AIX 5L Version 5.1

General Programming Concepts:

Writing and Debugging Programs

<|lI!

AIX 5L Version 5.1

General Programming Concepts:

Writing and Debugging Programs

<|lI!

Fourth Edition (April 2001)

Before using the information in this book, read the general information in EAppendix B_Natices” on page 983.

This edition applies to AIX 5L Version 5.1 and to all subsequent releases of this product until otherwise indicated in
new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to Publications Department, Internal Zip 9561, 11400 Burnet Road, Austin, Texas 78758-3493. To send
comments electronically, use this commercial Internet address: aix6kpub @austin.ibom.com. Any information that you
supply may be used without incurring any obligation to you.

(C) Copyright Apollo Computer, Inc., 1987. All rights reserved.

(C) Copyright AT&T, 1984, 1989. All rights reserved.

(C) Copyright Sun Microsystems, Inc., 1985, 1986, 1987, 1988. All rights reserved.
(C) Copyright TITN, Inc., 1984, 1989. All rights reserved.

(C) Copyright Regents of the University of California, 1986, 1987. All rights reserved.

© Copyright International Business Machines Corporation 1997, 2001. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book . . .
Who Should Use This Book
Highlighting .

ISO 9000 . .
Related Publications .
Trademarks .

Chapter 1. Tools and Utilities .

Entering a Program into the System .

Checking a Program . .

Compiling and Linking a Program .
Correcting Errors in a Program .
Building and Maintaining a Program .

Subroutines .

Shell Commands .

Chapter 2. The Curses Library

Terminology . .

Naming Conventions. .

Structure of a Curses Program .
Return Values .

Initializing Curses .

Windows in the Curses Enwronment
The Default Window Structure .
The Current Window Structure .
Subwindows .

Pads

Manipulating Wlndow Data wrth Curses

Creating Windows.

Removing Windows, Pads, and Subwrndows.

Changing the Screen or Window Images .
Manipulating Window Content
Support for Filters.
Controlling the Cursor with Curses
Manipulating Characters with Curses .
Character Size .
Adding Characters to the Screen Image .
Enabling Text Scrolling
Deleting Characters
Getting Characters . .
Understanding Terminals with curses
Manipulating Multiple Terminals
Setting Terminal Input and Output Modes
Using the terminfo and termcap Files .
Low-Level Screen Subroutines
Manipulating TTYs .

Synchronous and Networked Asynchronous Termlnals

Working with Color . .
Manipulating Video Attributes .

Video Attributes, Bit Masks, and the Default CoIors .

Setting Video Attributes .
Setting Curses Options
Manipulating Soft Labels .

© Copyright IBM Corp. 1997, 2001

. XXiX
. XXiX
. XXiX
. XXiX
. XXiX
. XXiX

NN = 2

©COOoONNNYNOOCOODOUO DA PA,WWW

Obsolete Curses Subroutines .

AIX 3.2 Curses Compatibility .

List of Additional Curses Subroutines .
Manipulating Windows.
Manipulating Characters .
Manipulating Terminals
Manipulating Color .

Miscellaneous Utilities .

Chapter 3. Debugging Programs .
adb Debug Program Overview.
Getting Started with the adb Debug Program
Starting adb with a Program File . .
Starting adb with a Nonexistent or Incorrect F|Ie .
Starting adb with the Default File.
Starting adb with a Core Image File.
Starting adb with a Data File
Starting adb with the Write Option
Using a Prompt .
Using Shell Commands from wrth|n the adb Program
Exiting the adb Debug Program .
Controlling Program Execution
Preparing Programs for Debugging Wlth the adb Program
Running a Program. . Ce e e
Continuing Program Executlon
Using adb Expressions
Using Integers in Expressmns
Using Symbols in Expressions.
Using Operators in Expressions .
Customizing the adb Debug Program .
Combining Commands on a Single Line .
Creating adb Scripts
Setting Output Width .
Setting the Maximum Offset
Setting Default Input Format
Changing the Disassembly Mode.
Computing Numbers and Displaying Text.

Displaying and Manipulating the Source File with the adb Program .

Displaying Instructions and Data .

Forming Addresses .

Displaying an Address.

Displaying the C Stack Backtrace

Choosing Data Formats .

Changing the Memory Map .

Patching Binary Files .

Locating Values in a File .

Writing to a File .

Making Changes to Memory

Using adb Variables

Finding the Current Address

Displaying External Variables .

Displaying the Address Maps . .
adb Debug Program Reference Informatron .

adb Debug Program Addresses .

adb Debug Program Expressions

adb Debug Program Operators

iV Writing and Debugging Programs

. 28
. 29
. 29
. 29
. 29
. 29
. 30
. 30

. 31
. 31
. 31
. 31
. 31
.32
. 32
. 32
. 32
. 33
. 33
. 33
. 33
. 33
. 34
. 36
.37
.37
.37
. 37
. 38
. 39
. 39
.4
.4
.4
. 42
. 42
. 43
. 43
. 43
. 44
. 44
. 45
. 45
. 46
. 46
. 46
. 47
. 47
. 48
. 48
. 49
. 49
. 49
. 50
. 50

adb Debug Program Subcommands
adb Debug Program Variables.
Example adb Program: adbsamp.
Example adb Program: adbsamp2 .
Example adb Program: adbsamp3 .
Example of Directory and i-node Dumps in adb Debugglng
Example of Data Formatting in adb Debugging
Example of Tracing Multiple Functions in adb Debuggmg
Starting the adb Program Coe .
Setting Breakpoints.
Displaying a Set of Instructrons
Starting the adsamp3 Program
Removing a Breakpoint .
Continuing the Program .
Tracing the Path of Execution .
Displaying a Variable Value .
Skipping Breakpoints . .
dbx Symbolic Debug Program Overvrew .
Using the dbx Debug Program
Starting the dbx Debug Program .
Running Shell Commands from dbx.
Command Line Editing in dbx .
Using Program Control
Running a Program.
Separating dbx Output from Program Output
Tracing Execution

Displaying and Manipulating the Source Flle W|th the dbx debug Program.

Changing the Source Directory Path

Displaying the Current File . .

Changing the Current File or Procedure . .

Debugging Programs Involving Multiple Threads .

Debugging Programs Involving Multiple Processes .
Examining Program Data

Handling Signals.

Calling Procedures .

Displaying a Stack Trace.

Displaying and Modifying Varlables

Displaying Thread-Related Information.

Scoping of Names .

Using Operators and Modlfrers in Expressrons

Checking of Expression Types.

Folding Variables to Lowercase and Uppercase .

Changing Print Output with Special Debug Program Varlables .
Debugging at the Machine Level with dbx o

Using Machine Registers. -

Examining Memory Addresses.

Running a Program at the Machine LeveI

Debugging fdpr Reordered Executables .

Displaying Assembly Instructions . .
Customizing the dbx Debugging Envrronment

Defining a New dbx Prompt.

Creating dbx Subcommand Aliases .

Using the .dbxinit File .
List of dbx Subcommands . .

Setting and Deleting Breakpomts

Running Your Program .

. 51
. 54
. 54
. 55
. 55
. 56
. 58
. 60
. 61
. 61
. 61
. 61
. 61
. 61
. 62
. 62
. 62
. 63
. 63
. 63
. 63
. 64
. 64
. 64
. 65
. 65
. 66
. 66
. 66
. 67
. 67
. 69
. 70
. 70
.72
.72
.72
. 73
. 73
. 73
. 74
. 74
. 75
. 76
. 76
. 76
.77
.77
. 78
. 78
. 78
. 78
.79
. 80
. 80
. 80

Contents

\'

Tracing Program Execution .
Ending Program Execution .
Displaying the Source File .

Printing and Modifying Variables, Expressmns and Types

Thread Debugging .

Multiprocess Debugging .
Procedure Calling

Signal Handling .

Machine-Level Debugglng
Debugging Environment Control .

Chapter 4. Error Notification.
Security . ..
Examples

Related Informat|on

Error Logging Facility .
Error Logging Overview .
Managing Error Logging .

Transferring Your Error Log to Another System
Configuring Error Logging .

Customizing Duplicate Error Handhng
Removing Error Log Entries .
Enabling and Disabling Logging for an Event .
Setting Up Error Notification Coe
Logging Maintenance Activities

Error Logging Tasks

Reading an Error Report. .
Examples of Detailed Error Reports
Example of a Summary Error Report
Generating an Error Report.

Stopping an Error Log.

Cleaning an Error Log. .

Copying an Error Log to Dlskette or Tape

Error Logging and Alerts .
Error Logging Controls

Error Logging Commands

Error Logging Subroutines and Kernel Servrces
Error Logging Files .

Related Information.

Chapter 5. File Systems and Directories.
File Types.

Working with F|Ies

JFS Directories .

JFS Directory Structures
Working with Directories (Programmlng)
Subroutines That Control Directories .

JFS2 Directories

JFS2 Directory Structures
Working with Directories (Programmlng)
Subroutines That Control Directories .

Working with JFS i-nodes .

Disk i-node Structure for JFS.
In-core i-node Structure.

Working with JFS2 i-nodes

Vi

Disk i-node Structure for JFS2 .

Writing and Debugging Programs

. 81
. 81
. 81
. 81
. 81
. 82
. 82
. 82
. 82
. 82

. 83
. 84
. 84
. 85
. 86
. 86
. 87
. 87
. 87
. 88
. 89
. 89
. 90
. 90
. 90
. 90
. 92
. 95
. 95
. 96
. 96
. 97
. 97
. 98
. 98
. 99
. 99
. 99

. 101
. 101
. 102
. 103
. 103
. 104
. 105
. 105
. 105
. 105
. 106
. 106
. 106
. 107
. 108
. 108

In-core i-node Structure.

JFS File Space Allocation . .
Full and Partial Logical Blocks . .
Allocation in Fragmented File Systems .
Allocation in Compressed File Systems .

Allocation in File Systems Enabled for Large F|Ies .

Disk Address Format .
Indirect Blocks .
Quotas .

JFS2 File Space AIIocatlon
Full and Partial Logical Blocks
JFS2 File Space Allocation
Extents . o
B+ Trees .

Writing Programs That Access Large Flles
Implications for Existing Programs .
Open Protection

Porting Applications to the Large F|Ie Enwronment .

Using _LARGE_FILES . .
Using the 64-Bit File System Subroutlnes .

Common Pitfalls using the Large File Environment .

Linking for Programmers
Hard Links
Symbolic Links .

Directory Links .

Using File Descriptors .
System File and File Descrlptor Tables .
Managing File Descriptors.
Preset File Descriptor Values.
File Descriptor Resource Limit .

File Creation and Removal
Creating a File .

Opening a File .
Closing a File

Working with File 1/0.

Manipulating the Current Offset
Reading a File . .
Writing a File

Writing Programs to Use D|rect I/O
Direct I/O vs. Normal Cached I/O .
Benefits of Direct I/O.

Working with Pipes

Synchronous I/0 .

File Status

File Accessibility

JFS File System Layout
Boot Block .
Superblock
Allocation Bitmaps.

Fragments

Disk I-Nodes.

Allocation Groups . .
Using File System Subroutlnes .

JFS2 File System Layout .
Superblock .

Allocation Maps

Contents

. 109
. 109
. 109
. 109
. 110
. 110
11
11
.12
. 113
. 113
. 113
. 113
. 114
. 115
. 115
. 116
. 116
. 17
. 118
. 119
. 122
. 123
. 123
. 124
. 125
. 125
. 125
. 126
. 128
. 128
. 128
. 129
. 129
. 129
. 129
. 130
. 131
. 132
. 132
. 132
. 134
. 135
. 136
. 136
. 137
. 137
. 137
. 138
. 138
. 138
. 138
. 139
. 139
. 139
. 139

Vii

Disk I-Nodes.

Allocation Groups .

Allocation Group Sizes .

Partial Allocation Groups

Using File System Subroutines .
Creating New File System Types

File System Helpers .

Mount Helpers . .
Major Control Block Header Flles .

Chapter 6. Floating-Point Exceptions .
Floating-Point Exception Subroutines.
Floating-Point Trap Handler Operation .
Exceptions: Disabled and Enabled Comparlson .
Imprecise Trapping Modes.
Hardware-Specific Subroutines . .
Example of a Floating-Point Trap Handler .

Chapter 7. Input and Output Handling
Low-Level I/O Interfaces .o
Stream 1/O Interfaces

Terminal 1/O Interfaces .

Asynchronous 1/O Interfaces .

Chapter 8. Large Program Support.
Understanding the Large Address-Space Model

Understanding the Very Large Address-Space Model .

Enabling the Large Address-Space Models
Executing Programs with Large Data Areas
Special Considerations .

Chapter 9. Parallel Programming
Related Information .
Understanding Threads .
Threads and Processes.
Threads Implementation
Related Information .
Thread Programming Concepts
Basic Operations .
Synchronization
Scheduling
Other Facilities .
Threads Library API . . .
Writing Reentrant and Thread- Safe Code .
Understanding Reentrance and Thread-Safety
Making a Function Reentrant.
Making a Function Thread-Safe.
Reentrant and Thread-Safe Libraries .
Developing Multi-Threaded Programs
Compiling a Multi-Threaded Program.

Memory Requirements of a Multi-Threaded Program .

Debugging a Multi-Threaded Program

Core File Requirements of a Multi-Threaded Program .
Developing Multi-Threaded Program which examines and mOdIerS pthread Ilbrary objects .

Initialization . .
Call Back Functions .

viii Writing and Debugging Programs

. 140
. 140
. 140
. 140
. 140
.14
.14
. 142
. 142

. 143
. 143
. 144
. 144
. 144
. 145
. 145

. 1583
. 153
. 154
. 155
. 156

. 157
. 157
. 158
. 158
. 159
. 159

. 161
. 161
. 161
. 161
. 162
. 164
. 164
. 164
. 164
. 165
. 166
. 166
. 168
. 168
. 169
171
. 172
. 173
. 178
. 175
. 175
. 175
. 176
. 176
. 176

Update Function
Context Functions.

List Functions

Field Functions .
Customizing the Sessmn
Session Termination .
Related Information .

Developing Multi-Threaded Program Debuggers
Initialization . .o .
Call Back Functions .

Update Function

Hold and Unhold Functlons
Context Functions .

List Functions

Field Functions .

Customizing the Sessmn

Session Termination .

Example .

Multi-Threaded CaII Back Functlons .
Purpose
Library .

Syntax .

Description
Parameters .

Return Values
Related Information .

Benefits of Threads .

Parallel Programming Concepts
Performance Consideration
Limitations

Chapter 10. Programming on Multiprocessor Systems .
Identifying Processors
ODM Processor Names.
Logical Processor Numbers .
ODM Processor States .
Controlling Processor Use .
The cpu_state Command .
Example Processor Conflguratlons
Binding Processes and Kernel Threads .
Dynamic Processor Deallocation
Potential Impact to Applications . .
Processor Deallocation: Flow of Events .
Programming Interfaces
Interfaces for Processor Deallocatlon Not|f|cat|on
Test Environment .
Creating Locking Services.
Multiprocessor-Safe Locking Serwces
Locking Services Example.
Kernel Programming . . .
32-bit and 64-bit Addressabmty
Differences between 32-bit and 64-bit execut|on enwronments
Performance Monitor API Programming Concepts .
Introduction .
Performance Monitor Accuracy Warmng
Performance Monitor Context and State.

177
177
177
177
177
177
. 179
. 181
. 182
. 182
. 182
. 183
. 184
. 184
. 184
. 184
. 184
. 184
. 186
. 187
. 187
. 187
. 188
. 189
. 189
. 189
. 189
. 189
. 191
. 191

. 193
. 193
. 193
. 193
. 194
. 194
. 194
. 194
. 196
. 197
. 197
. 198
. 198
. 199
. 201
. 201
. 201
. 202
. 203
. 203
. 204
. 206
. 206
. 207
. 207

Contents

ix

Thread and thread group accumulation .
Security Considerations.

Common Definitions . . .

The Seven Basic API Calls

Examples . .

Related Information .

Chapter 11. Threads Programming Guidelines
Thread Implementation Model . . .
Thread-safe and Threaded Libraries in AIX
Threads Versions On AlX .
Threads Basic Operation Overview
Creating Threads . . .
Thread Attributes Object
Thread Creation
Handling Thread IDs .
A First Multi-Threaded Program
Terminating Threads . .o
Exiting a Thread
Canceling a Thread .
Using Cleanup Handlers
List of Threads Basic Operation Subroutmes
Synchronization Overview .
Using Mutexes .
Mutex Attributes Object .
Creating and Destroying Mutexes .
Locking and Unlocking Mutexes.
Protecting Data with Mutexes
Using Condition Variables .
Condition Attributes Object
Creating and Destroying Condition Varlables
Using Condition Variables .

Synchronizing Threads with Condltlon Varlables.

Joining Threads .

Waiting for a Thread .

Returning Information from a Thread
List of Synchronization Subroutines
Scheduling Overview.

Threads Scheduling .

Basic Scheduling Facrlltres

Scheduling Policy and Priority

Contention Scope . .
Synchronization Scheduling .

Priority Inversion

Mutex Protocols

Choosing a Mutex Protocol
List of Scheduling Subroutines .
Threads Advanced Features .
One-Time Initializations .

One-Time Initialization Object .

One-Time Initialization Routine .
Thread-Specific Data.

Creating and Destroying Keys

Using Thread-Specific Data
Advanced Attributes .

Stack Attributes.

X Writing and Debugging Programs

. 208
. 208
. 209
. 210
. 210
. 213

. 215
. 215
. 215
. 216
. 216
. 216
. 216
. 218
. 219
. 219
. 219
. 220
. 221
. 225
. 226
. 227
. 227
. 227
. 228
. 229
. 229
. 231
. 231
. 232
. 233
. 235
. 236
. 237
. 238
. 239
. 240
. 240
. 240
. 240
. 242
. 243
. 243
. 244
. 244
. 245
. 245
. 246
. 246
. 246
. 247
. 247
. 249
. 250
. 251

Process Sharing
Making Complex Synchromzatlon Objects

Long Locks .

Semaphores .

Write-Priority ReadNVnte Locks .
List of Threads Advanced-Feature Subroutlnes .
Threads-Processes Interactions Overview .
Signal Management .

Signal Handlers and S|gnal Masks

Signal Generation . Co

Handling Signals .

Signal Delivery .

Process Duplication and Term|nat|on

Forking . .

Fork Handlers .

Process Termination .

Scheduling

Process-Level Scheduhng

Timer and Sleep Subroutines.

List of Threads-Processes Interactions Subroutlnes
Threads Library Options

List of Options .

Checking the Avallablllty of an Optlon
Threads Library Quick Reference .

Supported Interfaces.

Threads Data Types .

Limits and Default Values .

Chapter 12. lex and yacc Program Information .
Creating an Input Language with the lex and yacc Commands
Writing a Lexical Analyzer Program with the lex Command .
Extended Regular Expressions in the lex Command .
lex Actions
Passing Code to the Generated Iex Program
Defining lex Substitution Strings.
lex Start Conditions . .
Compiling the Lexical Analyzer .
lex Library.
Using the lex Program W|th the yacc Program
Creating a Parser with the yacc Program
yacc Grammar File
Using the yacc Grammar File
yacc Declarations .
yacc Rules
yacc Actions . :
yacc Error Handling .
Lexical Analysis for the yacc Command
yacc-Generated Parser Operation .
Using Ambiguous Rules in the yacc Program .
Turning on Debug Mode for a yacc-Generated Parser
Example Program for the lex and yacc Programs .
Compiling the Example Program

Chapter 13. Logical Volume Programming .
List of Logical Volume Subroutines

. 251
. 252
. 252
. 253
. 254
. 256
. 256
. 256
. 257
. 257
. 257
. 258
. 259
. 259
. 259
. 260
. 260
. 260
. 261
. 261
. 261
. 261
. 262
. 263
. 263
. 268
. 269

. 27
.27
. 271
. 272
. 277
. 280
. 280
. 281
. 282
. 282
. 283
. 283
. 284
. 285
. 286
. 289
. 290
. 291
. 293
. 293
. 294
. 296
. 296
. 296

. 301
. 301

Contents

Xi

Chapter 14. make Command .
Creating a Description File
Format of a make Description File Entry
Using Commands in a make Description File .
Calling the make Program from a Description File .
Preventing the make Program from Writing Commands .
Preventing the make Program from Stopping on Errors .
Example of a Description File
Making the Description File Simpler .
Internal Rules for the make Program .
Example of Default Rules File
Single-Suffix Rules
Using the Make Command W|th Archlve L|brar|es
Changing Macros in the Rules File
Defining Default Conditions in a Description F|Ie
Including Other Files in a Description File .
Defining and Using Macros in a Description File.
Using Macros in a Description File.
Internal Macros .
Changing Macro Def|n|t|ons in a Command
How the make Command Creates a Target File .
Using the make Command with Source Code Control System (SCCS) Flles
Description Files Stored in the Source Code Control System (SCCS) .

Using the make Command with Non-Source Code Control System (SCCS) Files

How the make Command Uses the Environment Variables.
Example of a Description File

Chapter 15. m4 Macro Processor Overview
Using the m4 Macro Processor .
Creating a User-Defined Macro .
Using the Quote Characters .
Arguments
Using a Built-In m4 Macro
Removing a Macro Definition.
Checking for a Defined Macro
Using Integer Arithmetic
Manipulating Files .
Redirecting Output .
Using System Programs in a Program
Using Unique File Names .
Using Conditional Expressions .
Manipulating Strings .
Printing.
List of Additional m4 Macros

Chapter 16. National Language Support.

NLS Capabilities .
Locale-Specific and Culture SpeC|f|c Conventlons .
User Messages in Native Languages.

Code Set Support .
Input Method Support

Overview of Chapter Contents .

Locale Overview for Programming .
Working with Code Sets
Data Representation .
Character Properties .

Xii Writing and Debugging Programs

. 303
. 303
. 304
. 304
. 305
. 305
. 305
. 306
. 306
. 306
. 307
. 308
. 308
. 308
. 309
. 309
. 309
. 310
. 311
. 313
. 313
. 314
. 315
. 315
. 315
. 316

. 319
. 319
. 319
. 320
. 321
. 322
. 322
. 322
. 323
. 323
. 324
. 324
. 324
. 325
. 325
. 326
. 327

. 329
. 329
. 329
. 329
. 329
. 330
. 330
. 330
. 331
. 331
. 332

Localization .

Multibyte Subroutlnes

Wide Character Subroutines . .
Bidirectionality and Character Shaplng .
Code Set Independence -
File Name Matching .

Radix Character Handling .
Programming Model .

National Language Support Subroutmes Overwew

Introducing Locale Subroutines .

Introducing Time Formatting Subroutmes

Introducing Monetary Formatting Subroutines. .
Introducing Multibyte and Wide Character Subroutines
Introducing Internationalized Regular Expression Subroutines.

Locale Subroutines
Setting the Locale.

Accessing Locale Informatlon
Examples .

Time Formatting Subroutlnes
Examples . .

Monetary Formatting Subroutmes . .
Euro Currency Support via the @euro MOdIerr .
Examples . S
Related Information .

Multibyte and Wide Character Subroutlnes

Multibyte Code and Wide Character Code Conver3|on Subroutlnes.

Wide Character Classification Subroutines .
Wide Character Display Column Width Subroutmes
Multibyte and Wide Character String Collation Subroutines.
Multibyte and Wide Character String Comparison Subroutines
Wide Character String Conversion Subroutines .
Wide Character String Copy Subroutines
Wide Character String Search Subroutines
Wide Character Input/Output Subroutines .
Working with the Wide Character Constant
Related Information . .
Internationalized Regular Expressmn Subroutlnes .
Examples . .
Layout (Bidirectional Text and Character Shaplng) Overwew .
Data Streams
Cursor Movement .
Character Shaping .
Introducing Layout Library Subroutlnes .
Use of the libcur Package .
Code Set Overview .
ASCII Characters . . .
Other ASCII Characters.
Code Set Strategy.
Code Set Structure
ISO Code Sets . .
IBM PC Code Sets
UCS-2 and UTF-8.
Related Information . .
Converters Overview for Programmmg .
Converters Introduction .
Standard Converters .

Contents

. 333
. 336
. 336
. 337
. 337
. 338
. 338
. 338
. 339
. 339
. 339
. 339
. 339
. 340
. 340
. 340
. 340
. 341
. 345
. 345
. 346
. 346
. 346
. 348
. 348
. 348
. 353
. 355
. 356
. 359
. 359
. 361
. 362
. 365
. 369
. 370
. 370
. 371
. 373
. 374
. 375
. 376
. 377
. 377
. 379
. 380
. 381
. 382
. 382
. 384
. 397
. 407
. 410
. 410
. 411
. 411

xiii

Understanding libiconv .
Using Converters .
List of Converters . .
Writing Converters Using the iconv Interface .
Code Sets and Converters
iconv Framework - Overview of Structures
Writing a Code Set Converter
Examples .
Input Method Overwew
Input Method Introduction .
Input Method Names.
Input Method Areas .
Related Information .
Programming Input Methods .
Initialization .
Input Method Management
IM Keymap Management .
Key Event Processing
Callbacks . .
Input Method Structures
Working with Keyboard Mapping
IM Keymaps . . .
Inbound and Outbound Mapplng
Using Callbacks .
Initializing Callbacks .
Bidirectional Input Method .
Cyrillic Input Method (CIM)
Keymap: .
Keysyms: . .
Reserved Keysyms: .
Modifiers . .
Related Informatlon .
Greek Input Method (GIM)
Keymap: .
Keysyms: . .
Reserved keysyms: . .
Japanese Input Method (JIM)
Japanese Character Processing

Kana-To-Kanji Conversion (KKC) Technology.

Input Modes .
Keyboard Mapping
Character Size .
Romaji-To-Kana Conver3|on (RKC)
Kaniji Pre-edit
Keymaps: .
Keysyms: . .
Reserved Keysyms: . .
Korean Input Method (KIM)
Latvian Input Method (LVIM) .
Keymap: . .
Lithuanian Input Method (LTIM)
Keymap: . . .
Thai Input Method (THIM)
Keymap: .
Vietnamese Input Method (VNIM) .
Keymap: .o

XiV Writing and Debugging Programs

. 412
. 414
. 416
. 438
. 438
. 438
. 441
. 445
. 452
. 452
. 453
. 454
. 454
. 454
. 455
. 455
. 456
. 456
. 456
. 456
. 457
. 457
. 458
. 458
. 461
. 461
. 462
. 462
. 462
. 462
. 463
. 463
. 463
. 464
. 464
. 464
. 464
. 465
. 465
. 466
. 467
. 467
. 467
. 468
. 469
. 470
. 470
. 470
. 472
. 472
. 472
. 472
. 472
. 472
. 472
. 473

Simplified Chinese Input Method (ZIM) .
Simplified Chinese Character Processing .
Simplified Chinese Input Method (ZIM-UCS) .
Chinese (CJK) Character Processing.
Single-Byte Input Method . . .
Traditional Chinese Input Method (TIM)
TIM Features
Traditional Chinese Character Processrng
Universal Input Method .
Keymap:
List of Reserved Keysyms
Reserved Keysyms for Tradltronal Chmese .
Reserved Keysyms for Simplified Chinese (ZIM and ZIM UCS) .
Message Facility Overview for Programming . Co
Creating a Message Source File
Creating a Message Catalog .
Displaying Messages outside of an Applrcatron Program
Displaying Messages with an Application Program .
Example of Retrieving a Message from a Catalog .
Culture-Specific Data Processing .
Culture-Specific Tables .
Culture-Specific Algorithms

Example: Load a Culture- Specrflc Module for Arablc Text for an Applrcatron.

NLS Sample Program
Message Source File for foo .
Creation of Message Header File for foo
Single Path Code Set Independent Version .
Dual-Path Version Optimized for Single-Byte Code Sets
National Language Support (NLS) Quick Reference
National Language Support Do’s and Don’ts .
National Language Support Checklist.
Message Suggestions .
List of National Language Support Subroutmes .
List of Locale Subroutines .
List of Time and Monetary Formattmg Subroutlnes
List of Multibyte Character Subroutines .
List of Wide Character Subroutines
List of Layout Library Subroutines .
List of Message Facility Subroutines .
List of Converter Subroutines
List of Input Method Subroutines
List of Regular Expression Subroutines .

Chapter 17. Object Data Manager (ODM)
ODM Object Classes and Objects .
Creating an Object Class . . .
Adding Objects to an Object Class
Locking Object Classes. .
Storing Object Classes and Objects .
ODM Descriptors . .o
ODM Terminal Descrrptors
ODM Link Descriptor.
ODM Method Descriptor
ODM Object Searches .
Descriptor Names in ODM Predlcates
Comparison Operators in ODM Predicates.

Contents

. 473
. 473
. 474
. 475
. 475
. 477
. 477
. 478
. 478
. 479
. 479
. 479
. 480
. 480
. 480
. 484
. 486
. 487
. 488
. 489
. 489
. 489
. 490
. 491
. 491
. 492
. 492
. 494
. 497
. 497
. 498
. 499
. 502
. 503
. 503
. 503
. 503
. 505
. 505
. 505
. 506
. 506

. 507
. 507
. 508
. 509
. 509
. 509
. 510
. 511
. 511
. 513
. 514
. 515
. 515

XV

LIKE Comparison Operator
Constants in ODM Predicates
AND Logical Operator for Predicates .

List of ODM Commands and Subroutines .

Commands .
Subroutines .

ODM Example Code and Output .
ODM Example Input Code for Creating Object Classes .
ODM Example Output for Object Class Definitions . .
ODM Example Code for Adding Objects to Object Classes.

Chapter 18. sed Program Information.
Manipulating Strings with sed

Starting the Editor.

How sed Works. .

Using Regular Expressions

Using the sed Command Summary

Using Text in Commands .

Using String Replacement.

Chapter 19. Shared Libraries, Shared Memory, and The malloc Subsystem .

Shared Objects and Runtime Linking .
Operation of the Runtime Linker
Creating a Shared Object with Runtime L|nk|ng Enabled
Shared Libraries and Lazy Loading .o
Lazy Loading Execution Tracing
Creating a Shared Library .
Prerequisite Tasks.
Procedure.
Program Address Space Overwew .
System Memory Architecture Introduct|on .
The Physical Address Space of 32-bit Systems .
The Physical Address Space of 64-bit Systems .
Segment Register Addressing .
Paging Space
Memory Management Pol|cy
Memory Allocation.
Understanding Memory Mappmg
mmap Comparison with shmat .
mmap Compatibility Considerations
Using the Semaphore Subroutines. .
Mapping Files with the shmat Subroutine . .
Mapping Shared Memory Segments with the shmat Subroutlne .
Related Information . .
IPC (Inter-Process Communlcat|on) L|m|ts
Shared Memory Segments
Before AlX 4.2.1
AlX 4.2.1 .
AlX 4.3. .
AlIX 4.3.1 .
AlX 4.3.2 .
Creating a Mapped Data F|Ie W|th the shmat Subroutlne
Prerequisite Condition Ce e e
Procedure.

Creating a Copy-On- Wnte Mapped Data F|Ie W|th the shmat Subroutlne .

Prerequisite Condition

XVi Writing and Debugging Programs

. 515
. 516
. 517
. 517
. 517
. 517
. 518
. 518
. 519
. 520

. 523
. 523
. 523
. 523
. 524
. 524
. 527
. 528

. 529
. 529
. 530
. 531
. 531
. 532
. 533
. 533
. 534
. 535
. 535
. 535
. 535
. 536
. 536
. 536
. 537
. 537
. 538
. 539
. 540
. 540
. 541
. 541
. 541
. 541
. 542
. 542
. 542
. 542
. 542
. 543
. 543
. 543
. 544
. 544

Procedure.

Creating a Shared Memory Segment W|th the shmat Subroutlne
Prerequisite Tasks or Conditions
Procedure.

System Memory AIIocatlon Usmg the malloc Subsystem
Working with the Heap .

Working with the Heap .

Understanding System AIIocatlon Pol|cy
Understanding the Default Allocation Policy
Understanding the 3.1 Allocation Policy .

Comparison of the Default and 3.1 Allocation PoI|C|es

User Defined Malloc Replacement .
Enablement .
32/64bit ConS|derat|ons
Thread Considerations .

Limitations
Error Reporting .
Related Information .

Debug Malloc
Enabling Debug Malloc .
MALLOCDEBUG Options .

Additional Information about align:n Optlon
Debug Malloc Output.

Performance Considerations .

Disk and Memory Considerations .
Limitations .

Related Information .

Malloc Multiheap .

Enabling Malloc Multlheap .o
MALLOCMULTIHEAP Options .

Malloc Buckets .

Bucket Composition and Slzmg
Processing Allocations from the Buckets
Support for Multiheap Processing .
Enabling Malloc Buckets

Malloc Buckets Configuration Optlons
MALLOCBUCKETS Options .

Malloc Buckets Default Conflguratlon
Limitations

Paging Space Programmlng Requwements

List of Memory Manipulation Services

List of Memory Mapping Services .

Chapter 20. Packaging Software for Installation.
Installation Procedure Requirements .
Package Control Information Requirements
Package Partitioning Requirements
Software Product Packaging Parts.
Sample File System Guide for Package Partltlonlng
Format of a Software Package . . e
Package and Fileset Naming Conventlons
Fileset Extension Naming Conventions .
Special Naming Considerations for Device Dnver Packagmg
Special Naming Considerations for Message Catalog Packaging
File Names .
Fileset Revision Level Identlflcat|on

Contents

. 544
. 544
. 544
. 545
. 545
. 546
. 546
. 547
. 547
. 548
. 550
. 550
. 552
. 552
. 553
. 553
. 553
. 553
. 554
. 554
. 554
. 557
. 557
. 558
. 558
. 558
. 559
. 559
. 559
. 560
. 560
. 560
. 561
. 561
. 561
. 562
. 562
. 563
. 564
. 564
. 564
. 565

. 567
. 567
. 568
. 568
. 568
. 568
. 569
. 569
. 569
. 570
. 570
. 571
. 571

Xvii

Fileset Level Overview .

Fileset Level Rules and Conventlons for AIX VerS|on 4 1 Formatted Fllesets
Compeatibility Information For Version 3.2-Formatted Fileset Updates .

Contents of a Software Package
Example Contents of a Software Package
The Ipp_name Package Information File
Requisite Information Section
Size and License Agreement Informat|on Sectlon
Supersede Information Section .
Fix Information Section .
The liblpp.a Installation Control L|brary F|Ie
Data Files Contained in the liblpp.a File. .
Optional Executable Files Contained in the liblpp.a F|Ie .
Optional Executable File Contained in the Fileset.al File.
Further Description of Installation Control Files .
The Fileset.cfdfiles File .
The Fileset.fixdata File .
The Fileset.inventory File .
Installation Control Files Specifically for Repackaged Products
The Fileset.installed_list File .
The Fileset.namelist File
The Fileset.rm_inv File . .
Installation Files for Supplemental DISk Subsystems .
Format of Distribution Media .
Tape. . .
CD-ROM .
Diskette
The Table of Contents F|Ie
Date and Time Stamp Format .
Location Format for Tape and Diskette .
The installp Processing of Product Packages .
Processing for the Apply Operation
Processing for the Reject and Cleanup Operatlons
Processing for the Remove Operation
The Installation Status File

Installation Commands Used During Installatlon and Update Processmg

Chapter 21. Documentation Library Service
Language Support. .

Writing your HTML Documents .

Making your Documents Printable .

Calling the Documentation Library Service From Your Documentatlon

Navigation Strategies
Creating a Custom View Set .
Creating Indexes of your Documentation
Requirements
Building the Indexes .
Removing Indexes of your Documentatlon
Packaging your Application’s Documentation .
Include a Search Index .
Register your Documentation.
Create an install package .
Packaging Book Guidelines .

Chapter 22. Software Vital Product Data (SWVPD).
Object Classes . Coe)

XViii Writing and Debugging Programs

. 571

. 571

. 572
. 572
. 573
. 573
. 576
. 580
. 582
. 584
. 584
. 585
. 586
. 588
. 588
. 588
. 590
. 590
. 592
. 592
. 593
. 594
. 594
. 595
. 595
. 595
. 596
. 596
. 597
. 598
. 598
. 599
. 601

. 603
. 604
. 605

. 607
. 608
. 608
. 609
. 609
. 609
. 610
. 616
. 616
. 616
. 624
. 624
. 624
. 626
. 626
. 626

. 627
. 627

Files.

Chapter 23. Source Code Control System (SCCS) .
Introduction to SCCS.
Delta Table in SCCS files
Control and Tracking Flags in SCCS Flles
Body of an SCCS file .
SCCS Flag and Parameter Conventlons
Creating, Editing, and Updating an SCCS File
Creating an SCCS File . .o
Editing an SCCS file .
Updating an SCCS File.
Controlling and Tracking SCCS File Changes
Controlling Access to SCCS files
Tracking Changes to an SCCS File .
Detecting and Repairing Damaged SCCS Files .
Procedure. . e
List of Additional SCCS Commands .

Chapter 24. Subroutines, Example Programs, and Libraries .

128-Bit Long Double Floating-Point Data Type

Compiling Programs that Use the 128-bit Long Double Data Type .

Compliance with IEEE 754 Standard . ..

Implementing the 128-Bit Long Double Format .

Values of Numeric Macros.
List of Character Manipulation Subroutlnes

Character Testing .

Character Translation

Miscellaneous Character Man|pulat|on .
List of Executable Program Creation Subroutines .
List of Files and Directories Subroutines

Controlling Files

Working with Directories

Manipulating File Systems. . .
List of FORTRAN BLAS Level 1: Vector Vector Subroutlnes
List of FORTRAN BLAS Level 2: Matrix-Vector Subroutines
List of FORTRAN BLAS Level 3: Matrix-Matrix Subroutines
List of Numerical Manipulation Subroutines

List of Long Long Integer Numerical Manipulation Subroutlnes
List of 128-Bit Long Double Numerical Manipulation Subroutines

List of Processes Subroutines
Process Initiation .
Process Suspension .
Process Termination . .
Process and Thread Ident|f|cat|on .
Process Accounting . .
Process Resource Allocation .
Process Prioritization.
Process and Thread Synchromzatlon
Process Signals and Masks .
Process Messages
List of Multi-threaded Programmlng Subroutlnes
List of Programmer’s Workbench Library Subroutines.
File .
List of Security and Audltlng Subroutlnes
Access Control Subroutines .

Contents

. 628

. 629
. 629
. 629
. 630
. 630
. 630
. 630
. 630
. 631
. 631
. 632
. 632
. 632
. 633
. 633
. 634

. 635
. 636
. 636
. 636
. 637
. 637
. 638
. 638
. 638
. 638
. 639
. 639
. 640
. 640
. 641
. 641
. 641
. 642
. 642
. 643
. 643
. 644
. 644
. 644
. 644
. 645
. 645
. 645
. 645
. 645
. 645
. 646
. 646
. 646
. 647
. 647
. 647

Xix

Auditing Subroutines .
Identification and Authentlcatlon Subroutlnes
Process Subroutines . .
List of String Manipulation Subroutlnes .
Programming Example for Manipulating Characters
Searching and Sorting Example Program .
List of Operating System Libraries .
librs2.a Library .
General-Use sqrt and |trunc Subroutlnes
POWER2-Specific sqrt and itrunc Subroutines

Chapter 25. System Management Interface Tool (SMIT) .
SMIT Screen Types . C e e e
Menu Screens .
Selector Screens .
Dialog Screens .
SMIT Object Classes. .
The SMIT Database . . .
SMIT Aliases and Fast Paths. .
SMIT Information Command Descriptors
The cmd_to_discover Descriptor
The cmd_to_*_postfix Descriptors .
SMIT Command Generation and Execution
Generating Dialog Defined Tasks .
Executing Dialog Defined Tasks. .
Adding Tasks to the SMIT Database .
Procedure. . .
Debugging SMIT Database Extensmns .
Prerequisite Tasks or Conditions
Procedure.
Creating SMIT Help Informatlon for a New Task
Man Pages Method . e
Message Catalog Method .
Softcopy Libraries Method . .
sm_menu_opt (SMIT Menu) Object Class . .
The sm_menu_opt Object Class Used for Aliases .
sm_name_hdr (SMIT Selector Header) Object Class .

sm_cmd_opt (SMIT Dialog/Selector Command Option) Object Class .

sm_cmd_hdr (SMIT Dialog Header) Object Class .
Related Information . .
SMIT Example Program

Chapter 26. System Resource Controller
Subsystem Interaction with the SRC .
The SRC and the init Command .
Compiling Programs to Interact With the srcmstr Daemon .
SRC Operations .
SRC Capabilities .
SRC Objects. .
Subsystem Object Class
Subserver Type Object Class.
Notify Object Class .
SRC Communication Types .
Signals Communication.
Sockets Communication .
IPC Message Queue Communlcanon.

XX Wiriting and Debugging Programs

. 648
. 648
. 648
. 649
. 649
. 652
. 655
. 656
. 656
. 656

. 659
. 659
. 659
. 660
. 661
. 661
. 665
. 665
. 665
. 666
. 667
. 668
. 668
. 669
. 669
. 670
. 671
. 671
. 671
. 671
. 671
. 672
. 672
. 673
. 674
. 674
. 677
. 680
. 683
. 683

. 697
. 697
. 697
. 698
. 698
. 698
. 698
. 699
. 701
. 701
. 702
. 703
. 704
. 704

Programming Subsystem Communication withthe SRC. 705
Programming Subsystems to Receive SRC Requests.705
Programming Subsystems to Process SRC Request Packets.707
Processing SRC Status Requests e e e eT708
Programming Subsystems to Send Reply Packets e e e e e s T09
Programming Subsystems to Return SRC Error Packets 710
Responding to Trace Requests .T710
Responding to Refresh Requests71

Defining Your Subsystemtothe SRC. ...

List of Additional SRC Subroutines.T12

Chapter 27. Trace Facility713
The Trace Facility Overview .7183
Controlling the Trace.T713
Recording Trace EventData74
Generatinga Trace ReportT7T15
Extracting trace data fromadump. .T715
Trace Facility Commands P 4 F5
Trace Facility Calls and Subroutmes Y 4 1
Trace Facility Files L L0 aTT
Trace Event Data A
Trace Facility Generic Trace Channels A
Related InformationT718
Start the Trace Facility A <
Configuring the trace Command A A k-
Recording Trace EventData .. .T719
Using Generic Trace Channels ..720
StartingaTrace T20
Stopping a Trace . . . e #200]
Generating a Trace Report Y 23
Trace Hook IDs: 001 through 10A ..72
001 : HKWD TRACE TRCON« .« . o« o721
002 : HKWD TRACE TRCOFF721
003 : HKWD TRACEHEADERT722
004 : HKWD TRACE NULLT722
005 : HKWD TRACE LWRAP ... 722
006 : HKWD TRACE TWRAP«T722
007 : HKWD TRACE UNDEFINED722
100 : HKWD KERN FLIH723
101 :HKWD KERNSVC ...723
102 : HKWDKERN SLIH723
103 : HKWD KERN SLIHRET .728
104 : HKWD KERN SYSCRET724
105: HKWD KERN LVMT24
106 : HKWD KERN DISPATCH. .. .72
107 : HKWD LFSLOOKUP«72
108 : HKWD SYSCLFS72
10A: HKWD KERN PFS T27
Trace Hook IDs: 10B through 14E. .727
10B : HKWD KERN LVMSIMP .. .728
10C: HKWD KERN IDLE729
10F : HKWD KERN EOF ...729
110 : HKWD KERNSTDERR .73
112 : HKWD KERNLOCK.73
113 : HKWD KERN UNLOCK .. .73
114 : HKWD KERN LOCKALLOC .. .73

Contents XXi

115 : HKWD KERN SETRECURSIVE .. .73
116 : HKWD KERN XMALLOC ... TH
117 : HKWD KERN XMFREE ... THA
118 : HKWD KERN FORKCOPY74
119 : HKWD KERN SENDSIGNAL.73
11A: HKWD KERN RCVSIGNAL«73
11B: HKWD KERN LOCKL« .« .« .« .«73
MMC:HKWDKERNPSLIH73
11D:HKWD KERN SIGSLIH73
1ME: HKWD KERNISSIG.73
MMF:HKWDKERNSORQ73
120 : HKWD SYSCACCESS .73
121 : HKWD SYSCACCT.«73
122 : HKWD SYSCALARM .. .T733
12E: HKWD SYSCCLOSE« . . « T4
134 : HKWD SYSCEXECVE«T7T%4
135 : HKWD SYSCEXITT34
139 : HKWD SYSC FORK.T7T34
145 : HKWD SYSC GETPGRP .. .73
146 : HKWD SYSCGETPID .73
147 : HKWD SYSC GETPPID .73
14C : HKWD SYSCIOCTL .. .735
14E : HKWD SYSCKILL735
Trace Hook IDs: 152 through19C .736
152 : HKWD SYSCLOCKF73
154 : HKWD SYSCLSEEK73
15F:HKWD SYSCPIPE73
160 : HKWD SYSC PLOCK o s T8Y
169 : HKWD SYSC SBREAK T37
16E : HKWD SYSC SETPGRP ..T737
16F : HKWD SYSC SETPRIO T37
180 : HKWD SYSC SIGACTION .. .737
181 : HKWD SYSC SIGCLEANUP. .738
18E: HKWD SYSCTIMES .738
18F : HKWD SYSC ULIMIT .738
195 : HKWD SYSC USRINFO ... T3
19B : HKWD SYSC WAIT o o o o e e e s s TR
Trace Hook IDs: 1A4 through 1BF. .73
1A4 : HKWD SYSC GETRLIMIT .. .73
1A5 : HKWD SYSC SETRLIMIT«73
1A6 : HKWD SYSC GETRUSAGE. .74
1A7 : HKWD SYSC GETPRIORITY .74
1A8 : HKWD SYSC SETPRIORITY .. .740
1A9 : HKWD SYSC ABSINTERVAL .. .740
1AA: HKWD SYSC GETINTERVAL14
1AB : HKWD SYSC GETTIMER714
1AC : HKWD SYSC INCINTERVAL«14
1AD : HKWD SYSC RESTIMER1M
1AE : HKWD SYSCRESABSo
1AF : HKWD SYSC RESINC. T42
1BO : HKWD VMM ASSIGNo T42
1B1: HKWD VMM DELETET742
1B2 : HKWD VMM PGEXCT. .743
1B3 : HKWD VMM PROTEXCT. .743
1B4 : HKWD VMM LOCKEXCT. .743
1B5 : HKWD VMM RECLAIM .. .74

XXii Writing and Debugging Programs

1B6 : HKWD VMM GETPARENT .
1B7 : HKWD VMN COPYPARENT.
1B8 : HKWD VMN VMAP .
1B9 : HKWD VMN ZFOD .
1BA: HKWD VMN SIO.
1BB : HKWD VMM SEGCREATE .
1BC : HKWD VMM SEGDELETE .
1BD : HKWD VMM DALLOC.
1BE : HKWD VMM PFEND .
1BF : HKWD VMM EXCEPT . .
Trace Hook IDs: 1C8 through 1CE.
1C8 : HKWD DD PPDD
1C9 : HKWD DD CDDD .
1CA : HKWD DD TAPEDD
1CD : HKWD DD ENTDD .
1CE : HKWD DD TOKDD . . .
Trace Hook IDs: 1CF through 211 .
1CF : HKWD DD C327DD.
1D1 : HKWD RAS ERRLG
1D2 : HKWD RAS DUMP . . .
1F0 : HKWD SYSC SETTIMER.
200 : HKWD KERN RESUME
20E: HKWD KERN LOCKL
20F: HKWD KERN UNLOCKL .
211 : HKWD NFS VOPSRW .
Trace Hook IDs: 212 through 220 .
212 : HKWD NFS VOPS .
213 : HKWD NFS RFSRW
214 : HKWD NFS RFS .
215 : HKWD NFS DISPATCH
216 : HKWD NFS CALL .
218 : HKWD RPC LOCKD.
220 : HKWD DD FDDD.
Trace Hook IDs: 221 through 223 .
221 : HKWD DD SCDISKDD.
222 : HKWD DD BADISKDD .
223 : HKWD DD SCSIDD .
Trace Hook IDs: 224 through 226 .
224 : HKWD DD MPQPDD
225 : HKWD DD X25DD
226 : HKWD DD GIO
Trace Hook IDs: 230 through 233
230: HKWD PTHREAD MUTEX LOCK .

231: HKWD PTHREAD MUTEX UNLOCK

232: HKWD PTHREAD SPIN LOCK .

233: HKWD PTHREAD SPIN UNLOCK .
Trace Hook IDs: 240 through 252 .

240 : HKWD SYSX DLC START

241 : HKWD SYSX DLC HALT .

242 : HKWD SYSX DLC TIMER

243 : HKWD SYSX DLC XMIT .

244 : HKWD SYSX DLC RECV.

245 : HKWD SYSX DLC PERF . . .

246 : HKWD SYSX DLC MONITOR .

251 : HKWD NETERR . .

252 : HKWD SYSC TCPIP

. 744
. 744
. 744
. 744
. 745
. 745
. 745
. 746
. 746
. 746
. 746
. 747
. 747
. 748
. 750
. 750
. 751
. 751
. 752
. 753
. 754
. 754
. 755
. 755
. 755
. 755
. 755
. 757
. 757
. 758
. 759
. 760
. 760
. 762
. 762
. 764
. 765
. 767
. 767
. 770
. 774
. 774
. 774
. 774
. 775
. 775
. 775
. 775
. 776
. 777
. 777
. 778
. 778
. 779
. 780
. 782

Contents XXiii

Trace Hook IDs: 253 through 25A .

253 :
254 :
255 :
256 :
257 .
258 :
259 :
25A :

HKWD SOCKET .
HKWD MBUF .
HKWD IFEN.
HKWD IFTR.
HKWD IFET.
HKWD IFXT.
HKWD IFSL. . .
HKWD TCPDBG .

Trace Hook IDs: 271 through 280 .

271:
280:

HKWD SNA API
HKWD HIA

Trace Hook IDs: 301 through 315 .

301:
302:
303:
304:
305:
306:
307:
308 :
309 :
310 :

311

312 :
313:
314 :
315 :

HKWD KERN ASSERTWAIT .

HKWD KERN CLEARWAIT

HKWD KERN THREADBLOCK .

HKWD KERN EMPSLEEP.

HKWD KERN EWAKEUPONE .

HKWD SYSC CRTHREAD.

HKWD KERN KTHREADSTART
HKWD SYSC TERMTHREAD .

HKWD KERN KSUSPEND

HKWD SYSC THREADSETSTATE
. HKWD SYSC THREADTERM ACK .
HKWD SYSC THREADSETSCHED .

HKWD KERN TIDSIG .
HKWD KERN WAITLOCK.

HKWD KERN WAKEUPLOCK .

Trace Hook IDs: 3C5 through 3E2.

3¢5 :
3c6 :
3c7 :
3c8 :
3¢9 :
3ca :
3cb :
3cc :
3cd :
3ce :
3cf :
3d0 :
: HKWD SYSC SEMOP .

3d1

3d2 :
3d3 :
3d4 :
3d5 :
3d6 :
3d7 :
3d8 :
3d9 :
3da :
3db :
3dc :
3dd :
3de :
3df :

HKWD SYSC IPCACCESS .

HKWD SYSC IPCGET . .
HKWD SYSC MSGCONV.
HKWD SYSC MSGCTL
HKWD SYSC MSGGET
HKWD SYSC MSGRCV

HKWD SYSC MSGSELECT .

HKWD SYSC MSGSND
HKWD SYSC MSGXRCV .
HKWD SYSC SEMCONYV .
HKWD SYSC SEMCTL .
HKWD SYSC SEMGET

HKWD SYSC SEM . .
HKWD SYSC SHMAT . .
HKWD SYSC SHMCONV.
HKWD SYSC SHMCTL
HKWD SYSC SHMDT .
HKWD SYSC SHMGET
HKWD SYSC MADVISE .
HKWD SYSC MINCORE .
HKWD SYSC MMAP

HKWD SYSC MPROTECT .

HKWD SYSC MSYNC .
HKWD SYSC MUNMAP
HKWD SYSC MVALID . .
HKWD SYSC MSEM_INIT.

XXiV Writing and Debugging Programs

. 783
. 783
. 784
. 785
. 786
. 787
. 788
. 789
. 790
. 791
. 791
. 793
. 800
. 800
. 801
. 801
. 801
. 801
. 802
. 802
. 802
. 802
. 803
. 803
. 803
. 803
. 804
. 804
. 804
. 804
. 804
. 805
. 805
. 805
. 805
. 806
. 806
. 806
. 806
. 807
. 807
. 807
. 807
. 808
. 808
. 808
. 808
. 808
. 809
. 809
. 809
. 809
. 810
. 810
. 810
. 810

3e0 : HKWD SYSC MSEM_LOCK. .
3e1 : HKWD SYSC MSEM_REMOVE
3e2 : HKWD SYSC MSEM_UNLOCK

Trace Hook IDs: 401 . .
401 : HKWD TTY TTY .
Trace Hook IDs: 402. . .
402 : HKWD TTY PTY .

Trace Hook IDs: 403.

403 : HKWD TTY RS

Trace Hook IDs: 404. . .
404 : HKWD TTY LION.

Trace Hook IDs: 405.

405 : HKWD TTY HFT .

Trace Hook IDs: 406. . .
406 : HKWD TTY RTS .

Trace Hook IDs: 407. . .
407 : HKWD TTY XON .

Trace Hook IDs: 408 . .
408 : HKWD TTY DTR .

Trace Hook IDs: 409. . .

409 : HKWD TTY DTRO . . .

Trace Hook IDs: 411 through 418 .

411: HKWD STTY STRTTY .
412: HKWD STTY LDTERM .
413: HKWD STTY SPTR .
414: HKWD STTY NLS.

415: HKWD STTY PTY .

416: HKWD STTY RS .

417: HKWD STTY LION

418: HKWD STTY CXMA .

Trace Hook IDs: 460 through 46E . .
460: HKWD KERN ASSERTWAIT .
461: HKWD KERN CLEARWAIT . .
462: HKWD KERN THREADBLOCK .
463: HKWD KERN EMPSLEEP. . .
464: HKWD KERN EWAKEUPONE .
465: HKWD SYSC CRTHREAD. .
466: HKWD KERN KTHREADSTART
467: HKWD SYSC TERMTHREAD
468: HKWD KERN KSUSPEND.

469:

46A:
46B:
46C:
46D:
46E:

HKWD SYSC THREADSETS"I'A"I'E:
HKWD SYSC THREADTERM ACK

HKWD SYSC THREADSETSCHED

HKWD KERN TIDSIG . .
HKWD KERN WAITLOCK.
HKWD KERN WAKEUPLOCK .

Chapter 28. tty Subsystem .
TTY Subsystem Objectives
tty Subsystem Modules .
TTY Subsystem Structure .
Common Services.
Synchronization
Line Discipline Module (Idterm) .
Terminal Parameters .

Process Group Session Management (Job Control)

Contents

. 810
. 811
. 811
. 811
. 81
. 817
. 817
. 821
. 821
. 826
. 826
. 831
. 831
. 836
. 836
. 841
. 841
. 846
. 846
. 851
. 851
. 855
. 855
. 856
. 858
. 859
. 861
. 862
. 866
. 870
. 874
. 874
. 874
. 875
. 875
. 875
. 875
. 876
. 876
. 876
. 876
. 877
. 877
. 877
. 877
. 877

. 879
. 879
. 879
. 880
. 881
. 883
. 883
. 883
. 883

XXV

Terminal Access Control .
Reading Data and Input Processrng .
Writing Data and Output Processmg .
Modem Management. .
Closing a Terminal Device File .
Converter Modules
NLS Module .
SJIS Modules
Related Information .
TTY Drivers .
Asynchronous Lrne Drrvers
Pseudo-Terminal Driver.
Related Information .

Chapter 29. High-Resolution Time Measurements Usmg POWER-based Time Base or POWER

family Real-Time Clock

Chapter 30. Loader Domains .
Using Loader Domains .
Creating/Deleting Loader Domarns

Chapter 31. Power Management-Aware Application Program

Chapter 32. ELF Object Files and Dynamic Linking
Section 1. ELF Object File General Information .
ELF Object File General Information .
File Format . .
Data Representation .
ELF Header . .
ELF Identification .
Machine Information (Processor Specrflc)
Sections
Rules for L|nk|ng Unrecognrzed Sectlons
Section Groups.
Special Sections
String Table .
System V Application Brnary Interface
Relocation
Relocation Types (Processor-Specrfrc)
Symbol Table
Symbol Values .

Section 2. ELF Program and Dynamrc Lmkrng General Informatlon.

ELF Program and Dynamic Linking General Information.
Program Header

Base Address

Segment Permissions

Segment Contents

Note Section.
Program Loading (Processor Specrfrc)
Dynamic Linking

Program Interpreter .

Dynamic Linker.

Dynamic Section .

Shared Object Dependencres

Global Offset Table

Procedure Linkage Table .

XXVi Writing and Debugging Programs

. 883
. 884
. 886
. 886
. 886
. 886
. 886
. 887
. 887
. 887
. 887
. 888
. 888

. 889

. 891
. 891
. 893

. 895

. 897
. 897
. 897
. 897
. 898
. 899
. 903
. 906
. 906
. 912
. 913
. 914
. 917
. 918
. 918
. 920
. 920
. 925
. 925
. 925
. 926
. 928
. 928
. 929
. 930
. 931
. 931
. 931
. 932
. 933
. 938
. 940
. 940

Hash Table

Initialization and Termination Functions .

Appendix A. Character Maps .

ISO Code Sets .
1ISO8859-1
ISO8859-2
ISO8859-5
ISO8859-6
ISO8859-7
ISO8859-8
ISO8859-9 .
ISO8859-15 .

IBM Code Sets .
IBM-850
IBM-856
IBM-921
IBM-922 .
IBM-1046 .
IBM-1124 .
IBM-1129 .
TIS-620

Appendix B. Notices

Index

Contents

. 940
. 941

. 943
. 943
. 943
. 945
. 948
. 950
. 952
. 954
. 956
. 958
. 961
. 961
. 964
. 966
. 969
. 971
. 974
. 977
. 979

. 983

. 985

XXVii

XXViii Writing and Debugging Programs

About This Book

This book introduces you to the programming tools and interfaces available for writing and debugging
application programs using the AIX operating system.

Who Should Use This Book

This book is intended for programmers who write and debug application programs on the AIX operating
system. Users of this book should be familiar with the C programming language and AIX usage (entering
commands, creating and deleting files, editing files, and moving around in the file system).

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items whose
names are predefined by the system. Also identifies graphical objects such as buttons, labels, and
icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.

Monospace Identifies examples of specific data values, examples of text similar to what you might see
displayed, examples of portions of program code similar to what you might write as a programmer,
messages from the system, or information you should actually type.

ISO 9000

ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications

The following books contain information about or related to writing programs:

. BIX A Version 51K E - Device S 5 e |
 AIX 5L Version 5.1 Communications Programming Concepts (LAbaut This Book)

« |AIX Al Version 5 1 AlXwindows Programming Guida

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:
* AIX

* IBM

Microsoft, MS-DOS, Windows, and WindowsNT are trademarks of Microsoft Corporation in the United
States, other countries, or both.

© Copyright IBM Corp. 1997, 2001 XXix

../../aixprggd/kernextc/kernextc.htm
../../aixprggd/aixwnpgd/aixwnpgd.htm
../../aixbman/baseadmn/baseadmn.htm
../../aixbman/commadmn/commadmn.htm
../../cmds/aixcmds1/aixcmds1.htm
../../aixkybd/kybdtech/kybdtech.htm
../../libs/basetrf1/basetrf1.htm
../../libs/basetrf2/basetrf2.htm
../../aixprggd/diagunsd/diagunsd.htm

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be the trademarks or service marks of others.

XXX Writing and Debugging Programs

Chapter 1. Tools and Utilities

This chapter provides an overview of the operating system tools and utilities that you can use to develop C
language programs.

The AIX Operating System provides many tools to help you develop C language programs. To access
these tools, you enter a command on the command line. The tools provide help in the following
programming areas:

Subroutines” on page 3 and EShell Commands” on page 4 are provided for use in a C language program.

Entering a Program into the System

The system has a line editor called kd for use in entering a program into a file. The system also has the
full-screen editor called E, which displays one full screen of data at a time and allows interactive editing of
a file.

Checking a Program
The following commands allow you to check the format of a program for consistency and accuracy:

lind Checks for syntax and data type errors in a C language source program. The lint command checks these
areas of a program more carefully than the C language compiler does, and displays many messages that
point out possible problems.

kg Reformats a C language source program into a consistent format that uses indentation levels to show the
structure of the program.

Efioul Generates a diagram of the logic flow of a C language source program.

Exred Generates a list of all external references for each module of a C language source program, including

where the reference is resolved (if it is resolved in the program).

Compiling and Linking a Program

To make source code into a program that the system can run, you need to process the source file with a
compiler program and a linkage editor.

A compiler is a program that reads program text from a file and changes the programming language in that
file to a form that the system understands. The linkage editor connects program modules together and
determines how to put the finished program into memory. To create this final form of the program, the
system does the following:

 If a file contains compiler source code, the compiler translates it into object code.

» If a file contains assembler language, the assembler translates it into object code.

* The linkage editor links the object files created in the previous step with any other object files specified
in the compiler command.

Other Erogramming languages available for use on the operating system include the FORTRAN, Pascal,

and languages. Refer to documentation on these programming languages for information on
compiling and linking programs written in them.

© Copyright IBM Corp. 1997, 2001 1

../../cmds/aixcmds2/ed.htm#HDRA133Z9C66
../../cmds/aixcmds6/vi.htm#HDRH2230MAUR
../../cmds/aixcmds3/lint.htm#HDRA0949414
../../cmds/aixcmds1/cb.htm#HDRA20897AF
../../cmds/aixcmds1/cflow.htm#HDRA2649154E
../../cmds/aixcmds1/cxref.htm#HDRA20894CA
../../aixassem/alangref/overview.htm#HDRBF95180692JEFF

You can write parts of a program in different languages and have one main routine call and start the
separate routines to execute, or use the cc program to both assemble and link the program.

Correcting Errors in a Program
The following debugging tools are available for use:
» dbx symbolic debugger can be used to debug programs written in C language, Pascal, FORTRAN, and

Assembler language. For more information, see Ldbx_Symbahc_Debug_Etagxam_OMenuew_m_page_ﬁd
+ adb kadb Debug Program Querview” on page 31 debugger provides subcommands to examine, debug,

and repair executable binary files and to examine non-ASCII data files.

+ Kernel Debug Programl can help to determine errors in code running in the kernel. The primary
application of this debugger is debugging device drivers.

When syntax errors or parameter naming inconsistencies are discovered in a program file, a text editor or
string-searching and string-editing programs can be used to locate and change strings in the file.
String-searching and string-editing programs include the greg, lsed, and awlk commands. To make many
changes in one or more program files, you can include the commands in a shell program and then run the
shell program to locate and change the code in the files.

Building and Maintaining a Program

Two facilities are provided to help you control program changes and build a program from many source
modules. These commands can be particularly useful in software development environments in which
many source modules are produced.

The Imakd command builds a program from source modules. Since the make command compiles only
those modules changed since the last build, its use can reduce compilation time when many source
modules must be processed.

[Chapter 23 Source Code Control System (SCCS)” on page 629 allows you to maintain separate versions

of a program without storing separate, complete copies of each version. The use of SCCS can reduce
storage requirements and help in tracking the development of a project that requires keeping many
versions of large programs.

Subroutines

Subroutines from system libraries handle many complex or repetitive programming situations so that you
can concentrate on unique programming situations. See Subroutines Overview (‘Chapter 24 Subroutines)

Example Programs, and | ibraries” on page 635) for information on using subroutines and for lists of many

of the subroutines available on the system.

Shell Commands

You can include the functions of many of the shell commands in a C language program. Any shell
command used in a program must be available on all systems that use the program.

You can then use the forld and bxed subroutines in a Erogram to run the command as a process in a part

of the system that is separate from the program. The subroutine also runs a shell command in a
program, and the @5 subroutine uses shell filters.

2 Writing and Debugging Programs

../../aixprggd/kernextc/kern_debug.htm#HDRFY7NH3C4MARY
../../cmds/aixcmds2/grep.htm#HDRKXF1170FISH
../../cmds/aixcmds5/sed.htm#HDRA10793B
../../cmds/aixcmds1/awk.htm#HDRA1049906
../../cmds/aixcmds3/make.htm#HDRA0949729
../../libs/basetrf1/fork.htm
../../libs/basetrf1/exec.htm
../../libs/basetrf2/system.htm
../../libs/basetrf1/popen.htm

Chapter 2. The Curses Library

The Curses library provides a set of functions that enable you to manipulate a terminal’s display
regardless of the terminal type. Throughout this documentation, the Curses library is referred to as curses.

The basis of curses programming is the window data structure. Using this structure, you can manipulate
data on a terminal’s display. You can instruct curses to treat the entire terminal display as one large
window or you can create multiple windows on the display. The windows can be different sizes and can
overlap one another. A typical curses application has a single large window and one subwindow inside.

Each window on a terminal’s display has its own window data structure. This structure keeps state
information about the window such as its size and where it is located on the display. Curses uses the
window data structure to obtain relevant information it needs to carry out your instructions.

Terminology

When programming with curses, you should be familiar with the following terms:

Term Definition

current character The character that the logical cursor is currently on.

current line The line that the logical cursor is currently on.

curscr A virtual default window provided by curses. The curscr (current screen) is an

internal representation of what currently appears on the terminal’s external display.
Do not modify the curscr.

display A physical display connected to a workstation.

logical cursor The cursor location within each window. The window data structure keeps track of
the location of its logical cursor.

pad A type of window that is larger than the dimensions of the terminal’s display.

physical cursor The cursor that appears on a display. The workstation uses this cursor to write to
the display. There is only one physical cursor per display.

screen The window that fills the entire display. The screen is synonymous with the stdscr.

stdscr A virtual default window (standard screen) provided by curses that represents the
entire display.

window A pointer to a C data structure and the graphic representation of that data structure

on the display. A window can be thought of as a two-dimensional array representing
how all or part of the display looks at any point in time.

Naming Conventions

A single curses subroutine can have two or more versions. Curses subroutines with multiple versions
follow distinct naming conventions that identify the separate versions. These conventions add a prefix to a
standard curses subroutine and identify what arguments the subroutine requires or what actions take place
when the subroutine is called. The different versions of curses subroutine names use three prefixes:

Prefix Description

w Identifies a subroutine that requires a window argument.

p Identifies a subroutine that requires a pad argument.

mv Identifies a subroutine that first performs a move to the program-supplied coordinates.

Some curses subroutines with multiple versions do not include one of the preceding prefixes. These
subroutines use the curses default window stdscr (standard screen). The majority of subroutines that use
the stdscr are macros created in the /usr/include/curses.h file using #define statements. The

© Copyright IBM Corp. 1997, 2001 3

preprocessor replaces these statements at compilation time. As a result, these macros do not appear in
the compiled assembler code, a trace, a debugger, or the curses source code.

If a curses subroutine has only a single version, it does not necessarily use stdscr. For example, the
printw subroutine prints a string to the stdscr. The wprintw subroutine prints a string to a specific window
by supplying the window argument. The mvprintw subroutine moves the specified coordinates to the
stdscr and then performs the same function as the printw subroutine. Likewise, the mvwprintw subroutine
moves the specified coordinates to the specified window and then performs the same function as the
wprintw subroutine.

Structure of a Curses Program

In general, a curses program has the following progression:
+ Start curses.

» Check for color support (optional).

» Start color (optional).

» Create one or more windows.

* Manipulate windows.

* Destroy one or more windows.

» Stop curses.

Your program does not have to follow this progression exactly.

Return Values

With a few exceptions, all curses subroutines return either the integer value ERR or the integer value OK.
Subroutines that do not follow this convention are noted appropriately. Subroutines that return pointers
always return a null pointer on an error.

Initializing Curses

initscd Initializes the curses subroutine library and its data structures

hewterml Sets up a new terminal

Eetuptern Sets up the TERMINAL structure for use by curses

Terminates the curses subroutine libraries and their data structures

[sendwinl Returns TRUE if the endwin subroutine has been called without any subsequent calls to the

wrefresh subroutine

You must include the curses.h file at the beginning of any program that calls curses subroutines. To do
this, use the following statement:

#include <curses.h>

Before you can call subroutines that manipulate windows or screens, you must call the initscr or newterm
subroutine. These subroutines first save the terminal’s settings. These subroutines then call the setupterm
subroutine to establish a curses terminal.

If you need to temporarily suspend curses, use a shell escape or system call for example. To resume after
a temporary escape, you should call the wrefresh or doupdate subroutine. Before exiting a curses
program, you must call the endwin subroutine. The endwin subroutine restores tty modes, moves the
cursor to the lower left corner of the screen, and resets the terminal into the proper nonvisual mode.

4 Writing and Debugging Programs

../../libs/basetrf2/initscr.htm#HDRA51C21802
../../libs/basetrf2/newterm.htm#HDRA9D0F13E308ERIC
../../libs/basetrf2/setupterm.htm#HDRA9D21AD4552ERIC
../../libs/basetrf2/endwin.htm#HDRA51C2182B
../../libs/basetrf1/isendwin.htm#HDRCE39993633MARY

Most interactive, screen-oriented programs require character-at-a-time input without echoing the result to
the screen. To establish your program with character-at-a-time input, call the cbreak and noecho
subroutines after calling the initscr subroutine. When accepting this type of input, programs should also
call the following subroutines:

* nonl subroutine.

* intrflush subroutine with the Window parameter set to the stdscr and the Flag parameter set to
FALSE. The Window parameter is required but ignored. You can use stdscr as the value of the
Window parameter, because stdscr is already created for you.

» keypad subroutine with the Window parameter set to the stdscr and the Flag parameter set to TRUE.

The isendwin subroutine is helpful if, for optimization reasons, you don’t want to call the wrefresh
subroutine needlessly. You can determine if the endwin subroutine was called without any subsequent
calls to the wrefresh subroutine by using the isendwin subroutine.

Windows in the Curses Environment

A curses program manipulates windows that appear on a terminal’s display. A window can be as large as
the entire display or as small as a single character in length and height.

Note: Pads are the exception. A pad is a window that is not restricted by the size of the screen. For

more information, see [Pads” on page 8.

Within a curses program, windows are variables declared as type WINDOW. The WINDOW data type is
defined in the /usr/include/curses.h file as a C data structure. You create a window by allocating a
portion of a machine’s memory for a window structure. This structure describes the characteristics of the
window. When a program changes the window data internally in memory, it must use the wrefresh
subroutine (or equivalent subroutine) to update the external, physical screen to reflect the internal change
in the appropriate window structure.

The Default Window Structure

Curses provides a virtual default window called stdscr. The stdscr represents, in memory, the entire
terminal display. The stdscr window structure is created automatically when the curses library is initialized
and it describes the display. When the library is initialized, the length and width variables are set to the
length and width of the physical display.

Programs that use the stdscr first manipulate the stdscr and then call the refresh subroutine to refresh the

external display so that it matches the stdscr window.

In addition to the stdscr, you can define your own windows. These windows are known as user-defined
windows to distinguish them from the stdscr. Like the stdscr, user-defined windows exist in machine
memory as structures. Except for the amount of memory available to a program, there is no limit to the
number of windows you can create. A curses program can manipulate the default window, user-defined
windows, or both.

The Current Window Structure

Curses supports another virtual window called curscr (current screen). The curscr window is an internal
representation of what currently appears on the terminal’s external display.

When a program requires the external representation to match the internal representation, it must call a
subroutine, such as the wrefresh subroutine, to update the physical display (or the refresh subroutine if
the program is working with the stdscr).

tefresh_or wrefresh Updates the terminal and curscr to reflect changes made to a window.

Chapter 2. The Curses Library

5

../../libs/basetrf2/refresh.htm#HDRA9CF8404986ERIC

The curscr is reserved for internal use by curses. You should not manipulate the curscr.

Subwindows

Curses also allows you to construct subwindows. Subwindows are rectangular portions within other
windows. A subwindow is also of type WINDOW. The window that contains a subwindow is known as the
subwindow’s parent and the subwindow is known as the containing window’s child.

Changes to either the parent window or the child window within the area overlapped by the subwindow are
made to both windows. After modifying a subwindow, you should call the touchline or touchwin
subroutine on the parent window before refreshing it.

touchiind Forces a range of lines to be refreshed at the next call to the [urefresH subroutine.

touchwin Forces every character in a window’s character array to be refreshed at the next call of the
wrefresh subroutine. The touchwin subroutine does not save optimization information. This
subroutine is useful with overlapping windows.

A refresh called on the parent refreshes the children as well.

A subwindow can also be a parent window. The process of layering windows inside of windows is called
nesting.

Before you can delete a parent window, you must first delete all of its children using the delwin
subroutine.

Belwid Removes a window data structure.

Curses returns an error if you try to delete a window before removing all of its children.

Pads

A pad is a type of window that is not restricted by the terminal’s display size or associated with a particular
part of the display. Because a pad is usually larger than the physical display, only a portion of a pad is
visible to the user at a given time.

Use pads if you have a large amount of related data that you want to keep all together in one window but
you do not need to display all of the data at once.

Windows within pads are known as subpads. Subpads are positioned within a pad at coordinates relative
to the parent pad. This placement differs from subwindows which are positioned using screen coordinates.

prefresh or pnoutrefresh Updates the terminal and curscr to reflect changes made to a pad.

Unlike other windows, scrolling or echoing of input does not automatically refresh a pad. Like subwindows,
when changing the image of a subpad, you must call either the touchline or touchwin subroutine on the
parent pad before refreshing the parent.

You can use all the curses subroutines with pads except for the newwin, subwin, wrefresh, and

wnoutrefresh subroutines. These subroutines are replaced with the newpad, subpad, prefresh, and
pnoutrefresh subroutines.

6 Writing and Debugging Programs

../../libs/basetrf2/is_linetouched.htm#HDRSU5DG277ERIC
../../libs/basetrf2/refresh.htm#HDRA9CF8404986ERIC
../../libs/basetrf2/touchwin.htm#HDRA9CF9862943ERIC
../../libs/basetrf2/delwin.htm#HDRA63C22821
../../libs/basetrf2/prefresh.htm#HDRA9D9DB6A691ERIC

Manipulating Window Data with Curses

When curses is initialized, the stdscr is provided automatically. You can manipulate the stdscr using the
curses subroutine library or you can create your own, user-defined windows. This section discusses the
following topics as they relate to manipulating window data:

Creating Windows

You can create your own window using the newwin subroutine.

hewwid Creates a new window data structure.

Each time you call the newwin subroutine, curses allocates a new window structure in memory. This
structure contains all the information associated with the new window. Curses does not put a limit on the
number of windows you can create. The number of nested subwindows is limited to the amount of memory
available up to the value of SHRT_MAX as defined in the /usr/include/limits.h file.

You can change windows without regard to the order in which they were created. Updates to the terminal’s
display occur through calls to the wrefresh subroutine.

Subwindows

Eubwid Creates a subwindow of an existing window.

You must supply coordinates for the subwindow relative to the terminal’s display. The subwindow must fit
within the bounds of the parent window; otherwise, a null value is returned.

Pads
m Creates a new pad data structure.
m Creates and returns a pointer to a subpad within a pad.

The new subpad is positioned relative to its parent.

Removing Windows, Pads, and Subwindows

To remove a window, pad, or subwindow, use the delwin subroutine. Before you can delete a window or
pad, you must have already deleted its children; otherwise, the delwin subroutine returns an error.

