
AIX 5L Version 5.1

General Programming Concepts:
Writing and Debugging Programs

���

AIX 5L Version 5.1

General Programming Concepts:
Writing and Debugging Programs

���

Fourth Edition (April 2001)

Before using the information in this book, read the general information in “Appendix B. Notices” on page 983.

This edition applies to AIX 5L Version 5.1 and to all subsequent releases of this product until otherwise indicated in
new editions.

A reader’s comment form is provided at the back of this publication. If the form has been removed, address
comments to Publications Department, Internal Zip 9561, 11400 Burnet Road, Austin, Texas 78758-3493. To send
comments electronically, use this commercial Internet address: aix6kpub@austin.ibm.com. Any information that you
supply may be used without incurring any obligation to you.

(C) Copyright Apollo Computer, Inc., 1987. All rights reserved.

(C) Copyright AT&T, 1984, 1989. All rights reserved.

(C) Copyright Sun Microsystems, Inc., 1985, 1986, 1987, 1988. All rights reserved.

(C) Copyright TITN, Inc., 1984, 1989. All rights reserved.

(C) Copyright Regents of the University of California, 1986, 1987. All rights reserved.

© Copyright International Business Machines Corporation 1997, 2001. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Book . xxix
Who Should Use This Book . xxix
Highlighting . xxix
ISO 9000 . xxix
Related Publications . xxix
Trademarks . xxix

Chapter 1. Tools and Utilities . 1
Entering a Program into the System . 1
Checking a Program . 1
Compiling and Linking a Program . 1

Correcting Errors in a Program . 2
Building and Maintaining a Program . 2

Subroutines . 2
Shell Commands . 2

Chapter 2. The Curses Library . 3
Terminology . 3
Naming Conventions. 3
Structure of a Curses Program . 4

Return Values . 4
Initializing Curses . 4
Windows in the Curses Environment . 5

The Default Window Structure . 5
The Current Window Structure . 5
Subwindows . 6
Pads . 6

Manipulating Window Data with Curses . 7
Creating Windows. 7
Removing Windows, Pads, and Subwindows . 7
Changing the Screen or Window Images . 7
Manipulating Window Content . 9
Support for Filters . 9

Controlling the Cursor with Curses . 9
Manipulating Characters with Curses . 10

Character Size . 10
Adding Characters to the Screen Image . 10
Enabling Text Scrolling . 14
Deleting Characters . 15
Getting Characters . 16

Understanding Terminals with curses . 20
Manipulating Multiple Terminals . 20
Setting Terminal Input and Output Modes. 20
Using the terminfo and termcap Files . 22
Low-Level Screen Subroutines . 24
Manipulating TTYs . 24
Synchronous and Networked Asynchronous Terminals 24

Working with Color . 25
Manipulating Video Attributes . 25

Video Attributes, Bit Masks, and the Default Colors 25
Setting Video Attributes . 26
Setting Curses Options . 27

Manipulating Soft Labels . 28

© Copyright IBM Corp. 1997, 2001 iii

Obsolete Curses Subroutines . 28
AIX 3.2 Curses Compatibility . 29
List of Additional Curses Subroutines . 29

Manipulating Windows. 29
Manipulating Characters . 29
Manipulating Terminals . 29
Manipulating Color . 30
Miscellaneous Utilities . 30

Chapter 3. Debugging Programs . 31
adb Debug Program Overview. 31
Getting Started with the adb Debug Program . 31

Starting adb with a Program File . 31
Starting adb with a Nonexistent or Incorrect File . 31
Starting adb with the Default File . 32
Starting adb with a Core Image File. 32
Starting adb with a Data File . 32
Starting adb with the Write Option . 32
Using a Prompt . 33
Using Shell Commands from within the adb Program 33
Exiting the adb Debug Program . 33

Controlling Program Execution . 33
Preparing Programs for Debugging with the adb Program 33
Running a Program. 34
Continuing Program Execution . 36

Using adb Expressions . 37
Using Integers in Expressions . 37
Using Symbols in Expressions. 37
Using Operators in Expressions . 37

Customizing the adb Debug Program . 38
Combining Commands on a Single Line . 39
Creating adb Scripts . 39
Setting Output Width . 41
Setting the Maximum Offset . 41
Setting Default Input Format . 41
Changing the Disassembly Mode. 42

Computing Numbers and Displaying Text . 42
Displaying and Manipulating the Source File with the adb Program 43

Displaying Instructions and Data . 43
Forming Addresses . 43
Displaying an Address. 44
Displaying the C Stack Backtrace . 44
Choosing Data Formats . 45
Changing the Memory Map . 45
Patching Binary Files . 46
Locating Values in a File . 46
Writing to a File . 46
Making Changes to Memory . 47
Using adb Variables . 47
Finding the Current Address . 48
Displaying External Variables . 48
Displaying the Address Maps . 49

adb Debug Program Reference Information . 49
adb Debug Program Addresses . 49
adb Debug Program Expressions . 50
adb Debug Program Operators . 50

iv Writing and Debugging Programs

adb Debug Program Subcommands . 51
adb Debug Program Variables . 54

Example adb Program: adbsamp. 54
Example adb Program: adbsamp2 . 55
Example adb Program: adbsamp3 . 55
Example of Directory and i-node Dumps in adb Debugging 56
Example of Data Formatting in adb Debugging . 58
Example of Tracing Multiple Functions in adb Debugging 60

Starting the adb Program . 61
Setting Breakpoints . 61
Displaying a Set of Instructions . 61
Starting the adsamp3 Program . 61
Removing a Breakpoint . 61
Continuing the Program . 61
Tracing the Path of Execution . 62
Displaying a Variable Value . 62
Skipping Breakpoints . 62

dbx Symbolic Debug Program Overview . 63
Using the dbx Debug Program . 63

Starting the dbx Debug Program . 63
Running Shell Commands from dbx. 63
Command Line Editing in dbx . 64
Using Program Control . 64
Running a Program. 64
Separating dbx Output from Program Output . 65
Tracing Execution . 65

Displaying and Manipulating the Source File with the dbx debug Program. 66
Changing the Source Directory Path . 66
Displaying the Current File . 66
Changing the Current File or Procedure . 67
Debugging Programs Involving Multiple Threads . 67
Debugging Programs Involving Multiple Processes 69

Examining Program Data . 70
Handling Signals. 70
Calling Procedures . 72
Displaying a Stack Trace. 72
Displaying and Modifying Variables . 72
Displaying Thread-Related Information. 73
Scoping of Names . 73
Using Operators and Modifiers in Expressions . 73
Checking of Expression Types. 74
Folding Variables to Lowercase and Uppercase . 74
Changing Print Output with Special Debug Program Variables 75

Debugging at the Machine Level with dbx . 76
Using Machine Registers. 76
Examining Memory Addresses. 76
Running a Program at the Machine Level . 77
Debugging fdpr Reordered Executables . 77
Displaying Assembly Instructions . 78

Customizing the dbx Debugging Environment . 78
Defining a New dbx Prompt. 78
Creating dbx Subcommand Aliases . 78
Using the .dbxinit File . 79

List of dbx Subcommands . 80
Setting and Deleting Breakpoints . 80
Running Your Program . 80

Contents v

Tracing Program Execution . 81
Ending Program Execution . 81
Displaying the Source File . 81
Printing and Modifying Variables, Expressions, and Types 81
Thread Debugging . 81
Multiprocess Debugging . 82
Procedure Calling . 82
Signal Handling . 82
Machine-Level Debugging . 82
Debugging Environment Control . 82

Chapter 4. Error Notification . 83
Security . 84
Examples . 84

Related Information. 85
Error Logging Facility . 86
Error Logging Overview . 86
Managing Error Logging . 87

Transferring Your Error Log to Another System. 87
Configuring Error Logging . 87
Customizing Duplicate Error Handling . 88
Removing Error Log Entries . 89
Enabling and Disabling Logging for an Event . 89
Setting Up Error Notification . 90
Logging Maintenance Activities . 90

Error Logging Tasks . 90
Reading an Error Report . 90
Examples of Detailed Error Reports . 92
Example of a Summary Error Report . 95
Generating an Error Report . 95
Stopping an Error Log. 96
Cleaning an Error Log. 96
Copying an Error Log to Diskette or Tape . 97

Error Logging and Alerts . 97
Error Logging Controls . 98

Error Logging Commands . 98
Error Logging Subroutines and Kernel Services . 99
Error Logging Files . 99
Related Information. 99

Chapter 5. File Systems and Directories. 101
File Types. 101

Working with Files. 102
JFS Directories . 103

JFS Directory Structures . 103
Working with Directories (Programming). 104
Subroutines That Control Directories . 105

JFS2 Directories . 105
JFS2 Directory Structures . 105
Working with Directories (Programming). 105
Subroutines That Control Directories . 106

Working with JFS i-nodes . 106
Disk i-node Structure for JFS. 106
In-core i-node Structure. 107

Working with JFS2 i-nodes . 108
Disk i-node Structure for JFS2 . 108

vi Writing and Debugging Programs

In-core i-node Structure. 109
JFS File Space Allocation . 109

Full and Partial Logical Blocks . 109
Allocation in Fragmented File Systems . 109
Allocation in Compressed File Systems . 110
Allocation in File Systems Enabled for Large Files 110
Disk Address Format . 111
Indirect Blocks . 111
Quotas . 112

JFS2 File Space Allocation . 113
Full and Partial Logical Blocks . 113
JFS2 File Space Allocation . 113
Extents . 113
B+ Trees . 114

Writing Programs That Access Large Files . 115
Implications for Existing Programs . 115
Open Protection . 116
Porting Applications to the Large File Environment 116
Using _LARGE_FILES . 117
Using the 64-Bit File System Subroutines . 118
Common Pitfalls using the Large File Environment 119

Linking for Programmers . 122
Hard Links . 123
Symbolic Links . 123
Directory Links . 124

Using File Descriptors . 125
System File and File Descriptor Tables . 125
Managing File Descriptors . 125
Preset File Descriptor Values. 126
File Descriptor Resource Limit . 128

File Creation and Removal . 128
Creating a File . 128
Opening a File . 129
Closing a File . 129

Working with File I/O . 129
Manipulating the Current Offset . 129
Reading a File . 130
Writing a File . 131
Writing Programs to Use Direct I/O . 132
Direct I/O vs. Normal Cached I/O . 132
Benefits of Direct I/O. 132
Working with Pipes . 134
Synchronous I/O . 135

File Status . 136
File Accessibility . 136
JFS File System Layout . 137

Boot Block . 137
Superblock . 137
Allocation Bitmaps. 138
Fragments . 138
Disk I-Nodes . 138
Allocation Groups . 138
Using File System Subroutines . 139

JFS2 File System Layout . 139
Superblock . 139
Allocation Maps . 139

Contents vii

Disk I-Nodes . 140
Allocation Groups . 140
Allocation Group Sizes . 140
Partial Allocation Groups . 140
Using File System Subroutines . 140

Creating New File System Types . 141
File System Helpers . 141
Mount Helpers . 142

Major Control Block Header Files . 142

Chapter 6. Floating-Point Exceptions . 143
Floating-Point Exception Subroutines . 143
Floating-Point Trap Handler Operation . 144

Exceptions: Disabled and Enabled Comparison . 144
Imprecise Trapping Modes. 144
Hardware-Specific Subroutines . 145
Example of a Floating-Point Trap Handler . 145

Chapter 7. Input and Output Handling . 153
Low-Level I/O Interfaces . 153
Stream I/O Interfaces . 154
Terminal I/O Interfaces . 155
Asynchronous I/O Interfaces . 156

Chapter 8. Large Program Support . 157
Understanding the Large Address-Space Model . 157
Understanding the Very Large Address-Space Model 158
Enabling the Large Address-Space Models . 158
Executing Programs with Large Data Areas . 159

Special Considerations . 159

Chapter 9. Parallel Programming . 161
Related Information . 161
Understanding Threads . 161

Threads and Processes. 161
Threads Implementation . 162
Related Information . 164

Thread Programming Concepts . 164
Basic Operations . 164
Synchronization . 164
Scheduling . 165
Other Facilities . 166
Threads Library API . 166

Writing Reentrant and Thread-Safe Code . 168
Understanding Reentrance and Thread-Safety . 168
Making a Function Reentrant. 169
Making a Function Thread-Safe . 171
Reentrant and Thread-Safe Libraries . 172

Developing Multi-Threaded Programs . 173
Compiling a Multi-Threaded Program . 173
Memory Requirements of a Multi-Threaded Program 175
Debugging a Multi-Threaded Program . 175
Core File Requirements of a Multi-Threaded Program 175

Developing Multi-Threaded Program which examines and modifies pthread library objects 176
Initialization . 176
Call Back Functions . 176

viii Writing and Debugging Programs

Update Function . 177
Context Functions . 177
List Functions . 177
Field Functions . 177
Customizing the Session . 177
Session Termination . 177
Related Information . 179

Developing Multi-Threaded Program Debuggers. 181
Initialization . 182
Call Back Functions . 182
Update Function . 182
Hold and Unhold Functions . 183
Context Functions . 184
List Functions . 184
Field Functions . 184
Customizing the Session . 184
Session Termination . 184
Example . 184

Multi-Threaded Call Back Functions . 186
Purpose . 187
Library . 187
Syntax . 187
Description . 188
Parameters . 189
Return Values . 189
Related Information . 189

Benefits of Threads . 189
Parallel Programming Concepts. 189
Performance Consideration . 191
Limitations . 191

Chapter 10. Programming on Multiprocessor Systems 193
Identifying Processors . 193

ODM Processor Names. 193
Logical Processor Numbers . 193
ODM Processor States . 194

Controlling Processor Use . 194
The cpu_state Command . 194
Example Processor Configurations. 194
Binding Processes and Kernel Threads . 196

Dynamic Processor Deallocation . 197
Potential Impact to Applications . 197
Processor Deallocation: Flow of Events . 198
Programming Interfaces . 198
Interfaces for Processor Deallocation Notification 199
Test Environment . 201

Creating Locking Services . 201
Multiprocessor-Safe Locking Services . 201
Locking Services Example. 202

Kernel Programming . 203
32-bit and 64-bit Addressability . 203
Differences between 32-bit and 64-bit execution environments 204

Performance Monitor API Programming Concepts . 206
Introduction . 206
Performance Monitor Accuracy Warning. 207
Performance Monitor Context and State. 207

Contents ix

Thread and thread group accumulation . 208
Security Considerations. 208
Common Definitions . 209
The Seven Basic API Calls . 210
Examples . 210
Related Information . 213

Chapter 11. Threads Programming Guidelines . 215
Thread Implementation Model . 215
Thread-safe and Threaded Libraries in AIX . 215
Threads Versions On AIX . 216
Threads Basic Operation Overview . 216
Creating Threads . 216

Thread Attributes Object . 216
Thread Creation . 218
Handling Thread IDs . 219
A First Multi-Threaded Program . 219

Terminating Threads . 219
Exiting a Thread . 220
Canceling a Thread . 221
Using Cleanup Handlers . 225

List of Threads Basic Operation Subroutines . 226
Synchronization Overview . 227
Using Mutexes . 227

Mutex Attributes Object . 227
Creating and Destroying Mutexes . 228
Locking and Unlocking Mutexes. 229
Protecting Data with Mutexes . 229

Using Condition Variables . 231
Condition Attributes Object . 231
Creating and Destroying Condition Variables . 232
Using Condition Variables . 233
Synchronizing Threads with Condition Variables . 235

Joining Threads . 236
Waiting for a Thread . 237
Returning Information from a Thread . 238

List of Synchronization Subroutines . 239
Scheduling Overview. 240
Threads Scheduling . 240

Basic Scheduling Facilities . 240
Scheduling Policy and Priority . 240
Contention Scope . 242

Synchronization Scheduling . 243
Priority Inversion . 243
Mutex Protocols . 244
Choosing a Mutex Protocol . 244

List of Scheduling Subroutines . 245
Threads Advanced Features . 245
One-Time Initializations . 246

One-Time Initialization Object . 246
One-Time Initialization Routine . 246

Thread-Specific Data. 247
Creating and Destroying Keys . 247
Using Thread-Specific Data . 249

Advanced Attributes . 250
Stack Attributes. 251

x Writing and Debugging Programs

Process Sharing . 251
Making Complex Synchronization Objects . 252

Long Locks . 252
Semaphores . 253
Write-Priority Read/Write Locks . 254

List of Threads Advanced-Feature Subroutines . 256
Threads-Processes Interactions Overview . 256
Signal Management . 256

Signal Handlers and Signal Masks. 257
Signal Generation . 257
Handling Signals . 257
Signal Delivery . 258

Process Duplication and Termination . 259
Forking . 259
Fork Handlers . 259
Process Termination . 260

Scheduling . 260
Process-Level Scheduling . 260
Timer and Sleep Subroutines. 261

List of Threads-Processes Interactions Subroutines 261
Threads Library Options . 261

List of Options . 261
Checking the Availability of an Option . 262

Threads Library Quick Reference . 263
Supported Interfaces . 263
Threads Data Types . 268
Limits and Default Values . 269

Chapter 12. lex and yacc Program Information . 271
Creating an Input Language with the lex and yacc Commands 271

Writing a Lexical Analyzer Program with the lex Command 271
Extended Regular Expressions in the lex Command 272
lex Actions . 277
Passing Code to the Generated lex Program . 280
Defining lex Substitution Strings. 280
lex Start Conditions . 281
Compiling the Lexical Analyzer . 282
lex Library. 282

Using the lex Program with the yacc Program . 283
Creating a Parser with the yacc Program . 283
yacc Grammar File . 284
Using the yacc Grammar File . 285
yacc Declarations . 286
yacc Rules . 289
yacc Actions . 290
yacc Error Handling . 291
Lexical Analysis for the yacc Command . 293
yacc-Generated Parser Operation . 293
Using Ambiguous Rules in the yacc Program . 294
Turning on Debug Mode for a yacc-Generated Parser 296

Example Program for the lex and yacc Programs . 296
Compiling the Example Program . 296

Chapter 13. Logical Volume Programming . 301
List of Logical Volume Subroutines . 301

Contents xi

Chapter 14. make Command . 303
Creating a Description File . 303

Format of a make Description File Entry . 304
Using Commands in a make Description File . 304
Calling the make Program from a Description File 305
Preventing the make Program from Writing Commands 305
Preventing the make Program from Stopping on Errors 305
Example of a Description File . 306
Making the Description File Simpler . 306

Internal Rules for the make Program . 306
Example of Default Rules File . 307
Single-Suffix Rules . 308
Using the Make Command with Archive Libraries 308
Changing Macros in the Rules File . 308
Defining Default Conditions in a Description File. 309
Including Other Files in a Description File . 309

Defining and Using Macros in a Description File. 309
Using Macros in a Description File. 310
Internal Macros . 311
Changing Macro Definitions in a Command . 313

How the make Command Creates a Target File . 313
Using the make Command with Source Code Control System (SCCS) Files 314
Description Files Stored in the Source Code Control System (SCCS) 315
Using the make Command with Non-Source Code Control System (SCCS) Files 315
How the make Command Uses the Environment Variables 315
Example of a Description File . 316

Chapter 15. m4 Macro Processor Overview . 319
Using the m4 Macro Processor . 319
Creating a User-Defined Macro . 319

Using the Quote Characters . 320
Arguments . 321

Using a Built-In m4 Macro . 322
Removing a Macro Definition. 322
Checking for a Defined Macro . 322
Using Integer Arithmetic . 323
Manipulating Files . 323
Redirecting Output . 324
Using System Programs in a Program . 324
Using Unique File Names . 324
Using Conditional Expressions . 325
Manipulating Strings . 325
Printing. 326

List of Additional m4 Macros . 327

Chapter 16. National Language Support . 329
NLS Capabilities . 329

Locale-Specific and Culture-Specific Conventions 329
User Messages in Native Languages . 329
Code Set Support . 329
Input Method Support . 330

Overview of Chapter Contents . 330
Locale Overview for Programming . 330

Working with Code Sets . 331
Data Representation . 331
Character Properties . 332

xii Writing and Debugging Programs

Localization . 333
Multibyte Subroutines . 336
Wide Character Subroutines . 336
Bidirectionality and Character Shaping . 337
Code Set Independence . 337
File Name Matching . 338
Radix Character Handling . 338
Programming Model . 338

National Language Support Subroutines Overview . 339
Introducing Locale Subroutines . 339
Introducing Time Formatting Subroutines . 339
Introducing Monetary Formatting Subroutines. 339
Introducing Multibyte and Wide Character Subroutines 339
Introducing Internationalized Regular Expression Subroutines. 340

Locale Subroutines . 340
Setting the Locale . 340
Accessing Locale Information . 340
Examples . 341

Time Formatting Subroutines . 345
Examples . 345

Monetary Formatting Subroutines . 346
Euro Currency Support via the @euro Modifier . 346
Examples . 346
Related Information . 348

Multibyte and Wide Character Subroutines. 348
Multibyte Code and Wide Character Code Conversion Subroutines. 348
Wide Character Classification Subroutines . 353
Wide Character Display Column Width Subroutines 355
Multibyte and Wide Character String Collation Subroutines 356
Multibyte and Wide Character String Comparison Subroutines 359
Wide Character String Conversion Subroutines . 359
Wide Character String Copy Subroutines . 361
Wide Character String Search Subroutines . 362
Wide Character Input/Output Subroutines . 365
Working with the Wide Character Constant . 369
Related Information . 370

Internationalized Regular Expression Subroutines . 370
Examples . 371

Layout (Bidirectional Text and Character Shaping) Overview 373
Data Streams . 374
Cursor Movement . 375
Character Shaping . 376
Introducing Layout Library Subroutines . 377

Use of the libcur Package . 377
Code Set Overview . 379

ASCII Characters . 380
Other ASCII Characters. 381
Code Set Strategy. 382
Code Set Structure . 382
ISO Code Sets . 384
IBM PC Code Sets . 397
UCS-2 and UTF-8 . 407
Related Information . 410

Converters Overview for Programming . 410
Converters Introduction . 411
Standard Converters . 411

Contents xiii

Understanding libiconv . 412
Using Converters . 414
List of Converters . 416

Writing Converters Using the iconv Interface . 438
Code Sets and Converters . 438
iconv Framework - Overview of Structures . 438
Writing a Code Set Converter . 441
Examples . 445

Input Method Overview . 452
Input Method Introduction . 452
Input Method Names. 453
Input Method Areas . 454
Related Information . 454

Programming Input Methods . 454
Initialization . 455
Input Method Management . 455
IM Keymap Management . 456
Key Event Processing . 456
Callbacks . 456
Input Method Structures . 456

Working with Keyboard Mapping . 457
IM Keymaps . 457
Inbound and Outbound Mapping . 458

Using Callbacks . 458
Initializing Callbacks . 461

Bidirectional Input Method . 461
Cyrillic Input Method (CIM) . 462

Keymap: . 462
Keysyms: . 462
Reserved Keysyms: . 462
Modifiers . 463
Related Information . 463

Greek Input Method (GIM). 463
Keymap: . 464
Keysyms: . 464
Reserved keysyms: . 464

Japanese Input Method (JIM) . 464
Japanese Character Processing . 465
Kana-To-Kanji Conversion (KKC) Technology . 465
Input Modes . 466
Keyboard Mapping . 467
Character Size . 467
Romaji-To-Kana Conversion (RKC) . 467
Kanji Pre-edit . 468
Keymaps: . 469
Keysyms: . 470
Reserved Keysyms: . 470

Korean Input Method (KIM) . 470
Latvian Input Method (LVIM) . 472

Keymap: . 472
Lithuanian Input Method (LTIM) . 472

Keymap: . 472
Thai Input Method (THIM) . 472

Keymap: . 472
Vietnamese Input Method (VNIM) . 472

Keymap: . 473

xiv Writing and Debugging Programs

Simplified Chinese Input Method (ZIM) . 473
Simplified Chinese Character Processing . 473

Simplified Chinese Input Method (ZIM-UCS) . 474
Chinese (CJK) Character Processing . 475

Single-Byte Input Method . 475
Traditional Chinese Input Method (TIM) . 477

TIM Features . 477
Traditional Chinese Character Processing . 478

Universal Input Method . 478
Keymap: . 479

List of Reserved Keysyms . 479
Reserved Keysyms for Traditional Chinese . 479
Reserved Keysyms for Simplified Chinese (ZIM and ZIM-UCS) 480

Message Facility Overview for Programming . 480
Creating a Message Source File . 480
Creating a Message Catalog . 484
Displaying Messages outside of an Application Program. 486
Displaying Messages with an Application Program 487
Example of Retrieving a Message from a Catalog 488

Culture-Specific Data Processing . 489
Culture-Specific Tables . 489
Culture-Specific Algorithms . 489
Example: Load a Culture-Specific Module for Arabic Text for an Application. 490

NLS Sample Program . 491
Message Source File for foo . 491
Creation of Message Header File for foo . 492
Single Path Code Set Independent Version . 492
Dual-Path Version Optimized for Single-Byte Code Sets 494

National Language Support (NLS) Quick Reference 497
National Language Support Do’s and Don’ts . 497
National Language Support Checklist. 498
Message Suggestions . 499

List of National Language Support Subroutines . 502
List of Locale Subroutines . 503
List of Time and Monetary Formatting Subroutines . 503
List of Multibyte Character Subroutines . 503
List of Wide Character Subroutines . 503
List of Layout Library Subroutines . 505
List of Message Facility Subroutines . 505
List of Converter Subroutines . 505
List of Input Method Subroutines . 506
List of Regular Expression Subroutines . 506

Chapter 17. Object Data Manager (ODM) . 507
ODM Object Classes and Objects . 507

Creating an Object Class . 508
Adding Objects to an Object Class. 509
Locking Object Classes . 509
Storing Object Classes and Objects . 509

ODM Descriptors . 510
ODM Terminal Descriptors . 511
ODM Link Descriptor . 511
ODM Method Descriptor . 513

ODM Object Searches . 514
Descriptor Names in ODM Predicates . 515
Comparison Operators in ODM Predicates. 515

Contents xv

LIKE Comparison Operator . 515
Constants in ODM Predicates . 516
AND Logical Operator for Predicates . 517

List of ODM Commands and Subroutines . 517
Commands . 517
Subroutines . 517

ODM Example Code and Output . 518
ODM Example Input Code for Creating Object Classes 518
ODM Example Output for Object Class Definitions 519
ODM Example Code for Adding Objects to Object Classes 520

Chapter 18. sed Program Information . 523
Manipulating Strings with sed . 523

Starting the Editor . 523
How sed Works. 523
Using Regular Expressions . 524
Using the sed Command Summary . 524
Using Text in Commands . 527
Using String Replacement . 528

Chapter 19. Shared Libraries, Shared Memory, and The malloc Subsystem 529
Shared Objects and Runtime Linking . 529

Operation of the Runtime Linker . 530
Creating a Shared Object with Runtime Linking Enabled 531

Shared Libraries and Lazy Loading . 531
Lazy Loading Execution Tracing . 532

Creating a Shared Library . 533
Prerequisite Tasks. 533
Procedure. 534

Program Address Space Overview. 535
System Memory Architecture Introduction . 535
The Physical Address Space of 32-bit Systems . 535
The Physical Address Space of 64-bit Systems . 535
Segment Register Addressing . 536
Paging Space . 536
Memory Management Policy . 536
Memory Allocation. 537

Understanding Memory Mapping . 537
mmap Comparison with shmat . 538
mmap Compatibility Considerations . 539
Using the Semaphore Subroutines. 540
Mapping Files with the shmat Subroutine . 540
Mapping Shared Memory Segments with the shmat Subroutine 541
Related Information . 541

IPC (Inter-Process Communication) Limits . 541
Shared Memory Segments . 541

Before AIX 4.2.1 . 542
AIX 4.2.1 . 542
AIX 4.3 . 542
AIX 4.3.1 . 542
AIX 4.3.2 . 542

Creating a Mapped Data File with the shmat Subroutine. 543
Prerequisite Condition . 543
Procedure. 543

Creating a Copy-On-Write Mapped Data File with the shmat Subroutine 544
Prerequisite Condition . 544

xvi Writing and Debugging Programs

Procedure. 544
Creating a Shared Memory Segment with the shmat Subroutine 544

Prerequisite Tasks or Conditions . 544
Procedure. 545

System Memory Allocation Using the malloc Subsystem. 545
Working with the Heap . 546
Working with the Heap . 546
Understanding System Allocation Policy . 547
Understanding the Default Allocation Policy . 547
Understanding the 3.1 Allocation Policy . 548
Comparison of the Default and 3.1 Allocation Policies. 550

User Defined Malloc Replacement . 550
Enablement . 552
32/64bit Considerations . 552
Thread Considerations . 553
Limitations . 553
Error Reporting . 553
Related Information . 553

Debug Malloc . 554
Enabling Debug Malloc . 554
MALLOCDEBUG Options . 554
Additional Information about align:n Option . 557
Debug Malloc Output. 557
Performance Considerations . 558
Disk and Memory Considerations . 558
Limitations . 558
Related Information . 559

Malloc Multiheap . 559
Enabling Malloc Multiheap . 559
MALLOCMULTIHEAP Options . 560

Malloc Buckets . 560
Bucket Composition and Sizing . 560
Processing Allocations from the Buckets . 561
Support for Multiheap Processing . 561
Enabling Malloc Buckets . 561
Malloc Buckets Configuration Options . 562
MALLOCBUCKETS Options . 562
Malloc Buckets Default Configuration . 563
Limitations . 564

Paging Space Programming Requirements . 564
List of Memory Manipulation Services . 564
List of Memory Mapping Services . 565

Chapter 20. Packaging Software for Installation . 567
Installation Procedure Requirements . 567
Package Control Information Requirements . 568
Package Partitioning Requirements . 568
Software Product Packaging Parts . 568

Sample File System Guide for Package Partitioning 568
Format of a Software Package . 569
Package and Fileset Naming Conventions . 569

Fileset Extension Naming Conventions . 569
Special Naming Considerations for Device Driver Packaging 570
Special Naming Considerations for Message Catalog Packaging 570
File Names . 571

Fileset Revision Level Identification . 571

Contents xvii

Fileset Level Overview . 571
Fileset Level Rules and Conventions for AIX Version 4.1-Formatted Filesets 571
Compatibility Information For Version 3.2-Formatted Fileset Updates 572

Contents of a Software Package . 572
Example Contents of a Software Package . 573

The lpp_name Package Information File . 573
Requisite Information Section . 576
Size and License Agreement Information Section 580
Supersede Information Section . 582
Fix Information Section . 584

The liblpp.a Installation Control Library File . 584
Data Files Contained in the liblpp.a File . 585
Optional Executable Files Contained in the liblpp.a File 586
Optional Executable File Contained in the Fileset.al File 588

Further Description of Installation Control Files . 588
The Fileset.cfgfiles File . 588
The Fileset.fixdata File . 590
The Fileset.inventory File . 590

Installation Control Files Specifically for Repackaged Products 592
The Fileset.installed_list File . 592
The Fileset.namelist File . 593
The Fileset.rm_inv File . 594

Installation Files for Supplemental Disk Subsystems 594
Format of Distribution Media . 595
Tape . 595
CD-ROM . 595
Diskette . 596
The Table of Contents File. 596

Date and Time Stamp Format . 597
Location Format for Tape and Diskette . 598

The installp Processing of Product Packages . 598
Processing for the Apply Operation . 599
Processing for the Reject and Cleanup Operations. 601
Processing for the Remove Operation . 603
The Installation Status File . 604

Installation Commands Used During Installation and Update Processing 605

Chapter 21. Documentation Library Service . 607
Language Support. 608
Writing your HTML Documents . 608
Making your Documents Printable . 609
Calling the Documentation Library Service From Your Documentation 609

Navigation Strategies . 609
Creating a Custom View Set . 610

Creating Indexes of your Documentation . 616
Requirements . 616
Building the Indexes . 616

Removing Indexes of your Documentation . 624
Packaging your Application’s Documentation . 624

Include a Search Index . 624
Register your Documentation. 626
Create an install package . 626
Packaging Book Guidelines . 626

Chapter 22. Software Vital Product Data (SWVPD) 627
Object Classes . 627

xviii Writing and Debugging Programs

Files . 628

Chapter 23. Source Code Control System (SCCS) 629
Introduction to SCCS. 629

Delta Table in SCCS files . 629
Control and Tracking Flags in SCCS Files . 630
Body of an SCCS file . 630

SCCS Flag and Parameter Conventions . 630
Creating, Editing, and Updating an SCCS File . 630

Creating an SCCS File . 630
Editing an SCCS file . 631
Updating an SCCS File . 631

Controlling and Tracking SCCS File Changes. 632
Controlling Access to SCCS files . 632
Tracking Changes to an SCCS File . 632

Detecting and Repairing Damaged SCCS Files . 633
Procedure. 633

List of Additional SCCS Commands . 634

Chapter 24. Subroutines, Example Programs, and Libraries 635
128-Bit Long Double Floating-Point Data Type . 636

Compiling Programs that Use the 128-bit Long Double Data Type 636
Compliance with IEEE 754 Standard . 636
Implementing the 128-Bit Long Double Format . 637
Values of Numeric Macros. 637

List of Character Manipulation Subroutines . 638
Character Testing . 638
Character Translation . 638
Miscellaneous Character Manipulation . 638

List of Executable Program Creation Subroutines . 639
List of Files and Directories Subroutines . 639

Controlling Files . 640
Working with Directories . 640
Manipulating File Systems. 641

List of FORTRAN BLAS Level 1: Vector-Vector Subroutines 641
List of FORTRAN BLAS Level 2: Matrix-Vector Subroutines 641
List of FORTRAN BLAS Level 3: Matrix-Matrix Subroutines 642
List of Numerical Manipulation Subroutines . 642
List of Long Long Integer Numerical Manipulation Subroutines 643
List of 128-Bit Long Double Numerical Manipulation Subroutines 643
List of Processes Subroutines . 644

Process Initiation . 644
Process Suspension . 644
Process Termination . 644
Process and Thread Identification . 645
Process Accounting . 645
Process Resource Allocation . 645
Process Prioritization. 645
Process and Thread Synchronization . 645
Process Signals and Masks . 645
Process Messages . 646

List of Multi-threaded Programming Subroutines. 646
List of Programmer’s Workbench Library Subroutines 646

File . 647
List of Security and Auditing Subroutines . 647

Access Control Subroutines . 647

Contents xix

Auditing Subroutines . 648
Identification and Authentication Subroutines . 648
Process Subroutines . 648

List of String Manipulation Subroutines . 649
Programming Example for Manipulating Characters 649
Searching and Sorting Example Program . 652
List of Operating System Libraries . 655
librs2.a Library . 656

General-Use sqrt and itrunc Subroutines . 656
POWER2-Specific sqrt and itrunc Subroutines . 656

Chapter 25. System Management Interface Tool (SMIT) 659
SMIT Screen Types . 659

Menu Screens . 659
Selector Screens . 660
Dialog Screens . 661

SMIT Object Classes. 661
The SMIT Database . 665

SMIT Aliases and Fast Paths. 665
SMIT Information Command Descriptors . 665

The cmd_to_discover Descriptor . 666
The cmd_to_*_postfix Descriptors . 667

SMIT Command Generation and Execution . 668
Generating Dialog Defined Tasks . 668
Executing Dialog Defined Tasks. 669

Adding Tasks to the SMIT Database . 669
Procedure. 670

Debugging SMIT Database Extensions . 671
Prerequisite Tasks or Conditions . 671
Procedure. 671

Creating SMIT Help Information for a New Task . 671
Man Pages Method . 671
Message Catalog Method . 672
Softcopy Libraries Method . 672

sm_menu_opt (SMIT Menu) Object Class . 673
The sm_menu_opt Object Class Used for Aliases 674

sm_name_hdr (SMIT Selector Header) Object Class 674
sm_cmd_opt (SMIT Dialog/Selector Command Option) Object Class 677
sm_cmd_hdr (SMIT Dialog Header) Object Class . 680

Related Information . 683
SMIT Example Program . 683

Chapter 26. System Resource Controller . 697
Subsystem Interaction with the SRC . 697

The SRC and the init Command . 697
Compiling Programs to Interact With the srcmstr Daemon 698
SRC Operations . 698
SRC Capabilities . 698

SRC Objects. 698
Subsystem Object Class . 699
Subserver Type Object Class. 701
Notify Object Class . 701

SRC Communication Types . 702
Signals Communication . 703
Sockets Communication . 704
IPC Message Queue Communication. 704

xx Writing and Debugging Programs

Programming Subsystem Communication with the SRC 705
Programming Subsystems to Receive SRC Requests. 705
Programming Subsystems to Process SRC Request Packets 707
Processing SRC Status Requests . 708
Programming Subsystems to Send Reply Packets 709
Programming Subsystems to Return SRC Error Packets 710
Responding to Trace Requests . 710
Responding to Refresh Requests . 711

Defining Your Subsystem to the SRC . 711
List of Additional SRC Subroutines. 712

Chapter 27. Trace Facility . 713
The Trace Facility Overview . 713
Controlling the Trace . 713
Recording Trace Event Data . 714
Generating a Trace Report . 715
Extracting trace data from a dump . 715
Trace Facility Commands . 715

Trace Facility Calls and Subroutines . 716
Trace Facility Files . 717
Trace Event Data . 717
Trace Facility Generic Trace Channels . 717
Related Information . 718

Start the Trace Facility . 718
Configuring the trace Command . 718
Recording Trace Event Data . 719
Using Generic Trace Channels . 720
Starting a Trace . 720
Stopping a Trace . 720
Generating a Trace Report . 721

Trace Hook IDs: 001 through 10A . 721
001 : HKWD TRACE TRCON . 721
002 : HKWD TRACE TRCOFF . 721
003 : HKWD TRACE HEADER . 722
004 : HKWD TRACE NULL . 722
005 : HKWD TRACE LWRAP . 722
006 : HKWD TRACE TWRAP . 722
007 : HKWD TRACE UNDEFINED . 722
100 : HKWD KERN FLIH . 723
101 : HKWD KERN SVC . 723
102 : HKWD KERN SLIH . 723
103 : HKWD KERN SLIHRET . 723
104 : HKWD KERN SYSCRET . 724
105 : HKWD KERN LVM . 724
106 : HKWD KERN DISPATCH . 725
107 : HKWD LFS LOOKUP . 726
108 : HKWD SYSC LFS . 726
10A : HKWD KERN PFS . 727

Trace Hook IDs: 10B through 14E . 727
10B : HKWD KERN LVMSIMP . 728
10C : HKWD KERN IDLE . 729
10F : HKWD KERN EOF . 729
110 : HKWD KERN STDERR . 730
112 : HKWD KERN LOCK . 730
113 : HKWD KERN UNLOCK . 730
114 : HKWD KERN LOCKALLOC . 731

Contents xxi

115 : HKWD KERN SETRECURSIVE . 731
116 : HKWD KERN XMALLOC . 731
117 : HKWD KERN XMFREE . 731
118 : HKWD KERN FORKCOPY . 731
119 : HKWD KERN SENDSIGNAL. 732
11A : HKWD KERN RCVSIGNAL . 732
11B : HKWD KERN LOCKL . 732
11C : HKWD KERN P SLIH . 732
11D : HKWD KERN SIG SLIH . 732
11E : HKWD KERN ISSIG. 733
11F : HKWD KERN SORQ . 733
120 : HKWD SYSC ACCESS . 733
121 : HKWD SYSC ACCT . 733
122 : HKWD SYSC ALARM . 733
12E : HKWD SYSC CLOSE . 734
134 : HKWD SYSC EXECVE . 734
135 : HKWD SYSC EXIT . 734
139 : HKWD SYSC FORK. 734
145 : HKWD SYSC GETPGRP . 734
146 : HKWD SYSC GETPID . 735
147 : HKWD SYSC GETPPID . 735
14C : HKWD SYSC IOCTL . 735
14E : HKWD SYSC KILL . 735

Trace Hook IDs: 152 through 19C . 736
152 : HKWD SYSC LOCKF . 736
154 : HKWD SYSC LSEEK . 736
15F : HKWD SYSC PIPE . 736
160 : HKWD SYSC PLOCK . 737
169 : HKWD SYSC SBREAK . 737
16E : HKWD SYSC SETPGRP . 737
16F : HKWD SYSC SETPRIO . 737
180 : HKWD SYSC SIGACTION . 737
181 : HKWD SYSC SIGCLEANUP. 738
18E : HKWD SYSC TIMES . 738
18F : HKWD SYSC ULIMIT . 738
195 : HKWD SYSC USRINFO . 739
19B : HKWD SYSC WAIT . 739

Trace Hook IDs: 1A4 through 1BF . 739
1A4 : HKWD SYSC GETRLIMIT . 739
1A5 : HKWD SYSC SETRLIMIT . 739
1A6 : HKWD SYSC GETRUSAGE. 740
1A7 : HKWD SYSC GETPRIORITY . 740
1A8 : HKWD SYSC SETPRIORITY . 740
1A9 : HKWD SYSC ABSINTERVAL . 740
1AA : HKWD SYSC GETINTERVAL . 741
1AB : HKWD SYSC GETTIMER . 741
1AC : HKWD SYSC INCINTERVAL . 741
1AD : HKWD SYSC RESTIMER . 741
1AE : HKWD SYSC RESABS . 741
1AF : HKWD SYSC RESINC. 742
1B0 : HKWD VMM ASSIGN . 742
1B1 : HKWD VMM DELETE . 742
1B2 : HKWD VMM PGEXCT . 743
1B3 : HKWD VMM PROTEXCT. 743
1B4 : HKWD VMM LOCKEXCT. 743
1B5 : HKWD VMM RECLAIM . 743

xxii Writing and Debugging Programs

1B6 : HKWD VMM GETPARENT . 744
1B7 : HKWD VMN COPYPARENT. 744
1B8 : HKWD VMN VMAP . 744
1B9 : HKWD VMN ZFOD . 744
1BA : HKWD VMN SIO . 745
1BB : HKWD VMM SEGCREATE . 745
1BC : HKWD VMM SEGDELETE . 745
1BD : HKWD VMM DALLOC . 746
1BE : HKWD VMM PFEND . 746
1BF : HKWD VMM EXCEPT . 746

Trace Hook IDs: 1C8 through 1CE. 746
1C8 : HKWD DD PPDD . 747
1C9 : HKWD DD CDDD . 747
1CA : HKWD DD TAPEDD . 748
1CD : HKWD DD ENTDD . 750
1CE : HKWD DD TOKDD . 750

Trace Hook IDs: 1CF through 211 . 751
1CF : HKWD DD C327DD. 751
1D1 : HKWD RAS ERRLG . 752
1D2 : HKWD RAS DUMP . 753
1F0 : HKWD SYSC SETTIMER. 754
200 : HKWD KERN RESUME . 754
20E: HKWD KERN LOCKL . 755
20F: HKWD KERN UNLOCKL . 755
211 : HKWD NFS VOPSRW . 755

Trace Hook IDs: 212 through 220 . 755
212 : HKWD NFS VOPS . 755
213 : HKWD NFS RFSRW . 757
214 : HKWD NFS RFS . 757
215 : HKWD NFS DISPATCH . 758
216 : HKWD NFS CALL . 759
218 : HKWD RPC LOCKD. 760
220 : HKWD DD FDDD . 760

Trace Hook IDs: 221 through 223 . 762
221 : HKWD DD SCDISKDD . 762
222 : HKWD DD BADISKDD . 764
223 : HKWD DD SCSIDD . 765

Trace Hook IDs: 224 through 226 . 767
224 : HKWD DD MPQPDD . 767
225 : HKWD DD X25DD . 770
226 : HKWD DD GIO . 774

Trace Hook IDs: 230 through 233 . 774
230: HKWD PTHREAD MUTEX LOCK . 774
231: HKWD PTHREAD MUTEX UNLOCK . 774
232: HKWD PTHREAD SPIN LOCK . 775
233: HKWD PTHREAD SPIN UNLOCK . 775

Trace Hook IDs: 240 through 252 . 775
240 : HKWD SYSX DLC START . 775
241 : HKWD SYSX DLC HALT . 776
242 : HKWD SYSX DLC TIMER . 777
243 : HKWD SYSX DLC XMIT . 777
244 : HKWD SYSX DLC RECV . 778
245 : HKWD SYSX DLC PERF . 778
246 : HKWD SYSX DLC MONITOR . 779
251 : HKWD NETERR . 780
252 : HKWD SYSC TCPIP . 782

Contents xxiii

Trace Hook IDs: 253 through 25A . 783
253 : HKWD SOCKET . 783
254 : HKWD MBUF . 784
255 : HKWD IFEN. 785
256 : HKWD IFTR. 786
257 : HKWD IFET . 787
258 : HKWD IFXT . 788
259 : HKWD IFSL . 789
25A : HKWD TCPDBG . 790

Trace Hook IDs: 271 through 280 . 791
271: HKWD SNA API . 791
280: HKWD HIA . 793

Trace Hook IDs: 301 through 315 . 800
301: HKWD KERN ASSERTWAIT . 800
302: HKWD KERN CLEARWAIT . 801
303: HKWD KERN THREADBLOCK . 801
304: HKWD KERN EMPSLEEP. 801
305: HKWD KERN EWAKEUPONE . 801
306: HKWD SYSC CRTHREAD. 802
307: HKWD KERN KTHREADSTART . 802
308 : HKWD SYSC TERMTHREAD . 802
309 : HKWD KERN KSUSPEND . 802
310 : HKWD SYSC THREADSETSTATE . 803
311 : HKWD SYSC THREADTERM ACK . 803
312 : HKWD SYSC THREADSETSCHED . 803
313 : HKWD KERN TIDSIG . 803
314 : HKWD KERN WAITLOCK. 804
315 : HKWD KERN WAKEUPLOCK . 804

Trace Hook IDs: 3C5 through 3E2 . 804
3c5 : HKWD SYSC IPCACCESS . 804
3c6 : HKWD SYSC IPCGET . 804
3c7 : HKWD SYSC MSGCONV. 805
3c8 : HKWD SYSC MSGCTL . 805
3c9 : HKWD SYSC MSGGET . 805
3ca : HKWD SYSC MSGRCV . 805
3cb : HKWD SYSC MSGSELECT . 806
3cc : HKWD SYSC MSGSND . 806
3cd : HKWD SYSC MSGXRCV . 806
3ce : HKWD SYSC SEMCONV . 806
3cf : HKWD SYSC SEMCTL . 807
3d0 : HKWD SYSC SEMGET . 807
3d1 : HKWD SYSC SEMOP . 807
3d2 : HKWD SYSC SEM . 807
3d3 : HKWD SYSC SHMAT . 808
3d4 : HKWD SYSC SHMCONV. 808
3d5 : HKWD SYSC SHMCTL . 808
3d6 : HKWD SYSC SHMDT . 808
3d7 : HKWD SYSC SHMGET . 808
3d8 : HKWD SYSC MADVISE . 809
3d9 : HKWD SYSC MINCORE . 809
3da : HKWD SYSC MMAP . 809
3db : HKWD SYSC MPROTECT . 809
3dc : HKWD SYSC MSYNC . 810
3dd : HKWD SYSC MUNMAP . 810
3de : HKWD SYSC MVALID . 810
3df : HKWD SYSC MSEM_INIT. 810

xxiv Writing and Debugging Programs

3e0 : HKWD SYSC MSEM_LOCK . 810
3e1 : HKWD SYSC MSEM_REMOVE . 811
3e2 : HKWD SYSC MSEM_UNLOCK . 811

Trace Hook IDs: 401 . 811
401 : HKWD TTY TTY . 811

Trace Hook IDs: 402 . 817
402 : HKWD TTY PTY . 817

Trace Hook IDs: 403 . 821
403 : HKWD TTY RS . 821

Trace Hook IDs: 404 . 826
404 : HKWD TTY LION . 826

Trace Hook IDs: 405 . 831
405 : HKWD TTY HFT . 831

Trace Hook IDs: 406 . 836
406 : HKWD TTY RTS . 836

Trace Hook IDs: 407 . 841
407 : HKWD TTY XON . 841

Trace Hook IDs: 408 . 846
408 : HKWD TTY DTR . 846

Trace Hook IDs: 409 . 851
409 : HKWD TTY DTRO . 851

Trace Hook IDs: 411 through 418 . 855
411: HKWD STTY STRTTY . 855
412: HKWD STTY LDTERM . 856
413: HKWD STTY SPTR . 858
414: HKWD STTY NLS . 859
415: HKWD STTY PTY . 861
416: HKWD STTY RS . 862
417: HKWD STTY LION . 866
418: HKWD STTY CXMA . 870

Trace Hook IDs: 460 through 46E . 874
460: HKWD KERN ASSERTWAIT . 874
461: HKWD KERN CLEARWAIT . 874
462: HKWD KERN THREADBLOCK . 875
463: HKWD KERN EMPSLEEP. 875
464: HKWD KERN EWAKEUPONE . 875
465: HKWD SYSC CRTHREAD. 875
466: HKWD KERN KTHREADSTART . 876
467: HKWD SYSC TERMTHREAD . 876
468: HKWD KERN KSUSPEND. 876
469: HKWD SYSC THREADSETSTATE. 876
46A: HKWD SYSC THREADTERM ACK . 877
46B: HKWD SYSC THREADSETSCHED . 877
46C: HKWD KERN TIDSIG . 877
46D: HKWD KERN WAITLOCK . 877
46E: HKWD KERN WAKEUPLOCK . 877

Chapter 28. tty Subsystem . 879
TTY Subsystem Objectives . 879

tty Subsystem Modules . 879
TTY Subsystem Structure . 880
Common Services. 881
Synchronization . 883

Line Discipline Module (ldterm) . 883
Terminal Parameters . 883
Process Group Session Management (Job Control) 883

Contents xxv

Terminal Access Control . 883
Reading Data and Input Processing . 884
Writing Data and Output Processing . 886
Modem Management. 886
Closing a Terminal Device File . 886

Converter Modules . 886
NLS Module . 886
SJIS Modules . 887
Related Information . 887

TTY Drivers . 887
Asynchronous Line Drivers . 887
Pseudo-Terminal Driver . 888
Related Information . 888

Chapter 29. High-Resolution Time Measurements Using POWER-based Time Base or POWER
family Real-Time Clock . 889

Chapter 30. Loader Domains . 891
Using Loader Domains . 891
Creating/Deleting Loader Domains. 893

Chapter 31. Power Management-Aware Application Program 895

Chapter 32. ELF Object Files and Dynamic Linking 897
Section 1. ELF Object File General Information . 897

ELF Object File General Information . 897
File Format . 897
Data Representation . 898

ELF Header . 899
ELF Identification . 903
Machine Information (Processor-Specific) . 906

Sections . 906
Rules for Linking Unrecognized Sections . 912
Section Groups . 913
Special Sections . 914

String Table . 917
System V Application Binary Interface . 918
Relocation . 918

Relocation Types (Processor-Specific) . 920
Symbol Table . 920

Symbol Values . 925
Section 2. ELF Program and Dynamic Linking General Information 925

ELF Program and Dynamic Linking General Information 925
Program Header . 926

Base Address . 928
Segment Permissions . 928
Segment Contents . 929
Note Section . 930

Program Loading (Processor-Specific) . 931
Dynamic Linking . 931

Program Interpreter . 931
Dynamic Linker . 932
Dynamic Section . 933
Shared Object Dependencies . 938
Global Offset Table . 940
Procedure Linkage Table . 940

xxvi Writing and Debugging Programs

Hash Table . 940
Initialization and Termination Functions . 941

Appendix A. Character Maps . 943
ISO Code Sets . 943

ISO8859–1 . 943
ISO8859–2 . 945
ISO8859–5 . 948
ISO8859–6 . 950
ISO8859–7 . 952
ISO8859–8 . 954
ISO8859–9 . 956
ISO8859–15 . 958

IBM Code Sets . 961
IBM-850 . 961
IBM-856 . 964
IBM-921 . 966
IBM-922 . 969
IBM-1046 . 971
IBM-1124 . 974
IBM-1129 . 977
TIS-620 . 979

Appendix B. Notices . 983

Index . 985

Contents xxvii

xxviii Writing and Debugging Programs

About This Book

This book introduces you to the programming tools and interfaces available for writing and debugging
application programs using the AIX operating system.

Who Should Use This Book
This book is intended for programmers who write and debug application programs on the AIX operating
system. Users of this book should be familiar with the C programming language and AIX usage (entering
commands, creating and deleting files, editing files, and moving around in the file system).

Highlighting
The following highlighting conventions are used in this book:

Bold Identifies commands, subroutines, keywords, files, structures, directories, and other items whose
names are predefined by the system. Also identifies graphical objects such as buttons, labels, and
icons that the user selects.

Italics Identifies parameters whose actual names or values are to be supplied by the user.
Monospace Identifies examples of specific data values, examples of text similar to what you might see

displayed, examples of portions of program code similar to what you might write as a programmer,
messages from the system, or information you should actually type.

ISO 9000
ISO 9000 registered quality systems were used in the development and manufacturing of this product.

Related Publications
The following books contain information about or related to writing programs:

v AIX 5L Version 5.1 Kernel Extensions and Device Support Programming Concepts

v AIX 5L Version 5.1 Communications Programming Concepts (“About This Book”)

v AIX 5L Version 5.1 AIXwindows Programming Guide

v AIX 5L Version 5.1 System Management Guide: Operating System and Devices

v AIX 5L Version 5.1 System Management Guide: Communications and Networks

v AIX 5L Version 5.1 Commands Reference

v AIX 5L for POWER-based Systems Keyboard Technical Reference

v AIX 5L Version 5.1 Technical Reference: Base Operating System and Extensions Volume 1

v AIX 5L Version 5.1 Technical Reference: Base Operating System and Extensions Volume 2

v Understanding the Diagnostic Subsystem for AIX

Trademarks
The following terms are trademarks of International Business Machines Corporation in the United States,
other countries, or both:

v AIX

v IBM

Microsoft, MS-DOS, Windows, and WindowsNT are trademarks of Microsoft Corporation in the United
States, other countries, or both.

© Copyright IBM Corp. 1997, 2001 xxix

../../aixprggd/kernextc/kernextc.htm
../../aixprggd/aixwnpgd/aixwnpgd.htm
../../aixbman/baseadmn/baseadmn.htm
../../aixbman/commadmn/commadmn.htm
../../cmds/aixcmds1/aixcmds1.htm
../../aixkybd/kybdtech/kybdtech.htm
../../libs/basetrf1/basetrf1.htm
../../libs/basetrf2/basetrf2.htm
../../aixprggd/diagunsd/diagunsd.htm

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be the trademarks or service marks of others.

xxx Writing and Debugging Programs

Chapter 1. Tools and Utilities

This chapter provides an overview of the operating system tools and utilities that you can use to develop C
language programs.

The AIX Operating System provides many tools to help you develop C language programs. To access
these tools, you enter a command on the command line. The tools provide help in the following
programming areas:

v “Entering a Program into the System”

v “Checking a Program”

v “Compiling and Linking a Program”

v “Correcting Errors in a Program” on page 2

v “Building and Maintaining a Program” on page 2

“Subroutines” on page 2 and “Shell Commands” on page 2 are provided for use in a C language program.

Entering a Program into the System
The system has a line editor called ed for use in entering a program into a file. The system also has the
full-screen editor called vi, which displays one full screen of data at a time and allows interactive editing of
a file.

Checking a Program
The following commands allow you to check the format of a program for consistency and accuracy:

lint Checks for syntax and data type errors in a C language source program. The lint command checks these
areas of a program more carefully than the C language compiler does, and displays many messages that
point out possible problems.

cb Reformats a C language source program into a consistent format that uses indentation levels to show the
structure of the program.

cflow Generates a diagram of the logic flow of a C language source program.
cxref Generates a list of all external references for each module of a C language source program, including

where the reference is resolved (if it is resolved in the program).

Compiling and Linking a Program
To make source code into a program that the system can run, you need to process the source file with a
compiler program and a linkage editor.

A compiler is a program that reads program text from a file and changes the programming language in that
file to a form that the system understands. The linkage editor connects program modules together and
determines how to put the finished program into memory. To create this final form of the program, the
system does the following:

v If a file contains compiler source code, the compiler translates it into object code.

v If a file contains assembler language, the assembler translates it into object code.

v The linkage editor links the object files created in the previous step with any other object files specified
in the compiler command.

Other programming languages available for use on the operating system include the FORTRAN, Pascal,
and Assembler languages. Refer to documentation on these programming languages for information on
compiling and linking programs written in them.

© Copyright IBM Corp. 1997, 2001 1

../../cmds/aixcmds2/ed.htm#HDRA133Z9C66
../../cmds/aixcmds6/vi.htm#HDRH2230MAUR
../../cmds/aixcmds3/lint.htm#HDRA0949414
../../cmds/aixcmds1/cb.htm#HDRA20897AF
../../cmds/aixcmds1/cflow.htm#HDRA2649154E
../../cmds/aixcmds1/cxref.htm#HDRA20894CA
../../aixassem/alangref/overview.htm#HDRBF95180692JEFF

You can write parts of a program in different languages and have one main routine call and start the
separate routines to execute, or use the cc program to both assemble and link the program.

Correcting Errors in a Program
The following debugging tools are available for use:

v dbx symbolic debugger can be used to debug programs written in C language, Pascal, FORTRAN, and
Assembler language. For more information, see “dbx Symbolic Debug Program Overview” on page 63.

v adb “adb Debug Program Overview” on page 31 debugger provides subcommands to examine, debug,
and repair executable binary files and to examine non-ASCII data files.

v Kernel Debug Program can help to determine errors in code running in the kernel. The primary
application of this debugger is debugging device drivers.

When syntax errors or parameter naming inconsistencies are discovered in a program file, a text editor or
string-searching and string-editing programs can be used to locate and change strings in the file.
String-searching and string-editing programs include the grep, sed, and awk commands. To make many
changes in one or more program files, you can include the commands in a shell program and then run the
shell program to locate and change the code in the files.

Building and Maintaining a Program
Two facilities are provided to help you control program changes and build a program from many source
modules. These commands can be particularly useful in software development environments in which
many source modules are produced.

The make command builds a program from source modules. Since the make command compiles only
those modules changed since the last build, its use can reduce compilation time when many source
modules must be processed.

“Chapter 23. Source Code Control System (SCCS)” on page 629 allows you to maintain separate versions
of a program without storing separate, complete copies of each version. The use of SCCS can reduce
storage requirements and help in tracking the development of a project that requires keeping many
versions of large programs.

Subroutines
Subroutines from system libraries handle many complex or repetitive programming situations so that you
can concentrate on unique programming situations. See Subroutines Overview (“Chapter 24. Subroutines,
Example Programs, and Libraries” on page 635) for information on using subroutines and for lists of many
of the subroutines available on the system.

Shell Commands
You can include the functions of many of the shell commands in a C language program. Any shell
command used in a program must be available on all systems that use the program.

You can then use the fork and exec subroutines in a program to run the command as a process in a part
of the system that is separate from the program. The system subroutine also runs a shell command in a
program, and the popen subroutine uses shell filters.

2 Writing and Debugging Programs

../../aixprggd/kernextc/kern_debug.htm#HDRFY7NH3C4MARY
../../cmds/aixcmds2/grep.htm#HDRKXF1170FISH
../../cmds/aixcmds5/sed.htm#HDRA10793B
../../cmds/aixcmds1/awk.htm#HDRA1049906
../../cmds/aixcmds3/make.htm#HDRA0949729
../../libs/basetrf1/fork.htm
../../libs/basetrf1/exec.htm
../../libs/basetrf2/system.htm
../../libs/basetrf1/popen.htm

Chapter 2. The Curses Library

The Curses library provides a set of functions that enable you to manipulate a terminal’s display
regardless of the terminal type. Throughout this documentation, the Curses library is referred to as curses.

The basis of curses programming is the window data structure. Using this structure, you can manipulate
data on a terminal’s display. You can instruct curses to treat the entire terminal display as one large
window or you can create multiple windows on the display. The windows can be different sizes and can
overlap one another. A typical curses application has a single large window and one subwindow inside.

Each window on a terminal’s display has its own window data structure. This structure keeps state
information about the window such as its size and where it is located on the display. Curses uses the
window data structure to obtain relevant information it needs to carry out your instructions.

Terminology

When programming with curses, you should be familiar with the following terms:

Term Definition
current character The character that the logical cursor is currently on.
current line The line that the logical cursor is currently on.
curscr A virtual default window provided by curses. The curscr (current screen) is an

internal representation of what currently appears on the terminal’s external display.
Do not modify the curscr.

display A physical display connected to a workstation.
logical cursor The cursor location within each window. The window data structure keeps track of

the location of its logical cursor.
pad A type of window that is larger than the dimensions of the terminal’s display.
physical cursor The cursor that appears on a display. The workstation uses this cursor to write to

the display. There is only one physical cursor per display.
screen The window that fills the entire display. The screen is synonymous with the stdscr.
stdscr A virtual default window (standard screen) provided by curses that represents the

entire display.
window A pointer to a C data structure and the graphic representation of that data structure

on the display. A window can be thought of as a two-dimensional array representing
how all or part of the display looks at any point in time.

Naming Conventions

A single curses subroutine can have two or more versions. Curses subroutines with multiple versions
follow distinct naming conventions that identify the separate versions. These conventions add a prefix to a
standard curses subroutine and identify what arguments the subroutine requires or what actions take place
when the subroutine is called. The different versions of curses subroutine names use three prefixes:

Prefix Description
w Identifies a subroutine that requires a window argument.
p Identifies a subroutine that requires a pad argument.
mv Identifies a subroutine that first performs a move to the program-supplied coordinates.

Some curses subroutines with multiple versions do not include one of the preceding prefixes. These
subroutines use the curses default window stdscr (standard screen). The majority of subroutines that use
the stdscr are macros created in the /usr/include/curses.h file using #define statements. The

© Copyright IBM Corp. 1997, 2001 3

preprocessor replaces these statements at compilation time. As a result, these macros do not appear in
the compiled assembler code, a trace, a debugger, or the curses source code.

If a curses subroutine has only a single version, it does not necessarily use stdscr. For example, the
printw subroutine prints a string to the stdscr. The wprintw subroutine prints a string to a specific window
by supplying the window argument. The mvprintw subroutine moves the specified coordinates to the
stdscr and then performs the same function as the printw subroutine. Likewise, the mvwprintw subroutine
moves the specified coordinates to the specified window and then performs the same function as the
wprintw subroutine.

Structure of a Curses Program
In general, a curses program has the following progression:

v Start curses.

v Check for color support (optional).

v Start color (optional).

v Create one or more windows.

v Manipulate windows.

v Destroy one or more windows.

v Stop curses.

Your program does not have to follow this progression exactly.

Return Values
With a few exceptions, all curses subroutines return either the integer value ERR or the integer value OK.
Subroutines that do not follow this convention are noted appropriately. Subroutines that return pointers
always return a null pointer on an error.

Initializing Curses

initscr Initializes the curses subroutine library and its data structures
newterm Sets up a new terminal
setupterm Sets up the TERMINAL structure for use by curses
endwin Terminates the curses subroutine libraries and their data structures
isendwin Returns TRUE if the endwin subroutine has been called without any subsequent calls to the

wrefresh subroutine

You must include the curses.h file at the beginning of any program that calls curses subroutines. To do
this, use the following statement:
#include <curses.h>

Before you can call subroutines that manipulate windows or screens, you must call the initscr or newterm
subroutine. These subroutines first save the terminal’s settings. These subroutines then call the setupterm
subroutine to establish a curses terminal.

If you need to temporarily suspend curses, use a shell escape or system call for example. To resume after
a temporary escape, you should call the wrefresh or doupdate subroutine. Before exiting a curses
program, you must call the endwin subroutine. The endwin subroutine restores tty modes, moves the
cursor to the lower left corner of the screen, and resets the terminal into the proper nonvisual mode.

4 Writing and Debugging Programs

../../libs/basetrf2/initscr.htm#HDRA51C21802
../../libs/basetrf2/newterm.htm#HDRA9D0F13E308ERIC
../../libs/basetrf2/setupterm.htm#HDRA9D21AD4552ERIC
../../libs/basetrf2/endwin.htm#HDRA51C2182B
../../libs/basetrf1/isendwin.htm#HDRCE39993633MARY

Most interactive, screen-oriented programs require character-at-a-time input without echoing the result to
the screen. To establish your program with character-at-a-time input, call the cbreak and noecho
subroutines after calling the initscr subroutine. When accepting this type of input, programs should also
call the following subroutines:

v nonl subroutine.

v intrflush subroutine with the Window parameter set to the stdscr and the Flag parameter set to
FALSE. The Window parameter is required but ignored. You can use stdscr as the value of the
Window parameter, because stdscr is already created for you.

v keypad subroutine with the Window parameter set to the stdscr and the Flag parameter set to TRUE.

The isendwin subroutine is helpful if, for optimization reasons, you don’t want to call the wrefresh
subroutine needlessly. You can determine if the endwin subroutine was called without any subsequent
calls to the wrefresh subroutine by using the isendwin subroutine.

Windows in the Curses Environment

A curses program manipulates windows that appear on a terminal’s display. A window can be as large as
the entire display or as small as a single character in length and height.

Note: Pads are the exception. A pad is a window that is not restricted by the size of the screen. For
more information, see “Pads” on page 6.

Within a curses program, windows are variables declared as type WINDOW. The WINDOW data type is
defined in the /usr/include/curses.h file as a C data structure. You create a window by allocating a
portion of a machine’s memory for a window structure. This structure describes the characteristics of the
window. When a program changes the window data internally in memory, it must use the wrefresh
subroutine (or equivalent subroutine) to update the external, physical screen to reflect the internal change
in the appropriate window structure.

The Default Window Structure
Curses provides a virtual default window called stdscr. The stdscr represents, in memory, the entire
terminal display. The stdscr window structure is created automatically when the curses library is initialized
and it describes the display. When the library is initialized, the length and width variables are set to the
length and width of the physical display.

Programs that use the stdscr first manipulate the stdscr and then call the refresh subroutine to refresh the
external display so that it matches the stdscr window.

In addition to the stdscr, you can define your own windows. These windows are known as user-defined
windows to distinguish them from the stdscr. Like the stdscr, user-defined windows exist in machine
memory as structures. Except for the amount of memory available to a program, there is no limit to the
number of windows you can create. A curses program can manipulate the default window, user-defined
windows, or both.

The Current Window Structure
Curses supports another virtual window called curscr (current screen). The curscr window is an internal
representation of what currently appears on the terminal’s external display.

When a program requires the external representation to match the internal representation, it must call a
subroutine, such as the wrefresh subroutine, to update the physical display (or the refresh subroutine if
the program is working with the stdscr).

refresh, or wrefresh Updates the terminal and curscr to reflect changes made to a window.

Chapter 2. The Curses Library 5

../../libs/basetrf2/refresh.htm#HDRA9CF8404986ERIC

The curscr is reserved for internal use by curses. You should not manipulate the curscr.

Subwindows
Curses also allows you to construct subwindows. Subwindows are rectangular portions within other
windows. A subwindow is also of type WINDOW. The window that contains a subwindow is known as the
subwindow’s parent and the subwindow is known as the containing window’s child.

Changes to either the parent window or the child window within the area overlapped by the subwindow are
made to both windows. After modifying a subwindow, you should call the touchline or touchwin
subroutine on the parent window before refreshing it.

touchline Forces a range of lines to be refreshed at the next call to the wrefresh subroutine.
touchwin Forces every character in a window’s character array to be refreshed at the next call of the

wrefresh subroutine. The touchwin subroutine does not save optimization information. This
subroutine is useful with overlapping windows.

A refresh called on the parent refreshes the children as well.

A subwindow can also be a parent window. The process of layering windows inside of windows is called
nesting.

Before you can delete a parent window, you must first delete all of its children using the delwin
subroutine.

delwin Removes a window data structure.

Curses returns an error if you try to delete a window before removing all of its children.

Pads
A pad is a type of window that is not restricted by the terminal’s display size or associated with a particular
part of the display. Because a pad is usually larger than the physical display, only a portion of a pad is
visible to the user at a given time.

Use pads if you have a large amount of related data that you want to keep all together in one window but
you do not need to display all of the data at once.

Windows within pads are known as subpads. Subpads are positioned within a pad at coordinates relative
to the parent pad. This placement differs from subwindows which are positioned using screen coordinates.

prefresh or pnoutrefresh Updates the terminal and curscr to reflect changes made to a pad.

Unlike other windows, scrolling or echoing of input does not automatically refresh a pad. Like subwindows,
when changing the image of a subpad, you must call either the touchline or touchwin subroutine on the
parent pad before refreshing the parent.

You can use all the curses subroutines with pads except for the newwin, subwin, wrefresh, and
wnoutrefresh subroutines. These subroutines are replaced with the newpad, subpad, prefresh, and
pnoutrefresh subroutines.

6 Writing and Debugging Programs

../../libs/basetrf2/is_linetouched.htm#HDRSU5DG277ERIC
../../libs/basetrf2/refresh.htm#HDRA9CF8404986ERIC
../../libs/basetrf2/touchwin.htm#HDRA9CF9862943ERIC
../../libs/basetrf2/delwin.htm#HDRA63C22821
../../libs/basetrf2/prefresh.htm#HDRA9D9DB6A691ERIC

Manipulating Window Data with Curses

When curses is initialized, the stdscr is provided automatically. You can manipulate the stdscr using the
curses subroutine library or you can create your own, user-defined windows. This section discusses the
following topics as they relate to manipulating window data:

Creating Windows

You can create your own window using the newwin subroutine.

newwin Creates a new window data structure.

Each time you call the newwin subroutine, curses allocates a new window structure in memory. This
structure contains all the information associated with the new window. Curses does not put a limit on the
number of windows you can create. The number of nested subwindows is limited to the amount of memory
available up to the value of SHRT_MAX as defined in the /usr/include/limits.h file.

You can change windows without regard to the order in which they were created. Updates to the terminal’s
display occur through calls to the wrefresh subroutine.

Subwindows

subwin Creates a subwindow of an existing window.

You must supply coordinates for the subwindow relative to the terminal’s display. The subwindow must fit
within the bounds of the parent window; otherwise, a null value is returned.

Pads

newpad Creates a new pad data structure.
subpad Creates and returns a pointer to a subpad within a pad.

The new subpad is positioned relative to its parent.

Removing Windows, Pads, and Subwindows
To remove a window, pad, or subwindow, use the delwin subroutine. Before you can delete a window or
pad, you must have already deleted its children; otherwise, the delwin subroutine returns an error.

Changing the Screen or Window Images

When curses subroutines change the appearance of a window, the internal representation of the window is
updated while the display remains unchanged until the next call to the wrefresh subroutine. The wrefresh
subroutine uses the information in the window structure to update the display.

Refreshing Windows

Any time you write output to a window or pad structure, you must refresh the terminal’s display to match
the internal representation. A refresh does the following:

v Compares the contents of the curscr to the contents of the user-defined or stdscr

v Updates the curscr structure to match the user-defined or stdscr

v Redraws the portion of the physical display that changed

Chapter 2. The Curses Library 7

../../libs/basetrf2/derwin.htm#HDRA63C227B0
../../libs/basetrf2/subwin.htm#HDRA63C227E9
../../libs/basetrf2/newpad.htm#HDRA9D9C9A4467ERIC
../../libs/basetrf2/subpad.htm#HDRCE3DAED122MARY

refresh, or wrefresh Updates the terminal and curscr to reflect changes made to a window.
wnoutrefresh or doupdate Updates the designated windows and outputs them all at once to the

terminal. These subroutines are useful for faster response when there
are multiple updates.

The refresh and wrefresh subroutines first call the wnoutrefresh subroutine to copy the window being
refreshed to the current screen. They then call the doupdate subroutine to update the display.

If you need to refresh multiple windows at the same time, use one of the two available methods. You can
use a series of calls to the wrefresh subroutine that result in alternating calls to the wnoutrefresh and
doupdate subroutines. You can also call the wnoutrefresh subroutine once for each window and then call
the doupdate subroutine once. With the second method, only one burst of output is sent to the display.

Subroutines Used for Refreshing Pads
The prefresh and pnoutrefresh subroutines are similar to the wrefresh and wnoutrefresh subroutines.

prefresh or pnoutrefresh Updates the terminal and curscr to reflect changes made to a
user-defined pad.

The prefresh subroutine updates both the current screen and the physical display, while the pnoutrefresh
subroutine updates curscr to reflect changes made to a user-defined pad. Because pads instead of
windows are involved, these subroutines require additional parameters to indicate which part of the pad
and screen are involved.

Refreshing Areas that Have Not Changed
During a refresh, only those areas that have changed are redrawn on the display. It is possible to refresh
areas of the display that have not changed using the touchwin and touchline subroutines.

touchline Forces a range of lines to be refreshed at the next call to the wrefresh subroutine.
touchwin Forces every character in a window’s character array to be refreshed at the next call of the

wrefresh subroutine. The touchwin subroutine does not save optimization information. This
subroutine is useful with overlapping windows.

Combining the touchwin and wrefresh subroutines is helpful when dealing with subwindows or
overlapping windows. To bring a window forward from behind another window, call the touchwin
subroutine followed by the wrefresh subroutine.

Garbled Displays
If text is sent to the terminal’s display with a noncurses subroutine, such as the echo or printf subroutine,
the external window can become garbled. In this case, the display changes, but the current screen is not
updated to reflect these changes. Problems can arise when a refresh is called on the garbled screen
because after a screen is garbled, there is no difference between the window being refreshed and the
current screen structure. As a result, spaces on the display caused by garbled text are not changed.

A similar problem can also occur when a window is moved. The characters sent to the display with the
noncurses subroutines do not move with the window internally.

If the screen becomeS garbled, call the wrefresh subroutine on the curscr to update the display to reflect
the current physical display.

8 Writing and Debugging Programs

../../libs/basetrf2/refresh.htm#HDRA9CF8404986ERIC
../../libs/basetrf2/doupdate.htm#HDRA9CF841C334ERIC
../../libs/basetrf2/doupdate.htm#HDRA9CF841C334ERIC
../../libs/basetrf2/doupdate.htm#HDRA9CF841C334ERIC
../../libs/basetrf2/prefresh.htm#HDRA9D9DB6A691ERIC
../../libs/basetrf2/prefresh.htm#HDRA9D9DB6A691ERIC
../../libs/basetrf2/is_linetouched.htm#HDRSU5DG277ERIC
../../libs/basetrf2/refresh.htm#HDRA9CF8404986ERIC
../../libs/basetrf2/touchwin.htm#HDRA9CF9862943ERIC

Manipulating Window Content

After a window or subwindow is created, programs often must manipulate them in some way.

box Draws a box in or around a window.
copywin Provides more precise control over the overlay and overwrite subroutine.
garbagedlines Indicates to curses that a screen line is garbaged and should be thrown

away before having anything written over the top of it.
mvwin Moves a window or subwindow to a new location.
overlay or overwrite Copies one window on top of another.
ripoffline Removes a line from the default screen.

The mvwin subroutine moves a window or subwindow. The box subroutine draws a box around the edge
of a window or subwindow.

To use the overlay and overwrite subroutines, the two windows must overlap. Also, be aware that the
overwrite subroutine is destructive whereas the overlay subroutine is not. When text is copied from one
window to another using the overwrite subroutine, blank portions from the copied window overwrite any
portions of the window copied to. The overlay subroutine is nondestructive because it does not copy blank
portions from the copied window.

Similar to the overlay and overwrite subroutines, the copywin subroutine allows you to copy a portion of
one window to another. Unlike overlay and overwrite subroutines, the windows do not have to overlap for
you to use the copywin subroutine.

You can use the ripoffline subroutine to remove a line from the stdscr. If you pass this subroutine a
positive line argument, the specified number of lines is removed from the top of the stdscr. Otherwise, if
you pass the subroutine a negative line argument, the lines are removed from the bottom of the stdscr.

Finally, you can use the garbagedlines subroutine to discard a specified range of lines before writing
anything new.

Support for Filters
The filter subroutine is provided for curses applications that are filters.

filter Sets the size of the terminal screen to 1 line.

This subroutine causes curses to operate as if the stdscr was only a single line on the screen. When
running with the filter subroutine, curses does not use any terminal capabilities that require knowledge of
the line that curses is on.

Controlling the Cursor with Curses

In the Curses library, there are two types of cursors:

logical cursor The cursor location within each window. A window’s data structure keeps track of the
location of its logical cursor. Each window has a logical cursor.

physical cursor The display cursor. The workstation uses this cursor to write to the display. There is
only one physical cursor per display.

You can only add to or erase characters at the current cursor location in a window. The following
subroutines are provided for controlling the cursor:

Chapter 2. The Curses Library 9

../../libs/basetrf2/box.htm#HDRA9CF9869827ERIC
../../libs/basetrf2/copywin.htm#HDRCE25AC4660MARY
../../libs/basetrf2/garbagedlines.htm#HDRCE2B9EA917MARY
../../libs/basetrf2/mvwin.htm#HDRA9CF8429013ERIC
../../libs/basetrf2/overlay.htm#HDRA9CF8435141ERIC
../../libs/basetrf2/ripoffline.htm#HDRCFA5E81545MARY
../../libs/basetrf2/mvwin.htm#HDRA9CF8429013ERIC
../../libs/basetrf2/box.htm#HDRA9CF9869827ERIC
../../libs/basetrf2/filter.htm#HDRCE2712F362MARY

move Moves the logical cursor associated with the stdscr.
wmove Moves the logical cursor associated with a user-defined window.
getbegyx Places the beginning coordinates of the window in integer variables y and x.
getmaxyx Places the size of the window in integer variables y and x.
getsyx Returns the current coordinates of the virtual screen cursor.
getyx Returns the position of the logical cursor associated with a specified window.
leaveok Controls physical cursor placement after a call to the wrefresh subroutine.
mvcur Moves the physical cursor.
setsyx Sets the virtual screen cursor to the specified coordinate.

After a call to the refresh or wrefresh subroutine, curses places the physical cursor at the last updated
character position in the window. To leave the physical cursor where it is and not move it after a refresh,
call the leaveok subroutine with the Window parameter set to the desired window and the Flag parameter
set to TRUE.

Manipulating Characters with Curses
You can add characters to a curses window using a keyboard or a curses application. This section
provides an overview of the ways you can add, remove, or change characters that appear in a curses
window.

Character Size
Historically, a position on the screen has corresponded to a single stored byte. This correspondence is no
longer true for several reasons:

v Some characters may occupy several columns when displayed on the screen.

v Some characters may be non-spacing characters, defined only in association with a spacing character.

v The number of bytes to hold a character from the extended character sets depends on the LC_CTYPE
locale category.

Some character sets define multi-column characters that occupy more than one column position when
displayed on the screen.

Writing a character whose width is greater than the width of the destination window is an error.

Adding Characters to the Screen Image

The Curses library provides a number of subroutines that write text changes to a window and mark the
area to be updated at the next call to the wrefresh subroutine.

waddch Subroutines
The waddch subroutines overwrite the character at the current logical cursor location with a specified
character. After overwriting, the logical cursor is moved one space to the right. If the waddch subroutines
are called at the right margin, these subroutines also add an automatic newline character. Additionally, if
you call one of these subroutines at the bottom of a scrolling region and scrollok is enabled, the region is
scrolled up one line. For example, if you added a new line at the bottom line of a window, the window
would scroll up one line.

If the character to add is a tab, newline, or backspace character, curses moves the cursor appropriately in
the window to reflect the addition. Tabs are set at every eighth column. If the character is a newline,
curses first uses the wclrtoeol subroutine to erase the current line from the logical cursor position to the
end of the line before moving the cursor. The waddch subroutine family is made up of the following:

waddch subroutine Adds a character to the user-defined window.

10 Writing and Debugging Programs

../../libs/basetrf2/move.htm#HDRA9CF9870861ERIC
../../libs/basetrf2/move.htm#HDRA9CF9870861ERIC
../../libs/basetrf2/getbegyx.htm#HDRCE2C43B014MARY
../../libs/basetrf2/getmaxyx.htm#HDRCE38367193MARY
../../libs/basetrf2/getsyx.htm#HDRCE3877A663MARY
../../libs/basetrf2/getyx.htm#HDRA9CF98D8893ERIC
../../libs/basetrf2/leaveok.htm#HDRA9D0B955862ERIC
../../libs/basetrf2/mvcur.htm#HDRA9D0B946483ERIC
../../libs/basetrf2/setsyx.htm#HDRCE3CF40694MARY
../../libs/basetrf2/refresh.htm#HDRA9CF8404986ERIC
../../libs/basetrf2/addch.htm#HDRA9D21FB5217DAVI

addch macro Adds a character to the stdscr.
mvaddch macro Moves a character to the specified location before adding it to the stdscr.
mvwaddch macro Moves a character to the specified location before adding it to the user-defined

window.

By using the winch and waddch subroutine families together, you can copy text and video attributes from
one place to another. Using the winch subroutine family, you can retrieve a character and its video
attributes. You can then use one of the waddch subroutines to add the character and its attributes to
another location.

You can also use the waddch subroutines to add control characters to a window. Control characters are
drawn in the |X notation.

Note: Calling the winch subroutine on a position in the window containing a control character does
not return the character. Instead, it returns one character of the control character representation.

Outputting Single, Noncontrol Characters: When outputting single, noncontrol characters, there is
significant performance gain to using the wechochar subroutines. These subroutines are functionally
equivalent to a call to the corresponding waddchr subroutine followed by the corresponding wrefresh
subroutine. The wechochar subroutines include the wechochar subroutine, the echochar macro, and the
pechochar subroutine.

Some character sets may contain non-spacing characters. (Non-spacing characters are those, other than
the ’ \ 0 ’ character, for which wcwidth () returns a width of zero.) The application may write non-spacing
characters to a window. Every non-spacing character in a window is associated with a spacing character
and modifies the spacing character. Non-spacing characters in a window cannot be addressed separately.
A non-spacing character is implicitly addressed whenever a Curses operation affects the spacing character
with which the non-spacing character is associated.

Non-spacing characters do not support attributes. For interfaces that use wide characters and attributes,
the attributes are ignored if the wide character is a non-spacing character. Multi-column characters have a
single set of attributes for all columns. The association of non-spacing characters with spacing characters
can be controlled by the application using the wide character interfaces. The wide character string
functions provide codeset-dependent association.

Two typical effects of a non-spacing character associated with a spacing character called c, are as follows:

v The non-spacing character may modify the appearance of c. (For instance, there may be non-spacing
characters that add diacritical marks to characters. However, there may also be spacing characters with
built-in diacritical marks.)

v The non-spacing characters may bridge c to the character following c. (Examples of this usage are the
formation of ligatures and the conversion of characters into compound display forms, words, or
ideograms.)

Implementations may limit the number of non-spacing characters that can be associated with a spacing
character, provided any limit is at least 5.

Complex Characters
A complex character is a set of associated characters, which may include a spacing character and may
also include any non-spacing characters associated with it. A spacing complex character is a complex
character that includes one spacing character and any non-spacing characters associated with it. An
example of a code set that has complex characters is ISO/IEC 10646-1:1993.

Chapter 2. The Curses Library 11

A complex character can be written to the screen. If the complex character does not include a spacing
character, any non-spacing characters are associated with the spacing complex character that exists at the
specified screen position. When the application reads information back from the screen, it obtains spacing
complex characters.

The cchar_t data type represents a complex character and its rendition. When a cchar_t represents a
non-spacing complex character (that is, when there is no spacing character within the complex character),
then its rendition is not used; when it is written to the screen, it uses the rendition specified by the spacing
character already displayed.

An object of type cchar_t can be initialized using setchar() and its contents can be extracted using
getchar(). The behavior of functions that take a cchar_t value that was not initialized in this way or
obtained from a curses function that has a cchar_t output argument.

Special Characters
Some functions process special characters as specified below.

In functions that do not move the cursor based on the information placed in the window, these special
characters would only be used within a string in order to affect the placement of subsequent characters;
the cursor movement specified below does not persist in the visible cursor beyond the end of the
operation. In functions that do not move the cursor, these special characters can be used to affect the
placement of subsequent characters and to achieve movement of the physical cursor.

Backspace Unless the cursor was already in column 0, Backspace moves the cursor one cloumn
toward the start of the current line and any characters after the Backspace are added
or inserted starting there.

Carriage return Unless the cursor was already in column 0, Carriage return moves the cursor to the
start of the current line. Any characters after the Carriage return are added or inserted
starting there.

newline In an add operation, curses adds the background character into successive columns
until reaching the end of the line. Scrolling occurs, and any characters after the newline
character are added, starting at the beginning of the new line.

In an insert operation, newline erases the remainder of the current line with the
background character, effectively a wclrtoeol (), and moves the cursor to the start of a
new line. When scrolling is enabled, advancing the cursor to a new line may cause
scrolling. Any characters after the newline character are inserted at the beginning of the
new line.

The filter () function may inhibit this processing.
Tab Tab characters in text move subsequent characters to the next horizontal tab stop. By

default, tab stops are in columns 0, 8, 16, and so on.

In an insert or add operation, curses inserts or adds, respectively, the background
character into successive columns until reaching the next tab stop. If there are no more
tab stops in the current line, wrapping and scrolling occur.

Control Characters: The curses functions that perform special-character processing conceptually
convert control characters to the (’ | ’) character followed by a second character (which is an upper-case
letter if it is alphabetic) and write this string to the window in place of the control character. The funtions
that retrieve text from the window will not retrieve the original control character.

Line Graphics: You can use the following variables to add line-drawing characters to the screen with the
waddch subroutine. When defined for the terminal, the variable will have the A_ALTCHARSET bit turned
on. Otherwise, the default character listed in the following table will be stored in the variable.

Variable Name Default Character Glyph Description

12 Writing and Debugging Programs

ACS_ULCORNER + upper left corner

ACS_LLCORNER + lower left corner

ACS_URCORNER + upper right corner

ACS_LRCORNER + lower right corner

ACS_RTEE + right tee

ACS_LTEE + left tee

ACS_BTEE + bottom tee

ACS_TTEE + top tee

ACS_HLINE — horizontal line

ACS_VLINE | vertical line

ACS_PLUS + plus

ACS_S1 - scan line 1

ACS_S9 _ scan line 9

ACS_DIAMOND + diamond

ACS_CKBOARD : checker board (stipple)

ACS_DEGREE , degree symbol

ACS_PLMINUS # plus/minus

ACS_BULLET o bullet

ACS_LARROW < arrow pointing left

ACS_RARROW > arrow pointing right

ACS_DARROW v arrow pointing down

ACS_UARROW | arrow pointing up

ACS_BOARD # board of squares

ACS_LANTERN # lantern symbol

ACS_BLOCK # solid square block

waddstr Subroutines

The waddstr subroutines add a null-terminated character string to a window, starting with the current
character. If you are adding a single character, use the waddch subroutine. Otherwise, use the waddstr
subroutine. The following are part of the waddstr subroutine family:

waddstr subroutine Adds a character string to a user-defined window.
addstr macro Adds a character string to the stdscr.
mvaddstr macro Moves the logical cursor to a specified location before adding a character string

to the stdscr.
wmvaddstr macro Moves the logical cursor to a specified location before adding a character string

to a user-defined window.

winsch Subroutines

The winsch subroutines insert a specified character before the current character in a window. All
characters to the right of the inserted character are moved one space to the right. As a result, the
rightmost character on the line may be lost. The positions of the logical and physical cursors do not
change after the move. The winsch subroutines include the following:

winsch subroutine Inserts a character in a user-defined window.

