select the Previous Match option in the Search menu, and press the
Enter key. The previous match for "gprt Command” displays.

To display the list of titles again, select the Show Hit List option from the Search menu, and press the
Enter key. The list of titles displays again.

If there are many matches, it can be difficult to find the right information. You might have to read
through several articles to find the information you want. Or, you can use a compound search to
narrow down the search. To learn about a compound search, use the InfoExplorer List of Helps,
which allows you to view step-by-step instructions to commonly used InfoExplorer procedures. From
the List of Helps, select Performing a Compound Search.

Another way to narrow the scope of the search even further is to go to the compound search menu and
select the database that is most likely to contain the information that you want. There are several
databases to choose from depending on your system. For example, if you want to limit your search to
information about using and managing, choose the Using, Managing, and Commands database.

To specify a database from the compound search pop-up panel, follow these steps:

1.
2.
3.

Press the Citrl-O key sequence to go to the menu bar.
Select the DBselect option. The Databases List displays.

A >(greater than) sign displayed to the left of an information base in this list indicates that the
information base is included in the current compound search.

Mark the databases that you want to exclude from the search by doing the following:

a. Use the Up and Down Arrow keys to select a database currently included in the search that you do
not want to search. The database is highlighted.

Press the Ctrl-O key sequence to go to the menu bar in the Databases List pop-up panel.
Select the Bypass option. The > is removed from the margin.

Appendix A. Accessing Information with InfoExplorer 255

Repeat this procedure for each database that you do not want to search.
5. Mark the databases that you want to include from the search by doing the following:

a. Use the Up and Down Arrow keys to select a database currently not included in the search. The
database is highlighted.

b. Press the Ctrl-O key sequence to go to the menu bar in the Databases List pop-up panel.
c. Select the Select option. The > is displayed to the left of the selected database.

Repeat this procedure for each database that you want to search.

6. When you have finished selecting databases, press the Ctrl-O key sequence to go to the menu bar
and select the Quit option. The Compound Search pop-up panel is displayed again (with a1l
information bases displayed in the Search Field) and you can continue with your search.

When you specify a database selection from the Compound Search menu, the selection is retained until
you change it again, or until you quit the InfoExplorer session. This database selection will apply to both
simple and compound searches. You can save a database selection for future sessions of InfoExplorer
from the Defaults window under the info menu.

Printing Information

You can print the following information from the InfoExplorer ASCII interface:

+ [To Print an Article from a Reading Screen’l

. t‘|o Print an Article from a Nau'gat'on SCI:EED’I
. FoPmiRa [Novioaion Sooan]
. Fo Pl AT S ah Tl

Note: You must have one or more printers configured for your system.

To Print an Article from a Reading Screen

1. Press the Ctrl-O key sequence to activate the menu bar. The info menu option is the default and is
highlighted.

2. Press the Enter key to display the info menu options.

3. Press the P key to select the Print Article option. The article currently displayed in the reading screen
is printed.

To Print an Article from a Navigation Screen

1. Press the Ctrl-O key sequence to activate the menu bar. The info menu option is the default and is
highlighted.

2. Press the Enter key to display the info menu options. The Print Article option is the default and is
highlighted.

3. Press the Enter key. The current navigation article is printed.

To Print References from a Navigation Screen

1. Press the Ctrl-O key sequence to activate the menu bar. The info menu option is the default and is
highlighted.

2. Press the Enter key to display the info menu options.
3. Press the Down Arrow key until the Print References option is highlighted.
4. Press the Enter key to print all referenced articles in the navigation screen.

To Print Articles from a Search Match List

1. Press the Ctrl-O key sequence to activate the menu bar. The info option is the default and is
highlighted.

256 System User's Guide: Operating System and Devices

2. Press the S key to select the Search menu option.

3. Press the Down Arrow key until the Show Hit List option is highlighted, then press the Enter key. The
Search: List of Titles pop-up panel is displayed.

4. Press the Ctrl-O key sequence to activate the menu bar in the Search: List of Titles pop-up panel.

5. Press the P key to select the Print option. All articles referred to in the Search: List of Titles pop-up
panel are printed.

To Print Public and Private Notes

1. Press the Ctrl-O key sequence to activate the menu bar. The info option is the default and is
highlighted.

Press the N key to select the Notes option. The List All option is the default and is highlighted.
Press the Enter key to display the Notes List pop-up panel.

Press the Ctrl-O key sequence to activate the menu bar in the Notes List pop-up panel.

Press the P key to select the Print option. All notes in the Notes List pop-up panel are printed.

ok N

Accessing Help

From an InfoExplorer screen, you can view help information about the functions and options available on
the InfoExplorer screen you are viewing or you can search through a list of topics for which help
information is provided.

To Access Help on a Specific Screen
The InfoExplorer program uses many different kinds of screens in addition to the basic navigation and
reading screens, such as:

* Glossary screens

» List of links screens

» File screens

» Simple and compound search screens

Each screen type serves a different purpose and provides a different function. The Help menu in each
screen contains an On Screen option, which displays an article describing the function that is available in
the current screen.

To display Help on a specific screen, do the following:
1. Activate the menu bar by pressing the Ctrl-O key sequence.
2. Use the arrow keys to highlight Help and press the Enter key to display the Help menu.

3. Use the arrow keys to select the On Screen option and press the Enter key. A Help article replaces
the current reading article.

Before you continue with the next section, try looking at the Help articles available for the screens
currently open. Use the Path function to return to this screen.

To Access the List of Helps
The Help menu provides two help options, the List of Helps and On Screen. On Screen allows you to
find out about the current screen. For more information about this option, see ”f‘_'[o_Access_I:Iel.p_an_d

ifi 1". The List of Helps option in the Help menu displays a list of InfoExplorer help topics. To
use the list of helps, do the following:

1. Activate the menu bar by pressing the Ctrl-O key sequence.

2. Use the arrow keys to highlight the Help menu and press the Enter key. The Help menu displays.
3. Select the List of Helps option to display the list of helps.

4. Select a help topic and press the Enter key.

Appendix A. Accessing Information with InfoExplorer 257

The list of helps contains step-by-step procedures for a wide range of tasks. Before you go on to the next
section, select an option or two in the list of helps. See what is available, and then try using the helps to
learn and practice some new skills.

Using Special Keys and Key Sequences

In the InfoExplorer ASCII Interface, you use special keys and key sequences to move within a screen,
select items from a menu, access additional screens, and start processes. Different keys and key
sequences are active depending on whether you are working from a text area or a menu bar. For more
information on both text areas and menu bars, see "EKeys and Key Sequences Used in Text Areas!” and
"“Keys and Key Sequences Used in Menu Bars!l”, respectively.

Keys and Key Sequences Used in Text Areas
You can use the following keys and key sequences in text areas:

Keys Action

Ctrl-w Moves between the navigation screen and the reading screen. If the navigation screen is
displayed, you can press the Ctrl-W key sequence to display the reading screen. If the
reading screen is displayed, you can press the Ctrl-W key sequence to display the
navigation screen.

Ctrl-F or Tab Moves to the next hypertext link.

Ctrl-B Moves to the previous hypertext link.

Enter or Return Activates the operation. For example, if you have moved to a hypertext link and press the
Enter key, the system follows the link and displays the target information.