Changing the Screen or Window Images

When curses subroutines change the appearance of a window, the internal representation of the window is
updated while the display remains unchanged until the next call to the wrefresh subroutine. The wrefresh
subroutine uses the information in the window structure to update the display.

Refreshing Windows

Any time you write output to a window or pad structure, you must refresh the terminal’s display to match
the internal representation. A refresh does the following:

» Compares the contents of the curscr to the contents of the user-defined or stdscr
» Updates the curscr structure to match the user-defined or stdscr
* Redraws the portion of the physical display that changed

Chapter 2. The Curses Library 7

../../libs/basetrf2/derwin.htm#HDRA63C227B0
../../libs/basetrf2/subwin.htm#HDRA63C227E9
../../libs/basetrf2/newpad.htm#HDRA9D9C9A4467ERIC
../../libs/basetrf2/subpad.htm#HDRCE3DAED122MARY

tefresh _or wrefresh Updates the terminal and curscr to reflect changes made to a window.

wnoutrefresh or doupdated Updates the designated windows and outputs them all at once to the
terminal. These subroutines are useful for faster response when there

are multiple updates.

The refresh and wrefresh subroutines first call the wnoutrefresH subroutine to copy the window being
refreshed to the current screen. They then call the m subroutine to update the display.

If you need to refresh multiple windows at the same time, use one of the two available methods. You can
use a series of calls to the wrefresh subroutine that result in alternating calls to the wnoutrefresh and
doupdate subroutines. You can also call the wnoutrefresh subroutine once for each window and then call
the doupdate subroutine once. With the second method, only one burst of output is sent to the display.

Subroutines Used for Refreshing Pads
The prefresh and pnoutrefresh subroutines are similar to the wrefresh and wnoutrefresh subroutines.

prefresh or pnoutrefresh Updates the terminal and curscr to reflect changes made to a

user-defined pad.

The prefresh subroutine updates both the current screen and the physical display, while the m
subroutine updates curscr to reflect changes made to a user-defined pad. Because pads instead of
windows are involved, these subroutines require additional parameters to indicate which part of the pad
and screen are involved.

Refreshing Areas that Have Not Changed
During a refresh, only those areas that have changed are redrawn on the display. It is possible to refresh
areas of the display that have not changed using the touchwin and touchline subroutines.

touchlind Forces a range of lines to be refreshed at the next call to the lurefresH subroutine.

touchwid Forces every character in a window’s character array to be refreshed at the next call of the
wrefresh subroutine. The touchwin subroutine does not save optimization information. This
subroutine is useful with overlapping windows.

Combining the touchwin and wrefresh subroutines is helpful when dealing with subwindows or
overlapping windows. To bring a window forward from behind another window, call the touchwin
subroutine followed by the wrefresh subroutine.

Garbled Displays

If text is sent to the terminal’s display with a noncurses subroutine, such as the echo or printf subroutine,
the external window can become garbled. In this case, the display changes, but the current screen is not
updated to reflect these changes. Problems can arise when a refresh is called on the garbled screen
because after a screen is garbled, there is no difference between the window being refreshed and the
current screen structure. As a result, spaces on the display caused by garbled text are not changed.

A similar problem can also occur when a window is moved. The characters sent to the display with the
noncurses subroutines do not move with the window internally.

If the screen becomeS garbled, call the wrefresh subroutine on the curscr to update the display to reflect
the current physical display.

8 writing and Debugging Programs

../../libs/basetrf2/refresh.htm#HDRA9CF8404986ERIC
../../libs/basetrf2/doupdate.htm#HDRA9CF841C334ERIC
../../libs/basetrf2/doupdate.htm#HDRA9CF841C334ERIC
../../libs/basetrf2/doupdate.htm#HDRA9CF841C334ERIC
../../libs/basetrf2/prefresh.htm#HDRA9D9DB6A691ERIC
../../libs/basetrf2/prefresh.htm#HDRA9D9DB6A691ERIC
../../libs/basetrf2/is_linetouched.htm#HDRSU5DG277ERIC
../../libs/basetrf2/refresh.htm#HDRA9CF8404986ERIC
../../libs/basetrf2/touchwin.htm#HDRA9CF9862943ERIC

Manipulating Window Content

After a window or subwindow is created, programs often must manipulate them in some way.

box Draws a box in or around a window.

Eopywin Provides more precise control over the overlay and overwrite subroutine.

W Indicates to curses that a screen line is garbaged and should be thrown
away before having anything written over the top of it.

vwin Moves a window or subwindow to a new location.

bverlay or averwrite Copies one window on top of another.

m Removes a line from the default screen.

The Imvwid subroutine moves a window or subwindow. The box subroutine draws a box around the edge
of a window or subwindow.

To use the overlay and overwrite subroutines, the two windows must overlap. Also, be aware that the
overwrite subroutine is destructive whereas the overlay subroutine is not. When text is copied from one
window to another using the overwrite subroutine, blank portions from the copied window overwrite any
portions of the window copied to. The overlay subroutine is nondestructive because it does not copy blank
portions from the copied window.

Similar to the overlay and overwrite subroutines, the copywin subroutine allows you to copy a portion of
one window to another. Unlike overlay and overwrite subroutines, the windows do not have to overlap for
you to use the copywin subroutine.

You can use the ripoffline subroutine to remove a line from the stdscr. If you pass this subroutine a
positive line argument, the specified number of lines is removed from the top of the stdscr. Otherwise, if
you pass the subroutine a negative line argument, the lines are removed from the bottom of the stdscr.

Finally, you can use the garbagedlines subroutine to discard a specified range of lines before writing
anything new.

Support for Filters
The filter subroutine is provided for curses applications that are filters.

filted Sets the size of the terminal screen to 1 line.

This subroutine causes curses to operate as if the stdscr was only a single line on the screen. When
running with the filter subroutine, curses does not use any terminal capabilities that require knowledge of
the line that curses is on.

Controlling the Cursor with Curses

In the Curses library, there are two types of cursors:

logical cursor The cursor location within each window. A window’s data structure keeps track of the
location of its logical cursor. Each window has a logical cursor.
physical cursor The display cursor. The workstation uses this cursor to write to the display. There is

only one physical cursor per display.

You can only add to or erase characters at the current cursor location in a window. The following
subroutines are provided for controlling the cursor:

Chapter 2. The Curses Library 9

../../libs/basetrf2/box.htm#HDRA9CF9869827ERIC
../../libs/basetrf2/copywin.htm#HDRCE25AC4660MARY
../../libs/basetrf2/garbagedlines.htm#HDRCE2B9EA917MARY
../../libs/basetrf2/mvwin.htm#HDRA9CF8429013ERIC
../../libs/basetrf2/overlay.htm#HDRA9CF8435141ERIC
../../libs/basetrf2/ripoffline.htm#HDRCFA5E81545MARY
../../libs/basetrf2/mvwin.htm#HDRA9CF8429013ERIC
../../libs/basetrf2/box.htm#HDRA9CF9869827ERIC
../../libs/basetrf2/filter.htm#HDRCE2712F362MARY

movd Moves the logical cursor associated with the stdscr.

lumovd Moves the logical cursor associated with a user-defined window.

bethegyd Places the beginning coordinates of the window in integer variables y and x.
betmaxyi Places the size of the window in integer variables y and x.

betsyd Returns the current coordinates of the virtual screen cursor.

m Returns the position of the logical cursor associated with a specified window.
[eaveol Controls physical cursor placement after a call to the wrefresh subroutine.
bveud Moves the physical cursor.

m Sets the virtual screen cursor to the specified coordinate.

After a call to the refresh or wrefresh subroutine, curses places the physical cursor at the last updated
character position in the window. To leave the physical cursor where it is and not move it after a refresh,
call the leaveok subroutine with the Window parameter set to the desired window and the Flag parameter
set to TRUE.

Manipulating Characters with Curses

You can add characters to a curses window using a keyboard or a curses application. This section
provides an overview of the ways you can add, remove, or change characters that appear in a curses
window.

Character Size

Historically, a position on the screen has corresponded to a single stored byte. This correspondence is no
longer true for several reasons:

* Some characters may occupy several columns when displayed on the screen.
« Some characters may be non-spacing characters, defined only in association with a spacing character.

* The number of bytes to hold a character from the extended character sets depends on the LC_CTYPE
locale category.

Some character sets define multi-column characters that occupy more than one column position when
displayed on the screen.

Writing a character whose width is greater than the width of the destination window is an error.

Adding Characters to the Screen Image

The Curses library provides a number of subroutines that write text changes to a window and mark the
area to be updated at the next call to the lurefresH subroutine.

waddch Subroutines

The subroutines overwrite the character at the current logical cursor location with a specified
character. After overwriting, the logical cursor is moved one space to the right. If the waddch subroutines
are called at the right margin, these subroutines also add an automatic newline character. Additionally, if
you call one of these subroutines at the bottom of a scrolling region and scrollok is enabled, the region is
scrolled up one line. For example, if you added a new line at the bottom line of a window, the window
would scroll up one line.

If the character to add is a tab, newline, or backspace character, curses moves the cursor appropriately in
the window to reflect the addition. Tabs are set at every eighth column. If the character is a newline,
curses first uses the welrtoeol subroutine to erase the current line from the logical cursor position to the
end of the line before moving the cursor. The waddch subroutine family is made up of the following:

waddch subroutine Adds a character to the user-defined window.

10 Wiriting and Debugging Programs

../../libs/basetrf2/move.htm#HDRA9CF9870861ERIC
../../libs/basetrf2/move.htm#HDRA9CF9870861ERIC
../../libs/basetrf2/getbegyx.htm#HDRCE2C43B014MARY
../../libs/basetrf2/getmaxyx.htm#HDRCE38367193MARY
../../libs/basetrf2/getsyx.htm#HDRCE3877A663MARY
../../libs/basetrf2/getyx.htm#HDRA9CF98D8893ERIC
../../libs/basetrf2/leaveok.htm#HDRA9D0B955862ERIC
../../libs/basetrf2/mvcur.htm#HDRA9D0B946483ERIC
../../libs/basetrf2/setsyx.htm#HDRCE3CF40694MARY
../../libs/basetrf2/refresh.htm#HDRA9CF8404986ERIC
../../libs/basetrf2/addch.htm#HDRA9D21FB5217DAVI

addch macro Adds a character to the stdscr.

mvaddch macro Moves a character to the specified location before adding it to the stdscr.
mvwaddch macro Moves a character to the specified location before adding it to the user-defined
window.

By using the winch and waddch subroutine families together, you can copy text and video attributes from
one place to another. Using the winch subroutine family, you can retrieve a character and its video
attributes. You can then use one of the waddch subroutines to add the character and its attributes to
another location.

You can also use the waddch subroutines to add control characters to a window. Control characters are
drawn in the X notation.

Note: Calling the winch subroutine on a position in the window containing a control character does
not return the character. Instead, it returns one character of the control character representation.

Outputting Single, Noncontrol Characters: When outputting single, noncontrol characters, there is
significant performance gain to using the wechochar subroutines. These subroutines are functionally
equivalent to a call to the corresponding waddchr subroutine followed by the corresponding wrefresh
subroutine. The wechochar subroutines include the wechochar subroutine, the echochar macro, and the
pechochar subroutine.

Some character sets may contain non-spacing characters. (Non-spacing characters are those, other than
the "\ 0’ character, for which wewidth () returns a width of zero.) The application may write non-spacing
characters to a window. Every non-spacing character in a window is associated with a spacing character
and modifies the spacing character. Non-spacing characters in a window cannot be addressed separately.
A non-spacing character is implicitly addressed whenever a Curses operation affects the spacing character
with which the non-spacing character is associated.

Non-spacing characters do not support attributes. For interfaces that use wide characters and attributes,
the attributes are ignored if the wide character is a non-spacing character. Multi-column characters have a
single set of attributes for all columns. The association of non-spacing characters with spacing characters
can be controlled by the application using the wide character interfaces. The wide character string
functions provide codeset-dependent association.

Two typical effects of a non-spacing character associated with a spacing character called c, are as follows:

* The non-spacing character may modify the appearance of c. (For instance, there may be non-spacing
characters that add diacritical marks to characters. However, there may also be spacing characters with
built-in diacritical marks.)

* The non-spacing characters may bridge c to the character following c. (Examples of this usage are the
formation of ligatures and the conversion of characters into compound display forms, words, or
ideograms.)

Implementations may limit the number of non-spacing characters that can be associated with a spacing
character, provided any limit is at least 5.

Complex Characters

A complex character is a set of associated characters, which may include a spacing character and may
also include any non-spacing characters associated with it. A spacing complex character is a complex
character that includes one spacing character and any non-spacing characters associated with it. An
example of a code set that has complex characters is ISO/IEC 10646-1:1993.

Chapter 2. The Curses Library 11

A complex character can be written to the screen. If the complex character does not include a spacing
character, any non-spacing characters are associated with the spacing complex character that exists at the
specified screen position. When the application reads information back from the screen, it obtains spacing
complex characters.

The cchar_t data type represents a complex character and its rendition. When a cchar_t represents a
non-spacing complex character (that is, when there is no spacing character within the complex character),
then its rendition is not used; when it is written to the screen, it uses the rendition specified by the spacing
character already displayed.

An object of type cchar_t can be initialized using setchar() and its contents can be extracted using
getchar(). The behavior of functions that take a cchar_t value that was not initialized in this way or
obtained from a curses function that has a cchar_t output argument.

Special Characters
Some functions process special characters as specified below.

In functions that do not move the cursor based on the information placed in the window, these special
characters would only be used within a string in order to affect the placement of subsequent characters;
the cursor movement specified below does not persist in the visible cursor beyond the end of the
operation. In functions that do not move the cursor, these special characters can be used to affect the
placement of subsequent characters and to achieve movement of the physical cursor.

Backspace Unless the cursor was already in column 0, Backspace moves the cursor one cloumn
toward the start of the current line and any characters after the Backspace are added
or inserted starting there.

Carriage return Unless the cursor was already in column 0, Carriage return moves the cursor to the
start of the current line. Any characters after the Carriage return are added or inserted
starting there.

newline In an add operation, curses adds the background character into successive columns
until reaching the end of the line. Scrolling occurs, and any characters after the newline
character are added, starting at the beginning of the new line.

In an insert operation, newline erases the remainder of the current line with the
background character, effectively a wclrtoeol (), and moves the cursor to the start of a
new line. When scrolling is enabled, advancing the cursor to a new line may cause
scrolling. Any characters after the newline character are inserted at the beginning of the
new line.

The filter () function may inhibit this processing.
Tab Tab characters in text move subsequent characters to the next horizontal tab stop. By
default, tab stops are in columns 0, 8, 16, and so on.

In an insert or add operation, curses inserts or adds, respectively, the background
character into successive columns until reaching the next tab stop. If there are no more
tab stops in the current line, wrapping and scrolling occur.

Control Characters: The curses functions that perform special-character processing conceptually
convert control characters to the (’ ~ ’) character followed by a second character (which is an upper-case
letter if it is alphabetic) and write this string to the window in place of the control character. The funtions
that retrieve text from the window will not retrieve the original control character.

Line Graphics: You can use the following variables to add line-drawing characters to the screen with the
waddch subroutine. When defined for the terminal, the variable will have the A_ALTCHARSET bit turned
on. Otherwise, the default character listed in the following table will be stored in the variable.

Variable Name Default Character Glyph Description

12 Writing and Debugging Programs

ACS_ULCORNER + upper left corner

ACS_LLCORNER + lower left corner
ACS_URCORNER + upper right corner
ACS_LRCORNER + lower right corner
ACS_RTEE + right tee
ACS_LTEE + left tee

ACS_BTEE + bottom tee
ACS_TTEE + top tee
ACS_HLINE — horizontal line
ACS_VLINE | vertical line
ACS_PLUS + plus

ACS_S1 - scan line 1
ACS_S9 _ scan line 9
ACS_DIAMOND + diamond
ACS_CKBOARD : checker board (stipple)
ACS_DEGREE , degree symbol
ACS_PLMINUS # plus/minus
ACS_BULLET o bullet
ACS_LARROW < arrow pointing left
ACS_RARROW > arrow pointing right
ACS_DARROW v arrow pointing down
ACS_UARROW ’ arrow pointing up
ACS_BOARD # board of squares
ACS_LANTERN # lantern symbol
ACS_BLOCK # solid square block

waddstr Subroutines

The waddstr subroutines add a null-terminated character string to a window, starting with the current
character. If you are adding a single character, use the waddch subroutine. Otherwise, use the waddstr
subroutine. The following are part of the waddstr subroutine family:

lvaddstit subroutine Adds a character string to a user-defined window.

addstr macro Adds a character string to the stdscr.

mvaddstr macro Moves the logical cursor to a specified location before adding a character string
to the stdscr.

wmvaddstr macro Moves the logical cursor to a specified location before adding a character string

to a user-defined window.

winsch Subroutines

The hinscH subroutines insert a specified character before the current character in a window. All
characters to the right of the inserted character are moved one space to the right. As a result, the
rightmost character on the line may be lost. The positions of the logical and physical cursors do not
change after the move. The winsch subroutines include the following:

winsch subroutine Inserts a character in a user-defined window.

Chapter 2. The Curses Library 13

../../libs/basetrf2/addnstr.htm#HDRA9D21FBE934DAVI
../../libs/basetrf2/insch.htm#HDRA9D21FE5598DAVI

insch macro Inserts a character in the stdscr.

mvinsch macro Moves the logical cursor to a specified location in the stdscr before inserting a
character.
mvwinsch macro Moves the logical cursor to a specified location in a user-defined window before

inserting a character.

winsertln Subroutines

The winsertin subroutines insert a blank line above the current line in a window. The nsertld subroutine
inserts a line in the stdscr. The bottom line of the window is lost. The lvinsertld subroutine performs the
same action in a user-defined window.

wprintw Subroutines

The m subroutines replace a series of characters (starting with the current character) with formatted
output. The format is the same as for the m command. The following subroutine and macros belong to
the printw family:

wprintw subroutine Replaces a series of characters in a user-defined window.

printw macro Replaces a series of characters in the stdscr.

mvprintw macro Moves the logical cursor to a specified location in the stdscr before replacing any
characters.

mvwprintw macro Moves the logical cursor to a specified location in a user-defined window before

replacing any characters.

The wprintw subroutines make calls to the lvaddeH subroutine to replace characters.
unctrl Macro

The unctrl macro returns a printable representation of the specified control character, displayed in the "X
notation. The unctrl macro returns print characters as is.

Enabling Text Scrolling

fdloK Allows curses to use the hardware insert/delete line feature.

Ecrollold Enables a window to scroll when the cursor is moved off the right edge
of the last line of a window.

ketscrreg or wsetscrreg Sets a software scrolling region within a window.

Scrolling occurs when a program or user moves a cursor off a window’s bottom edge. For scrolling to
occur, you must first use the scrollok subroutine to enable scrolling for a window. A window is scrolled if
scrolling is enabled and if any of the following occurs:

* The cursor is moved off the edge of a window.
* A new-line character is encountered on the last line.
* A character is inserted in the last position of the last line.

When a window is scrolled, curses will update both the window and the display. However, to get the
physical scrolling effect on the terminal, you must call the idlok subroutine with the Flag parameter set to
TRUE.

If scrolling is disabled, the cursor is left on the bottom line at the location where the character was entered.

When scrolling is enabled for a window, you can use the setscrreg subroutines to create a software
scrolling region inside the window. You pass the setscrreg subroutines values for the top line and bottom

14 Writing and Debugging Programs

../../libs/basetrf2/insertln.htm#HDRA9D21FEE969DAVI
../../libs/basetrf2/insertln.htm#HDRA9D21FEE969DAVI
../../libs/basetrf2/printw.htm#HDRA9D21FF9062DAVI
../../cmds/aixcmds4/printf.htm#HDRA94C12
../../libs/basetrf2/addch.htm#HDRA9D21FB5217DAVI
../../libs/basetrf2/idlok.htm#HDRA9D2655A381ERIC
../../libs/basetrf2/scrollok.htm#HDRA9D22058770DAVI
../../libs/basetrf2/setscrreg.htm#HDRA9D2206B477DAVI

line of the region. If setscrreg is enabled for the region and scrolling is enabled for the window, any
attempt to move off the specified bottom line causes all the lines in the region to scroll up one line. You
can use the Eetscrredg macro to define a scrolling region in the stdscr. Otherwise, you use the
subroutine to define scrolling regions in user-defined windows.

Note: Unlike the idlok subroutine, the setscrreg subroutines have nothing to do with the use of the
physical scrolling region capability that the terminal may or may not have.

Deleting Characters

You can delete text by replacing it with blank spaces or by removing characters from a character array and
sliding the rest of the characters on the line one space to the left.

werase Subroutines
Erase or werasd Copies blank spaces to every position in a window.

The kerasd macro copies blank space to every position in the stdscr. The lerasd subroutine puts a blank
space at every position in a user-defined window. To delete a single character in a window, use the
wdelch subroutine.

wclear Subroutines

m Clears the screen and sets a clear flag for the next refresh.
Elearold Determines whether curses clears a window on the next call to the refresh or
wrefresh subroutine.

The welear subroutines are similar to the lwerasd subroutines. However, in addition to putting a blank
space at every position of a window, the wclear subroutines also call the luclearol subroutine. As a result,
the screen is cleared on the next call to the larefresH subroutine.

The wclear subroutine family contains the welear subroutine, the clear macro, and the clearok
subroutine. The clear macro puts a blank at every position in the stdscr.

wclrtoeol Subroutines

tlirtaeol or welrtoeal Erases the current line to the right of the logical cursor.

The clrtoeol macro operates in the stdscr, while the welrtoeol subroutine performs the same action within
a user-defined window.

wclrtobot Subroutines

tirtobot or welrtohot Erases the lines below and to the right of the logical cursor.

The klrtabot macro operates in the stdscr, while the welrtobot performs the same action in a user-defined
window.

wdelch Subroutines

wdelch subroutine Deletes the current character in a user-defined window.

delch macro Deletes the current character from the stdscr.

mvdelch macro Moves the logical cursor before deleting a character from the stdscr.

mvwdelch macro Moves the logical cursor before deleting a character from a user-defined window.

Chapter 2. The Curses Library 15

../../libs/basetrf2/setscrreg.htm#HDRA9D2206B477DAVI
../../libs/basetrf2/setscrreg.htm#HDRA9D2206B477DAVI
../../libs/basetrf2/erase.htm#HDRA9D35E25748DAVI
../../libs/basetrf2/erase.htm#HDRA9D35E25748DAVI
../../libs/basetrf2/erase.htm#HDRA9D35E25748DAVI
../../libs/basetrf2/clear.htm#HDRA9D35E13384DAVI
../../libs/basetrf2/clearok.htm#HDRA9D35DE5142DAVI
../../libs/basetrf2/erase.htm#HDRA9D35E25748DAVI
../../libs/basetrf2/clearok.htm#HDRA9D35DE5142DAVI
../../libs/basetrf2/refresh.htm#HDRA9CF8404986ERIC
../../libs/basetrf2/clrtoeol.htm#HDRA9D35DCB046DAVI
../../libs/basetrf2/clrtobot.htm#HDRA9D35DC2700DAVI
../../libs/basetrf2/clrtobot.htm#HDRA9D35DC2700DAVI

The hudelcH subroutines delete the current character and move all the characters to the right of the current
character on the current line one position to the left. The last character in the line is filled with a blank. The
delch subroutine family consists of the following subroutine and macros:

wdeleteln Subroutines
deleteln or wdeleteln Deletes the current line.

The wdeleteln subroutines delete the current line and move all lines below the current line up one line.
This clears the window’s bottom line.

Getting Characters

Your program can retrieve characters from the keyboard or from the display. The wgetch subroutines
retrieve characters from the keyboard. The winch subroutines retrieve characters from the display.

wgetch Subroutines

The wgetch subroutines read characters from the keyboard attached to the terminal associated with the
window. Before getting a character, these subroutines call the wrefresh subroutines if anything in the
window has changed: for example, if the cursor has moved or text has changed. If the wgetch subroutine
encounters a Ctrl-D key sequence during processing, it returns.

The following belong to the wgetch subroutine family:

wgetch subroutine Gets a character from a user-defined window.

getch macro Gets a character from the stdscr.

mvgetch macro Moves the cursor before getting a character from the stdscr.

mvwgetch macro Moves the cursor before getting a character from a user-defined window.

To place a character previously obtained by a call to the wgetch subroutine back in the input queue, use
the ungetch subroutine. The character is retrieved by the next call to the wgetch subroutine.

The Importance of Terminal Modes: The output of the wgetch subroutines is, in part, determined by
the mode of the terminal. The following list describes the action of the wgetch subroutines in each type of
terminal mode:

Mode Action of wgetch Subroutines
NODELAY Returns a value of ERR if there is no input waiting.
DELAY Stops reading until the system passes text through the program. If CBREAK mode is also set,

the program stops after one character. If CBREAK mode is not set (NOCBREAK mode), the
wgetch subroutine stops reading after the first new-line character. If ECHO is set, the character
is also echoed to the window.

HALF-DELAY Stops reading until a character is typed or a specified timeout is reached. If ECHO mode is set,
the character is also echoed to the window.

Note: When you use the wgetch subroutines do not set both the NOCBREAK mode and the ECHO
mode at the same time. Setting both modes can cause undesirable results depending on the state of
the tty driver when each character is typed.

Function Keys: Function keys are defined in the curses.h file. Function keys can be returned by the
wgetch subroutine if the keypad is enabled. A terminal may not support all of the function keys. To see if a
terminal supports a particular key, check its terminfo database definition. The following table lists the
function keys defined in the curses.h file:

|Name Key Name

16 Writing and Debugging Programs

../../libs/basetrf2/delch.htm#HDRA9D35DD5930DAVI
../../libs/basetrf2/deleteln.htm#HDRA9D35DDD759DAVI

KEY_BREAK Break key (unreliable).
KEY_DOWN Down arrow key.

KEY_UP Up arrow key.

KEY_LEFT Left arrow key.

KEY_RIGHT Right arrow key.

KEY_HOME Home key (upward + left arrow).

KEY_BACKSPACE

Backspace (unreliable).

KEY FO

Function keys. Space for 64 keys is reserved.

KEYF(n) Formula for ™

KEY_DL Delete line.

KEY_IL Insert line.

KEY_DC Delete character.

KEY_IC Insert character or enter insert mode.
KEY_EIC Exit insert character mode.
KEY_CLEAR Clear screen.

KEY_EOS Clear to end of screen.
KEY_EOL Clear to end of line.
KEY_SF Scroll 1 line forward.
KEY_SR Scroll 1 line backwards (reverse).
KEY_NPAGE Next page.

KEY_PPAGE Previous page.
KEY_STAB Set tab.

KEY_CTAB Clear tab.

KEY_CATAB Clear all tabs.
KEY_ENTER Enter or send.
KEY_SRESET Soft (partial) reset.
KEY_RESET Reset or hard reset.
KEY_PRINT Print or copy.

KEY_IL Home down or bottom (lower left) keypad.
KEY_A1 Upper left of keypad.
KEY_AS Upper right of keypad.
KEY_B2 Center of keypad.

KEY_CA1 Lower left of keypad.
KEY_C3 Lower right of keypad.
KEY_BTAB Back tab key.

KEY_BEG Beginning key.
KEY_CANCEL Cancel key.

KEY-CLOSE Close key.
KEY_COMMAND Command key.
KEY_COPY Copy key.

KEY_CREATE Create key.

KEY_END End key.

Chapter 2. The Curses Library 17

KEY_EXIT Exit key.
KEY_FIND Find key.
KEY_HELP Help key.
KEY_MARK Mark key.
KEY_MESSAGE Message key.
KEY_MOVE Move key.
KEY_NEXT Next object key.
KEY_OPEN Open key.
KEY_OPTIONS Options key.
KEY_PREVIOUS Previous object key.
KEY_REDO Redo key.

KEY_REFERENCE

Reference key.

KEY_REFRESH

Refresh key.

KEY_REPLACE Replace key.
KEY_RESTART Restart key.
KEY_RESUME Resume key.
KEY_SAVE Save key.
KEY_SBEG Shifted beginning key.

KEY_SCANCEL

Shifted cancel key.

KEY_SCOMMAND

Shifted command key.

KEY_SCOPY Shifted copy key.
KEY_SCREATE Shifted create key.
KEY_SDC Shifted delete-character key.
KEY_SDL Shifted delete-line key.
KEY_SELECT Select key.
KEY_SEND Shifted end key.
KEY_SEOL Shifted clear-line key.
KEY_SEXIT Shifted exit key.
KEY_SFIND Shifted find key.
KEY_SHELP Shifted help key.
KEY_SHOME Shifted home key.
KEY_SIC Shifted input key.
KEY_SLEFT Shifted left arrow key.
KEY_SMESSAGE Shifted message key.
KEY_SMOVE Shifted move key.
KEY_SNEXT Shifted next key.

KEY_SOPTIONS

Shifted options key.

KEY_SPREVIOUS

Shifted previous key.

KEY_SPRINT Shifted print key.
KEY_SREDO Shifted redo key.
KEY_SREPLACE Shifted replace key.
KEY_SRIGHT Shifted right arrow key.

18 Writing and Debugging Programs

KEY_SRSUME Shifted resume key.
KEY_SSAVE Shifted save key.
KEY_SSUSPEND Shifted suspend key.
KEY_SUNDO Shifted undo key.
KEY_SUSPEND Suspend key.
KEY_UNDO Undo key.

Getting Function Keys: If your program enables the keyboard with the keypad subroutine, and the user
presses a function key, the token for that function key is returned instead of raw characters. The possible
function keys are defined in the /usr/include/curses.h file. Each define statement begins with a KEY_
prefix and the keys are defined as integers beginning with the value 03510.

If a character is received that could be the beginning of a function key (such as an Escape character),
curses sets a timer (a structure of type timeval that is defined in /usr/include/sys/time.h). If the remainder
of the sequence is not received before the timer expires, the character is passed through. Otherwise, the
function key’s value is returned. For this reason, after a user presses the escape key there is a delay
before the escape is returned to the program. You should avoid using the escape key where possible
when you call a single-character subroutine such as the wgetch subroutine. This timer can be overridden
or extended by the use of the environment variable ESCDELAY.

The ESCDELAY environment variable sets the length of time to wait before timing out and treating the
ESC keystroke as the Escape character rather than combining it with other characters in the buffer to
create a key sequence. The ESCDELAY value is measured in fifths of a millisecond. If the ESCDELAY
variable is 0, the system immediately composes the Escape response without waiting for more information
from the buffer. You may choose any value from 0 to 99,999. The default setting for the ESCDELAY
variable is 500 (1/10th of a second).

To prevent the wgetch subroutine from setting a timer, call the notimeout subroutine. If notimeout is set to
TRUE, curses does not distinguish between function keys and characters when retrieving data.

keyname Subroutine
The keyname subroutine returns a pointer to a character string containing a symbolic name for the Key

argument. The Key argument can be any key returned from the wgetch, getch, mvgetch, or mvwgetch
subroutines.

winch Subroutines
The linchl subroutines retrieve the character at the current position. If any attributes are set for the

position, the attribute values are ORed into the value returned. You can use the winch subroutines to
extract only the character or its attributes. To do this, use the predefined constants A_ CHARTEXT and
A_ATTRIBUTES with the logical & (ampersand) operator. These constants are defined in the curses.h
file. The following are the inch subroutines:

winch subroutine Gets the current character from a user-defined window.

inch macro Gets the current character from the stdscr.

mvinch macro Moves the logical cursor before calling the inch subroutine on the stdscr.

mvwinch macro Moves the logical cursor before calling the winch subroutine in the user-defined
window.

wscanw Subroutines
The huscanwl subroutines read character data, interpret it according to a conversion specification, and

store the converted results into memory. The wscanw subroutines use the wgetstr subroutines to read
the character data. The following are the wscanw subroutines:

Chapter 2. The Curses Library 19

../../libs/basetrf2/inch.htm#HDRA9CF98D1863ERIC
../../libs/basetrf2/scanw.htm#HDRYB7DG2CEERIC

wscanw subroutine Scans a user-defined window.

scanw macro Scans the stdscr.
mvscanw macro Moves the logical cursor before scanning the stdscr.
mvwscanw macro Moves the logical cursor in the user-defined window before scanning.

The hawscanwl subroutine scans a window using a variable argument list. For information about
manipulating variable argument lists, see the macros.

Understanding Terminals with curses

The capabilities of your program are limited, in part, by the capabilities of the terminal on which it runs.
This section provides information about initializing terminals and identifying their capabilities.

Manipulating Multiple Terminals

With curses, you can use one or more terminals for input and output. The terminal subroutines enable you
to establish new terminals, to switch input and output processing, and to retrieve terminal capabilities.

You can start curses on a single default screen using the initscr subroutine. This should be sufficient for
most applications. However, if your application sends output to more than one terminal, you should use the
m% subroutine. Call this subroutine for each terminal. You should also use the newterm subroutine if
your application wants an indication of error conditions so that it can continue to run in a line-oriented
mode if the terminal cannot support a screen-oriented program.

When it completes, a program must call the Endwid subroutine for each terminal it used. If you call the
newterm subroutine more than once for the same terminal, the first terminal referred to must be the last
one for which you call the endwin subroutine.

The subroutine switches input and output processing between different terminals.

Determining Terminal Capabilities
curses supplies the following subroutines to help you determine the capabilities of a terminal:

m Returns the verbose name of the terminal.
has_id Determines whether a terminal has the insert-character capability.
has_ii Determines whether a terminal has the insert-line capability.

The longnhame subroutine returns a pointer to a static area containing a verbose description of the current
terminal. This area is defined only after a call to the initscr or newterm subroutine. If you intend to use
the longname subroutine with multiple terminals, you should know that each call to the newterm
subroutine overwrites this area. Calls to the set_term subroutine do not restore the value. Instead, save
this area between calls to the newterm subroutine.

The has_ic subroutine returns TRUE if the terminal has insert and delete character capabilities.
The has_il subroutine returns TRUE if the terminal has insert and delete line capabilities or can simulate

the capabilities using scrolling regions. Use the has_il subroutine to check whether it is appropriate to turn
on physical scrolling using the scrollok or idlok subroutines.

Setting Terminal Input and Output Modes

The subroutines that control input and output determine how your application retrieves and displays data
to users.

20 writing and Debugging Programs

../../libs/basetrf2/scanw.htm#HDRYB7DG2CEERIC
../../libs/basetrf2/varargs.htm
../../libs/basetrf2/newterm.htm#HDRA9D0F13E308ERIC
../../libs/basetrf2/endwin.htm#HDRA51C2182B
../../libs/basetrf2/set_term.htm#HDRA9D21964792ERIC
../../libs/basetrf2/longname.htm#HDRA9D219E3756ERIC
../../libs/basetrf2/has_ic.htm#HDRA9D2203E937DAVI
../../libs/basetrf2/has_il.htm#HDRA9D22047042DAVI

Input Modes
Special input characters include the flow-control characters, the interrupt character, the erase character,

and the kill character. Four mutually-exclusive curses modes let the application control the effect of the
input characters.

Cooked Mode
This achieves normal line-at-a-time processing with all special characters handled outside the
application. This achieves the same effect as canonical-mode input processing. The state of the
ISIG and IXON flags are not changed upon entering this mode by calling nocbreak(), and are set
upon entering this mode by calling noraw().

The implementation supports erase and kill characters from any supported locale, no matter what
the width of the character is.

cbreak Mode
Characters typed by the user are immediately available to the application and curses does not
perform special processing on either the erase character or the kill character. An application can
select cbreak mode to do its own line editing but to let the abort character be used to abort the
task. This mode achieves the same effect as non-canonical-mode, Case B input processing (with
MIN set to 1 and ICRNL cleared). The state of the ISIG and IXON flags are not changed upon
entering this mode.

Half-Delay Mode
The effect is the same as cbreak, except that input functions wait until a character is available or
an interval defined by the application elapses, whichever comes first. This mode achieves the
same effect as non-canonical-mode, Case C input processing (with TIME set to the value specified
by the application). The state of the ISIG and IXON flags are not changed upon entering this
mode.

Raw Mode
Raw mode gives the application maximum control over terminal input. The application sees each
character as it is typed. This achieves the same effect as non-canonical mode, Case D input
processing. The ISIG and IXON flags are cleared upon entering this mode.

The terminal interface settings are recorded when the process calls initscr or newterm to initialize curses
and restores these settings when endwin is called. The initial input mode for curses operations is
unspecified unless the implementation supports Enhanced curses compliance, in which the initial input
mode is cbreak mode.

The behavior of the BREAK key depends on other bits in the display driver that are not set by curses.

Delay Mode
Two mutually-exclusive delay modes specify how quickly certain curses functions return to the application
when there is no terminal input waiting when the function is called:

No Delay The function fails.

Delay The application waits until the implementation passes text through to the application. If cbreak or
Raw Mode is set, this is after one character. Otherwise, this is after the first <newline> character,
end-of-line character, or end-of-file character.

The effect of No Delay Mode on function key processing is unspecified.

Echo Processing
echo mode determines whether curses echoes typed characters to the screen. The effect of echo mode is

analogous to the effect of the echo flag in the local mode field of the termios structure associated with the
terminal device connected to the window. However, curses always clears the echo flag when invoked, to
inhibit the operating system from performing echoing. The method of echoing characters is not identical to
the operating system’s method of echoing characters, because curses performs additional processing of
terminal input.

Chapter 2. The Curses Library 21

If in echo mode, curses performs its own echoing. Any visible input character is stored in the current or
specified window by the input function that the application called, at that window’s cursor position, as
though addch() were called, with all consequent effects such as cursor movement and wrapping.

If not in echo mode, any echoing of input must be performed by the application. Applications often perform
their own echoing in a controlled area of the screen, or do not echo at all, so they disable echo mode.

It may not be possible to turn off echo processing for synchronous and network asynchronous terminals
because echo processing is done directly by the terminals. Applications running on such terminals should
be aware that any characters typed will appear on the screen at wherever the cursor is positioned.

threak or nochreald Puts the terminal into or takes it out of CBREAK mode.

Helay_output Sets the output delay in milliseconds.

Bcha or noechd Controls echoing of typed characters to the screen.

m Returns ERR if no input was typed after blocking for a specified amount of
time.

hiornoni Determines whether curses translates a new line into a carriage return and
line feed on output, and translates a return into a new line on input.

taw or noraul Places the terminal into or out of RAW mode.

The lechd subroutine puts the terminal into echo mode. In echo mode, curses writes characters typed by
the user to the terminal at the physical cursor position. The lhoechd subroutine takes the terminal out of
echo mode.

The kaw subroutine puts the terminal into raw mode. In raw mode, characters typed by the user are
immediately available to the program. Additionally, the interrupt, quit, suspend, and flow-control characters
are passed uninterpreted instead of generating a signal as they do in cbreak mode. The lharawl subroutine
takes the terminal out of raw mode.

The kbreald subroutine performs a subset of the functions performed by the raw subroutine. In cbreak
mode, characters typed by the user are immediately available to the program and erase or kill character
processing is not done. Unlike RQW mode, interrupt and flow characters are acted upon. Otherwise, the
tty driver buffers the characters typed until a new line or carriage return is typed.

Note: cbreak mode disables translation by the tty driver.
The lhachreald subroutine takes the terminal out of cbreak mode.

The Helay_output subroutine sets the output delay to the specified number of milliseconds. Do not use
this subroutine extensively because it uses padding characters instead of a processor pause.

The Il and honl subroutines, respectively, control whether curses translates new lines into carriage
returns and line feeds on output, and whether curses translates carriage returns into new lines on input.
Initially, these translations do occur. By disabling these translations, the curses subroutine library has more
control over the line-feed capability, resulting in faster cursor motion.

Using the terminfo and termcap Files

When curses is initialized, it checks the TERM environment variable to identify the terminal type. Then,
curses looks for a definition explaining the capabilities of the terminal. Usually this information is kept in a
local directory specified by the TERMINFO environment variable or in the /usr/share/lib/terminfo
directory. All curses programs first check to see if the TERMINFO environment variable is defined. If this
variable is not defined, the /usr/share/lib/terminfo directory is checked.

22 writing and Debugging Programs

../../libs/basetrf2/cbreak.htm#HDRA9D85FD1294ERIC
../../libs/basetrf2/delay_output.htm#HDRA9D21AE9196ERIC
../../libs/basetrf2/echo.htm#HDRA9D21AA6928ERIC
../../libs/basetrf2/halfdelay.htm#HDRD6A7E18785EMIL
../../libs/basetrf2/nl.htm#HDRA9D21AC0714ERIC
../../libs/basetrf2/raw.htm#HDRA9D21A90138ERIC
../../libs/basetrf2/echo.htm#HDRA9D21AA6928ERIC
../../libs/basetrf2/echo.htm#HDRA9D21AA6928ERIC
../../libs/basetrf2/raw.htm#HDRA9D21A90138ERIC
../../libs/basetrf2/raw.htm#HDRA9D21A90138ERIC
../../libs/basetrf2/cbreak.htm#HDRA9D85FD1294ERIC
../../libs/basetrf2/cbreak.htm#HDRA9D85FD1294ERIC
../../libs/basetrf2/delay_output.htm#HDRA9D21AE9196ERIC
../../libs/basetrf2/nl.htm#HDRA9D21AC0714ERIC
../../libs/basetrf2/nl.htm#HDRA9D21AC0714ERIC

For example, if the TERM variable is set to vt100 and the TERMINFO variable is set to the
lusr/mark/myterms file, curses checks for the /usr/mark/myterms/v/vt100 file. If this file does not exist,
curses checks the /usr/share/lib/terminfo/v/vt100 file.

Additionally, the LINES and COLUMNS environment variables can be set to override the terminal
description.

Writing Programs That Use the terminfo Subroutines
Use the terminfo subroutines when your program needs to deal directly with the terminfo databasd. For
example, use these subroutines to program function keys. In all other cases, curses subroutines are more
suitable and their use is recommended.

Initializing Terminals: Your program should begin by calling the m subroutine. Normally, this
subroutine is called indirectly by a call to the initscr or newterm subroutine. The setupterm subroutine
reads the terminal-dependent variables defined in the terminfo database. The terminfo database includes
boolean, numeric, and string variables. All of these terminfo variables use the values defined for the
specified terminal. After reading the database, the setupterm subroutine initializes the cur_term variable
with the terminal definition. When working with multiple terminals, you can use the set_curterm subroutine
to set the cur_term variable to a specific terminal.

Another subroutine, m, is similar to the setupterm subroutine. However, it is called after memory
is restored to a previous state. For example, you would call the restartterm subroutine after a call to the
scr_restore subroutine. The restartterm subroutine assumes that the input and output options are the
same as when memory was saved, but that the terminal type and baud rate may differ.

The del_curterm subroutine frees the space containing the capability information for a specified terminal.

Header Files: Include the curses.h and term.h files in your program in the following order:

#include <curses.h>
#include <term.h>

These files contain the definitions for the strings, numbers, and flags in the terminfo database.
Handling Terminal Capabilities: Pass all parametized strings through the tparm subroutine to

instantiate them. You should print all terminfo strings and the output of the tparm subroutine with the
tputs or putp subroutine.

m Provides a shortcut to the m subroutine.
m Instantiates a string with parameters.
tputd Applies padding information to the given string and outputs it.

Use the following subroutines to obtain and pass terminal capabilities:

tigetflag Returns the value of a specified boolean capability. If the capability is not boolean, a -1 is returned.
tigethum Returns the value of a specified numeric capability. If the capability is not numeric, a -2 is returned.
tigetstr Returns the value of a specified string capability. If the capability specified is not a string, the

tigetstr subroutine returns the value of (char *) -1.

Exiting the Program: When your program exits you should restore the tty modes to their original state.
To do this, call the reset_shell_mode subroutine. If your program uses cursor addressing, it should output
the enter_ca_mode string at startup and the exit_ca_mode string when it exits.

Programs that use shell escapes should call the reset_shell_mode subroutine and output the
exit_ca_mode string before calling the shell. After returning from the shell, the program should output the

Chapter 2. The Curses Library 23

../../files/aixfiles/terminfo.htm#HDRA72P01A
../../libs/basetrf2/setupterm.htm#HDRA9D21AD4552ERIC
../../libs/basetrf2/restartterm.htm#HDRDCE394C620MICH
../../libs/basetrf2/putp.htm#HDRA5FNDG3D1ERIC
../../libs/basetrf2/tputs.htm#HDRA9D21B31085ERIC
../../libs/basetrf2/tparm.htm#HDRA9D21B0C903ERIC
../../libs/basetrf2/tputs.htm#HDRA9D21B31085ERIC

enter_ca_mode string and call the reset_prog_mode subroutine. This process differs from standard
curses operations which call the endwin subroutine on exit.

Low-Level Screen Subroutines
Use the following subroutines for low-level screen manipulations:

scr_restore Restores the virtual screen to the contents of a previously dumped file.
scr_dump Dumps the contents of the virtual screen to the specified file.

scr_init Initializes the curses data structures from a specified file.

ripoffline Strips a single line from the stdscr.

termcap Subroutines

If your program uses the termcap file for terminal information, the termcap subroutines are included as a
conversion aid. The parameters are the same for the termcap subroutines. curses emulates the
subroutines using the terminfo database. The following termcap subroutines are supplied:

w Emulates the m subroutine.

m Returns the boolean entry for a termcap identifier.

W Returns the numeric entry for a termcap identifier.

@ Returns the string entry for a termcap identifier.

@ Duplicates the m subroutine. The output from the tgoto subroutine should be passed to the

tputs subroutine.

Converting termcap Descriptions to terminfo Descriptions

The m command converts termcap descriptions to terminfo descriptions. The following example
illustrates how the captoinfo command works:

captoinfo /usr/1ib/Tibtermcap/termcap.src

This command converts the /usr/lib/libtermcap/termcap.src file to terminfo source. The captoinfo
command writes the output to standard output and preserves comments and other information in the file.

Manipulating TTYs

The following functions save and restore the state of terminal modes:

m Saves the state of the tty modes.
m Restores the state of the tty modes to what they were the last time the savetty subroutine was called.

Synchronous and Networked Asynchronous Terminals

Synchronous, networked synchronous (NWA) or non-standard directly-connected asynchronous terminals
are often used in a mainframe environment and communicate to the host in block mode. That is, the user
types characters at the terminal then presses a special key to initiate transmission of the characters to the
host.

Although it may be possible to send arbitrary sized blocks to the host, it is not possible or desirable to
cause a character to be transmitted with only a single keystroke. Doing so could cause severe problems to
an application wishing to make use of single-character input.

Output

The curses interface can be used in the normal way for all operations pertaining to output to the terminal,
with the possible exception that on some terminals the refresh() routine may have to redraw the entire
screen contents in order to perform any update.

24 writing and Debugging Programs

../../libs/basetrf2/tgetent.htm#HDRA9D21B55436ERIC
../../libs/basetrf2/setupterm.htm#HDRA9D21AD4552ERIC
../../libs/basetrf2/tgetflag.htm#HDRA9D21B63698ERIC
../../libs/basetrf2/tgetnum.htm#HDRA9D21B72971ERIC
../../libs/basetrf2/tgetstr.htm#HDRA9D21B8C800ERIC
../../libs/basetrf2/tgoto.htm#HDRA9D21BA8631ERIC
../../libs/basetrf2/tparm.htm#HDRA9D21B0C903ERIC
../../cmds/aixcmds1/captoinfo.htm#HDRA67F032F
../../libs/basetrf2/savetty.htm#HDRA9D23E9B275ERIC
../../libs/basetrf2/resetty.htm#HDRA9D23EA8016ERIC

If it is additionally necessary to clear the screen before each such operation, the result could be
undesirable.

Input

Because of the nature of operation of synchronous (block-mode) and NWA terminals, it might not be
possible to support all or any of the curses input functions. In particular, the following points should be
noted:

+ Single-character input might not possible. It may be necessary to press a special key to cause all
characters typed at the terminal to be transmitted to the host.

* |t is sometimes not possible to disable echo. Character echo may be performed directly by the terminal.
On terminals that behave in this way, any curses application that performs input should be aware that
any characters typed will appear on the screen at wherever the cursor is positioned. This does not
necessarily correspond to the position of the cursor in the window.

Working with Color

If a terminal supports color, you can use the color manipulation subroutines to include color in your curses
program. Before manipulating colors, you should test whether a terminal supports color. To do this, you
can use either the has_colors subroutine or the can_change_color subroutine. The can_change_color
subroutine also checks to see if a program can change the terminal’s color definitions. Neither of these
subroutines requires an argument.

tan_change_colod Checks to see if the terminal supports colors and changing of the color definition.

m Checks that the terminal supports colors.

start_color Initializes the eight basic colors and two global variables, COLORS and
COLOR_PAIRS.

Once you have determined that the terminal supports color, you must call the start_color subroutine
before calling other color subroutines. It is a good practice to call this subroutine right after the initscr
subroutine and after a successful color test. The COLORS global variable defines the maximum number of
colors the terminal supports. The COLOR_PAIRS global variable defines the maximum number of color
pairs the terminal supports.

Manipulating Video Attributes

Your program can manipulate a number of video attributes.

Video Attributes, Bit Masks, and the Default Colors

Curses enables you to control the following attributes:

A_STANDOUT Terminal’s best highlighting mode.

A_UNDERLINE Underline.

A_REVERSE Reverse video.

A_BLINK Blinking.

A_DIM Half-bright.

A_BOLD Extra bright or bold.

A_ALTCHARSET Alternate character set.

A_NORMAL Normal attributes.

COLOR_PAIR (Number) Displays the color pair represented by Number. You must have already

initialized the color pair using the init_pair subroutine.

These attributes are defined in the curses.h file. You can pass attributes to the wattron, wattroff, and
wattrset subroutines or you can OR them with the characters passed to the waddch subroutine. The C
logical OR operator is a | (pipe symbol). The following bit masks are also provided:

Chapter 2. The Curses Library 25

../../libs/basetrf2/can_change_color.htm#HDRCE25C71831MARY
../../libs/basetrf2/has_colors.htm#HDRCE38B42178MARY

A_NORMAL Turns all video attributes off.

A_CHARTEXT Extracts a character.
A_ATTRIBUTES Extracts attributes.
A_COLOR Extracts color-pair field information.

Two macros are provided for working with color pairs: COLOR_PAIR(Number) and PAIR_NUMBER(
Attribute). The COLOR_PAIR(Number) macro and the A_COLOR mask are used by the PAIR_NUMBER(
Attribute) macro to extract the color-pair number found in the attributes specified by the Attribute
parameter.

If your program uses color, the curses.h file defines a number of macros that identify default colors. These
colors are the following:

Color Integer Value
COLOR_BLACK 0
COLOR_BLUE 1
COLOR_GREEN 2
COLOR_CYAN 3
COLOR_RED 4
COLOR_MAGENTA 5
COLOR_YELLOW 6
COLOR_WHITE 7

Curses assumes that the default background color for all terminals is 0 (COLOR_BLACK).

Setting Video Attributes

The current window attributes are applied to all characters written into the window with the bddcH
subroutines. These attributes remain as a property of the characters. The characters retain these attributes
during terminal operations.

httroff or wattroff Turns off attributes.
httron orwattran Turns on attributes.
httrset or wattrsed Sets the current attributes of a window.

ktandout wstandout standend orwstandend
Puts a window into and out of the terminal’s best highlight
mode.

Vidputs or vidattd Outputs a string that puts the terminal in a video-attribute
mode.

The bttrsed subroutine sets the current attributes of the default screen. The attrsel subroutine sets the
current attributes of the user-defined window.

Use the lattron and attroff subroutines to turn on and off the specified attributes in the stdscr without
affecting any others. The wattror and lwattroff subroutines perform the same actions in user-defined
windows.

The subroutine is the same as a call to the attron subroutine with the A_STANDOUT attribute.
It puts the stdscr into the terminal’s best highlight mode. The lustandout subroutine is the same as a call
to the wattron(Window, A_STANDOUT) subroutine. It puts the user-defined window into the terminal’s
best highlight mode. The Etandend subroutine is the same as a call to the attrset(0) subroutine. It turns
off all attributes for stdscr. The hustandend subroutine is the same as a call to the wattrset(Window, 0)
subroutine. It turns off all attributes for the specified window.

26 Wwriting and Debugging Programs

../../libs/basetrf2/addch.htm#HDRA9D21FB5217DAVI
../../libs/basetrf2/attroff.htm#HDRA9D26504116ERIC
../../libs/basetrf2/attron.htm#HDRA9D264F9069ERIC
../../libs/basetrf2/attrset.htm#HDRA9D26511681ERIC
../../libs/basetrf2/standend.htm#HDRA9D26520503ERIC
../../libs/basetrf2/vidattr.htm#HDRA9D21B43550ERIC
../../libs/basetrf2/attrset.htm#HDRA9D26511681ERIC
../../libs/basetrf2/attrset.htm#HDRA9D26511681ERIC
../../libs/basetrf2/attron.htm#HDRA9D264F9069ERIC
../../libs/basetrf2/attroff.htm#HDRA9D26504116ERIC
../../libs/basetrf2/attron.htm#HDRA9D264F9069ERIC
../../libs/basetrf2/attroff.htm#HDRA9D26504116ERIC
../../libs/basetrf2/standend.htm#HDRA9D26520503ERIC
../../libs/basetrf2/standend.htm#HDRA9D26520503ERIC
../../libs/basetrf2/standend.htm#HDRA9D26520503ERIC
../../libs/basetrf2/standend.htm#HDRA9D26520503ERIC

The kidputd subroutine outputs a string that puts the terminal in the specified attribute mode. Characters
are output through the pute subroutine. The lidattd subroutine is the same as the vidputs subroutine
except that characters are output through the fputchad subroutine.

Working with Color Pairs
The COLOR_PAIR (Number) macro is defined in the curses.h file so you can manipulate color attributes

as you would any other attributes. You must initialize a color pair with the init_pair subroutine before you
use it. The init_pair subroutine has three parameters Pair, Foreground, and Background. The Pair
parameter must be between 1 and COLOR_PAIRS -1. The Foreground and Background parameters must
be between 0 and COLORS -1. For example, to initialize color pair 1 to a foreground of black with a
background of cyan, you would use the following:

init_pair(1, COLOR BLACK, COLOR_CYAN);

You could then set the attributes for the window as:
wattrset(win, COLOR_PAIR(1));

If you then write the string Let’s add Color to the terminal, the string appears as black characters on a
cyan background.

Extracting Attributes

You can use the results from the call to the winch subroutine to extract attribute information, including the
color-pair number. The following example uses the value returned by a call to the winch subroutine with
the C logical AND operator (&) and the A_ATTRIBUTES bit mask to extract the attributes assigned to the
current position in the window. The results from this operation are used with the PAIR_NUMBER macro to
extract the color-pair number, and the number 1 is printed on the screen.

win = newwin(10, 10, 0, 0);

init_pair(l, COLOR RED, COLOR_YELLOW);

wattrset(win, COLOR_PAIR(1));

waddstr(win, "apple");

number = PAIR_NUMBER((mvwinch(win, 0, 0) & A_ATTRIBUTES));

wprintw(win, "%d\n", number);
wrefresh(win);

Lights and Whistles
The curses library provides alarm subroutines to signal the user.

beeg Sounds an audible alarm on the terminal
flash Displays a visible alarm on the terminal

Setting Curses Options

All curses options are initially turned off, so it is not necessary to turn them off before calling the bndwid
subroutine. The following subroutines allow you to set various options with curses:

curs_set Sets the cursor visibility to invisible, normal, or very visible.

idloK Specifies whether curses can use the hardware insert and delete line features of terminals so
equipped.

intrflush Specifies whether an interrupt key (interrupt, quit, or suspend) flushes all output in the tty driver.
This option’s default is inherited from the tty driver.

keypad Specifies whether curses retrieves the information from the terminal’s keypad. If enabled, the user

can press a function key (such as an arrow key) and the m subroutine returns a single value
representing that function key. If disabled, curses will not treat the function keys specially and your
program must interpret the escape sequences. For a list of these function keys, see the
subroutine.

m Instructs curses to check for type ahead in an alternative file descriptor.

Chapter 2. The Curses Library 27

../../libs/basetrf2/vidattr.htm#HDRA9D21B43550ERIC
../../libs/basetrf2/vidattr.htm#HDRA9D21B43550ERIC
../../libs/basetrf1/putc.htm#HDRA1429342
../../libs/basetrf2/beep.htm#HDRA9D2652C287ERIC
../../libs/basetrf2/flash.htm#HDRA9D26544777ERIC
../../libs/basetrf2/endwin.htm#HDRA51C2182B
../../libs/basetrf2/idlok.htm#HDRA9D2655A381ERIC
../../libs/basetrf2/intrflush.htm#HDRA9D26574752ERIC
../../libs/basetrf2/keypad.htm#HDRA9D26568430ERIC
../../libs/basetrf2/getch.htm#HDRA9D35DFB905DAVI
../../libs/basetrf2/getch.htm#HDRA9D35DFB905DAVI
../../libs/basetrf2/typeahead.htm#HDRA9D2658D116ERIC

See the wgetch subroutines and ['Setting Terminal Input and Output Modes” on page 20 for descriptions of

additional curses options.

Manipulating Soft Labels

Curses provides subroutines for manipulating soft function-key labels. These labels appear at the bottom
of the screen and give applications, such as editors, a more user-friendly look. To use soft labels, you
must call the slk_init subroutine before calling the initscr or newterm subroutines.

Elk_cleat Clears soft labels from the screen.

Elk_inif Initializes soft function key labels.

m Returns the current label.

Elk_noutrefresH Refreshs soft labels. This subroutine is functionally equivalent to the wnoutrefresh
subroutine.

m Refreshs soft labels. This subroutine is functionally equivalent to the refresh
subroutine.

m Restores the soft labels to the screen after a call to the slk_clear subroutine.

@ Sets a soft label.

m Updates soft labels on the next call to the slk_noutrefresh subroutine.

To manage soft labels, curses reduces the size of the stdscr by one line. It reserves this line for use by
the soft-label functions. This reservation means that the environment variable LINES is also reduced.
Many terminals support built-in soft labels. If built-in soft labels are supported, curses uses them.
Otherwise, curses simulates the soft-labels with software.

Because many terminals that support soft labels have 8 labels, curses follows the same standard. A label
string is restricted to 8 characters. Curses arranges labels in one of two patterns: 3-2-3 (3 left, 2 center, 3
right) or 4-4 (4 left, 4 right).

To specify a string for a particular label, call the slk_set subroutine. This subroutine also instructs curses
as to left-justify, right-justify, or center the string on the label. If you wish to obtain a label name before it
was justified by the slk_set subroutine, use the slk_label subroutine. The slk_clear and slk_restore
subroutines clear and restore soft labels respectively. Normally, to update soft labels, your program should
call the slk_noutrefresh subroutine for each label and then use a single call to the slk_refresh subroutine
to perform the actual output. To output all the soft labels on the next call to the slk_noutrefresh
subroutine, use the slk_touch subroutine.

Obsolete Curses Subroutines

Several curses subroutines are obsolete beginning in AlX Version 4. These obsolete subroutines are
emulated as indicated in the following list:

Obsolete Replaced by
crmode cbreak

fixterm reset_prog_mode
getcap tgetstr

nocrmode nocbreak
resetterm reset_shell_mode
saveterm def_prog_mode
setterm setupterm

The touchoverlap, flushok, and _showstring subroutines are obsolete and there are no direct
replacements. The gettmode subroutine is available as a no-op.

28 writing and Debugging Programs

../../libs/basetrf2/slk_attroff.htm#HDRCE3D133669MARY
../../libs/basetrf2/slk_init.htm#HDRCFA5B7B582MARY
../../libs/basetrf2/slk_label.htm#HDRCE3D18C137MARY
../../libs/basetrf2/slk_noutrefresh.htm#HDRCE3D1C8668MARY
../../libs/basetrf2/slk_refresh.htm#HDRCE3D231645MARY
../../libs/basetrf2/slk_restore.htm#HDRCE3D278142MARY
../../libs/basetrf2/slk_set.htm#HDRCE3D2C6961MARY
../../libs/basetrf2/slk_touch.htm#HDRCE3D310653MARY

AIX 3.2 Curses Compatibility

* In AIX 4.3, curses is not compatible with AT&T System V Release 3.2 curses.
* In versions prior to AIX 4.3, curses is compatible with AT&T System V Release 3.2 curses.

* In versions prior to AIX 4.3 curses have been kept in a form useful for supporting existing binaries only.
This new change was made to provide support for color and to increase application portability to AIX
systems.

» Applications already running under AIX 4.3 will not operate using the old curses.

» Applications compiled, rebound, or relinked may need source code changes for compatibility with the
AlIX Version 4 of curses. The newer curses library does not have or use AlX extended curses functions.

» Applications requiring multibyte support may still compile and link with extended curses. However,
because the extended curses library may be removed in the future, use of the extended curses library is
discouraged except for applications that require multibyte support.

List of Additional Curses Subroutines

For information on the X/Open UNIX95 Specification curses subroutines available on AlX 4.2 (and later),
see the X/Open CAE Specification.

Manipulating Windows

m Writes the current contents of the virtual screen to the specified file.
Ecr_inil Uses the contents of a specified file to initialize the curses data structures.
Ecr_restord Sets the virtual screen to the contents of the specified file.

Manipulating Characters
bechochar_wechachar_or pechochai Functionally equivalent to a call to the addch (or

waddch) subroutine followed by a call to the
refresh (or wrefresh) subroutine.

m Flushes any type-ahead characters typed by the
user but not yet read by the program.

insertln or winsertin Inserts a blank line in a window.

keynamd Returns a pointer to a character string containing a
symbolic name for the Key parameter.

metd Determines whether 8-bit character return for the
wgetch subroutine is allowed.

hadelay Causes a call to the wgetch subroutine to be a

nonblocking call. If no input is ready, the wgetch
subroutine returns ERR.

Ecroll Scrolls a window up one line.

Linctri Returns the printable representation of a character.
Control characters are punctuated with a ~ (caret).

m Performs the same operation as the wprintw
subroutine but takes a variable list of arguments.

lwscanul Performs the same operation as the wscanw

subroutine but takes a variable list of arguments.

Manipulating Terminals

W Identifies the current terminal mode as the in-curses mode.
bef_shell_modd Saves the current terminal mode as the not-in-curses mode.
m Frees the space pointed to by the oterm variable.

Chapter 2. The Curses Library 29

../../libs/basetrf2/scr_dump.htm#HDRCE3C531186MARY
../../libs/basetrf2/scr_init.htm#HDRCE3C5A5189MARY
../../libs/basetrf2/scr_restore.htm#HDRCE3CAC4554MARY
../../libs/basetrf2/echochar.htm#HDRCE26ED0231MARY
../../libs/basetrf2/flushinp.htm#HDRA9D26C31864ERIC
../../libs/basetrf2/insertln.htm#HDRA9D21FEE969DAVI
../../libs/basetrf2/keyname.htm#HDRCE980BC653MARY
../../libs/basetrf2/meta.htm#HDRA9D35DEC868DAVI
../../libs/basetrf2/nodelay.htm#HDRA9D35DF4067DAVI
../../libs/basetrf2/scrl.htm#HDRA9D22062206DAVI
../../libs/basetrf2/unctrl.htm#HDRA9D22004785DAVI
../../libs/basetrf2/printw.htm#HDRA9D21FF9062DAVI
../../libs/basetrf2/scanw.htm#HDRYB7DG2CEERIC
../../libs/basetrf2/def_prog_mode.htm#HDRA9D21AFB583ERIC
../../libs/basetrf2/def_shell_mode.htm#HDRA9D21B23119ERIC
../../libs/basetrf2/del_curterm.htm#HDRCE268D2805MARY

Manipulating Color

Prevents the wgetch subroutine from setting a timer when interpreting an input

escape sequence.

Equivalent to a call to the waddch subroutine followed by a call to the prefresh

subroutine.

Restores the terminal into the in-curses program mode.

Restores the terminal to shell mode (out-of-curses mode). The endwin subroutine

does this automatically.

Sets up a TERMINAL structure for use by curses. This subroutine is similar to the
subroutine. Call the restartterm subroutine after restoring memory to a

previous state. For example, call this subroutine after a call to the scr_restore

subroutine.

Returns the composition of a color.

Changes a color to the desired composition.

Initializes a color pair to the specified foreground and background colors.
Returns the foreground and background colors for a specified color-pair number.

Miscellaneous Utilities

baudratd
Brasechal
killchal

Queries the current terminal and returns its output speed.
Returns the erase character chosen by the user.
Returns the line-kill character chosen by the user.

30 Writing and Debugging Programs

../../libs/basetrf2/notimeout.htm#HDRCE3BFA5873MARY
../../libs/basetrf2/echochar.htm#HDRCE26ED0231MARY
../../libs/basetrf2/reset_prog_mode.htm#HDROT6DG199ERIC
../../libs/basetrf2/reset_shell_mode.htm#HDRAZQ6DG18CERIC
../../libs/basetrf2/restartterm.htm#HDRDCE394C620MICH
../../libs/basetrf2/setupterm.htm#HDRA9D21AD4552ERIC
../../libs/basetrf2/color_content.htm#HDRCE25BCC917MARY
../../libs/basetrf2/init_color.htm#HDRCE38ED5614MARY
../../libs/basetrf2/init_pair.htm#HDRCE3965D452MARY
../../libs/basetrf2/pair_content.htm#HDRCE3C330302MARY
../../libs/basetrf2/baudrate.htm#HDRA9D26C11125ERIC
../../libs/basetrf2/erasechar.htm#HDRA9D26C1B816ERIC
../../libs/basetrf2/killchar.htm#HDRA9D26C26803ERIC

Chapter 3. Debugging Programs

There are several debug programs available for debugging your programs: the adb, dbx, dex, softdb, and
kernel debug programs. The adb program enables you to debug executable binary files and examine
non-ASCII data files. The dbx program enables source-level debugging of C, C++, Pascal, and FORTRAN
language programs, as well as assembler-language debugging of executable programs at the machine
level. The (dex) provides an X interface for the dbx debug program, providing windows for viewing the
source, context, and variables of the application program. The softdb debug program works much like the
dex debug program, but softdb is used with AIX Software Development Environment Workbench. The
kernel debug program is used to help determine errors in code running in the kernel.

adb Debug Program Overview

The adb command provides a general purpose debug program. You can use this command to examine
object and core files and provide a controlled environment for running a program.

While the adb command is running, it takes standard input and writes to standard output. The command
does not recognize the Quit or Interrupt keys. If these keys are used, the adb command waits for a new
command.

Getting Started with the adb Debug Program

This section explains how to start the adb debugging program from a variety of files, use the adb prompt,
use shell commands from within the adb program, and stop the adb program.

Starting adb with a Program File

You can debug any executable C or assembly language program file by entering a command line of the
form:

adb FileName

where FileName is the name of the executable program file to be debugged. The program opens the
file and prepares its text (instructions) and data for subsequent debugging. For example, the command:

adb sample
prepares the program named sample for examination and operation.

Once started, the adb debug program places the cursor on a new line and waits for you to type
commands.

Starting adb with a Nonexistent or Incorrect File

If you start the debug program with the name of a nonexistent or incorrectly formatted file, the adb
program first displays an error message and then waits for commands. For example, if you start the adb
program with the command:

adb sample

and the sample file does not exist, the adb program displays the message:
sample: no such file or directory.

© Copyright IBM Corp. 1997, 2001 31

../../cmds/aixcmds1/adb.htm#HDRA2689160A
../../cmds/aixcmds1/adb.htm#HDRA2689160A

Starting adb with the Default File

You can start the debug program without a file name. In this case, the adb program searches for the
default a.out file in your current working directory and prepares it for debugging. Thus, the command:

adb

is the same as entering:
adb a.out

The adb program starts with the a.out file and waits for a command. If the a.out file does not exist, the
adb program starts without a file and does not display an error message.

Starting adb with a Core Image File

You can use the hdd debug program to examine the core image files of programs that caused
irrecoverable system errors. Core image files maintain a record of the contents of the CPU registers,
stack, and memory areas of your program at the time of the error. Therefore, core image files provide a
way to determine the cause of an error.

To examine a core image file with its corresponding program, you must give the name of both the core
and the program file. The command line has the form:

adb ProgramFile CoreFile

where ProgramfFile is the file name of the program that caused the error, and CoreFile is the file name of
the core image file generated by the system. The adb program then uses information from both files to
provide responses to your commands.

If you do not give the filename of the core image file, the adb program searches for the default core file,
named core, in your current working directory. If such a file is found, the adb program determines whether
the core file belongs to the ProgramfFile. If so, the adb program uses it. Otherwise, the adb program
discards the core file by giving an appropriate error message.

Note: The adb command cannot be used to examine 64-bit objects and AIX 4.3 core format. adb still
works with pre-AlX 4.3 core format. On AIX 4.3, user can make kernel to generate pre-AlX 4.3 style
core dumps using smitty.

Starting adb with a Data File

The adb program provides a way to look at the contents of the file in a variety of formats and structures.
You can use the program to examine data files by giving the name of the data file in place of the
program or core file. For example, to examine a data file named outdata, enter:

adb outdata

The adb program opens a file called outdata and lets you examine its contents. This method of examining
files is useful if the file contains non-ASCII data. The adb command may display a warning when you give
the name of a non-ASCII data file in place of a program file. This usually happens when the content of the
data file is similar to a program file. Like core files, data files cannot be executed.

Starting adb with the Write Option

If you open a program or data file with the Ewl flag of the adb command, you can make changes and
corrections to the file. For example, the command:

adb -w sample

32 writing and Debugging Programs

../../cmds/aixcmds1/adb.htm#HDRA2689160A
../../cmds/aixcmds1/adb.htm#HDRA2689160A
../../cmds/aixcmds1/adb.htm#HDRA2689160A
../../cmds/aixcmds1/adb.htm#SPTA26891622

opens the program file sample for writing. You can then use adb commands to examine and modify this
file. The -w flag causes the adb program to create a given file if it does not already exist. The option also
lets you write directly to memory after running the given program.

Using a Prompt
After you have started the adb program you can redefine your prompt with the $P subcommand.

To change the [adb:scat]>> prompt to Enter a debug command—->, enter:

$P"Enter a debug command--->"

The quotes are not necessary when redefining the new prompt from the adb command line.
Using Shell Commands from within the adb Program

You can run shell commands without leaving the adb program by using the adb escape command (!)
(exclamation point). The escape command has the form:

! Command

In this format Command is the shell command you want to run. You must provide any required arguments
with the command. The adb program passes this command to the system shell that calls it. When the
command is finished, the shell returns control to the adb program. For example, to display the date, enter
the following command:

I date

The system displays the date and restores control to the adb program.
Exiting the adb Debug Program

You can stop the adb program and return to the system shell by using the $q or $Q subcommands. You
can also stop the adb program by typing the Ctrl-D key sequence. You cannot stop the adb program by
pressing the Interrupt or Quit keys. These keys cause adb to wait for a new command. For more

information, see (LStopping a Program with the Interrupt and Quit Keys” on page 38).

Controlling Program Execution

This section explains the commands and subcommands necessary to prepare programs for debugging;
execute programs; set, display, and delete breakpoints; continue programs; single-step through a program;
stop programs; and kill programs.

Preparing Programs for Debugging with the adb Program

Compile the program using the cc command to a file such as adbsamp2 by entering the following:
cc adbsamp2.c -o adbsamp2

To start the debug session, enter:
adb adbsamp2

The C language does not generate statement labels for programs. Therefore, you cannot refer to individual
C language statements when using the debug program. To use execution commands effectively, you must
be familiar with the instructions that the C compiler generates and how those instructions relate to

individual C language statements. One useful technique is to create an assembler language listing of your

Chapter 3. Debugging Programs 33

C program before using the adb program. Then, refer to the listing as you use the debug program. To
create an assembler language listing, use the -S or -qList flag of the ec command.

For example, to create an assembler language listing of the example program, adbsamp2.c, use the
following command:

cc -S adbsamp2.c -o adbsamp2

This command creates the adbsamp2.s file, that contains the assembler language listing for the program,
and compiles the program to the executable file, adbsamp?2.

Running a Program

You can execute a program by using the :r or :R subcommand. For more information see, m
i i i i z)- The commands have the form:

[Address][,Count] :r [Arguments]
OR
[Address][,Count] :R [Arguments]

In this format, the Address parameter gives the address at which to start running the program; the Count
parameter is the number of breakpoints to skip before one is taken; and the Arguments parameter
provides the command-line arguments, such as file names and options, to pass to the program.

If you do not supply an Address value, the adb program uses the start of the program. To run the program
from the beginning enter:

r

If you supply a Count value, the adb program ignores all breakpoints until the given number has been
encountered. For example, to skip the first five named breakpoints, use the command:

,h:r

If you provide arguments, separate them by at least one space each. The arguments are passed to the
program in the same way the system shell passes command-line arguments to a program. You can use
the shell redirection symbols.

The :R subcommand passes the command arguments through the shell before starting program operation.
You can use shell pattern-matching characters in the arguments to refer to multiple files or other input
values. The shell expands arguments containing pattern-matching characters before passing them to the
program. This feature is useful if the program expects multiple file names. For example, the following
command passes the argument [a-z]* to the shell where it is expanded to a list of the corresponding file
names before being passed to the program:

:R [a-z]*.s

The :r and :R subcommands remove the contents of all registers and destroy the current stack before
starting the program. This operation halts any previous copy of the program that may be running.

Setting Breakpoints
To set a breakpoint in a program, use the :b subcommand. Breakpoints stop operation when the program

reaches the specified address. Control then returns to the adb debug program. The command has the
form:

[Address] [,Count | :b [Command]

34 writing and Debugging Programs

In this format, the Address parameter must be a valid instruction address; the Count parameter is a count
of the number of times you want the breakpoint to be skipped before it causes the program to stop; and
the Command parameter is the adb command you want to execute each time that the instruction is
executed (regardless of whether the breakpoint stops the program). If the specified command sets .
(period) to a value of 0, the breakpoint causes a stop.

Set breakpoints to stop program execution at a specific place in the program, such as the beginning of a
function, so that you can look at the contents of registers and memory. For example, when debugging the
example adbsamp2 program, the following command sets a breakpoint at the start of the function named
f:

f:b

The breakpoint is taken just as control enters the function and before the function’s stack frame is created.

A breakpoint with a count is used within a function that is called several times during the operation of a
program, or within the instructions that correspond to a for or while statement. Such a breakpoint allows
the program to continue to run until the given function or instructions have been executed the specified
number of times. For example, the following command sets a breakpoint for the second time that the f
function is called in the adbsamp2 program:

.f,2 :b
The breakpoint does not stop the function until the second time the function is run.
Displaying Breakpoints

Use the $b subcommand to display the location and count of each currently defined breakpoint. This
command displays a list of the breakpoints by address and any count or commands specified for the
breakpoints. For example, the following sets two breakpoints in the adbsamp2 file and then uses the $b
subcommand to display those breakpoints:

f+4:b

.f+8:b$v

$b

breakpoints

count brkpt command
1 .f+8 $v

1 f+4

When the program runs, it stops at the first breakpoint that it finds, such as .f+4. If you use the :c
subcommand to continue execution, the program stops again at the next breakpoint and starts the $v

subcommand. The command and response sequence looks like the following example:
r

adbsamp2:running

breakpoint REYH st r3,32(rl)
:C

adbsamp2:running

variables

b = 268435456

d = 236

e = 268435512

m = 264

breakpoint .f+8 1 r15,32(rl)

Deleting Breakpoints
To use the :d subcommand to delete a breakpoint from a program, enter:

Address :d

Chapter 3. Debugging Programs 35

In this format, the Address parameter gives the address of the breakpoint to delete.