Chapter 2. The Curses Library 13

../../libs/basetrf2/addnstr.htm#HDRA9D21FBE934DAVI
../../libs/basetrf2/insch.htm#HDRA9D21FE5598DAVI

insch macro Inserts a character in the stdscr.
mvinsch macro Moves the logical cursor to a specified location in the stdscr before inserting a

character.
mvwinsch macro Moves the logical cursor to a specified location in a user-defined window before

inserting a character.

winsertln Subroutines

The winsertln subroutines insert a blank line above the current line in a window. The insertln subroutine
inserts a line in the stdscr. The bottom line of the window is lost. The winsertln subroutine performs the
same action in a user-defined window.

wprintw Subroutines

The wprintw subroutines replace a series of characters (starting with the current character) with formatted
output. The format is the same as for the printf command. The following subroutine and macros belong to
the printw family:

wprintw subroutine Replaces a series of characters in a user-defined window.
printw macro Replaces a series of characters in the stdscr.
mvprintw macro Moves the logical cursor to a specified location in the stdscr before replacing any

characters.
mvwprintw macro Moves the logical cursor to a specified location in a user-defined window before

replacing any characters.

The wprintw subroutines make calls to the waddch subroutine to replace characters.

unctrl Macro

The unctrl macro returns a printable representation of the specified control character, displayed in the |X
notation. The unctrl macro returns print characters as is.

Enabling Text Scrolling

idlok Allows curses to use the hardware insert/delete line feature.
scrollok Enables a window to scroll when the cursor is moved off the right edge

of the last line of a window.
setscrreg or wsetscrreg Sets a software scrolling region within a window.

Scrolling occurs when a program or user moves a cursor off a window’s bottom edge. For scrolling to
occur, you must first use the scrollok subroutine to enable scrolling for a window. A window is scrolled if
scrolling is enabled and if any of the following occurs:

v The cursor is moved off the edge of a window.

v A new-line character is encountered on the last line.

v A character is inserted in the last position of the last line.

When a window is scrolled, curses will update both the window and the display. However, to get the
physical scrolling effect on the terminal, you must call the idlok subroutine with the Flag parameter set to
TRUE.

If scrolling is disabled, the cursor is left on the bottom line at the location where the character was entered.

When scrolling is enabled for a window, you can use the setscrreg subroutines to create a software
scrolling region inside the window. You pass the setscrreg subroutines values for the top line and bottom

14 Writing and Debugging Programs

../../libs/basetrf2/insertln.htm#HDRA9D21FEE969DAVI
../../libs/basetrf2/insertln.htm#HDRA9D21FEE969DAVI
../../libs/basetrf2/printw.htm#HDRA9D21FF9062DAVI
../../cmds/aixcmds4/printf.htm#HDRA94C12
../../libs/basetrf2/addch.htm#HDRA9D21FB5217DAVI
../../libs/basetrf2/idlok.htm#HDRA9D2655A381ERIC
../../libs/basetrf2/scrollok.htm#HDRA9D22058770DAVI
../../libs/basetrf2/setscrreg.htm#HDRA9D2206B477DAVI

line of the region. If setscrreg is enabled for the region and scrolling is enabled for the window, any
attempt to move off the specified bottom line causes all the lines in the region to scroll up one line. You
can use the setscrreg macro to define a scrolling region in the stdscr. Otherwise, you use the wsetscrreg
subroutine to define scrolling regions in user-defined windows.

Note: Unlike the idlok subroutine, the setscrreg subroutines have nothing to do with the use of the
physical scrolling region capability that the terminal may or may not have.

Deleting Characters

You can delete text by replacing it with blank spaces or by removing characters from a character array and
sliding the rest of the characters on the line one space to the left.

werase Subroutines

erase or werase Copies blank spaces to every position in a window.

The erase macro copies blank space to every position in the stdscr. The werase subroutine puts a blank
space at every position in a user-defined window. To delete a single character in a window, use the
wdelch subroutine.

wclear Subroutines

clear, or wclear Clears the screen and sets a clear flag for the next refresh.
clearok Determines whether curses clears a window on the next call to the refresh or

wrefresh subroutine.

The wclear subroutines are similar to the werase subroutines. However, in addition to putting a blank
space at every position of a window, the wclear subroutines also call the wclearok subroutine. As a result,
the screen is cleared on the next call to the wrefresh subroutine.

The wclear subroutine family contains the wclear subroutine, the clear macro, and the clearok
subroutine. The clear macro puts a blank at every position in the stdscr.

wclrtoeol Subroutines

clrtoeol or wclrtoeol Erases the current line to the right of the logical cursor.

The clrtoeol macro operates in the stdscr, while the wclrtoeol subroutine performs the same action within
a user-defined window.

wclrtobot Subroutines

clrtobot or wclrtobot Erases the lines below and to the right of the logical cursor.

The clrtobot macro operates in the stdscr, while the wclrtobot performs the same action in a user-defined
window.

wdelch Subroutines

wdelch subroutine Deletes the current character in a user-defined window.
delch macro Deletes the current character from the stdscr.
mvdelch macro Moves the logical cursor before deleting a character from the stdscr.
mvwdelch macro Moves the logical cursor before deleting a character from a user-defined window.

Chapter 2. The Curses Library 15

../../libs/basetrf2/setscrreg.htm#HDRA9D2206B477DAVI
../../libs/basetrf2/setscrreg.htm#HDRA9D2206B477DAVI
../../libs/basetrf2/erase.htm#HDRA9D35E25748DAVI
../../libs/basetrf2/erase.htm#HDRA9D35E25748DAVI
../../libs/basetrf2/erase.htm#HDRA9D35E25748DAVI
../../libs/basetrf2/clear.htm#HDRA9D35E13384DAVI
../../libs/basetrf2/clearok.htm#HDRA9D35DE5142DAVI
../../libs/basetrf2/erase.htm#HDRA9D35E25748DAVI
../../libs/basetrf2/clearok.htm#HDRA9D35DE5142DAVI
../../libs/basetrf2/refresh.htm#HDRA9CF8404986ERIC
../../libs/basetrf2/clrtoeol.htm#HDRA9D35DCB046DAVI
../../libs/basetrf2/clrtobot.htm#HDRA9D35DC2700DAVI
../../libs/basetrf2/clrtobot.htm#HDRA9D35DC2700DAVI

The wdelch subroutines delete the current character and move all the characters to the right of the current
character on the current line one position to the left. The last character in the line is filled with a blank. The
delch subroutine family consists of the following subroutine and macros:

wdeleteln Subroutines

deleteln or wdeleteln Deletes the current line.

The wdeleteln subroutines delete the current line and move all lines below the current line up one line.
This clears the window’s bottom line.

Getting Characters

Your program can retrieve characters from the keyboard or from the display. The wgetch subroutines
retrieve characters from the keyboard. The winch subroutines retrieve characters from the display.

wgetch Subroutines
The wgetch subroutines read characters from the keyboard attached to the terminal associated with the
window. Before getting a character, these subroutines call the wrefresh subroutines if anything in the
window has changed: for example, if the cursor has moved or text has changed. If the wgetch subroutine
encounters a Ctrl-D key sequence during processing, it returns.

The following belong to the wgetch subroutine family:

wgetch subroutine Gets a character from a user-defined window.
getch macro Gets a character from the stdscr.
mvgetch macro Moves the cursor before getting a character from the stdscr.
mvwgetch macro Moves the cursor before getting a character from a user-defined window.

To place a character previously obtained by a call to the wgetch subroutine back in the input queue, use
the ungetch subroutine. The character is retrieved by the next call to the wgetch subroutine.

The Importance of Terminal Modes: The output of the wgetch subroutines is, in part, determined by
the mode of the terminal. The following list describes the action of the wgetch subroutines in each type of
terminal mode:

Mode Action of wgetch Subroutines
NODELAY Returns a value of ERR if there is no input waiting.
DELAY Stops reading until the system passes text through the program. If CBREAK mode is also set,

the program stops after one character. If CBREAK mode is not set (NOCBREAK mode), the
wgetch subroutine stops reading after the first new-line character. If ECHO is set, the character
is also echoed to the window.

HALF-DELAY Stops reading until a character is typed or a specified timeout is reached. If ECHO mode is set,
the character is also echoed to the window.

Note: When you use the wgetch subroutines do not set both the NOCBREAK mode and the ECHO
mode at the same time. Setting both modes can cause undesirable results depending on the state of
the tty driver when each character is typed.

Function Keys: Function keys are defined in the curses.h file. Function keys can be returned by the
wgetch subroutine if the keypad is enabled. A terminal may not support all of the function keys. To see if a
terminal supports a particular key, check its terminfo database definition. The following table lists the
function keys defined in the curses.h file:

Name Key Name

16 Writing and Debugging Programs

../../libs/basetrf2/delch.htm#HDRA9D35DD5930DAVI
../../libs/basetrf2/deleteln.htm#HDRA9D35DDD759DAVI

KEY_BREAK Break key (unreliable).

KEY_DOWN Down arrow key.

KEY_UP Up arrow key.

KEY_LEFT Left arrow key.

KEY_RIGHT Right arrow key.

KEY_HOME Home key (upward + left arrow).

KEY_BACKSPACE Backspace (unreliable).

KEY F0 Function keys. Space for 64 keys is reserved.

KEYF(n) Formula for fn.

KEY_DL Delete line.

KEY_IL Insert line.

KEY_DC Delete character.

KEY_IC Insert character or enter insert mode.

KEY_EIC Exit insert character mode.

KEY_CLEAR Clear screen.

KEY_EOS Clear to end of screen.

KEY_EOL Clear to end of line.

KEY_SF Scroll 1 line forward.

KEY_SR Scroll 1 line backwards (reverse).

KEY_NPAGE Next page.

KEY_PPAGE Previous page.

KEY_STAB Set tab.

KEY_CTAB Clear tab.

KEY_CATAB Clear all tabs.

KEY_ENTER Enter or send.

KEY_SRESET Soft (partial) reset.

KEY_RESET Reset or hard reset.

KEY_PRINT Print or copy.

KEY_IL Home down or bottom (lower left) keypad.

KEY_A1 Upper left of keypad.

KEY_A3 Upper right of keypad.

KEY_B2 Center of keypad.

KEY_C1 Lower left of keypad.

KEY_C3 Lower right of keypad.

KEY_BTAB Back tab key.

KEY_BEG Beginning key.

KEY_CANCEL Cancel key.

KEY-CLOSE Close key.

KEY_COMMAND Command key.

KEY_COPY Copy key.

KEY_CREATE Create key.

KEY_END End key.

Chapter 2. The Curses Library 17

KEY_EXIT Exit key.

KEY_FIND Find key.

KEY_HELP Help key.

KEY_MARK Mark key.

KEY_MESSAGE Message key.

KEY_MOVE Move key.

KEY_NEXT Next object key.

KEY_OPEN Open key.

KEY_OPTIONS Options key.

KEY_PREVIOUS Previous object key.

KEY_REDO Redo key.

KEY_REFERENCE Reference key.

KEY_REFRESH Refresh key.

KEY_REPLACE Replace key.

KEY_RESTART Restart key.

KEY_RESUME Resume key.

KEY_SAVE Save key.

KEY_SBEG Shifted beginning key.

KEY_SCANCEL Shifted cancel key.

KEY_SCOMMAND Shifted command key.

KEY_SCOPY Shifted copy key.

KEY_SCREATE Shifted create key.

KEY_SDC Shifted delete-character key.

KEY_SDL Shifted delete-line key.

KEY_SELECT Select key.

KEY_SEND Shifted end key.

KEY_SEOL Shifted clear-line key.

KEY_SEXIT Shifted exit key.

KEY_SFIND Shifted find key.

KEY_SHELP Shifted help key.

KEY_SHOME Shifted home key.

KEY_SIC Shifted input key.

KEY_SLEFT Shifted left arrow key.

KEY_SMESSAGE Shifted message key.

KEY_SMOVE Shifted move key.

KEY_SNEXT Shifted next key.

KEY_SOPTIONS Shifted options key.

KEY_SPREVIOUS Shifted previous key.

KEY_SPRINT Shifted print key.

KEY_SREDO Shifted redo key.

KEY_SREPLACE Shifted replace key.

KEY_SRIGHT Shifted right arrow key.

18 Writing and Debugging Programs

KEY_SRSUME Shifted resume key.

KEY_SSAVE Shifted save key.

KEY_SSUSPEND Shifted suspend key.

KEY_SUNDO Shifted undo key.

KEY_SUSPEND Suspend key.

KEY_UNDO Undo key.

Getting Function Keys: If your program enables the keyboard with the keypad subroutine, and the user
presses a function key, the token for that function key is returned instead of raw characters. The possible
function keys are defined in the /usr/include/curses.h file. Each define statement begins with a KEY_
prefix and the keys are defined as integers beginning with the value 03510.

If a character is received that could be the beginning of a function key (such as an Escape character),
curses sets a timer (a structure of type timeval that is defined in /usr/include/sys/time.h). If the remainder
of the sequence is not received before the timer expires, the character is passed through. Otherwise, the
function key’s value is returned. For this reason, after a user presses the escape key there is a delay
before the escape is returned to the program. You should avoid using the escape key where possible
when you call a single-character subroutine such as the wgetch subroutine. This timer can be overridden
or extended by the use of the environment variable ESCDELAY.

The ESCDELAY environment variable sets the length of time to wait before timing out and treating the
ESC keystroke as the Escape character rather than combining it with other characters in the buffer to
create a key sequence. The ESCDELAY value is measured in fifths of a millisecond. If the ESCDELAY
variable is 0, the system immediately composes the Escape response without waiting for more information
from the buffer. You may choose any value from 0 to 99,999. The default setting for the ESCDELAY
variable is 500 (1/10th of a second).

To prevent the wgetch subroutine from setting a timer, call the notimeout subroutine. If notimeout is set to
TRUE, curses does not distinguish between function keys and characters when retrieving data.

keyname Subroutine
The keyname subroutine returns a pointer to a character string containing a symbolic name for the Key
argument. The Key argument can be any key returned from the wgetch, getch, mvgetch, or mvwgetch
subroutines.

winch Subroutines
The winch subroutines retrieve the character at the current position. If any attributes are set for the
position, the attribute values are ORed into the value returned. You can use the winch subroutines to
extract only the character or its attributes. To do this, use the predefined constants A_CHARTEXT and
A_ATTRIBUTES with the logical & (ampersand) operator. These constants are defined in the curses.h
file. The following are the inch subroutines:

winch subroutine Gets the current character from a user-defined window.
inch macro Gets the current character from the stdscr.
mvinch macro Moves the logical cursor before calling the inch subroutine on the stdscr.
mvwinch macro Moves the logical cursor before calling the winch subroutine in the user-defined

window.

wscanw Subroutines
The wscanw subroutines read character data, interpret it according to a conversion specification, and
store the converted results into memory. The wscanw subroutines use the wgetstr subroutines to read
the character data. The following are the wscanw subroutines:

Chapter 2. The Curses Library 19

../../libs/basetrf2/inch.htm#HDRA9CF98D1863ERIC
../../libs/basetrf2/scanw.htm#HDRYB7DG2CEERIC

wscanw subroutine Scans a user-defined window.
scanw macro Scans the stdscr.
mvscanw macro Moves the logical cursor before scanning the stdscr.
mvwscanw macro Moves the logical cursor in the user-defined window before scanning.

The vwscanw subroutine scans a window using a variable argument list. For information about
manipulating variable argument lists, see the varargs macros.

Understanding Terminals with curses
The capabilities of your program are limited, in part, by the capabilities of the terminal on which it runs.
This section provides information about initializing terminals and identifying their capabilities.

Manipulating Multiple Terminals

With curses, you can use one or more terminals for input and output. The terminal subroutines enable you
to establish new terminals, to switch input and output processing, and to retrieve terminal capabilities.

You can start curses on a single default screen using the initscr subroutine. This should be sufficient for
most applications. However, if your application sends output to more than one terminal, you should use the
newterm subroutine. Call this subroutine for each terminal. You should also use the newterm subroutine if
your application wants an indication of error conditions so that it can continue to run in a line-oriented
mode if the terminal cannot support a screen-oriented program.

When it completes, a program must call the endwin subroutine for each terminal it used. If you call the
newterm subroutine more than once for the same terminal, the first terminal referred to must be the last
one for which you call the endwin subroutine.

The set_term subroutine switches input and output processing between different terminals.

Determining Terminal Capabilities
curses supplies the following subroutines to help you determine the capabilities of a terminal:

longname Returns the verbose name of the terminal.
has_ic Determines whether a terminal has the insert-character capability.
has_il Determines whether a terminal has the insert-line capability.

The longname subroutine returns a pointer to a static area containing a verbose description of the current
terminal. This area is defined only after a call to the initscr or newterm subroutine. If you intend to use
the longname subroutine with multiple terminals, you should know that each call to the newterm
subroutine overwrites this area. Calls to the set_term subroutine do not restore the value. Instead, save
this area between calls to the newterm subroutine.

The has_ic subroutine returns TRUE if the terminal has insert and delete character capabilities.

The has_il subroutine returns TRUE if the terminal has insert and delete line capabilities or can simulate
the capabilities using scrolling regions. Use the has_il subroutine to check whether it is appropriate to turn
on physical scrolling using the scrollok or idlok subroutines.

Setting Terminal Input and Output Modes

The subroutines that control input and output determine how your application retrieves and displays data
to users.

20 Writing and Debugging Programs

../../libs/basetrf2/scanw.htm#HDRYB7DG2CEERIC
../../libs/basetrf2/varargs.htm
../../libs/basetrf2/newterm.htm#HDRA9D0F13E308ERIC
../../libs/basetrf2/endwin.htm#HDRA51C2182B
../../libs/basetrf2/set_term.htm#HDRA9D21964792ERIC
../../libs/basetrf2/longname.htm#HDRA9D219E3756ERIC
../../libs/basetrf2/has_ic.htm#HDRA9D2203E937DAVI
../../libs/basetrf2/has_il.htm#HDRA9D22047042DAVI

Input Modes
Special input characters include the flow-control characters, the interrupt character, the erase character,
and the kill character. Four mutually-exclusive curses modes let the application control the effect of the
input characters.

Cooked Mode
This achieves normal line-at-a-time processing with all special characters handled outside the
application. This achieves the same effect as canonical-mode input processing. The state of the
ISIG and IXON flags are not changed upon entering this mode by calling nocbreak(), and are set
upon entering this mode by calling noraw().

The implementation supports erase and kill characters from any supported locale, no matter what
the width of the character is.

cbreak Mode
Characters typed by the user are immediately available to the application and curses does not
perform special processing on either the erase character or the kill character. An application can
select cbreak mode to do its own line editing but to let the abort character be used to abort the
task. This mode achieves the same effect as non-canonical-mode, Case B input processing (with
MIN set to 1 and ICRNL cleared). The state of the ISIG and IXON flags are not changed upon
entering this mode.

Half-Delay Mode
The effect is the same as cbreak, except that input functions wait until a character is available or
an interval defined by the application elapses, whichever comes first. This mode achieves the
same effect as non-canonical-mode, Case C input processing (with TIME set to the value specified
by the application). The state of the ISIG and IXON flags are not changed upon entering this
mode.

Raw Mode
Raw mode gives the application maximum control over terminal input. The application sees each
character as it is typed. This achieves the same effect as non-canonical mode, Case D input
processing. The ISIG and IXON flags are cleared upon entering this mode.

The terminal interface settings are recorded when the process calls initscr or newterm to initialize curses
and restores these settings when endwin is called. The initial input mode for curses operations is
unspecified unless the implementation supports Enhanced curses compliance, in which the initial input
mode is cbreak mode.

The behavior of the BREAK key depends on other bits in the display driver that are not set by curses.

Delay Mode
Two mutually-exclusive delay modes specify how quickly certain curses functions return to the application
when there is no terminal input waiting when the function is called:

No Delay The function fails.
Delay The application waits until the implementation passes text through to the application. If cbreak or

Raw Mode is set, this is after one character. Otherwise, this is after the first <newline> character,
end-of-line character, or end-of-file character.

The effect of No Delay Mode on function key processing is unspecified.

Echo Processing
echo mode determines whether curses echoes typed characters to the screen. The effect of echo mode is
analogous to the effect of the echo flag in the local mode field of the termios structure associated with the
terminal device connected to the window. However, curses always clears the echo flag when invoked, to
inhibit the operating system from performing echoing. The method of echoing characters is not identical to
the operating system’s method of echoing characters, because curses performs additional processing of
terminal input.

Chapter 2. The Curses Library 21

If in echo mode, curses performs its own echoing. Any visible input character is stored in the current or
specified window by the input function that the application called, at that window’s cursor position, as
though addch() were called, with all consequent effects such as cursor movement and wrapping.

If not in echo mode, any echoing of input must be performed by the application. Applications often perform
their own echoing in a controlled area of the screen, or do not echo at all, so they disable echo mode.

It may not be possible to turn off echo processing for synchronous and network asynchronous terminals
because echo processing is done directly by the terminals. Applications running on such terminals should
be aware that any characters typed will appear on the screen at wherever the cursor is positioned.

cbreak or nocbreak Puts the terminal into or takes it out of CBREAK mode.
delay_output Sets the output delay in milliseconds.
echo or noecho Controls echoing of typed characters to the screen.
halfdelay Returns ERR if no input was typed after blocking for a specified amount of

time.
nl or nonl Determines whether curses translates a new line into a carriage return and

line feed on output, and translates a return into a new line on input.
raw or noraw Places the terminal into or out of RAW mode.

The echo subroutine puts the terminal into echo mode. In echo mode, curses writes characters typed by
the user to the terminal at the physical cursor position. The noecho subroutine takes the terminal out of
echo mode.

The raw subroutine puts the terminal into raw mode. In raw mode, characters typed by the user are
immediately available to the program. Additionally, the interrupt, quit, suspend, and flow-control characters
are passed uninterpreted instead of generating a signal as they do in cbreak mode. The noraw subroutine
takes the terminal out of raw mode.

The cbreak subroutine performs a subset of the functions performed by the raw subroutine. In cbreak
mode, characters typed by the user are immediately available to the program and erase or kill character
processing is not done. Unlike RQW mode, interrupt and flow characters are acted upon. Otherwise, the
tty driver buffers the characters typed until a new line or carriage return is typed.

Note: cbreak mode disables translation by the tty driver.

The nocbreak subroutine takes the terminal out of cbreak mode.

The delay_output subroutine sets the output delay to the specified number of milliseconds. Do not use
this subroutine extensively because it uses padding characters instead of a processor pause.

The nl and nonl subroutines, respectively, control whether curses translates new lines into carriage
returns and line feeds on output, and whether curses translates carriage returns into new lines on input.
Initially, these translations do occur. By disabling these translations, the curses subroutine library has more
control over the line-feed capability, resulting in faster cursor motion.

Using the terminfo and termcap Files

When curses is initialized, it checks the TERM environment variable to identify the terminal type. Then,
curses looks for a definition explaining the capabilities of the terminal. Usually this information is kept in a
local directory specified by the TERMINFO environment variable or in the /usr/share/lib/terminfo
directory. All curses programs first check to see if the TERMINFO environment variable is defined. If this
variable is not defined, the /usr/share/lib/terminfo directory is checked.

22 Writing and Debugging Programs

../../libs/basetrf2/cbreak.htm#HDRA9D85FD1294ERIC
../../libs/basetrf2/delay_output.htm#HDRA9D21AE9196ERIC
../../libs/basetrf2/echo.htm#HDRA9D21AA6928ERIC
../../libs/basetrf2/halfdelay.htm#HDRD6A7E18785EMIL
../../libs/basetrf2/nl.htm#HDRA9D21AC0714ERIC
../../libs/basetrf2/raw.htm#HDRA9D21A90138ERIC
../../libs/basetrf2/echo.htm#HDRA9D21AA6928ERIC
../../libs/basetrf2/echo.htm#HDRA9D21AA6928ERIC
../../libs/basetrf2/raw.htm#HDRA9D21A90138ERIC
../../libs/basetrf2/raw.htm#HDRA9D21A90138ERIC
../../libs/basetrf2/cbreak.htm#HDRA9D85FD1294ERIC
../../libs/basetrf2/cbreak.htm#HDRA9D85FD1294ERIC
../../libs/basetrf2/delay_output.htm#HDRA9D21AE9196ERIC
../../libs/basetrf2/nl.htm#HDRA9D21AC0714ERIC
../../libs/basetrf2/nl.htm#HDRA9D21AC0714ERIC

For example, if the TERM variable is set to vt100 and the TERMINFO variable is set to the
/usr/mark/myterms file, curses checks for the /usr/mark/myterms/v/vt100 file. If this file does not exist,
curses checks the /usr/share/lib/terminfo/v/vt100 file.

Additionally, the LINES and COLUMNS environment variables can be set to override the terminal
description.

Writing Programs That Use the terminfo Subroutines
Use the terminfo subroutines when your program needs to deal directly with the terminfo database. For
example, use these subroutines to program function keys. In all other cases, curses subroutines are more
suitable and their use is recommended.

Initializing Terminals: Your program should begin by calling the setupterm subroutine. Normally, this
subroutine is called indirectly by a call to the initscr or newterm subroutine. The setupterm subroutine
reads the terminal-dependent variables defined in the terminfo database. The terminfo database includes
boolean, numeric, and string variables. All of these terminfo variables use the values defined for the
specified terminal. After reading the database, the setupterm subroutine initializes the cur_term variable
with the terminal definition. When working with multiple terminals, you can use the set_curterm subroutine
to set the cur_term variable to a specific terminal.

Another subroutine, restartterm, is similar to the setupterm subroutine. However, it is called after memory
is restored to a previous state. For example, you would call the restartterm subroutine after a call to the
scr_restore subroutine. The restartterm subroutine assumes that the input and output options are the
same as when memory was saved, but that the terminal type and baud rate may differ.

The del_curterm subroutine frees the space containing the capability information for a specified terminal.

Header Files: Include the curses.h and term.h files in your program in the following order:
#include <curses.h>
#include <term.h>

These files contain the definitions for the strings, numbers, and flags in the terminfo database.

Handling Terminal Capabilities: Pass all parametized strings through the tparm subroutine to
instantiate them. You should print all terminfo strings and the output of the tparm subroutine with the
tputs or putp subroutine.

putp Provides a shortcut to the tputs subroutine.
tparm Instantiates a string with parameters.
tputs Applies padding information to the given string and outputs it.

Use the following subroutines to obtain and pass terminal capabilities:

tigetflag Returns the value of a specified boolean capability. If the capability is not boolean, a -1 is returned.
tigetnum Returns the value of a specified numeric capability. If the capability is not numeric, a -2 is returned.
tigetstr Returns the value of a specified string capability. If the capability specified is not a string, the

tigetstr subroutine returns the value of (char *) -1.

Exiting the Program: When your program exits you should restore the tty modes to their original state.
To do this, call the reset_shell_mode subroutine. If your program uses cursor addressing, it should output
the enter_ca_mode string at startup and the exit_ca_mode string when it exits.

Programs that use shell escapes should call the reset_shell_mode subroutine and output the
exit_ca_mode string before calling the shell. After returning from the shell, the program should output the

Chapter 2. The Curses Library 23

../../files/aixfiles/terminfo.htm#HDRA72P01A
../../libs/basetrf2/setupterm.htm#HDRA9D21AD4552ERIC
../../libs/basetrf2/restartterm.htm#HDRDCE394C620MICH
../../libs/basetrf2/putp.htm#HDRA5FNDG3D1ERIC
../../libs/basetrf2/tputs.htm#HDRA9D21B31085ERIC
../../libs/basetrf2/tparm.htm#HDRA9D21B0C903ERIC
../../libs/basetrf2/tputs.htm#HDRA9D21B31085ERIC

enter_ca_mode string and call the reset_prog_mode subroutine. This process differs from standard
curses operations which call the endwin subroutine on exit.

Low-Level Screen Subroutines
Use the following subroutines for low-level screen manipulations:

scr_restore Restores the virtual screen to the contents of a previously dumped file.
scr_dump Dumps the contents of the virtual screen to the specified file.
scr_init Initializes the curses data structures from a specified file.
ripoffline Strips a single line from the stdscr.

termcap Subroutines
If your program uses the termcap file for terminal information, the termcap subroutines are included as a
conversion aid. The parameters are the same for the termcap subroutines. curses emulates the
subroutines using the terminfo database. The following termcap subroutines are supplied:

tgetent Emulates the setupterm subroutine.
tgetflag Returns the boolean entry for a termcap identifier.
tgetnum Returns the numeric entry for a termcap identifier.
tgetstr Returns the string entry for a termcap identifier.
tgoto Duplicates the tparm subroutine. The output from the tgoto subroutine should be passed to the

tputs subroutine.

Converting termcap Descriptions to terminfo Descriptions

The captoinfo command converts termcap descriptions to terminfo descriptions. The following example
illustrates how the captoinfo command works:
captoinfo /usr/lib/libtermcap/termcap.src

This command converts the /usr/lib/libtermcap/termcap.src file to terminfo source. The captoinfo
command writes the output to standard output and preserves comments and other information in the file.

Manipulating TTYs

The following functions save and restore the state of terminal modes:

savetty Saves the state of the tty modes.
resetty Restores the state of the tty modes to what they were the last time the savetty subroutine was called.

Synchronous and Networked Asynchronous Terminals
Synchronous, networked synchronous (NWA) or non-standard directly-connected asynchronous terminals
are often used in a mainframe environment and communicate to the host in block mode. That is, the user
types characters at the terminal then presses a special key to initiate transmission of the characters to the
host.

Although it may be possible to send arbitrary sized blocks to the host, it is not possible or desirable to
cause a character to be transmitted with only a single keystroke. Doing so could cause severe problems to
an application wishing to make use of single-character input.

Output
The curses interface can be used in the normal way for all operations pertaining to output to the terminal,
with the possible exception that on some terminals the refresh() routine may have to redraw the entire
screen contents in order to perform any update.

24 Writing and Debugging Programs

../../libs/basetrf2/tgetent.htm#HDRA9D21B55436ERIC
../../libs/basetrf2/setupterm.htm#HDRA9D21AD4552ERIC
../../libs/basetrf2/tgetflag.htm#HDRA9D21B63698ERIC
../../libs/basetrf2/tgetnum.htm#HDRA9D21B72971ERIC
../../libs/basetrf2/tgetstr.htm#HDRA9D21B8C800ERIC
../../libs/basetrf2/tgoto.htm#HDRA9D21BA8631ERIC
../../libs/basetrf2/tparm.htm#HDRA9D21B0C903ERIC
../../cmds/aixcmds1/captoinfo.htm#HDRA67F032F
../../libs/basetrf2/savetty.htm#HDRA9D23E9B275ERIC
../../libs/basetrf2/resetty.htm#HDRA9D23EA8016ERIC

If it is additionally necessary to clear the screen before each such operation, the result could be
undesirable.

Input
Because of the nature of operation of synchronous (block-mode) and NWA terminals, it might not be
possible to support all or any of the curses input functions. In particular, the following points should be
noted:

v Single-character input might not possible. It may be necessary to press a special key to cause all
characters typed at the terminal to be transmitted to the host.

v It is sometimes not possible to disable echo. Character echo may be performed directly by the terminal.
On terminals that behave in this way, any curses application that performs input should be aware that
any characters typed will appear on the screen at wherever the cursor is positioned. This does not
necessarily correspond to the position of the cursor in the window.

Working with Color
If a terminal supports color, you can use the color manipulation subroutines to include color in your curses
program. Before manipulating colors, you should test whether a terminal supports color. To do this, you
can use either the has_colors subroutine or the can_change_color subroutine. The can_change_color
subroutine also checks to see if a program can change the terminal’s color definitions. Neither of these
subroutines requires an argument.

can_change_color Checks to see if the terminal supports colors and changing of the color definition.
has_colors Checks that the terminal supports colors.
start_color Initializes the eight basic colors and two global variables, COLORS and

COLOR_PAIRS.

Once you have determined that the terminal supports color, you must call the start_color subroutine
before calling other color subroutines. It is a good practice to call this subroutine right after the initscr
subroutine and after a successful color test. The COLORS global variable defines the maximum number of
colors the terminal supports. The COLOR_PAIRS global variable defines the maximum number of color
pairs the terminal supports.

Manipulating Video Attributes
Your program can manipulate a number of video attributes.

Video Attributes, Bit Masks, and the Default Colors
Curses enables you to control the following attributes:

A_STANDOUT Terminal’s best highlighting mode.
A_UNDERLINE Underline.
A_REVERSE Reverse video.
A_BLINK Blinking.
A_DIM Half-bright.
A_BOLD Extra bright or bold.
A_ALTCHARSET Alternate character set.
A_NORMAL Normal attributes.
COLOR_PAIR (Number) Displays the color pair represented by Number. You must have already

initialized the color pair using the init_pair subroutine.

These attributes are defined in the curses.h file. You can pass attributes to the wattron, wattroff, and
wattrset subroutines or you can OR them with the characters passed to the waddch subroutine. The C
logical OR operator is a | (pipe symbol). The following bit masks are also provided:

Chapter 2. The Curses Library 25

../../libs/basetrf2/can_change_color.htm#HDRCE25C71831MARY
../../libs/basetrf2/has_colors.htm#HDRCE38B42178MARY

A_NORMAL Turns all video attributes off.
A_CHARTEXT Extracts a character.
A_ATTRIBUTES Extracts attributes.
A_COLOR Extracts color-pair field information.

Two macros are provided for working with color pairs: COLOR_PAIR(Number) and PAIR_NUMBER(
Attribute). The COLOR_PAIR(Number) macro and the A_COLOR mask are used by the PAIR_NUMBER(
Attribute) macro to extract the color-pair number found in the attributes specified by the Attribute
parameter.

If your program uses color, the curses.h file defines a number of macros that identify default colors. These
colors are the following:

Color Integer Value
COLOR_BLACK 0
COLOR_BLUE 1
COLOR_GREEN 2
COLOR_CYAN 3
COLOR_RED 4
COLOR_MAGENTA 5
COLOR_YELLOW 6
COLOR_WHITE 7

Curses assumes that the default background color for all terminals is 0 (COLOR_BLACK).

Setting Video Attributes

The current window attributes are applied to all characters written into the window with the addch
subroutines. These attributes remain as a property of the characters. The characters retain these attributes
during terminal operations.

attroff or wattroff Turns off attributes.
attron orwattron Turns on attributes.
attrset or wattrset Sets the current attributes of a window.
standout, wstandout, standend, orwstandend

Puts a window into and out of the terminal’s best highlight
mode.

vidputs or vidattr Outputs a string that puts the terminal in a video-attribute
mode.

The attrset subroutine sets the current attributes of the default screen. The wattrset subroutine sets the
current attributes of the user-defined window.

Use the attron and attroff subroutines to turn on and off the specified attributes in the stdscr without
affecting any others. The wattron and wattroff subroutines perform the same actions in user-defined
windows.

The standout subroutine is the same as a call to the attron subroutine with the A_STANDOUT attribute.
It puts the stdscr into the terminal’s best highlight mode. The wstandout subroutine is the same as a call
to the wattron(Window, A_STANDOUT) subroutine. It puts the user-defined window into the terminal’s
best highlight mode. The standend subroutine is the same as a call to the attrset(0) subroutine. It turns
off all attributes for stdscr. The wstandend subroutine is the same as a call to the wattrset(Window, 0)
subroutine. It turns off all attributes for the specified window.

26 Writing and Debugging Programs

../../libs/basetrf2/addch.htm#HDRA9D21FB5217DAVI
../../libs/basetrf2/attroff.htm#HDRA9D26504116ERIC
../../libs/basetrf2/attron.htm#HDRA9D264F9069ERIC
../../libs/basetrf2/attrset.htm#HDRA9D26511681ERIC
../../libs/basetrf2/standend.htm#HDRA9D26520503ERIC
../../libs/basetrf2/vidattr.htm#HDRA9D21B43550ERIC
../../libs/basetrf2/attrset.htm#HDRA9D26511681ERIC
../../libs/basetrf2/attrset.htm#HDRA9D26511681ERIC
../../libs/basetrf2/attron.htm#HDRA9D264F9069ERIC
../../libs/basetrf2/attroff.htm#HDRA9D26504116ERIC
../../libs/basetrf2/attron.htm#HDRA9D264F9069ERIC
../../libs/basetrf2/attroff.htm#HDRA9D26504116ERIC
../../libs/basetrf2/standend.htm#HDRA9D26520503ERIC
../../libs/basetrf2/standend.htm#HDRA9D26520503ERIC
../../libs/basetrf2/standend.htm#HDRA9D26520503ERIC
../../libs/basetrf2/standend.htm#HDRA9D26520503ERIC

The vidputs subroutine outputs a string that puts the terminal in the specified attribute mode. Characters
are output through the putc subroutine. The vidattr subroutine is the same as the vidputs subroutine
except that characters are output through the putchar subroutine.

Working with Color Pairs
The COLOR_PAIR (Number) macro is defined in the curses.h file so you can manipulate color attributes
as you would any other attributes. You must initialize a color pair with the init_pair subroutine before you
use it. The init_pair subroutine has three parameters Pair, Foreground, and Background. The Pair
parameter must be between 1 and COLOR_PAIRS -1. The Foreground and Background parameters must
be between 0 and COLORS -1. For example, to initialize color pair 1 to a foreground of black with a
background of cyan, you would use the following:
init_pair(1, COLOR_BLACK, COLOR_CYAN);

You could then set the attributes for the window as:
wattrset(win, COLOR_PAIR(1));

If you then write the string Let’s add Color to the terminal, the string appears as black characters on a
cyan background.

Extracting Attributes
You can use the results from the call to the winch subroutine to extract attribute information, including the
color-pair number. The following example uses the value returned by a call to the winch subroutine with
the C logical AND operator (&) and the A_ATTRIBUTES bit mask to extract the attributes assigned to the
current position in the window. The results from this operation are used with the PAIR_NUMBER macro to
extract the color-pair number, and the number 1 is printed on the screen.
win = newwin(10, 10, 0, 0);
init_pair(1, COLOR_RED, COLOR_YELLOW);
wattrset(win, COLOR_PAIR(1));
waddstr(win, "apple");

number = PAIR_NUMBER((mvwinch(win, 0, 0) & A_ATTRIBUTES));
wprintw(win, "%d\n", number);
wrefresh(win);

Lights and Whistles
The curses library provides alarm subroutines to signal the user.

beep Sounds an audible alarm on the terminal
flash Displays a visible alarm on the terminal

Setting Curses Options

All curses options are initially turned off, so it is not necessary to turn them off before calling the endwin
subroutine. The following subroutines allow you to set various options with curses:

curs_set Sets the cursor visibility to invisible, normal, or very visible.
idlok Specifies whether curses can use the hardware insert and delete line features of terminals so

equipped.
intrflush Specifies whether an interrupt key (interrupt, quit, or suspend) flushes all output in the tty driver.

This option’s default is inherited from the tty driver.
keypad Specifies whether curses retrieves the information from the terminal’s keypad. If enabled, the user

can press a function key (such as an arrow key) and the wgetch subroutine returns a single value
representing that function key. If disabled, curses will not treat the function keys specially and your
program must interpret the escape sequences. For a list of these function keys, see the wgetch
subroutine.

typeahead Instructs curses to check for type ahead in an alternative file descriptor.

Chapter 2. The Curses Library 27

../../libs/basetrf2/vidattr.htm#HDRA9D21B43550ERIC
../../libs/basetrf2/vidattr.htm#HDRA9D21B43550ERIC
../../libs/basetrf1/putc.htm#HDRA1429342
../../libs/basetrf2/beep.htm#HDRA9D2652C287ERIC
../../libs/basetrf2/flash.htm#HDRA9D26544777ERIC
../../libs/basetrf2/endwin.htm#HDRA51C2182B
../../libs/basetrf2/idlok.htm#HDRA9D2655A381ERIC
../../libs/basetrf2/intrflush.htm#HDRA9D26574752ERIC
../../libs/basetrf2/keypad.htm#HDRA9D26568430ERIC
../../libs/basetrf2/getch.htm#HDRA9D35DFB905DAVI
../../libs/basetrf2/getch.htm#HDRA9D35DFB905DAVI
../../libs/basetrf2/typeahead.htm#HDRA9D2658D116ERIC

See the wgetch subroutines and “Setting Terminal Input and Output Modes” on page 20 for descriptions of
additional curses options.

Manipulating Soft Labels
Curses provides subroutines for manipulating soft function-key labels. These labels appear at the bottom
of the screen and give applications, such as editors, a more user-friendly look. To use soft labels, you
must call the slk_init subroutine before calling the initscr or newterm subroutines.

slk_clear Clears soft labels from the screen.
slk_init Initializes soft function key labels.
slk_label Returns the current label.
slk_noutrefresh Refreshs soft labels. This subroutine is functionally equivalent to the wnoutrefresh

subroutine.
slk_refresh Refreshs soft labels. This subroutine is functionally equivalent to the refresh

subroutine.
slk_restore Restores the soft labels to the screen after a call to the slk_clear subroutine.
slk_set Sets a soft label.
slk_touch Updates soft labels on the next call to the slk_noutrefresh subroutine.

To manage soft labels, curses reduces the size of the stdscr by one line. It reserves this line for use by
the soft-label functions. This reservation means that the environment variable LINES is also reduced.
Many terminals support built-in soft labels. If built-in soft labels are supported, curses uses them.
Otherwise, curses simulates the soft-labels with software.

Because many terminals that support soft labels have 8 labels, curses follows the same standard. A label
string is restricted to 8 characters. Curses arranges labels in one of two patterns: 3-2-3 (3 left, 2 center, 3
right) or 4-4 (4 left, 4 right).

To specify a string for a particular label, call the slk_set subroutine. This subroutine also instructs curses
as to left-justify, right-justify, or center the string on the label. If you wish to obtain a label name before it
was justified by the slk_set subroutine, use the slk_label subroutine. The slk_clear and slk_restore
subroutines clear and restore soft labels respectively. Normally, to update soft labels, your program should
call the slk_noutrefresh subroutine for each label and then use a single call to the slk_refresh subroutine
to perform the actual output. To output all the soft labels on the next call to the slk_noutrefresh
subroutine, use the slk_touch subroutine.

Obsolete Curses Subroutines
Several curses subroutines are obsolete beginning in AIX Version 4. These obsolete subroutines are
emulated as indicated in the following list:

Obsolete Replaced by
crmode cbreak
fixterm reset_prog_mode
getcap tgetstr
nocrmode nocbreak
resetterm reset_shell_mode
saveterm def_prog_mode
setterm setupterm

The touchoverlap, flushok, and _showstring subroutines are obsolete and there are no direct
replacements. The gettmode subroutine is available as a no-op.

28 Writing and Debugging Programs

../../libs/basetrf2/slk_attroff.htm#HDRCE3D133669MARY
../../libs/basetrf2/slk_init.htm#HDRCFA5B7B582MARY
../../libs/basetrf2/slk_label.htm#HDRCE3D18C137MARY
../../libs/basetrf2/slk_noutrefresh.htm#HDRCE3D1C8668MARY
../../libs/basetrf2/slk_refresh.htm#HDRCE3D231645MARY
../../libs/basetrf2/slk_restore.htm#HDRCE3D278142MARY
../../libs/basetrf2/slk_set.htm#HDRCE3D2C6961MARY
../../libs/basetrf2/slk_touch.htm#HDRCE3D310653MARY

AIX 3.2 Curses Compatibility
v In AIX 4.3, curses is not compatible with AT&T System V Release 3.2 curses.

v In versions prior to AIX 4.3, curses is compatible with AT&T System V Release 3.2 curses.

v In versions prior to AIX 4.3 curses have been kept in a form useful for supporting existing binaries only.
This new change was made to provide support for color and to increase application portability to AIX
systems.

v Applications already running under AIX 4.3 will not operate using the old curses.

v Applications compiled, rebound, or relinked may need source code changes for compatibility with the
AIX Version 4 of curses. The newer curses library does not have or use AIX extended curses functions.

v Applications requiring multibyte support may still compile and link with extended curses. However,
because the extended curses library may be removed in the future, use of the extended curses library is
discouraged except for applications that require multibyte support.

List of Additional Curses Subroutines
For information on the X/Open UNIX95 Specification curses subroutines available on AIX 4.2 (and later),
see the X/Open CAE Specification.

Manipulating Windows

scr_dump Writes the current contents of the virtual screen to the specified file.
scr_init Uses the contents of a specified file to initialize the curses data structures.
scr_restore Sets the virtual screen to the contents of the specified file.

Manipulating Characters

echochar, wechochar, or pechochar Functionally equivalent to a call to the addch (or
waddch) subroutine followed by a call to the
refresh (or wrefresh) subroutine.

flushinp Flushes any type-ahead characters typed by the
user but not yet read by the program.

insertln or winsertln Inserts a blank line in a window.
keyname Returns a pointer to a character string containing a

symbolic name for the Key parameter.
meta Determines whether 8-bit character return for the

wgetch subroutine is allowed.
nodelay Causes a call to the wgetch subroutine to be a

nonblocking call. If no input is ready, the wgetch
subroutine returns ERR.

scroll Scrolls a window up one line.
unctrl Returns the printable representation of a character.

Control characters are punctuated with a | (caret).
vwprintw Performs the same operation as the wprintw

subroutine but takes a variable list of arguments.
vwscanw Performs the same operation as the wscanw

subroutine but takes a variable list of arguments.

Manipulating Terminals

def_prog_mode Identifies the current terminal mode as the in-curses mode.
def_shell_mode Saves the current terminal mode as the not-in-curses mode.
del_curterm Frees the space pointed to by the oterm variable.

Chapter 2. The Curses Library 29

../../libs/basetrf2/scr_dump.htm#HDRCE3C531186MARY
../../libs/basetrf2/scr_init.htm#HDRCE3C5A5189MARY
../../libs/basetrf2/scr_restore.htm#HDRCE3CAC4554MARY
../../libs/basetrf2/echochar.htm#HDRCE26ED0231MARY
../../libs/basetrf2/flushinp.htm#HDRA9D26C31864ERIC
../../libs/basetrf2/insertln.htm#HDRA9D21FEE969DAVI
../../libs/basetrf2/keyname.htm#HDRCE980BC653MARY
../../libs/basetrf2/meta.htm#HDRA9D35DEC868DAVI
../../libs/basetrf2/nodelay.htm#HDRA9D35DF4067DAVI
../../libs/basetrf2/scrl.htm#HDRA9D22062206DAVI
../../libs/basetrf2/unctrl.htm#HDRA9D22004785DAVI
../../libs/basetrf2/printw.htm#HDRA9D21FF9062DAVI
../../libs/basetrf2/scanw.htm#HDRYB7DG2CEERIC
../../libs/basetrf2/def_prog_mode.htm#HDRA9D21AFB583ERIC
../../libs/basetrf2/def_shell_mode.htm#HDRA9D21B23119ERIC
../../libs/basetrf2/del_curterm.htm#HDRCE268D2805MARY

notimeout Prevents the wgetch subroutine from setting a timer when interpreting an input
escape sequence.

pechochar Equivalent to a call to the waddch subroutine followed by a call to the prefresh
subroutine.

reset_prog_mode Restores the terminal into the in-curses program mode.
reset_shell_mode Restores the terminal to shell mode (out-of-curses mode). The endwin subroutine

does this automatically.
restartterm Sets up a TERMINAL structure for use by curses. This subroutine is similar to the

setupterm subroutine. Call the restartterm subroutine after restoring memory to a
previous state. For example, call this subroutine after a call to the scr_restore
subroutine.

Manipulating Color

color_content Returns the composition of a color.
init_color Changes a color to the desired composition.
init_pair Initializes a color pair to the specified foreground and background colors.
pair_content Returns the foreground and background colors for a specified color-pair number.

Miscellaneous Utilities

baudrate Queries the current terminal and returns its output speed.
erasechar Returns the erase character chosen by the user.
killchar Returns the line-kill character chosen by the user.

30 Writing and Debugging Programs

../../libs/basetrf2/notimeout.htm#HDRCE3BFA5873MARY
../../libs/basetrf2/echochar.htm#HDRCE26ED0231MARY
../../libs/basetrf2/reset_prog_mode.htm#HDROT6DG199ERIC
../../libs/basetrf2/reset_shell_mode.htm#HDRAZQ6DG18CERIC
../../libs/basetrf2/restartterm.htm#HDRDCE394C620MICH
../../libs/basetrf2/setupterm.htm#HDRA9D21AD4552ERIC
../../libs/basetrf2/color_content.htm#HDRCE25BCC917MARY
../../libs/basetrf2/init_color.htm#HDRCE38ED5614MARY
../../libs/basetrf2/init_pair.htm#HDRCE3965D452MARY
../../libs/basetrf2/pair_content.htm#HDRCE3C330302MARY
../../libs/basetrf2/baudrate.htm#HDRA9D26C11125ERIC
../../libs/basetrf2/erasechar.htm#HDRA9D26C1B816ERIC
../../libs/basetrf2/killchar.htm#HDRA9D26C26803ERIC

Chapter 3. Debugging Programs

There are several debug programs available for debugging your programs: the adb, dbx, dex, softdb, and
kernel debug programs. The adb program enables you to debug executable binary files and examine
non-ASCII data files. The dbx program enables source-level debugging of C, C++, Pascal, and FORTRAN
language programs, as well as assembler-language debugging of executable programs at the machine
level. The (dex) provides an X interface for the dbx debug program, providing windows for viewing the
source, context, and variables of the application program. The softdb debug program works much like the
dex debug program, but softdb is used with AIX Software Development Environment Workbench. The
kernel debug program is used to help determine errors in code running in the kernel.

adb Debug Program Overview
The adb command provides a general purpose debug program. You can use this command to examine
object and core files and provide a controlled environment for running a program.

While the adb command is running, it takes standard input and writes to standard output. The command
does not recognize the Quit or Interrupt keys. If these keys are used, the adb command waits for a new
command.

Getting Started with the adb Debug Program
This section explains how to start the adb debugging program from a variety of files, use the adb prompt,
use shell commands from within the adb program, and stop the adb program.

Starting adb with a Program File

You can debug any executable C or assembly language program file by entering a command line of the
form:

adb FileName

where FileName is the name of the executable program file to be debugged. The adb program opens the
file and prepares its text (instructions) and data for subsequent debugging. For example, the command:
adb sample

prepares the program named sample for examination and operation.

Once started, the adb debug program places the cursor on a new line and waits for you to type
commands.

Starting adb with a Nonexistent or Incorrect File

If you start the adb debug program with the name of a nonexistent or incorrectly formatted file, the adb
program first displays an error message and then waits for commands. For example, if you start the adb
program with the command:
adb sample

and the sample file does not exist, the adb program displays the message:
sample: no such file or directory.

© Copyright IBM Corp. 1997, 2001 31

../../cmds/aixcmds1/adb.htm#HDRA2689160A
../../cmds/aixcmds1/adb.htm#HDRA2689160A

Starting adb with the Default File

You can start the adb debug program without a file name. In this case, the adb program searches for the
default a.out file in your current working directory and prepares it for debugging. Thus, the command:
adb

is the same as entering:
adb a.out

The adb program starts with the a.out file and waits for a command. If the a.out file does not exist, the
adb program starts without a file and does not display an error message.

Starting adb with a Core Image File

You can use the adb debug program to examine the core image files of programs that caused
irrecoverable system errors. Core image files maintain a record of the contents of the CPU registers,
stack, and memory areas of your program at the time of the error. Therefore, core image files provide a
way to determine the cause of an error.

To examine a core image file with its corresponding program, you must give the name of both the core
and the program file. The command line has the form:

adb ProgramFile CoreFile

where ProgramFile is the file name of the program that caused the error, and CoreFile is the file name of
the core image file generated by the system. The adb program then uses information from both files to
provide responses to your commands.

If you do not give the filename of the core image file, the adb program searches for the default core file,
named core, in your current working directory. If such a file is found, the adb program determines whether
the core file belongs to the ProgramFile. If so, the adb program uses it. Otherwise, the adb program
discards the core file by giving an appropriate error message.

Note: The adb command cannot be used to examine 64-bit objects and AIX 4.3 core format. adb still
works with pre-AIX 4.3 core format. On AIX 4.3, user can make kernel to generate pre-AIX 4.3 style
core dumps using smitty.

Starting adb with a Data File

The adb program provides a way to look at the contents of the file in a variety of formats and structures.
You can use the adb program to examine data files by giving the name of the data file in place of the
program or core file. For example, to examine a data file named outdata, enter:
adb outdata

The adb program opens a file called outdata and lets you examine its contents. This method of examining
files is useful if the file contains non-ASCII data. The adb command may display a warning when you give
the name of a non-ASCII data file in place of a program file. This usually happens when the content of the
data file is similar to a program file. Like core files, data files cannot be executed.

Starting adb with the Write Option

If you open a program or data file with the -w flag of the adb command, you can make changes and
corrections to the file. For example, the command:
adb -w sample

32 Writing and Debugging Programs

../../cmds/aixcmds1/adb.htm#HDRA2689160A
../../cmds/aixcmds1/adb.htm#HDRA2689160A
../../cmds/aixcmds1/adb.htm#HDRA2689160A
../../cmds/aixcmds1/adb.htm#SPTA26891622

opens the program file sample for writing. You can then use adb commands to examine and modify this
file. The -w flag causes the adb program to create a given file if it does not already exist. The option also
lets you write directly to memory after running the given program.

Using a Prompt

After you have started the adb program you can redefine your prompt with the $P subcommand.

To change the [adb:scat]>> prompt to Enter a debug command—->, enter:
$P"Enter a debug command--->"

The quotes are not necessary when redefining the new prompt from the adb command line.

Using Shell Commands from within the adb Program

You can run shell commands without leaving the adb program by using the adb escape command (!)
(exclamation point). The escape command has the form:

! Command

In this format Command is the shell command you want to run. You must provide any required arguments
with the command. The adb program passes this command to the system shell that calls it. When the
command is finished, the shell returns control to the adb program. For example, to display the date, enter
the following command:
! date

The system displays the date and restores control to the adb program.

Exiting the adb Debug Program

You can stop the adb program and return to the system shell by using the $q or $Q subcommands. You
can also stop the adb program by typing the Ctrl-D key sequence. You cannot stop the adb program by
pressing the Interrupt or Quit keys. These keys cause adb to wait for a new command. For more
information, see (“Stopping a Program with the Interrupt and Quit Keys” on page 36).

Controlling Program Execution

This section explains the commands and subcommands necessary to prepare programs for debugging;
execute programs; set, display, and delete breakpoints; continue programs; single-step through a program;
stop programs; and kill programs.

Preparing Programs for Debugging with the adb Program

Compile the program using the cc command to a file such as adbsamp2 by entering the following:
cc adbsamp2.c -o adbsamp2

To start the debug session, enter:
adb adbsamp2

The C language does not generate statement labels for programs. Therefore, you cannot refer to individual
C language statements when using the debug program. To use execution commands effectively, you must
be familiar with the instructions that the C compiler generates and how those instructions relate to
individual C language statements. One useful technique is to create an assembler language listing of your

Chapter 3. Debugging Programs 33

C program before using the adb program. Then, refer to the listing as you use the debug program. To
create an assembler language listing, use the -S or -qList flag of the cc command.

For example, to create an assembler language listing of the example program, adbsamp2.c, use the
following command:
cc -S adbsamp2.c -o adbsamp2

This command creates the adbsamp2.s file, that contains the assembler language listing for the program,
and compiles the program to the executable file, adbsamp2.

Running a Program

You can execute a program by using the :r or :R subcommand. For more information see, (“Displaying
and Manipulating the Source File with the adb Program” on page 43). The commands have the form:

[Address][,Count] :r [Arguments]

OR

[Address][,Count] :R [Arguments]

In this format, the Address parameter gives the address at which to start running the program; the Count
parameter is the number of breakpoints to skip before one is taken; and the Arguments parameter
provides the command-line arguments, such as file names and options, to pass to the program.

If you do not supply an Address value, the adb program uses the start of the program. To run the program
from the beginning enter:
:r

If you supply a Count value, the adb program ignores all breakpoints until the given number has been
encountered. For example, to skip the first five named breakpoints, use the command:
,5:r

If you provide arguments, separate them by at least one space each. The arguments are passed to the
program in the same way the system shell passes command-line arguments to a program. You can use
the shell redirection symbols.

The :R subcommand passes the command arguments through the shell before starting program operation.
You can use shell pattern-matching characters in the arguments to refer to multiple files or other input
values. The shell expands arguments containing pattern-matching characters before passing them to the
program. This feature is useful if the program expects multiple file names. For example, the following
command passes the argument [a-z]* to the shell where it is expanded to a list of the corresponding file
names before being passed to the program:
:R [a-z]*.s

The :r and :R subcommands remove the contents of all registers and destroy the current stack before
starting the program. This operation halts any previous copy of the program that may be running.

Setting Breakpoints

To set a breakpoint in a program, use the :b subcommand. Breakpoints stop operation when the program
reaches the specified address. Control then returns to the adb debug program. The command has the
form:

[Address] [,Count] :b [Command]

34 Writing and Debugging Programs

In this format, the Address parameter must be a valid instruction address; the Count parameter is a count
of the number of times you want the breakpoint to be skipped before it causes the program to stop; and
the Command parameter is the adb command you want to execute each time that the instruction is
executed (regardless of whether the breakpoint stops the program). If the specified command sets .
(period) to a value of 0, the breakpoint causes a stop.

Set breakpoints to stop program execution at a specific place in the program, such as the beginning of a
function, so that you can look at the contents of registers and memory. For example, when debugging the
example adbsamp2 program, the following command sets a breakpoint at the start of the function named
f:
.f :b

The breakpoint is taken just as control enters the function and before the function’s stack frame is created.

A breakpoint with a count is used within a function that is called several times during the operation of a
program, or within the instructions that correspond to a for or while statement. Such a breakpoint allows
the program to continue to run until the given function or instructions have been executed the specified
number of times. For example, the following command sets a breakpoint for the second time that the f
function is called in the adbsamp2 program:
.f,2 :b

The breakpoint does not stop the function until the second time the function is run.

Displaying Breakpoints

Use the $b subcommand to display the location and count of each currently defined breakpoint. This
command displays a list of the breakpoints by address and any count or commands specified for the
breakpoints. For example, the following sets two breakpoints in the adbsamp2 file and then uses the $b
subcommand to display those breakpoints:
.f+4:b
.f+8:b$v
$b
breakpoints
count brkpt command
1 .f+8 $v
1 .f+4

When the program runs, it stops at the first breakpoint that it finds, such as .f+4. If you use the :c
subcommand to continue execution, the program stops again at the next breakpoint and starts the $v
subcommand. The command and response sequence looks like the following example:
:r
adbsamp2:running
breakpoint .f+4: st r3,32(r1)
:c
adbsamp2:running
variables
b = 268435456
d = 236
e = 268435512
m = 264
breakpoint .f+8 l r15,32(r1)

Deleting Breakpoints

To use the :d subcommand to delete a breakpoint from a program, enter:

Address :d

Chapter 3. Debugging Programs 35

In this format, the Address parameter gives the address of the breakpoint to delete.

For example, when debugging the example adbsamp2 program, entering the following command deletes
the breakpoint at the start of the f function:
.f:d

Continuing Program Execution

To use the :c subcommand to continue the execution of a program after it has been stopped by a
breakpoint enter:

[Address] [,Count] :c [Signal]

In this format, the Address parameter gives the address of the instruction at which to continue operation;
the Count parameter gives the number of breakpoints to ignore; and the Signal parameter is the number of
the signal to send to the program.

If you do not supply an Address parameter, the program starts at the next instruction after the breakpoint.
If you supply a Count parameter, the adb debug program ignores the first Count breakpoints.

If the program is stopped using the Interrupt or Quit key, this signal is automatically passed to the program
upon restarting. To prevent this signal from being passed, enter the command in the form:

[Address] [,Count] :c 0

The command argument 0 prevents a signal from being sent to the subprocess.

Single-Stepping a Program

Use the :s subcommand to run a program in single steps or one instruction at a time. This command
issues an instruction and returns control to the adb debug program. The command has the form:

[Aaddress] [,Count] :s [Signal]

In this format, the Address parameter gives the address of the instruction you want to execute, and the
Count parameter is the number of times you want to repeat the command. If there is no current
subprocess, the ObjectFile parameter is run as a subprocess. In this case, no signal can be sent and the
remainder of the line is treated as arguments to the subprocess. If you do not supply a value for the
Address parameter, the adb program uses the current address. If you supply the Count parameter, the
adb program continues to issue each successive instruction until the Count parameter instructions have
been run. Breakpoints are ignored while single-stepping. For example, the following command issues the
first five instructions in the main function:
.main,5:s

Stopping a Program with the Interrupt and Quit Keys

Use either the Interrupt or Quit key to stop running a program at any time. Pressing either of these keys
stops the current program and returns control to the adb program. These keys are useful with programs
that have infinite loops or other program errors.

When you press the Interrupt or Quit key to stop a program, the adb program automatically saves the
signal. If you start the program again using the :c command, the adb program automatically passes the
signal to the program. This feature is useful when testing a program that uses these signals as part of its
processing. To continue running the program without sending signals, use the command:
:c 0

36 Writing and Debugging Programs

The command argument 0 (zero) prevents a signal from being sent to the program.

Stopping a Program

To stop a program you are debugging, use the :k subcommand. This command stops the process created
for the program and returns control to the adb debug program. The command clears the current contents
of the system unit registers and stack and begins the program again. The following example shows the
use of the :k subcommand to clear the current process from the adb program:
:k

560: killed

Using adb Expressions
This section describes the use of adb expressions.

Using Integers in Expressions

When creating an expression, you can use integers in three forms: decimal, octal, and hexadecimal.
Decimal integers must begin with a non-zero decimal digit. Octal numbers must begin with a 0 (zero) and
have octal digits only (0-7). Hexadecimal numbers must begin with the prefix 0x and can contain decimal
digits and the letters a through f (in both uppercase and lowercase). The following are examples of valid
numbers:
Decimal Octal Hexadecimal
34 042 0x22
4090 07772 0xffa

Using Symbols in Expressions

Symbols are the names of global variables and functions defined within the program being debugged.
Symbols are equal to the address of the given variable or function. They are stored in the program symbol
table and are available if the symbol table has not been stripped from the program file.

In expressions, you can spell the symbol exactly as it is in the source program or as it has been stored in
the symbol table. Symbols in the symbol table are no more than 8 characters long.

When you use the ? subcommand, the adb program uses the symbols found in the symbol table of the
program file to create symbolic addresses. Thus, the ? subcommand sometimes gives a function name
when displaying data. This does not happen if the ? subcommand is used for text (instructions) and the /
command is used for data.

Local variables can only be addressed if the C language source program is compiled with the -g flag.

If the C language source program is not compiled using the -g flag the local variable cannot be addressed.
The following command displays the value of the local variable b in a function sample:
.sample.b / x - value of local variable.
.sample.b = x - Address of local variable.

Using Operators in Expressions

You can combine integers, symbols, variables, and register names with the following operators:

Unary Operators:
x (tilde) Bitwise complementation
- (dash) Integer negation
* (asterisk) Returns contents of location

Chapter 3. Debugging Programs 37

Binary Operators:
+ (plus) Addition
- (minus) Subtraction
* (asterisk) Multiplication
% (percent) Integer division
& (ampersand) Bitwise conjunction
] (right bracket) Bitwise disjunction
| (caret) Modulo
(number sign) Round up to the next multiple

The adb debug program uses 32-bit arithmetic. Values that exceed 2,147,483,647 (decimal) are displayed
as negative values. The following example shows the results of assigning two different values to the
variable n, and then displaying the value in both decimal and hexadecimal:
2147483647>n<
n=D

2147483647<
n=X

7fffffff
2147483648>n<
n=D

-2147483648<
n=X

80000000

Unary operators have higher precedence than binary operators. All binary operators have the same
precedence and are evaluated in order from left to right. Thus, the adb program evaluates the following
binary expressions as shown:
2*3+4=d

10
4+2*3=d

18

You can change the precedence of the operations in an expression by using parentheses. The following
example shows how the previous expression is changed by using parentheses:
4+(2*3)=d

10

The unary operator, * (asterisk), treats the given address as a pointer into the data segment. An
expression using this operator is equal to the value pointed to by that pointer. For example, the
expression:
*0x1234

is equal to the value at the data address 0x1234, whereas the example:
0x1234

is equal to 0x1234.

Customizing the adb Debug Program

This section describes how you can customize the adb debug program.

38 Writing and Debugging Programs

Combining Commands on a Single Line

You can give more than one command on a line by separating the commands with a ; (semicolon). The
commands are performed one at a time, starting at the left. Changes to the current address and format
carry over to the next command. If an error occurs, the remaining commands are ignored. For example,
the following sequence displays both the adb variables and then the active subroutines at one point in the
adbsamp2 program:
$v;$c
variables
b = 10000000
d = ec
e = 10000038
m = 108
t = 2f8.
f(0,0) .main+26.
main(0,0,0) start+fa

Creating adb Scripts

You can direct the adb debug program to read commands from a text file instead of from the keyboard by
redirecting the standard input file when you start the adb program. To redirect standard input, use the
input redirection symbol, < (less than), and supply a file name. For example, use the following command
to read commands from the file script:
adb sample <script

The file must contain valid adb subcommands. Use the adb program script files when the same set of
commands can be used for several different object files. Scripts can display the contents of core files after
a program error. The following example shows a file containing commands that display information about a
program error. When that file is used as input to the adb program using the following command to debug
the adbsamp2 file, the specified output is produced.
120$w
4095$s.
f:b:
r
=1n"======= adb Variables ======="
$v
=1n"======= Address Map ======="
$m
=1n"======= C Stack Backtrace ======="
$C
=1n"======= C External Variables ======="
$e
=1n"======= Registers ======="
$r
0$s
=1n"======= Data Segment ======="<
b,10/8xna

$ adb adbsamp2 <script

adbsamp2: running
breakpoint .f: b .f+24

======= adb Variables =======
variables
0 = TBD
1 = TBD
2 = TBD
9 = TBD
b = 10000000
d = ec
e = 10000038
m = 108

Chapter 3. Debugging Programs 39

t = 2f8
======= Address Map =======

[0]? map .adbsamp2.
b1 = 10000000 e1 = 100002f8 f1 = 0
b2 = 200002f8 e2 = 200003e4 f2 = 2f8
[0]/ map .-.
b1 = 0 e1 = 0 f1 = 0
b2 = 0 e2 = 0 f2 = 0

======= C Stack Backtrace =======.
f(0,0) .main+26.
main(0,0,0) start+fa

======= C External Variables =======Full word.
errno: 0.
environ: 3fffe6bc.
NLinit: 10000238.
main: 100001ea.
exit: 1000028c.
fcnt: 0

.loop .count: 1.
f: 100001b4.
NLgetfile: 10000280.
write: 100002e0.
NLinit. .X: 10000238 .
NLgetfile. .X: 10000280 .
cleanup: 100002bc.
exit: 100002c8 .
exit . .X: 1000028c . .
cleanup . .X: 100002bc

======= Registers =======
mq 20003a24 .errno+3634
cs 100000 gt
ics 1000004
pc 100001b4 .f
r15 10000210 .main+26
r14 20000388 .main
r13 200003ec .loop .count
r12 3fffe3d0
r11 3fffe44c
r10 0
r9 20004bcc
r8 200041d8 .errno+3de8
r7 0
r6 200030bc .errno+2ccc
r5 1
r4 200003ec .loop .count
r3 f4240
r2 1
r1 3fffe678
r0 20000380 .f.
f: b .f+24

======= Data Segment =======
10000000: 103 5313 3800 0 0 2f8 0 ec
10000010: 0 10 1000 38 0 0 0 1f0
10000020: 0 0 0 0 1000 0 2000 2f8
10000030: 0 0 0 0 4 6000 0 6000
10000040: 6e10 61d0 9430 a67 6730 6820 c82e 8
10000050: 8df0 94 cd0e 60 6520 a424 a432 c84e
10000060: 8 8df0 77 cd0e 64 6270 8df0 86
10000070: cd0e 60 6520 a424 a432 6470 8df0 6a
10000080: cd0e 64 c82e 19 8df0 78 cd0e 60
10000090: 6520 a424 a432 c84e 19 8df0 5b cd0e
100000a0: 64 cd2e 5c 7022 d408 64 911 c82e
100000b0: 2e 8df0 63 cd0e 60 6520 a424 a432
100000c0: c84e 2e 8df0 46 cd0e 64 15 6280

40 Writing and Debugging Programs

100000d0: 8df0 60 cd0e 68 c82e 3f 8df0 4e
100000e0: cd0e 60 6520 a424 a432 c84e 3f 8df0
100000f0: 31 cd0e 64 c820 14 8df0 2b cd0e
10000100:

Setting Output Width

Use the $w subcommand to set the maximum width (in characters) of each line of output created by the
adb program. The command has the form:

Width$w

In this format, the Width parameter is an integer that specifies the width in characters of the display. You
can give any width convenient for your display device. When the adb program is first invoked, the default
width is 80 characters.

This command can be used when redirecting output to a line printer or special output device. For example,
the following command sets the display width to 120 characters, a common maximum width for line
printers:
120$w

Setting the Maximum Offset

The adb debug program normally displays memory and file addresses as the sum of a symbol and an
offset. This format helps to associate the instructions and data on the display with a particular function or
variable. When the adb program starts up, it sets the maximum offset to 255, so that symbolic addresses
are assigned only to instructions or data that occur less than 256 bytes from the start of the function or
variable. Instructions or data beyond that point are given numeric addresses.

In many programs, the size of a function or variable is actually larger than 255 bytes. For this reason the
adb program lets you change the maximum offset to accommodate larger programs. You can change the
maximum offset by using the $s subcommand.

The subcommand has the form:

Offset$s

In this format, the Offset parameter is an integer that specifies the new offset. For example, the following
command increases the maximum possible offset to 4095:
4095$s

All instructions and data that are less than 4096 bytes away are given symbolic addresses. You can
disable all symbolic addressing by setting the maximum offset to zero. All addresses are given numeric
values instead.

Setting Default Input Format

To alter the default format for numbers used in commands, use the $d or $o (octal) subcommands. The
default format tells the adb debug program how to interpret numbers that do not begin with 0 (octal) or 0x
(hexadecimal), and how to display numbers when no specific format is given. Use these commands to
work with a combination of decimal, octal, and hexadecimal numbers.

The $o subcommand sets the radix to 8 and thus sets the default format for numbers used in commands
to octal. After you enter that subcommand, the adb program displays all numbers in octal format except
those specified in some other format.

Chapter 3. Debugging Programs 41

The format for the $d subcommand is the Radix$d command, where the Radix parameter is the new value
of the radix. If the Radix parameter is not specified, the $d subcommand sets the radix to a default value
of 16. When you first start the adb program, the default format is hexadecimal. If you change the default
format, you can restore it as necessary by entering the $d subcommand by itself:
$d

To set the default format to decimal, use the following command:
0xa$d

Changing the Disassembly Mode
Use the $i and $n subcommands to force the adb debug program to disassemble instructions using the
specified instruction set and mnemonics. The $i subcommand specifies the instruction set to be used for
disassembly. The $n subcommand specifies the mnemonics to be used in disassembly.

If no value is entered, these commands display the current settings.

The $i subcommand accepts the following values:

com Specifies the instruction set for the common intersection mode of the PowerPC and POWER family.
pwr Specifies the instruction set and mnemonics for the POWER-based platform implementation of the POWER

family.
pwrx Specifies the instruction set and mnemonics for the POWER2 implementation of the POWER family.
ppc Specifies the instruction set and mnemonics for the PowerPC.
601 Specifies the instruction set and mnemonics for the PowerPC 601 RISC Microprocessor.

603 Specifies the instruction set and mnemonics for the PowerPC 603 RISC Microprocessor.
604 Specifies the instruction set and mnemonics for the PowerPC 604 RISC Microprocessor.
ANY Specifies any valid instruction. For instruction sets that overlap, the mnemonics will default to POWER-based

platform mnemonics.

The $n subcommand accepts the following values:

pwr Specifies the mnemonics for the POWER-based implementation of the POWER family.
ppc Specifies the mnemonics for the POWER-based platform.

Computing Numbers and Displaying Text

You can perform arithmetic calculations while in the adb debug program by using the = (equal sign)
subcommand. This command directs the adb program to display the value of an expression in a specified
format. The command converts numbers in one base to another, double-checks the arithmetic performed
by a program, and displays complex addresses in simpler form. For example, the following command
displays the hexadecimal number 0x2a as the decimal number 42:
0x2a=d

42

Similarly, the following command displays 0x2a as the ASCII character * (asterisk):
0x2a=c

*

Expressions in a command can have any combination of symbols and operators. For example, the
following command computes a value using the contents of the r0 and r1 registers and the adb variable b.
<r0-12*<r1+<b+5=X

8fa86f95

42 Writing and Debugging Programs

You can also compute the value of external symbols to check the hexadecimal value of an external symbol
address, by entering:
main+5=X

2000038d

The = (equal sign) subcommand can also display literal strings. Use this feature in the adb program
scripts to display comments about the script as it performs its commands. For example, the following
subcommand creates three lines of spaces and then prints the message C Stack Backtrace:
=3n"C Stack Backtrace"

Displaying and Manipulating the Source File with the adb Program

The following sections describe how you can use the adb program to display and manipulate the source
file.

Displaying Instructions and Data

The adb program provides several subcommands for displaying the instructions and data of a given
program and the data of a given data file. The subcommands and their formats are:

Display address Address [, Count] = Format
Display instruction Address [, Count] ? Format
Display value of variable Address [, Count] / Format

In this format, the symbols and variables have the following meaning:

Address Gives the location of the instruction or data item.
Count Gives the number of items to be displayed.
Format Defines how to display the items.
= Displays the address of an item.
? Displays the instructions in a text segment.
/ Displays the value of variables.

Forming Addresses

In the adb program addresses are 32-bit values that indicate a specific memory address. They can,
however, be represented in the following forms:

Absolute address The 32-bit value is represented by an 8-digit hexadecimal number, or its equivalent in
one of the other number-base systems.

Symbol name The location of a symbol defined in the program can be represented by the name of
that symbol in the program.

Entry points The entry point to a routine is represented by the name of the routine preceded by a .
(period). For example, to refer to the address of the start of the main routine, use the
following notation:

.main
Displacements Other points in the program can be referred to by using displacements from entry

points in the program. For example, the following notation references the instruction
that is 4 bytes past the entry point for the symbol main:

.main+4

Chapter 3. Debugging Programs 43

Displaying an Address

Use the = (equal sign) subcommand to display an address in a given format. This command displays
instruction and data addresses in a simpler form and can display the results of arithmetic expressions. For
example, entering:
main=an

displays the address of the symbol main:
10000370:

The following example shows a command that displays (in decimal) the sum of the internal variable b and
the hexadecimal value 0x2000, together with its output:
<b+0x2000=D

268443648

If a count is given, the same value is repeated that number of times. The following example shows a
command that displays the value of main twice and the output that it produces:
main,2=x

370 370

If no address is given, the current address is used. After running the above command once (setting the
current address to main), the following command repeats that function:
,2=x

370 370

If you do not specify a format, the adb debug program uses the last format that was used with this
command. For example, in the following sequence of commands, both main and one are displayed in
hexadecimal:
main=x

370
one=

33c

Displaying the C Stack Backtrace

To trace the path of all active functions, use the $c subcommand. This subcommand lists the names of all
functions that have been called and have not yet returned control. It also lists the address from which each
function was called and the arguments passed to each function. For example, the following command
sequence sets a breakpoint at the function address .f+2 in the adbsamp2 program. The breakpoint calls
the $c subcommand. The program is started, runs to the breakpoint, and then displays a backtrace of the
called C language functions:
.f+2:b$c
:r
adbsamp2:running
.f(0,0) .main+26
.main(0,0,0) start+fa
breakpoint f+2: tgte r2,r2

By default, the $c subcommand displays all calls. To display fewer calls, supply a count of the number of
calls to display. For example, the following command displays only one of the active functions at the
preceding breakpoint:
,1$c

.f(0,0) .main+26

44 Writing and Debugging Programs

Choosing Data Formats

A format is a letter or character that defines how data is to be displayed. The following are the most
commonly used formats:

Letter Format
a The current symbolic address
b One byte in octal (displays data associated with instructions, or the high or low byte of a register)
c One byte as a character (char variables)
d Halfword in decimal (short variables)
D Fullword in decimal (long variables)
i Machine instructions in mnemonic format
n A new line
o Halfword in octal (short variables)
O Fullword in octal (long variables)
r A blank space
s A null-terminated character string (null-terminated arrays of char variables)
t A horizontal tab
u Halfword as an unsigned integer (short variables)
x Halfword in hexadecimal (short variables)
X Fullword in hexadecimal (long variables)

For example, the following commands produce the indicated output when using the adbsamp example
program:

Command Response
main=o 1560
main=O 4000001560
main=d 880
main=D 536871792
main=x 370
main=X 20000370
main=u 880

A format can be used by itself or combined with other formats to present a combination of data in different
forms. You can combine the a, n, r, and t formats with other formats to make the display more readable.

Changing the Memory Map

You can change the values of a memory map by using the ?m and /m subcommands. See, (“adb Debug
Program Reference Information” on page 49). These commands assign specified values to the
corresponding map entries. The commands have the form:
[,count] ?m b1 e1 f1
[,count] /m b1 e1 f2

The following example shows the results of these commands on the memory map displayed with the $m
subcommand in the previous example:
,0?m 10000100 10000470 0
/m 100 100 100
$m

[0] : ?map : 'adbsamp3'
b1 = 0x10000100, e1 = 10000470, f1 = 0
b2 = 0x20000600, e2 = 0x2002c8a4, f2 = 0x600

[1] : ?map : 'shr.o' in library '/usr/ccs/lib/libc.a'

Chapter 3. Debugging Programs 45

b1 = 0xd00d6200, e1 = 0xd01397bf, f1 = 0xd00defbc
b2 = 0x20000600, e2 = 0x2002beb8, f2 = 0x4a36c

[-] : /map : '-'
b1 = 100, e1 = 100, f1 = 100
b2 = 0, e2 = 0, f2 = 0

To change the data segment values, add an * (asterisk) after the / or ?.
,0?*m 20000270 20000374 270
/*m 200 200 200
$m

[0] : ?map : 'adbsamp3'
b1 = 0x10000100, e1 = 10000470, f1 = 0
b2 = 0x20000270, e2 = 0x20000374, f2 = 0x270

[1] : ?map : 'shr.o' in library '/usr/ccs/lib/libc.a'
b1 = 0xd00d6200, e1 = 0xd01397bf, f1 = 0xd00defbc
b2 = 0x20000600, e2 = 0x2002beb8, f2 = 0x4a36c

[-] : /map : '-'
b1 = 100, e1 = 100, f1 = 100
b2 = 0, e2 = 0, f2 = 0

Patching Binary Files

You can make corrections or changes to any file, including executable binary files, by starting the adb
program with the -w flag and by using the w and W (“adb Debug Program Reference Information” on
page 49) subcommands.

Locating Values in a File

Locate specific values in a file by using the l and L subcommands. See (“adb Debug Program Reference
Information” on page 49). The subcommands have the form:

?l Value

OR

/l Value

The search starts at the current address and looks for the expression indicated by Value. The l
subcommand searches for 2-byte values. The L subcommand searches for 4-byte values.

The ?l subcommand starts the search at the current address and continues until the first match or the end
of the file. If the value is found, the current address is set to that value’s address. For example, the
following command searches for the first occurrence of the f symbol in the adbsamp2 file:
?l .f.
write+a2

The value is found at .write+a2 and the current address is set to that address.

Writing to a File

Write to a file by using the w and W subcommands. See (“adb Debug Program Reference Information” on
page 49). The subcommands have the form:

[Address] ?w Value

46 Writing and Debugging Programs

../../cmds/aixcmds1/adb.htm#SPTA26891622

In this format, the Address parameter is the address of the value you want to change, and the Value
parameter is the new value. The w subcommand writes 2-byte values. The W subcommand writes 4-byte
values. For example, the following commands change the word ″This″ to ″The″:
?l .Th.
?W .The.

The W subcommand changes all four characters.

Making Changes to Memory

Make changes to memory whenever a program has run. If you have used an :r subcommand with a
breakpoint to start program operation, subsequent w subcommands cause the adb program to write to the
program in memory rather than to the file. This command is used to make changes to a program’s data as
it runs, such as temporarily changing the value of program flags or variables.

Using adb Variables

The adb debug program automatically creates a set of its own variables when it starts. These variables
are set to the addresses and sizes of various parts of the program file as defined in the following table:

Variable Content
0 Last value printed
1 Last displacement part of an instruction source
2 Previous value of the 1 variable
9 Count on the last $< or $<< command
b Base address of the data segment
d Size of the data segment
e Entry address of the program
m ″Magic″ number
s Size of the stack segment
t Size of the text segment

The adb debug program reads the program file to find the values for these variables. If the file does not
seem to be a program file, then the adb program leaves the values undefined.

To display the values that the adb debug program assigns to these variables, use the $v subcommand.
For more information, see (“adb Debug Program Reference Information” on page 49). This subcommand
lists the variable names followed by their values in the current format. The subcommand displays any
variable whose value is not 0 (zero). If a variable also has a non-zero segment value, the variable’s value
is displayed as an address. Otherwise, it is displayed as a number. The following example shows the use
of this command to display the variable values for the sample program adbsamp:
$v

Variables

0 = undefined

1 = undefined

2 = undefined

9 = undefined

b = 10000000

d = 130

e = 10000038

m = 108

t = 298

Chapter 3. Debugging Programs 47

Specify the current value of an adb variable in an expression by preceding the variable name with < (less
than sign). The following example displays the current value of the b base variable:
<b=X

10000000

Create your own variables or change the value of an existing variable by assigning a value to a variable
name with > (greater than sign). The assignment has the form:

Expression > VariableName

where the Expression parameter is the value to be assigned to the variable and the VariableName
parameter is the variable to receive the value. The VariableName parameter must be a single letter. For
example, the assignment:
0x2000>b

assigns the hexadecimal value 0x2000 to the b variable. Display the contents of b again to show that the
assignment occurred:
<b=X

2000

Finding the Current Address

The adb program has two special variables that keep track of the last address used in a command and
the last address typed with a command. The . (period) variable, also called the current address, contains
the last address used in a command. The ″ (double quotation mark) variable contains the last address
typed with a command. The . and ″ variables usually contain the same address except when implied
commands, such as the newline and | (caret) characters, are used. These characters automatically
increase and decrease the . variable but leave the) (right parenthesis) variable unchanged.

Both the . and the ″ variables can be used in any expression. The < (less than sign) is not required. For
example, the following commands display these variables at the start of debugging with the adbsamp
(“Example adb Program: adbsamp” on page 54) program:
.=

0.
=

0

Displaying External Variables

Use the $e (“adb Debug Program Reference Information” on page 49) subcommand to display the values
of all external variables in the adb program. External variables are the variables in your program that have
global scope or have been defined outside of any function, and include variables defined in library routines
used by your program, as well as all external variables of shared libraries.

The $e subcommand is useful to get a list of the names for all available variables or a summary of their
values. The command displays one name on each line with the variable’s value (if any) on the same line.
If the Count parameter is specified, only the external variables associated with that file are printed.

The following example illustrates the setting of a breakpoint in the adbsamp2 (“Example adb Program:
adbsamp2” on page 55) sample program that calls the $e subcommand, and the output that results when
the program runs (be sure to delete any previous breakpoints that you may have set):
.f+2:b,0$e
:r
adbsamp2: running
_errno: 0

48 Writing and Debugging Programs

_environ: 3fffe6bc
__NLinit: 10000238
_main: 100001ea
_exit: 1000028c
_fcnt: 0
_loop_count: 1
_f: 100001b4
_NLgetfile: 10000280
_write: 100002e0
__NLinit__X: 10000238
_NLgetfile__X: 10000280
__cleanup: 100002bc
__exit: 100002c8
_exit__X: 1000028c
__cleanup__X: 100002bc
breakpoint .f+2: st r2,1c(r1)

Displaying the Address Maps

The adb program prepares a set of maps for the text and data segments in your program and uses these
maps to access items that you request for display. Use the $m subcommand to display the contents of the
address maps. For more information, see (“adb Debug Program Reference Information”). The
subcommand displays the maps for all segments in the program and uses information taken from either
the program and core files or directly from memory.

The $m subcommand displays information similar to the following:
$m

[0] : ?map : 'adbsamp3'
b1 = 0x10000200, e1 = 0x10001839, f1 = 0x10000200
b2 = 0x2002c604, e2 = 0x2002c8a4, f2 = 0x600

[1] : ?map : 'shr.o' in library 'lib/libc.a'
b1 = 0xd00d6200, e1 = 0xd013976f, f1 = 0xd00defbc
b2 = 0x20000600, e2 = 0x2002bcb8, f2 = 0x4a36c

[-] : /map : '-'
b1 = 0x0000000, e1 = 0x00000000, f1 = 0x00000000
b2 = 0x0000000, e2 = 0x00000000, f2 = 0x00000000

The display defines address-mapping parameters for the text (b1, e1, and f1) and data (b2, e2, and f2)
segments for the two files being used by the adb debug program. This example shows values for the
adbsamp3 sample program only. The second set of map values are for the core file being used. Since
none was in use, the example shows the file name as - (dash).

The value displayed inside the square brackets can be used as the Count parameter in the ?e and ?m
subcommands.

adb Debug Program Reference Information
The adb debug program uses addresses, expressions, operators, subcommands, and variables to
organize and manipulate data.

adb Debug Program Addresses

The address in a file associated with a written address is determined by a mapping associated with that
file. Each mapping is represented by two triples (B1, E1, F1) and (B2, E2, F2). The FileAddress parameter
that corresponds to a written Address parameter is calculated as follows:

B1<=Address<E1=>FileAddress=Address+F1-B1

Chapter 3. Debugging Programs 49

OR

B2<=Address<E2=>FileAddress=Address+F2-B2

If the requested Address parameter is neither between B1 and E1 nor between B2 and E2, the Address
parameter is not valid. In some cases, such as programs with separated I and D space, the two segments
for a file may overlap. If a ? (question mark) or / (slash) subcommand is followed by an * (asterisk), only
the second triple is used.

The initial setting of both mappings is suitable for normal a.out and core files. If either file is not of the
kind expected, the B1 parameter for that file is set to a value of 0, the E1 parameter is set to the
maximum file size, and the F1 parameter is set to a value of 0. In this way, the whole file can be examined
with no address translation.

adb Debug Program Expressions

The following expressions are supported by the adb debug program:

. (period) Specifies the last address used by a subcommand. The last address is also known
as the current address.