Ctrl-L Refreshes the screen.

Ctrl-N or Page Down Scrolls vertically to the next screen.

Ctrl-P or Page Up Scrolls vertically to the previous screen.

Left Arrow Moves the text cursor one character to the left. If the text can be scrolled horizontally and
the text cursor is at the left edge of the screen, the text scrolls one character.

Right Arrow Moves the text cursor one character to the right. If the text can be scrolled horizontally and

the text cursor is at the right edge of the screen, the text scrolls one character.

Note: The Left and Right Arrow keys do not function for the InfoExplorer program on
WYSE terminals.

Up Arrow Moves the text cursor up one line. If the text cursor is on the top line of the screen, the text
scrolls vertically, one line at a time.

Down Arrow Moves the text cursor down one line. If the text cursor is on the last line of the screen, the
text scrolls vertically, one line at a time.

< Moves the text cursor 20 characters to the left. If the text can be scrolled horizontally, the
text scrolls 20 characters to the left.

> Moves the text cursor 20 characters to the right. If the text can be scrolled horizontally, the

text scrolls 20 characters to the right.

Keys and Key Sequences Used in Menu Bars
The following keys and key sequences help you work with items in the menu bar:

Keys Action

Ctrl-O Makes the menu bar active or inactive. If your text cursor is located in the text area of the
screen, you can press the Ctrl-O key sequence to make the menu bar active. If the menu bar
is already active, you can press the Ctrl-O key sequence to make it inactive, which moves
the text cursor to the text area.

Esc-Esc or Ctrl-O Closes a menu bar pull-down menu and places the cursor in the text area.

Tab Moves to the next menu bar option in the menu bar. If a pull-down menu is not displayed and
you press the Right Arrow key, the next menu bar option is displayed in reverse video.

In pop-up screen menu bars, moves the cursor from the menu bar into the text area if no
menu bar pull-down menus are currently selected.

258 system User's Guide: Operating System and Devices

Keys
Left Arrow

Right Arrow

Up Arrow
Down Arrow

Enter or Return

Action
Moves to the previous menu bar option. If a pull-down menu is not displayed and you press
the Left Arrow key, the previous menu bar option is displayed in reverse video.

If a pull-down menu is displayed and you press the Left Arrow key, the previous menu bar
option is selected and its pull-down menu is displayed.

Moves to the next menu bar option. If a pull-down menu is not displayed and you press the
Right Arrow key, the next menu bar option is displayed in reverse video.

If a pull-down menu is displayed and you press the Right Arrow key, the next menu bar
option is selected and its pull-down menu is displayed.

Displays the pull-down menu for the selected menu bar option or moves the selection to the
previous option in a pull-down menu.

Displays the pull-down menu for the selected menu bar option or moves the selection to the
next option in a pull-down menu.

Activates the selected operation. For example, if a menu bar option is displayed in reverse
video and you press the Enter key, the pull-down menu is displayed. If a pull-down menu is
already displayed and you press the Enter key, the appropriate action is taken on the item
shown in reverse video.

In some cases, the menu bar within a pop-up screen contains options that start or stop a process. The
following keys can also be used to move within a pop-up screen or to cycle through options in the screen:

Keys

Tab

Left Arrow
Right Arrow
Spacebar

Up Arrow
Down Arrow
Enter or Return

Action

Moves to the next field.

Moves to the previous option in an option ring.

Moves to the next option in an option ring.

Cycles through the options in an option ring.

Selects the previous item in a list.

Selects the next item in a list.

Activates the selected operation or ends text entry and advances to the next field.

Starting an Alternate InfoExplorer Library

You can request the InfoExplorer program to load an alternate database library by using the -l flag with the
infd command. For example, if you wish to start the InfoExplorer Library containing C++, FORTRAN and
Ada documentation, start that library with the following command:

info -1 compiler

Stopping the InfoExplorer ASCIlI Program

To leave the InfoExplorer program from either the navigation screen or the reading screen, do the

following:

1. Activate the menu bar by pressing the Ctrl-O key sequence.
2. Use the arrow keys to highlight the Exit menu and press the Enter key. The Exit menu displays.

3. Select the Confirm option by pressing Enter. The operating system command prompt displays and the
InfoExplorer program stops.

Appendix A. Accessing Information with InfoExplorer 259

../../cmds/aixcmds3/info.htm#HDRA3209781

Customizing the InfoExplorer ASCIl Program

You can customize many features of the InfoExplorer program to suit your style and needs. To do this, you
set InfoExplorer defaults and preferences. For example, you can determine which information bases to use
and which printer to use as the default. You can also specify your preferences for such things as the
number of history events to track and the type of print output.

The primary differences between defaults and preferences are that most defaults are initiated by the
program at startup and that different defaults can be specified for different libraries, but preferences apply
to all libraries. When you change some defaults, such as the navigation article, you must exit and then
restart. Defaults like print command take effect when they are saved. When you set preferences, all
changes take place immediately.

The following sections describe customizing the InfoExplorer ASCII Interface:

Changing Defaults in the InfoExplorer ASCII Interface

With the InfoExplorer program, you can set many defaults. These are the settings that the InfoExplorer
program uses at startup. You can select Defaults under Options in the InfoExplorer pull-down menu to set
defaults for:

Designating a Default Navigation Article

By system default, the InfoExplorer program initially displays the Topic & Task Index as the primary
navigation article. You can change this default to the navigation article that best suits your purposes. Then,
at startup, the InfoExplorer program automatically displays the new default navigation article.

For procedural information, see Setting Defaults (InfoExplorer ASCII) in the InfoExplorer online help.
Designating Default Files

You might want a trainee to follow a specific path while using the InfoExplorer program, or you might want
to retrace your path from a previous session. To handle this, you can designate a specific history file as
the default history file. Then, when you use the .History option, the default history file leads you or a
trainee down the designated path.

You can also designate a bookmarks file or notes file as the default bookmarks or notes file and then
follow those specific paths in subsequent sessions.

For procedural information, see Setting Defaults (InfoExplorer ASCII) in the InfoExplorer online help.
Designating a Default Note Template File

When you create a note in the hypertext documentation, the editor screen is initially blank. You can type
the note into the blank screen. To use a specific form when writing notes, you can specify a note template.
If you have built and saved many note templates, you can designate one of them as the default. Then,
when you use the Note option, the InfoExplorer program displays the default note template.

260 System User's Guide: Operating System and Devices

For procedural information, see Setting Defaults (InfoExplorer ASCII) in the InfoExplorer online help.
Changing the Default Search Database

By default, when you search with the InfoExplorer program, the search includes the information bases
loaded with the program. However, it is not always necessary to include every information base in your
search. To make your searches more efficient, you can specify which information bases to search during
current and future sessions. You can also easily reset the information base selection to its original form
(system default) so the information bases loaded with the program are again included in the search.

For procedural information, see Setting Defaults (InfoExplorer ASCII) in the InfoExplorer online help.
Designating Default Printers

Some printers are better suited for either simple or pretty print. In the InfoExplorer program, you can
designate a default printer for the different types of print: simple or pretty. The Pretty Print option might
use the troff program to convert a document to output for a phototypesetter. When you issue a print

command for a screen, the printer you have designated automatically receives that particular command. If
you don’t specify a print queue, the default is to use the first queue specified in your /etc/qconfig file.