For example, when debugging the example adbsamp2 program, entering the following command deletes
the breakpoint at the start of the f function:

.f:d
Continuing Program Execution

To use the :¢ subcommand to continue the execution of a program after it has been stopped by a
breakpoint enter:

[Address] [,Count] :c [Signal]

In this format, the Address parameter gives the address of the instruction at which to continue operation;
the Count parameter gives the number of breakpoints to ignore; and the Signal parameter is the number of
the signal to send to the program.

If you do not supply an Address parameter, the program starts at the next instruction after the breakpoint.
If you supply a Count parameter, the adb debug program ignores the first Count breakpoints.

If the program is stopped using the Interrupt or Quit key, this signal is automatically passed to the program
upon restarting. To prevent this signal from being passed, enter the command in the form:

[Address] [,Count] :c 0
The command argument 0 prevents a signal from being sent to the subprocess.
Single-Stepping a Program

Use the :s subcommand to run a program in single steps or one instruction at a time. This command
issues an instruction and returns control to the adb debug program. The command has the form:

[Aaddress | [,Count] :s [Signal]

In this format, the Address parameter gives the address of the instruction you want to execute, and the
Count parameter is the number of times you want to repeat the command. If there is no current
subprocess, the ObjectFile parameter is run as a subprocess. In this case, no signal can be sent and the
remainder of the line is treated as arguments to the subprocess. If you do not supply a value for the
Address parameter, the adb program uses the current address. If you supply the Count parameter, the
adb program continues to issue each successive instruction until the Count parameter instructions have
been run. Breakpoints are ignored while single-stepping. For example, the following command issues the
first five instructions in the main function:

.main,5:s
Stopping a Program with the Interrupt and Quit Keys

Use either the Interrupt or Quit key to stop running a program at any time. Pressing either of these keys
stops the current program and returns control to the adb program. These keys are useful with programs
that have infinite loops or other program errors.

When you press the Interrupt or Quit key to stop a program, the adb program automatically saves the
signal. If you start the program again using the :c command, the adb program automatically passes the
signal to the program. This feature is useful when testing a program that uses these signals as part of its
processing. To continue running the program without sending signals, use the command:

:c 0

36 Writing and Debugging Programs

The command argument 0 (zero) prevents a signal from being sent to the program.
Stopping a Program

To stop a program you are debugging, use the :k subcommand. This command stops the process created
for the program and returns control to the adb debug program. The command clears the current contents
of the system unit registers and stack and begins the program again. The following example shows the
use of the :k subcommand to clear the current process from the adb program:

:k

560: killed

Using adb Expressions

This section describes the use of adb expressions.

Using Integers in Expressions

When creating an expression, you can use integers in three forms: decimal, octal, and hexadecimal.
Decimal integers must begin with a non-zero decimal digit. Octal numbers must begin with a 0 (zero) and
have octal digits only (0-7). Hexadecimal numbers must begin with the prefix Ox and can contain decimal
digits and the letters a through f (in both uppercase and lowercase). The following are examples of valid
numbers:

Decimal Octal Hexadecimal
34 042 0x22
4090 07772 oxffa

Using Symbols in Expressions

Symbols are the names of global variables and functions defined within the program being debugged.
Symbols are equal to the address of the given variable or function. They are stored in the program symbol
table and are available if the symbol table has not been stripped from the program file.

In expressions, you can spell the symbol exactly as it is in the source program or as it has been stored in
the symbol table. Symbols in the symbol table are no more than 8 characters long.

When you use the ? subcommand, the adb program uses the symbols found in the symbol table of the
program file to create symbolic addresses. Thus, the ? subcommand sometimes gives a function name
when displaying data. This does not happen if the ? subcommand is used for text (instructions) and the /
command is used for data.

Local variables can only be addressed if the C language source program is compiled with the -g flag.

If the C language source program is not compiled using the -g flag the local variable cannot be addressed.
The following command displays the value of the local variable b in a function sample:

.sample.b / x - value of Tocal variable.
.sample.b = x - Address of local variable.

Using Operators in Expressions

You can combine integers, symbols, variables, and register names with the following operators:

Unary Operators:

(tilde) Bitwise complementation
- (dash) Integer negation
* (asterisk) Returns contents of location

Chapter 3. Debugging Programs 37

Binary Operators:

+ (plus) Addition

- (minus) Subtraction

* (asterisk) Multiplication

% (percent) Integer division

& (ampersand) Bitwise conjunction

] (right bracket) Bitwise disjunction

" (caret) Modulo

(number sign) Round up to the next multiple

The adb debug program uses 32-bit arithmetic. Values that exceed 2,147,483,647 (decimal) are displayed
as negative values. The following example shows the results of assigning two different values to the
variable n, and then displaying the value in both decimal and hexadecimal:
2147483647>n<
n=D
2147483647<
n=X
7EFfffff
2147483648>n<
n=D
-2147483648<
n=X
80000000

Unary operators have higher precedence than binary operators. All binary operators have the same
precedence and are evaluated in order from left to right. Thus, the adb program evaluates the following
binary expressions as shown:

2%3+4=d

You can change the precedence of the operations in an expression by using parentheses. The following
example shows how the previous expression is changed by using parentheses:

4+(2%3)=d
10

The unary operator, * (asterisk), treats the given address as a pointer into the data segment. An
expression using this operator is equal to the value pointed to by that pointer. For example, the
expression:

*0x1234

is equal to the value at the data address 0x1234, whereas the example:
0x1234

is equal to 0x1234.

Customizing the adb Debug Program

This section describes how you can customize the adb debug program.

38 Writing and Debugging Programs

Combining Commands on a Single Line

You can give more than one command on a line by separating the commands with a ; (semicolon). The
commands are performed one at a time, starting at the left. Changes to the current address and format
carry over to the next command. If an error occurs, the remaining commands are ignored. For example,
the following sequence displays both the adb variables and then the active subroutines at one point in the
adbsamp2 program:

$v;$c
variables

b = 10000000
d = ec

e = 10000038
m = 108

t = 2f8.
f(0,0) .main+26.
main(0,0,0) start+fa

Creating adb Scripts

You can direct the adb debug program to read commands from a text file instead of from the keyboard by
redirecting the standard input file when you start the adb program. To redirect standard input, use the
input redirection symbol, < (less than), and supply a file name. For example, use the following command
to read commands from the file script:

adb sample <script

The file must contain valid adb subcommands. Use the adb program script files when the same set of
commands can be used for several different object files. Scripts can display the contents of core files after
a program error. The following example shows a file containing commands that display information about a
program error. When that file is used as input to the adb program using the following command to debug
the adbsamp2 file, the specified output is produced.

120%w
4095$s.

b,10/8xna
$ adb adbsamp2 <script

adbsamp2: running

breakpoint .f: b .f+24
======= 3db Variables =======

variables

TBD

TBD

TBD

TBD

10000000

ec

10000038

108

SO OTONRFEO

Chapter 3. Debugging Programs 39

t = 218

======= Address Map =======
[0]? map .adbsamp2.
bl = 10000000 el = 100002f8 f1 =0
b2 = 200002f8 e2 = 200003e4 f2 = 2f8
[0]/ map .-.
bl =0 el =0 fl =0
b2 = 0 e2 =0 f2 =0

======= (Stack Backtrace =======,
f(0,0) .main+26.
main(0,0,0) start+fa

======= (C External Variables =======Full word.
errno: 0.

envi
NLin
main
exit
fcnt

.Too
f:

ron: 3fffebbc.
it: 10000238.

: 100001ea.
: 1000028c.
: 0

p .count:
100001b4.

1.

NLgetfile: 10000280.

writ
NLin
NLge

e: 100002e0

it. .X: 10000238 .

tfile. .X:

10000280 .

cleanup: 100002bc.
: 100002c8 .

exit

exit .

clea

mq
cs
ics
pc
rl5
rl4
ri3
rl2
ril
rl0
r9
r8
r7
ré
r5
r4
r3
r2
rl
ro
f:

1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

nup . .X:

100000 gt
1000004
100001b4 .f

.X: 1000028c . .

100002bc

======= Registers =======
20003a24 .errno+3634

10000210 .main+26
.main
.Toop .count

20000388
200003ec
3fffe3do
3fffeddc
0
20004bcc

200041d8 .errno+3de8

0

200030bc .errnot2ccc

1

200003ec .loop .count

4240

1
3fffe678
20000380
b .f+24

.f.

======= Data Segment =======

0000: 163 5313 3800 0 0 2f8 0 ec

0010: O 10 1600 38 06 0 0 1f0

0020: O O O O 1000 O 2000 2f8

0030: 0 0 0 O 4 6000 O 6000

0040: 6el0 61d0 9430 a67 6730 6820 c82e 8
0050: 8df0 94 cdbe 60 6520 a424 a432 c84e
0060: 8 8df0 77 cdle 64 6270 8df0 86

0070: cdOe
0080: cdOe
0090: 6520

60 6520 a424 a432 6470 8df0 6a
64 c82e 19 8df0 78 cdbe 60
a424 a432 c84e 19 8df0 5b cdOe

00a0: 64 cd2e b5c 7022 d408 64 911 c82e
00b0: 2e 8df0 63 cdle 60 6520 a424 a432

00cO0: c84e

2e 8df0 46 cdOe 64 15 6280

40 Writing and Debugging Programs

100000d0: 8df0 60 cdOe 68 c82e 3f 8df0 4e
100000e0: cdOe 60 6520 a424 a432 c84e 3f 8df0
100000f0: 31 cdbe 64 c820 14 8df0® 2b cdle
10000100

Setting Output Width

Use the $w subcommand to set the maximum width (in characters) of each line of output created by the
adb program. The command has the form:

Width$w

In this format, the Width parameter is an integer that specifies the width in characters of the display. You
can give any width convenient for your display device. When the adb program is first invoked, the default
width is 80 characters.

This command can be used when redirecting output to a line printer or special output device. For example,
the following command sets the display width to 120 characters, a common maximum width for line
printers:

120$w
Setting the Maximum Offset

The adb debug program normally displays memory and file addresses as the sum of a symbol and an
offset. This format helps to associate the instructions and data on the display with a particular function or
variable. When the adb program starts up, it sets the maximum offset to 255, so that symbolic addresses
are assigned only to instructions or data that occur less than 256 bytes from the start of the function or
variable. Instructions or data beyond that point are given numeric addresses.

In many programs, the size of a function or variable is actually larger than 255 bytes. For this reason the
adb program lets you change the maximum offset to accommodate larger programs. You can change the
maximum offset by using the $s subcommand.

The subcommand has the form:
Offset$s

In this format, the Offset parameter is an integer that specifies the new offset. For example, the following
command increases the maximum possible offset to 4095:

409535

All instructions and data that are less than 4096 bytes away are given symbolic addresses. You can
disable all symbolic addressing by setting the maximum offset to zero. All addresses are given numeric
values instead.

Setting Default Input Format

To alter the default format for numbers used in commands, use the $d or $o (octal) subcommands. The
default format tells the adb debug program how to interpret numbers that do not begin with 0 (octal) or 0x
(hexadecimal), and how to display numbers when no specific format is given. Use these commands to
work with a combination of decimal, octal, and hexadecimal numbers.

The $0 subcommand sets the radix to 8 and thus sets the default format for numbers used in commands

to octal. After you enter that subcommand, the adb program displays all numbers in octal format except
those specified in some other format.

Chapter 3. Debugging Programs 41

The format for the $d subcommand is the Radix$d command, where the Radix parameter is the new value
of the radix. If the Radix parameter is not specified, the $d subcommand sets the radix to a default value
of 16. When you first start the adb program, the default format is hexadecimal. If you change the default
format, you can restore it as necessary by entering the $d subcommand by itself:

$d

To set the default format to decimal, use the following command:
Oxas$d

Changing the Disassembly Mode

Use the $i and $n subcommands to force the adb debug program to disassemble instructions using the
specified instruction set and mnemonics. The $i subcommand specifies the instruction set to be used for
disassembly. The $n subcommand specifies the mnemonics to be used in disassembly.

If no value is entered, these commands display the current settings.

The $i subcommand accepts the following values:

com Specifies the instruction set for the common intersection mode of the PowerPC and POWER family.

pwr Specifies the instruction set and mnemonics for the POWER-based platform implementation of the POWER
family.

pwrx Specifies the instruction set and mnemonics for the POWER2 implementation of the POWER family.

ppc Specifies the instruction set and mnemonics for the PowerPC.

601 Specifies the instruction set and mnemonics for the PowerPC 601 RISC Microprocessor.

603 Specifies the instruction set and mnemonics for the PowerPC 603 RISC Microprocessor.

604 Specifies the instruction set and mnemonics for the PowerPC 604 RISC Microprocessor.

ANY Specifies any valid instruction. For instruction sets that overlap, the mnemonics will default to POWER-based
platform mnemonics.

The $n subcommand accepts the following values:

pwr Specifies the mnemonics for the POWER-based implementation of the POWER family.
ppc Specifies the mnemonics for the POWER-based platform.

Computing Numbers and Displaying Text

You can perform arithmetic calculations while in the adb debug program by using the = (equal sign)
subcommand. This command directs the adb program to display the value of an expression in a specified
format. The command converts numbers in one base to another, double-checks the arithmetic performed
by a program, and displays complex addresses in simpler form. For example, the following command
displays the hexadecimal number Ox2a as the decimal number 42:

0x2a=d
42

Similarly, the following command displays 0x2a as the ASCII character * (asterisk):
0x2a=c

Expressions in a command can have any combination of symbols and operators. For example, the
following command computes a value using the contents of the r0 and r1 registers and the adb variable b.

<r0-12*<rl+<b+5=X
8fa86f95

42 writing and Debugging Programs

You can also compute the value of external symbols to check the hexadecimal value of an external symbol
address, by entering:

main+5=X
2000038d

The = (equal sign) subcommand can also display literal strings. Use this feature in the adb program
scripts to display comments about the script as it performs its commands. For example, the following
subcommand creates three lines of spaces and then prints the message C Stack Backtrace:

=3n"C Stack Backtrace"

Displaying and Manipulating the Source File with the adb Program

The following sections describe how you can use the adb program to display and manipulate the source
file.

Displaying Instructions and Data

The adb program provides several subcommands for displaying the instructions and data of a given
program and the data of a given data file. The subcommands and their formats are:

Display address Address [, Count | = Format
Display instruction Address [, Count] ? Format
Display value of variable Address [, Count]/ Format

In this format, the symbols and variables have the following meaning:

Address Gives the location of the instruction or data item.
Count Gives the number of items to be displayed.
Format Defines how to display the items.

Displays the address of an item.
Displays the instructions in a text segment.
Displays the value of variables.

S~

Forming Addresses

In the adb program addresses are 32-bit values that indicate a specific memory address. They can,
however, be represented in the following forms:

Absolute address The 32-bit value is represented by an 8-digit hexadecimal number, or its equivalent in
one of the other number-base systems.

Symbol name The location of a symbol defined in the program can be represented by the name of
that symbol in the program.

Entry points The entry point to a routine is represented by the name of the routine preceded by a .

(period). For example, to refer to the address of the start of the main routine, use the
following notation:
.main

Displacements Other points in the program can be referred to by using displacements from entry
points in the program. For example, the following notation references the instruction
that is 4 bytes past the entry point for the symbol main:

.maint+4

Chapter 3. Debugging Programs 43

Displaying an Address

Use the = (equal sign) subcommand to display an address in a given format. This command displays
instruction and data addresses in a simpler form and can display the results of arithmetic expressions. For
example, entering:

main=an

displays the address of the symbol main:
10000370:

The following example shows a command that displays (in decimal) the sum of the internal variable b and
the hexadecimal value 0x2000, together with its output:

<b+0x2000=D
268443648

If a count is given, the same value is repeated that number of times. The following example shows a
command that displays the value of main twice and the output that it produces:

main,2=x
370 370

If no address is given, the current address is used. After running the above command once (setting the
current address to main), the following command repeats that function:

,2=X
370 370

If you do not specify a format, the adb debug program uses the last format that was used with this
command. For example, in the following sequence of commands, both main and one are displayed in
hexadecimal:
main=x

370

one=
33c

Displaying the C Stack Backtrace

To trace the path of all active functions, use the $¢ subcommand. This subcommand lists the names of all
functions that have been called and have not yet returned control. It also lists the address from which each
function was called and the arguments passed to each function. For example, the following command
sequence sets a breakpoint at the function address .f+2 in the adbsamp2 program. The breakpoint calls
the $¢ subcommand. The program is started, runs to the breakpoint, and then displays a backtrace of the
called C language functions:

.f+2:b$c

r

adbsamp2:running

.f(0,0) .main+26

.main(0,0,0) start+fa

breakpoint f+2: tgte r2,r2

By default, the $¢ subcommand displays all calls. To display fewer calls, supply a count of the number of
calls to display. For example, the following command displays only one of the active functions at the
preceding breakpoint:

,18c

.T(0,0) .main+26

44 writing and Debugging Programs

Choosing Data Formats

A format is a letter or character that defines how data is to be displayed. The following are the most
commonly used formats:

Letter Format

The current symbolic address

One byte in octal (displays data associated with instructions, or the high or low byte of a register)
One byte as a character (char variables)

Halfword in decimal (short variables)

Fullword in decimal (long variables)

Machine instructions in mnemonic format

A new line

Halfword in octal (short variables)

Fullword in octal (long variables)

A blank space

A null-terminated character string (null-terminated arrays of char variables)
A horizontal tab

Halfword as an unsigned integer (short variables)

Halfword in hexadecimal (short variables)

Fullword in hexadecimal (long variables)

XX c~n 005 Togaooco

For example, the following commands produce the indicated output when using the adbsamp example
program:

Command Response

main=0 1560
main=0 4000001560
main=d 880
main=D 536871792
main=x 370
main=X 20000370
main=u 880

A format can be used by itself or combined with other formats to present a combination of data in different
forms. You can combine the a, n, r, and t formats with other formats to make the display more readable.

Changing the Memory Map

You can change the values of a memory map by using the ?m and /m subcommands. See, (Fadh Debud
ion”). These commands assign specified values to the
corresponding map entries. The commands have the form:

[,count] ?m bl el f1
[,count] /m bl el f2

The following example shows the results of these commands on the memory map displayed with the $m
subcommand in the previous example:

,07m 10000100 10000470 0
/m 100 100 100
$m
[0] : ?map : ‘'adbsamp3'
bl = 0x10000100, el = 10000470, f1 =0
b2 = 0x20000600, e2 = 0x2002c8a4, f2 = 0x600
[1] : ?map : 'shr.o' in Tibrary '/usr/ccs/lib/libc.a’

Chapter 3. Debugging Programs 45

bl = 0xd00d6200, el = 0xd01397bf, f1 = Oxd0Odefbc
b2 = 0x20000600, €2 = 0x2002beb8, f2 = 0x4a36c¢

[-] : /map : '-!

bl = 100, el = 100, f1 = 100

b2 =0, e2 =0, f2 =0

To change the data segment values, add an * (asterisk) after the / or ?.

,07*m 20000270 20000374 270
/*m 200 200 200
$m
[0] : ?map : 'adbsamp3'
bl = 0x10000100, el = 10000470, fl =

b2 = 0x20000270, e2 = 0x20000374, f2 = 0x270

[1] : ?map : 'shr.o' in library '/usr/ccs/1ib/libc.a’
bl = 0xd00d6200, el = 0xd01397bf, f1 = OxdOOdefbc

b2 = 0x20000600, €2 = 0x2002beb8, f2 = 0x4a36c¢
[-1 : /map : '-'

bl = 100, el = 100, fl = 100

b2 = 0, e2 =0, f2 =0

Patching Binary Files

You can make corrections or changes to any file, including executable binary files, by starting the adb

program with the bwd flag and by using the w and W (La.db_De.b.ug_Eng:am_Beie.Le.nce_hmmalLan_od

) subcommands.

Locating Values in a File

Locate specific values in a file by using the 1 and L subcommands. See (tadh Debug Pragram Referencd
Information” on page 49). The subcommands have the form:

?1 Value

OR
/1 Value

The search starts at the current address and looks for the expression indicated by Value. The |
subcommand searches for 2-byte values. The L subcommand searches for 4-byte values.

The ?1 subcommand starts the search at the current address and continues until the first match or the end
of the file. If the value is found, the current address is set to that value’s address. For example, the
following command searches for the first occurrence of the f symbol in the adbsamp2 file:

?1 .f.
write+a2

The value is found at .write+a2 and the current address is set to that address.
Writing to a File
Write to a file by using the w and W subcommands. See (tadb Debug Program Reference Infarmation” ad

). The subcommands have the form:

[Address]| ?w Value

46 writing and Debugging Programs

../../cmds/aixcmds1/adb.htm#SPTA26891622

In this format, the Address parameter is the address of the value you want to change, and the Value
parameter is the new value. The w subcommand writes 2-byte values. The W subcommand writes 4-byte
values. For example, the following commands change the word "This” to "The":

?1 .Th.
W .The.

The W subcommand changes all four characters.

Making Changes to Memory

Make changes to memory whenever a program has run. If you have used an :r subcommand with a
breakpoint to start program operation, subsequent w subcommands cause the adb program to write to the
program in memory rather than to the file. This command is used to make changes to a program’s data as
it runs, such as temporarily changing the value of program flags or variables.

Using adb Variables

The adb debug program automatically creates a set of its own variables when it starts. These variables
are set to the addresses and sizes of various parts of the program file as defined in the following table:

Variable

~ 0 30T ON=O

Content

Last value printed

Last displacement part of an instruction source
Previous value of the 1 variable
Count on the last $< or $<< command
Base address of the data segment
Size of the data segment

Entry address of the program

"Magic” number

Size of the stack segment

Size of the text segment

The adb debug program reads the program file to find the values for these variables. If the file does not
seem to be a program file, then the adb program leaves the values undefined.

To display the values that the adb debug program assigns to these variables, use the $v subcommand.
For more information, see (tadh Debug Program Reference Information” on page 49). This subcommand
lists the variable names followed by their values in the current format. The subcommand displays any
variable whose value is not 0 (zero). If a variable also has a non-zero segment value, the variable’s value
is displayed as an address. Otherwise, it is displayed as a number. The following example shows the use
of this command to display the variable values for the sample program adbsamp:

$v

Variables

= undefined
= undefined
= undefined
= undefined
10000000
= 130

= 10000038
= 108

= 298

+ 3 O O T O N = O
n

Chapter 3. Debugging Programs 47

Specify the current value of an adb variable in an expression by preceding the variable name with < (less
than sign). The following example displays the current value of the b base variable:

<b=X

10000000

Create your own variables or change the value of an existing variable by assigning a value to a variable
name with > (greater than sign). The assignment has the form:

Expression > VariableName

where the Expression parameter is the value to be assigned to the variable and the VariableName
parameter is the variable to receive the value. The VariableName parameter must be a single letter. For
example, the assignment:

0x2000>b

assigns the hexadecimal value 0x2000 to the b variable. Display the contents of b again to show that the
assignment occurred:

<b=X
2000

Finding the Current Address

The adb program has two special variables that keep track of the last address used in a command and
the last address typed with a command. The . (period) variable, also called the current address, contains
the last address used in a command. The ” (double quotation mark) variable contains the last address
typed with a command. The . and " variables usually contain the same address except when implied
commands, such as the newline and ~ (caret) characters, are used. These characters automatically
increase and decrease the . variable but leave the) (right parenthesis) variable unchanged.

Both the . and the " variables can be used in any expression. The < (less than sign) is not required. For
example, the following commands display these variables at the start of debugging with the adbsamp
‘ : >) program:

Displaying External Variables

Use the $e (fadb Debug Program Reference Information” on page 49) subcommand to display the values

of all external variables in the adb program. External variables are the variables in your program that have
global scope or have been defined outside of any function, and include variables defined in library routines
used by your program, as well as all external variables of shared libraries.

The $e subcommand is useful to get a list of the names for all available variables or a summary of their
values. The command displays one name on each line with the variable’s value (if any) on the same line.
If the Count parameter is specified, only the external variables associated with that file are printed.

The following example illustrates the setting of a breakpoint in the adbsamp2 (‘Example adb Program]
bdbsamp?” on page 55) sample program that calls the $e subcommand, and the output that results when
the program runs (be sure to delete any previous breakpoints that you may have set):

.f+2:b,0%e

r

adbsamp2: running

_errno: 0

48 writing and Debugging Programs

_environ: 3fffe6bc
__NLinit: 10000238
_main: 10000lea

_exit: 1000028c

_fent: 0

_loop_count: 1

_f: 100001b4
_NLgetfile: 10000280
_write: 100002e0
__NLinit__X: 10000238
NLgetfile X: 10000280
__cleanup: 100002bc
__exit: 100002c8
_exit__X: 1000028c
__cleanup__X: 100002bc
breakpoint .f+2: st r2,1c(rl)

Displaying the Address Maps

The adb program prepares a set of maps for the text and data segments in your program and uses these
maps to access items that you request for display. Use the $m subcommand to display the contents of the
address maps. For more information, see (tadh Debug Program Reference Information’). The
subcommand displays the maps for all segments in the program and uses information taken from either
the program and core files or directly from memory.

The $m subcommand displays information similar to the following:

$m
[0] : ?map : 'adbsamp3’
bl = 0x10000200, el = 0x10001839, f1 = 0x10000200
b2 = 0x2002c604, e2 = 0x2002c8a4, f2 = 0x600
[1] : ?map : 'shr.o' in library 'l1ib/libc.a'
bl = 0xd00d6200, el = 0xd013976f, fl1 = O0xd0Odefbc
b2 = 0x20000600, e2 = 0x2002bch8, f2 = Ox4a36¢
[-]1 : /map : -t
bl = 0x0000000, el = 0x00000000, fl = Ox00000000
b2 = 0x0000000, e2 = 0x00000000, f2 = 0x00000000

The display defines address-mapping parameters for the text (b1, el, and f1) and data (b2, e2, and 2)
segments for the two files being used by the adb debug program. This example shows values for the
adbsamp3 sample program only. The second set of map values are for the core file being used. Since
none was in use, the example shows the file name as - (dash).

The value displayed inside the square brackets can be used as the Count parameter in the ?e and ?m
subcommands.

adb Debug Program Reference Information

The adb debug program uses addresses, expressions, operators, subcommands, and variables to
organize and manipulate data.

adb Debug Program Addresses

The address in a file associated with a written address is determined by a mapping associated with that
file. Each mapping is represented by two triples (B1, E1, F1) and (B2, E2, F2). The FileAddress parameter
that corresponds to a written Address parameter is calculated as follows:

B1<=Address<E 1=>FileAddress=Address+F1-B1

Chapter 3. Debugging Programs 49

OR
B2<=Address<E2=>FileAddress=Address+F2-B2

If the requested Address parameter is neither between B7 and E7 nor between B2 and E2, the Address
parameter is not valid. In some cases, such as programs with separated | and D space, the two segments
for a file may overlap. If a ? (question mark) or / (slash) subcommand is followed by an * (asterisk), only
the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If either file is not of the
kind expected, the BT parameter for that file is set to a value of 0, the E71 parameter is set to the

maximum file size, and the F1 parameter is set to a value of 0. In this way, the whole file can be examined
with no address translation.

adb Debug Program Expressions

The following expressions are supported by the adb debug program:

. (period) Specifies the last address used by a subcommand. The last address is also known
as the current address.

+ (plus) Increases the value of . (period) by the current increment.

" (caret) Decreases the value of . (period) by the current increment.

" (double quotes) Specifies the last address typed by a command.

Integer Specifies an octal number if this parameter begins with 0o, a hexadecimal number

if preceded by Ox or #, or a decimal number if preceded by 0t. Otherwise, this
expression specifies a number interpreted in the current radix. Initially, the radix is

16.

'Cccc’ Specifies the ASCII value of up to 4 characters. A\ (backslash) can be used to
escape an’ (apostrophe).

< Name Reads the current value of the Name parameter. The Name parameter is either a

variable name or a register name. The BdH command maintains a number of
variables named by single letters or digits. If the Name parameter is a register
name, the value of the register is obtained from the system header in the CoreFile
parameter. Use the $r subcommand to see the valid register names.

Symbol Specifies a sequence of uppercase or lowercase letters, underscores, or digits,
though the sequence cannot start with a digit. The value of the Symbol parameter
is taken from the symbol table in the ObjectFile parameter. An initial _ (underscore)
is prefixed to the Symbol parameter, if needed.

.Symbol Specifies the entry point of the function named by the Symbol parameter.

Routine.Name Specifies the address of the Name parameter in the specified C language routine.
Both the Routine and Name parameters are Symbol parameters. If the Name
parameter is omitted, the value is the address of the most recently activated C
stack frame corresponding to the Routine parameter.

(Expression) Specifies the value of the expression.

adb Debug Program Operators

Integers, symbols, variables, and register names can be combined with the following operators:

Unary Operators

*Expression Returns contents of the location addressed by the Expression parameter in the
CoreFile parameter.

@ Expression Returns contents of the location addressed by the Expression parameter in the
ObjectFile parameter.

-Expression Performs integer negation.

" Expression Performs bit-wise complement.

50 Writing and Debugging Programs

../../cmds/aixcmds1/adb.htm#HDRA2689160A

Unary Operators
#Expression Performs logical negation.

Binary Operators

Expression1+Expression2 Performs integer addition.

Expression1-Expression2 Performs integer subtraction.

Expression1* Expression2 Performs integer multiplication.

Expression1%Expression2 Performs integer division.

Expression1&Expression2 Performs bit-wise conjunction.

Expression1lExpression2 Performs bit-wise disjunction.

Expression 1#Expression2 Rounds up the Expression1 parameter to the next multiple of

the Expression2 parameter.

Binary operators are left-associative and are less binding than unary operators.

adb Debug Program Subcommands

You can display the contents of a text or data segment with the ? (question mark) or the / (slash)
subcommand. The = (equal sign) subcommand displays a given address in the specified format. The ?
and / subcommands can be followed by an * (asterisk).

?Format Displays the contents of the ObjectFile parameter starting at the Address parameter. The value of .
(period) increases by the sum of the increment for each format letter.

/Format Displays the contents of the CoreFile parameter starting at the Address parameter. The value of .
(period) increases by the sum of the increment for each format letter.

=Format Displays the value of the Address parameter. The i and s format letters are not meaningful for this
command.

The Format parameter consists of one or more characters that specify print style. Each format character
may be preceded by a decimal integer that is a repeat count for the format character. While stepping
through a format, the . (period) increments by the amount given for each format letter. If no format is
given, the last format is used.

The available format letters are as follows:

a Prints the value of . (period) in symbolic form. Symbols are checked to ensure that they have
an appropriate type.

b Prints the addressed byte in the current radix, unsigned.

c Prints the addressed character.

C Prints the addressed character using the following escape conventions:

+ Prints control characters as ~ (tilde) followed by the corresponding printing character.

+ Prints nonprintable characters as ~ (tilde) <Number>, where Number specifies the
hexadecimal value of the character. The character prints as (tilde tilde).

d Prints in decimal.

D Prints long decimal.

f Prints the 32-bit value as a floating-point number.
F Prints double floating point.

i

i Number Prints as instructions. Number is the number of bytes occupied by the instruction.

Prints a new line.

Prints 2 bytes in octal.

Prints 4 bytes in octal.

Prints the addressed value in symbolic form using the same rules for symbol lookup as the
format letter.

Prints 2 bytes in the current radix, unsigned.

T OO0 >

o]

Chapter 3. Debugging Programs

a

51

Q

r

s Number
S Number

—

WS <X X Ccc

newline
[?MValue Mask

[?Nw Value...

[,Counfl[?/]lm B1 E1
F1[2/]

>Name

Prints 4 unsigned bytes in the current radix.

Prints a space.

Prints the addressed character until a zero character is reached.

Prints a string using the ~ (tilde) escape convention. The Number variable specifies the length
of the string including its zero terminator.

Tabs to the next appropriate tab stop when preceded by an integer. For example, the 8t
format command moves to the next 8-space tab stop.

Prints as an unsigned decimal number.

Prints a long unsigned decimal.

Prints 2 bytes in hexadecimal.

Prints 4 bytes in hexadecimal.

Prints 4 bytes in date format.

Local or global data symbol.

Local or global text symbol.

Local or global absolute symbol.

Prints the enclosed string.

Decreases the . (period) by the current increment. Nothing prints.

Increases the . (period) by a value of 1. Nothing prints.

Decreases the . (period) decrements by a value of 1. Nothing prints.

Repeats the previous command incremented with a Count of 1.

Words starting at the . (period) are masked with the Mask value and compared with the
Value parameter until a match is found. If L is used, the match is for 4 bytes at a time instead
of 2 bytes. If no match is found, then . (period) is unchanged; otherwise, . (period) is set to
the matched location. If the Mask parameter is omitted, a value of -1 is used.

Writes the 2-byte Value parameter into the addressed location. If the command is W, write 4
bytes. If the command is V, write 1 byte. Alignment restrictions may apply when using the w
or W command.

Records new values for the B1, E1, and F1 parameters. If less than three expressions are
given, the remaining map parameters are left unchanged. If the ? (question mark) or / (slash)
is followed by an * (asterisk), the second segment (B2, E2, F2) of the mapping is changed. If
the list is terminated by ? or /, the file (ObjectFile or CoreFile, respectively) is used for
subsequent requests. (For example, the /m? command causes / to refer to the ObjectFile)
file. If the Count parameter is specified, the adb command changes the maps associated with
that file or library only. The $m command shows the count that corresponds to a particular
file. If the Count parameter is not specified, a default value of 0 is used.

Assigns a . (period) to the variable or register specified by the Name parameter.

Calls a shell to read the line following ! (exclamation mark).

52 writing and Debugging Programs

$Modifier

Miscellaneous commands. The available values for Modifier are:

<File

<<File

>File

f

Reads commands from the specified file and returns to standard input. If a count is
given as 0, the command will be ignored. The value of the count is placed in the
adb 9 variable before the first command in the File parameter is executed.

Reads commands from the specified file and returns to standard input. The <<File
command can be used in a file without causing the file to be closed. If a count is
given as 0, the command is ignored. The value of the count is placed in the adb 9
variable before the first command in File is executed. The adb 9 variable is saved
during the execution of the <<File command and restored when <<File completes.
There is a limit to the number of <<File commands that can be open at once.

Sends output to the specified file. If the File parameter is omitted, output returns to
standard output. The File parameter is created if it does not exist.

Prints all breakpoints and their associated counts and commands.

Stacks back trace. If the Address parameter is given, it is taken as the address of
the current frame (instead of using the frame pointer register). If the format letter C
is used, the names and values of all automatic and static variables are printed for
each active function. If the Count parameter is given, only the number of frames
specified by the Count parameter are printed.

Sets the current radix to the Address value or a value of 16 if no address is
specified.

Prints the names and values of external variables. If a count is specified, only the
external variables associated with that file are printed.

Prints the floating-point registers in hexadecimal.

i instruction set

m

Selects the instruction set to be used for disassembly.

Changes the default directory as specified by the -l flag to the Name parameter
value.

Prints the address map.

n mnem_set

\'}

w

P Name

Selects the mnemonics to be used for disassembly.
Sets the current radix to a value of 8.
Exits the adb command.

Prints the general registers and the instruction addressed by iar and sets the .
(period) to iar. The Number$r parameter prints the register specified by the Number
variable. The Number,Count$r parameter prints registers Number+Count-
1,...,Number.

Sets the limit for symbol matches to the Address value. The default is a value of
255.

Prints all non-zero variables in octal.

Sets the output page width for the Address parameter. The default is 80.
Uses the Name value as a prompt string.

Prints the process ID, the signal that caused stoppage or termination, and the
registers of $r.

Chapter 3. Debugging Programs 53

:Modifier

Manages a subprocess. Available modifiers are:

bCommand

Sets the breakpoint at the Address parameter. The breakpoint runs the Count
parameter -1 times before causing a stop. Each time the breakpoint is encountered,
the specified command runs. If this command sets . (period) to a value of 0, the
breakpoint causes a stop.

cSignal Continues the subprocess with the specified signal. If the Address parameter is

given, the subprocess is continued at this address. If no signal is specified, the
signal that caused the subprocess to stop is sent. Breakpoint skipping is the same
as for the r modifier.

Deletes the breakpoint at the Address parameter.
Stops the current subprocess, if one is running.

Runs the ObjectFile parameter as a subprocess. If the Address parameter is given
explicitly, the program is entered at this point. Otherwise, the program is entered at
its standard entry point. The Count parameter specifies how many breakpoints are to
be ignored before stopping. Arguments to the subprocess can be supplied on the
same line as the command. An argument starting with < or > establishes standard
input or output for the command. On entry to the subprocess, all signals are turned
on.

sSignal Continues the subprocess in single steps up to the number specified in the Count

parameter. If there is no current subprocess, the ObjectFile parameter is run as a
subprocess. In this case no signal can be sent. The remainder of the line is treated
as arguments to the subprocess.

adb Debug Program Variables

The adb command provides a number of variables. When the adb program is started, the following
variables are set from the system header in the specified core file. If the CoreFile parameter does not

appear to be a core file, these values are set from the ObjectFile parameter:

Last value printed

Last displacement part of an instruction source
Previous value of the 1 variable

Count on the last $< or $<< subcommand
Base address of the data segment

Size of the data segment

Entry address of the program

"Magic” number

Size of the stack segment

Size of the text segment

- W 3 00T ON-=O

Example adb Program: adbsamp

/* Program Listing for adbsamp.c */
char strl[] = "This is a character string";
int one = 1;

int number = 456;
long Tnum = 1234;
float fpt = 1.25;
char str2[] = "This is the second character string";
main()
{
one = 2;

printf("First String = %s\n",strl);

54 writing and Debugging Programs

printf("one = %d\n",one);
printf("Number = %d\n",Tnum);
printf("Floating point Number = %g\n",fpt);
printf("Second String = %s\n",str2);

}

Compile the program using the cc command to the adbsamp file as follows:

cc -g adbsamp.c -o adbsamp

To start the debug session, enter:
adb adbsamp

Example adb Program: adbsamp?2

/*program listing for adbsamp2.cx/

int fcnt,loop_count;
f(a,b)
int a,b;
{
a = atb;
fent++;
return(a);
1
main()
{
loop_count = 0;
while(Toop_count <= 100)
Toop_count = f(loop_count,1);
printf("%s%d\n","Loop count is: ", Toop_count);
printf("%s%d\n","fcnt count is: ",fcnt);
}
1

Compile the program using the cc command to the adbsamp2 file with the following command:
cc -g adbsamp2.c -o adbsamp2

To start the debug session, enter:
adb adbsamp2

Example adb Program: adbsamp3

The following sample program adbsamp3.c contains an infinite recursion of subfunction calls. If you run
this program to completion, it causes a memory fault error and quits.

int fent,gent,hent;

h(x,y)

int x,y;

{
int hi;
register int hr;
hi = x+1;
hr = x-y+1;
hcnt++;
hj:
f(hr,hi);

9(p,q)

int p,q;

{
int gi;

register int gr;

Chapter 3. Debugging Programs

55

gi = q-p;
gr = q-p+l;
gent++;

gj:
h(gr,gi);

1

f(a,b)

int a,b;

{
int fi;
register int fr;
fi = a+2xb;
fr = atb;
fent++;
fj:
g(fr,fi);

main()

f(1,1);
Compile the program using the cc command to create the adbsamp3 file with the following command:
cc -g adbsamp3.c -o adbsamp3

To start the debug session, enter:
adb adbsamp3

Example of Directory and i-node Dumps in adb Debugging

This example shows how to create adb scripts to display the contents of a directory and the i-node map of
a file system. In the example, the directory is named dir and contains a variety of files. The file system is
associated with the /dev/hd3 device file (/tmp), which has the necessary permissions to be read by the
user.

To display a directory, create an appropriate script. A directory normally contains one or more entries. Each
entry consists of an unsigned i-node number (i-number) and a 14-character file name. You can display this
information by including a command in your script file. The adb debug program expects the object file to
be an xcoff format file. This is not the case with a directory. The adb program indicates that the directory,
because it is not an xcoff format file, has a text length of 0. Use the m command to indicate to the adb
program that this directory has a text length of greater than 0. Therefore, display entries in your adb
session by entering:

,07m 360 0

For example, the following command displays the first 20 entries separating the i-node number and file
name with a tab:

0,20?utl4dcn

You can change the second number, 20, to specify the number of entries in the directory. If you place the
following command at the beginning of the script, the adb program displays the strings as headings for
each column of numbers:

="inumber"8t"Name"

Once you have created the script file, redirect it as input when you start the adb program with the name of
your directory. For example, the following command starts the adb program on the geo directory using
command input from the ddump script file:

adb geo - <ddump

56 Writing and Debugging Programs

The minus sign (-) prevents the adb program from opening a core file. The adb program reads the

commands from the script file.

To display the i-node table of a file system, create a new script and then start the adb program with the
file name of the device associated with the file system. The i-node table of a file system has a complex

structure. Each entry contains:

» A word value for status flags

* A byte value for number links

» 2-byte values for the user and group IDs

* A byte and word value for the size

» 8-word values for the location on disk of the file’s blocks
» 2-word values for the creation and modification dates

The following is an example directory dump output:
inumber Name

0: 26
2 ..
27 .estate
28 adbsamp

29 adbsamp.c

30 calc.lex

31 calc.yacc

32 chtest

68 .profile

66 .profile.bak
46 adbsamp2.c
52 adbsamp?2

35 adbsamp.s

34 adbsamp2.s
48 forktstl.c
49 forktst2.c
50 forktst3.c
51 1pp&usl.name
33 adbsamp3.c
241 sample

198 adbsamp3

55 msgqtst.c

56 newsig.c

The i-node table starts at the address 02000. You can display the first entry by putting the following

command in your script file:
02000,-1?0on3bnbrdn8un2Y2na

The command specifies several new-line characters for the output display to make it easier to read.

To use the script file with the i-node table of the /dev/hd3 file, enter the following command:

adb /dev/hd3 - <script

Each entry in the display has the form:

02000: 073145
0163 0164 0141
0162 10356
28770 8236 25956 27766 25455 8236 25956 25206
1976 Feb 5 08:34:56 1975 Dec 28 10:55:15

Chapter 3. Debugging Programs

57

Example of Data Formatting in adb Debugging

To display the current address after each machine instruction, enter:
main , 5 ? ia

This produces output such as the following when used with the example program adbsamp:

.main:

.main: mflr O

.main+4: st r@, 0x8(rl)
.main+8: stu rs, (r1)
.main+c: 1i 1 r4, Ox1
.main+10: oril r3, r4, 0x0
.main+l14:

To make it clearer that the current address does not belong to the instruction that appears on the same
line, add the new-line format character (n) to the command:

.main , 5 ? ian

In addition, you can put a number before a formatting character to indicate the number of times to repeat
that format.

To print a listing of instructions and include addresses after every fourth instruction, use the following
command:

.main,3?4ian

This instruction produces the following output when used with the example program adbsamp:

.main:
mflr 0
st r0, 0x8(rl)
stu rl, -56(rl)
1i1 rd4, 0Ox1

.main+10:
oril r3, r4, 0x0
b1 .f
1 r0, 0x40(rl)
ai rl, rl1, 0x38

.main+20:
mtir r0
br
Invalid opcode
Invalid opcode

.main+30:
Be careful where you put the number.

The following command, though similar to the previous command, does not produce the same output:
main,3?idan

.main:

.main: mflr 0

.maint+4: .main+4: .maint+4: .main+4:
st r0, 0x8(rl)

.main+8: .main+8: .main+8: .main+8:
stu rl, (r1)

.main+c: .main+c: .main+c: .main+c:

58 Writing and Debugging Programs

You can combine format requests to provide elaborate displays. For example, entering the following
command displays instruction mnemonics followed by their hexadecimal equivalent:

.main,-121 xn

In this example, the display starts at the address main. The negative count (-1) causes an indefinite call of
the command, so that the display continues until an error condition (such as end-of-file) occurs. In the
format, i displays the mnemonic instruction at that location, the ~ (caret) moves the current address back
to the beginning of the instruction, and x re-displays the instruction as a hexadecimal number. Finally, n
sends a newline character to the terminal. The output is similar to the following, only longer:

.main:
.main: mflr 0
7c0802a6
st r@, 0x8(rl)
9001008
st r1, -56(rl)
9421ffc8
1i1 r4, 0Ox1
38800001
oril r3, r4, 0x0
60830000
b1 - .f
4bffff71
1 r0, 0x40(rl)
80010040
ai rl, rl, 0x38
30210038
mtlr r0
7c0803a6

The following example shows how to combine formats in the ? or / subcommand to display different types
of values when stored together in the same program. It uses the adbsamp program. For the commands to
have variables with which to work, you must first set a breakpoint to stop the program, and then run the
program until it finds the breakpoint. Use the :b command to set a breakpoint:

.main+4:b

Use the $b command to show that the breakpoint is set:
$b

breakpoints
count bkpt command
1 .main+4

Run the program until it finds the breakpoint by entering:
r

adbsamp: running

breakpoint .main+4: st r0, 0x8(rl)

You can now display conditions of the program when it stopped. To display the value of each individual
variable, give its name and corresponding format in a / (slash) command. For example, the following
command displays the contents of strl as a string:

strl/s

strl:
strl: This is a character string

The following command displays the contents of number as a decimal integer:

number/D
number:
number: 456

Chapter 3. Debugging Programs 59

You can choose to view a variable in a variety of formats. For example, you can display the long variable
Inum as a 4-byte decimal, octal, and hexadecimal number by entering the commands:

Tnum/D
Tnum:
Tnum: 1234

Tnum/0
Tnum:
Tnum: 2322

Tnum/X
Tnum:
Tnum: 4d2

You can also examine variables in other formats. For example, the following command displays some
variables as eight hexadecimal values on a line and continues for five lines:

strl,5/8x

strl:

strl: 5468 6973 2069 7320 6120 6368 6172 6163
7465 7220 7374 7269 6e67 O 0 0O 0

number: 0 1c8 0 0 0 4d2 0 0
3fa0d 0 0 0 5468 6973 2069 7320
7468 6520 7365 636 6e64 2063 6861 7261

Since the data contains a combination of numeric and string values, display each value as both a number
and a character to see where the actual strings are located. You can do this with one command:

strl,5/4x4 8Cn

strl:

strl: 5468 6973 2069 7320 This is
6120 6368 6172 6163 a charac
7465 7220 7374 7269 ter stri
6e67 0 0 0 ngeeee o
0 1c8 0 0 @R@A<c8>0@@0EO0E

)
)

In this case, the commgnd displays four values in hexadecimal, then displays the same values as eight
ASCII characters. The (caret) is used four times just before displaying the characters to set the current
address back to the starting address for that line.

To make the display easier to read, you can insert a tab between the values and characters and give an
address for each line:

strl,5/4x4"8t8Cna

strl:

strl: 5468 6973 2069 7320 This is

strl+8: 6120 6368 6172 6163 a charac

strl+10: 7465 7220 7374 7269 ter stri
strl+18: 6e67 0 0 1 ngeeEEEA
number: o o
number: 0 1c8 0 0 @OA<c8B>@QE®E
fpt:

Example of Tracing Multiple Functions in adb Debugging

Note: The example program used in this section, adbsamp3, contains an infinite recursion of
subfunction calls. If you run this program to completion, it causes a memory fault error and quits.

The following example shows how to execute a program under adb control and carry out the basic
debugging operations described in the following sections.

60 Writing and Debugging Programs

The source program for this example is stored in a file named adbsamp3.c. Compile this program to an
executable file named adbsamp3 using the cc command:

cc adbsamp3.c -o adbsamp3

Starting the adb Program
To start the session and open the program file, use the following command (no core file is used):
adb adbsamp3

Setting Breakpoints
First, set breakpoints at the beginning of each function using the :b subcommand:

.f:b
.g:b
.h:b

Displaying a Set of Instructions
Next, display the first five instructions in the f function:

.f,5%ia

fe

fe mflr ro0

44 st r0, 0x8(rl)
.f+8: stu rl, -64(rl)
Lf+e: st r3, 0x58(rl)
.f+10: st r4, 0xbc(rl)
f+14:

Display five instructions in function g without their addresses:

.g,57i

.g: mflr r0
st r0, 0x8(rl)
stu rl, -64(rl)
st r3, 0x58(rl)
st r4, 0x5c(rl)

Starting the adsamp3 Program

Start the program by entering the following command:
r

adbsamp3: running

breakpoint .f: mflr r0

The adb program runs the sample program until it reaches the first breakpoint where it stops.

Removing a Breakpoint
Since running the program to this point causes no errors, you can remove the first breakpoint:
.fid

Continuing the Program

Use the :c subcommand to continue the program:
:C

adbsamp3: running

breakpoint .g: mflr r0

The adb program restarts the adbsamp3 program at the next instruction. The program operation
continues until the next breakpoint, where it stops.

Chapter 3. Debugging Programs 61

Tracing the Path of Execution
Trace the path of execution by entering:

$c

.g(0,0) .f+2a

.f(1,1) .mainte
.main(0,0,0) start+fa

The $c subcommand displays a report that shows the three active functions: main, f and g.

Displaying a Variable Value
Display the contents of the fcnt integer variable by entering the command:

fcent/D
fcnt:
fcnt: 1

Skipping Breakpoints

Next, continue running the program and skip the first 10 breakpoints by entering:

,10:c
adbsamp3: running
breakpoint .g: mflr r0

The adb program starts the adbsamp3 program and displays the running message again. It does not stop
the program until exactly 10 breakpoints have been encountered. To ensure that these breakpoints have
been skipped, display the backtrace again:

$c

.g(0,0) .f+2a
.f(2,11) .h+28
.h(10,f) .g+2a
.9(11,20) .f+2a
f(2,f) .h+28
.h(e,d) .g+2a
.g(f,1c) .f+2a
.f(2,d) .h+28
.h(c,b) .g+2a
.g(d,18) .f+2a
.f(2,b) .h+28
.h(a,9) .g+2a
.g(b,14) .f+2a
.f(2,9) .h+28
.h(8,7) .g+2a
.g(9,10) .f+2a
.f(2,7) .h+28
.h(6,5) .g+2a
.g(7,c) .f+2ae
.f(2,5) .h+28
.h(4,3) .g+2a
.g(5,8) .f+2a
.f(2,3) .h+28
.h(2,1) .g+2a
.g(2,3) .f+2a
.f(1,1) .mainte
.main(0,0,0) start+fa

62 Writing and Debugging Programs

dbx Symbolic Debug Program Overview

The dbx symbolic debug program allows you to debug a program at two levels: the source-level and the
assembler language-level. Source level debugging allows you to debug your C, C++, Pascal, or
FORTRAN language program. Assembler language level debugging allows you to debug executable
programs at the machine level. The commands used for machine level debugging are similar to those
used for source-level debugging.

Using the dbx debug program, you can step through the program you want to debug one line at a time or
set breakpoints in the object program that will stop the debug program. You can also search through and
display portions of the source files for a program.

The following sections contain information on how to perform a variety of tasks with the dbx debug
program:

Using the dbx Debug Program
The following sections contain information on how to use the dbx debug program.
Starting the dbx Debug Program

The dbx program can be started with a variety of flags. The three most common ways to start a debug
session with the dbx program are:

* Running the b command on a specified object file
* Using the Ed flag to run the dbx command on a program that ends abnormally
* Using the td flag to run the dbx command on a process that is already in progress

When the dbx command is started, it checks for a .dbxinit (‘fUsing the dbxinit File” on page 79) file in the

user’s current directory and in the user's $SHOME directory. If a .dbxinit file exists, its subcommands run at
the beginning of the debug session. If a .dbxinit file exists in both the home and current directories, then
both are read in that order. Because the current directory .dbxinit file is read last, its subcommands can
supercede those in the home directory.

If no object file is specified, then the dbx program asks for the name of the object file to be examined. The
default is a.out. If the core file exists in the current directory or a CoreFile parameter is specified, then the
dbx program reports the location where the program faulted. Variables, registers, and memory held in the
core image may be examined until execution of the object file begins. At that point the dbx debug program
prompts for commands.

Running Shell Commands from dbx
You can run shell commands without exiting from the debug program using the subcommand.

If sh is entered without any commands specified, the shell is entered for use until it is exited, at which time
control returns to the dbx program.

Chapter 3. Debugging Programs 63

../../cmds/aixcmds2/dbx.htm#HDRA2699EE
../../cmds/aixcmds2/dbx.htm#SPTA2699114
../../cmds/aixcmds2/dbx.htm#SPTA2699110
../../cmds/aixcmds2/dbx.htm#HDRA3009C99

Command Line Editing in dbx

The dbx command provides command line editing features similar to those provided by Korn Shell. vi
mode provides vi-like editing features, while emacs mode gives you controls similar to emacs.

You can turn these features on by using dbx subcommand set -0 or set edif. So, to turn on vi-style
command line editing, you would type the subcommand set edit vi or set -o vi.

You can also use the EDITOR environment variable to set the editing mode.

The dbx command saves commands entered to history file .dbxhistory. If the DBXHISTFILE environment
variable is not set, then the history file used is $SHOME/.dbxhistory.

By default, the dbx command saves the text of the last 128 commands entered. The DBXHISTSIZE
environment variable can be used to increase this limit.

Using Program Control

The dbx debug program allows you to set breakpoints (stopping places) in the program. After entering the
dbx program you can specify which lines or addresses are to be breakpoints and then run the program
you want to debug with the dbx program. The program halts and reports when it reaches a breakpoint.
You can then use dbx commands to examine the state of your program.

An alternative to setting breakpoints is to run your program one line or instruction at a time, a procedure
known as single-stepping.

Setting and Deleting Breakpoints

Use the Etagd subcommand to set breakpoints in the dbx program. The stop subcommand halts the
application program when certain conditions are fulfilled:

» The Variable is changed when the Variable parameter is specified.

« The Condition is true when the if Condition flag is used.

* The Procedure is called when the in Procedure flag is used.

* The SourceLine line number is reached when the at SourcelLine flag is used.

Note: The SourcelLine variable can be specified as an integer or as a file name string followed by
a : (colon) and an integer.

After any of these commands, the dbx program responds with a message reporting the event ID
associated with your breakpoint along with an interpretation of your command.

Running a Program

The kud subcommand starts your program. It tells the dbx program to begin running the object file,
reading any arguments just as if they were typed on the shell command line. The ES!E subcommand has
the same form as run; the difference is that if no arguments are passed, the argument list from the
previous execution is used. After your program begins, it continues until one of the following events
occurs:

* The program reaches a breakpoint.

» A signal occurs that is not ignored, such as INTERRUPT or QUIT.

* A multiprocess event occurs while multiprocess debugging is enabled.

+ The program performs a load, unload, or loadbind subroutine.

64 writing and Debugging Programs

../../cmds/aixcmds2/dbx.htm#HDRA3009DB2
../../cmds/aixcmds2/dbx.htm#HDRA3009877
../../cmds/aixcmds2/dbx.htm#HDRA3009704
../../cmds/aixcmds2/dbx.htm#HDRA3009729
../../libs/basetrf1/load.htm#HDRA1289A2C
../../libs/basetrf2/unload.htm#HDRA2019D34
../../libs/basetrf1/loadbind.htm#HDRA262B9118

Note: The dbx program ignores this condition if the $ignoreload debug variable is set. This is the
default. For more information see the ket subcommand.

* The program completes.

In each case, the dbx debug program receives control and displays a message explaining why the
program stopped.

There are several ways to continue the program once it stops:

Eoni Continues the program from where it stopped.

HetacH Continues the program from where it stopped, exiting the debug program. This is useful after you have
patched the program and want to continue without the debug program.

keturn Continues execution until a return to Procedure is encountered, or until the current procedure returns if
Procedure is not specified.

@ Continues execution until the end of the program or until Number + 1 breakpoints execute.

@ Runs one or a specified Number of source lines.

hexi Runs up to the next source line, or runs a specified Number of source lines.

A common method of debugging is to step through your program one line at a time. The step and next
subcommands serve that purpose. The distinction between these two commands is apparent only when
the next source line to be run involves a call to a subprogram. In this case, the step subcommand stops in
the subprogram; the next subcommand runs until the subprogram has finished and then stops at the next
instruction after the call.

The $stepignore debug variable can be used to modify the behavior of the step subcommand. See the
command in AIX 5L Version 5.1 Commands Reference, Volume 2 for more information.

There is no event number associated with these stops because there is no permanent event associated
with stopping a program.

If your program has multiple threads, they all run normally during the cont, next, nexti, and step
subcommands. These commands act on the running thread (the thread which stopped execution by hitting
a breakpoint), so even if another thread executes the code which is being stepped, the cont, next, nexti,
or step operation continues until the running thread has also executed that code.

If you want these subcommands to execute the running thread only, you can set the dbx debug program
variable $hold_next; this causes the dbx debug program to hold all other user threads during cont, next,
nexti, and step subcommands.

Note: If you use this feature, remember that a held thread will not be able to release any locks which
it has acquired; another thread which requires one of these locks could deadlock your program.

Separating dbx Output from Program Output

Use the screen subcommand for debugging programs that are screen-oriented, such as text editors or
graphics programs. This subcommand opens an Xwindow for dbx command interaction. The program

continues to operate in the window in which it originated. If is not used, dbx program output is
intermixed with the screen-oriented program output.

Tracing Execution

The lracd subcommand tells the dbx program to print information about the state of the program being
debugged while that program is running. The trace subcommand can slow a program considerably,
depending on how much work the dbx program has to do. There are five forms of program tracing:

Chapter 3. Debugging Programs 65

../../cmds/aixcmds2/dbx.htm#HDRA3009DB2
../../cmds/aixcmds2/dbx.htm
../../cmds/aixcmds2/dbx.htm
../../cmds/aixcmds2/dbx.htm#HDRA30096E9
../../cmds/aixcmds2/dbx.htm#HDRA300974E
../../cmds/aixcmds2/dbx.htm#HDRA300985C
../../cmds/aixcmds2/dbx.htm#HDRA300979D
../../cmds/aixcmds2/dbx.htm#HDRA3009DB2
../../cmds/aixcmds2/dbx.htm#HDRA3009CAF
../../cmds/aixcmds2/dbx.htm#HDRA3009C3B

* You can single-step the program, printing out each source line that is executed. The Bstepignord debug
variable can be used to modify the behavior of the trace subcommand. See the Eel subcommand for
more information.

* You can restrict the printing of source lines to when the specified procedure is active. You can also
specify an optional condition to control when trace information is produced.

* You can display a message each time a procedure is called or returned.
* You can print the specified source line when the program reaches that line.
* You can print the value of an expression when the program reaches the specified source line.

Deleting trace events is the same as deleting stop events. When the trace subcommand is executed, the
event ID associated is displayed along with the internal representation of the event.

Displaying and Manipulating the Source File with the dbx debug
Program

You can use the dbx debug program to search through and display portions of the source files for a
program.

You do not need a current source listing for the search. The dbx debug program keeps track of the current
file, current procedure, and current line. If a core file exists, the current line and current file are set initially
to the line and file containing the source statement where the process ended.

Note: This is only true if the process stopped in a location compiled for debugging.

n . - .)

Changing the Source Directory Path

By default, the dbx debug program searches for the source file of the program being debugged in the
following directories:

» Directory where the source file was located when it was compiled. This directory is searched only if the
compiler placed the source path in the object.

» Current directory.

» Directory where the program is currently located.

You can change the list of directories to be searched by using the H option on the dbx invocation line or
issuing the EE% subcommand within the dbx program. For example, if you moved the source file to a new

location since compilation time, you might want to use one of these commands to specify the old location,
the new location, and some temporary location.

Displaying the Current File

The lis§ subcommand allows you to list source lines.

The $ (dollar sign) and @ (at sign) symbols represent SourcelLineExpression and are useful with the list,
, and subcommands. The $ symbol represents the next line to be run. The @ symbol

represents the next line to be listed.

The movd subcommand changes the next line number to be listed.

66 Writing and Debugging Programs

../../cmds/aixcmds2/dbx.htm#SPTA646HI1C0JBAU
../../cmds/aixcmds2/dbx.htm#HDRA3009DB2
../../cmds/aixcmds2/dbx.htm#SPTA2699112
../../cmds/aixcmds2/dbx.htm#HDRA3009C0B
../../cmds/aixcmds2/dbx.htm#HDRA3009D5D
../../cmds/aixcmds2/dbx.htm#HDRA3009877
../../cmds/aixcmds2/dbx.htm#HDRA3009C3B
../../cmds/aixcmds2/dbx.htm#HDRA3009BF3

Changing the Current File or Procedure

Use the fund and [fild subcommands to change the current file, current procedure, and current line within
the dbx program without having to run any part of your program.

Search through the current file for text that matches regular expressions. If a match is found, the current
line is set to the line containing the matching text. The syntax of the search subcommand is:

| RegularExpression [/] Bearches forward in the current source file for the given expression.
? RegularExpression [?] Bearches backward in the current source file for the given expression.

If you repeat the search without arguments, the b command searches again for the previous regular
expression. The search wraps around the end or beginning of the file.

You can also invoke an external text editor for your source file using the kedif subcommand. You can
override the default editor (vi) by setting the EDITOR environment variable to your desired editor before
starting the dbx program.

The dbx program resumes control of the process when the editing session is completed.

Debugging Programs Involving Multiple Threads

Programs involving multiple user threads call the subroutine W When a process calls this
subroutine, the operating system creates a new thread of execution within the process. When debugging a
multi-threaded program, it is necessary to work with individual threads instead of with processes. The dbx
program only works with user threads: in the dbx documentation, the word thread is usually used alone to
mean user thread. The dbx program assigns a unique thread number to each thread in the process being
debugged, and also supports the concept of a running and current thread:

Running thread The user thread that was responsible for stopping the program by hitting a breakpoint.
Subcommands that single-step the program work with the running thread.
Current thread The user thread that you are examining. Subcommands that display information work in

the context of the current thread.

By default, the running thread and current thread are the same. You can select a different current thread
by using the thread subcommand. When the thread subcommand displays threads, the current thread line
is preceded by a >. If the running thread is not the same as the current thread, its line is preceded by a *.

Identifying Thread-Related Objects

Threads use mutexes and condition variables to synchronize access to resources. Threads, mutexes, and
condition variables are created with attribute objects that define how they behave. The dbx program
automatically creates several variables that identify these various thread-related objects. For each object
class, dbx maintains a numbered list and creates an associated variable for each object in the list. These
variable names begin with a $ (dollar sign), followed by a letter indicating the object class (a, ¢, m, or t),
followed by a number indicating the object’s position in the class list. The letters and their associated
object classes are as follows:

» a for attributes

» ¢ for condition variables

* m for mutexes

e t for threads.

Chapter 3. Debugging Programs 67

../../cmds/aixcmds2/dbx.htm#HDRA3009B36
../../cmds/aixcmds2/dbx.htm#HDRA3009B1B
../../cmds/aixcmds2/dbx.htm#HDRA3009E4B
../../cmds/aixcmds2/dbx.htm#HDRA3009E65
../../cmds/aixcmds2/dbx.htm#HDRA2699EE
../../cmds/aixcmds2/dbx.htm#HDRA3009AFD
../../libs/basetrf1/pthread_create.htm#HDRZDCVH2F3MANU

For example, $t2 corresponds to the second thread in the dbx thread list. In this case, 2 is the object’s
thread number, which is unrelated to the kernel thread identifier (tid). You can list the objects in each class
using the following dbx subcommands: attribute, condition, mutex, and thread. For example, you can
simply use the thread subcommand to list all threads.

The dbx program automatically defines and maintains the variable $running_thread, which identifies the
thread that was running when a breakpoint was hit.

Breakpoints and Threads

If your program has multiple user threads, simply setting a breakpoint on a source line will not guarantee
that a particular thread will hit the breakpoint, because several threads can execute the same code. If any
thread hits the breakpoint, all the threads of the process will stop.

If you want to specify which thread is to hit the breakpoint, you can use the stop or stopi subcommands
to set a conditional breakpoint. The following aliases set the necessary conditions automatically:

» bfth (Function, ThreadNumber)
* blth (LineNumber, ThreadNumber)

These aliases stop the thread at the specified function or source line number, respectively. ThreadNumber
is the number part of the symbolic thread name as reported by the khread subcommand (for example, 2 is
the ThreadNumber for the thread name $t2).

For example, the following subcommand stops thread $t1 at function funcl:
(dbx) bfth (funcl, 1)

and the following subcommand stops thread $t2 at source line 103:
(dbx) b1th (103, 2)

If no particular thread was specified with the breakpoint, any thread that executes the code where the
breakpoint is set could become the running thread.

Thread-Related subcommands
The dbx debug program has the following subcommands that enable you to work with individual attribute

objects, condition variables, mutexes, and threads:

bitributd Displays information about all attribute objects, or attribute objects specified by attribute number.

Eonditiod Displays information about all condition variables, condition variables that have waiting threads,
condition variables that have no waiting threads, or condition variables specified by condition
number.

muted Displays information about all mutexes, locked or unlocked mutexes, or mutexes specified by
mutex number.

thread Displays information about threads, selects the current thread, and holds and releases threads.

A number of subcommands that do not deal with threads directly are also affected when used to debug a
multi-threaded program:

frint If passed a symbolic object name reported by the thread, mutex, condition, or
attribute subcommands, displays status information about the object. For example,
to display the third mutex and the first thread:

(dbx) print $m3, $t1

68 Writing and Debugging Programs

../../cmds/aixcmds2/dbx.htm#HDRP62AI59THOM
../../cmds/aixcmds2/dbx.htm#HDRA792AIA3THOM
../../cmds/aixcmds2/dbx.htm#HDRR52AI14BTHOM
../../cmds/aixcmds2/dbx.htm#HDRL32AI30ATHOM
../../cmds/aixcmds2/dbx.htm#HDRP62AI59THOM
../../cmds/aixcmds2/dbx.htm#HDRA3009A63

m, m If a single thread hits a breakpoint, all other threads are stopped as well, and the
process timer is halted. This means that the breakpoint does not affect the global
behavior of the process. These normal breakpoints are global, meaning that they
can stop any thread.

If you want to specify which thread will hit the breakpoint, you must use a condition
as shown in the following example, which ensures that only thread $t5 can hit the
breakpoint set on function f1:

(dbx) stopi at &f1 if ($running_thread == 5)

This syntax also works with the stop subcommand. Another way to specify these
conditions is to use the bfth and blth aliases, as explained in the section
"Breakpoints and Threads” (tBreakpoints and Threads” on page 6d).

@, E, hexti All threads resume execution during the step, next, and nexti subcommands. If
you want to step the running thread only, set the $hold_next dbx debug program
variable; this holds all threads except the running thread during these
subcommands.

@ The stepi subcommand executes the specified number of machine instructions in
the running thread only. Other threads in the process being debugged will not run
during the stepi subcommand.

trace, tracei A specific user thread can be traced by specifying a condition with the trace and
tracei subcommands as shown in the following example, which traces changes
made to varl by thread §t1:

(dbx) trace varl if ($running_thread == 1)

If a multi-threaded program does not protect its variables with mutexes, the dbx debug program behavior
may be affected by the resulting race conditions. For example, suppose that your program contains the
following lines:

59 var = 5;

60 printf(”’var=%d\n”, var);

If you want to verify that the variable is being initialized correctly, you could type:

stop at 60 if var==5

The dbx debug program puts a breakpoint at line 60, but if access to the variable is not controlled by a

mutex, another thread could update the variable before the breakpoint is hit. This means that the dbx
debug program would not see the value of five and would continue execution.

Debugging Programs Involving Multiple Processes

Programs involving multiple processes call the kord and bxed subroutines. When a program forks, the
operating system creates another process that has the same image as the original. The original process is
called the parent process, the created process is called the child process.

When a process performs an exec subroutine, a new program takes over the original process. Under

normal circumstances, the debug program debugs only the parent process. However, the dbx program

can follow the execution and debug the new processes when you issue the m subcommand. The
subcommand enables multiprocess debugging.

When multiprocess debugging is enabled and a fork occurs, the parent and child processes are halted. A

separate virtual terminal Xwindow is opened for a new version of the dbx program to control running of
the child process:

Chapter 3. Debugging Programs 69

../../cmds/aixcmds2/dbx.htm#HDRA3009877
../../cmds/aixcmds2/dbx.htm#HDRA3009CC6
../../cmds/aixcmds2/dbx.htm#HDRA300985C
../../cmds/aixcmds2/dbx.htm#HDRA300979D
../../cmds/aixcmds2/dbx.htm#HDRA3009B51
../../cmds/aixcmds2/dbx.htm#HDRA3009E95
../../libs/basetrf1/fork.htm
../../libs/basetrf1/exec.htm
../../cmds/aixcmds2/dbx.htm#HDRA3009781
../../cmds/aixcmds2/dbx.htm#HDRA3009781

(dbx) multproc on

(dbx) multproc

multi-process debugging is enabled
(dbx) run

When the fork occurs, execution is stopped in the parent, and the dbx program displays the state of the
program:

application forked, child pid = 422, process stopped, awaiting input

stopped due to fork with multiprocessing enabled in fork at 0x1000025a (fork+0xe)

(dbx)

Another virtual terminal Xwindow is then opened to debug the child process:

debugging child, pid=422, process stopped, awaiting input

stopped due to fork with multiprocessing enabled in fork at 0x10000250
10000250 (fork+0x4))80010010 1 r0,0x10(rl1)

(dbx)

At this point, two distinct debugging sessions are running. The debugging session for the child process
retains all the breakpoints from the parent process, but only the parent process can be rerun.

When a program performs an exec subroutine in multiprocess debugging mode, the program overwrites
itself, and the original symbol information becomes obsolete. All breakpoints are deleted when the exec
subroutine runs; the new program is stopped and identified for the debugging to be meaningful. The dbx
program attaches itself to the new program image, makes a subroutine to determine the name of the new
program, reports the name, and then prompts for input. The prompt is similar to the following:

(dbx) multproc

Multi-process debugging is enabled

(dbx) run

Attaching to program from exec . . .

Determining program name . . .

Successfully attached to /home/user/execprog . . .

Reading symbolic information . . .
(dbx)

If a multi-threaded program forks, the new child process will have only one thread. The process should call
the exec subroutine. Otherwise, the original symbol information is retained, and thread-related
subcommands (such as thread) display the objects of the parent process, which are obsolete. If an exec
subroutine is called, the original symbol information is reinitialized, and the thread-related subcommands
display the objects in the new child process.

It is possible to follow the child process of a fork without a new Xwindow being opened by using the child
flag of the multproc subcommand. When a forked process is created, dbx follows the child process. The
parent flag of the multproc subcommand causes dbx to stop when a program forks, but then follows the
parent. Both the child and parent flags follow an execed process. These flags are very useful for
debugging programs when Xwindows is not running.

Examining Program Data
This section explains how to examine, test, and modify program data.

Handling Signals

The dbx debug program can either trap or ignore signals before they are sent to your program. Each time
your program is to receive a signal, the dbx program is notified. If the signal is to be ignored, it is passed
to your program; otherwise, the dbx program stops the program and notifies you that a signal has been
trapped. The dbx program cannot ignore the SIGTRAP signal if it comes from a process outside of the
debug process. In a multi-threaded program, a signal can be sent to a particular thread via the

70 writing and Debugging Programs

pthread_kill subroutine. By default, the dbx program stops and notifies you that a signal has been
trapped. If you request a signal be passed on to your program using the ignore subcommand, the dbx
program ignores the signal and passes it on to the thread. Use the catch and ignore subcommands to
change the default handling.

In the following example, a program uses SIGGRANT and SIGREQUEST to handle allocation of
resources. In order for the dbx program to continue each time one of these signals is received, enter:
(dbx) 1ignore GRANT

(dbx) ignore SIGREQUEST

(dbx) ignore

CONT CLD ALARM KILL GRANT REQUEST

The dbx debug program can block signals to your program if you set the $sigblock variable. By default,
signals received through the dbx program are sent to the source program or the object file specified by
the dbx ObjectFile parameter. If the $sigblock variable is set using the subcommand, signals received
by the dbx program are not passed to the source program. If you want a signal to be sent to the program,
use the cont subcommand and supply the signal as an operand.

You can use this feature to interrupt execution of a program running under the dbx debug program.
Program status can be examined before continuing execution as usual. If the $sigblock variable is not
set, interrupting execution causes a SIGINT signal to be sent to the program. This causes execution, when
continued, to branch to a signal handler if one exists.

The following example program illustrates how execution using the dbx debug program changes when the
$sigblock variable is set:

#include <signal.h>

#include <stdio.h>

void inthand() {
printf("\nSIGINT received\n");
exit(0);

1

main()

{
signal (SIGINT, inthand);

while (1) {
printf(".");
fflush(stdout);
sleep(1);

}

The following sample session with the dbx program uses the preceding program as the source file. In the
first run of the program, the $sigblock variable is not set. During rerun, the $sigblock variable is set.
Comments are placed between angle brackets to the right:

dbx version 3.1.

Type 'help' for help.

reading symbolic information ...

(dbx) run_

......... C <User pressed Ctrl1-C here!>
interrupt in sleep at 0xd00180bc

0xd00180bc (sTeep+0x40) 80410014 1 r2,0x14(rl1)
(dbx) cont

SIGINT received

execution completed

(dbx) set $sigblock

(dbx) rerun

[Tooper]

.............. C <User pressed Ctr1-C here!>
interrupt in sleep at 0xd00180bc

Chapter 3. Debugging Programs 71

../../cmds/aixcmds2/dbx.htm#HDRA3009B87
../../cmds/aixcmds2/dbx.htm#HDRA3009E2D
../../cmds/aixcmds2/dbx.htm#HDRA3009DB2

0xd00180bc (sTeep+0x40) 80410014 1 r2,0x14(rl)
(dbx) cont

. C <Program did not receive signal, execution continued>

interrupt in sleep at 0xd00180bc
0xd00180bc (sTeep+0x40) 80410014 1 r2,0x14(rl)
(dbx) cont 2 <End program with a signal 2>

SIGINT received

execution completed
(dbx)

Calling Procedures

You can call your program procedures from the dbx program to test different arguments. You can also call
diagnostic routines that format data to aid in debugging. Use the kcall subcommand or the
subcommand to call a procedure.

Displaying a Stack Trace

To list the procedure calls preceding a program halt, use the wherd command.

In the following example, the executable object file, hello, consists of two source files and three
procedures, including the standard procedure main. The program stopped at a breakpoint in procedure
sub2.

(dbx) run

[1] stopped in sub2 at Tine 4 in file "hellosub.c"

(dbx) where

sub2(s = "hello", n = 52), Tine 4 in "hellosub.c"

sub(s = "hello", a = -1, k = delete), Tine 31 in "hello.c"
main(), Tine 19 in "hello.c"

The stack trace shows the calls in reverse order. Starting at the bottom, the following events occurred:
1. Shell called main.

2. main called sub procedure at line 19 with values s = "hello”, a = -1, and k = delete.

3. sub called sub2 procedure at line 31 with values s = "hel10” and n = 52.

4. The program stopped in sub2 procedure at line 4.

Note: Set the debug program variable $noargs to turn off the display of arguments passed to
procedures.

You can also display portions of the stack with the id and dowd subcommands.
Displaying and Modifying Variables

To display an expression, use the W subcommand. To print the names and values of variables, use the
subcommand. If the given procedure is a period, then all active variables are printed. To modify the
value of a variable, use theh% subcommand.