+ (plus) Increases the value of . (period) by the current increment.
| (caret) Decreases the value of . (period) by the current increment.
″ (double quotes) Specifies the last address typed by a command.
Integer Specifies an octal number if this parameter begins with 0o, a hexadecimal number

if preceded by 0x or #, or a decimal number if preceded by 0t. Otherwise, this
expression specifies a number interpreted in the current radix. Initially, the radix is
16.

′Cccc’ Specifies the ASCII value of up to 4 characters. A \ (backslash) can be used to
escape an ’ (apostrophe).

< Name Reads the current value of the Name parameter. The Name parameter is either a
variable name or a register name. The adb command maintains a number of
variables named by single letters or digits. If the Name parameter is a register
name, the value of the register is obtained from the system header in the CoreFile
parameter. Use the $r subcommand to see the valid register names.

Symbol Specifies a sequence of uppercase or lowercase letters, underscores, or digits,
though the sequence cannot start with a digit. The value of the Symbol parameter
is taken from the symbol table in the ObjectFile parameter. An initial _ (underscore)
is prefixed to the Symbol parameter, if needed.

.Symbol Specifies the entry point of the function named by the Symbol parameter.
Routine.Name Specifies the address of the Name parameter in the specified C language routine.

Both the Routine and Name parameters are Symbol parameters. If the Name
parameter is omitted, the value is the address of the most recently activated C
stack frame corresponding to the Routine parameter.

(Expression) Specifies the value of the expression.

adb Debug Program Operators

Integers, symbols, variables, and register names can be combined with the following operators:

Unary Operators
*Expression Returns contents of the location addressed by the Expression parameter in the

CoreFile parameter.
@Expression Returns contents of the location addressed by the Expression parameter in the

ObjectFile parameter.
-Expression Performs integer negation.
xExpression Performs bit-wise complement.

50 Writing and Debugging Programs

../../cmds/aixcmds1/adb.htm#HDRA2689160A

Unary Operators
#Expression Performs logical negation.

Binary Operators
Expression1+Expression2 Performs integer addition.
Expression1-Expression2 Performs integer subtraction.
Expression1*Expression2 Performs integer multiplication.
Expression1%Expression2 Performs integer division.
Expression1&Expression2 Performs bit-wise conjunction.
Expression1|Expression2 Performs bit-wise disjunction.
Expression1#Expression2 Rounds up the Expression1 parameter to the next multiple of

the Expression2 parameter.

Binary operators are left-associative and are less binding than unary operators.

adb Debug Program Subcommands

You can display the contents of a text or data segment with the ? (question mark) or the / (slash)
subcommand. The = (equal sign) subcommand displays a given address in the specified format. The ?
and / subcommands can be followed by an * (asterisk).

?Format Displays the contents of the ObjectFile parameter starting at the Address parameter. The value of .
(period) increases by the sum of the increment for each format letter.

/Format Displays the contents of the CoreFile parameter starting at the Address parameter. The value of .
(period) increases by the sum of the increment for each format letter.

=Format Displays the value of the Address parameter. The i and s format letters are not meaningful for this
command.

The Format parameter consists of one or more characters that specify print style. Each format character
may be preceded by a decimal integer that is a repeat count for the format character. While stepping
through a format, the . (period) increments by the amount given for each format letter. If no format is
given, the last format is used.

The available format letters are as follows:

a Prints the value of . (period) in symbolic form. Symbols are checked to ensure that they have
an appropriate type.

b Prints the addressed byte in the current radix, unsigned.
c Prints the addressed character.
C Prints the addressed character using the following escape conventions:

v Prints control characters as x (tilde) followed by the corresponding printing character.

v Prints nonprintable characters as x (tilde) <Number>, where Number specifies the
hexadecimal value of the character. The x character prints as x x (tilde tilde).

d Prints in decimal.
D Prints long decimal.
f Prints the 32-bit value as a floating-point number.
F Prints double floating point.
i Number Prints as instructions. Number is the number of bytes occupied by the instruction.
n Prints a new line.
o Prints 2 bytes in octal.
O Prints 4 bytes in octal.
p Prints the addressed value in symbolic form using the same rules for symbol lookup as the a

format letter.
q Prints 2 bytes in the current radix, unsigned.

Chapter 3. Debugging Programs 51

Q Prints 4 unsigned bytes in the current radix.
r Prints a space.
s Number Prints the addressed character until a zero character is reached.
S Number Prints a string using the x (tilde) escape convention. The Number variable specifies the length

of the string including its zero terminator.
t Tabs to the next appropriate tab stop when preceded by an integer. For example, the 8t

format command moves to the next 8-space tab stop.
u Prints as an unsigned decimal number.
U Prints a long unsigned decimal.
x Prints 2 bytes in hexadecimal.
X Prints 4 bytes in hexadecimal.
Y Prints 4 bytes in date format.
/ Local or global data symbol.
? Local or global text symbol.
= Local or global absolute symbol.
″...″ Prints the enclosed string.
| Decreases the . (period) by the current increment. Nothing prints.
+ Increases the . (period) by a value of 1. Nothing prints.
- Decreases the . (period) decrements by a value of 1. Nothing prints.
newline Repeats the previous command incremented with a Count of 1.
[?/]lValue Mask Words starting at the . (period) are masked with the Mask value and compared with the

Value parameter until a match is found. If L is used, the match is for 4 bytes at a time instead
of 2 bytes. If no match is found, then . (period) is unchanged; otherwise, . (period) is set to
the matched location. If the Mask parameter is omitted, a value of -1 is used.

[?/]wValue... Writes the 2-byte Value parameter into the addressed location. If the command is W, write 4
bytes. If the command is V, write 1 byte. Alignment restrictions may apply when using the w
or W command.

[,Count][?/]m B1 E1
F1[?/]

Records new values for the B1, E1, and F1 parameters. If less than three expressions are
given, the remaining map parameters are left unchanged. If the ? (question mark) or / (slash)
is followed by an * (asterisk), the second segment (B2, E2, F2) of the mapping is changed. If
the list is terminated by ? or /, the file (ObjectFile or CoreFile, respectively) is used for
subsequent requests. (For example, the /m? command causes / to refer to the ObjectFile)
file. If the Count parameter is specified, the adb command changes the maps associated with
that file or library only. The $m command shows the count that corresponds to a particular
file. If the Count parameter is not specified, a default value of 0 is used.

>Name Assigns a . (period) to the variable or register specified by the Name parameter.
! Calls a shell to read the line following ! (exclamation mark).

52 Writing and Debugging Programs

$Modifier Miscellaneous commands. The available values for Modifier are:

<File Reads commands from the specified file and returns to standard input. If a count is
given as 0, the command will be ignored. The value of the count is placed in the
adb 9 variable before the first command in the File parameter is executed.

<<File Reads commands from the specified file and returns to standard input. The <<File
command can be used in a file without causing the file to be closed. If a count is
given as 0, the command is ignored. The value of the count is placed in the adb 9
variable before the first command in File is executed. The adb 9 variable is saved
during the execution of the <<File command and restored when <<File completes.
There is a limit to the number of <<File commands that can be open at once.

>File Sends output to the specified file. If the File parameter is omitted, output returns to
standard output. The File parameter is created if it does not exist.

b Prints all breakpoints and their associated counts and commands.

c Stacks back trace. If the Address parameter is given, it is taken as the address of
the current frame (instead of using the frame pointer register). If the format letter C
is used, the names and values of all automatic and static variables are printed for
each active function. If the Count parameter is given, only the number of frames
specified by the Count parameter are printed.

d Sets the current radix to the Address value or a value of 16 if no address is
specified.

e Prints the names and values of external variables. If a count is specified, only the
external variables associated with that file are printed.

f Prints the floating-point registers in hexadecimal.

i instruction set
Selects the instruction set to be used for disassembly.

I Changes the default directory as specified by the -I flag to the Name parameter
value.

m Prints the address map.

n mnem_set
Selects the mnemonics to be used for disassembly.

o Sets the current radix to a value of 8.

q Exits the adb command.

r Prints the general registers and the instruction addressed by iar and sets the .
(period) to iar. The Number$r parameter prints the register specified by the Number
variable. The Number,Count$r parameter prints registers Number+Count-
1,...,Number.

s Sets the limit for symbol matches to the Address value. The default is a value of
255.

v Prints all non-zero variables in octal.

w Sets the output page width for the Address parameter. The default is 80.

P Name
Uses the Name value as a prompt string.

? Prints the process ID, the signal that caused stoppage or termination, and the
registers of $r.

Chapter 3. Debugging Programs 53

:Modifier Manages a subprocess. Available modifiers are:

bCommand
Sets the breakpoint at the Address parameter. The breakpoint runs the Count
parameter -1 times before causing a stop. Each time the breakpoint is encountered,
the specified command runs. If this command sets . (period) to a value of 0, the
breakpoint causes a stop.

cSignal Continues the subprocess with the specified signal. If the Address parameter is
given, the subprocess is continued at this address. If no signal is specified, the
signal that caused the subprocess to stop is sent. Breakpoint skipping is the same
as for the r modifier.

d Deletes the breakpoint at the Address parameter.

k Stops the current subprocess, if one is running.

r Runs the ObjectFile parameter as a subprocess. If the Address parameter is given
explicitly, the program is entered at this point. Otherwise, the program is entered at
its standard entry point. The Count parameter specifies how many breakpoints are to
be ignored before stopping. Arguments to the subprocess can be supplied on the
same line as the command. An argument starting with < or > establishes standard
input or output for the command. On entry to the subprocess, all signals are turned
on.

sSignal Continues the subprocess in single steps up to the number specified in the Count
parameter. If there is no current subprocess, the ObjectFile parameter is run as a
subprocess. In this case no signal can be sent. The remainder of the line is treated
as arguments to the subprocess.

adb Debug Program Variables

The adb command provides a number of variables. When the adb program is started, the following
variables are set from the system header in the specified core file. If the CoreFile parameter does not
appear to be a core file, these values are set from the ObjectFile parameter:

0 Last value printed
1 Last displacement part of an instruction source
2 Previous value of the 1 variable
9 Count on the last $< or $<< subcommand
b Base address of the data segment
d Size of the data segment
e Entry address of the program
m ″Magic″ number
s Size of the stack segment
t Size of the text segment

Example adb Program: adbsamp
/* Program Listing for adbsamp.c */
char str1[] = "This is a character string";
int one = 1;
int number = 456;
long lnum = 1234;
float fpt = 1.25;
char str2[] = "This is the second character string";
main()
{

one = 2;
printf("First String = %s\n",str1);

54 Writing and Debugging Programs

printf("one = %d\n",one);
printf("Number = %d\n",lnum);
printf("Floating point Number = %g\n",fpt);
printf("Second String = %s\n",str2);

}

Compile the program using the cc command to the adbsamp file as follows:
cc -g adbsamp.c -o adbsamp

To start the debug session, enter:
adb adbsamp

Example adb Program: adbsamp2
/*program listing for adbsamp2.c*/
int fcnt,loop_count;

f(a,b)
int a,b;
{

a = a+b;
fcnt++;
return(a);

}
main()
{

loop_count = 0;
while(loop_count <= 100)
{

loop_count = f(loop_count,1);
printf("%s%d\n","Loop count is: ", loop_count);
printf("%s%d\n","fcnt count is: ",fcnt);

}
}

Compile the program using the cc command to the adbsamp2 file with the following command:
cc -g adbsamp2.c -o adbsamp2

To start the debug session, enter:
adb adbsamp2

Example adb Program: adbsamp3
The following sample program adbsamp3.c contains an infinite recursion of subfunction calls. If you run
this program to completion, it causes a memory fault error and quits.
int fcnt,gcnt,hcnt;
h(x,y)
int x,y;
{

int hi;
register int hr;
hi = x+1;
hr = x-y+1;
hcnt++;
hj:
f(hr,hi);

}
g(p,q)
int p,q;
{

int gi;
register int gr;

Chapter 3. Debugging Programs 55

gi = q-p;
gr = q-p+1;
gcnt++;
gj:
h(gr,gi);

}
f(a,b)
int a,b;
{

int fi;
register int fr;
fi = a+2*b;
fr = a+b;
fcnt++;
fj:
g(fr,fi);

}
main()
{

f(1,1);
}

Compile the program using the cc command to create the adbsamp3 file with the following command:
cc -g adbsamp3.c -o adbsamp3

To start the debug session, enter:
adb adbsamp3

Example of Directory and i-node Dumps in adb Debugging

This example shows how to create adb scripts to display the contents of a directory and the i-node map of
a file system. In the example, the directory is named dir and contains a variety of files. The file system is
associated with the /dev/hd3 device file (/tmp), which has the necessary permissions to be read by the
user.

To display a directory, create an appropriate script. A directory normally contains one or more entries. Each
entry consists of an unsigned i-node number (i-number) and a 14-character file name. You can display this
information by including a command in your script file. The adb debug program expects the object file to
be an xcoff format file. This is not the case with a directory. The adb program indicates that the directory,
because it is not an xcoff format file, has a text length of 0. Use the m command to indicate to the adb
program that this directory has a text length of greater than 0. Therefore, display entries in your adb
session by entering:
,0?m 360 0

For example, the following command displays the first 20 entries separating the i-node number and file
name with a tab:
0,20?ut14cn

You can change the second number, 20, to specify the number of entries in the directory. If you place the
following command at the beginning of the script, the adb program displays the strings as headings for
each column of numbers:
="inumber"8t"Name"

Once you have created the script file, redirect it as input when you start the adb program with the name of
your directory. For example, the following command starts the adb program on the geo directory using
command input from the ddump script file:
adb geo - <ddump

56 Writing and Debugging Programs

The minus sign (-) prevents the adb program from opening a core file. The adb program reads the
commands from the script file.

To display the i-node table of a file system, create a new script and then start the adb program with the
file name of the device associated with the file system. The i-node table of a file system has a complex
structure. Each entry contains:

v A word value for status flags

v A byte value for number links

v 2-byte values for the user and group IDs

v A byte and word value for the size

v 8-word values for the location on disk of the file’s blocks

v 2-word values for the creation and modification dates

The following is an example directory dump output:
inumber Name

0: 26 .
2 ..
27 .estate
28 adbsamp
29 adbsamp.c
30 calc.lex
31 calc.yacc
32 cbtest
68 .profile
66 .profile.bak
46 adbsamp2.c
52 adbsamp2
35 adbsamp.s
34 adbsamp2.s
48 forktst1.c
49 forktst2.c
50 forktst3.c
51 lpp&us1.name
33 adbsamp3.c
241 sample
198 adbsamp3
55 msgqtst.c
56 newsig.c

The i-node table starts at the address 02000. You can display the first entry by putting the following
command in your script file:
02000,-1?on3bnbrdn8un2Y2na

The command specifies several new-line characters for the output display to make it easier to read.

To use the script file with the i-node table of the /dev/hd3 file, enter the following command:
adb /dev/hd3 - <script

Each entry in the display has the form:
02000: 073145

0163 0164 0141
0162 10356
28770 8236 25956 27766 25455 8236 25956 25206
1976 Feb 5 08:34:56 1975 Dec 28 10:55:15

Chapter 3. Debugging Programs 57

Example of Data Formatting in adb Debugging

To display the current address after each machine instruction, enter:
main , 5 ? ia

This produces output such as the following when used with the example program adbsamp:
.main:
.main: mflr 0
.main+4: st r0, 0x8(r1)
.main+8: stu rs, (r1)
.main+c: li l r4, 0x1
.main+10: oril r3, r4, 0x0
.main+14:

To make it clearer that the current address does not belong to the instruction that appears on the same
line, add the new-line format character (n) to the command:
.main , 5 ? ian

In addition, you can put a number before a formatting character to indicate the number of times to repeat
that format.

To print a listing of instructions and include addresses after every fourth instruction, use the following
command:
.main,3?4ian

This instruction produces the following output when used with the example program adbsamp:
.main:

mflr 0
st r0, 0x8(r1)
stu r1, -56(r1)
lil r4, 0x1

.main+10:
oril r3, r4, 0x0
bl .f
l r0, Ox40(r1)
ai r1, r1, 0x38

.main+20:
mtlr r0
br
Invalid opcode
Invalid opcode

.main+30:

Be careful where you put the number.

The following command, though similar to the previous command, does not produce the same output:
main,3?i4an

.main:

.main: mflr 0

.main+4: .main+4: .main+4: .main+4:
st r0, 0x8(r1)

.main+8: .main+8: .main+8: .main+8:
stu r1, (r1)

.main+c: .main+c: .main+c: .main+c:

58 Writing and Debugging Programs

You can combine format requests to provide elaborate displays. For example, entering the following
command displays instruction mnemonics followed by their hexadecimal equivalent:
.main,-1?i|xn

In this example, the display starts at the address main. The negative count (-1) causes an indefinite call of
the command, so that the display continues until an error condition (such as end-of-file) occurs. In the
format, i displays the mnemonic instruction at that location, the | (caret) moves the current address back
to the beginning of the instruction, and x re-displays the instruction as a hexadecimal number. Finally, n
sends a newline character to the terminal. The output is similar to the following, only longer:
.main:
.main: mflr 0

7c0802a6
st r0, 0x8(r1)

9001008
st r1, -56(r1)

9421ffc8
lil r4, 0x1

38800001
oril r3, r4, 0x0

60830000
bl - .f

4bffff71
l r0, 0x40(r1)

80010040
ai r1, r1, 0x38

30210038
mtlr r0

7c0803a6

The following example shows how to combine formats in the ? or / subcommand to display different types
of values when stored together in the same program. It uses the adbsamp program. For the commands to
have variables with which to work, you must first set a breakpoint to stop the program, and then run the
program until it finds the breakpoint. Use the :b command to set a breakpoint:
.main+4:b

Use the $b command to show that the breakpoint is set:
$b
breakpoints
count bkpt command
1 .main+4

Run the program until it finds the breakpoint by entering:
:r
adbsamp: running
breakpoint .main+4: st r0, 0x8(r1)

You can now display conditions of the program when it stopped. To display the value of each individual
variable, give its name and corresponding format in a / (slash) command. For example, the following
command displays the contents of str1 as a string:
str1/s
str1:
str1: This is a character string

The following command displays the contents of number as a decimal integer:
number/D
number:
number: 456

Chapter 3. Debugging Programs 59

You can choose to view a variable in a variety of formats. For example, you can display the long variable
lnum as a 4-byte decimal, octal, and hexadecimal number by entering the commands:
lnum/D
lnum:
lnum: 1234

lnum/O
lnum:
lnum: 2322

lnum/X
lnum:
lnum: 4d2

You can also examine variables in other formats. For example, the following command displays some
variables as eight hexadecimal values on a line and continues for five lines:
str1,5/8x
str1:
str1: 5468 6973 2069 7320 6120 6368 6172 6163

7465 7220 7374 7269 6e67 0 0 0 0

number: 0 1c8 0 0 0 4d2 0 0
3fa0 0 0 0 5468 6973 2069 7320
7468 6520 7365 636f 6e64 2063 6861 7261

Since the data contains a combination of numeric and string values, display each value as both a number
and a character to see where the actual strings are located. You can do this with one command:
str1,5/4x4|8Cn
str1:
str1: 5468 6973 2069 7320 This is

6120 6368 6172 6163 a charac
7465 7220 7374 7269 ter stri
6e67 0 0 0 ngx@x@x@x@x@x@
0 1c8 0 0 x@x@xAx<c8>x@x@x@x@

In this case, the command displays four values in hexadecimal, then displays the same values as eight
ASCII characters. The | (caret) is used four times just before displaying the characters to set the current
address back to the starting address for that line.

To make the display easier to read, you can insert a tab between the values and characters and give an
address for each line:
str1,5/4x4|8t8Cna
str1:
str1: 5468 6973 2069 7320 This is
str1+8: 6120 6368 6172 6163 a charac
str1+10: 7465 7220 7374 7269 ter stri
str1+18: 6e67 0 0 1 ngx@x@x@x@x@xA

number:
number: 0 1c8 0 0 x@x@xAx<c8>x@x@x@x@
fpt:

Example of Tracing Multiple Functions in adb Debugging

Note: The example program used in this section, adbsamp3, contains an infinite recursion of
subfunction calls. If you run this program to completion, it causes a memory fault error and quits.

The following example shows how to execute a program under adb control and carry out the basic
debugging operations described in the following sections.

60 Writing and Debugging Programs

The source program for this example is stored in a file named adbsamp3.c. Compile this program to an
executable file named adbsamp3 using the cc command:
cc adbsamp3.c -o adbsamp3

Starting the adb Program
To start the session and open the program file, use the following command (no core file is used):
adb adbsamp3

Setting Breakpoints
First, set breakpoints at the beginning of each function using the :b subcommand:
.f:b
.g:b
.h:b

Displaying a Set of Instructions
Next, display the first five instructions in the f function:
.f,5?ia
.f:
.f: mflr r0
.f+4: st r0, 0x8(r1)
.f+8: stu r1, -64(r1)
.f+c: st r3, 0x58(r1)
.f+10: st r4, 0x5c(r1)
.f+14:

Display five instructions in function g without their addresses:
.g,5?i
.g: mflr r0

st r0, 0x8(r1)
stu r1, -64(r1)
st r3, 0x58(r1)
st r4, 0x5c(r1)

Starting the adsamp3 Program
Start the program by entering the following command:
:r
adbsamp3: running
breakpoint .f: mflr r0

The adb program runs the sample program until it reaches the first breakpoint where it stops.

Removing a Breakpoint
Since running the program to this point causes no errors, you can remove the first breakpoint:
.f:d

Continuing the Program
Use the :c subcommand to continue the program:
:c
adbsamp3: running
breakpoint .g: mflr r0

The adb program restarts the adbsamp3 program at the next instruction. The program operation
continues until the next breakpoint, where it stops.

Chapter 3. Debugging Programs 61

Tracing the Path of Execution
Trace the path of execution by entering:
$c
.g(0,0) .f+2a
.f(1,1) .main+e
.main(0,0,0) start+fa

The $c subcommand displays a report that shows the three active functions: main, f and g.

Displaying a Variable Value
Display the contents of the fcnt integer variable by entering the command:
fcnt/D
fcnt:
fcnt: 1

Skipping Breakpoints
Next, continue running the program and skip the first 10 breakpoints by entering:
,10:c
adbsamp3: running
breakpoint .g: mflr r0

The adb program starts the adbsamp3 program and displays the running message again. It does not stop
the program until exactly 10 breakpoints have been encountered. To ensure that these breakpoints have
been skipped, display the backtrace again:
$c
.g(0,0) .f+2a
.f(2,11) .h+28
.h(10,f) .g+2a
.g(11,20) .f+2a
.f(2,f) .h+28
.h(e,d) .g+2a
.g(f,1c) .f+2a
.f(2,d) .h+28
.h(c,b) .g+2a
.g(d,18) .f+2a
.f(2,b) .h+28
.h(a,9) .g+2a
.g(b,14) .f+2a
.f(2,9) .h+28
.h(8,7) .g+2a
.g(9,10) .f+2a
.f(2,7) .h+28
.h(6,5) .g+2a
.g(7,c) .f+2ae
.f(2,5) .h+28
.h(4,3) .g+2a
.g(5,8) .f+2a
.f(2,3) .h+28
.h(2,1) .g+2a
.g(2,3) .f+2a
.f(1,1) .main+e
.main(0,0,0) start+fa

62 Writing and Debugging Programs

dbx Symbolic Debug Program Overview

The dbx symbolic debug program allows you to debug a program at two levels: the source-level and the
assembler language-level. Source level debugging allows you to debug your C, C++, Pascal, or
FORTRAN language program. Assembler language level debugging allows you to debug executable
programs at the machine level. The commands used for machine level debugging are similar to those
used for source-level debugging.

Using the dbx debug program, you can step through the program you want to debug one line at a time or
set breakpoints in the object program that will stop the debug program. You can also search through and
display portions of the source files for a program.

The following sections contain information on how to perform a variety of tasks with the dbx debug
program:

v “Using the dbx Debug Program”

v “Displaying and Manipulating the Source File with the dbx debug Program” on page 66

v “Examining Program Data” on page 70

v “Debugging at the Machine Level with dbx” on page 76

v “Customizing the dbx Debugging Environment” on page 78

Using the dbx Debug Program

The following sections contain information on how to use the dbx debug program.

Starting the dbx Debug Program

The dbx program can be started with a variety of flags. The three most common ways to start a debug
session with the dbx program are:

v Running the dbx command on a specified object file

v Using the -r flag to run the dbx command on a program that ends abnormally

v Using the -a flag to run the dbx command on a process that is already in progress

When the dbx command is started, it checks for a .dbxinit (“Using the .dbxinit File” on page 79) file in the
user’s current directory and in the user’s $HOME directory. If a .dbxinit file exists, its subcommands run at
the beginning of the debug session. If a .dbxinit file exists in both the home and current directories, then
both are read in that order. Because the current directory .dbxinit file is read last, its subcommands can
supercede those in the home directory.

If no object file is specified, then the dbx program asks for the name of the object file to be examined. The
default is a.out. If the core file exists in the current directory or a CoreFile parameter is specified, then the
dbx program reports the location where the program faulted. Variables, registers, and memory held in the
core image may be examined until execution of the object file begins. At that point the dbx debug program
prompts for commands.

Running Shell Commands from dbx

You can run shell commands without exiting from the debug program using the sh subcommand.

If sh is entered without any commands specified, the shell is entered for use until it is exited, at which time
control returns to the dbx program.

Chapter 3. Debugging Programs 63

../../cmds/aixcmds2/dbx.htm#HDRA2699EE
../../cmds/aixcmds2/dbx.htm#SPTA2699114
../../cmds/aixcmds2/dbx.htm#SPTA2699110
../../cmds/aixcmds2/dbx.htm#HDRA3009C99

Command Line Editing in dbx

The dbx command provides command line editing features similar to those provided by Korn Shell. vi
mode provides vi-like editing features, while emacs mode gives you controls similar to emacs.

You can turn these features on by using dbx subcommand set -o or set edit. So, to turn on vi-style
command line editing, you would type the subcommand set edit vi or set -o vi.

You can also use the EDITOR environment variable to set the editing mode.

The dbx command saves commands entered to history file .dbxhistory. If the DBXHISTFILE environment
variable is not set, then the history file used is $HOME/.dbxhistory.

By default, the dbx command saves the text of the last 128 commands entered. The DBXHISTSIZE
environment variable can be used to increase this limit.

Using Program Control

The dbx debug program allows you to set breakpoints (stopping places) in the program. After entering the
dbx program you can specify which lines or addresses are to be breakpoints and then run the program
you want to debug with the dbx program. The program halts and reports when it reaches a breakpoint.
You can then use dbx commands to examine the state of your program.

An alternative to setting breakpoints is to run your program one line or instruction at a time, a procedure
known as single-stepping.

Setting and Deleting Breakpoints

Use the stop subcommand to set breakpoints in the dbx program. The stop subcommand halts the
application program when certain conditions are fulfilled:

v The Variable is changed when the Variable parameter is specified.

v The Condition is true when the if Condition flag is used.

v The Procedure is called when the in Procedure flag is used.

v The SourceLine line number is reached when the at SourceLine flag is used.

Note: The SourceLine variable can be specified as an integer or as a file name string followed by
a : (colon) and an integer.

After any of these commands, the dbx program responds with a message reporting the event ID
associated with your breakpoint along with an interpretation of your command.

Running a Program

The run subcommand starts your program. It tells the dbx program to begin running the object file,
reading any arguments just as if they were typed on the shell command line. The rerun subcommand has
the same form as run; the difference is that if no arguments are passed, the argument list from the
previous execution is used. After your program begins, it continues until one of the following events
occurs:

v The program reaches a breakpoint.

v A signal occurs that is not ignored, such as INTERRUPT or QUIT.

v A multiprocess event occurs while multiprocess debugging is enabled.

v The program performs a load, unload, or loadbind subroutine.

64 Writing and Debugging Programs

../../cmds/aixcmds2/dbx.htm#HDRA3009DB2
../../cmds/aixcmds2/dbx.htm#HDRA3009877
../../cmds/aixcmds2/dbx.htm#HDRA3009704
../../cmds/aixcmds2/dbx.htm#HDRA3009729
../../libs/basetrf1/load.htm#HDRA1289A2C
../../libs/basetrf2/unload.htm#HDRA2019D34
../../libs/basetrf1/loadbind.htm#HDRA262B9118

Note: The dbx program ignores this condition if the $ignoreload debug variable is set. This is the
default. For more information see the set subcommand.

v The program completes.

In each case, the dbx debug program receives control and displays a message explaining why the
program stopped.

There are several ways to continue the program once it stops:

cont Continues the program from where it stopped.
detach Continues the program from where it stopped, exiting the debug program. This is useful after you have

patched the program and want to continue without the debug program.
return Continues execution until a return to Procedure is encountered, or until the current procedure returns if

Procedure is not specified.
skip Continues execution until the end of the program or until Number + 1 breakpoints execute.
step Runs one or a specified Number of source lines.
next Runs up to the next source line, or runs a specified Number of source lines.

A common method of debugging is to step through your program one line at a time. The step and next
subcommands serve that purpose. The distinction between these two commands is apparent only when
the next source line to be run involves a call to a subprogram. In this case, the step subcommand stops in
the subprogram; the next subcommand runs until the subprogram has finished and then stops at the next
instruction after the call.

The $stepignore debug variable can be used to modify the behavior of the step subcommand. See the
dbx command in AIX 5L Version 5.1 Commands Reference, Volume 2 for more information.

There is no event number associated with these stops because there is no permanent event associated
with stopping a program.

If your program has multiple threads, they all run normally during the cont, next, nexti, and step
subcommands. These commands act on the running thread (the thread which stopped execution by hitting
a breakpoint), so even if another thread executes the code which is being stepped, the cont, next, nexti,
or step operation continues until the running thread has also executed that code.

If you want these subcommands to execute the running thread only, you can set the dbx debug program
variable $hold_next; this causes the dbx debug program to hold all other user threads during cont, next,
nexti, and step subcommands.

Note: If you use this feature, remember that a held thread will not be able to release any locks which
it has acquired; another thread which requires one of these locks could deadlock your program.

Separating dbx Output from Program Output

Use the screen subcommand for debugging programs that are screen-oriented, such as text editors or
graphics programs. This subcommand opens an Xwindow for dbx command interaction. The program
continues to operate in the window in which it originated. If screen is not used, dbx program output is
intermixed with the screen-oriented program output.

Tracing Execution

The trace subcommand tells the dbx program to print information about the state of the program being
debugged while that program is running. The trace subcommand can slow a program considerably,
depending on how much work the dbx program has to do. There are five forms of program tracing:

Chapter 3. Debugging Programs 65

../../cmds/aixcmds2/dbx.htm#HDRA3009DB2
../../cmds/aixcmds2/dbx.htm
../../cmds/aixcmds2/dbx.htm
../../cmds/aixcmds2/dbx.htm#HDRA30096E9
../../cmds/aixcmds2/dbx.htm#HDRA300974E
../../cmds/aixcmds2/dbx.htm#HDRA300985C
../../cmds/aixcmds2/dbx.htm#HDRA300979D
../../cmds/aixcmds2/dbx.htm#HDRA3009DB2
../../cmds/aixcmds2/dbx.htm#HDRA3009CAF
../../cmds/aixcmds2/dbx.htm#HDRA3009C3B

v You can single-step the program, printing out each source line that is executed. The $stepignore debug
variable can be used to modify the behavior of the trace subcommand. See the set subcommand for
more information.

v You can restrict the printing of source lines to when the specified procedure is active. You can also
specify an optional condition to control when trace information is produced.

v You can display a message each time a procedure is called or returned.

v You can print the specified source line when the program reaches that line.

v You can print the value of an expression when the program reaches the specified source line.

Deleting trace events is the same as deleting stop events. When the trace subcommand is executed, the
event ID associated is displayed along with the internal representation of the event.

Displaying and Manipulating the Source File with the dbx debug
Program

You can use the dbx debug program to search through and display portions of the source files for a
program.

You do not need a current source listing for the search. The dbx debug program keeps track of the current
file, current procedure, and current line. If a core file exists, the current line and current file are set initially
to the line and file containing the source statement where the process ended.

Note: This is only true if the process stopped in a location compiled for debugging.

v “Debugging Programs Involving Multiple Threads” on page 67

v “Displaying and Modifying Variables” on page 72

Changing the Source Directory Path

By default, the dbx debug program searches for the source file of the program being debugged in the
following directories:

v Directory where the source file was located when it was compiled. This directory is searched only if the
compiler placed the source path in the object.

v Current directory.

v Directory where the program is currently located.

You can change the list of directories to be searched by using the -I option on the dbx invocation line or
issuing the use subcommand within the dbx program. For example, if you moved the source file to a new
location since compilation time, you might want to use one of these commands to specify the old location,
the new location, and some temporary location.

Displaying the Current File

The list subcommand allows you to list source lines.

The $ (dollar sign) and @ (at sign) symbols represent SourceLineExpression and are useful with the list,
stop, and trace subcommands. The $ symbol represents the next line to be run. The @ symbol
represents the next line to be listed.

The move subcommand changes the next line number to be listed.

66 Writing and Debugging Programs

../../cmds/aixcmds2/dbx.htm#SPTA646HI1C0JBAU
../../cmds/aixcmds2/dbx.htm#HDRA3009DB2
../../cmds/aixcmds2/dbx.htm#SPTA2699112
../../cmds/aixcmds2/dbx.htm#HDRA3009C0B
../../cmds/aixcmds2/dbx.htm#HDRA3009D5D
../../cmds/aixcmds2/dbx.htm#HDRA3009877
../../cmds/aixcmds2/dbx.htm#HDRA3009C3B
../../cmds/aixcmds2/dbx.htm#HDRA3009BF3

Changing the Current File or Procedure

Use the func and file subcommands to change the current file, current procedure, and current line within
the dbx program without having to run any part of your program.

Search through the current file for text that matches regular expressions. If a match is found, the current
line is set to the line containing the matching text. The syntax of the search subcommand is:

/ RegularExpression [/] Searches forward in the current source file for the given expression.
? RegularExpression [?] Searches backward in the current source file for the given expression.

If you repeat the search without arguments, the dbx command searches again for the previous regular
expression. The search wraps around the end or beginning of the file.

You can also invoke an external text editor for your source file using the edit subcommand. You can
override the default editor (vi) by setting the EDITOR environment variable to your desired editor before
starting the dbx program.

The dbx program resumes control of the process when the editing session is completed.

Debugging Programs Involving Multiple Threads

Programs involving multiple user threads call the subroutine pthread_create. When a process calls this
subroutine, the operating system creates a new thread of execution within the process. When debugging a
multi-threaded program, it is necessary to work with individual threads instead of with processes. The dbx
program only works with user threads: in the dbx documentation, the word thread is usually used alone to
mean user thread. The dbx program assigns a unique thread number to each thread in the process being
debugged, and also supports the concept of a running and current thread:

Running thread The user thread that was responsible for stopping the program by hitting a breakpoint.
Subcommands that single-step the program work with the running thread.

Current thread The user thread that you are examining. Subcommands that display information work in
the context of the current thread.

By default, the running thread and current thread are the same. You can select a different current thread
by using the thread subcommand. When the thread subcommand displays threads, the current thread line
is preceded by a >. If the running thread is not the same as the current thread, its line is preceded by a *.

Identifying Thread-Related Objects

Threads use mutexes and condition variables to synchronize access to resources. Threads, mutexes, and
condition variables are created with attribute objects that define how they behave. The dbx program
automatically creates several variables that identify these various thread-related objects. For each object
class, dbx maintains a numbered list and creates an associated variable for each object in the list. These
variable names begin with a $ (dollar sign), followed by a letter indicating the object class (a, c, m, or t),
followed by a number indicating the object’s position in the class list. The letters and their associated
object classes are as follows:

v a for attributes

v c for condition variables

v m for mutexes

v t for threads.

Chapter 3. Debugging Programs 67

../../cmds/aixcmds2/dbx.htm#HDRA3009B36
../../cmds/aixcmds2/dbx.htm#HDRA3009B1B
../../cmds/aixcmds2/dbx.htm#HDRA3009E4B
../../cmds/aixcmds2/dbx.htm#HDRA3009E65
../../cmds/aixcmds2/dbx.htm#HDRA2699EE
../../cmds/aixcmds2/dbx.htm#HDRA3009AFD
../../libs/basetrf1/pthread_create.htm#HDRZDCVH2F3MANU

For example, $t2 corresponds to the second thread in the dbx thread list. In this case, 2 is the object’s
thread number, which is unrelated to the kernel thread identifier (tid). You can list the objects in each class
using the following dbx subcommands: attribute, condition, mutex, and thread. For example, you can
simply use the thread subcommand to list all threads.

The dbx program automatically defines and maintains the variable $running_thread, which identifies the
thread that was running when a breakpoint was hit.

Breakpoints and Threads
If your program has multiple user threads, simply setting a breakpoint on a source line will not guarantee
that a particular thread will hit the breakpoint, because several threads can execute the same code. If any
thread hits the breakpoint, all the threads of the process will stop.

If you want to specify which thread is to hit the breakpoint, you can use the stop or stopi subcommands
to set a conditional breakpoint. The following aliases set the necessary conditions automatically:

v bfth (Function, ThreadNumber)

v blth (LineNumber, ThreadNumber)

These aliases stop the thread at the specified function or source line number, respectively. ThreadNumber
is the number part of the symbolic thread name as reported by the thread subcommand (for example, 2 is
the ThreadNumber for the thread name $t2).

For example, the following subcommand stops thread $t1 at function func1:
(dbx) bfth (func1, 1)

and the following subcommand stops thread $t2 at source line 103:
(dbx) blth (103, 2)

If no particular thread was specified with the breakpoint, any thread that executes the code where the
breakpoint is set could become the running thread.

Thread-Related subcommands
The dbx debug program has the following subcommands that enable you to work with individual attribute
objects, condition variables, mutexes, and threads:

attribute Displays information about all attribute objects, or attribute objects specified by attribute number.
condition Displays information about all condition variables, condition variables that have waiting threads,

condition variables that have no waiting threads, or condition variables specified by condition
number.

mutex Displays information about all mutexes, locked or unlocked mutexes, or mutexes specified by
mutex number.

thread Displays information about threads, selects the current thread, and holds and releases threads.

A number of subcommands that do not deal with threads directly are also affected when used to debug a
multi-threaded program:

print If passed a symbolic object name reported by the thread, mutex, condition, or
attribute subcommands, displays status information about the object. For example,
to display the third mutex and the first thread:

(dbx) print $m3, $t1

68 Writing and Debugging Programs

../../cmds/aixcmds2/dbx.htm#HDRP62AI59THOM
../../cmds/aixcmds2/dbx.htm#HDRA792AIA3THOM
../../cmds/aixcmds2/dbx.htm#HDRR52AI14BTHOM
../../cmds/aixcmds2/dbx.htm#HDRL32AI30ATHOM
../../cmds/aixcmds2/dbx.htm#HDRP62AI59THOM
../../cmds/aixcmds2/dbx.htm#HDRA3009A63

stop, stopi If a single thread hits a breakpoint, all other threads are stopped as well, and the
process timer is halted. This means that the breakpoint does not affect the global
behavior of the process. These normal breakpoints are global, meaning that they
can stop any thread.

If you want to specify which thread will hit the breakpoint, you must use a condition
as shown in the following example, which ensures that only thread $t5 can hit the
breakpoint set on function f1:

(dbx) stopi at &f1 if ($running_thread == 5)

This syntax also works with the stop subcommand. Another way to specify these
conditions is to use the bfth and blth aliases, as explained in the section
″Breakpoints and Threads″ (“Breakpoints and Threads” on page 68).

step, next, nexti All threads resume execution during the step, next, and nexti subcommands. If
you want to step the running thread only, set the $hold_next dbx debug program
variable; this holds all threads except the running thread during these
subcommands.

stepi The stepi subcommand executes the specified number of machine instructions in
the running thread only. Other threads in the process being debugged will not run
during the stepi subcommand.

trace, tracei A specific user thread can be traced by specifying a condition with the trace and
tracei subcommands as shown in the following example, which traces changes
made to var1 by thread $t1:

(dbx) trace var1 if ($running_thread == 1)

If a multi-threaded program does not protect its variables with mutexes, the dbx debug program behavior
may be affected by the resulting race conditions. For example, suppose that your program contains the
following lines:

59 var = 5;

60 printf(″var=%d\n″, var);

If you want to verify that the variable is being initialized correctly, you could type:

stop at 60 if var==5

The dbx debug program puts a breakpoint at line 60, but if access to the variable is not controlled by a
mutex, another thread could update the variable before the breakpoint is hit. This means that the dbx
debug program would not see the value of five and would continue execution.

Debugging Programs Involving Multiple Processes

Programs involving multiple processes call the fork and exec subroutines. When a program forks, the
operating system creates another process that has the same image as the original. The original process is
called the parent process, the created process is called the child process.

When a process performs an exec subroutine, a new program takes over the original process. Under
normal circumstances, the debug program debugs only the parent process. However, the dbx program
can follow the execution and debug the new processes when you issue the multproc subcommand. The
multproc subcommand enables multiprocess debugging.

When multiprocess debugging is enabled and a fork occurs, the parent and child processes are halted. A
separate virtual terminal Xwindow is opened for a new version of the dbx program to control running of
the child process:

Chapter 3. Debugging Programs 69

../../cmds/aixcmds2/dbx.htm#HDRA3009877
../../cmds/aixcmds2/dbx.htm#HDRA3009CC6
../../cmds/aixcmds2/dbx.htm#HDRA300985C
../../cmds/aixcmds2/dbx.htm#HDRA300979D
../../cmds/aixcmds2/dbx.htm#HDRA3009B51
../../cmds/aixcmds2/dbx.htm#HDRA3009E95
../../libs/basetrf1/fork.htm
../../libs/basetrf1/exec.htm
../../cmds/aixcmds2/dbx.htm#HDRA3009781
../../cmds/aixcmds2/dbx.htm#HDRA3009781

(dbx) multproc on
(dbx) multproc
multi-process debugging is enabled
(dbx) run

When the fork occurs, execution is stopped in the parent, and the dbx program displays the state of the
program:
application forked, child pid = 422, process stopped, awaiting input
stopped due to fork with multiprocessing enabled in fork at 0x1000025a (fork+0xe)
(dbx)

Another virtual terminal Xwindow is then opened to debug the child process:
debugging child, pid=422, process stopped, awaiting input
stopped due to fork with multiprocessing enabled in fork at 0x10000250
10000250 (fork+0x4))80010010 1 r0,0x10(r1)
(dbx)

At this point, two distinct debugging sessions are running. The debugging session for the child process
retains all the breakpoints from the parent process, but only the parent process can be rerun.

When a program performs an exec subroutine in multiprocess debugging mode, the program overwrites
itself, and the original symbol information becomes obsolete. All breakpoints are deleted when the exec
subroutine runs; the new program is stopped and identified for the debugging to be meaningful. The dbx
program attaches itself to the new program image, makes a subroutine to determine the name of the new
program, reports the name, and then prompts for input. The prompt is similar to the following:
(dbx) multproc
Multi-process debugging is enabled
(dbx) run
Attaching to program from exec . . .
Determining program name . . .
Successfully attached to /home/user/execprog . . .
Reading symbolic information . . .
(dbx)

If a multi-threaded program forks, the new child process will have only one thread. The process should call
the exec subroutine. Otherwise, the original symbol information is retained, and thread-related
subcommands (such as thread) display the objects of the parent process, which are obsolete. If an exec
subroutine is called, the original symbol information is reinitialized, and the thread-related subcommands
display the objects in the new child process.

It is possible to follow the child process of a fork without a new Xwindow being opened by using the child
flag of the multproc subcommand. When a forked process is created, dbx follows the child process. The
parent flag of the multproc subcommand causes dbx to stop when a program forks, but then follows the
parent. Both the child and parent flags follow an execed process. These flags are very useful for
debugging programs when Xwindows is not running.

Examining Program Data

This section explains how to examine, test, and modify program data.

Handling Signals

The dbx debug program can either trap or ignore signals before they are sent to your program. Each time
your program is to receive a signal, the dbx program is notified. If the signal is to be ignored, it is passed
to your program; otherwise, the dbx program stops the program and notifies you that a signal has been
trapped. The dbx program cannot ignore the SIGTRAP signal if it comes from a process outside of the
debug process. In a multi-threaded program, a signal can be sent to a particular thread via the

70 Writing and Debugging Programs

pthread_kill subroutine. By default, the dbx program stops and notifies you that a signal has been
trapped. If you request a signal be passed on to your program using the ignore subcommand, the dbx
program ignores the signal and passes it on to the thread. Use the catch and ignore subcommands to
change the default handling.

In the following example, a program uses SIGGRANT and SIGREQUEST to handle allocation of
resources. In order for the dbx program to continue each time one of these signals is received, enter:
(dbx) ignore GRANT
(dbx) ignore SIGREQUEST
(dbx) ignore
CONT CLD ALARM KILL GRANT REQUEST

The dbx debug program can block signals to your program if you set the $sigblock variable. By default,
signals received through the dbx program are sent to the source program or the object file specified by
the dbx ObjectFile parameter. If the $sigblock variable is set using the set subcommand, signals received
by the dbx program are not passed to the source program. If you want a signal to be sent to the program,
use the cont subcommand and supply the signal as an operand.

You can use this feature to interrupt execution of a program running under the dbx debug program.
Program status can be examined before continuing execution as usual. If the $sigblock variable is not
set, interrupting execution causes a SIGINT signal to be sent to the program. This causes execution, when
continued, to branch to a signal handler if one exists.

The following example program illustrates how execution using the dbx debug program changes when the
$sigblock variable is set:
#include <signal.h>
#include <stdio.h>
void inthand() {

printf("\nSIGINT received\n");
exit(0);

}

main()
{

signal(SIGINT, inthand);
while (1) {

printf(".");
fflush(stdout);

sleep(1);
}

}

The following sample session with the dbx program uses the preceding program as the source file. In the
first run of the program, the $sigblock variable is not set. During rerun, the $sigblock variable is set.
Comments are placed between angle brackets to the right:
dbx version 3.1.
Type 'help' for help.
reading symbolic information ...
(dbx) run
.........|C <User pressed Ctrl-C here!>
interrupt in sleep at 0xd00180bc
0xd00180bc (sleep+0x40) 80410014 1 r2,0x14(r1)
(dbx) cont

SIGINT received

execution completed
(dbx) set $sigblock
(dbx) rerun
[looper]
..............|C <User pressed Ctrl-C here!>
interrupt in sleep at 0xd00180bc

Chapter 3. Debugging Programs 71

../../cmds/aixcmds2/dbx.htm#HDRA3009B87
../../cmds/aixcmds2/dbx.htm#HDRA3009E2D
../../cmds/aixcmds2/dbx.htm#HDRA3009DB2

0xd00180bc (sleep+0x40) 80410014 1 r2,0x14(r1)
(dbx) cont
....|C <Program did not receive signal, execution continued>

interrupt in sleep at 0xd00180bc
0xd00180bc (sleep+0x40) 80410014 1 r2,0x14(r1)
(dbx) cont 2 <End program with a signal 2>

SIGINT received

execution completed
(dbx)

Calling Procedures

You can call your program procedures from the dbx program to test different arguments. You can also call
diagnostic routines that format data to aid in debugging. Use the call subcommand or the print
subcommand to call a procedure.

Displaying a Stack Trace

To list the procedure calls preceding a program halt, use the where command.

In the following example, the executable object file, hello, consists of two source files and three
procedures, including the standard procedure main. The program stopped at a breakpoint in procedure
sub2.
(dbx) run
[1] stopped in sub2 at line 4 in file "hellosub.c"
(dbx) where
sub2(s = "hello", n = 52), line 4 in "hellosub.c"
sub(s = "hello", a = -1, k = delete), line 31 in "hello.c"
main(), line 19 in "hello.c"

The stack trace shows the calls in reverse order. Starting at the bottom, the following events occurred:

1. Shell called main.

2. main called sub procedure at line 19 with values s = ″hello″, a = -1, and k = delete.

3. sub called sub2 procedure at line 31 with values s = ″hello″ and n = 52.

4. The program stopped in sub2 procedure at line 4.

Note: Set the debug program variable $noargs to turn off the display of arguments passed to
procedures.

You can also display portions of the stack with the up and down subcommands.

Displaying and Modifying Variables

To display an expression, use the print subcommand. To print the names and values of variables, use the
dump subcommand. If the given procedure is a period, then all active variables are printed. To modify the
value of a variable, use the assign subcommand.

In the following example, a C program has an automatic integer variable x with value 7, and s and n
parameters in the sub2 procedure:
(dbx) print x, n
7 52
(dbx) assign x = 3*x
(dbx) print x

72 Writing and Debugging Programs

../../cmds/aixcmds2/dbx.htm#HDRA3009B6C
../../cmds/aixcmds2/dbx.htm#HDRA3009A63
../../cmds/aixcmds2/dbx.htm#HDRA3009AC4
../../cmds/aixcmds2/dbx.htm#HDRA3009A33
../../cmds/aixcmds2/dbx.htm#HDRA3009A4B
../../cmds/aixcmds2/dbx.htm#HDRA3009A63
../../cmds/aixcmds2/dbx.htm#HDRA3009AA6
../../cmds/aixcmds2/dbx.htm#HDRA300989D

21
(dbx) dump
sub2(s = "hello", n = 52)
x = 21

Displaying Thread-Related Information
To display information on user threads, mutexes, conditions, and attribute objects, use the thread, mutex,
condition, and attribute subcommands. You can also use the print subcommand on these objects. In the
following example, the running thread is thread 1. The user sets the current thread to be thread 2, lists the
threads, prints information on thread 1, and finally prints information on several thread-related objects.
(dbx) thread current 2
(dbx) thread
thread state-k wchan state-u k-tid mode held scope function
*$t1 run running 12755 u no pro main
>$t2 run running 12501 k no sys thread_1

(dbx) print $t1
(thread_id = 0x1, state = run, state_u = 0x0, tid = 0x31d3, mode = 0x1, held = 0x0, priority = 0x3c,

policy = other, scount = 0x1, cursig = 0x5, attributes = 0x200050f8)

(dbx) print $a1,$c1,$m2
(attr_id = 0x1, type = 0x1, state = 0x1, stacksize = 0x0, detachedstate = 0x0, process_shared = 0x0,
contentionscope = 0x0, priority = 0x0, sched = 0x0, inherit = 0x0, protocol = 0x0, prio_ceiling = 0x0)
(cv_id = 0x1, lock = 0x0, semaphore_queue = 0x200032a0, attributes = 0x20003628)
(mutex_id = 0x2, islock = 0x0, owner = (nil), flags = 0x1, attributes = 0x200035c8)

Scoping of Names

Names resolve first using the static scope of the current function. The dynamic scope is used if the name
is not defined in the first scope. If static and dynamic searches do not yield a result, an arbitrary symbol is
chosen and the message using QualifiedName is printed. You can override the name resolution procedure
by qualifying an identifier with a block name (such as Module.Variable). Source files are treated as
modules named by the file name without the suffix. For example, the x variable, which is declared in the
sub procedure inside the hello.c file, has the fully qualified name hello.sub.x. The program itself has a
period for a name.

The which and whereis subcommands can be helpful in determining which symbol is found when multiple
symbols with the same name exist.

Using Operators and Modifiers in Expressions

The dbx program can display a wide range of expressions. Specify expressions with a common subset of
C and Pascal syntax, with some FORTRAN extensions.

* (asterisk) or | (caret) Denotes indirection or pointer dereferencing.
[] (brackets) or () (parentheses) Denotes subscript array expressions.
. (period) Use this field reference operator with pointers

and structures. This makes the C operator ->
(arrow) unnecessary, although it is allowed.

& (ampersand) Gets the address of a variable.
.. (two periods) Separates the upper and lower bounds when

specifying a subsection of an array. For
example: n[1..4].

The following types of operations are valid in expressions:

Algebraic =, -, *,/(floating division), div (integral division), mod, exp (exponentiation)
Bitwise -, I, bitand, xor, x, <<, >>

Chapter 3. Debugging Programs 73

../../cmds/aixcmds2/dbx.htm#HDRP62AI59THOM
../../cmds/aixcmds2/dbx.htm#HDRL32AI30ATHOM
../../cmds/aixcmds2/dbx.htm#HDRR52AI14BTHOM
../../cmds/aixcmds2/dbx.htm#HDRA792AIA3THOM
../../cmds/aixcmds2/dbx.htm#HDRA3009A63
../../cmds/aixcmds2/dbx.htm#HDRA30098B9
../../cmds/aixcmds2/dbx.htm#HDRA3009A1B

Logical or, and, not, II, &&
Comparison <, >, <=, >=, <> or !=, = or ==
Other sizeof

Logical and comparison expressions are allowed as conditions in stop and trace subcommands.

Checking of Expression Types

The dbx debug program checks expression types. You can override the expression type by using a
renaming or casting operator. There are three forms of type renaming:

v Typename (Expression)

v Expression \ Typename

v (Typename) Expression

Note: When you cast to or from a structure, union, or class, the casting is left-justified. However,
when casting from a class to a base class, C++ syntax rules are followed.

For example, to rename the x variable where x is an integer with a value of 97, enter:
(dbx) print char (x), x \ char, (char) x, x,
'a' 'a' 'a' 97

The following examples show how you can use the (Typename) Expression form of type renaming:
print (float) i

print ((struct qq *) void_pointer)->first_element

The following restrictions apply to C-style typecasting for the dbx debug program:

v The FORTRAN types (integer*1, integer*2, integer*4, logical*1, logical*2, logical*4, and so on) are not
supported as cast operators.

v If an active variable has the same name as one of the base types or user-defined types, the type
cannot be used as a cast operator for C-style typecasting.

The whatis subcommand prints the declaration of an identifier, which you can then qualify with block
names.

Use the $$TagName construct to print the declaration of an enumeration, structure, or union tag (or the
equivalent in Pascal).

The type of the assign subcommand expression must match the variable type you assigned. If the types
do not match, an error message is displayed. Change the expression type using a type renaming. Disable
type checking by setting a special dbx debug program $unsafeassign variable.

Folding Variables to Lowercase and Uppercase

By default, the dbx program folds symbols based on the current language. If the current language is C,
C++, or undefined, the symbols are not folded. If the current language is FORTRAN or Pascal, the
symbols are folded to lowercase. The current language is undefined if the program is in a section of code
that has not been compiled with the debug flag. You can override default handling with the case
subcommand.

Using the case subcommand without arguments displays the current case mode.

The FORTRAN and Pascal compilers convert all program symbols to lowercase; the C compiler does not.

74 Writing and Debugging Programs

../../cmds/aixcmds2/dbx.htm#HDRA30097B8
../../cmds/aixcmds2/dbx.htm#HDRA300989D
../../cmds/aixcmds2/dbx.htm#HDRA3009A84

Changing Print Output with Special Debug Program Variables

Use the set subcommand to set the following special dbx debug program variables to get different results
from the print subcommand:

$hexints Prints integer expressions in hexadecimal.
$hexchars Prints character expressions in hexadecimal.
$hexstrings Prints the address of the character string, not the string itself.
$octints Prints integer expressions in octal.
$expandunions Prints fields within a union.
$pretty Displays complex C and C++ types in pretty format.

Set and unset the debug program variables to get the desired results. For example:
(dbx) whatis x; whatis i; whatis s
int x;
char i;
char *s;
(dbx) print x, i, s
375 'c' "hello"
(dbx) set $hexstrings; set $hexints; set $hexchars
(dbx) print x, i, s
0x177 0x63 0x3fffe460
(dbx) unset $hexchars; set $octints
(dbx) print x, i
0567 'c'
(dbx) whatis p
struct info p;
(dbx) whatis struct info
struct info {

int x;
double position[3];
unsigned char c;
struct vector force;

};
(dbx) whatis struct vector
struct vector {

int a;
int b;
int c;

};
(dbx) print p
(x = 4, position = (1.3262493258532527e-315, 0.0, 0.0), c = '\0', force = (a = 0, b = 9, c = 1))
(dbx) set $pretty="on"
(dbx) print p
{

x = 4
position[0] = 1.3262493258532527e-315
position[1] = 0.0
position[2] = 0.0
c = '\0'
force = {

a = 0
b = 9
c = 1

}
}
(dbx) set $pretty="verbose"
(dbx) print p
x = 4
position[0] = 1.3262493258532527e-315
position[1] = 0.0
position[2] = 0.0

Chapter 3. Debugging Programs 75

../../cmds/aixcmds2/dbx.htm#HDRA3009DB2
../../cmds/aixcmds2/dbx.htm#HDRA3009A63

c = '\0'
force.a = 0
force.b = 9
force.c = 1

Debugging at the Machine Level with dbx

You can use the dbx debug program to examine programs at the assembly language level. You can
display and modify memory addresses, display assembler instructions, single-step instructions, set
breakpoints and trace events at memory addresses, and display the registers.

In the commands and examples that follow, an address is an expression that evaluates to a memory
address. The most common forms of addresses are integers and expressions that take the address of an
identifier with the & (ampersand) operator. You can also specify an address as an expression enclosed in
parentheses in machine-level commands. Addresses can be composed of other addresses and the
operators + (plus), - (minus), and indirection (unary *).

Using Machine Registers

Use the registers subcommand to see the values of the machine registers. Registers are divided into
three groups: general-purpose, floating-point, and system-control.

General-purpose registers
General-purpose registers are denoted by $rNumber, where Number represents the number of the
register.

Note: The register value may be set to a hexadecimal value of 0xdeadbeef. This is an initialization
value assigned to all general-purpose registers at process initialization.

Floating-point registers
Floating-point registers are denoted by $frNumber, where Number represents the number of the register.
Floating-point registers are not displayed by default. Unset the $noflregs debug program variable to
enable the floating-point register display (unset $noflregs).

System-control registers
Supported system-control registers are denoted by:

v The Instruction Address register, $iar or $pc

v The Condition Status register, $cr

v The Multiplier Quotient register, $mq

v The Machine State register, $msr

v The Link register, $link

v The Count register, $ctr

v The Fixed Point Exception register, $xer

v The Transaction ID register, $tid

v The Floating-Point Status register, $fpscr

Examining Memory Addresses

Use the following command format to print the contents of memory starting at the first address and
continuing up to the second address, or until the number of items specified by the Count variable are
displayed. The Mode specifies how memory is to print.

Address, Address / [Mode][> File]

Address / [Count][Mode] [> File]

76 Writing and Debugging Programs

../../cmds/aixcmds2/dbx.htm#HDRA3009C7B

If the Mode variable is omitted, the previous mode specified is reused. The initial mode is X. The following
modes are supported:

b Prints a byte in octal.
c Prints a byte as a character.
D Prints a long word in decimal.
d Prints a short word in decimal.
f Prints a single-precision floating-point number.
g Prints a double-precision floating-point number.
h Prints a byte in hexadecimal.
i Prints the machine instruction.
lld Prints an 8-byte signed decimal number.
llo Prints an 8-byte unsigned octal number.
llu Prints an 8-byte unsigned decimal number.
llx Prints an 8-byte unsigned hexadecimal number.
O Prints a long word in octal.
o Prints a short word in octal.
q Prints an extended-precision floating-point number.
s Prints a string of characters terminated by a null byte.
X Prints a long word in hexadecimal.
x Prints a short word in hexadecimal.

In the following example, expressions in parentheses can be used as an address:
(dbx) print &x
0x3fffe460
(dbx) &x/X
3fffe460: 31323300
(dbx) &x,&x+12/x
3fffe460: 3132 3300 7879 7a5a 5958 5756 003d 0032
(dbx) ($pc)/2i
100002cc (sub) 7c0802a6 mflr r0
100002d0 (sub + 0x4) bfc1fff8 stm r30,-8(r1)

Running a Program at the Machine Level

The commands for debugging your program at the machine-level are similar to those at the symbolic level.
The stopi subcommand stops the machine when the address is reached, the condition is true, or the
variable is changed. The tracei subcommands are similar to the symbolic trace commands. The stepi
subcommand executes either one or the specified Number of machine instructions.

If you performed another stepi subcommand at this point, you would stop at address 0x10000618,
identified as the entry point of procedure printf. If you do not intend to stop at this address, you could
use the return subcommand to continue execution at the next instruction in sub at address 0x100002e0.
At this point, the nexti subcommand will automatically continue execution to 0x10000428.

If your program has multiple threads, the symbolic thread name of the running thread is displayed when
the program stops. For example:
stopped in sub at 0x100002d4 ($t4)
10000424 (sub+0x4) 480001f5 bl 0x10000618 (printf)

Debugging fdpr Reordered Executables

You can debug programs that have been reordered with fdpr (feedback directed program restructuring,
part of Performance Toolbox for AIX) at the instruction level. If optimization options -R0 or -R2 are used,
additional information is provided enabling dbx to map most reordered instruction addresses to the
corresponding addresses in the original executable as follows:

Chapter 3. Debugging Programs 77

../../cmds/aixcmds2/dbx.htm#HDRA3009CC6
../../cmds/aixcmds2/dbx.htm#HDRA3009C5B
../../cmds/aixcmds2/dbx.htm#HDRA3009E95

0xRRRRRRRR = fdpr[0xYYYYYYYY]

In this example, 0xRRRRRRRR is the reordered address and 0xYYYYYYYY is the original address. In addition,
dbx uses the traceback entries in the original instruction area to find associated procedure names for the
stopped in message, the func subcommand, and the traceback.
(dbx) stepi
stopped in proc_d at 0x1000061c = fdpr[0x10000278]
0x1000061c (???) 9421ffc0 stwu r1,-64(r1)
(dbx)

In the preceding example, dbx indicates the program is stopped in the proc_d subroutine at address
0x1000061c in the reordered text section originally located at address 0x10000278. For more information
about fdpr, see the fdpr command.

Displaying Assembly Instructions
The listi subcommand for the dbx command displays a specified set of instructions from the source file. In
the default mode, the dbx program lists the instructions for the architecture on which it is running. You can
override the default mode with the $instructionset and $mnemonics variables of the set subcommand
for the dbx command.

For more information on displaying instructions or disassembling instructions, see the listi subcommand
for the dbx command. For more information on overriding the default mode, see the $instructionset and
$mnemonics variables of the set subcommand for the dbx command.

Customizing the dbx Debugging Environment

You can customize the debugging environment by creating subcommand aliases and by specifying options
in the .dbxinit file. You can read dbx subcommands from a file using the -c flag. The following sections
contain more information about customization options.

Defining a New dbx Prompt

The dbx prompt is normally the name used to start the dbx program. If you specified /usr/ucb/dbx a.out
on the command line, then the prompt is /usr/ucb/dbx.

You can change the prompt with the prompt subcommand, or by specifying a different prompt in the
prompt line of the .dbxinit file. Changing the prompt in the .dbxinit file causes your prompt to be used
instead of the default each time you initialize the dbx program.

For example, to initialize the dbx program with the debug prompt debug—>, enter the following line in your
.dbxinit file:
prompt "debug-->"

Creating dbx Subcommand Aliases

You can build your own commands from the dbx primitive subcommand set. The following commands
allow you to build a user alias from the arguments specified. All commands in the replacement string for
the alias must be dbx primitive subcommands. You can then use your aliases in place of the dbx
primitives.

The alias subcommand with no arguments displays the current aliases in effect; with one argument the
command displays the replacement string associated with that alias.

alias [AliasName[CommandName]]

78 Writing and Debugging Programs

../../cmds/aixcmds2/fdpr.htm#HDRDEF54C8931JANI
../../cmds/aixcmds2/dbx.htm#HDRA3009C23
../../cmds/aixcmds2/dbx.htm#HDRA3009D3F

alias AliasName ″CommandString″

alias AliasName (Parameter1, Parameter2, . . .) ″CommandString″

The first two forms of the alias subcommand are used to substitute the replacement string for the alias
each time it is used. The third form of aliasing is a limited macro facility. Each parameter specified in the
alias subcommand is substituted in the replacement string.

The following aliases and associated subcommand names are defaults:

attr attribute
bfth stop (in given thread at specified function)
blth stop (in given thread at specified source line)
c cont
cv condition
d delete
e edit
h help
j status
l list
m map
mu mutex
n next
p print
q quit
r run
s step
st stop
t where
th thread
x registers

You can remove an alias with the unalias command.

Using the .dbxinit File

Each time you begin a debugging session, the dbx program searches for special initialization files named
.dbxinit, which contain lists of dbx subcommands to execute. These subcommands are executed before
the dbx program begins to read subcommands from standard input. When the dbx command is started, it
checks for a .dbxinit file in the user’s current directory and in the user’s $HOME directory. If a .dbxinit file
exists, its subcommands run at the beginning of the debug session. If a .dbxinit file exists in both the
home and current directories, then both are read in that order. Because the current directory .dbxinit file is
read last, its subcommands can supercede those in the home directory.

Normally, the .dbxinit file contains alias subcommands, but it can contain any valid dbx subcommands.
For example:
$ cat .dbxinit
alias si "stop in"
prompt "dbg-->"
$ dbx a.out
dbx version 3.1
Type 'help' for help.
reading symbolic information . . .
dbg--> alias
si stop in
t where . . .
dbg-->

Chapter 3. Debugging Programs 79

../../cmds/aixcmds2/dbx.htm#HDRA3009D98
../../cmds/aixcmds2/dbx.htm#HDRA3009D3F

Reading dbx Subcommands from a File

The -c invocation option and .dbxinit file provide mechanisms for executing dbx subcommands before
reading from standard input. When the -c option is specified, the dbx program does not search for a
.dbxinit file. Use the source subcommand to read dbx subcommands from a file once the debugging
session has begun.

After executing the list of commands in the cmdfile file, the dbx program displays a prompt and waits for
input.

You can also use the -c option to specify a list of subcommands to be executed when initially starting the
dbx program.

List of dbx Subcommands

The commands and subcommands for the dbx debug program are located in the AIX 5L Version 5.1
Commands Reference.

The dbx debug program provides subcommands for performing the following task categories:

v “Setting and Deleting Breakpoints”

v “Running Your Program”

v “Tracing Program Execution” on page 81

v “Ending Program Execution” on page 81

v “Displaying the Source File” on page 81

v “Printing and Modifying Variables, Expressions, and Types” on page 81

v “Thread Debugging” on page 81

v “Multiprocess Debugging” on page 82

v “Procedure Calling” on page 82

v “Signal Handling” on page 82

v “Machine-Level Debugging” on page 82

v “Debugging Environment Control” on page 82

Setting and Deleting Breakpoints

clear Removes all stops at a given source line.
cleari Removes all breakpoints at an address.
delete Removes the traces and stops corresponding to the specified numbers.
status Displays the currently active trace and stop subcommands.
stop Stops execution of the application program.

Running Your Program

cont Continues running the program from the current breakpoint until the program finishes or another
breakpoint is encountered.

detach Exits the debug program, but continues running the application.
down Moves a function down the stack.
goto Causes the specified source line to be the next line run.
gotoi Changes program counter addresses.
next Runs the application program up to the next source line.
nexti Runs the application program up to the next source instruction.
rerun Begins running an application.

80 Writing and Debugging Programs

../../cmds/aixcmds2/dbx.htm#HDRA3009E7F
../../cmds/aixcmds2/dbx.htm#HDRA3009BA5
../../cmds/aixcmds2/dbx.htm#HDRA3009D24
../../cmds/aixcmds2/dbx.htm
../../cmds/aixcmds2/dbx.htm#HDRA3009841
../../cmds/aixcmds2/dbx.htm#HDRA3009877
../../cmds/aixcmds2/dbx.htm
../../cmds/aixcmds2/dbx.htm
../../cmds/aixcmds2/dbx.htm#HDRA3009A4B
../../cmds/aixcmds2/dbx.htm#HDRA3009769
../../cmds/aixcmds2/dbx.htm#HDRA3009D0C
../../cmds/aixcmds2/dbx.htm#HDRA300979D
../../cmds/aixcmds2/dbx.htm#HDRA3009B51
../../cmds/aixcmds2/dbx.htm#HDRA3009729

return Continues running the application program until a return to the specified procedure is reached.
run Begins running an application.
skip Continues execution from the current stopping point.
step Runs one source line.
stepi Runs one source instruction.
up Move a function up the stack.

Tracing Program Execution

trace Prints tracing information.
tracei Turns on tracing.
where Displays a list of all active procedures and functions.

Ending Program Execution

quit Quits the dbx debug program.

Displaying the Source File

edit Invokes an editor on the specified file.
file Changes the current source file to the specified file.
func Changes the current function to the specified function or procedure.
list Displays lines of the current source file.
listi Lists instructions from the application.
move Changes the next line to be displayed.
/ (Search) Searches forward in the current source file for a pattern.
? (Search) Searches backward in the current source file for a pattern.
use Sets the list of directories to be searched when looking for a file.

Printing and Modifying Variables, Expressions, and Types

assign Assigns a value to a variable.
case Changes the way in which dbx interprets symbols.
dump Displays the names and values of variables in the specified procedure.
print Prints the value of an expression or runs a procedure and prints the return code.
set Assigns a value to a nonprogram variable.
unset Deletes a nonprogram variable.
whatis Displays the declaration of application program components.
whereis Displays the full qualifications of all the symbols whose names match the specified identifier.
which Displays the full qualification of the specified identifier.

Thread Debugging

attribute Displays information about all or selected attributes objects.
condition Displays information about all or selected condition variables.
mutex Displays information about all or selected mutexes.
thread Displays and controls threads.

Chapter 3. Debugging Programs 81

../../cmds/aixcmds2/dbx.htm#HDRA30096E9
../../cmds/aixcmds2/dbx.htm#HDRA3009704
../../cmds/aixcmds2/dbx.htm#HDRA300974E
../../cmds/aixcmds2/dbx.htm#HDRA300985C
../../cmds/aixcmds2/dbx.htm#HDRA3009E95
../../cmds/aixcmds2/dbx.htm#HDRA3009A33
../../cmds/aixcmds2/dbx.htm#HDRA3009C3B
../../cmds/aixcmds2/dbx.htm#HDRA3009C5B
../../cmds/aixcmds2/dbx.htm#HDRA3009AC4
../../cmds/aixcmds2/dbx.htm#HDRA3009BDD
../../cmds/aixcmds2/dbx.htm#HDRA3009AFD
../../cmds/aixcmds2/dbx.htm#HDRA3009B1B
../../cmds/aixcmds2/dbx.htm#HDRA3009B36
../../cmds/aixcmds2/dbx.htm#HDRA3009D5D
../../cmds/aixcmds2/dbx.htm#HDRA3009CEA
../../cmds/aixcmds2/dbx.htm#HDRA3009BF3
../../cmds/aixcmds2/dbx.htm#HDRA3009E4B
../../cmds/aixcmds2/dbx.htm#HDRA3009E65
../../cmds/aixcmds2/dbx.htm#HDRA3009C0B
../../cmds/aixcmds2/dbx.htm#HDRA300989D
../../cmds/aixcmds2/dbx.htm#HDRA3009A84
../../cmds/aixcmds2/dbx.htm#HDRA3009AA6
../../cmds/aixcmds2/dbx.htm#HDRA3009A63
../../cmds/aixcmds2/dbx.htm#HDRA3009DB2
../../cmds/aixcmds2/dbx.htm#HDRA3009D7E
../../cmds/aixcmds2/dbx.htm#HDRA30097B8
../../cmds/aixcmds2/dbx.htm#HDRA3009A1B
../../cmds/aixcmds2/dbx.htm#HDRA30098B9
../../cmds/aixcmds2/dbx.htm#HDRA792AIA3THOM
../../cmds/aixcmds2/dbx.htm#HDRR52AI14BTHOM
../../cmds/aixcmds2/dbx.htm#HDRL32AI30ATHOM
../../cmds/aixcmds2/dbx.htm#HDRP62AI59THOM

Multiprocess Debugging

multproc Enables or disables multiprocess debugging.

Procedure Calling

call Runs the object code associated with the named procedure or function.
print Prints the value of an expression or runs a procedure and prints the return code.

Signal Handling

catch Starts trapping a signal before that signal is sent to the application program.
ignore Stops trapping a signal before that signal is sent to the application program.

Machine-Level Debugging

display memory Displays the contents of memory.
gotoi Changes program counter addresses.
map Displays address maps and loader information for the application program.
nexti Runs the application program up to the next machine instruction.
registers Displays the values of all general-purpose registers, system-control registers,

floating-point registers, and the current instruction register.
stepi Runs one source instruction.
stopi Sets a stop at a specified location.
tracei Turns on tracing.

Debugging Environment Control

alias Displays and assigns aliases for dbx subcommands.
help Displays help information for dbx subcommands or topics.
prompt Changes the dbx prompt to the specified string.
screen Opens an Xwindow for dbx command output.
sh Passes a command to the shell for execution.
source Reads dbx commands from a file.
unalias Removes an alias.

82 Writing and Debugging Programs

../../cmds/aixcmds2/dbx.htm#HDRA3009781
../../cmds/aixcmds2/dbx.htm#HDRA3009B6C
../../cmds/aixcmds2/dbx.htm#HDRA3009A63
../../cmds/aixcmds2/dbx.htm#HDRA3009B87
../../cmds/aixcmds2/dbx.htm#HDRA3009E2D
../../cmds/aixcmds2/dbx.htm
../../cmds/aixcmds2/dbx.htm#HDRA3009D0C
../../cmds/aixcmds2/dbx.htm#HDRA23F014F0
../../cmds/aixcmds2/dbx.htm#HDRA3009B51
../../cmds/aixcmds2/dbx.htm#HDRA3009C7B
../../cmds/aixcmds2/dbx.htm#HDRA3009E95
../../cmds/aixcmds2/dbx.htm#HDRA3009CC6
../../cmds/aixcmds2/dbx.htm#HDRA3009C5B
../../cmds/aixcmds2/dbx.htm#HDRA3009D3F
../../cmds/aixcmds2/dbx.htm#HDRA30097D6
../../cmds/aixcmds2/dbx.htm#HDRA3009C23
../../cmds/aixcmds2/dbx.htm#HDRA3009CAF
../../cmds/aixcmds2/dbx.htm#HDRA3009C99
../../cmds/aixcmds2/dbx.htm#HDRA3009E7F
../../cmds/aixcmds2/dbx.htm#HDRA3009D98

Chapter 4. Error Notification

Each time an error is logged, the error notification daemon determines if the error log entry matches the
selection criteria of any of the Error Notification objects. If matches exist, the daemon runs the
programmed action, also called a notify method, for each matched object.

The Error Notification object class is located in the /etc/objrepos/errnotify file. Error Notification objects
are added to the object class by using Object Data Manager (ODM) commands. Error Notification objects
contain the following descriptors:

en_alertflg Identifies whether the error is alertable. This descriptor is provided for use by alert
agents associated with network management applications. The valid alert descriptor
values are:

TRUE alertable

FALSE not alertable

en_class Identifies the class of the error log entries to match. The valid en_class descriptor
values are:

H Hardware Error class

S Software Error class

O Messages from the errlogger command

U Undetermined

en_crcid Specifies the error identifier associated with a particular error.
en_label Specifies the label associated with a particular error identifier as defined in the

output of the errpt -t command.
en_method Specifies a user-programmable action, such as a shell script or command string, to

be run when an error matching the selection criteria of this Error Notification object
is logged. The error notification daemon uses the sh -c command to execute the
notify method.

The following key words are automatically expanded by the error notification
daemon as arguments to the notify method.

$1 Sequence number from the error log entry

$2 Error ID from the error log entry

$3 Class from the error log entry

$4 Type from the error log entry

$5 Alert flags value from the error log entry

$6 Resource name from the error log entry

$7 Resource type from the error log entry

$8 Resource class from the error log entry

$9 Error label from the error log entry

en_name Uniquely identifies the object. The creator uses this unique name when removing
the object.

© Copyright IBM Corp. 1997, 2001 83

../../cmds/aixcmds2/errlogger.htm#HDRA243Y98903
../../cmds/aixcmds2/errpt.htm#HDRA243Y989D2
../../cmds/aixcmds5/sh.htm#HDRA66F011A

en_persistenceflg Designates whether the Error Notification object should be automatically removed
when the system is restarted. For example, to avoid erroneous signaling, Error
Notification objects containing methods which send a signal to another process
should not persist across system restarts. This is because the receiving process
and its process ID do not persist across system restarts.

The creator of the Error Notification object is responsible for removing the Error
Notification object at the appropriate time. In the event that the process terminates
and fails to remove the Error Notification object, the en_persistenceflg descriptor
ensures that obsolete Error Notification objects are removed when the system is
restarted.

The valid en_persistenceflg descriptor values are:

0 non-persistent (removed at boot time)

1 persistent (persists through boot)

en_pid Specifies a process ID (PID) for use in identifying the Error Notification object.
Objects that have a PID specified should have the en_persistenceflg descriptor
set to 0.

en_rclass Identifies the class of the failing resource. For the hardware error class, the
resource class is the device class. The resource error class is not applicable for the
software error class.

en_resource Identifies the name of the failing resource. For the hardware error class, a resource
name is the device name.

en_rtype Identifies the type of the failing resource. For the hardware error class, a resource
type is the device type a resource is known by in the devices object class.

en_symptom Enables notification of an error accompanied by a symptom string when set to
TRUE.

en_type Identifies the severity of error log entries to match. The valid en_type descriptor
values are:

INFO Informational

PEND Impending loss of availability

PERM Permanent

PERF Unacceptable performance degradation

TEMP Temporary

UNKN Unknown

TRUE Matches alertable errors.

FALSE Matches non-alertable errors.

0 Removes the Error Notification object at system restart.

non-zero
Retains the Error Notification object at system restart.

Security
Only processes running with the root user authority can add objects to the Error Notification object class.

Examples
1. To create a notify method that mails a formatted error entry to root each time a disk error of type

PERM is logged, create a file called /tmp/en_sample.add containing the following Error Notification
object:

84 Writing and Debugging Programs

errnotify:
en_name = "sample"
en_persistenceflg = 0
en_class = "H"
en_type = "PERM"
en_rclass = "disk"
en_method = "errpt -a -l $1 | mail -s 'Disk Error' root"

To add the object to the Error Notification object class, enter:
odmadd /tmp/en_sample.add

The odmadd command adds the Error Notification object contained in /tmp/en_sample.add to the
errnotify file.

2. To verify that the Error Notification object was added to the object class, enter:
odmget -q"en_name='sample'" errnotify

The odmget command locates the Error Notification object within the errnotify file that has an
en_name value of ″sample″ and displays the object. The following output is returned:
errnotify:

en_pid = 0
en_name = "sample"
en_persistenceflg = 0
en_label = ""
en_crcid = 0
en_class = "H"
en_type = "PERM"
en_alertflg = ""
en_resource = ""
en_rtype = ""
en_rclass = "disk"
en_method = "errpt -a -l $1 | mail -s 'Disk Error' root"

3. To delete the sample Error Notification object from the Error Notification object class, enter:
odmdelete -q"en_name='sample'" -o errnotify

The odmdelete command locates the Error Notification object within the errnotify file that has an
en_name value of ″sample″ and removes it from the Error Notification object class.

Related Information
Error Logging Special Files in AIX 5L Version 5.1 Files Reference.

The errdemon daemon in AIX 5L Version 5.1 Commands Reference.

The errclear command, errdead command, errinstall command, errlogger command, errmsg command,
errpt command, errstop command, errupdate command, odmadd command, odmdelete command,
odmget command in AIX 5L Version 5.1 Commands Reference.

The errlog subroutine in AIX 5L Version 5.1 Technical Reference: Base Operating System and Extensions
Volume 1.

The errsave kernel service in AIX 5L Version 5.1 Technical Reference: Kernel and Subsystems Volume 1.

Chapter 4. Error Notification 85

../../cmds/aixcmds4/odmadd.htm#HDRA26491517
../../cmds/aixcmds4/odmget.htm#HDRA2659120D
../../cmds/aixcmds4/odmdelete.htm#HDRA265911F2
../../files/aixfiles/Error.htm#HDRA365C99541
../../cmds/aixcmds2/errdemon.htm#HDRA243Y988AF
../../cmds/aixcmds2/errclear.htm#HDRA250B9A3E7
../../cmds/aixcmds2/errdead.htm#HDRA243Y98A81
../../cmds/aixcmds2/errinstall.htm#HDRA256B92F
../../cmds/aixcmds2/errlogger.htm#HDRA243Y98903
../../cmds/aixcmds2/errmsg.htm#HDRA243Y98977
../../cmds/aixcmds2/errpt.htm#HDRA243Y989D2
../../cmds/aixcmds2/errstop.htm#HDRA243Y98A34
../../cmds/aixcmds2/errupdate.htm#HDRA251B9A8A6
../../cmds/aixcmds4/odmadd.htm#HDRA26491517
../../cmds/aixcmds4/odmdelete.htm#HDRA265911F2
../../cmds/aixcmds4/odmget.htm#HDRA2659120D
../../libs/basetrf1/errlog.htm#HDRA29799AA
../../libs/ktechrf1/errsave.htm#HDRGH0IBSJEAN

Error Logging Facility
The error logging facility records hardware and software failures in the error log for information purposes
or for fault detection and corrective action.

Refer to the following to use the error logging facility:

v “Error Logging Overview”

v “Managing Error Logging” on page 87

v “Error Logging Tasks” on page 90

v “Error Logging and Alerts” on page 97

v “Error Logging Controls” on page 98

In AIX Version 4 some of the error log commands are delivered in an optionally installable package called
bos.sysmgt.serv_aid. The base system (bos.rte) includes the services for logging errors to the error log
file. This includes the errlog subroutines, the errsave and errlast kernel service, the error device driver
(/dev/error), the error daemon, and the errstop command. The commands required for licensed program
installation (errinstall and errupdate) are also included in bos.rte. See “for information on Software
Service Aids Package.” Also, for information on transferring your system’s error log file to a system that
has the Software Service Aids package installed, see “Transferring Your Error Log to Another System” on
page 87.

Error Logging Overview

The error logging process begins when an operating system module detects an error. The error-detecting
segment of code then sends error information to either the errsave and errlast kernel service or the
errlog application subroutine, where the information is in turn written to the /dev/error special file. This
process then adds a time stamp to the collected data. The errdemon daemon constantly checks the
/dev/error file for new entries, and when new data is written, the daemon conducts a series of operations.

Before an entry is written to the error log, the errdemon daemon compares the label sent by the kernel or
application code to the contents of the Error Record Template Repository. If the label matches an item in
the repository, the daemon collects additional data from other parts of the system.

To create an entry in the error log, the errdemon daemon retrieves the appropriate template from the
repository, the resource name of the unit that detected the error and detail data. Also, if the error signifies
a hardware-related problem and hardware vital product data (VPD) exists, the daemon retrieves the VPD
from the Object Data Manager. When you access the error log, either through SMIT or with the errpt
command, the error log is formatted according to the error template in the error template repository and
presented in either a summary or detailed report. Most entries in the error log are attributable to hardware
and software problems, but informational messages can also be logged.

The diag command uses the error log in part to diagnose hardware problems. To correctly diagnose new
system problems, the system deletes hardware-related entries older than 90 days from the error log. The
system deletes software-related entries 30 days after they are logged.

Terms to help you use the error logging facility include the following:

error ID A 32-bit CRC hexadecimal code used to identify a particular failure. Each
error record template has a unique error ID.

error label The mnemonic name for an error ID.
error log The file that stores instances of errors and failures encountered by the

system.

86 Writing and Debugging Programs

../../aixins/aixinsgd/aixinsgd.htm
../../aixins/aixinsgd/aixinsgd.htm
../../libs/ktechrf1/errsave.htm#HDRGH0IBSJEAN
../../libs/basetrf1/errlog.htm#HDRA29799AA
../../cmds/aixcmds2/errdemon.htm#HDRA243Y988AF
../../cmds/aixcmds2/errpt.htm#HDRA243Y989D2
../../cmds/aixcmds2/diag.htm#HDRA66F084

error log entry A record in the system error log that describes a hardware failure, a
software failure, or an operator message. An error log entry contains
captured failure data.

error record template A description of what will be displayed when the error log is formatted for a
report, including information on the type and class of the error, probable
causes, and recommended actions. Collectively, the templates comprise the
Error Record Template Repository.

Managing Error Logging

Error logging is automatically started during system initialization by the rc.boot script and is automatically
stopped during system shutdown by the shutdown script. The error log analysis performed by the
diagnostics (diag command) analyzes hardware error entries up to 90 days old. If you remove hardware
error entries less than 90 days old, you can limit the effectiveness of this error log analysis.

To manage error logging efficiently, see:

v “Transferring Your Error Log to Another System”

v “Configuring Error Logging”

v “Removing Error Log Entries” on page 89

v “Enabling and Disabling Logging for an Event” on page 89

v “Setting Up Error Notification” on page 90

v “Logging Maintenance Activities” on page 90

Transferring Your Error Log to Another System

The errclear, errdead, errlogger, errmsg, and errpt commands are part of the optionally installable
Software Service Aids package (bos.sysmgt.serv_aid). You need the Software Service Aids package to
generate reports from the error log or delete entries from the error log. You can install the Software
Service Aids package on your system or you can transfer your system’s error log file to a system that has
the Software Service Aids package installed.

Determine the path to your system’s error log file by running the following command:
/usr/lib/errdemon -l

There are a number of ways to transfer the file to another system. For example, you can copy the file to a
remotely mounted file system using the cp command; you can copy the file across the network connection
using the rcp, ftp, or tftp commands; or you can copy the file to removable media using the tar or
backup command and restore the file onto another system.

You can format reports for an error log copied to your system from another system by using the -i flag of
the errpt command. The -i flag allows you to specify the path name of an error log file other than the
default. Likewise, you can delete entries from an error log file copied to your system from another system
by using the -i flag of the errclear command.

Configuring Error Logging
You can customize the name and location of the error log file and the size of the internal error buffer to
suit your needs.

You can also control the logging of duplicate errors.

Chapter 4. Error Notification 87

Listing the Current Settings
To list the current settings, run /usr/lib/errdemon -l. The values for the error log file name, error log file
size, and buffer size that are currently stored in the error log configuration database display on your
screen.

To list the current settings, run /usr/lib/errdemon -l. The values for the error log file name, error log file
size, buffer size, and duplicate handling values that are currently stored in the error log configuration
database display on your screen.

Customizing the Log File Location
To change the filename used for error logging run the /usr/lib/errdemon -i FileName command. The
specified file name is saved in the error log configuration database and the error daemon is immediately
restarted.

Customizing the Log File Size
To change the maximum size of the error log file enter:
/usr/lib/errdemon -s LogSize

The specified log file size limit is saved in the error log configuration database and the error daemon is
immediately restarted. If the log file size limit is smaller than the size of the log file currently in use, the
current log file is renamed by appending .old to the file name and a new log file is created with the
specified size limit. The amount of space specified is reserved for the error log file and is not available for
use by other files. Therefore, you should be careful not to make the log excessively large. But, if you make
the log too small, important information may be overwritten prematurely. When the log file size limit is
reached, the file wraps, that is, the oldest entries are overwritten by new entries.