For example, if you have designated printer daves3812 as the printer and if your preference has been set
for pretty print, when you choose the Print option, the print job is automatically sent to that printer.

Note: The kroff document-formatting program must be installed on your system before you can use
the pretty print option.

For procedural information, see Setting Defaults (InfoExplorer ASCII) in the InfoExplorer online help.
Changing Preferences in the InfoExplorer ASCII Interface

With the InfoExplorer program, you can set many preferences. You use the Preferences option in the info
pull-down menu to set preferences for:

Changing the History List Size
A history list can range in size from 0 (zero) to 1000 events. The system default for the history list size is

100 events. You can change the default size to fit your particular situation. You can then apply the
changes to the current session only or save them for current and future sessions.

For procedural information, see Setting Preferences (InfoExplorer ASCII) in the InfoExplorer online help.
Choosing the Notes Editor

There are several notes editors available in the InfoExplorer ASCII interface, including INed and vi. The

system default notes editor is vi. If you prefer to use INed or another editor to write your notes, you can

change the default. You can then apply the changes to the current session only or save them for current

and future sessions.

For procedural information, see Setting Preferences (InfoExplorer ASCII) in the InfoExplorer online help.

Appendix A. Accessing Information with InfoExplorer 261

../../cmds/aixcmds5/troff.htm#HDRAC15370HOLL

Changing the Print Output

There are two types of print output available in the InfoExplorer ASCII Interface: simple and pretty. The
system default for print output is simple print, which does not support highlighting or font differences. If you
prefer to use pretty print, you can change the default.

Note: The krafd document-formatting program must be installed on your system before you can use
the pretty print feature. The troff program converts a document to output for a phototypesetter.

You can then apply the changes to the current session only or to current and future sessions.

For procedural information, see Setting Preferences (InfoExplorer ASCII) in the InfoExplorer online help.

X Resources Available for the InfoExplorer Program

You can customize window color, position, and size in the InfoExplorer program by setting X resources in
the .Xdefaults file. You can do this for the following types of windows:

Window Type
Bookmark List
Citations
Compound Search

Database Selection

Defaults Editor

Document (Reading)

File (file link)
File Selection
Footnote
Glossary
Graphic

History List
Introduction
Library Definition
Library Selection
List of Titles
Message

Match List
Navigation

Note Editor
Note List
Outline

Path List
Preferences
References
Simple Search

Resource Name
blistTopLevelShell
citTopLevelShell
compoundTopLevelShell
dbSelectionTopLevelShell
defTopLevelShell
docTopLevelShell
fileTopLevelShell
fileSelTopLevelShell
footTopLevelShell
glossaryTopLevelShell
graphicTopLevelShell
hlistTopLevelShell
introTopLevelShell
libinstTopLevelShell
libSelTopLevelShell
tlistTopLevelShell
messageTopLevelShell
miSelectionTopLevelShell
navTopLevelShell
neditTopLevelShell
nlistTopLevelShell
outlineTopLevelShell
plistTopLevelShell
prefTopLevelShell
refTopLevelShell
searchTopLevelShell

The highest-level resource name in InfoExplorer is Info-gr. For example, to change the window width for
the navigation window, add the following resource name to your .xdefaults file:

Info_gr.navTopLevelShell.width: 800

To display ISOfonts, add the following resource name to your .xdefaults file:
Info_gr.fontfilestr: isofonts

262 System User's Guide: Operating System and Devices

../../cmds/aixcmds5/troff.htm#HDRAC15370HOLL

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.
IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS I1S" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.
This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

Dept. LRAS/Bldg. 003

11400 Burnet Road

Austin, TX 78758-3498

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and

© Copyright IBM Corp. 1997, 2001 263

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

264 System User's Guide: Operating System and Devices

Index

Special Characters

.. (dot,dot) directories 57
. (dot) directories 57
" (home) directory 57
/dev/rfd0 device 107
/dev/rmtO device

tape device

using 107

.env file 136
/etc/environment file 135
/etc/profile file 134
$HOME directory 57
.mwmrc file 139
.profile file 135, 136
Xdefaults file 138
Xinitrc file 137

Numerics
410ap148416 208

A

access control
displaying information 129
editing information 130
extended permissions 126
lists 126, 127
setting information 129
access modes
base permissions 126
controlling 121
default
numeric representation for 123
symbolic representation for 122
directories 121
files 121
group information
displaying 123
representation of
numeric 123
symbolic 122
user classes 122
acledit command 130
aclget command 129
aclput command 129
aixterm command 17
alias command 27
alias substitution

C shell 225
aliasing
command

Korn or POSIX shell 160
append redirection operator (>>) 43
apropos command 235
arguments 22
arithmetic

converting units 238

© Copyright IBM Corp. 1997, 2001

arithmetic (continued)
factoring numbers 238
arithmetic evaluation
Korn or POSIX shell 166
artwork
display preference 146
ASCII files
printing on PostScript printer 102
ASCII interface
customizing
overview 260
defaults
overview 260
overview 249
ASCII to PostScript
automating conversion 103
converting files 103
at command 36, 37
atqg command 36
auto-hold feature
Window interface 146

B

backend
printer 93
background processes
definition 30
backup
command 114
compressing files before 111
guidelines 105
how to 114
purpose of 105
tapes
advantages of 107
using smit command 115
banner command 48
base permissions 126
bidirectional languages 17
Bourne shell
command substitution 204
commands
built-in 201
list 200
using 198
conditional substitution 209
environment 196
file name substitution 210
pattern matching 210
positional parameters 210
quoting characters 199
redirecting input and output 211
reserved words 200
signal handling 199
special commands 201
starting 196
variables 206

265

Bourne shell (continued)
predefined special 208
substitution 205
user-defined 205

bsh command 151, 196

built-in commands 174

Bourne shell 201
C shell 214
bytes
counting number of 79

C

C shell

alias substitution 225
command substitution 221
commands

built-in 214

using 214
expressions 220
file name substitution 227
history substitution 222
job control 232
limitations 213
operators 220

predefined and environmental variables 229

redirecting input and output
signal handling 214
starting 212
variable substitution 226
cal command 235
calendar
command 236
displaying 235
capture command 47
cat command 43, 77
cd command 56, 59
CD-ROM file system (CDRFS)
CDRFS 52
chfont command 141
chmod command 125
chown command 121
chpg command 103
classes
user 122
clear command 46
clearing your screen 46
colrm command 82
command aliasing
Korn or POSIX shell 160
tilde substitution 161
command history
Korn or POSIX shell 174
command list
nice 33
command substitution
Bourne shell 204
C shell 221
Korn or POSIX shell 165