In the following example, a C program has an automatic integer variable x with value 7, and s and n
parameters in the sub2 procedure:

(dbx) print x, n

7 52

(dbx) assign x = 3*x

(dbx) print x

72 Wwriting and Debugging Programs

../../cmds/aixcmds2/dbx.htm#HDRA3009B6C
../../cmds/aixcmds2/dbx.htm#HDRA3009A63
../../cmds/aixcmds2/dbx.htm#HDRA3009AC4
../../cmds/aixcmds2/dbx.htm#HDRA3009A33
../../cmds/aixcmds2/dbx.htm#HDRA3009A4B
../../cmds/aixcmds2/dbx.htm#HDRA3009A63
../../cmds/aixcmds2/dbx.htm#HDRA3009AA6
../../cmds/aixcmds2/dbx.htm#HDRA300989D

21

(dbx) dump

sub2(s = "hello", n = 52)
x = 21

Displaying Thread-Related Information

To display information on user threads, mutexes, conditions, and attribute objects, use the m, m,
Eondition, and httributd subcommands. You can also use the prind subcommand on these objects. In the
following example, the running thread is thread 1. The user sets the current thread to be thread 2, lists the
threads, prints information on thread 1, and finally prints information on several thread-related objects.
(dbx) thread current 2

(dbx) thread
thread state-k wchan state-u k-tid mode held scope function

*$tl run running 12755 u no pro main
>§t2 run running 12501 k no sys thread_1
(dbx) print $t1

(thread_id = 0x1, state = run, state_u

0x0, tid = 0x31d3, mode = 0x1, held = 0x0, priority = 0x3c,
= 0x5, attributes = 0x200050f8)

policy = other, scount = 0x1, cursig

(dbx) print $al,$cl,$m2

(attr_id = 0x1, type = 0x1, state = Oxl, stacksize = 0x0, detachedstate = 0x0, process_shared = 0x0,
contentionscope = 0x0, priority = 0x0, sched = 0x0, inherit = 0x0, protocol = 0x0, prio_ceiling = 0x0)
(cv_id = 0x1, Tock = 0x0, semaphore_queue = 0x200032a0, attributes = 0x20003628)

(mutex_id = 0x2, islock = 0x0, owner = (nil), flags = Ox1, attributes = 0x200035c8)

Scoping of Names

Names resolve first using the static scope of the current function. The dynamic scope is used if the name
is not defined in the first scope. If static and dynamic searches do not yield a result, an arbitrary symbol is
chosen and the message using QualifiedName is printed. You can override the name resolution procedure
by qualifying an identifier with a block name (such as Module.Variable). Source files are treated as
modules named by the file name without the suffix. For example, the x variable, which is declared in the
sub procedure inside the hello.c file, has the fully qualified name hello.sub.x. The program itself has a
period for a name.

The whichl and whereid subcommands can be helpful in determining which symbol is found when multiple
symbols with the same name exist.

Using Operators and Modifiers in Expressions

The dbx program can display a wide range of expressions. Specify expressions with a common subset of
C and Pascal syntax, with some FORTRAN extensions.

* (asterisk) or ~ (caret) Denotes indirection or pointer dereferencing.
[1 (brackets) or () (parentheses) Denotes subscript array expressions.
. (period) Use this field reference operator with pointers

and structures. This makes the C operator ->
(arrow) unnecessary, although it is allowed.
& (ampersand) Gets the address of a variable.
.. (two periods) Separates the upper and lower bounds when
specifying a subsection of an array. For
example: n[1..4].

The following types of operations are valid in expressions:

Algebraic =, -, */(floating division), div (integral division), mod, exp (exponentiation)

Bitwise -, |, bitand, xor, , <<, >>

Chapter 3. Debugging Programs 73

../../cmds/aixcmds2/dbx.htm#HDRP62AI59THOM
../../cmds/aixcmds2/dbx.htm#HDRL32AI30ATHOM
../../cmds/aixcmds2/dbx.htm#HDRR52AI14BTHOM
../../cmds/aixcmds2/dbx.htm#HDRA792AIA3THOM
../../cmds/aixcmds2/dbx.htm#HDRA3009A63
../../cmds/aixcmds2/dbx.htm#HDRA30098B9
../../cmds/aixcmds2/dbx.htm#HDRA3009A1B

Logical or, and, not, I, &&
Comparison <, >, <=,>=,<>0r =, =or==
Other sizeof

Logical and comparison expressions are allowed as conditions in stop and trace subcommands.
Checking of Expression Types

The dbx debug program checks expression types. You can override the expression type by using a
renaming or casting operator. There are three forms of type renaming:

* Typename (Expression)
* Expression\ Typename
* (Typename) Expression

Note: When you cast to or from a structure, union, or class, the casting is left-justified. However,
when casting from a class to a base class, C++ syntax rules are followed.

For example, to rename the x variable where x is an integer with a value of 97, enter:
(dbx) print char (x), x \ char, (char) x, x,

a' 'a' 'a' 97

The following examples show how you can use the (Typename) Expression form of type renaming:
print (float) i
print ((struct qq *) void_pointer)->first_element

The following restrictions apply to C-style typecasting for the dbx debug program:
« The FORTRAN types (integer*1, integer 2, integer*4, logical*1, logical*2, logical*4, and so on) are not
supported as cast operators.

» If an active variable has the same name as one of the base types or user-defined types, the type
cannot be used as a cast operator for C-style typecasting.

The huhatid subcommand prints the declaration of an identifier, which you can then qualify with block
names.

Use the $$TagName construct to print the declaration of an enumeration, structure, or union tag (or the
equivalent in Pascal).

The type of the lssign subcommand expression must match the variable type you assigned. If the types

do not match, an error message is displayed. Change the expression type using a type renaming. Disable
type checking by setting a special dbx debug program $unsafeassign variable.

Folding Variables to Lowercase and Uppercase

By default, the dbx program folds symbols based on the current language. If the current language is C,
C++, or undefined, the symbols are not folded. If the current language is FORTRAN or Pascal, the
symbols are folded to lowercase. The current language is undefined if the program is in a section of code
that has not been compiled with the debug flag. You can override default handling with the kasd
subcommand.

Using the case subcommand without arguments displays the current case mode.

The FORTRAN and Pascal compilers convert all program symbols to lowercase; the C compiler does not.

74 writing and Debugging Programs

../../cmds/aixcmds2/dbx.htm#HDRA30097B8
../../cmds/aixcmds2/dbx.htm#HDRA300989D
../../cmds/aixcmds2/dbx.htm#HDRA3009A84

Changing Print Output with Special Debug Program Variables

Use the kel subcommand to set the following special dbx debug program variables to get different results
from the fprini subcommand:

$hexints Prints integer expressions in hexadecimal.

$hexchars Prints character expressions in hexadecimal.

$hexstrings Prints the address of the character string, not the string itself.
$octints Prints integer expressions in octal.

$expandunions Prints fields within a union.

$Spretty Displays complex C and C++ types in pretty format.

Set and unset the debug program variables to get the desired results. For example:

(dbx) whatis x; whatis i; whatis s
int x;
char i;
char *s;
(dbx) print x, i, s
375 'c' "hello"
(dbx) set $hexstrings; set $hexints; set $hexchars
(dbx) print x, i, s
0x177 0x63 0x3fffed60
(dbx) unset $hexchars; set $octints
(dbx) print x, i
0567 'c'
(dbx) whatis p
struct info p;
(dbx) whatis struct info
struct info {
int x;
double position[3];
unsigned char c;
struct vector force;
1
(dbx) whatis struct vector
struct vector {
int a;
int b;
int c;
}s
(dbx) print p
(x = 4, position = (1.3262493258532527e-315, 0.0, 0.0), ¢ = '\0', force = (a =0, b =9, c = 1))
(dbx) set $pretty="on"
(dbx) print p
{

x =14
position[0] = 1.3262493258532527e-315
position[1] = 0.0
position[2] = 0.0
c = "'\0'
force = {
a=20
b=9
c=1
}
(dbx) set $pretty="verbose"
(dbx) print p
X =4
position[0] = 1.3262493258532527e-315
position[1] = 0.0
position[2] = 0.0

Chapter 3. Debugging Programs 75

../../cmds/aixcmds2/dbx.htm#HDRA3009DB2
../../cmds/aixcmds2/dbx.htm#HDRA3009A63

c="'\0"
force.a
force.b
force.c

o o

Debugging at the Machine Level with dbx

You can use the dbx debug program to examine programs at the assembly language level. You can
display and modify memory addresses, display assembler instructions, single-step instructions, set
breakpoints and trace events at memory addresses, and display the registers.

In the commands and examples that follow, an address is an expression that evaluates to a memory
address. The most common forms of addresses are integers and expressions that take the address of an
identifier with the & (ampersand) operator. You can also specify an address as an expression enclosed in
parentheses in machine-level commands. Addresses can be composed of other addresses and the
operators + (plus), - (minus), and indirection (unary *).

Using Machine Registers

Use the m subcommand to see the values of the machine registers. Registers are divided into
three groups: general-purpose, floating-point, and system-control.

General-purpose registers
General-purpose registers are denoted by $rNumber, where Number represents the number of the

register.

Note: The register value may be set to a hexadecimal value of Oxdeadbeef. This is an initialization
value assigned to all general-purpose registers at process initialization.

Floating-point registers
Floating-point registers are denoted by $frNumber, where Number represents the number of the register.

Floating-point registers are not displayed by default. Unset the $noflregs debug program variable to
enable the floating-point register display (unset $noflregs).

System-control registers
Supported system-control registers are denoted by:

* The Instruction Address register, $iar or $pc
» The Condition Status register, $cr

» The Multiplier Quotient register, $mq

* The Machine State register, $msr

* The Link register, $link

» The Count register, $ctr

» The Fixed Point Exception register, $xer

» The Transaction ID register, $tid

» The Floating-Point Status register, $fpscr

Examining Memory Addresses

Use the following command format to print the contents of memory starting at the first address and
continuing up to the second address, or until the number of items specified by the Count variable are
displayed. The Mode specifies how memory is to print.

Address, Address | [Mode][> File]
Address | [Counf][Mode] [> File]

76 Wwriting and Debugging Programs

../../cmds/aixcmds2/dbx.htm#HDRA3009C7B

If the Mode variable is omitted, the previous mode specified is reused. The initial mode is X. The following
modes are supported:

b Prints a byte in octal.

c Prints a byte as a character.

D Prints a long word in decimal.

d Prints a short word in decimal.

f Prints a single-precision floating-point number.
g Prints a double-precision floating-point number.
h Prints a byte in hexadecimal.

i Prints the machine instruction.

lid Prints an 8-byte signed decimal number.

llo Prints an 8-byte unsigned octal number.

llu Prints an 8-byte unsigned decimal number.

1) Prints an 8-byte unsigned hexadecimal number.
Prints a long word in octal.

Prints a short word in octal.

Prints an extended-precision floating-point number.
Prints a string of characters terminated by a null byte.
Prints a long word in hexadecimal.

Prints a short word in hexadecimal.

X X0nQa o0

In the following example, expressions in parentheses can be used as an address:

(dbx) print &x

0x3fffed60

(dbx) &x/X

3fffed460: 31323300

(dbx) &x,&x+12/x

3fffed60: 3132 3300 7879 7aba 5958 5756 003d 0032

(dbx) ($pc)/2i

100002cc (sub) 7c0802a6 mflr ro

100002d0 (sub + 0x4) bfclfff8 stm r30,-8(rl1)

Running a Program at the Machine Level

The commands for debugging your program at the machine-level are similar to those at the symbolic level.
The m subcommand stops the machine when the address is reached, the condition is true, or the
variable is changed. The ltracei subcommands are similar to the symbolic trace commands. The ktepli
subcommand executes either one or the specified Number of machine instructions.

If you performed another stepi subcommand at this point, you would stop at address 0x10000618,
identified as the entry point of procedure printf. If you do not intend to stop at this address, you could
use the return subcommand to continue execution at the next instruction in sub at address 0x100002e0.
At this point, the nexti subcommand will automatically continue execution to 0x10000428.

If your program has multiple threads, the symbolic thread name of the running thread is displayed when
the program stops. For example:

stopped in sub at 0x100002d4 (§t4)
10000424 (sub+0x4) 480001f5 bl 0x10000618 (printf)

Debugging fdpr Reordered Executables

You can debug programs that have been reordered with fdpr (feedback directed program restructuring,
part of Performance Toolbox for AIX) at the instruction level. If optimization options -R0 or -R2 are used,
additional information is provided enabling dbx to map most reordered instruction addresses to the

corresponding addresses in the original executable as follows:

Chapter 3. Debugging Programs 77

../../cmds/aixcmds2/dbx.htm#HDRA3009CC6
../../cmds/aixcmds2/dbx.htm#HDRA3009C5B
../../cmds/aixcmds2/dbx.htm#HDRA3009E95

OXRRRRRRRR = fdpr[OxYYYYYYYY]

In this example, OxRRRRRRRR is the reordered address and 0xYYYYYYYY is the original address. In addition,
dbx uses the traceback entries in the original instruction area to find associated procedure names for the
stopped in message, the func subcommand, and the traceback.

(dbx) stepi

stopped in proc_d at 0x1000061c = fdpr[0x10000278]

0x1000061c (???) 9421ffcO stwu rl,-64(rl)
(dbx)

In the preceding example, dbx indicates the program is stopped in the proc_d subroutine at address
0x1000061c in the reordered text section originally located at address 0x10000278. For more information
about fdpr, see the m command.

Displaying Assembly Instructions

The listi subcommand for the dbx command displays a specified set of instructions from the source file. In
the default mode, the dbx program lists the instructions for the architecture on which it is running. You can
override the default mode with the $instructionset and $mnemonics variables of the set subcommand
for the dbx command.

For more information on displaying instructions or disassembling instructions, see the listi subcommand
for the dbx command. For more information on overriding the default mode, see the $instructionset and
$mnemonics variables of the set subcommand for the dbx command.

Customizing the dbx Debugging Environment

You can customize the debugging environment by creating subcommand aliases and by specifying options
in the .dbxinit file. You can read dbx subcommands from a file using the -¢ flag. The following sections
contain more information about customization options.

Defining a New dbx Prompt

The dbx prompt is normally the name used to start the dbx program. If you specified /usr/ucb/dbx a.out
on the command line, then the prompt is /usr/ucb/dbx.

You can change the prompt with the forampifl subcommand, or by specifying a different prompt in the
prompt line of the .dbxinit file. Changing the prompt in the .dbxinit file causes your prompt to be used
instead of the default each time you initialize the dbx program.

For example, to initialize the dbx program with the debug prompt debug—>, enter the following line in your
.dbxinit file:

prompt "debug-->"

Creating dbx Subcommand Aliases

You can build your own commands from the dbx primitive subcommand set. The following commands
allow you to build a user alias from the arguments specified. All commands in the replacement string for
the alias must be dbx primitive subcommands. You can then use your aliases in place of the dbx
primitives.

The subcommand with no arguments displays the current aliases in effect; with one argument the
command displays the replacement string associated with that alias.

alias [AliasName[CommandName] |

78 Wwriting and Debugging Programs

../../cmds/aixcmds2/fdpr.htm#HDRDEF54C8931JANI
../../cmds/aixcmds2/dbx.htm#HDRA3009C23
../../cmds/aixcmds2/dbx.htm#HDRA3009D3F

alias AliasName "CommandString”

alias AliasName (Parameter1, Parameter2, . . .) "CommandString"

The first two forms of the alias subcommand are used to substitute the replacement string for the alias
each time it is used. The third form of aliasing is a limited macro facility. Each parameter specified in the

alias subcommand is substituted in the replacement string.

The following aliases and associated subcommand names are defaults:

attr attribute
bfth stop (in given thread at specified function)
blth stop (in given thread at specified source line)
c cont

cv condition
d delete

e edit

h help

i status

| list

m map

mu mutex

n next

p print

q quit

r run

s step

st stop

t where
th thread

X registers

You can remove an alias with the lunaliad command.
Using the .dbxinit File

Each time you begin a debugging session, the dbx program searches for special initialization files named
.dbxinit, which contain lists of dbx subcommands to execute. These subcommands are executed before
the dbx program begins to read subcommands from standard input. When the dbx command is started, it
checks for a .dbxinit file in the user’s current directory and in the user's $SHOME directory. If a .dbxinit file
exists, its subcommands run at the beginning of the debug session. If a .dbxinit file exists in both the
home and current directories, then both are read in that order. Because the current directory .dbxinit file is
read last, its subcommands can supercede those in the home directory.

Normally, the .dbxinit file contains hliad subcommands, but it can contain any valid dbx subcommands.
For example:

$ cat .dbxinit

alias si "stop in"
prompt "dbg-->"

$ dbx a.out

dbx version 3.1

Type 'help' for help.
reading symbolic information . . .
dbg--> alias

si stop in

t where . . .
dbg-->

Chapter 3. Debugging Programs 79

../../cmds/aixcmds2/dbx.htm#HDRA3009D98
../../cmds/aixcmds2/dbx.htm#HDRA3009D3F

Reading dbx Subcommands from a File

The -c invocation option and .dbxinit file provide mechanisms for executing dbx subcommands before
reading from standard input. When the -c¢ option is specified, the dbx program does not search for a
.dbxinit file. Use the Bourcd subcommand to read dbx subcommands from a file once the debugging
session has begun.

After executing the list of commands in the emdfile file, the dbx program displays a prompt and waits for
input.

You can also use the -c option to specify a list of subcommands to be executed when initially starting the
dbx program.

List of dbx Subcommands

The commands and subcommands for the dbx debug program are located in the AIX 5L Version 5.1
Commands Reference.

The dbx debug program provides subcommands for performing the following task categories:

Setting and Deleting Breakpoints

Elead Removes all stops at a given source line.

Elearl Removes all breakpoints at an address.

Heletd Removes the traces and stops corresponding to the specified numbers.
Etatud Displays the currently active trace and stop subcommands.

Etod Stops execution of the application program.

Running Your Program

Continues running the program from the current breakpoint until the program finishes or another
breakpoint is encountered.

Exits the debug program, but continues running the application.

Moves a function down the stack.

Causes the specified source line to be the next line run.

Changes program counter addresses.

Runs the application program up to the next source line.

Runs the application program up to the next source instruction.

Begins running an application.

JoEgRgy @

80 Writing and Debugging Programs

../../cmds/aixcmds2/dbx.htm#HDRA3009E7F
../../cmds/aixcmds2/dbx.htm#HDRA3009BA5
../../cmds/aixcmds2/dbx.htm#HDRA3009D24
../../cmds/aixcmds2/dbx.htm
../../cmds/aixcmds2/dbx.htm#HDRA3009841
../../cmds/aixcmds2/dbx.htm#HDRA3009877
../../cmds/aixcmds2/dbx.htm
../../cmds/aixcmds2/dbx.htm
../../cmds/aixcmds2/dbx.htm#HDRA3009A4B
../../cmds/aixcmds2/dbx.htm#HDRA3009769
../../cmds/aixcmds2/dbx.htm#HDRA3009D0C
../../cmds/aixcmds2/dbx.htm#HDRA300979D
../../cmds/aixcmds2/dbx.htm#HDRA3009B51
../../cmds/aixcmds2/dbx.htm#HDRA3009729

Continues running the application program until a return to the specified procedure is reached.
Begins running an application.

Continues execution from the current stopping point.

Runs one source line.

Runs one source instruction.

Move a function up the stack.

SRR

Tracing Program Execution

Prints tracing information.
Turns on tracing.
Displays a list of all active procedures and functions.

EJEJE

Ending Program Execution

m Quits the dbx debug program.

Displaying the Source File

Edii Invokes an editor on the specified file.

fud Changes the current source file to the specified file.

fund Changes the current function to the specified function or procedure.
fist Displays lines of the current source file.

flistl Lists instructions from the application.

movd Changes the next line to be displayed.

Im Searches forward in the current source file for a pattern.

? m Searches backward in the current source file for a pattern.

Lsd Sets the list of directories to be searched when looking for a file.

Printing and Modifying Variables, Expressions, and Types

@ Assigns a value to a variable.

Easd Changes the way in which dbx interprets symbols.

Humgd Displays the names and values of variables in the specified procedure.

m Prints the value of an expression or runs a procedure and prints the return code.

Eel Assigns a value to a nonprogram variable.

Linsel Deletes a nonprogram variable.

lvhatid Displays the declaration of application program components.

lvhereid Displays the full qualifications of all the symbols whose names match the specified identifier.
luhicH Displays the full qualification of the specified identifier.

Thread Debugging

hitributd Displays information about all or selected attributes objects.
Eondition Displays information about all or selected condition variables.
mutex Displays information about all or selected mutexes.

thread Displays and controls threads.

Chapter 3. Debugging Programs

81

../../cmds/aixcmds2/dbx.htm#HDRA30096E9
../../cmds/aixcmds2/dbx.htm#HDRA3009704
../../cmds/aixcmds2/dbx.htm#HDRA300974E
../../cmds/aixcmds2/dbx.htm#HDRA300985C
../../cmds/aixcmds2/dbx.htm#HDRA3009E95
../../cmds/aixcmds2/dbx.htm#HDRA3009A33
../../cmds/aixcmds2/dbx.htm#HDRA3009C3B
../../cmds/aixcmds2/dbx.htm#HDRA3009C5B
../../cmds/aixcmds2/dbx.htm#HDRA3009AC4
../../cmds/aixcmds2/dbx.htm#HDRA3009BDD
../../cmds/aixcmds2/dbx.htm#HDRA3009AFD
../../cmds/aixcmds2/dbx.htm#HDRA3009B1B
../../cmds/aixcmds2/dbx.htm#HDRA3009B36
../../cmds/aixcmds2/dbx.htm#HDRA3009D5D
../../cmds/aixcmds2/dbx.htm#HDRA3009CEA
../../cmds/aixcmds2/dbx.htm#HDRA3009BF3
../../cmds/aixcmds2/dbx.htm#HDRA3009E4B
../../cmds/aixcmds2/dbx.htm#HDRA3009E65
../../cmds/aixcmds2/dbx.htm#HDRA3009C0B
../../cmds/aixcmds2/dbx.htm#HDRA300989D
../../cmds/aixcmds2/dbx.htm#HDRA3009A84
../../cmds/aixcmds2/dbx.htm#HDRA3009AA6
../../cmds/aixcmds2/dbx.htm#HDRA3009A63
../../cmds/aixcmds2/dbx.htm#HDRA3009DB2
../../cmds/aixcmds2/dbx.htm#HDRA3009D7E
../../cmds/aixcmds2/dbx.htm#HDRA30097B8
../../cmds/aixcmds2/dbx.htm#HDRA3009A1B
../../cmds/aixcmds2/dbx.htm#HDRA30098B9
../../cmds/aixcmds2/dbx.htm#HDRA792AIA3THOM
../../cmds/aixcmds2/dbx.htm#HDRR52AI14BTHOM
../../cmds/aixcmds2/dbx.htm#HDRL32AI30ATHOM
../../cmds/aixcmds2/dbx.htm#HDRP62AI59THOM

Multiprocess Debugging

multprod Enables or disables multiprocess debugging.

Procedure Calling

Eall Runs the object code associated with the named procedure or function.
m Prints the value of an expression or runs a procedure and prints the return code.

Signal Handling

CatcH Starts trapping a signal before that signal is sent to the application program.
m Stops trapping a signal before that signal is sent to the application program.

Machine-Level Debugging
W Displays the contents of memory.

E Changes program counter addresses.

E Displays address maps and loader information for the application program.

hexti Runs the application program up to the next machine instruction.

m Displays the values of all general-purpose registers, system-control registers,
floating-point registers, and the current instruction register.

@ Runs one source instruction.

Etopl Sets a stop at a specified location.

tracdi Turns on tracing.

Debugging Environment Control

bliad Displays and assigns aliases for dbx subcommands.

m Displays help information for dbx subcommands or topics.
w Changes the dbx prompt to the specified string.

Ecreed Opens an Xwindow for dbx command output.

EH Passes a command to the shell for execution.

Eourcd Reads dbx commands from a file.

Linaliad Removes an alias.

82 Writing and Debugging Programs

../../cmds/aixcmds2/dbx.htm#HDRA3009781
../../cmds/aixcmds2/dbx.htm#HDRA3009B6C
../../cmds/aixcmds2/dbx.htm#HDRA3009A63
../../cmds/aixcmds2/dbx.htm#HDRA3009B87
../../cmds/aixcmds2/dbx.htm#HDRA3009E2D
../../cmds/aixcmds2/dbx.htm
../../cmds/aixcmds2/dbx.htm#HDRA3009D0C
../../cmds/aixcmds2/dbx.htm#HDRA23F014F0
../../cmds/aixcmds2/dbx.htm#HDRA3009B51
../../cmds/aixcmds2/dbx.htm#HDRA3009C7B
../../cmds/aixcmds2/dbx.htm#HDRA3009E95
../../cmds/aixcmds2/dbx.htm#HDRA3009CC6
../../cmds/aixcmds2/dbx.htm#HDRA3009C5B
../../cmds/aixcmds2/dbx.htm#HDRA3009D3F
../../cmds/aixcmds2/dbx.htm#HDRA30097D6
../../cmds/aixcmds2/dbx.htm#HDRA3009C23
../../cmds/aixcmds2/dbx.htm#HDRA3009CAF
../../cmds/aixcmds2/dbx.htm#HDRA3009C99
../../cmds/aixcmds2/dbx.htm#HDRA3009E7F
../../cmds/aixcmds2/dbx.htm#HDRA3009D98

Chapter 4. Error Notification

Each time an error is logged, the error notification daemon determines if the error log entry matches the
selection criteria of any of the Error Notification objects. If matches exist, the daemon runs the
programmed action, also called a notify method, for each matched object.

The Error Notification object class is located in the /etc/objrepos/errnotify file. Error Notification objects
are added to the object class by using Object Data Manager (ODM) commands. Error Notification objects
contain the following descriptors:

en_alertflg

en_class

en_crcid
en_label

en_method

en_name

© Copyright IBM Corp. 1997, 2001

Identifies whether the error is alertable. This descriptor is provided for use by alert
agents associated with network management applications. The valid alert descriptor
values are:

TRUE alertable

FALSE not alertable

Identifies the class of the error log entries to match. The valid en_class descriptor
values are:

Hardware Error class

S Software Error class
(0] Messages from the W command
) Undetermined

Specifies the error identifier associated with a particular error.

Specifies the label associated with a particular error identifier as defined in the
output of the W -t command.

Specifies a user-programmable action, such as a shell script or command string, to
be run when an error matching the selection criteria of this Error Notification object
is logged. The error notification daemon uses the EH -c command to execute the
notify method.

The following key words are automatically expanded by the error notification
daemon as arguments to the notify method.

$1 Sequence number from the error log entry
$2 Error ID from the error log entry

$3 Class from the error log entry

$4 Type from the error log entry

$5 Alert flags value from the error log entry
$6 Resource name from the error log entry
$7 Resource type from the error log entry

$8 Resource class from the error log entry
$9 Error label from the error log entry

Uniquely identifies the object. The creator uses this unique name when removing
the object.

83

../../cmds/aixcmds2/errlogger.htm#HDRA243Y98903
../../cmds/aixcmds2/errpt.htm#HDRA243Y989D2
../../cmds/aixcmds5/sh.htm#HDRA66F011A

en_persistenceflg

en_pid

en_rclass

en_resource
en_rtype

en_symptom

Designates whether the Error Notification object should be automatically removed
when the system is restarted. For example, to avoid erroneous signaling, Error
Notification objects containing methods which send a signal to another process
should not persist across system restarts. This is because the receiving process
and its process ID do not persist across system restarts.

The creator of the Error Notification object is responsible for removing the Error
Notification object at the appropriate time. In the event that the process terminates
and fails to remove the Error Notification object, the en_persistenceflg descriptor
ensures that obsolete Error Notification objects are removed when the system is
restarted.

The valid en_persistenceflg descriptor values are:
0 non-persistent (removed at boot time)

1 persistent (persists through boot)

Specifies a process ID (PID) for use in identifying the Error Notification object.
Objects that have a PID specified should have the en_persistenceflg descriptor
set to 0.

Identifies the class of the failing resource. For the hardware error class, the
resource class is the device class. The resource error class is not applicable for the
software error class.

Identifies the name of the failing resource. For the hardware error class, a resource
name is the device name.

Identifies the type of the failing resource. For the hardware error class, a resource
type is the device type a resource is known by in the devices object class.

Enables notification of an error accompanied by a symptom string when set to
TRUE.

en_type Identifies the severity of error log entries to match. The valid en_type descriptor

values are:

INFO Informational

PEND Impending loss of availability

PERM Permanent

PERF Unacceptable performance degradation

TEMP Temporary

UNKN Unknown

TRUE Matches alertable errors.

FALSE Matches non-alertable errors.

0 Removes the Error Notification object at system restart.

non-zero

Retains the Error Notification object at system restart.

Security

Only processes running with the root user authority can add objects to the Error Notification object class.

Examples

1. To create a notify method that mails a formatted error entry to root each time a disk error of type
PERM is logged, create a file called /tmp/en_sample.add containing the following Error Notification

object:

84 writing and Debugging Programs

errnotify:
en_name = "sample"
en_persistenceflg = 0

en_class = "H"

en_type = "PERM"

en_rclass = "disk"

en_method = "errpt -a -1 $1 | mail -s 'Disk Error' root"

To add the object to the Error Notification object class, enter:
odmadd /tmp/en_sample.add

The bdmadd command adds the Error Notification object contained in /tmp/en_sample.add to the
errnotify file.

2. To verify that the Error Notification object was added to the object class, enter:
odmget -q"en_name='sample'" errnotify

The m command locates the Error Notification object within the errnotify file that has an
en_name value of "sample” and displays the object. The following output is returned:

errnotify:
en_pid = 0
en_name = "sample"
en_persistenceflg = 0
en_label = ""
en_crcid = 0
en_class = "H"
en_type = "PERM"
en_alertflg = ""
en_resource = ""

en_rtype = ""
en_rclass = "disk"
en_method = "errpt -a -1 $1 | mail -s 'Disk Error' root"

3. To delete the sample Error Notification object from the Error Notification object class, enter:
odmdelete -q"en_name='sample'" -0 errnotify

The bdmdeletd command locates the Error Notification object within the errnotify file that has an
en_name value of "sample” and removes it from the Error Notification object class.

Related Information
Error 1 ogging Special Filed in AIX 5L Version 5.1 Files Reference.

The kerrdemor daemon in AIX 5L Version 5.1 Commands Reference.

The krrclead command, krrdead command, Errinstall command, errlogged command, errmsd command,
%mmand, Brrstod command, kerrupdatd command, bdmadd command, bdmdeletd command,

command in AIX 5L Version 5.1 Commands Reference.

The m subroutine in AIX 5L Version 5.1 Technical Reference: Base Operating System and Extensions
Volume 1.

The krrsavd kernel service in AIX 5L Version 5.1 Technical Reference: Kernel and Subsystems Volume 1.

Chapter 4. Error Notification ~ 85

../../cmds/aixcmds4/odmadd.htm#HDRA26491517
../../cmds/aixcmds4/odmget.htm#HDRA2659120D
../../cmds/aixcmds4/odmdelete.htm#HDRA265911F2
../../files/aixfiles/Error.htm#HDRA365C99541
../../cmds/aixcmds2/errdemon.htm#HDRA243Y988AF
../../cmds/aixcmds2/errclear.htm#HDRA250B9A3E7
../../cmds/aixcmds2/errdead.htm#HDRA243Y98A81
../../cmds/aixcmds2/errinstall.htm#HDRA256B92F
../../cmds/aixcmds2/errlogger.htm#HDRA243Y98903
../../cmds/aixcmds2/errmsg.htm#HDRA243Y98977
../../cmds/aixcmds2/errpt.htm#HDRA243Y989D2
../../cmds/aixcmds2/errstop.htm#HDRA243Y98A34
../../cmds/aixcmds2/errupdate.htm#HDRA251B9A8A6
../../cmds/aixcmds4/odmadd.htm#HDRA26491517
../../cmds/aixcmds4/odmdelete.htm#HDRA265911F2
../../cmds/aixcmds4/odmget.htm#HDRA2659120D
../../libs/basetrf1/errlog.htm#HDRA29799AA
../../libs/ktechrf1/errsave.htm#HDRGH0IBSJEAN

Error Logging Facility

The error logging facility records hardware and software failures in the error log for information purposes
or for fault detection and corrective action.

Refer to the following to use the error logging facility:

In AIX Version 4 some of the error log commands are delivered in an optionally installable package called
bos.sysmgt.serv_aid. The base system (bos.rte) includes the services for logging errors to the error log
file. This includes the errlog subroutines, the errsave and errlast kernel service, the error device driver
(/dev/error), the error daemon, and the errstop command. The commands reqwred for licensed program
installation (errinstall and errupdate) are also included in bos.rte. See

Bervice Aids Packagd.” Also, for information on transferring your system’s error log file to a system that

has the Software Service Aids package installed, see [Transferring Your Errar | og to Another System” onl

Error Logging Overview

The error logging process begins when an operating system module detects an error. The error-detecting
segment of code then sends error information to either the brrsavd and errlast kernel service or the
ﬁ@ application subroutine, where the information is in turn written to the /dev/error special file. This
process then adds a time stamp to the collected data. The Brrdemon daemon constantly checks the
/dev/error file for new entries, and when new data is written, the daemon conducts a series of operations.

Before an entry is written to the error log, the errdemon daemon compares the label sent by the kernel or
application code to the contents of the Error Record Template Repository. If the label matches an item in
the repository, the daemon collects additional data from other parts of the system.

To create an entry in the error log, the errdemon daemon retrieves the appropriate template from the
repository, the resource name of the unit that detected the error and detail data. Also, if the error signifies
a hardware-related problem and hardware vital product data (VPD) exists, the daemon retrieves the VPD
from the Object Data Manager. When you access the error log, either through SMIT or with the w
command, the error log is formatted according to the error template in the error template repository and
presented in either a summary or detailed report. Most entries in the error log are attributable to hardware
and software problems, but informational messages can also be logged.

The @ command uses the error log in part to diagnose hardware problems. To correctly diagnose new
system problems, the system deletes hardware-related entries older than 90 days from the error log. The
system deletes software-related entries 30 days after they are logged.

Terms to help you use the error logging facility include the following:

error ID A 32-bit CRC hexadecimal code used to identify a particular failure. Each
error record template has a unique error ID.

error label The mnemonic name for an error ID.

error log The file that stores instances of errors and failures encountered by the
system.

86 Writing and Debugging Programs

../../aixins/aixinsgd/aixinsgd.htm
../../aixins/aixinsgd/aixinsgd.htm
../../libs/ktechrf1/errsave.htm#HDRGH0IBSJEAN
../../libs/basetrf1/errlog.htm#HDRA29799AA
../../cmds/aixcmds2/errdemon.htm#HDRA243Y988AF
../../cmds/aixcmds2/errpt.htm#HDRA243Y989D2
../../cmds/aixcmds2/diag.htm#HDRA66F084

error log entry A record in the system error log that describes a hardware failure, a
software failure, or an operator message. An error log entry contains
captured failure data.

error record template A description of what will be displayed when the error log is formatted for a
report, including information on the type and class of the error, probable
causes, and recommended actions. Collectively, the templates comprise the
Error Record Template Repository.

Managing Error Logging

Error logging is automatically started during system initialization by the rc.boot script and is automatically
stopped during system shutdown by the shutdown script. The error log analysis performed by the
diagnostics (diag command) analyzes hardware error entries up to 90 days old. If you remove hardware
error entries less than 90 days old, you can limit the effectiveness of this error log analysis.

To manage error logging efficiently, see:

Transferring Your Error Log to Another System

The errclear, errdead, errlogger, errmsg, and errpt commands are part of the optionally installable
Software Service Aids package (bos.sysmgt.serv_aid). You need the Software Service Aids package to
generate reports from the error log or delete entries from the error log. You can install the Software
Service Aids package on your system or you can transfer your system’s error log file to a system that has
the Software Service Aids package installed.

Determine the path to your system’s error log file by running the following command:
/usr/1ib/errdemon -1

There are a number of ways to transfer the file to another system. For example, you can copy the file to a
remotely mounted file system using the ¢p command; you can copy the file across the network connection
using the rep, ftp, or tftp commands; or you can copy the file to removable media using the tar or
backup command and restore the file onto another system.

You can format reports for an error log copied to your system from another system by using the -i flag of
the errpt command. The -i flag allows you to specify the path name of an error log file other than the
default. Likewise, you can delete entries from an error log file copied to your system from another system
by using the -i flag of the errclear command.

Configuring Error Logging

You can customize the name and location of the error log file and the size of the internal error buffer to
suit your needs.

You can also control the logging of duplicate errors.

Chapter 4. Error Notificaton 87

Listing the Current Settings

To list the current settings, run /usr/lib/errdemon -l. The values for the error log file name, error log file
size, and buffer size that are currently stored in the error log configuration database display on your
screen.

To list the current settings, run /usr/lib/errdemon -l. The values for the error log file name, error log file
size, buffer size, and duplicate handling values that are currently stored in the error log configuration
database display on your screen.

Customizing the Log File Location

To change the filename used for error logging run the /usr/lib/errdemon -i FileName command. The
specified file name is saved in the error log configuration database and the error daemon is immediately
restarted.

Customizing the Log File Size
To change the maximum size of the error log file enter:

/usr/1ib/errdemon -s LogSize

The specified log file size limit is saved in the error log configuration database and the error daemon is
immediately restarted. If the log file size limit is smaller than the size of the log file currently in use, the
current log file is renamed by appending .old to the file name and a new log file is created with the
specified size limit. The amount of space specified is reserved for the error log file and is not available for
use by other files. Therefore, you should be careful not to make the log excessively large. But, if you make
the log too small, important information may be overwritten prematurely. When the log file size limit is
reached, the file wraps, that is, the oldest entries are overwritten by new entries.

Customizing the Buffer Size
To change the size of the error log device driver’s internal buffer, enter:

/usr/1ib/errdemon -B BufferSize

The specified buffer size is saved in the error log configuration database and, if it is larger than the buffer
size currently in use, the in-memory buffer is immediately increased. If it is smaller than the buffer size
currently in use, the new size is put into effect the next time the error daemon is started after the system is
rebooted. The buffer cannot be made smaller than the hard-coded default of 8KB. The size you specify is
rounded up to the next integral multiple of the memory page size (4KBs). The memory used for the error
log device driver’'s in-memory buffer is not available for use by other processes (the buffer is pinned).

You should be careful not to impact your system’s performance by making the buffer excessively large.
But, if you make the buffer too small, the buffer may become full if error entries are arriving faster than
they are being read from the buffer and put into the log file. When the buffer is full, new entries are
discarded until space becomes available in the buffer. When this situation occurs, an error log entry is
created to inform you of the problem, and you should correct the problem by enlarging the buffer.

Customizing Duplicate Error Handling

By default, starting with AIX 5.1, the error daemon eliminates duplicate errors. It does this by looking at
each error that is logged. An error is a duplicate if it is identical to the previous error, and occurs within the
approximate time interval specified with /usr/lib/errdemon -t time-interval. The default time value is 100,
.1 seconds. The value is in milliseconds.

The -m maxdups flag controls how many duplicates can build up before a duplicate entry is logged. The
default value is 1000. If an error, followed by 1000 occurrences of the same error, is logged, a duplicate
error will be logged at that point rather than waiting for the time interval to expire or a unique error.

Thus if, for example, a device handler starts logging many identical errors rapidly, most will not appear in
the log. Rather, the first occurrence will be logged as it is today. Subsequent occurrences will not be

88 Writing and Debugging Programs

logged immediately, just counted. When the time interval expires, the maxdups value is reached, or when
another error is logged, an alternate form of the error is logged giving the times of the first and last
duplicate and how many duplicates there were.

Note: The time interval refers to the time since the last error, not the time since the first occurrence
of this error, (i.e.) it is reset each time an error is logged. Also note that to be a duplicate, an error
must exactly match the previous error. If, for example, anything about the detail data is different from
the previous error, then that error is considered unique and logged as a separate error.

Removing Error Log Entries

Entries are removed from the error log when the root user runs the errclear command, when the errclear
command is automatically invoked by a daily cron job, and when the error log file wraps as a result of
reaching its maximum size. When the error log file reaches the maximum size specified in the error log
configuration database, the oldest entries are overwritten by the newest entries.

Automatic Removal
The system is shipped with a crontab file to delete hardware errors older than 90 days and other errors

older than 30 days. To display the crontab entries for your system, enter:
crontab -1 Command

To change these entries, enter:
crontab -e Command

See the crontab command.

errclear Command
The errclear command can be used to selectively remove entries from the error log. The selection criteria

you may specify include the error id number, sequence number, error label, resource name, resource
class, error class, and error type. You must also specify the age of entries to be removed. The entries that
match the selection criteria you specified and are older than the number of days you specified will be
removed.

Enabling and Disabling Logging for an Event

You can disable logging or reporting of a particular event by modifying the Log or the Report field of the
error template for the event. You can use the errupdate command to change the current settings for an
event.

Showing Events for Which Logging is Disabled
To list all events for which logging is currently disabled, enter:

errpt -t -F Log=0
Events for which logging is disabled are not saved in the error log file.

Showing Events for which Reporting is Disabled
To list all events for which reporting is currently disabled, enter:

errpt -t -F Report=0

Events for which reporting is disabled are saved in the error log file when they occur, but they are not
displayed by the errpt command.

Changing the Current Setting for an Event
You can use the errupdate command to change the current settings for an event. The necessary input to

the errupdate command can be in a file or from standard input.

In the following example, standard input is used. To disable the reporting of the ERRLOG_OFF event
(error id number 192AC071), enter the following lines to run the errupdate command:

Chapter 4. Error Notificaton 89

errupdate <Enter>
=192AC071: <Enter>
Report=False <Enter>
<Ctrl1-D>

<Ctrl-D>

Setting Up Error Notification
Refer to EChapter 4. Error Notification” on page 83 in AIX 5L Version 5.1 General Programming Concepts:

Writing and Debugging Programs.

Logging Maintenance Activities

The errlogger command allows the system administrator to record messages in the error log. Whenever
you perform a maintenance activity, such as clearing entries from the error log, replacing hardware, or
applying a software fix, it is a good idea to record this activity in the system error log.

Redirecting syslog Messages to Error Log

Some applications use syslog for logging errors and other events. Some administrators find it desirable to
be able to list error log messages and syslog messages in a single report. This can be accomplished by
redirecting the syslog messages to the error log. You can do this by specifying errlog as the destination in
the syslog configuration file (/fetc/syslog.conf). See the syslogd daemon for more information.

Directing Error Log Messages to Syslog
You can log error log events in the syslog file by using the logger command with the concurrent error
notification capabilities of error log. For example, to log system messages (syslog), add an errnotify object
with the following contents:
errnotify:

en_name = "syslogl"

en_persistenceflg = 1

en_method = "logger Msg from Error Log: ‘errpt -1 $1 | grep -v 'ERROR_ID TIMESTAMP''"

For example, create a file called /timp/syslog.add with these contents, then run the command odmadd
/tmp/syslog.add (you must be logged in as root to do this).

For more information about concurrent error notification, see the EChapter 4 Frror Natification” on page 83

in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

Error Logging Tasks

Error logging tasks and information to assist you in using the error logging facility include:

‘ . ”

° 7] ”

° 1 ”

° « H ”

° ‘ ”

Reading an Error Report

To obtain a report of all errors logged in the 24 hours prior to the failure, enter:
errpt -a -s mmddhhmmyy | pg

where mmddhhmmyy represents the month, day, hour, minute, and year 24 hours prior to the failure.

a0 Writing and Debugging Programs

An error log report contains the following information:

Note: Not all errors will generate information for each of the following categories.

LABEL

ID

Date/Time
Sequence Number
Machine ID

Node ID

Class

Type

Resource Name

Resource Class
Resource Type
Location Code
VPD
Description

Probable Cause
User Causes

Predefined name for the event.

Numerical identifier for the event.

Date and time of the event.

Unique number for the event.

Identification number of your system processor unit.
Mnemonic name of your system.

General source of the error. The possible error classes are:

H Hardware. (When you receive a hardware error, refer to your system
operator guide for information about performing diagnostics on the
problem device or other piece of equipment. The diagnostics program
tests the device and analyze the error log entries related to it to
determine the state of the device.)

S Software.
Informational messages.

U Undetermined (for example, a network).

Severity of the error that has occurred. Five types of errors are possible:
PEND The loss of availability of a device or component is imminent.

PERF The performance of the device or component has degraded to below
an acceptable level.

PERM Condition that could not be recovered from. Error types with this value
are usually the most severe errors and are more likely to mean that
you have a defective hardware device or software module. Error types
other than PERM usually do not indicate a defect, but they are recorded
so that they can be analyzed by the diagnostics programs.

TEMP Condition that was recovered from after a number of unsuccessful
attempts. This error type is also used to record informational entries,
such as data transfer statistics for DASD devices.

UNKN It is not possible to determine the severity of the error.

INFO The error log entry is informational and was not the result of an error.

Name of the resource that has detected the error. For software errors. this is
the name of a software component or an executable program. For hardware
errors, this is the name of a device or system component. It does not indicate
that the component is faulty or needs replacement. Instead, it is used to
determine the appropriate diagnostic modules to be used to analyze the error.
General class of the resource that detected the failure (for example, a device
class of disk).

Type of the resource that detected the failure (for example, a device type of
355mb).

Path to the device. There may be up to four fields, which refer to drawer, slot,
connector, and port, respectively.

Vital product data. The contents of this field, if any, vary. Error log entries for
devices typically return information concerning the device manufacturer, serial
number, Engineering Change levels, and Read Only Storage levels.

Summary of the error.

Listing of some of the possible sources of the error.

List of possible reasons for errors due to user mistakes. An improperly inserted
disk and external devices (such as modems and printers) that are not turned on
are examples of user-caused errors.

Chapter 4. Error Notificaton 91

Recommended Actions Description of actions for correcting a user-caused error.

Install Causes List of possible reasons for errors due to incorrect installation or configuration
procedures. Examples of this type of error include hardware and software
mismatches, incorrect installation of cables or cable connections becoming
loose, and improperly configured systems.

Recommended Actions Description of actions for correcting an installation-caused error.

Failure Causes List of possible defects in hardware or software.

Note: A failure causes section in a software error log usually indicates a
software defect. Logs that list user or install causes or both, but not
failure causes, usually indicate that the problem is not a software defect.

If you suspect a software defect, or are unable to correct user or install causes,
report the problem to your software service department.

Recommended Actions Description of actions for correcting the failure. For hardware errors,
PERFORM PROBLEM DETERMINATION PROCEDURES is one of the recommended
actions listed. For hardware errors, this will lead to running the diagnostic
programs.

Detailed Data Failure data that is unique for each error log entry, such as device sense data.

Reporting may be turned off for some errors. To show which errors have reporting turned off, enter:
errpt -t -F report=0 | pg
If reporting is turned off for any errors, enable reporting of all errors using the m command.

Logging may also have been turned off for some errors. To show which errors have logging turned off,
enter:

errpt -t -F 1og=0 | pg

If logging is turned off for any errors, enable logging for all errors using the Brrupdatd command. Logging
all errors is useful if it becomes necessary to recreate a system error.

Examples of Detailed Error Reports
The following are sample error report entries that are generated by issuing the m -a command.

An error-class value of H and an error-type value of PERM indicate that the system encountered a
problem with a piece of hardware (the SCSI adapter device driver) and could not recover from it.

There may be diagnostic data associated with this type of error.

Such information appears at the end of the error’s listing.

LABEL: SCSI_ERR1

ID: 0502F666

Date/Time: Jun 19 22:29:51

Sequence Number: 95

Machine ID: 123456789012

Node ID: hostl

Class: H

Type: PERM

Resource Name: scsi0

Resource Class: adapter

Resource Type: hscsi

Location: 00-08

VPD:
Device Driver Level......... 00
Diagnostic Level............ 00

92 Writing and Debugging Programs

../../cmds/aixcmds2/errupdate.htm#HDRA251B9A8A6
../../cmds/aixcmds2/errupdate.htm#HDRA251B9A8A6
../../cmds/aixcmds2/errpt.htm#HDRA243Y989D2

Displayable Message......... SCSI

EC Level..viveiniinennnn.n. 25928
FRU Number...........c...... 30F8834
Manufacturer................ IBM97F
Part Number................. 59F4566
Serial Number............... 00002849
ROS Level and ID............ 24

Read/Write Register Ptr..... 0120
Description

ADAPTER

ERROR

Probable Causes

ADAPTER

HARDWARE CABLE

CABLE TERMINATOR DEVICE

Failure
ADAPTER

Causes

CABLE LOOSE OR DEFECTIVE

Recommended Actions

PERFORM PROBLEM DETERMINATION PROCEDURES

CHECK CABLE AND ITS CONNECTIONS

Detail Data
SENSE DATA

0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Diagnostic Log sequence number: 153

Resource Tested: scsio

Resource Description: SCSI I/0 Controller
Location: 00-08

SRN: 889-191

Description:

Probable FRUs:

SCSI

SCSI

An error-class value of H and an error-type value of PEND indicate that a piece of hardware (the Token

Bus FRU: n/a 00-08
Fan Assembly
2 FRU: 30F8834 00-08

SCSI I/0 Controller

Error log analysis indicates hardware failure.

Ring) may become unavailable soon due to numerous errors detected by the system.

LABEL: TOK_ESERR

ID: AF1621E8

Date/Time: Jun 20 11:28:11
Sequence Number: 17262

Machine Id: 123456789012
Node Id: hostl

Class: H

Type: PEND

Resource Name: TokenRing
Resource Class: tokO
Resource Type: Adapter
Location: TokenRing

Description
EXCESSIVE TOKEN-RING ERRORS

Probable Causes

TOKEN-RI

Failure
TOKEN-RI

NG FAULT DOMAIN

Causes
NG FAULT DOMAIN

Recommended Actions
REVIEW LINK CONFIGURATION DETAIL DATA

CONTACT TOKEN-RING ADMINISTRATOR RESPONSIBLE FOR THIS LAN

Chapter 4. Error Notification

93

Detail Data

SENSE DATA

OACA 0032 A440 0001 0000 0000 0OOO 00OO 0OOO 0OOO 0OOO 00OO 0000
0000 2080 0000 0000 0010 0OOO 0000 0000 0000 0OOO 00O 0000 0000
0000 0000 78CC 00OO 0OOO 0OO5 C88F 0304 FAEO 0000 1000 5A4F 5685
1000 5A4F 5685 3030 3030 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0OOO 0000 0000 00O OO0 0000 00O 0000 0000
0000 0000 0000 0000 0OOO 0OOO 0000 0000 0000 00O 00O 0000 0000
0000 0000 0000 0000 0000 0000

An error-class value of S and an error-type value of PERM indicate that the system encountered a
problem with software and could not recover from it.

LABEL: DSI_PROC

ID: 20FAED7F

Date/Time: Jun 28 23:40:14
Sequence Number: 20136

Machine Id: 123456789012
Node Id: 123456789012
Class: S

Type: PERM

Resource Name: SYSVMM

Description
Data Storage Interrupt, Processor

Probable Causes
SOFTWARE PROGRAM

Failure Causes
SOFTWARE PROGRAM

Recommended Actions
IF PROBLEM PERSISTS THEN DO THE FOLLOWING
CONTACT APPROPRIATE SERVICE REPRESENTATIVE

Detail Data

Data Storage Interrupt Status Register
4000 0000

Data Storage Interrupt Address Register
0000 9112

Segment Register, SEGREG

D000 1018

EXVAL

0000 0005

An error-class value of S and an error-type value of TEMP indicate that the system encountered a problem
with software. After several attempts, the system was able to recover from the problem.

LABEL: SCSI_ERR6

ID: 52DB7218
Date/Time: Jun 28 23:21:11
Sequence Number: 20114

Machine Id: 123456789012
Node Id: hostl

Class: S

Type: INFO

Resource Name: scsi0

Description
SOFTWARE PROGRAM ERROR

94 Writing and Debugging Programs

Probable Causes
SOFTWARE PROGRAM

Failure Causes
SOFTWARE PROGRAM

Recommended Actions
IF PROBLEM PERSISTS THEN DO THE FOLLOWING
CONTACT APPROPRIATE SERVICE REPRESENTATIVE

Detail Data

SENSE DATA

0000 0000 0000 0000 0000 0011 0000 0008 OOOE 0900 0000 0000 FFFF
FFFE 4000 1C1F ©01A9 09C4 0000 OOOF 0000 0000 0000 0000 FFFF FFFF
0325 0018 0040 1500 0000 0000 0OOO OOOO OOOO 0000 OOOO 0000 0800
0000 0100 0000 0000 0OOO 0000 0000 0OOO 0000 0000 OO0 0000 0000
0000 0000

An error class value of O indicates that an informational message has been logged.

LABEL: OPMSG

1D: AA8AB241

Date/Time: Jul 16 03:02:02
Sequence Number: 26042

Machine Id: 123456789012
Node Id: hostl

Class: 0

Type: INFO

Resource Name: OPERATOR

Description
OPERATOR NOTIFICATION

User Causes
errlogger COMMAND

Recommended Actions
REVIEW DETAILED DATA

Detail Data
MESSAGE FROM errlogger COMMAND
hdiskl : Error log analysis indicates a hardware failure.

Example of a Summary Error Report

The following is an example of a summary error report generated using the errpt command. One line of
information is returned for each error entry.

ERROR_

IDENTIFIER TIMESTAMP T CL RESOURCE_NAME ERROR_DESCRIPTION
192AC071 0101000070 I © errdemon Error logging turned off
OEO17ED1 0405131090 P H mem2 Memory failure

9DBCFDEE 0101000070 I O errdemon Error logging turned on
038F2580 0405131090 U H scdiskO UNDETERMINED ERROR
AA8AB241 0405130990 I O OPERATOR OPERATOR NOTIFICATION

Generating an Error Report

Use the following procedure to create an error report of software or hardware problems.
1. Determine if error logging is on or off. To do this, determine if the error log contains entries:

Chapter 4. Error Notification

errpt -a
The w command generates an error report from entries in the system error log.

If the error log does not contain entries, error logging has been turned off. Activate the facility by
entering:
/usr/1ib/errdemon

Note: You must have root user access to run this command.

The krrdemon daemon starts error logging and writes error log entries in the system error log. If the
daemon is not running, errors are not logged.

2. Generate an error log report using the errpt command. For example, to see all the errors for the
hdiskl disk drive, enter:

errpt -N hdiskl
3. Generate an error log report using SMIT. For example, use the smit errpt command:

smit errpt

Select 1 to send the error report to standard output or 2 to send the report to the printer.
Select yes to display or print error log entries as they occur; otherwise, select no.

Specify the appropriate device name in the Select resource names option (such as hdiskl).

Select Do.

Stopping an Error Log

This procedure describes how to stop the error logging facility. Ordinarily, you would not want to turn off
the error logging facility. Instead, you should clean the error log of old or unnecessary entries. For

instructions about cleaning the error log, refer to [Cleaning an Error | og’.

You should turn off the error logging facility when installing or experimenting with new software or
hardware. This way the error logging daemon does not use CPU time to log problems you know you are
causing.

Note: You must have root user authority to use the command in this procedure.

Enter the krrstop command to turn off error logging:

errstop

The errstop command stops the error logging daemon from logging entries.

Cleaning an Error Log

This procedure describes how to striﬁ old or unnecessary entries from your error log. Cleaning is normally
done for you as part of the daily command.

If it is not done automatically, you should probably clean the error log yourself every couple of days after
you have examined the contents to make sure there are no significant errors.

You can also clean up specific errors. For example, if you get a new disk and you do not want the old
disk’s errors in the log to confuse you, you can clean just the disk errors.

96 Writing and Debugging Programs

../../cmds/aixcmds2/errpt.htm#HDRA243Y989D2
../../cmds/aixcmds2/errdemon.htm#HDRA243Y988AF
../../cmds/aixcmds2/errstop.htm#HDRA243Y98A34
../../cmds/aixcmds1/cron.htm#HDRA15292A

Delete all entries in your error log by doing either of the following:
+ Use the brrcleal -d command. For example, to delete all software errors enter:
errclear -d S 0

The errclear command deletes entries from the error log that are older than a certain number of days.
The 0 in the previous example means that you want to delete entries for all days.

¢ Use the smit errclear command:
smit errclear

Copying an Error Log to Diskette or Tape

Copy an error log by:

« Use the Id and m commands to copy the error log to diskette. Place a formatted diskette into the
diskette drive and enter:

1s /var/adm/ras/errlog | backup -ivp
» To copy the error log to tape, place a tape in the drive and enter:
1s /var/adm/ras/errlog | backup -ivpf/dev/rmt0

OR

» Use the snap command to gather system configuration information in a tar file and copy it to diskette.
Place a formatted diskette into the diskette drive and enter:

Note: You need root user authority to use the @ command.
snap -a -o /dev/rfdo
The snap command in this example uses the -a flag to gather all information about your system
configuration. The -o flag copies the compressed tar file to the device you name. /dev/rfdd names your
disk drive.

Enter the following command to gather all configuration information in a tar file and copy it to tape:
snap -a -o /dev/rmt0

/dev/rmt® names your tape drive.

See the shap command in AIX 5L Version 5.1 Commands Reference for more information.

Error Logging and Alerts

If the Alert field of an error record template is set to True, programs which process alerts use the
following fields in the error log to build an alert:

* (Class

* Type

* Description

* Probable Cause

* User Cause

e Install Cause

* Failure Cause

* Recommended Action
* Detail Data

Chapter 4. Error Notificaton 97

../../cmds/aixcmds2/errclear.htm#HDRA250B9A3E7
../../cmds/aixcmds3/ls.htm#HDRGVB310FISH
../../cmds/aixcmds1/backup.htm#HDRA10192A8A
../../cmds/aixcmds5/snap.htm#HDRA352C13F

These template fields must be set up according to the SNA Generic Alert Architecture described in SNA
Formats, order number GA27-3136. Alerts that are not set up according to the architecture cannot be
processed properly by a receiving program, such as NetView.

Messages added to the error logging message sets must not conflict with the SNA Generic Alert
Architecture. When the m command is used to add messages, the command selects message
numbers that do not conflict with the architecture.

If the Alert field of an error record template is set to False, you can use any of the messages in the error
logging message catalog.

Error Logging Controls

You can control the error logging facility by using the following:

Error Logging Commands
Brrclead

Deletes entries from the error log. This command can erase the
entire error log. Removes entries with specified error ID numbers,
classes, or types.

Brrdead
Extracts errors contained in the /dev/error buffer captured in the
system dump. The system dump will contain error records if the
errdemon daemon was not active prior to the dump.

Reads error records from the /dev/error file and writes error log
entries to the system error log. The errdemon also performs error
notification as specified in the error notification objects in the Object
Data Manager (ODM). This daemon is started automatically during
system initialization.

Can be used to add or replace messages in the error message
catalog. Provided for use by software installation procedures. The
system creates a backup file named File.undo. The undo file allows
you to cancel the changes you made by issuing the errinstall
command.

Writes an operator message entry to the error log.

Implements error logging in in-house applications. The errmsg
command lists, adds, or deletes messages stored in the error
message catalog. Using this command, text can be added to the
Error Description, Probable Cause, User Cause, Install Cause,
Failure Cause, Recommended Action, and Detailed Data message
sets.

Generates an error report from entries in the system error log. The
report can be formatted as a single line of data for each entry, or
the report can be a detailed listing of data associated with each
entry in the error log. Entries of varying classes and types can be
omitted from or included in the report.

Brrstogd

98 Writing and Debugging Programs

../../cmds/aixcmds2/errmsg.htm#HDRA243Y98977
../../cmds/aixcmds2/errclear.htm#HDRA250B9A3E7
../../cmds/aixcmds2/errdead.htm#HDRA243Y98A81
../../cmds/aixcmds2/errdemon.htm#HDRA243Y988AF
../../cmds/aixcmds2/errinstall.htm#HDRA256B92F
../../cmds/aixcmds2/errlogger.htm#HDRA243Y98903
../../cmds/aixcmds2/errmsg.htm#HDRA243Y98977
../../cmds/aixcmds2/errpt.htm#HDRA243Y989D2
../../cmds/aixcmds2/errstop.htm#HDRA243Y98A34

Stops the errdemon daemon, which is initiated during system
initialization. Running the errstop command also disables some
diagnostic and recovery functions of the system.

Adds or deletes templates in the Error Record Template Repository.
Modifies the Alert, Log, and Report attributes of an error template.
Provided for use by software installation procedures.

Error Logging Subroutines and Kernel Services
Brrlog
EBrrsavd and errlast

Writes an error to the error log device driver.

Alllows the kernel and kernel extensions to write to the error log.

Error Logging Files

Jdevierrod
Provides standard device driver interfaces required by the error
log component.

Idevierrorct
Provides nonstandard device driver interfaces for controlling the
error logging system.

lusr/include/sys/err_rec.h Contains structures defined as arguments to the errsave kernel
service and the errlog subroutine.

Ivar/adm/ras/errlog Stores instances of errors and failures encountered by the
system.

/var/adm/ras/errtmplt Contains the Error Record Template Repository.

Related Information

The “Error Notification Object Class” in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs allows applications to be notified when particular errors are recorded.

Chapter 4. Error Notificaton 99

../../cmds/aixcmds2/errupdate.htm#HDRA251B9A8A6
../../libs/basetrf1/errlog.htm#HDRA29799AA
../../libs/ktechrf1/errsave.htm#HDRGH0IBSJEAN
../../files/aixfiles/Error.htm#HDRA365C99541
../../files/aixfiles/Error.htm#HDRA365C99541

100 writing and Debugging Programs

Chapter 5. File Systems and Directories

A file is a one-dimensional array of bytes that can contain ASCII or binary information. In this operating
system, files can contain data, shell scripts, and programs. File names are also used to represent abstract
objects such as sockets or device drivers.

Internally, files are represented by index nodes (i-nodes). Within this file system, an i-node is a, 128-byte
in JFS and 512-byte in JFS2, structure that contains all access, timestamp, ownership, and data location
information for each file. Pointers within the i-node structure designate the real disk address of the data
blocks associated with the file. An i-node is identified by an offset number (i-number) and has no file name
information. The connection of i-numbers and file names is called a link.

File names exist only in directories. Directories are a unique type of file that give hierarchical structure to
the file system. Directories contain directory entries. Each directory entry contains a file name and an
i-number.

The journaled file system (JFS) and (JFS2) are native to this operating system. The file system links the
file and directory data to the structure used by storage and retrieval mechanisms.

JFS and JFS2 are both supported on POWER-based platforms. JFS2 is supported on the Itanium-based
platform while JFS is not.

This chapter contains the following sections that further describe the journaled file system programming
model:

File Types

A file is a one-dimensional array of bytes with at least one hard link (file name). Files can contain ASCII or
binary information. Files contain data, shell scripts, or programs. File names are also used to represent
abstract objects such as sockets, pipes, and device drivers.

The kernel does not distinguish record boundaries in regular files. Programs can establish their own
boundary markers if desired. For example, many programs use line-feed characters to mark the end of

lines. EWorking with Files” on page 102 contains a list of the subroutines used to control files.

Files are represented in the lournaled file system (JFS and JFS2) by disk index nodes (i-node).
Information about the file (such as ownership, access modes, access time, data addresses, and

© Copyright IBM Corp. 1997, 2001 101

../../aixbman/baseadmn/lvm_manage.htm#SPTA071F0F728BENW

modification time) is stored in the i-node. For more information about the internal structure of files, see

The journaled file system supports the following file types:

File Types Supported By Journaled File System

Type of File Macro Name Used in mode.h Description

Regular S_ISREG A sequence of bytes with one or more
names. Regular files can contain
ASCII or binary data. These files can
be randomly accessed (read from or
written to) from any byte in the file.

Directory S_ISDIR Contains directory entries (file name
and i-number pairs). Directory formats
are determined by the file system.
Processes read directories as they do
ordinary files, but the kernel reserves
the right to write to a directory.
Special sets of subroutines control
directory entries.

Block Special S_ISBLK Associates a structured device driver
with a file name.

Character Special S_ISCHR Associates an unstructured device
driver with a file name.

Pipes S_ISFIFO Designates an interprocess
communication channel (IPC). The
mkfifo subroutine creates named
pipes. The pipe subroutine creates
unnamed pipes.

Symbolic Links S_ISLNK A file that contains either an absolute
or relative path name to another file
name.

Sockets S_ISSOCK An IPC mechanism that allows

applications to exchange data. The
socket subroutine creates sockets,
and the bind subroutine allows
sockets to be named.

The maximum size of a regular file in a JFS file system enabled for large files (available beginning in AIX
4.2) is slightly less than 64 gigabytes (68589453312). All nonregular files in a file system enabled for large
files and all files in other JFS file system types have a maximum file size of 2 gigabytes minus 1
(2147483647). The maximun size of a file in JFS2 is limited by the size of the file system itself.

The maximum length of a file name is 255 characters, and the maximum length of a path name is 1023

bytes. For more information, see LIES File Space Allocation” on page 10d.
Working with Files

The operating system offers many subroutines that manipulate files. Brief descriptions of the most
common file-control subroutines are provided in two categories:

. ‘ ”

°] ”

102 writing and Debugging Programs

Creating Files

Ereal Creates a new, empty, regular file

bped Creates a new, empty file if the O_CREAT flag is set

nkfifd Creates a named pipe

nkdid Creates a directory

mknod Creates a file that defines a device

Eocket Creates a socket

pipd Creates an IPC

[inK Creates an additional name (directory entry) for an existing file

Manipulating Files (Programming)

w Returns a file descriptor used by other subroutines to reference the opened file.
The open operation takes a regular file name and a permission mode that
indicates whether the file is to be read from, written to, or both.

tead Removes data from an open file if the appropriate permissions (O_RDONLY or
O_RDWR) were set by the open subroutine.

luritd Puts data into an open file if the appropriate permissions (O_WRONLY or
O_RDWR) were set by the open subroutine.

[seeld or liseeld Move the 1/O pointer position in an open file.

Elosd Closes open file descriptors (including sockets).

kmdid Removes directories from the file system.

Ehowd Changes ownership of a file.

Ehmod Changes the access modes of a file.

ktal Reports the status of a file including the owner and access modes.

bccesd Determines the accessibility of a file.

kenamd Changes the name of a file.

truncatd Changes the length of a file.

foctl Controls functions associated with open file descriptors, including special files,
sockets, and generic device support like the termio general terminal interface.

fclead Creates space in file.

m Writes changes in a file to permanent storage.

fcntl, dup, or dup2 Control open file descriptors.

lockd or flock Control open file descriptors.

For more information on types and characteristics of file systems, see ['Eile Systems Overview] in AIX 5L
Version 5.1 System Management Guide: Operating System and Devices.

JFS Directories

Directories provide a hierarchical structure to the file system and link file and subdirectory names to
i-nodes. There is no limit on the depth of nested directories. Disk space is allocated for directories in
4096-byte blocks, but the operating system allocates directory space in 512-byte records.

Processes can read directories as regular files. However, the kernel reserves the right to write directories.
For this reason, directories are created and maintained by a set of subroutines unique to them.

JFS Directory Structures

Directories contain a sequence of directory entries. Each directory entry contains three fixed-length fields
(the index number associated with the file’s i-node, the length of the file name, and the number of bytes
for the entry) and one variable length field for the file name. The file name field is null-terminated and
padded to 4 bytes. File names can be up to 255 bytes long.

Chapter 5. File Systems and Directories 103

../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/basetrf1/mkdir.htm#HDRA3IK150GACO
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/commtrf2/socket.htm#HDRTP22B0CHER
../../libs/basetrf1/pipe.htm#HDRS381F0GACO
../../libs/basetrf1/link.htm#HDRA169C1F6
../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf2/read.htm#HDRJO11350GACO
../../libs/basetrf2/write.htm#HDRCI2270GACO
../../libs/basetrf1/lseek.htm#HDRA21595D1
../../libs/basetrf1/lseek.htm#HDRA21595D1
../../libs/basetrf1/close.htm#HDRA08793A0
../../libs/basetrf2/rmdir.htm#HDRBBI1D0GACO
../../libs/basetrf1/chown.htm#HDRA9F01
../../libs/basetrf1/chmod.htm#HDRJK52A0GACO
../../libs/basetrf2/statx.htm#HDRA1609C70
../../libs/basetrf1/access.htm#HDRSL240GACO
../../libs/basetrf2/rename.htm#HDRV9Q260GACO
../../libs/basetrf2/truncate.htm#HDRA1589227B
../../libs/basetrf1/ioctl32.htm#HDRDW73VICHRIS
../../libs/basetrf1/fclear.htm#HDRXKNA0GACO
../../libs/basetrf1/fsync.htm#HDRA164930
../../libs/basetrf1/fcntl.htm#HDRNEM2E0GACO
../../libs/basetrf1/lockfx.htm#HDRA142945D
../../aixbman/admnconc/fs_overview.htm

Directory entries are variable-length to allow file names the greatest flexibility. However, all directory space
is allocated at all times.

No directory entry is allowed to span 512-byte sections of a directory. When a directory requires more than
512 bytes, another 512-byte record is appended to the original record. If all of the 512-byte records in the
allocated data block are filled, an additional data block (4096 bytes) is allotted.

When a file is removed, the space the file occupied in the directory structure is added to the preceding
directory entry. The information about the directory remains until a new entry fits into the space vacated.

Every well-formed directory contains the entries . (dot) and .. (dot, dot). The . (dot) directory entry points to
the i-node for the directory itself. The .. (dot, dot) directory entry points to the i-node for the parent
directory. The mkfs program initializes a file system so that the . (dot) and .. (dot, dot) entries in the new
root directory point to the root i-node of the file system.

Access modes for directories have the following meanings:

read Allows a process to read directory entries

write Allows a process to create new directory entries or remove old ones by using the Q, W, W,
and subroutines

execute Allows a process to use the directory as a current working directory or to search below the directory in
the file tree

Working with Directories (Programming)

The imkdid and kmdir subroutines create and remove directories, respectively.

The bpendid, readdir, telldir, seekdir, rewinddir and closedir subroutines manipulate directories. The
opendir subroutine returns a structure pointer that is used by the readdir subroutine to obtain the next
directory entry, by rewinddir to reset the read position to the beginning, and by closedir to close the
directory. The seekdir subroutine returns to a position previously obtained with the telldir subroutine. In
earlier versions, programs treated directories as regular files and used the open, read, Iseek, and close
subroutines to access them. This is no longer recommended.

Changing Current Directory of a Process

When the system is booted, the first process uses the root directory of the root file system as its current
directory. New processes created with the forld subroutine inherit the current directory used by the parent
process. The khdid subroutine changes the current directory of a process.

The chdir subroutine parses the path name to ensure that the target file is a directory and that the
process owner has permissions to the directory. After the chdir subroutine is run, the process uses the
new current directory to search all path names that do not begin with a / (slash).

Changing the Root Directory of a Process

Processes can change their understanding of the root directory through the khroof subroutine. Child
processes of the calling process consider the directory indicated by the chroot subroutine as the logical
root directory of the file system.

Processes use the global file system root directory for all path names starting with a / (slash).All path
name searches beginning with a / (slash) begin at this new root directory.

104 writing and Debugging Programs

../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/basetrf1/link.htm#HDRA169C1F6
../../libs/basetrf2/unlink.htm#HDRA0949BAB
../../libs/basetrf1/mkdir.htm#HDRA3IK150GACO
../../libs/basetrf2/rmdir.htm#HDRBBI1D0GACO
../../libs/basetrf1/opendir.htm#HDRA0909AF7
../../libs/basetrf1/fork.htm
../../libs/basetrf1/chdir.htm#HDRSQJE0GACO
../../libs/basetrf1/chroot.htm#HDRMPJ140GACO

Subroutines That Control Directories

Due to the unique nature of directory files, directories are controlled by a special set of subroutines. The
following subroutines are designed to control directories:

Ehdid Changes the current working directory
Ehroot Changes the effective root directory
bpendid, readdir, telldir, seekdir, rewinddir, or closedir

Perform various actions on directories

m or m Gets path to current directory
mkdid Creates a directory

tenamd Renames a directory

Emdid Removes a directory

JFS2 Directories

Directories provide a hierarchical structure to the file system and link file and subdirectory names to
i-nodes. There is no limit on the depth of nested directories. Disk space is allocated for directories in
blocks.

Processes can read directories as regular files. However, the kernel reserves the right to write directories.
For this reason, directories are created and maintained by a set of subroutines unique to them.

JFS2 Directory Structures

A directory contains entries which indicate the objects contained in the directory. A directory entry has a
fixed length. It contains the i-node number, the name up to 22 bytes long, a name length field, and a field
to continue the entry if the name won't fit completely.

The directory entries are stored in a B+ tree sorted by name. The self (.) and parent (..) information will be
contained in the i-node instead of a directory entry.

Access modes for directories have the following meanings:

read Allows a process to read directory entries

write Allows a process to create new directory entries or remove old ones by using the @, m, IE,
and subroutines

execute Allows a process to use the directory as a current working directory or to search below the directory in
the file tree

Working with Directories (Programming)
The Imkdid and kmdid subroutines create and remove directories, respectively.

The w readdir, telldir, seekdir, rewinddir and closedir subroutines manipulate directories. The
opendir subroutine returns a structure pointer that is used by the readdir subroutine to obtain the next
directory entry, by rewinddir to reset the read position to the beginning, and by closedir to close the
directory. The seekdir subroutine returns to a position previously obtained with the telldir subroutine. In
earlier versions, programs treated directories as regular files and used the open, read, Iseek, and close
subroutines to access them. This is no longer recommended.

Changing Current Directory of a Process

When the system is booted, the first process uses the root directory of the root file system as its current
directory. New processes created with the forld subroutine inherit the current directory used by the parent
process. The subroutine changes the current directory of a process.

Chapter 5. File Systems and Directories 105

../../libs/basetrf1/chdir.htm#HDRSQJE0GACO
../../libs/basetrf1/chroot.htm#HDRMPJ140GACO
../../libs/basetrf1/opendir.htm#HDRA0909AF7
../../libs/basetrf1/getcwd.htm#HDRA0909EF1
../../libs/basetrf1/getwd.htm#HDRA0909E38
../../libs/basetrf1/mkdir.htm#HDRA3IK150GACO
../../libs/basetrf2/rename.htm#HDRV9Q260GACO
../../libs/basetrf2/rmdir.htm#HDRBBI1D0GACO
../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/basetrf1/link.htm#HDRA169C1F6
../../libs/basetrf2/unlink.htm#HDRA0949BAB
../../libs/basetrf1/mkdir.htm#HDRA3IK150GACO
../../libs/basetrf2/rmdir.htm#HDRBBI1D0GACO
../../libs/basetrf1/opendir.htm#HDRA0909AF7
../../libs/basetrf1/fork.htm
../../libs/basetrf1/chdir.htm#HDRSQJE0GACO

The chdir subroutine parses the path name to ensure that the target file is a directory and that the
process owner has permissions to the directory. After the chdir subroutine is run, the process uses the
new current directory to search all path names that do not begin with a / (slash).

Changing the Root Directory of a Process

Processes can change their understanding of the root directory through the khraoi subroutine. Child
processes of the calling process consider the directory indicated by the chroot subroutine as the logical
root directory of the file system.

Processes use the global file system root directory for all path names starting with a / (slash).All path
name searches beginning with a / (slash) begin at this new root directory.