Customizing the Buffer Size
To change the size of the error log device driver’s internal buffer, enter:
/usr/lib/errdemon -B BufferSize

The specified buffer size is saved in the error log configuration database and, if it is larger than the buffer
size currently in use, the in-memory buffer is immediately increased. If it is smaller than the buffer size
currently in use, the new size is put into effect the next time the error daemon is started after the system is
rebooted. The buffer cannot be made smaller than the hard-coded default of 8KB. The size you specify is
rounded up to the next integral multiple of the memory page size (4KBs). The memory used for the error
log device driver’s in-memory buffer is not available for use by other processes (the buffer is pinned).

You should be careful not to impact your system’s performance by making the buffer excessively large.
But, if you make the buffer too small, the buffer may become full if error entries are arriving faster than
they are being read from the buffer and put into the log file. When the buffer is full, new entries are
discarded until space becomes available in the buffer. When this situation occurs, an error log entry is
created to inform you of the problem, and you should correct the problem by enlarging the buffer.

Customizing Duplicate Error Handling
By default, starting with AIX 5.1, the error daemon eliminates duplicate errors. It does this by looking at
each error that is logged. An error is a duplicate if it is identical to the previous error, and occurs within the
approximate time interval specified with /usr/lib/errdemon -t time-interval. The default time value is 100,
.1 seconds. The value is in milliseconds.

The -m maxdups flag controls how many duplicates can build up before a duplicate entry is logged. The
default value is 1000. If an error, followed by 1000 occurrences of the same error, is logged, a duplicate
error will be logged at that point rather than waiting for the time interval to expire or a unique error.

Thus if, for example, a device handler starts logging many identical errors rapidly, most will not appear in
the log. Rather, the first occurrence will be logged as it is today. Subsequent occurrences will not be

88 Writing and Debugging Programs

logged immediately, just counted. When the time interval expires, the maxdups value is reached, or when
another error is logged, an alternate form of the error is logged giving the times of the first and last
duplicate and how many duplicates there were.

Note: The time interval refers to the time since the last error, not the time since the first occurrence
of this error, (i.e.) it is reset each time an error is logged. Also note that to be a duplicate, an error
must exactly match the previous error. If, for example, anything about the detail data is different from
the previous error, then that error is considered unique and logged as a separate error.

Removing Error Log Entries
Entries are removed from the error log when the root user runs the errclear command, when the errclear
command is automatically invoked by a daily cron job, and when the error log file wraps as a result of
reaching its maximum size. When the error log file reaches the maximum size specified in the error log
configuration database, the oldest entries are overwritten by the newest entries.

Automatic Removal
The system is shipped with a crontab file to delete hardware errors older than 90 days and other errors
older than 30 days. To display the crontab entries for your system, enter:
crontab -l Command

To change these entries, enter:
crontab -e Command

See the crontab command.

errclear Command
The errclear command can be used to selectively remove entries from the error log. The selection criteria
you may specify include the error id number, sequence number, error label, resource name, resource
class, error class, and error type. You must also specify the age of entries to be removed. The entries that
match the selection criteria you specified and are older than the number of days you specified will be
removed.

Enabling and Disabling Logging for an Event
You can disable logging or reporting of a particular event by modifying the Log or the Report field of the
error template for the event. You can use the errupdate command to change the current settings for an
event.

Showing Events for Which Logging is Disabled
To list all events for which logging is currently disabled, enter:
errpt -t -F Log=0

Events for which logging is disabled are not saved in the error log file.

Showing Events for which Reporting is Disabled
To list all events for which reporting is currently disabled, enter:
errpt -t -F Report=0

Events for which reporting is disabled are saved in the error log file when they occur, but they are not
displayed by the errpt command.

Changing the Current Setting for an Event
You can use the errupdate command to change the current settings for an event. The necessary input to
the errupdate command can be in a file or from standard input.

In the following example, standard input is used. To disable the reporting of the ERRLOG_OFF event
(error id number 192AC071), enter the following lines to run the errupdate command:

Chapter 4. Error Notification 89

errupdate <Enter>
=192AC071: <Enter>
Report=False <Enter>
<Ctrl-D>
<Ctrl-D>

Setting Up Error Notification
Refer to “Chapter 4. Error Notification” on page 83 in AIX 5L Version 5.1 General Programming Concepts:
Writing and Debugging Programs.

Logging Maintenance Activities
The errlogger command allows the system administrator to record messages in the error log. Whenever
you perform a maintenance activity, such as clearing entries from the error log, replacing hardware, or
applying a software fix, it is a good idea to record this activity in the system error log.

Redirecting syslog Messages to Error Log
Some applications use syslog for logging errors and other events. Some administrators find it desirable to
be able to list error log messages and syslog messages in a single report. This can be accomplished by
redirecting the syslog messages to the error log. You can do this by specifying errlog as the destination in
the syslog configuration file (/etc/syslog.conf). See the syslogd daemon for more information.

Directing Error Log Messages to Syslog
You can log error log events in the syslog file by using the logger command with the concurrent error
notification capabilities of error log. For example, to log system messages (syslog), add an errnotify object
with the following contents:
errnotify:

en_name = "syslog1"
en_persistenceflg = 1
en_method = "logger Msg from Error Log: ′errpt -l $1 | grep -v 'ERROR_ID TIMESTAMP'′"

For example, create a file called /tmp/syslog.add with these contents, then run the command odmadd
/tmp/syslog.add (you must be logged in as root to do this).

For more information about concurrent error notification, see the “Chapter 4. Error Notification” on page 83
in AIX 5L Version 5.1 General Programming Concepts: Writing and Debugging Programs.

Error Logging Tasks
Error logging tasks and information to assist you in using the error logging facility include:

v “Reading an Error Report”

v “Examples of Detailed Error Reports” on page 92

v “Example of a Summary Error Report” on page 95

v “Generating an Error Report” on page 95

v “Stopping an Error Log” on page 96

v “Cleaning an Error Log” on page 96

v “Copying an Error Log to Diskette or Tape” on page 97

Reading an Error Report

To obtain a report of all errors logged in the 24 hours prior to the failure, enter:
errpt -a -s mmddhhmmyy | pg

where mmddhhmmyy represents the month, day, hour, minute, and year 24 hours prior to the failure.

90 Writing and Debugging Programs

An error log report contains the following information:

Note: Not all errors will generate information for each of the following categories.

LABEL Predefined name for the event.
ID Numerical identifier for the event.
Date/Time Date and time of the event.
Sequence Number Unique number for the event.
Machine ID Identification number of your system processor unit.
Node ID Mnemonic name of your system.
Class General source of the error. The possible error classes are:

H Hardware. (When you receive a hardware error, refer to your system
operator guide for information about performing diagnostics on the
problem device or other piece of equipment. The diagnostics program
tests the device and analyze the error log entries related to it to
determine the state of the device.)

S Software.

O Informational messages.

U Undetermined (for example, a network).

Type Severity of the error that has occurred. Five types of errors are possible:

PEND The loss of availability of a device or component is imminent.

PERF The performance of the device or component has degraded to below
an acceptable level.

PERM Condition that could not be recovered from. Error types with this value
are usually the most severe errors and are more likely to mean that
you have a defective hardware device or software module. Error types
other than PERM usually do not indicate a defect, but they are recorded
so that they can be analyzed by the diagnostics programs.

TEMP Condition that was recovered from after a number of unsuccessful
attempts. This error type is also used to record informational entries,
such as data transfer statistics for DASD devices.

UNKN It is not possible to determine the severity of the error.

INFO The error log entry is informational and was not the result of an error.

Resource Name Name of the resource that has detected the error. For software errors. this is
the name of a software component or an executable program. For hardware
errors, this is the name of a device or system component. It does not indicate
that the component is faulty or needs replacement. Instead, it is used to
determine the appropriate diagnostic modules to be used to analyze the error.

Resource Class General class of the resource that detected the failure (for example, a device
class of disk).

Resource Type Type of the resource that detected the failure (for example, a device type of
355mb).

Location Code Path to the device. There may be up to four fields, which refer to drawer, slot,
connector, and port, respectively.

VPD Vital product data. The contents of this field, if any, vary. Error log entries for
devices typically return information concerning the device manufacturer, serial
number, Engineering Change levels, and Read Only Storage levels.

Description Summary of the error.
Probable Cause Listing of some of the possible sources of the error.
User Causes List of possible reasons for errors due to user mistakes. An improperly inserted

disk and external devices (such as modems and printers) that are not turned on
are examples of user-caused errors.

Chapter 4. Error Notification 91

Recommended Actions Description of actions for correcting a user-caused error.
Install Causes List of possible reasons for errors due to incorrect installation or configuration

procedures. Examples of this type of error include hardware and software
mismatches, incorrect installation of cables or cable connections becoming
loose, and improperly configured systems.

Recommended Actions Description of actions for correcting an installation-caused error.
Failure Causes List of possible defects in hardware or software.

Note: A failure causes section in a software error log usually indicates a
software defect. Logs that list user or install causes or both, but not
failure causes, usually indicate that the problem is not a software defect.

If you suspect a software defect, or are unable to correct user or install causes,
report the problem to your software service department.

Recommended Actions Description of actions for correcting the failure. For hardware errors,
PERFORM PROBLEM DETERMINATION PROCEDURES is one of the recommended
actions listed. For hardware errors, this will lead to running the diagnostic
programs.

Detailed Data Failure data that is unique for each error log entry, such as device sense data.

Reporting may be turned off for some errors. To show which errors have reporting turned off, enter:
errpt -t -F report=0 | pg

If reporting is turned off for any errors, enable reporting of all errors using the errupdate command.

Logging may also have been turned off for some errors. To show which errors have logging turned off,
enter:
errpt -t -F log=0 | pg

If logging is turned off for any errors, enable logging for all errors using the errupdate command. Logging
all errors is useful if it becomes necessary to recreate a system error.

Examples of Detailed Error Reports

The following are sample error report entries that are generated by issuing the errpt -a command.

An error-class value of H and an error-type value of PERM indicate that the system encountered a
problem with a piece of hardware (the SCSI adapter device driver) and could not recover from it.

There may be diagnostic data associated with this type of error.

Such information appears at the end of the error’s listing.
LABEL: SCSI_ERR1
ID: 0502F666

Date/Time: Jun 19 22:29:51
Sequence Number: 95
Machine ID: 123456789012
Node ID: host1
Class: H
Type: PERM
Resource Name: scsi0
Resource Class: adapter
Resource Type: hscsi
Location: 00-08
VPD:

Device Driver Level.........00
Diagnostic Level............00

92 Writing and Debugging Programs

../../cmds/aixcmds2/errupdate.htm#HDRA251B9A8A6
../../cmds/aixcmds2/errupdate.htm#HDRA251B9A8A6
../../cmds/aixcmds2/errpt.htm#HDRA243Y989D2

Displayable Message.........SCSI
EC Level....................C25928
FRU Number..................30F8834
Manufacturer................IBM97F
Part Number.................59F4566
Serial Number...............00002849
ROS Level and ID............24
Read/Write Register Ptr.....0120

Description
ADAPTER ERROR

Probable Causes
ADAPTER HARDWARE CABLE
CABLE TERMINATOR DEVICE

Failure Causes
ADAPTER
CABLE LOOSE OR DEFECTIVE

Recommended Actions
PERFORM PROBLEM DETERMINATION PROCEDURES
CHECK CABLE AND ITS CONNECTIONS

Detail Data
SENSE DATA
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Diagnostic Log sequence number: 153
Resource Tested: scsi0
Resource Description: SCSI I/O Controller
Location: 00-08
SRN: 889-191
Description: Error log analysis indicates hardware failure.
Probable FRUs:

SCSI Bus FRU: n/a 00-08
Fan Assembly

SCSI2 FRU: 30F8834 00-08
SCSI I/O Controller

An error-class value of H and an error-type value of PEND indicate that a piece of hardware (the Token
Ring) may become unavailable soon due to numerous errors detected by the system.
LABEL: TOK_ESERR
ID: AF1621E8

Date/Time: Jun 20 11:28:11
Sequence Number: 17262
Machine Id: 123456789012
Node Id: host1
Class: H
Type: PEND
Resource Name: TokenRing
Resource Class: tok0
Resource Type: Adapter
Location: TokenRing

Description
EXCESSIVE TOKEN-RING ERRORS

Probable Causes
TOKEN-RING FAULT DOMAIN

Failure Causes
TOKEN-RING FAULT DOMAIN

Recommended Actions
REVIEW LINK CONFIGURATION DETAIL DATA
CONTACT TOKEN-RING ADMINISTRATOR RESPONSIBLE FOR THIS LAN

Chapter 4. Error Notification 93

Detail Data
SENSE DATA
0ACA 0032 A440 0001 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 2080 0000 0000 0010 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 78CC 0000 0000 0005 C88F 0304 F4E0 0000 1000 5A4F 5685
1000 5A4F 5685 3030 3030 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000

An error-class value of S and an error-type value of PERM indicate that the system encountered a
problem with software and could not recover from it.
LABEL: DSI_PROC
ID: 20FAED7F

Date/Time: Jun 28 23:40:14
Sequence Number: 20136
Machine Id: 123456789012
Node Id: 123456789012
Class: S
Type: PERM
Resource Name: SYSVMM

Description
Data Storage Interrupt, Processor

Probable Causes
SOFTWARE PROGRAM

Failure Causes
SOFTWARE PROGRAM

Recommended Actions
IF PROBLEM PERSISTS THEN DO THE FOLLOWING
CONTACT APPROPRIATE SERVICE REPRESENTATIVE

Detail Data
Data Storage Interrupt Status Register
4000 0000
Data Storage Interrupt Address Register
0000 9112
Segment Register, SEGREG
D000 1018
EXVAL
0000 0005

An error-class value of S and an error-type value of TEMP indicate that the system encountered a problem
with software. After several attempts, the system was able to recover from the problem.
LABEL: SCSI_ERR6
ID: 52DB7218

Date/Time: Jun 28 23:21:11
Sequence Number: 20114
Machine Id: 123456789012
Node Id: host1
Class: S
Type: INFO
Resource Name: scsi0

Description
SOFTWARE PROGRAM ERROR

94 Writing and Debugging Programs

Probable Causes
SOFTWARE PROGRAM

Failure Causes
SOFTWARE PROGRAM

Recommended Actions
IF PROBLEM PERSISTS THEN DO THE FOLLOWING
CONTACT APPROPRIATE SERVICE REPRESENTATIVE

Detail Data
SENSE DATA
0000 0000 0000 0000 0000 0011 0000 0008 000E 0900 0000 0000 FFFF
FFFE 4000 1C1F 01A9 09C4 0000 000F 0000 0000 0000 0000 FFFF FFFF
0325 0018 0040 1500 0000 0000 0000 0000 0000 0000 0000 0000 0800
0000 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000

An error class value of O indicates that an informational message has been logged.
LABEL: OPMSG
ID: AA8AB241

Date/Time: Jul 16 03:02:02
Sequence Number: 26042
Machine Id: 123456789012
Node Id: host1
Class: O
Type: INFO
Resource Name: OPERATOR

Description
OPERATOR NOTIFICATION

User Causes
errlogger COMMAND

Recommended Actions
REVIEW DETAILED DATA

Detail Data
MESSAGE FROM errlogger COMMAND
hdisk1 : Error log analysis indicates a hardware failure.

Example of a Summary Error Report

The following is an example of a summary error report generated using the errpt command. One line of
information is returned for each error entry.
ERROR_
IDENTIFIER TIMESTAMP T CL RESOURCE_NAME ERROR_DESCRIPTION
192AC071 0101000070 I 0 errdemon Error logging turned off
0E017ED1 0405131090 P H mem2 Memory failure
9DBCFDEE 0101000070 I 0 errdemon Error logging turned on
038F2580 0405131090 U H scdisk0 UNDETERMINED ERROR
AA8AB241 0405130990 I O OPERATOR OPERATOR NOTIFICATION

Generating an Error Report

Use the following procedure to create an error report of software or hardware problems.

1. Determine if error logging is on or off. To do this, determine if the error log contains entries:

Chapter 4. Error Notification 95

errpt -a

The errpt command generates an error report from entries in the system error log.

If the error log does not contain entries, error logging has been turned off. Activate the facility by
entering:
/usr/lib/errdemon

Note: You must have root user access to run this command.

The errdemon daemon starts error logging and writes error log entries in the system error log. If the
daemon is not running, errors are not logged.

2. Generate an error log report using the errpt command. For example, to see all the errors for the
hdisk1 disk drive, enter:
errpt -N hdisk1

3. Generate an error log report using SMIT. For example, use the smit errpt command:
smit errpt

Select 1 to send the error report to standard output or 2 to send the report to the printer.

Select yes to display or print error log entries as they occur; otherwise, select no.

Specify the appropriate device name in the Select resource names option (such as hdisk1).

Select Do.

Stopping an Error Log

This procedure describes how to stop the error logging facility. Ordinarily, you would not want to turn off
the error logging facility. Instead, you should clean the error log of old or unnecessary entries. For
instructions about cleaning the error log, refer to “Cleaning an Error Log”.

You should turn off the error logging facility when installing or experimenting with new software or
hardware. This way the error logging daemon does not use CPU time to log problems you know you are
causing.

Note: You must have root user authority to use the command in this procedure.

Enter the errstop command to turn off error logging:
errstop

The errstop command stops the error logging daemon from logging entries.

Cleaning an Error Log

This procedure describes how to strip old or unnecessary entries from your error log. Cleaning is normally
done for you as part of the daily cron command.

If it is not done automatically, you should probably clean the error log yourself every couple of days after
you have examined the contents to make sure there are no significant errors.

You can also clean up specific errors. For example, if you get a new disk and you do not want the old
disk’s errors in the log to confuse you, you can clean just the disk errors.

96 Writing and Debugging Programs

../../cmds/aixcmds2/errpt.htm#HDRA243Y989D2
../../cmds/aixcmds2/errdemon.htm#HDRA243Y988AF
../../cmds/aixcmds2/errstop.htm#HDRA243Y98A34
../../cmds/aixcmds1/cron.htm#HDRA15292A

Delete all entries in your error log by doing either of the following:

v Use the errclear -d command. For example, to delete all software errors enter:
errclear -d S 0

The errclear command deletes entries from the error log that are older than a certain number of days.
The 0 in the previous example means that you want to delete entries for all days.

v Use the smit errclear command:
smit errclear

Copying an Error Log to Diskette or Tape

Copy an error log by:

v Use the ls and backup commands to copy the error log to diskette. Place a formatted diskette into the
diskette drive and enter:
ls /var/adm/ras/errlog | backup -ivp

v To copy the error log to tape, place a tape in the drive and enter:
ls /var/adm/ras/errlog | backup -ivpf/dev/rmt0

OR

v Use the snap command to gather system configuration information in a tar file and copy it to diskette.
Place a formatted diskette into the diskette drive and enter:

Note: You need root user authority to use the snap command.
snap -a -o /dev/rfd0

The snap command in this example uses the -a flag to gather all information about your system
configuration. The -o flag copies the compressed tar file to the device you name. /dev/rfd0 names your
disk drive.

Enter the following command to gather all configuration information in a tar file and copy it to tape:
snap -a -o /dev/rmt0

/dev/rmt0 names your tape drive.

See the snap command in AIX 5L Version 5.1 Commands Reference for more information.

Error Logging and Alerts

If the Alert field of an error record template is set to True, programs which process alerts use the
following fields in the error log to build an alert:

v Class

v Type

v Description

v Probable Cause

v User Cause

v Install Cause

v Failure Cause

v Recommended Action

v Detail Data

Chapter 4. Error Notification 97

../../cmds/aixcmds2/errclear.htm#HDRA250B9A3E7
../../cmds/aixcmds3/ls.htm#HDRGVB310FISH
../../cmds/aixcmds1/backup.htm#HDRA10192A8A
../../cmds/aixcmds5/snap.htm#HDRA352C13F

These template fields must be set up according to the SNA Generic Alert Architecture described in SNA
Formats, order number GA27-3136. Alerts that are not set up according to the architecture cannot be
processed properly by a receiving program, such as NetView.

Messages added to the error logging message sets must not conflict with the SNA Generic Alert
Architecture. When the errmsg command is used to add messages, the command selects message
numbers that do not conflict with the architecture.

If the Alert field of an error record template is set to False, you can use any of the messages in the error
logging message catalog.

Error Logging Controls
You can control the error logging facility by using the following:

v “Error Logging Commands”

v “Error Logging Subroutines and Kernel Services” on page 99

v “Error Logging Files” on page 99

Error Logging Commands

errclear
Deletes entries from the error log. This command can erase the
entire error log. Removes entries with specified error ID numbers,
classes, or types.

errdead
Extracts errors contained in the /dev/error buffer captured in the
system dump. The system dump will contain error records if the
errdemon daemon was not active prior to the dump.

errdemon
Reads error records from the /dev/error file and writes error log
entries to the system error log. The errdemon also performs error
notification as specified in the error notification objects in the Object
Data Manager (ODM). This daemon is started automatically during
system initialization.

errinstall
Can be used to add or replace messages in the error message
catalog. Provided for use by software installation procedures. The
system creates a backup file named File.undo. The undo file allows
you to cancel the changes you made by issuing the errinstall
command.

errlogger
Writes an operator message entry to the error log.

errmsg
Implements error logging in in-house applications. The errmsg
command lists, adds, or deletes messages stored in the error
message catalog. Using this command, text can be added to the
Error Description, Probable Cause, User Cause, Install Cause,
Failure Cause, Recommended Action, and Detailed Data message
sets.

errpt
Generates an error report from entries in the system error log. The
report can be formatted as a single line of data for each entry, or
the report can be a detailed listing of data associated with each
entry in the error log. Entries of varying classes and types can be
omitted from or included in the report.

errstop

98 Writing and Debugging Programs

../../cmds/aixcmds2/errmsg.htm#HDRA243Y98977
../../cmds/aixcmds2/errclear.htm#HDRA250B9A3E7
../../cmds/aixcmds2/errdead.htm#HDRA243Y98A81
../../cmds/aixcmds2/errdemon.htm#HDRA243Y988AF
../../cmds/aixcmds2/errinstall.htm#HDRA256B92F
../../cmds/aixcmds2/errlogger.htm#HDRA243Y98903
../../cmds/aixcmds2/errmsg.htm#HDRA243Y98977
../../cmds/aixcmds2/errpt.htm#HDRA243Y989D2
../../cmds/aixcmds2/errstop.htm#HDRA243Y98A34

Stops the errdemon daemon, which is initiated during system
initialization. Running the errstop command also disables some
diagnostic and recovery functions of the system.

errupdate
Adds or deletes templates in the Error Record Template Repository.
Modifies the Alert, Log, and Report attributes of an error template.
Provided for use by software installation procedures.

Error Logging Subroutines and Kernel Services

errlog
Writes an error to the error log device driver.

errsave and errlast
Alllows the kernel and kernel extensions to write to the error log.

Error Logging Files

/dev/error
Provides standard device driver interfaces required by the error
log component.

/dev/errorctl
Provides nonstandard device driver interfaces for controlling the
error logging system.

/usr/include/sys/err_rec.h Contains structures defined as arguments to the errsave kernel
service and the errlog subroutine.

/var/adm/ras/errlog Stores instances of errors and failures encountered by the
system.

/var/adm/ras/errtmplt Contains the Error Record Template Repository.

Related Information
The “Error Notification Object Class” in AIX 5L Version 5.1 General Programming Concepts: Writing and
Debugging Programs allows applications to be notified when particular errors are recorded.

Chapter 4. Error Notification 99

../../cmds/aixcmds2/errupdate.htm#HDRA251B9A8A6
../../libs/basetrf1/errlog.htm#HDRA29799AA
../../libs/ktechrf1/errsave.htm#HDRGH0IBSJEAN
../../files/aixfiles/Error.htm#HDRA365C99541
../../files/aixfiles/Error.htm#HDRA365C99541

100 Writing and Debugging Programs

Chapter 5. File Systems and Directories

A file is a one-dimensional array of bytes that can contain ASCII or binary information. In this operating
system, files can contain data, shell scripts, and programs. File names are also used to represent abstract
objects such as sockets or device drivers.

Internally, files are represented by index nodes (i-nodes). Within this file system, an i-node is a, 128-byte
in JFS and 512-byte in JFS2, structure that contains all access, timestamp, ownership, and data location
information for each file. Pointers within the i-node structure designate the real disk address of the data
blocks associated with the file. An i-node is identified by an offset number (i-number) and has no file name
information. The connection of i-numbers and file names is called a link.

File names exist only in directories. Directories are a unique type of file that give hierarchical structure to
the file system. Directories contain directory entries. Each directory entry contains a file name and an
i-number.

The journaled file system (JFS) and (JFS2) are native to this operating system. The file system links the
file and directory data to the structure used by storage and retrieval mechanisms.

JFS and JFS2 are both supported on POWER-based platforms. JFS2 is supported on the Itanium-based
platform while JFS is not.

This chapter contains the following sections that further describe the journaled file system programming
model:

v “File Types”

v “JFS Directories” on page 103

v “Working with JFS i-nodes” on page 106

v “JFS File Space Allocation” on page 109

v “Writing Programs That Access Large Files” on page 115

v “Linking for Programmers” on page 122

v “Using File Descriptors” on page 125

v “File Creation and Removal” on page 128

v “Working with File I/O” on page 129

v “File Status” on page 136

v “File Accessibility” on page 136

v “JFS File System Layout” on page 137

v “Creating New File System Types” on page 141

File Types

A file is a one-dimensional array of bytes with at least one hard link (file name). Files can contain ASCII or
binary information. Files contain data, shell scripts, or programs. File names are also used to represent
abstract objects such as sockets, pipes, and device drivers.

The kernel does not distinguish record boundaries in regular files. Programs can establish their own
boundary markers if desired. For example, many programs use line-feed characters to mark the end of
lines. “Working with Files” on page 102 contains a list of the subroutines used to control files.

Files are represented in the journaled file system (JFS and JFS2) by disk index nodes (i-node).
Information about the file (such as ownership, access modes, access time, data addresses, and

© Copyright IBM Corp. 1997, 2001 101

../../aixbman/baseadmn/lvm_manage.htm#SPTA071F0F728BENW

modification time) is stored in the i-node. For more information about the internal structure of files, see
“Working with JFS i-nodes” on page 106 or “Working with JFS2 i-nodes” on page 108.

The journaled file system supports the following file types:

File Types Supported By Journaled File System

Type of File Macro Name Used in mode.h Description

Regular S_ISREG A sequence of bytes with one or more
names. Regular files can contain
ASCII or binary data. These files can
be randomly accessed (read from or
written to) from any byte in the file.

Directory S_ISDIR Contains directory entries (file name
and i-number pairs). Directory formats
are determined by the file system.
Processes read directories as they do
ordinary files, but the kernel reserves
the right to write to a directory.
Special sets of subroutines control
directory entries.

Block Special S_ISBLK Associates a structured device driver
with a file name.

Character Special S_ISCHR Associates an unstructured device
driver with a file name.

Pipes S_ISFIFO Designates an interprocess
communication channel (IPC). The
mkfifo subroutine creates named
pipes. The pipe subroutine creates
unnamed pipes.

Symbolic Links S_ISLNK A file that contains either an absolute
or relative path name to another file
name.

Sockets S_ISSOCK An IPC mechanism that allows
applications to exchange data. The
socket subroutine creates sockets,
and the bind subroutine allows
sockets to be named.

The maximum size of a regular file in a JFS file system enabled for large files (available beginning in AIX
4.2) is slightly less than 64 gigabytes (68589453312). All nonregular files in a file system enabled for large
files and all files in other JFS file system types have a maximum file size of 2 gigabytes minus 1
(2147483647). The maximun size of a file in JFS2 is limited by the size of the file system itself.

The maximum length of a file name is 255 characters, and the maximum length of a path name is 1023
bytes. For more information, see “JFS File Space Allocation” on page 109.

Working with Files

The operating system offers many subroutines that manipulate files. Brief descriptions of the most
common file-control subroutines are provided in two categories:

v “Creating Files” on page 103

v “Manipulating Files (Programming)” on page 103

102 Writing and Debugging Programs

Creating Files

creat Creates a new, empty, regular file
open Creates a new, empty file if the O_CREAT flag is set
mkfifo Creates a named pipe
mkdir Creates a directory
mknod Creates a file that defines a device
socket Creates a socket
pipe Creates an IPC
link Creates an additional name (directory entry) for an existing file

Manipulating Files (Programming)

open Returns a file descriptor used by other subroutines to reference the opened file.
The open operation takes a regular file name and a permission mode that
indicates whether the file is to be read from, written to, or both.

read Removes data from an open file if the appropriate permissions (O_RDONLY or
O_RDWR) were set by the open subroutine.

write Puts data into an open file if the appropriate permissions (O_WRONLY or
O_RDWR) were set by the open subroutine.

lseek or llseek Move the I/O pointer position in an open file.
close Closes open file descriptors (including sockets).
rmdir Removes directories from the file system.
chown Changes ownership of a file.
chmod Changes the access modes of a file.
stat Reports the status of a file including the owner and access modes.
access Determines the accessibility of a file.
rename Changes the name of a file.
truncate Changes the length of a file.
ioctl Controls functions associated with open file descriptors, including special files,

sockets, and generic device support like the termio general terminal interface.
fclear Creates space in file.
fsync Writes changes in a file to permanent storage.
fcntl, dup, or dup2 Control open file descriptors.
lockf or flock Control open file descriptors.

For more information on types and characteristics of file systems, see ″File Systems Overview″ in AIX 5L
Version 5.1 System Management Guide: Operating System and Devices.

JFS Directories

Directories provide a hierarchical structure to the file system and link file and subdirectory names to
i-nodes. There is no limit on the depth of nested directories. Disk space is allocated for directories in
4096-byte blocks, but the operating system allocates directory space in 512-byte records.

Processes can read directories as regular files. However, the kernel reserves the right to write directories.
For this reason, directories are created and maintained by a set of subroutines unique to them.

JFS Directory Structures
Directories contain a sequence of directory entries. Each directory entry contains three fixed-length fields
(the index number associated with the file’s i-node, the length of the file name, and the number of bytes
for the entry) and one variable length field for the file name. The file name field is null-terminated and
padded to 4 bytes. File names can be up to 255 bytes long.

Chapter 5. File Systems and Directories 103

../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/basetrf1/mkdir.htm#HDRA3IK150GACO
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/commtrf2/socket.htm#HDRTP22B0CHER
../../libs/basetrf1/pipe.htm#HDRS381F0GACO
../../libs/basetrf1/link.htm#HDRA169C1F6
../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf2/read.htm#HDRJO11350GACO
../../libs/basetrf2/write.htm#HDRCI2270GACO
../../libs/basetrf1/lseek.htm#HDRA21595D1
../../libs/basetrf1/lseek.htm#HDRA21595D1
../../libs/basetrf1/close.htm#HDRA08793A0
../../libs/basetrf2/rmdir.htm#HDRBBI1D0GACO
../../libs/basetrf1/chown.htm#HDRA9F01
../../libs/basetrf1/chmod.htm#HDRJK52A0GACO
../../libs/basetrf2/statx.htm#HDRA1609C70
../../libs/basetrf1/access.htm#HDRSL240GACO
../../libs/basetrf2/rename.htm#HDRV9Q260GACO
../../libs/basetrf2/truncate.htm#HDRA1589227B
../../libs/basetrf1/ioctl32.htm#HDRDW73VICHRIS
../../libs/basetrf1/fclear.htm#HDRXKNA0GACO
../../libs/basetrf1/fsync.htm#HDRA164930
../../libs/basetrf1/fcntl.htm#HDRNEM2E0GACO
../../libs/basetrf1/lockfx.htm#HDRA142945D
../../aixbman/admnconc/fs_overview.htm

Directory entries are variable-length to allow file names the greatest flexibility. However, all directory space
is allocated at all times.

No directory entry is allowed to span 512-byte sections of a directory. When a directory requires more than
512 bytes, another 512-byte record is appended to the original record. If all of the 512-byte records in the
allocated data block are filled, an additional data block (4096 bytes) is allotted.

When a file is removed, the space the file occupied in the directory structure is added to the preceding
directory entry. The information about the directory remains until a new entry fits into the space vacated.

Every well-formed directory contains the entries . (dot) and .. (dot, dot). The . (dot) directory entry points to
the i-node for the directory itself. The .. (dot, dot) directory entry points to the i-node for the parent
directory. The mkfs program initializes a file system so that the . (dot) and .. (dot, dot) entries in the new
root directory point to the root i-node of the file system.

Access modes for directories have the following meanings:

read Allows a process to read directory entries
write Allows a process to create new directory entries or remove old ones by using the creat, mknod, link,

and unlink subroutines
execute Allows a process to use the directory as a current working directory or to search below the directory in

the file tree

Working with Directories (Programming)

The mkdir and rmdir subroutines create and remove directories, respectively.

The opendir, readdir, telldir, seekdir, rewinddir and closedir subroutines manipulate directories. The
opendir subroutine returns a structure pointer that is used by the readdir subroutine to obtain the next
directory entry, by rewinddir to reset the read position to the beginning, and by closedir to close the
directory. The seekdir subroutine returns to a position previously obtained with the telldir subroutine. In
earlier versions, programs treated directories as regular files and used the open, read, lseek, and close
subroutines to access them. This is no longer recommended.

Changing Current Directory of a Process

When the system is booted, the first process uses the root directory of the root file system as its current
directory. New processes created with the fork subroutine inherit the current directory used by the parent
process. The chdir subroutine changes the current directory of a process.

The chdir subroutine parses the path name to ensure that the target file is a directory and that the
process owner has permissions to the directory. After the chdir subroutine is run, the process uses the
new current directory to search all path names that do not begin with a / (slash).

Changing the Root Directory of a Process

Processes can change their understanding of the root directory through the chroot subroutine. Child
processes of the calling process consider the directory indicated by the chroot subroutine as the logical
root directory of the file system.

Processes use the global file system root directory for all path names starting with a / (slash).All path
name searches beginning with a / (slash) begin at this new root directory.

104 Writing and Debugging Programs

../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/basetrf1/link.htm#HDRA169C1F6
../../libs/basetrf2/unlink.htm#HDRA0949BAB
../../libs/basetrf1/mkdir.htm#HDRA3IK150GACO
../../libs/basetrf2/rmdir.htm#HDRBBI1D0GACO
../../libs/basetrf1/opendir.htm#HDRA0909AF7
../../libs/basetrf1/fork.htm
../../libs/basetrf1/chdir.htm#HDRSQJE0GACO
../../libs/basetrf1/chroot.htm#HDRMPJ140GACO

Subroutines That Control Directories

Due to the unique nature of directory files, directories are controlled by a special set of subroutines. The
following subroutines are designed to control directories:

chdir Changes the current working directory
chroot Changes the effective root directory
opendir, readdir, telldir, seekdir, rewinddir, or closedir

Perform various actions on directories
getcwd or getwd Gets path to current directory
mkdir Creates a directory
rename Renames a directory
rmdir Removes a directory

JFS2 Directories
Directories provide a hierarchical structure to the file system and link file and subdirectory names to
i-nodes. There is no limit on the depth of nested directories. Disk space is allocated for directories in
blocks.

Processes can read directories as regular files. However, the kernel reserves the right to write directories.
For this reason, directories are created and maintained by a set of subroutines unique to them.

JFS2 Directory Structures
A directory contains entries which indicate the objects contained in the directory. A directory entry has a
fixed length. It contains the i-node number, the name up to 22 bytes long, a name length field, and a field
to continue the entry if the name won’t fit completely.

The directory entries are stored in a B+ tree sorted by name. The self (.) and parent (..) information will be
contained in the i-node instead of a directory entry.

Access modes for directories have the following meanings:

read Allows a process to read directory entries
write Allows a process to create new directory entries or remove old ones by using the creat, mknod, link,

and unlink subroutines
execute Allows a process to use the directory as a current working directory or to search below the directory in

the file tree

Working with Directories (Programming)
The mkdir and rmdir subroutines create and remove directories, respectively.

The opendir, readdir, telldir, seekdir, rewinddir and closedir subroutines manipulate directories. The
opendir subroutine returns a structure pointer that is used by the readdir subroutine to obtain the next
directory entry, by rewinddir to reset the read position to the beginning, and by closedir to close the
directory. The seekdir subroutine returns to a position previously obtained with the telldir subroutine. In
earlier versions, programs treated directories as regular files and used the open, read, lseek, and close
subroutines to access them. This is no longer recommended.

Changing Current Directory of a Process
When the system is booted, the first process uses the root directory of the root file system as its current
directory. New processes created with the fork subroutine inherit the current directory used by the parent
process. The chdir subroutine changes the current directory of a process.

Chapter 5. File Systems and Directories 105

../../libs/basetrf1/chdir.htm#HDRSQJE0GACO
../../libs/basetrf1/chroot.htm#HDRMPJ140GACO
../../libs/basetrf1/opendir.htm#HDRA0909AF7
../../libs/basetrf1/getcwd.htm#HDRA0909EF1
../../libs/basetrf1/getwd.htm#HDRA0909E38
../../libs/basetrf1/mkdir.htm#HDRA3IK150GACO
../../libs/basetrf2/rename.htm#HDRV9Q260GACO
../../libs/basetrf2/rmdir.htm#HDRBBI1D0GACO
../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/basetrf1/link.htm#HDRA169C1F6
../../libs/basetrf2/unlink.htm#HDRA0949BAB
../../libs/basetrf1/mkdir.htm#HDRA3IK150GACO
../../libs/basetrf2/rmdir.htm#HDRBBI1D0GACO
../../libs/basetrf1/opendir.htm#HDRA0909AF7
../../libs/basetrf1/fork.htm
../../libs/basetrf1/chdir.htm#HDRSQJE0GACO

The chdir subroutine parses the path name to ensure that the target file is a directory and that the
process owner has permissions to the directory. After the chdir subroutine is run, the process uses the
new current directory to search all path names that do not begin with a / (slash).

Changing the Root Directory of a Process
Processes can change their understanding of the root directory through the chroot subroutine. Child
processes of the calling process consider the directory indicated by the chroot subroutine as the logical
root directory of the file system.

Processes use the global file system root directory for all path names starting with a / (slash).All path
name searches beginning with a / (slash) begin at this new root directory.

Subroutines That Control Directories
Due to the unique nature of directory files, directories are controlled by a special set of subroutines. The
following subroutines are designed to control directories:

chdir Changes the current working directory
chroot Changes the effective root directory
opendir, readdir, telldir, seekdir, rewinddir, or closedir

Perform various actions on directories
getcwd or getwd Gets path to current directory
mkdir Creates a directory
rename Renames a directory
rmdir Removes a directory

Working with JFS i-nodes

Files in the journaled file system (JFS) are represented internally as index nodes (i-nodes). Journaled file
system i-nodes exist in a static form on disk and contain access information for the file as well as pointers
to the real disk addresses of the file’s data blocks. The number of disk i-nodes available to a file system is
dependent on the size of the file system, the allocation group size (8 MB by default), and the number of
bytes per i-node ratio (4096 by default). These parameters are given to the mkfs command at file system
creation. When enough files have been created to use all the available i-nodes, no more files can be
created, even if the file system has free space. The number of available i-nodes can be determined by
using the df -v command. Disk i-nodes are defined in the /usr/include/jfs/ino.h file.

When a file is opened, an in-core i-node is created by the operating system. The in-core i-node contains a
copy of all the fields defined in the disk i-node, plus additional fields for tracking the in-core i-node. In-core
i-nodes are defined in the /usr/include/jfs/inode.h file.

Disk i-node Structure for JFS

Each disk i-node in the journaled file system (JFS) is a 128-byte structure.

The offset of a particular i-node within the i-node list of the file system produces the unique number
(i-number) by which the operating system identifies the i-node. A bit map, known as the i-node map, tracks
the availability of free disk i-nodes for the file system.

Disk i-nodes include the following information:

Field Contents
i_mode Type of file and access permission mode bits
i_size Size of file in bytes
i_uid Access permissions for the user ID

106 Writing and Debugging Programs

../../libs/basetrf1/chroot.htm#HDRMPJ140GACO
../../libs/basetrf1/chdir.htm#HDRSQJE0GACO
../../libs/basetrf1/chroot.htm#HDRMPJ140GACO
../../libs/basetrf1/opendir.htm#HDRA0909AF7
../../libs/basetrf1/getcwd.htm#HDRA0909EF1
../../libs/basetrf1/getwd.htm#HDRA0909E38
../../libs/basetrf1/mkdir.htm#HDRA3IK150GACO
../../libs/basetrf2/rename.htm#HDRV9Q260GACO
../../libs/basetrf2/rmdir.htm#HDRBBI1D0GACO
../../cmds/aixcmds3/mkfs.htm#HDRA1019296C
../../cmds/aixcmds2/df.htm#HDRA10192B83

Field Contents
i_gid Access permissions for the group ID
i_nblocks Number of blocks allocated to the file
i_mtime Last time file was modified
i_atime Last time file was accessed
i_ctime Last time i-node was modified
i_nlink Number of hard links to the file
i_rdaddr[8] Real disk addresses of the data
i_rindirect Real disk address of the indirect block, if any

It is impossible to change the data of a file without changing the i-node, but it is possible to change the
i-node without changing the contents of the file. For example, when permission is changed, the information
within the i-node (i_ctime) is modified, but the data in the file remains the same.

The i_rdaddr field within the disk i-node contains 8 disk addresses. These addresses point to the first 8
data blocks assigned to the file. The i_rindirect field address points to an indirect block. Indirect blocks
are either single indirect or double indirect. Thus, there are three possible geometries of block allocation
for a file: direct, indirect, or double indirect. Use of the indirect block and other file space allocation
geometries are discussed in the article “JFS File Space Allocation” on page 109.

Disk i-nodes do not contain file or path name information. Directory entries are used to link file names to
i-nodes. Any i-node can be linked to many file names by creating additional directory entries with the link
or symlink subroutine. To discover the i-node number assigned to a file, use the ls -i command.

The i-nodes that represent files that define devices contain slightly different information from i-nodes for
regular files. Files associated with devices are called special files. There are no data block addresses in
special device files, but the major and minor device numbers are included in the i_rdev field.

In normal situations, a disk i-node is released when the link count (i_nlink) to the i-node equals 0. Links
represent the file names associated with the i-node. When the link count to the disk i-node is 0, all the
data blocks associated with the i-node are released to the bit map of free data blocks for the file system.
The i-node is then placed on the free i-node map.

In-core i-node Structure

When a file is opened, the information in the disk i-node is copied into an in-core i-node for easier access.
The in-core i-node structure contains additional fields which manage access to the disk i-node’s valuable
data. The fields of the in-core i-node are defined in the inode.h file. Some of the additional information
tracked by the in-core i-node is:

v Status of the in-core i-node, including flags that indicate:

– An i-node lock

– A process waiting for the i-node to unlock

– Changes to the file’s i-node information

– Changes to the file’s data

v Logical device number of the file system that contains the file

v i-number used to identify the i-node

v Reference count. When the reference count field equals 0, the in-core i-node is released.

When an in-core i-node is released (for instance with the close subroutine), the in-core i-node reference
count is reduced by 1. If this reduction results in the reference count to the in-core i-node becoming 0, the
i-node is released from the in-core i-node table, and the contents of the in-core i-node are written to the
disk copy of the i-node (if the two versions differ).

Chapter 5. File Systems and Directories 107

../../libs/basetrf1/link.htm#HDRA169C1F6
../../libs/basetrf2/symlink.htm#HDRA2089B6D
../../cmds/aixcmds3/ls.htm#HDRGVB310FISH
../../libs/basetrf1/close.htm#HDRA08793A0

Working with JFS2 i-nodes
Files in the enhanced journaled file system (JFS2) are represented internally as index nodes (i-nodes).
JFS2 i-nodes exist in a static form on the disk and they contain access information for the files as well as
pointers to the real disk addresses of the file’s data blocks. The i-nodes are allocated dynamically by
JFS2.

When a file is opened, an in-core i-node is created by the operating system. The in-core i-node contains a
copy of all the fields defined in the disk i-node, plus additional fields for tracking the in-core i-node. In-core
i-nodes are defined in the /usr/include/j2/j2_inode.h file.

Disk i-node Structure for JFS2
Each disk i-node in JFS2 is a 512 byte structure. The index of a particular i-node allocation map of the file
system produces the unique number (i-number) by which the operating system identifies the i-node. The
i-node allocation map tracks the location of the i-nodes on the disk as well as their availability.

Disk i-nodes include the following information:

Field Contents
di_mode Type of file and access permission mode bits
di_size Size of file in bytes
di_uid Access permissions for the user ID
di_gid Access permissions for the group ID
di_nblocks Number of blocks allocated to the file
di_mtime Last time file was modified
di_atime Last time file was accessed
di_ctime Last time i-node was modified
di_nlink Number of hard links to the file
di_btroot Root of B+ tree describing the disk addresses of the data

It is impossible to change the data of a file without changing the i-node, but it is possible to change the
i-node without changing the contents of the file. For example, when permission is changed, the information
within the i-node (di_mode) is modified, but the data in the file remains the same.

The di_btroot describes the root of the B+ tree. It describes the data for the i-node. di_btroot has a field
indicating how many of its entries in the i-node are being used and another field describing whether they
are leaf nodes or internal nodes for the B+ tree. File space allocation geometries are discussed in the
article “JFS2 File Space Allocation” on page 113.

Disk i-nodes do not contain file or path name information. Directory entries are used to link file names to
i-nodes. Any i-node can be linked to many file names by creating additional directory entries with the link
or symlink subroutine. To discover the i-node number assigned to a file, use the ls -i command.

The i-nodes that represent files that define devices contain slightly different information from i-nodes for
regular files. Files associated with devices are called special files. There are no data block addresses in
special device files, but the major and minor device numbers are included in the di_rdev field.

In normal situations, a disk i-node is released when the link count (di_nlink) to the i-node equals 0. Links
represent the file names associated with the i-node. When the link count to the disk i-node is 0, all the
data blocks associated with the i-node are released to the bit map of free data blocks for the file system.
The i-node is then placed on the free i-node map.

108 Writing and Debugging Programs

../../libs/basetrf1/link.htm#HDRA169C1F6
../../libs/basetrf2/symlink.htm#HDRA2089B6D
../../cmds/aixcmds3/ls.htm#HDRGVB310FISH

In-core i-node Structure
When a file is opened, the information in the disk i-node is copied into an in-core i-node for easier access.
The in-core i-node structure contains additional fields which manage access to the disk i-node’s valuable
data. The fields of the in-core i-node are defined in the j2_inode.h file. Some of the additional information
tracked by the in-core i-node is:

v Status of the in-core i-node, including flags that indicate:

– An i-node lock

– A process waiting for the i-node to unlock

– Changes to the file’s i-node information

– Changes to the file’s data

v Logical device number of the file system that contains the file

v i-number used to identify the i-node

v Reference count. When the reference count field equals 0, the in-core i-node is released.

When an in-core i-node is released (for instance with the close subroutine), the in-core i-node reference
count is reduced by 1. If this reduction results in the reference count to the in-core i-node becoming 0, the
i-node is released from the in-core i-node table, and the contents of the in-core i-node are written to the
disk copy of the i-node (if the two versions differ).

JFS File Space Allocation

File space allocation is the method by which data is apportioned physical storage space in the operating
system. The kernel allocates disk space to a file or directory in the form of logical blocks. A Logical block
refers to the division of a file or directory’s contents into 4096 bytes units. Logical blocks are not tangible
entities; however, the data in a logical block consumes physical storage space on the disk. Each file or
directory consists of 0 or more logical blocks. Fragments, instead of logical blocks, are the basic units for
allocated disk space in the journaled file system (JFS).

Full and Partial Logical Blocks

A file or directory may contain full or partial logical blocks. A full logical block contains 4096 bytes of data.
Partial logical blocks occur when the last logical block of a file or directory contains less than 4096 bytes
of data.

For example, a file of 8192 bytes is two logical blocks. The first 4096 bytes reside in the first logical block
and the following 4096 bytes reside in the second logical block. Likewise, a file of 4608 bytes consists of
two logical blocks. However, the last logical block is a partial logical block containing the last 512 bytes of
the file’s data. Only the last logical block of a file can be a partial logical block.

Allocation in Fragmented File Systems

The default fragment size is 4096 bytes. You can specify smaller fragment sizes with the mkfs command
during a file system’s creation. Allowable fragment sizes are: 512, 1024, 2048, and 4096 bytes. You can
use only one fragment size in a file system. See “JFS File System Layout” on page 137 for more
information on the file system structure.

To maintain efficiency in file system operations, the JFS allocates 4096 bytes of fragment space to files
and directories that are 32KB or larger. A fragment that covers 4096 bytes of disk space is allocated to a
full logical block. When data is added to a file or directory, the kernel allocates disk fragments to store the
logical blocks. Thus, if the file system’s fragment size is 512 bytes, a full logical block is the allocation of 8
fragments.

Chapter 5. File Systems and Directories 109

../../libs/basetrf1/close.htm#HDRA08793A0

The kernel allocates disk space so that only the last bytes of data receive a partial block allocation. As the
partial block grows beyond the limits of its current allocation, additional fragments are allocated. If the
partial block increases to 4096 bytes, the data stored in its fragments are reallocated into 4096 file system
block allocations. A partial logical block that contains less than 4096 bytes of data is allocated the number
of fragments that best matches its storage requirements.

Block reallocation also occurs if data is added to logical blocks that represent file holes. A file hole is an
″empty″ logical block located prior to the last logical block that stores data. (File holes do not occur within
directories.) These empty logical blocks are not allocated fragments. However, as data is added to file
holes, allocation occurs. Each logical block that was not previously allocated disk space is allocated 4096
byte of fragment space.

Additional block allocation is not required if existing data in the middle of a file or directory is overwritten.
The logical block containing the existing data has already been allocated fragments.

JFS tries to maintain contiguous allocation of a file or directory’s logical blocks on the disk. Maintaining
contiguous allocation lessens seek time because the data for a file or directory can be accessed
sequentially and found on the same area of the disk. However, disk fragments for one logical block are not
always contiguous to the disk fragments for another logical block. The disk space required for contiguous
allocation may not be available if it has already been written to by another file or directory. An allocation for
a single logical block, however, always contains contiguous fragments.

The file system uses a bitmap called the block allocation map to record the status of every block in the file
system. When the file system needs to allocate a new fragment, it refers to the fragment allocation map to
identify which fragments are available. A fragment can only be allocated to a single file or directory at a
time.

Allocation in Compressed File Systems

In a file system that supports data compression, directories are allocated disk space. Data compression
also applies to regular files and symbolic links whose size is larger than that of their i-nodes.

The allocation of disk space for compressed file systems is the same as that of fragments in fragmented
file systems. A logical block is allocated 4096 bytes when it is modified. This allocation guarantees that
there will be a place to store the logical block if the data does not compress. The system requires that a
write or store operation report an out-of-disk-space condition into a memory-mapped file at a logical
block’s initial modification. After modification is complete, the logical block is compressed before it is
written to a disk. The compressed logical block is then allocated only the number of fragments required for
its storage.

In a fragmented file system, only the last logical block of a file (not larger than 32KB) can be allocated less
than 4096 bytes. The logical block becomes a partial logical block. In a compressed file system, every
logical block can be allocated less than a full block.

A logical block is no longer considered modified after it is written to a disk. Each time a logical block is
modified, a full disk block is allocated again, according to the system requirements. Reallocation of the
initial full block occurs when the logical block of compressed data is successfully written to a disk.

Allocation in File Systems Enabled for Large Files

Beginning in AIX 4.2, in a file system enabled for large files, the JFS allocates two sizes of fragments for
regular files. A ″large″ fragment (32 X 4096) is allocated for logical blocks after the 4 MB boundary, and a
4096 bytes fragment is allocated for logical blocks before the 4 MB boundary. All nonregular files allocate
4096 bytes fragments. This geometry allows a maximum file size of slightly less than 64 gigabytes
(68589453312).

110 Writing and Debugging Programs

A ″large″ fragment is made up of 32 contiguous 4096 bytes fragments. Because of this requirement, it is
recommended that file systems enabled for large files have predominantly large files in them. Storing
many small files (files less than 4 MB) can cause free-space fragmentation problems. This can cause large
allocations to fail with ENOSPC because the file system does not contain 32 contiguous disk addresses.

Disk Address Format

JFS fragment support requires fragment-level addressability. As a result, disk addresses have a special
format for mapping where the fragments of a logical block reside on the disk. Fragmented and
compressed file systems use the same method for representing disk addresses. Disk addresses are
contained in the i_rdaddr field of the i-nodes or in the indirect blocks. All fragments referenced in a single
address must be contiguous on the disk.

The disk address format consists of two fields, the nfrags and addr fields. These fields describe the area
of disk covered by the address.

addr Indicates which fragment on the disk is the starting fragment
nfrags Indicates the total number of contiguous fragments not used by the address

For example, if the fragment size for the file system is 512 bytes and the logical block is divided into eight
fragments, the nfrags value is 3, indicating that five fragments are included in the address.

The following examples illustrate possible values for the addr and nfrags fields for different disk
addresses. These values assume a fragment size of 512 bytes, indicating that the logical block is divided
into eight fragments.

Address for a single fragment:
addr: 143

nfrags: 7

This address indicates that the starting location of the data is fragment 143 on the disk. The nfrags value
indicates that the total number of fragments included in the address is one. The nfrags value changes in a
file system that has a fragment size other than 512 bytes. To correctly read the nfrags value, the system,
or any user examining the address, must know the fragment size of the file system.

Address for five fragments:
addr: 1117

nfrags: 3

In this case, the address starts at fragment number 1117 on the disk and continues for five fragments
(including the starting fragment). There are three fragments remaining, as illustrated by the nfrags value.

The disk addresses are 32 bits in size. The bits are numbered from 0 to 31. The 0 bit is always reserved.
Bits 1 through 3 contain the nfrags field. Bits 4 through 31 contain the addr field.

Indirect Blocks

The JFS uses the indirect blocks to address the disk space allocated to larger files. Indirect blocks allow
the greatest flexibility for file sizes and the fastest retrieval time. The indirect block is assigned using the
i_rindirect field of the disk i-node. This field allows for three geometries or methods for addressing the
disk space:

v Direct

v Single indirect

Chapter 5. File Systems and Directories 111

v Double indirect

Each of these methods uses the same disk address format as compressed and fragmented file systems.
Because files larger than 32KB are allocated fragments of 4096 bytes, the nfrags field for addresses using
the single indirect or double indirect method has a value of 0.

Direct Method
When the direct method of disk addressing is used, each of the eight addresses listed in the i_rdaddr field
of the disk i-node points directly to a single allocation of disk fragments. The maximum size of a file using
direct geometry is 32,768 bytes (32KB), or 8 x 4096 bytes. When the file requires more than 32KB, an
indirect block is used to address the file’s disk space.

Single Indirect Method
The i_rindirect field contains an address that points to either a single indirect block or a double indirect
block. When the single indirect disk addressing method is used, the i_rindirect field contains the address
of an indirect block containing 1024 addresses. These addresses point to the disk fragments for each
allocation. Using the single indirect block geometry, the file can be up to 4,194,304 bytes (4MB), or 1024 x
4096 bytes.

Double Indirect Method
The double indirect addressing method uses the i_rindirect field to point to a double indirect block. The
double indirect block contains 512 addresses that point to indirect blocks, which contain pointers to the
fragment allocations. The largest file size that can be used with the double indirect geometry in a file
system not enabled for large files is 2,147,483,648 bytes (2GB), or 512(1024 x 4096) bytes.

Note: The maximum file size (“Writing Programs That Access Large Files” on page 115) that the read
and write system calls would allow is 2GB minus 1 (231-1). When memory map interface is used,
2GB can be addresed.

Beginning in AIX 4.2, file systems enabled for large files allow a maximum file size of slightly less than 64
gigabytes (68589453312). The first single indirect block contains 4096 byte fragments, and all subsequent
single indirect blocks contain (32 X 4096) byte fragments. The following produces the maximum file size
for file systems enabling large files:
(1 * (1024 * 4096)) + (511 * (1024 * 131072))

The fragment allocation assigned to a directory is divided into records of 512 bytes each and grows in
accordance with the allocation of these records.

Quotas

Disk quotas restrict the amount of file system space any single user or group can monopolize.

quotactl Subroutine that sets limits on both the number of files and the number of disk blocks allocated to
each user or group on a file system. Quotas enforce two kinds of limits:

hard Maximum limit allowed. When a process hits its hard limit, requests for more space fail.

soft Practical limit. If a process hits the soft limit, a warning is printed to the user’s terminal. The
warning is often displayed at login. If the user fails to correct the problem after several login
sessions, the soft limit can become a hard limit.

System warnings are designed to encourage users to heed the soft limit. However, the quota system
allows processes access to the higher hard limit when more resources are temporarily required.

112 Writing and Debugging Programs

../../libs/basetrf2/quotactl.htm#HDRON2250BOB

JFS2 File Space Allocation
File space allocation is the method by which data is apportioned physical storage space in the operating
system. The kernel allocates disk space to a file or directory in the form of logical blocks. A Logical block
refers to the division of a file or directory contents into 512, 1024, 2048, or 4096 byte units. When a JFS2
file system is created the logical block size is specified to be one of 512, 1024, 2048, or 4096 bytes.
Logical blocks are not tangible entities; however, the data in a logical block consumes physical storage
space on the disk. Each file or directory consists of 0 or more logical blocks.

Full and Partial Logical Blocks
A file or directory may contain full or partial logical blocks. A full logical block contains 512, 1024, 2048, or
4096 bytes of data, depending on the file system block size specified when the JFS2 file system was
created. Partial logical blocks occur when the last logical block of a file or directory contains less than file
system block size of data.

For example, a JFS2 file system with a logical block size of 4096 with a file of 8192 bytes is two logical
blocks. The first 4096 bytes reside in the first logical block and the following 4096 bytes reside in the
second logical block. Likewise, a file of 4608 bytes consists of two logical blocks. However, the last logical
block is a partial logical block containing the last 512 bytes of the file’s data. Only the last logical block of
a file can be a partial logical block.

JFS2 File Space Allocation
The default block size is 4096 bytes. You can specify smaller block sizes with the mkfs command during a
file system’s creation. Allowable fragment sizes are: 512, 1024, 2048, and 4096 bytes. You can use only
one blocks size in a file system. See “JFS File System Layout” on page 137 for more information on the
file system structure.

The kernel allocates disk space so that only the last file system block of data receive a partial block
allocation. As the partial block grows beyond the limits of its current allocation, additional blocks are
allocated.

Block reallocation also occurs if data is added to logical blocks that represent file holes. A file hole is an
″empty″ logical block located prior to the last logical block that stores data. (File holes do not occur within
directories.) These empty logical blocks are not allocated blocks. However, as data is added to file holes,
allocation occurs. Each logical block that was not previously allocated disk space is allocated a file system
block of space.

Additional block allocation is not required if existing data in the middle of a file or directory is overwritten.
The logical block containing the existing data has already been allocated file system blocks.

JFS tries to maintain contiguous allocation of a file or directory’s logical blocks on the disk. Maintaining
contiguous allocation lessens seek time because the data for a file or directory can be accessed
sequentially and found on the same area of the disk. The disk space required for contiguous allocation
may not be available if it has already been written to by another file or directory.

The file system uses a bitmap called the block allocation map to record the status of every block in the file
system. When the file system needs to allocate a new block, it refers to the block allocation map to identify
which blocks are available. A block can only be allocated to a single file or directory at a time.

Extents
An extent is a sequence of contiguous file system blocks allocated to a JFS2 object as a unit. Large
extents may span multiple allocation groups.

Chapter 5. File Systems and Directories 113

Every JFS2 object is represented by an i-node. I-nodes contain the expected object-specific information
such as time stamps, file type (regular verses directory etcetera.) They also contain a B+ tree to record
the allocation of extents.

A file is allocated in sequences of extents. An extent is a contiguous variable-length sequence of file
system blocks allocated as a unit. An extent may span multiple allocation groups. These extents are
indexed in a B+ tree.

There are two values needed to define an extent, the length and the address. The length is measured in
units of the file system block size. 24-bit value represents the length of an extent, so an extent can range
in size from 1 to 224 -1 file system blocks. Therefore the size of the maximum extent depends on the file
system block size. The address is the address of the first block of the extent. The address is also in units
of file system blocks, it is the block offset from the beginning of the file system.

An extent based file system combined with user-specified file system block size allows JFS2 to not have
seperate support for internal fragmentation. The user can configure the file system with a small file system
block size (such as 512 bytes) to minimize internal fragmentation for file systems with large numbers of
small size files.

In general, the allocation policy for JFS2 tries to maximize contiguous allocation by allowing a minimum
number of extents, with each extent as large and contiguous as possible. This allows for larger I/O transfer
resulting in improved performance. However in some cases this is not always possible.

B+ Trees
This section describes the B+ tree data structure used for file layout. The discussion shows how generic
B+ tree concepts have been adapted specifically for JFS2; it is not a tutorial on B+ tree data structure.

B+ trees were selected to help with performance of reading and writing extents, the most common
operations JFS2 will have to do.

An extent allocation descriptor (xad_t structure) describes the extent and adds two more fields that are
needed for representing files: an offset, describing the logical the logical byte address the extent
represents, and a flags field. The xad_t structure is defined in /usr/include/j2/j2_xtree.h.

An xad structure describes two abstract ranges:

v The physical range of disk blocks. This starts at file system block number addressXAD(xadp) address
and extends for lengthXAD(xadp) file system blocks.

v The logical range of bytes within a file. This starts at byte number offsetXAD(xadp)*(file system block
size) and extends for lengthXAD(xadp)*(file system block size.)

The physical range and the logical range are both the same number of bytes long. Note that offset is
stored in units of file system block size (example, a value of 3) in offset means 3 file system blocks, not
three bytes. Extents within a file are always aligned on file system block size boundaries.

There will be one generic B+ tree index structure for all index objects in JFS2 except for directories. The
data being indexed will depend on the object. The B+ tree is keyed by the offset of the xad of data being
described by the tree. The entries are sorted by the offsets of the xad structures. An xad structure is an
entry in a node of a B+ tree.

The bottom of the second section of a disk inode contains a data dscriptor which tells what is stored in the
second half of the inode. The second half of the inode could contain in-line data for the file if it is small
enough. If the file data won’t fit in the in-line data space for the inode it will be contained in extents and
the inode will contain the root node of the B+ tree. The header will indicate how many xad are in use and
how many are available. Generally, the inode will contain 8 xad structures for the root of the B+ tree. If

114 Writing and Debugging Programs

there are 8 or fewer extents for the file, then these 8 xad structures are also a leaf node of the B+ tree.
They will describe the extents. Otherwise the 8 xad structures in the inode will point to either the leaves or
internal nodes of the B+ tree.

Once all of the available xad structures in the inode are used, the B+ tree must be split. We will allocate
4K of disk space for a leaf node of the B+ tree. A leaf node is logically an array of xad entries with a
header. The header points to the first free xad entry in the node, all xad entries following that one are also
not allocated. The 8 xad entries are copied from the inode to the leaf node, the header is initialized to
point to the 9th entry as the first free entry. Then we will update the root of the B+ tree into the first xad
structure of the inode; this xad structure will point to the newly allocated leaf node. The offset for this new
xad structure will be the offset of the first entry in the leaf node. The header in the inode will be updated to
indicate that now only 1 xad is being used for the B+ tree. The header in the inode also needs to be
updated to indicate the inode now contains the pure root of a B+ tree.

As new extents are added to the file, they will continue to be added to the same leaf node in the
necessary order. This will continue until the leaf node fills. Once the node fills a new 4K of disk space will
be allocated for another leaf node of the B+ tree. The second xad structure from the inode will be set to
point to this newly allocated node.

This will continue until all 8 xad structures in the inode are filled, at which time another split of the B+ tree
will occur. This split will create internal nodes of the B+ tree which are used purely to route the searches
of the tree. This will allocate 4K of disk space for an internal node of the B+ tree. An internal node looks
the same as a leaf node. The 8 xad entries are copied from the inode to the internal node, the header is
initialized to point to the 9th entry as the first free entry. Then it will update the root of the B+ tree by
making the first xad structure of the inode point to the newly allocated internal node. The header in the
inode will be updated to indicate that now only 1 xad is being used for the B+ tree.

The file /usr/include/j2/j2_xtree.h describes the header for the root of the B+ tree in struct xtpage_t. The
file /usr/include/j2/j2_btree.h describes the header for an internal node or a leaf node in struct btpage_t.

Writing Programs That Access Large Files

Beginning in AIX 4.2, the operating system allows files that are larger than 2 gigabytes (2GB). This article
is intended to assist programmers in understanding the implications of ″large″ files on their applications
and to assist them in modifying their applications. A new set of programming interfaces is defined, so that
application programs can be modified to be aware of large files.

The file system programming interfaces generally revolve around the off_t data type. In AIX 4.1, the off_t
data type was defined as a signed 32-bit integer. As a result, the maximum file size that these interfaces
would allow was 2 gigabytes minus 1.

Implications for Existing Programs

The 32-bit application environment that all applications used in prior releases remains unchanged. Existing
application programs will execute exactly as they did before. However, existing application programs will
not be able to deal with large files.

For example, the st_size field in the stat structure, which is used to x turn file sizes, is a signed, 32-bit
long. Therefore, that stat structure cannot be used to return file sizes that are larger than LONG_MAX. If
an application attempts to stat a file that is larger than LONG_MAX, the stat subroutine will fail, and errno
will be set to EOVERFLOW, indicating that the file size overflows the size field of the structure being used
by the program.

Chapter 5. File Systems and Directories 115

This behavior is significant because existing programs that might not appear to have any impacts as a
result of large files will experience failures in the presence of large files even though they may not even be
interested in the file size.

The errno EOVERFLOW can also be returned by lseek and by fcntl if the values that need to be returned
are larger than the data type or structure that the program is using. For lseek, if the resulting offset is
larger than LONG_MAX, lseek will fail and errno will be set to EOVERFLOW. For fcntl, if the caller uses
F_GETLK and the blocking lock’s starting offset or length is larger than LONG_MAX, the fcntl call will fail,
and errno will be set to EOVERFLOW.

Open Protection

Many of the existing application programs were written under the assumption that a file size could never
be larger than could be represented in a signed, 32-bit long. These programs could have unexpected
behavior, including data corruption, if allowed to operate on large files. Beginning in AIX 4.2, the operating
system implements an open-protection scheme to protect applications from this class of failure.

When an application that has not been enabled for large-file access attempts to open a file that is larger
than LONG_MAX, the open subroutine will fail and errno will be set to EOVERFLOW. Application
programs that have not been enabled will be unable to access a large file, and the possibility of
inadvertent data corruption is avoided. Applications that need to be able to open large files must be ported
to the large-file environment described in ″“Porting Applications to the Large File Environment”″.

In addition to open protection, a number of other subroutines offer protection by providing an execution
environment, which is identical to the environment under which these programs were developed. If an
application uses the write family of subroutines and the write request crosses the 2 gigabyte boundary,
the write subroutines will transfer data only up to 2 gigabytes minus 1. If the application attempts to write
at or beyond the 2Gb-1 boundary, the write subroutines will fail and set errno to EFBIG. The behavior of
mmap, ftruncate, and fclear are similar.

The read family of subroutines also participates in the open protection scheme. If an application attempts
to read a file across the 2 gigabyte threshold, only the data up to 2 gigabytes minus 1 will be read. Reads
at or beyond the 2Gb-1 boundary will fail, and errno will be set to EOVERFLOW.

Open protection is implemented by a flag associated with an open file description. The current state of the
flag can be queried with the fcntl subroutine using the F_GETFL command. The flag can be modified with
the fcntl subroutine using the F_SETFL command.

Since open file descriptions are inherited across the exec family of subroutines, application programs that
pass file descriptors that are enabled for large-file access to other programs should consider whether the
receiving program can safely access the large file.

Porting Applications to the Large File Environment

Beginning in AIX 4.2, the operating system provides two different ways for applications to be enabled for
large-file access. Application programmers must decide which approach best suits their needs. The first
approach is to define _LARGE_FILES, which carefully redefines all of the relevant data types, structures,
and subroutine names to their large-file enabled counterparts. The second approach is to recode the
application to call the large-file enabled subroutines explicitly.

Defining _LARGE_FILES has the advantage of maximizing application portability to other platforms since
the application is still written to the normal POSIX and XPG interfaces. It has the disadvantage of creating
some ambiguity in the code since the size of the various data items is not obvious from looking at the
code.

116 Writing and Debugging Programs

Recoding the application has the obvious disadvantages of requiring more effort and reducing application
portability. It can be used when the redefinition effect of _LARGE_FILES would have a considerable
negative impact on the program or when it is desirable to convert only a very small portion of the program.

It is very important to understand that in either case, the application program MUST be carefully audited to
ensure correct behavior in the new environment. Some of the common programming pitfalls are discussed
in ″“Common Pitfalls using the Large File Environment” on page 119″.

Using _LARGE_FILES

In the default compilation environment, the off_t data type is defined as a signed, 32-bit long. Beginning in
AIX 4.2, if the application defines _LARGE_FILES before the inclusion of any header files, then the
large-file programming environment is enabled. and off_t is defined to be a signed, 64-bit long long. In
addition, all of the subroutines that deal with file sizes or file offsets are redefined to be their large-file
enabled counterparts. Similarly, all of the data structures with embedded file sizes or offsets are redefined.

Assuming that the application is coded without any dependencies on off_t being a 32-bit quantity, the
resulting binary should work properly in the new environment. In practice, application programs rarely
require a porting effort this small.

The following table shows the redefinitions that occur in the _LARGE_FILES environment beginning in AIX
4.2.

Item Redefined To Be Header File

off_t long long <sys/types.h>

fpos_t long long <sys/types.h>

struct stat struct stat64 <sys/stat.h>

stat() stat64() <sys/stat.h>

fstat() fstat64() <sys/stat.h>

lstat() lstat64() <sys/stat.h>

mmap() mmap64() <sys/mman.h>

lockf() lockf64() <sys/lockf.h>

struct flock struct flock64 <sys/flock.h>

open() open64() <fcntl.h>

creat() creat64() <fcntl.h>

F_GETLK F_GETLK64 <fcntl.h>

F_SETLK F_SETLK64 <fcntl.h>

F_SETLKW F_SETLKW64 <fcntl.h>

ftw() ftw64() <ftw.h>

nftw() nftw64() <ftw.h>

fseeko() fseeko64() <stdio.h>

ftello() ftello64() <stdio.h>

fgetpos() fgetpos64() <stdio.h>

fsetpos() fsetpos64() <stdio.h>

fopen() fopen64() <stdio.h>

freopen() freopen64() <stdio.h>

lseek() lseek64() <unistd.h>

Chapter 5. File Systems and Directories 117

ftruncate() ftruncate64() <unistd.h>

truncate() truncate64() <unistd.h>

fclear() fclear64() <unistd.h>

struct aiocb struct aiocb64 <sys/aio.h>

aio_read() aio_read64() <sys/aio.h>

aio_write() aio_write64() <sys/aio.h>

aio_cancel() aio_cancel64() <sys/aio.h>

aio_suspend aio_suspend64() <sys/aio.h>

aio_listio() aio_listio64() <sys/aio.h>

aio_return() aio_return64() <sys/aio.h>

aio_error aio_error64() <sys/aio.h>

Using the 64-Bit File System Subroutines

Using the _LARGE_FILES environment may be impractical for some applications due to the far-reaching
implications of changing the size of off_t to 64 bits. If the number of changes is small, it may be more
practical to convert a relatively small part of the application to be large-file enabled. The 64-bit file system
data types, structures, and subroutines are listed below:
<sys/types.h>
typedef long long off64_t;
typedef long long fpos64_t;

<fcntl.h>

extern int open64(const char *, int, ...);
extern int creat64(const char *, mode_t);

#define F_GETLK64
#define F_SETLK64
#define F_SETLKW64

<ftw.h>
extern int ftw64(const char *, int (*)(const char *,const struct stat64 *, int), int);
extern int nftw64(const char *, int (*)(const char *, const struct stat64 *, int,struct FTW *),int, int);

<stdio.h>

extern int fgetpos64(FILE *, fpos64_t *);
extern FILE *fopen64(const char *, const char *);
extern FILE *freopen64(const char *, const char *, FILE *);
extern int fseeko64(FILE *, off64_t, int);
extern int fsetpos64(FILE *, fpos64_t *);
extern off64_t ftello64(FILE *);

<unistd.h>

extern off64_t lseek64(int, off64_t, int);
extern int ftruncate64(int, off64_t);
extern int truncate64(const char *, off64_t);
extern off64_t fclear64(int, off64_t);

<sys/flock.h>

struct flock64;

<sys/lockf.h>

118 Writing and Debugging Programs

extern int lockf64 (int, int, off64_t);

<sys/mman.h>

extern void *mmap64(void *, size_t, int, int, int, off64_t);

<sys/stat.h>

struct stat64;

extern int stat64(const char *, struct stat64 *);
extern int fstat64(int, struct stat64 *);
extern int lstat64(const char *, struct stat64 *);

<sys/aio.h>

struct aiocb64
int aio_read64(int, struct aiocb64 *):
int aio_write64(int, struct aiocb64 *);
int aio_listio64(int, struct aiocb64 *[],

int, struct sigevent *);
int aio_cancel64(int, struct aiocb64 *);
int aio_suspend64(int, struct aiocb64 *[]);

Common Pitfalls using the Large File Environment

Porting of application programs to the large-file environment can expose a number of different problems in
the application. These problems are frequently the result of poor coding practices, which are harmless in a
32-bit off_t environment, but which can manifest themselves when compiled in a 64-bit off_t environment.
The information below illustrates some of the more common problems and solutions.

Note: In the examples below, off_t is assumed to be a 64-bit file offset.

Improper Use of Data Types

The most obvious source of problems with application programs is a failure to use the proper data types. If
an application attempts to store file sizes or file offsets in an integer variable, the resulting value will be
truncated and lose significance. The proper technique for avoiding this problem is to use the off_t data
type to store file sizes and offsets.

Incorrect:
int file_size;
struct stat s;

file_size = s.st_size;

Better:
off_t file_size;
struct stat s;
file_size = s.st_size;

Parameter Mismatches

Care must be taken when passing 64-bit integers to functions as arguments or when returning 64-bit
integers from functions. Both the caller and the called function must agree on the types of the arguments
and the return value in order to get correct results.

Passing a 32-bit integer to a function that expects a 64-bit integer causes the called function to
misinterpret the caller’s arguments, leading to unexpected behavior. This type of problem is especially
severe if the program passes scalar values to a function that expects to receive a 64-bit integer.

Chapter 5. File Systems and Directories 119

Many of the problems can be avoided by careful use of function prototypes as illustrated below. In the
code fragments below, fexample() is a function that takes a 64-bit file offset as a parameter. In the first
example, the compiler generates the normal 32-bit integer function linkage, which would be incorrect since
the receiving function expects 64-bit integer linkage. In the second example, the LL specifier is added,
forcing the compiler to use the proper linkage. In the last example, the function prototype causes the
compiler to promote the scalar value to a 64-bit integer. This is the preferred approach since the source
code remains portable between 32- and 64-bit environments.

Incorrect:
fexample(0);

Better:
fexample(0LL);

Best:
void fexample(off_t);

fexample(0);

Arithmetic Overflows

Even when an application uses the correct data types, it is still vulnerable to failures due to arithmetic
overflows. This problem usually occurs when the application performs an arithmetic overflow before it is
promoted to the 64-bit data type. In the following example, blkno is a 32-bit block number. Multiplying the
block number by the block size occurs before the promotion, and overflow will occur if the block number is
sufficiently large. This problem is especially destructive because the code is using the proper data types
and the code works properly for small values, but fails for large values. The problem can be fixed by
typecasting the values before the arithmetic operation.

Incorrect:
int blkno;
off_t offset;

offset = blkno * BLKSIZE;

Better:
int blkno;
off_t offset;
offset = (off_t) blkno * BLKSIZE;

This problem can also appear when passing values based on fixed constants to functions that expect
64-bit parameters. In the example below, LONG_MAX+1 results in a negative number, which is
sign-extended when it is passed to the function.

Incorrect:
void fexample(off_t);

fexample(LONG_MAX+1);

Better:
void fexample(off_t);

fexample((off_t)LONG_MAX+1);

Fseek/Ftell

The data type used by fseek and ftell subroutines is long and cannot be redefined to the appropriate
64-bit data type in the _LARGE_FILES environment. Application programs that access large files and that

120 Writing and Debugging Programs

../../libs/basetrf1/fseek.htm#HDRA10499C8

use fseek and ftell need to be converted. This can be done in a number of ways. The fseeko and ftello
subroutines are functionally equivalent to fseek and ftell except that the offset is given as an off_t instead
of a long. Make sure to convert all variables that can be used to store offsets to the appropriate type.

Incorrect:
long cur_offset, new_offset;

cur_offset = ftell(fp);
fseek(fp, new_offset, SEEK_SET);

Better:
off_t cur_offset, new_offset;

cur_offset = ftello(fp);
fseeko(fp, new_offset, SEEK_SET);

Failure to Include Proper Header Files

In order for application programs to see the function and data type redefinitions, they must include the
proper header files. This has the additional benefit of exposing the function prototypes for various
subroutines, which enables stronger type-checking in the compiler.

Many application programs that call the open and creat subroutines do not include <fcntl.h>, which
contains the defines for the various open modes. These programs typically hard code the open modes.
This will cause runtime failures when the program is compiled in the _LARGE_FILES environment
because the program does call the proper open subroutine, and the resulting file descriptor is not enabled
for large-file access. Programs must make sure to include the proper header files, especially in the
_LARGE_FILES environment, to get visibility to the redefinitions of the environment.

Incorrect:
fd = open("afile",2);

Better:
#include <fcntl.h>

fd = open("afile",O_RDWR);

String Conversions

Converting file sizes and offsets to and from strings can cause problems when porting applications to the
large-file environment. The printf format string for a 64-bit integer is different than for a 32 bit integer.
Programs that do these conversions must be careful to use the proper format specifier. This is especially
difficult when the application needs to be portable between 32- and 64-bit environments since there is no
portable format specifier between the two environments. One way to deal with this problem is to write
offset converters that use the proper format for the size of off_t.
off_t
atooff(const char *s)
{

off_t o;

if (sizeof(off_t) == 4)
sscanf(s,"%d",&o);

else if (sizeof(off_t) == 8)
sscanf(s,"%lld",&o);

else
error();

return o;
}

Chapter 5. File Systems and Directories 121

main(int argc, char **argv)
{

off_t offset;
offset = atooff(argv[1]);
fexample(offset);

}

Imbedded File Offsets

Application programs that imbed file offsets or sizes in data structures may be affected by the change to
the size of the off_t in the large-file environment. This problem can be especially severe if the data
structure is shared between various applications or if the data structure is written into a file. In cases like
this, the programmer must decide if it should continue to contain a 32-bit offset or if it should be converted
to contain a 64-bit offset. If the application program needs to have a 32-bit file offset even if off_t is 64 bits,
the program may use the new data type soff_t, a short off_t. This data type remains 32 bits even in the
large-file environment. If the data structure is converted to a 64-bit offset, then all of the programs that
deal with that structure must be converted to understand the new data structure format.

File Size Limits

Application programs that are converted to be aware of large files may fail in their attempts to create large
files due to the file-size resource limit. The file-size resource limit is a signed, 32-bit value which limits
maximum file offset to which a process can write to a regular file. Programs that need to write large files
must have their file size limit set to RLIM_INFINITY.
struct rlimit r;

r.rlim_cur = r.rlim_max = RLIM_INFINITY;
setrlimit(RLIMIT_FSIZE,&r);

This limit may also be set from the Korn shell by issuing the command:
ulimit -f unlimited

To set this value permanently for a specific user, use the chuser command:

Example: chuser fsize_hard = -1 root

JFS File Size Limits
The maximum size of a file is ultimately a characteristic of the file system itself, not just the file size limit or
the environment. For the JFS, the maximum file size is determined by the parameters used at the time the
file system was made. For JFS file systems that are enabled for large files, the maximum file size is
slightly less than 64 gigabytes (0xff8400000). For all other JFS file systems, the maximum file size is
2Gb-1 (0x7fffffff). Attempts to write a file past the maximum file size in any file system format will fail, and
errno will be set to EFBIG.

JFS2 File Size Limits
For the JSF2. the maximun file size is limited by the file system itself.

Linking for Programmers

A link is a connection between a file name and an i-node (hard link) or between file names (symbolic link).
Linking allows access to an i-node (“Working with JFS i-nodes” on page 106) from multiple file names.
Directory entries pair file names with i-nodes. File names are easy for users to identify, and i-nodes
contain the real disk addresses of the file’s data. A reference count of all links into an i-node is maintained
in the i_nlink field of the i-node. Subroutines that create and destroy links use file names, not file
descriptors (“Using File Descriptors” on page 125). Therefore, it is not necessary to open files when
creating a link.

122 Writing and Debugging Programs

../../cmds/aixcmds1/chuser.htm

Processes can access and change the contents of the i-node by any of the linked file names. Two kinds of
links exist in this operating system, hard links and symbolic links.

Hard Links

link Subroutine that creates hard links.The presence of a hard link guarantees the existence of a file because
a hard link increments the link count in the i_nlink field of the i-node.

unlink Subroutine that releases links. When all hard links to an i-node are released, the file is no longer
accessible.

The user ID that created the original file owns the file and retains access mode authority over the file.
Otherwise, all hard links are treated equally by the operating system. Hard links must link file names and
i-nodes within the same file system since the i-node number is relative to a single file system.

Hard links always refer to a specific file because the directory entry created by the hard link pairs the new
file name to an i-node.

Example: If the /u/tom/bob file is linked to the /u/jack/foo file, the link count in the i_nlink field of the
foo file is 2. Both hard links are equal. If /u/jack/foo is removed, the file continues to exist by the name
/u/tom/bob and can be accessed by users with access to the tom directory. However, the owner of the file
is jack even though /u/jack/foo was removed. The space occupied by the file is charged to jack’s quota
account. Change file ownership using the chown subroutine.

Symbolic Links

symlink Subroutine that creates symbolic links

Symbolic links are implemented as a file that contains a path name. When a process encounters a
symbolic link, the path contained in the symbolic link is prepended to the path the process was searching.
If the path name in the symbolic link is an absolute path name, the process searches from the root
directory for the named file. If the path name in the symbolic link does not begin with a / (slash), the
process interprets the rest of the path relative to the position of the symbolic link. The unlink subroutine
also removes symbolic links.

Symbolic links can traverse file systems because they are treated as regular files by the operating system
rather than as part of the file system structure. The presence of a symbolic link does not guarantee the
existence of the target file because a symbolic link has no effect on the i_nlink field of the i-node.

readlink Subroutine that reads the contents of a symbolic link. Many subroutines (including the open and stat
subroutines) follow symbolic paths.

lstat Subroutine created to report on the status of the file containing the symbolic link and does not follow
the link. See the symlink subroutine for a list of subroutines that traverse symbolic links.

Symbolic links are also called soft links because they link to a file by path name. If the target file is
renamed or removed, the symbolic link cannot resolve.

Example: The symbolic link to /u/joe/foo is a file that contains the literal data /u/joe/foo. When the
owner of the foo file removes this file, subroutine calls made to the symbolic link cannot succeed. If the file
owner then creates a new file named foo in the same directory, the symbolic link leads to the new file.
Therefore, the link is considered soft because it is linked to interchangeable i-nodes.

In the ls -l command listing, an l in the first position indicates a linked file. In the final column of that
listing, the links between files are represented as Path2 -> Path1 (or Newname -> Oldname).

Chapter 5. File Systems and Directories 123

../../libs/basetrf1/link.htm#HDRA169C1F6
../../libs/basetrf2/unlink.htm#HDRA0949BAB
../../libs/basetrf1/chown.htm#HDRA9F01
../../libs/basetrf2/symlink.htm#HDRA2089B6D
../../libs/basetrf2/readlink.htm#HDRA08791030
../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf2/statx.htm#HDRA1609C70
../../libs/basetrf2/statx.htm#HDRA1609C70

unlink Subroutine that removes a directory entry. The Path parameter in the subroutine identifies the file to be
disconnected. At the completion of the unlink call, the link count of the i-node is reduced by the value of
1.

remove Subroutine that also removes a file name by calling either the unlink or rmdir subroutine.

Directory Links

mkdir Subroutine that creates directory entries for new directories, which creates hard links to the i-node
representing the directory

Symbolic links are recommended for creating additional links to a directory. Symbolic links do not interfere
with the . and .. directory entries and will maintain the empty, well-formed directory status. See the
Understanding Directory Links ″figure″ for a graphic example of the empty, well-formed directory /u/joe/foo
and the i_nlink values.
/u

68 j o e 0

/u/joe
mkdir ("foo", 0666)

68 n 0 0 0

n n 0 0

235 f o o 0

/u/joe/foo

235 n 0 0 0

68 n n 0 0

i_nlink Values

i = 68

n_link 3

For i = 68, the n_link value is 3 (/u; /u/joe; /u/joe/foo).

i = 235

n_link 2

For i = 235, the n_link value is 2 (/u/joe; /u/joe/foo).

Understanding Directory Links

rmdir or remove Remove links to directories

124 Writing and Debugging Programs

../../libs/basetrf2/unlink.htm#HDRA0949BAB
../../libs/basetrf2/remove.htm#HDRA244Y99629
../../libs/basetrf1/mkdir.htm#HDRA3IK150GACO
../../cmds/aixcmds4/rmdir.htm#HDRH7G1A0FISH
../../libs/basetrf2/remove.htm#HDRA244Y99629

Using File Descriptors

A file descriptor is an unsigned integer used by a process to identify an open file. Two thousand file
descriptors are available to each process. The open, pipe, creat, and fcntl subroutines all generate file
descriptors. File descriptors are generally unique to each process, but they can be shared by child
processes created with a fork subroutine or copied by the fcntl, dup, and dup2 subroutines.

File descriptors are indexes to the file descriptor table in the u_block area maintained by the kernel for
each process. The most common ways for processes to obtain file descriptors are through open or creat
operations or through inheritance from a parent process. When a fork operation occurs, the descriptor
table is copied for the child process, which allows the child process equal access to the files used by the
parent process.

System File and File Descriptor Tables

The system file and file descriptor data structures track each process’ access to a file and ensure data
integrity.

Structure Activity and Contents
file descriptor table Translates an index number (file descriptor) in the table to an open file.

File descriptor tables are created for each process and are located in the
u_block area set aside for that process. Each of the entries in a file
descriptor table has two fields: the flags area and the file pointer. The
structure of the file descriptor table is:

struct ufd
{

struct file *fp;
int flags;

}u_ufd[OPEN_MAX]

The close-on-exec (FD_CLOEXEC bit) flag can be set in the file
descriptor table using the fcntl subroutine. The dup subroutine copies
one file descriptor entry into another position in the same table. The fork
subroutine creates an identical copy of the entire file descriptor table for a
child process.

system open file table Contains entries for each open file. Two of the most important pieces of
information tracked in a file table entry are the current offset referenced
by all read or write operations to the file and the open mode
(O_RDONLY, O_WRONLY, or O_RDWR) of the file.