266 System User's Guide: Operating System and Devices

commands

alias
creating 27
Bourne shell 198
built-in 174
Bourne shell 201
C shell 214
C shell 214
case-sensitive 21
command name
definition 21
entering 20
flags
using 21
function
description 24
history, editing 26
information about
displaying 23
Korn or POSIX shell 155
long commands on multiple lines
entering 21
multiple commands on one line
entering 20
overview 20
parameters 22
repeating 25
saving entered 24
shortcut names
creating 27
spaces between 20
substituting strings 26
syntax 20
text-formatting 28
usage statements 22

commands list 96, 97

> 42

>> 43
<<<< 43

| 45
acledit 130
aclget 129
aclput 129
aixterm 17
alias 27
apropos 235
at 36

atq 36
backup 114
banner 48
bsh 151, 196
cal 235
calendar 236
capture 47
cat 43,77
cd 56, 59
chfont 141
chmod 125
chown 121
chpg 103
clear 46

commands list 96, 97 (continued)

colrm 82
compress 111
cp 60,73
cpio -i 110
cpio -o command 109
csh 151,212
cut 80
del 85
df 54
diff 78
dircmp 63
dosdel 87
dosdir 87
dosread 86
doswrite 87
echo 47
env 15
exit 4
export 141
factor 238
fc 174
fdformat 107
file 75
find 74
flcopy 109
format 107
fsck 108
grep 46, 77
groups 121
head 79
help 236
history 24
id 7
kil 37
ksh 151,173
regular built-in commands
184
special built-in commands
180
learn 237
leave 237
In 84
lock 130
login 3
logname 6
logout 4
Is 61
Iscfg 11
Iscons 12
Isdisp 13
Isfont 13
Isgroup 123
Iskbd 14
Islpp 14
man 23
mkdir 58
more 76
mv 72
mvdir 59
mwm 137

180, 181, 182, 183,

175, 176, 178, 179,

commands list 96, 97 (continued)
nice 33
nl 82
pack 111
page 76
passwd 8
paste 81
pg 76
pr 100
printenv 16
ps 32
psh 151,173
pwd 59
gcan 96
qchk 97
ghld 99
gmov 100
qpri 98
qprt 94
r 25
renice 33, 34
restore 115
rm 72,85
rmdir 62
rsh 151
Rsh 151, 197
script 48
sh 151
shutdown 4
smit 23, 96, 115
sort 77
stty 15, 142
su 3
tail 80
tapechk 111
tar 116
tcopy 111
tee 46
touch 4
tsh 151
tty 13
uname 6
uncompress 113
units 238
unpack 113
wc 79
whatis 24
whereis 23
who 6
whoami 5
whoami 5
write 240
xlock 130

comparing files 78
compress command 111
compressing files 111
computer-aided instruction 237
concatenating text files 43
conditional substitution

Bourne shell 209

Index

267

console directories 56

displaying name 12 abbreviations 57
control keys access modes 121

changing 142 changing 59

displaying settings 15 changing ownership 121
converting units of measure changing permissions 125

units command 238 comparing contents 63
coprocess facility copying 60

Korn or POSIX shell 171 creating 58
copying definition 51

files from tape or disk 110 deleting 62

files to tape or disk 109 displaying

to or from diskettes 109 contents 61

to or from tape 111 current 59
copying screen to file 47 home 56
cp command 60, 73 linking 83
cpio -i command 110 listing DOS files 87
cpio -o command 109 listing files 61
csh command 151, 212 moving 59
customizing naming conventions 56

InfoExplorer organization 56

ASCII interface 260 overview 55
Window interface 144 parent 56

system environment 141 path names 56
cut command 80 removing 62
cutting sections 80 renaming 59

root

D definition 51

specifying with abbreviations 57
structure 56
subdirectories 56

daemon process
description 31

defaults
InfoExplorer bookmark file types 55
ASCll interface 260 working 56
Window interface 145 discarding output 44
InfoExplorer history file diskettes

ASCII interface 260
Window interface 145
InfoExplorer information bases

copying to or from 109
formatting 107

ASClII interface 261) han(‘:ﬂlng 107
Window interface 145 displaying
InfoExplorer navigation article access control information 129
ASCII interface 260 calendar 235
Window interface 144 console name 12
InfoExplorer note template displays available 13
ASCII interface 260 file contents 76
Window interface 145, 260 file directory
InfoExplorer notes file contents 61
ASCII interface 260 current 59
Window interface 145 files
InfoExplorer printers first lines 79
ASCIl interface 261 last lines 80
Window interface 145 fonts available 13
del command 85 help information 236
deleting login name 5
directories 62 reminder messages 236
files 72 software products 14
devices system name 6
displaying information about 11 terminal name 13
df command 54 text in large letters on screen 48
diff command 78 user group information 123
dircmp command 63 userID 7

268 System User's Guide: Operating System and Devices

displays

listing currently available on system
DOS files

converting 86

copying 86

deleting 87

listing contents 87
dosdel command 87
dosdir command 87
dosread command 86
doswrite command 87

E

echo command 47
ed editor 71
editing

inline

Korn or POSIX shell 187

editors 71, 187
education

computer-aided instruction 237
emacs editor 188
env command 15
environment

displaying current 15

setting
user 135
system 11

environment file 135
environment variables

displaying values 16
exit command 4
exit status

Korn or POSIX shell 172
export command 141
expressions

finding files with matching 74
extended permissions 126

F

factor command 238
factoring numbers
factor command 238
fc command 174
fdformat command 107
file
command 75
descriptors 44
permissions 121
trees 52
file name substitution
Bourne shell 210
C shell 227
Korn or POSIX shell 168
file systems
checking for consistency 108
conducting interactive repairs 108
definition 51
example
illustration 69

13

file systems (continued)

overview 52

root 53

space available
showing 54

structure 53

types
journaled file system (JFS) 52
network file system (NFS) 52

files

access mode

setting 84
access modes 121
appending single line of text 47
archiving 116
ASCIl 68
backingup 114
binary 68
changing

from a linked file 84

ownership 121

permissions 125
columns, removing 82
comparing 63, 78
compressing 111
concatenating 43
copying 73

from DOS 86

from screen 47

from tape or disk 110

to DOS 87
counting

bytes 79

lines 79

words 79
creating with redirection from keyboard 43
cutting selected fields from 80
definition 51
deleting 72
deleting DOS 87
displaying

contents 76

first lines 79

last lines 80
environment 135
executable 68
expanding 113
formatting

for display 76

for printing 100

handling 71
identifying type 75
joining 43

linked, removing 85
linking 83, 84

locating sections 23
matching expressions
finding 74
merging the lines of several 81
metacharacters 70
moving 72

Index

269

files (continued)
naming conventions 69
numbering lines 82
overview 67
ownership 84, 121
packing 111
pasting text 81
path names 56, 69
permissions 68
regular expressions 70
removing 72
renaming 72
restoring

using smit command 116

restoring backed-up 115
retrieving from storage 116
searching for a string 77
sorting text 77
types

directory 68

regular 68

showing 75

special 68
uncompressing 113
unpacking 113
wildcards 69
writing to output

from specified point 80

filters

definition 45
find command 74
flags

in commands 21
flcopy command 109
font

changing 141

Window interface 146

fonts

listing available for use 13
foreground processes

definition 30
format command 107
formatting diskettes 107
fsck command 108

G

grep command 46, 77
groups command 121

H

head command 79
help

command 236

displaying information 236
here document 45, 170
history

command 24

editing 26

event

changing size 146

270 System User's Guide: Operating System and Devices

history (continued)

list

setting size 261
substitution

C shell 222

i-node number 55, 68, 83
1/O redirection

Bourne shell 211
C shell 231
Korn or POSIX shell 169

id command 7
IDs

user 121

index node reference number 55
InEd editor 71
InfoExplorer ASCII interface

alternate libraries, starting 259
exiting 259
help 250, 257
hypertext links
selecting 252
menu options, selecting 253
moving through text 252
printing 256
screens
moving between 252
types 251
searching 254
stopping 259