Subroutines That Control Directories

Due to the unique nature of directory files, directories are controlled by a special set of subroutines. The
following subroutines are designed to control directories:

Ehaid Changes the current working directory
Ehrood Changes the effective root directory
m, readdir, telldir, seekdir, rewinddir, or closedir

Perform various actions on directories

geum or W Gets path to current directory
nkdid Creates a directory

tenamd Renames a directory

kmdid Removes a directory

Working with JFS i-nodes

Files in the journaled file system (JFS) are represented internally as index nodes (i-nodes). Journaled file
system i-nodes exist in a static form on disk and contain access information for the file as well as pointers
to the real disk addresses of the file’s data blocks. The number of disk i-nodes available to a file system is
dependent on the size of the file system, the allocation group size (8 MB by default), and the number of
bytes per i-node ratio (4096 by default). These parameters are given to the Inkfd command at file system
creation. When enough files have been created to use all the available i-nodes, no more files can be
created, even if the file system has free space. The number of available i-nodes can be determined by
using the dfl -v command. Disk i-nodes are defined in the /usr/include/jfs/ino.h file.

When a file is opened, an in-core i-node is created by the operating system. The in-core i-node contains a

copy of all the fields defined in the disk i-node, plus additional fields for tracking the in-core i-node. In-core
i-nodes are defined in the /usr/include/jfs/inode.h file.

Disk i-node Structure for JFS

Each disk i-node in the journaled file system (JFS) is a 128-byte structure.

The offset of a particular i-node within the i-node list of the file system produces the unique number
(i-number) by which the operating system identifies the i-node. A bit map, known as the i-node map, tracks
the availability of free disk i-nodes for the file system.

Disk i-nodes include the following information:

Field Contents

i_mode Type of file and access permission mode bits
i _size Size of file in bytes

i_uid Access permissions for the user ID

106 writing and Debugging Programs

../../libs/basetrf1/chroot.htm#HDRMPJ140GACO
../../libs/basetrf1/chdir.htm#HDRSQJE0GACO
../../libs/basetrf1/chroot.htm#HDRMPJ140GACO
../../libs/basetrf1/opendir.htm#HDRA0909AF7
../../libs/basetrf1/getcwd.htm#HDRA0909EF1
../../libs/basetrf1/getwd.htm#HDRA0909E38
../../libs/basetrf1/mkdir.htm#HDRA3IK150GACO
../../libs/basetrf2/rename.htm#HDRV9Q260GACO
../../libs/basetrf2/rmdir.htm#HDRBBI1D0GACO
../../cmds/aixcmds3/mkfs.htm#HDRA1019296C
../../cmds/aixcmds2/df.htm#HDRA10192B83

Field Contents

i_gid Access permissions for the group 1D
i_nblocks Number of blocks allocated to the file
i_mtime Last time file was modified

i_atime Last time file was accessed

i_ctime Last time i-node was modified

i_nlink Number of hard links to the file

i_rdaddr[8] Real disk addresses of the data

i_rindirect Real disk address of the indirect block, if any

It is impossible to change the data of a file without changing the i-node, but it is possible to change the
i-node without changing the contents of the file. For example, when permission is changed, the information
within the i-node (i_ctime) is modified, but the data in the file remains the same.

The i_rdaddr field within the disk i-node contains 8 disk addresses. These addresses point to the first 8

data blocks assigned to the file. The i_rindirect field address points to an indirect block. Indirect blocks
are either single indirect or double indirect. Thus, there are three possible geometries of block allocation

for a file: direct, indirect, or double indirect. Use of the indirect block and other file space allocation

geometries are discussed in the article EJES File Space Allocation” on page 10d.

Disk i-nodes do not contain file or path name information. Directory entries are used to link file names to
i-nodes. Any i-node can be linked to many file names by creating additional directory entries with the link
or m subroutine. To discover the i-node number assigned to a file, use the Id -i command.

The i-nodes that represent files that define devices contain slightly different information from i-nodes for
regular files. Files associated with devices are called special files. There are no data block addresses in
special device files, but the major and minor device numbers are included in the i_rdev field.

In normal situations, a disk i-node is released when the link count (i_n1ink) to the i-node equals 0. Links
represent the file names associated with the i-node. When the link count to the disk i-node is 0, all the
data blocks associated with the i-node are released to the bit map of free data blocks for the file system.
The i-node is then placed on the free i-node map.

In-core i-node Structure

When a file is opened, the information in the disk i-node is copied into an in-core i-node for easier access.
The in-core i-node structure contains additional fields which manage access to the disk i-node’s valuable
data. The fields of the in-core i-node are defined in the inode.h file. Some of the additional information
tracked by the in-core i-node is:

» Status of the in-core i-node, including flags that indicate:

An i-node lock

A process waiting for the i-node to unlock

Changes to the file’s i-node information

Changes to the file’s data

» Logical device number of the file system that contains the file

* i-number used to identify the i-node

» Reference count. When the reference count field equals 0, the in-core i-node is released.

When an in-core i-node is released (for instance with the Elosd subroutine), the in-core i-node reference
count is reduced by 1. If this reduction results in the reference count to the in-core i-node becoming 0, the
i-node is released from the in-core i-node table, and the contents of the in-core i-node are written to the
disk copy of the i-node (if the two versions differ).

Chapter 5. File Systems and Directories 107

../../libs/basetrf1/link.htm#HDRA169C1F6
../../libs/basetrf2/symlink.htm#HDRA2089B6D
../../cmds/aixcmds3/ls.htm#HDRGVB310FISH
../../libs/basetrf1/close.htm#HDRA08793A0

Working with JFS2 i-nodes

Files in the enhanced journaled file system (JFS2) are represented internally as index nodes (i-nodes).
JFS2 i-nodes exist in a static form on the disk and they contain access information for the files as well as
pointers to the real disk addresses of the file’s data blocks. The i-nodes are allocated dynamically by
JFS2.

When a file is opened, an in-core i-node is created by the operating system. The in-core i-node contains a
copy of all the fields defined in the disk i-node, plus additional fields for tracking the in-core i-node. In-core
i-nodes are defined in the /usr/include/j2/j2_inode.h file.

Disk i-node Structure for JFS2

Each disk i-node in JFS2 is a 512 byte structure. The index of a particular i-node allocation map of the file
system produces the unique number (i-number) by which the operating system identifies the i-node. The
i-node allocation map tracks the location of the i-nodes on the disk as well as their availability.

Disk i-nodes include the following information:

Field Contents

di_mode Type of file and access permission mode bits
di_size Size of file in bytes

di_uid Access permissions for the user ID

di_gid Access permissions for the group 1D
di_nblocks Number of blocks allocated to the file
di_mtime Last time file was modified

di_atime Last time file was accessed

di_ctime Last time i-node was modified

di_nlink Number of hard links to the file

di_btroot Root of B+ tree describing the disk addresses of the data

It is impossible to change the data of a file without changing the i-node, but it is possible to change the
i-node without changing the contents of the file. For example, when permission is changed, the information
within the i-node (di_mode) is modified, but the data in the file remains the same.

The di_btroot describes the root of the B+ tree. It describes the data for the i-node. di_btroot has a field
indicating how many of its entries in the i-node are being used and another field describing whether they
are leaf nodes or internal nodes for the B+ tree. File space allocation geometries are discussed in the

article [.IES2 File Space Allocation” on page 113.

Disk i-nodes do not contain file or path name information. Directory entries are used to link file names to
i-nodes. Any i-node can be linked to many file names by creating additional directory entries with the link
or W subroutine. To discover the i-node number assigned to a file, use the id -i command.

The i-nodes that represent files that define devices contain slightly different information from i-nodes for
regular files. Files associated with devices are called special files. There are no data block addresses in
special device files, but the major and minor device numbers are included in the di_rdev field.

In normal situations, a disk i-node is released when the link count (di_nTink) to the i-node equals 0. Links
represent the file names associated with the i-node. When the link count to the disk i-node is 0, all the
data blocks associated with the i-node are released to the bit map of free data blocks for the file system.
The i-node is then placed on the free i-node map.

108 writing and Debugging Programs

../../libs/basetrf1/link.htm#HDRA169C1F6
../../libs/basetrf2/symlink.htm#HDRA2089B6D
../../cmds/aixcmds3/ls.htm#HDRGVB310FISH

In-core i-node Structure

When a file is opened, the information in the disk i-node is copied into an in-core i-node for easier access.
The in-core i-node structure contains additional fields which manage access to the disk i-node’s valuable
data. The fields of the in-core i-node are defined in the j2_inode.h file. Some of the additional information
tracked by the in-core i-node is:

» Status of the in-core i-node, including flags that indicate:

An i-node lock

A process waiting for the i-node to unlock

Changes to the file’s i-node information

Changes to the file’s data

» Logical device number of the file system that contains the file

* i-number used to identify the i-node

* Reference count. When the reference count field equals 0, the in-core i-node is released.

When an in-core i-node is released (for instance with the Elosd subroutine), the in-core i-node reference
count is reduced by 1. If this reduction results in the reference count to the in-core i-node becoming 0, the
i-node is released from the in-core i-node table, and the contents of the in-core i-node are written to the
disk copy of the i-node (if the two versions differ).

JFS File Space Allocation

File space allocation is the method by which data is apportioned physical storage space in the operating
system. The kernel allocates disk space to a file or directory in the form of logical blocks. A Logical block
refers to the division of a file or directory’s contents into 4096 bytes units. Logical blocks are not tangible
entities; however, the data in a logical block consumes physical storage space on the disk. Each file or
directory consists of O or more logical blocks. Fragments, instead of logical blocks, are the basic units for
allocated disk space in the journaled file system (JFS).

Full and Partial Logical Blocks

A file or directory may contain full or partial logical blocks. A full logical block contains 4096 bytes of data.
Partial logical blocks occur when the last logical block of a file or directory contains less than 4096 bytes
of data.

For example, a file of 8192 bytes is two logical blocks. The first 4096 bytes reside in the first logical block
and the following 4096 bytes reside in the second logical block. Likewise, a file of 4608 bytes consists of
two logical blocks. However, the last logical block is a partial logical block containing the last 512 bytes of
the file’s data. Only the last logical block of a file can be a partial logical block.

Allocation in Fragmented File Systems

The default fragment size is 4096 bytes. You can specify smaller fragment sizes with the mkfs command
during a file system’s creation. Allowable fragment sizes are: 512, 1024, 2048, and 4096 bytes. You can
use only one fragment size in a file system. See L i “ for more
information on the file system structure.

To maintain efficiency in file system operations, the JFS allocates 4096 bytes of fragment space to files
and directories that are 32KB or larger. A fragment that covers 4096 bytes of disk space is allocated to a
full logical block. When data is added to a file or directory, the kernel allocates disk fragments to store the
logical blocks. Thus, if the file system’s fragment size is 512 bytes, a full logical block is the allocation of 8
fragments.

Chapter 5. File Systems and Directories 109

../../libs/basetrf1/close.htm#HDRA08793A0

The kernel allocates disk space so that only the last bytes of data receive a partial block allocation. As the
partial block grows beyond the limits of its current allocation, additional fragments are allocated. If the
partial block increases to 4096 bytes, the data stored in its fragments are reallocated into 4096 file system
block allocations. A partial logical block that contains less than 4096 bytes of data is allocated the number
of fragments that best matches its storage requirements.

Block reallocation also occurs if data is added to logical blocks that represent file holes. A file hole is an
"empty” logical block located prior to the last logical block that stores data. (File holes do not occur within
directories.) These empty logical blocks are not allocated fragments. However, as data is added to file
holes, allocation occurs. Each logical block that was not previously allocated disk space is allocated 4096
byte of fragment space.

Additional block allocation is not required if existing data in the middle of a file or directory is overwritten.
The logical block containing the existing data has already been allocated fragments.

JFS tries to maintain contiguous allocation of a file or directory’s logical blocks on the disk. Maintaining
contiguous allocation lessens seek time because the data for a file or directory can be accessed
sequentially and found on the same area of the disk. However, disk fragments for one logical block are not
always contiguous to the disk fragments for another logical block. The disk space required for contiguous
allocation may not be available if it has already been written to by another file or directory. An allocation for
a single logical block, however, always contains contiguous fragments.

The file system uses a bitmap called the block allocation map to record the status of every block in the file
system. When the file system needs to allocate a new fragment, it refers to the fragment allocation map to
identify which fragments are available. A fragment can only be allocated to a single file or directory at a
time.

Allocation in Compressed File Systems

In a file system that supports data compression, directories are allocated disk space. Data compression
also applies to regular files and symbolic links whose size is larger than that of their i-nodes.

The allocation of disk space for compressed file systems is the same as that of fragments in fragmented
file systems. A logical block is allocated 4096 bytes when it is modified. This allocation guarantees that
there will be a place to store the logical block if the data does not compress. The system requires that a
write or store operation report an out-of-disk-space condition into a memory-mapped file at a logical
block’s initial modification. After modification is complete, the logical block is compressed before it is
written to a disk. The compressed logical block is then allocated only the number of fragments required for
its storage.

In a fragmented file system, only the last logical block of a file (not larger than 32KB) can be allocated less
than 4096 bytes. The logical block becomes a partial logical block. In a compressed file system, every
logical block can be allocated less than a full block.

A logical block is no longer considered modified after it is written to a disk. Each time a logical block is
modified, a full disk block is allocated again, according to the system requirements. Reallocation of the
initial full block occurs when the logical block of compressed data is successfully written to a disk.

Allocation in File Systems Enabled for Large Files

Beginning in AIX 4.2, in a file system enabled for large files, the JFS allocates two sizes of fragments for
regular files. A "large” fragment (32 X 4096) is allocated for logical blocks after the 4 MB boundary, and a
4096 bytes fragment is allocated for logical blocks before the 4 MB boundary. All nonregular files allocate
4096 bytes fragments. This geometry allows a maximum file size of slightly less than 64 gigabytes
(68589453312).

110 writing and Debugging Programs

A "large” fragment is made up of 32 contiguous 4096 bytes fragments. Because of this requirement, it is
recommended that file systems enabled for large files have predominantly large files in them. Storing
many small files (files less than 4 MB) can cause free-space fragmentation problems. This can cause large
allocations to fail with ENOSPC because the file system does not contain 32 contiguous disk addresses.

Disk Address Format

JFS fragment support requires fragment-level addressability. As a result, disk addresses have a special
format for mapping where the fragments of a logical block reside on the disk. Fragmented and
compressed file systems use the same method for representing disk addresses. Disk addresses are
contained in the i_rdaddr field of the i-nodes or in the indirect blocks. All fragments referenced in a single
address must be contiguous on the disk.

The disk address format consists of two fields, the nfrags and addr fields. These fields describe the area
of disk covered by the address.

addr Indicates which fragment on the disk is the starting fragment
nfrags Indicates the total number of contiguous fragments not used by the address

For example, if the fragment size for the file system is 512 bytes and the logical block is divided into eight
fragments, the nfrags value is 3, indicating that five fragments are included in the address.

The following examples illustrate possible values for the addr and nfrags fields for different disk
addresses. These values assume a fragment size of 512 bytes, indicating that the logical block is divided
into eight fragments.

Address for a single fragment:
addr: 143
nfrags: 7

This address indicates that the starting location of the data is fragment 143 on the disk. The nfrags value
indicates that the total number of fragments included in the address is one. The nfrags value changes in a
file system that has a fragment size other than 512 bytes. To correctly read the nfrags value, the system,
or any user examining the address, must know the fragment size of the file system.

Address for five fragments:
addr: 1117
nfrags: 3

In this case, the address starts at fragment number 1117 on the disk and continues for five fragments
(including the starting fragment). There are three fragments remaining, as illustrated by the nfrags value.

The disk addresses are 32 bits in size. The bits are numbered from 0 to 31. The 0 bit is always reserved.
Bits 1 through 3 contain the nfrags field. Bits 4 through 31 contain the addr field.

Indirect Blocks

The JFS uses the indirect blocks to address the disk space allocated to larger files. Indirect blocks allow
the greatest flexibility for file sizes and the fastest retrieval time. The indirect block is assigned using the
i_rindirect field of the disk i-node. This field allows for three geometries or methods for addressing the
disk space:

» Direct
* Single indirect

Chapter 5. File Systems and Directories 111

* Double indirect

Each of these methods uses the same disk address format as compressed and fragmented file systems.
Because files larger than 32KB are allocated fragments of 4096 bytes, the nfrags field for addresses using
the single indirect or double indirect method has a value of 0.

Direct Method

When the direct method of disk addressing is used, each of the eight addresses listed in the i_rdaddr field
of the disk i-node points directly to a single allocation of disk fragments. The maximum size of a file using
direct geometry is 32,768 bytes (32KB), or 8 x 4096 bytes. When the file requires more than 32KB, an
indirect block is used to address the file’s disk space.

Single Indirect Method

The i_rindirect field contains an address that points to either a single indirect block or a double indirect
block. When the single indirect disk addressing method is used, the i_rindirect field contains the address
of an indirect block containing 1024 addresses. These addresses point to the disk fragments for each
allocation. Using the single indirect block geometry, the file can be up to 4,194,304 bytes (4MB), or 1024 x
4096 bytes.

Double Indirect Method
The double indirect addressing method uses the i_rindirect field to point to a double indirect block. The

double indirect block contains 512 addresses that point to indirect blocks, which contain pointers to the
fragment allocations. The largest file size that can be used with the double indirect geometry in a file
system not enabled for large files is 2,147,483,648 bytes (2GB), or 512(1024 x 4096) bytes.

Note: The maximum file size (E\Alriti iles”) that the read
and write system calls would allow is 2GB minus 1 (23"). When memory map interface is used,
2GB can be addresed.

Beginning in AIX 4.2, file systems enabled for large files allow a maximum file size of slightly less than 64
gigabytes (68589453312). The first single indirect block contains 4096 byte fragments, and all subsequent
single indirect blocks contain (32 X 4096) byte fragments. The following produces the maximum file size
for file systems enabling large files:

(1 * (1024 * 4096)) + (511 * (1024 * 131072))

The fragment allocation assigned to a directory is divided into records of 512 bytes each and grows in
accordance with the allocation of these records.

Quotas

Disk quotas restrict the amount of file system space any single user or group can monopolize.

Quotacti Subroutine that sets limits on both the number of files and the number of disk blocks allocated to
each user or group on a file system. Quotas enforce two kinds of limits:

hard Maximum limit allowed. When a process hits its hard limit, requests for more space fail.

soft Practical limit. If a process hits the soft limit, a warning is printed to the user’s terminal. The
warning is often displayed at login. If the user fails to correct the problem after several login
sessions, the soft limit can become a hard limit.

System warnings are designed to encourage users to heed the soft limit. However, the quota system
allows processes access to the higher hard limit when more resources are temporarily required.

112 writing and Debugging Programs

../../libs/basetrf2/quotactl.htm#HDRON2250BOB

JFS2 File Space Allocation

File space allocation is the method by which data is apportioned physical storage space in the operating
system. The kernel allocates disk space to a file or directory in the form of logical blocks. A Logical block
refers to the division of a file or directory contents into 512, 1024, 2048, or 4096 byte units. When a JFS2
file system is created the logical block size is specified to be one of 512, 1024, 2048, or 4096 bytes.
Logical blocks are not tangible entities; however, the data in a logical block consumes physical storage
space on the disk. Each file or directory consists of 0 or more logical blocks.

Full and Partial Logical Blocks

A file or directory may contain full or partial logical blocks. A full logical block contains 512, 1024, 2048, or
4096 bytes of data, depending on the file system block size specified when the JFS2 file system was
created. Partial logical blocks occur when the last logical block of a file or directory contains less than file
system block size of data.

For example, a JFS2 file system with a logical block size of 4096 with a file of 8192 bytes is two logical
blocks. The first 4096 bytes reside in the first logical block and the following 4096 bytes reside in the
second logical block. Likewise, a file of 4608 bytes consists of two logical blocks. However, the last logical
block is a partial logical block containing the last 512 bytes of the file’s data. Only the last logical block of
a file can be a partial logical block.

JFS2 File Space Allocation

The default block size is 4096 bytes. You can specify smaller block sizes with the mkfs command during a
file system’s creation. Allowable fragment sizes are: 512, 1024, 2048, and 4096 bytes. You can use only

one blocks size in a file system. See LIES File System | ayout” an page 137 for more information on the

file system structure.

The kernel allocates disk space so that only the last file system block of data receive a partial block
allocation. As the partial block grows beyond the limits of its current allocation, additional blocks are
allocated.

Block reallocation also occurs if data is added to logical blocks that represent file holes. A file hole is an
"empty" logical block located prior to the last logical block that stores data. (File holes do not occur within
directories.) These empty logical blocks are not allocated blocks. However, as data is added to file holes,
allocation occurs. Each logical block that was not previously allocated disk space is allocated a file system
block of space.

Additional block allocation is not required if existing data in the middle of a file or directory is overwritten.
The logical block containing the existing data has already been allocated file system blocks.

JFS tries to maintain contiguous allocation of a file or directory’s logical blocks on the disk. Maintaining
contiguous allocation lessens seek time because the data for a file or directory can be accessed
sequentially and found on the same area of the disk. The disk space required for contiguous allocation
may not be available if it has already been written to by another file or directory.

The file system uses a bitmap called the block allocation map to record the status of every block in the file
system. When the file system needs to allocate a new block, it refers to the block allocation map to identify
which blocks are available. A block can only be allocated to a single file or directory at a time.

Extents

An extent is a sequence of contiguous file system blocks allocated to a JFS2 object as a unit. Large
extents may span multiple allocation groups.

Chapter 5. File Systems and Directories 113

Every JFS2 object is represented by an i-node. I-nodes contain the expected object-specific information
such as time stamps, file type (regular verses directory etcetera.) They also contain a B+ tree to record
the allocation of extents.

A file is allocated in sequences of extents. An extent is a contiguous variable-length sequence of file
system blocks allocated as a unit. An extent may span multiple allocation groups. These extents are
indexed in a B+ tree.

There are two values needed to define an extent, the length and the address. The length is measured in

units of the file system block size. 24-bit value represents the length of an extent, so an extent can range
in size from 1 to 224 -1 file system blocks. Therefore the size of the maximum extent depends on the file

system block size. The address is the address of the first block of the extent. The address is also in units
of file system blocks, it is the block offset from the beginning of the file system.

An extent based file system combined with user-specified file system block size allows JFS2 to not have
seperate support for internal fragmentation. The user can configure the file system with a small file system
block size (such as 512 bytes) to minimize internal fragmentation for file systems with large numbers of
small size files.

In general, the allocation policy for JFS2 tries to maximize contiguous allocation by allowing a minimum
number of extents, with each extent as large and contiguous as possible. This allows for larger 1/O transfer
resulting in improved performance. However in some cases this is not always possible.

B+ Trees

This section describes the B+ tree data structure used for file layout. The discussion shows how generic
B+ tree concepts have been adapted specifically for JFS2; it is not a tutorial on B+ tree data structure.

B+ trees were selected to help with performance of reading and writing extents, the most common
operations JFS2 will have to do.

An extent allocation descriptor (xad_t structure) describes the extent and adds two more fields that are
needed for representing files: an offset, describing the logical the logical byte address the extent
represents, and a flags field. The xad_t structure is defined in /usr/include/j2/j2_xtree.h.

An xad structure describes two abstract ranges:

* The physical range of disk blocks. This starts at file system block number addressXAD(xadp) address
and extends for lengthXAD(xadp) file system blocks.

* The logical range of bytes within a file. This starts at byte number offsetXAD(xadp)*(file system block
size) and extends for lengthXAD(xadp)*(file system block size.)

The physical range and the logical range are both the same number of bytes long. Note that offset is
stored in units of file system block size (example, a value of 3) in offset means 3 file system blocks, not
three bytes. Extents within a file are always aligned on file system block size boundaries.

There will be one generic B+ tree index structure for all index objects in JFS2 except for directories. The
data being indexed will depend on the object. The B+ tree is keyed by the offset of the xad of data being
described by the tree. The entries are sorted by the offsets of the xad structures. An xad structure is an
entry in a node of a B+ tree.

The bottom of the second section of a disk inode contains a data dscriptor which tells what is stored in the
second half of the inode. The second half of the inode could contain in-line data for the file if it is small
enough. If the file data won't fit in the in-line data space for the inode it will be contained in extents and
the inode will contain the root node of the B+ tree. The header will indicate how many xad are in use and
how many are available. Generally, the inode will contain 8 xad structures for the root of the B+ tree. If

114 writing and Debugging Programs

there are 8 or fewer extents for the file, then these 8 xad structures are also a leaf node of the B+ tree.
They will describe the extents. Otherwise the 8 xad structures in the inode will point to either the leaves or
internal nodes of the B+ tree.

Once all of the available xad structures in the inode are used, the B+ tree must be split. We will allocate
4K of disk space for a leaf node of the B+ tree. A leaf node is logically an array of xad entries with a
header. The header points to the first free xad entry in the node, all xad entries following that one are also
not allocated. The 8 xad entries are copied from the inode to the leaf node, the header is initialized to
point to the 9th entry as the first free entry. Then we will update the root of the B+ tree into the first xad
structure of the inode; this xad structure will point to the newly allocated leaf node. The offset for this new
xad structure will be the offset of the first entry in the leaf node. The header in the inode will be updated to
indicate that now only 1 xad is being used for the B+ tree. The header in the inode also needs to be
updated to indicate the inode now contains the pure root of a B+ tree.

As new extents are added to the file, they will continue to be added to the same leaf node in the
necessary order. This will continue until the leaf node fills. Once the node fills a new 4K of disk space will
be allocated for another leaf node of the B+ tree. The second xad structure from the inode will be set to
point to this newly allocated node.

This will continue until all 8 xad structures in the inode are filled, at which time another split of the B+ tree
will occur. This split will create internal nodes of the B+ tree which are used purely to route the searches
of the tree. This will allocate 4K of disk space for an internal node of the B+ tree. An internal node looks
the same as a leaf node. The 8 xad entries are copied from the inode to the internal node, the header is
initialized to point to the 9th entry as the first free entry. Then it will update the root of the B+ tree by
making the first xad structure of the inode point to the newly allocated internal node. The header in the
inode will be updated to indicate that now only 1 xad is being used for the B+ tree.

The file /usr/include/j2/j2_xtree.h describes the header for the root of the B+ tree in struct xtpage_t. The
file /usr/include/j2/j2_btree.h describes the header for an internal node or a leaf node in struct btpage_t.

Writing Programs That Access Large Files

Beginning in AIX 4.2, the operating system allows files that are larger than 2 gigabytes (2GB). This article
is intended to assist programmers in understanding the implications of "large” files on their applications
and to assist them in modifying their applications. A new set of programming interfaces is defined, so that
application programs can be modified to be aware of large files.

The file system programming interfaces generally revolve around the off_t data type. In AlX 4.1, the off_t
data type was defined as a signed 32-bit integer. As a result, the maximum file size that these interfaces
would allow was 2 gigabytes minus 1.

Implications for Existing Programs

The 32-bit application environment that all applications used in prior releases remains unchanged. Existing
application programs will execute exactly as they did before. However, existing application programs will
not be able to deal with large files.

For example, the st_size field in the stat structure, which is used to x turn file sizes, is a signed, 32-bit
long. Therefore, that stat structure cannot be used to return file sizes that are larger than LONG_MAX. If
an application attempts to stat a file that is larger than LONG_MAX, the stat subroutine will fail, and errno
will be set to EOVERFLOW, indicating that the file size overflows the size field of the structure being used
by the program.

Chapter 5. File Systems and Directories 115

This behavior is significant because existing programs that might not appear to have any impacts as a
result of large files will experience failures in the presence of large files even though they may not even be
interested in the file size.

The errno EOVERFLOW can also be returned by Iseek and by fentl if the values that need to be returned
are larger than the data type or structure that the program is using. For Iseek, if the resulting offset is
larger than LONG_MAX, Iseek will fail and errno will be set to EOVERFLOW. For fentl, if the caller uses
F_GETLK and the blocking lock’s starting offset or length is larger than LONG_MAX, the fentl call will fail,
and errno will be set to EOVERFLOW.

Open Protection

Many of the existing application programs were written under the assumption that a file size could never
be larger than could be represented in a signed, 32-bit long. These programs could have unexpected
behavior, including data corruption, if allowed to operate on large files. Beginning in AIX 4.2, the operating
system implements an open-protection scheme to protect applications from this class of failure.

When an application that has not been enabled for large-file access attempts to open a file that is larger
than LONG_MAX, the open subroutine will fail and errno will be set to EOVERFLOW. Application
programs that have not been enabled will be unable to access a large file, and the possibility of
inadvertent data corruption is avoided. Applications that need to be able to open large files must be ported

to the large-file environment described in "tParting Applications ta the | arge File Environment!”.

In addition to open protection, a number of other subroutines offer protection by providing an execution
environment, which is identical to the environment under which these programs were developed. If an
application uses the write family of subroutines and the write request crosses the 2 gigabyte boundary,
the write subroutines will transfer data only up to 2 gigabytes minus 1. If the application attempts to write
at or beyond the 2Gb-1 boundary, the write subroutines will fail and set errno to EFBIG. The behavior of
mmap, ftruncate, and fclear are similar.

The read family of subroutines also participates in the open protection scheme. If an application attempts
to read a file across the 2 gigabyte threshold, only the data up to 2 gigabytes minus 1 will be read. Reads
at or beyond the 2Gb-1 boundary will fail, and errno will be set to EOVERFLOW.

Open protection is implemented by a flag associated with an open file description. The current state of the
flag can be queried with the fentl subroutine using the F_GETFL command. The flag can be modified with
the fentl subroutine using the F_SETFL command.

Since open file descriptions are inherited across the exec family of subroutines, application programs that
pass file descriptors that are enabled for large-file access to other programs should consider whether the
receiving program can safely access the large file.

Porting Applications to the Large File Environment

Beginning in AIX 4.2, the operating system provides two different ways for applications to be enabled for
large-file access. Application programmers must decide which approach best suits their needs. The first
approach is to define _LARGE_FILES, which carefully redefines all of the relevant data types, structures,
and subroutine names to their large-file enabled counterparts. The second approach is to recode the
application to call the large-file enabled subroutines explicitly.

Defining _LARGE_FILES has the advantage of maximizing application portability to other platforms since
the application is still written to the normal POSIX and XPG interfaces. It has the disadvantage of creating
some ambiguity in the code since the size of the various data items is not obvious from looking at the
code.

116 writing and Debugging Programs

Recoding the application has the obvious disadvantages of requiring more effort and reducing application
portability. It can be used when the redefinition effect of _LARGE_FILES would have a considerable
negative impact on the program or when it is desirable to convert only a very small portion of the program.

It is very important to understand that in either case, the application program MUST be carefully audited to

ensure correct behavior in the new environment. Some of the common programming pitfalls are discussed
In Imge H H H H 3y w

Using _LARGE_FILES

In the default compilation environment, the off _t data type is defined as a signed, 32-bit long. Beginning in
AlX 4.2, if the application defines _LARGE_FILES before the inclusion of any header files, then the
large-file programming environment is enabled. and off_t is defined to be a signed, 64-bit long long. In
addition, all of the subroutines that deal with file sizes or file offsets are redefined to be their large-file
enabled counterparts. Similarly, all of the data structures with embedded file sizes or offsets are redefined.

Assuming that the application is coded without any dependencies on off_t being a 32-bit quantity, the
resulting binary should work properly in the new environment. In practice, application programs rarely
require a porting effort this small.

The following table shows the redefinitions that occur in the _LARGE_FILES environment beginning in AlX

4.2.

ltem Redefined To Be Header File
off_t long long <sys/types.h>
fpos_t long long <sys/types.h>
struct stat struct stat64 <sys/stat.h>
stat() stat64() <sys/stat.h>
fstat() fstat64() <sys/stat.h>
Istat() Istat64() <sys/stat.h>
mmap() mmap64() <sys/mman.h>
lockf() lockf64() <sys/lockf.h>
struct flock struct flock64 <sys/flock.h>
open() open64() <fentl.h>
creat() creat64() <fentl.h>
F_GETLK F_GETLK64 <fentl.h>
F_SETLK F_SETLK64 <fentl.h>
F_SETLKW F_SETLKW64 <fentl.h>
ftw() ftw64() <ftw.h>

nftw() nftw64() <ftw.h>
fseeko() fseeko64() <stdio.h>
ftello() ftello64() <stdio.h>
fgetpos() fgetpos64() <stdio.h>
fsetpos() fsetpos64() <stdio.h>
fopen() fopen64() <stdio.h>
freopen() freopen64() <stdio.h>
Iseek() Iseek64() <unistd.h>

Chapter 5. File Systems and Directories

117

ftruncate() ftruncate64() <unistd.h>

truncate() truncate64() <unistd.h>

fclear() fclear64() <unistd.h>

struct aiocb struct aiocb64 <sys/aio.h>
aio_read() aio_read64() <sys/aio.h>
aio_write() aio_write64() <sys/aio.h>
aio_cancel() aio_cancel64() <sys/aio.h>
aio_suspend aio_suspend64() <sys/aio.h>
aio_listio() aio_listio64() <sys/aio.h>
aio_return() aio_return64() <sys/aio.h>
aio_error aio_error64() <sys/aio.h>

Using the 64-Bit File System Subroutines

Using the _LARGE_FILES environment may be impractical for some applications due to the far-reaching
implications of changing the size of off_t to 64 bits. If the number of changes is small, it may be more
practical to convert a relatively small part of the application to be large-file enabled. The 64-bit file system
data types, structures, and subroutines are listed below:

<sys/types.h>

typedef long long off64 t;
typedef long long fpos64_t;

<fcntl.h>
extern int open64(const char *, int, ...);
extern int creat64(const char *, mode_t);

#define F_GETLK64
#define F_SETLK64
#define F_SETLKW64

<ftw.h>
extern int ftw64(const char *, int (*)(const char *,const struct stat64 =, int), int);
extern int nftw64(const char %, int (*)(const char *, const struct stat64 *, int,struct FTW *),int, int);

<stdio.h>
extern int

extern FILE
extern FILE

fgetpos64 (FILE *, fpos64d t *);

xfopenb4 (const char *, const char *);
*xfreopen64 (const char x, const char *, FILE %);
extern int fseeko64 (FILE *, off64 t, int);

extern int fsetpos64 (FILE *, fpos64 t =*);

extern off64_t ftello64(FILE *);

<unistd.h>

extern off64_t 1seek64(int, off64_t, int);

extern int ftruncate64(int, off64 t);

extern int truncate64(const char *, off64_t);
extern off64_t fclear64(int, off64_t);
<sys/flock.h>

struct flock64;

<sys/Tockf.h>

118 writing and Debugging Programs

extern int lockf64 (int, int, off64 t);

<sys/mman.h>

extern void *mmap64 (void *, size_t, int, int, int, off64 _t);
<sys/stat.h>

struct stat64;

extern int stat64(const char *, struct stat6d =*);
extern int fstatb4(int, struct stat64 =);
extern int 1stat64(const char *, struct stat64 =);

<sys/aio.h>

struct aioch64

int aio_read64(int, struct aioch64 =*):

int aio_write64(int, struct aioch64 *);

int aio_listiob4(int, struct aioch64 *[],
int, struct sigevent x);

int aio_cancel64(int, struct aioch6d =*);

int aio_suspend64(int, struct aioch6d *[]);

Common Pitfalls using the Large File Environment

Porting of application programs to the large-file environment can expose a number of different problems in
the application. These problems are frequently the result of poor coding practices, which are harmless in a
32-bit off_t environment, but which can manifest themselves when compiled in a 64-bit off_t environment.
The information below illustrates some of the more common problems and solutions.

Note: In the examples below, off_t is assumed to be a 64-bit file offset.
Improper Use of Data Types

The most obvious source of problems with application programs is a failure to use the proper data types. If
an application attempts to store file sizes or file offsets in an integer variable, the resulting value will be
truncated and lose significance. The proper technique for avoiding this problem is to use the off_t data
type to store file sizes and offsets.

Incorrect:
int file_size;
struct stat s;

file_size = s.st_size;

Better:

off_t file_size;
struct stat s;
file_size = s.st_size;

Parameter Mismatches

Care must be taken when passing 64-bit integers to functions as arguments or when returning 64-bit
integers from functions. Both the caller and the called function must agree on the types of the arguments
and the return value in order to get correct results.

Passing a 32-bit integer to a function that expects a 64-bit integer causes the called function to

misinterpret the caller’'s arguments, leading to unexpected behavior. This type of problem is especially
severe if the program passes scalar values to a function that expects to receive a 64-bit integer.

Chapter 5. File Systems and Directories 119

Many of the problems can be avoided by careful use of function prototypes as illustrated below. In the
code fragments below, fexample() is a function that takes a 64-bit file offset as a parameter. In the first
example, the compiler generates the normal 32-bit integer function linkage, which would be incorrect since
the receiving function expects 64-bit integer linkage. In the second example, the LL specifier is added,
forcing the compiler to use the proper linkage. In the last example, the function prototype causes the
compiler to promote the scalar value to a 64-bit integer. This is the preferred approach since the source
code remains portable between 32- and 64-bit environments.

Incorrect:
fexample(0);

Better:
fexample(OLL);

Best:
void fexample(off t);

fexample(0);
Arithmetic Overflows

Even when an application uses the correct data types, it is still vulnerable to failures due to arithmetic
overflows. This problem usually occurs when the application performs an arithmetic overflow before it is
promoted to the 64-bit data type. In the following example, blkno is a 32-bit block number. Multiplying the
block number by the block size occurs before the promotion, and overflow will occur if the block number is
sufficiently large. This problem is especially destructive because the code is using the proper data types
and the code works properly for small values, but fails for large values. The problem can be fixed by
typecasting the values before the arithmetic operation.

Incorrect:

int blkno;
off_t offset;

offset = blkno * BLKSIZE;

Better:

int blkno;
off_t offset;
offset = (off_t) blkno * BLKSIZE;

This problem can also appear when passing values based on fixed constants to functions that expect
64-bit parameters. In the example below, LONG_MAX+1 results in a negative number, which is
sign-extended when it is passed to the function.

Incorrect:
void fexample(off_t);

fexample (LONG_MAX+1);

Better:
void fexample(off_t);

fexample((off_t)LONG_MAX+1);

Fseek/Ftell

The data type used by Eseeld and ftell subroutines is long and cannot be redefined to the appropriate
64-bit data type in the _LARGE_FILES environment. Application programs that access large files and that

120 writing and Debugging Programs

../../libs/basetrf1/fseek.htm#HDRA10499C8

use fseek and ftell need to be converted. This can be done in a number of ways. The fseeko and ftello
subroutines are functionally equivalent to fseek and ftell except that the offset is given as an off_t instead
of a long. Make sure to convert all variables that can be used to store offsets to the appropriate type.

Incorrect:
long cur_offset, new_offset;

cur_offset = ftell(fp);
fseek(fp, new_offset, SEEK SET);

Better:
off_t cur_offset, new offset;

cur_offset = ftello(fp);
fseeko(fp, new offset, SEEK SET);

Failure to Include Proper Header Files

In order for application programs to see the function and data type redefinitions, they must include the
proper header files. This has the additional benefit of exposing the function prototypes for various
subroutines, which enables stronger type-checking in the compiler.

Many application programs that call the open and creat subroutines do not include <fentl.h>, which
contains the defines for the various open modes. These programs typically hard code the open modes.
This will cause runtime failures when the program is compiled in the _LARGE_FILES environment
because the program does call the proper open subroutine, and the resulting file descriptor is not enabled
for large-file access. Programs must make sure to include the proper header files, especially in the
_LARGE_FILES environment, to get visibility to the redefinitions of the environment.

Incorrect:
fd = open("afile",2);

Better:
#include <fcntl.h>

fd = open("afile",0 RDWR);
String Conversions

Converting file sizes and offsets to and from strings can cause problems when porting applications to the
large-file environment. The printf format string for a 64-bit integer is different than for a 32 bit integer.
Programs that do these conversions must be careful to use the proper format specifier. This is especially
difficult when the application needs to be portable between 32- and 64-bit environments since there is no
portable format specifier between the two environments. One way to deal with this problem is to write
offset converters that use the proper format for the size of off_t.

off_t

atooff(const char *s)

{
off_t o;

if (sizeof(off_t) == 4)
sscanf(s,"%d",&0);
else if (sizeof(off_t) == 8)
sscanf(s,"%11d",8&0);
else
error();
return o;

Chapter 5. File Systems and Directories 121

main(int argc, char xxargv)

off_t offset;
offset = atooff(argv[1]);
fexample(offset);

1

Imbedded File Offsets

Application programs that imbed file offsets or sizes in data structures may be affected by the change to
the size of the off_t in the large-file environment. This problem can be especially severe if the data
structure is shared between various applications or if the data structure is written into a file. In cases like
this, the programmer must decide if it should continue to contain a 32-bit offset or if it should be converted
to contain a 64-bit offset. If the application program needs to have a 32-bit file offset even if off_t is 64 bits,
the program may use the new data type soff_t, a short off _t. This data type remains 32 bits even in the
large-file environment. If the data structure is converted to a 64-bit offset, then all of the programs that
deal with that structure must be converted to understand the new data structure format.

File Size Limits

Application programs that are converted to be aware of large files may fail in their attempts to create large
files due to the file-size resource limit. The file-size resource limit is a signed, 32-bit value which limits
maximum file offset to which a process can write to a regular file. Programs that need to write large files
must have their file size limit set to RLIM_INFINITY.

struct rlimit r;

r.rlim_cur = r.rlim_max = RLIM_INFINITY;
setrlimit(RLIMIT FSIZE,&r);

This limit may also be set from the Korn shell by issuing the command:
ulimit -f unlimited

To set this value permanently for a specific user, use the kchused commana:

Example: chuser fsize_hard = -1 root

JFS File Size Limits

The maximum size of a file is ultimately a characteristic of the file system itself, not just the file size limit or
the environment. For the JFS, the maximum file size is determined by the parameters used at the time the
file system was made. For JFS file systems that are enabled for large files, the maximum file size is
slightly less than 64 gigabytes (0xff8400000). For all other JFS file systems, the maximum file size is
2Gb-1 (Ox7fffffff). Attempts to write a file past the maximum file size in any file system format will fail, and
errno will be set to EFBIG.

JFS2 File Size Limits
For the JSF2. the maximun file size is limited by the file system itself.

Linking for Programmers

A link is a connection between a file name and an i-node (hard link) or between file names (symbolic link).
Linking allows access to an i-node (‘\lorking with JES i-nodes” on page 108) from multiple file names.
Directory entries pair file names with i-nodes. File names are easy for users to identify, and i-nodes
contain the real disk addresses of the file’s data. A reference count of all links into an i-node is maintained
in the i_nlink f|eId of the i- node Subroutines that create and destroy links use file names, not file
descrlptors “). Therefore, it is not necessary to open files when
creating a link.

122 writing and Debugging Programs

../../cmds/aixcmds1/chuser.htm

Processes can access and change the contents of the i-node by any of the linked file names. Two kinds of
links exist in this operating system, hard links and symbolic links.

Hard Links

[inK Subroutine that creates hard links.The presence of a hard link guarantees the existence of a file because
a hard link increments the link count in the i_nlink field of the i-node.

Linlink Subroutine that releases links. When all hard links to an i-node are released, the file is no longer
accessible.

The user ID that created the original file owns the file and retains access mode authority over the file.
Otherwise, all hard links are treated equally by the operating system. Hard links must link file names and
i-nodes within the same file system since the i-node number is relative to a single file system.

Hard links always refer to a specific file because the directory entry created by the hard link pairs the new
file name to an i-node.

Example: If the /u/tom/bob file is linked to the /u/jack/foo file, the link count in the i_nlink field of the
foo file is 2. Both hard links are equal. If /u/jack/foo is removed, the file continues to exist by the name
/u/tom/bob and can be accessed by users with access to the tom directory. However, the owner of the file
is jack even though /u/jack/foo was removed. The space occupied by the file is charged to jack’s quota
account. Change file ownership using the khowr subroutine.

Symbolic Links

m Subroutine that creates symbolic links

Symbolic links are implemented as a file that contains a path name. When a process encounters a
symbolic link, the path contained in the symbolic link is prepended to the path the process was searching.
If the path name in the symbolic link is an absolute path name, the process searches from the root
directory for the named file. If the path name in the symbolic link does not begin with a / (slash), the
process interprets the rest of the path relative to the position of the symbolic link. The unlink subroutine
also removes symbolic links.

Symbolic links can traverse file systems because they are treated as regular files by the operating system
rather than as part of the file system structure. The presence of a symbolic link does not guarantee the
existence of the target file because a symbolic link has no effect on the i_nlink field of the i-node.

keadlink Subroutine that reads the contents of a symbolic link. Many subroutines (including the m and ktal
subroutines) follow symbolic paths.
[stai Subroutine created to report on the status of the file containing the symbolic link and does not follow

the link. See the symlink subroutine for a list of subroutines that traverse symbolic links.

Symbolic links are also called soft links because they link to a file by path name. If the target file is
renamed or removed, the symbolic link cannot resolve.

Example: The symbolic link to /u/joe/foo is a file that contains the literal data /u/joe/foo. When the
owner of the foo file removes this file, subroutine calls made to the symbolic link cannot succeed. If the file
owner then creates a new file named foo in the same directory, the symbolic link leads to the new file.
Therefore, the link is considered soft because it is linked to interchangeable i-nodes.

In the Is -l command listing, an 1 in the first position indicates a linked file. In the final column of that
listing, the links between files are represented as Path2 -> Pathl (or Newname -> Oldname).

Chapter 5. File Systems and Directories 123

../../libs/basetrf1/link.htm#HDRA169C1F6
../../libs/basetrf2/unlink.htm#HDRA0949BAB
../../libs/basetrf1/chown.htm#HDRA9F01
../../libs/basetrf2/symlink.htm#HDRA2089B6D
../../libs/basetrf2/readlink.htm#HDRA08791030
../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf2/statx.htm#HDRA1609C70
../../libs/basetrf2/statx.htm#HDRA1609C70

Linlind Subroutine that removes a directory entry. The Path parameter in the subroutine identifies the file to be

disconnected. At the completion of the unlink call, the link count of the i-node is reduced by the value of
1.

temovd Subroutine that also removes a file name by calling either the unlink or rmdir subroutine.

Directory Links

nkdid Subroutine that creates directory entries for new directories, which creates hard links to the i-node
representing the directory

Symbolic links are recommended for creating additional links to a directory. Symbolic links do not interfere
with the . and .. directory entries and will maintain the empty, well-formed directory status. See the

Understanding Directory Links "figure” for a graphic example of the empty, well-formed directory /u/joe/foo
and the i_nlink values.

/u
| 68 | j o e 0
/u/joe
mkdir ("foo", 0666)

68 n 0

n n

235 f 0 o)
/u/joe/foo

235 n 0

68 n n

i_nlink Values

i =68
n_link 3

For i = 68, the n_link value is 3 (/u; /u/joe; /u/joe/foo).

i=235
n_link 2

For i = 235, the n_link value is 2 (/u/joe; /u/joe/foo).

Understanding Directory Links
Emdid or kemovd Remove links to directories

124 writing and Debugging Programs

../../libs/basetrf2/unlink.htm#HDRA0949BAB
../../libs/basetrf2/remove.htm#HDRA244Y99629
../../libs/basetrf1/mkdir.htm#HDRA3IK150GACO
../../cmds/aixcmds4/rmdir.htm#HDRH7G1A0FISH
../../libs/basetrf2/remove.htm#HDRA244Y99629

Using File Descriptors

A file descriptor is an unsigned integer used by a process to identify an open file. Two thousand file
descriptors are available to each process. The open, pipe, creat, and fentl subroutines all generate file
descriptors. File descriptors are generally unique to each process, but they can be shared by child
processes created with a fork subroutine or copied by the fentl, dup, and dup2 subroutines.

File descriptors are indexes to the file descriptor table in the u_block area maintained by the kernel for
each process. The most common ways for processes to obtain file descriptors are through open or creat
operations or through inheritance from a parent process. When a fork operation occurs, the descriptor
table is copied for the child process, which allows the child process equal access to the files used by the
parent process.

System File and File Descriptor Tables

The system file and file descriptor data structures track each process’ access to a file and ensure data
integrity.

Structure Activity and Contents

file descriptor table Translates an index number (file descriptor) in the table to an open file.
File descriptor tables are created for each process and are located in the
u_block area set aside for that process. Each of the entries in a file
descriptor table has two fields: the flags area and the file pointer. The
structure of the file descriptor table is:

struct ufd

{
struct file *fp;
int flags;
}u_ufd[OPEN_MAX]

The close-on-exec (FD_CLOEXEC bit) flag can be set in the file
descriptor table using the fentl subroutine. The dup subroutine copies
one file descriptor entry into another position in the same table. The fork
subroutine creates an identical copy of the entire file descriptor table for a
child process.

system open file table Contains entries for each open file. Two of the most important pieces of
information tracked in a file table entry are the current offset referenced
by all read or write operations to the file and the open mode
(O_RDONLY, O_WRONLY, or O_RDWR) of the file.

The open file data structure contains the current 1/O offset for the file. The
system treats each read/write operation as an implied seek to the current
offset. Thus if x bytes are read or written, the pointer advances x bytes.
The [seel subroutine can be used to reassign the current offset to a
specified location in files that are randomly accessible. Stream-type files
(such as pipes and sockets) do not use the offset because the data in the
file is not randomly accessible.

Managing File Descriptors

Because files can be shared by many users, it is necessary to allow related processes to share a common
offset pointer and have a separate current offset pointer for independent processes that access the same
file. The open file table entry maintains a reference count to track the number of file descriptors assigned
to the file.

Multiple references to a single file can be caused by:

Chapter 5. File Systems and Directories 125

../../libs/basetrf1/lseek.htm#HDRA21595D1

» A separate process opening the file
» Child processes retaining the file descriptors assigned to the parent process
» The fentl or dup subroutine creating copies of the file descriptors

Sharing Open Files

Each open operation creates a system table entry. Individual table entries ensure each process a separate
current 1/O offsets. Independent offsets protect the integrity of the data.

When a file descriptor is duplicated, two processes then share the same offset and interleaving can occur.
Interleaving means that bytes are not read or written sequentially.

Duplicating File Descriptors
There are three ways file descriptors can be duplicated between processes: the dup or dup2 subroutine,
the fork subroutine, and the fentl (file descriptor control) subroutine.

The dup and dup2 Subroutines:

dup Creates a copy of a file descriptor

The duplicate is created at an empty space in the user file descriptor table that contains the original
descriptor. A dup process increments the reference count in the file table entry by 1 and returns the index
number of the file-descriptor where the copy was placed.

dup2 Scans for the requested descriptor assignment and closes the requested file descriptor if it is open

The dup2 subroutine allows the process to designate which descriptor entry the copy will occupy, if a
specific descriptor-table entry is required.

The fork Subroutine:

fork Creates a child process that inherits the file descriptors assigned to the parent process. The child
process then execs a new process. Inherited descriptors that had the close-on-exec flag set by the fentl
subroutine close.

The fentl (File Descriptor Control) Subroutine:
fentl Manipulates file structure and controls open file descriptors.

The fentl subroutine can be used to make the following changes to a descriptor:
* Duplicate a file descriptor (identical to the dup subroutine).

» Get or set the close-on-exec flag.

+ Set nonblocking mode for the descriptor.

» Append future writes to the end of the file (O_APPEND).

* Enable the generation of a signal to the process when it is possible to do I/O.
» Set or get the process ID or the group process ID for SIGIO handling.

* Close all file descriptors.

Preset File Descriptor Values

When the shell runs a program, it opens three files with file descriptors 0, 1, and 2. The default
assignments for these descriptors are:

126 writing and Debugging Programs

0 Represents standard input.
1 Represents standard output.
2 Represents standard error.

These default file descriptors are connected to the terminal, so that if a program reads file descriptor 0 and
writes file descriptors 1 and 2, the program collects input from the terminal and sends output to the
terminal. As the program uses other files, file descriptors are assigned in ascending order.

If /O is redirected using the < (less than) or > (greater than) symbols, the shell’s default file descriptor
assignments are changed. For instance:

prog < FileX > FileY

changes the default assignments for file descriptors 0 and 1 from the terminal to the appropriate files. In
this example, file descriptor 0 now refers to FileX and file descriptor 1 refers to FileY. File descriptor 2

has not been changed. The program does not need to know where its input comes from nor where it is

sent, as long as file descriptor 0 represents the input file and 1 and 2 represent output files.

The following sample program illustrates the redirection of standard output:

#include <fcntl.h>
#include <stdio.h>

void redirect_stdout(char *);

main()
{
printf("Hello world\n"); /*this printf goes to
* standard outputx/
fflush(stdout);
redirect_stdout("foo"); /*redirect standard output*/

printf("Hello to you too, foo\n");
/*printf goes to file foo */
fflush(stdout);
1
void
redirect_stdout(char *filename)
{
int fd;
if ((fd = open(filename,0 CREAT|O_WRONLY,0666)) < 0)
/*open a new file */
{

perror(filename);

exit(1);
close(1); /*close old =/
xstandard output*/
if (dup(fd) !=1) /*dup new fd to

xstandard inputx*/

{
fprintf(stderr,"Unexpected dup failure\n");

exit(1l);

close(fd); /*close original, new fd,*/
* no Tonger needed*/

}

The value for file descriptor 2 can also be reassigned, but this is rarely done.

Within the file descriptor table, file descriptor numbers are assigned the lowest descriptor number available
at the time of a request for a descriptor. However, any value can be assigned within the file descriptor
table by using the dup subroutine.

Chapter 5. File Systems and Directories 127

File Descriptor Resource Limit

The number of file descriptors that can be allocated to a process is governed by a resource limit. The
default value is set in the /etc/security/limits file and is typically 2000 (for compatibility with earlier
releases). The limit can be changed by the ulimit command or the setrlimit subroutine. The maximum
size is defined by the constant OPEN_MAX.

File Creation and Removal

The internal procedures performed by the operating system when creating, opening, or closing files are
described in the following sections.

Creating a File

Different subroutines create specific types of files. They are:

Subroutine Type of File Created
Regular
bped Regular (when the O_CREAT flag is set)
knod Regular, first-in-first-out (FIFO), or special
nkfitd Named pipe (FIFO)
m Unnamed pipe
Eackel Sockets
nkdid Directories
Eymlini Symbolic link

Creating a Regular File (creat, open, or mknod Subroutines)

You use the Ereal subroutine to create a file according to the values set in the Pathname and Mode
parameters. If the file named in the Pathname parameter exists and the process has write permission to
the file, the creat subroutine truncates the file. Truncation releases all data blocks and sets the file size to
0. You can also create new, regular files using the open subroutine with the O_CREAT flag.

Files created with the creat, mkfifd, or mknod subroutine take the access permissions set in the Mode
parameter. Regular files created with the open subroutine take their access modes from the O_CREAT
flag Mode parameter. The LimasH subroutine sets a file-mode creation mask (set of access modes) for
new files created by processes and returns the previous value of the mask.

The permission bits on a newly created file are a result of the reverse of the umask bits ANDed with the
file-creation mode bits set by the creating process. When a new file is created by a process, the operating
system performs the following actions:

» Determines the permissions of the creating process.
* Retrieves the appropriate umask value.
* Reverses the umask value.

» Uses the AND operation to combine the permissions of the creating process with the reverse of the
umask value.

Creating a Special File (mknod or mkfifo Subroutine)

You can use the mknod and mkfifo subroutines to create new special files. The mknod subroutine
handles named pipes (FIFO), ordinary, and device files. It creates an i-node for a file identical to that
created by the creat subroutine. When you use the mknod subroutine, the file-type field is set to indicate
the type of file being created. If the file is a block or character-type device file, the names of the major and
minor devices are written into the i-node.

128 writing and Debugging Programs

../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/basetrf1/pipe.htm#HDRS381F0GACO
../../libs/commtrf2/socket.htm#HDRTP22B0CHER
../../libs/basetrf1/mkdir.htm#HDRA3IK150GACO
../../libs/basetrf2/symlink.htm#HDRA2089B6D
../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/basetrf2/umask.htm#HDRKOE120GACO

The mkfifo subroutine is an interface for the mknod subroutine and is used to create named pipes.
Opening a File

The w subroutine is the first step required for a process to access an existing file. The open
subroutine returns a file descriptor. Reading, writing, seeking, duplicating, setting 1/0 parameters,
determining file status and closing the file all use the file descriptor returned by the open call. The open
subroutine creates entries for a file in the file descriptor table when assigning file descriptors.

The open subroutine:
» Checks for appropriate permissions that allow the process access to the file.

» Assigns a entry in the file descriptor table for the open file. The open subroutine sets the initial
read/write byte offset to 0, the beginning of the file.

The lioctl or ioctix subroutines perform control operations on opened special device files.
Closing a File

When a process no longer needs access to the open file, the klosd subroutine removes the entry for the
file from the table. If more than one file descriptor references the file table entry for the file, the reference
count for the file is decreased by 1, and the close completes. If a file has only 1 reference to it, the file
table entry is freed. Attempts by the process to use the disconnected file descriptor result in errors until
another open subroutine reassigns a value for that file descriptor value. When a process exits, the kernel
examines its active user file descriptors and internally closes each one. This ensures that all files close
before the process ends.

Working with File 1/0

All input and output (I/O) operations use the current file offset information stored in the system file
structure (ESystem File and File Descriptor Tables” on page 128). The current I/O offset designates a byte
offset that is constantly tracked for every open file. It is called the current I/O offset because it signals a
read or write process where to begin operations in the file. The open subroutine resets it to 0. The pointer
can be set or changed using the @ subroutine.

Manipulating the Current Offset

Read and write operations can access a file sequentially. This is because the current 1/O offset of the file
tracks the byte offset of each previous operation. The offset is stored in the system file table.

You can adjust the offset on files that can be randomly accessed, such as regular and special-type files,
using the Iseek subroutine.

[seell Allows a process to position the offset at a designated byte. The Iseek subroutine positions the pointer at
the byte designated by the Offset variable. The Offset value can be calculated from three places in the file
(designated by the value of the Whence variable):

absolute offset
Beginning byte of the file

relative offset
Position of the former pointer

end_relative offset
End of the file

Chapter 5. File Systems and Directories 129

../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/ioctl32.htm#HDRDW73VICHRIS
../../libs/basetrf1/close.htm#HDRA08793A0
../../libs/basetrf1/lseek.htm#HDRA21595D1
../../libs/basetrf1/lseek.htm#HDRA21595D1

The return value for the Iseek subroutine is the current value of the pointer’s position in the file. For
example:

cur_off= 1seek(fd, 0, SEEK CUR);

The Iseek subroutine is implemented in the file table. All following read and write operations use the new
position of the offset as their starting location.

Note: The offset cannot be changed on pipes or socket-type files.

fclead Subroutine that creates an empty space in a file. It sets to zero the number of bytes designated in the
NumberOfBytes variable beginning at the current offset. The fclear subroutine cannot be used if the
O_DEFER flag was set at the time the file was opened.

Reading a File

The kead Subroutine that copies a specified number of bytes from an open file to a specified buffer. The copy
begins at the point indicated by the current offset. The number of bytes and buffer are specified by
the NBytes and Buffer parameters.

The read subroutine:

1. Assures that the FileDescriptor parameter is valid and that the process has read permissions. The
subroutine then gets the file table entry specified by the FileDescriptor parameter.

2. Sets a flag in the file to indicate a read operation is in progress. This locks other processes out of the
file during the operation.

Converts the offset byte value and the value of the NBytes variables into a block address.
Transfers the contents of the identified block into a storage buffer.
Copies the contents of the storage buffer into the area designated by the Buffer variable.

Updates the current offset according to the number of bytes actually read. Resetting the offset assures
that the data is read in sequence by the next read process.

Deducts the number of bytes read from the total specified in the NByte variable.
8. Loops until the number of bytes to be read is satisfied.
9. Returns the total number of bytes read.

ook~ w

N

The cycle completes when the file to be read is empty, the number of bytes requested is met, or a reading
error is encountered during the process.

Errors can occur while the file is being read from disk or in copying the data to the system file space.

It is advantageous for read requests to start at the beginning of data block boundaries and to be multiples
of the data block size. An extra iteration in the read loop can be avoided. If a process reads blocks
sequentially, the operating system assumes all subsequent reads will be sequential too.

During the read operation, the i-node is locked. No other processes are allowed to modify the contents of
the file while a read is in progress. However the file is unlocked immediately on completion of the read
operation. If another process changes the file between two read operations, the resulting data is different,
but the integrity of the data structure is maintained.

The following example illustrates how to use the read subroutine to count the number of null bytes in the
foo file:

#include <fcntl.h>
#include <sys/param.h>

main()

130 writing and Debugging Programs

../../libs/basetrf1/fclear.htm#HDRXKNA0GACO
../../libs/basetrf2/read.htm#HDRJO11350GACO

int fd;

int nbytes;
int nbytes;
int nnulls;
int i,
char buf[PAGESIZE]; /*A convenient buffer size*/
nnulls=0;
if ((fd = open("foo",0 RDONLY)) < 0)
exit();
while ((nbytes = read(fd,buf,sizeof(buf))) > 0)
for (i = 0; i < nbytes; i++)
if (buf[i] == '"\0';

nnulls++;
printf("%d nulls found\n", nnulls);

}
Writing a File

luritd Subroutine that adds the amount of data specified in the NBytes variable from the space designated by the
Buffer variable to the file described by the FileDescriptor variable. It functions similar to the read
subroutine. The byte offset for the write operation is found in the system file table’s current offset.

Sometimes when you write to a file the file does not contain a block corresponding to the byte offset
resulting from the write process. When this happens, the write subroutine allocates a new block. This new
block is added to the i-node information that defines the file. If adding the new block produces an indirect
block position (i_rindirect), the subroutine allocates more than one block when a file moves from direct
to indirect geometry.

During the write operation, the i-node is locked. No other processes are allowed to modify the contents of
the file while a write is in progress. However the file is unlocked immediately on completion of the write
operation. If another process changes the file between two write operations, the resulting data is different,
but the integrity of the data structure is maintained.

The write subroutine loops in a way similar to the read subroutine, logically writing one block to disk for
each iteration. At each iteration, the process either writes an entire block or only a portion of one. If only a
portion of a data block is required to accomplish an operation, the write subroutine reads the block from
disk to avoid overwriting existing information. If an entire block is required, it does not read the block
because the entire block is overwritten. The write operation proceeds block by block until the number of
bytes designated in the NBytes parameter is written.

Delayed Write

You can designate a delayed write process with the O_DEFER flag. Then, the data is transferred to disk
as a temporary file. The delayed write feature caches the data in case another process reads or writes the
data sooner. Delayed write saves extra disk operations. Many programs, such as mail and editors create
temporary files in the directory /tmp and quickly remove them.

When a file is opened with the deferred update (O_DEFER) flag, the data is not written to permanent
storage until a process issues an m subroutine call or a process issues a synchronous write to the file
(opened with O_SYNC flag). The fsync subroutine saves all changes in an open file to disk. See the
subroutine for a description of the O_DEFER and O_SYNC flags.

Truncating Files

The kruncatd or ftruncate subroutines change the length of regular files. The truncating process must
have write permission to the file. The Length variable value indicates the size of the file after the truncation
operation is complete. All measures are relative to the first byte of the file, not the current offset. If the new
length (designated in the Length variable) is less than the previous length, the data between the two is

Chapter 5. File Systems and Directories 131

../../libs/basetrf2/write.htm#HDRCI2270GACO
../../libs/basetrf1/fsync.htm#HDRA164930
../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf2/truncate.htm#HDRA1589227B

removed. If the new length is greater than the existing length, zeros are added to extend the file size.
When truncation is complete, full blocks are returned to the file system, and the file size is updated.

Writing Programs to Use Direct I/O

Beginning in AIX 4.3, an application will be able to use Direct I/O on JFS or JFS2 files. This article is
intended to assist programmers in understanding the intricacies involved with writing programs to take
advantage of this feature.

Direct I/0 vs. Normal Cached 1/O

Normally, the JFS or JFS2 caches file pages in kernel memory. When the application does a file read
request, if the file page is not in memory, the JFS or JFS2 reads the data from the disk into the file cache,
then copies the data from the file cache to the user’s buffer. For application writes, the data is merely
copied from the user’s buffer into the cache. The actual writes to disk are done later.

This type of caching policy can be extremely effective when the cache hit rate is high. It also enables
read-ahead and write-behind policies. Lately, it makes file writes to the asynchronous, allowing the
application to continue processing instead of waiting for I/O requests to complete.

Direct I/O is an alternative caching policy which causes the file dta to be transferred from the disk to/from
the user’s buffer. Direct I/O for files is functionally equivalent to raw 1/O for devices.

Benefits of Direct I/O

The primary benefit of direct I/O is to reduce CPU utilization for file reads and writes by eliminating the
copy from the cache to the user buffer. This can also be a benefit for file data which has a very poor
cache hit rate. If the cache hit rate is low, then most read requests have to go to the disk. Direct I/O can
also benefit applications which must use synchronous writes since these writes have to go to disk. In both
of these cases, CPU usage is reduced since the data copy is eliminated.

A second benefit if direct 1/0O is that it allows applications to avoid diluting the effectiveness of caching of
other files. Any time a file is read or written, that file competes for space in the cache. This may cause
other file data to be pushed out of the cache. If the newly cached data has very poor reuse
characterisitics, the effectiveness of the cache can be reduced. Direct I/O gives applications the ability to
identify files where the normal caching policies are ineffective, thus freeing up more cache space for files
where the policies are effective.

Performance Costs of Direct I/O

Although Direct 1/0 can reduce cpu usage, it typically results in longer wall clock times, especially for
relatively small requests. This penalty is caused by the fundamental differences between normal cached
I/O and Direct 1/O.

Direct I/0 Reads
Every Direct I/0O read causes a synchronous read from disk; unlike the normal cached I/O policy where

read may be satisfied from the cache. This can result in very poor performance if the data was likely to be
in memory under the normal caching policy.

Direct I/0 also bypasses the normal JFS or JFS2 read-ahead algorithms. These algorithms can be
extremely effective for sequential access to files by issuing larger and larger read requests and by
overlapping reads of future blocks with application processing.

Applications can compensate for the loss of JFS or JFS2 read-ahead by issuing larger reads requests. At
a minimum, Direct I/O readers should issue read requests of at least 128k to match the JFS or JFS2
read-ahead characteristics.

Applications can also simulate JFS or JFS2 read-ahead by issuing asynchronous Direct 1/O read-ahead
either by use of multiple threads or by using aio_read.

132 writing and Debugging Programs

Direct I/O Writes
Every direct 1/0O write causes a synchronous write to disk; unlike the normal cached I/O policy where the

data is merely copied and then written to disk later. This fundamental difference can cause a significant
performance penalty for applications which are converted to use Direct I/O.

Conflicting File Access Modes
In order to avoid consistency issues between programs that use Direct I/O and programs that use normal

cached /O, Direct 1/O is an exclusive use mode. If there are multiple opens of a file and some of them are
direct and others are not, the file will stay in its normal cached access mode. Only when the file is open
exclusively by Direct 1/O programs will the file be placed in Direct I/0O mode.

Similarly, if the file is mapped into virtual memory via the shmat or mmap system calls, then file will stay
in normal cached mode.

The JFS or JFS2 will attempt to move the file into Direct I/O mode any time the last conflicting. non-direct
access is eliminated (either by close, munmap, or shmdt). Changing the file from normal mode to Direct
I/O mode can be rather expensive since it requires writing all modified pages to disk and removing all the
file’s pages from memory.

Enabling Applications to use Direct 1/0
Applications enable Direct I/O access to a file by passing the O_DIRECT flag to the fcntl H. This flag is

defined in w Applications must be compiled with _ALL_SOURCE enabled to see the definition of
O_DIRECT.

Offset/Length/Address Alignment Requirements of the Target Buffer

In order for Direct I/O to work efficiently, the request should be suitably conditioned. Applications can query
the offset, length, and address alignment requirements by using the finfo and ffinfo subroutines. When
the FI_DIOCAP command is used, finfo and ffinfo return information in the diocapbuf structure as
described in sys/finfo.h. This structure contains the following fields:

dio_offset Contains the recommended offset alignment for direct I/O writes to files in this file system
dio_max Contains the recommended maximum write length for Direct 1/O writes to files in this system
dio_min Contains the recommended minimum write length for Direct 1/0 writes to files in this file system
dio_align Contains the recommended buffer alignment for Direct 1/O writes to files in this file system

Failure to meet these requirements may cause file reads and writes to use the normal cached model.
Different file systems may have different requirements.

FS Format dio_offset dio_max dio_min dio_align
fixed, 4k blk 4k 2m 4k 4k
fragmented 4k 2m 4k 4k
compressed n/a n/a n/a n/a
big file 128k 2m 128k 4k

Direct I/O Limitations
Direct 1/0 is not supported for files in a compressed file filesystem. Attempts to open these files with
O_DIRECT will be ignored and the files will be accessed with the normal cached I/O methods.

Direct I/0 and Data I/O Integrity Completion

Although Direct 1/O writes are done synchronously, they do not provide synchronized I/O data integrity
completion, as defined by POSIX. Applications which need this feature should use O_DSYNC in addition
O_DIRECT. O_DSYNC guarantees that all of the data and enough of the meta-data (eg. indirect blocks)
have written to the stable store to be able to retrieve the data after a system crash. O_DIRECT only writes
the data; it does not write the meta-data.

Chapter 5. File Systems and Directories 133

../../files/aixfiles/fcntl.h.htm#HDRA142916A
../../libs/basetrf1/open.htm#HDRA1509805

Working with Pipes

Pipes are unnamed objects created to allow two processes to communicate. One process reads and the
other process writes to the pipe file. This unique type of file is also called a first-in-first-out (FIFO) file. The
data blocks of the FIFO are manipulated in a circular queue, maintaining read and write pointers internally
to preserve the FIFO order of data. The PIPE_BUF system variable, defined in the file, designates
the maximum number of bytes guaranteed to be atomic when written to a pipe.

The shell uses unnamed pipes to implement command pipelining. Most unnamed pipes are created by the
shell. The | (vertical) symbol represents a pipe between processes. For example:

s | pr
the output of the i command is printed to the screen.

Pipes are treated as regular files as far is possible. Normally, the current offset information is stored in the
system file table. However, because pipes are shared by processes, the read/write pointers must be
specific to the file, not to the process. File table entries are created by the open subroutine and are unique
to the open process, not to the file. Processes with access to pipes share the access through common
system file table entries.

Using Pipe Subroutines

The m subroutine creates an interprocess channel and returns two file descriptors. File descriptor 0 is
opened for reading. File descriptor 1 is opened for writing. The read operation accesses the data on a
FIFO basis. These two file descriptors are used with kead, Wwritd, and kelase subroutines.

In the following example, a child process is created and sends its process ID back through a pipe:

#include <sys/types.h>
main()
{
int p[2];
char buf[80];
pid_t pid;

}f (pipe(p))

perror("pipe failed");
exit(1)'

1
if ((pid=fork()) == 0)
{
/* in child process =/
close(p[0]); /*close unused read */
*side of the pipe */
sprintf(buf,"%d",getpid());
/*construct data */
/*to send */
write(p[1],buf,strlen(buf)+1);
/*write it out, including
/*null byte */
exit(0);

}

/*in parent process*/
close(p[1]); /*close unused write side
read(p[0] ,buf,sizeof(buf)); /*read the pipex*/
printf("Child process said: %s/n", buf);

/*display the result */
exit(0);

134 writing and Debugging Programs

/*side of pipe *

../../files/aixfiles/limits.h.htm#HDRA139934DA
../../cmds/aixcmds3/ls.htm#HDRGVB310FISH
../../libs/basetrf1/pipe.htm#HDRS381F0GACO
../../libs/basetrf2/read.htm#HDRJO11350GACO
../../libs/basetrf2/write.htm#HDRCI2270GACO
../../libs/basetrf1/close.htm#HDRA08793A0

If a process reads an empty pipe, the process waits until data arrives. If a process writes to a pipe that is
too full (PIPE_BUF), the process waits until space is available. If the write side of the pipe is closed, a
subsequent read operation to the pipe returns an end-of-file.

Two other subroutines that control pipes are the popen and pclosé subroutines.

popen Creates the pipe (using the pipe subroutine) then forks to create a copy of the caller. The child process
decides whether it is supposed to read or write, closes the other side of the pipe, then calls the shell (using
the Execl subroutine) to run the desired process.

The parent closes the end of the pipe it did not use. These closes are necessary to make end-of-file tests
work properly. For example, if a child process intended to read the pipe does not close the write end of the
pipe, it will never see the end of file condition on the pipe, because there is one write process potentially
active.

The conventional way to associate the pipe descriptor with the standard input of a process is:

close(p[1]);
close(0);
dup(p[0]);
close(p[06]);

The close subroutine disconnects file descriptor 0, the standard input. The m subroutine returns a
duplicate of an already open file descriptor. File descriptors are assigned in increasing order and the first
available one is returned. The effect of the dup subroutine is to copy the file descriptor for the pipe (read
side) to file descriptor 0, thus standard input becomes the read side of the pipe. Finally, the previous read
side is closed. The process is similar for a child process to write from a parent.

pclose Closes a pipe between the calling program and a shell command to be executed. Use the pclose
subroutine to close any stream opened with the popen subroutine.

The pclose subroutine waits for the associated process to end, then closes and returns the exist status of
the command. This subroutine is preferable to the close subroutine because pclose waits for child
processes to finish before closing the pipe. Equally important, when a process creates several children,
only a bounded number of unfinished child processes can exist, even if some of them have completed
their tasks. Performing the wait allows child processes to complete their tasks.

Synchronous 1/0

By default, writes to files in JES or JFS2 file systems are asynchronous. However, JFS file systems
support three types of synchronous 1/O. One type is specified by the O_DSYNC open flag. When a file is
opened using the O_DSYNC open mode, the write () system call will not return until the file data and all
file system meta-data required to retrieve the file data are both written to their permanent storage
locations.

Another type of synchronous 1/O is specified by the O_SYNC open flag. In addition to items specified by
O_DSYNC, O_SYNC specifies that the write () system call will not return until all file attributes relative to
the 1/0 are written to their permanent storage locations, even if the attributes are not required to retrieve
the file data.

Before the O_DSYNC open mode existed, AlX applied O_DSYNC semantics to O_SYNC. For binary
compatibility reasons, this behavior can never change. If true O_SYNC behavior is required, then both
O_DSYNC and O_SYNC open flags must be specified. Exporting the XPG_SUS_ENV=0N environment
variable also enables true O_SYNC behavior.

The last type of synchronous /O is specified by the O_RSYNC open flag, and it simply applies the
behaviors associated with O_SYNC or _DSYNC to reads. For files in JFS file systems, only the

Chapter 5. File Systems and Directories 135

../../libs/basetrf1/popen.htm#HDRSK62B0SHAD
../../libs/basetrf1/pclose.htm#HDRA0869583
../../libs/basetrf1/exec.htm#HDRPDR80GACO
../../libs/basetrf1/fcntl.htm#HDRNEM2E0GACO

combination of O_RSYNC | O_SYNC has meaning. It means that the read system call will not return until
the file’s access time is written to its permanent storage location.

File Status

File status information resides in the i-node. The tat subroutines are used to return information on a file.
The stat subroutines report file type, file owner, access mode, file size, number of links, i-node number,
and file access times. These subroutines write information into a data structure designated by the Buffer
variable. The process must have search permission for the directories in the path to the designated file.

stat Subroutine that returns the information about files named by the Path parameter. If the size of the file
cannot be represented in the structure designated by the Buffer variable, stat will fail with the errno set to
EOVERFLOW.

Istat Subroutine that provides information about a symbolic link, and the stat subroutine returns information

about the file referenced by the link. The fstat subroutine returns information from an open file using the
file descriptor.