The open file data structure contains the current I/O offset for the file. The
system treats each read/write operation as an implied seek to the current
offset. Thus if x bytes are read or written, the pointer advances x bytes.
The lseek subroutine can be used to reassign the current offset to a
specified location in files that are randomly accessible. Stream-type files
(such as pipes and sockets) do not use the offset because the data in the
file is not randomly accessible.

Managing File Descriptors

Because files can be shared by many users, it is necessary to allow related processes to share a common
offset pointer and have a separate current offset pointer for independent processes that access the same
file. The open file table entry maintains a reference count to track the number of file descriptors assigned
to the file.

Multiple references to a single file can be caused by:

Chapter 5. File Systems and Directories 125

../../libs/basetrf1/lseek.htm#HDRA21595D1

v A separate process opening the file

v Child processes retaining the file descriptors assigned to the parent process

v The fcntl or dup subroutine creating copies of the file descriptors

Sharing Open Files

Each open operation creates a system table entry. Individual table entries ensure each process a separate
current I/O offsets. Independent offsets protect the integrity of the data.

When a file descriptor is duplicated, two processes then share the same offset and interleaving can occur.
Interleaving means that bytes are not read or written sequentially.

Duplicating File Descriptors
There are three ways file descriptors can be duplicated between processes: the dup or dup2 subroutine,
the fork subroutine, and the fcntl (file descriptor control) subroutine.

The dup and dup2 Subroutines:

dup Creates a copy of a file descriptor

The duplicate is created at an empty space in the user file descriptor table that contains the original
descriptor. A dup process increments the reference count in the file table entry by 1 and returns the index
number of the file-descriptor where the copy was placed.

dup2 Scans for the requested descriptor assignment and closes the requested file descriptor if it is open

The dup2 subroutine allows the process to designate which descriptor entry the copy will occupy, if a
specific descriptor-table entry is required.

The fork Subroutine:

fork Creates a child process that inherits the file descriptors assigned to the parent process. The child
process then execs a new process. Inherited descriptors that had the close-on-exec flag set by the fcntl
subroutine close.

The fcntl (File Descriptor Control) Subroutine:

fcntl Manipulates file structure and controls open file descriptors.

The fcntl subroutine can be used to make the following changes to a descriptor:

v Duplicate a file descriptor (identical to the dup subroutine).

v Get or set the close-on-exec flag.

v Set nonblocking mode for the descriptor.

v Append future writes to the end of the file (O_APPEND).

v Enable the generation of a signal to the process when it is possible to do I/O.

v Set or get the process ID or the group process ID for SIGIO handling.

v Close all file descriptors.

Preset File Descriptor Values

When the shell runs a program, it opens three files with file descriptors 0, 1, and 2. The default
assignments for these descriptors are:

126 Writing and Debugging Programs

0 Represents standard input.
1 Represents standard output.
2 Represents standard error.

These default file descriptors are connected to the terminal, so that if a program reads file descriptor 0 and
writes file descriptors 1 and 2, the program collects input from the terminal and sends output to the
terminal. As the program uses other files, file descriptors are assigned in ascending order.

If I/O is redirected using the < (less than) or > (greater than) symbols, the shell’s default file descriptor
assignments are changed. For instance:
prog < FileX > FileY

changes the default assignments for file descriptors 0 and 1 from the terminal to the appropriate files. In
this example, file descriptor 0 now refers to FileX and file descriptor 1 refers to FileY. File descriptor 2
has not been changed. The program does not need to know where its input comes from nor where it is
sent, as long as file descriptor 0 represents the input file and 1 and 2 represent output files.

The following sample program illustrates the redirection of standard output:
#include <fcntl.h>
#include <stdio.h>

void redirect_stdout(char *);

main()
{

printf("Hello world\n"); /*this printf goes to
* standard output*/

fflush(stdout);
redirect_stdout("foo"); /*redirect standard output*/
printf("Hello to you too, foo\n");

/*printf goes to file foo */
fflush(stdout);

}

void
redirect_stdout(char *filename)
{

int fd;
if ((fd = open(filename,O_CREAT|O_WRONLY,0666)) < 0)

/*open a new file */
{

perror(filename);
exit(1);

}
close(1); /*close old */

standard output/
if (dup(fd) !=1) /*dup new fd to

standard input/
{

fprintf(stderr,"Unexpected dup failure\n");
exit(1);

}
close(fd); /*close original, new fd,*/

* no longer needed*/
}

The value for file descriptor 2 can also be reassigned, but this is rarely done.

Within the file descriptor table, file descriptor numbers are assigned the lowest descriptor number available
at the time of a request for a descriptor. However, any value can be assigned within the file descriptor
table by using the dup subroutine.

Chapter 5. File Systems and Directories 127

File Descriptor Resource Limit

The number of file descriptors that can be allocated to a process is governed by a resource limit. The
default value is set in the /etc/security/limits file and is typically 2000 (for compatibility with earlier
releases). The limit can be changed by the ulimit command or the setrlimit subroutine. The maximum
size is defined by the constant OPEN_MAX.

File Creation and Removal
The internal procedures performed by the operating system when creating, opening, or closing files are
described in the following sections.

Creating a File

Different subroutines create specific types of files. They are:

Subroutine Type of File Created
creat Regular
open Regular (when the O_CREAT flag is set)
mknod Regular, first-in-first-out (FIFO), or special
mkfifo Named pipe (FIFO)
pipe Unnamed pipe
socket Sockets
mkdir Directories
symlink Symbolic link

Creating a Regular File (creat, open, or mknod Subroutines)

You use the creat subroutine to create a file according to the values set in the Pathname and Mode
parameters. If the file named in the Pathname parameter exists and the process has write permission to
the file, the creat subroutine truncates the file. Truncation releases all data blocks and sets the file size to
0. You can also create new, regular files using the open subroutine with the O_CREAT flag.

Files created with the creat, mkfifo, or mknod subroutine take the access permissions set in the Mode
parameter. Regular files created with the open subroutine take their access modes from the O_CREAT
flag Mode parameter. The umask subroutine sets a file-mode creation mask (set of access modes) for
new files created by processes and returns the previous value of the mask.

The permission bits on a newly created file are a result of the reverse of the umask bits ANDed with the
file-creation mode bits set by the creating process. When a new file is created by a process, the operating
system performs the following actions:

v Determines the permissions of the creating process.

v Retrieves the appropriate umask value.

v Reverses the umask value.

v Uses the AND operation to combine the permissions of the creating process with the reverse of the
umask value.

Creating a Special File (mknod or mkfifo Subroutine)

You can use the mknod and mkfifo subroutines to create new special files. The mknod subroutine
handles named pipes (FIFO), ordinary, and device files. It creates an i-node for a file identical to that
created by the creat subroutine. When you use the mknod subroutine, the file-type field is set to indicate
the type of file being created. If the file is a block or character-type device file, the names of the major and
minor devices are written into the i-node.

128 Writing and Debugging Programs

../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/basetrf1/pipe.htm#HDRS381F0GACO
../../libs/commtrf2/socket.htm#HDRTP22B0CHER
../../libs/basetrf1/mkdir.htm#HDRA3IK150GACO
../../libs/basetrf2/symlink.htm#HDRA2089B6D
../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/basetrf2/umask.htm#HDRKOE120GACO

The mkfifo subroutine is an interface for the mknod subroutine and is used to create named pipes.

Opening a File

The open subroutine is the first step required for a process to access an existing file. The open
subroutine returns a file descriptor. Reading, writing, seeking, duplicating, setting I/O parameters,
determining file status and closing the file all use the file descriptor returned by the open call. The open
subroutine creates entries for a file in the file descriptor table when assigning file descriptors.

The open subroutine:

v Checks for appropriate permissions that allow the process access to the file.

v Assigns a entry in the file descriptor table for the open file. The open subroutine sets the initial
read/write byte offset to 0, the beginning of the file.

The ioctl or ioctlx subroutines perform control operations on opened special device files.

Closing a File

When a process no longer needs access to the open file, the close subroutine removes the entry for the
file from the table. If more than one file descriptor references the file table entry for the file, the reference
count for the file is decreased by 1, and the close completes. If a file has only 1 reference to it, the file
table entry is freed. Attempts by the process to use the disconnected file descriptor result in errors until
another open subroutine reassigns a value for that file descriptor value. When a process exits, the kernel
examines its active user file descriptors and internally closes each one. This ensures that all files close
before the process ends.

Working with File I/O

All input and output (I/O) operations use the current file offset information stored in the system file
structure (“System File and File Descriptor Tables” on page 125). The current I/O offset designates a byte
offset that is constantly tracked for every open file. It is called the current I/O offset because it signals a
read or write process where to begin operations in the file. The open subroutine resets it to 0. The pointer
can be set or changed using the lseek subroutine.

Manipulating the Current Offset

Read and write operations can access a file sequentially. This is because the current I/O offset of the file
tracks the byte offset of each previous operation. The offset is stored in the system file table.

You can adjust the offset on files that can be randomly accessed, such as regular and special-type files,
using the lseek subroutine.

lseek Allows a process to position the offset at a designated byte. The lseek subroutine positions the pointer at
the byte designated by the Offset variable. The Offset value can be calculated from three places in the file
(designated by the value of the Whence variable):

absolute offset
Beginning byte of the file

relative offset
Position of the former pointer

end_relative offset
End of the file

Chapter 5. File Systems and Directories 129

../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/ioctl32.htm#HDRDW73VICHRIS
../../libs/basetrf1/close.htm#HDRA08793A0
../../libs/basetrf1/lseek.htm#HDRA21595D1
../../libs/basetrf1/lseek.htm#HDRA21595D1

The return value for the lseek subroutine is the current value of the pointer’s position in the file. For
example:
cur_off= lseek(fd, 0, SEEK_CUR);

The lseek subroutine is implemented in the file table. All following read and write operations use the new
position of the offset as their starting location.

Note: The offset cannot be changed on pipes or socket-type files.

fclear Subroutine that creates an empty space in a file. It sets to zero the number of bytes designated in the
NumberOfBytes variable beginning at the current offset. The fclear subroutine cannot be used if the
O_DEFER flag was set at the time the file was opened.

Reading a File

The read Subroutine that copies a specified number of bytes from an open file to a specified buffer. The copy
begins at the point indicated by the current offset. The number of bytes and buffer are specified by
the NBytes and Buffer parameters.

The read subroutine:

1. Assures that the FileDescriptor parameter is valid and that the process has read permissions. The
subroutine then gets the file table entry specified by the FileDescriptor parameter.

2. Sets a flag in the file to indicate a read operation is in progress. This locks other processes out of the
file during the operation.

3. Converts the offset byte value and the value of the NBytes variables into a block address.

4. Transfers the contents of the identified block into a storage buffer.

5. Copies the contents of the storage buffer into the area designated by the Buffer variable.

6. Updates the current offset according to the number of bytes actually read. Resetting the offset assures
that the data is read in sequence by the next read process.

7. Deducts the number of bytes read from the total specified in the NByte variable.

8. Loops until the number of bytes to be read is satisfied.

9. Returns the total number of bytes read.

The cycle completes when the file to be read is empty, the number of bytes requested is met, or a reading
error is encountered during the process.

Errors can occur while the file is being read from disk or in copying the data to the system file space.

It is advantageous for read requests to start at the beginning of data block boundaries and to be multiples
of the data block size. An extra iteration in the read loop can be avoided. If a process reads blocks
sequentially, the operating system assumes all subsequent reads will be sequential too.

During the read operation, the i-node is locked. No other processes are allowed to modify the contents of
the file while a read is in progress. However the file is unlocked immediately on completion of the read
operation. If another process changes the file between two read operations, the resulting data is different,
but the integrity of the data structure is maintained.

The following example illustrates how to use the read subroutine to count the number of null bytes in the
foo file:
#include <fcntl.h>
#include <sys/param.h>

main()

130 Writing and Debugging Programs

../../libs/basetrf1/fclear.htm#HDRXKNA0GACO
../../libs/basetrf2/read.htm#HDRJO11350GACO

{
int fd;
int nbytes;
int nbytes;
int nnulls;
int i;
char buf[PAGESIZE]; /*A convenient buffer size*/
nnulls=0;
if ((fd = open("foo",O_RDONLY)) < 0)

exit();
while ((nbytes = read(fd,buf,sizeof(buf))) > 0)

for (i = 0; i < nbytes; i++)
if (buf[i] == '\0';

nnulls++;
printf("%d nulls found\n", nnulls);

}

Writing a File

write Subroutine that adds the amount of data specified in the NBytes variable from the space designated by the
Buffer variable to the file described by the FileDescriptor variable. It functions similar to the read
subroutine. The byte offset for the write operation is found in the system file table’s current offset.

Sometimes when you write to a file the file does not contain a block corresponding to the byte offset
resulting from the write process. When this happens, the write subroutine allocates a new block. This new
block is added to the i-node information that defines the file. If adding the new block produces an indirect
block position (i_rindirect), the subroutine allocates more than one block when a file moves from direct
to indirect geometry.

During the write operation, the i-node is locked. No other processes are allowed to modify the contents of
the file while a write is in progress. However the file is unlocked immediately on completion of the write
operation. If another process changes the file between two write operations, the resulting data is different,
but the integrity of the data structure is maintained.

The write subroutine loops in a way similar to the read subroutine, logically writing one block to disk for
each iteration. At each iteration, the process either writes an entire block or only a portion of one. If only a
portion of a data block is required to accomplish an operation, the write subroutine reads the block from
disk to avoid overwriting existing information. If an entire block is required, it does not read the block
because the entire block is overwritten. The write operation proceeds block by block until the number of
bytes designated in the NBytes parameter is written.

Delayed Write
You can designate a delayed write process with the O_DEFER flag. Then, the data is transferred to disk
as a temporary file. The delayed write feature caches the data in case another process reads or writes the
data sooner. Delayed write saves extra disk operations. Many programs, such as mail and editors create
temporary files in the directory /tmp and quickly remove them.

When a file is opened with the deferred update (O_DEFER) flag, the data is not written to permanent
storage until a process issues an fsync subroutine call or a process issues a synchronous write to the file
(opened with O_SYNC flag). The fsync subroutine saves all changes in an open file to disk. See the open
subroutine for a description of the O_DEFER and O_SYNC flags.

Truncating Files

The truncate or ftruncate subroutines change the length of regular files. The truncating process must
have write permission to the file. The Length variable value indicates the size of the file after the truncation
operation is complete. All measures are relative to the first byte of the file, not the current offset. If the new
length (designated in the Length variable) is less than the previous length, the data between the two is

Chapter 5. File Systems and Directories 131

../../libs/basetrf2/write.htm#HDRCI2270GACO
../../libs/basetrf1/fsync.htm#HDRA164930
../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf2/truncate.htm#HDRA1589227B

removed. If the new length is greater than the existing length, zeros are added to extend the file size.
When truncation is complete, full blocks are returned to the file system, and the file size is updated.

Writing Programs to Use Direct I/O
Beginning in AIX 4.3, an application will be able to use Direct I/O on JFS or JFS2 files. This article is
intended to assist programmers in understanding the intricacies involved with writing programs to take
advantage of this feature.

Direct I/O vs. Normal Cached I/O
Normally, the JFS or JFS2 caches file pages in kernel memory. When the application does a file read
request, if the file page is not in memory, the JFS or JFS2 reads the data from the disk into the file cache,
then copies the data from the file cache to the user’s buffer. For application writes, the data is merely
copied from the user’s buffer into the cache. The actual writes to disk are done later.

This type of caching policy can be extremely effective when the cache hit rate is high. It also enables
read-ahead and write-behind policies. Lately, it makes file writes to the asynchronous, allowing the
application to continue processing instead of waiting for I/O requests to complete.

Direct I/O is an alternative caching policy which causes the file dta to be transferred from the disk to/from
the user’s buffer. Direct I/O for files is functionally equivalent to raw I/O for devices.

Benefits of Direct I/O
The primary benefit of direct I/O is to reduce CPU utilization for file reads and writes by eliminating the
copy from the cache to the user buffer. This can also be a benefit for file data which has a very poor
cache hit rate. If the cache hit rate is low, then most read requests have to go to the disk. Direct I/O can
also benefit applications which must use synchronous writes since these writes have to go to disk. In both
of these cases, CPU usage is reduced since the data copy is eliminated.

A second benefit if direct I/O is that it allows applications to avoid diluting the effectiveness of caching of
other files. Any time a file is read or written, that file competes for space in the cache. This may cause
other file data to be pushed out of the cache. If the newly cached data has very poor reuse
characterisitics, the effectiveness of the cache can be reduced. Direct I/O gives applications the ability to
identify files where the normal caching policies are ineffective, thus freeing up more cache space for files
where the policies are effective.

Performance Costs of Direct I/O
Although Direct I/O can reduce cpu usage, it typically results in longer wall clock times, especially for
relatively small requests. This penalty is caused by the fundamental differences between normal cached
I/O and Direct I/O.

Direct I/O Reads
Every Direct I/O read causes a synchronous read from disk; unlike the normal cached I/O policy where
read may be satisfied from the cache. This can result in very poor performance if the data was likely to be
in memory under the normal caching policy.

Direct I/O also bypasses the normal JFS or JFS2 read-ahead algorithms. These algorithms can be
extremely effective for sequential access to files by issuing larger and larger read requests and by
overlapping reads of future blocks with application processing.

Applications can compensate for the loss of JFS or JFS2 read-ahead by issuing larger reads requests. At
a minimum, Direct I/O readers should issue read requests of at least 128k to match the JFS or JFS2
read-ahead characteristics.

Applications can also simulate JFS or JFS2 read-ahead by issuing asynchronous Direct I/O read-ahead
either by use of multiple threads or by using aio_read.

132 Writing and Debugging Programs

Direct I/O Writes
Every direct I/O write causes a synchronous write to disk; unlike the normal cached I/O policy where the
data is merely copied and then written to disk later. This fundamental difference can cause a significant
performance penalty for applications which are converted to use Direct I/O.

Conflicting File Access Modes
In order to avoid consistency issues between programs that use Direct I/O and programs that use normal
cached I/O, Direct I/O is an exclusive use mode. If there are multiple opens of a file and some of them are
direct and others are not, the file will stay in its normal cached access mode. Only when the file is open
exclusively by Direct I/O programs will the file be placed in Direct I/O mode.

Similarly, if the file is mapped into virtual memory via the shmat or mmap system calls, then file will stay
in normal cached mode.

The JFS or JFS2 will attempt to move the file into Direct I/O mode any time the last conflicting. non-direct
access is eliminated (either by close, munmap, or shmdt). Changing the file from normal mode to Direct
I/O mode can be rather expensive since it requires writing all modified pages to disk and removing all the
file’s pages from memory.

Enabling Applications to use Direct I/O
Applications enable Direct I/O access to a file by passing the O_DIRECT flag to the fcntl.h. This flag is
defined in open. Applications must be compiled with _ALL_SOURCE enabled to see the definition of
O_DIRECT.

Offset/Length/Address Alignment Requirements of the Target Buffer
In order for Direct I/O to work efficiently, the request should be suitably conditioned. Applications can query
the offset, length, and address alignment requirements by using the finfo and ffinfo subroutines. When
the FI_DIOCAP command is used, finfo and ffinfo return information in the diocapbuf structure as
described in sys/finfo.h. This structure contains the following fields:

dio_offset Contains the recommended offset alignment for direct I/O writes to files in this file system
dio_max Contains the recommended maximum write length for Direct I/O writes to files in this system
dio_min Contains the recommended minimum write length for Direct I/O writes to files in this file system
dio_align Contains the recommended buffer alignment for Direct I/O writes to files in this file system

Failure to meet these requirements may cause file reads and writes to use the normal cached model.
Different file systems may have different requirements.

FS Format dio_offset dio_max dio_min dio_align
fixed, 4k blk 4k 2m 4k 4k
fragmented 4k 2m 4k 4k
compressed n/a n/a n/a n/a
big file 128k 2m 128k 4k

Direct I/O Limitations
Direct I/O is not supported for files in a compressed file filesystem. Attempts to open these files with
O_DIRECT will be ignored and the files will be accessed with the normal cached I/O methods.

Direct I/O and Data I/O Integrity Completion
Although Direct I/O writes are done synchronously, they do not provide synchronized I/O data integrity
completion, as defined by POSIX. Applications which need this feature should use O_DSYNC in addition
O_DIRECT. O_DSYNC guarantees that all of the data and enough of the meta-data (eg. indirect blocks)
have written to the stable store to be able to retrieve the data after a system crash. O_DIRECT only writes
the data; it does not write the meta-data.

Chapter 5. File Systems and Directories 133

../../files/aixfiles/fcntl.h.htm#HDRA142916A
../../libs/basetrf1/open.htm#HDRA1509805

Working with Pipes

Pipes are unnamed objects created to allow two processes to communicate. One process reads and the
other process writes to the pipe file. This unique type of file is also called a first-in-first-out (FIFO) file. The
data blocks of the FIFO are manipulated in a circular queue, maintaining read and write pointers internally
to preserve the FIFO order of data. The PIPE_BUF system variable, defined in the limits.h file, designates
the maximum number of bytes guaranteed to be atomic when written to a pipe.

The shell uses unnamed pipes to implement command pipelining. Most unnamed pipes are created by the
shell. The | (vertical) symbol represents a pipe between processes. For example:
ls | pr

the output of the ls command is printed to the screen.

Pipes are treated as regular files as far is possible. Normally, the current offset information is stored in the
system file table. However, because pipes are shared by processes, the read/write pointers must be
specific to the file, not to the process. File table entries are created by the open subroutine and are unique
to the open process, not to the file. Processes with access to pipes share the access through common
system file table entries.

Using Pipe Subroutines

The pipe subroutine creates an interprocess channel and returns two file descriptors. File descriptor 0 is
opened for reading. File descriptor 1 is opened for writing. The read operation accesses the data on a
FIFO basis. These two file descriptors are used with read, write, and close subroutines.

In the following example, a child process is created and sends its process ID back through a pipe:
#include <sys/types.h>
main()
{

int p[2];
char buf[80];
pid_t pid;

if (pipe(p))
{

perror("pipe failed");
exit(1)'

}
if ((pid=fork()) == 0)
{

/* in child process */
close(p[0]); /*close unused read */

*side of the pipe */
sprintf(buf,"%d",getpid());

/*construct data */
/*to send */

write(p[1],buf,strlen(buf)+1);
/*write it out, including
/*null byte */

exit(0);
}

/*in parent process*/
close(p[1]); /*close unused write side /*side of pipe *
read(p[0],buf,sizeof(buf)); /*read the pipe*/
printf("Child process said: %s/n", buf);

/*display the result */
exit(0);

}

134 Writing and Debugging Programs

../../files/aixfiles/limits.h.htm#HDRA139934DA
../../cmds/aixcmds3/ls.htm#HDRGVB310FISH
../../libs/basetrf1/pipe.htm#HDRS381F0GACO
../../libs/basetrf2/read.htm#HDRJO11350GACO
../../libs/basetrf2/write.htm#HDRCI2270GACO
../../libs/basetrf1/close.htm#HDRA08793A0

If a process reads an empty pipe, the process waits until data arrives. If a process writes to a pipe that is
too full (PIPE_BUF), the process waits until space is available. If the write side of the pipe is closed, a
subsequent read operation to the pipe returns an end-of-file.

Two other subroutines that control pipes are the popen and pclose subroutines.

popen Creates the pipe (using the pipe subroutine) then forks to create a copy of the caller. The child process
decides whether it is supposed to read or write, closes the other side of the pipe, then calls the shell (using
the execl subroutine) to run the desired process.

The parent closes the end of the pipe it did not use. These closes are necessary to make end-of-file tests
work properly. For example, if a child process intended to read the pipe does not close the write end of the
pipe, it will never see the end of file condition on the pipe, because there is one write process potentially
active.

The conventional way to associate the pipe descriptor with the standard input of a process is:
close(p[1]);
close(0);
dup(p[0]);
close(p[0]);

The close subroutine disconnects file descriptor 0, the standard input. The dup subroutine returns a
duplicate of an already open file descriptor. File descriptors are assigned in increasing order and the first
available one is returned. The effect of the dup subroutine is to copy the file descriptor for the pipe (read
side) to file descriptor 0, thus standard input becomes the read side of the pipe. Finally, the previous read
side is closed. The process is similar for a child process to write from a parent.

pclose Closes a pipe between the calling program and a shell command to be executed. Use the pclose
subroutine to close any stream opened with the popen subroutine.

The pclose subroutine waits for the associated process to end, then closes and returns the exist status of
the command. This subroutine is preferable to the close subroutine because pclose waits for child
processes to finish before closing the pipe. Equally important, when a process creates several children,
only a bounded number of unfinished child processes can exist, even if some of them have completed
their tasks. Performing the wait allows child processes to complete their tasks.

Synchronous I/O
By default, writes to files in JFS or JFS2 file systems are asynchronous. However, JFS file systems
support three types of synchronous I/O. One type is specified by the O_DSYNC open flag. When a file is
opened using the O_DSYNC open mode, the write () system call will not return until the file data and all
file system meta-data required to retrieve the file data are both written to their permanent storage
locations.

Another type of synchronous I/O is specified by the O_SYNC open flag. In addition to items specified by
O_DSYNC, O_SYNC specifies that the write () system call will not return until all file attributes relative to
the I/O are written to their permanent storage locations, even if the attributes are not required to retrieve
the file data.

Before the O_DSYNC open mode existed, AIX applied O_DSYNC semantics to O_SYNC. For binary
compatibility reasons, this behavior can never change. If true O_SYNC behavior is required, then both
O_DSYNC and O_SYNC open flags must be specified. Exporting the XPG_SUS_ENV=ON environment
variable also enables true O_SYNC behavior.

The last type of synchronous I/O is specified by the O_RSYNC open flag, and it simply applies the
behaviors associated with O_SYNC or _DSYNC to reads. For files in JFS file systems, only the

Chapter 5. File Systems and Directories 135

../../libs/basetrf1/popen.htm#HDRSK62B0SHAD
../../libs/basetrf1/pclose.htm#HDRA0869583
../../libs/basetrf1/exec.htm#HDRPDR80GACO
../../libs/basetrf1/fcntl.htm#HDRNEM2E0GACO

combination of O_RSYNC | O_SYNC has meaning. It means that the read system call will not return until
the file’s access time is written to its permanent storage location.

File Status

File status information resides in the i-node. The stat subroutines are used to return information on a file.
The stat subroutines report file type, file owner, access mode, file size, number of links, i-node number,
and file access times. These subroutines write information into a data structure designated by the Buffer
variable. The process must have search permission for the directories in the path to the designated file.

stat Subroutine that returns the information about files named by the Path parameter. If the size of the file
cannot be represented in the structure designated by the Buffer variable, stat will fail with the errno set to
EOVERFLOW.

lstat Subroutine that provides information about a symbolic link, and the stat subroutine returns information
about the file referenced by the link. The fstat subroutine returns information from an open file using the
file descriptor.

The statfs, fstafs, and ustat subroutines return status information about a file system. The statfs
subroutine returns information about the file system that contains the file specified by the Path parameter.

fstatfs Returns the information about the file system that contains the file associated with the
given file descriptor. The structure of the returned information is described in the
/usr/include/sys/statfs.h file for the statfs and fstatfs subroutines and in the ustat.h
file for the ustat subroutine.

ustat Returns information about a mounted file system designated by the Device variable.
This device identifier is for any given file and can be determined by examining the
st_dev field of the stat structure defined in the /usr/include/sys/stat.h file. The ustat
subroutine is superseded by the statfs and fstatfs subroutines.

utimes and utime Also affect file status information. They change the file access and modification time
in the i-node.

File Accessibility

Every file is created with an access mode. Each access mode grants read, write, or execute permission to
users, the user’s group, and all other users.

The access bits on a newly created file are a result of the reverse of the umask bits ANDed with the
file-creation mode bits set by the creating process. When a new file is created by a process, the operating
system performs the following actions:

v Determines the permissions of the creating process

v Retrieves the appropriate umask value

v Reverses the umask value

v Uses the AND operation to combine the permissions of the creating process with the reverse of the
umask value

For example, if an existing file has the 027 permissions bits set, the user is not allowed any permissions.
Write permission is granted to the group. Read, write, and execute access is set for all others. The umask
value of the 027 permissions modes would be 750 (the opposite of the original permissions). When 750 is
ANDed with 666 (the file creation mode bits set by the system call that created the file), the actual
permissions for the file are 640. Another representation of this example is:
027 = _ _ _ _ W _ R W X Existing file access mode
750 = R W X R _ X _ _ _ Reverse (umask) of original

permissions
666 = R W _ R W _ R W _ File creation access mode

136 Writing and Debugging Programs

../../libs/basetrf2/statx.htm#HDRA1609C70
../../libs/basetrf2/statfs.htm#HDRA163915C
../../libs/basetrf2/utimes.htm#HDRTK290SHAD

ANDED TO
750 = R W X R _ X _ _ _ The umask value
640 = R W _ R _ _ _ _ _ Resulting file access mode

umask Subroutine that sets and gets the value of the file creation mask.
chmod and fchmod Subroutines that change file access permissions.
access Subroutine that investigates and reports on the accessibility mode of the file named in

the Pathname parameter. This subroutine uses the real user ID and the real group ID
instead of the effective user and group ID. Using the real user and group IDs allows
programs with the set-user-ID and set-group-ID access modes to limit access only to
users with proper authorization.

Consider the following example:
$ ls -l
total 0
-r-s--x--x 1 root system 8290 Jun 09 17:07 special
-rw------- 1 root system 1833 Jun 09 17:07 secrets
$ cat secrets
cat: cannot open secrets

In this example, the user does not have access to the file secrets. However, when the program special is
run and the access mode for the program is set-uID root, the program can access the file. The program
must use the access subroutine to prevent subversion of system security.

The access subroutine must be used by any set-uID or set-gID program to forestall this type of intrusion.

chown Subroutine resets the ownership field of the i-node for the file and clears the previous owner. The new
information is written to the i-node and the process finishes.

The chmod subroutine works in similar fashion, but the permission mode flags are changed instead of the
file ownership.

Changing file ownership and access modes are actions that affect the i-node, not the data in the file. The
owner of the process must have root user authority or own the file to make these changes.

JFS File System Layout

A file system is a set of files, directories, and other structures. File systems maintain information and
identify where a file or directory’s data is located on the disk. In addition to files and directories, file
systems contain a boot block, a superblock, bitmaps, and one or more allocation groups. An allocation
group contains disk i-nodes and fragments. Each file system occupies one logical volume.

Boot Block

The boot block occupies the first 4096 bytes of the file system starting at byte offset 0 on the disk. The
boot block is available to start the operating system.

Superblock

The superblock is 4096 bytes in size and starts at byte offset 4096 on the disk. The super- block maintains
information about the entire file system and includes the following fields:

v Size of the file system

v Number of data blocks in the file system

v A flag indicating the state of the file system

Chapter 5. File Systems and Directories 137

../../libs/basetrf1/chmod.htm#HDRJK52A0GACO
../../libs/basetrf1/access.htm#HDRSL240GACO
../../libs/basetrf1/chown.htm#HDRA9F01
../../libs/basetrf1/chmod.htm#HDRJK52A0GACO

v Allocation group sizes

Allocation Bitmaps

The file system contains two allocation bitmaps:

v The fragment allocation map records the allocation state of each fragment.

v The disk i-node allocation map records the status of each i-node.

Fragments

Many file systems have disk blocks or data blocks. These blocks divide the disk into units of equal size to
store the data in a file or directory’s logical blocks. The disk block may be further divided into fixed-size
allocation units called fragments. Some systems do not allow fragment allocations to span the boundaries
of the disk block. In other words, a logical block cannot be allocated fragments from different disk blocks.

The journaled file system (JFS), however, provides a view of the file system as a contiguous series of
fragments. JFS fragments are the basic allocation unit and the disk is addressed at the fragment level.
Thus, fragment allocations can span the boundaries of what might otherwise be a disk block. The default
JFS fragment size is 4096 bytes, although you can specify smaller sizes. In addition to containing data for
files and directories, fragments also contain disk addresses and data for indirect blocks. “JFS File Space
Allocation” on page 109 explains how the operating system allocates fragments.

Disk I-Nodes

A logical block contains a file or directory’s data in units of 4096 bytes. Each logical block is allocated
fragments for the storage of its data. Each file and directory has an i-node that contains access
information such as file type, access permissions, owner’s ID, and number of links to that file. These
i-nodes also contain ″addresses″ for finding the location on the disk where the data for a logical block is
stored.

Each i-node has an array of numbered sections. Each section contains an address for one of the file or
directory’s logical blocks. These addresses indicate the starting fragment and the total number of
fragments included in a single allocation. For example, a file with a size of 4096 bytes has a single
address on the i-node’s array. Its 4096 bytes of data are contained in a single logical block. A larger file
with a size of 6144 bytes has two addresses. One address contains the first 4096 bytes and a second
address contains the remaining 2048 bytes (a partial logical block). If a file has a large number of logical
blocks, the i-node does not contain the disk addresses. Instead, the i-node points to an indirect block
which contains the additional addresses.

Allocation Groups

The set of fragments making up the file system are divided into one or more fixed-sized units of
contiguous fragments. Each unit is an allocation group. The first of these groups begins the file system
and contains a reserved area occupying the first 32 x 4096 bytes of the group. The first 4096 bytes of this
area hold the boot block and the second 4096 bytes hold the file system superblock.

Each allocation group contains a static number of contiguous disk i-nodes which occupy some of the
group’s fragments. These fragments are set aside for the i-nodes at file system creation and extension
time. For the first allocation group, the disk i-nodes occupy the fragments immediately following the
reserved block area. For subsequent groups, the disk i-nodes are found at the start of each group. Disk
i-nodes are 128 bytes in size and are identified by a unique disk i-node number or i-number. The i-number
maps a disk i-node to its location on the disk or to an i-node within its allocation group.

A file system’s allocation groups are described by three sizes:

138 Writing and Debugging Programs

v The fragment allocation group size and the disk i-node allocation group size are specified as the
number of fragments and disk i-nodes that exist in each allocation group.

v The default allocation group size is 8 MB.

v Beginning in AIX 4.2, it can be as large as 64 MB.

These three values are stored in the file system superblock, and they are set at file system creation.

Allocation groups allow the JFS resource allocation policies to use effective methods for achieving good
file system I/O performance. These allocation policies try to cluster disk blocks and disk i-nodes for related
data to achieve good locality for the disk. Files are often read and written sequentially and files within a
directory are often accessed together. Also, these allocation policies try to distribute unrelated data
throughout the file system in an attempt to minimize free space fragmentation.

Using File System Subroutines

The most used file system subroutines are:

fscntl Controls file system control operations
getfsent, getfsspec, getfsfile, getfstype, setfsent, or endfsent

Obtain information about a file system
lseek Moves the read-write pointer
mntctl Returns mount status information
vmount or mount Make a file system ready for use
statfs, fstsfs, or ustat Report file system statistics
sync Updates file systems to disk

Other subroutines are designed for use on virtual file systems (VFS):

getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag, sevfsent, or endvfsent
Retrieve a VFS entry

umount or uvmount Remove VFS from the file tree

JFS2 File System Layout
A file system is a set of files, directories and other structures. The file systems maintain information and
identify where the data is located on the disk for a file or directory. In addition to files and directories a
JFS2 file system contains a superblock, allocation maps and one or more allocation groups. An allocation
group contains disk inodes and extents. Each file system occupies one logical volume.

Superblock
The superblock is 4096 bytes in size and starts at byte offset 32768 on the disk. The superblock maintains
information about the entire file system and includes the following fields:

v Size of the file system

v Number of data blocks in the file system

v A flag indicating the state of the file system

v Allocation group sizes

v File system block size

Allocation Maps
The file system contains two allocation maps:

v The inode allocation map records the location and allocation of all inodes in the file system.

Chapter 5. File Systems and Directories 139

../../libs/basetrf1/fscntl.htm#HDRA5F0173
../../libs/basetrf1/getfsent.htm#HDRA244Y994C2
../../libs/basetrf1/lseek.htm#HDRA21595D1
../../libs/basetrf1/mntctl.htm#HDRISL60MARC
../../libs/basetrf2/vmount.htm#HDRIO2200GACO
../../libs/basetrf2/statfs.htm#HDRA163915C
../../libs/basetrf2/sync.htm#HDRA0949B75
../../libs/basetrf1/getvfsent.htm#HDRA244Y99599
../../libs/basetrf2/umount.htm#HDRYNQ160GACO

v The block allocation map records the allocation state of each file system block.

Disk I-Nodes
A logical block contains a file or directory’s data in units of file system blocks. Each logical block is
allocated file system blocks for the storage of its data. Each file and directory has an i-node that contains
access information such as file type, access permissions, owner’s ID, and number of links to that file.
These i-nodes also contain a “B+-tree” for finding the location on the disk where the data for a logical
block is stored.

Allocation Groups
Allocation groups divide the space on a file system into chunks. Allocation groups are used for heuristics
only. Allocation groups allow JFS2 resource allocation policies to use well known methods for achieving
good I/O performance. First, the allocation policies try to cluster disk blocks and disk inodes for related
data to achieve good locality for the disk. Files are often read and written sequentially and the files within
a directory are often accessed together. Second, the allocation policies try to distribute unrelated data
throughout the file system in order to accomodate disk locality.

Alocation groups within a file system are identified by a zero-based allocation group index, the allocation
group number.

Allocation Group Sizes
Allocation group sizes must be selected which yield allocation groups that are sufficiently large to provide
for contiguous resource allocation over time. Allocation groups are limited to a maximum number of 128
groups. Additionally, the minimum allocation group size is 8192 file system blocks.

Partial Allocation Groups
A file system whose size is not a multiple of the allocation group size will contain a partial allocation group;
the last allocation group of the file system is not fully covered by disk blocks. This partial allocation group
will be treated as a complete allocation group, except the non-existant disk blocks will be marked as
allocated in the block allocation map.

heuristics
Relating to or using a problem-solving technique in which the most appropriate solution of several
found by alternative methods is selected at successive stages of a program for use in the next
step of the program.

Using File System Subroutines
The most used file system subroutines are:

fscntl Controls file system control operations
getfsent, getfsspec, getfsfile, getfstype, setfsent, or endfsent

Obtain information about a file system
lseek Moves the read-write pointer
mntctl Returns mount status information
vmount or mount Make a file system ready for use
statfs, fstsfs, or ustat Report file system statistics
sync Updates file systems to disk

Other subroutines are designed for use on virtual file systems (VFS):

getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag, sevfsent, or endvfsent
Retrieve a VFS entry

umount or uvmount Remove VFS from the file tree

140 Writing and Debugging Programs

../../libs/basetrf1/fscntl.htm#HDRA5F0173
../../libs/basetrf1/getfsent.htm#HDRA244Y994C2
../../libs/basetrf1/lseek.htm#HDRA21595D1
../../libs/basetrf1/mntctl.htm#HDRISL60MARC
../../libs/basetrf2/vmount.htm#HDRIO2200GACO
../../libs/basetrf2/statfs.htm#HDRA163915C
../../libs/basetrf2/sync.htm#HDRA0949B75
../../libs/basetrf1/getvfsent.htm#HDRA244Y99599
../../libs/basetrf2/umount.htm#HDRYNQ160GACO

Creating New File System Types

If it is necessary to create a new type of file system, file system helpers and mount helpers must be
created. The following sections provide information about the implementation specifics and execution
syntax of file system and mount helpers.

File System Helpers

To enable support of multiple file system types, most file system commands do not contain the code that
communicates with individual file systems. Instead, the commands collect parameters, file system names,
and other information not specific to one file system type and then pass all this information to a back-end
program (the helper).

The back end understands specific information about the relevant file system type and does the detail
work of communicating with the file system. Back-end programs used by file system commands are known
as file system and mount helpers.

To determine the appropriate file system helper, the front-end command looks for a helper under the
directory /sbin/helpers/vfstype/command, where vfstype matches the file system type found in the /etc/vfs
file and command matches the name of the command being executed. The flags passed to the front-end
command are passed to the file system helper.

There is one file system helper which needs to be provided that does not match a command name. It is
called fstype. This helper is used to identify if a specified logical volume contains a file system of the
vfstype of the helper. The helper should return 0 if the logical volume does not contain a file system of its
type. The helper should return 1 if the logical volume does contain a file system of its type and the file
system does not need a separate device for a log. The helper should return 2 if the logical volume does
contain a file system of its type and the file system does need a separate device for a log. If the -l lfag is
specified, the fstype helper should check for a log of its file system type on the specified logical volume. A
return value of 0 indicates the logical volume does not contain a log while a return value of 1 indicates the
logical volume does contain a log.

Obsolete File System Helper mechanism
This section describes the obsolete File System helper mechanism which was used on previous versions
of AIX. This mechanism is still available but should not be used anymore.

File System Helper Operations

The following table lists the possible operations requested of a helper in the /usr/include/fshelp.h file:

Helper Operations Value
#define FSHOP_NULL 0
#define FSHOP_CHECK 1
#define FSHOP_CHGSIZ 2
#define FSHOP_FINDATA 3
#define FSHOP_FREE 4
#define FSHOP_MAKE 5
#define FSHOP_REBUILD 6
#define FSHOP_STATFS 7
#define FSHOP_STAT 8
#define FSHOP_USAGE 9
#define FSHOP_NAMEI 10
#define FSHOP_DEBUG 11

However, the JFS file system supports only the following operations:

Chapter 5. File Systems and Directories 141

Operation Value Corresponding Command

#define FSHOP_CHECK 1 fsck

#define FSHOP_CHGSIZ 2 chfs

#define FSHOP_MAKE 5 mkfs

#define FSHOP_STATFS 7 df

#define FSHOP_NAMEI 10 ff

Mount Helpers

The mount command is a front-end program that uses a helper to communicate with specific file systems.
Helper programs for the mount and umount (or unmount) commands are called mount helpers.

Like other file system-specific commands, the mount command collects the parameters and options given
at the command line and interprets that information within the context of the file system configuration
information found in the /etc/filesystems file. Using the information in the /etc/filesystems file, the
command invokes the appropriate mount helper for the type of file system involved. For example, if the
user enters:
mount /test

the mount command checks the /etc/filesystems file for the stanza that describes the /test file system.
From the /etc/filesystems file, the mount command determines that the /test file system is a remote
NFS mount from the node named host1. The mount command also notes any options associated with the
mount.

An example /etc/filesystems file stanza is:
/test:

dev = /export
vfs = nfs
nodename = host1
options = ro,fg,hard,intr

The file system type (nfs in our example) determines which mount helper to invoke. The command
compares the file system type to the first fields in the /etc/vfs file. The field that matches will have the
mount helper as its third field.

Major Control Block Header Files

142 Writing and Debugging Programs

../../cmds/aixcmds2/fsck.htm#HDRA10192C87
../../cmds/aixcmds1/chfs.htm#HDRA3059B2
../../cmds/aixcmds3/mkfs.htm#HDRA1019296C
../../cmds/aixcmds2/df.htm#HDRA10192B83
../../cmds/aixcmds2/ff.htm#HDRA1529778
../../cmds/aixcmds3/mount.htm#HDRA1019286A
../../cmds/aixcmds5/umount.htm#HDRA10192813
../../files/aixfiles/filesystems.htm#HDRA1249CF
../../files/aixfiles/vfs.htm#HDRA12491ED

Chapter 6. Floating-Point Exceptions

This chapter provides information about floating-point exceptions and how your programs can detect and
handle them.

The Institute of Electrical and Electronics Engineers (IEEE) defines a standard for floating-point exceptions
called the IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754). This standard defines five types
of floating-point exception that must be signaled when detected:

v Invalid operation

v Division by zero

v Overflow

v Underflow

v Inexact calculation

When one of these exceptions occurs in a user process, it is signaled either by setting a flag or taking a
trap. By default, the system sets a status flag in the Floating-Point Status and Control registers (FPSCR),
indicating the exception has occurred. Once the status flags are set by an exception, they are cleared only
when the process clears them explicitly or when the process ends. The operating system provides
subroutines to query, set, or clear these flags.

The system can also cause the floating-point exception signal (SIGFPE) to be raised if a floating-point
exception occurs. Because this is not the default behavior, the operating system provides subroutines to
change the state of the process so the signal is enabled. When a floating-point exception raises the
SIGFPE signal, the process terminates and produces a core file if no signal-handler subroutine is present
in the process. Otherwise, the process calls the signal-handler subroutine.

Floating-Point Exception Subroutines

Floating-point exception subroutines can be used to:

v Change the execution state of the process

v Enable the signaling of exceptions

v Disable exceptions or clear flags

v Determine which exceptions caused the signal

v Test the exception sticky flags

The following subroutines are provided to accomplish these tasks:

fp_any_xcp or fp_divbyzero Test the exception sticky flags
fp_enable or fp_enable_all Enable the signaling of exceptions
fp_inexact, fp_invalid_op, fp_iop_convert,
fp_iop_infdinf, fp_iop_infmzr, fp_iop_infsinf,
fp_iop_invcmp, fp_iop_snan, fp_iop_sqrt,
fp_iop_vxsoft, fp_iop_zrdzr, or fp_overflow

Test the exception sticky flags

fp_sh_info Determines which exceptions caused the signal
fp_sh_set_stat Disables exceptions or clear flags
fp_trap Changes the execution state of the process
fp_underflow Tests the exception sticky flags
sigaction Installs signal handler

© Copyright IBM Corp. 1997, 2001 143

../../libs/basetrf1/fp_invalid_op.htm#HDRFE5220SHAD
../../libs/basetrf1/fp_invalid_op.htm#HDRFE5220SHAD
../../libs/basetrf1/fp_any_enable.htm#HDROB5280SHAD
../../libs/basetrf1/fp_any_enable.htm#HDROB5280SHAD
../../libs/basetrf1/fp_invalid_op.htm
../../libs/basetrf1/fp_invalid_op.htm
../../libs/basetrf1/fp_iop_snan.htm
../../libs/basetrf1/fp_iop_snan.htm
../../libs/basetrf1/fp_iop_snan.htm
../../libs/basetrf1/fp_iop_snan.htm
../../libs/basetrf1/fp_iop_snan.htm
../../libs/basetrf1/fp_iop_snan.htm
../../libs/basetrf1/fp_iop_snan.htm
../../libs/basetrf1/fp_iop_snan.htm
../../libs/basetrf1/fp_iop_snan.htm
../../libs/basetrf1/fp_invalid_op.htm
../../libs/basetrf1/fp_sh_info.htm#HDRA206C11E4
../../libs/basetrf1/fp_sh_info.htm#HDRA206C11E4
../../libs/basetrf1/fp_trap.htm#HDRA206C1197
../../libs/basetrf1/fp_invalid_op.htm#HDRFE5220SHAD
../../libs/basetrf2/sigaction.htm#HDRA5F01CB

Floating-Point Trap Handler Operation

To generate a trap, a program must change the execution state of the process using the fp_trap
subroutine and enable the exception to be trapped using the fp_enable or fp_enable_all subroutine.

Changing the execution state of the program may slow performance because floating-point trapping
causes the process to execute in serial mode.

When a floating-point trap occurs, the SIGFPE signal is raised. By default, the SIGFPE signal causes the
process to terminate and produce a core file. To change this behavior, the program must establish a signal
handler for this signal. See the sigaction, sigvec, or signal subroutines for more information on signal
handlers.

Exceptions: Disabled and Enabled Comparison

Refer to the following lists for an illustration of the differences between the disabled and enabled
processing states and the subroutines that are used.

Exceptions-Disabled Model
The following subroutines test exception flags in the disabled processing state:

v fp_any_xcp

v fp_clr_flag

v fp_divbyzero

v fp_inexact

v fp_invalid_op

v fp_iop_convert

v fp_iop_infdinf

v fp_iop_infmzr

v fp_iop_infsi

v fp_iop_invcmp

v fp_iop_snan

v fp_iop_sqrt

v fp_iop_vxsoft

v fp_iop_zrdzr

v fp_overflow

v fp_underflow

Exceptions-Enabled Model
The following subroutines function in the enabled processing state:

fp_enable or fp_enable_all Enable the signaling of exceptions
fp_sh_info Determines which exceptions caused the signal
fp_sh_set_stat Disables exceptions or clear flags
fp_trap Changes the execution state of the process
sigaction Installs signal handler

Imprecise Trapping Modes
Some systems have imprecise trapping modes. This means the hardware can detect a floating-point
exception and deliver an interrupt, but processing may continue while the signal is delivered. As a result,
the instruction address register (IAR) is at a different instruction when the interrupt is delivered.

144 Writing and Debugging Programs

../../libs/basetrf2/sigaction.htm#HDRA5F01CB
../../libs/basetrf2/sigaction.htm#HDRA5F01CB
../../libs/basetrf2/sigaction.htm#HDRA5F01CB

Imprecise trapping modes cause less performance degradation than precise trapping mode. However,
some recovery operations are not possible, because the operation that caused the exception cannot be
determined or because subsequent instruction may have modified the argument that caused the exception.

To use imprecise exceptions, a signal handler must be able to determine if a trap was precise or
imprecise.

Precise Traps
In a precise trap, the instruction address register (IAR) points to the instruction that caused the trap. A
program can modify the arguments to the instruction and restart it, or fix the result of the operation and
continue with the next instruction. To continue, the IAR must be incremented to point to the next
instruction.

Imprecise Traps
In an imprecise trap, the IAR points to an instruction beyond the one that caused the exception. The
instruction to which the IAR points has not been started. To continue execution, the signal handler does
not increment the IAR.

To eliminate ambiguity, the trap_mode field is provided in the fp_sh_info structure. This field specifies the
trapping mode in effect in the user process when the signal handler was entered. This information can
also be determined by examining the Machine Status register (MSR) in the mstsave structure.

The fp_sh_info subroutine allows a floating-point signal handler to determine if the floating-point exception
was precise or imprecise.

Note: Even when precise trapping mode is enabled some floating-point exceptions may be imprecise
(such as operations implemented in software). Similarly, in imprecise trapping mode some exceptions
may be precise.

When using imprecise exceptions, some parts of your code may require that all floating-point exceptions
are reported before proceeding. The fp_flush_imprecise subroutine is provided to accomplish this. It is
also recommended that the atexit subroutine be used to register the fp_flush_imprecise subroutine to
run at program exit. Running at exit ensures that the program does not exit with unreported imprecise
exceptions.

Hardware-Specific Subroutines
Some systems have hardware instructions to compute the square root of a floating-point number and to
convert a floating-point number to an integer. Models not having these hardware instructions use software
subroutines to do this. Either method can cause a trap if the invalid operation exception is enabled. The
software subroutines report, through the fp_sh_info subroutine, that an imprecise exception occurred,
because the IAR does not point to a single instruction that can be restarted to retry the operation.

Example of a Floating-Point Trap Handler
/*
* This code demonstates a working floating-point exception
* trap handler. The handler simply identifies which
* floating-point exceptions caused the trap and return.
* The handler will return the default signal return
* mechanism longjmp().
*/

#include <signal.h>
#include <setjmp.h>
#include <fpxcp.h>
#include <fptrap.h>
#include <stdlib.h>
#include <stdio.h>

Chapter 6. Floating-Point Exceptions 145

../../libs/basetrf1/fp_sh_info.htm#HDRA206C11E4
../../libs/basetrf1/fp_sh_info.htm#HDRA206C11E4
../../libs/basetrf1/fp_flush_imprecise.htm#HDRC349D73103JBAU
../../libs/basetrf1/exit.htm#HDRA087913E7

#define EXIT_BAD -1
#define EXIT_GOOD 0

/*
* Handshaking variable with the signal handler. If zero,
* then the signal hander returns via the default signal
* return mechanism; if non-zero, then the signal handler
* returns via longjmp.
*/

static int fpsigexit;
#define SIGRETURN_EXIT 0
#define LONGJUMP_EXIT 1

static jmp_buf jump_buffer; /* jump buffer */
#define JMP_DEFINED 0 /* setjmp rc on initial call */
#define JMP_FPE 2 /* setjmp rc on return from */

/* signal handler */

/*
* The fp_list structure allows text descriptions
* of each possible trap type to be tied to the mask
* that identifies it.
*/

typedef struct
{
fpflag_t mask;
char *text;
} fp_list_t;

/* IEEE required trap types */

fp_list_t
trap_list[] =

{
{ FP_INVALID, "FP_INVALID"},
{ FP_OVERFLOW, "FP_OVERFLOW"},
{ FP_UNDERFLOW, "FP_UNDERFLOW"},
{ FP_DIV_BY_ZERO, "FP_DIV_BY_ZERO"},
{ FP_INEXACT, "FP_INEXACT"}

};

/* INEXACT detail list -- this is an system extension */

fp_list_t
detail_list[] =

{
{ FP_INV_SNAN, "FP_INV_SNAN" } ,
{ FP_INV_ISI, "FP_INV_ISI" } ,
{ FP_INV_IDI, "FP_INV_IDI" } ,
{ FP_INV_ZDZ, "FP_INV_ZDZ" } ,
{ FP_INV_IMZ, "FP_INV_IMZ" } ,
{ FP_INV_CMP, "FP_INV_CMP" } ,
{ FP_INV_SQRT, "FP_INV_SQRT" } ,
{ FP_INV_CVI, "FP_INV_CVI" } ,
{ FP_INV_VXSOFT, "FP_INV_VXSOFT" }

};

/*
* the TEST_IT macro is used in main() to raise
* an exception.
*/

#define TEST_IT(WHAT, RAISE_ARG) \
{ \
puts(strcat("testing: ", WHAT)); \
fp_clr_flag(FP_ALL_XCP); \
fp_raise_xcp(RAISE_ARG); \
}

146 Writing and Debugging Programs

/*
* NAME: my_div
*
* FUNCTION: Perform floating-point division.
*
*/

double
my_div(double x, double y)

{
return x / y;
}

/*
* NAME: sigfpe_handler
*
* FUNCTION: A trap handler that is entered when
* a floating-point exception occurs. The
* function determines what exceptions caused
* the trap, prints this to stdout, and returns
* to the process which caused the trap.
*
* NOTES: This trap handler can return either via the
* default return mechanism or via longjmp().
* The global variable fpsigexit determines which.
*
* When entered, all floating-point traps are
* disabled.
*
* This sample uses printf(). This should be used
* with caution since printf() of a floating-
* point number can cause a trap, and then
* another printf() of a floating-point number
* in the signal handler will corrupt the static
* buffer used for the conversion.
*
* OUTPUTS: The type of exception that caused
* the trap.
*/

static void
sigfpe_handler(int sig,

int code,
struct sigcontext *SCP)

{
struct mstsave * state = &SCP->sc_jmpbuf.jmp_context;
fp_sh_info_t flt_context; /* structure for fp_sh_info()

/* call */
int i; /* loop counter */
extern int fpsigexit; /* global handshaking variable */
extern jmp_buf jump_buffer /* */

/*
* Determine which floating-point exceptions caused
* the trap. fp_sh_info() is used to build the floating signal
* handler info structure, then the member
* flt_context.trap can be examined. First the trap type is
* compared for the IEEE required traps, and if the trap type
* is an invalid operation, the detail bits are examined.
*/

fp_sh_info(SCP, &flt_context, FP_SH_INFO_SIZE);

static void
sigfpe_handler(int sig,

int code,
struct sigcontext *SCP)

{
struct mstsave * state = &SCP->sc_jmpbuf.jmp_context;
fp_sh_info_t flt_context; /* structure for fp_sh_info()

Chapter 6. Floating-Point Exceptions 147

/* call */
int i; /* loop counter */
extern int fpsigexit; /* global handshaking variable */
extern jmp_buf jump_buffer; /* */

/*
* Determine which floating-point exceptions caused
* the trap. fp_sh_info() is used to build the floating signal
* handler info structure, then the member
* flt_context.trap can be examined. First the trap type is
* compared for the IEEE required traps, and if the trap type
* is an invalid operation, the detail bits are examined.
*/

fp_sh_info(SCP, &flt_context, FP_SH_INFO_SIZE);

for (i = 0; i < (sizeof(trap_list) / sizeof(fp_list_t)); i++)
{
if (flt_context.trap & trap_list[i].mask)

(void) printf("Trap caused by %s error\n", trap_list[i].text);
}

if (flt_context.trap & FP_INVALID)
{
for (i = 0; i < (sizeof(detail_list) / sizeof(fp_list_t)); i++)

{
if (flt_context.trap & detail_list[i].mask)

(void) printf("Type of invalid op is %s\n", detail_list[i].text);
}

}

/* report which trap mode was in effect */

switch (flt_context.trap_mode)
{

case FP_TRAP_OFF:
puts("Trapping Mode is OFF");
break;

case FP_TRAP_SYNC:
puts("Trapping Mode is SYNC");
break;

case FP_TRAP_IMP:
puts("Trapping Mode is IMP");
break;

case FP_TRAP_IMP_REC:
puts("Trapping Mode is IMP_REC");
break;

default:
puts("ERROR: Invalid trap mode");
}

if (fpsigexit == LONGJUMP_EXIT)
{
/*
* Return via longjmp. In this instance there is no need to
* clear any exceptions or disable traps to prevent
* recurrence of the exception, because on return the
* process will have the signal handler's floating-point
* state.
*/
longjmp(jump_buffer, JMP_FPE);
}

else
{
/*
* Return via default signal handler return mechanism.

148 Writing and Debugging Programs

* In this case you must take some action to prevent
* recurrence of the trap, either by clearing the
* exception bit in the fpscr or by disabling the trap.
* In this case, clear the exception bit.
* The fp_sh_set_stat routine is used to clear
* the exception bit.
*/

fp_sh_set_stat(SCP, (flt_context.fpscr & ((fpstat_t) xflt_context.trap)));

/*
* Increment the iar of the process that caused the trap,
* to prevent re-execution of the instruction.
* The FP_IAR_STAT bit in flt_context.flags indicates if
* state->iar points to an instruction that has logically
* started. If this bit is true, state->iar points to
* an operation that has started and will cause another
* exception if it runs again. In this case you want to
* continue execution and ignore the results of that
* operation, so the iar is advanced to point to the
* next instruction. If the bit is false, the iar already
* points to the next instruction that must run.
*/

if (flt_context.flags & FP_IAR_STAT)
{
puts("Increment IAR");
state->iar += 4;
}

}
return;
}

/*
* NAME: main
*
* FUNCTION: Demonstrate the sigfpe_handler trap handler.
*
*/

int
main(void)

{
struct sigaction response;
struct sigaction old_response;
extern int fpsigexit;
extern jmp_buf jump_buffer;
int jump_rc;
int trap_mode;
double arg1, arg2, r;

/*
* Set up for floating-point trapping. Do the following:
* 1. Clear any existing floating-point exception flags.
* 2. Set up a SIGFPE signal handler.
* 3. Place the process in synchronous execution mode.
* 4. Enable all floating-point traps.
*/

fp_clr_flag(FP_ALL_XCP);
(void) sigaction(SIGFPE, NULL, &old_response);
(void) sigemptyset(&response.sa_mask);
response.sa_flags = FALSE;
response.sa_handler = (void (*)(int)) sigfpe_handler;
(void) sigaction(SIGFPE, &response, NULL);
fp_enable_all();

Chapter 6. Floating-Point Exceptions 149

/*
* Demonstate trap handler return via default signal handler
* return. The TEST_IT macro will raise the floating-point
* exception type given in its second argument. Testing
* is done in this case with precise trapping, because
* it is supported on all platforms to date.
*/

trap_mode = fp_trap(FP_TRAP_SYNC);
if ((trap_mode == FP_TRAP_ERROR) ||

(trap_mode == FP_TRAP_UNIMPL))
{
printf("ERROR: rc from fp_trap is %d\n",

trap_mode);
exit(-1);
}

(void) printf("Default signal handler return: \n");
fpsigexit = SIGRETURN_EXIT;

TEST_IT("div by zero", FP_DIV_BY_ZERO);
TEST_IT("overflow", FP_OVERFLOW);
TEST_IT("underflow", FP_UNDERFLOW);
TEST_IT("inexact", FP_INEXACT);

TEST_IT("signaling nan", FP_INV_SNAN);
TEST_IT("INF - INF", FP_INV_ISI);
TEST_IT("INF / INF", FP_INV_IDI);
TEST_IT("ZERO / ZERO", FP_INV_ZDZ);
TEST_IT("INF * ZERO", FP_INV_IMZ);
TEST_IT("invalid compare", FP_INV_CMP);
TEST_IT("invalid sqrt", FP_INV_SQRT);
TEST_IT("invalid coversion", FP_INV_CVI);
TEST_IT("software request", FP_INV_VXSOFT);

/*
* Next, use fp_trap() to determine what the
* the fastest trapmode available is on
* this platform.
*/

trap_mode = fp_trap(FP_TRAP_FASTMODE);
switch (trap_mode)

{
case FP_TRAP_SYNC:

puts("Fast mode for this platform is PRECISE");
break;

case FP_TRAP_OFF:
puts("This platform dosn't support trapping");
break;

case FP_TRAP_IMP:
puts("Fast mode for this platform is IMPRECISE");
break;

case FP_TRAP_IMP_REC:
puts("Fast mode for this platform is IMPRECISE RECOVERABLE");
break;

default:
printf("Unexpected return code from fp_trap(FP_TRAP_FASTMODE): %d\n",

trap_mode);
exit(-2);
}

/*
* if this platform supports imprecise trapping, demonstate this.
*/

trap_mode = fp_trap(FP_TRAP_IMP);
if (trap_mode != FP_TRAP_UNIMPL)

{

150 Writing and Debugging Programs

puts("Demonsrate imprecise FP execeptions");
arg1 = 1.2;
arg2 = 0.0;
r = my_div(arg1, arg2);
fp_flush_imprecise();
}

/* demonstate trap handler return via longjmp().
*/

(void) printf("longjmp return: \n");
fpsigexit = LONGJUMP_EXIT;
jump_rc = setjmp(jump_buffer);

switch (jump_rc)
{

case JMP_DEFINED:
(void) printf("setjmp has been set up; testing ...\n");
TEST_IT("div by zero", FP_DIV_BY_ZERO);
break;

case JMP_FPE:
(void) printf("back from signal handler\n");
/*
* Note that at this point the process has the floating-
* point status inherited from the trap handler. If the
* trap hander did not enable trapping (as the example
* did not) then this process at this point has no traps
* enabled. We create a floating-point exception to
* demonstrate that a trap does not occur, then re-enable
* traps.
*/

(void) printf("Creating overflow; should not trap\n");
TEST_IT("Overflow", FP_OVERFLOW);
fp_enable_all();
break;

default:
(void) printf("unexpected rc from setjmp: %d\n", jump_rc);
exit(EXIT_BAD);
}

exit(EXIT_GOOD);
}

Chapter 6. Floating-Point Exceptions 151

152 Writing and Debugging Programs

Chapter 7. Input and Output Handling

This chapter provides an introduction to programming considerations for input and output handling and the
input and output handling (I/O) subroutines.

The input and output (I/O) library subroutines can send data to or from either devices or files. The system
treats devices as if they were I/O files. For example, you must also open and close a device just as you
do a file.

Some of the subroutines use standard input and standard output as their input and output channels. For
most of the subroutines, however, you can specify a different file for the source or destination of the data
transfer. For some subroutines, you can use a file pointer to a structure that contains the name of the file;
for others, you can use a file descriptor (that is, the positive integer assigned to the file when it is opened).

The I/O subroutines stored in the C Library (libc.a) provide stream I/O. To access these stream I/O
subroutines, you must include the stdio.h file using the following statement:
#include <stdio.h>

Some of the I/O library subroutines are macros defined in a header file and some are object modules of
functions. In many cases, the library contains a macro and a function that do the same type of operation.
Consider the following when deciding whether to use the macro or the function:

v You cannot set a breakpoint for a macro using the dbx program.

v Macros are usually faster than their equivalent functions because the preprocessor replaces the macros
with actual lines of code in the program.

v Macros result in larger object code after being compiled.

v Functions can have side effects to avoid.

The files, commands, and subroutines used in I/O handling provide the following interfaces:

Low-level (“Low-Level I/O
Interfaces”)

Basic open and close functions for files and devices.

Stream (“Stream I/O
Interfaces” on page 154)

Read and write I/O for pipes and FIFOs.

Terminal (“Terminal I/O
Interfaces” on page 155)

Formatted output and buffering.

Asynchronous
(“Asynchronous I/O
Interfaces” on page 156)

Concurrent I/O and processing.

Input Language (“Creating
an Input Language with the
lex and yacc Commands”
on page 271)

The lex and yacc commands generate a lexical analyzer and a parser program for
interpreting I/O.

Low-Level I/O Interfaces
Low-level I/O interfaces are direct entry points into a kernel, providing functions such as opening files,
reading to and writing from files, and closing files.

The line command provides the interface that allows one line from standard input to be read and the
following subroutines provide other low-level I/O functions:

open, openx, or creat Prepare a file, or other path object, for reading and
writing by means of an assigned file descriptor

© Copyright IBM Corp. 1997, 2001 153

../../cmds/aixcmds3/line.htm#HDRA1079141B
../../libs/basetrf1/open.htm#HDRA1509805

read, readx, readv, or readvx Read from an open file descriptor
write, writex, writev, or writevx Write to an open file descriptor
close Relinquish a file descriptor

The open and creat subroutines set up entries in three system tables. A file descriptor indexes the first
table, which functions as a per process data area that can be accessed by read and write subroutines.
Each entry in this table has a pointer to a corresponding entry in the second table.

The second table is a per-system data base, or file table, that allows an open file to be shared among
several processes. The entries in this table indicate if the file was open for reading, writing, or as a pipe,
and when the file was closed. There is also an offset to indicate where the next read or write will take
place and a final pointer to indicates entry to the third table, which contains a copy of the file’s i-node.

The file table contains entries for every instance of an open or create subroutine on the file, but the i-node
table contains only one entry for each file.

Note: While processing an open or creat subroutine for a special file, the system always calls the
device’s open subroutine to allow any special processing (such as rewinding a tape or turning on a
data-terminal-ready modem lead). However, the system uses the close subroutine only when the last
process closes the file (that is, when the i-node table entry is deallocated). This means that a device
cannot maintain or depend on a count of its users unless an exclusive-use device (that prevents a
device from being reopened before its closed) is implemented.

When a read or write operation takes place, the user’s arguments and the file table entry are used to set
up the following variables:

v User address of the I/O target area

v Byte-count for the transfer

v Current location in the file

If the file referred to is a character-type special file, the appropriate read or write subroutine is called to
transfer data and update the count and current location. Otherwise, the current location is used to
calculate a logical block number in the file.

If the file is an ordinary file, the logical block number must be mapped to a physical block number. A
block-type special file need not be mapped. The resulting physical block number is used to read or write
the appropriate device.

Block device drivers can provide the ability to transfer information directly between the user’s core image
and the device in blocks as large as the caller requests without using buffers. The method involves setting
up a character-type special file corresponding to the raw device and providing read and write subroutines
to create a private, non-shared buffer header with the appropriate information. If desired, separate open
and close subroutines can be provided, and a special-function subroutine can be called for magnetic tape.

Stream I/O Interfaces
Stream I/O interfaces provide data as a stream of bytes that is not interpreted by the system, which offers
more efficient implementation for networking protocols than character I/O processing. There are no record
boundaries when reading and writing using stream I/O. For example, a process reading 100 bytes from a
pipe cannot tell if the process that wrote the data into the pipe did a single write of 100 bytes, or two
writes of 50 bytes, or even if the 100 bytes came from two different processes.

Stream I/Os can be pipes or FIFOs, first in, first out files. FIFOs are similar to pipes because they allow
the data to flow only one way (left to right). However, a FIFO can be given a name and can be accessed
by unrelated processes, unlike a pipe. FIFOs are sometimes referred to as named pipes. Because it has a

154 Writing and Debugging Programs

../../libs/basetrf2/read.htm#HDRJO11350GACO
../../libs/basetrf2/write.htm#HDRCI2270GACO
../../libs/basetrf1/close.htm#HDRA08793A0

name, a FIFO can be opened using the standard I/O fopen subroutine. To open a pipe, you must call the
pipe subroutine, which returns a file descriptor, and the standard I/O fdopen subroutine to associate an
open file descriptor with a standard I/O stream.

Stream I/O interfaces are accessed through the following subroutines and macros:

fclose Closes a stream
feof, ferror, clearerr, or fileno Check the status of a stream
fflush Write all currently buffered characters from a stream
fopen, freopen, or fdopen Open a stream
fread or fwrite Perform binary input
fseek, rewind, ftell, fgetpos, or fsetpos Reposition the file pointer of a stream
getc, fgetc, getchar, or getw Get a character or word from an input stream
gets or fgets Get a string from a stream
getwc, fgetwc, or getwchar Get a wide character from an input stream
getws or fgetws Get a string from a stream
printf, fprintf, sprintf, wsprintf, vprintf, vfprintf, vsprintf, or vwsprintf

Print formatted output
putc, putchar, fputc, or putw Write a character or a word to a stream
puts or fputs Write a string to a stream
putwc, putwchar, or fputwc Write a character or a word to a stream
putws or fputws Write a wide character string to a stream
scanf, fscanf, sscanf, or wsscanf Convert formatted input
setbuf, setvbuf, setbuffer, or setlinebuf Assign buffering to a stream
ungetc or ungetwc Push a character back into the input stream

Terminal I/O Interfaces
Terminal I/O interfaces operate between a process and the kernel, providing functions such as buffering
and formatted output.

Every terminal and pseudo-terminal has a tty structure that contains the current terminal group ID. This
field identifies the process group to receive the signals associated with the terminal.

Terminal I/O interfaces are accessed through the iostat command, which monitors I/O system device
loading, and the uprintfd daemon, which allows kernel messages to be written to the terminal screen.

A daemon opens a terminal device in order to log error messages to the /dev/tty or /dev/console file. If
background writes are not allowed, disassociate the daemon process from the controlling terminal.

Terminal characteristics can be enabled or disabled through the following subroutines:

cfgetospeed, cfsetospeed, cfgetispeed, or cfsetispeed
Get and set input and output baud rates

ioctl Performs control functions associated with open file
descriptors, such as controlling the ability of background
processes to produce output on the control terminal

termdef Queries terminal characteristics
tcdrain Waits for output to complete
tcflow Performs flow control functions
tcflush Discards data from the specified queue
tcgetaattr Gets terminal state
tcgetpgrp Gets foreground process group ID
tcsendbreak Sends a break on an asynchronous serial data line
tcsetattr Sets terminal state

Chapter 7. Input and Output Handling 155

../../libs/basetrf1/fclose.htm#HDRA0909927
../../libs/basetrf1/feof.htm#HDRA0909C37
../../libs/basetrf1/fclose.htm#HDRA0909927
../../libs/basetrf1/fopen.htm#HDRA0909963
../../libs/basetrf1/fread.htm#HDRA108917A9
../../libs/basetrf1/fseek.htm#HDRA10499C8
../../libs/basetrf1/getc.htm#HDRA1429390
../../libs/basetrf1/gets.htm#HDRA0909D73
../../libs/basetrf1/getwc.htm#HDRA177966E
../../libs/basetrf1/getws.htm#HDRA19191CB
../../libs/basetrf1/printf.htm#HDRA8ZED0GACO
../../libs/basetrf1/putc.htm#HDRA1429342
../../libs/basetrf1/puts.htm#HDRHP590SHAD
../../libs/basetrf1/putwc.htm#HDRA1819432
../../libs/basetrf1/putws.htm#HDRA19191B1
../../libs/basetrf2/scanf.htm#HDRS5370SHAD
../../libs/basetrf2/setbuf.htm#HDRA13892175
../../libs/basetrf2/ungetc.htm#HDRMP350SHAD
../../cmds/aixcmds3/iostat.htm#HDRA333F9E31
../../cmds/aixcmds5/uprintfd.htm#HDRA3UPRKAREN
../../libs/basetrf1/cfgetospeed.htm#HDRA17F016D
../../libs/basetrf1/ioctl32.htm
../../libs/basetrf2/termdef.htm#HDRGA41260GACO
../../libs/basetrf2/tcdrain.htm#HDRLEL3E0GACO
../../libs/basetrf2/tcflow.htm#HDRVEL3380GACO
../../libs/basetrf2/tcflush.htm#HDRAZKL380GACO
../../libs/basetrf2/tcgetattr.htm#HDRVDD32A0GACO
../../libs/basetrf2/tcgetpgrp.htm#HDRA2019CB1
../../libs/basetrf2/tcsendbreak.htm#HDRA2019C70
../../libs/basetrf2/tcsetattr.htm#HDRSCD32A0GACO

ttylock, ttywait, ttyunlock, or ttylocked
Control tty locking functions

ttyname or isatty Get the name of a terminal
ttyslot Finds the slot in the utmp file for the current user

Asynchronous I/O Interfaces
Asynchronous I/O subroutines allow a process to start an I/O operation and have the subroutine return
immediately after the operation is started or queued. Another subroutine is required to wait for the
operation to complete (or return immediately if the operation is already finished). This means that a
process can overlap its execution with its I/O or overlap I/O between different devices. Although
asynchronous I/O does not significantly improve performance for a process that is reading from a disk file
and writing to another disk file, asynchronous I/O provides significant performance improvements for other
types of I/O driven programs, such as programs that dump a disk to a magnetic tape or display an image
on an image display.

Although not required, a process performing asynchronous I/O can tell the kernel to notify it when a
specified descriptor is ready for I/O (also called signal-driven I/O). The kernel notifies the user process with
the SIGIO signal.

To use asynchronous I/O, a process must perform three steps:

1. Establish a handler for the SIGIO signal. This step is only necessary if notification by the signal is
requested.

2. Set the process ID or the process group ID to receive the SIGIO signals. This step is only necessary if
notification by the signal is requested.

3. Enable asynchronous I/O. The system administrator usually determines whether asynchronous I/O is
loaded (enabled). Enabling occurs at system startup.

The following asynchronous I/O subroutines are provided:

aio_cancel Cancels one or more outstanding asynchronous I/O requests
aio_error Retrieves the error status of an asynchronous I/O request
aio_read Reads asynchronously from a file descriptor
aio_return Retrieves the return status of an asynchronous I/O request
aio_suspend Suspends the calling process until one or more asynchronous I/O requests is completed
aio_write Writes asynchronously to a file descriptor
lio_listio Initiates a list of asynchronous I/O requests with a single call
poll or select Check I/O status of multiple file descriptors and message queues

For use with the poll subroutine, the following header files are supplied:

poll.h Defines the structures and flags used by the poll subroutine
aio.h Defines the structure and flags used by the aio_read, aio_write, and aio_suspend subroutines

156 Writing and Debugging Programs

../../libs/basetrf2/ttylock.htm#HDRA64F032F
../../libs/basetrf2/ttyname.htm#HDRA244Y996CB
../../libs/basetrf2/ttyslot.htm#HDRIJ2110SHAD
../../libs/basetrf1/aio_cancel.htm#HDRA106C1642
../../libs/basetrf1/aio_error.htm#HDRA106C15A6
../../libs/basetrf1/aio_read.htm#HDRA106C15C1
../../libs/basetrf1/aio_return.htm#HDRA106C1666
../../libs/basetrf1/aio_suspend.htm#HDRKOM106C
../../libs/basetrf1/aio_write.htm#HDRA106C15F1
../../libs/basetrf1/lio_listio.htm
../../libs/basetrf1/poll.htm#HDRA1289B55
../../libs/basetrf2/select.htm#HDRA15691187
../../files/aixfiles/poll.h.htm#HDRA16691C07

Chapter 8. Large Program Support

This chapter provides information about using the large address-space model to accommodate programs
requiring data areas that are larger than conventional segmentation can handle.

Note: The discussion in this chapter only applies to 32-bit processes. For information about the default
32-bit address space model and the 64-bit address space model, see “Program Address Space Overview”
on page 535 and “System Memory Allocation Using the malloc Subsystem” on page 545 in this book.

The system hardware divides the currently active 32-bit virtual address space into 16 independent
segments, each addressed by a separate segment register. The operating system refers to segment 2
(virtual address 0x20000000) as the process private segment. This segment contains most of the
per-process information, including user data, user stack, kernel stack, and user block.

Because the system places user data and the user stack within a single segment, the system limits the
maximum amount of stack and data to slightly less than 256MB. This size is adequate for most
applications. The kernel stack and u-block are relatively small and of fixed size. However, certain
applications require large initialized or uninitialized data areas in the data section of a program. Other large
data areas can be created dynamically with the malloc, brk or sbrk subroutine.

Some programs need larger data areas than allowed by the default address-space model. Programs that
need the larger data areas can use the large address-space model to request the necessary amount of
data space.

Understanding the Large Address-Space Model
The large address-space model enables large data applications while allowing programs that use a smaller
space to follow the smaller model. To allow a program to use the large address-space model, you must set
the o_maxdata field in the XCOFF header of the program to indicate the amount of data needed.

In the large address-space model, the data in the program is laid out beginning in segment 3 when the
value is non-zero. (The data is laid out beginning in segment 3, even if the value is smaller than a
segment size.) The program consumes as many segments as needed to hold the amount of data indicated
by the o_maxdata field, up to a maximum of 8 segments. The program can therefore have up to 2
gigabytes of data.

Other aspects of the program address space remain unchanged. The user stack, kernel stack, and u-block
continue to reside in segment 2. Also, the data resulting from loading a private copy of a shared library is
placed in segment 2. Only program data is placed in segment 3 or higher.

As a result of this organizational scheme, the user stack is still limited by the size of segment 2. (However,
the user stack can be relocated into a shared memory segment.) In addition, fewer segments are available
for mapped files.

While the size of initialized data in a program can be large, there is still a restriction on the size and
placement of text. In the executable file associated with a program, the offset of the end of the text section
plus the size of the loader section must be less than 256MB. This is required so that this read-only portion
of the executable will fit into segment 1 (the TEXT segment). Because of these restrictions, a program
cannot have a very large text section.

© Copyright IBM Corp. 1997, 2001 157

../../libs/basetrf1/malloc.htm#HDRA174921E
../../libs/basetrf1/brk.htm#HDRA08791427

Understanding the Very Large Address-Space Model
The very large address-space model enables large data applications in much the same way as the large
address-space model. There are several differences between the two address-space models though. To
allow a program to use the very large address-space model, you must set the o_maxdata field in the
XCOFF header to indicate the amount of data needed and set the F_DSA flag in the file header.

The data in the very large address-space model is laid out beginning in segment 3 when the o_maxdata
value is greater than zero. The program is then allowed to use as many segments as needed to hold the
amount of data indicated by the o_maxdata field, up to a maximum of 8 segments. In the very large
address-space model though, these data segments for the data are created dynamically instead of all at
exec time as in the large address-space model.

Using the very large address-space model will change the way in which the segments for a program are
managed. A programs data is laid out starting in segment 3, and consumes as many segments as needed
for the initial data heap. The remaining segments are available to use for other purposes such as shmat()
or mmap(). Once a segment has been allocated for the data heap though, it can no longer be used for any
other purposes, even if the size of the heap is reduced.

Use of the very large address-space model will also change the default behavior of system calls such as
shmat() and mmap(). The behavior of these system calls in the vary large address-space model will
change so that they start placing files in segment 14 and work down instead of starting in segment 3 and
working up to segment 14. The system calls can use any of the available segments as long as they have
not been allocated for the data heap.

The very large address-space model will allow programs to specify a maxdata value of 0x80000000, the
largest currently allowable value, and still use all of the available segments above segment 3 until they are
allocated for the data heap. In the large address-space model theses additional segments would have
been allocated for the data heap at exec and thus unavailable for other purposes.

Enabling the Large Address-Space Models
The large address space model is used if any nonzero value is given for the maxdata keyword. The vary
large address-space model is used if any non-zero value is given for the maxdata keyword and the dsa
keyword is used also. Use the -bmaxdata option only if the program needs very large data areas.

Use the -bmaxdata flag with the ld command to enable the large address-space model.

For example, to link a program that will have the maximum 8 segments reserved to it, the following
command line could be used:
cc sample.o -bmaxdata:0x80000000

To link a program with the vary large address space model enabled and that will have the maximum 8
segments reserved to it, the following command line could be used:
cc sample.o -bmaxdata:0x80000000/dsa

The number 0x80000000 is the number of bytes, in hexadecimal format, equal to eight 256MB segments.
Although larger numbers can be used, they are ignored because a maximum of 8 segments can be
reserved. The value following the -bmaxdata flag can also be specified in decimal or octal format.

Using the following shell commands, you can patch large programs to use large data without linking them
again:
/usr/bin/echo '\0200\0\0\0'|dd of=executable_file_name bs=4
count=1 seek=19 conv=notrunc

158 Writing and Debugging Programs

../../cmds/aixcmds3/ld.htm#HDRA09493AC

Note: Use the full name of the echo command (/usr/bin/echo) to avoid invoking any of the shell echo
subcommands by mistake. Also, these shell commands will not work for the very large address-space
model. You must link the program again to get the very large program support.

The echo string generates the binary value 0x80000000. This dd command seeks to the proper offset in
the executable file and modifies the o_maxdata field. Do not use the dd command on nonexecutable object
files, loadable modules, or shared libraries.

Executing Programs with Large Data Areas
When a program attempts to execute a program with large data areas, the system recognizes the
requirement for large data and attempts to modify the soft limit on data size to accommodate that
requirement. However, if it does not have permission to modify the soft limit, the program ends.

In addition, it is also possible that the data size specified in the o_maxdata field may be too small to
accommodate the amount of space required for initialized or uninitialized data. In this case, the process
ends, and an error is reported.

The attempt is also unsuccessful if the new soft limit is above the hard limit for the process. For example,
the login process usually sets the hard limit to infinity. However, if the calling process has modified its hard
limit using either the ulimit command in the Bourne shell or the limit command in the C shell, the newly
modified soft limit may be above the hard limit for the process. In this case, the process will be killed
during exec processing. In this situation, the only message you receive is killed, which informs you that
the process was killed.

For more information on the ulimit command in the Bourne shell, see Bourne Shell Special Commands in
AIX 5L Version 5.1 System User’s Guide: Operating System and Devices. For more information about the
limit command in the C shell, see Command Substitution in the C Shell and Filename Substitution in the
C Shell in AIX 5L Version 5.1 System User’s Guide: Operating System and Devices.

After placing the program’s initialized and uninitialized data in segments 3 and beyond, the system
computes the break value. The break value defines the end of the process’s static data and the beginning
of its dynamically allocatable data. Using the malloc, brk or sbrk subroutine, the process is free to move
the break value toward the end of the segment identified by the maxdata field in the a.out header file.

For example, if the value specified in the maxdata field in the a.out header file is 0x80000000, then the
maximum break value is up to the end of segment 10 or 0xafffffff. The brk subroutine extends the
break across segment boundaries, but not beyond the point specified in the maxdata field.

The majority of subroutines are unaffected by large data programs. The semantics of the fork subroutine
remain unchanged. Large data programs can run other large or small programs, as well as load and
unload other modules.

The setrlimit subroutine allows the soft data limit to be set to any value that does not exceed the hard
limit. However, because of the inherent limitation of the address space model used by the process, it may
not be able to increase its size to the value that is set.

Special Considerations
Programs with large data spaces require a large amount of paging space. For example, if a program with
a 2-gigabyte address space tries to access every page in its address space, the system must have 2
gigabytes of paging space. The operating system page-space monitor terminates processes when paging
space runs low. Programs with large data spaces are terminated first because they typically consume a
large amount of paging space.

Chapter 8. Large Program Support 159

../../cmds/aixcmds2/dd.htm#HDRA101930E6
../../aixuser/usrosdev/bourne_shell_cmds.htm#HDRA41C211E1
../../aixuser/usrosdev/c_shell_cmds.htm#HDRA59C22228
../../aixuser/usrosdev/var_file_name_subst_c.htm#HDRA59C22240
../../aixuser/usrosdev/var_file_name_subst_c.htm#HDRA59C22240
../../libs/basetrf1/malloc.htm#HDRA174921E
../../libs/basetrf1/brk.htm#HDRA08791427
../../libs/basetrf1/fork.htm

Debugging programs with large data is similar to debugging other programs. The dbx command can
debug these large programs actively or from a core dump. A full core dump should not be performed
because programs with large data areas produce large core dumps, which consume large amounts of
file-system space.

Some application programs may be written in such a way that they rely on characteristics of the address
space model. Programs in which the large address space is enabled use a different address space model
than programs without the large address space enabled. This could cause problems for applications which
make assumptions about the address space model they are running in. In general, avoid application
programs that make assumptions about the address space model.

160 Writing and Debugging Programs

../../cmds/aixcmds2/dbx.htm#HDRA2699EE

Chapter 9. Parallel Programming

Parallel programming should be used to get benefits of new multiprocessor systems, while maintaining a
full binary compatibility with existing monoprocessor systems. The parallel programming facilities are
based on a new concept of the operating system: threads. The following information introduces threads
and the associated programming facilities. It also discusses general topics concerning parallel
programming.

Related Information
“Chapter 10. Programming on Multiprocessor Systems” on page 193 highlights specific problems when
writing programs for symetric multiprocessor systems.

“Chapter 11. Threads Programming Guidelines” on page 215 provides detailed information about
programming with the threads library (libpthreads.a).

Understanding Threads

A thread is an independent flow of control that operates within the same address space as other
independent flows of controls within a process. In previous versions of AIX, and in most of UNIX systems,
thread and process characteristics are grouped into a single entity called a process. In other operating
systems, threads are sometimes called ″lightweight processes,″ or the meaning of the word ″thread″ is
sometimes slightly different.

In the following pages, we will learn the differences between a thread and a process, and see what
″thread″ really means in AIX.

Read the following to learn more about threads in AIX:

Threads and Processes
In traditional single-threaded process systems, a process has a set of properties. In multi-threaded
systems, these properties are divided between processes and threads. For more information, see “Thread
Properties”.

Process Properties
A process in a multi-threaded system is the changeable entity. It must be considered as an execution
frame. It has all traditional process attributes, such as:

v Process ID, process group ID, user ID, and group ID

v Environment

v Working directory.

A process also provides a common address space and common system resources:

v File descriptors

v Signal actions

v Shared libraries

v Inter-process communication tools (such as message queues, pipes, semaphores, or shared memory).

Thread Properties
A thread is the schedulable entity. It has only those properties that are required to ensure its independent
flow of control. These include the following properties:

v Stack

v Scheduling properties (such as policy or priority)

© Copyright IBM Corp. 1997, 2001 161

v Set of pending and blocked signals

v Some thread-specific data.

An example of thread-specific data is the error indicator, errno. In multi-threaded systems, errno is no
longer a global variable, but usually a subroutine returning a thread-specific errno value. Some other
systems may provide other implementations of errno.

Threads within a process must not be considered as a group of processes. All threads share the same
address space. This means that two pointers having the same value in two threads refer to the same data.
Also, if any thread changes one of the shared system resources, all threads within the process are
affected. For example, if a thread closes a file, the file is closed for all threads.