InfoExplorer ASCII program

customizing 260
defaults

changing 260
navigation article

designing default 260
notes editor

choosing 261
preferences

changing settings 261
print output

changing 262
printers

designating default 261
search database

changing default 261

InfoExplorer program

exiting 259
overview
ASCII interface 249
starting 251
stopping 259

InfoExplorer Windows program

customizing 144

inline editing

Korn or POSIX shell 187
emacs mode 188
vi editing mode 189

inline input documents 45

input and output redirection 211
input redirection 42
input redirection operator (<<<<) 43
integer arithmetic 166
international character support

text formatting 28

J

JFS 52
job control
C shell 232
Korn or POSIX shell 186
jobs
listing scheduled 36
removing from schedule 37
scheduling 35
journaled file system (JFS) 52

K

keyboard maps
listing currently available 14
keyword search
apropos command 235
kill command 37
Korn shell 192
Korn shell inline editing
emacs mode 188
vi editing mode 189
Korn shell or POSIX shell
arithmetic evaluation 166
built-in commands 174
command aliasing 160
tilde substitution 161
command history 174
command substitution 165
commands
built-in 174
compound 156
functions 157
using 155
conditional expressions 185
coprocess facility 171
coprocesses
redirecting input and output from 171
editing 187
environment 173
exit status 172
field splitting 168
file name substitution 168
job control 186
parameter substitution 161
pattern matching 168
quote removal 169
quoting 158
redirecting input and output 169
reserved words 159
signal handling 187
starting 173
variables
predefined 164

Korn shell or POSIX shell (continued)
variables (continued)
user-defined 164
ksh command 151, 173
ksh93 shell 192

L

languages
bidirectional 17

learn command 237

leave command 237

library

preferred

Window interface 146

line of text

appending to file 47
lines

counting number of 79
linked files

removing 85
links

creating 84

hard 84

overview 83

removing 85

symbolic 84

types 84
In command 84
local printers 93
lock command 130
locking your terminal 130
login

command 3

how to 2

messages

suppressing 4
multiple on same system 3
name
displaying 5

remote 1

user ID, as another 3
login files

.env file 136

/etc/environment file 135

/etc/profile file 134

.profile file 135, 136
login messages, suppressing 4
login user ID 120
logname command 6
logout

command 4

how to 4
Is command 61
Iscfg command 11
Iscons command 12
Isdisp command 13
Isfont command 13
Isgroup command 123
Iskbd command 14
Islpp command 14

Index

271

M

man command 23
man pages
finding with keyword searches 235
maps
keyboard 14
messages
displaying on screen 47
sending to other users 240
sending to standard output 47
metacharacters 70
mkdir command 58
more command 76
multibyte character support
text formatting 29
mv command 72
mvdir command 59
mwm command 137

N

names, displaying
login 5
operating system 6
naming conventions
directories 56
files 69
network
displaying name
with uname command 6
network file system (NFS) 52
NFS 52
nice command 33
nl command 82
notes
printing
InfoExplorer 257
setting preferred editor
ASCIl interface 261
template default
ASCII interface 260

(0

operating system
displaying name
with uname command 6
logging in 2
logging out 4
options
in commands 21
output
discarding with /dev/null file 44
redirecting to a file 42
output redirection operator (>) 42

P

pack command 111
page command 76
parameters

in commands 22

272 System User's Guide: Operating System and Devices

parameters (continued)
Korn or POSIX shell 161
passwd command 8
passwords
changing or setting 8
guidelines 8
setting to null 9
paste command 81
path names
absolute 57, 69
definition 69
directory 56
paths
directory 56
pattern matching
Bourne shell 210
Korn or POSIX shell 168
permissions
base 126
directory 125
extended 126

file 125
pg command 76
PID number
description 30
pipelining
definition 20, 45
pipes
definition 45

positional parameters
Bourne shell 210
POSIX shell 172, 192
PostScript files
converting from ASCIl 103
PostScript printer
printing ASCII files 102
pr command 100
preferences
overview
Window interface 145
print file types
overriding automatic determination
print jobs
canceling 96
definition 91
displaying status 97
formatting files for 100
holding 99
moving 100
prioritizing 98
releasing 99
starting 94
print spooler 92
printenv command 16
printers 91
backend 93
canceling a job 96
default
ASCII interface 261
Window interface 145
local 93

103

printers 91 (continued) quoting characters

gdaemon 92 Bourne shell 199
queue 91 Korn or POSIX shell 158
queue device 92
real 92
remote 93 R
showing status of job 98 r (repeat) command 25
spooler 92 reading the three-digit display 2
starting a job 94 real printers 92
status conditions 98 realtime messages
virtual 92 sending to other users 240
printing 91, 100 redirecting
ASCII files on PostScript printer 102 output to a file 42
formatting files for 100 standard error output 44
holding print jobs 99 standard input 43
moving print jobs 100 standard output 42
releasing print jobs 99 redirecting input and output
printing from InfoExplorer 256 from coprocesses 171
process indentification number 30 references
processes printing from InfoExplorer screens 256
background 30 regular expressions 70
canceling 34 reminder messages
foreground process 34 calendar command 236
changing priority 33 reminders to leave
daemon 31 leave command 237
description 30 remote
displaying all active 32 login 1
displaying status 32 printers 93
foreground 30 renaming
listing scheduled 36 directories 59
removing from schedule 37 files 72
restarting stopped 34 renice command 33, 34
scheduling for later operation 35 reserved words
setting initial priority 33 Korn or POSIX shell 159
starting 31 resource files
stopping 34 modifying 138, 139
background process 37 resource names
zombie 31 Window interface 262
profile files resources
using 134 description 138
program restore command 115
copying output into a file 46 restricted shell
prompt starting 197
changing system 143 rm command 72, 85
ps command 32 rmdir command 62
psh command 151, 173 root file 53
pwd command 59 rsh command 151

Rsh command 151, 197

Q

gcan command 96 S
gchk command 97 screens
gdaemon 92 clearing 46
ghld command 99 copying display to a file 46
gmov command 100 copying to file 47
gpri command 98 designating navigation default 260
gprt command 94 displaying text in large letters 48
queue displaying text one screen at a time 76
device 92 script command 48
print 91 searching
quote removal information base default
Korn or POSIX shell 169 ASCII interface 261

Index 273

searching (continued)
keywords 235
security
file 119
system 119
threats 119
sh command 151

shell
programs 153
scripts
creating 153
specifying a shell 154
variables
exporting 141
shells
available 151
Bourne

built-in commands 201
command substitution 204
conditional substitution 209
environment 196

file name substitution 210
positional parameters 210
predefined special variables 208
redirecting input and output 211
starting 196

user-defined variables 205
variable substitution 205
variables 206

alias substitution 225
built-in commands 214
command substitution 221
file name substitution 227
history substitution 222
job control 232

predefined and environmental variables 229

redirecting input and output 231
signal handling 214
starting 212
variable substitution 226

features 150

Korn or POSIX
arithmetic evaluation 166
built-in commands 174
command 160, 165, 174
compound commands 156
conditional expressions 185
coprocess facility 171
environment 173
exit status 172
file name substitution 168
inline editing 187, 188, 189
job control 186
parameters 161
quoting 158
redirecting input and output 169
reserved words 159
signal handling 187
starting 173
using commands 155