The lstatfd, fstafs, and ustat subroutines return status information about a file system. The statfs
subroutine returns information about the file system that contains the file specified by the Path parameter.

fstatfs Returns the information about the file system that contains the file associated with the
given file descriptor. The structure of the returned information is described in the
lusr/include/sys/statfs.h file for the statfs and fstatfs subroutines and in the ustat.h
file for the ustat subroutine.

ustat Returns information about a mounted file system designated by the Device variable.
This device identifier is for any given file and can be determined by examining the
st_dev field of the stat structure defined in the /usr/include/sys/stat.h file. The ustat
subroutine is superseded by the statfs and fstatfs subroutines.

Ltimed and utime Also affect file status information. They change the file access and modification time
in the i-node.

File Accessibility

Every file is created with an access mode. Each access mode grants read, write, or execute permission to
users, the user’s group, and all other users.

The access bits on a newly created file are a result of the reverse of the umask bits ANDed with the
file-creation mode bits set by the creating process. When a new file is created by a process, the operating
system performs the following actions:

» Determines the permissions of the creating process
* Retrieves the appropriate umask value
* Reverses the umask value

» Uses the AND operation to combine the permissions of the creating process with the reverse of the
umask value

For example, if an existing file has the 027 permissions bits set, the user is not allowed any permissions.
Write permission is granted to the group. Read, write, and execute access is set for all others. The umask
value of the 027 permissions modes would be 750 (the opposite of the original permissions). When 750 is
ANDed with 666 (the file creation mode bits set by the system call that created the file), the actual
permissions for the file are 640. Another representation of this example is:

027 = _ _ _ _W_ RWX Existing file access mode

750 = RWX R _X _ Reverse (umask) of original
permissions

666 = RW _ RW _ RW_ File creation access mode

136 writing and Debugging Programs

../../libs/basetrf2/statx.htm#HDRA1609C70
../../libs/basetrf2/statfs.htm#HDRA163915C
../../libs/basetrf2/utimes.htm#HDRTK290SHAD

ANDED TO

750 = RWX R_X _ _ _ The umask value

640 =RW _ R _ Resulting file access mode

umask Subroutine that sets and gets the value of the file creation mask.

Ehmad and fchmod Subroutines that change file access permissions.

Becesd Subroutine that investigates and reports on the accessibility mode of the file named in

the Pathname parameter. This subroutine uses the real user ID and the real group ID
instead of the effective user and group ID. Using the real user and group IDs allows
programs with the set-user-ID and set-group-ID access modes to limit access only to
users with proper authorization.

Consider the following example:

$ 1s -1
total 0
-r=S-=X-=-X 1 root system 8290 Jun 09 17:07 special
-rW------- 1 root system 1833 Jun 09 17:07 secrets

$ cat secrets
cat: cannot open secrets

In this example, the user does not have access to the file secrets. However, when the program special is
run and the access mode for the program is set-ulD root, the program can access the file. The program
must use the access subroutine to prevent subversion of system security.

The access subroutine must be used by any set-ulD or set-gID program to forestall this type of intrusion.

Ehowrd Subroutine resets the ownership field of the i-node for the file and clears the previous owner. The new
information is written to the i-node and the process finishes.

The kkhmod subroutine works in similar fashion, but the permission mode flags are changed instead of the
file ownership.

Changing file ownership and access modes are actions that affect the i-node, not the data in the file. The
owner of the process must have root user authority or own the file to make these changes.

JFS File System Layout

A file system is a set of files, directories, and other structures. File systems maintain information and
identify where a file or directory’s data is located on the disk. In addition to files and directories, file
systems contain a boot block, a superblock, bitmaps, and one or more allocation groups. An allocation
group contains disk i-nodes and fragments. Each file system occupies one logical volume.

Boot Block

The boot block occupies the first 4096 bytes of the file system starting at byte offset 0 on the disk. The
boot block is available to start the operating system.

Superblock

The superblock is 4096 bytes in size and starts at byte offset 4096 on the disk. The super- block maintains
information about the entire file system and includes the following fields:

+ Size of the file system
* Number of data blocks in the file system
* A flag indicating the state of the file system

Chapter 5. File Systems and Directories 137

../../libs/basetrf1/chmod.htm#HDRJK52A0GACO
../../libs/basetrf1/access.htm#HDRSL240GACO
../../libs/basetrf1/chown.htm#HDRA9F01
../../libs/basetrf1/chmod.htm#HDRJK52A0GACO

» Allocation group sizes

Allocation Bitmaps

The file system contains two allocation bitmaps:
» The fragment allocation map records the allocation state of each fragment.
» The disk i-node allocation map records the status of each i-node.

Fragments

Many file systems have disk blocks or data blocks. These blocks divide the disk into units of equal size to
store the data in a file or directory’s logical blocks. The disk block may be further divided into fixed-size

allocation units called fragments. Some systems do not allow fragment allocations to span the boundaries
of the disk block. In other words, a logical block cannot be allocated fragments from different disk blocks.

The journaled file system (JFS), however, provides a view of the file system as a contiguous series of
fragments. JFS fragments are the basic allocation unit and the disk is addressed at the fragment level.
Thus, fragment allocations can span the boundaries of what might otherwise be a disk block. The default
JFS fragment size is 4096 bytes, although you can specify smaller sizes. In addition to containing data for
files and directories, fragments also contain disk addresses and data for indirect blocks. ﬁm

Allocation” an page 109 explains how the operating system allocates fragments.
Disk I-Nodes

A logical block contains a file or directory’s data in units of 4096 bytes. Each logical block is allocated
fragments for the storage of its data. Each file and directory has an i-node that contains access
information such as file type, access permissions, owner’s ID, and number of links to that file. These
i-nodes also contain "addresses” for finding the location on the disk where the data for a logical block is
stored.

Each i-node has an array of numbered sections. Each section contains an address for one of the file or
directory’s logical blocks. These addresses indicate the starting fragment and the total number of
fragments included in a single allocation. For example, a file with a size of 4096 bytes has a single
address on the i-node’s array. Its 4096 bytes of data are contained in a single logical block. A larger file
with a size of 6144 bytes has two addresses. One address contains the first 4096 bytes and a second
address contains the remaining 2048 bytes (a partial logical block). If a file has a large number of logical
blocks, the i-node does not contain the disk addresses. Instead, the i-node points to an indirect block
which contains the additional addresses.

Allocation Groups

The set of fragments making up the file system are divided into one or more fixed-sized units of
contiguous fragments. Each unit is an allocation group. The first of these groups begins the file system
and contains a reserved area occupying the first 32 x 4096 bytes of the group. The first 4096 bytes of this
area hold the boot block and the second 4096 bytes hold the file system superblock.

Each allocation group contains a static number of contiguous disk i-nodes which occupy some of the
group’s fragments. These fragments are set aside for the i-nodes at file system creation and extension
time. For the first allocation group, the disk i-nodes occupy the fragments immediately following the
reserved block area. For subsequent groups, the disk i-nodes are found at the start of each group. Disk
i-nodes are 128 bytes in size and are identified by a unique disk i-node number or i-number. The i-number
maps a disk i-node to its location on the disk or to an i-node within its allocation group.

A file system’s allocation groups are described by three sizes:

138 writing and Debugging Programs

» The fragment allocation group size and the disk i-node allocation group size are specified as the
number of fragments and disk i-nodes that exist in each allocation group.

* The default allocation group size is 8 MB.
« Beginning in AIX 4.2, it can be as large as 64 MB.

These three values are stored in the file system superblock, and they are set at file system creation.

Allocation groups allow the JFS resource allocation policies to use effective methods for achieving good
file system 1/O performance. These allocation policies try to cluster disk blocks and disk i-nodes for related
data to achieve good locality for the disk. Files are often read and written sequentially and files within a
directory are often accessed together. Also, these allocation policies try to distribute unrelated data
throughout the file system in an attempt to minimize free space fragmentation.

Using File System Subroutines

The most used file system subroutines are:

Escntl Controls file system control operations
m, getfsspec, getfsfile, getfstype, setfsent, or endfsent
Obtain information about a file system

[seeld Moves the read-write pointer
mntetl Returns mount status information
lmouni or mount Make a file system ready for use
@, fstsfs, or ustat Report file system statistics

Updates file systems to disk

Other subroutines are designed for use on virtual file systems (VFS):

m, getvfsbytype, getvfsbyname, getvfsbyflag, sevfsent, or endvfsent
Retrieve a VFS entry
bmount or uvmount Remove VFS from the file tree

JFS2 File System Layout

A file system is a set of files, directories and other structures. The file systems maintain information and
identify where the data is located on the disk for a file or directory. In addition to files and directories a
JFS2 file system contains a superblock, allocation maps and one or more allocation groups. An allocation
group contains disk inodes and extents. Each file system occupies one logical volume.

Superblock

The superblock is 4096 bytes in size and starts at byte offset 32768 on the disk. The superblock maintains
information about the entire file system and includes the following fields:

+ Size of the file system

* Number of data blocks in the file system

» A flag indicating the state of the file system
» Allocation group sizes

» File system block size

Allocation Maps
The file system contains two allocation maps:
* The inode allocation map records the location and allocation of all inodes in the file system.

Chapter 5. File Systems and Directories 139

../../libs/basetrf1/fscntl.htm#HDRA5F0173
../../libs/basetrf1/getfsent.htm#HDRA244Y994C2
../../libs/basetrf1/lseek.htm#HDRA21595D1
../../libs/basetrf1/mntctl.htm#HDRISL60MARC
../../libs/basetrf2/vmount.htm#HDRIO2200GACO
../../libs/basetrf2/statfs.htm#HDRA163915C
../../libs/basetrf2/sync.htm#HDRA0949B75
../../libs/basetrf1/getvfsent.htm#HDRA244Y99599
../../libs/basetrf2/umount.htm#HDRYNQ160GACO

» The block allocation map records the allocation state of each file system block.

Disk I-Nodes

A logical block contains a file or directory’s data in units of file system blocks. Each logical block is
allocated file system blocks for the storage of its data. Each file and directory has an i-node that contains
access information such as file type, access permissions, owner’s ID, and number of links to that file.
These i-nodes also contain a “B+-tree” for finding the location on the disk where the data for a logical
block is stored.

Allocation Groups

Allocation groups divide the space on a file system into chunks. Allocation groups are used for heuristics
only. Allocation groups allow JFS2 resource allocation policies to use well known methods for achieving
good 1/O performance. First, the allocation policies try to cluster disk blocks and disk inodes for related
data to achieve good locality for the disk. Files are often read and written sequentially and the files within
a directory are often accessed together. Second, the allocation policies try to distribute unrelated data
throughout the file system in order to accomodate disk locality.

Alocation groups within a file system are identified by a zero-based allocation group index, the allocation
group number.

Allocation Group Sizes

Allocation group sizes must be selected which yield allocation groups that are sufficiently large to provide
for contiguous resource allocation over time. Allocation groups are limited to a maximum number of 128
groups. Additionally, the minimum allocation group size is 8192 file system blocks.

Partial Allocation Groups

A file system whose size is not a multiple of the allocation group size will contain a partial allocation group;
the last allocation group of the file system is not fully covered by disk blocks. This partial allocation group
will be treated as a complete allocation group, except the non-existant disk blocks will be marked as
allocated in the block allocation map.

heuristics
Relating to or using a problem-solving technique in which the most appropriate solution of several
found by alternative methods is selected at successive stages of a program for use in the next
step of the program.

Using File System Subroutines
The most used file system subroutines are:
Escnti Controls file system control operations

betfseni, getfsspec, getfsfile, getfstype, setfsent, or endfsent
Obtain information about a file system

Iseel Moves the read-write pointer
mntcti Returns mount status information
kmouni or mount Make a file system ready for use
Etatfd, fstsfs, or ustat Report file system statistics
Eynd Updates file systems to disk

Other subroutines are designed for use on virtual file systems (VFS):

W, getvisbytype, getvfsbyname, getvfsbyflag, sevfsent, or endvfsent
Retrieve a VFS entry
bmound or uvmount Remove VFS from the file tree

140 writing and Debugging Programs

../../libs/basetrf1/fscntl.htm#HDRA5F0173
../../libs/basetrf1/getfsent.htm#HDRA244Y994C2
../../libs/basetrf1/lseek.htm#HDRA21595D1
../../libs/basetrf1/mntctl.htm#HDRISL60MARC
../../libs/basetrf2/vmount.htm#HDRIO2200GACO
../../libs/basetrf2/statfs.htm#HDRA163915C
../../libs/basetrf2/sync.htm#HDRA0949B75
../../libs/basetrf1/getvfsent.htm#HDRA244Y99599
../../libs/basetrf2/umount.htm#HDRYNQ160GACO

Creating New File System Types

If it is necessary to create a new type of file system, file system helpers and mount helpers must be
created. The following sections provide information about the implementation specifics and execution
syntax of file system and mount helpers.

File System Helpers

To enable support of multiple file system types, most file system commands do not contain the code that
communicates with individual file systems. Instead, the commands collect parameters, file system names,
and other information not specific to one file system type and then pass all this information to a back-end
program (the helper).

The back end understands specific information about the relevant file system type and does the detail
work of communicating with the file system. Back-end programs used by file system commands are known
as file system and mount helpers.

To determine the appropriate file system helper, the front-end command looks for a helper under the
directory /sbin/helpers/vistype/command, where vistype matches the file system type found in the /etc/vfs
file and command matches the name of the command being executed. The flags passed to the front-end
command are passed to the file system helper.

There is one file system helper which needs to be provided that does not match a command name. It is
called fstype. This helper is used to identify if a specified logical volume contains a file system of the
vfstype of the helper. The helper should return 0 if the logical volume does not contain a file system of its
type. The helper should return 1 if the logical volume does contain a file system of its type and the file
system does not need a separate device for a log. The helper should return 2 if the logical volume does
contain a file system of its type and the file system does need a separate device for a log. If the -l Ifag is
specified, the fstype helper should check for a log of its file system type on the specified logical volume. A
return value of 0 indicates the logical volume does not contain a log while a return value of 1 indicates the
logical volume does contain a log.

Obsolete File System Helper mechanism

This section describes the obsolete File System helper mechanism which was used on previous versions
of AIX. This mechanism is still available but should not be used anymore.

File System Helper Operations

The following table lists the possible operations requested of a helper in the /usr/include/fshelp.h file:

5
c
(]

Helper Operations
#define FSHOP_NULL
#define FSHOP_CHECK
#define FSHOP_CHGSIZ
#define FSHOP_FINDATA
#define FSHOP_FREE
#define FSHOP_MAKE
#define FSHOP_REBUILD
#define FSHOP_STATFS
#define FSHOP_STAT
#define FSHOP_USAGE
#define FSHOP_NAMEI
#define FSHOP_DEBUG

- =2 O 00N O~ WN-—=O

However, the JFS file system supports only the following operations:

Chapter 5. File Systems and Directories 141

Operation Value Corresponding Command
#define FSHOP_CHECK 1 [scd
#define FSHOP_CHGSIZ 2 Ehfd
#define FSHOP_MAKE 5 hwtd
#define FSHOP STATFS 7 fd

#define FSHOP_NAMEI 10 k4

Mount Helpers

The mount command is a front-end program that uses a helper to communicate with specific file systems.
Helper programs for the mountl and umount (or unmount) commands are called mount helpers.

Like other file system-specific commands, the mount command collects the parameters and options given
at the command line and interprets that information within the context of the file system configuration
information found in the letc/filesystemd file. Using the information in the /etc/filesystems file, the
command invokes the appropriate mount helper for the type of file system involved. For example, if the
user enters:

mount /test

the mount command checks the /etc/filesystems file for the stanza that describes the /test file system.
From the /etc/filesystems file, the mount command determines that the /test file system is a remote
NFS mount from the node named hostl. The mount command also notes any options associated with the
mount.

An example /etc/filesystems file stanza is:

/test:
dev = /export
vfs = nfs
nodename = hostl
options = ro,fg,hard,intr

The file system type (nfs in our example) determines which mount helper to invoke. The command
compares the file system type to the first fields in the [etc/vtd file. The field that matches will have the
mount helper as its third field.

Major Control Block Header Files

142 writing and Debugging Programs

../../cmds/aixcmds2/fsck.htm#HDRA10192C87
../../cmds/aixcmds1/chfs.htm#HDRA3059B2
../../cmds/aixcmds3/mkfs.htm#HDRA1019296C
../../cmds/aixcmds2/df.htm#HDRA10192B83
../../cmds/aixcmds2/ff.htm#HDRA1529778
../../cmds/aixcmds3/mount.htm#HDRA1019286A
../../cmds/aixcmds5/umount.htm#HDRA10192813
../../files/aixfiles/filesystems.htm#HDRA1249CF
../../files/aixfiles/vfs.htm#HDRA12491ED

Chapter 6. Floating-Point Exceptions

This chapter provides information about floating-point exceptions and how your programs can detect and
handle them.

The Institute of Electrical and Electronics Engineers (IEEE) defines a standard for floating-point exceptions
called the IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754). This standard defines five types
of floating-point exception that must be signaled when detected:

* Invalid operation
» Division by zero
* Overflow

* Underflow

* Inexact calculation

When one of these exceptions occurs in a user process, it is signaled either by setting a flag or taking a
trap. By default, the system sets a status flag in the Floating-Point Status and Control registers (FPSCR),
indicating the exception has occurred. Once the status flags are set by an exception, they are cleared only
when the process clears them explicitly or when the process ends. The operating system provides
subroutines to query, set, or clear these flags.

The system can also cause the floating-point exception signal (SIGFPE) to be raised if a floating-point
exception occurs. Because this is not the default behavior, the operating system provides subroutines to
change the state of the process so the signal is enabled. When a floating-point exception raises the
SIGFPE signal, the process terminates and produces a core file if no signal-handler subroutine is present
in the process. Otherwise, the process calls the signal-handler subroutine.

Floating-Point Exception Subroutines

Floating-point exception subroutines can be used to:
* Change the execution state of the process

* Enable the signaling of exceptions

» Disable exceptions or clear flags

» Determine which exceptions caused the signal

» Test the exception sticky flags

The following subroutines are provided to accomplish these tasks:

Test the exception sticky flags
Enable the signaling of exceptions
Test the exception sticky flags

Determines which exceptions caused the signal
Disables exceptions or clear flags

Changes the execution state of the process
Tests the exception sticky flags

Installs signal handler

© Copyright IBM Corp. 1997, 2001 143

../../libs/basetrf1/fp_invalid_op.htm#HDRFE5220SHAD
../../libs/basetrf1/fp_invalid_op.htm#HDRFE5220SHAD
../../libs/basetrf1/fp_any_enable.htm#HDROB5280SHAD
../../libs/basetrf1/fp_any_enable.htm#HDROB5280SHAD
../../libs/basetrf1/fp_invalid_op.htm
../../libs/basetrf1/fp_invalid_op.htm
../../libs/basetrf1/fp_iop_snan.htm
../../libs/basetrf1/fp_iop_snan.htm
../../libs/basetrf1/fp_iop_snan.htm
../../libs/basetrf1/fp_iop_snan.htm
../../libs/basetrf1/fp_iop_snan.htm
../../libs/basetrf1/fp_iop_snan.htm
../../libs/basetrf1/fp_iop_snan.htm
../../libs/basetrf1/fp_iop_snan.htm
../../libs/basetrf1/fp_iop_snan.htm
../../libs/basetrf1/fp_invalid_op.htm
../../libs/basetrf1/fp_sh_info.htm#HDRA206C11E4
../../libs/basetrf1/fp_sh_info.htm#HDRA206C11E4
../../libs/basetrf1/fp_trap.htm#HDRA206C1197
../../libs/basetrf1/fp_invalid_op.htm#HDRFE5220SHAD
../../libs/basetrf2/sigaction.htm#HDRA5F01CB

Floating-Point Trap Handler Operation

To generate a trap, a program must change the execution state of the process using the fp_trap
subroutine and enable the exception to be trapped using the fp_enable or fp_enable_all subroutine.

Changing the execution state of the program may slow performance because floating-point trapping
causes the process to execute in serial mode.

When a floating-point trap occurs, the SIGFPE signal is raised. By default, the SIGFPE signal causes the
process to terminate and produce a core file. To change this behavior, the program must establish a signal
handler for this signal. See the kigactior, kigved, or kignal subroutines for more information on signal
handlers.

Exceptions: Disabled and Enabled Comparison

Refer to the following lists for an illustration of the differences between the disabled and enabled
processing states and the subroutines that are used.

Exceptions-Disabled Model
The following subroutines test exception flags in the disabled processing state:

- fp_any_xcp

» fp_clir_flag

» fp_divbyzero
» fp_inexact

» fp_invalid_op
» fp_iop_convert
» fp_iop_infdinf
o fp_iop_infmazr
» fp_iop_infsi

« fp_iop_invemp
» fp_iop_snan

« fp_iop_sqrt

» fp_iop_vxsoft
» fp_iop_zrdzr
* fp_overflow

* fp_underflow

Exceptions-Enabled Model
The following subroutines function in the enabled processing state:

fp_enable or fp_enable_all Enable the signaling of exceptions

fp_sh_info Determines which exceptions caused the signal
fp_sh_set_stat Disables exceptions or clear flags

fp_trap Changes the execution state of the process
sigaction Installs signal handler

Imprecise Trapping Modes

Some systems have imprecise trapping modes. This means the hardware can detect a floating-point
exception and deliver an interrupt, but processing may continue while the signal is delivered. As a result,
the instruction address register (IAR) is at a different instruction when the interrupt is delivered.

144 writing and Debugging Programs

../../libs/basetrf2/sigaction.htm#HDRA5F01CB
../../libs/basetrf2/sigaction.htm#HDRA5F01CB
../../libs/basetrf2/sigaction.htm#HDRA5F01CB

Imprecise trapping modes cause less performance degradation than precise trapping mode. However,
some recovery operations are not possible, because the operation that caused the exception cannot be
determined or because subsequent instruction may have modified the argument that caused the exception.

To use imprecise exceptions, a signal handler must be able to determine if a trap was precise or
imprecise.

Precise Traps

In a precise trap, the instruction address register (IAR) points to the instruction that caused the trap. A
program can modify the arguments to the instruction and restart it, or fix the result of the operation and
continue with the next instruction. To continue, the IAR must be incremented to point to the next
instruction.

Imprecise Traps

In an imprecise trap, the 1AR points to an instruction beyond the one that caused the exception. The
instruction to which the 1AR points has not been started. To continue execution, the signal handler does
not increment the 1AR.

To eliminate ambiguity, the trap_mode field is provided in the M structure. This field specifies the
trapping mode in effect in the user process when the signal handler was entered. This information can
also be determined by examining the Machine Status register (MSR) in the mstsave structure.

The m subroutine allows a floating-point signal handler to determine if the floating-point exception
was precise or imprecise.

Note: Even when precise trapping mode is enabled some floating-point exceptions may be imprecise
(such as operations implemented in software). Similarly, in imprecise trapping mode some exceptions
may be precise.

When using imprecise exceptions, some parts of your code may require that all floating-point exceptions
are reported before proceeding. The fp_flush_imprecisd subroutine is provided to accomplish this. It is
also recommended that the ﬁ subroutine be used to register the fp_flush_imprecise subroutine to
run at program exit. Running at exit ensures that the program does not exit with unreported imprecise
exceptions.

Hardware-Specific Subroutines

Some systems have hardware instructions to compute the square root of a floating-point number and to
convert a floating-point number to an integer. Models not having these hardware instructions use software
subroutines to do this. Either method can cause a trap if the invalid operation exception is enabled. The
software subroutines report, through the fp_sh_info subroutine, that an imprecise exception occurred,
because the IAR does not point to a single instruction that can be restarted to retry the operation.

Example of a Floating-Point Trap Handler

/*

* This code demonstates a working floating-point exception
* trap handler. The handler simply identifies which

* floating-point exceptions caused the trap and return.
* The handler will return the default signal return

* mechanism Tongjmp().

*/

#include <signal.h>

#include <setjmp.h>

#include <fpxcp.h>

#include <fptrap.h>

#include <stdlib.h>

#include <stdio.h>

Chapter 6. Floating-Point Exceptions 145

../../libs/basetrf1/fp_sh_info.htm#HDRA206C11E4
../../libs/basetrf1/fp_sh_info.htm#HDRA206C11E4
../../libs/basetrf1/fp_flush_imprecise.htm#HDRC349D73103JBAU
../../libs/basetrf1/exit.htm#HDRA087913E7

#define EXIT BAD -1
#define EXIT_GOOD O

/*

* Handshaking variable with the signal handler. If zero,
* then the signal hander returns via the default signal
* return mechanism; if non-zero, then the signal handler
* returns via Tongjmp.

*/

static int fpsigexit;

#define SIGRETURN_EXIT 0

#define LONGJUMP_EXIT 1

static jmp_buf jump_buffer; /* jump buffer =/
#define JMP_DEFINED 0 /* setjmp rc on initial call */
#define IMP_FPE 2 /* setjmp rc on return from */

/* signal handler =/
/*
* The fp_list structure allows text descriptions
* of each possible trap type to be tied to the mask
* that identifies it.

*/
typedef struct
{
fpflag_t mask;
char *text;
} fp_list_t;
/* TEEE required trap types =/
fp_list_t
trap_list[] =
{
{ FP_INVALID, "FP_INVALID"},
{ FP_OVERFLOW, "FP_OVERFLOW"},
{ FP_UNDERFLOW, "FP_UNDERFLOW"},
{ FP_DIV_BY ZERO, "FP_DIV_BY ZER0"},
{ FP_INEXACT, "FP_INEXACT"}

bs
/* INEXACT detail list -- this is an system extension x/

fp_list_t
detail_list[] =
{

FP_INV_SNAN, "FP_INV_SNAN" } ,
FP_INV_ISI, "FP_INV_ISI" } ,
FP_INV_IDI, "FP_INV_IDI" } ,
FP_INV_zDZ, "FP_INV_ZDZ" } ,
FP_INV_IMZ, "FP_INV_IMZ" } ,
FP_INV_CMP, "FP_INV_CMP" } ,
FP_INV_SQRT, "FP_INV_SQRT" } ,
FP_INV CVI, "FP_INV CVI" } ,
FP_INV_VXSOFT, "FP_INV_VXSOFT" }

B e e e e e R

}s
/*
* the TEST_IT macro is used in main() to raise
* an exception.
*/
#define TEST_IT(WHAT, RAISE_ARG)
{
puts(strcat("testing: ", WHAT));
fp_clr_flag(FP_ALL_XCP);
fp_raise_xcp(RAISE_ARG);

— -

146 writing and Debugging Programs

* NAME: my_div

* FUNCTION: Perform floating-point division.
*/
double
my_div(double x, double y)
{
return x / y;
}
/*
NAME: sigfpe_handler

FUNCTION: A trap handler that is entered when
a floating-point exception occurs. The
function determines what exceptions caused
the trap, prints this to stdout, and returns
to the process which caused the trap.

NOTES: This trap handler can return either via the

default return mechanism or via Tongjmp().

The global variable fpsigexit determines which.

When entered, all floating-point traps are
disabled.

This sample uses printf(). This should be used
with caution since printf() of a floating-
point number can cause a trap, and then
another printf() of a floating-point number
in the signal handler will corrupt the static
buffer used for the conversion.
OQUTPUTS: The type of exception that caused
the trap.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*/
static void
sigfpe_handler(int sig,
int code,
struct sigcontext *SCP)
{
struct mstsave * state = &SCP->sc_jmpbuf.jmp_context;
fp_sh_info_t f1t_context; /* structure for fp_sh_info()
/* call */
int i; /* loop counter =*/
extern int fpsigexit; /* global handshaking variable */
extern jmp_buf jump_buffer [* */

/*

Determine which floating-point exceptions caused

the trap. fp_sh_info() is used to build the floating signal
handler info structure, then the member

f1t_context.trap can be examined. First the trap type is
compared for the IEEE required traps, and if the trap type
is an invalid operation, the detail bits are examined.

* % X X X %

*/

fp_sh_info(SCP, &f1t_context, FP_SH _INFO SIZE);

static void
sigfpe_handler(int sig,
int code,
struct sigcontext *SCP)
{
struct mstsave * state = &SCP->sc_jmpbuf.jmp_context;
fp_sh_info_t f1t_context; /* structure for fp_sh_info()

Chapter 6. Floating-Point Exceptions

147

[* call */
int i; /* loop counter =*/
extern int fpsigexit; /* global handshaking variable */
extern jmp_buf jump buffer; /x x/

/*

Determine which floating-point exceptions caused

the trap. fp_sh_info() is used to build the floating signal
handler info structure, then the member

f1t_context.trap can be examined. First the trap type is
compared for the IEEE required traps, and if the trap type
is an invalid operation, the detail bits are examined.

* Ok kX X X

*/

fp_sh_info(SCP, &f1t_context, FP_SH_INFO SIZE);
for (i = 0; i < (sizeof(trap_list) / sizeof(fp_list t)); i++)

if (f1t_context.trap & trap_Tlist[i].mask)
(void) printf("Trap caused by %s error\n", trap_list[i].text);
}
if (f1t_context.trap & FP_INVALID)

{
for (i = 0; 1 < (sizeof(detail_Tist) / sizeof(fp_list_t)); i++)

{
if (f1t_context.trap & detail Tlist[i].mask)

(void) printf("Type of invalid op is %s\n", detail_Tlist[i].text);
1

}
/* report which trap mode was in effect */

switch (f1t_context.trap_mode)
{
case FP_TRAP_OFF:
puts("Trapping Mode is OFF");
break;

case FP_TRAP_SYNC:
puts("Trapping Mode is SYNC");
break;

case FP_TRAP_IMP:
puts("Trapping Mode is IMP");
break;

case FP_TRAP_IMP_REC:
puts("Trapping Mode is IMP_REC");
break;

default:

puts("ERROR: Invalid trap mode");

}
if (fpsigexit == LONGJUMP_EXIT)

{

/*
Return via longjmp. In this instance there is no need to
clear any exceptions or disable traps to prevent
recurrence of the exception, because on return the
process will have the signal handler's floating-point
state.

* Ok kX X

*/
Tongjmp(jump_buffer, JMP_FPE);
}

else

{
/*

* Return via default signal handler return mechanism.

148 writing and Debugging Programs

In this case you must take some action to prevent
recurrence of the trap, either by clearing the
exception bit in the fpscr or by disabling the trap.
In this case, clear the exception bit.

The fp_sh_set_stat routine is used to clear

the exception bit.

* % % 3k k%

*/
fp_sh_set_stat(SCP, (flt_context.fpscr & ((fpstat_t) 'f1t_context.trap)));

~
*

Increment the iar of the process that caused the trap,
to prevent re-execution of the instruction.

The FP_IAR_STAT bit in flt_context.flags indicates if
state->iar points to an instruction that has Togically
started. If this bit is true, state->iar points to

an operation that has started and will cause another
exception if it runs again. In this case you want to
continue execution and ignore the results of that
operation, so the iar is advanced to point to the

next instruction. If the bit is false, the iar already
points to the next instruction that must run.

L S R R R

*
~

if (f1t_context.flags & FP_IAR STAT)

{
puts("Increment IAR");
state->jar += 4;

1
1
return;
}
/*
* NAME: main

* FUNCTION: Demonstrate the sigfpe_handler trap handler.

*/
int
main(void)
{
struct sigaction response;
struct sigaction old_response;
extern int fpsigexit;
extern jmp_buf jump_buffer;
int jump_rc;
int trap_mode;
double argl, arg2, r;

/*

Set up for floating-point trapping. Do the following:
1. Clear any existing floating-point exception flags.
2. Set up a SIGFPE signal handler.

3. Place the process in synchronous execution mode.
4. Enable all floating-point traps.

* Ok ok X X

*/

fp_clr_flag(FP_ALL_XCP);

(void) sigaction(SIGFPE, NULL, &old_response);

(void) sigemptyset(&response.sa_mask);
response.sa_flags = FALSE;

response.sa_handler = (void (*)(int)) sigfpe_handler;
(void) sigaction(SIGFPE, &response, NULL);
fp_enable_all();

Chapter 6. Floating-Point Exceptions 149

/*

Demonstate trap handler return via default signal handler
return. The TEST_IT macro will raise the floating-point
exception type given in its second argument. Testing

is done in this case with precise trapping, because

it is supported on all platforms to date.

* %k ok X X

*
/
trap_mode = fp_trap(FP_TRAP_SYNC);
if ((trap_mode == FP_TRAP_ERROR) ||
(trap_mode == FP_TRAP_UNIMPL))
{
printf("ERROR: rc from fp_trap is %d\n",
trap_mode) ;
exit(-1);
}

(void) printf("Default signal handler return: \n");
fpsigexit = SIGRETURN_EXIT;

TEST IT("div by zero", FP_DIV BY ZERO);
TEST IT("overflow", FP_OVERFLOMW);
TEST IT("underflow", FP_UNDERFLOW);
TEST IT("inexact", FP_INEXACT);

TEST_IT("signaling nan", FP_INV_SNAN);
TEST_IT("INF - INF", FP_INV_ISI);
TEST_IT("INF / INF", FP_INV_IDI);
TEST IT("ZERO / ZERO", FP_INV_ZDZ);
TEST_IT("INF = ZERO", FP_INV_IMZ);
TEST_IT("invalid compare", FP_INV_CMP);
TEST_IT("invalid sqrt", FP_INV_SQRT);

TEST_IT("invalid coversion", FP_INV_CVI);
TEST IT("software request", FP_INV_VXSOFT);
/*

* Next, use fp_trap() to determine what the
the fastest trapmode available is on

this platform.

* ok

*/
trap_mode = fp_trap(FP_TRAP_FASTMODE);
switch (trap_mode)

case FP_TRAP_SYNC:
puts("Fast mode for this platform is PRECISE");
break;

case FP_TRAP_OFF:
puts("This platform dosn't support trapping");
break;
case FP_TRAP_IMP:
puts("Fast mode for this platform is IMPRECISE");
break;
case FP_TRAP_IMP_REC:
puts("Fast mode for this platform is IMPRECISE RECOVERABLE");
break;
default:
printf("Unexpected return code from fp_trap(FP_TRAP_FASTMODE): %d\n",
trap_mode);
exit(-2);
}
/*
* if this platform supports imprecise trapping, demonstate this.
*
/

trap_mode = fp_trap(FP_TRAP_IMP);
if (trap_mode != FP_TRAP_UNIMPL)
{

150 writing and Debugging Programs

puts("Demonsrate imprecise FP execeptions");
argl = 1.2;

arg2 = 0.0;

r = my_div(argl, arg2);
fp_flush_imprecise();

/* demonstate trap handler return via longjmp().
*/

(void) printf("Tongjmp return: \n");
fpsigexit = LONGJUMP_EXIT;
jump_rc = setjmp(jump_buffer);

switch (jump_rc)

{
case JMP_DEFINED:
(void) printf("setjmp has been set up; testing ...\n");
TEST_IT("div by zero", FP_DIV_BY_ZERO);
break;

case JMP_FPE:

(void) printf("back from signal handler\n");

/*
Note that at this point the process has the floating-
point status inherited from the trap handler. If the
trap hander did not enable trapping (as the example
did not) then this process at this point has no traps
enabled. We create a floating-point exception to
demonstrate that a trap does not occur, then re-enable
traps.

L T

*

/

(void) printf("Creating overflow; should not trap\n");
TEST_IT("Overflow", FP_OVERFLOW);

fp_enable_all();

break;

default:
(void) printf("unexpected rc from setjmp: %d\n", jump_rc);
exit (EXIT_BAD);

}
exit(EXIT_GOOD);
}

Chapter 6. Floating-Point Exceptions

151

152 writing and Debugging Programs

Chapter 7. Input and Output Handling

This chapter provides an introduction to programming considerations for input and output handling and the
input and output handling (I/O) subroutines.

The input and output (I/O) library subroutines can send data to or from either devices or files. The system
treats devices as if they were 1/O files. For example, you must also open and close a device just as you
do a file.

Some of the subroutines use standard input and standard output as their input and output channels. For
most of the subroutines, however, you can specify a different file for the source or destination of the data
transfer. For some subroutines, you can use a file pointer to a structure that contains the name of the file;
for others, you can use a file descriptor (that is, the positive integer assigned to the file when it is opened).

The 1/0O subroutines stored in the C Library (libc.a) provide stream I/O. To access these stream 1/O
subroutines, you must include the stdio.h file using the following statement:

#include <stdio.h>

Some of the 1/O library subroutines are macros defined in a header file and some are object modules of
functions. In many cases, the library contains a macro and a function that do the same type of operation.
Consider the following when deciding whether to use the macro or the function:

* You cannot set a breakpoint for a macro using the dbx program.

* Macros are usually faster than their equivalent functions because the preprocessor replaces the macros
with actual lines of code in the program.

* Macros result in larger object code after being compiled.
» Functions can have side effects to avoid.

The files, commands, and subroutines used in I/O handling provide the following interfaces:

Low-level (m Basic open and close functions for files and devices.
)

Stream (w Read and write 1/O for pipes and FIFOs.

Terminal (m Formatted output and buffering.

Interfaces” on page 154)

Asynchronous Concurrent I/O and processing.

(LAsynchronous /Ol

Interfaces” on page 156)

Input Language (& ing The lex and yacc commands generate a lexical analyzer and a parser program for
i I interpreting /0.

s

Low-Level I/0 Interfaces

Low-level I/O interfaces are direct entry points into a kernel, providing functions such as opening files,
reading to and writing from files, and closing files.

The lind command provides the interface that allows one line from standard input to be read and the
following subroutines provide other low-level I/O functions:

bped, openx, or creat Prepare a file, or other path object, for reading and
writing by means of an assigned file descriptor

© Copyright IBM Corp. 1997, 2001 153

../../cmds/aixcmds3/line.htm#HDRA1079141B
../../libs/basetrf1/open.htm#HDRA1509805

E, readx, readv, or readvx Read from an open file descriptor
m, writex, writev, or writevx Write to an open file descriptor
Elosd Relinquish a file descriptor

The open and creat subroutines set up entries in three system tables. A file descriptor indexes the first
table, which functions as a per process data area that can be accessed by read and write subroutines.
Each entry in this table has a pointer to a corresponding entry in the second table.

The second table is a per-system data base, or file table, that allows an open file to be shared among
several processes. The entries in this table indicate if the file was open for reading, writing, or as a pipe,
and when the file was closed. There is also an offset to indicate where the next read or write will take
place and a final pointer to indicates entry to the third table, which contains a copy of the file’s i-node.

The file table contains entries for every instance of an open or create subroutine on the file, but the i-node
table contains only one entry for each file.

Note: While processing an open or creat subroutine for a special file, the system always calls the
device’s open subroutine to allow any special processing (such as rewinding a tape or turning on a
data-terminal-ready modem lead). However, the system uses the close subroutine only when the last
process closes the file (that is, when the i-node table entry is deallocated). This means that a device
cannot maintain or depend on a count of its users unless an exclusive-use device (that prevents a
device from being reopened before its closed) is implemented.

When a read or write operation takes place, the user’'s arguments and the file table entry are used to set
up the following variables:

» User address of the I/O target area
* Byte-count for the transfer
* Current location in the file

If the file referred to is a character-type special file, the appropriate read or write subroutine is called to
transfer data and update the count and current location. Otherwise, the current location is used to
calculate a logical block number in the file.

If the file is an ordinary file, the logical block number must be mapped to a physical block number. A
block-type special file need not be mapped. The resulting physical block number is used to read or write
the appropriate device.

Block device drivers can provide the ability to transfer information directly between the user’s core image
and the device in blocks as large as the caller requests without using buffers. The method involves setting
up a character-type special file corresponding to the raw device and providing read and write subroutines
to create a private, non-shared buffer header with the appropriate information. If desired, separate open
and close subroutines can be provided, and a special-function subroutine can be called for magnetic tape.

Stream |/O Interfaces

Stream 1/O interfaces provide data as a stream of bytes that is not interpreted by the system, which offers
more efficient implementation for networking protocols than character 1/0O processing. There are no record
boundaries when reading and writing using stream 1/O. For example, a process reading 100 bytes from a
pipe cannot tell if the process that wrote the data into the pipe did a single write of 100 bytes, or two
writes of 50 bytes, or even if the 100 bytes came from two different processes.

Stream 1/Os can be pipes or FIFOs, first in, first out files. FIFOs are similar to pipes because they allow

the data to flow only one way (left to right). However, a FIFO can be given a name and can be accessed
by unrelated processes, unlike a pipe. FIFOs are sometimes referred to as named pipes. Because it has a

154 writing and Debugging Programs

../../libs/basetrf2/read.htm#HDRJO11350GACO
../../libs/basetrf2/write.htm#HDRCI2270GACO
../../libs/basetrf1/close.htm#HDRA08793A0

name, a FIFO can be opened using the standard 1/0 fopen subroutine. To open a pipe, you must call the
pipe subroutine, which returns a file descriptor, and the standard I/O fdopen subroutine to associate an
open file descriptor with a standard 1/0O stream.

Stream 1/O interfaces are accessed through the following subroutines and macros:

fclosd Closes a stream
feod, ferror, clearerr, or fileno Check the status of a stream
fflusH Write all currently buffered characters from a stream
foped, freopen, or fdopen Open a stream
fread or fwrite Perform binary input
fseeld, rewind, ftell, fgetpos, or fsetpos Reposition the file pointer of a stream
betd, fgetc, getchar, or getw Get a character or word from an input stream
etd or fgets Get a string from a stream
, fgetwe, or getwchar Get a wide character from an input stream
or fgetws Get a string from a stream

:NE, fprintf, sprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf
Print formatted output

E putchar, fputc, or putw Write a character or a word to a stream
. or fputs Write a string to a stream
m putwchar, or fputwc Write a character or a word to a stream

Write a wide character string to a stream
Convert formatted input
setbuf_setvhuf_sethuffer or setlinebud Assign buffering to a stream

ungetc or ungetwd Push a character back into the input stream

Terminal I/O Interfaces

Terminal 1/O interfaces operate between a process and the kernel, providing functions such as buffering
and formatted output.

Every terminal and pseudo-terminal has a tty structure that contains the current terminal group ID. This
field identifies the process group to receive the signals associated with the terminal.

Terminal I/O interfaces are accessed through the fastal command, which monitors 1/0 system device
loading, and the luprintfd daemon, which allows kernel messages to be written to the terminal screen.

A daemon opens a terminal device in order to log error messages to the /dev/tty or /dev/console file. If
background writes are not allowed, disassociate the daemon process from the controlling terminal.

Terminal characteristics can be enabled or disabled through the following subroutines:

Efgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed
Get and set input and output baud rates

factl Performs control functions associated with open file
descriptors, such as controlling the ability of background
processes to produce output on the control terminal

termded Queries terminal characteristics

tcdrain Waits for output to complete

tcflowl Performs flow control functions

kcflusd Discards data from the specified queue

W Gets terminal state

w Gets foreground process group ID

tcsendbreald Sends a break on an asynchronous serial data line
tcsetattd Sets terminal state

Chapter 7. Input and Output Handling 155

../../libs/basetrf1/fclose.htm#HDRA0909927
../../libs/basetrf1/feof.htm#HDRA0909C37
../../libs/basetrf1/fclose.htm#HDRA0909927
../../libs/basetrf1/fopen.htm#HDRA0909963
../../libs/basetrf1/fread.htm#HDRA108917A9
../../libs/basetrf1/fseek.htm#HDRA10499C8
../../libs/basetrf1/getc.htm#HDRA1429390
../../libs/basetrf1/gets.htm#HDRA0909D73
../../libs/basetrf1/getwc.htm#HDRA177966E
../../libs/basetrf1/getws.htm#HDRA19191CB
../../libs/basetrf1/printf.htm#HDRA8ZED0GACO
../../libs/basetrf1/putc.htm#HDRA1429342
../../libs/basetrf1/puts.htm#HDRHP590SHAD
../../libs/basetrf1/putwc.htm#HDRA1819432
../../libs/basetrf1/putws.htm#HDRA19191B1
../../libs/basetrf2/scanf.htm#HDRS5370SHAD
../../libs/basetrf2/setbuf.htm#HDRA13892175
../../libs/basetrf2/ungetc.htm#HDRMP350SHAD
../../cmds/aixcmds3/iostat.htm#HDRA333F9E31
../../cmds/aixcmds5/uprintfd.htm#HDRA3UPRKAREN
../../libs/basetrf1/cfgetospeed.htm#HDRA17F016D
../../libs/basetrf1/ioctl32.htm
../../libs/basetrf2/termdef.htm#HDRGA41260GACO
../../libs/basetrf2/tcdrain.htm#HDRLEL3E0GACO
../../libs/basetrf2/tcflow.htm#HDRVEL3380GACO
../../libs/basetrf2/tcflush.htm#HDRAZKL380GACO
../../libs/basetrf2/tcgetattr.htm#HDRVDD32A0GACO
../../libs/basetrf2/tcgetpgrp.htm#HDRA2019CB1
../../libs/basetrf2/tcsendbreak.htm#HDRA2019C70
../../libs/basetrf2/tcsetattr.htm#HDRSCD32A0GACO

Control tty locking functions

tyname or isattyl Get the name of a terminal
ttysiod Finds the slot in the utmp file for the current user

Asynchronous I/O Interfaces

Asynchronous 1/0O subroutines allow a process to start an /O operation and have the subroutine return
immediately after the operation is started or queued. Another subroutine is required to wait for the
operation to complete (or return immediately if the operation is already finished). This means that a
process can overlap its execution with its 1/O or overlap 1/0 between different devices. Although
asynchronous I/O does not significantly improve performance for a process that is reading from a disk file
and writing to another disk file, asynchronous 1/O provides significant performance improvements for other
types of 1/O driven programs, such as programs that dump a disk to a magnetic tape or display an image
on an image display.

Although not required, a process performing asynchronous 1/O can tell the kernel to notify it when a
specified descriptor is ready for I/O (also called signal-driven 1/0). The kernel notifies the user process with
the SIGIO signal.

To use asynchronous I/O, a process must perform three steps:

1. Establish a handler for the SIGIO signal. This step is only necessary if notification by the signal is
requested.

2. Set the process ID or the process group ID to receive the SIGIO signals. This step is only necessary if
notification by the signal is requested.

3. Enable asynchronous I/O. The system administrator usually determines whether asynchronous 1/O is
loaded (enabled). Enabling occurs at system startup.

The following asynchronous 1/O subroutines are provided:

hio_cancel Cancels one or more outstanding asynchronous I/O requests

hio_errod Retrieves the error status of an asynchronous 1/0 request

hio_read Reads asynchronously from a file descriptor

hio_return Retrieves the return status of an asynchronous I/O request

m Suspends the calling process until one or more asynchronous I/O requests is completed
Bio_writd Writes asynchronously to a file descriptor

lio_listid Initiates a list of asynchronous 1/0 requests with a single call

m or keleci Check I/0 status of multiple file descriptors and message queues

For use with the poll subroutine, the following header files are supplied:

polLH Defines the structures and flags used by the poll subroutine
aio.h Defines the structure and flags used by the aio_read, aio_write, and aio_suspend subroutines

156 writing and Debugging Programs

../../libs/basetrf2/ttylock.htm#HDRA64F032F
../../libs/basetrf2/ttyname.htm#HDRA244Y996CB
../../libs/basetrf2/ttyslot.htm#HDRIJ2110SHAD
../../libs/basetrf1/aio_cancel.htm#HDRA106C1642
../../libs/basetrf1/aio_error.htm#HDRA106C15A6
../../libs/basetrf1/aio_read.htm#HDRA106C15C1
../../libs/basetrf1/aio_return.htm#HDRA106C1666
../../libs/basetrf1/aio_suspend.htm#HDRKOM106C
../../libs/basetrf1/aio_write.htm#HDRA106C15F1
../../libs/basetrf1/lio_listio.htm
../../libs/basetrf1/poll.htm#HDRA1289B55
../../libs/basetrf2/select.htm#HDRA15691187
../../files/aixfiles/poll.h.htm#HDRA16691C07

Chapter 8. Large Program Support

This chapter provides information about using the large address-space model to accommodate programs
requiring data areas that are larger than conventional segmentation can handle.

Note: The discussion in this chapter only applies to 32-bit processes. For information about the default
32-bit address space model and the 64-bit address space model, see

bn page 534 and ESystem Memory Allocation Using the malloc Subsystem” on page 544 in this book.

The system hardware divides the currently active 32-bit virtual address space into 16 independent
segments, each addressed by a separate segment register. The operating system refers to segment 2
(virtual address 0x20000000) as the process private segment. This segment contains most of the
per-process information, including user data, user stack, kernel stack, and user block.

)

Because the system places user data and the user stack within a single segment, the system limits the
maximum amount of stack and data to slightly less than 256MB. This size is adequate for most
applications. The kernel stack and u-block are relatively small and of fixed size. However, certain
applications require large initialized or uninitialized data areas in the data section of a program. Other large
data areas can be created dynamically with the mallagd, brk aor sbrid subroutine.

Some programs need larger data areas than allowed by the default address-space model. Programs that
need the larger data areas can use the large address-space model to request the necessary amount of
data space.

Understanding the Large Address-Space Model

The large address-space model enables large data applications while allowing programs that use a smaller
space to follow the smaller model. To allow a program to use the large address-space model, you must set
the o_maxdata field in the XCOFF header of the program to indicate the amount of data needed.

In the large address-space model, the data in the program is laid out beginning in segment 3 when the
value is non-zero. (The data is laid out beginning in segment 3, even if the value is smaller than a
segment size.) The program consumes as many segments as needed to hold the amount of data indicated
by the o_maxdata field, up to a maximum of 8 segments. The program can therefore have up to 2
gigabytes of data.

Other aspects of the program address space remain unchanged. The user stack, kernel stack, and u-block
continue to reside in segment 2. Also, the data resulting from loading a private copy of a shared library is
placed in segment 2. Only program data is placed in segment 3 or higher.

As a result of this organizational scheme, the user stack is still limited by the size of segment 2. (However,
the user stack can be relocated into a shared memory segment.) In addition, fewer segments are available
for mapped files.

While the size of initialized data in a program can be large, there is still a restriction on the size and
placement of text. In the executable file associated with a program, the offset of the end of the text section
plus the size of the loader section must be less than 256MB. This is required so that this read-only portion
of the executable will fit into segment 1 (the TEXT segment). Because of these restrictions, a program
cannot have a very large text section.

© Copyright IBM Corp. 1997, 2001 157

../../libs/basetrf1/malloc.htm#HDRA174921E
../../libs/basetrf1/brk.htm#HDRA08791427

Understanding the Very Large Address-Space Model

The very large address-space model enables large data applications in much the same way as the large
address-space model. There are several differences between the two address-space models though. To
allow a program to use the very large address-space model, you must set the o_maxdata field in the
XCOFF header to indicate the amount of data needed and set the F_DSA flag in the file header.

The data in the very large address-space model is laid out beginning in segment 3 when the o_maxdata
value is greater than zero. The program is then allowed to use as many segments as needed to hold the
amount of data indicated by the o_maxdata field, up to a maximum of 8 segments. In the very large
address-space model though, these data segments for the data are created dynamically instead of all at
exec time as in the large address-space model.

Using the very large address-space model will change the way in which the segments for a program are
managed. A programs data is laid out starting in segment 3, and consumes as many segments as needed
for the initial data heap. The remaining segments are available to use for other purposes such as shmat()
or mmap(). Once a segment has been allocated for the data heap though, it can no longer be used for any
other purposes, even if the size of the heap is reduced.

Use of the very large address-space model will also change the default behavior of system calls such as
shmat() and mmap(). The behavior of these system calls in the vary large address-space model will
change so that they start placing files in segment 14 and work down instead of starting in segment 3 and
working up to segment 14. The system calls can use any of the available segments as long as they have
not been allocated for the data heap.

The very large address-space model will allow programs to specify a maxdata value of 0x80000000, the
largest currently allowable value, and still use all of the available segments above segment 3 until they are
allocated for the data heap. In the large address-space model theses additional segments would have
been allocated for the data heap at exec and thus unavailable for other purposes.

Enabling the Large Address-Space Models

The large address space model is used if any nonzero value is given for the maxdata keyword. The vary
large address-space model is used if any non-zero value is given for the maxdata keyword and the dsa
keyword is used also. Use the -bmaxdata option only if the program needs very large data areas.

Use the -bmaxdata flag with the Id command to enable the large address-space model.

For example, to link a program that will have the maximum 8 segments reserved to it, the following
command line could be used:

cc sample.o -bmaxdata:0x80000000

To link a program with the vary large address space model enabled and that will have the maximum 8
segments reserved to it, the following command line could be used:

cc sample.o -bmaxdata:0x80000000/dsa

The number 0x80000000 is the number of bytes, in hexadecimal format, equal to eight 256MB segments.
Although larger numbers can be used, they are ignored because a maximum of 8 segments can be
reserved. The value following the -bmaxdata flag can also be specified in decimal or octal format.

Using the following shell commands, you can patch large programs to use large data without linking them
again:

/usr/bin/echo '\0200\0\0\0'|dd of=executable file name bs=4
count=1 seek=19 conv=notrunc

158 writing and Debugging Programs

../../cmds/aixcmds3/ld.htm#HDRA09493AC

Note: Use the full name of the echo command (/usr/bin/echo) to avoid invoking any of the shell echo
subcommands by mistake. Also, these shell commands will not work for the very large address-space
model. You must link the program again to get the very large program support.

The echo string generates the binary value 0x80000000. This command seeks to the proper offset in
the executable file and modifies the o_maxdata field. Do not use the dd command on nonexecutable object
files, loadable modules, or shared libraries.

Executing Programs with Large Data Areas

When a program attempts to execute a program with large data areas, the system recognizes the
requirement for large data and attempts to modify the soft limit on data size to accommodate that
requirement. However, if it does not have permission to modify the soft limit, the program ends.

In addition, it is also possible that the data size specified in the o_maxdata field may be too small to
accommodate the amount of space required for initialized or uninitialized data. In this case, the process
ends, and an error is reported.

The attempt is also unsuccessful if the new soft limit is above the hard limit for the process. For example,
the login process usually sets the hard limit to infinity. However, if the calling process has modified its hard
limit using either the ulimit command in the Bourne shell or the limit command in the C shell, the newly
modified soft limit may be above the hard limit for the process. In this case, the process will be killed
during exec processing. In this situation, the only message you receive is killed, which informs you that
the process was Killed.

For more information on the ulimit command in the Bourne shell, see Bourne Shell Special Commandd in

AIX 5L Version 5.1 System User’s Guide: Operating System and Devices. For more information about the
limit command in the C shell, see Command Substitution in the C Shell and Eilename Substitution in thd
E Shell in AIX 5L Version 5.1 System User’s Guide: Operating System and Devices.

After placing the program’s initialized and uninitialized data in segments 3 and beyond, the system
computes the break value. The break value defines the end of the process’s static data and the beginning
of its dynamically allocatable data. Using the Imallad, brK or sbrk subroutine, the process is free to move
the break value toward the end of the segment identified by the maxdata field in the a.out header file.

For example, if the value specified in the maxdata field in the a.out header file is 0x80000000, then the
maximum break value is up to the end of segment 10 or Oxafffffff. The brk subroutine extends the
break across segment boundaries, but not beyond the point specified in the maxdata field.

The majority of subroutines are unaffected by large data programs. The semantics of the farl subroutine
remain unchanged. Large data programs can run other large or small programs, as well as load and
unload other modules.

The setrlimit subroutine allows the soft data limit to be set to any value that does not exceed the hard
limit. However, because of the inherent limitation of the address space model used by the process, it may
not be able to increase its size to the value that is set.

Special Considerations

Programs with large data spaces require a large amount of paging space. For example, if a program with
a 2-gigabyte address space tries to access every page in its address space, the system must have 2
gigabytes of paging space. The operating system page-space monitor terminates processes when paging
space runs low. Programs with large data spaces are terminated first because they typically consume a
large amount of paging space.

Chapter 8. Large Program Support 159

../../cmds/aixcmds2/dd.htm#HDRA101930E6
../../aixuser/usrosdev/bourne_shell_cmds.htm#HDRA41C211E1
../../aixuser/usrosdev/c_shell_cmds.htm#HDRA59C22228
../../aixuser/usrosdev/var_file_name_subst_c.htm#HDRA59C22240
../../aixuser/usrosdev/var_file_name_subst_c.htm#HDRA59C22240
../../libs/basetrf1/malloc.htm#HDRA174921E
../../libs/basetrf1/brk.htm#HDRA08791427
../../libs/basetrf1/fork.htm

Debugging programs with large data is similar to debugging other programs. The command can
debug these large programs actively or from a core dump. A full core dump should not be performed
because programs with large data areas produce large core dumps, which consume large amounts of
file-system space.

Some application programs may be written in such a way that they rely on characteristics of the address
space model. Programs in which the large address space is enabled use a different address space model
than programs without the large address space enabled. This could cause problems for applications which
make assumptions about the address space model they are running in. In general, avoid application
programs that make assumptions about the address space model.

160 writing and Debugging Programs

../../cmds/aixcmds2/dbx.htm#HDRA2699EE

Chapter 9. Parallel Programming

Parallel programming should be used to get benefits of new multiprocessor systems, while maintaining a
full binary compatibility with existing monoprocessor systems. The parallel programming facilities are
based on a new concept of the operating system: threads. The following information introduces threads
and the associated programming facilities. It also discusses general topics concerning parallel
programming.

Related Information
[Chapter 10. Programming on Multiprocessor Systems” on page 193 highlights specific problems when

writing programs for symetric multiprocessor systems.

Chapter 11_Threads Programming Guidelines” on page 214 provides detailed information about

programming with the threads library (libpthreads.a).

Understanding Threads

A thread is an independent flow of control that operates within the same address space as other
independent flows of controls within a process. In previous versions of AlX, and in most of UNIX systems,
thread and process characteristics are grouped into a single entity called a process. In other operating
systems, threads are sometimes called "lightweight processes,” or the meaning of the word "thread” is
sometimes slightly different.

In the following pages, we will learn the differences between a thread and a process, and see what
"thread” really means in AlX.

Read the following to learn more about threads in AlX:

Threads and Processes

In traditional single-threaded process systems, a process has a set of properties. In multi-threaded
s¥stems, these properties are divided between processes and threads. For more information, see

Process Properties
A process in a multi-threaded system is the changeable entity. It must be considered as an execution

frame. It has all traditional process attributes, such as:
* Process ID, process group ID, user ID, and group 1D
* Environment

* Working directory.

A process also provides a common address space and common system resources:

» File descriptors

« Signal actions

» Shared libraries

* Inter-process communication tools (such as message queues, pipes, semaphores, or shared memory).

Thread Properties
A thread is the schedulable entity. It has only those properties that are required to ensure its independent

flow of control. These include the following properties:
» Stack
» Scheduling properties (such as policy or priority)

© Copyright IBM Corp. 1997, 2001 161

» Set of pending and blocked signals
» Some thread-specific data.

An example of thread-specific data is the error indicator, errno. In multi-threaded systems, errno is no
longer a global variable, but usually a subroutine returning a thread-specific errno value. Some other
systems may provide other implementations of errno.

Threads within a process must not be considered as a group of processes. All threads share the same
address space. This means that two pointers having the same value in two threads refer to the same data.
Also, if any thread changes one of the shared system resources, all threads within the process are
affected. For example, if a thread closes a file, the file is closed for all threads.

The Initial Thread

When a process is created, one thread is automatically created. This thread is called the initial thread. It
ensures the compatibility between the old processes with a unique implicit thread and the new
multi-threaded processes. The initial thread has some special properties, not visible to the programmer,
that ensure binary compatibility between the old single-threaded programs and the multi-threaded
operating system. It is also the initial thread that executes the main routine in multi-threaded programs.

Threads Implementation

A thread is the schedulable entity, which means that the system scheduler handles threads. These
threads, known by the system scheduler, are strongly implementation-dependent. To facilitate the writing of
portable programs, libraries provide another kind of thread.

Kernel Threads and User Threads

A kernel thread is a kernel entity, like processes and interrupt handlers; it is the entity handled by the
system scheduler. A kernel thread runs within a process, but can be referenced by any other thread in the
system. The programmer has no direct control over these threads, unless writing kernel extensions or
device drivers. See AIX 5L Version 5.1 Kernel Extensions and Device Support Programming Concepts for
more information about kernel programming.

A user thread is an entity used by programmers to handle multiple flows of controls within a program. The
API for handling user threads is provided by a library, the threads library. A user thread only exists within a
process; a user thread in process A cannot reference a user thread in process B. The library uses a
proprietary interface to handle kernel threads for executing user threads. The user threads API, unlike the
kernel threads interface, is part of a portable programming model. Thus, a multi-threaded program
developed on an AIX system can easily be ported to other systems.

On other systems, user threads are simply called threads, and lightweight process refers to kernel threads.
Thread Models and Virtual Processors

User threads are mapped to kernel threads by the threads library. The way this mapping is done is called
the thread model. There are three possible thread models, corresponding to three different ways to map
user threads to kernel threads.

* M:1 model
¢ 1:1 model
* M:N model.

The mapping of user threads to kernel threads is done using virtual processors. A virtual processor (VP) is

a library entity that is usually implicit. For a user thread, the virtual processor behaves as a CPU for a
kernel thread. In the library, the virtual processor is a kernel thread or a structure bound to a kernel thread.

162 writing and Debugging Programs

In the M:1 model all user threads are mapped to one kernel thread; all user threads run on one VP. The
mapping is handled by a library scheduler. All user threads programming facilities are completely handled
by the library. This model can be used on any system, especially on traditional single-threaded systems.

In the 1:1 model, each user thread is mapped to one kernel thread; each user thread runs on one VP.
Most of the user threads programming facilities are directly handled by the kernel threads.

In the M:N model, all user threads are mapped to a pool of kernel threads; all user threads run on a pool
of virtual processors. A user thread may be bound to a specific VP, as in the 1:1 model. All unbound user
threads share the remaining VPs. This is the most efficient and most complex thread model; the user
threads programming facilities are shared between the threads library and the kernel threads.

Contention Scope and Concurrency Level

The contention scope of a user thread defines how it is mapped to a kernel thread. There are two possible
contention scopes:

« System contention scope, sometimes called global contention scope

A system contention scope user thread is a user thread that is directly mapped to one kernel thread. All
user threads in a 1:1 thread model have system contention scope.

* Process contention scope, sometimes called local contention scope.

A process contention scope user thread is a user thread that shares a kernel thread with other (process
contention scope) user threads in the process. All user threads in a M:1 thread model have process
contention scope.

In an M:N thread model, user threads can have either system or process contention scope. Therefore, an
M:N thread model is often referred as a mixed-scope model.

The concurrency level is a property of M:N threads libraries. It defines the number of VPs used to run the
process contention scope user threads. This number cannot exceed the number of process contention
scope user threads, and is usually dynamically set by the threads library. The system also sets a limit to
the number of available kernel threads.

libpthreads.a POSIX Threads Library

AIX provides a threads library, called libpthreads.a, based on the POSIX 1003.1c industry standard for a
portable user threads API. Any program written for use with a POSIX thread library can easily be ported
for use with another POSIX threads library; only the performance and very few subroutines of the threads
library are implementation-dependent. For this reason, multi-threaded programs written for this version of
AIX will work on any future version of AIX.

To enhance the portability of the threads library, the POSIX standard made the implementation of several

programming facilities optional. See Threads Library Options” on page 261 for more information about
checking the POSIX options.

libpthreads_compat.a POSIX Draft 7 Threads Library

AlX provides binary compatibility for existing multi-threads applications that were coded to Draft 7 of the
POSIX thread standard. These applications will run without re-linking.

The libpthreads_compat.a library is actually provided for program development. AlX 4.3 provides

program support for both Draft 7 of the POSIX Thread Standard and Xopen Version 5 Standard, which
includes the final POSIX 1003.1¢c Pthread Standard.

e Developing Multi-Threaded Programs” on page 173 for more information.

Chapter 9. Parallel Programming 163

Related Information

Note: Note: In this book and the related articles, the word thread used alone refers to user threads. This
also applies to user-mode environment programming references, but not to articles related to kernel
programming.

Thread Programming Concepts

The following information provides an overview of the threads library and introduces major programming
concepts for multi-threaded programming. Unless otherwise specified, the threads library always operates
within a single process.

Basic Operations
Basic thread operations include thread creation EThread Creation’l and termination [Thread Termination!.

Thread Creation

Thread creation differs from process creation in that no parent-child relation exists between threads. All
threads, except the initial thread automatically created when a process is created, are on the same
hierarchical level. A thread does not maintain a list of created threads, nor does it know the thread that
created it.

When creating a thread, an entry-point routine and an argument must be specified. Every thread has an
entry pomt routme W|th one argument. The same entry-point routine may be used by several threads. See
for more information about thread creation.

Thread Termination

Threads can terminate themselves by either returning from their entry-point routine or calling a library
subroutine. Threads can also terminate other threads, using a mechanism called cancellation. Any thread
can request the cancellation of another thread. Each thread controls whether it may be canceled or not.
Cleanup handlers may also be registered to perform operations when a cancellation request is acted upon.

See [Terminating Threads” on page 219 for more information about thread termination.

Synchronization

Threads need to synchronize their activities to effectively interact. This includes:
* Implicit communication through the modification of shared data

» Explicit communication by informing each other of events that have occurred.

The threads library provides three synchronization mechanisms: mutexes, condition variables, and joins.
These are primitive but powerful mechanisms, which can be used to build more complex mechanisms.

Mutexes and Race Conditions

Mutual exclusion locks (mutexes) can prevent data inconsistencies due to race conditions. A race condition
often occurs when two or more threads need to perform operations on the same memory area, but the
results of computations depends on the order in which these operations are performed.

Consider, for example, a single counter, X, that is incremented by two threads, A and B. If X is originally 1,
then by the time threads A and B increment the counter, X should be 3. Both threads are independent
entities and have no synchronization between them. Although the C statement X++ looks simple enough to
be atomic, the generated assembly code may not be, as shown in the following pseudo-assembler code:

164 writing and Debugging Programs

move X, REG
inc REG
move REG, X

If both threads are executed concurrently on two CPUs, or if the scheduling makes the threads
alternatively execute on each instruction, the following steps may occur:

1. Thread A executes the first instruction and puts X, which is 1, into the thread A register. Then thread B
executes and puts X, which is 1, into the thread B register. The following example illustrates the
resulting registers and the contents of memory X.

Thread A Register = 1
Thread B Register
Memory X 1

2. Next, thread A executes the second instruction and increments the content of its register to 2. Then
thread B increments its register to 2. Nothing is moved to memory X, so memory X stays the same.
The following example illustrates the resulting registers and the contents of memory X.

2

Thread A Register
Thread B Register = 2
Memory X 1

3. Last, thread A moves the content of its register, which is now 2, into memory X. Then thread B moves
the content of its register, which is also 2, into memory X, overwriting thread A’s value. The following
example illustrates the resulting registers and the contents of memory X.

Thread A Register = 2
Thread B Register = 2
Memory X =2

Note that in most cases thread A and thread B will execute the three instructions one after the other, and
the result would be 3, as expected. Race conditions are usually difficult to discover, because they occur
intermittently.

To avoid this race condition, each thread should lock the data before accessing the counter and updating
memory X. For example, if thread A takes a lock and updates the counter, it leaves memory X with a value
of 2. Once thread A releases the lock, thread B takes the lock and updates the counter, taking 2 as its
initial value for X and incrementing it to 3, the expected result.

See tUsing Mutexes” on page 227 for more information about mutexes.
Waiting for Threads

Condition variables allow threads to block until some event or condition has occurred. Boolean predicates
indicate whether the program has satisfied a condition variable. The complexity of a condition variable
predicate is defined by the programmer. A condition can be signaled by any thread to either one or all

waiting threads. See [Using Condition Variables” on page 231 to get more information.

When a thread is terminated, its storage may not be reclaimed, depending on an attribute of the thread.
Such threads can be joined by other threads and return information to them. A thread that wants to join
another thread is blocked until the target thread terminates. This joint mechanism is a specific case of

condition-variable usage, the condition is the thread termination. See Lloining Threads” on page 234 for

more information about joins.

Scheduling

The threads library allows the programmer to control the execution scheduling of the threads. The control
is performed in different ways:

» By setting scheduling attributes when creating a thread
* By dynamically changing the scheduling attributes of a created thread
» By defining the effect of a mutex on the thread’s scheduling when creating a mutex

Chapter 9. Parallel Programming 165

» By dynamically changing the scheduling of a thread during synchronization operations.

The two last types of controls are known as synchronization scheduling.
Scheduling Parameters

A thread has three scheduling parameters:

Scope The contention scope of a thread is defined by the thread model used in the threads library.

Policy The scheduling policy of a thread defines how the scheduler treats the thread once it gains control of
the CPU.

Priority The scheduling priority of a thread defines the relative importance of the work being done by each
thread.

The scheduling parameters can be set before the thread’s creation or during the thread’s execution. In

general, controlling the scheduling parameters of threads is important only for threads that are

compute mtenswe Thus the threads library provides default values that are sufficient for most cases. See
? for more information about controlling the scheduling parameters of

threads.
Synchronization Scheduling

Synchronization scheduling is a complex topic. Some implementations of the threads library do not provide
this facility.

Synchronization scheduling defines how the execution scheduling, especially the priority, of a thread is
modified by holding a mutex. This allows custom-defined behavior and avoids priority inversions. It is

useful when using complex locking schemes. See 'Synchronization Scheduling” on page 243 for more

information.

Other Facilities

The threads library provides other useful facilities to help programmers implement powerful functions. It
also manages the interactions between threads and processes.

Advanced Facilities
The threads library provides an API for handling synchronization and scheduling of threads. It also
provides facilities for the following purposes:

« FQOne-Time Initializations” on page 244 allow dynamic package initializations.
« [Thread-Specific Data” on page 247 allows each thread to maintain its own private data.
- [Advanced Attributes” on page 250 allow control of the size and the address of the thread’s stack.

Threads-Processes Interactions
Threads and processes interact when handling specific actions:

. are shared between the process and its threads.

" »

. imply thread creation and termination.

Threads Library API

This section provides some general comments about the threads library API. The following information is
not required for writing multi-threaded programs, but may help the programmer understand the threads
library API.

Object-Oriented Interface
The threads library API provides an object-oriented interface. The programmer manipulates opaque objects
using pointers or other universal identifiers. This ensures the portability of multi-threaded programs

166 writing and Debugging Programs

between systems that implement the threads library. It also allows implementation changes between two
releases of AIX that necessitate only programs to be re-compiled. Although some definitions of data types
may be found in the threads library header file (pthread.h), programs should not rely on these
implementation-dependent definitions to directly handle the contents of structures. The regular threads
library subroutines must always be used to manipulate the objects.

The threads library essentially uses three kinds of objects (opaque data types): threads, mutexes, and
condition variables. These objects have attributes which specify the object properties. When creating an
object, the attributes must be specified. In the threads library, these creation attributes are themselves
objects, called attributes objects.

Therefore, there are three pairs of objects manipulated by the threads library:
» Threads and thread attributes objects

* Mutexes and mutex attributes objects

« Condition variables and condition attributes objects.

Creating an object requires the creation of an attributes object. An attributes object is created with
attributes having default values. Attributes can then be individually modified using subroutines. This
ensures that a multi-threaded program will not be affected by the introduction of new attributes or changes
in the implementation of an attribute. An attributes object can thus be used to create one or several
objects, and then destroyed without affecting objects created with the attributes object.

Using an attributes object also allows the use of object classes. One attributes object may be defined for
each object class. Creating an instance of an object class would be done by creating the object using the
class attributes object.

Naming Convention
The identifiers used by the threads library follow a strict naming convention. All identifiers of the threads

library begin with pthread_. User programs should not use this prefix for private identifiers. This prefix is
followed by a component name. The following components are defined in the threads library:

pthread_ Threads themselves and miscellaneous subroutines
pthread_attr Thread attributes objects

pthread_cond Condition variables

pthread_condattr Condition attributes objects

pthread_key Thread-specific data keys

pthread_mutex Mutexes

pthread_mutexattr Mutex attributes objects.

Data types identifiers end with _t. Subroutines and macros end with an _ (underscore), followed by a
name identifying the action performed by the subroutine or the macro. For example, pthread_attr_init is a
threads library identifier (pthread_) concerning thread attributes objects (attr) and is an initialization
subroutine (_init).

Explicit macro identifiers are in uppercase letters. Some subroutines may, however, be implemented as
macros, although their names are in lowercase letters.

Related Files
The following AlX files provide the implementation of pthreads:

lusr/include/pthread.h C/C++ header with most pthread definitions.
lusr/include/sched.h C/C++ header with some scheduling definitions.
lusr/include/unistd.h C/C++ header with pthread_atfork() definition.
lusr/include/sys/limits.h C/C++ header with some pthread definitions.
lusr/include/sys/pthdebug.h C/C++ header with most pthread debug definitions.

Chapter 9. Parallel Programming 167

lusr/include/sys/sched.h C/C++ header with some scheduling definitions.

lusr/include/sys/signal.h C/C++ header with pthread_kill() and
pthread_sigmask() definitions.

lusr/include/sys/types.h C/C++ header with some pthread definitions.

lust/lib/libpthreads.a 32-bit/64-bit library providing UNIX98 and POSIX
1003.1c pthreads.

lusr/lib/libpthreads_compat.a 32-bit only library providing POSIX 1003.1c Draft 7
pthreads.

lust/lib/profiled/libpthreads.a Profiled 32-bit/64-bit library providing UNIX98 and
POSIX 1003.1c pthreads.

lusr/lib/profiled/libpthreads_compat.a Profiled 32-bit only library providing POSIX 1003.1c

Draft 7 pthreads.

Writing Reentrant and Thread-Safe Code

In single-threaded processes there is only one flow of control. The code executed by these processes thus
need not to be reentrant or thread-safe. In multi-threaded programs, the same functions and the same
resources may be accessed concurrently by several flows of control. To protect resource integrity, code
written for multi-threaded programs must be reentrant and thread-safe.

This section provides information for writing reentrant and thread-safe programs. It does not cover the
topic of writing thread-efficient programs. Thread-efficient programs are efficiently parallelized programs.
This can only be done during the design of the program. Existing single-threaded programs can be made
thread-efficient, but this requires that they be completely redesigned and rewritten.

Understanding Reentrance and Thread-Safety

Reentrance and thread-safety are both related to the way functions handle resources. Reentrance and
thread-safety are separate concepts: a function can be either reentrant, thread-safe, both, or neither.

Reentrance

A reentrant function does not hold static data over successive calls, nor does it return a pointer to static
data. All data is provided by the caller of the function. A reentrant function must not call non-reentrant
functions.

A non-reentrant function can often, but not always, be identified by its external interface and its usage. For
example, the Etrtold subroutine is not reentrant, because it holds the string to be broken into tokens. The
Etime subroutine is also not reentrant; it returns a pointer to static data that is overwritten by each call.

Thread-Safety
A thread-safe function protects shared resources from concurrent access by locks. Thread-safety concerns
only the implementation of a function and does not affect its external interface.

In C, local variables are dynamically allocated on the stack. Therefore, any function that does not use
static data or other shared resources is trivially thread-safe. For example, the following function is
thread-safe:

/* thread-safe function =/

int diff(int x, int y)

{
int delta;

delta = y - x;
if (delta < 0)
delta = -delta;

return delta;

168 writing and Debugging Programs

../../libs/basetrf2/strlen.htm#HDRA1149117
../../libs/basetrf1/ctime.htm#HDRA181939B

The use of global data is thread-unsafe. It should be maintained per thread or encapsulated, so that its
access can be serialized. A thread may read an error code corresponding to an error caused by another
thread. In AIX, each thread has its own errno value.

Making a Function Reentrant

In most cases, non-reentrant functions must be replaced by functions with a modified interface to be
reentrant. Non-reentrant functions cannot be used by multiple threads. Furthermore, it may be impossible
to make a non-reentrant function thread-safe.