The Initial Thread

When a process is created, one thread is automatically created. This thread is called the initial thread. It
ensures the compatibility between the old processes with a unique implicit thread and the new
multi-threaded processes. The initial thread has some special properties, not visible to the programmer,
that ensure binary compatibility between the old single-threaded programs and the multi-threaded
operating system. It is also the initial thread that executes the main routine in multi-threaded programs.

Threads Implementation
A thread is the schedulable entity, which means that the system scheduler handles threads. These
threads, known by the system scheduler, are strongly implementation-dependent. To facilitate the writing of
portable programs, libraries provide another kind of thread.

Kernel Threads and User Threads

A kernel thread is a kernel entity, like processes and interrupt handlers; it is the entity handled by the
system scheduler. A kernel thread runs within a process, but can be referenced by any other thread in the
system. The programmer has no direct control over these threads, unless writing kernel extensions or
device drivers. See AIX 5L Version 5.1 Kernel Extensions and Device Support Programming Concepts for
more information about kernel programming.

A user thread is an entity used by programmers to handle multiple flows of controls within a program. The
API for handling user threads is provided by a library, the threads library. A user thread only exists within a
process; a user thread in process A cannot reference a user thread in process B. The library uses a
proprietary interface to handle kernel threads for executing user threads. The user threads API, unlike the
kernel threads interface, is part of a portable programming model. Thus, a multi-threaded program
developed on an AIX system can easily be ported to other systems.

On other systems, user threads are simply called threads, and lightweight process refers to kernel threads.

Thread Models and Virtual Processors

User threads are mapped to kernel threads by the threads library. The way this mapping is done is called
the thread model. There are three possible thread models, corresponding to three different ways to map
user threads to kernel threads.

v M:1 model

v 1:1 model

v M:N model.

The mapping of user threads to kernel threads is done using virtual processors. A virtual processor (VP) is
a library entity that is usually implicit. For a user thread, the virtual processor behaves as a CPU for a
kernel thread. In the library, the virtual processor is a kernel thread or a structure bound to a kernel thread.

162 Writing and Debugging Programs

In the M:1 model all user threads are mapped to one kernel thread; all user threads run on one VP. The
mapping is handled by a library scheduler. All user threads programming facilities are completely handled
by the library. This model can be used on any system, especially on traditional single-threaded systems.

In the 1:1 model, each user thread is mapped to one kernel thread; each user thread runs on one VP.
Most of the user threads programming facilities are directly handled by the kernel threads.

In the M:N model, all user threads are mapped to a pool of kernel threads; all user threads run on a pool
of virtual processors. A user thread may be bound to a specific VP, as in the 1:1 model. All unbound user
threads share the remaining VPs. This is the most efficient and most complex thread model; the user
threads programming facilities are shared between the threads library and the kernel threads.

Contention Scope and Concurrency Level

The contention scope of a user thread defines how it is mapped to a kernel thread. There are two possible
contention scopes:

v System contention scope, sometimes called global contention scope

A system contention scope user thread is a user thread that is directly mapped to one kernel thread. All
user threads in a 1:1 thread model have system contention scope.

v Process contention scope, sometimes called local contention scope.

A process contention scope user thread is a user thread that shares a kernel thread with other (process
contention scope) user threads in the process. All user threads in a M:1 thread model have process
contention scope.

In an M:N thread model, user threads can have either system or process contention scope. Therefore, an
M:N thread model is often referred as a mixed-scope model.

The concurrency level is a property of M:N threads libraries. It defines the number of VPs used to run the
process contention scope user threads. This number cannot exceed the number of process contention
scope user threads, and is usually dynamically set by the threads library. The system also sets a limit to
the number of available kernel threads.

libpthreads.a POSIX Threads Library

AIX provides a threads library, called libpthreads.a, based on the POSIX 1003.1c industry standard for a
portable user threads API. Any program written for use with a POSIX thread library can easily be ported
for use with another POSIX threads library; only the performance and very few subroutines of the threads
library are implementation-dependent. For this reason, multi-threaded programs written for this version of
AIX will work on any future version of AIX.

To enhance the portability of the threads library, the POSIX standard made the implementation of several
programming facilities optional. See “Threads Library Options” on page 261 for more information about
checking the POSIX options.

libpthreads_compat.a POSIX Draft 7 Threads Library

AIX provides binary compatibility for existing multi-threads applications that were coded to Draft 7 of the
POSIX thread standard. These applications will run without re-linking.

The libpthreads_compat.a library is actually provided for program development. AIX 4.3 provides
program support for both Draft 7 of the POSIX Thread Standard and Xopen Version 5 Standard, which
includes the final POSIX 1003.1c Pthread Standard.

See “Developing Multi-Threaded Programs” on page 173 for more information.

Chapter 9. Parallel Programming 163

Related Information

Note: Note: In this book and the related articles, the word thread used alone refers to user threads. This
also applies to user-mode environment programming references, but not to articles related to kernel
programming.

Thread Programming Concepts
The following information provides an overview of the threads library and introduces major programming
concepts for multi-threaded programming. Unless otherwise specified, the threads library always operates
within a single process.

Basic Operations
Basic thread operations include thread creation “Thread Creation” and termination “Thread Termination”.

Thread Creation

Thread creation differs from process creation in that no parent-child relation exists between threads. All
threads, except the initial thread automatically created when a process is created, are on the same
hierarchical level. A thread does not maintain a list of created threads, nor does it know the thread that
created it.

When creating a thread, an entry-point routine and an argument must be specified. Every thread has an
entry-point routine with one argument. The same entry-point routine may be used by several threads. See
“Creating Threads” on page 216 for more information about thread creation.

Thread Termination

Threads can terminate themselves by either returning from their entry-point routine or calling a library
subroutine. Threads can also terminate other threads, using a mechanism called cancellation. Any thread
can request the cancellation of another thread. Each thread controls whether it may be canceled or not.
Cleanup handlers may also be registered to perform operations when a cancellation request is acted upon.
See “Terminating Threads” on page 219 for more information about thread termination.

Synchronization
Threads need to synchronize their activities to effectively interact. This includes:

v Implicit communication through the modification of shared data

v Explicit communication by informing each other of events that have occurred.

The threads library provides three synchronization mechanisms: mutexes, condition variables, and joins.
These are primitive but powerful mechanisms, which can be used to build more complex mechanisms.

Mutexes and Race Conditions

Mutual exclusion locks (mutexes) can prevent data inconsistencies due to race conditions. A race condition
often occurs when two or more threads need to perform operations on the same memory area, but the
results of computations depends on the order in which these operations are performed.

Consider, for example, a single counter, X, that is incremented by two threads, A and B. If X is originally 1,
then by the time threads A and B increment the counter, X should be 3. Both threads are independent
entities and have no synchronization between them. Although the C statement X++ looks simple enough to
be atomic, the generated assembly code may not be, as shown in the following pseudo-assembler code:

164 Writing and Debugging Programs

move X, REG
inc REG
move REG, X

If both threads are executed concurrently on two CPUs, or if the scheduling makes the threads
alternatively execute on each instruction, the following steps may occur:

1. Thread A executes the first instruction and puts X, which is 1, into the thread A register. Then thread B
executes and puts X, which is 1, into the thread B register. The following example illustrates the
resulting registers and the contents of memory X.
Thread A Register = 1
Thread B Register = 1
Memory X = 1

2. Next, thread A executes the second instruction and increments the content of its register to 2. Then
thread B increments its register to 2. Nothing is moved to memory X, so memory X stays the same.
The following example illustrates the resulting registers and the contents of memory X.
Thread A Register = 2
Thread B Register = 2
Memory X = 1

3. Last, thread A moves the content of its register, which is now 2, into memory X. Then thread B moves
the content of its register, which is also 2, into memory X, overwriting thread A’s value. The following
example illustrates the resulting registers and the contents of memory X.
Thread A Register = 2
Thread B Register = 2
Memory X = 2

Note that in most cases thread A and thread B will execute the three instructions one after the other, and
the result would be 3, as expected. Race conditions are usually difficult to discover, because they occur
intermittently.

To avoid this race condition, each thread should lock the data before accessing the counter and updating
memory X. For example, if thread A takes a lock and updates the counter, it leaves memory X with a value
of 2. Once thread A releases the lock, thread B takes the lock and updates the counter, taking 2 as its
initial value for X and incrementing it to 3, the expected result.

See “Using Mutexes” on page 227 for more information about mutexes.

Waiting for Threads

Condition variables allow threads to block until some event or condition has occurred. Boolean predicates
indicate whether the program has satisfied a condition variable. The complexity of a condition variable
predicate is defined by the programmer. A condition can be signaled by any thread to either one or all
waiting threads. See “Using Condition Variables” on page 231 to get more information.

When a thread is terminated, its storage may not be reclaimed, depending on an attribute of the thread.
Such threads can be joined by other threads and return information to them. A thread that wants to join
another thread is blocked until the target thread terminates. This joint mechanism is a specific case of
condition-variable usage, the condition is the thread termination. See “Joining Threads” on page 236 for
more information about joins.

Scheduling
The threads library allows the programmer to control the execution scheduling of the threads. The control
is performed in different ways:

v By setting scheduling attributes when creating a thread

v By dynamically changing the scheduling attributes of a created thread

v By defining the effect of a mutex on the thread’s scheduling when creating a mutex

Chapter 9. Parallel Programming 165

v By dynamically changing the scheduling of a thread during synchronization operations.

The two last types of controls are known as synchronization scheduling.

Scheduling Parameters

A thread has three scheduling parameters:

Scope The contention scope of a thread is defined by the thread model used in the threads library.
Policy The scheduling policy of a thread defines how the scheduler treats the thread once it gains control of

the CPU.
Priority The scheduling priority of a thread defines the relative importance of the work being done by each

thread.

The scheduling parameters can be set before the thread’s creation or during the thread’s execution. In
general, controlling the scheduling parameters of threads is important only for threads that are
compute-intensive. Thus the threads library provides default values that are sufficient for most cases. See
“Threads Scheduling” on page 240 for more information about controlling the scheduling parameters of
threads.

Synchronization Scheduling

Synchronization scheduling is a complex topic. Some implementations of the threads library do not provide
this facility.

Synchronization scheduling defines how the execution scheduling, especially the priority, of a thread is
modified by holding a mutex. This allows custom-defined behavior and avoids priority inversions. It is
useful when using complex locking schemes. See “Synchronization Scheduling” on page 243 for more
information.

Other Facilities
The threads library provides other useful facilities to help programmers implement powerful functions. It
also manages the interactions between threads and processes.

Advanced Facilities
The threads library provides an API for handling synchronization and scheduling of threads. It also
provides facilities for the following purposes:

v “One-Time Initializations” on page 246 allow dynamic package initializations.

v “Thread-Specific Data” on page 247 allows each thread to maintain its own private data.

v “Advanced Attributes” on page 250 allow control of the size and the address of the thread’s stack.

Threads-Processes Interactions
Threads and processes interact when handling specific actions:

v “Signal Management” on page 256 are shared between the process and its threads.

v “Process Duplication and Termination” on page 259 imply thread creation and termination.

Threads Library API

This section provides some general comments about the threads library API. The following information is
not required for writing multi-threaded programs, but may help the programmer understand the threads
library API.

Object-Oriented Interface
The threads library API provides an object-oriented interface. The programmer manipulates opaque objects
using pointers or other universal identifiers. This ensures the portability of multi-threaded programs

166 Writing and Debugging Programs

between systems that implement the threads library. It also allows implementation changes between two
releases of AIX that necessitate only programs to be re-compiled. Although some definitions of data types
may be found in the threads library header file (pthread.h), programs should not rely on these
implementation-dependent definitions to directly handle the contents of structures. The regular threads
library subroutines must always be used to manipulate the objects.

The threads library essentially uses three kinds of objects (opaque data types): threads, mutexes, and
condition variables. These objects have attributes which specify the object properties. When creating an
object, the attributes must be specified. In the threads library, these creation attributes are themselves
objects, called attributes objects.

Therefore, there are three pairs of objects manipulated by the threads library:

v Threads and thread attributes objects

v Mutexes and mutex attributes objects

v Condition variables and condition attributes objects.

Creating an object requires the creation of an attributes object. An attributes object is created with
attributes having default values. Attributes can then be individually modified using subroutines. This
ensures that a multi-threaded program will not be affected by the introduction of new attributes or changes
in the implementation of an attribute. An attributes object can thus be used to create one or several
objects, and then destroyed without affecting objects created with the attributes object.

Using an attributes object also allows the use of object classes. One attributes object may be defined for
each object class. Creating an instance of an object class would be done by creating the object using the
class attributes object.

Naming Convention
The identifiers used by the threads library follow a strict naming convention. All identifiers of the threads
library begin with pthread_. User programs should not use this prefix for private identifiers. This prefix is
followed by a component name. The following components are defined in the threads library:

pthread_ Threads themselves and miscellaneous subroutines
pthread_attr Thread attributes objects
pthread_cond Condition variables
pthread_condattr Condition attributes objects
pthread_key Thread-specific data keys
pthread_mutex Mutexes
pthread_mutexattr Mutex attributes objects.

Data types identifiers end with _t. Subroutines and macros end with an _ (underscore), followed by a
name identifying the action performed by the subroutine or the macro. For example, pthread_attr_init is a
threads library identifier (pthread_) concerning thread attributes objects (attr) and is an initialization
subroutine (_init).

Explicit macro identifiers are in uppercase letters. Some subroutines may, however, be implemented as
macros, although their names are in lowercase letters.

Related Files
The following AIX files provide the implementation of pthreads:

/usr/include/pthread.h C/C++ header with most pthread definitions.
/usr/include/sched.h C/C++ header with some scheduling definitions.
/usr/include/unistd.h C/C++ header with pthread_atfork() definition.
/usr/include/sys/limits.h C/C++ header with some pthread definitions.
/usr/include/sys/pthdebug.h C/C++ header with most pthread debug definitions.

Chapter 9. Parallel Programming 167

/usr/include/sys/sched.h C/C++ header with some scheduling definitions.
/usr/include/sys/signal.h C/C++ header with pthread_kill() and

pthread_sigmask() definitions.
/usr/include/sys/types.h C/C++ header with some pthread definitions.
/usr/lib/libpthreads.a 32-bit/64-bit library providing UNIX98 and POSIX

1003.1c pthreads.
/usr/lib/libpthreads_compat.a 32-bit only library providing POSIX 1003.1c Draft 7

pthreads.
/usr/lib/profiled/libpthreads.a Profiled 32-bit/64-bit library providing UNIX98 and

POSIX 1003.1c pthreads.
/usr/lib/profiled/libpthreads_compat.a Profiled 32-bit only library providing POSIX 1003.1c

Draft 7 pthreads.

Writing Reentrant and Thread-Safe Code

In single-threaded processes there is only one flow of control. The code executed by these processes thus
need not to be reentrant or thread-safe. In multi-threaded programs, the same functions and the same
resources may be accessed concurrently by several flows of control. To protect resource integrity, code
written for multi-threaded programs must be reentrant and thread-safe.

This section provides information for writing reentrant and thread-safe programs. It does not cover the
topic of writing thread-efficient programs. Thread-efficient programs are efficiently parallelized programs.
This can only be done during the design of the program. Existing single-threaded programs can be made
thread-efficient, but this requires that they be completely redesigned and rewritten.

Understanding Reentrance and Thread-Safety
Reentrance and thread-safety are both related to the way functions handle resources. Reentrance and
thread-safety are separate concepts: a function can be either reentrant, thread-safe, both, or neither.

Reentrance
A reentrant function does not hold static data over successive calls, nor does it return a pointer to static
data. All data is provided by the caller of the function. A reentrant function must not call non-reentrant
functions.

A non-reentrant function can often, but not always, be identified by its external interface and its usage. For
example, the strtok subroutine is not reentrant, because it holds the string to be broken into tokens. The
ctime subroutine is also not reentrant; it returns a pointer to static data that is overwritten by each call.

Thread-Safety
A thread-safe function protects shared resources from concurrent access by locks. Thread-safety concerns
only the implementation of a function and does not affect its external interface.

In C, local variables are dynamically allocated on the stack. Therefore, any function that does not use
static data or other shared resources is trivially thread-safe. For example, the following function is
thread-safe:
/* thread-safe function */
int diff(int x, int y)
{

int delta;

delta = y - x;
if (delta < 0)

delta = -delta;

return delta;
}

168 Writing and Debugging Programs

../../libs/basetrf2/strlen.htm#HDRA1149117
../../libs/basetrf1/ctime.htm#HDRA181939B

The use of global data is thread-unsafe. It should be maintained per thread or encapsulated, so that its
access can be serialized. A thread may read an error code corresponding to an error caused by another
thread. In AIX, each thread has its own errno value.

Making a Function Reentrant
In most cases, non-reentrant functions must be replaced by functions with a modified interface to be
reentrant. Non-reentrant functions cannot be used by multiple threads. Furthermore, it may be impossible
to make a non-reentrant function thread-safe.

Returning Data
Many non-reentrant functions return a pointer to static data. This can be avoided in two ways:

v Returning dynamically allocated data. In this case, it will be the caller’s responsibility to free the storage.
The benefit is that the interface does not need to be modified. However, backward compatibility is not
ensured; existing single-threaded programs using the modified functions without changes would not free
the storage, leading to memory leaks.

v Using caller-provided storage. This method is recommended, although the interface needs to be
modified.

For example, a strtoupper function, converting a string to uppercase, could be implemented as in the
following code fragment:
/* non-reentrant function */
char *strtoupper(char *string)
{

static char buffer[MAX_STRING_SIZE];
int index;

for (index = 0; string[index]; index++)
buffer[index] = toupper(string[index]);

buffer[index] = 0

return buffer;
}

This function is not reentrant (nor thread-safe). Using the first method to make the function reentrant, the
function would be similar to the following code fragment:
/* reentrant function (a poor solution) */
char *strtoupper(char *string)
{

char *buffer;
int index;

/* error-checking should be performed! */
buffer = malloc(MAX_STRING_SIZE);

for (index = 0; string[index]; index++)
buffer[index] = toupper(string[index]);

buffer[index] = 0

return buffer;
}

A better solution consists of modifying the interface. The caller must provide the storage for both input and
output strings, as in the following code fragment:
/* reentrant function (a better solution) */
char *strtoupper_r(char *in_str, char *out_str)
{

int index;

for (index = 0; in_str[index]; index++)
out_str[index] = toupper(in_str[index]);

Chapter 9. Parallel Programming 169

out_str[index] = 0

return out_str;
}

The non-reentrant standard C library subroutines were made reentrant using the second method. This is
discussed in “Reentrant and Thread-Safe Libraries” on page 172 .

Keeping Data over Successive Calls
No data should be kept over successive calls, because different threads may successively call the
function. If a function needs to maintain some data over successive calls, such as a working buffer or a
pointer, this data should be provided by the caller.

Consider the following example. A function returns the successive lowercase characters of a string. The
string is provided only on the first call, as with the strtok subroutine. The function returns 0 when it
reaches the end of the string. The function could be implemented as in the following code fragment:
/* non-reentrant function */
char lowercase_c(char *string)
{

static char *buffer;
static int index;
char c = 0;

/* stores the string on first call */
if (string != NULL) {

buffer = string;
index = 0;

}

/* searches a lowercase character */
for (; c = buffer[index]; index++) {

if (islower(c)) {
index++;
break;

}
}
return c;

}

This function is not reentrant. To make it reentrant, the static data, the index variable, needs to be
maintained by the caller. The reentrant version of the function could be implemented as in the following
code fragment:
/* reentrant function */
char reentrant_lowercase_c(char *string, int *p_index)
{

char c = 0;

/* no initialization - the caller should have done it */

/* searches a lowercase character */
for (; c = string[*p_index]; (*p_index)++) {

if (islower(c)) {
(*p_index)++;
break;

}
}
return c;

}

The interface of the function changed and so did its usage. The caller must provide the string on each call
and must initialize the index to 0 before the first call, as in the following code fragment:

170 Writing and Debugging Programs

char *my_string;
char my_char;
int my_index;
...
my_index = 0;
while (my_char = reentrant_lowercase_c(my_string, &my_index)) {

...
}

Making a Function Thread-Safe
In multi-threaded programs, all functions called by multiple threads must be thread-safe. However, there is
a workaround for using thread unsafe subroutines in multi-threaded programs. Note also that non-reentrant
functions usually are thread-unsafe, but making them reentrant often makes them thread-safe, too.

Locking Shared Resources
Functions that use static data or any other shared resources, such as files or terminals, must serialize the
access to these resources by locks in order to be thread-safe. For example, the following function is
thread-unsafe:
/* thread-unsafe function */
int increment_counter()
{

static int counter = 0;

counter++;
return counter;

}

To be thread-safe, the static variable counter needs to be protected by a static lock, as in the following
(pseudo-code) example:
/* pseudo-code thread-safe function */
int increment_counter();
{

static int counter = 0;
static lock_type counter_lock = LOCK_INITIALIZER;

lock(counter_lock);
counter++;
unlock(counter_lock);
return counter;

}

In a multi-threaded application program using the threads library, mutexes should be used for serializing
shared resources. Independent libraries may need to work outside the context of threads and, thus, use
other kinds of locks.

A Workaround for Thread-Unsafe Functions
It is possible to use thread-unsafe functions called by multiple threads using a workaround. This may be
useful, especially when using a thread-unsafe library in a multi-threaded program, for testing or while
waiting for a thread-safe version of the library to be available. The workaround leads to some overhead,
because it consists of serializing the entire function or even a group of functions.

v Use a global lock for the library, and lock it each time you use the library (calling a library routine or
using a library global variable), as in the following pseudo-code fragments:
/* this is pseudo-code! */

lock(library_lock);
library_call();
unlock(library_lock);

lock(library_lock);
x = library_var;
unlock(library_lock);

Chapter 9. Parallel Programming 171

This solution can create performance bottlenecks because only one thread can access any part of the
library at any given time. The solution is acceptable only if the library is seldom accessed, or as an
initial, quickly implemented workaround.

v Use a lock for each library component (routine or global variable) or group of components, as in the
following pseudo-code fragments:
/* this is pseudo-code! */

lock(library_moduleA_lock);
library_moduleA_call();
unlock(library_moduleA_lock);

lock(library_moduleB_lock);
x = library_moduleB_var;
unlock(library_moduleB_lock);

This solution is somewhat more complicated to implement than the first one, but it can improve
performance.

Because this workaround should only be used in application programs and not in libraries, mutexes can be
used for locking the library.

Reentrant and Thread-Safe Libraries
Reentrant and thread-safe libraries are useful in a wide range of parallel (and asynchronous) programming
environments, not just within threads. Thus it is a good programming practice to always use and write
reentrant and thread-safe functions.

Using Libraries
Several libraries shipped with the AIX Base Operating System are thread-safe. In the current version of
AIX, the following libraries are thread-safe:

v Standard C library (libc.a)

v Berkeley compatibility library (libbsd.a).

Some of the standard C subroutines are non-reentrant, such as the ctime and strtok subroutines. The
reentrant version of the subroutines have the name of the original subroutine with a suffix _r
(underscore r).

When writing multi-threaded programs, the reentrant versions of subroutines should be used instead of the
original version. For example, the following code fragment:
token[0] = strtok(string, separators);
i = 0;
do {

i++;
token[i] = strtok(NULL, separators);

} while (token[i] != NULL);

should be replaced in a multi-threaded program by the following code fragment:
char *pointer;
...
token[0] = strtok_r(string, separators, &pointer);
i = 0;
do {

i++;
token[i] = strtok_r(NULL, separators, &pointer);

} while (token[i] != NULL);

Thread-unsafe libraries may be used by only one thread in a program. The uniqueness of the thread using
the library must be ensured by the programmer; otherwise, the program will have unexpected behavior, or
may even crash.

172 Writing and Debugging Programs

Converting Libraries
This information highlights the main steps in converting an existing library to a reentrant and thread-safe
library. It applies only to C language libraries.

v Identifying exported global variables. Those variables are usually defined in a header file with the
export keyword.

Exported global variables should be encapsulated. The variable should be made private (defined with
the static keyword in the library source code). Access (read and write) subroutines should be created.

v Identifying static variables and other shared resources. Static variables are usually defined with the
static keyword.

Locks should be associated with any shared resource. The granularity of the locking, thus choosing the
number of locks, impacts the performance of the library. To initialize the locks, the one-time initialization
(“One-Time Initializations” on page 246) facility may be used. For more information, see “One-Time
Initializations” on page 246

v Identifying non-reentrant functions and making them reentrant. See “Making a Function Reentrant” on
page 169

v Identifying thread-unsafe functions and making them thread-safe. See “Making a Function Thread-Safe”
on page 171

Developing Multi-Threaded Programs
Developing multi-threaded programs is not much more complicated than developing programs with multiple
processes. See “Chapter 11. Threads Programming Guidelines” on page 215 for detailed information about
using the threads library. Developing programs also implies compiling and debugging the code.

Compiling a Multi-Threaded Program

This section explains how to generate a multi-threaded program. It describes:

v The required “Header File”

v “Compiler Invocation” to generate multi-threaded programs.

Header File
All subroutine prototypes, macros, and other definitions for using the threads library are in one header file,
pthread.h, located in the /usr/include directory.

The pthread.h header file must be the first included file of each source file using the threads library,
because it defines some important macros that affect other header files. Having the pthread.h header file
as the first included file ensures the usage of thread-safe subroutines. The following global symbols are
defined in the pthread.h file:

_POSIX_REENTRANT_FUNCTIONS Specifies that all functions should be reentrant. Several header
files use this symbol to define supplementary reentrant
subroutines, such as the localtime_r subroutine.

_POSIX_THREADS Denotes the POSIX threads API. This symbol is used to check if
the POSIX threads API is available. Macros or subroutines may
be defined in different ways, depending on whether the POSIX or
some other threads API is used.

The pthread.h file also redefines the errno global variable as a function returning a thread-specific errno
value. The errno identifier is, therefore, no longer an l-value in a multi-threaded program.

Compiler Invocation
When compiling a multi-threaded program, you should invoke the C compiler using one of the following
commands:

Chapter 9. Parallel Programming 173

xlc_r Invokes the compiler with default language level of ansi.
cc_r Invokes the compiler with default language level of extended.

These commands ensure that the adequate options and libraries are used to be compliant with the
X/Open Version 5 Standard. The POSIX Threads Specification 1003.1c is a subset of the X/Open
Specification.

The following libraries are automatically linked with your program when using these commands:

libpthreads.a Threads library.
libc.a Standard C library

For example, the following command compiles the foo.c multi-threaded C source file and produces the
foo executable file:
cc_r -o foo foo.c

Compiler Invocation for Draft 7 of POSIX 1003.1c

AIX provides source code compatibility for Draft 7 applications. It is recommended that developers port
their threaded application to the latest standard, which is covered by the compiler directions provided
above.

When compiling a multi-threaded program for Draft 7 support of threads, you should invoke the C compiler
using one of the following commands:

xlc_r7 Invokes the compiler with default language level of ansi.
cc_r7 Invokes the compiler with default language level of extended.

The following libraries are automatically linked with your program when using these commands:

libpthreads_compat.a Draft 7 Compatibility Threads library.
libpthreads.a Threads library.
libc.a Standard C library.

Source code compatibility has been achieved through the use of the compiler directive
_AIX_PTHREADS_D7. It is also necessary to link the libraries in the following order:
libpthreads_compat.a, libpthreads.a, and libc.a. Most users do not need to know this information, since
the commands listed above provide the necessary options. These options are provided for those that don’t
have the latest AIX compiler.

Porting Draft 7 applications to the X/Open Version 5 Standard
There are very few differences between Draft 7 and the final standard.

There are some minor errno differences. The most prevalent is the use of ESRCH to denote the specified
pthread could not be found. Draft 7 frequently returned EINVAL for this failure.

Pthreads are joinable by default. This is a significant change since it can result in a memory leak if
ignored. See “Creating Threads” on page 216 for more information about thread creation.

Pthreads have process scheduling scope by default. See “Threads Scheduling” on page 240 for more
information about scheduling.

The subroutine pthread_yield has been replaced by sched_yield.

174 Writing and Debugging Programs

The various scheduling policies associated with the mutex locks are slightly different.

Memory Requirements of a Multi-Threaded Program
AIX supports up to 32768 threads in a single process. Each individual pthread requires some amount of
process address space so the actual maximum number of pthreads a process can have depends on the
memory model and the use of process address space for other purposes. The amount of memory a
pthread needs includes the stack size and the guard region size plus some amount for internal use. The
user can control the size of the stack with pthread_attr_setstacksize() and the size of the guard region with
pthread_attr_setguardsize(). The following table points out the maximum number of pthreads which could
be created in a 32-bit process using a simple program which does nothing other than create pthreads in a
loop using the NULL pthread attribute. In a real program the actual numbers will depend on other memory
usage in the program. For a 64-bit process the ulimit controls how many threads can be created therefore
the big data model is not necessary and in fact can decrease the maximum number of threads.

32-bit Process:

Data Model -bmaxdata: Maximum Pthreads

Small Data n/a 1084

Big Data 0x10000000 2169

Big Data 0x20000000 4340

Big Data 0x30000000 6510

Big Data 0x40000000 8681

Big Data 0x50000000 10852

Big Data 0x60000000 13022

Big Data 0x70000000 15193

Big Data 0x80000000 17364

Debugging a Multi-Threaded Program

This section provides an introduction to debugging multi-threaded programs.

Using dbx
Application programmers can use the dbx program to perform debugging. Several new subcommands are
available for displaying thread-related objects: attribute, condition, mutex, and thread.

Using the Kernel Debug Program
Kernel programmers can use the kernel debug program to perform debugging on kernel extensions and
device drivers. The kernel debug program provides no access to user threads but handles kernel threads.

Several new commands have been added to support multiple kernel threads and processors: cpu, ppd,
thread, and uthread. These commands respectively change the current processor, display per-processor
data structures, display thread table entries, and display the uthread structure of a thread.

Core File Requirements of a Multi-Threaded Program
By default processes do not generate a full core file. Before AIX 4.3 this meant only the stack for the
thread causing the core dump was written to the core file. Before AIX 4.3.2 this meant the part of the
process address space made up of shared memory region was not written to the core file. If an application
needs to debug data in shared memory regions, particular thread stacks it will be necessary to generate a
full core dump. To generate full core file information the following command must be run as root:
chdev -l sys0 -a fullcore=true

Chapter 9. Parallel Programming 175

../../libs/basetrf1/pthread_attr_setstacksize.htm
../../libs/basetrf1/pthread_attr_getguardsize.htm
../../cmds/aixcmds2/dbx.htm#HDRA2699EE
../../cmds/aixcmds2/dbx.htm#HDRA792AIA3THOM
../../cmds/aixcmds2/dbx.htm#HDRR52AI14BTHOM
../../cmds/aixcmds2/dbx.htm#HDRL32AI30ATHOM
../../cmds/aixcmds2/dbx.htm#HDRP62AI59THOM
../../aixprggd/kernextc/kern_debug_cmds.htm#HDRCPU
../../aixprggd/kernextc/kern_debug_cmds.htm#HDRPPD
../../aixprggd/kernextc/kern_debug_cmds.htm#HDRTHREAD
../../aixprggd/kernextc/kern_debug_cmds.htm#HDRUTHREAD

Each individual pthread adds to the size of the generated core file. The amount of core file space a
pthread needs includes the stack size which the user can control with pthread_attr_setstacksize(). For
pthreads created with the NULL pthread attribute each pthread in a 32-bit process adds 128KB to the size
of the core file and each pthread in a 64-bit process ads 256KB to the size of the core file.

Developing Multi-Threaded Program which examines and modifies
pthread library objects
The pthread debug library (libpthdebug.a) provides a set of functions which allow application developers
with the capability to examine and modify pthread library objects.

This library can be used for both 32-bit applications and 64-bit applications. This library is thread safe. The
pthread debug library contains a 32-bit shared object and a 64-bit shared object.

The pthread debug library provides applicaitons access to the pthread library information. This includes
information on pthreads, pthread attributes, mutexes, mutex attributes, condition variables, condition
variable attributes, read/write locks, read/write lock attributes, and information about the state of the
pthread library.

Note: All data (addresses, registers) returned by this library will be in 64-bit format both for 64-bit and
32-bit application. It is the applications responsibility to convert these values into 32-bit format for 32-bit
applications. When debugging a 32-bit application the top half of addresses and registers will be ignored.

Note: The pthread debug library does not report mutexes, mutexattrs, conds, condattrs, rwlocks,
rwlockattrs that have the pshared value of PTHREAD_PROCESS_SHARED.

Initialization
The application must initialize a pthread debug library session for each pthreaded process. The
pthdb_sessison_init() function must be called from each pthreaded process after the process has been
loaded. The pthread debug library supports one session for a single process. The application must
assign a unique user identifier and pass it to the pthdb_session_init() function which in turn will assign a
unique session identifier which must be passed as the first parameter to all other pthread debug library
functions, except pthdb_session_pthreaded(), in return. Whenever the pthread debug library invokes a
call back function, it will pass the unique application assigned user identifier back to the application. The
pthdb_session_init() function checks the list of call back functions (“Multi-Threaded Call Back Functions”
on page 186) provided by the application, and initializes the session’s data structures. Also, this function
sets the session flags. An appplication must pass the PTHDB_FLAG_SUSPEND flag to the
pthdb_session_init, see the pthdb_session_setflags() function for a full list of flags.

Call Back Functions
The pthread debug library uses the call back functions to to obtain data, to write data, and to give
storage management to the application. See Call Back Functions (“Multi-Threaded Call Back Functions” on
page 186) for more information.

Required call back functions for an application:

v read_data - needed to retrieve pthread library object information

v alloc - needed to alloc memory in the pthread debug library

v realloc - needed to re-alloc memory in the pthread debug library

v dealloc - needed to free allocated memory in the pthread debug library

Optional call back functions for an application:

v read_regs - only necessary for pthdb_pthread_context and pthdb_pthread_setcontext.

v write_data - only necessary for pthdb_pthread_setcontext.

176 Writing and Debugging Programs

../../libs/basetrf1/pthread_attr_setstacksize.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm

v write_regs - only necessary for pthdb_pthread_setcontext.

Update Function
Each time the application is stopped, after the session has been initialized, it is necessary to call the
pthdb_session_update() function. This function sets or reset the lists of pthreads, pthread attributes,
mutexes, mutex attributes, condition variables, condition variable attributes, read/write locks, read/write
lock attributes, pthread specific keys and active keys. It uses call back functions to manage memory for
the lists.

Context Functions
The pthdb_pthread_context() function is used to get the context information and the
pthdb_pthread_setcontext() function is used to set the context. The pthdb_pthread_context() function
obtains the context information of a pthread from either the kernel or the pthread data structure in the
application’s address space. If the pthread is not associated with a kernel thread, then the context
information saved by pthread library is obtained. If a pthread is associated with a kernel thread, the
information is obtained from the application using the call back functions, it is the applications responsibility
to determine if the kernel thread is in kernel mode or user mode and provide the correct information for
that mode.

When a pthread with kernel thread is in kernel mode code it is impossible to get the full user mode context
because the kernel does not save it off in one place. The getthrds() function can be used to get part of
this information. It always saves the user mode stack and the application can discover this by checking
thrdsinfo64.ti_scount. If this is non-zero the user mode stack is available in thrdsinfo64.ti_ustk. From
user mode stack it is possible to determine the iar and the call back frames but not the other register
values. The thrdsinfo64 structure is defined in procinfo.h file.

List Functions
The pthread debug library maintains lists for pthreads, pthread attributes, mutexes, mutex attributes,
condition variables, condition variables attributes, read/write locks, read/write lock attributes, pthread
specific keys and active keys, each represented by a type specific handle. The pthdb_<object>() functions
return the next handle in the appropriate list, where object is one of the following: pthread, attr, mutex,
mutexattr, cond, condattr, rwlock, rwlockattr or key. If the list is empty or the end of the list is reached,
PTHDB_INVALID_<OBJECT> is reported, where OBJECT is one of the following: PTHREAD, ATTR,
MUTEX, MUTEXATTR, COND, CONDATTR, RWLOCK, RWLOCKATTR or KEY.

Field Functions
Detailed information about an object can be obtained by using the appropriate object member function,
pthdb_<object>_<field>(), where object is one of the following: pthread, attr, mutex, mutexattr, cond,
condattr, rwlock, rwlockattr or key and where field is the name of a field of the detailed information for
the object.

Customizing the Session
The pthdb_session_setflags() function allows the application to change the flags which customize the
session. These flags are used to control the number of registers that are read or wrote during context
operations.

The pthdb_session_flags() function gets the current flags for the session.

Session Termination
At the end of the session, the session data structures need to be deallocated and the session data needs
to be deleted. This is accomplished by calling the pthdb_session_destroy() function, which uses a call
back function to deallocate the memory. All of the memory allocated by the pthdb_session_init(), and
pthdb_session_update() functions will be deallocated.

Chapter 9. Parallel Programming 177

../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_pthread_context.htm
../../libs/basetrf1/pthdb_pthread_context.htm
../../libs/basetrf1/pthdb_attr.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm

Example

Pseudo-code showing how an application can connect to the pthread debug library:
/* includes */

#include <pthread.h>
#include <sys/pthdebug.h>

...

int my_read_data(pthdb_user_t user, pthdb_symbol_t symbols[],int count)
{

int rc;

rc=memcpy(buf,(void *)addr,len);
if (rc==NULL) {

fprintf(stderr,“Error message\n”);
return(1);

}
return(0);

}
int my_alloc(pthdb_user_t user, size_t len, void **bufp)
{

*bufp=malloc(len);
if(!*bufp) {

fprintf(stderr,“Error message\n”);
return(1);

}
return(0);

}
int my_realloc(pthdb_user_t user, void *buf, size_t len, void **bufp)
{

*bufp=realloc(buf,len);
if(!*bufp) {

fprintf(stderr,“Error message\n”);
return(1);

}
return(0);

}
int my_dealloc(pthdb_user_t user,void *buf)
{

free(buf);
return(0);

}

status()
{

pthdb_callbacks_t callbacks =
{ NULL,

my_read_data,
NULL,
NULL,
NULL,
my_alloc,
my_realloc,
my_dealloc,
NULL

};

...

rc=pthread_suspend_others_np();
if (rc!=0)

deal with error

if (not initialized)

178 Writing and Debugging Programs

rc=pthdb_session_init(user,exec_mode,PTHDB_SUSPEND|PTHDB_REGS,callbacks,
&session);

if (rc!=PTHDB_SUCCESS)
deal with error

rc=pthdb_session_update(session);
if (rc!=PTHDB_SUCCESS)

deal with error

retrieve pthread object information using the object list functions and
the object field functions

...

rc=pthread_continue_others_np();
if (rc!=0)

deal with error
}

...

main()
{

...
}

Related Information
v Session Functions

– pthdb_session_concurrency

– pthdb_session_destroy

– pthdb_session_flags

– pthdb_session_setflags

– pthdb_session_init

– pthdb_session_update

v Call Back Functions (“Multi-Threaded Call Back Functions” on page 186)

– read_data

– write_data

– read_regs

– write_regs

– alloc

– realloc

– dealloc

v List Functions

– pthdb_attr

– pthdb_cond

– pthdb_condattr

– pthdb_key

– pthdb_mutex

– pthdb_mutexattr

– pthdb_pthread

– pthdb_pthread_key

– pthdb_rwlock

– pthdb_rwlockattr

Chapter 9. Parallel Programming 179

../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_attr.htm

v Pthread Functions

– pthdb_pthread_addr

– pthdb_pthread_arg

– pthdb_pthread_cancelpend

– pthdb_pthread_cancelstate

– pthdb_pthread_canceltype

– pthdb_pthread_detachstate

– pthdb_pthread_exit

– pthdb_pthread_func

– pthdb_pthread_ptid

– pthdb_pthread_schedparam

– pthdb_pthread_schedpolicy

– pthdb_pthread_schedpriority

– pthdb_pthread_scope

– pthdb_pthread_state

– pthdb_pthread_suspendstate

– pthdb_ptid_pthread

v Pthread Context Functions

– pthdb_pthread_context

– pthdb_pthread_setcontext

v Pthread Signal Functions

– pthdb_pthread_sigmask

– pthdb_pthread_sigpend

– pthdb_pthread_sigwait

v Pthread Specific Data Functions

– pthdb_pthread_specific

v Pthread Mapping to Kernel Thread Functions

– pthdb_pthread_tid

– pthdb_tid_pthread_tid

v Attribute Functions

– pthdb_attr_addr

– pthdb_attr_detachstate

– pthdb_attr_guardsize

– pthdb_attr_inheritsched

– pthdb_attr_schedparam

– pthdb_attr_schedpolicy

– pthdb_attr_schedpriority

– pthdb_attr_scope

– pthdb_attr_stackaddr

– pthdb_attr_stacksize

– pthdb_attr_suspendstate

v Mutex Functions

– pthdb_mutex_addr

– pthdb_mutex_lock_count

– pthdb_mutex_owner

180 Writing and Debugging Programs

../../libs/basetrf1/pthdb_pthread_arg.htm
../../libs/basetrf1/pthdb_pthread_context.htm
../../libs/basetrf1/pthdb_pthread_sigmask.htm
../../libs/basetrf1/pthdb_pthread_specific.htm
../../libs/basetrf1/pthdb_pthread_tid.htm
../../libs/basetrf1/pthdb_attr_detachstate.htm
../../libs/basetrf1/pthdb_mutex_owner.htm

– pthdb_mutex_pshared

– pthdb_mutex_prioceiling

– pthdb_mutex_protocol

– pthdb_mutex_state

– pthdb_mutex_type

v Mutex Attribute Functions

– pthdb_mutexattr_addr

– pthdb_mutexattr_prioceiling

– pthdb_mutexattr_protocol

– pthdb_mutexattr_pshared

– pthdb_mutexattr_type

v Condition Variable Functions

– pthdb_cond_addr

– pthdb_cond_mutex

– pthdb_cond_pshared

v Condition Variable Attribute Functions

– pthdb_condattr_addr

– pthdb_condattr_pshared

v Read/Write Lock Functions

– pthdb_rwlock_addr

– pthdb_rwlock_lock_count

– pthdb_rwlock_owner

– pthdb_rwlock_pshared

– pthdb_rwlock_state

v Read/Write Lock Attribute Functions

– pthdb_rwlockattr_addr

– pthdb_rwlockattr_pshared

v Waiter Functions

– pthdb_mutex_waiter

– pthdb_cond_waiter

– pthdb_rwlock_read_waiter

– pthdb_rwlock_write_waiter

The pthread.h file

“Developing Multi-Threaded Programs” on page 173

Developing Multi-Threaded Program Debuggers
The pthread debug library (libpthdebug.a) provides a set of functions which will allow debugger
developers to provide debug capabilities for applications using the pthread library.

This library is used to debug both 32-bit and 64-bit pthreaded applications. This library is used to debug
targeted debug processes only, it can also be used introspectively (for example: linked to an application
that uses pthreads) to examine pthread information of its own application. See “Developing Multi-Threaded
Program which examines and modifies pthread library objects” on page 176. This library can be used by a

Chapter 9. Parallel Programming 181

../../libs/basetrf1/pthdb_mutexattr_prioceiling.htm
../../libs/basetrf1/pthdb_cond_mutex.htm
../../libs/basetrf1/pthdb_condattr_pshared.htm
../../libs/basetrf1/pthdb_rwlock_owner.htm
../../libs/basetrf1/pthdb_rwlockattr_pshared.htm
../../libs/basetrf1/pthdb_mutex_waiter.htm
../../files/aixfiles/pthread.h.htm

multi-threaded debugger to debug a multi-threaded application. Multi-threaded debuggers are supported
via libpthreads.a. This library is thread safe. The pthread debug library contains a 32-bit shared object and
a 64-bit shared object.

Debuggers using the ptrace facility must link to the 32-bit version of the library, since the ptrace facility is
not suppoted in 64-bit mode. Debuggers using the /proc facility can link to either the 32-bit version or the
64-bit version of this library.

The pthread debug library provides debuggers access to pthread library information. This includes
information on pthreads, pthread attributes, mutexes, mutex attributes, condition variables, condition
variable attributes, read/write locks, read/write lock attributes, and information about the state of the
pthread library. This library also provides help with controlling the execution of pthreads.

Note: All data (addresses, registers) returned by this library will be in 64-bit format both for 64-bit and
32-bit application. It is the debuggers responsibility to convert these values into 32-bit format for 32-bit
applications. When debugging a 32-bit application the top half of addresses and registers will be ignored.

Note: The pthread debug library does not report mutexes, mutexattrs, conds, condattrs, rwlocks,
rwlockattrs that have the pshared value of PTHREAD_PROCESS_SHARED.

Initialization
The debugger must initialize a pthread debug library session for each debug process. This cannot be
done until the pthread library has been initialized in the debug process. The pthdb_session_pthreaded()
function has been provided to tell the debugger when the pthread library has been initialized in the debug
process. Each time, the pthdb_session_pthreaded() function is called it checks to see if the pthread
library has been initialized. If initialized, it returns PTHDB_SUCCESS. Otherwise it returns
PTHDB_NOT_PTHREADED. In both cases, it returns a function name which can be used to set a breakpoint for
immediate notification that the pthread library has been initialized. Therefore, the
pthdb_session_pthreaded() function provides two methods to determine when the pthread library has
been initialized:

v The first method requires the debugger to call the function each time the debug process stops, to see if
the debuggee is pthreaded.

v The second method requires the debugger to call the function once and if the debuggee is not
pthreaded to set a breakpoint to notify the debugger when the debug process is pthreaded.

Once the debug process is pthreaded, the debugger must call the pthdb_session_init() function, to
initialize a session for the debug process. The pthread debug library supports one session for a single
debug process. The debugger must assign a unique user identifier and pass it to pthdb_session_init()
which in turn will assign a unique session identifier which must be passed as the first parameter to all
other pthread debug library functions, except pthdb_session_pthreaded(), in return. Whenever the
pthread debug library invokes a “Multi-Threaded Call Back Functions” on page 186, it will pass the
unique debugger assigned user identifier back to the debugger. The pthdb_session_init() function checks
the list of call back functions provided by the debugger, and initializes the session’s data structures. Also,
this function sets the session flags, see the pthdb_session_setflags function.

Call Back Functions
The pthread debug library uses call back functions to obtain addresses, to obtain data, to write data, to
give storage management to the debugger, and to aid in debugging the pthread debug library. See
“Multi-Threaded Call Back Functions” on page 186 for more information.

Update Function
Each time the debugger is stopped, after the session has been initialized, it is necessary to call the
pthdb_session_update() function. This function sets or reset the lists of pthreads, pthread attributes,

182 Writing and Debugging Programs

../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm

mutexes, mutex attributes, condition variables, condition variable attributes, read/write locks, read/write
lock attributes, pthread specific keys and active keys. It uses call back functions to manage memory for
the lists.

Hold and Unhold Functions
Debuggers need to support hold and unhold of threads for two reasons:

v In order to allow a user to single step a single thread, it must be possible to hold one or more of the
other threads.

v For users to continue a subset of available threads, it must be possible to hold threads not in the set.

The pthdb_pthread_hold() function sets the hold state of a pthread to hold.

The pthdb_pthread_unhold() function sets the hold state of a pthread to unhold.

Note: The pthdb_pthread_hold() and pthdb_pthread_unhold() functions must always be used whether
a pthread has a kernel thread or not.

The pthdb_pthread_holdstate() function returns the hold state of the pthread.

The pthdb_session_committed() function reports the function name of the function that is called after all
of the hold and unhold changes are committed. A break point can be placed at this function to notify the
debugger when the hold and unhold changes have been committed.

The pthdb_session_stop_tid() function informs the pthread debug library, which informs the pthread
library the tid of the thread that stopped the debugger.

The pthdb_session_commit_tid() function returns the list of kernel threads, one kernel thread at a time,
that must be continued to commit the hold and unhold changes. This function must be called repeatedly,
until PTHDB_INVALID_TID is reported. If the list of kernel threads is empty, it is not necessary to continue
any threads for the commit operation.

The debugger can determine when all of the hold and unhold changes have been committed in two ways:

v Before the commit operation (continuing all of the tids returned by the pthdb_session_commit_tid()
function) is started, the debugger can call the pthdb_session_committed() function to get the function
name and set a breakpoint. (This method can be done once for the life of the process.)

v Before the commit operation is started, the debugger calls the pthdb_session_stop_tid() function with
the tid of the thread that stopped the debugger. When the commit operation is complete, the pthread
library will ensure that the same stop tid is stopped as before the commit operation.

In order to hold or unhold pthreads it is necessary to follow the following procedure, before continuing a
group of pthreads or single stepping a single pthread:

1. Use the pthdb_pthread_hold() and pthdb_pthread_unhold() functions to set up which pthreads will
be held and which will be unheld.

2. Set-up the method that will determine when all of the hold and unhold changes have been committed.

3. Use the pthdb_session_commit_tid() function to determine the list of tids that must be continued to
commit the hold and unhold changes.

4. Continue the tids in the previous step and the thread which stopped the debugger.

The pthdb_session_continue_tid() function allows the debugger to obtain the list of kernel threads that
must be continued before it proceeds with single stepping a single pthread or continuing a group of
pthreads. This function must be called repeatedly, until PTHDB_INVALID_TID is reported. If the list of kernel
threads is not empty, the debugger will need to continue these kernel threads along with the others it is

Chapter 9. Parallel Programming 183

../../libs/basetrf1/pthdb_pthread_hold.htm
../../libs/basetrf1/pthdb_pthread_hold.htm
../../libs/basetrf1/pthdb_pthread_hold.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm

explicitly interested in. The debugger is responsible for parking the stop thread and continuing the stop
thread. The stop thread, is the thread that caused the debugger to be entered.

Context Functions
The pthdb_pthread_context() function is used to get the context information and the
pthdb_pthread_setcontext() function is used to set the context. The pthdb_pthread_context() function
obtains the context information of a pthread from either the kernel or the pthread data structure in the
debug process’s address space. If the pthread is not associated with a kernel thread, then the context
information saved by pthread library is obtained. If a pthread is associated with a kernel thread, the
information is obtained from the debugger using call backs, it is the debuggers responsibility to determine
if the kernel thread is in kernel mode or user mode and provide the correct information for that mode.

When a pthread with kernel thread is in kernel mode code it is impossible to get the full user mode context
because the kernel does not save it off in one place. The getthrds() function can be used to get part of
this information. It always saves the user mode stack and the debugger can discover this by checking
thrdsinfo64.ti_scount. If this is non-zero the user mode stack is available in thrdsinfo64.ti_ustk. From
user mode stack it is possible to determine the iar and the call back frames but not the other register
values. The thrdsinfo64 structure is defined in procinfo.h file.

List Functions
The pthread debug library maintains lists for pthreads, pthread attributes, mutexes, mutex attributes,
condition variables, condition variables attributes, read/write locks, read/write lock attributes, pthread
specific keys and active keys, each represented by a type specific handle. The pthdb_<object>() The
pthdb_<object>() functions return the next handle in the appropriate list, where <object> is one of the
following: pthread, attr, mutex, mutexattr, cond, condattr, rwlock, rwlockattr or key. If the list is empty or the
end of the list is reached, PTHDB_INVALID_object is reported, where object is one of the following:
PTHREAD, ATTR, MUTEX, MUTEXATTR, COND, CONDATTR, RWLOCK, RWLOCKATTR or KEY.

Field Functions
Detailed information about an object can be obtained by using the appropriate object member function,
pthdb_object_field(), where object is one of the following: pthread, attr, mutex, mutexattr, cond,
condattr, rwlock, rwlockattr or key and where field is the name of a field of the detailed information for
the object.

Customizing the Session
The pthdb_session_setflags() function allows the debugger to change the flags which customize the
session. These flags are used to control the number of registers that are read or wrote during context
operations, and to control the printing of debug information.

The pthdb_session_flags() function gets the current flags for the session.

Session Termination
At the end of the debug session, the session data structures need to be deallocated and the session data
needs to be deleted. This is accomplished by calling the pthdb_session_destroy() function, which uses a
call back functions to deallocate the memory. All of the memory allocated by the pthdb_session_init(),
and pthdb_session_update() functions will be deallocated.

Example
Pseudo-code showing how the debugger should make use of the hold/unhold code:
/* includes */

#include <sys/pthdebug.h>

184 Writing and Debugging Programs

../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_pthread_context.htm
../../libs/basetrf1/pthdb_attr.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm
../../libs/basetrf1/pthdb_session_committed.htm

main()
{

tid_t stop_tid; /* thread which stopped the process */
pthdb_user_t user = <unique debugger value>;
pthdb_session_t session; /* <unique library value> */
pthdb_callbacks_t callbacks = <callback functions>;
char *pthreaded_symbol=NULL;
char *committed_symbol;
int pthreaded = 0;
int pthdb_init = 0;
char *committed_symbol;

/* fork/exec or attach to debuggee */

/* debuggee uses ptrace()/ptracex() with PT_TRACE_ME */

while (/* waiting on an event */)
{

/* debugger waits on debuggee */

if (pthreaded_symbol==NULL) {
rc = pthdb_session_pthreaded(user, &callbacks, pthreaded_symbol);
if (rc == PTHDB_NOT_PTHREADED)
{

/* set breakpoint at pthreaded_symbol */
}
else

pthreaded=1;
}
if (pthreaded == 1 && pthdb_init == 0) {

rc = pthdb_session_init(user, &session, PEM_32BIT, flags, &callbacks);
if (rc)

/* handle error and exit */
pthdb_init=1;

}

rc = pthdb_session_update(session)
if (rc != PTHDB_SUCCESS)

/* handle error and exit */

while (/* accepting debugger commands */)
{

switch (/* debugger command */)
{

...
case DB_HOLD:

/* regardless of pthread with or without kernel thread */
rc = pthdb_pthread_hold(session, pthread);
if (rc)

/* handle error and exit */
case DB_UNHOLD:

/* regardless of pthread with or without kernel thread */
rc = pthdb_pthread_unhold(session, pthread);
if (rc)

/* handle error and exit */
case DB_CONTINUE:

/* unless we have never held threads for the life */
/* of the process */
if (pthreaded)
{

/* debugger must handle list of any size */
struct pthread commit_tids;
int commit_count = 0;
/* debugger must handle list of any size */
struct pthread continue_tids;
int continue_count = 0;

Chapter 9. Parallel Programming 185

rc = pthdb_session_committed(session, committed_symbol);
if (rc != PTHDB_SUCCESS)

/* handle error */
/* set break point at committed_symbol */

/* gather any tids necessary to commit hold/unhold */
/* operations */
do
{

rc = pthdb_session_commit_tid(session,
&commit_tids.th[commit_count++]);

if (rc != PTHDB_SUCCESS)
/* handle error and exit */

} while (commit_tids.th[commit_count - 1] != PTHDB_INVALID_TID);

/* set up thread which stopped the process to be */
/* parked using the stop_park function*/

if (commit_count > 0) {
rc = ptrace(PTT_CONTINUE, stop_tid, stop_park, 0,

&commit_tids);
if (rc)

/* handle error and exit */

/* wait on process to stop */
}

/* gather any tids necessary to continue */
/* interesting threads */
do
{

rc = pthdb_session_continue_tid(session,
&continue_tids.th[continue_count++]);

if (rc != PTHDB_SUCCESS)
/* handle error and exit */

} while (continue_tids.th[continue_count - 1] != PTHDB_INVALID_TID);

/* add interesting threads to continue_tids */

/* set up thread which stopped the process to be parked */
/* unless it is an interesting thread */

rc = ptrace(PTT_CONTINUE, stop_tid, stop_park, 0,
&continue_tids);

if (rc)
/* handle error and exit */

}
case DB_EXIT:

rc = pthdb_session_destroy(session);
/* other clean up code */
exit(0);

...
}

}

}
exit(0);

}

Multi-Threaded Call Back Functions
v symbol_addrs

v read_data

v write_data

v read_regs

186 Writing and Debugging Programs

v write_regs

v alloc

v realloc

v dealloc

v print

Purpose
Provide access to facilities needed by the pthread debug library and supplied by the debugger or
application.

Library
These functions are provided by the debugger which links in the pthread debug library.

Syntax

#include <sys/pthdebug.h>

int symbol_addrs(pthdb_user_t user,
pthdb_symbol_t symbols[],
int count)

int read_data(pthdb_user_t user,
void * buf,
pthdb_addr_t addr,
int size)

int write_data(pthdb_user_t user,
void * buf,
pthdb_addr_t addr,
int size)

int read_regs(pthdb_user_t user,
tid_t tid,
unsigned long long flags,
struct context64 * context)

int write_regs(pthdb_user_t user,
tid_t tid,
unsigned long long flags,
struct context64 * context)

int alloc(pthdb_user_t user,
size_t len,
void ** bufp)

int realloc(pthdb_user_t user,
void * buf,
size_t len,
void ** bufp)

int dealloc(pthdb_user_t user,
void * buf)

Chapter 9. Parallel Programming 187

int print(pthdb_user_t user,
char * str)

Description
int symbol_addrs()

Resolves the address of symbols in the debuggee. The pthread debug library will call this function
to get the address of known debug symbols. If symbol has a name of NULL or ″″, then just set the
address to 0LL, instead of doing a lookup or returning an error. If successful, 0 is returned, else
non-zero is returned. In introspective mode, when the PTHDB_FLAG_SUSPEND flag is set, the
application can use the pthread debug library provided symbol_addrs call back function, by
passing NULL or it can use one of it’s own.

int read_data()
Reads the requested number of bytes of data at requested location from an active process or from
a core file and returns the data through a buffer. If successful then return 0 else return non-zero.
This call back function is always required.

int write_data()
Writes the requested number of bytes of data at requested location. The pthdebug library may use
this to write data to the active process. If successful return 0, else non-zero is returned. This call
back function is required when the PTHDB_FLAG_HOLD flag is set and when using the
pthdb_pthread_setcontext() function.

int read_regs()
Read registers call back function should be able to read the context information of a debuggee
kernel thread from an active process or from a core file. The information should be formatted in
context64 form for both 32-bit and 64-bit process. If successful return 0, else non-zero is returned.
This function is only required when using the pthdb_pthread_context() and
pthdb_pthread_setcontext() functions.

int write_regs()
Write register function should be able to write requested context information to specified
debuggee’s kernel thread id. If successful return 0, else non-zero is returned. This function is only
required when using the pthdb_pthread_setcontext() functions.

int alloc()
Takes len and allocates len bytes of memory and returns the address. If successful return 0, else
non-zero is returned. This call back function is always required.

int realloc()
Takes len and the buf and re-allocates the memory and returns an address to the realloc memory.
If successful return 0, else non-zero is returned. This call back function is always required.

int dealloc()
Takes a buffer and frees it. If successful return 0, else non-zero is returned. This call back function
is always required.

int print()
Prints the character string on the debugger’s stdout. If successful return 0, else non-zero is
returned. This call back is for debugging the library only, the messages printed will not be
translated and will not be explained in our user level documentation. If not debugging the pthread
debug library pass a NULL value for this call back.

Note: If write_data() and write_regs() are NULL then the pthread debug library will not try to write data
or write regs. If pthdb_pthread_set_context() is called when write_data() and write_regs() are NULL, then
it will return PTHDB_NOTSUP.

188 Writing and Debugging Programs

Parameters

user User handle.
symbols Array of symbols.
count Number of symbols.
buf Buffer.
addr Address to be read from or wrote to.
size Size of buffer.
flags Session flags, must accept PTHDB_FLAG_GPRS,

PTHDB_FLAG_SPRS, PTHDB_FLAG_FPRS and
PTHDB_FLAG_REGS.

tid Thread id.
flags Flags which control which registers are read or wrote.
context Context structure.
len Length of buffer to be allocated or re-allocated.
bufp Pointer to buffer.
str String to be printed.

Return Values
If successful these function returns 0 else returns a non-zero value.

Related Information
The pthdebug.h file.

Benefits of Threads
The following explains the benefits of writing multi-threaded programs. Major improvements of threads
programming are:

v “Parallel Programming Concepts” are easier to implement.

v Multi-threaded programs provide better performance. See “Performance Consideration” on page 191.

Threads do have some “Limitations” on page 191 and cannot be used for some special purposes which
still require multi-processed programs.

Parallel Programming Concepts
There are two main advantages for using parallel programming instead of serial programming techniques:

v Parallel programming can improve the performance of a program.

v Some common software models are well suited to parallel programming techniques.

Traditionally, multiple single-threaded processes have been used to achieve parallelism, but some
programs can benefit from a finer level of parallelism. Multi-threaded processes offer parallelism within a
process and share many of the concepts involved in programming multiple single-threaded processes.

Modularity
Programs are often modeled as a number of distinct parts interacting with each other to produce a desired
result or service. A program can be implemented as a single, complex entity that performs multiple
functions among the different parts of the program. A more simple solution consists of implementing
several entities, each entity performing a part of the program and sharing resources with other entities.

By using multiple entities, a program can be separated according to its distinct activities, each having an
associated entity. These entities do not have to know anything about the other parts of the program except
when they exchange information. In these cases, they must synchronize with each other to ensure data
integrity.

Chapter 9. Parallel Programming 189

Threads are well-suited entities for modular programming. Threads provide simple data sharing (all threads
within a process share the same address space) and powerful synchronization facilities (such as mutexes
and condition variables).

Software Models
The following common software models can easily be implemented with threads.

v “Master/Slave Model”

v “Divide-and-Conquer Models”

v “Producer/Consumer Models”.

All these models lead to modular programs. Models may also be combined to efficiently solve complex
tasks.

These models can apply to either traditional multi-process solutions, or to single process multi-thread
solutions, on multi-threaded systems such as AIX. In the following descriptions, the word entity refers to
either a single-threaded process or to a single thread in a multi-threaded process.

Master/Slave Model

In the master/slave (sometimes called boss/worker) model, a master entity receives one or more requests,
then creates slave entities to execute them. Typically, the master controls how many slaves there are and
what each slave does. A slave runs independently of other slaves.

An example of this model is a print job spooler controlling a set of printers. The spooler’s role is to ensure
that the print requests received are handled in a timely fashion. When the spooler receives a request, the
master entity chooses a printer and causes a slave to print the job on the printer. Each slave prints one
job at a time on a printer, handling flow control and other printing details. The spooler may support job
cancellation or other features which require the master to cancel slave entities or reassign jobs.

Divide-and-Conquer Models

In the divide-and-conquer (sometimes called simultaneous computation or work crew) model, one or more
entities perform the same tasks in parallel. There is no master entity; all entities run in parallel
independently.

An example of a divide-and-conquer model is a parallelized grep command implementation, which could
be done as follows. The grep command first establishes a pool of files to be scanned. It then creates a
number of entities. Each entity takes a different file from the pool and searches for the pattern, sending the
results to a common output device. When an entity completes its file search, it obtains another file from
the pool or stops if the pool is empty.

Producer/Consumer Models

The producer/consumer (sometimes called pipelining) model is typified by a production line. An item
proceeds from raw components to a final item in a series of stages. Usually a single worker at each stage
modifies the item and passes it on to the next stage. In software terms, an AIX command pipe, such as
the cpio command, is a good example of a this model.

For example, a Reader entity reads raw data from standard input and passes it to the processor entity,
which processes the data and passes it to the writer entity, which writes it to standard output. Parallel
programming allows the activities to be performed concurrently: the writer entity may output some
processed data while the reader entity gets more raw data.

190 Writing and Debugging Programs

Performance Consideration
Multi-threaded programs can improve performance in many ways compared to traditional parallel programs
using multiple processes. Furthermore, higher performance can be obtained on multiprocessor systems
using threads.

Managing Threads
Managing threads, that is creating threads and controlling their execution, requires fewer system resources
than managing processes. Creating a thread, for example, only requires the allocation of the thread’s
private data area, usually 64KB, and two system calls. Creating a process is far more expensive, because
the entire parent process addressing space is duplicated.

The threads library API is also easier to use than the one for managing processes. Programmers should
think about the six ways of calling the exec subroutine. Thread creation requires just one syntax: the
pthread_create subroutine.

Inter-Thread Communications
Inter-thread communication is far more efficient and easier to use than inter-process communication.
Because all threads within a process share the same address space, they need not use shared memory.
Shared data should just be protected from concurrent access using mutexes or other synchronization
tools.

Synchronization facilities provided by the threads library allow easy implementation of flexible and powerful
synchronization tools. These tools can easily replace traditional inter-process communication facilities,
such as message queues. Note that pipes can be used as an inter-thread communication path.

Multiprocessor Systems

On a multiprocessor system, multiple threads can concurrently run on multiple CPUs. Therefore,
multi-threaded programs can run much faster than on a uniprocessor system. They will also be faster than
a program using multiple processes, because threads require fewer resources and generate less
overhead. For example, switching threads in the same process can be faster, especially in the M:N library
model where context switches can often be avoided. Finally, a major advantage of using threads is that a
single multi-threaded program will work on a uniprocessor system, but can naturally take advantage of a
multiprocessor system, without recompiling.

Limitations
Multi-threaded programming is useful for implementing parallelized algorithms using several independent
entities. However, there are some cases where multiple processes should be used instead of multiple
threads.

Many operating system identifiers, resources, states, or limitations are defined at the process level and,
thus, are shared by all threads in a process. For example, user and group IDs and their associated
permissions are handled at process level. Programs that need to assign different user IDs to their
programming entities need to use multiple processes, instead of a single multi-threaded process. Other
examples include file system attributes such as the current working directory, and the state and maximum
number of open files. Multi-threaded programs may not be appropriate if these attributes are better
handled independently. For example, a multi-processed program can let each process open a large
number of files without interference from other processes.

Chapter 9. Parallel Programming 191

192 Writing and Debugging Programs

Chapter 10. Programming on Multiprocessor Systems

On a uniprocessor system, threads execute one after another in a time-sliced manner. This contrasts with
a multiprocessor system, where several threads execute at the same time, one on each available
processor. Overall performance is improved by running different process threads on different processors.
However, an individual program cannot take advantage of multiprocessing, unless it has multiple threads.

For most users, multiprocessing is invisible, being completely handled by the operating system and the
programs it runs. If desired, users may bind their processes (force them to run on a certain processor);
however, this is not required, nor recommended for ordinary use. Even for most programmers, taking
advantage of multiprocessing simply amounts to using multiple threads. On the other hand, kernel
programmers have to deal with several issues when porting or creating code for multiprocessor systems.
The following information discusses these topics.

Identifying Processors
Symmetric multiprocessor machines have one or more CPU boards, each of which can accommodate two
processors. For example, a four processor machine has two CPU boards, each having two processors.
Commands, subroutines, or messages that refer to processors need to use an identification scheme.
Processors are identified by physical and logical numbers, and by Object Data Manager (ODM) processor
names and location codes.

ODM Processor Names

ODM is a system used to identify various parts throughout a machine, including bus adapters, peripherals
such as printers or terminals, disks, memory boards, and processor boards. See “Chapter 17. Object Data
Manager (ODM)” on page 507 for more information about ODM.

ODM assigns numbers to processor boards and processors in order, starting from 0 (zero), and creates
names based on these numbers by adding a prefix cpucard or proc. Thus, the first processor board is
called cpucard0, and the second processor on it is called proc1.

ODM location codes for processors consist of four 2-digit fields, in the form AA-BB-CC-DD, as explained
below:

AA Always 00. It indicates the main unit.
BB Indicates the processor board number. It can be 0P, 0Q, 0R, or 0S, indicating respectively the first, second, third

or fourth processor card.
CC Always 00.
DD Indicates the processor position on the processor board. It can be 00 or 01.

These codes are illustrated in “Example Processor Configurations” on page 194.

Logical Processor Numbers

Processors can also be identified using logical numbers, which start with 0 (zero). Only enabled
processors have a logical number.

The logical processor number 0 (zero) identifies the first physical processor in the enabled state; the
logical processor number 1 (one) identifies the second enabled physical processor, and so on.

© Copyright IBM Corp. 1997, 2001 193

Generally, all operating system commands and library subroutines use logical numbers to identify
processors. The cpu_state command (see “The cpu_state Command”) is an exception and uses ODM
processor names instead of logical processor numbers.

ODM Processor States

If a processor functions correctly, it can be enabled or disabled using a software command. A processor is
marked faulty if it has a detected hardware problem. ODM classifies processors using three states. A
processor can only be in one of the following states:

enabled Processor works and can be used by AIX.
disabled Processor works, but cannot be used by AIX.
faulty Processor does not work (a hardware fault was detected).

Controlling Processor Use
On a multiprocessor system, the use of processors can be controlled in two ways:

v A system administrator can control the availablity of the processors for the whole system.

v A user can force a process or kernel threads to run on a specific processor.

The cpu_state Command
A system administrator (or any user with root authority) can use the cpu_state command to list system
processors or to control available processors. This command can be used to list the following information
for each configured processor in the system:

Name “ODM Processor Names” on page 193, shown in the form procx, where x is the physical processor
number

Cpu “Logical Processor Numbers” on page 193
Status “ODM Processor States” for the next boot
Location “ODM Processor Names” on page 193, shown in the form AA-BB-CC-DD

Note: The cpu_state command does not display the current processor state, but instead displays the
state to be used for the next system start up (enabled or disabled). If the processor does not
respond, it is either faulty (an ODM state) or a communication error occured. In this case, the
cpu_state command displays No Reply.

Example Processor Configurations

The examples that follow show various processor configurations and how they affect the output of the
cpu_state command. These examples illustrate the relationships among physical processor numbers,
logical processor numbers, the current processor state, and the processor state used at the next boot.

Simple Processor Configurations
The simplest case to consider is when all available processors on a system are functionning and enabled.
Consider a simple two processor system with both processors enabled. The various ODM and number
conventions are shown in the following table.

Processor Naming Conventions

ODM Card Name ODM Processor
Name

Logical Number ODM Current
Processor State

cpu_state Status
Field

cpucard0 proc0 0 Enabled Enabled

cpucard0 proc1 1 Enabled Enabled

194 Writing and Debugging Programs

../../cmds/aixcmds1/cpu_state.htm#HDRTGGBICDTHOM
../../cmds/aixcmds1/cpu_state.htm#HDRTGGBICDTHOM

For the above configuration, the cpu_state -l command produces a listing similar to the following:
Name Cpu Status Location
proc0 0 Enabled 00-0P-00-00
proc1 1 Enabled 00-0P-00-01

The following example shows the system upgraded by adding an additional CPU card with two processors.
By default, processors are enabled, so the new configuration is shown in the following table.

Processor Naming Conventions

ODM Card Name ODM Processor
Name

Logical Number ODM Current
Processor State

cpu_state Status
Field

cpucard0 proc0 0 Enabled Enabled

cpucard0 proc1 1 Enabled Enabled

cpucard1 proc2 2 Enabled Enabled

cpucard1 proc3 3 Enabled Enabled

For this configuration, the cpu_state -l command produces a listing similar to the following:
Name Cpu Status Location
proc0 0 Enabled 00-0P-00-00
proc1 1 Enabled 00-0P-00-01
proc2 2 Enabled 00-0Q-00-00
proc3 3 Enabled 00-0Q-00-01

Complex Processor Configurations
In some conditions, a processor is not enabled and does not have a logical processor number. A
processor can fail a boot power-on test and be marked faulty by ODM. A processor can also be disabled
for maintenance or test reasons. Also, when a processor is enabled or disabled using the cpu_state
command, its current state remains unchanged until the next boot, but its state at the next boot (displayed
in the Status field of the cpu_state command) is changed immediately.

Disabled Processor Configurations: Using the four processor configurations in the previous section,
the physical processor 1 can be disabled with the command:
cpu_state -d proc1

The processor configuration is shown in the following table.

Processor Naming Conventions

ODM Card Name ODM Processor
Name

Logical Number ODM Current
Processor State

cpu_state Status
Field

cpucard0 proc0 0 Enabled Enabled

cpucard0 proc1 1 Enabled Disabled

cpucard1 proc2 2 Enabled Enabled

cpucard1 proc3 3 Enabled Enabled

For this configuration, the cpu_state -l command produces a listing similar to the following:
Name Cpu Status Location
proc0 0 Enabled 00-0P-00-00
proc1 1 Disabled 00-0P-00-01
proc2 2 Enabled 00-0Q-00-00
proc3 3 Enabled 00-0Q-00-01

Chapter 10. Programming on Multiprocessor Systems 195

When the system is rebooted, the processor configuration is as shown in the following table.

Processor Naming Conventions

ODM Card Name ODM Processor
Name

Logical Number ODM Current
Processor State

cpu_state Status
Field

cpucard0 proc0 0 Enabled Enabled

cpucard0 proc1 1 Disabled Disabled

cpucard1 proc2 2 Enabled Enabled

cpucard1 proc3 3 Enabled Enabled

The output of the cpu_state -l command is similar to the following:
Name Cpu Status Location
proc0 0 Enabled 00-0P-00-00
proc1 - Disabled 00-0P-00-01
proc2 1 Enabled 00-0Q-00-00
proc3 2 Enabled 00-0Q-00-01

Faulty Processor Configurations: The following example uses the last processor configuration
discussed in the previous sectoin. The system is rebooted with processors proc0 and proc3 failing their
power-on tests. The processor configuration is as shown in the following table.

Processor Naming Conventions

ODM Card Name ODM Processor
Name

Logical Number ODM Current
Processor State

cpu_state Status
Field

cpucard0 proc0 - Faulty No Reply

cpucard0 proc1 - Disabled Disabled

cpucard1 proc2 0 Enabled Enabled

cpucard1 proc3 - Faulty No Reply

The output of the cpu_state -l command is similar to the following:
Name Cpu Status Location
proc0 - No Reply 00-0P-00-00
proc1 - Disabled 00-0P-00-01
proc2 0 Enabled 00-0Q-00-00
proc3 - No Reply 00-0Q-00-01

Binding Processes and Kernel Threads

Users may also force their processes to run on a given processor; this action is called binding. A system
administrator may bind any process. From the command line, binding is controlled with the bindprocessor
command.

It is important to understand that a process itself is not bound, but rather its kernel threads are bound.
Once kernel threads are bound, they are always scheduled to run on the chosen processor, unless they
are later unbound. When a new kernel thread is created, it has the same bind properties as its creator.

This applies to the initial thread in the new process created by the fork subroutine; the new thread inherits
the bind properties of the thread that called the fork subroutine. When the exec subroutine is called, bind
properties are left unchanged. Once a process is bound to a processor, if no other binding or unbinding
action is performed, all child processes will be bound to the same processor.

196 Writing and Debugging Programs

../../cmds/aixcmds1/bindprocessor.htm#HDRXDTXI2BCTHOM
../../libs/basetrf1/fork.htm
../../libs/basetrf1/exec.htm

It is only possible to bind processes to enabled processors using logical processor numbers. Available
logical processor numbers can be listed using the bindprocessor -q command. For a system with four
enabled processors, this command produces output similar to:
The available processors are: 0 1 2 3

Binding may also be controlled within a program using the bindprocessor subroutine, which allows the
programmer to bind a single kernel thread or all kernel threads in a process. The programmer can also
unbind either a single kernel thread or all kernel threads in a process.

Dynamic Processor Deallocation

Starting with machine type 7044 model 270, the hardware of all systems with more than two processors
will be able to detect correctable errors, which are gathered by the firmware. These errors are not fatal
and, as long as they remain rare occurrences, can be safely ignored. However, when a pattern of failures
seems to be developing on a specific processor, this pattern may indicate that this component is likely to
exhibit a fatal failure in the near future. This prediction is made by the firmware based-on-failure rates and
threshold analysis.

AIX, on these systems, implements continuous hardware surveillance and regularly polls the firmware for
hardware errors. When the number of processor errors hits a threshold and the firmware recognizes that
there is a distinct probability that this system component will fail, the firmware returns an error report to
AIX. In all cases, AIX logs the error in the system error log. In addition, on multiprocessor systems,
depending on the type of failure, AIX attempts to stop using the untrustworthy processor and deallocate it.
This feature is called Dynamic Processor Deallocation.

At this point, the processor is also flagged by the firmware for persistent deallocation for subsequent
reboots, until maintenance personnel replaces the processor.

Potential Impact to Applications
This processor decallocation is transparent for the vast majority of applications, including drivers and
kernel extensions. However, you can use AIX published interfaces to determine whether an application or
kernel extension is running on a multiprocessor machine, find out how many processors there are, and
bind threads to specific processors.

The interface for binding processes or threads to processors uses logical CPU numbers. The logical CPU
numbers are in the range [0..N-1] where N is the total number of CPUs. To avoid breaking applications or
kernel extensions that assume no ″holes″ in the CPU numbering, AIX always makes it appear for
applications as if it is the ″last″ (highest numbered) logical CPU to be deallocated. For instance, on an
8-way SMP, the logical CPU numbers are [0..7]. If one processor is deallocated, the total number of
available CPUs becomes 7, and they are numbered [0..6]. Externally, it looks like CPU 7 has disappeared,
regardless of which physical processor failed. In the rest of this description, the term CPU is used for the
logical entity and the term processor for the physical entity.

Applications or kernel extensions using processes/threads binding could potentially be broken if AIX
silently terminated their bound threads or forcefully moved them to another CPU when one of the
processors needs to be deallocated. Dynamic Processor Deallocation provides programming interfaces so
that those applications and kernel extensions can be notified that a processor deallocation is about to
happen. When these applications and kernel extensions get this notification, they are responsiblefor
moving their bound threads and associated resources (such as timer request blocks) away form the last
logical CPU and adapt themselves to the new CPU configuration.

If, after notification of applications and kernel extensions, some of the threads are still bound to the last
logical CPU, the deallocation is aborted. In this case AIX logs the fact that the deallocation has been
aborted in the error log and continues using the ailing processor. When the processor ultimately fails, it

Chapter 10. Programming on Multiprocessor Systems 197

../../libs/basetrf1/bindprocessor.htm#HDRQTKXI49THOM

creates a total system failure. Thus, it is important for applications or kernel extensions binding threads to
CPUs to get the notification of an impending processor deallocation, and act on this notice.

Even in the rare cases where the deallocation cannot go through, Dynamic Processor Deallocation still
gives advanced warning to system administrators. By recording the error in the error log, it gives them a
chance to schedule a maintenance operation on the system to replace the ailing component before a
global system failure occurs.

Processor Deallocation: Flow of Events
The typical flow of events for processor deallocation is as follows:

1. The firmware detects that a recoverable error threshold has been reached by one of the processors.

2. AIX logs the firmware error report in the system error log, and, when executing on a machine
supporting processor deallocation, start the deallocation process.

3. AIX notifies non-kernel processes and threads bound to the last logical CPU.

4. AIX waits for all the bound threads to move away from the last logical CPU. If threads remain bound,
AIX eventually times out (after ten minutes)and aborts the deallocation

5. Otherwise, AIX invokes the previously registered High Availability Event Handlers (HAEHs). An HAEH
may return an error that will abort the deallocation.

6. Otherwise, AIX goes on with the deallocation process and ultimately stops the failing processor.

In case of failure at any point of the deallocation, AIX logs the failure with the reason why the deallocation
was aborted. The system administrator can look at the error log, take corrective action (when possible)
and restart the deallocation. For instance, if the deallocation was aborted because at least one application
did not unbind its bound threads, the system administrator could stop the application(s), restart the
deallocation (which should go through this time) and restart the application.

Programming Interfaces

Existing AIX Interfaces Dealing with Individual Processors
The following is a list of existing interfaces:

v “Interfaces to Determine the Number if CPUs on a System”

v “Interfaces to Bind Threads to a Specific Processor” on page 199

Interfaces to Determine the Number if CPUs on a System

sysconf Subroutine: The sysconf subroutine returns a number of processors using:

_SC_NPROCESSORS_CONF: Number of processors configured.
_SC_NPROCESSORS_ONLN: Number of processors online.

For more information, see sysconf Subroutine in AIX 5L Version 5.1 Technical Reference: Base Operating
System and Extensions Volume 2.

The value returned by sysconf for _SC_NPROCESSORS_CONF, will remain constant between reboots. The
value returned for _SC_NPROCESSORS_ONLN will be the count of active CPUs and will be decremented every
time a processor is deallocated.

_system_configuration.ncpus: _system_configuration.ncpus identifies the number of CPUs active on
a machine. Uniprocessor (UP) machines are identified by a 1. Values greater than 1 indicate
multiprocessor (MP) machines. For more information, see systemcfg.h File in AIX 5L Version 5.1 Files
Reference.

Because of processor deallocations, the ncpus value may now change over time when processors are
deallocated. Code that depends upon this value being a constant will probably fail. To prevent such code

198 Writing and Debugging Programs

../../files/aixfiles/systemcfg.h.htm

from suddenly changing between uniprocessor (UP) and multiprocessor (MP) behavior, a processor will
not deallocate a if only two processors are currently active. Thus, if ncpus starts with a value greater than
1, it will be guaranteed to remain greater than 1 until the next reboot.

For code that must know how many processors were originally available at boot time, a new ncpus_cfg
field is added to _system_configuration table that does remain constant between reboots.

The CPUs are identified by a logical CPU number in the range [0..(ncpus-1)]. The processors also have a
physical CPU number which depends on which CPU board they are on, in which order, and so on. The
commands and subroutines dealing with CPU numbers always use logical CPU numbers. To ease the
transition to varying numbers of CPUs, the logical CPU numbers are contiguous numbers in the range
[0..(ncpus-1)] in AIX 4.3.3. The effect of this is that from a user point of view, when a processor
deallocation takes place, it always looks like the highest-numbered (″last″) logical CPU is going away,
regardless of which physical processor failed.

Note: To avoid problems, use the ncpus_cfg variable to determine what the highest possible logical
CPU number is for a particular system.

Interfaces to Bind Threads to a Specific Processor
The bindprocessor and the bindprocessor() programming interface allow you to bind a thread or a
process to a specific CPU, designated by its logical CPU number. Both interfaces will allow you to bind
threads or processes only to active CPUs. They are mentioned here because those programs which
directly use the bindprocessor() programming interface or are bound externally by a bindprocessor
command must be able to handle the processor deallocation.

The primary problem seen by programs that bind to a processor when a CPU has been deallocated is that
requests to bind to a deallocated processor will fail. Code that issues bindprocessor requests should
always check the return value from those requests.

For more information on these interfaces, see bindprocessor Command in AIX 5L Version 5.1 Commands
Reference, Volume 1 or bindprocessor Subroutine in AIX 5L Version 5.1 Technical Reference: Base
Operating System and Extensions Volume 1.

Interfaces for Processor Deallocation Notification
The notification mechanism is different for user mode applications having threads bound to the last logical
CPU and for kernel extensions.

Notification in User Mode
Each thread of a user mode application that is bound to the last logical CPU will be sent a new signal
SIGCPUFAIL, which is ignored by default. These applications need to be modified to catch this new signal
and dispose of the threads bound to the last logical CPU (either by unbinding them or by binding them to
a different CPU).

Notification in Kernel Mode
The drivers and kernel extensions which need to be notified of an impending processor deallocation have
to register a High-Availability Event Handler (HAEH) routine with the kernel. This routine will be called
when a processor deallocation is imminent. An interface is also provided to unregister the HAEH before
the kernel extension is unconfigured or unloaded.

Registering a High-Availability Event Handler: The kernel exports a new function to allow notification
of the kernel extensions in case of events, which affect the availability of the system.

The system call is:
int register_HA_handler(ha_handler_ext_t *)

Chapter 10. Programming on Multiprocessor Systems 199

../../cmds/aixcmds1/bindprocessor.htm
../../libs/basetrf1/bindprocessor.htm

For more information on this system call, see register_HA_handler in AIX 5L Version 5.1 Technical
Reference: Kernel and Subsystems Volume 1.

The return value is equal to 0 in case of success. A non zero value indicates a failure.

The argument is a pointer to a structure describing the kernel extension’s high-availability event handler.
This structure is defined in a new header file, named <sys/high_avail.h> as follows:
typedef struct _ha_handler_ext_ {

int (*_fun)(); /* Function to be invoked */
long long _data; /* Private data for (*_fun)() */
char _name[sizeof(long long) + 1];

} ha_handler_ext_t;

The private data field _data is provided for the use of the kernel extension if it is needed. Whatever value
given in this field at the time of registration will be passed as a parameter to the registered fuction when it
is called due to a CPU predictive failure event.

The _name field is a null terminated string with a maximum length of 8 characters (not including the null
character terminator) which is used to uniquely identify the kernel extension with the kernel. This name
has to be unique among all the registered kernel extensions. This name appears in the detailed data area
of the CPU_DEALLOC_ABORTED error log entry if the kernel extension returns an error when the HAEH routine
is called by the kernel.

Kernel extensions should register their HAEH only once.

Invocation of the High-Availability Event Handler: Two parameters call the HAEH routine. The first
one is whatever is in the _data field of the ha_handler_ext_t structure passed to register_HA_handler.
The second parameter is a pointer to a ha_event_t structure defined in <sys/high_avail.h> as:
typedef struct { /* High-availability related event */

uint _magic; /* Identifies the kind of the event */
#define HA_CPU_FAIL 0x40505546 /* "CPUF" */

union {
struct { /* Predictive processor failure */

cpu_t dealloc_cpu; /* Logical ID of failing processor */
ushort domain; /* future extension */

ushort nodeid; /* future extension */
ushort reserved3; /* future extension */
uint reserved[4]; /* future extension */

} _cpu;
/* ... */ /* Additional kind of events -- */
/* future extension */

} _u;
} haeh_event_t;

The function should return one of the following codes, also defined in <sys/high_avail.h>.
#define HA_ACCEPTED 0 /* Positive acknowledgement */
#define HA_REFUSED -1 /* Negative acknowledgement */

If any of the registered extensions does not return HA_ACCEPTED, the deallocation is aborted. The
HAEH routines are called in the process environment and do not need to be pinned.

If a kernel extension depends on the CPU configuration, its HAEH routine must react to the upcoming
CPU deallocation. This is highly application dependent. To allow AIX to proceed with the deconfiguration,
they just need to move away their threads bound to the last logical CPU, if any. Also, if they have been
using timers started from bound threads, those timers will be moved to another CPU as part of the CPU
deallocation. If they have any dependency on these timers being delivered to a specific CPU, they must
take actions such as stopping them, and restart their timer requests when the threads are bound to a new
CPU, for instance. Again, this is very much application dependent.

200 Writing and Debugging Programs

../../libs/ktechrf1/register.htm

Canceling the Registration of a High-Availability Event Handler: To keep the system coherent, and
prevent system crashes, the kernel extensions which register an HAEH must cancel the registration when
they are unconfigured and are going to be unloaded. The interface is:
int unregister_HA_handler(ha_handler_ext_t *)

For more information on the system call, see unregister_HA_handler in AIX 5L Version 5.1 Technical
Reference: Kernel and Subsystems Volume 1.

Returns 0 in case of success. Any non-zero return value indicates an error.

Test Environment
Hardware problems triggering a processor deallocation are, hopefully, very rare events. In order to test any
of the modifications made in applications or kernel extensions to support this processor deallocation, a
command is provided to trigger the deallocation of a CPU designated by its logical CPU number. The
syntax is:
cpu_deallocate cpunum

where:

cpunum is a valid logical cpu number.