274 system User's Guide: Operating System and Devices

shells (continued)
restricted
starting 197
scripts
specifying a shell 154
shell scripts
creating 153
terms
definitions 152
trusted, starting 151

types 151
understanding 149
Shells 192
shortcut name for commands
creating 27

shutdown command 4
signal handling

Bourne shell 199

C shell 214

Korn or POSIX shell 187
SMIT

printing

control of 93

smit command 23, 96, 115
software products

displaying information about
sort command 77
space

showing available 54
special commands

Bourne shell 201
standard error output

redirecting 44
standard input

copying to a file 46

definition 41

redirecting 43
standard output

appending to a file 43

definition 42

redirecting 42
standard shell

conditional expressions 185

starting
Bourne shell 196
C shell 212

Korn or POSIX shell 173
windows Window Manager
X 136

startup

controlling windows and applications at
startup files

C shell 213

system 134
strings

finding in text files 77
stty command 15, 142
su command 3
switches

in commands 21

14

137

137

system

customizing environment 141
default variables 134
displaying name 6
environment 11
management

file systems tasks 52
powering on 2
prompt

changing 143
security 119
shutdown 4
startup files 134

T

tail command 80
tapechk command 111
tapes
checking consistency 111
copying to or from 111
tar command 116
tcopy command 111
tee command 46
terminal
displaying name 13
displaying settings 16
locking 130
reserving
using lock command 130
text
appending to a file 47
displaying in large letters 48
text files
columns
removing 82
concatenating 43
creating from keyboard input 43
finding strings 77
lines
numbering 82
sections
cutting 80
pasting 81
sorting 77
text formatting

extended single-byte characters 28

international character support 28

multibyte character support 29
text-formatting commands 28
three-digit display 2
tilde substitution

aliasing commands

Korn or POSIX shell 161

time management

creating reminders 237

writing reminder messages 236
touch command 4
tsh command 151
tty command 13

types
CD-ROM file system (CDRFS) 52

U

uname command 6
uncompress command 113
units command 238
units of measure
converting 238
unpack command 113
purpose of 111
usage statements
for commands 22
user
classes 122
groups
definition 121
displaying information 123
ID
changing to another 3
users
displaying current system 6
displaying system ID 7
sending messages to other 240

\'

variable substitution
Bourne shell 205

C shell 226
Korn or POSIX shell 164
variables

Bourne shell 206
predefined special 208
user-defined 205

C shell
predefined and environmental 229

exporting shell 141

Korn or POSIX shell
predefined 164
user-defined 164

vi editor 189
virtual printers 92

w

wc command 79
Web-based System Manager command 99
whatis command 24
whereis command 23
who am i command 5
who command 6
whoami command 5
wildcards 69
Window interface
customizing 144
X resources available in 262
windows Window Manager
starting 137
words
counting number of 79

Index

275

write command 240

X

X resources
Window interface 262
X Window System
starting 136, 137
xlock command 130

V4

zombie process 31

276 System User's Guide: Operating System and Devices

Readers’ Comments — We’d Like to Hear from You

AIX 5L Version 5.1
System User’s Guide: Operating System and Devices

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral
Overall satisfaction O]]]

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral
Accurate]]]
Complete O]]]
Easy to find]]]
Easy to understand]]]
Well organized]]]
Applicable to your tasks O O O

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? [] Yes [] No

Dissatisfied

O

Dissatisfied

Ooooooo

Very Dissatisfied
]

Very Dissatisfied

Oooooo

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any

way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Along Line

|
|
|
Readers’ Comments — We’d Like to Hear from You } 2Iuotn(g);rlf|r(1)|:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Fold and Tape Please do not staple Fold and Tape |
___ _t
|
|
PLACE |
POSTAGE |
STAMP |
HERE }
|
|
|
|
|
|
|
IBM Corporation }
Publications Department |
Internal Zip 9561 |
11400 Burnet Road |
Austin, TX }
78758-3493 |
|
|
|
|
|
|
|
|
JIr
Fold and Tape Please do not staple Fold and Tape |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I Cut or Fold
|
|
|
|
|

Printed in U.S.A

	Contents
	About This Book
	Who Should Use This Book
	Highlighting
	ISO 9000
	Related Publications
	Trademarks

	Chapter 1. Login Names, System IDs, and Passwords
	Related Information
	Login and Logout Overview
	Logging In to the Operating System
	If Your Machine Is Not Turned On
	If Your System Is Already Turned On

	Logging in More Than One Time (login Command)
	Becoming Another User on a System (su Command)
	Suppressing Login Messages
	Logging Out of the Operating System (exit and logout Commands)
	Stopping the Operating System (shutdown Command)
	Related Information

	User and System Identification
	Displaying Your Login Name (whoami and logname Commands)
	whoami Command
	who am i Command
	logname Command

	Displaying the Operating System's Name (uname Command)
	Displaying Your System's Name (uname Command)
	Displaying Who Is Logged In (who Command)
	Displaying User IDs (id Command)
	Related Information

	Passwords
	Password Guidelines
	Changing Your Password (passwd Command)
	Setting Your Password to Null (passwd Command)
	Related Information

	Command Summary for Login Names, System IDs, and Passwords
	Login and Logout Commands
	User and System Identification Commands
	Password Command
	Related Information

	Chapter 2. User Environment and System Information
	Listing the Devices in Your System (lscfg Command)
	Displaying the Name of Your Console (lscons Command)
	Displaying the Name of Your Terminal (tty Command)
	Listing Available Displays (lsdisp Command)
	Listing the Available Fonts (lsfont Command)
	Listing Keyboard Maps (lskbd Command)
	Listing Software Products (lslpp Command)
	Listing Control Key Assignments for Your Terminal (stty Command)
	Listing All Your Environment Variables (env Command)
	Related Information

	Displaying the Value of an Environment Variable (printenv Command)
	Working with Bidirectional Languages (aixterm Command)
	Related Information

	Command Summary for User Environment and System Information
	Related Information

	Chapter 3. Commands and Processes
	Related Information
	Commands Overview
	Command Syntax
	Command Name
	Command Flags
	Command Parameters

	Reading Usage Statements
	Using Web-based System Manager
	Using the smit Command
	Locating a Command or Program (whereis Command)
	Displaying Information about a Command (man Command)
	Displaying the Function of a Command (whatis Command)
	Listing Previously Entered Commands (history Shell Command)
	Repeating Commands Using the Shell history Command
	Substituting Strings Using the Shell history Command
	Editing the Command History
	Creating a Command Alias (alias Shell Command)
	Working with Text-Formatting Commands
	International Character Support in Text Formatting
	Entering Extended Single-Byte Characters
	Multibyte Character Support in Text Formatting
	Entering Multibyte Characters