Returning Data
Many non-reentrant functions return a pointer to static data. This can be avoided in two ways:

* Returning dynamically allocated data. In this case, it will be the caller’s responsibility to free the storage.
The benefit is that the interface does not need to be modified. However, backward compatibility is not
ensured; existing single-threaded programs using the modified functions without changes would not free
the storage, leading to memory leaks.

» Using caller-provided storage. This method is recommended, although the interface needs to be
modified.

For example, a strtoupper function, converting a string to uppercase, could be implemented as in the
following code fragment:

/* non-reentrant function */
char *strtoupper(char *string)

{
static char buffer[MAX STRING_SIZE];
int index;

for (index = 0; string[index]; index++)
buffer[index] = toupper(string[index]);
buffer[index] = 0

return buffer;

}

This function is not reentrant (nor thread-safe). Using the first method to make the function reentrant, the
function would be similar to the following code fragment:

/* reentrant function (a poor solution) =*/

char *strtoupper(char *string)

{

char *buffer;
int index;

/* error-checking should be performed! */
buffer = malloc(MAX_STRING_SIZE);

for (index = 0; string[index]; index++)
buffer[index] = toupper(string[index]);
buffer[index] = 0

return buffer;

}

A better solution consists of modifying the interface. The caller must provide the storage for both input and
output strings, as in the following code fragment:

/* reentrant function (a better solution) =*/

char *strtoupper_r(char *in_str, char *out_str)

{

int index;

for (index = 0; in_str[index]; index++)
out_str[index] = toupper(in_str[index]);

Chapter 9. Parallel Programming 169

out_str[index] = 0

return out_str;

}

The non-reentrant standard C library subroutines were made reentrant using the second method. This is

discussed in lReentrant and Thread-Safe Libraries” on page 179 .

Keeping Data over Successive Calls

No data should be kept over successive calls, because different threads may successively call the
function. If a function needs to maintain some data over successive calls, such as a working buffer or a
pointer, this data should be provided by the caller.

Consider the following example. A function returns the successive lowercase characters of a string. The
string is provided only on the first call, as with the strtok subroutine. The function returns 0 when it
reaches the end of the string. The function could be implemented as in the following code fragment:

/* non-reentrant function */
char lowercase_c(char *string)

{
static char *buffer;
static int index;
char ¢ = 0;

/* stores the string on first call =/
if (string != NULL) {

buffer = string;

index = 0;

}

/* searches a lowercase character */
for (; c = buffer[index]; index++) {
if (islower(c)) {
index++;
break;
}
}

return c;

}

This function is not reentrant. To make it reentrant, the static data, the index variable, needs to be
maintained by the caller. The reentrant version of the function could be implemented as in the following
code fragment:

/* reentrant function */

char reentrant_lowercase_c(char *string, int *p_index)

{

char ¢ = 0;
/* no initialization - the caller should have done it */

/* searches a lowercase character */
for (; ¢ = string[*p_index]; (*p_index)++) {
if (islower(c)) {
(*p_index)++;
break;

}

return c;

}

The interface of the function changed and so did its usage. The caller must provide the string on each call
and must initialize the index to 0 before the first call, as in the following code fragment:

170 writing and Debugging Programs

char *my_string;
char my_char;
int my_index;

my_index = 0;
while (my_char = reentrant_Tlowercase c(my string, &my index)) {

}

Making a Function Thread-Safe

In multi-threaded programs, all functions called by multiple threads must be thread-safe. However, there is
a workaround for using thread unsafe subroutines in multi-threaded programs. Note also that non-reentrant
functions usually are thread-unsafe, but making them reentrant often makes them thread-safe, too.

Locking Shared Resources

Functions that use static data or any other shared resources, such as files or terminals, must serialize the
access to these resources by locks in order to be thread-safe. For example, the following function is
thread-unsafe:

/* thread-unsafe function */

int increment_counter()

{

static int counter = 0;

counter++;
return counter;

}

To be thread-safe, the static variable counter needs to be protected by a static lock, as in the following
(pseudo-code) example:

/* pseudo-code thread-safe function */

int increment_counter();

{

static int counter = 0;
static Tock_type counter_Tock = LOCK_INITIALIZER;

lock(counter_lock);
counter++;
unlock(counter_lock);
return counter;

}

In a multi-threaded application program using the threads library, mutexes should be used for serializing
shared resources. Independent libraries may need to work outside the context of threads and, thus, use
other kinds of locks.

A Workaround for Thread-Unsafe Functions
It is possible to use thread-unsafe functions called by multiple threads using a workaround. This may be

useful, especially when using a thread-unsafe library in a multi-threaded program, for testing or while
waiting for a thread-safe version of the library to be available. The workaround leads to some overhead,
because it consists of serializing the entire function or even a group of functions.

» Use a global lock for the library, and lock it each time you use the library (calling a library routine or
using a library global variable), as in the following pseudo-code fragments:

/* this is pseudo-code! */
Tock(Tibrary lock);

Tibrary_call();
unTock(1ibrary lock);

Tock(Tibrary lock);
x = library_var;
unlock(Tibrary_lock);

Chapter 9. Parallel Programming 171

This solution can create performance bottlenecks because only one thread can access any part of the
library at any given time. The solution is acceptable only if the library is seldom accessed, or as an
initial, quickly implemented workaround.

» Use a lock for each library component (routine or global variable) or group of components, as in the
following pseudo-code fragments:

/* this is pseudo-code! */

Tock(1ibrary moduleA Tlock);
Tibrary_moduleA call();
unlock(Tibrary_moduleA_Tock);

Tock(1ibrary_moduleB_Tock);
x = library_moduleB_var;
unlock(Tibrary_moduleB_lock);

This solution is somewhat more complicated to implement than the first one, but it can improve
performance.

Because this workaround should only be used in application programs and not in libraries, mutexes can be
used for locking the library.

Reentrant and Thread-Safe Libraries

Reentrant and thread-safe libraries are useful in a wide range of parallel (and asynchronous) programming
environments, not just within threads. Thus it is a good programming practice to always use and write
reentrant and thread-safe functions.

Using Libraries
Several libraries shipped with the AlX Base Operating System are thread-safe. In the current version of
AlX, the following libraries are thread-safe:

» Standard C library (libc.a)
» Berkeley compatibility library (libbsd.a).

Some of the standard C subroutines are non-reentrant, such as the ctime and strtok subroutines. The
reentrant version of the subroutines have the name of the original subroutine with a suffix _r
(underscore).

When writing multi-threaded programs, the reentrant versions of subroutines should be used instead of the
original version. For example, the following code fragment:
token[0] = strtok(string, separators);
i=0;
do {
it++;
token[i] = strtok(NULL, separators);
} while (token[i] != NULL);

should be replaced in a multi-threaded program by the following code fragment:
char *pointer;

token[0] = strtok r(string, separators, &pointer);
i=0;
do {

it++;

token[i] = strtok_r(NULL, separators, &pointer);
} while (token[i] != NULL);

Thread-unsafe libraries may be used by only one thread in a program. The uniqueness of the thread using
the library must be ensured by the programmer; otherwise, the program will have unexpected behavior, or
may even crash.

172 writing and Debugging Programs

Converting Libraries

This information highlights the main steps in converting an existing library to a reentrant and thread-safe

library. It applies only to C language libraries.

 |dentifying exported global variables. Those variables are usually defined in a header file with the
export keyword.
Exported global variables should be encapsulated. The variable should be made private (defined with
the static keyword in the library source code). Access (read and write) subroutines should be created.

+ ldentifying static variables and other shared resources. Static variables are usually defined with the
static keyword.

Locks should be associated with any shared resource. The granularity of the locking, thus choosing the
number of locks, impacts the performance of the library. To initialize the locks, the one-time initialization
(LQnﬂLme_ana.LLza.tLans_an_page_%d) facility may be used. For more information, see

. Identifl%inf; non-reentrant functions and making them reentrant. See Making a Function Reentrant” on

. Identif%in% thread-unsafe functions and making them thread-safe. See Making a Function Thread-Safe’]

Developing Multi-Threaded Programs

Developing multi-threaded programs is not much more complicated than developing programs with multiple

processes. See 'Chapter 11 _Threads Programming Guidelines” on page 215 for detailed information about

using the threads library. Developing programs also implies compiling and debugging the code.

Compiling a Multi-Threaded Program

This section explains how to generate a multi-threaded program. It describes:

* The required FHeader Filel
« [Compiler Invocation’] to generate multi-threaded programs.

Header File
All subroutine prototypes, macros, and other definitions for using the threads library are in one header file,
pthread.h, located in the /usr/include directory.

The pthread.h header file must be the first included file of each source file using the threads library,
because it defines some important macros that affect other header files. Having the pthread.h header file
as the first included file ensures the usage of thread-safe subroutines. The following global symbols are
defined in the pthread.h file:

_POSIX_REENTRANT_FUNCTIONS Specifies that all functions should be reentrant. Several header
files use this symbol to define supplementary reentrant
subroutines, such as the localtime_r subroutine.

_POSIX_THREADS Denotes the POSIX threads API. This symbol is used to check if
the POSIX threads API is available. Macros or subroutines may
be defined in different ways, depending on whether the POSIX or
some other threads API is used.

The pthread.h file also redefines the errno global variable as a function returning a thread-specific errno
value. The errno identifier is, therefore, no longer an I-value in a multi-threaded program.

Compiler Invocation

When compiling a multi-threaded program, you should invoke the C compiler using one of the following
commands:

Chapter 9. Parallel Programming 173

xlc_r Invokes the compiler with default language level of ansi.
cc_r Invokes the compiler with default language level of extended.

These commands ensure that the adequate options and libraries are used to be compliant with the
X/Open Version 5 Standard. The POSIX Threads Specification 1003.1c is a subset of the X/Open
Specification.

The following libraries are automatically linked with your program when using these commands:

libpthreads.a Threads library.
libc.a Standard C library

For example, the following command compiles the foo.c multi-threaded C source file and produces the
foo executable file:

cc_r -o foo foo.c
Compiler Invocation for Draft 7 of POSIX 1003.1¢c

AIX provides source code compatibility for Draft 7 applications. It is recommended that developers port
their threaded application to the latest standard, which is covered by the compiler directions provided
above.

When compiling a multi-threaded program for Draft 7 support of threads, you should invoke the C compiler
using one of the following commands:

xlc_r7 Invokes the compiler with default language level of ansi.
cc_r7 Invokes the compiler with default language level of extended.

The following libraries are automatically linked with your program when using these commands:

libpthreads_compat.a Draft 7 Compatibility Threads library.
libpthreads.a Threads library.
libc.a Standard C library.

Source code compatibility has been achieved through the use of the compiler directive
_AIX_PTHREADS_D?7. It is also necessary to link the libraries in the following order:
libpthreads_compat.a, libpthreads.a, and libc.a. Most users do not need to know this information, since
the commands listed above provide the necessary options. These options are provided for those that don’t
have the latest AIX compiler.

Porting Draft 7 applications to the X/Open Version 5 Standard
There are very few differences between Draft 7 and the final standard.

There are some minor errno differences. The most prevalent is the use of ESRCH to denote the specified
pthread could not be found. Draft 7 frequently returned EINVAL for this failure.

Pthreads are joinable by default. This is a significant change since it can result in a memory leak if

ignored. See [Creating Threads” on page 214 for more information about thread creation.
Pthreads have process scheduling scope by default. See EThreads Scheduling” on page 24d for more

information about scheduling.

The subroutine pthread_yield has been replaced by sched_yield.

174 writing and Debugging Programs

The various scheduling policies associated with the mutex locks are slightly different.

Memory Requirements of a Multi-Threaded Program

AIX supports up to 32768 threads in a single process. Each individual pthread requires some amount of
process address space so the actual maximum number of pthreads a process can have depends on the
memory model and the use of process address space for other purposes. The amount of memory a
pthread needs includes the stack size and the guard region size plus some amount for internal use. The
user can control the size of the stack with thread_attr setstacksize() and the size of the guard region with
bi.h.l:ea.d_a.ti.r_setgua.td.sn.zed The following table points out the maximum number of pthreads which could
be created in a 32-bit process using a simple program which does nothing other than create pthreads in a
loop using the NULL pthread attribute. In a real program the actual numbers will depend on other memory
usage in the program. For a 64-bit process the ulimit controls how many threads can be created therefore
the big data model is not necessary and in fact can decrease the maximum number of threads.

32-bit Process:

Data Model -bmaxdata: Maximum Pthreads
Small Data n/a 1084

Big Data 0x10000000 2169

Big Data 0x20000000 4340

Big Data 0x30000000 6510

Big Data 0x40000000 8681

Big Data 0x50000000 10852

Big Data 0x60000000 13022

Big Data 0x70000000 15193

Big Data 0x80000000 17364

Debugging a Multi-Threaded Program

This section provides an introduction to debugging multi-threaded programs.

Using dbx

Application programmers can use the Hbd program to perform debugging. Several new subcommands are
available for displaying thread-related objects: attributd, kondition, Imutex, and

Using the Kernel Debug Program
Kernel programmers can use the kernel debug program to perform debugging on kernel extensions and
device drivers. The kernel debug program provides no access to user threads but handles kernel threads.

Several new commands have been added to support multiple kernel threads and processors: E m
, and uthread. These commands respectively change the current processor, display per-processor
data structures, display thread table entries, and display the uthread structure of a thread.

Core File Requirements of a Multi-Threaded Program

By default processes do not generate a full core file. Before AIX 4.3 this meant only the stack for the
thread causing the core dump was written to the core file. Before AIX 4.3.2 this meant the part of the
process address space made up of shared memory region was not written to the core file. If an application
needs to debug data in shared memory regions, particular thread stacks it will be necessary to generate a
full core dump. To generate full core file information the following command must be run as root:

chdev -1 sys0 -a fullcore=true

Chapter 9. Parallel Programming 175

../../libs/basetrf1/pthread_attr_setstacksize.htm
../../libs/basetrf1/pthread_attr_getguardsize.htm
../../cmds/aixcmds2/dbx.htm#HDRA2699EE
../../cmds/aixcmds2/dbx.htm#HDRA792AIA3THOM
../../cmds/aixcmds2/dbx.htm#HDRR52AI14BTHOM
../../cmds/aixcmds2/dbx.htm#HDRL32AI30ATHOM
../../cmds/aixcmds2/dbx.htm#HDRP62AI59THOM
../../aixprggd/kernextc/kern_debug_cmds.htm#HDRCPU
../../aixprggd/kernextc/kern_debug_cmds.htm#HDRPPD
../../aixprggd/kernextc/kern_debug_cmds.htm#HDRTHREAD
../../aixprggd/kernextc/kern_debug_cmds.htm#HDRUTHREAD

Each individual pthread adds to the size of the generated core file. The amount of core file space a
pthread needs includes the stack size which the user can control with pthread_attr_setstacksize(). For
pthreads created with the NULL pthread attribute each pthread in a 32-bit process adds 128KB to the size
of the core file and each pthread in a 64-bit process ads 256KB to the size of the core file.

Developing Multi-Threaded Program which examines and modifies
pthread library objects

The pthread debug library (libpthdebug.a) provides a set of functions which allow application developers
with the capability to examine and modify pthread library objects.

This library can be used for both 32-bit applications and 64-bit applications. This library is thread safe. The
pthread debug library contains a 32-bit shared object and a 64-bit shared object.

The pthread debug library provides applicaitons access to the pthread library information. This includes
information on pthreads, pthread attributes, mutexes, mutex attributes, condition variables, condition
variable attributes, read/write locks, read/write lock attributes, and information about the state of the
pthread library.

Note: All data (addresses, registers) returned by this library will be in 64-bit format both for 64-bit and
32-bit application. It is the applications responsibility to convert these values into 32-bit format for 32-bit
applications. When debugging a 32-bit application the top half of addresses and registers will be ignored.

Note: The pthread debug library does not report mutexes, mutexattrs, conds, condattrs, rwlocks,
rwlockattrs that have the pshared value of PTHREAD_PROCESS_SHARED.

Initialization

The application must initialize a pthread debug library session for each pthreaded process. The
pthdh_sessisan_init() function must be called from each pthreaded process after the process has been
loaded. The pthread debug library supports one session for a single process. The application must
assign a unique user identifier and pass it to the pthdb_session_init() function which in turn will assign a
unique session identifier which must be passed as the first parameter to all other pthread debug library
functions, except pthdb_session_pthreaded(), in return. Whenever the pthread debug library invokes a
call back function, it will pass the unique application assigned user identifier back to the application. The
pthdb_session_init() function checks the list of call back functions (EMulti-Threaded Call Back Functions]

provided by the application, and initializes the session’s data structures. Also, this function
sets the session flags. An appplication must pass the PTHDB_FLAG_SUSPEND flag to the

pthdb_session_init, see the pthdh_session_setflags() function for a full list of flags.

Call Back Functions

The pthread debug library uses the call back functions to to obtain data, to write data, and to qwe
storage management to the application. See Call Back Functions (L i=
m) for more information.

Required call back functions for an application:

* read_data - needed to retrieve pthread library object information

» alloc - needed to alloc memory in the pthread debug library

» realloc - needed to re-alloc memory in the pthread debug library

» dealloc - needed to free allocated memory in the pthread debug library

Optional call back functions for an application:
* read_regs - only necessary for pthdb_pthread_context and pthdb_pthread_setcontext.
* write_data - only necessary for pthdb_pthread_setcontext.

176 writing and Debugging Programs

../../libs/basetrf1/pthread_attr_setstacksize.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm

» write_regs - only necessary for pthdb_pthread_setcontext.

Update Function

Each time the application is stopped, after the session has been initialized, it is necessary to call the

_ | function. This function sets or reset the lists of pthreads, pthread attributes,
mutexes, mutex attributes, condition variables, condition variable attributes, read/write locks, read/write
lock attributes, pthread specific keys and active keys. It uses call back functions to manage memory for
the lists.

Context Functions
he bthdb_pthread context() function is used to get the context information and the

hlhdb_plb.teadée.tcaniexl(.i function is used to set the context. The pthdb_pthread_context() function
obtains the context information of a pthread from either the kernel or the pthread data structure in the

application’s address space. If the pthread is not associated with a kernel thread, then the context
information saved by pthread library is obtained. If a pthread is associated with a kernel thread, the
information is obtained from the application using the call back functions, it is the applications responsibility
to determine if the kernel thread is in kernel mode or user mode and provide the correct information for
that mode.

When a pthread with kernel thread is in kernel mode code it is impossible to get the full user mode context
because the kernel does not save it off in one place. The getthrds() function can be used to get part of
this information. It always saves the user mode stack and the application can discover this by checking
thrdsinfo64.ti_scount. If this is non-zero the user mode stack is available in thrdsinfo64.ti_ustk. From
user mode stack it is possible to determine the iar and the call back frames but not the other register
values. The thrdsinfo64 structure is defined in procinfo.h file.

List Functions

The pthread debug library maintains lists for pthreads, pthread attributes, mutexes, mutex attributes,
condition variables, condition variables attributes, read/write locks, read/write lock attributes, pthread
specific keys and active keys, each represented by a type specific handle. The pthdh_<ahject>() functions
return the next handle in the appropriate list, where object is one of the following: pthread, attr, mutex,
mutexattr, cond, condattr, rwlock, rwlockattr or key. If the list is empty or the end of the list is reached,
PTHDB_INVALID_<OBJECT> is reported, where OBJECT is one of the following: PTHREAD, ATTR,
MUTEX, MUTEXATTR, COND, CONDATTR, RWLOCK, RWLOCKATTR or KEY.

Field Functions

Detailed information about an object can be obtained by using the appropriate object member function,
pthdb_<object>_<field>(), where object is one of the following: pthread, attr, mutex, mutexattr, cond,
condattr, rwlock, rwlockattr or key and where field is the name of a field of the detailed information for
the object.

Customlzmg the Session

blhdbéessmndetﬂagsd function allows the application to change the flags which customize the
session. These flags are used to control the number of registers that are read or wrote during context

operations.

e hthdb_session_flags() function gets the current flags for the session.

Session Termination

At the end of the session, the session data structures need to be deallocated and the session data needs
to be deleted. This is accomplished by calling the bthdb_session_destray() function, which uses a call
back function to deallocate the memory. All of the memory allocated by the hthdh_se.ssmn_Lmld and
pthdh_session_update() functions will be deallocated.

Chapter 9. Parallel Programming 177

../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_pthread_context.htm
../../libs/basetrf1/pthdb_pthread_context.htm
../../libs/basetrf1/pthdb_attr.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm

Example

Pseudo-code showing how an application can connect to the pthread debug library:

/* includes */

#include <pthread.h>
#include <sys/pthdebug.h>

int my_read data(pthdb_user_t user, pthdb_symbol t symbols[],int count)
{

int rc;

rc=memcpy (buf, (void *)addr,len);
if (rc==NULL) {
fprintf(stderr,"Error message\n");
return(1);
}
return(0);
1
int my_alloc(pthdb_user t user, size_t len, void **bufp)
{
*xbufp=malloc(len);
if(1xbufp) {
fprintf(stderr,"Error message\n");
return(1);
}

return(0);

int my_realloc(pthdb_user_t user, void xbuf, size_t Ten, void *xbufp)
{
*xbufp=realloc(buf,len);
if(!xbufp) {
fprintf(stderr,"Error message\n");
return(1);
}

return(0);

}
int my_dealloc(pthdb_user_t user,void *buf)
{
free(buf);
return(0);
}
status()
{
pthdb_callbacks_t callbacks =
{ NULL,
my_read_data,
NULL,
NULL,
NULL,
my_alloc,

my_realloc,
my_dealloc,
NULL

rc=pthread_suspend_others np();
if (rc!=0)
deal with error

if (not initialized)

178 writing and Debugging Programs

if (rc!=PTHDB_SUCCESS)

deal with error

&session);

rc=pthdb_session_update(session);
if (rc!=PTHDB_SUCCESS)

deal with error

rc=pthdb_session_init(user,exec_mode,PTHDB_SUSPEND|PTHDB_REGS,callbacks,

retrieve pthread object information using the object Tist functions and
the object field functions

rc=pthread_continue_others_np();
if (rc!=0)

deal with error

main()

{

.

Related Information

. Bossion Eunciiond

pthdb_session_conc

urrency

pthdb_session_destroy

pthdb_session_flags

pthdb_session_setflags

pthdb_session_init

— pthdb_session_update

+ Call Back Functions (EMulti-Threaded Call Back Functions” on page 186)

read_data
write_data
read_regs
write_regs
alloc
realloc
dealloc

+ [LList Eunctiond

pthdb_attr
pthdb_cond
pthdb_condattr
pthdb_key
pthdb_mutex
pthdb_mutexattr
pthdb_pthread
pthdb_pthread_key
pthdb_rwlock
pthdb_rwlockattr

Chapter 9. Parallel Programming

179

../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_attr.htm

« [Pthread Functiond
— pthdb_pthread_addr
— pthdb_pthread_arg
— pthdb_pthread_cancelpend
— pthdb_pthread_cancelstate
— pthdb_pthread_canceltype
— pthdb_pthread_detachstate
— pthdb_pthread_exit
— pthdb_pthread_func
— pthdb_pthread_ptid
— pthdb_pthread_schedparam
— pthdb_pthread_schedpolicy
— pthdb_pthread_schedpriority
— pthdb_pthread_scope
— pthdb_pthread_state
— pthdb_pthread_suspendstate
— pthdb_ptid_pthread
« Pthread Context Functiond
— pthdb_pthread_context
— pthdb_pthread_setcontext
— pthdb_pthread_sigmask
— pthdb_pthread_sigpend
— pthdb_pthread_sigwait
— pthdb_pthread_specific
— pthdb_pthread_tid
— pthdb_tid_pthread_tid
— pthdb_attr_addr
— pthdb_attr_detachstate
— pthdb_attr_guardsize
— pthdb_attr_inheritsched
— pthdb_attr_schedparam
— pthdb_attr_schedpolicy
— pthdb_attr_schedpriority
— pthdb_attr_scope
— pthdb_attr_stackaddr
— pthdb_attr_stacksize
— pthdb_attr_suspendstate
« Mutex Functiond
— pthdb_mutex_addr
— pthdb_mutex_lock_count
— pthdb_mutex_owner

180 writing and Debugging Programs

../../libs/basetrf1/pthdb_pthread_arg.htm
../../libs/basetrf1/pthdb_pthread_context.htm
../../libs/basetrf1/pthdb_pthread_sigmask.htm
../../libs/basetrf1/pthdb_pthread_specific.htm
../../libs/basetrf1/pthdb_pthread_tid.htm
../../libs/basetrf1/pthdb_attr_detachstate.htm
../../libs/basetrf1/pthdb_mutex_owner.htm

— pthdb_mutex_pshared

— pthdb_mutex_prioceiling

— pthdb_mutex_protocol

— pthdb_mutex_state

— pthdb_mutex_type

— pthdb_mutexattr_addr

— pthdb_mutexattr_prioceiling
pthdb_mutexattr_protocol
pthdb_mutexattr_pshared

— pthdb_mutexattr_type

— pthdb_cond_addr

— pthdb_cond_mutex

— pthdb_cond_pshared

— pthdb_condattr_addr

— pthdb_condattr_pshared

— pthdb_rwlock_addr

— pthdb_rwlock_lock_count

— pthdb_rwlock_owner

— pthdb_rwlock_pshared

— pthdb_rwlock_state

— pthdb_rwlockattr_addr

— pthdb_rwlockattr_pshared

— pthdb_mutex_waiter

— pthdb_cond_waiter

— pthdb_rwlock_read_waiter

— pthdb_rwlock_write_waiter

he fpthread H file

Developing Multi-Threaded Program Debuggers

The pthread debug library (libpthdebug.a) provides a set of functions which will allow debugger
developers to provide debug capabilities for applications using the pthread library.

This library is used to debug both 32-bit and 64-bit pthreaded applications. This library is used to debug
targeted debug processes only, it can also be used introspectively (for example: linked to an appllcat|on
that uses pthreads) to examine pthread mformatlon of its own appllcatlon Seel -

. This library can be used by a

Chapter 9. Parallel Programming 181

../../libs/basetrf1/pthdb_mutexattr_prioceiling.htm
../../libs/basetrf1/pthdb_cond_mutex.htm
../../libs/basetrf1/pthdb_condattr_pshared.htm
../../libs/basetrf1/pthdb_rwlock_owner.htm
../../libs/basetrf1/pthdb_rwlockattr_pshared.htm
../../libs/basetrf1/pthdb_mutex_waiter.htm
../../files/aixfiles/pthread.h.htm

multi-threaded debugger to debug a multi-threaded application. Multi-threaded debuggers are supported
via libpthreads.a. This library is thread safe. The pthread debug library contains a 32-bit shared object and
a 64-bit shared object.

Debuggers using the ptrace facility must link to the 32-bit version of the library, since the ptrace facility is
not suppoted in 64-bit mode. Debuggers using the /proc facility can link to either the 32-bit version or the
64-bit version of this library.

The pthread debug library provides debuggers access to pthread library information. This includes
information on pthreads, pthread attributes, mutexes, mutex attributes, condition variables, condition
variable attributes, read/write locks, read/write lock attributes, and information about the state of the
pthread library. This library also provides help with controlling the execution of pthreads.

Note: All data (addresses, registers) returned by this library will be in 64-bit format both for 64-bit and
32-bit application. It is the debuggers responsibility to convert these values into 32-bit format for 32-bit
applications. When debugging a 32-bit application the top half of addresses and registers will be ignored.

Note: The pthread debug library does not report mutexes, mutexattrs, conds, condattrs, rwlocks,
rwlockattrs that have the pshared value of PTHREAD_PROCESS_SHARED.

Initialization

The debugger must initialize a pthread debug library session for each debug process. This cannot be
done until the pthread library has been initialized in the debug process. The pthdb_session_pthreaded()
function has been provided to tell the debugger when the pthread library has been initialized in the debug
process. Each time, the pthdb_session_pthreaded() function is called it checks to see if the pthread
library has been initialized. If initialized, it returns PTHDB_SUCCESS. Otherwise it returns
PTHDB_NOT_PTHREADED. In both cases, it returns a function name which can be used to set a breakpoint for
immediate notification that the pthread library has been initialized. Therefore, the
pthdb_session_pthreaded() function provides two methods to determine when the pthread library has
been initialized:

» The first method requires the debugger to call the function each time the debug process stops, to see if
the debuggee is pthreaded.

» The second method requires the debugger to call the function once and if the debuggee is not
pthreaded to set a breakpoint to notify the debugger when the debug process is pthreaded.

Once the debug process is pthreaded, the debugger must call the pthdh_session_init() function, to
initialize a session for the debug process. The pthread debug library supports one session for a single
debug process. The debugger must assign a unique user identifier and pass it to pthdb_session_init()
which in turn will assign a unique session identifier which must be passed as the first parameter to all
other pthread debug library functions, except pthdb_session_pthreaded(), in return. Whenever the
pthread debug library invokes a [Multi-Threaded Call Back Functions” on page 184, it will pass the
unique debugger assigned user identifier back to the debugger. The pthdb_session_init() function checks
the list of call back functions provided by the debugger, and initializes the session’s data structures. Also,
this function sets the session flags, see the pthdb_session_setflagd function.

Call Back Functions

The pthread debug library uses call back functions to obtain addresses, to obtain data, to write data, to
give storage management to the debugger, and to aid in debugging the pthread debug library. See

EMulti-Threaded Call Back Functions” on page 184 for more information.

Update Function

Each time the debugger is stopped, after the session has been initialized, it is necessary to call the
pthdb_session_update() function. This function sets or reset the lists of pthreads, pthread attributes,

182 writing and Debugging Programs

../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm

mutexes, mutex attributes, condition variables, condition variable attributes, read/write locks, read/write
lock attributes, pthread specific keys and active keys. It uses call back functions to manage memory for
the lists.

Hold and Unhold Functions
Debuggers need to support hold and unhold of threads for two reasons:

* In order to allow a user to single step a single thread, it must be possible to hold one or more of the
other threads.

» For users to continue a subset of available threads, it must be possible to hold threads not in the set.

The pthdb_pthread_hold() function sets the hold state of a pthread to hold.
e pthdb_pthread_unhold() function sets the hold state of a pthread to unhold.

Note: The pthdb_pthread_hold() and pthdb_pthread_unhold() functions must always be used whether
a pthread has a kernel thread or not.

The lpthdb_pthread_haldstate() function returns the hold state of the pthread.
The pthdb_session committed() function reports the function name of the function that is called after all

of the hold and unhold changes are committed. A break point can be placed at this function to notify the
debugger when the hold and unhold changes have been committed.

The lpthdb_session_staop_tid() function informs the pthread debug library, which informs the pthread
library the tid of the thread that stopped the debugger.

The ppthdb_session_cammit_tid() function returns the list of kernel threads, one kernel thread at a time,

that must be continued to commit the hold and unhold changes. This function must be called repeatedly,
until PTHDB_INVALID TID is reported. If the list of kernel threads is empty, it is not necessary to continue
any threads for the commit operation.

The debugger can determine when all of the hold and unhold changes have been committed in two ways:

» Before the commit operation (continuing all of the tids returned by the pthdb_session_commit_tid()
function) is started, the debugger can call the pthdb_session_committed() function to get the function
name and set a breakpoint. (This method can be done once for the life of the process.)

» Before the commit operation is started, the debugger calls the pthdb_session_stop_tid() function with
the tid of the thread that stopped the debugger. When the commit operation is complete, the pthread
library will ensure that the same stop tid is stopped as before the commit operation.

In order to hold or unhold pthreads it is necessary to follow the following procedure, before continuing a
group of pthreads or single stepping a single pthread:

1. Use the pthdb_pthread_hold() and pthdb_pthread_unhold() functions to set up which pthreads will
be held and which will be unheld.

2. Set-up the method that will determine when all of the hold and unhold changes have been committed.

3. Use the pthdb_session_commit_tid() function to determine the list of tids that must be continued to
commit the hold and unhold changes.

4. Continue the tids in the previous step and the thread which stopped the debugger.

he pthdb_session_continue_tid() function allows the debugger to obtain the list of kernel threads that

must be continued before it proceeds with single stepping a single pthread or continuing a group of
pthreads. This function must be called repeatedly, until PTHDB_INVALID_TID is reported. If the list of kernel
threads is not empty, the debugger will need to continue these kernel threads along with the others it is

Chapter 9. Parallel Programming 183

../../libs/basetrf1/pthdb_pthread_hold.htm
../../libs/basetrf1/pthdb_pthread_hold.htm
../../libs/basetrf1/pthdb_pthread_hold.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm

explicitly interested in. The debugger is responsible for parking the stop thread and continuing the stop
thread. The stop thread, is the thread that caused the debugger to be entered.

Context Functions

The lpthdb_pthread_context() function is used to get the context information and the
pthdb_pthread_setcontext() function is used to set the context. The pthdb_pthread_context() function

obtains the context information of a pthread from either the kernel or the pthread data structure in the
debug process’s address space. If the pthread is not associated with a kernel thread, then the context
information saved by pthread library is obtained. If a pthread is associated with a kernel thread, the
information is obtained from the debugger using call backs, it is the debuggers responsibility to determine
if the kernel thread is in kernel mode or user mode and provide the correct information for that mode.

When a pthread with kernel thread is in kernel mode code it is impossible to get the full user mode context
because the kernel does not save it off in one place. The getthrds() function can be used to get part of
this information. It always saves the user mode stack and the debugger can discover this by checking
thrdsinfo64.ti_scount. If this is non-zero the user mode stack is available in thrdsinfo64.ti_ustk. From
user mode stack it is possible to determine the iar and the call back frames but not the other register
values. The thrdsinfo64 structure is defined in procinfo.h file.

List Functions

The pthread debug library maintains lists for pthreads, pthread attributes, mutexes, mutex attributes,
condition variables, condition variables attributes, read/write locks, read/write lock attributes, pthread
specific keys and active keys, each represented by a type specific handle. The pthdb_<ohject>() The
pthdb_<object>() functions return the next handle in the appropriate list, where <object> is one of the
following: pthread, attr, mutex, mutexattr, cond, condattr, rwlock, rwlockattr or key. If the list is empty or the
end of the list is reached, PTHDB_INVALID object is reported, where object is one of the following:
PTHREAD, ATTR, MUTEX, MUTEXATTR, COND, CONDATTR, RWLOCK, RWLOCKATTR or KEY.

Field Functions

Detailed information about an object can be obtained by using the appropriate object member function,
pthdb_object field(), where object is one of the following: pthread, attr, mutex, mutexattr, cond,
condattr, rwlock, rwlockattr or key and where field is the name of a field of the detailed information for
the object.

Customizing the Session

The ppthdb_session_setflags() function allows the debugger to change the flags which customize the
session. These flags are used to control the number of registers that are read or wrote during context

operations, and to control the printing of debug information.

The jpthdh_session_flags() function gets the current flags for the session.

Session Termination

At the end of the debug session, the session data structures need to be deallocated and the session data
needs to be deleted. This is accomplished by calling the pthdb_session_destray() function, which uses a
call back functions to deallocate the memory. All of the memory allocated by the pthdb_session_init(),
and pthdb_session_update() functions will be deallocated.

Example
Pseudo-code showing how the debugger should make use of the hold/unhold code:
/* includes */

#include <sys/pthdebug.h>

184 writing and Debugging Programs

../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_pthread_context.htm
../../libs/basetrf1/pthdb_attr.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm

main()

{
tid_t stop_tid; /* thread which stopped the process */
pthdb_user_t user = <unique debugger value>;
pthdb_session_t session; /* <unique Tibrary value> */
pthdb_callbacks_t callbacks = <callback functions>;
char xpthreaded_symbol=NULL;
char xcommitted_symbol;
int pthreaded = 0;
int pthdb_init = 0;
char *committed_symbol;

/* fork/exec or attach to debuggee */
/* debuggee uses ptrace()/ptracex() with PT_TRACE_ME */

while (/* waiting on an event x/)

{
/* debugger waits on debuggee */

if (pthreaded_symbol==NULL) {
rc = pthdb_session_pthreaded(user, &callbacks, pthreaded_symbol);
if (rc == PTHDB_NOT_PTHREADED)
{

}
else
pthreaded=1;
}

if (pthreaded == 1 && pthdb_init == 0) {
rc = pthdb_session_init(user, &session, PEM 32BIT, flags, &callbacks);
if (rc)
/* handle error and exit */
pthdb_init=1;

/* set breakpoint at pthreaded_symbol =/

}

rc = pthdb_session_update(session)
if (rc != PTHDB_SUCCESS)
/* handle error and exit */

while (/* accepting debugger commands */)

switch (/* debugger command =/)

{

case DB_HOLD:
/* regardless of pthread with or without kernel thread */
rc = pthdb_pthread _hold(session, pthread);
if (rc)
/* handle error and exit =*/
case DB_UNHOLD:
/* regardless of pthread with or without kernel thread =/
rc = pthdb_pthread_unhold(session, pthread);
if (rc)
/* handle error and exit */
case DB_CONTINUE:
/* unless we have never held threads for the life %/
/* of the process */
if (pthreaded)
{
/* debugger must handle Tist of any size =/
struct pthread commit_tids;
int commit_count = 0;
/* debugger must handle Tist of any size */
struct pthread continue_tids;
int continue_count = 0;

Chapter 9. Parallel Programming

185

rc = pthdb_session_committed(session, committed symbol);
if (rc != PTHDB_SUCCESS)
/* handle error */
/* set break point at committed_symbol =/

/* gather any tids necessary to commit hold/unhold =/
/* operations */
do
{

rc = pthdb_session_commit tid(session,

&commit_tids.th[commit_count++]);
if (rc != PTHDB_SUCCESS)
/* handle error and exit */

} while (commit_tids.th[commit_count - 1] != PTHDB_INVALID TID);

/* set up thread which stopped the process to be */
/* parked using the stop_park function*/

if (commit_count > 0) {
rc = ptrace(PTT_CONTINUE, stop_tid, stop_park, 0,
&commit_tids);
if (rc)
/* handle error and exit */

/* wait on process to stop */

/* gather any tids necessary to continue */
/* interesting threads */
do
{

rc = pthdb_session_continue_tid(session,

&continue_tids.th[continue_count++]);
if (rc != PTHDB_SUCCESS)
/* handle error and exit */

} while (continue_tids.th[continue count - 1] != PTHDB_INVALID TID);

/* add interesting threads to continue_tids =/

/* set up thread which stopped the process to be parked */
/* unless it is an interesting thread */

rc = ptrace(PTT_CONTINUE, stop_tid, stop_park, 0,
&continue_tids);
if (rc)
/* handle error and exit */
1
case DB_EXIT:

rc = pthdb_session_destroy(session);
/* other clean up code */
exit(0);

1
exit(0);

Multi-Threaded Call Back Functions

* symbol_addrs
* read_data
» write_data
* read_regs

186 writing and Debugging Programs

e write_regs
» alloc

» realloc

* dealloc

e print

Purpose

Provide access to facilities needed by the pthread debug library and supplied by the debugger or

application.

Library

These functions are provided by the debugger which links in the pthread debug library.

Syntax

#include <sys/pthdebug.h>

int symbol_addrs(pthdb_user_t
int

int read_data(pthdb_user t Lised

void * [ud,

pthdb_addr t laddd,

int kizd)
int write_data(pthdb_user_t lused,
void * Eﬂj,
pthdb_addr_t bddd,
int kizd)

int read_regs(pthdb_user t lised,
tid t fid

unsigned long long EEEEE,

struct context64 * kontexd)

int write_regs(pthdb_user_t Lised,
tid_t fid,
unsigned long long EEEEQ,

struct context64 = lcontexd)

int alloc(pthdb_user t lsed,
size_t E,

void okl EEEH)

int realloc(pthdb_user_t EEEH,
void * EEB,
size t fed,
void ** ELEH)

int dealloc(pthdb user t lised,
void * EEE)

Lised,
pthdb_symbol t kymhald[],
kound)

Chapter 9. Parallel Programming

187

int print(pthdb_user t [ised,
char *» ki)

Description

int symbol_addrs()
Resolves the address of symbols in the debuggee. The pthread debug library will call this function
to get the address of known debug symbols. If symbol has a name of NULL or "”, then just set the
address to OLL, instead of doing a lookup or returning an error. If successful, 0 is returned, else
non-zero is returned. In introspective mode, when the PTHDB_FLAG_SUSPEND flag is set, the
application can use the pthread debug library provided symbol_addrs call back function, by
passing NULL or it can use one of it's own.

int read_data()
Reads the requested number of bytes of data at requested location from an active process or from
a core file and returns the data through a buffer. If successful then return 0 else return non-zero.
This call back function is always required.

int write_data()
Writes the requested number of bytes of data at requested location. The pthdebug library may use
this to write data to the active process. If successful return 0, else non-zero is returned. This call
back function is required when the PTHDB_FLAG_HOLD flag is set and when using the
pthdb_pthread_setcontext() function.

int read_regs()
Read registers call back function should be able to read the context information of a debuggee
kernel thread from an active process or from a core file. The information should be formatted in
context64 form for both 32-bit and 64-bit process. If successful return 0, else non-zero is returned.
This function is only required when using the pthdb_pthread_context() and
pthdb_pthread_setcontext() functions.

int write_regs()
Write register function should be able to write requested context information to specified
debuggee’s kernel thread id. If successful return 0, else non-zero is returned. This function is only
required when using the pthdb_pthread_setcontext() functions.

int alloc()
Takes len and allocates len bytes of memory and returns the address. If successful return 0, else
non-zero is returned. This call back function is always required.

int realloc()
Takes len and the buf and re-allocates the memory and returns an address to the realloc memory.
If successful return 0, else non-zero is returned. This call back function is always required.

int dealloc()
Takes a buffer and frees it. If successful return 0, else non-zero is returned. This call back function
is always required.

int print()
Prints the character string on the debugger’s stdout. If successful return 0, else non-zero is
returned. This call back is for debugging the library only, the messages printed will not be
translated and will not be explained in our user level documentation. If not debugging the pthread
debug library pass a NULL value for this call back.

Note: If write_data() and write_regs() are NULL then the pthread debug library will not try to write data

or write regs. If pthdb_pthread_set_context() is called when write_data() and write_regs() are NULL, then
it will return PTHDB_NOTSUP.

188 writing and Debugging Programs

Parameters

user User handle.

symbols Array of symbols.

count Number of symbols.

buf Buffer.

addr Address to be read from or wrote to.

size Size of buffer.

flags Session flags, must accept PTHDB_FLAG_GPRS,
PTHDB_FLAG_SPRS, PTHDB_FLAG_FPRS and
PTHDB_FLAG_REGS.

tid Thread id.

flags Flags which control which registers are read or wrote.

context Context structure.

len Length of buffer to be allocated or re-allocated.

bufp Pointer to buffer.

str String to be printed.

Return Values
If successful these function returns 0 else returns a non-zero value.

Related Information
The pthdebug.h file.

Benefits of Threads

The following explains the benefits of writing multi-threaded programs. Major improvements of threads
programming are:

+ [Parallel Programming Concepts’l are easier to implement.
 Multi-threaded programs provide better performance. See tPerformance Caonsideration” on page 191.

Threads do have some [Limitations” on page 191 and cannot be used for some special purposes which
still require multi-processed programs.

Parallel Programming Concepts

There are two main advantages for using parallel programming instead of serial programming techniques:
» Parallel programming can improve the performance of a program.

* Some common software models are well suited to parallel programming techniques.

Traditionally, multiple single-threaded processes have been used to achieve parallelism, but some
programs can benefit from a finer level of parallelism. Multi-threaded processes offer parallelism within a
process and share many of the concepts involved in programming multiple single-threaded processes.

Modularity
Programs are often modeled as a number of distinct parts interacting with each other to produce a desired

result or service. A program can be implemented as a single, complex entity that performs multiple
functions among the different parts of the program. A more simple solution consists of implementing
several entities, each entity performing a part of the program and sharing resources with other entities.

By using multiple entities, a program can be separated according to its distinct activities, each having an
associated entity. These entities do not have to know anything about the other parts of the program except
when they exchange information. In these cases, they must synchronize with each other to ensure data
integrity.

Chapter 9. Parallel Programming 189

Threads are well-suited entities for modular programming. Threads provide simple data sharing (all threads
within a process share the same address space) and powerful synchronization facilities (such as mutexes
and condition variables).

Software Models
The following common software models can easily be implemented with threads.

All these models lead to modular programs. Models may also be combined to efficiently solve complex
tasks.

These models can apply to either traditional multi-process solutions, or to single process multi-thread
solutions, on multi-threaded systems such as AlX. In the following descriptions, the word entity refers to
either a single-threaded process or to a single thread in a multi-threaded process.

Master/Slave Model

In the master/slave (sometimes called boss/worker) model, a master entity receives one or more requests,
then creates slave entities to execute them. Typically, the master controls how many slaves there are and
what each slave does. A slave runs independently of other slaves.

An example of this model is a print job spooler controlling a set of printers. The spooler’s role is to ensure
that the print requests received are handled in a timely fashion. When the spooler receives a request, the
master entity chooses a printer and causes a slave to print the job on the printer. Each slave prints one
job at a time on a printer, handling flow control and other printing details. The spooler may support job
cancellation or other features which require the master to cancel slave entities or reassign jobs.

Divide-and-Conquer Models

In the divide-and-conquer (sometimes called simultaneous computation or work crew) model, one or more
entities perform the same tasks in parallel. There is no master entity; all entities run in parallel
independently.

An example of a divide-and-conquer model is a parallelized grep command implementation, which could
be done as follows. The grep command first establishes a pool of files to be scanned. It then creates a
number of entities. Each entity takes a different file from the pool and searches for the pattern, sending the
results to a common output device. When an entity completes its file search, it obtains another file from
the pool or stops if the pool is empty.

Producer/Consumer Models

The producer/consumer (sometimes called pipelining) model is typified by a production line. An item
proceeds from raw components to a final item in a series of stages. Usually a single worker at each stage
modifies the item and passes it on to the next stage. In software terms, an AIX command pipe, such as
the cpio command, is a good example of a this model.

For example, a Reader entity reads raw data from standard input and passes it to the processor entity,
which processes the data and passes it to the writer entity, which writes it to standard output. Parallel
programming allows the activities to be performed concurrently: the writer entity may output some
processed data while the reader entity gets more raw data.

190 writing and Debugging Programs

Performance Consideration

Multi-threaded programs can improve performance in many ways compared to traditional parallel programs
using multiple processes. Furthermore, higher performance can be obtained on multiprocessor systems
using threads.

Managing Threads

Managing threads, that is creating threads and controlling their execution, requires fewer system resources
than managing processes. Creating a thread, for example, only requires the allocation of the thread’s
private data area, usually 64KB, and two system calls. Creating a process is far more expensive, because
the entire parent process addressing space is duplicated.

The threads library APl is also easier to use than the one for managing processes. Programmers should
think about the six ways of calling the exec subroutine. Thread creation requires just one syntax: the
pthread_create subroutine.

Inter-Thread Communications

Inter-thread communication is far more efficient and easier to use than inter-process communication.
Because all threads within a process share the same address space, they need not use shared memory.
Shared data should just be protected from concurrent access using mutexes or other synchronization
tools.

Synchronization facilities provided by the threads library allow easy implementation of flexible and powerful
synchronization tools. These tools can easily replace traditional inter-process communication facilities,
such as message queues. Note that pipes can be used as an inter-thread communication path.

Multiprocessor Systems

On a multiprocessor system, multiple threads can concurrently run on multiple CPUs. Therefore,
multi-threaded programs can run much faster than on a uniprocessor system. They will also be faster than
a program using multiple processes, because threads require fewer resources and generate less
overhead. For example, switching threads in the same process can be faster, especially in the M:N library
model where context switches can often be avoided. Finally, a major advantage of using threads is that a
single multi-threaded program will work on a uniprocessor system, but can naturally take advantage of a
multiprocessor system, without recompiling.

Limitations

Multi-threaded programming is useful for implementing parallelized algorithms using several independent
entities. However, there are some cases where multiple processes should be used instead of multiple
threads.

Many operating system identifiers, resources, states, or limitations are defined at the process level and,
thus, are shared by all threads in a process. For example, user and group IDs and their associated
permissions are handled at process level. Programs that need to assign different user IDs to their
programming entities need to use multiple processes, instead of a single multi-threaded process. Other
examples include file system attributes such as the current working directory, and the state and maximum
number of open files. Multi-threaded programs may not be appropriate if these attributes are better
handled independently. For example, a multi-processed program can let each process open a large
number of files without interference from other processes.

Chapter 9. Parallel Programming 191

192 writing and Debugging Programs

Chapter 10. Programming on Multiprocessor Systems

On a uniprocessor system, threads execute one after another in a time-sliced manner. This contrasts with
a multiprocessor system, where several threads execute at the same time, one on each available
processor. Overall performance is improved by running different process threads on different processors.
However, an individual program cannot take advantage of multiprocessing, unless it has multiple threads.

For most users, multiprocessing is invisible, being completely handled by the operating system and the
programs it runs. If desired, users may bind their processes (force them to run on a certain processor);
however, this is not required, nor recommended for ordinary use. Even for most programmers, taking
advantage of multiprocessing simply amounts to using multiple threads. On the other hand, kernel
programmers have to deal with several issues when porting or creating code for multiprocessor systems.
The following information discusses these topics.

Identifying Processors

Symmetric multiprocessor machines have one or more CPU boards, each of which can accommodate two
processors. For example, a four processor machine has two CPU boards, each having two processors.
Commands, subroutines, or messages that refer to processors need to use an identification scheme.
Processors are identified by physical and logical numbers, and by Object Data Manager (ODM) processor
names and location codes.

ODM Processor Names

ODM is a system used to identify various parts throughout a machine, including bus adapters, peripherals
such as printers or terminals, disks, memory boards, and processor boards. See L '

Manager (QDM)” on page 507 for more information about ODM.

ODM assigns numbers to processor boards and processors in order, starting from 0 (zero), and creates
names based on these numbers by adding a prefix cpucard or proc. Thus, the first processor board is
called cpucard0, and the second processor on it is called procl.

ODM location codes for processors consist of four 2-digit fields, in the form AA-BB-CC-DD, as explained
below:

AA Always 00. It indicates the main unit.

BB Indicates the processor board number. It can be 0P, 0Q, OR, or 0S, indicating respectively the first, second, third
or fourth processor card.

CC Always 00.

DD Indicates the processor position on the processor board. It can be 00 or 01.

These codes are illustrated in [Example Pracessor Configurations” on page 194
Logical Processor Numbers

Processors can also be identified using logical numbers, which start with 0 (zero). Only enabled
processors have a logical number.

The logical processor number 0 (zero) identifies the first physical processor in the enabled state; the
logical processor number 1 (one) identifies the second enabled physical processor, and so on.

© Copyright IBM Corp. 1997, 2001 193

Generally, all operating system commands and library subroutines use logical numbers to identify
processors. The m command (see [The cpu_state Command’) is an exception and uses ODM

processor names instead of logical processor numbers.

ODM Processor States

If a processor functions correctly, it can be enabled or disabled using a software command. A processor is
marked faulty if it has a detected hardware problem. ODM classifies processors using three states. A
processor can only be in one of the following states:

enabled Processor works and can be used by AlX.
disabled Processor works, but cannot be used by AIX.
faulty Processor does not work (a hardware fault was detected).

Controlling Processor Use

On a multiprocessor system, the use of processors can be controlled in two ways:
» A system administrator can control the availablity of the processors for the whole system.
» A user can force a process or kernel threads to run on a specific processor.

The cpu_state Command

A system administrator (or any user with root authority) can use the m command to list system
processors or to control available processors. This command can be used to list the following information
for each configured processor in the system:

Name [“ , shown in the form procx, where x is the physical processor
number

Cpu 1 agi ‘

Status QDM Processar States’] for the next boot

Location [“ , shown in the form AA-BB-CC-DD

Note: The cpu_state command does not display the current processor state, but instead displays the
state to be used for the next system start up (enabled or disabled). If the processor does not
respond, it is either faulty (an ODM state) or a communication error occured. In this case, the
cpu_state command displays No Reply.

Example Processor Configurations

The examples that follow show various processor configurations and how they affect the output of the
cpu_state command. These examples illustrate the relationships among physical processor numbers,
logical processor numbers, the current processor state, and the processor state used at the next boot.

Simple Processor Configurations

The simplest case to consider is when all available processors on a system are functionning and enabled.
Consider a simple two processor system with both processors enabled. The various ODM and number
conventions are shown in the following table.

Processor Naming Conventions

ODM Card Name ODM Processor Logical Number ODM Current cpu_state Status
Name Processor State Field

cpucard0 procO 0 Enabled Enabled

cpucard0 proci 1 Enabled Enabled

194 writing and Debugging Programs

../../cmds/aixcmds1/cpu_state.htm#HDRTGGBICDTHOM
../../cmds/aixcmds1/cpu_state.htm#HDRTGGBICDTHOM

For the above configuration, the cpu_state -l command produces a listing similar to the following:

Name Cpu
proc@ 0
procl 1

Status Location
Enabled 00-0P-00-00
EnabTed 00-0P-00-01

The following example shows the system upgraded by adding an additional CPU card with two processors.
By default, processors are enabled, so the new configuration is shown in the following table.

Processor Naming Conventions

ODM Card Name ODM Processor Logical Number ODM Current cpu_state Status
Name Processor State Field

cpucard0 procO 0 Enabled Enabled

cpucard0 proci 1 Enabled Enabled

cpucard1 proc2 2 Enabled Enabled

cpucardi proc3 3 Enabled Enabled

For this configuration, the cpu_state -| command produces a listing similar to the following:

Name Cpu
proc@ 0
procl 1
proc2 2
proc3 3

Status

Enabled
EnabTled
Enabled
EnabTed

Location

00-0P-00-00
00-0P-00-01
00-0Q-00-00
00-0Q-00-01

Complex Processor Configurations
In some conditions, a processor is not enabled and does not have a logical processor number. A

processor can fail a boot power-on test and be marked faulty by ODM. A processor can also be disabled
for maintenance or test reasons. Also, when a processor is enabled or disabled using the cpu_state
command, its current state remains unchanged until the next boot, but its state at the next boot (displayed
in the Status field of the cpu_state command) is changed immediately.

Disabled Processor Configurations: Using the four processor configurations in the previous section,

the physical processor 1 can be disabled with the command:

cpu_state -d procl

The processor configuration is shown in the following table.

Processor Naming Conventions

ODM Card Name ODM Processor Logical Number ODM Current cpu_state Status
Name Processor State Field

cpucard0 procO 0 Enabled Enabled

cpucard0 proci 1 Enabled Disabled

cpucard1 proc2 2 Enabled Enabled

cpucardi proc3 3 Enabled Enabled

For this configuration, the cpu_state -l command produces a listing similar to the following:

Name Cpu

proc@ 0
procl 1
proc2 2
proc3 3

Status
Enabled
Disabled
Enabled
EnabTled

Location

00-0P-00-00
00-0P-00-01
00-0Q-00-00
00-0Q-00-01

Chapter 10. Programming on Multiprocessor Systems

195

When the system is rebooted, the processor configuration is as shown in the following table.

Processor Naming Conventions

ODM Card Name ODM Processor Logical Number ODM Current cpu_state Status
Name Processor State Field

cpucard0 procO 0 Enabled Enabled

cpucard0 proci 1 Disabled Disabled

cpucard1 proc2 2 Enabled Enabled

cpucardi proc3 3 Enabled Enabled

The output of the cpu_state -1 command is similar to the following:

Name Cpu

procO 0
procl -
proc2 1
proc3 2

Status Location

Enabled 00-0P-00-00
Disabled 00-0P-00-01
Enabled 00-0Q-00-00
EnabTled 00-0Q-00-01

Faulty Processor Configurations: The following example uses the last processor configuration
discussed in the previous sectoin. The system is rebooted with processors proc0 and proc3 failing their
power-on tests. The processor configuration is as shown in the following table.

Processor Naming Conventions

ODM Card Name ODM Processor Logical Number ODM Current cpu_state Status
Name Processor State Field

cpucard0 procO - Faulty No Reply

cpucard0 proci - Disabled Disabled

cpucard1 proc2 0 Enabled Enabled

cpucardi proc3 - Faulty No Reply

The output of the cpu_state -l command is similar to the following:

Name Cpu
procO -
procl -
proc2

proc3 -

Status Location

No Reply 00-0P-00-00
Disabled 00-0P-00-01
Enabled 00-0Q-00-00
No Reply 00-0Q-00-01

Binding Processes and Kernel Threads

Users may also force their processes to run on a given processor; this action is called bind
administrator may bind any process. From the command line, binding is controlled with the

command.

inﬁ. A szstem

It is important to understand that a process itself is not bound, but rather its kernel threads are bound.
Once kernel threads are bound, they are always scheduled to run on the chosen processor, unless they
are later unbound. When a new kernel thread is created, it has the same bind properties as its creator.

This applies to the initial thread in the new process created by the koru subroutine; the new thread inherits
the bind properties of the thread that called the fork subroutine. When the kbxed subroutine is called, bind
properties are left unchanged. Once a process is bound to a processor, if no other binding or unbinding
action is performed, all child processes will be bound to the same processor.

196 writing and Debugging Programs

../../cmds/aixcmds1/bindprocessor.htm#HDRXDTXI2BCTHOM
../../libs/basetrf1/fork.htm
../../libs/basetrf1/exec.htm

It is only possible to bind processes to enabled processors using logical processor numbers. Available
logical processor numbers can be listed using the bindprocessor -q command. For a system with four
enabled processors, this command produces output similar to:

The available processors are: 0 1 2 3

Binding may also be controlled within a program using the W subroutine, which allows the
programmer to bind a single kernel thread or all kernel threads in a process. The programmer can also
unbind either a single kernel thread or all kernel threads in a process.

Dynamic Processor Deallocation

Starting with machine type 7044 model 270, the hardware of all systems with more than two processors
will be able to detect correctable errors, which are gathered by the firmware. These errors are not fatal
and, as long as they remain rare occurrences, can be safely ignored. However, when a pattern of failures
seems to be developing on a specific processor, this pattern may indicate that this component is likely to
exhibit a fatal failure in the near future. This prediction is made by the firmware based-on-failure rates and
threshold analysis.

AlIX, on these systems, implements continuous hardware surveillance and regularly polls the firmware for
hardware errors. When the number of processor errors hits a threshold and the firmware recognizes that
there is a distinct probability that this system component will fail, the firmware returns an error report to
AIX. In all cases, AlIX logs the error in the system error log. In addition, on multiprocessor systems,
depending on the type of failure, AIX attempts to stop using the untrustworthy processor and deallocate it.
This feature is called Dynamic Processor Deallocation.

At this point, the processor is also flagged by the firmware for persistent deallocation for subsequent
reboots, until maintenance personnel replaces the processor.

Potential Impact to Applications

This processor decallocation is transparent for the vast majority of applications, including drivers and
kernel extensions. However, you can use AIX published interfaces to determine whether an application or
kernel extension is running on a multiprocessor machine, find out how many processors there are, and
bind threads to specific processors.

The interface for binding processes or threads to processors uses logical CPU numbers. The logical CPU
numbers are in the range [0..N-1] where N is the total number of CPUs. To avoid breaking applications or
kernel extensions that assume no "holes” in the CPU numbering, AlX always makes it appear for
applications as if it is the "last” (highest numbered) logical CPU to be deallocated. For instance, on an
8-way SMP, the logical CPU numbers are [0..7]. If one processor is deallocated, the total number of
available CPUs becomes 7, and they are numbered [0..6]. Externally, it looks like CPU 7 has disappeared,
regardless of which physical processor failed. In the rest of this description, the term CPU is used for the
logical entity and the term processor for the physical entity.

Applications or kernel extensions using processes/threads binding could potentially be broken if AIX
silently terminated their bound threads or forcefully moved them to another CPU when one of the
processors needs to be deallocated. Dynamic Processor Deallocation provides programming interfaces so
that those applications and kernel extensions can be notified that a processor deallocation is about to
happen. When these applications and kernel extensions get this notification, they are responsiblefor
moving their bound threads and associated resources (such as timer request blocks) away form the last
logical CPU and adapt themselves to the new CPU configuration.

If, after notification of applications and kernel extensions, some of the threads are still bound to the last

logical CPU, the deallocation is aborted. In this case AlIX logs the fact that the deallocation has been
aborted in the error log and continues using the ailing processor. When the processor ultimately fails, it

Chapter 10. Programming on Multiprocessor Systems 197

../../libs/basetrf1/bindprocessor.htm#HDRQTKXI49THOM

creates a total system failure. Thus, it is important for applications or kernel extensions binding threads to
CPUs to get the notification of an impending processor deallocation, and act on this notice.

Even in the rare cases where the deallocation cannot go through, Dynamic Processor Deallocation still
gives advanced warning to system administrators. By recording the error in the error log, it gives them a
chance to schedule a maintenance operation on the system to replace the ailing component before a
global system failure occurs.

Processor Deallocation: Flow of Events
The typical flow of events for processor deallocation is as follows:
1. The firmware detects that a recoverable error threshold has been reached by one of the processors.

2. AlIX logs the firmware error report in the system error log, and, when executing on a machine
supporting processor deallocation, start the deallocation process.

3. AIX notifies non-kernel processes and threads bound to the last logical CPU.

4. AIX waits for all the bound threads to move away from the last logical CPU. If threads remain bound,
AlX eventually times out (after ten minutes)and aborts the deallocation

5. Otherwise, AIX invokes the previously registered High Availability Event Handlers (HAEHSs). An HAEH
may return an error that will abort the deallocation.

6. Otherwise, AIX goes on with the deallocation process and ultimately stops the failing processor.

In case of failure at any point of the deallocation, AIX logs the failure with the reason why the deallocation
was aborted. The system administrator can look at the error log, take corrective action (when possible)
and restart the deallocation. For instance, if the deallocation was aborted because at least one application
did not unbind its bound threads, the system administrator could stop the application(s), restart the
deallocation (which should go through this time) and restart the application.

Programming Interfaces

Existing AIX Interfaces Dealing with Individual Processors
The following is a list of existing interfaces:

Interfaces to Determine the Number if CPUs on a System

sysconf Subroutine: The sysconf subroutine returns a number of processors using:

_SC_NPROCESSORS_CONF: Number of processors configured.
_SC_NPROCESSORS_ONLN: Number of processors online.

For more information, see sysconf Subroutine in AIX 5L Version 5.1 Technical Reference: Base Operating
System and Extensions Volume 2.

The value returned by sysconf for _SC_NPROCESSORS_CONF, will remain constant between reboots. The
value returned for _SC_NPROCESSORS_ONLN will be the count of active CPUs and will be decremented every
time a processor is deallocated.

_system_configuration.ncpus: _system_configuration.ncpus identifies the number of CPUs active on
a machine. Uniprocessor (UP) machines are identified by a 1. Values greater than 1 indicate
multiprocessor (MP) machines. For more information, see kystemcfg.h Fild in AIX 5L Version 5.1 Files
Reference.

Because of processor deallocations, the ncpus value may now change over time when processors are
deallocated. Code that depends upon this value being a constant will probably fail. To prevent such code

198 writing and Debugging Programs

../../files/aixfiles/systemcfg.h.htm

from suddenly changing between uniprocessor (UP) and multiprocessor (MP) behavior, a processor will
not deallocate a if only two processors are currently active. Thus, if ncpus starts with a value greater than
1, it will be guaranteed to remain greater than 1 until the next reboot.

For code that must know how many processors were originally available at boot time, a new ncpus_cfg
field is added to _system_configuration table that does remain constant between reboots.

The CPUs are identified by a logical CPU number in the range [0..(ncpus-1)]. The processors also have a
physical CPU number which depends on which CPU board they are on, in which order, and so on. The
commands and subroutines dealing with CPU numbers always use logical CPU numbers. To ease the
transition to varying numbers of CPUs, the logical CPU numbers are contiguous numbers in the range
[0..(ncpus-1)] in AIX 4.3.3. The effect of this is that from a user point of view, when a processor
deallocation takes place, it always looks like the highest-numbered ("last”) logical CPU is going away,
regardless of which physical processor failed.

Note: To avoid problems, use the ncpus_cfg variable to determine what the highest possible logical
CPU number is for a particular system.

Interfaces to Bind Threads to a Specific Processor
The bindprocessor and the bindprocessor() programming interface allow you to bind a thread or a

process to a specific CPU, designated by its logical CPU number. Both interfaces will allow you to bind
threads or processes only to active CPUs. They are mentioned here because those programs which
directly use the bindprocessor() programming interface or are bound externally by a bindprocessor
command must be able to handle the processor deallocation.

The primary problem seen by programs that bind to a processor when a CPU has been deallocated is that
requests to bind to a deallocated processor will fail. Code that issues bindprocessor requests should
always check the return value from those requests.

For more information on these interfaces, see hindpracessor Command in AlX 5L Version 5.1 Commands
Reference, Volume 1 or hindpracessor Subroutind in AIX 5L Version 5.1 Technical Reference: Base
Operating System and Extensions Volume 1.

Interfaces for Processor Deallocation Notification

The notification mechanism is different for user mode applications having threads bound to the last logical
CPU and for kernel extensions.

Notification in User Mode

Each thread of a user mode application that is bound to the last logical CPU will be sent a new signal
SIGCPUFAIL, which is ignored by default. These applications need to be modified to catch this new signal
and dispose of the threads bound to the last logical CPU (either by unbinding them or by binding them to
a different CPU).

Notification in Kernel Mode
The drivers and kernel extensions which need to be notified of an impending processor deallocation have

to register a High-Availability Event Handler (HAEH) routine with the kernel. This routine will be called
when a processor deallocation is imminent. An interface is also provided to unregister the HAEH before
the kernel extension is unconfigured or unloaded.

Registering a High-Availability Event Handler: The kernel exports a new function to allow notification
of the kernel extensions in case of events, which affect the availability of the system.

The system call is:
int register_HA handler(ha_handler_ext t x)

Chapter 10. Programming on Multiprocessor Systems 199

../../cmds/aixcmds1/bindprocessor.htm
../../libs/basetrf1/bindprocessor.htm

For more information on this system call, see register HA_handled in AIX 5L Version 5.1 Technical
Reference: Kernel and Subsystems Volume 1.

The return value is equal to 0 in case of success. A non zero value indicates a failure.

The argument is a pointer to a structure describing the kernel extension’s high-availability event handler.
This structure is defined in a new header file, named <sys/high_avail.h> as follows:

typedef struct _ha_handler_ext_ {

int (*_fun)(); /* Function to be invoked */
Tong Tong _data; /* Private data for (x_fun)() */
char _name[sizeof(long Tong) + 1];

} ha_handler_ext_t;

The private data field _data is provided for the use of the kernel extension if it is needed. Whatever value
given in this field at the time of registration will be passed as a parameter to the registered fuction when it
is called due to a CPU predictive failure event.

The _name field is a null terminated string with a maximum length of 8 characters (not including the null
character terminator) which is used to uniquely identify the kernel extension with the kernel. This name
has to be unique among all the registered kernel extensions. This name appears in the detailed data area
of the CPU_DEALLOC_ABORTED error log entry if the kernel extension returns an error when the HAEH routine
is called by the kernel.

Kernel extensions should register their HAEH only once.
Invocation of the High-Availability Event Handler: Two parameters call the HAEH routine. The first

one is whatever is in the data field of the ha_handler_ext_t structure passed to register HA handler.
The second parameter is a pointer to a ha_event_t structure defined in <sys/high_avail.h> as:

typedef struct { /* High-availability related event =/
uint _magic; /* Identifies the kind of the event =*/
#define HA_CPU_FAIL 0x40505546 /* "CPUF" =/
union {
struct { /* Predictive processor failure x/
cpu_t dealloc_cpu; /* Logical ID of failing processor */
ushort domain; /* future extension */
ushort nodeid; /* future extension */
ushort reserved3; /* future extension x/
uint reserved[4]; /* future extension =*/
} _cpus
[* ... %/ /* Additional kind of events -- x/

/* future extension */
JITH
} haeh_event_t;

The function should return one of the following codes, also defined in <sys/high_avail.h>.

#define HA_ACCEPTED 0 /* Positive acknowledgement =*/
#define HA_REFUSED -1 /* Negative acknowledgement */

If any of the registered extensions does not return HA_ACCEPTED, the deallocation is aborted. The
HAEH routines are called in the process environment and do not need to be pinned.

If a kernel extension depends on the CPU configuration, its HAEH routine must react to the upcoming
CPU deallocation. This is highly application dependent. To allow AlX to proceed with the deconfiguration,
they just need to move away their threads bound to the last logical CPU, if any. Also, if they have been
using timers started from bound threads, those timers will be moved to another CPU as part of the CPU
deallocation. If they have any dependency on these timers being delivered to a specific CPU, they must
take actions such as stopping them, and restart their timer requests when the threads are bound to a new
CPU, for instance. Again, this is very much application dependent.

200 writing and Debugging Programs

../../libs/ktechrf1/register.htm

Canceling the Registration of a High-Availability Event Handler: To keep the system coherent, and
prevent system crashes, the kernel extensions which register an HAEH must cancel the registration when
they are unconfigured and are going to be unloaded. The interface is:

int unregister HA handler(ha_handler_ext t *)

For more information on the system call, see unregister HA_handled in AIX 5L Version 5.1 Technical
Reference: Kernel and Subsystems Volume 1.

Returns 0 in case of success. Any non-zero return value indicates an error.

Test Environment

Hardware problems triggering a processor deallocation are, hopefully, very rare events. In order to test any
of the modifications made in applications or kernel extensions to support this processor deallocation, a
command is provided to trigger the deallocation of a CPU designated by its logical CPU number. The
syntax is:

cpu_deallocate cpunum

where:
cpunum is a valid logical cpu number.

You must reboot the system to get the target processor back online. Hence, this command is provided for
test purposes only and is not intended as a system administration tool.

Creating Locking Services

Some programmers may want to implement their own high-level locking services instead of using the
standard locking services (mutexes) provided in the threads library. For example, a database product may
already use a set of internally defined services; it can be easier to adapt these locking services to a new
system than to adapt all the internal modules that use these services.

For this reason, AIX provides atomic locking service primitives which can be used to build higher level
locking services. To create services that are multiprocessor-safe (like the standard mutex services),
programmers must use the atomic locking services described in this section and not atomic operations

services, such as caompare_and_swagl.

Multiprocessor-Safe Locking Services

Locking services are used to serialize access to resources that may be used concurrently. For example,
locking services can be used for insertions in a linked list, which require several pointer updates. If the
update sequence by one process is interrupted by a second process that tries to access the same list, an
error can occur. A sequence of operations that should not be interrupted is called a critical section.

Locking services use a lock word to indicate the lock status: 0 (zero) can be used for free, and 1 (one) for
busy. Therefore, a service to acquire a lock would do the following:

test the Tock word

if the lock is free

set the lock word to busy
return SUCCESS

Because this sequence of operations (read, test, set) is itself a critical section, special handling is required.
On a uniprocessor system, disabling interrupts during the critical section prevents interruption by a context
switch. But on a multiprocessor system, the hardware must provide a so-called test-and-set primitive,
usually with a special machine instruction. In addition, special processor dependent synchronization

Chapter 10. Programming on Multiprocessor Systems 201

../../libs/ktechrf1/unregister.htm
../../libs/basetrf1/compare_and_swap.htm#HDRYHYJI20DTHOM

instructions called import and export fences are used to temporarily block other reads or writes. They
protect against concurrent access by several processors and against the read and write reordering
performed by modern processors.

To mask this complexity and provide independence from these machine-dependent instructions, three
subroutines are defined:

Ccheck_locH Conditionally updates a single word variable atomically, issuing an import fence for
multiprocessor systems. The compare_and_swap routine is similar, but it does not issue an
import fence and, therefore, is not usable to implement a lock.

[clear_locK Atomically writes a single word variable, issuing an export fence for multiprocessor systems.

[safe_fetcH Atomically reads a single word variable, issuing an import fence for multiprocessor systems.
The import fence ensures that the read value is not a stale value resulting from an early
pre-fetch. This subroutine is rarely needed.

Locking Services Example

The multiprocessor-safe locking subroutines can be used to create custom high-level routines independent
of the threads library. The example that follows shows partial implementations of subroutines similar to the

pthread_mutex_lock and pthread_mutex_unlock subroutines in the threads library:

#include <sys/atomic_op.h> /* for locking primitives */
#define SUCCESS 0
#define FAILURE -1
#define LOCK_FREE 0
#define LOCK_TAKEN 1
typdef struct {
atomic_p Tock; /* Tock word */
tid_t owner; /* identifies the lock owner =/

/* implementation dependent fields */
} my_mutex_t;

int my_mutex_Tock(my_mutex_t *mutex)

{

tid_ t self; /* caller's identifier */

/*
Perform various checks:

is mutex a valid pointer?

has the mutex been initialized?
*/

/* test that the caller does not have the mutex =*/
self = thread_self();
if (mutex->owner == self)
return FAILURE;
/*
Perform a test-and-set primitive in a loop.
In this implementation, yield the processor if failure.
Other solutions include: spin (continuously check);
or yield after a fixed number of checks.
*
/
while (!_check_Tock(&mutex->Tock, LOCK_FREE, LOCK_TAKEN))
yield();
mutex->owner = self;
return SUCCESS;
} /* end of my_mutex_Tock */

int my_mutex_unlock(my _mutex_t *mutex)
{
/*

Perform various checks:

202 writing and Debugging Programs

../../libs/basetrf1/_check_lock.htm#HDRO9CRJ2B6KEN
../../libs/basetrf1/_clear_lock.htm#HDRS8CRJ395KEN
../../libs/basetrf2/_safe_fetch.htm#HDRAZ2CRJ363KEN
../../libs/basetrf1/pthread_mutex_lock.htm
../../libs/basetrf1/pthread_mutex_lock.htm

is mutex a valid pointer?
has the mutex been initialized?

*/

/% test that the caller owns the mutex */
if (mutex->owner != thread self())
return FAILURE;

_clear_lock(&mutex->word, LOCK_FREE);
return SUCCESS;
} /* end of my_mutex_unlock =/

Kernel Programming

Kernel programming is thoroughly explained in AIX 5L Version 5.1 Kernel Extensions and Device Support
Programming Concepts. This section only highlights the major changes required for multiprocessor
systems.

Serialization is often required when accessing certain critical resources. Locking services can be used to
serialize thread access in the process environment, but they will not protect against an access occurring in
the interrupt environment. Previously, a kernel service disabled interrupts using the i_disabld kernel
service to serialize interrupt level access. However, this strategy does not work in a multiprocessor
environment. Therefore, new or ported code should use the Hisable_lack and unlock_enabld kernel
services, which use simple locks in addition to interrupt control. These kernel services can also be used
for uniprocessor systems, on which they simply use interrupt services without locking. See

m& in AIX 5L Version 5.1 Kernel Extensions and Device Support Programming Concepts for detailed
information.

Device drivers by default run in a logical uniprocessor environment, in what is called funnelled mode. Most
well-written drivers for uniprocessor systems will work without modification in this mode, but must be
carefully examined and modified to benefit from multiprocessing. Finally, kernel services for timers now
have return values because they will not always succeed in a multiprocessor environment. Therefore, new

or ported code must check these return values. See Lsing Multipracessor-Safe Timer Serviced in AIX 5L

Version 5.1 Kernel Extensions and Device Support Programming Concepts for more information.

32-bit and 64-bit Addressability

In AlX, applications are either 32-bit applications or 64-bit applications.

A 32-bit application is an application that executes in an environment where addresses are 32 bits long
and can represent 4 gigabytes of addressability (virtual address space).