You must reboot the system to get the target processor back online. Hence, this command is provided for
test purposes only and is not intended as a system administration tool.

Creating Locking Services

Some programmers may want to implement their own high-level locking services instead of using the
standard locking services (mutexes) provided in the threads library. For example, a database product may
already use a set of internally defined services; it can be easier to adapt these locking services to a new
system than to adapt all the internal modules that use these services.

For this reason, AIX provides atomic locking service primitives which can be used to build higher level
locking services. To create services that are multiprocessor-safe (like the standard mutex services),
programmers must use the atomic locking services described in this section and not atomic operations
services, such as compare_and_swap.

Multiprocessor-Safe Locking Services
Locking services are used to serialize access to resources that may be used concurrently. For example,
locking services can be used for insertions in a linked list, which require several pointer updates. If the
update sequence by one process is interrupted by a second process that tries to access the same list, an
error can occur. A sequence of operations that should not be interrupted is called a critical section.

Locking services use a lock word to indicate the lock status: 0 (zero) can be used for free, and 1 (one) for
busy. Therefore, a service to acquire a lock would do the following:
test the lock word
if the lock is free

set the lock word to busy
return SUCCESS

...

Because this sequence of operations (read, test, set) is itself a critical section, special handling is required.
On a uniprocessor system, disabling interrupts during the critical section prevents interruption by a context
switch. But on a multiprocessor system, the hardware must provide a so-called test-and-set primitive,
usually with a special machine instruction. In addition, special processor dependent synchronization

Chapter 10. Programming on Multiprocessor Systems 201

../../libs/ktechrf1/unregister.htm
../../libs/basetrf1/compare_and_swap.htm#HDRYHYJI20DTHOM

instructions called import and export fences are used to temporarily block other reads or writes. They
protect against concurrent access by several processors and against the read and write reordering
performed by modern processors.

To mask this complexity and provide independence from these machine-dependent instructions, three
subroutines are defined:

_check_lock Conditionally updates a single word variable atomically, issuing an import fence for
multiprocessor systems. The compare_and_swap routine is similar, but it does not issue an
import fence and, therefore, is not usable to implement a lock.

_clear_lock Atomically writes a single word variable, issuing an export fence for multiprocessor systems.
_safe_fetch Atomically reads a single word variable, issuing an import fence for multiprocessor systems.

The import fence ensures that the read value is not a stale value resulting from an early
pre-fetch. This subroutine is rarely needed.

Locking Services Example
The multiprocessor-safe locking subroutines can be used to create custom high-level routines independent
of the threads library. The example that follows shows partial implementations of subroutines similar to the
pthread_mutex_lock and pthread_mutex_unlock subroutines in the threads library:
#include <sys/atomic_op.h> /* for locking primitives */
#define SUCCESS 0
#define FAILURE -1
#define LOCK_FREE 0
#define LOCK_TAKEN 1

typdef struct {
atomic_p lock; /* lock word */
tid_t owner; /* identifies the lock owner */
... /* implementation dependent fields */

} my_mutex_t;

...

int my_mutex_lock(my_mutex_t *mutex)
{
tid_t self; /* caller's identifier */

/*
Perform various checks:

is mutex a valid pointer?
has the mutex been initialized?

*/
...

/* test that the caller does not have the mutex */
self = thread_self();
if (mutex->owner == self)

return FAILURE;

/*
Perform a test-and-set primitive in a loop.
In this implementation, yield the processor if failure.
Other solutions include: spin (continuously check);

or yield after a fixed number of checks.
*/
while (!_check_lock(&mutex->lock, LOCK_FREE, LOCK_TAKEN))

yield();

mutex->owner = self;
return SUCCESS;

} /* end of my_mutex_lock */

int my_mutex_unlock(my_mutex_t *mutex)
{

/*
Perform various checks:

202 Writing and Debugging Programs

../../libs/basetrf1/_check_lock.htm#HDRO9CRJ2B6KEN
../../libs/basetrf1/_clear_lock.htm#HDRS8CRJ395KEN
../../libs/basetrf2/_safe_fetch.htm#HDRAZ2CRJ363KEN
../../libs/basetrf1/pthread_mutex_lock.htm
../../libs/basetrf1/pthread_mutex_lock.htm

is mutex a valid pointer?
has the mutex been initialized?

*/
...

/* test that the caller owns the mutex */
if (mutex->owner != thread_self())

return FAILURE;

_clear_lock(&mutex->word, LOCK_FREE);
return SUCCESS;

} /* end of my_mutex_unlock */

Kernel Programming

Kernel programming is thoroughly explained in AIX 5L Version 5.1 Kernel Extensions and Device Support
Programming Concepts. This section only highlights the major changes required for multiprocessor
systems.

Serialization is often required when accessing certain critical resources. Locking services can be used to
serialize thread access in the process environment, but they will not protect against an access occurring in
the interrupt environment. Previously, a kernel service disabled interrupts using the i_disable kernel
service to serialize interrupt level access. However, this strategy does not work in a multiprocessor
environment. Therefore, new or ported code should use the disable_lock and unlock_enable kernel
services, which use simple locks in addition to interrupt control. These kernel services can also be used
for uniprocessor systems, on which they simply use interrupt services without locking. See Locking Kernel
Services in AIX 5L Version 5.1 Kernel Extensions and Device Support Programming Concepts for detailed
information.

Device drivers by default run in a logical uniprocessor environment, in what is called funnelled mode. Most
well-written drivers for uniprocessor systems will work without modification in this mode, but must be
carefully examined and modified to benefit from multiprocessing. Finally, kernel services for timers now
have return values because they will not always succeed in a multiprocessor environment. Therefore, new
or ported code must check these return values. See Using Multiprocessor-Safe Timer Services in AIX 5L
Version 5.1 Kernel Extensions and Device Support Programming Concepts for more information.

32-bit and 64-bit Addressability

In AIX, applications are either 32-bit applications or 64-bit applications.

A 32-bit application is an application that executes in an environment where addresses are 32 bits long
and can represent 4 gigabytes of addressability (virtual address space).

A 64-bit application is an application that executes in an environment where addresses are 64 bits long
and can represent much larger addressability (over a billion gigabytes).

When creating an application, a decision must be made whether to create a 32-bit application or a 64-bit
application. 32-bit applications can be run on any RS/6000 system. 64-bit applications can only be run on
64-bit RS/6000 systems. Both 32-bit and 64-bit applications (and libraries) can be compiled and linked on
both 32-bit and 64-bit systems.

Performance
If the same source code is used to create both a 32-bit and a 64-bit application, the 64-bit application will
be the same size or larger than the 32-bit application and will generally run no faster (and often slower)
than the 32-bit application, unless it makes use of the larger 64-bit addressability to improve its
performance. Therefore, the correct choice should generally be to create a 32-bit application unless 64-bit
addressability is required by the application or can be used to dramatically improve its performance. For
this reason, the default mode for development tools is to create 32-bit objects and applications.

Chapter 10. Programming on Multiprocessor Systems 203

../../libs/ktechrf1/i_disable.htm#HDRVX3260CHRI
../../libs/ktechrf1/disable_lock.htm#HDRTOZII1D6THOM
../../libs/ktechrf1/unlock_enable.htm#HDRXNZII24CTHOM
../../aixprggd/kernextc/lock_kernsvcs.htm#HDRKTGHIBTHOM
../../aixprggd/kernextc/lock_kernsvcs.htm#HDRKTGHIBTHOM
../../aixprggd/kernextc/multiprocsafe_timersvcs.htm#HDRNT4CI32FTHOM

The 64-bit address space can be used to dramatically improve the performance of applications that
manipulate large amounts of data. This data can either be created within the application or obtained from
files. Generally the performance gain comes from the fact that the 64-bit application can contain the data
in its address space (either created in data structures or mapped into memory), where the data would not
fit into a 32-bit address space. The data would need to be multiple gigabytes in size or larger to show this
benefit.

There are two reasons for this performance improvement. First, the system call overhead of reading and
writing files can be avoided by mapping the files into memory. Second, 64-bit systems can support
physical memories that are larger than the addressability of 32-bit applications, so 64-bit applications are
needed to make full use of the physical memory available.

64-bit objects and archive file types
64-bit libraries and applications can only be created from 64-bit objects. A 64-bit object is an object type
(64-bit XCOFF format) created by compilation or assembly in 64-bit mode. (This does not mean that the
compiler or assembler executes in a 64-bit execution environment, just that the compiler or assembler has
been requested to create 64-bit objects rather than 32-bit objects.) 32-bit XCOFF format was the only
object type in releases of AIX before AIX 4.3.

There is no way to create an object or application using both 32-bit and 64-bit object files. A system
provided library contains both 32-bit and 64-bit object files. The linker selects the appropriate objects from
the library based on the type of linking that is requested (32-bit or 64-bit) and creates an object or
application of that type.

There are two archive file types. The first does not recognize 64-bit object files and cannot be larger than
2 gigabytes. This was the only archive file type in releases of AIX before AIX 4.3. The second archive file
type recognizes both 32-bit and 64-bit object files and will work with files larger than 2 gigabytes.

Differences between 32-bit and 64-bit execution environments

In addition to the differences in addressability, there are the following differences between the 32-bit and
64-bit execution environments (or modes):

v The C ″long″ type (and types derived from it) in 64-bit mode is 64 bits in size.

v All pointer types in 64-bit mode are 64 bits in size.

v 64-bit applications can make use of 64-bit PowerPC instructions.

v The size of a machine register is 64 bits in 64-bit mode.

v The maximum theoretical limits for the size of 64-bit applications, their heaps, stacks, shared libraries,
and loaded objects is millions of gigabytes. The practical limits are dependent on the file system limits,
paging space sizes, and system resources available.

All C fundamental types other than ″long″ and pointer types will be the same size in 32-bit and 64-bit
compilation modes.

Tools support for 64-bit development
AIX provides support in all the standard tools for building, examining, and debugging 64-bit applications.

yacc, lex, and lint work with source code destined for both 32-bit and 64-bit compilation.

The C and Fortran compilers and the assembler allow the creation of both 32-bit and 64-bit objects. The
linker allows the creation of both 32-bit and 64-bit objects and applications.

make, ar, strip, dump, nm, prof, gprof, lorder, ranlib, size, strings, and sum work with both 32-bit and
64-bit objects and applications.

dbx and xldb allow the debugging of both 32-bit and 64-bit applications.

204 Writing and Debugging Programs

Porting source code from 32-bit to 64-bit execution environments
The following issues must be examined and dealt with when porting source code for 32-bit applications to
be compiled in 64-bit mode to create 64-bit applications:

v Remove any assumption that a pointer type can fit in a C integer type (or types derived from integer).

v Remove any assumption that a C long type can fit in a C integer type (or types derived from long and
integer).

v Remove any assumption about the number of bits in a C long type object when bit shifting or doing
bitwise operations.

v Remove any assumption that a C integer can be passed to an unprototyped long or pointer parameter.

v Remove any assumption that an unprototyped function can return a pointer or long.

The -t flag to lint can be used to find issues when porting source code from 32-bit to 64-bit compilation
mode.

64-bit application development
The APIs (Application Programming Interfaces) provided to 32-bit applications are also generally provided
to 64-bit applications. Some libraries that have been superseded or deprecated for 32-bit applications are
not being provided to 64-bit applications, so their APIs will be missing in 64-bit execution mode.

The names of types, global variables, preprocessor macros, and predefined constants are the same in
32-bit and 64-bit compilation mode. The sizes (and layouts in the case of structures) and values for these
are often different in 32-bit and 64-bit compilation mode, to account for the different sizes of the address
spaces and fundamental types involved.

The names of API functions, the types of parameters passed, and the return types are the same in 32-bit
and 64-bit compilation modes. The sizes (and layouts in the case of structures) of the parameters and
return values are often different in 32-bit and 64-bit compilation modes to account for the different size of
the address spaces involved.

64-bit library development
Libraries should provide the same functionality to 64-bit applications that they provide to 32-bit
applications. This is to minimize the amount of porting that needs to be done when changing the execution
mode of an application from 32-bit to 64-bit. To ease porting, the names of functions provided, their
parameter types and return types should be the same for 32-bit and 64-bit applications.

The choice of the types of integral parameters and return values should be made based upon what a
parameter or return value is representing. If it represents the size of an object in the address space, its
type should be based upon a C ″long″ type. Otherwise, the type should be made one of the C types
″char″, ″short″, ″int″, or ″long long″, depending on what the maximum possible value is. (These types are
the same size in 32-bit and 64-bit compilation mode.)

Libraries should contain both the 32-bit and 64-bit objects files for the API they support. This will minimize
the porting effort for makefiles for applications that are being ported from 32-bit to 64-bit execution mode.
System libraries provide object files for using both 32-bit and 64-bit applications in the same library archive
file.

Only 32-bit objects can be loaded by a 32-bit application. Only 64-bit objects can be loaded by 64-bit
applications. If an API is provided by loading objects, a separate 32-bit and 64-bit version of the object
must be provided with a different pathname.

64-bit kernel extension development
AIX kernel extensions run in 32-bit mode on the 32-bit kernel and in 64-bit mode on the 64-bit kernel,
regardless of the mode of the application for which they might be processing requests.

Chapter 10. Programming on Multiprocessor Systems 205

Kernel extensions that have not been designed to work with 64-bit applications only support 32-bit
applications. A 64-bit application will fail to link attempts to make use of a system call from a kernel
extention that has not been modified to support 64-bit applications. A kernel extension can indicate that it
supports 64-bit applications by setting the SYS_64BIT flag when it is loaded using the sysconfig routine.

Kernel extension support for 64-bit applications has two aspects.

The first aspect is the use of new kernel services for working with the 64-bit user address space. The new
64-bit services for examining and manipulating the 64-bit address space are as_att64, as_det64,
as_geth64, as_puth64, as_seth64, and as_getsrval64.

The new services for copying data to or from 64-bit address spaces are copyin64, copyout64,
copyinstr64, fubyte64, fuword64, subyte64, and suword64.

The new service for doing cross-memory attaches to memory in a 64-bit address space is xmattach64.

The new services for creating real memory mappings are rmmap_create64 and rmmap_remove64.

The major difference between all these services and their 32-bit counterparts is that they use 64-bit user
addresses rather than 32-bit user addresses.

The service for determining whether a process (and its address space) is 32-bit or 64-bit is IS64U.

Performance Monitor API Programming Concepts
The following information provides an overview of the Performance Monitor API library .

Read the following to learn more about programming the Performance Monitor API for threads:

v “Introduction”

v “Performance Monitor Accuracy Warning” on page 207

v “Performance Monitor Context and State” on page 207

v “Thread and thread group accumulation” on page 208

v “Security Considerations” on page 208

v “Common Definitions” on page 209

v “The Seven Basic API Calls” on page 210

v “Examples” on page 210

Introduction
This article describes the libpmapi library which contains a set of Application Programming Interfaces
designed to provide access to some of the counting facilities of the Performance Monitor feature included
in selected IBM micro-processors in the POWERPC family. Those APIs include :

v a set of system level APIs : to allow counting of the activity of a whole machine or of a set of processes
with a common ancestor.

v a set of first party kernel thread level APIs : to allow threads running in 1:1 mode to count their own
activity.

v a set of third party kernel thread level APIs to allow a debugger to count the activity of target threads
running in 1:1 mode.

The APIs and the events available on each of the supported processors have been completely separated
by design. The events available, which are different on each processor, and their descriptions as well as
their current testing status are in separately installable tables, and are not described here at all because
none of the API calls depend on the availability or status of any of the events.

206 Writing and Debugging Programs

../../libs/ktechrf1/as_att64.htm
../../libs/ktechrf1/as_det64.htm
../../libs/ktechrf1/as_geth64.htm
../../libs/ktechrf1/as_puth64.htm
../../libs/ktechrf1/as_seth64.htm
../../libs/ktechrf1/as_getsrval64.htm
../../libs/ktechrf1/copyin64.htm
../../libs/ktechrf1/copyout64.htm
../../libs/ktechrf1/copyinstr64.htm
../../libs/ktechrf1/fubyte64.htm
../../libs/ktechrf1/fuword64.htm
../../libs/ktechrf1/subyte64.htm
../../libs/ktechrf1/suword64.htm
../../libs/ktechrf1/xmattach64.htm
../../libs/ktechrf1/rmmap_create64.htm
../../libs/ktechrf1/rmmap_remove64.htm

The status of an event, as returned in bitflags by the API initialization routine pm_init, can be verified,
unverified, or works with some caveat (see next section for an important warning (“Performance Monitor
Accuracy Warning”) about testing status and event accuracy).

An event filter, which is any combination of the status bits, must be passed to pm_init to force the return
of only events with a status matching the filter. If no filter is passed to pm_init, no events will be returned.

For each event, in addition to a testing status and a full description, the identifier to be used in subsequent
API calls, and a short and a long name are also returned by pm_init. The short name is a mnemonic
name in the form PM_MNEMONIC. Events that are the same on different processors will have the same
mnemonic name. For instance PM_CYC and PM_INST_CMPL are respectively the number of processor
cycles and instruction completed and should exist on most processors.

Performance Monitor Accuracy Warning
Only events marked verified have gone through full verification. Events marked caveat have been verified
within the limitations documented in the event description returned by pm_init.

Events marked unverified have undefined accuracy. Use caution with unverified events; the PM API is
essentially providing a service to read hardware registers which may or may not have any meaningful
content.

Users may experiment with unverified event counters and determine for themselves what, if any, use they
may have for specific tuning situations.

Performance Monitor Context and State
Definitions

To provide Performance Monitor data access at various levels, support has been added to the Operating
System for optional Performance Monitoring contexts. These contexts are an extension to the regular
processor and thread contexts and include one 64 bit counter per hardware counter and a set of control
words. The control words define what events get counted and when counting is on or off.

System level context and accumulation

For the system level APIs, optional PM contexts can be associated with each of the processors. When
installed, the PM kernel extension automatically handles 32 bit PM hardware counter overflows, and
maintains per-processor sets of 64 bit accumulation counters, one per 32 bit hardware PM counter.

Thread context

Optional PM contexts can also be associated with each kernel thread. The Operating System and the PM
kernel extension automatically maintain sets of 64 bit counters for each of these contexts.

Thread group and process context

The concept of thread group is optionally supported by the thread level APIs. All the threads within a
group, in addition to their own PM context, share a group accumulation context. A group is defined as all
the threads created by a common ancestor thread. By definition, all the threads in a thread group count
the same set of events, and, with one exception described below, the group must be created before any of
the descendant threads are created. The second restriction stems from the fact that once descendant
threads are created, it is impossible to determine a list of threads with a common ancestor. One special
case of a group is the collection of all the threads belonging to a process. Such a group can be created at
any time regardless of when the descendant threads are created. This is made possible by the fact that a
list of threads belonging to a process can be generated. Multiple groups can coexist within a process, but

Chapter 10. Programming on Multiprocessor Systems 207

each thread can be a member of only one PM counting group. Since all the threads within a group must
be counting the same events, a process group creation will fail if any thread within the process already
has a context.

PM state Inheritance

The PM state is defined as the combination of the PM programmation (the events being counted), the
counting state (on or off), and the optional thread group membership. There is a counting state associated
with each group. When the group is created, its counting state is inherited from the initial thread in the
group. For threads member of a group, the effective counting state is the result of ANDing their own
counting state with the group counting state. This provides a way to effectively turn counting on and off for
all threads in a group. Simply manipulating the group counting state will affect the effective counting state
of all the threads in the group. Threads inherit their complete PM state from their parents when the thread
is created. A thread PM context data (the value of the 64 bit counters) is not inherited, i.e. newly created
threads start with counters set to zero.

PM context independence

The thread and thread group PM contexts are independent. This allows each of the thread or group of
threads on a system to program themselves to be counted with their own list of events. In other words,
except when using the system level API, there is no requirement that all threads counts the same events
and, using a debugger, a user can certainly program threads or groups of threads to count different
events.

Thread and thread group accumulation
When a thread gets suspended (or re-dispatched), its 64 bit accumulation counters are updated. If the
thread is member of a group, the group accumulation counters are updated at the same time.

Similarly, when a thread stops counting or reads its PM data, its 64 bit accumulation counters are also
updated by adding the current value of the PM hardware counters to them. Again, if the thread is member
of a group, the group accumulation counters are also updated, regardless of whether the counter read or
stop was for the thread or the thread group.

The group level accumulation data is kept consistent with the individual PM data for the thread members
of the group, whenever possible. When a thread voluntarily leaves a group, i.e., deletes its PM context, its
accumulated data is automatically subtracted from the group level accumulated data. Similarly, when a
thread member in a group resets its own data, the data in question is subtracted from the group level
accumulated data. Note that when a thread dies, no action is taken on the group accumulated data.

The only situation where the group level accumulation is not consistent with the sum of the data for each
of its members is when the group level accumulated data has been reset, and the group has more then
one member. This situation is detected and marked by a bit returned when the group data is read.

Security Considerations
v System level security

The system level APIs calls are only available from the super user except when the process tree option
is used. In that case a locking mechanism prevents calls to be made from more than one process. This
mechanism ensures ownership of the API and exclusive access by one process from the time the
system level contexts are created until they are deleted.

Turning on the process tree option results in counting for only the calling process and its descendants;
the default is to count all activities on each processor.

v Thread and thread group level security

208 Writing and Debugging Programs

Since the system level APIs would report bogus data if thread contexts where in use, it is not allowed to
make system level API calls at the same time as thread level API calls. The allocation of the first thread
context will take the system level API lock which will not be released until the last context has been
deallocated.

When using first party calls, a thread is only allowed to modify its own PM context. The only exception
to this rule is when making group level calls, which obviously affect the group context, but can also
affect other threads context. Indeed, deleting a group deletes all the contexts associated with the group,
i.e., the caller context, the group context and all the contexts belonging to all the threads in the group.

Access to a PM context not belonging to the calling thread or its group is only available from the target
process’s debugger. The third party API calls only succeed when the target process is being ptraced by
the API caller, i.e., the caller is already attached to the target process, and the debuggee is stopped.

The fact that the debugger must already have been attached to the debugged thread before any third
party call to the API can be made, ensures that the security level of the API will be the same as the one
used between debuggers and debuggees.

Common Definitions
Common rules

pm_init must be called before any other API call can be made, and only events returned by a given
pm_init call with its associated filter setting can be used in subsequent pm_set_program calls. pm_init
also returns the processor name, the number of counters available (2, 4 or 8), and the threshold multiplier.
For each event returned, a thresholdable flag is also returned. This flag indicates whether an event can be
used with a threshold. If so, then specifying a threshold defers counting until the threshold multiplied by
the processor’s threshold multiplier has been exceeded.

PM contexts cannot be reprogrammed or reused at any time. This means that none of the APIs support
more than one call to a pm_set_program interface without a call to a pm_delete_program interface. This
also means that when creating a process group, none of the threads in the process is allowed to already
have a context.

All the API calls return 0 when successful or a positive error code (which can be decoded using pm_error)
otherwise.

Group information

The following information is associated with each thread group :

v member count :

the number of threads member of the group. This includes deceased threads which were member of the
group when running.

If the consistency flag is on, it will be the number of threads that have contributed to the group level
data.

v process flag :

indicates that the group includes all the threads in the process.

v consistency flag :

indicates that the group PM data is consistent with the sum of the individual PM data for the thread
members.

This information is returned by the pm_get_data_mygroup and pm_get_data_group interfaces in a
pm_groupinfo_t structure.

Chapter 10. Programming on Multiprocessor Systems 209

The Seven Basic API Calls
Each of the seven section below describes a system-wide API call that has variations for first-party kernel
thread or group counting, and third-party kernel thread or group counting. Variations are indicated by
suffixes to the function call names, such as pm_set_program, pm_set_program_mythread,
pm_set_program_group etc.

pm_set_program
Sets the counting configuration. Use this call to specify the events to be counted, and a mode in
which to count. The list of events to choose from is returned by pm_init. If the list includes a
thresholdable event, a threshold can also be specified.

The mode in which to count, can include user-mode and/or kernel-mode counting, and whether to
start counting immediately. For the system-wide API call, the mode also include whether to turn
counting on only for a process and its descendants or for the whole system. For counting group
API calls, the mode includes the type of counting group to create, i.e., a group containing the initial
thread and its future descendants, or a process level group, which includes all the threads in a
process.

pm_get_program
Retrieves the current Performance Monitor settings. This includes mode information and the list of
events being counted. If the list includes a thresholdable event, a threshold will also be returned.

pm_delete_program
Deletes the Performance Monitor configuration. Use this call to undo pm_set_program.

pm_start
Starts Performance Monitor counting.

pm_stop
Stops Performance Monitor counting.

pm_get_data
Returns Performance Monitor counting data. The data is a set of 64-bit values, one per hardware
counter. For the counting group API calls, the group information previously described is also
returned.

pm_reset_data
Resets Performance Monitor counting data. All values are set to 0.

Examples
Example code is also shipped to the /usr/samples/pmapi directory.

Simple single threaded program
#include main()
{

pm_info_t pminfo;
pm_prog_t prog;
pm_data_t data;
int filter = PM_VERIFIED; /* use only verified events */

pm_init(filter, &pminfo)

prog.mode.w = 0; /* start with clean mode */
prog.mode.b.user = 1; /* count only user mode */

for (i = 0; i < pminfo.maxpmcs; i++)
prog.events[i] = COUNT_NOTHING;

prog.events[0] = 1; /* count event 1 in first counter */
prog.events[1] = 2; /* count event 2 in second counter */

pm_program_mythread(&prog);

210 Writing and Debugging Programs

pm_start_mythread();

(1) ... usefull work

pm_stop_mythread();
pm_get_data_mythread(&data);

... print results ...
}

Debugger example for previous program
To look at the PM data while the program is executing :
from a debugger at breakpoint (1)

pm_init(filter);
(2) pm_get_program_thread(pid, tid, &prog);

... display PM programmation ...

(3) pm_get_data_thread(pid, tid);
... display PM data ...

pm_delete_program_thread(pid, tid);
prog.events[0] = 2; /* change counter 1 to count event number 2 */
pm_set_program_thread(pid, tid, &prog);

continue program

The scenario above would work as well if the program being executed under the debugger didn’t have any
embedded PM API calls. The only difference would be that the calls at (2) and (3) would fail, and that
when the program continues, it will be counting only event number 2 in counter 1, and nothing in other
counters.

Simple multithreaded example

A simple multithreaded example with independent threads counting the same set of events.
#include pm_data_t data2;

void *
doit(void *)
{

(1) pm_start_mythread();

... usefull work

pm_stop_mythread();
pm_get_data_mythread(&data2);

}

main()
{

pthread_t threadid;
pthread_attr_t attr;
pthread_addr_t status;

... same initialization as in previous example ...

pm_program_mythread(&prog);

/* setup 1:1 mode, M:N not supported by APIs */
pthread_attr_init(&attr);
pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
pthread_create(&threadid, &attr, doit, NULL);

Chapter 10. Programming on Multiprocessor Systems 211

(2) pm_start_mythread();

... usefull work

pm_stop_mythread();
pm_get_data_mythread(&data);

... print main thread results (data)...

pthread_join(threadid, &status);

... print auxiliary thread results (data2) ...
}

Counting starts at (1) and (2) for the main and auxiliary threads respectively because the initial counting
state was off and it was inherited by the auxiliary thread from its creator.

Simple thread counting group example
Example with two threads in a counting group. The body of the auxiliary thread’s initialization routine is the
same as in the previous example.
main()
{

... same initialization as in previous example ...

pm_program_mygroup(&prog); /* create counting group */
(1) pm_start_mygroup()

pthread_create(&threadid, &attr, doit, NULL)

(2) pm_start_mythread();

... usefull work

pm_stop_mythread();
pm_get_data_mythread(&data)

... print main thread results ...

pthread_join(threadid, &status);

... print auxiliary thread results ...

pm_get_data_mygroup(&data)

... print group results ...
}

The call in (2) is necessary because the call in (1) only turns on counting for the group, not the individual
threads in it. At the end, the group results are the sum of both threads results.

Thread counting example with reset
This example with a reset call illustrates the impact on the group data. The body of the auxiliary thread is
the same as before, except for the pm_start_mythread() call which is not necessary in this case.
main()
{

... same initialization as in previous example...

prog.mode.b.count = 1; /* start counting immediately */
pm_program_mygroup(&prog);

pthread_create(&threadid, pthread_attr_default, doit, NULL)

212 Writing and Debugging Programs

... usefull work

pm_stop_mythread()
pm_reset_data_mythread()

pthread_join(threadid, &status);

...print auxiliary thread results...

pm_get_data_mygroup(&data)

...print group results...
}

The main thread and the group counting state are both on before the auxiliary thread is created so the
auxiliary thread will inherit that state and start counting immediately.

At the end, data1 is equal to data because the pm_reset_data_mythread automatically subtracted the
main thread data from the group data to keep it consistent. In fact at all time the group data is still equal to
the sum of the auxiliary and the main thread data, but in this case the main thread data is null.

Related Information
pmapi.h File

Chapter 10. Programming on Multiprocessor Systems 213

../../files/aixfiles/pmapi.h.htm

214 Writing and Debugging Programs

Chapter 11. Threads Programming Guidelines

The following information provides guidelines for writing multi-threaded programs using the threads library
(libpthreads.a). The AIX threads library is based on the emerging POSIX 1003.1c standard. For this
reason, the following information presents the threads library as the AIX implementation of the POSIX
standard.

If you want to learn how to write programs using multiple threads, you should read the topics in sequential
order. If you are looking for specific information, choose one of the following topics:

v “Thread Implementation Model”

v “Thread-safe and Threaded Libraries in AIX”

v “Threads Basic Operation Overview” on page 216

v “Synchronization Overview” on page 227

v “Scheduling Overview” on page 240

v “Threads Advanced Features” on page 245

v “Threads-Processes Interactions Overview” on page 256

v “Threads Library Options” on page 261

v “Threads Library Quick Reference” on page 263.

Thread Implementation Model
At the other end of the spectrum is the ″kernel-thread model.″ In this model, all threads are visible to the
operating system kernel. Thus, all threads are kernel scheduled entities, and all threads can concurrently
execute. The threads are scheduled onto processors by the kernel according to the scheduling attributes
of the threads. This model is the model provided in AIX 4.2.

AIX 4.3 uses a hybrid model that offers the speed of library threads and the concurrency of kernel threads.
In hybrid models, a process has a varying number of kernel scheduled entities associated with it. It also
has a potentially much larger number of library threads associated with it. Some library threads may be
bound to kernel scheduled entities, while the other library threads are multiplexed onto the remaining
kernel scheduled entities. For this reason, a hybrid model is referred to as a ″M:N″ model. In this model,
the process can have multiple concurrently executing threads; specifically, it can have as many
concurrently executing threads as it has kernel scheduled entities.

Thread-safe and Threaded Libraries in AIX
In AIX 4.2, special versions of selected libraries were provided, that were for use by threaded applications.
These libraries were counterparts of the non-thread-safe libraries, but with the suffix ″_r″ added to the
name. These libraries were:

libc.a/libc_r.a libbsd.a/libbsd_r.a
libm.a/libm_r.a libnetsvc.a/libnetsvc_r.a
libs.a/libs_r.a libs2.a/libs2_r.a
libsvid.a/libsvid_r.a libtli.a/libtli_r.a
libxti.a/libxti_r.a

In AIX 4.3, the need for these ″_r″ versions has been eliminated. By default, all applications are now
considered ″threaded,″ even though most are of the case ″single threaded.″ These thread-safe libraries
are now:

libbsd.a libc.a libm.a

© Copyright IBM Corp. 1997, 2001 215

libsvid.a libtli.a libxti.a
libnetsvc.a

The ″_r″ versions have been kept as links to these libraries, to enable compatibility with user applications.

Threads Versions On AIX
In order to bring threaded application support to our users, AIX introduced threads API models based on
preliminary drafts of the now-official IEE POSIX standard. AIX 4.3 conforms fully to the IEEE POSIX
standard for threads APIs, IEEE POSIX 1003.1-1996.

Note: In AIX 4.2 threads were supported at a ″Draft 4″ level.

AIX 4.3 provides full support for applications compiled on AIX 4.2. It also provides compilation support for
applications written to the ″Draft 7″ level that are not able to modify their source code to full standard
conformance.

Compiling a Threaded Application

In AIX 4.2, ″_r″ versions of the C compiler invocations were offered that allowed the proper libraries and
command line options to be set for creating a threaded application.

In AIX 4.3 the use of the ″_r″ invocations is no longer required for creating a threaded application.

v To Compile a Threaded Application on AIX 4.3, use either the normal or ″_r″ version of the compiler.

v To Compile a Threaded Application at ″Draft 7″ level, use the ″_r7″ invocation of the compiler.

Threads Basic Operation Overview

To write a multi-threaded program, it is necessary to understand how to create and terminate threads.
Synchronization facilities and scheduling control are not required for a basic usage of threads.

The following information will help you in writing your first multi-threaded program:

v “Creating Threads”

v “Terminating Threads” on page 219

v “List of Threads Basic Operation Subroutines” on page 226

Creating Threads

A thread has attributes, which specify the characteristics of the thread. The attributes default values fit for
most common cases. To control thread attributes, a thread attributes object must be defined before
creating the thread.

Thread Attributes Object

The thread attributes are stored in an opaque object, the thread attributes object, used when creating the
thread. It contains several attributes, depending on the implementation of POSIX options. It is accessed
through a variable of type pthread_attr_t. In AIX, the pthread_attr_t data type is a pointer to a structure;
on other systems it may be a structure or another data type.

216 Writing and Debugging Programs

Thread Attributes Object Creation and Destruction

The thread attributes object is initialized to default values by the pthread_attr_init subroutine. The
attributes are handled by subroutines. The thread attributes object is destroyed by the
pthread_attr_destroy subroutine. This subroutine may free storage dynamically allocated by the
pthread_attr_init subroutine, depending on the implementation of the threads library.

In the following example, a thread attributes object is created and initialized with default values, then used
and finally destroyed:
pthread_attr_t attributes;

/* the attributes object is created */
...
if (!pthread_attr_init(&attributes)) {

/* the attributes object is initialized */
...

/* using the attributes object */
...
pthread_attr_destroy(&attributes);

/* the attributes object is destroyed */
}

The same attributes object can be used to create several threads. It can also be modified between two
thread creations. When the threads are created, the attributes object can be destroyed without affecting
the threads created with it.

Detachstate Attribute

The following attribute is always defined.

Detachstate Specifies the detached state of a thread.

The value of the attribute is returned by the pthread_attr_getdetachstate subroutine; it can be set by the
pthread_attr_setdetachstate subroutine. Possible values for this attributes are the following symbolic
constants:

PTHREAD_CREATE_DETACHED Specifies that the thread will be created in the detached state.
PTHREAD_CREATE_JOINABLE Specifies that the thread will be created in the joinable state.

The default value is PTHREAD_CREATE_JOINABLE.

If you create a thread in the joinable state, you must pthread_join (“Calling the pthread_join Subroutine” on
page 237) with the thread. Otherwise, you may run out of storage space when creating new threads,
because each thread takes up a signficant amount of memory.

Other Attributes
The following attributes are also defined in AIX. They are intended for advanced programs and may
require special execution privilege to take effect. Most programs will operate correctly with the default
settings.

Contention Scope Specifies the contention scope of a thread.
Inheritsched Specifies the inheritance of scheduling properties of a thread.
Schedparam Specifies the scheduling parameters of a thread.
Schedpolicy Specifies the scheduling policy of a thread.

Chapter 11. Threads Programming Guidelines 217

../../libs/basetrf1/pthread_attr_init.htm#HDRPECVHF6MANU
../../libs/basetrf1/pthread_attr_destroy.htm#HDRA8BDVH3E0MANU
../../libs/basetrf1/pthread_attr_getdetachstate_setdetachstate.htm
../../libs/basetrf1/pthread_attr_getdetachstate_setdetachstate.htm

The use of these attributes is explained in Scheduling Attributes.

Stacksize Specifies the size of the thread’s stack.
Stackaddr Specifies the address of the thread’s stack.
Guardsize Specifies the size of the guard area of the thread’s stack.

The use of these attributes is explained in “Stack Attributes” on page 251.

Thread Creation

Creating a thread is accomplished by calling the pthread_create subroutine. This subroutine creates a
new thread and makes it runnable.

Using the Thread Attributes Object
When calling the pthread_create subroutine, you may specify a thread attributes object. If you specify a
NULL pointer, the created thread will have the default attributes. Thus, the code fragment:
pthread_t thread;
pthread_attr_t attr;
...
pthread_attr_init(&attr);
pthread_create(&thread, &attr, init_routine, NULL);
pthread_attr_destroy(&attr);

is equivalent to:
pthread_t thread;
...
pthread_create(&thread, NULL, init_routine, NULL);

Entry Point Routine

When calling the pthread_create subroutine, you must specify an entry-point routine. This routine,
provided by your program, is similar to the main routine for the process. It is the first user routine
executed by the new thread. When the thread returns from this routine, the thread is automatically
terminated.

The entry-point routine has one parameter, a void pointer, specified when calling the pthread_create
subroutine. You may specify a pointer to some data, such as a string or a structure. The creating thread
(the one calling the pthread_create subroutine) and the created thread must agree upon the actual type
of this pointer.

The entry-point routine returns a void pointer. After the thread termination, this pointer is stored by the
threads library unless the thread is detached. See “Synchronization Overview” on page 227 for more
information about using this pointer.

Returned Information
The pthread_create subroutine returns the thread ID of the new thread. The caller can use this thread ID
to perform various operations on the thread.

Depending on the scheduling parameters of both threads, the new thread may start running before the call
to the pthread_create subroutine returns. It may even happen that, when the pthread_create subroutine
returns, the new thread has already terminated. The thread ID returned by the pthread_create subroutine
through the thread parameter is then already invalid. It is, therefore, important to check for the ESRCH
error code returned by threads library subroutines using a thread ID as a parameter.

If the pthread_create subroutine is unsuccessful, no new thread is created, the thread ID in the thread
parameter is invalid, and the appropriate error code is returned.

218 Writing and Debugging Programs

../../libs/basetrf1/pthread_create.htm#HDRZDCVH2F3MANU

Handling Thread IDs

The thread ID of a newly created thread is returned to the creating thread through the thread parameter.
The current thread ID is returned by the pthread_self subroutine.

A thread ID is an opaque object; its type is pthread_t. In AIX, the pthread_t data type is an integer. On
other systems, it may be a structure, a pointer, or any other data type.

To enhance the portability of programs using the threads library, the thread ID should always be handled
as an opaque object. For this reason, thread IDs should be compared using the pthread_equal
subroutine. Never use the C equality operator (==), because the pthread_t data type may be neither an
arithmetic type nor a pointer.

A First Multi-Threaded Program
The first multi-threaded program discussed is short. It displays ″Hello!″ in both English and French for five
seconds. Compile with cc_r or xlc_r. See “Developing Multi-Threaded Programs” on page 173 for more
information on compiling thread programs.
#include <pthread.h> /* include file for pthreads - the 1st */
#include <stdio.h> /* include file for printf() */
#include <unistd.h> /* include file for sleep() */

void *Thread(void *string)
{

while (1)
printf("%s\n", (char *)string);

pthread_exit(NULL);
}

int main()
{

char *e_str = "Hello!";
char *f_str = "Bonjour !";

pthread_t e_th;
pthread_t f_th;

int rc;

rc = pthread_create(&e_th, NULL, Thread, (void *)e_str);
if (rc)

exit(-1);
rc = pthread_create(&f_th, NULL, Thread, (void *)f_str);
if (rc)

exit(-1);
sleep(5);

/* usually the exit subroutine should not be used
see below to get more information */

exit(0);
}

The initial thread (executing the main routine) creates two threads. Both threads have the same
entry-point routine (the Thread routine), but a different parameter. The parameter is a pointer to the string
that will be displayed.

Terminating Threads

A thread automatically terminates when it returns from its entry-point routine. A thread can also explicitly
terminate itself or terminate any other thread in the process. Because all threads share the same data
space, a thread must perform cleanup operations at termination time; cleanup handlers are provided by
the threads library for this purpose.

Chapter 11. Threads Programming Guidelines 219

../../libs/basetrf1/pthread_self.htm#HDRR3IVH17CMANU
../../libs/basetrf1/pthread_equal.htm#HDRDKXVH255MANU

Exiting a Thread

A process can exit at any time by any thread by calling the exit subroutine. Similarly, a thread can exit at
any time by calling the pthread_exit subroutine.

Calling the exit subroutine terminates the entire process, including all its threads. In a multi-threaded
program, the exit subroutine should only be used when the entire process needs to be terminated; for
example, in the case of an unrecoverable error. The pthread_exit subroutine should be preferred, even for
exiting the initial thread.

Calling the pthread_exit subroutine terminates the calling thread. The status parameter is saved by the
library and can be further used when joining (“Joining Threads” on page 236) the terminated thread .
Calling the pthread_exit subroutine is similar, but not identical, to returning from the thread’s initial routine.
The result of returning from the thread’s initial routine depends on the thread:

v Returning from the initial thread implicitly calls the exit subroutine, thus terminating all the threads in the
process.

v Returning from another thread implicitly calls the pthread_exit subroutine. The return value has the
same role as the status parameter of the pthread_exit subroutine.

It is recommended always to use the pthread_exit subroutine to exit a thread to avoid implicitly calling the
exit subroutine.

Exiting the initial thread (for example by calling the pthread_exit subroutine from the main routine) does
not terminate the process. It only terminates the initial thread. If the initial thread is terminated, the process
will be terminated when the last thread in it terminates. In this case, the process return code (usually the
return value of the main routine or the parameter of the exit subroutine) is 0 if the last thread was
detached or 1 otherwise.

The following example is a slightly modified version of our first multi-threaded program. The program
displays exactly 10 messages in each language. This is accomplished by calling the pthread_exit
subroutine in the main routine after creating the two threads, and creating a loop in the Thread routine.
#include <pthread.h> /* include file for pthreads - the 1st */
#include <stdio.h> /* include file for printf() */

void *Thread(void *string)
{

int i;

for (i=0; i<10; i++)
printf("%s\n", (char *)string);

pthread_exit(NULL);
}

int main()
{

char *e_str = "Hello!";
char *f_str = "Bonjour !";

pthread_t e_th;
pthread_t f_th;

int rc;

rc = pthread_create(&e_th, NULL, Thread, (void *)e_str);
if (rc)

exit(-1);
rc = pthread_create(&f_th, NULL, Thread, (void *)f_str);
if (rc)

exit(-1);
pthread_exit(NULL);

}

220 Writing and Debugging Programs

../../libs/basetrf1/exit.htm#HDRA087913E7
../../libs/basetrf1/pthread_exit.htm#HDRMLEVH22DMANU

It is important to note that the pthread_exit subroutine frees any thread-specific data, including the
thread’s stack. Any data allocated on the stack becomes invalid, since the stack is freed and the
corresponding memory may be reused by another thread. Therefore, thread synchronization objects
(mutexes and condition variables) allocated on a thread’s stack must be destroyed before the thread calls
the pthread_exit subroutine.

Unlike the exit subroutine, the pthread_exit subroutine does not clean up system resources shared
among threads. For example, files are not closed by the pthread_exit subroutine, since they may be used
by other threads.

Canceling a Thread

The thread cancellation mechanism allows a thread to terminate the execution of any other thread in the
process in a controlled manner. The target thread (that is, the one that’s being canceled) can hold
cancellation requests pending in a number of ways and perform application-specific cleanup processing
when the notice of cancellation is acted upon. When canceled, the thread implicitly calls the
pthread_exit((void *)-1) subroutine.

The cancellation of a thread is requested by calling the pthread_cancel subroutine. When the call returns,
the request has been registered, but the thread may still be running. The call to the pthread_cancel
subroutine is unsuccessful only when the specified thread ID is not valid.

Cancelability State and Type

The cancelability state and type of a thread determines the action taken upon receipt of a cancellation
request. Each thread controls its own cancelability state and type with the pthread_setcancelstate and
pthread_setcanceltype subroutines.

There are two possible cancelability states and two possible cancelability types, leading to three possible
cases, as shown in the following table.

Cancelability State Cancelability Type Resulting Case

Disabled Any (the type is ignored) Case 1

Enabled Deferred Case 2

Enabled Asynchronous Case 3

The following discusses the three possible cases.

1. Disabled cancelability. Any cancellation request is set pending, until the cancelability state is changed
or the thread is terminated in another way.

A thread should disable cancelability only when performing operations that cannot be interrupted. For
example, if a thread is performing some complex file save operations (such as an indexed database)
and is canceled during the operation, the files may be left in an inconsistent state. To avoid this, the
thread should disable cancelability during the file save operations.

2. Deferred cancelability. Any cancellation request is set pending until the thread reaches the next
cancellation point. It is the default cancelability state.

This cancelability state ensures that a thread can be cancelled, but limits the cancellation to specific
moments in the thread’s execution, called cancellation points. A thread canceled on a cancellation
point leaves the system in a safe state; however, user data may be inconsistent or locks may be held
by the canceled thread. To avoid these situations, you may use cleanup handlers or disable
cancelability within critical regions. See “Using Cleanup Handlers” on page 225 for more information
about cleanup handlers.

3. Asynchronous cancelability. Any cancellation request is acted upon immediately.

Chapter 11. Threads Programming Guidelines 221

../../libs/basetrf1/pthread_cancel.htm#HDRJ2IVHFBMANU
../../libs/basetrf1/pthread_setcancelstate_setcanceltype_testcancel.htm#HDRYEEVH14DMANU
../../libs/basetrf1/pthread_setcancelstate_setcanceltype_testcancel.htm

A thread that is asynchronously canceled while holding resources may leave the process, or even the
system, in a state from which it is difficult or impossible to recover. See “Async-Cancel Safety” for
more information about async-cancel safety.

Async-Cancel Safety

A function is said to be async-cancel safe if it is written so that calling the function with asynchronous
cancelability enabled does not cause any resource to be corrupted, even if a cancellation request is
delivered at any arbitrary instruction.

Any function that gets a resource as a side effect cannot be made async-cancel safe. For example, if the
malloc subroutine is called with asynchronous cancelability enabled, it might acquire the resource
successfully, but as it was returning to the caller, it could act on a cancellation request. In such a case, the
program would have no way of knowing whether the resource was acquired or not.

For this reason, most library routines cannot be considered async-cancel safe. It is recommended not to
use asynchronous cancelability unless you are sure only to perform operations that do not hold resources
and only to call async-cancel safe library routines.

The following three subroutines are async-cancel safe; they ensure that cancellation will be properly
handled, even if asynchronous cancelability is enabled:

v pthread_cancel

v pthread_setcancelstate

v pthread_setcanceltype

An alternative to asynchronous cancelability is to use deferred cancelability and to add explicit cancellation
points by calling the pthread_testcancel subroutine (see “Cancellation Points” for more information).

Cancellation Points

Cancellation points are points inside of certain subroutines where a thread must act on any pending
cancellation request if deferred cancelability is enabled. All these subroutines may block the calling thread
or compute indefinitely.

An explicit cancellation point can also be created by calling the pthread_testcancel subroutine. This
subroutine simply creates a cancellation point. If deferred cancelability is enabled, and if a cancellation
request is pending, the request is acted upon and the thread is terminated. Otherwise, the subroutine
simply returns.

Other cancellation points occur when calling the following subroutines:

v pthread_cond_wait

v pthread_cond_timedwait

v pthread_join

The pthread_mutex_lock and pthread_mutex_trylock subroutines do not provide a cancellation point. If
they did, all functions calling these subroutines (and many functions do) would provide a cancellation point.
Having too many cancellation points makes programming very difficult, requiring either lots of disabling
and restoring of cancelability or extra effort in trying to arrange for reliable cleanup at every possible place.
See “Using Mutexes” on page 227 for more information about these subroutines.

Cancellation Points

Cancellation points occur when a thread is executing the following functions:

aio_suspend close

222 Writing and Debugging Programs

../../libs/basetrf1/malloc.htm#HDRA174921E
../../libs/basetrf1/pthread_setcancelstate_setcanceltype_testcancel.htm

creat fcntl
fsync getmsg
getpmsg lockf
mq_receive mq_send
msgrcv msgsnd
msync nanosleep
open pause
poll pread
pthread_cond_timedwait pthread_cond_wait
pthread_join pthread_testcancel
putpmsg pwrite
read readv
select sem_wait
sigpause sigsuspend
sigtimedwait sigwait
sigwaitinfo sleep
system tcdrain
usleep wait
wait3 waitid
waitpid write
writev

A cancellation point may also occur when a thread is executing the following functions:

catclose catgets catopen
closedir closelog ctermid
dbm_close dbm_delete dbm_fetch
dbm_nextkey dbm_open dbm_store
dlclose dlopen endgrent
endpwent fwprintf fwrite
fwscanf getc getc_unlocked
getchar getchar_unlocked getcwd
getdate getgrent getgrgid
getgrgid_r getgrnam getgrnam_r
getlogin getlogin_r popen
printf putc putc_unlocked
putchar putchar_unlocked puts
pututxline putw putwc
putwchar readdir readdir_r
remove rename rewind
endutxent fclose fcntl
fflush fgetc fgetpos
fgets fgetwc fgetws
fopen fprintf fputc
fputs getpwent getpwnam
getpwnam_r getpwuid getpwuid_r
gets getutxent getutxid
getutxline getw getwc
getwchar getwd rewinddir
scanf seekdir semop
setgrent setpwent setutxent
strerror syslog tmpfile
tmpnam ttyname ttyname_r
fputwc fputws fread
freopen fscanf fseek

Chapter 11. Threads Programming Guidelines 223

fseeko fsetpos ftell
ftello ftw glob
iconv_close iconv_open ioctl
lseek mkstemp nftw
opendir openlog pclose
perror ungetc ungetwc
unlink vfprintf vfwprintf
vprintf vwprintf wprintf
wscanf

The side effects of acting upon a cancellation request while suspended during a call of a function is the
same as the side effects that may be seen in a single-threaded program when a call to a function is
interrupted by a signal and the given function returns [EINTR]. Any such side effects occur before any
cancellation cleanup handlers are called.

Whenever a thread has cancelability enabled and a cancellation request has been made with that thread
as the target and the thread calls pthread_testcancel, then the cancellation request is acted upon before
pthread_testcancel returns. If a thread has cancelability enabled and the thread has an asynchronous
cancellation request pending and the thread is suspended at a cancellation point waiting for an event to
occur, then the cancellation request will be acted upon. However, if the thread is suspended at a
cancellation point and the event that it is waiting for occurs before the cancellation request is acted upon,
it is dependent upon the sequence of events whether the cancellation request is acted upon or whether
the request remains pending and the thread resumes normal execution.

Cancellation Example

The following example is a variant of our first multi-threaded program. Both ″writer″ threads are canceled
after 10 seconds, and after they have written their message at least 5 times.
#include <pthread.h> /* include file for pthreads - the 1st */
#include <stdio.h> /* include file for printf() */
#include <unistd.h> /* include file for sleep() */

void *Thread(void *string)
{

int i;
int o_state;

/* disables cancelability */
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &o_state);

/* writes five messages */
for (i=0; i<5; i++)

printf("%s\n", (char *)string);

/* restores cancelability */
pthread_setcancelstate(o_state, &o_state);

/* writes further */
while (1)

printf("%s\n", (char *)string);
pthread_exit(NULL);

}

int main()
{

char *e_str = "Hello!";
char *f_str = "Bonjour !";

pthread_t e_th;
pthread_t f_th;

224 Writing and Debugging Programs

int rc;

/* creates both threads */
rc = pthread_create(&e_th, NULL, Thread, (void *)e_str);
if (rc)

return -1;
rc = pthread_create(&f_th, NULL, Thread, (void *)f_str);
if (rc)

return -1;

/* sleeps a while */
sleep(10);

/* requests cancellation */
pthread_cancel(e_th);
pthread_cancel(f_th);

/* sleeps a bit more */
sleep(10);
pthread_exit(NULL);

}

Using Cleanup Handlers

Cleanup handlers provide an easy way to implement a portable mechanism for releasing resources and
restoring invariants when a thread terminates.

Calling Cleanup Handlers

Cleanup handlers are specific to each thread. A thread can have several cleanup handlers; cleanup
handlers are stored in a thread-specific LIFO stack. They are all called in the following cases:

v The thread returns from its entry-point routine.

v The thread calls the pthread_exit subroutine.

v The thread acts on a cancellation request.

A cleanup handler is pushed onto the cleanup stack, by the pthread_cleanup_push subroutine. The
pthread_cleanup_pop subroutine pops the topmost cleanup handler from the stack, and optionally
executes it. Use this subroutine when the cleanup handler is no longer needed.

The cleanup handler is a user-defined routine. It has one parameter, a void pointer, specified when calling
the pthread_cleanup_push subroutine. You may specify a pointer to some data the cleanup handler
needs to perform its operation.

In the following example, a buffer is allocated for performing some operation. With deferred cancelability
enabled, the operation may be stopped at any cancellation point. A cleanup handler is established to free
the buffer in that case.
/* the cleanup handler */

cleaner(void *buffer)

{
free(buffer);

}

/* fragment of another routine */
...
myBuf = malloc(1000);
if (myBuf != NULL) {

pthread_cleanup_push(cleaner, myBuf);

Chapter 11. Threads Programming Guidelines 225

../../libs/basetrf1/pthread_exit.htm#HDRMLEVH22DMANU
../../libs/basetrf1/pthread_cleanup_pop_push.htm
../../libs/basetrf1/pthread_cleanup_pop_push.htm

/*
* perform any operation using the buffer,
* including calls to other functions
* and cancellation points
*/

/* pops the handler and frees the buffer in one call */
pthread_cleanup_pop(1);

}

Using deferred cancelability ensures that the thread will not act on any cancellation request between the
buffer allocation and the registration of the cleanup handler, because neither the malloc subroutine nor the
pthread_cleanup_push subroutine provides any cancellation point. When popping the cleanup handler,
the handler is executed, freeing the buffer. More complex programs may not execute the handler when
popping it, because the cleanup handler should be thought of as an emergency exit for the protected
portion of code.

Balancing the Push and Pop Operations
The pthread_cleanup_push and pthread_cleanup_pop subroutines should always appear in pairs within
the same lexical scope, that is, within the same function and the same statement block. They can be
thought of as left and right parentheses enclosing a protected portion of code.

The reason for this rule is that on some systems these subroutines are implemented as macros. The
pthread_cleanup_push subroutine is implemented as a left brace, followed by other statements:
#define pthread_cleanup_push(rtm,arg) { \

/* other statements */

The pthread_cleanup_pop subroutine is implemented as a right brace following other statements:
#define pthread_cleanup_pop(ex) \

/* other statements */ \
}

Not following the balancing rule for the pthread_cleanup_push and pthread_cleanup_pop subroutines
may lead to compiler errors or to unexpected behavior of your programs when porting to other systems.

In AIX, the pthread_cleanup_push and pthread_cleanup_pop subroutines are library routines, and can
be unbalanced within the same statement block. However, they must be balanced in the program, since
the cleanup handlers are stacked.

List of Threads Basic Operation Subroutines

pthread_attr_destroy Deletes a thread attributes object.
pthread_attr_getdetachstate Returns the value of the detachstate attribute of a thread

attributes object.
pthread_attr_init Creates a thread attributes object and initializes it with default

values.
pthread_create Creates a new thread, initializes its attributes, and makes it

runnable.
pthread_cancel Requests the cancellation of a thread.
pthread_cleanup_pop Removes, and optionally executes, the routine at the top of the

calling thread’s cleanup stack.
pthread_cleanup_push Pushes a routine onto the calling thread’s cleanup stack.
pthread_equal Compares two thread IDs.
pthread_exit Terminates the calling thread.
pthread_self Returns the calling thread’s ID.
pthread_setcancelstate Sets the calling thread’s cancelability state.
pthread_setcanceltype Sets the calling thread’s cancelability type.

226 Writing and Debugging Programs

../../libs/basetrf1/pthread_attr_destroy.htm#HDRA8BDVH3E0MANU
../../libs/basetrf1/pthread_attr_getdetachstate_setdetachstate.htm
../../libs/basetrf1/pthread_attr_init.htm#HDRPECVHF6MANU
../../libs/basetrf1/pthread_create.htm#HDRZDCVH2F3MANU
../../libs/basetrf1/pthread_cancel.htm#HDRJ2IVHFBMANU
../../libs/basetrf1/pthread_cleanup_pop_push.htm
../../libs/basetrf1/pthread_cleanup_pop_push.htm
../../libs/basetrf1/pthread_equal.htm#HDRDKXVH255MANU
../../libs/basetrf1/pthread_exit.htm#HDRMLEVH22DMANU
../../libs/basetrf1/pthread_self.htm#HDRR3IVH17CMANU
../../libs/basetrf1/pthread_setcancelstate_setcanceltype_testcancel.htm
../../libs/basetrf1/pthread_setcancelstate_setcanceltype_testcancel.htm

pthread_testcancel Creates a cancellation point in the calling thread.

Synchronization Overview
One main benefit of using threads is the ease of using synchronization facilities. Three basic
synchronization techniques are implemented in the threads library: mutexes, condition variables, and
joining. More complex synchronization objects can be built using the primitive objects. This is discussed in
“Making Complex Synchronization Objects” on page 252.

Using Mutexes

A mutex is a mutual exclusion lock. Only one thread can hold the lock. Mutexes are used to protect data
or other resources from concurrent access. A mutex has attributes, which specify the characteristics of the
mutex. In the current version of AIX, the mutex attributes are not used. The mutex attributes object can
therefore be ignored when creating a mutex.

Mutex Attributes Object

Like threads, mutexes are created with the help of an attributes object. The mutex attributes object is an
abstract object, containing several attributes, depending on the implementation of POSIX options. It is
accessed through a variable of type pthread_mutexattr_t. In AIX, the pthread_mutexattr_t data type is a
pointer; on other systems, it may be a structure or another data type.

Mutex Attributes Object Creation and Destruction

The mutex attributes object is initialized to default values by the pthread_mutexattr_init subroutine. The
attributes are handled by subroutines. The thread attributes object is destroyed by the
pthread_mutexattr_destroy subroutine. This subroutine may free storage dynamically allocated by the
pthread_mutexattr_init subroutine, depending on the implementation of the threads library.

In the following example, a mutex attributes object is created and initialized with default values, then used
and finally destroyed:
pthread_mutexattr_t attributes;

/* the attributes object is created */
...
if (!pthread_mutexattr_init(&attributes)) {

/* the attributes object is initialized */
...

/* using the attributes object */
...
pthread_mutexattr_destroy(&attributes);

/* the attributes object is destroyed */
}

The same attributes object can be used to create several mutexes. It can also be modified between two
mutex creations. When the mutexes are created, the attributes object can be destroyed without affecting
the mutexes created with it.

Mutex Attributes
In AIX, no mutex attribute is defined. They depend on POSIX options (“Threads Library Options” on
page 261) that are not implemented in AIX . However, the following attributes may be defined on other
systems:

Protocol Specifies the protocol used to prevent priority inversions for a mutex. This attribute
depends on either the priority inheritance or the priority protection POSIX option
(“Threads Library Options” on page 261).

Chapter 11. Threads Programming Guidelines 227

../../libs/basetrf1/pthread_setcancelstate_setcanceltype_testcancel.htm
../../libs/basetrf1/pthread_mutexattr_destroy_init.htm
../../libs/basetrf1/pthread_mutexattr_destroy_init.htm

Prioceiling Specifies the priority ceiling of a mutex. This attribute depends on the priority protection
POSIX option (“Threads Library Options” on page 261).

Process-shared Specifies the process sharing of a mutex. This attribute depends on the process sharing
POSIX option (“Threads Library Options” on page 261).

The default values for these attributes are sufficient for most simple cases. See “Synchronization
Scheduling” on page 243 for more information about the protocol and prioceiling attributes; see “Advanced
Attributes” on page 250 for more information about the process-shared attribute.

Creating and Destroying Mutexes

A mutex is created by calling the pthread_mutex_init subroutine. You may specify a mutex attributes
object. If you specify a NULL pointer, the mutex will have the default attributes. Thus, the code fragment:
pthread_mutex_t mutex;
pthread_mutex_attr_t attr;
...
pthread_mutexattr_init(&attr);
pthread_mutex_init(&mutex, &attr);
pthread_mutexattr_destroy(&attr);

is equivalent to:
pthread_mutex_t mutex;
...
pthread_mutex_init(&mutex, NULL);

The ID of the created mutex is returned to the calling thread through the mutex parameter. The mutex ID
is an opaque object; its type is pthread_mutex_t. In AIX, the pthread_mutex_t data type is a structure;
on other systems, it may be a pointer or another data type.

A mutex must be created once. Calling the pthread_mutex_init subroutine more than once with the same
mutex parameter (for example, in two threads concurrently executing the same code) should be avoided.
The second call will fail, returning an EBUSY error code. Ensuring the uniqueness of a mutex creation can
be done in three ways:

v Calling the pthread_mutex_init subroutine prior to the creation of other threads that will use this mutex;
in the initial thread, for example.

v Calling the pthread_mutex_init subroutine within a one time initialization routine; see One-Time
Initializations (“One-Time Initializations” on page 246).

v Using a static mutex initialized by the PTHREAD_MUTEX_INITIALIZER static initialization macro; the
mutex will have default attributes.

Once the mutex is no longer needed, it should be destroyed by calling the pthread_mutex_destroy
subroutine. This subroutine may reclaim any storage allocated by the pthread_mutex_init subroutine.
After having destroyed a mutex, the same pthread_mutex_t variable can be reused for creating another
mutex. For example, the following code fragment is legal, although not very realistic:
pthread_mutex_t mutex;
...
for (i = 0; i < 10; i++) {

/* creates a mutex */
pthread_mutex_init(&mutex, NULL);

/* uses the mutex */

/* destroys the mutex */
pthread_mutex_destroy(&mutex);

}

228 Writing and Debugging Programs

../../libs/basetrf1/pthread_mutex_destroy_init.htm
../../libs/basetrf1/PTHREAD_MUTEX_INITIALIZER.htm#HDRG2LAI2D1MANU
../../libs/basetrf1/pthread_mutex_destroy_init.htm

Like any system resource that can be shared among threads, a mutex allocated on a thread’s stack must
be destroyed before the thread is terminated. The threads library maintains a linked list of mutexes; thus if
the stack where a mutex is allocated is freed, the list will be corrupted.

Locking and Unlocking Mutexes

A mutex is a simple lock, having two states: locked and unlocked. When it is created, a mutex is unlocked.
The pthread_mutex_lock subroutine locks the specified mutex:

v If the mutex is unlocked, the subroutine locks it.

v If the mutex is already locked by another thread, the subroutine blocks the calling thread until the mutex
is unlocked.

v If the mutex is already locked by the calling thread, the subroutine returns an error.

The pthread_mutex_trylock subroutine acts like the pthread_mutex_lock subroutine without blocking
the calling thread:

v If the mutex is unlocked, the subroutine locks it.

v If the mutex is already locked by any thread, the subroutine returns an error.

The thread that locked a mutex is often called the owner of the mutex.

The pthread_mutex_unlock subroutine resets the specified mutex to the unlocked state if it is owned by
the calling mutex:

v If the mutex was already unlocked, the subroutine returns an error.

v If the mutex was owned by the calling thread, the subroutine unlocks the mutex.

v If the mutex was owned by another thread, the subroutine returns an error.

Because locking does not provide a cancellation point (“Cancellation Points” on page 222), a thread
blocked while waiting for a mutex cannot be canceled (“Canceling a Thread” on page 221). Therefore, it is
recommended to use mutexes only for short periods of time, like protecting data from concurrent access.

Protecting Data with Mutexes

Mutexes are intended to serve either as a low level primitive from which other thread synchronization
functions can be built or as a data protection lock. “Making Complex Synchronization Objects” on page 252
provides more information about implementing long locks and writer-priority readers/writers locks with
mutexes.

Mutex Usage Example
Mutexes can be used to protect data from concurrent access. For example, a database application may
create several threads to handle several requests concurrently. The database itself is protected by a
mutex, called db_mutex.
/* the initial thread */
pthread_mutex_t mutex;
int i;
...
pthread_mutex_init(&mutex, NULL); /* creates the mutex */
for (i = 0; i < num_req; i++) /* loop to create threads */

pthread_create(th + i, NULL, rtn, &mutex);
... /* waits end of session */
pthread_mutex_destroy(&mutex); /* destroys the mutex */
...

Chapter 11. Threads Programming Guidelines 229

../../libs/basetrf1/pthread_mutex_lock.htm
../../libs/basetrf1/pthread_mutex_lock.htm
../../libs/basetrf1/pthread_mutex_lock.htm

/* the request handling thread */
... /* waits for a request */
pthread_mutex_lock(&db_mutex); /* locks the database */
... /* handles the request */
pthread_mutex_unlock(&db_mutex); /* unlocks the database */
...

The initial thread creates the mutex and all the request handling threads. The mutex is passed to the
thread using the parameter of the thread’s entry point routine. In a real program, the address of the mutex
may be a field of a more complex data structure passed to the created thread.

Avoiding Deadlocks

In AIX, mutexes cannot be re-locked by the same thread. This may not be the case on other systems. To
enhance portability of your programs, assume that the following code fragment may produce a deadlock:
pthread_mutex_lock(&mutex);
pthread_mutex_lock(&mutex);

This kind of deadlock may occur when locking a mutex and then calling a routine that will itself lock the
same mutex. For example:
pthread_mutex_t mutex;
struct {

int a;
int b;
int c;

} A;

f()
{

pthread_mutex_lock(&mutex); /* call 1 */
A.a++;
g();
A.c = 0;
pthread_mutex_unlock(&mutex);

}

g()
{

pthread_mutex_lock(&mutex); /* call 2 */
A.b += A.a;
pthread_mutex_unlock(&mutex); /* call 3 */

}

On some non-AIX systems, calling the f subroutine would produce a deadlock; call 2 would block the
thread, because call 1 already locked the mutex. In AIX, this code fragment would still not have the
expected behavior. Call 2 would be unsuccessful, but call 3 would succeed. Thus, when returning for the g
subroutine, the mutex would already be unlocked and the A variable would no longer be protected; when
returning from the f routine, the A.c variable may not contain zero.

To avoid this kind of deadlock or data inconsistency, you should use either one of the following schemes:

v Fine granularity locking. Each data atom should be protected by a mutex, locked only by low-level
functions. For example, this would result in locking each record of a database. Benefits: high-level
functions do not need to care about locking data. Drawbacks: it increases the number of mutexes, and
great care should be taken to avoid deadlocks.

v High-level locking. Data should be organized into areas, each area protected by a mutex; low-level
functions do not need to care about locking. For example, this would result in locking a whole database
before accessing it. Benefits: there are few mutexes, and thus few risks of deadlocks. Drawbacks:
performance may be bad, especially if many threads want access to the same data.

Deadlocks may also occur when locking mutexes in reverse order. For example, the following code
fragment may produce a deadlock between threads A and B:

230 Writing and Debugging Programs

/* Thread A */
pthread_mutex_lock(&mutex1);
pthread_mutex_lock(&mutex2);

/* Thread B */
pthread_mutex_lock(&mutex2);
pthread_mutex_lock(&mutex1);

To avoid these kinds of deadlocks, you should ensure that successive mutexes are always locked in the
same order.

Using Condition Variables

Condition variables allow threads to wait until some event or condition has occurred. Typically, a program
will use three objects:

v A boolean variable, indicating whether the condition is met

v A mutex to serialize the access to the boolean variable

v A condition variable to wait for the condition.

Using a condition variable requires some effort from the programmer. However, condition variables allow
the implementation of powerful and efficient synchronization mechanisms. See “Making Complex
Synchronization Objects” on page 252 for more information about implementing long locks and
semaphores with condition variables.

A condition variable has attributes, which specify the characteristics of the condition. In the current version
of AIX, the condition attributes are not used. Therefore, the condition attributes object can be ignored when
creating a condition variable.

Condition Attributes Object

Like threads and mutexes, condition variables are created with the help of an attributes object. The
condition attributes object is an abstract object, containing at most one attribute, depending on the
implementation of POSIX options. It is accessed through a variable of type pthread_condattr_t. In AIX,
the pthread_condattr_t data type is a pointer; on other systems, it may be a structure or another data
type.

Condition Attributes Object Creation and Destruction

The mutex attributes object is initialized to default values by the pthread_condattr_init subroutine. The
attribute is handled by subroutines. The thread attributes object is destroyed by the
pthread_condattr_destroy subroutine. This subroutine may free storage dynamically allocated by the
pthread_condattr_init subroutine, depending on the implementation of the threads library.

In the following example, a mutex attributes object is created and initialized with default values, then used
and finally destroyed:
pthread_condattr_t attributes;

/* the attributes object is created */
...
if (!pthread_condattr_init(&attributes)) {

/* the attributes object is initialized */
...

/* using the attributes object */
...
pthread_condattr_destroy(&attributes);

/* the attributes object is destroyed */
}

Chapter 11. Threads Programming Guidelines 231

../../libs/basetrf1/pthread_condattr_destroy_init.htm#HDRHKFVH86MANU
../../libs/basetrf1/pthread_condattr_destroy_init.htm#HDRHKFVH86MANU

The same attributes object can be used to create several condition variables. It can also be modified
between two condition variable creations. When the condition variables are created, the attributes object
can be destroyed without affecting the condition variables created with it.

Condition Attribute
In AIX, no condition attribute is defined. Condition attributes depend on POSIX options that are not
implemented in AIX. However, the following attribute may be defined on other systems:

Process-shared Specifies the process sharing of a condition variable. This attribute depends on the
process sharing POSIX option.

See “Advanced Attributes” on page 250 for more information about the process-shared attribute.

Creating and Destroying Condition Variables

A condition variable is created by calling the pthread_cond_init subroutine. You may specify a condition
attributes object. If you specify a NULL pointer, the condition variable will have the default attributes. Thus,
the code fragment:
pthread_cond_t cond;
pthread_condattr_t attr;
...
pthread_condattr_init(&attr);
pthread_cond_init(&cond, &attr);
pthread_condattr_destroy(&attr);

is equivalent to:
pthread_cond_t cond;
...
pthread_cond_init(&cond, NULL);

The ID of the created condition variable is returned to the calling thread through the condition parameter.
The condition ID is an opaque object; its type is pthread_cond_t. In AIX, the pthread_cond_t data type is
a structure; on other systems it may be a pointer or another data type.

A condition variable must be created once. Calling the pthread_cond_init subroutine more than once with
the same condition parameter (for example, in two threads concurrently executing the same code) should
be avoided. The second call will fail, returning an EBUSY error code. Ensuring the uniqueness of a
condition variable creation can be done in three ways:

v Calling the pthread_cond_init subroutine prior to the creation of other threads that will use this
variable; in the initial thread, for example.

v Calling the pthread_cond_init subroutine within a one-time initialization routine (“One-Time
Initializations” on page 246).

v Using a static condition variable initialized by the PTHREAD_COND_INITIALIZER static initialization
macro; the condition variable will have default attributes.

Once the condition variable is no longer needed, it should be destroyed by calling the
pthread_cond_destroy subroutine. This subroutine may reclaim any storage allocated by the
pthread_cond_init subroutine. After having destroyed a condition variable, the same pthread_cond_t
variable can be reused for creating another condition. For example, the following code fragment is legal,
although not very realistic:
pthread_cond_t cond;
...
for (i = 0; i < 10; i++) {

/* creates a condition variable */
pthread_cond_init(&cond, NULL);

232 Writing and Debugging Programs

../../libs/basetrf1/pthread_cond_destroy_init.htm#HDRI09149703TANAB
../../libs/basetrf1/PTHREAD_COND_INITIALIZER.htm#HDRJOKAIECMANU
../../libs/basetrf1/pthread_cond_destroy_init.htm#HDRI09149703TANAB

/* uses the condition variable */

/* destroys the condition */
pthread_cond_destroy(&cond);

}

Like any system resource that can be shared among threads, a condition variable allocated on a thread’s
stack must be destroyed before the thread is terminated. The threads library maintains a linked list of
condition variables; thus if the stack where a mutex is allocated is freed, the list will be corrupted.

Using Condition Variables
A condition variable must always be used together with a mutex. The same mutex must be used for the
same condition variable, even for different threads. It is possible to bundle in a structure the condition, the
mutex, and the condition variable, as shown in the following code fragment:
struct condition_bundle_t {

int condition_predicate;
pthread_mutex_t condition_lock;
pthread_cond_t condition_variable;

};

See “Synchronizing Threads with Condition Variables” on page 235 for more information about using the
condition predicate.

Waiting for a Condition

The mutex protecting the condition must be locked before waiting for the condition. A thread can wait for a
condition to be signaled by calling the pthread_cond_wait or pthread_cond_timedwait subroutine. The
subroutine atomically unlocks the mutex and blocks the calling thread until the condition is signaled. When
the call returns, the mutex is locked again.

The pthread_cond_wait subroutine blocks the thread indefinitely. If the condition is never signaled, the
thread never wakes up. Because the pthread_cond_wait subroutine provides a cancellation point, the
only way to get out of this deadlock is to cancel the blocked thread, if cancelability is enabled. For more
information, see “Canceling a Thread” on page 221.

The pthread_cond_timedwait subroutine blocks the thread only for a given period of time. This
subroutine has an extra parameter, timeout, specifying an absolute date where the sleep must end. The
timeout parameter is a pointer to a timespec structure. This data type is also called timestruc_t. It
contains two fields:

tv_sec A long unsigned integer, specifying seconds
tv_nsec A long integer, specifying nanoseconds.

Typically, the pthread_cond_timedwait subroutine is used in the following manner:
struct timespec timeout;
...
time(&timeout.tv_sec);
timeout.tv_sec += MAXIMUM_SLEEP_DURATION;
pthread_cond_timedwait(&cond, &mutex, &timeout);

The timeout parameter specifies an absolute date. The previous code fragment shows how to specify a
duration rather than an absolute date.

To use pthread_cond_timedwait with an absolute date, you can use the mktime subroutine to calculate
the value of the tv_sec field of the timespec structure. In the following example, the thread will wait for the
condition until 08:00 January 1, 2001, local time:

Chapter 11. Threads Programming Guidelines 233

../../libs/basetrf1/pthread_cond_wait.htm#HDRTTEVH2B8MANU
../../libs/basetrf1/pthread_cond_wait.htm#HDRTTEVH2B8MANU
../../libs/basetrf1/ctime.htm#HDRA181939B

struct tm date;
time_t seconds;
struct timespec timeout;
...

date.tm_sec = 0;
date.tm_min = 0;
date.tm_hour = 8;
date.tm_mday = 1;
date.tm_mon = 0; /* the range is 0-11 */
date.tm_year = 101; /* 0 is 1900 */
date.tm_wday = 1; /* this field can be omitted -

but it will really be a Monday! */
date.tm_yday = 0; /* first day of the year */
date.tm_isdst = daylight;

/* daylight is an external variable - we are assuming
that daylight savings time will still be used... */

seconds = mktime(&date);

timeout.tv_sec = (unsigned long)seconds;
timeout.tv_nsec = 0L;

pthread_cond_timedwait(&cond, &mutex, &timeout);

The pthread_cond_timedwait subroutine also provides a cancellation point, although the sleep is not
indefinite. Thus, a sleeping thread can be canceled, whether the sleep has a timeout or not.

Signaling a Condition

A condition can be signaled by calling either the pthread_cond_signal or the pthread_cond_broadcast
subroutine.

The pthread_cond_signal subroutine wakes up at least one thread that is currently blocked on the
specified condition. The awoken thread is chosen according to the scheduling policy; it is the thread with
the most-favored scheduling priority (see “Scheduling Policy and Priority” on page 240) . It may happen on
multiprocessor systems, or some non-AIX systems, that more than one thread is woken up. Do not
assume that this subroutine wakes up exactly one thread.

The pthread_cond_broadcast subroutine wakes up every thread that is currently blocked on the specified
condition. However, a thread can start waiting on the same condition just after the call to the subroutine
returns.

A call to these routines always succeeds, unless an invalid cond parameter is specified. This does not
mean that a thread has been awakened. Furthermore, signaling a condition is not remembered by the
library. For example, consider a condition C. No thread is waiting on this condition. At time t, thread 1
signals the condition C. The call is successful although no thread is woken up. At time t+1, thread 2 calls
the pthread_cond_wait subroutine with C as cond parameter. Thread 2 is blocked. If no other thread
signals C, thread 2 may wait until the process terminates.

A way to avoid this kind of deadlock is to check the EBUSY error code returned by the
pthread_cond_destroy subroutine when destroying the condition variable, as in the following code
fragment:
while (pthread_cond_destroy(&cond) == EBUSY) {

pthread_cond_broadcast(&cond);
pthread_yield();

}

The pthread_yield subroutine gives the opportunity to another thread to be scheduled, one of the awoken
threads for example. See “Threads Scheduling” on page 240 for more information about the pthread_yield
subroutine.

234 Writing and Debugging Programs

../../libs/basetrf1/pthread_cond_signal.htm#HDRA3TEVH259MANU
../../libs/basetrf1/pthread_cond_signal.htm#HDRA3TEVH259MANU
../../libs/basetrf1/pthread_yield.htm#HDRFZXVH4DMANU

The pthread_cond_wait and the pthread_cond_broadcast subroutines must not be used within a signal
handler. To provide a convenient way for a thread to await a signal, the threads library provides the
sigwait subroutine. See “Signal Management” on page 256 for more information about the sigwait
subroutine.

Synchronizing Threads with Condition Variables

Condition variables are used to wait until a particular predicate becomes true. This predicate is set by
another thread, usually the one that signals the condition.

Condition Wait Semantics
A predicate must be protected by a mutex. When waiting for a condition, the wait subroutine (either
pthread_cond_wait or pthread_cond_timedwait) atomically unlocks the mutex and blocks the thread.
When the condition is signaled, the mutex is relocked and the wait subroutine returns. It is important to
note that when the subroutine returns without error, the predicate may still be false.

The reason is that more than one thread may be awoken: either a thread called the
pthread_cond_broadcast subroutine, or an unavoidable race between two processors simultaneously
woke two threads. The first thread locking the mutex will block all other awoken threads in the wait
subroutine until the mutex is unlocked by the program. Thus, the predicate may have changed when the
second thread gets the mutex and returns from the wait subroutine.

In general, whenever a condition wait returns, the thread should re-evaluate the predicate to determine
whether it can safely proceed, should wait again, or should declare a timeout. A return from the wait
subroutine does not imply that the predicate is either true or false.

It is recommended that a condition wait be enclosed in a ″while loop″ that checks the predicate. The
following code fragment provides a basic implementation of a condition wait.
pthread_mutex_lock(&condition_lock);
while (condition_predicate == 0)

pthread_cond_wait(&condition_variable, &condition_lock);
...
pthread_mutex_unlock(&condition_lock);

Timed Wait Semantics
When the pthread_cond_timedwait subroutine returns with the timeout error, the predicate may be true.
This is due to another unavoidable race between the expiration of the timeout and the predicate state
change.

Just as for non-timed wait, the thread should re-evaluate the predicate when a timeout occurred to
determine whether it should declare a timeout or should proceed anyway. It is recommended to carefully
check all possible cases when the pthread_cond_timedwait subroutine returns. The following code
fragment shows how such checking could be implemented in a robust program:
int result = CONTINUE_LOOP;

pthread_mutex_lock(&condition_lock);
while (result == CONTINUE_LOOP) {

switch (pthread_cond_timedwait(&condition_variable,
&condition_lock, &timeout)) {

case 0:
if (condition_predicate)

result = PROCEED;
break;

case ETIMEDOUT:
result = condition_predicate ? PROCEED : TIMEOUT;
break;

Chapter 11. Threads Programming Guidelines 235

../../libs/basetrf2/sigwait.htm#HDRVURRG3A6S06

default:
result = ERROR;
break;

}
}

...
pthread_mutex_unlock(&condition_lock);

The result variable can be used to choose an action. The statements preceding the unlocking of the
mutex should be as quick as possible, because a mutex should not be held for long periods of time.

Specifying an absolute date in the timeout parameter allows easy implementation of real-time behavior. An
absolute timeout does not need to be recomputed if it is used multiple times in a loop, such as that
enclosing a condition wait. For cases where the system clock is advanced discontinuously by an operator,
using an absolute timeout ensures that the timed wait will end as soon as the system time specifies a date
later than the timeout parameter.

Condition Variables Usage Example
The following example provides the source code for a synchronization point routine. A synchronization
point is a given point in a program where different threads must wait until all threads (or at least a certain
number of threads) have reached that point.

A synchronization point can simply be implemented by a counter, which is protected by a lock, and a
condition variable. Each thread takes the lock, increments the counter, and waits for the condition to be
signaled if the counter did not reach its maximum. Otherwise, the condition is broadcast, and all threads
can proceed. The last thread calling the routine broadcasts the condition.
#define SYNC_MAX_COUNT 10

void SynchronizationPoint()
{

/* use static variables to ensure initialization */
static mutex_t sync_lock = PTHREAD_MUTEX_INITIALIZER;
static cond_t sync_cond = PTHREAD_COND_INITIALIZER;
static int sync_count = 0;

/* lock the access to the count */
pthread_mutex_lock(&sync_lock);

/* increment the counter */
sync_count++;

/* check if we should wait or not */
if (sync_count < SYNC_MAX_COUNT)

/* wait for the others */
pthread_cond_wait(&sync_cond, &sync_lock);

else

/* broadcast that everybody reached the point */
pthread_cond_broadcast(&sync_cond);

/* unlocks the mutex - otherwise only one thread
will be able to return from the routine! */

pthread_mutex_unlock(&sync_lock);
}

This routine has some limitations: it can be used only once, and the number of threads that will call the
routine is coded by a symbolic constant. However, this example shows a basic usage of condition
variables. More complex usage can be found in “Making Complex Synchronization Objects” on page 252.

Joining Threads
Joining a thread means waiting for it to terminate. It can be seen as a specific usage of condition
variables.

236 Writing and Debugging Programs

Waiting for a Thread

The pthread_join subroutine provides a simple mechanism allowing a thread to wait for another thread to
terminate. More complex conditions, such as waiting for multiple threads to terminate, can be implemented
by the programmer using condition variables. See “Synchronizing Threads with Condition Variables” on
page 235 for more information.

Calling the pthread_join Subroutine

The pthread_join subroutine blocks the calling thread until the specified thread terminates. The target
thread (the thread whose termination is awaited) must not be detached. If the target thread is already
terminated, but not detached, the pthread_join subroutine returns immediately. Once a target thread has
been joined, it is automatically detached, and its storage can be reclaimed.

The following table indicates the two possible cases when a thread calls the pthread_join subroutine,
depending on the state and the detachstate attribute of the target thread.

Undetached target Detached target

Target is still running The caller is blocked until the target is
terminated.

The call returns immediately
indicating an error.

Target is terminated The call returns immediately
indicating a successful completion.

A thread cannot join itself - a deadlock would occur and it is detected by the library. However, two threads
may try to join each other; they will deadlock. This situation is not detected by the library.

Multiple Joins
It is possible for several threads to join the same target thread, if the target is not detached. The success
of this operation depends on the order of the calls to the pthread_join subroutine and the moment when
the target thread terminates.

v Any call to the pthread_join subroutine occurring before the target thread’s termination blocks the
calling thread.

v When the target thread terminates, all blocked threads are awoken, and the target thread is
automatically detached.

v Any call to the pthread_join subroutine occurring after the target thread’s termination will fail, because
the thread is detached by the previous join.

v If no thread called the pthread_join subroutine before the target thread’s termination, the first call to the
pthread_join subroutine will return immediately, indicating a successful completion, and any further call
will fail.

Join Example
The following example is an enhanced version of the first multi-threaded program. The program ends after
exactly five messages in each language are displayed. This is done by blocking the initial thread until the
″writer″ threads exit.
#include <pthread.h> /* include file for pthreads - the 1st */
#include <stdio.h> /* include file for printf() */

void *Thread(void *string)
{

int i;

/* writes five messages and exits */
for (i=0; i<5; i++)

printf("%s\n", (char *)string);
pthread_exit(NULL);

}

Chapter 11. Threads Programming Guidelines 237

../../libs/basetrf1/pthread_join.htm#HDRA8AFVH384MANU

int main()
{

char *e_str = "Hello!";
char *f_str = "Bonjour !";

pthread_attr_t attr;
pthread_t e_th;
pthread_t f_th;

int rc;

/* creates the right attribute */
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr,

PTHREAD_CREATE_UNDETACHED);

/* creates both threads */
rc = pthread_create(&e_th, &attr, Thread, (void *)e_str);
if (rc)

exit(-1);
rc = pthread_create(&f_th, &attr, Thread, (void *)f_str);
if (rc)

exit(-1);
pthread_attr_destroy(&attr);

/* joins the threads */
pthread_join(e_th, NULL);
pthread_join(f_th, NULL);

pthread_exit(NULL);
}

Returning Information from a Thread
The pthread_join subroutine also allows a thread to return information to another thread. When a thread
calls the pthread_exit subroutine or when it returns from its entry-point routine, it returns a pointer (see
“Exiting a Thread” on page 220). This pointer is stored as long as the thread is not detached, and the
pthread_join subroutine can return it.

For example, a multi-threaded grep command may choose the following implementation. The initial thread
creates one thread per file to scan, each thread having the same entry point routine. It then waits for all
threads to be terminated. Each ″scanning″ thread stores the found lines in a dynamically allocated buffer
and returns a pointer to this buffer. The initial thread prints out each buffer and frees it.
/* "scanning" thread */
...
buffer = malloc(...);

/* finds the search pattern in the file
and stores the lines in the buffer */

return (buffer);

/* initial thread */
...
for (/* each created thread */) {

void *buf;
pthread_join(thread, &buf);
if (buf != NULL) {

/* print all the lines in the buffer,
preceded by the filename of the thread */

free(buf);
}

}
...

If the target thread is canceled, the pthread_join subroutine returns a value of -1 cast into a pointer (see
“Canceling a Thread” on page 221). Because -1 cannot be a pointer value, getting -1 as returned pointer
from a thread means that the thread was canceled.

238 Writing and Debugging Programs

The returned pointer can point to any kind of data. Care must be taken concerning the storage class of the
data the pointer refers to. The pointer must be still valid after the thread was terminated and its storage
reclaimed. Therefore, returning a “Thread-Specific Data” on page 247 value should be avoided, because
the destructor routine is called when the thread’s storage is reclaimed.

Returning a pointer to dynamically allocated storage to several threads should also be handled with care.
Consider the following code fragment:
void *returned_data;
...
pthread_join(target_thread, &returned_data);
/* retrieves information from returned_data */
free(returned_data);

When executed by only one thread, the returned_data pointer is freed as it should be. If several threads
execute this code fragment concurrently, the returned_data pointer is freed several times; this must be
avoided. A solution may consist in using a flag, protected by a mutex, to signal that the returned_data
pointer was freed. The line:
free(returned_data);

would thus be replaced by the lines (assuming the flag variable is initially 0)
/* lock - entering a critical region, no other thread should

run this portion of code concurrently */
if (!flag) {

free(returned_data);
flag = 1;

}
/* unlock - exiting the critical region */

where a mutex (“Using Mutexes” on page 227) can be used for locking the access to the critical region.
This ensures that the returned_data pointer is freed only once.