	Related Information

	Processes Overview
	Foreground and Background Processes
	Daemons
	Zombie Process
	Starting a Process
	To Start a Process in the Foreground
	To Start a Process in the Background

	Checking Processes (ps Command)
	ps Command

	Setting the Initial Priority of a Process (nice Command)
	nice Command

	Changing the Priority of a Running Process (renice Command)
	From the Command Line

	Canceling a Foreground Process
	Stopping a Foreground Process
	Restarting a Stopped Process
	Scheduling a Process for Later Operation (at Command)
	at Command

	Listing All Scheduled Processes (at or atq Command)
	at Command
	atq Command

	Removing a Process from the Schedule (at Command)
	From the Command Line

	Removing a Background Process (kill Command)
	kill Command

	Related Information

	Command Summary for Commands and Processes
	Commands
	Processes
	Related Information

	Chapter 4. Input and Output Redirection
	Standard Input, Standard Output, and Standard Error
	Redirecting Standard Output
	Redirecting Output to a File
	Redirecting Output and Appending It to a File
	Creating a Text File with Redirection from the Keyboard
	Concatenating Text Files
	Redirecting Standard Input
	Discarding Output with the /dev/null File
	Redirecting Standard Error and Other Output
	Inline Input (Here) Documents
	Pipes and Filters
	Displaying Program Output and Copying It to a File (tee command)
	Clearing Your Screen (clear Command)
	Sending a Message to Standard Output (echo Command)
	Appending a Single Line of Text to a File (echo Command)
	Copying Your Screen to a File (capture and script Commands)
	Displaying Text in Large Letters on Your Screen (banner Command)
	Related Information

	Command Summary for Input and Output Redirection
	Related Information

	Chapter 5. File Systems and Directories
	Related Information
	File Systems
	File System Types
	File System Structure
	Showing Space Available on File System (df Command)
	Related Information

	Directory Overview
	Types of Directories
	Directory Organization
	Directory Tree
	Parent Directory
	Home Directory
	Working Directory

	Directory Naming Conventions
	Directory Path Names
	Directory Abbreviations
	Related Information

	Directory Handling Procedures
	Creating a Directory (mkdir Command)
	Moving or Renaming a Directory (mvdir Command)
	Displaying Your Current Directory (pwd Command)
	Changing to Another Directory (cd Command)
	Copying a Directory (cp Command)
	Displaying Contents of a Directory (ls Command)
	ls command

	Deleting or Removing a Directory (rmdir Command)
	Comparing Contents of Directories (dircmp Command)
	Related Information

	Command Summary for File Systems and Directories
	File Systems
	Directory Abbreviations
	Directory Handling Procedures
	Related Information

	Chapter 6. Files
	Types of Files
	Regular Files
	Text Files
	Binary Files

	Directory Files
	Special Files
	File Naming Conventions
	File Path Names
	Pattern Matching with Wildcards and Metacharacters
	* Wildcard
	? Wildcard
	[] Shell Metacharacters

	Pattern Matching versus Regular Expressions
	Related Information

	File Handling Procedures
	Deleting Files (rm Command)
	rm Command

	Moving and Renaming Files (mv Command)
	Moving Files with mv Command
	Renaming Files with mv Command

	Copying Files (cp Command)
	Finding Files (find Command)
	Showing File Type (file Command)
	Displaying File Contents (pg, more, page, and cat Commands)
	pg Command
	more or page Command
	cat Command

	Finding Strings in Text Files (grep Command)
	Sorting Text Files (sort Command)
	Comparing Files (diff Command)
	Counting Words, Lines, and Bytes in Files (wc Command)
	Displaying the First Lines of Files (head Command)
	Displaying the Last Lines of Files (tail Command)
	Cutting Sections of Text Files (cut Command)
	Pasting Sections of Text Files (paste Command)
	Numbering Lines in Text Files (nl Command)
	Removing Columns in Text Files (colrm Command)
	Related Information

	Linking Files and Directories
	Types of Links
	Linking Files (ln Command)
	Removing Linked Files
	Related Information

	DOS Files
	Copying DOS Files to Base Operating System Files
	Copying Base Operating System Files to DOS Files
	Deleting DOS Files
	Listing Contents of a DOS Directory
	Related Information

	Command Summary for Files
	File Handling Procedures
	Linking Files and Directories
	DOS Files

	Chapter 7. Printers, Print Jobs, and Queues
	Printer Terminology
	Print Job
	Queue
	Queue Device
	qdaemon
	Print Spooler
	Real Printer
	Virtual Printer
	Local and Remote Printers
	Printer Backend

	Starting a Print Job (qprt Command)
	Prerequisites
	qprt Command
	smit Command

	Canceling a Print Job (qcan Command)
	Prerequisites
	qcan Command
	smit Command

	Checking Print Job Status (qchk Command)
	Prerequisites
	Web-based System Manager Fast Path
	qchk Command
	smit Command

	Printer Status Conditions
	Prioritizing a Print Job (qpri Command)
	Prerequisites
	qpri Command
	smit Command

	Holding and Releasing a Print Job (qhld Command)
	Prerequisites
	Web-based System Manager Fast Path
	qhld Command
	smit Command

	Moving a Print Job to Another Print Queue (qmov Command)
	Prerequisites
	qmov Command
	smit Command

	Formatting Files for Printing (pr Command)
	Printing ASCII Files on a PostScript Printer
	Prerequisites

	Automating the Conversion of ASCII to PostScript
	Overriding Automatic Determination of Print File Types
	Related Information

	Command Summary for Printers, Print Jobs, and Queues
	Related Information

	Chapter 8. Backup Files and Storage Media
	Backup Policy
	Backup Media
	Diskettes
	Tapes

	Formatting Diskettes (format or fdformat Command)
	Checking the Integrity of the File System (fsck Command)
	Copying to or from Diskettes (flcopy Command)
	Copying Files to Tape or Disk (cpio -o Command)
	Copying Files from Tape or Disk (cpio -i Command)
	Copying to or from Tapes (tcopy Command)
	Checking the Integrity of a Tape (tapechk Command)
	Compressing Files (compress and pack Commands)
	compress Command
	pack Command

	Expanding Compressed Files (uncompress and unpack Commands)
	uncompress Command
	unpack Command

	Backing Up Files (backup Command)
	backup Command
	smit Command

	Restoring Backed-Up Files (restore Command)
	restore Command
	smit Command

	Archiving Files (tar Command)
	Related Information

	Command Summary for Backup Files and Storage Media
	Related Information

	Chapter 9. File and System Security
	Security Threats
	Basic Security
	Backups
	Identification and Authentication
	Login User IDs
	Unattended Terminals

	File Ownership and User Groups
	Changing File or Directory Ownership (chown Command)
	File and Directory Access Modes
	Symbolic Representation of Access Modes
	Numeric Representation of Access Modes

	Displaying Group Information (lsgroup Command)
	Changing File or Directory Permissions (chmod Command)

	Access Control Lists
	Base Permissions
	Attributes

	Extended Permissions
	Access Control List Example
	Access Authorization
	Displaying Access Control Information (aclget Command)
	Setting Access Control Information (aclput Command)
	Editing Access Control Information (acledit Command)

	Locking Your Terminal (lock or xlock Command)
	Command Summary for File and System Security
	Related Information