A 64-bit application is an application that executes in an environment where addresses are 64 bits long
and can represent much larger addressability (over a billion gigabytes).

When creating an application, a decision must be made whether to create a 32-bit application or a 64-bit
application. 32-bit applications can be run on any RS/6000 system. 64-bit applications can only be run on
64-bit RS/6000 systems. Both 32-bit and 64-bit applications (and libraries) can be compiled and linked on
both 32-bit and 64-bit systems.

Performance
If the same source code is used to create both a 32-bit and a 64-bit application, the 64-bit application will

be the same size or larger than the 32-bit application and will generally run no faster (and often slower)
than the 32-bit application, unless it makes use of the larger 64-bit addressability to improve its
performance. Therefore, the correct choice should generally be to create a 32-bit application unless 64-bit
addressability is required by the application or can be used to dramatically improve its performance. For
this reason, the default mode for development tools is to create 32-bit objects and applications.

Chapter 10. Programming on Multiprocessor Systems 203

../../libs/ktechrf1/i_disable.htm#HDRVX3260CHRI
../../libs/ktechrf1/disable_lock.htm#HDRTOZII1D6THOM
../../libs/ktechrf1/unlock_enable.htm#HDRXNZII24CTHOM
../../aixprggd/kernextc/lock_kernsvcs.htm#HDRKTGHIBTHOM
../../aixprggd/kernextc/lock_kernsvcs.htm#HDRKTGHIBTHOM
../../aixprggd/kernextc/multiprocsafe_timersvcs.htm#HDRNT4CI32FTHOM

The 64-bit address space can be used to dramatically improve the performance of applications that
manipulate large amounts of data. This data can either be created within the application or obtained from
files. Generally the performance gain comes from the fact that the 64-bit application can contain the data
in its address space (either created in data structures or mapped into memory), where the data would not
fit into a 32-bit address space. The data would need to be multiple gigabytes in size or larger to show this
benefit.

There are two reasons for this performance improvement. First, the system call overhead of reading and
writing files can be avoided by mapping the files into memory. Second, 64-bit systems can support
physical memories that are larger than the addressability of 32-bit applications, so 64-bit applications are
needed to make full use of the physical memory available.

64-bit objects and archive file types

64-bit libraries and applications can only be created from 64-bit objects. A 64-bit object is an object type
(64-bit XCOFF format) created by compilation or assembly in 64-bit mode. (This does not mean that the
compiler or assembler executes in a 64-bit execution environment, just that the compiler or assembler has
been requested to create 64-bit objects rather than 32-bit objects.) 32-bit XCOFF format was the only
object type in releases of AIX before AIX 4.3.

There is no way to create an object or application using both 32-bit and 64-bit object files. A system
provided library contains both 32-bit and 64-bit object files. The linker selects the appropriate objects from
the library based on the type of linking that is requested (32-bit or 64-bit) and creates an object or
application of that type.

There are two archive file types. The first does not recognize 64-bit object files and cannot be larger than
2 gigabytes. This was the only archive file type in releases of AlX before AIX 4.3. The second archive file
type recognizes both 32-bit and 64-bit object files and will work with files larger than 2 gigabytes.

Differences between 32-bit and 64-bit execution environments

In addition to the differences in addressability, there are the following differences between the 32-bit and
64-bit execution environments (or modes):

* The C "long” type (and types derived from it) in 64-bit mode is 64 bits in size.
» All pointer types in 64-bit mode are 64 bits in size.

* 64-bit applications can make use of 64-bit PowerPC instructions.

* The size of a machine register is 64 bits in 64-bit mode.

* The maximum theoretical limits for the size of 64-bit applications, their heaps, stacks, shared libraries,
and loaded objects is millions of gigabytes. The practical limits are dependent on the file system limits,
paging space sizes, and system resources available.

All C fundamental types other than "long” and pointer types will be the same size in 32-bit and 64-bit
compilation modes.

Tools support for 64-bit development
AIX provides support in all the standard tools for building, examining, and debugging 64-bit applications.

yacc, lex, and lint work with source code destined for both 32-bit and 64-bit compilation.

The C and Fortran compilers and the assembler allow the creation of both 32-bit and 64-bit objects. The
linker allows the creation of both 32-bit and 64-bit objects and applications.

make, ar, strip, dump, nm, prof, gprof, lorder, ranlib, size, strings, and sum work with both 32-bit and
64-bit objects and applications.

dbx and xldb allow the debugging of both 32-bit and 64-bit applications.

204 writing and Debugging Programs

Porting source code from 32-bit to 64-bit execution environments
The following issues must be examined and dealt with when porting source code for 32-bit applications to
be compiled in 64-bit mode to create 64-bit applications:

* Remove any assumption that a pointer type can fit in a C integer type (or types derived from integer).

* Remove any assumption that a C long type can fit in a C integer type (or types derived from long and
integer).

* Remove any assumption about the number of bits in a C long type object when bit shifting or doing
bitwise operations.

* Remove any assumption that a C integer can be passed to an unprototyped long or pointer parameter.
* Remove any assumption that an unprototyped function can return a pointer or long.

The -t flag to lint can be used to find issues when porting source code from 32-bit to 64-bit compilation
mode.

64-bit application development

The APIs (Application Programming Interfaces) provided to 32-bit applications are also generally provided
to 64-bit applications. Some libraries that have been superseded or deprecated for 32-bit applications are
not being provided to 64-bit applications, so their APIs will be missing in 64-bit execution mode.

The names of types, global variables, preprocessor macros, and predefined constants are the same in
32-bit and 64-bit compilation mode. The sizes (and layouts in the case of structures) and values for these
are often different in 32-bit and 64-bit compilation mode, to account for the different sizes of the address
spaces and fundamental types involved.

The names of API functions, the types of parameters passed, and the return types are the same in 32-bit
and 64-bit compilation modes. The sizes (and layouts in the case of structures) of the parameters and
return values are often different in 32-bit and 64-bit compilation modes to account for the different size of
the address spaces involved.

64-bit library development

Libraries should provide the same functionality to 64-bit applications that they provide to 32-bit
applications. This is to minimize the amount of porting that needs to be done when changing the execution
mode of an application from 32-bit to 64-bit. To ease porting, the names of functions provided, their
parameter types and return types should be the same for 32-bit and 64-bit applications.

The choice of the types of integral parameters and return values should be made based upon what a
parameter or return value is representing. If it represents the size of an object in the address space, its
type should be based upon a C "long” type. Otherwise, the type should be made one of the C types
"char”, "short”, "int”, or "long long”, depending on what the maximum possible value is. (These types are
the same size in 32-bit and 64-bit compilation mode.)

Libraries should contain both the 32-bit and 64-bit objects files for the API they support. This will minimize
the porting effort for makefiles for applications that are being ported from 32-bit to 64-bit execution mode.
System libraries provide object files for using both 32-bit and 64-bit applications in the same library archive
file.

Only 32-bit objects can be loaded by a 32-bit application. Only 64-bit objects can be loaded by 64-bit
applications. If an APl is provided by loading objects, a separate 32-bit and 64-bit version of the object
must be provided with a different pathname.

64-bit kernel extension development

AIX kernel extensions run in 32-bit mode on the 32-bit kernel and in 64-bit mode on the 64-bit kernel,
regardless of the mode of the application for which they might be processing requests.

Chapter 10. Programming on Multiprocessor Systems 205

Kernel extensions that have not been designed to work with 64-bit applications only support 32-bit
applications. A 64-bit application will fail to link attempts to make use of a system call from a kernel
extention that has not been modified to support 64-bit applications. A kernel extension can indicate that it
supports 64-bit applications by setting the SYS_64BIT flag when it is loaded using the sysconfig routine.

Kernel extension support for 64-bit applications has two aspects.
The first aspect is the use of new kernel services for working with the 64-bit user address space. The new

64-bit services for examining and manipulating the 64-bit address space are hs_att64, as_det64,
as_geth64 s _puth6d, as_seth64, and las_)

The new services for copying data to or from 64-bit address spaces are copyin6d, copyout6d,
i , fubyte64, Fuword6d, isubyte6d, and)

The new service for doing cross-memory attaches to memory in a 64-bit address space is kmattach6d.

The new services for creating real memory mappings are kmmap_create64 and kmmap_remave&d.

The major difference between all these services and their 32-bit counterparts is that they use 64-bit user
addresses rather than 32-bit user addresses.

The service for determining whether a process (and its address space) is 32-bit or 64-bit is 1S64U.

Performance Monitor APl Programming Concepts

The following information provides an overview of the Performance Monitor API library .

Read the following to learn more about programming the Performance Monitor API for threads:

Introduction

This article describes the libpmapi library which contains a set of Application Programming Interfaces
designed to provide access to some of the counting facilities of the Performance Monitor feature included
in selected IBM micro-processors in the POWERPC family. Those APIs include :

» a set of system level APIs : to allow counting of the activity of a whole machine or of a set of processes
with a common ancestor.

» a set of first party kernel thread level APIs : to allow threads running in 1:1 mode to count their own
activity.

» a set of third party kernel thread level APIs to allow a debugger to count the activity of target threads
running in 1:1 mode.

The APIs and the events available on each of the supported processors have been completely separated
by design. The events available, which are different on each processor, and their descriptions as well as

their current testing status are in separately installable tables, and are not described here at all because

none of the API calls depend on the availability or status of any of the events.

206 Writing and Debugging Programs

../../libs/ktechrf1/as_att64.htm
../../libs/ktechrf1/as_det64.htm
../../libs/ktechrf1/as_geth64.htm
../../libs/ktechrf1/as_puth64.htm
../../libs/ktechrf1/as_seth64.htm
../../libs/ktechrf1/as_getsrval64.htm
../../libs/ktechrf1/copyin64.htm
../../libs/ktechrf1/copyout64.htm
../../libs/ktechrf1/copyinstr64.htm
../../libs/ktechrf1/fubyte64.htm
../../libs/ktechrf1/fuword64.htm
../../libs/ktechrf1/subyte64.htm
../../libs/ktechrf1/suword64.htm
../../libs/ktechrf1/xmattach64.htm
../../libs/ktechrf1/rmmap_create64.htm
../../libs/ktechrf1/rmmap_remove64.htm

The status of an event, as returned in bitflags by the API initialization routine pm_init, can be verified,
unverified, or works with some caveat (see next section for an important warning (Performance Monitod

Accuracy Warningl) about testing status and event accuracy).

An event filter, which is any combination of the status bits, must be passed to pm_init to force the return
of only events with a status matching the filter. If no filter is passed to pm_init, no events will be returned.

For each event, in addition to a testing status and a full description, the identifier to be used in subsequent
API calls, and a short and a long name are also returned by pm_init. The short name is a mnemonic
name in the form PM_MNEMONIC. Events that are the same on different processors will have the same
mnemonic name. For instance PM_CYC and PM_INST_CMPL are respectively the number of processor
cycles and instruction completed and should exist on most processors.

Performance Monitor Accuracy Warning

Only events marked verified have gone through full verification. Events marked caveat have been verified
within the limitations documented in the event description returned by pm_init.

Events marked unverified have undefined accuracy. Use caution with unverified events; the PM APl is
essentially providing a service to read hardware registers which may or may not have any meaningful
content.

Users may experiment with unverified event counters and determine for themselves what, if any, use they
may have for specific tuning situations.

Performance Monitor Context and State
Definitions

To provide Performance Monitor data access at various levels, support has been added to the Operating
System for optional Performance Monitoring contexts. These contexts are an extension to the regular
processor and thread contexts and include one 64 bit counter per hardware counter and a set of control
words. The control words define what events get counted and when counting is on or off.

System level context and accumulation

For the system level APIs, optional PM contexts can be associated with each of the processors. When
installed, the PM kernel extension automatically handles 32 bit PM hardware counter overflows, and
maintains per-processor sets of 64 bit accumulation counters, one per 32 bit hardware PM counter.

Thread context

Optional PM contexts can also be associated with each kernel thread. The Operating System and the PM
kernel extension automatically maintain sets of 64 bit counters for each of these contexts.

Thread group and process context

The concept of thread group is optionally supported by the thread level APIs. All the threads within a
group, in addition to their own PM context, share a group accumulation context. A group is defined as all
the threads created by a common ancestor thread. By definition, all the threads in a thread group count
the same set of events, and, with one exception described below, the group must be created before any of
the descendant threads are created. The second restriction stems from the fact that once descendant
threads are created, it is impossible to determine a list of threads with a common ancestor. One special
case of a group is the collection of all the threads belonging to a process. Such a group can be created at
any time regardless of when the descendant threads are created. This is made possible by the fact that a
list of threads belonging to a process can be generated. Multiple groups can coexist within a process, but

Chapter 10. Programming on Multiprocessor Systems 207

each thread can be a member of only one PM counting group. Since all the threads within a group must
be counting the same events, a process group creation will fail if any thread within the process already
has a context.

PM state Inheritance

The PM state is defined as the combination of the PM programmation (the events being counted), the
counting state (on or off), and the optional thread group membership. There is a counting state associated
with each group. When the group is created, its counting state is inherited from the initial thread in the
group. For threads member of a group, the effective counting state is the result of ANDing their own
counting state with the group counting state. This provides a way to effectively turn counting on and off for
all threads in a group. Simply manipulating the group counting state will affect the effective counting state
of all the threads in the group. Threads inherit their complete PM state from their parents when the thread
is created. A thread PM context data (the value of the 64 bit counters) is not inherited, i.e. newly created
threads start with counters set to zero.

PM context independence

The thread and thread group PM contexts are independent. This allows each of the thread or group of
threads on a system to program themselves to be counted with their own list of events. In other words,
except when using the system level API, there is no requirement that all threads counts the same events
and, using a debugger, a user can certainly program threads or groups of threads to count different
events.

Thread and thread group accumulation

When a thread gets suspended (or re-dispatched), its 64 bit accumulation counters are updated. If the
thread is member of a group, the group accumulation counters are updated at the same time.

Similarly, when a thread stops counting or reads its PM data, its 64 bit accumulation counters are also
updated by adding the current value of the PM hardware counters to them. Again, if the thread is member
of a group, the group accumulation counters are also updated, regardless of whether the counter read or
stop was for the thread or the thread group.

The group level accumulation data is kept consistent with the individual PM data for the thread members
of the group, whenever possible. When a thread voluntarily leaves a group, i.e., deletes its PM context, its
accumulated data is automatically subtracted from the group level accumulated data. Similarly, when a
thread member in a group resets its own data, the data in question is subtracted from the group level
accumulated data. Note that when a thread dies, no action is taken on the group accumulated data.

The only situation where the group level accumulation is not consistent with the sum of the data for each
of its members is when the group level accumulated data has been reset, and the group has more then
one member. This situation is detected and marked by a bit returned when the group data is read.

Security Considerations
» System level security

The system level APIs calls are only available from the super user except when the process tree option
is used. In that case a locking mechanism prevents calls to be made from more than one process. This
mechanism ensures ownership of the APl and exclusive access by one process from the time the
system level contexts are created until they are deleted.

Turning on the process tree option results in counting for only the calling process and its descendants;
the default is to count all activities on each processor.

» Thread and thread group level security

208 Writing and Debugging Programs

Since the system level APIs would report bogus data if thread contexts where in use, it is not allowed to
make system level API calls at the same time as thread level API calls. The allocation of the first thread
context will take the system level API lock which will not be released until the last context has been
deallocated.

When using first party calls, a thread is only allowed to modify its own PM context. The only exception
to this rule is when making group level calls, which obviously affect the group context, but can also
affect other threads context. Indeed, deleting a group deletes all the contexts associated with the group,
i.e., the caller context, the group context and all the contexts belonging to all the threads in the group.

Access to a PM context not belonging to the calling thread or its group is only available from the target
process’s debugger. The third party API calls only succeed when the target process is being ptraced by
the API caller, i.e., the caller is already attached to the target process, and the debuggee is stopped.

The fact that the debugger must already have been attached to the debugged thread before any third
party call to the APl can be made, ensures that the security level of the APl will be the same as the one
used between debuggers and debuggees.

Common Definitions
Common rules

pm_init must be called before any other API call can be made, and only events returned by a given
pm_init call with its associated filter setting can be used in subsequent pm_set_program calls. pm_init
also returns the processor name, the number of counters available (2, 4 or 8), and the threshold multiplier.
For each event returned, a thresholdable flag is also returned. This flag indicates whether an event can be
used with a threshold. If so, then specifying a threshold defers counting until the threshold multiplied by
the processor’s threshold multiplier has been exceeded.

PM contexts cannot be reprogrammed or reused at any time. This means that none of the APIs support
more than one call to a pm_set_program interface without a call to a pm_delete_program interface. This
also means that when creating a process group, none of the threads in the process is allowed to already
have a context.

All the API calls return 0 when successful or a positive error code (which can be decoded using pm_error)
otherwise.

Group information

The following information is associated with each thread group :
* member count :

the number of threads member of the group. This includes deceased threads which were member of the
group when running.

If the consistency flag is on, it will be the number of threads that have contributed to the group level
data.

* process flag :
indicates that the group includes all the threads in the process.
» consistency flag :

indicates that the group PM data is consistent with the sum of the individual PM data for the thread
members.

This information is returned by the pm_get_data_mygroup and pm_get_data_group interfaces in a
pm_groupinfo_t structure.

Chapter 10. Programming on Multiprocessor Systems 209

The Seven Basic API Calls

Each of the seven section below describes a system-wide API call that has variations for first-party kernel
thread or group counting, and third-party kernel thread or group counting. Variations are indicated by
suffixes to the function call names, such as pm_set_program, pm_set_program_mythread,
pm_set_program_group etc.

pm_set_program
Sets the counting configuration. Use this call to specify the events to be counted, and a mode in
which to count. The list of events to choose from is returned by pm_init. If the list includes a
thresholdable event, a threshold can also be specified.

The mode in which to count, can include user-mode and/or kernel-mode counting, and whether to
start counting immediately. For the system-wide API call, the mode also include whether to turn
counting on only for a process and its descendants or for the whole system. For counting group
API calls, the mode includes the type of counting group to create, i.e., a group containing the initial
thread and its future descendants, or a process level group, which includes all the threads in a
process.

pm_get_program
Retrieves the current Performance Monitor settings. This includes mode information and the list of
events being counted. If the list includes a thresholdable event, a threshold will also be returned.

pm_delete_program
Deletes the Performance Monitor configuration. Use this call to undo pm_set_program.

pm_start
Starts Performance Monitor counting.

pm_stop
Stops Performance Monitor counting.

pm_get_data
Returns Performance Monitor counting data. The data is a set of 64-bit values, one per hardware
counter. For the counting group API calls, the group information previously described is also
returned.

pm_reset_data
Resets Performance Monitor counting data. All values are set to 0.

Examples
Example code is also shipped to the /usr/samples/pomapi directory.

Simple single threaded program
#include main()

{
pm_info_t pminfo;
pm_prog_t prog;
pm data_t data;
int filter = PM_VERIFIED; /* use only verified events */

pm_init(filter, &pminfo)

0; /* start with clean mode */
1; /* count only user mode */

prog.mode.w
prog.mode.b.user

for (i = 0; i < pminfo.maxpmcs; i++)
prog.events[i] = COUNT_NOTHING;

1; /% count event 1 in first counter */
2; /* count event 2 in second counter */

prog.events[0]
prog.events[1]

pm_program_mythread(&prog) ;

210 Writing and Debugging Programs

pm_start_mythread();
(1) ... usefull work

pm_stop_mythread();
pm_get data_mythread(&data);

. print results ...

}

Debugger example for previous program
To look at the PM data while the program is executing :

from a debugger at breakpoint (1)
pm_init(filter);
(2) pm_get program_thread(pid, tid, &prog);
. display PM programmation ...

(3) pm_get data_thread(pid, tid);
. display PM data ...

pm_delete_program_thread(pid, tid);
prog.events[0] = 2; /x change counter 1 to count event number 2 */
pm_set_program_thread(pid, tid, &prog);

continue program

The scenario above would work as well if the program being executed under the debugger didn’'t have any
embedded PM API calls. The only difference would be that the calls at (2) and (3) would fail, and that
when the program continues, it will be counting only event number 2 in counter 1, and nothing in other
counters.

Simple multithreaded example

A simple multithreaded example with independent threads counting the same set of events.
#include pm_data_t data2;
void *
doit(void *)
{
(1) pm_start_mythread();
. usefull work
pm_stop_mythread();
pm_get data_mythread(&data2);
main()
pthread_t threadid;
pthread_attr_t attr;
pthread_addr_t status;
.. same initialization as in previous example ...
pm_program_mythread(&prog) ;
/* setup 1:1 mode, M:N not supported by APIs =*/
pthread_attr_init(&attr);

pthread attr_setscope(&attr, PTHREAD _SCOPE_SYSTEM);
pthread_create(&threadid, &attr, doit, NULL);

Chapter 10. Programming on Multiprocessor Systems 211

(2) pm_start _mythread();
. usefull work

pm_stop_mythread();
pm_get data_mythread(&data);

. print main thread results (data)...
pthread join(threadid, &status);

. print auxiliary thread results (data2) ...

}

Counting starts at (1) and (2) for the main and auxiliary threads respectively because the initial counting
state was off and it was inherited by the auxiliary thread from its creator.

Simple thread counting group example
Example with two threads in a counting group. The body of the auxiliary thread’s initialization routine is the
same as in the previous example.

main()
{

. same initialization as in previous example ...

pm_program_mygroup(&prog); /* create counting group */
(1) pm_start_mygroup()

pthread create(&threadid, &attr, doit, NULL)
(2) pm_start_mythread();

. usefull work
pm_stop_mythread();
pm_get data_mythread(&data)

. print main thread results ...
pthread_join(threadid, &status);

. print auxiliary thread results ...
pm_get data_mygroup(&data)

. print group results ...

}

The call in (2) is necessary because the call in (1) only turns on counting for the group, not the individual
threads in it. At the end, the group results are the sum of both threads results.

Thread counting example with reset
This example with a reset call illustrates the impact on the group data. The body of the auxiliary thread is
the same as before, except for the pm_start_mythread() call which is not necessary in this case.

main()
{

. same initialization as in previous example...

prog.mode.b.count = 1; /* start counting immediately =*/
pm_program_mygroup (&prog) ;

pthread_create(&threadid, pthread attr default, doit, NULL)

212 writing and Debugging Programs

. usefull work

pm_stop_mythread()
pm_reset_data_mythread()

pthread_join(threadid, &status);
...print auxiliary thread results...
pm_get data_mygroup(&data)
...print group results...

1

The main thread and the group counting state are both on before the auxiliary thread is created so the
auxiliary thread will inherit that state and start counting immediately.

At the end, datal is equal to data because the pm_reset_data_mythread automatically subtracted the

main thread data from the group data to keep it consistent. In fact at all time the group data is still equal to
the sum of the auxiliary and the main thread data, but in this case the main thread data is null.

Related Information

pmapi h Fild

Chapter 10. Programming on Multiprocessor Systems 213

../../files/aixfiles/pmapi.h.htm

214 writing and Debugging Programs

Chapter 11. Threads Programming Guidelines

The following information provides guidelines for writing multi-threaded programs using the threads library
(libpthreads.a). The AlX threads library is based on the emerging POSIX 1003.1c standard. For this
reason, the following information presents the threads library as the AIX implementation of the POSIX
standard.

If you want to learn how to write programs using multiple threads, you should read the topics in sequential
order. If you are looking for specific information, choose one of the following topics:

T i n .)

Thread Implementation Model

At the other end of the spectrum is the "kernel-thread model.” In this model, all threads are visible to the
operating system kernel. Thus, all threads are kernel scheduled entities, and all threads can concurrently
execute. The threads are scheduled onto processors by the kernel according to the scheduling attributes
of the threads. This model is the model provided in AlX 4.2.

AIX 4.3 uses a hybrid model that offers the speed of library threads and the concurrency of kernel threads.
In hybrid models, a process has a varying number of kernel scheduled entities associated with it. It also
has a potentially much larger number of library threads associated with it. Some library threads may be
bound to kernel scheduled entities, while the other library threads are multiplexed onto the remaining
kernel scheduled entities. For this reason, a hybrid model is referred to as a "M:N” model. In this model,
the process can have multiple concurrently executing threads; specifically, it can have as many
concurrently executing threads as it has kernel scheduled entities.

Thread-safe and Threaded Libraries in AIX

In AIX 4.2, special versions of selected libraries were provided, that were for use by threaded applications.
These libraries were counterparts of the non-thread-safe libraries, but with the suffix "_r” added to the
name. These libraries were:

libc.a/libc_r.a libbsd.a/libbsd_r.a
libm.a/libm_r.a libnetsvc.a/libnetsve_r.a
libs.a/libs_r.a libs2.a/libs2_r.a
libsvid.a/libsvid_r.a libtli.a/libtli_r.a

libxti.a/libxti_r.a

In AIX 4.3, the need for these "_r" versions has been eliminated. By default, all applications are now
considered "threaded,” even though most are of the case "single threaded.” These thread-safe libraries
are now:

libbsd.a libc.a libm.a

© Copyright IBM Corp. 1997, 2001 215

libsvid.a libtli.a libxti.a
libnetsvc.a

The "_r" versions have been kept as links to these libraries, to enable compatibility with user applications.

Threads Versions On AlX

In order to bring threaded application support to our users, AIX introduced threads APl models based on
preliminary drafts of the now-official IEE POSIX standard. AIX 4.3 conforms fully to the IEEE POSIX
standard for threads APIs, IEEE POSIX 1003.1-1996.

Note: In AIX 4.2 threads were supported at a "Draft 4" level.
AlIX 4.3 provides full support for applications compiled on AIX 4.2. It also provides compilation support for
applications written to the "Draft 7" level that are not able to modify their source code to full standard
conformance.

Compiling a Threaded Application

In AIX 4.2, "_r" versions of the C compiler invocations were offered that allowed the proper libraries and
command line options to be set for creating a threaded application.

In AIX 4.3 the use of the "_r" invocations is no longer required for creating a threaded application.
» To Compile a Threaded Application on AIX 4.3, use either the normal or "_r" version of the compiler.
» To Compile a Threaded Application at "Draft 7" level, use the "_r7" invocation of the compiler.

Threads Basic Operation Overview

To write a multi-threaded program, it is necessary to understand how to create and terminate threads.
Synchronization facilities and scheduling control are not required for a basic usage of threads.

The following information will help you in writing your first multi-threaded program:

« . . ”

° 1] ”

Creating Threads

A thread has attributes, which specify the characteristics of the thread. The attributes default values fit for
most common cases. To control thread attributes, a thread attributes object must be defined before
creating the thread.

Thread Attributes Object

The thread attributes are stored in an opaque object, the thread attributes object, used when creating the
thread. It contains several attributes, depending on the implementation of POSIX options. It is accessed
through a variable of type pthread_attr_t. In AlX, the pthread_attr_t data type is a pointer to a structure;
on other systems it may be a structure or another data type.

216 Writing and Debugging Programs

Thread Attributes Object Creation and Destruction

The thread attributes object is initialized to default values by the jpthread_attr_inif subroutine. The
attributes are handled by subroutines. The thread attributes object is destroyed by the
pthread_attr destroyl subroutine. This subroutine may free storage dynamically allocated by the
pthread_attr_init subroutine, depending on the implementation of the threads library.

In the following example, a thread attributes object is created and initialized with default values, then used
and finally destroyed:

pthread_attr_t attributes;
/* the attributes object is created */

if (!pthread_attr_init(&attributes)) {
/* the attributes object is initialized */

/* using the attributes object */
pthread_attr destroy(&attributes);

/* the attributes object is destroyed */
}

The same attributes object can be used to create several threads. It can also be modified between two
thread creations. When the threads are created, the attributes object can be destroyed without affecting
the threads created with it.

Detachstate Attribute

The following attribute is always defined.

Detachstate Specifies the detached state of a thread.

The value of the attribute is returned by the pthread_attr_getdetachstate subroutine; it can be set by the

pthread_attr _setdetachstate subroutine. Possible values for this attributes are the following symbolic
constants:

PTHREAD_CREATE_DETACHED Specifies that the thread will be created in the detached state.
PTHREAD_CREATE_JOINABLE Specifies that the thread will be created in the joinable state.

The default value is PTHREAD_CREATE_JOINABLE.

If you create a thread in the joinable state, you must pthread_join (£Calling the pthread_join Subroutine” or

) with the thread. Otherwise, you may run out of storage space when creating new threads,
because each thread takes up a signficant amount of memory.

Other Attributes

The following attributes are also defined in AIX. They are intended for advanced programs and may
require special execution privilege to take effect. Most programs will operate correctly with the default
settings.

Contention Scope Specifies the contention scope of a thread.

Inheritsched Specifies the inheritance of scheduling properties of a thread.
Schedparam Specifies the scheduling parameters of a thread.
Schedpolicy Specifies the scheduling policy of a thread.

Chapter 11. Threads Programming Guidelines 217

../../libs/basetrf1/pthread_attr_init.htm#HDRPECVHF6MANU
../../libs/basetrf1/pthread_attr_destroy.htm#HDRA8BDVH3E0MANU
../../libs/basetrf1/pthread_attr_getdetachstate_setdetachstate.htm
../../libs/basetrf1/pthread_attr_getdetachstate_setdetachstate.htm

The use of these attributes is explained in Scheduling Attributed.

Stacksize Specifies the size of the thread’s stack.
Stackaddr Specifies the address of the thread’s stack.
Guardsize Specifies the size of the guard area of the thread’s stack.

The use of these attributes is explained in EStack Attributes” on page 251,
Thread Creation

Creating a thread is accomplished by calling the W subroutine. This subroutine creates a
new thread and makes it runnable.

Using the Thread Attributes Object
When calling the pthread_create subroutine, you may specify a thread attributes object. If you specify a
NULL pointer, the created thread will have the default attributes. Thus, the code fragment:

pthread_t thread;
pthread_attr_t attr;

pthread_attr_init(&attr);
pthread create(&thread, &attr, init_routine, NULL);
pthread_attr_destroy(&attr);

is equivalent to:
pthread_t thread;

pthread _create(&thread, NULL, init_routine, NULL);
Entry Point Routine

When calling the pthread_create subroutine, you must specify an entry-point routine. This routine,
provided by your program, is similar to the main routine for the process. It is the first user routine
executed by the new thread. When the thread returns from this routine, the thread is automatically
terminated.

The entry-point routine has one parameter, a void pointer, specified when calling the pthread_create
subroutine. You may specify a pointer to some data, such as a string or a structure. The creating thread
(the one calling the pthread_create subroutine) and the created thread must agree upon the actual type
of this pointer.

The entry-point routine returns a void pointer. After the thread termination, this pointer is stored by the

threads library unless the thread is detached. See [Synchronization Overview” on page 227 for more

information about using this pointer.

Returned Information
The pthread_create subroutine returns the thread ID of the new thread. The caller can use this thread ID
to perform various operations on the thread.

Depending on the scheduling parameters of both threads, the new thread may start running before the call
to the pthread_create subroutine returns. It may even happen that, when the pthread_create subroutine
returns, the new thread has already terminated. The thread ID returned by the pthread_create subroutine
through the thread parameter is then already invalid. It is, therefore, important to check for the ESRCH
error code returned by threads library subroutines using a thread ID as a parameter.

If the pthread_create subroutine is unsuccessful, no new thread is created, the thread ID in the thread
parameter is invalid, and the appropriate error code is returned.

218 Writing and Debugging Programs

../../libs/basetrf1/pthread_create.htm#HDRZDCVH2F3MANU

Handling Thread IDs

The thread ID of a newly created thread is returned to the creating thread through the thread parameter.
The current thread ID is returned by the fpthread_seli subroutine.

A thread ID is an opaque object; its type is pthread_t. In AlX, the pthread_t data type is an integer. On
other systems, it may be a structure, a pointer, or any other data type.

To enhance the portability of programs using the threads library, the thread ID should always be handled
as an opaque object. For this reason, thread IDs should be compared using the m
subroutine. Never use the C equality operator (==), because the pthread_t data type may be neither an
arithmetic type nor a pointer.

A First Multi-Threaded Program

The first multi-threaded program discussed is short. It displays "Hello!” in both English and French for five

seconds. Compile with cc_r or xlc_r. See FDeveloping Multi-Threaded Programs” on page 173 for more

information on compiling thread programs.

#include <pthread.h> /* include file for pthreads - the 1st x/
#include <stdio.h> /* include file for printf() */
#include <unistd.h> /* include file for sleep() */

void *Thread(void *string)
{
while (1)
printf("%s\n", (char *)string);
pthread_exit(NULL);
1

int main()

{
char *e_str = "Hello!";
char *=f_str = "Bonjour !";

pthread_t e_th;
pthread_t f_th;

int rc;

= pthread_create(&e_th, NULL, Thread, (void *)e_str);
if (rc)
exit(-1);
rc = pthread create(&f_th, NULL, Thread, (void *)f_str);
if (rc)
exit(-1);
sleep(5);

/* usually the exit subroutine should not be used
see below to get more information */
exit(0);
}

The initial thread (executing the main routine) creates two threads. Both threads have the same
entry-point routine (the Thread routine), but a different parameter. The parameter is a pointer to the string
that will be displayed.

Terminating Threads

A thread automatically terminates when it returns from its entry-point routine. A thread can also explicitly
terminate itself or terminate any other thread in the process. Because all threads share the same data
space, a thread must perform cleanup operations at termination time; cleanup handlers are provided by
the threads library for this purpose.

Chapter 11. Threads Programming Guidelines 219

../../libs/basetrf1/pthread_self.htm#HDRR3IVH17CMANU
../../libs/basetrf1/pthread_equal.htm#HDRDKXVH255MANU

Exiting a Thread

A process can exit at any time by any thread by calling the lexil subroutine. Similarly, a thread can exit at

any time by calling the fpthread_exil subroutine.

Calling the exit subroutine terminates the entire process, including all its threads. In a multi-threaded
program, the exit subroutine should only be used when the entire process needs to be terminated; for
example, in the case of an unrecoverable error. The pthread_exit subroutine should be preferred, even for
exiting the initial thread.

Calling the pthread_exit subroutine terminates the calling thread. The status parameter is saved by the
library and can be further used when joining (Lloining Threads” on page 236) the terminated thread .
Calling the pthread_exit subroutine is similar, but not identical, to returning from the thread’s initial routine.
The result of returning from the thread’s initial routine depends on the thread:

* Returning from the initial thread implicitly calls the exit subroutine, thus terminating all the threads in the
process.

* Returning from another thread implicitly calls the pthread_exit subroutine. The return value has the
same role as the status parameter of the pthread_exit subroutine.

It is recommended always to use the pthread_exit subroutine to exit a thread to avoid implicitly calling the
exit subroutine.

Exiting the initial thread (for example by calling the pthread_exit subroutine from the main routine) does
not terminate the process. It only terminates the initial thread. If the initial thread is terminated, the process
will be terminated when the last thread in it terminates. In this case, the process return code (usually the
return value of the main routine or the parameter of the exit subroutine) is O if the last thread was
detached or 1 otherwise.

The following example is a slightly modified version of our first multi-threaded program. The program
displays exactly 10 messages in each language. This is accomplished by calling the pthread_exit
subroutine in the main routine after creating the two threads, and creating a loop in the Thread routine.

#include <pthread.h> /* include file for pthreads - the 1st x/

#include <stdio.h> /* include file for printf() */
void *Thread(void *string)
{
int i;
for (i=0; i<10; i++)
printf("%s\n", (char *)string);
pthread_exit(NULL);
1
int main()
{
char xe_str = "Hello!";
char *=f_str = "Bonjour !";

pthread_t e_th;
pthread_t f_th;

int rc;

rc = pthread_create(&e_th, NULL, Thread, (void *)e str);
if (rc)
exit(-1);
rc = pthread create(&f_th, NULL, Thread, (void *)f str);
if (rc)
exit(-1);
pthread_exit(NULL);
1

220 Writing and Debugging Programs

../../libs/basetrf1/exit.htm#HDRA087913E7
../../libs/basetrf1/pthread_exit.htm#HDRMLEVH22DMANU

It is important to note that the pthread_exit subroutine frees any thread-specific data, including the
thread’s stack. Any data allocated on the stack becomes invalid, since the stack is freed and the
corresponding memory may be reused by another thread. Therefore, thread synchronization objects
(mutexes and condition variables) allocated on a thread’s stack must be destroyed before the thread calls
the pthread_exit subroutine.

Unlike the exit subroutine, the pthread_exit subroutine does not clean up system resources shared
among threads. For example, files are not closed by the pthread_exit subroutine, since they may be used
by other threads.

Canceling a Thread

The thread cancellation mechanism allows a thread to terminate the execution of any other thread in the
process in a controlled manner. The target thread (that is, the one that's being canceled) can hold
cancellation requests pending in a number of ways and perform application-specific cleanup processing
when the notice of cancellation is acted upon. When canceled, the thread implicitly calls the
pthread_exit((void *)-1) subroutine.

The cancellation of a thread is requested by calling the pthread_cancel subroutine. When the call returns,
the request has been registered, but the thread may still be running. The call to the pthread_cancel
subroutine is unsuccessful only when the specified thread ID is not valid.

Cancelability State and Type

The cancelability state and type of a thread determines the action taken upon receipt of a cancellation
request. Each thread controls its own cancelability state and type with the pthread_setcancelstatd and

pthread_setcanceltypd subroutines.

There are two possible cancelability states and two possible cancelability types, leading to three possible
cases, as shown in the following table.

Cancelability State Cancelability Type Resulting Case
Disabled Any (the type is ignored) Case 1
Enabled Deferred Case 2
Enabled Asynchronous Case 3

The following discusses the three possible cases.

1.

Disabled cancelability. Any cancellation request is set pending, until the cancelability state is changed
or the thread is terminated in another way.

A thread should disable cancelability only when performing operations that cannot be interrupted. For
example, if a thread is performing some complex file save operations (such as an indexed database)
and is canceled during the operation, the files may be left in an inconsistent state. To avoid this, the
thread should disable cancelability during the file save operations.

Deferred cancelability. Any cancellation request is set pending until the thread reaches the next
cancellation point. It is the default cancelability state.

This cancelability state ensures that a thread can be cancelled, but limits the cancellation to specific
moments in the thread’s execution, called cancellation points. A thread canceled on a cancellation
point leaves the system in a safe state; however, user data may be inconsistent or locks may be held
by the canceled thread. To avoid these situations, you may use cleanup handlers or disable
cancelability within critical regions. See Flsing Cleanup Handlers” on page 223 for more information
about cleanup handlers.

3. Asynchronous cancelability. Any cancellation request is acted upon immediately.

Chapter 11. Threads Programming Guidelines 221

../../libs/basetrf1/pthread_cancel.htm#HDRJ2IVHFBMANU
../../libs/basetrf1/pthread_setcancelstate_setcanceltype_testcancel.htm#HDRYEEVH14DMANU
../../libs/basetrf1/pthread_setcancelstate_setcanceltype_testcancel.htm

A thread that is asynchronously canceled while holding resources may leave the process, or even the
system, in a state from which it is difficult or impossible to recover. See FAsync-Cancel Safety] for
more information about async-cancel safety.

Async-Cancel Safety

A function is said to be async-cancel safe if it is written so that calling the function with asynchronous
cancelability enabled does not cause any resource to be corrupted, even if a cancellation request is
delivered at any arbitrary instruction.

Any function that gets a resource as a side effect cannot be made async-cancel safe. For example, if the
@ subroutine is called with asynchronous cancelability enabled, it might acquire the resource
successfully, but as it was returning to the caller, it could act on a cancellation request. In such a case, the
program would have no way of knowing whether the resource was acquired or not.

For this reason, most library routines cannot be considered async-cancel safe. It is recommended not to
use asynchronous cancelability unless you are sure only to perform operations that do not hold resources
and only to call async-cancel safe library routines.

The following three subroutines are async-cancel safe; they ensure that cancellation will be properly
handled, even if asynchronous cancelability is enabled:

* pthread_cancel
* pthread_setcancelstate
* pthread_setcanceltype

An alternative to asynchronous cancelability is to use deferred cancelability and to add explicit cancellation
points by calling the pthread_testcancel subroutine (see ECancellation Pointsl for more information).

Cancellation Points

Cancellation points are points inside of certain subroutines where a thread must act on any pending
cancellation request if deferred cancelability is enabled. All these subroutines may block the calling thread
or compute indefinitely.

An explicit cancellation point can also be created by calling the pthread_testcancel subroutine. This
subroutine simply creates a cancellation point. If deferred cancelability is enabled, and if a cancellation
request is pending, the request is acted upon and the thread is terminated. Otherwise, the subroutine
simply returns.

Other cancellation points occur when calling the following subroutines:
* pthread_cond_wait

* pthread_cond_timedwait

* pthread_join

The pthread_mutex_lock and pthread_mutex_trylock subroutines do not provide a cancellation point. If
they did, all functions calling these subroutines (and many functions do) would provide a cancellation point.
Having too many cancellation points makes programming very difficult, requiring either lots of disabling

and restoring of cancelability or extra effort in trying to arrange for reliable cleanup at every possible place.

See llsing Mutexes” an page 227 for more information about these subroutines.

Cancellation Points

Cancellation points occur when a thread is executing the following functions:

aio_suspend close

222 Writing and Debugging Programs

../../libs/basetrf1/malloc.htm#HDRA174921E
../../libs/basetrf1/pthread_setcancelstate_setcanceltype_testcancel.htm

creat

fsync
getpmsg
mq_receive
msgrcv
msync

open

poll
pthread_cond_timedwait
pthread_join
putpmsg
read

select
sigpause
sigtimedwait
sigwaitinfo
system
usleep
wait3
waitpid
writev

fentl

getmsg

lockf

mq_send

msgsnd

nanosleep

pause

pread
pthread_cond_wait
pthread_testcancel
pwrite

readv

sem_wait
sigsuspend

sigwait

sleep

tcdrain

wait

waitid

write

A cancellation point may also occur when a thread is executing the following functions:

catclose
closedir
dbm_close
dbm_nextkey
diclose
endpwent
fwscanf
getchar
getdate
getgrgid_r
getlogin
printf
putchar
pututxline
putwchar
remove
endutxent
fflush
fgets
fopen
fputs
getpwnam_r
gets
getutxline
getwchar
scanf
setgrent
strerror
tmpnam
fputwe
freopen

catgets
closelog
dbm_delete
dbm_open
dlopen
fwprintf
getc
getchar_unlocked
getgrent
getgrnam
getlogin_r
putc
putchar_unlocked
putw
readdir
rename
fclose
fgetc
fgetwce
fprintf
getpwent
getpwuid
getutxent
getw
getwd
seekdir
setpwent
syslog
ttyname
fputws
fscanf

catopen
ctermid
dbm_fetch
dbm_store
endgrent
fwrite
getc_unlocked
getcwd
getgrgid
getgrnam_r
popen
putc_unlocked
puts

putwc
readdir_r
rewind
fentl
fgetpos
fgetws
fputc
getpwnam
getpwuid_r
getutxid
getwc
rewinddir
semop
setutxent
tmpfile
ttyname_r
fread

fseek

Chapter 11. Threads Programming Guidelines

223

fseeko fsetpos ftell

ftello ftw glob
iconv_close iconv_open ioctl
Iseek mkstemp nftw
opendir openlog pclose
perror ungetc ungetwc
unlink vfprintf viwprintf
vprintf vwprintf wprintf
wscanf

The side effects of acting upon a cancellation request while suspended during a call of a function is the
same as the side effects that may be seen in a single-threaded program when a call to a function is
interrupted by a signal and the given function returns [EINTR]. Any such side effects occur before any
cancellation cleanup handlers are called.

Whenever a thread has cancelability enabled and a cancellation request has been made with that thread
as the target and the thread calls pthread_testcancel, then the cancellation request is acted upon before
pthread_testcancel returns. If a thread has cancelability enabled and the thread has an asynchronous
cancellation request pending and the thread is suspended at a cancellation point waiting for an event to
occur, then the cancellation request will be acted upon. However, if the thread is suspended at a
cancellation point and the event that it is waiting for occurs before the cancellation request is acted upon,
it is dependent upon the sequence of events whether the cancellation request is acted upon or whether
the request remains pending and the thread resumes normal execution.

Cancellation Example

The following example is a variant of our first multi-threaded program. Both "writer” threads are canceled
after 10 seconds, and after they have written their message at least 5 times.

#include <pthread.h> /* include file for pthreads - the 1st */
#include <stdio.h> /* include file for printf() */
#include <unistd.h> /* include file for sleep() */

void *Thread(void *string)
{

int i;

int o_state;

/% disables cancelability =*/
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &o_state);

/* writes five messages x/
for (i=0; i<5; i++)
printf("%s\n", (char *)string);

/* restores cancelability x/
pthread_setcancelstate(o_state, &o_state);

/* writes further x/
while (1)
printf("%s\n", (char *)string);
pthread_exit(NULL);
}

int main()

{
char xe_str = "Hello!";
char *f_str = "Bonjour !";

pthread_t e_th;
pthread_t f_th;

224 Writing and Debugging Programs

int rc;

/* creates both threads =/
= pthread_create(&e_th, NULL, Thread, (void *)e_str);
if (rc)
return -1;
= pthread_create(&f_th, NULL, Thread, (void *)f_str);
if (rc)
return -1;

/* sleeps a while */
sleep(10);

/* requests cancellation */
pthread_cancel(e_th);
pthread cancel (f_th);

/* sleeps a bit more */
sleep(10);
pthread_exit(NULL);

}

Using Cleanup Handlers

Cleanup handlers provide an easy way to implement a portable mechanism for releasing resources and
restoring invariants when a thread terminates.

Calling Cleanup Handlers

Cleanup handlers are specific to each thread. A thread can have several cleanup handlers; cleanup
handlers are stored in a thread-specific LIFO stack. They are all called in the following cases:

* The thread returns from its entry-point routine.

* The thread calls the m subroutine.

* The thread acts on a cancellation request.

A cleanup handler is pushed onto the cleanup stack, by the lpthread_cleanup_push subroutine. The

pthread_cleanup_popl subroutine pops the topmost cleanup handler from the stack, and optionally
executes it. Use this subroutine when the cleanup handler is no longer needed.

The cleanup handler is a user-defined routine. It has one parameter, a void pointer, specified when calling
the pthread_cleanup_push subroutine. You may specify a pointer to some data the cleanup handler
needs to perform its operation.

In the following example, a buffer is allocated for performing some operation. With deferred cancelability
enabled, the operation may be stopped at any cancellation point. A cleanup handler is established to free
the buffer in that case.

/* the cleanup handler =*/
cleaner(void *buffer)

{

}

/* fragment of another routine */

free(buffer);

myBuf = malloc(1000);
if (myBuf != NULL) {

pthread_cleanup_push(cleaner, myBuf);

Chapter 11. Threads Programming Guidelines 225

../../libs/basetrf1/pthread_exit.htm#HDRMLEVH22DMANU
../../libs/basetrf1/pthread_cleanup_pop_push.htm
../../libs/basetrf1/pthread_cleanup_pop_push.htm

/*

* perform any operation using the buffer,
* including calls to other functions

* and cancellation points

*/

/* pops the handler and frees the buffer in one call */
pthread_cleanup_pop(1);
}

Using deferred cancelability ensures that the thread will not act on any cancellation request between the
buffer allocation and the registration of the cleanup handler, because neither the malloc subroutine nor the
pthread_cleanup_push subroutine provides any cancellation point. When popping the cleanup handler,
the handler is executed, freeing the buffer. More complex programs may not execute the handler when
popping it, because the cleanup handler should be thought of as an emergency exit for the protected
portion of code.

Balancing the Push and Pop Operations

The pthread_cleanup_push and pthread_cleanup_pop subroutines should always appear in pairs within
the same lexical scope, that is, within the same function and the same statement block. They can be
thought of as left and right parentheses enclosing a protected portion of code.

The reason for this rule is that on some systems these subroutines are implemented as macros. The
pthread_cleanup_push subroutine is implemented as a left brace, followed by other statements:

#define pthread_cleanup_push(rtm,arg) { \
/* other statements =/

The pthread_cleanup_pop subroutine is implemented as a right brace following other statements:

#define pthread cleanup pop(ex) \
/* other statements */ \
1

Not following the balancing rule for the pthread_cleanup_push and pthread_cleanup_pop subroutines
may lead to compiler errors or to unexpected behavior of your programs when porting to other systems.

In AIX, the pthread_cleanup_push and pthread_cleanup_pop subroutines are library routines, and can
be unbalanced within the same statement block. However, they must be balanced in the program, since
the cleanup handlers are stacked.

List of Threads Basic Operation Subroutines

pthread_attr_destroy Deletes a thread attributes object.

pthread_attr_getdetachstatel Returns the value of the detachstate attribute of a thread
attributes object.

hthread attr_inii Creates a thread attributes object and initializes it with default
values.

pthread_creatd Creates a new thread, initializes its attributes, and makes it
runnable.

m Requests the cancellation of a thread.

bthread_cleanup_pop Removes, and optionally executes, the routine at the top of the
calling thread’s cleanup stack.

pthread_cleanup_push Pushes a routine onto the calling thread’s cleanup stack.

bthread_equal Compares two thread IDs.

226 Writing and Debugging Programs

Terminates the calling thread.

Returns the calling thread’s ID.

Sets the calling thread’s cancelability state.
Sets the calling thread’s cancelability type.

../../libs/basetrf1/pthread_attr_destroy.htm#HDRA8BDVH3E0MANU
../../libs/basetrf1/pthread_attr_getdetachstate_setdetachstate.htm
../../libs/basetrf1/pthread_attr_init.htm#HDRPECVHF6MANU
../../libs/basetrf1/pthread_create.htm#HDRZDCVH2F3MANU
../../libs/basetrf1/pthread_cancel.htm#HDRJ2IVHFBMANU
../../libs/basetrf1/pthread_cleanup_pop_push.htm
../../libs/basetrf1/pthread_cleanup_pop_push.htm
../../libs/basetrf1/pthread_equal.htm#HDRDKXVH255MANU
../../libs/basetrf1/pthread_exit.htm#HDRMLEVH22DMANU
../../libs/basetrf1/pthread_self.htm#HDRR3IVH17CMANU
../../libs/basetrf1/pthread_setcancelstate_setcanceltype_testcancel.htm
../../libs/basetrf1/pthread_setcancelstate_setcanceltype_testcancel.htm

pthread_testcancel Creates a cancellation point in the calling thread.

Synchronization Overview

One main benefit of using threads is the ease of using synchronization facilities. Three basic
synchronization techniques are implemented in the threads library: mutexes, condition variables, and
ommq More complex synchromzatlon objects can be built using the primitive objects. This is discussed in

Using Mutexes

A mutex is a mutual exclusion lock. Only one thread can hold the lock. Mutexes are used to protect data
or other resources from concurrent access. A mutex has attributes, which specify the characteristics of the
mutex. In the current version of AlX, the mutex attributes are not used. The mutex attributes object can
therefore be ignored when creating a mutex.

Mutex Attributes Object

Like threads, mutexes are created with the help of an attributes object. The mutex attributes object is an
abstract object, containing several attributes, depending on the implementation of POSIX options. It is
accessed through a variable of type pthread_mutexattr_t. In AlX, the pthread_mutexattr_t data type is a
pointer; on other systems, it may be a structure or another data type.

Mutex Attributes Object Creation and Destruction

The mutex attributes object is initialized to default values by the jpthread_mutexattr_inii subroutine. The
attributes are handled by subroutines. The thread attributes object is destroyed by the

pthread_mutexattr_destroy subroutine. This subroutine may free storage dynamically allocated by the
pthread_mutexattr_init subroutine, depending on the implementation of the threads library.

In the following example, a mutex attributes object is created and initialized with default values, then used
and finally destroyed:

pthread_mutexattr_t attributes;
/* the attributes object is created */

if (!pthread_mutexattr_init(&attributes)) {
/* the attributes object is initialized */

/* using the attributes object */

pthread mutexattr destroy(&attributes);
/% the attributes object is destroyed */
}

The same attributes object can be used to create several mutexes. It can also be modified between two
mutex creations. When the mutexes are created, the attributes object can be destroyed without affecting
the mutexes created with it.

Mutex Attributes
In AIX, no mutex attribute is defined. They depend on POSIX options (LThreads Library Qptions” od

) that are not implemented in AIX . However, the following attributes may be defined on other
systems:

Protocol Specifies the protocol used to prevent priority inversions for a mutex. This attribute
depends on either the priority inheritance or the priority protection POSIX option

(EThreads Library Options” on page 261).

Chapter 11. Threads Programming Guidelines 227

../../libs/basetrf1/pthread_setcancelstate_setcanceltype_testcancel.htm
../../libs/basetrf1/pthread_mutexattr_destroy_init.htm
../../libs/basetrf1/pthread_mutexattr_destroy_init.htm

Prioceiling Specifies the priority ceiling of a mutex. This attribute depends on the priority protection

POSIX option (EThreads |ibrary Options” on page 261).

Process-shared Specifies the process sharing of a mutex. This attribute depends on the process sharing

POSIX option (EThreads Library Options” on page 261).

The default values for these attributes are sufficient for most simple cases. See ESynchronization
Bcheduling” on page 243 for more information about the protocol and prioceiling attributes; see Fadvanced

Attributes” on page 25d for more information about the process-shared attribute.

Creating and Destroying Mutexes

A mutex is created by calling the pthread_mutex_inif subroutine. You may specify a mutex attributes
object. If you specify a NULL pointer, the mutex will have the default attributes. Thus, the code fragment:

pthread_mutex_t mutex;
pthread_mutex_attr_t attr;

pthread mutexattr_init(&attr);
pthread_mutex_init(&mutex, &attr);
pthread mutexattr destroy(&attr);

is equivalent to:

pthread mutex_t mutex;

pthread mutex_init(&mutex, NULL);

The ID of the created mutex is returned to the calling thread through the mutex parameter. The mutex ID
is an opaque object; its type is pthread_mutex_t. In AlX, the pthread_mutex_t data type is a structure;
on other systems, it may be a pointer or another data type.

A mutex must be created once. Calling the pthread_mutex_init subroutine more than once with the same
mutex parameter (for example, in two threads concurrently executing the same code) should be avoided.
The second call will fail, returning an EBUSY error code. Ensuring the uniqueness of a mutex creation can
be done in three ways:

» Calling the pthread_mutex_init subroutine prior to the creation of other threads that will use this mutex;
in the initial thread, for example.

» Calling the pthread_mutex_init subroutine within a one time initialization routine; see One-Time

Initializations (£Qne-Time Initializations” on page 246).
+ Using a static mutex initialized by the PTHREAD_MUTEX_INITIALIZEH static initialization macro; the

mutex will have default attributes.

Once the mutex is no longer needed, it should be destroyed by calling the pthread_mutex_destroy
subroutine. This subroutine may reclaim any storage allocated by the pthread_mutex_init subroutine.

After having destroyed a mutex, the same pthread_mutex_t variable can be reused for creating another
mutex. For example, the following code fragment is legal, although not very realistic:

pthread_mutex_t mutex;
for (i = 0; i <105 i++) {

/* creates a mutex */
pthread_mutex_init(&mutex, NULL);

/* uses the mutex =/

/* destroys the mutex */
pthread_mutex_destroy(&mutex);

228 Writing and Debugging Programs

../../libs/basetrf1/pthread_mutex_destroy_init.htm
../../libs/basetrf1/PTHREAD_MUTEX_INITIALIZER.htm#HDRG2LAI2D1MANU
../../libs/basetrf1/pthread_mutex_destroy_init.htm

Like any system resource that can be shared among threads, a mutex allocated on a thread’s stack must
be destroyed before the thread is terminated. The threads library maintains a linked list of mutexes; thus if
the stack where a mutex is allocated is freed, the list will be corrupted.

Locking and Unlocking Mutexes

A mutex is a simple lock, having two states: locked and unlocked. When it is created, a mutex is unlocked.
The ppthread_mutex_lock subroutine locks the specified mutex:

* |f the mutex is unlocked, the subroutine locks it.

» If the mutex is already locked by another thread, the subroutine blocks the calling thread until the mutex
is unlocked.

» If the mutex is already locked by the calling thread, the subroutine returns an error.

The pthread_mutex_trylock subroutine acts like the pthread_mutex_lock subroutine without blocking
the calling thread:

 |If the mutex is unlocked, the subroutine locks it.
+ If the mutex is already locked by any thread, the subroutine returns an error.

The thread that locked a mutex is often called the owner of the mutex.

The lpthread_mutex_unlock subroutine resets the specified mutex to the unlocked state if it is owned by
the calling mutex:

» If the mutex was already unlocked, the subroutine returns an error.
 |If the mutex was owned by the calling thread, the subroutine unlocks the mutex.
» If the mutex was owned by another thread, the subroutine returns an error.

Because locking does not provide a cancellation point (ICancellation Paints” on page 229), a thread
blocked while waiting for a mutex cannot be canceled (ECanceling a Thread” on page 221)). Therefore, it is

recommended to use mutexes only for short periods of time, like protecting data from concurrent access.

Protecting Data with Mutexes

Mutexes are intended to serve either as a low level primitive from which other thread synchronization

functions can be built or as a data protection lock. EMaking Complex Synchronization Objects” on page 252

provides more information about implementing long locks and writer-priority readers/writers locks with
mutexes.

Mutex Usage Example

Mutexes can be used to protect data from concurrent access. For example, a database application may
create several threads to handle several requests concurrently. The database itself is protected by a
mutex, called db_mutex.

/* the initial thread */
pthread mutex_t mutex;

int i;

pthread mutex_init(&mutex, NULL); /* creates the mutex */

for (i = 0; i < num_req; i++) /* loop to create threads */
pthread_create(th + i, NULL, rtn, &mutex);

/* waits end of session */

pthread mutex_destroy(&mutex); /* destroys the mutex */

Chapter 11. Threads Programming Guidelines 229

../../libs/basetrf1/pthread_mutex_lock.htm
../../libs/basetrf1/pthread_mutex_lock.htm
../../libs/basetrf1/pthread_mutex_lock.htm

/* the request handling thread x/
/* waits for a request =/

pthread mutex lock(&db mutex); /* locks the database =/
. /* handles the request =*/
pthread_mutex_unlock(&db_mutex); /* unlocks the database */

The initial thread creates the mutex and all the request handling threads. The mutex is passed to the
thread using the parameter of the thread’s entry point routine. In a real program, the address of the mutex
may be a field of a more complex data structure passed to the created thread.

Avoiding Deadlocks

In AIX, mutexes cannot be re-locked by the same thread. This may not be the case on other systems. To
enhance portability of your programs, assume that the following code fragment may produce a deadlock:

pthread mutex_Tlock(&mutex);
pthread mutex_lock(&mutex);

This kind of deadlock may occur when locking a mutex and then calling a routine that will itself lock the
same mutex. For example:

pthread mutex_t mutex;
struct {
int a;
int b;
int c;
}A;
()
{
pthread_mutex_lock(&mutex); /* call 1 =/
A.at++;
9();s
A.c = 0;
pthread_mutex_unlock(&mutex);

g()
{

pthread_mutex_lock(&mutex) ; [* call 2 */
A.b += A.a;
pthread_mutex_unlock (&mutex); /* call 3 */

}

On some non-AlX systems, calling the f subroutine would produce a deadlock; call 2 would block the
thread, because call 1 already locked the mutex. In AlX, this code fragment would still not have the
expected behavior. Call 2 would be unsuccessful, but call 3 would succeed. Thus, when returning for the g
subroutine, the mutex would already be unlocked and the A variable would no longer be protected; when
returning from the f routine, the A.c variable may not contain zero.

To avoid this kind of deadlock or data inconsistency, you should use either one of the following schemes:

» Fine granularity locking. Each data atom should be protected by a mutex, locked only by low-level
functions. For example, this would result in locking each record of a database. Benefits: high-level
functions do not need to care about locking data. Drawbacks: it increases the number of mutexes, and
great care should be taken to avoid deadlocks.

» High-level locking. Data should be organized into areas, each area protected by a mutex; low-level
functions do not need to care about locking. For example, this would result in locking a whole database
before accessing it. Benefits: there are few mutexes, and thus few risks of deadlocks. Drawbacks:
performance may be bad, especially if many threads want access to the same data.

Deadlocks may also occur when locking mutexes in reverse order. For example, the following code
fragment may produce a deadlock between threads A and B:

230 Writing and Debugging Programs

/* Thread A */
pthread_mutex_lock(&mutex1);
pthread mutex lock(&mutex2);

/* Thread B */
pthread mutex_lock(&mutex2);
pthread_mutex_lock(&mutex1l);

To avoid these kinds of deadlocks, you should ensure that successive mutexes are always locked in the
same order.

Using Condition Variables

Condition variables allow threads to wait until some event or condition has occurred. Typically, a program
will use three objects:

* A boolean variable, indicating whether the condition is met
* A mutex to serialize the access to the boolean variable
* A condition variable to wait for the condition.

Using a condition variable requires some effort from the programmer. However, condition variables allow
the implementation of powerful and efficient synchronization mechanisms. See Making Complex

Bynchronization Objects” an page 252 for more information about implementing long locks and

semaphores with condition variables.

A condition variable has attributes, which specify the characteristics of the condition. In the current version
of AIX, the condition attributes are not used. Therefore, the condition attributes object can be ignored when
creating a condition variable.

Condition Attributes Object

Like threads and mutexes, condition variables are created with the help of an attributes object. The
condition attributes object is an abstract object, containing at most one attribute, depending on the
implementation of POSIX options. It is accessed through a variable of type pthread_condattr_t. In AlX,
the pthread_condattr_t data type is a pointer; on other systems, it may be a structure or another data

type.
Condition Attributes Object Creation and Destruction

The mutex attributes object is initialized to default values by the pthread_condattr_inif subroutine. The
attribute is handled by subroutines. The thread attributes object is destroyed by the

pthread_condattr_destroy subroutine. This subroutine may free storage dynamically allocated by the
pthread_condattr_init subroutine, depending on the implementation of the threads library.

In the following example, a mutex attributes object is created and initialized with default values, then used
and finally destroyed:

pthread_condattr_t attributes;
/* the attributes object is created */

if (!pthread_condattr_init(&attributes)) {
/* the attributes object is initialized */

/* using the attributes object */

pthread_condattr_destroy(&attributes);
/* the attributes object is destroyed =/

Chapter 11. Threads Programming Guidelines 231

../../libs/basetrf1/pthread_condattr_destroy_init.htm#HDRHKFVH86MANU
../../libs/basetrf1/pthread_condattr_destroy_init.htm#HDRHKFVH86MANU

The same attributes object can be used to create several condition variables. It can also be modified
between two condition variable creations. When the condition variables are created, the attributes object
can be destroyed without affecting the condition variables created with it.

Condition Attribute
In AIX, no condition attribute is defined. Condition attributes depend on POSIX options that are not

implemented in AIX. However, the following attribute may be defined on other systems:

Process-shared Specifies the process sharing of a condition variable. This attribute depends on the
process sharing

e LAdua.nced_Almhules_an_page_zsd for more information about the process-shared attribute.

Creating and Destroying Condition Variables

A condition variable is created by calling the pthread_cond_ini subroutine. You may specify a condition
attributes object. If you specify a NULL pointer, the condition variable will have the default attributes. Thus,
the code fragment:

pthread_cond_t cond;
pthread condattr_t attr;

pthread_condattr_init(&attr);
pthread _cond_init(&cond, &attr);
pthread_condattr_destroy(&attr);

is equivalent to:
pthread_cond_t cond;

pthread_cond_init(&cond, NULL);

The ID of the created condition variable is returned to the calling thread through the condition parameter.
The condition ID is an opaque object; its type is pthread_cond_t. In AlX, the pthread_cond_t data type is
a structure; on other systems it may be a pointer or another data type.

A condition variable must be created once. Calling the pthread_cond_init subroutine more than once with
the same condition parameter (for example, in two threads concurrently executing the same code) should
be avoided. The second call will fail, returning an EBUSY error code. Ensuring the uniqueness of a
condition variable creation can be done in three ways:

» Calling the pthread_cond_init subroutine prior to the creation of other threads that will use this
variable; in the initial thread, for example.

« Calling the pthread_cond_init subroutine within a one-time initialization routine (FQne-Timd
Initializations” on page 244).

« Using a static condition variable initialized by the PTHREAD_COND_INITIALIZER static initialization

macro; the condition variable will have default attributes.

Once the condition variable is no longer needed, it should be destroyed by calling the

pthread _cond_destroy subroutine. This subroutine may reclaim any storage allocated by the
pthread_cond_init subroutine. After having destroyed a condition variable, the same pthread_cond_t

variable can be reused for creating another condition. For example, the following code fragment is legal,
although not very realistic:

pthread_cond_t cond;

for (i = 0; i < 10; i++) {

/* creates a condition variable */
pthread_cond_init(&cond, NULL);

232 Writing and Debugging Programs

../../libs/basetrf1/pthread_cond_destroy_init.htm#HDRI09149703TANAB
../../libs/basetrf1/PTHREAD_COND_INITIALIZER.htm#HDRJOKAIECMANU
../../libs/basetrf1/pthread_cond_destroy_init.htm#HDRI09149703TANAB

/* uses the condition variable */

/* destroys the condition */
pthread_cond_destroy(&cond);
1

Like any system resource that can be shared among threads, a condition variable allocated on a thread’s
stack must be destroyed before the thread is terminated. The threads library maintains a linked list of
condition variables; thus if the stack where a mutex is allocated is freed, the list will be corrupted.

Using Condition Variables

A condition variable must always be used together with a mutex. The same mutex must be used for the
same condition variable, even for different threads. It is possible to bundle in a structure the condition, the
mutex, and the condition variable, as shown in the following code fragment:
struct condition_bundle_t {

int condition_predicate;

pthread mutex_t condition_lock;
pthread_cond_t condition_variable;

e ISynchronizing Threads with Condition Variabhles” on page 235 for more information about using the

condition predicate.
Waiting for a Condition

The mutex protecting the condition must be locked before waiting for the condition. A thread can wait for a

condition to be signaled by calling the pthread_cond_wail or pthread_cond_timedwail subroutine. The

subroutine atomically unlocks the mutex and blocks the calling thread until the condition is signaled. When
the call returns, the mutex is locked again.

The pthread_cond_wait subroutine blocks the thread indefinitely. If the condition is never signaled, the
thread never wakes up. Because the pthread_cond_wait subroutine provides a cancellation point, the
only way to get out of this deadlock is to cancel the blocked thread, if cancelability is enabled. For more

information, see [Canceling a Thread” on page 221l.

The pthread_cond_timedwait subroutine blocks the thread only for a given period of time. This
subroutine has an extra parameter, timeout, specifying an absolute date where the sleep must end. The
timeout parameter is a pointer to a timespec structure. This data type is also called timestruc_t. It
contains two fields:

tv_sec A long unsigned integer, specifying seconds
tv_nsec A long integer, specifying nanoseconds.

Typically, the pthread_cond_timedwait subroutine is used in the following manner:
struct timespec timeout;
time(&timeout.tv_sec);

timeout.tv_sec += MAXIMUM_SLEEP_DURATION;
pthread_cond_timedwait(&cond, &mutex, &timeout);

The timeout parameter specifies an absolute date. The previous code fragment shows how to specify a
duration rather than an absolute date.

To use pthread_cond_timedwait with an absolute date, you can use the Inktimd subroutine to calculate

the value of the tv_sec field of the timespec structure. In the following example, the thread will wait for the
condition until 08:00 January 1, 2001, local time:

Chapter 11. Threads Programming Guidelines 233

../../libs/basetrf1/pthread_cond_wait.htm#HDRTTEVH2B8MANU
../../libs/basetrf1/pthread_cond_wait.htm#HDRTTEVH2B8MANU
../../libs/basetrf1/ctime.htm#HDRA181939B

struct tm date;
time_t seconds;
struct timespec timeout;

date.tm_sec = 0;
date.tm_min = 0;
date.tm_hour = 8;
date.tm_mday = 1;
date.tm mon = 0; /* the range is 0-11 =/
date.tm year = 101; /% 0 is 1900 =/
date.tm_wday = 1; /* this field can be omitted -
but it will really be a Monday! */
date.tm_yday = 0; /* first day of the year */

date.tm_isdst = daylight;
/* daylight is an external variable - we are assuming
that daylight savings time will still be used... */

seconds = mktime(&date);

timeout.tv_sec = (unsigned long)seconds;
timeout.tv_nsec = OL;

pthread_cond_timedwait(&cond, &mutex, &timeout);

The pthread_cond_timedwait subroutine also provides a cancellation point, although the sleep is not
indefinite. Thus, a sleeping thread can be canceled, whether the sleep has a timeout or not.

Signaling a Condition

A condition can be signaled by calling either the pthread_cond_signal or the pthread_caond_hroadcasi

subroutine.

The pthread_cond_signal subroutine wakes up at least one thread that is currently blocked on the
specified condition. The awoken thread is chosen according to the scheduling policy; it is the thread with
the most-favored scheduling priority (see [Scheduling Palicy and Priarity” on page 240) . It may happen on
multiprocessor systems, or some non-AlX systems, that more than one thread is woken up. Do not
assume that this subroutine wakes up exactly one thread.

The pthread_cond_broadcast subroutine wakes up every thread that is currently blocked on the specified
condition. However, a thread can start waiting on the same condition just after the call to the subroutine
returns.

A call to these routines always succeeds, unless an invalid cond parameter is specified. This does not
mean that a thread has been awakened. Furthermore, signaling a condition is not remembered by the
library. For example, consider a condition C. No thread is waiting on this condition. At time t, thread 1
signals the condition C. The call is successful although no thread is woken up. At time t+1, thread 2 calls
the pthread_cond_wait subroutine with C as cond parameter. Thread 2 is blocked. If no other thread
signals C, thread 2 may wait until the process terminates.

A way to avoid this kind of deadlock is to check the EBUSY error code returned by the
pthread_cond_destroy subroutine when destroying the condition variable, as in the following code
fragment:
while (pthread_cond_destroy(&cond) == EBUSY) {

pthread_cond_broadcast(&cond);

pthread yield();
}

The W subroutine gives the opportunity to another thread to be scheduled, one of the awoken

threads for example. See tThreads Scheduling” on page 24d for more information about the pthread_yield

subroutine.

234 Writing and Debugging Programs

../../libs/basetrf1/pthread_cond_signal.htm#HDRA3TEVH259MANU
../../libs/basetrf1/pthread_cond_signal.htm#HDRA3TEVH259MANU
../../libs/basetrf1/pthread_yield.htm#HDRFZXVH4DMANU

The pthread_cond_wait and the pthread_cond_broadcast subroutines must not be used within a signal
handler. To provide a convenient way for a thread to await a signal, the threads library provides the

Bigwait subroutine. See [Signal Management” on page 256 for more information about the sigwait

subroutine.

Synchronizing Threads with Condition Variables

Condition variables are used to wait until a particular predicate becomes true. This predicate is set by
another thread, usually the one that signals the condition.

Condition Wait Semantics

A predicate must be protected by a mutex. When waiting for a condition, the wait subroutine (either
pthread_cond_wait or pthread_cond_timedwait) atomically unlocks the mutex and blocks the thread.
When the condition is signaled, the mutex is relocked and the wait subroutine returns. It is important to
note that when the subroutine returns without error, the predicate may still be false.

The reason is that more than one thread may be awoken: either a thread called the
pthread_cond_broadcast subroutine, or an unavoidable race between two processors simultaneously
woke two threads. The first thread locking the mutex will block all other awoken threads in the wait
subroutine until the mutex is unlocked by the program. Thus, the predicate may have changed when the
second thread gets the mutex and returns from the wait subroutine.

In general, whenever a condition wait returns, the thread should re-evaluate the predicate to determine
whether it can safely proceed, should wait again, or should declare a timeout. A return from the wait
subroutine does not imply that the predicate is either true or false.

It is recommended that a condition wait be enclosed in a "while loop” that checks the predicate. The
following code fragment provides a basic implementation of a condition wait.
pthread_mutex_lock(&condition_lock);

while (condition_predicate == 0)
pthread_cond_wait(&condition_variable, &condition_Tock);

pthread_mutex_unlock(&condition_lock);

Timed Wait Semantics
When the pthread_cond_timedwait subroutine returns with the timeout error, the predicate may be true.

This is due to another unavoidable race between the expiration of the timeout and the predicate state
change.

Just as for non-timed wait, the thread should re-evaluate the predicate when a timeout occurred to
determine whether it should declare a timeout or should proceed anyway. It is recommended to carefully
check all possible cases when the pthread_cond_timedwait subroutine returns. The following code
fragment shows how such checking could be implemented in a robust program:

int result = CONTINUE_LOOP;

pthread_mutex_lock(&condition_lock);
while (result == CONTINUE_LOOP) {
switch (pthread_cond_timedwait(&condition_variable,
&condition_lock, &timeout)) {
case 0:
if (condition predicate)
result = PROCEED;
break;
case ETIMEDOUT:
result = condition_predicate ? PROCEED : TIMEOUT;
break;

Chapter 11. Threads Programming Guidelines 235

../../libs/basetrf2/sigwait.htm#HDRVURRG3A6S06

default:
result = ERROR;
break;

}

pthread mutex_unlock(&condition_Tock);

The result variable can be used to choose an action. The statements preceding the unlocking of the
mutex should be as quick as possible, because a mutex should not be held for long periods of time.

Specifying an absolute date in the timeout parameter allows easy implementation of real-time behavior. An
absolute timeout does not need to be recomputed if it is used multiple times in a loop, such as that
enclosing a condition wait. For cases where the system clock is advanced discontinuously by an operator,
using an absolute timeout ensures that the timed wait will end as soon as the system time specifies a date
later than the timeout parameter.

Condition Variables Usage Example
The following example provides the source code for a synchronization point routine. A synchronization

point is a given point in a program where different threads must wait until all threads (or at least a certain
number of threads) have reached that point.

A synchronization point can simply be implemented by a counter, which is protected by a lock, and a
condition variable. Each thread takes the lock, increments the counter, and waits for the condition to be
signaled if the counter did not reach its maximum. Otherwise, the condition is broadcast, and all threads
can proceed. The last thread calling the routine broadcasts the condition.

#define SYNC_MAX_COUNT 10

void SynchronizationPoint()

{
/* use static variables to ensure initialization */
static mutex_t sync_lock = PTHREAD_MUTEX_INITIALIZER;
static cond_t sync_cond = PTHREAD COND INITIALIZER;
static int sync_count = 0;

/* Tock the access to the count */
pthread_mutex_lock(&sync_lock);

/* increment the counter =*/

sync_count++;

/* check if we should wait or not */

if (sync_count < SYNC_MAX COUNT)
/* wait for the others =/
pthread_cond_wait(&sync_cond, &sync_lock);

else
/* broadcast that everybody reached the point */
pthread_cond_broadcast (&sync_cond);

/* unlocks the mutex - otherwise only one thread
will be able to return from the routine! */
pthread mutex_unlock(&sync_lock);

}

This routine has some limitations: it can be used only once, and the number of threads that will call the
routine is coded by a symbolic constant. However, this example shows a basic usage of condition
variables. More complex usage can be found in L i izati j “

Joining Threads

Joining a thread means waiting for it to terminate. It can be seen as a specific usage of condition
variables.

236 Writing and Debugging Programs

Waiting for a Thread

The lpthread_joid subroutine provides a simple mechanism allowing a thread to wait for another thread to
terminate. More complex conditions, such as waiting for multiple threads to terminate, can be implemented

bﬁ the Erogrammer using condition variables. See ESynchronizing Threads with Condition Variables” odl

for more information.

Calling the pthread_join Subroutine

The pthread_join subroutine blocks the calling thread until the specified thread terminates. The target
thread (the thread whose termination