	Chapter 10. Customizing the User Environment
	Related Information
	System Startup Files Overview
	/etc/profile File
	/etc/environment File
	.profile File
	.env File

	AIXwindows Startup Files Overview
	.xinitrc File
	.Xdefaults File
	.mwmrc File
	Related Information

	Customization Procedures
	Exporting Shell Variables (export Shell Command)
	Changing the Display's Font (chfont Command)
	chfont Command
	smit Command

	Changing Control Keys (stty Command)
	Changing Your System Prompt
	Related Information

	Customizing the InfoExplorer Windows Program
	Changing Defaults in the InfoExplorer Window Interface
	Changing the Default Window Size
	Designating a Default Navigation Article
	Designating Default Files
	Designating a Default Note Template File
	Changing the Default Search Information Base
	Designating Default Printers

	Changing Preferences in the InfoExplorer Window Interface
	Changing the Font Size
	Changing the Artwork Display
	Auto-Holding Articles
	Designating Print Article
	Changing the History Event Size
	Changing the Preferred Library

	Summary for User Environment Customization
	System Startup Files
	AIXwindows Startup Files
	Customization Procedures
	Related Information

	Chapter 11. Shells
	Shell Features
	Available Shells
	Shells Terms
	Creating and Running a Shell Script
	Specifying a Shell for a Script File
	Related Information

	Korn Shell or POSIX Shell Commands
	Korn Shell Compound Commands
	List of Korn Shell or POSIX Shell Compound Commands

	Functions

	Quoting in the Korn Shell or POSIX Shell
	Reserved Words in the Korn Shell or POSIX Shell
	Command Aliasing in the Korn Shell or POSIX Shell
	Tracked Aliases
	Tilde Substitution

	Parameter Substitution in the Korn Shell or POSIX Shell
	Parameters in the Korn Shell
	Parameter Substitution
	Predefined Special Parameters
	Variables Set by the Korn Shell or POSIX Shell
	Variables Used by the Korn Shell or POSIX Shell

	Command Substitution in the Korn Shell or POSIX Shell
	Arithmetic Evaluation in the Korn Shell or POSIX Shell
	Field Splitting in the Korn Shell or the POSIX Shell
	File Name Substitution in the Korn Shell or POSIX Shell
	Quote Removal

	Input and Output Redirection in the Korn Shell or POSIX Shell
	Coprocess Facility
	Redirecting Coprocess Input and Output

	Exit Status in the Korn Shell or POSIX Shell
	Korn Shell or POSIX Shell Commands
	Korn Shell Environment
	Shell Startup
	Shell Prompt

	Korn Shell or POSIX Shell Command History
	Command History Substitution

	Korn Shell or POSIX Shell Built-In Commands
	Special Built-in Command Descriptions
	Regular Built-in Command Descriptions

	List of Korn Shell or POSIX Shell Built-in Commands
	Special Built-in Commands
	Regular Built-in Commands

	Conditional Expressions for the Korn Shell or POSIX Shell
	Job Control in the Korn Shell or POSIX Shell
	Signal Handling

	Inline Editing in the Korn Shell or POSIX Shell
	emacs Editing Mode
	vi Editing Mode
	Input Edit Commands
	Motion Edit Commands
	Search Edit Commands
	Text-Modification Edit Commands
	Miscellaneous Edit Commands

	Enhanced Korn Shell (ksh93)
	Features of ksh93

	Korn Shell Related Information
	Bourne Shell
	Bourne Shell Environment

	Restricted Shell
	Bourne Shell Commands
	Quoting Characters
	Signal Handling
	Bourne Shell Compound Commands
	Reserved Words
	Bourne Shell Built-In Commands
	Special Command Descriptions
	Command Substitution in the Bourne Shell

	Variable and File Name Substitution in the Bourne Shell
	Variable Substitution in the Bourne Shell
	User-Defined Variables
	Variables Used by the Shell
	Predefined Special Variables
	Blank Interpretation

	Conditional Substitution
	Positional Parameters
	File Name Substitution in the Bourne Shell
	Character Classes

	Input and Output Redirection in the Bourne Shell
	List of Bourne Shell Built-in Commands
	Bourne Shell Related Information
	C Shell
	C Shell Limitations
	Signal Handling

	C Shell Commands
	C Shell Built-In Commands
	C Shell Command Descriptions
	C Shell Expressions and Operators
	Command Substitution in the C Shell
	Nonbuilt-in C Shell Command Execution

	History Substitution in the C Shell
	History Lists
	Event Specification
	Quoting with Single and Double Quotes

	Alias Substitution in the C Shell
	Variable and File Name Substitution in the C Shell
	Variable Substitution in the C Shell
	File Name Substitution in the C Shell
	File Name Expansion
	File Name Abbreviation
	Character Classes

	Environment Variables in the C Shell
	Input and Output Redirection in the C Shell
	Control Flow

	Job Control in the C Shell
	List of C Shell Built-in Commands
	C Shell Related Information

	Chapter 12. Miscellaneous Tools and Utilities
	Locating a Command by Keyword (apropos Command)
	Displaying a Calendar (cal Command)
	Displaying Reminder Messages (calendar Command)
	Displaying Help Information for New Users (help Command)
	Starting Computer-Aided Instruction Courses (learn Command)
	Reminding Yourself When to Leave (leave Command)
	Factoring a Number (factor Command)
	Converting Units of Measure (units Command)
	Sending Messages to Another Logged-In User (write Command)
	Related Information

	Command Summary for Miscellaneous Tools and Utilities
	Related Information

	Chapter 13. Documentation Library Service
	Introduction
	Using the Documentation Library Service
	How to Change the Documentation Library Service Language

	Appendix A. Accessing Information with InfoExplorer
	Using the InfoExplorer ASCII Interface
	Using InfoExplorer Screens
	Using Menus
	Getting Help

	Getting Started
	Starting the InfoExplorer ASCII Program
	Recognizing Screen Types
	Navigation Screen
	Reading Screen
	To Move between the Screens

	Selecting a Hypertext Link
	Scrolling Information
	Selecting a Menu Option
	Returning to a Previous Location
	Searching for Information
	Printing Information
	To Print an Article from a Reading Screen
	To Print an Article from a Navigation Screen
	To Print References from a Navigation Screen
	To Print Articles from a Search Match List
	To Print Public and Private Notes

	Accessing Help
	To Access Help on a Specific Screen
	To Access the List of Helps

	Using Special Keys and Key Sequences
	Keys and Key Sequences Used in Text Areas
	Keys and Key Sequences Used in Menu Bars

	Starting an Alternate InfoExplorer Library
	Stopping the InfoExplorer ASCII Program

	Customizing the InfoExplorer ASCII Program
	Changing Defaults in the InfoExplorer ASCII Interface
	Designating a Default Navigation Article
	Designating Default Files
	Designating a Default Note Template File
	Changing the Default Search Database
	Designating Default Printers

	Changing Preferences in the InfoExplorer ASCII Interface
	Changing the History List Size
	Choosing the Notes Editor
	Changing the Print Output

	X Resources Available for the InfoExplorer Program

	Appendix B. Notices
	Index
	Readers’ Comments — We'd Like to Hear from You