When returning a pointer to dynamically allocated storage to several threads all executing different code,
you must ensure that exactly one thread frees the pointer.

List of Synchronization Subroutines

pthread_mutex_destroy Deletes a mutex.
pthread_mutex_init Initializes a mutex and sets its attributes.
PTHREAD_MUTEX_INITIALIZER Initializes a static mutex with default attributes.
pthread_mutex_lock or pthread_mutex_trylock

Locks a mutex.
pthread_mutex_unlock Unlocks a mutex.
pthread_mutexattr_destroy Deletes a mutex attributes object.
pthread_mutexattr_init Creates a mutex attributes object and initializes it with

default values.
pthread_cond_destroy Deletes a condition variable.
pthread_cond_init Initializes a condition variable and sets its attributes.
PTHREAD_COND_INITIALIZER Initializes a static condition variable with default attributes.
pthread_cond_signal or pthread_cond_broadcast

Unblocks one or more threads blocked on a condition.
pthread_cond_wait or pthread_cond_timedwait

Blocks the calling thread on a condition.
pthread_condattr_destroy Deletes a condition attributes object.
pthread_condattr_init Creates a condition attributes object and initializes it with

default values.

Chapter 11. Threads Programming Guidelines 239

../../libs/basetrf1/pthread_mutex_destroy_init.htm
../../libs/basetrf1/pthread_mutex_destroy_init.htm
../../libs/basetrf1/PTHREAD_MUTEX_INITIALIZER.htm#HDRG2LAI2D1MANU
../../libs/basetrf1/pthread_mutex_lock.htm
../../libs/basetrf1/pthread_mutex_lock.htm
../../libs/basetrf1/pthread_mutex_lock.htm
../../libs/basetrf1/pthread_mutexattr_destroy_init.htm
../../libs/basetrf1/pthread_mutexattr_destroy_init.htm
../../libs/basetrf1/pthread_cond_destroy_init.htm
../../libs/basetrf1/pthread_cond_destroy_init.htm
../../libs/basetrf1/PTHREAD_COND_INITIALIZER.htm#HDRJOKAIECMANU
../../libs/basetrf1/pthread_cond_signal.htm#HDRA3TEVH259MANU
../../libs/basetrf1/pthread_cond_signal.htm#HDRA3TEVH259MANU
../../libs/basetrf1/pthread_cond_wait.htm#HDRTTEVH2B8MANU
../../libs/basetrf1/pthread_cond_wait.htm#HDRTTEVH2B8MANU
../../libs/basetrf1/pthread_condattr_destroy_init.htm#HDRHKFVH86MANU
../../libs/basetrf1/pthread_condattr_destroy_init.htm

Scheduling Overview
Threads are the schedulable entity. The threads library provides several facilities to handle and control the
scheduling of threads. It also provides facilities to control the scheduling of threads during synchronization
operations such as locking a mutex.

The following information will help you in using the scheduling facilities:

v “Threads Scheduling”

v “Synchronization Scheduling” on page 243

v “List of Scheduling Subroutines” on page 245

Threads Scheduling
Each thread has its own set of scheduling parameters. These parameters can be set using the thread
attributes object before the thread’s creation. They can also be dynamically set during the thread’s
execution.

Basic Scheduling Facilities
Controlling the scheduling of a thread is often a complicated task. Because the scheduler handles all
threads systemwide, the scheduling parameters of a thread interact with those of all other threads in the
process and in the other processes. The following facilities are the first to be used if you want to control
the scheduling of a thread.

Inheritsched Attribute

The inheritsched attribute of the thread attributes object specifies how the thread’s scheduling attributes
will be defined. It may have one of the following values:

PTHREAD_INHERIT_SCHED Specifies that the new thread will get the scheduling attributes
(schedpolicy and schedparam attributes) of its creating thread. Scheduling
attributes defined in the attributes object are ignored.

PTHREAD_EXPLICIT_SCHED Specifies that the new thread will get the scheduling attributes defined in
this attributes object.

The default value of the inheritsched attribute is PTHREAD_INHERIT_SCHED. The attribute is set by
calling the pthread_attr_setinheritsched subroutine. The current value of the attribute is returned by
calling the pthread_attr_getinheritsched subroutine.

To set the scheduling attributes of a thread in the thread attributes object, the inheritsched must first be set
to PTHREAD_EXPLICIT_SCHED. Otherwise, the attributes object scheduling attributes are ignored.

Scheduling Policy and Priority

The threads library provides three scheduling policies:

SCHED_FIFO First-in first-out (FIFO) scheduling. Each thread has a fixed priority; when multiple threads have
the same priority level, they run to completion in FIFO order.

SCHED_RR Round-robin (RR) scheduling. Each thread has a fixed priority; when multiple threads have the
same priority level, they run for a fixed time slice in FIFO order.

SCHED_OTHER Default AIX scheduling. Each thread has a initial priority that is dynamically modified by the
scheduler, according to the thread’s activity; thread execution is time-sliced. On other systems,
this scheduling policy may be different.

The default scheduling policy for threads is SCHED_OTHER.

240 Writing and Debugging Programs

The priority is an integer value, in the range from 1 to 127. 1 is the least-favored priority, 127 is the
most-favored. Priority level 0 cannot be used: it is reserved for the system. Note that in AIX, the kernel
inverts the priority levels. For the AIX kernel, the priority is in the range from 0 to 127, where 0 is the most
favored priority and 127 the least-favored. Commands, such as the ps command, report the kernel priority.

The threads library handles the priority through a sched_param structure, defined in the sys/sched.h
header file. Currently, this structure contains two fields:

sched_priority Specifies the priority.
sched_policy This field is ignored by the threads library and should not be used.

In the future, other fields may be defined for other scheduling characteristics.

Setting the Scheduling Policy and Priority at Creation Time

The scheduling policy can be set when creating a thread by setting the schedpolicy attribute of the thread
attributes object. The pthread_attr_setschedpolicy subroutine sets the scheduling policy to one of the
three previously defined scheduling policies. The current value of the schedpolicy attribute of a thread
attributes object can be obtained by the pthread_attr_getschedpolicy subroutine.

The scheduling priority can be set at creation time of a thread by setting the schedparam attribute of the
thread attributes object. The pthread_attr_setschedparam subroutine sets the value of the schedparam
attribute, copying the value of the specified structure. The pthread_attr_getschedparam subroutine gets
the schedparam attribute.

In the following code fragment, a thread is created with the round-robin scheduling policy, using a priority
level of 3:
sched_param schedparam;

schedparam.sched_priority = 3;

pthread_attr_init(&attr);
pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
pthread_attr_setschedpolicy(&attr, SCHED_RR);
pthread_attr_setschedparam(&attr, &schedparam);

pthread_create(&thread, &attr, &start_routine, &args);
pthread_attr_destroy(&attr);

See “Inheritsched Attribute” on page 240 to get more information about the inheritsched attribute.

Setting the Scheduling Attributes at Execution Time

The current schedpolicy and schedparam attributes of a thread are returned by the
pthread_getschedparam subroutine. These attributes can be set by calling the pthread_setschedparam
subroutine. If the target thread is currently running on a processor, the new scheduling policy and priority
will be implemented the next time the thread is scheduled. If the target thread is not running, it may be
scheduled immediately at the end of the subroutine call.

For example, consider a thread T that is currently running with RR policy at the moment the schedpolicy
attribute of T is changed to FIFO. T will run until the end of its time slice, at which time its scheduling
attributes are then re-evaluated. If no threads have higher priority, T will be rescheduled, even before other
threads having the same priority. Consider a second example where a low-priority thread is not running. If
this thread’s priority is raised by another thread calling pthread_setschedparam, the target thread will be
scheduled immediately if it is the highest priority runnable thread.

Chapter 11. Threads Programming Guidelines 241

../../libs/basetrf1/pthread_attr_setschedparam.htm#HDRCQCVH32AMANU
../../libs/basetrf1/pthread_attr_getschedparam.htm#HDRA2ADVH23AMANU
../../libs/basetrf1/pthread_getschedparam.htm#HDRRRCVH217MANU

Note: Both subroutines use two parameters: a policy parameter and a sched_param structure.
Although this structure contains a sched_policy field, programs should not use it. The subroutines
use the policy parameter to pass the scheduling policy and ignore the sched_policy field.

Considerations about Scheduling Policies
Applications should use the default scheduling policy, unless a specific application requires the use of a
fixed-priority scheduling policy.

Using the RR policy ensures that all threads having the same priority level will be scheduled equally,
regardless of their activity. This can be useful in programs where threads have to read sensors or write
actuators.

Using the FIFO policy should be done with great care. A thread running with FIFO policy runs to
completion, unless it is blocked by some calls, such as performing input and output operations. A
high-priority FIFO thread may not be preempted and can affect the global performance of the system. For
example, threads doing intensive calculations, such as inverting a large matrix, should never run with FIFO
policy.

The setting of scheduling policy and priority is also influenced by the contention scope of threads. Using
the FIFO or the RR policy may not always be allowed. See “Impacts of Contention Scope on Scheduling”
on page 243 for more information.

Contention Scope

The threads library defines two possible contention scopes:

PTHREAD_SCOPE_PROCESS Process (or local) contention scope. Specifies that the thread will be
scheduled against all other local contention scope threads in the process.

PTHREAD_SCOPE_SYSTEM System (or global) contention scope. Specifies that the thread will be
scheduled against all other threads in the system.

See “Threads Implementation” on page 162 for more information about contention scope.

Setting the Contention Scope

The contention scope can only be set before thread creation by setting the contention-scope attribute of a
thread attributes object. The pthread_attr_setscope subroutine sets the value of the attribute; the
pthread_attr_getscope returns it.

The contention scope is only meaningful in a mixed-scope M:N library implementation. A single-scope 1:1
library implementation, as in Pre-AIX 4.3, always returns an error when trying to set the contention-scope
attribute to PTHREAD_SCOPE_PROCESS, because all threads have system contention scope. This is
the easiest way to test the implementation of a threads library. A TestImplementation routine could be
written as follows:
int TestImplementation()
{

pthread_attr_t a;
int result;

pthread_attr_init(&a);
switch (pthread_attr_setscope(&a, PTHREAD_SCOPE_PROCESS))
{

case 0: result = LIB_MN; break;
case ENOTSUP: result = LIB_11; break;
case ENOSYS: result = NO_PRIO_OPTION; break;
default: result = ERROR; break;

}

242 Writing and Debugging Programs

pthread_attr_destroy(&a);
return result;

}

Prior to AIX 4.3, this routine would return LIB_11.

In AIX 4.3, this routine returns LIB_MN.

Impacts of Contention Scope on Scheduling

The contention scope of a thread influences its scheduling. Each system contention scope thread is bound
to one kernel thread. Thus changing the scheduling policy and priority of a global user thread results in
changing the scheduling policy and priority of the underlying kernel thread.

In AIX, only kernel threads with root authority can use a fixed-priority scheduling policy (FIFO or RR). The
following code:
schedparam.sched_priority = 3;
pthread_setschedparam(pthread_self(), SCHED_FIFO, schedparam);

will always return the EPERM error code if the calling thread has system contention scope but does not
have root authority. It would not fail, if the calling thread had process contention scope. One does not need
to have root authority to control the scheduling parameters of user threads with process contention scope.

Local user thread can set any scheduling policy and priority, within the valid range of values. However, two
threads having the same scheduling policy and priority but having different contention scope will not be
scheduled in the same way. Threads having process contention scope are executed by kernel threads
whose scheduling parameters are set by the library.

sched_yield Subroutine

The sched_yield subroutine is the equivalent for threads of the yield subroutine. It forces the calling
thread to relinquish the use of its processor. It gives other threads a chance to be scheduled. The next
scheduled thread may belong to the same process as the calling thread or to another process. The yield
subroutine must not be used in a multi-threaded program.

The interface pthread_yield subroutine is not available in XOPEN VERSION 5.

Synchronization Scheduling

Programmers may want to control the execution scheduling of threads when there are constraints,
especially time constraints, that require certain threads to be executed faster than other ones.
Synchronization objects, such as mutexes, may block even high-priority threads. In some cases,
undesirable behavior, known as priority inversion, may occur. The threads library provides a facility, the
mutex protocols, to avoid priority inversions.

Priority Inversion

Priority inversion occurs when a low-priority thread holds a mutex, blocking a high-priority thread. Due to
its low priority, the mutex owner may hold the mutex for an unbounded duration. As a result, it becomes
impossible to guarantee thread deadlines.

The following example illustrates a typical priority inversion. To make the example easier to understand,
only the case of a uniprocessor system is considered. Priority inversions also occur on multiprocessor
systems in a similar way.

Chapter 11. Threads Programming Guidelines 243

../../libs/basetrf2/sched_yield.htm
../../libs/basetrf2/yield.htm#HDRA357C11

A mutex M is used to protect some common data. Thread A has a priority level of 100. It should be
scheduled very often. Thread B has a priority level of 20. It is a background thread. Other threads in the
process have priority levels around 60. A code fragment from thread A is:
pthread_mutex_lock(&M); /* 1 */
...
pthread_mutex_unlock(&M);

A code fragment from thread B is:
pthread_mutex_lock(&M); /* 2 */
...
fprintf(...); /* 3 */
...
pthread_mutex_unlock(&M);

Consider the following execution chronology. Thread B is scheduled and executes line 2. When executing
line 3, thread B is preempted by thread A. Thread A executes line 1 and is blocked, because the mutex M
is held by thread B. Thus, other threads in the process are scheduled. Because thread B has a very low
priority, it may not be rescheduled for a long period, blocking thread A although thread A has a very high
priority.

Mutex Protocols

To avoid priority inversions, two mutex protocols are provided by the threads library:

v “Priority Inheritance Protocol”, sometimes called basic priority inheritance protocol

v “Priority Protection Protocol”l, sometimes called priority ceiling protocol emulation.

Both protocols increase the priority of a thread holding a specific mutex, so that deadlines can be
guaranteed. Furthermore, when correctly used, mutex protocols can prevent mutual deadlocks. Mutex
protocols are individually assigned to mutexes.

Priority Inheritance Protocol

In the priority inheritance protocol, the mutex holder inherits the priority of the highest priority blocked
thread. When a thread tries to lock a mutex using this protocol and is blocked, the mutex owner
temporarily receives the blocked thread’s priority, if that priority is higher than the owner’s. It recovers its
original priority when it unlocks the mutex.

Priority Protection Protocol

In the priority protection protocol, each mutex has a priority ceiling. It is a priority level within the valid
range of priorities. When a thread owns a mutex, it temporarily receives the mutex priority ceiling, if the
ceiling is higher than its own priority. It recovers its original priority when it unlocks the mutex. The priority
ceiling should have the value of the highest priority of all threads that may lock the mutex. Otherwise,
priority inversions or even deadlocks may occur, and the protocol would be inefficient.

Choosing a Mutex Protocol
The choice of a mutex protocol is made by setting attributes when creating a mutex. See “Protocol
Attribute” for more information. “Inheritance or Protection” on page 245 provides guidelines for choosing a
protocol.

Protocol Attribute

The mutex protocol is controlled through an attribute: the protocol attribute. This attribute can be set in the
mutex attributes object using the pthread_mutexattr_getprotocol and pthread_mutexattr_setprotocol
subroutines. The protocol attribute can have one of the following values:

244 Writing and Debugging Programs

PTHREAD_PRIO_NONE Denotes no protocol. This is the default value.
PTHREAD_PRIO_INHERIT Denotes the priority inheritance protocol.
PTHREAD_PRIO_PROTECT Denotes the priority protection protocol.

The priority protection protocol uses one additional attribute: the prioceiling attribute. This attribute contains
the priority ceiling of the mutex. The prioceiling attribute can be controlled in the mutex attributes object,
using the pthread_mutexattr_getprioceiling and pthread_mutexattr_setprioceiling subroutines.

The prioceiling attribute of a mutex can also be dynamically controlled using the
pthread_mutex_getprioceiling and pthread_mutex_setprioceiling subroutines. Note that when
dynamically changing the priority ceiling of a mutex, the mutex is locked by the library; it should not be
held by the thread calling the pthread_mutex_setprioceiling subroutine to avoid a deadlock. Dynamically
setting the priority ceiling of a mutex can be useful when increasing the priority of a thread.

The implementation of mutex protocols is optional. Each protocol is a POSIX option. See “Threads Library
Options” on page 261 for more information about the priority inheritance and the priority protection POSIX
options.

Inheritance or Protection
Both protocols are similar and result in promoting the priority of the thread holding the mutex. If both
protocols are available, a choice must be made. This information will help the programmer in choosing a
protocol.

The choice depends on whether the priorities of the threads that will lock the mutex are available to the
programmer creating the mutex. Typically, mutexes defined by a library and used by application threads
will use the inheritance protocol, whereas mutexes created within the application program will use the
protection protocol.

In performance-critical programs, performance considerations may also influence the choice. In most
implementations, especially in AIX, changing the priority of a thread results in making a system call.
Therefore, the two mutex protocols differ in the amount of system calls they generate.

v Using the inheritance protocol, a system call is made each time a thread is blocked when trying to lock
the mutex.

v Using the protection protocol, one system call is always made each time the mutex is locked by a
thread.

In most performance-critical programs, the inheritance protocol should be chosen, because mutexes are
low contention objects. Mutexes are not held for long periods of time; thus, it is not likely that threads are
blocked when trying to lock them.

List of Scheduling Subroutines

pthread_attr_getschedparam Returns the value of the schedparam attribute of a thread
attributes object.

pthread_attr_setschedparam Sets the value of the schedparam attribute of a thread attributes
object.

pthread_getschedparam Returns the value of the schedpolicy and schedparam attributes of
a thread.

pthread_yield Forces the calling thread to relinquish use of its processor.

Threads Advanced Features
The threads library provides some advanced features to be used by trained programmers. These features
are helpful to perform special tasks.

Chapter 11. Threads Programming Guidelines 245

../../libs/basetrf1/pthread_attr_getschedparam.htm#HDRA2ADVH23AMANU
../../libs/basetrf1/pthread_attr_setschedparam.htm#HDRCQCVH32AMANU
../../libs/basetrf1/pthread_getschedparam.htm#HDRRRCVH217MANU
../../libs/basetrf1/pthread_yield.htm#HDRFZXVH4DMANU

One-Time Initializations

Some C libraries are designed for dynamic initialization. That is, the global initialization for the library is
performed when the first procedure in the library is called. In a single-threaded program, this is usually
implemented using a static variable whose value is checked on entry to each routine, as in the following
code fragment:
static int isInitialized = 0;
extern void Initialize();

int function()
{

if (isInitialized == 0) {
Initialize();
isInitialized = 1;

}
...

}

For dynamic library initialization in a multi-threaded program a simple initialization flag is not sufficient; this
flag must be protected against modification by multiple threads simultaneously calling a library function.
Protecting the flag requires the use of a mutex; however, mutexes must be initialized before they are used.
Ensuring that the mutex is only initialized once requires a recursive solution to this problem.

To keep the same structure in a multi-threaded program a new subroutine, pthread_once, is provided by
the threads library. Otherwise, library initialization must be accomplished by an explicit call to a library
exported initialization function prior to any use of the library. This subroutine also provides an alternative
for initializing mutexes and condition variables.

One-Time Initialization Object

The uniqueness of the initialization is ensured by an object, the one-time initialization object, or once
block. It is a variable having the pthread_once_t data type. In AIX and most other implementations of the
threads library, the pthread_once_t data type is a structure.

A one-time initialization object is typically a global variable. It must be initialized with the
PTHREAD_ONCE_INIT macro, as in the following example:
static pthread_once_t once_block = PTHREAD_ONCE_INIT;

The initialization can also be done in the initial thread or in any other thread. Several one time initialization
objects can be used in the same program. The only requirement is that the one-time initialization object be
initialized with the macro.

One-Time Initialization Routine
The pthread_once subroutine calls the specified initialization routine associated with the specified
one-time initialization object if it is the first time it is called; otherwise, it does nothing. The same
initialization routine must always be used with the same one-time initialization object. The initialization
routine must have the following prototype:
void init_routine();

The pthread_once subroutine does not provide a cancellation point. However, the initialization routine
may provide cancellation points, and, if cancelability is enabled, the first thread calling the pthread_once
subroutine may be canceled during the execution of the initialization routine. In this case, the routine is not
considered as executed, and the next call to the pthread_once subroutine would result in recalling the
initialization routine.

246 Writing and Debugging Programs

../../libs/basetrf1/pthread_once.htm#HDRT3IVH291MANU
../../libs/basetrf1/PTHREAD_ONCE_INIT.htm#HDREFGBI3AAMANU

It is recommended to use cleanup handlers in one-time initialization routines, especially when performing
non-idempotent operations, such as opening a file, locking a mutex, or allocating memory. For more
information, see “Using Cleanup Handlers” on page 225.

One-time initialization routines can be used for initializing mutexes or condition variables or to perform
dynamic initialization. The code fragment shown above would be written in a multi-threaded library as
follows:
static pthread_once_t once_block = PTHREAD_ONCE_INIT;
extern void Initialize();

int function()
{

pthread_once(&once_block, Initialize);
...

}

Thread-Specific Data

Many applications require that certain data be maintained on a per-thread basis across function calls. For
example, a multi-threaded grep command using one thread for each file needs to have thread-specific file
handlers and list of found strings. The thread-specific data interface is provided by the threads library to
meet these needs.

Thread-specific data may be viewed as a two-dimensional array of values, with keys serving as the row
index and thread IDs as the column index. A thread-specific data key is an opaque object, of type
pthread_key_t. The same key can be used by all threads in a process. Although all threads use the same
key, they set and access different thread-specific data values associated with that key. Thread-specific
data are void pointers. This allows referencing any kind of data, such as dynamically allocated strings or
structures.

In the following figure, thread T2 has a thread-specific data value of 12 associated with the key K3.
Another thread T4 has the value 2 associated with the same key.

Table 1. Thread-Specific Data Array

Threads

T1 T2 T3 T4

Keys

K1 6 56 4 1

K2 87 21 0 9

K3 23 12 61 2

K4 11 76 47 88

Creating and Destroying Keys
Thread-specific data keys must be created before being used. Their values can be automatically destroyed
when the corresponding threads terminate. A key can also be destroyed upon request to reclaim its
storage.

Key Creation

A thread-specific data key is created by calling the pthread_key_create subroutine. This subroutine
returns a key. The thread-specific data is set to a value of NULL for all threads, including threads not yet
created.

For example, consider two threads A and B. Thread A performs the following operations in chronological
order:

Chapter 11. Threads Programming Guidelines 247

../../libs/basetrf1/pthread_key_create.htm#HDRA7JIVH141MANU

1. Create a thread-specific data key K.

Threads A and B can use the key K. The value for both threads is NULL.

2. Create a thread C.

Thread C can also use the key K. The value for thread C is NULL.

The number of thread-specific data keys is limited to 508 per process. This number can be retrieved by
the PTHREAD_KEYS_MAX symbolic constant.

The pthread_key_create subroutine must be called only once. Otherwise, two different keys are created.
For example, consider the following code fragment:
/* a global variable */
static pthread_key_t theKey;

/* thread A */
...
pthread_key_create(&theKey, NULL); /* call 1 */
...

/* thread B */
...
pthread_key_create(&theKey, NULL); /* call 2 */
...

Threads A and B run concurrently, but call 1 happens before call 2. Call 1 will create a key K1 and store it
in the theKey variable. Call 2 will create another key K2, and store it also in the theKey variable, thus
overriding K1. As a result, thread A will use K2, assuming it is K1. This situation should be avoided for two
reasons:

v Key K1 is lost, thus its storage will never be reclaimed until the process terminates. Because the
number of keys is limited, you may run out of keys.

v If thread A stores a thread-specific data using the theKey variable before call 2, the data will be bound
to key K1. After call 2, the theKey variable contains K2; if thread A then tries to fetch its thread-specific
data, it would always get NULL.

Ensuring the uniqueness of key creation can be done in two ways:

v Using the one-time initialization facility. See “One-Time Initializations” on page 246.

v Creating the key before the threads that will use it. This is often possible, for example, when using a
pool of threads with thread-specific data to perform similar operations. This pool of threads is usually
created by one thread, the initial (or another ″driver″) thread.

It is the programmer’s responsibility to ensure the uniqueness of key creation. The threads library provides
no way to check if a key has been created more than once.

Destructor Routine

A destructor routine may be associated with each thread-specific data key. Whenever a thread is
terminated, if there is non-NULL, thread-specific data for this thread bound to any key, the destructor
routine associated with that key is called. This allows dynamically allocated thread-specific data to be
automatically freed when the thread is terminated. The destructor routine has one parameter, the value of
the thread-specific data.

For example, a thread-specific data key may be used for dynamically allocated buffers. A destructor
routine should be provided to ensure that the buffer is freed when the thread terminates, the free
subroutine can be used:
pthread_key_create(&key, free);

248 Writing and Debugging Programs

../../libs/basetrf1/malloc.htm#HDRA174921E

More complex destructors may be used. If a multi-threaded grep command, using a thread per file to
scan, has thread-specific data to store a structure containing a work buffer and the thread’s file descriptor,
the destructor routine may be:
typedef struct {

FILE *stream;
char *buffer;

} data_t;
...

void destructor(void *data)
{

fclose(((data_t *)data)->stream);
free(((data_t *)data)->buffer);
free(data);
*data = NULL;

}

Although some implementations of the threads library may repeat destructor calls, the destructor routine is
called only once in AIX. Care must be taken when porting code from other systems where a destructor
routine can be called several times.

Key Destruction

A thread-specific data key can be destroyed by calling the pthread_key_delete subroutine. This
subroutine frees the key only if no thread-specific data is bound to it. Data is said to be bound to the key
when at least one value is not NULL. The pthread_key_delete subroutine does not actually call the
destructor routine for each thread having data. To destroy a thread-specific data key, the programmer must
ensure that no thread-specific data is bound to the key.

Once a data key is destroyed, it can be reused by another call to the pthread_key_create subroutine.
Thus, the pthread_key_delete is useful especially when using many data keys. For example, in the
following code fragment the loop would never end:
/* bad example - do not write such code! */
pthread_key_t key;

while (pthread_key_create(&key, NULL))
pthread_key_delete(key);

Using Thread-Specific Data

Thread-specific data is accessed using the pthread_getspecific and pthread_setspecific subroutines.
The first one reads the value bound to the specified key and specific to the calling thread; the second one
sets the value.

Setting Successive Values
The value should be a pointer. The pointer may point to any kind of data. Thread-specific data is typically
used for dynamically allocated storage, as in the following code fragment:
private_data = malloc(...);
pthread_setspecific(key, private_data);

When setting a value, the previous value is lost. For example, in the following code fragment, the value of
the old pointer is lost, and the storage it pointed to may not be recoverable:
pthread_setspecific(key, old);
...
pthread_setspecific(key, new);

It is the programmer’s responsibility to retrieve the old thread-specific data value to reclaim storage before
setting the new value. For example, it is possible to implement a swap_specific routine in the following
manner:

Chapter 11. Threads Programming Guidelines 249

../../libs/basetrf1/pthread_key_delete.htm#HDRQDNAIEEMANU
../../libs/basetrf1/pthread_getspecific.htm
../../libs/basetrf1/pthread_getspecific.htm

int swap_specific(pthread_key_t key, void **old_pt, void *new)
{

*old_pt = pthread_getspecific(key);
if (*old_pt == NULL)

return -1;
else

return pthread_setspecific(key, new);
}

Such a routine does not exist in the threads library because it is not always necessary to retrieve the
previous value of thread-specific data. Such a case occurs, for example, when thread-specific data are
pointers to specific locations in a memory pool allocated by the initial thread.

Taking Care about Destructor Routines
When using dynamically allocated thread-specific data, the programmer must provide a destructor routine
when calling the pthread_key_create subroutine. The programmer must also ensure that, when freeing
the storage allocated for thread-specific data, the pointer is set to NULL. Otherwise, the destructor routine
may be called with an illegal parameter. For example:
pthread_key_create(&key, free);
...

...
private_data = malloc(...);
pthread_setspecific(key, private_data);
...

/* bad example! */
...
pthread_getspecific(key, &data);
free(data);
...

When the thread terminates, the destructor routine is called for its thread-specific data. Because the value
is a pointer to already freed memory, an error may occur. To correct this, the following code fragment
should be substituted:
/* better example! */
...
pthread_getspecific(key, &data);
free(data);
pthread_setspecific(key, NULL);
...

When the thread terminates, the destructor routine is not called, because there is no thread-specific data.

Using Non-Pointer Values
It is possible to store values that are not pointers, such as integers. It is not recommended to do this for at
least two reasons:

v Casting a pointer into a scalar type may not be portable

v The NULL pointer value is implementation-dependent; several systems assign the NULL pointer a
non-zero value.

If you are sure that your program will never be ported to another system, you may use integer values for
thread-specific data.

Advanced Attributes
This section describes special attributes of threads, mutexes, and condition variables. The implementation
of these attributes is optional; it depends on POSIX options. For more information, see “Threads Library
Options” on page 261.

250 Writing and Debugging Programs

Stack Attributes
A stack is allocated for each thread. Stack management is implementation-dependent; thus, the following
information applies only to AIX, although similar features may exist on other systems.

The stack is dynamically allocated when the thread is created. Using advanced thread attributes, it is
possible for the user to control the “Stack Size” and address of the stack. See “Stack Address” for more
information. The following information does not apply to the initial thread, which is created by the system.

Stack Size

The stacksize attribute is defined in AIX. It depends on the “Stack Size POSIX Option” on page 262; this
option may not be implemented on other systems.

The stacksize attribute specifies the minimum stack size that will be allocated for a thread. The
pthread_attr_getstacksize subroutine returns the value of the attribute, and the
pthread_attr_setstacksize subroutine sets the value.

The stacksize attribute is used as follows to calculate the size of the stack to allocate:

v If the value of stacksize is less than 96KB, a stack of 96KB will be allocated

In the AIX implementation of the threads library, a chunk of data, called user thread area, is allocated for
each created thread. The allocation is always a multiple of 4KB. The area is divided into:

v A 4KB red zone, which is both read and write protected for stack overflow detection

v A cancellation stack with a size equal to User stack size divided by 4 and multiple of 4KB

v A default stack.

Note: The user thread area described here has nothing to do with the uthread structure used in the
AIX kernel. The user thread area is accessed only in user mode and is exclusively handled by the
threads library, whereas the uthread structure only exists within the kernel environment.

Stack Address

The stackaddr attribute is not defined in AIX. It depends on the “Stack Address POSIX Option” on
page 261; this option is not implemented in AIX but may be implemented on other systems.

The stackaddr attribute specifies the address of the stack that will be allocated for a thread. The
pthread_attr_getstackaddr subroutine returns the value of the attribute, and the
pthread_attr_setstackaddr subroutine sets the value.

If no stack address is specified, the stack is allocated by the system at an arbitrary address. There is no
way to get this address. Usually you do not need to know the stack address. However, if you really need
to have the stack at a known location, you can use the stackaddr attribute. For example, if you need a
very large stack, you may set its address to an unused segment, guaranteeing that the allocation will
succeed.

If a stack address is specified when calling the pthread_create subroutine, the system will try to allocate
the stack at the given address. If it fails, the pthread_create subroutine returns EINVAL. The
pthread_attr_setstackaddr subroutine never returns an error, unless the specified stack address exceeds
the addressing space, because it does not actually allocate the stack.

Process Sharing

Most UNIX systems allow several processes to share a common data space, known as shared memory.
AIX also provides this facility; see “Understanding Memory Mapping” on page 537 for more information

Chapter 11. Threads Programming Guidelines 251

../../libs/basetrf1/pthread_attr_getstacksize.htm#HDRD1EVH274MANU
../../libs/basetrf1/pthread_attr_setstacksize.htm#HDRUDDVH114MANU
../../libs/basetrf1/pthread_attr_getstackaddr.htm#HDRA747AID8MANU
../../libs/basetrf1/pthread_attr_setstackaddr.htm#HDRK47AI361MANU
../../libs/basetrf1/pthread_create.htm#HDRZDCVH2F3MANU

about the AIX shared memory facility. The process sharing attributes for condition variables and mutexes
are meant to allow these objects to be allocated in shared memory to support synchronization among
threads belonging to different processes. However, there is no industry-standard interface for shared
memory management. For this reason, the process sharing POSIX option is not implemented in the AIX
threads library.

Making Complex Synchronization Objects
The subroutines provided in the threads library can be used as primitives to build more complex
synchronization objects. This article provides implementation examples of some traditional synchronization
objects:

v “Long Locks”, that can be held over long periods of time

v Inter-thread “Semaphores” on page 253

v “Write-Priority Read/Write Locks” on page 254

Long Locks

The mutexes provided by the threads library are low-contention objects and should not be held for a very
long time. Long locks are implemented with mutexes and condition variables, so that a long lock may be
held for long time without affecting the performance of the program.

The following implementation is very basic. The lock owner is not checked, any thread can unlock any
lock. Error handling and cancellation handling are not performed. As written hereafter, long locks should
not be used with cancelability enabled. The next example (“Semaphores” on page 253) shows how to
prevent data inconsistency using cleanup handlers. However, this example shows a typical use of
condition variables.

A long lock has the long_lock_t data type. It must be initialized by the long_lock_init routine. The
long_lock, long_trylock, and long_unlock subroutine performs similar operations to the
pthread_mutex_lock, pthread_mutex_trylock, and pthread_mutex_unlock subroutine.
typedef struct {

pthread_mutex_t lock;
pthread_cond_t cond;
int free;
int wanted;

} long_lock_t;

void long_lock_init(long_lock_t *ll)
{

pthread_mutex_init(&ll->lock, NULL);
pthread_cond_init(&ll->cond);
ll->free = 1;
ll->wanted = 0;

}

void long_lock_destroy(long_lock_t *ll)
{

pthread_mutex_destroy(&ll->lock);
pthread_cond_destroy(&ll->cond);

}

void long_lock(long_lock_t *ll)
{

pthread_mutex_lock(&ll->lock);
ll->wanted++;
while(!ll->free)

pthread_cond_wait(&ll->cond);
ll->wanted--;
ll->free = 0;
pthread_mutex_unlock(&ll->lock);

}

252 Writing and Debugging Programs

../../libs/basetrf1/pthread_mutex_lock.htm
../../libs/basetrf1/pthread_mutex_lock.htm
../../libs/basetrf1/pthread_mutex_lock.htm

int long_trylock(long_lock_t *ll)
{

int got_the_lock;

pthread_mutex_lock(&ll->lock);
got_the_lock = ll->free;
if (got_the_lock)

ll->free = 0;
pthread_mutex_unlock(&ll->lock);
return got_the_lock;

}

void long_unlock(long_lock_t *ll)
{

pthread_mutex_lock(&ll->lock);
ll->free = 1;
if (ll->wanted)

pthread_cond_signal(&ll->cond);
pthread_mutex_unlock(&ll->lock);

}

Semaphores

Traditional semaphores in UNIX systems are interprocess synchronization facilities. It is possible to
implement interthread semaphores for specific usage.

The following implementation is very basic. Error handling is not performed, but cancellations are properly
handled with cleanup handlers whenever required.

A semaphore has the sema_t data type. It must be initialized by the sema_init routine and destroyed with
the sema_destroy routine. The P and V operations are respectively performed by the sema_p and
sema_v routines.
typedef struct {

pthread_mutex_t lock;
pthread_cond_t cond;
int count;

} sema_t;

void sema_init(sema_t *sem)
{

pthread_mutex_init(&sem->lock, NULL);
pthread_cond_init(&sem->cond, NULL);
sem->count = 1;

}

void sema_destroy(sema_t *sem)
{

pthread_mutex_destroy(&sem->lock);
pthread_cond_destroy(&sem->cond);

}

void p_operation_cleanup(void *arg)
{

sema_t *sem;

sem = (sema_t *)arg;
pthread_mutex_unlock(&sem->lock);

}

void sema_p(sema_t *sem)
{

pthread_mutex_lock(&sem->lock);
pthread_cleanup_push(p_operation_cleanup, sem);
while (sem->count <= 0)

pthread_cond_wait(&sem->cond, &sem->lock);
sem->count--;
/*

Chapter 11. Threads Programming Guidelines 253

* Note that the pthread_cleanup_pop subroutine will
* execute the p_operation_cleanup routine
*/
pthread_cleanup_pop(1);

}

void sema_v(sema_t *sem)
{

pthread_mutex_lock(&sem->lock);
sem->count++;
if (sem->count <= 0)

pthread_cond_signal(&sem->cond);
pthread_mutex_unlock(&sem->lock);

}

The counter specifies the number of users that are allowed to take the semaphore. It is never strictly
negative; thus, it does not specify the number of waiting users, as for traditional semaphores. This
implementation provides a typical solution to the multiple wakeup problem on the pthread_cond_wait
subroutine. Note that the P operation is cancelable, because the pthread_cond_wait subroutine provides
a cancellation point.

Write-Priority Read/Write Locks

A write-priority read/write lock provides multiple threads simultaneous read-only access to a protected
resource, and a single thread write access to the resource while excluding reads. When a writer releases
a lock, other waiting writers will get the lock before any waiting reader. Write-priority read/write locks are
usually used to protect resources that are more often read than written.

The following implementation is very basic. The lock owner is not checked, any thread can unlock any
lock. Routines similar to the pthread_mutex_trylock subroutine are missing and error handling is not
performed, but cancellations are properly handled with cleanup handlers whenever required.

A write-priority read/write lock has the rwlock_t data type. It must be initialized by the rwlock_init routine.
The rwlock_lock_read routine locks the lock for a reader (multiple readers are allowed), the
rwlock_unlock_read routine unlocks it. The rwlock_lock_write routine locks the lock for a writer, the
rwlock_unlock_write routine unlocks it. The proper unlocking routine (for the reader or for the writer)
must be called.
typedef struct {

pthread_mutex_t lock;
pthread_cond_t rcond;
pthread_cond_t wcond;
int lock_count; /* < 0 .. held by writer */

/* > 0 .. held by lock_count readers */
/* = 0 .. held by nobody */

int waiting_writers; /* count of wating writers */
} rwlock_t;

void rwlock_init(rwlock_t *rwl)
{

pthread_mutex_init(&rwl->lock, NULL);
pthread_cond_init(&rwl->wcond, NULL);
pthread_cond_init(&rwl->rcond, NULL);
rwl->lock_count = 0;
rwl->waiting_writers = 0;

}

void waiting_reader_cleanup(void *arg)
{

rwlock_t *rwl;

rwl = (rwlock_t *)arg;
pthread_mutex_unlock(&rwl->lock);

}

254 Writing and Debugging Programs

../../libs/basetrf1/pthread_cond_wait.htm#HDRTTEVH2B8MANU
../../libs/basetrf1/pthread_mutex_lock.htm

void rwlock_lock_read(rwlock_t *rwl)
{

pthread_mutex_lock(&rwl->lock);
pthread_cleanup_push(waiting_reader_cleanup, rwl);
while ((rwl->lock_count < 0) && (rwl->waiting_writers))

pthread_cond_wait(&rwl->rcond, &rwl->lock);
rwl->lock_count++;
/*
* Note that the pthread_cleanup_pop subroutine will
* execute the waiting_reader_cleanup routine
*/
pthread_cleanup_pop(1);

}

void rwlock_unlock_read(rwlock_t *rwl)
{

pthread_mutex_lock(&rwl->lock);
rwl->lock_count--;
if (!rwl->lock_count)

pthread_cond_signal(&rwl->wcond);
pthread_mutex_unlock(&rwl->lock);

}

void waiting_writer_cleanup(void *arg)
{

rwlock_t *rwl;

rwl = (rwlock_t *)arg;
rwl->waiting_writers--;
if ((!rwl->waiting_writers) && (rwl->lock_count >= 0))

/*
* This only happens if we have been canceled
*/
pthread_cond_broadcast(&rwl->wcond);
pthread_mutex_unlock(&rwl->lock);

}

void rwlock_lock_write(rwlock_t *rwl)
{

pthread_mutex_lock(&rwl->lock);
rwl->waiting_writers++;
pthread_cleanup_push(waiting_writer_cleanup, rwl);
while (rwl->lock_count)

pthread_cond_wait(&rwl->wcond, &rwl->lock);
rwl->lock_count = -1;
/*
* Note that the pthread_cleanup_pop subroutine will
* execute the waiting_writer_cleanup routine
*/
pthread_cleanup_pop(1);

}

void rwlock_unlock_write(rwlock_t *rwl)
{

pthread_mutex_lock(&rwl->lock);
l->lock_count = 0;
if (!rwl->wating_writers)

pthread_cond_broadcast(&rwl->rcond);
else

pthread_cond_signal(&rwl->wcond);
pthread_mutex_unlock(&rwl->lock);

}

Readers are just counted. When the count reaches zero, a waiting writer may take the lock. Only one
writer can hold the lock. When the lock is released by a writer, another writer is awakened, if there is one.
Otherwise, all waiting readers are awakened.

Chapter 11. Threads Programming Guidelines 255

Note that the locking routines are cancelable, because they call the pthread_cond_wait subroutine. For
this reason, cleanup handlers are registered before calling the subroutine.

List of Threads Advanced-Feature Subroutines

pthread_attr_getstackaddr Returns the value of the stackaddr attribute of a thread
attributes object.

pthread_attr_getstacksize Returns the value of the stacksize attribute of a thread
attributes object.

pthread_attr_setstackaddr Sets the value of the stackaddr attribute of a thread attributes
object.

pthread_attr_setstacksize Sets the value of the stacksize attribute of a thread attributes
object.

pthread_condattr_getpshared Returns the value of the process-shared attribute of a
condition attributes object.

pthread_condattr_setpshared Sets the value of the process-shared attribute of a condition
attributes object.

pthread_getspecific Returns the thread-specific data associated with the specified
key.

pthread_key_create Creates a thread-specific data key.
pthread_key_delete Deletes a thread-specific data key.
pthread_mutexattr_getpshared Returns the value of the process-shared attribute of a mutex

attributes object.
pthread_mutexattr_setpshared Sets the value of the process-shared attribute of a mutex

attributes object.
pthread_once Executes a routine exactly once in a process.
PTHREAD_ONCE_INIT Initializes a once synchronization control structure.
pthread_setspecific Sets the thread-specific data associated with the specified

key.

Threads-Processes Interactions Overview
Threads and processes interact in several ways, especially when performing the following kind of tasks:

v “Signal Management”

v “Process Duplication and Termination” on page 259

v “Scheduling” on page 260

v “List of Threads-Processes Interactions Subroutines” on page 261.

Signal Management
Signal management in multi-threaded processes resulted from a compromise among many and sometimes
conflicting goals. The goal of compatibility is assured: signals in multi-threaded processes are an extension
of signals in traditional single-threaded programs. Programs handling signals and written for
single-threaded systems will behave as expected in AIX Version 4.

Signal management in multi-threaded processes is shared by the process and thread levels, and consists
of:

v Per-process signal handlers

v Per-thread signal masks

v Single delivery of each signal

The threads library also provides a new subroutine and introduces new programming practices for waiting
for asynchronously generated signals.

256 Writing and Debugging Programs

../../libs/basetrf1/pthread_cond_wait.htm#HDRTTEVH2B8MANU
../../libs/basetrf1/pthread_attr_getstackaddr.htm#HDRA747AID8MANU
../../libs/basetrf1/pthread_attr_getstacksize.htm#HDRD1EVH274MANU
../../libs/basetrf1/pthread_attr_setstackaddr.htm#HDRK47AI361MANU
../../libs/basetrf1/pthread_attr_setstacksize.htm#HDRUDDVH114MANU
../../libs/basetrf1/pthread_condattr_getpshared.htm#HDRVTHVH32DMANU
../../libs/basetrf1/pthread_condattr_setpshared.htm#HDRV4HVH300MANU
../../libs/basetrf1/pthread_getspecific.htm
../../libs/basetrf1/pthread_key_create.htm#HDRA7JIVH141MANU
../../libs/basetrf1/pthread_key_delete.htm#HDRQDNAIEEMANU
../../libs/basetrf1/pthread_mutexattr_getpshared_setpshared.htm
../../libs/basetrf1/pthread_mutexattr_getpshared_setpshared.htm
../../libs/basetrf1/pthread_once.htm#HDRT3IVH291MANU
../../libs/basetrf1/PTHREAD_ONCE_INIT.htm#HDREFGBI3AAMANU
../../libs/basetrf1/pthread_getspecific.htm

Signal Handlers and Signal Masks

Signal handlers are maintained at process level. It is strongly recommended to use only the sigaction
subroutine to get and set signal handlers. Other subroutines may not be supported in the future.

Because the list of signal handlers is maintained at process level, any thread within the process may
change it. If two threads set a signal handler on the same signal, the last thread that called the sigaction
subroutine will override the setting of the previous thread call; and in most cases, it will be impossible to
predict the order in which threads are scheduled.

Signal masks are maintained at thread level. Each thread can have its own set of signals that will be
blocked from delivery. The sigthreadmask subroutine must be used to get and set the calling thread’s
signal mask. The sigprocmask subroutine must not be used in multi-threaded programs; otherwise,
unexpected behavior may result.

The sigthreadmask subroutine is very similar to sigprocmask. The parameters and usage of both
subroutines are exactly the same. When porting existing code to support the threads library, you may
simply replace sigprocmask with sigthreadmask.

Signal Generation

Signals generated by some action attributable to a particular thread, such as a hardware fault, are sent to
the thread that caused the signal to be generated. Signals generated in association with a process ID, a
process group ID, or an asynchronous event (such as terminal activity) are sent to the process.

The pthread_kill subroutine sends a signal to a thread. Because thread IDs identify threads within a
process, this subroutine can only send signals to threads within the same process.

The kill subroutine (and thus the kill command) sends a signal to a process. A thread can send a signal
Signal to its process by executing the following call:
kill(getpid(), Signal);

The raise subroutine cannot be used to send a signal to the calling thread’s process. The raise subroutine
sends a signal to the calling thread, as in the following call:
pthread_kill(pthread_self(), Signal);

This ensures that the signal is sent to the caller of the raise subroutine. Thus, library routines written for
single-threaded programs may easily be ported to a multi-threaded system, because the raise subroutine
is usually intended to send the signal to the caller.

The alarm subroutine requests that a signal be sent later to the process, and alarm states are maintained
at process level. Thus, the last thread that called the alarm subroutine overrides the settings of other
threads in the process. In a multi-threaded program, the SIGALRM signal is not necessarily delivered to
the thread that called the alarm subroutine. The calling thread may even be terminated; and therefore, it
cannot receive the signal.

Handling Signals

Signal handlers are called within the thread to which the signal is delivered. Signal handlers may call the
pthread_self subroutine to get their thread ID. Some limitations to signal handlers are introduced by the
threads library:

v Signal handlers may call the longjmp or siglongjmp subroutine only if the corresponding call to the
setjmp or sigsetjmp subroutine was performed in the same thread.

Chapter 11. Threads Programming Guidelines 257

../../libs/basetrf2/sigaction.htm#HDRA5F01CB
../../libs/basetrf2/sigthreadmask.htm#HDRXOK8J4CMANU
../../libs/basetrf2/sigprocmask.htm#HDRA17192D8D
../../libs/basetrf1/pthread_kill.htm#HDRSFEVH61MANU
../../libs/basetrf1/kill.htm#HDRA199944D
../../cmds/aixcmds3/kill.htm#HDRA1579872
../../libs/basetrf2/raise.htm#HDRA1729356D
../../libs/basetrf1/getinterval.htm#HDRA2789BCE
../../libs/basetrf1/pthread_self.htm#HDRR3IVH17CMANU
../../libs/basetrf2/setjmp.htm#HDROF4B0SHAD
../../libs/basetrf2/sigsetjmp.htm#HDRA6F08A
../../libs/basetrf2/setjmp.htm#HDROF4B0SHAD
../../libs/basetrf2/sigsetjmp.htm#HDRA6F08A

Usually, a program that wants to wait for a signal installs a signal handler that calls the longjmp
subroutine to continue execution at the point where the corresponding setjmp subroutine was called.
This cannot be done in a multi-threaded program, because the signal may be delivered to a thread
other than the one that called the setjmp subroutine, thus causing the handler to be executed by the
wrong thread.

v Signal handlers must not call the pthread_cond_signal or pthread_cond_broadcast subroutine to
signal a condition.

To allow a thread to wait for asynchronously generated signals, the threads library provides the sigwait
subroutine. The sigwait subroutine blocks the calling thread until one of the awaited signals is sent to the
process or to the thread. There must not be a signal handler installed on a signal awaited using the
sigwait subroutine.

Typically, programs may create a dedicated thread to wait for asynchronously generated signals. Such a
thread just loops on a sigwait subroutine call and handles the signals. The following code fragment gives
an example of such a signal waiter thread:
sigset_t set;
int sig;

sigemptyset(&set);
sigaddset(&set, SIGINT);
sigaddset(&set, SIGQUIT);
sigaddset(&set, SIGTERM);
sigthreadmask(SIG_BLOCK, &set, NULL);

while (1) {
sigwait(&set, &sig);
switch (sig) {

case SIGINT:
/* handle interrupts */
break;

case SIGQUIT:
/* handle quit */
break;

case SIGTERM:
/* handle termination */
break;

default:
/* unexpected signal */
pthread_exit((void *)-1);

}
}

If more than one thread called the sigwait subroutine, exactly one call returns when a matching signal is
sent. There is no way to predict which thread will be awakened. Note that the sigwait subroutine provides
a cancellation point.

Because a dedicated thread is not a real signal handler, it may signal a condition (“Using Condition
Variables” on page 231) to any other thread . It is possible to implement a sigwait_multiple routine that
would awaken all threads waiting for a specific signal. Each caller of the sigwait_multiple routine would
register a set of signals. The caller then waits on a condition variable. A single thread calls the sigwait
subroutine on the union of all registered signals. When the call to the sigwait subroutine returns, the
appropriate state is set and condition variables are broadcasted. New callers to the sigwait_multiple
subroutine would cause the pending sigwait subroutine call to be canceled and reissued to update the set
of signals being waited for.

Signal Delivery

A signal is delivered to a thread, unless its action is set to ignore. The following rules govern signal
delivery in a multi-threaded process:

258 Writing and Debugging Programs

../../libs/basetrf1/pthread_cond_signal.htm#HDRA3TEVH259MANU
../../libs/basetrf1/pthread_cond_signal.htm#HDRA3TEVH259MANU
../../libs/basetrf2/sigwait.htm#HDRVURRG3A6S06

v A signal whose action is set to terminate, stop, or continue the target thread or process respectively
terminates, stops, or continues the entire process (and thus all of its threads). This means that
single-threaded programs may be rewritten as multi-threaded programs without changing their externally
visible signal behavior.

Consider for example a multi-threaded user command, such as the grep command. A user may start
the command in his favorite shell and then decide to stop it by sending a signal with the kill command.
It is obvious that the signal should stop the entire process running the grep command.

v Signals generated for a specific thread, using the pthread_kill or the raise subroutines, are delivered to
that thread. If the thread has blocked the signal from delivery, the signal is set pending on the thread
until the signal is unblocked from delivery. If the thread is terminated before the signal delivery, the
signal will be ignored.

v Signals generated for a process, using the kill subroutine for example, are delivered to exactly one
thread in the process. If one or more threads called the sigwait subroutine, the signal is delivered to
exactly one of these threads. Otherwise, the signal is delivered to exactly one thread that did not block
the signal from delivery. If no thread matches these conditions, the signal is set pending on the process
until a thread calls the sigwait subroutine specifying this signal or a thread unblocks the signal from
delivery.

If the action associated with a pending signal (on a thread or on a process) is set to ignore, the signal is
ignored.

Process Duplication and Termination
Because all processes have at least one thread, creating (that is, duplicating) and terminating a process
implies the creation and the termination of threads. This article describes the interactions between threads
and processes when duplicating and terminating a process.

Forking

There are two reasons why AIX programmers call the fork subroutine:

1. To create a new flow of control within the same program. AIX creates a new process.

2. To create a new process running a different program. In this case, the call to the fork subroutine is
soon followed by a call to one of the exec subroutines.

In a multi-threaded program, the first use of the fork subroutine, creating new flows of control, is provided
by the pthread_create subroutine. The fork subroutine should thus be used only to run new programs.

The fork subroutine duplicates the parent process, but duplicates only the calling thread; the child process
is a single-threaded process. The calling thread of the parent process becomes the initial thread of the
child process; it may not be the initial thread of the parent process. Thus, if the initial thread of the child
process returns from its entry-point routine, the child process terminates.

When duplicating the parent process, the fork subroutine also duplicates all the synchronization variables,
including their state. Thus, for example, mutexes may be held by threads that no longer exist in the child
process and any associated resource may be inconsistent.

It is strongly recommended to use the fork subroutine only to run new programs, and to call one of the
exec subroutines as soon as possible after the call to the fork subroutine in the child process.

Fork Handlers

Unfortunately, the rule explained above does not address the needs of multi-threaded libraries. Application
programs may not be aware that a multi-threaded library is in use and will feel free to call any number of

Chapter 11. Threads Programming Guidelines 259

../../libs/basetrf1/fork.htm
../../libs/basetrf1/exec.htm
../../libs/basetrf1/pthread_create.htm#HDRZDCVH2F3MANU

library routines between the fork and the exec subroutines, just as they always have. Indeed, they may be
old single-threaded programs and cannot, therefore, be expected to obey new restrictions imposed by the
threads library.

On the other hand, multi-threaded libraries need a way to protect their internal state during a fork in case a
routine is called later in the child process. The problem arises especially in multi-threaded input/output
libraries, which are almost sure to be invoked between the fork and the exec subroutines to affect
input/output redirection.

The pthread_atfork subroutine provides a way for multi-threaded libraries to protect themselves from
innocent application programs which call the fork subroutine. It also provides multi-threaded application
programs with a standard mechanism for protecting themselves from calls to the fork subroutine in a
library routine or the application itself.

The pthread_atfork subroutine registers fork handlers to be called before and after the call to the fork
subroutine. The fork handlers are executed in the thread that called the fork subroutine. There are three
fork handlers:

Prepare The prepare fork handler is called just before the processing of the fork subroutine begins.
Parent The parent fork handler is called just after the processing of the fork subroutine is completed in the

parent process.
Child The child fork handler is called just after the processing of the fork subroutine is completed in the child

process.

The prepare fork handlers are called in last-in first-out (LIFO) order, whereas the parent and child fork
handlers are called in first-in first-out (FIFO) order. This allows programs to preserve any desired locking
order.

Process Termination

When a process terminates, by calling the _exit subroutine either explicitly or implicitly, all threads within
the process are terminated. Neither the cleanup handlers nor the thread-specific data destructors are
called.

The reason for this behavior is that there is no state to leave clean and no thread-specific storage to
reclaim, because the whole process terminates, including all the threads, and all the process storage is
reclaimed, including all thread-specific storage.

Scheduling
In previous versions of AIX, up to AIX 3.2, the process was the schedulable entity. Several commands and
subroutines influenced on-process scheduling. The introduction of threads changed the semantics of these
commands and subroutines.

Process-Level Scheduling

In AIX Version 4, the scheduler allocates processor time to threads based on each thread’s priority and
scheduling policy. Previously, AIX scheduled processes and did not support threads: process priority
depended on nice values, which were managed with the nice and renice commands and the getpriority,
setpriority, and nice subroutines. While these interfaces still exist, process nice values are only used in
the default scheduling policy, denoted SCHED_OTHER, which uses the nice value and recent CPU usage
to calculate priority. The other scheduling policies are fixed priority. The getpri and setpri subroutines
previously managed process priority. They now manage thread priority and respectively return the priority
of a thread in the process, or set the priority of all threads in a process.

260 Writing and Debugging Programs

../../libs/basetrf1/pthread_atfork.htm#HDRA1ALCI233MANU
../../libs/basetrf1/exit.htm#HDRA087913E7
../../cmds/aixcmds4/nice.htm#HDRUZE80FISH
../../cmds/aixcmds4/renice.htm#HDRMVQ1220CRAW
../../libs/basetrf1/getpriority.htm#HDRA2199106C
../../libs/basetrf1/getpriority.htm#HDRA2199106C
../../libs/basetrf1/getpriority.htm#HDRA2199106C
../../libs/basetrf1/getpri.htm#HDRA29798DD
../../libs/basetrf2/setpri.htm#HDRA29798C6

The yield subroutine previously caused a process to relinquish the processor, allowing a higher priority
process to be scheduled immediately, before the end of its time slice. In a multi-threaded process, only the
calling thread gives up its time slice. Threads can use the pthread_yield service to yield the processor. If
the contention scope is global, the behavior is as with yield, and any thread can be scheduled; if the
scope is local, another local thread will be scheduled.

Timer and Sleep Subroutines
Timer routines now execute in the context of the calling thread, instead of the calling process. Thus, if a
timer expires, the watchdog timer function is called in the thread’s context. When a process or thread goes
to sleep, it relinquishes the processor. In a multi-threaded process, only the calling thread is put to sleep.

List of Threads-Processes Interactions Subroutines

alarm Causes a signal to be sent to the calling process after a
specified timeout.

kill or killpg Sends a signal to a process or a group of processes.
pthread_atfork Registers fork cleanup handlers.
pthread_kill Sends a signal to the specified thread.
raise Sends a signal to the executing program.
sigaction, sigvec, or signal Specifies the action to take upon delivery of a signal.
sigsuspend or sigpause Atomically changes the set of blocked signals and waits for a

signal.
sigthreadmask Sets the signal mask of a thread.
sigwait Blocks the calling thread until a specified signal is received.

Threads Library Options

The POSIX standard for the threads library specifies the implementation of some parts as optional. All
subroutines defined by the threads library API are always available. Depending on the available options,
some subroutines may not be implemented. Unimplemented subroutines can be called by applications, but
they always return the ENOSYS error code.

List of Options
The following options are defined:

v “Stack Address POSIX Option”

v “Stack Size POSIX Option” on page 262

v “Priority Scheduling POSIX Option” on page 262

v Priority inheritance

v Priority protection

v Process sharing.

The priority inheritance and priority protection options require the implementation of the priority scheduling
option.

Stack Address POSIX Option

The stack address option enables the control of the stackaddr attribute of a thread attributes object. This
attribute specifies the location of storage to be used for the created thread’s stack. See ″“Stack Address”
on page 251 for more information about the stackaddr attribute.

The following attribute and subroutines are available when the option is implemented:

v The stackaddr attribute of the thread attributes object

Chapter 11. Threads Programming Guidelines 261

../../libs/basetrf2/yield.htm#HDRA357C11
../../libs/basetrf1/pthread_yield.htm#HDRFZXVH4DMANU
../../libs/basetrf1/getinterval.htm#HDRA2789BCE
../../libs/basetrf1/kill.htm#HDRA199944D
../../libs/basetrf1/kill.htm#HDRA199944D
../../libs/basetrf1/pthread_atfork.htm#HDRA1ALCI233MANU
../../libs/basetrf1/pthread_kill.htm#HDRSFEVH61MANU
../../libs/basetrf2/raise.htm#HDRA1729356D
../../libs/basetrf2/sigaction.htm#HDRA5F01CB
../../libs/basetrf2/sigaction.htm#HDRA5F01CB
../../libs/basetrf2/sigaction.htm#HDRA5F01CB
../../libs/basetrf2/sigsuspend.htm#HDRA17292F6A
../../libs/basetrf2/sigsuspend.htm#HDRA17292F6A
../../libs/basetrf2/sigthreadmask.htm#HDRXOK8J4CMANU
../../libs/basetrf2/sigwait.htm#HDRVURRG3A6S06

v The pthread_attr_getstackaddr and pthread_attr_setstackaddr subroutines.

Stack Size POSIX Option

The stack size option enables the control of the stacksize attribute of a thread attributes object. This
attribute specifies the minimum stack size to be used for the created thread. See ″“Stack Size” on
page 251 for more information about the stacksize attribute.

The following attribute and subroutines are available when the option is implemented:

v The stacksize attribute of the thread attributes object

v The pthread_attr_getstacksize and pthread_attr_setstacksize subroutines.

Priority Scheduling POSIX Option

The priority scheduling option enables the control of execution scheduling at thread level. When this option
is disabled, all threads within a process share the scheduling properties of the process. When this option
is enabled, each thread has its own scheduling properties. For local contention scope threads, the
scheduling properties are handled at process level by a library scheduler, while for global contention scope
threads, the scheduling properties are handled at system level by the kernel scheduler. See “Threads
Scheduling” on page 240 to get more information about the scheduling properties of a thread.

The attributes and subroutines shown below are available when the option is implemented:

v The inheritsched attribute of the thread attributes object

v The schedparam attribute of the thread attributes object and the thread

v The schedpolicy attribute of the thread attributes objects and the thread

v The contention-scope attribute of the thread attributes objects and the thread

v The pthread_attr_getschedparam and pthread_attr_setschedparam subroutines

v The pthread_getschedparam subroutine.

Checking the Availability of an Option
Options can be checked at compile time (“Compile Time Checking”) or at run time (“Run Time Checking”
on page 263). Portable programs should check the availability of options before using them, so that they
do not need to be rewritten when ported to other systems.

Compile Time Checking
Symbolic constants (symbols) can be used to get the availability of options on the system where the
program is compiled. The symbols are defined in the pthread.h header file by the #define pre-processor
command. For unimplemented options, the corresponding symbol is undefined by the #undef
pre-processor command. Checking option symbols should be done in each program that may be ported to
another system.

The following list indicates the symbol associated with each option:

Stack address _POSIX_THREAD_ATTR_STACKADDR
Stack size _POSIX_THREAD_ATTR_STACKSIZE
Priority scheduling _POSIX_THREAD_PRIORITY_SCHEDULING
Priority inheritance _POSIX_THREAD_PRIO_INHERIT
Priority protection _POSIX_THREAD_PRIO_PROTECT
Process sharing _POSIX_THREAD_PROCESS_SHARED

The simplest action to take when an option is not available is to stop the compilation, as in the following
example:

262 Writing and Debugging Programs

../../libs/basetrf1/pthread_attr_getstackaddr.htm#HDRA747AID8MANU
../../libs/basetrf1/pthread_attr_setstackaddr.htm#HDRK47AI361MANU
../../libs/basetrf1/pthread_attr_getstacksize.htm#HDRD1EVH274MANU
../../libs/basetrf1/pthread_attr_setstacksize.htm#HDRUDDVH114MANU
../../libs/basetrf1/pthread_attr_getschedparam.htm#HDRA2ADVH23AMANU
../../libs/basetrf1/pthread_attr_setschedparam.htm#HDRCQCVH32AMANU
../../libs/basetrf1/pthread_getschedparam.htm#HDRRRCVH217MANU

#ifndef _POSIX_THREAD_ATTR_STACKSIZE
#error "The stack size POSIX option is required"
#endif

The pthread.h header file also defines the following symbols that can be used by other header files or by
programs:

_POSIX_REENTRANT_FUNCTIONS Denotes that reentrant functions are required.
_POSIX_THREADS Denotes the implementation of the threads library.

Run Time Checking

The sysconf subroutine can be used to get the availability of options on the system where the program is
executed. This is useful when porting programs between systems that have a binary compatibility, such as
two versions of AIX.

The following list indicates the symbolic constant associated with each option and that must be used for
the Name parameter of the sysconf subroutine. The symbolic constants are defined in the unistd.h
header file.

Stack address _SC_THREAD_ATTR_STACKADDR
Stack size _SC_THREAD_ATTR_STACKSIZE
Priority scheduling _SC_THREAD_PRIORITY_SCHEDULING
Priority inheritance _SC_THREAD_PRIO_INHERIT
Priority protection _SC_THREAD_PRIO_PROTECT
Process sharing _SC_THREAD_PROCESS_SHARED

Two general options may also be checked using the sysconf subroutine with the following Name
parameter values:

_SC_REENTRANT_FUNCTIONS Denotes that reentrant functions are required.
_SC_THREADS Denotes the implementation of the threads library.

Threads Library Quick Reference
This section provides a summary of the threads library:

v “Supported Interfaces”

v “Threads Data Types” on page 268

v “Limits and Default Values” on page 269

Supported Interfaces

On AIX systems, _POSIX_THREADS, _POSIX_THREAD_ATTR_STACKADDR,
_POSIX_THREAD_ATTR_STACKSIZE and _POSIX_THREAD_PROCESS_SHARED are always defined.
Therefore, the following threads interfaces are supported:

POSIX Interfaces
The following is a list of POSIX interfaces:

v pthread_atfork

v pthread_attr_destroy

v pthread_attr_getdetachstate

v pthread_attr_getschedparam

v pthread_attr_getstacksize

Chapter 11. Threads Programming Guidelines 263

../../libs/basetrf2/sysconf.htm#HDRA2639C5

v pthread_attr_getstackaddr

v pthread_attr_setdetachstate

v pthread_attr_init

v pthread_attr_setschedparam

v pthread_attr_setstackaddr

v pthread_attr_setstacksize

v pthread_cancel

v pthread_cleanup_pop

v pthread_cleanup_push

v pthread_detach

v pthread_equal

v pthread_exit

v pthread_getspecific

v pthread_join

v pthread_key_create

v pthread_key_delete

v pthread_kill

v pthread_mutex_destroy

v pthread_mutex_init

v pthread_mutex_lock

v pthread_mutex_trylock

v pthread_mutex_unlock

v pthread_mutexattr_destroy

v pthread_mutexattr_getpshared

v pthread_mutexattr_init

v pthread_mutexattr_setpshared

v pthread_once

v pthread_self

v pthread_setcancelstate

v pthread_setcanceltype

v pthread_setspecific

v pthread_sigmask

v pthread_testcancel

v sigwait

v pthread_cond_broadcast

v pthread_cond_destroy

v pthread_cond_init

v pthread_cond_signal

v pthread_cond_timedwait

v pthread_cond_wait

v pthread_condattr_destroy

v pthread_condattr_getpshared

v pthread_condattr_init

v pthread_condattr_setpshared

v pthread_create

264 Writing and Debugging Programs

Single UNIX Specification Interfaces
The following is a list of single UNIX specification interfaces:

v pthread_attr_getguardsize

v pthread_attr_setguardsize

v pthread_getconcurrency

v pthread_mutexattr_gettype

v pthread_mutexattr_settype

v pthread_rwlock_destroy

v pthread_rwlock_init

v pthread_rwlock_rdlock

v pthread_rwlock_tryrdlock

v pthread_rwlock_trywrlock

v pthread_rwlock_unlock

v pthread_rwlock_wrlock

v pthread_rwlockattr_destroy

v pthread_rwlockattr_getpshared

v pthread_rwlockattr_init

v pthread_rwlockattr_setpshared

v pthread_setconcurrency

On AIX systems, _POSIX_THREAD_SAFE_FUNCTIONS is always defined. Therefore, the following
interfaces are always supported:

v asctime_r

v ctime_r

v flockfile

v ftrylockfile

v funlockfile

v getc_unlocked

v getchar_unlocked

v getgrgid_r

v getgrnam_r

v getpwnam_r

v getpwuid_r

v gmtime_r

v localtime_r

v putc_unlocked

v putchar_unlocked

v rand_r

v readdir_r

v strtok_r

AIX does not support the following interfaces; the symbols are provided but they always return an error
and set the errno to ENOSYS:

v pthread_attr_getinheritsched

v pthread_attr_getschedpolicy

v pthread_attr_getscope

Chapter 11. Threads Programming Guidelines 265

v pthread_attr_setinheritsched

v pthread_attr_setschedpolicy

v pthread_attr_setscope

v pthread_getschedparam

v pthread_mutex_getprioceiling

v pthread_mutex_setprioceiling

v pthread_mutexattr_getprioceiling

v pthread_mutexattr_getprotocol

v pthread_mutexattr_setprioceiling

v pthread_mutexattr_setprotocol

v pthread_setschedparam

Thread-safety
The following AIX interfaces are not thread-safe.

libc.a Library (Standard Functions):

v advance

v asctime

v brk

v catgets

v chroot

v compile

v ctime

v cuserid

v dbm_clearerr

v dbm_close

v dbm_delete

v dbm_error

v dbm_fetch

v dbm_firstkey

v dbm_nextkey

v dbm_open

v dbm_store

v dirname

v drand48

v ecvt

v encrypt

v endgrent

v endpwent

v endutxent

v fcvt

v gamma

v gcvt

v getc_unlocked

v getchar_unlocked

v getdate

266 Writing and Debugging Programs

v getdtablesize

v getgrent

v getgrgid

v getgrnam

v getlogin

v getopt

v getpagesize

v getpass

v getpwent

v getpwnam

v getpwuid

v getutxent

v getutxid

v getutxline

v getw

v getw

v gmtime

v l64a

v lgamma

v localtime

v lrand48

v mrand48

v nl_langinfo

v ptsname

v putc_unlocked

v putchar_unlocked

v putenv

v pututxline

v putw

v rand

v random

v readdir

v re_comp

v re_exec

v regcmp

v regex

v sbrk

v setgrent

v setkey

v setpwent

v setutxent

v sigstack

v srand48

v srandom

v step

Chapter 11. Threads Programming Guidelines 267

v strerror

v strtok

v ttyname

v ttyslot

v wait3

libc.a Library (AIX Specific Functions):

v endfsent

v endttyent

v endutent

v getfsent

v getfsfile

v getfsspec

v getfstype

v getttyent

v getttynam

v getutent

v getutid

v getutline

v pututline

v setfsent

v setttyent

v setutent

v utmpname

libbsd.a library:

v timezone

libm.a and libmsaa.a libraries:

v gamma

v lgamma

None of the functions in the following libraries are thread safe:

v libPW.a

v libblas.a

v libcur.a

v libcurses.a

v libplot.a

v libprint.a

The interfaces ctermid and tmpnam are not thread-safe if passed a NULL argument.

Note: Certain subroutines may be implemented as macros on some systems. You should avoid using
the address of threads subroutines.

Threads Data Types

The following data types are defined for the threads library in the pthread.h header file.

268 Writing and Debugging Programs

pthread_t
Identifies a thread.

pthread_attr_t
Identifies a thread attributes object.

pthread_cond_t
Identifies a condition variable.

pthread_condattr_t
Identifies a condition attributes object.

pthread_key_t
Identifies a thread-specific data key.

pthread_mutex_t
Identifies a mutex.

pthread_mutexattr_t
Identifies a mutex attributes object.

pthread_once_t
Identifies a one time initialization object.

The definition of these data types can vary from one system to another.

Limits and Default Values

The threads library has some implementation-dependent limits and default values. These limits and default
values can be retrieved by symbolic constants to enhance the portability of programs.

Maximum Number of Threads per Process
The maximum number of threads per process is 512. The maximum number of threads can be retrieved at
compilation time using the PTHREAD_THREADS_MAX symbolic constant defined in the pthread.h
header file.

Minimum Stack Size
The minimum stack size for a thread is 96KB. It is also the default stack size. This number can be
retrieved at compilation time using the PTHREAD_STACK_MIN symbolic constant defined in the
pthread.h header file.

Note that the maximum stack size is 256MB, the size of a segment. This limit is indicated by the
PTHREAD_STACK_MAX symbolic constant in the pthread.h header file.

Maximum Number of Thread-Specific Data Keys
The number of thread-specific data keys is limited to 508. This number can be retrieved at compilation
time using the PTHREAD_KEYS_MAX symbolic constant defined in the pthread.h header file.

Default Attribute Values

The default values for the thread attributes object are defined in the pthread.h header file by the following
symbolic constants:

DEFAULT_DETACHSTATE
PTHREAD_CREATE_DETACHED. Specifies the default value for the detachstate attribute.

DEFAULT_INHERIT
PTHREAD_INHERIT_SCHED. Specifies the default value for the inheritsched attribute.

DEFAULT_PRIO
1 (one). Specifies the default value for the sched_prio field of the schedparam attribute.

Chapter 11. Threads Programming Guidelines 269

DEFAULT_SCHED
SCHED_OTHER. Specifies the default value for the schedpolicy attribute of a thread attributes
object.

DEFAULT_SCOPE
PTHREAD_SCOPE_LOCAL. Specifies the default value for the contention-scope attribute.

The actual values shown might vary from one release to another.

270 Writing and Debugging Programs

Chapter 12. lex and yacc Program Information

The lex command generates program that matches patterns for simple lexical analysis of an input stream.
The yacc command converts a context-free grammar specification into a set of tables for a simple
automaton that executes a parser. Together these commands generate a lexical analyzer and parser
program for interpreting input and output handling.

The following topics are covered in this chapter:

“Creating an Input Language with the lex and yacc Commands”

“Example Program for the lex and yacc Programs” on page 296

Creating an Input Language with the lex and yacc Commands

lex Generates a lexical analyzer program that analyzes input and breaks it into tokens, such as numbers, letters,
or operators. The tokens are defined by grammar rules set up in the lex specification file.

yacc Generates a parser program that analyzes input using the tokens identified by the lexical analyzer (generated
by the lex command and stored in the lex specification file) and performs specified actions, such as flagging
improper syntax.

Writing a Lexical Analyzer Program with the lex Command
The lex command helps write a C language program that can receive and translate character-stream input
into program actions. To use the lex command, you must supply or write a specification file that contains:

Extended regular expressions Character patterns that the generated lexical analyzer
recognizes.

Action statements C language program fragments that define how the generated
lexical analyzer reacts to extended regular expressions it
recognizes.

The format and logic allowed in this file are discussed in the lex Specification File section of the lex
command.

How the lex Command Operates
The lex command generates a C language program that can analyze an input stream using information in
the specification file. The lex command then stores the output program in a lex.yy.c file. If the output
program recognizes a simple, one-word input structure, you can compile the lex.yy.c output file with the
following command to get an executable lexical analyzer:
cc lex.yy.c -ll

However, if the lexical analyzer must recognize more complex syntax, you can create a parser program to
use with the output file to ensure proper handling of any input. See “Creating a Parser with the yacc
Program” on page 283 for more information.

You can move a lex.yy.c output file to another system if it has C compiler that supports the lex library
functions.

The compiled lexical analyzer performs the following functions:

v Reads an input stream of characters.

v Copies the input stream to an output stream.

© Copyright IBM Corp. 1997, 2001 271

../../cmds/aixcmds3/lex.htm#HDRA1079D8

v Breaks the input stream into smaller strings that match the extended regular expressions in the lex
specification file.

v Executes an action for each extended regular expression that it recognizes. These actions are C
language program fragments in the lex specification file. Each action fragment can call actions or
subroutines outside of itself.

How the Lexical Analyzer Works
The lexical analyzer that the lex command generates uses an analysis method called a deterministic
finite-state automaton. This method provides for a limited number of conditions that the lexical analyzer
can exist in, along with the rules that determine what state the lexical analyzer is in.

The automaton allows the generated lexical analyzer to look ahead more than one or two characters in an
input stream. For example, suppose you define two rules in the lex specification file: one looks for the
string ab and the other looks for the string abcdefg. If the lexical analyzer receives an input string of
abcdefh, it reads characters to the end of input string before determining that it does not match the string
abcdefg. The lexical analyzer then returns to the rule that looks for the string ab, decides that it matches
part of the input, and begins trying to find another match using the remaining input cdefh.

Extended Regular Expressions in the lex Command

Specifying extended regular expressions in a lex specification file is similar to methods used in the sed or
ed commands. An extended regular expression specifies a set of strings to be matched. The expression
contains both text characters and operator characters. Text characters match the corresponding characters
in the strings being compared. Operator characters specify repetitions, choices, and other features.

Numbers and letters of the alphabet are considered text characters. For example, the extended regular
expression integer matches the string integer, and the expression a57D looks for the string a57D.

Operators
The following list describes how operators are used to specify extended regular expressions:

Expression Use
Character Matches the character Character.

Example: a matches the literal character a; b
matches the literal character b, and c matches the
literal character c.

″String″ Matches the string enclosed within quotes, even if
the string includes an operator.

Example: to prevent the lex command from
interpreting $ (dollar sign) as an operator, enclose
the symbol in quotes.

272 Writing and Debugging Programs

\Character or \Digits Escape character. When preceding a character
class operator used in a string, the \ character
indicates that the operator symbol represents a
literal character rather than an operator. Valid
escape sequences include:

\a Alert

\b Backspace

\f Form-feed

\n New-line character (Do not use the actual
new-line character in an expression.)

\r Return

\t Tab

\v Verticle tab

\\ Backslash

\Digits The character whose encoding is
represented by the one-, two-, or three-digit
octal integer specified by the Digits string.

\xDigits
The character whose encoding is
represented by the sequence of
hexadecimal characters specified by the
Digits string.

When the \ character precedes a character
that is not in the preceding list of escape
sequences, the lex command interprets the
character literally.

Example: \c is interpreted as the c character
unchanged, and [\|abc] represents the class of
characters that includes the characters |abc.

Note: Never use \0 or \x0 in lex rules.
[List] Matches any one character in the enclosed range

([x-y]) or the enclosed list ([xyz]) based on the
locale in which the lex command is invoked. All
operator symbols, with the exception of the
following, lose their special meaning within a bracket
expression: - (dash), | (carat), and \ (backslash).

Example: [abc-f] matches a, b, c, d, e, or f in the
En_US locale.

Chapter 12. lex and yacc Program Information 273

[:Class:] Matches any of the characters belonging to the
character class specified between the [::]
delimiters as defined in the LC_TYPE category in
the current locale. The following character class
names are supported in all locales:

alnum cntrl lower space

alpha digit print upper

blank graph punct xdigit

The lex command also recognizes user-defined
character class names. The [::] operator is valid
only in a [] expression.

Example: [[:alpha:]] matches any character in
the alpha character class in the current locale, but
[:alpha:] matches only the characters :,a,l,p, and
h.

[.CollatingSymbol.] Matches the collating symbol specified within the
[..] delimiters as a single character. The [..]
operator is valid only in a [] expression. The
collating symbol must be a valid collating symbol for
the current locale.

Example: [[.ch.]] matches c and h together while
[ch] matches c or h.

[=CollatingElement=] Matches the collating element specified within the
[==] delimiters and all collating elements belonging
to its equivalence class. The [==] operator is valid
only in a [] expression.

Example: If w and v belong to the same equivalence
class, [[=w=]] is the same as [wv] and matches w
or v. If w does not belong to an equivalence class,
then [[=w=]] matches w only.

[|Character] Matches any character except the one following the
| (caret) symbol.The resultant character class
consists solely of single-byte characters. The
character following the | symbol can be a multibyte
character, however for this operator to match
multibyte characters, you must set %h and %m to
greater than zero in the definitions section.

Example: [|c] matches any character except c.
CollatingElement-CollatingElement

In a character class, indicates a range of characters
within the collating sequence defined for the current
locale. Ranges must be in ascending order. The
ending range point must collate equal to or higher
than the starting range point. Because the range is
based on the collating sequence of the current
locale, a given range may match different
characters, depending on the locale in which the lex
command was invoked.

Expression? Matches either zero or one occurrence of the
expression immediately preceding the ? operator.

Example: ab?c matches either ac or abc.

274 Writing and Debugging Programs

. Matches any character except the new-line
character. In order for . to match multi-byte
characters, %z must be set to greater than 0 in the
definitions section of the lex specification file. If %z
is not set, . matches single-byte characters only.

Expression* Matches zero or more occurrences of the
expression immediately preceding the * operator.
For example, a* is any number of consecutive a
characters, including zero. The usefulness of
matching zero occurrences is more obvious in
complicated expressions.

Example: The expression, [A-Za-z][A-Za-z0-9]*
indicates all alphanumeric strings with a leading
alphabetic character, including strings that are only
one alphabetic character. You can use this
expression for recognizing identifiers in computer
languages.

Expression+ Matches one or more occurrences of the pattern
immediately preceding the + operator.

Example: a+ matches one or more instances of a.
Also, [a-z]+ matches all strings of lowercase letters.

Expression|Expression Indicates a match for the expression that precedes
or follows the | (pipe) operator.

Example: ab|cd matches either ab or cd.
(Expression) Matches the expression in the parentheses. The ()

(parentheses) operator is used for grouping and
causes the expression within parentheses to be
read into the yytext array. A group in parentheses
can be used in place of any single character in any
other pattern.

Example: (ab|cd+)?(ef)* matches such strings as
abefef, efefef, cdef, or cddd; but not abc, abcd, or
abcdef.

|Expression Indicates a match only when the | (carat) operator
is at the beginning of the line and the | is the first
character in an expression.

Example: |h matches an h at the beginning of a
line.

Expression$ Indicates a match only when the $ (dollar sign) is at
the end of the line and the $ is the last character in
an expression.

Example: The description of Expression/Expression.

Chapter 12. lex and yacc Program Information 275

Expression1/Expression2 Indicates a match only if Expression2 immediately
follows Expression1. The / (slash) operator reads
only the first expression into the yytext array.

Example: ab/cd matches the string ab, but only if
followed by cd, and then reads ab into the yytext
array.

Note: Only one / trailing context operator can
be used in a single extended regular
expression. The | (carat) and $ (dollar sign)
operators cannot be used in the same
expression with the / operator as they indicate
special cases of trailing context.

{DefinedName} Matches the name as you defined it in the
definitions section.

Example: If you defined D to be numerical digits,
{D} matches all numerical digits.

{Number1,Number2} Matches Number1 to Number2 occurrences of the
pattern immediately preceding it. The expressions
{Number} and {Number,} are also allowed and
match exactly Number occurrences of the pattern
preceding the expression.

Example: xyz{2,4} matches either xyzxyz,
xyzxyzxyz, or xyzxyzxyzxyz. This differs from the +,
* and ? operators in that these operators match only
the character immediately preceding them. To match
only the character preceding the interval expression,
use the grouping operator. For example, xy(z{2,4})
matches xyzz, xyzzz or xyzzzz.

<StartCondition> Executes the associated action only if the lexical
analyzer is in the indicated start condition (“lex Start
Conditions” on page 281).

Example: If being at the beginning of a line is start
condition ONE, then the | (caret) operator equals the
expression, <ONE>.

To use the operator characters as text characters, use one of the escape sequences: ″ ″ (double quotation
marks) or \ (backslash). The ″ ″ operator indicates what is enclosed is text. Thus, the following example
matches the string xyz++:
xyz"++"

Note that a part of a string may be quoted. Quoting an ordinary text character has no effect. For example,
the following expression is equivalent to the previous example:
"xyz++"

Quoting all characters that are not letters or numbers ensures that text is interpreted as text.

Another way to turn an operator character into a text character is to put a \ (backslash) character before
the operator character. For example, the following expression is equivalent to the preceding examples:
xyz\+\+

276 Writing and Debugging Programs

lex Actions

When the lexical analyzer matches one of the extended regular expressions in the rules section of the
specification file, it executes the action that corresponds to the extended regular expression. Without
sufficient rules to match all strings in the input stream, the lexical analyzer copies the input to standard
output. Therefore, do not create a rule that only copies the input to the output. The default output can help
find gaps in the rules.

When using the lex command to process input for a parser that the yacc command produces, provide
rules to match all input strings. Those rules must generate output that the yacc command can interpret.

Null Action
To ignore the input associated with an extended regular expression, use a ; (C language null statement) as
an action. The following example ignores the three spacing characters (blank, tab, and new-line):
[\t\n] ;

Same As Next Action
To avoid repeatedly writing the same action, use the | (pipe symbol). This character indicates that the
action for this rule is the same as the action for the next rule. For instance, the previous example to ignore
blank, tab, and new-line characters can also be written as follows:
" " |
"\t" |
"\n" ;

The quotation marks around \n and \t are not required.

Printing a Matched String
To find out what text matched an expression in the rules section of the specification file, you can include a
C language printf subroutine call as one of the actions for that expression. When the lexical analyzer finds
a match in the input stream, the program puts the matched string into the external character (char) and
wide character (wchar_t) arrays, called yytext and yywtext, respectively. For example, you can use the
following rule to print the matched string:
[a-z]+ printf("%s",yytext);

The C language printf subroutine accepts a format argument and data to be printed. In this example the
arguments to the printf subroutine have the following meanings:

%s A symbol that converts the data to type string before printing
%S A symbol that converts the data to wide character string (wchar_t) before printing
yytext The name of the array containing the data to be printed
yywtext The name of the array containing the multibyte type (wchar_t) data to be printed.

The lex command defines ECHO; as a special action to print out the contents of yytext. For example, the
following two rules are equilvalent:
[a-z]+ ECHO;
[a-z]+ printf("%s",yytext);

You can change the representation of yytext by using either %array or %pointer in the definitions section
of the lex specification file.

%array Defines yytext as a null-terminated character array. This is the default action.
%pointer Defines yytext as a pointer to a null-terminated character string.

Chapter 12. lex and yacc Program Information 277

../../libs/basetrf1/printf.htm#HDRA8ZED0GACO

Finding the Length of a Matched String

To find the number of characters that the lexical analyzer matched for a particular extended regular
expression, use the yyleng or the yywleng external variables.

yyleng Tracks the number of bytes that are matched.
yywleng Tracks the number of wide characters in the matched string. Multibyte characters have a length greater

than 1.

To count both the number of words and the number of characters in words in the input, use the following
action:
[a-zA-Z]+ {words++;chars += yyleng;}

This action totals the number of characters in the words matched and puts that number in chars.

The following expression finds the last character in the string matched:
yytext[yyleng-1]

Matching Strings within Strings

The lex command partitions the input stream and does not search for all possible matches of each
expression. Each character is accounted for only once. To override this choice and search for items that
may overlap or include each other, use the REJECT directive. For example, to count all instance of she
and he, including the instances of he that are included in she, use the following action:
she {s++; REJECT;}
he {h++}
\n |
. ;

After counting the occurrences of she, the lex command rejects the input string and then counts the
occurrences of he. Because he does not include she, a REJECT action is not necessary on he.

Getting More Input
Normally, the next string from the input stream overwrites the current entry in the yytext array. If you use
the yymore subroutine, the next string from the input stream is added to the end of the current entry in the
yytext array.

For example, the following lexical analyser looks for strings:
%s instring
%%
<INITIAL>\" { /* start of string */

BEGIN instring;
yymore();
}

<instring>\" { /* end of string */
printf("matched %s\n", yytext);
BEGIN INITIAL;
}

<instring>. {
yymore();
}

<instring>\n {
printf("Error, new line in string\n");
BEGIN INITIAL;
}

Even though a string may be recognized by matching several rules, repeated calls to the yymore
subroutine ensure that the yytext array will contain the entire string.

278 Writing and Debugging Programs

Putting Characters Back
To return characters to the input stream, use the call:
yyless(n)

where n is the number of characters of the current string to keep. Characters in the string beyond this
number are returned to the input stream. The yyless subroutine provides the same type of look-ahead that
the / (slash) operator uses, but it allows more control over its usage.

Use the yyless subroutine to process text more than once. For example, when parsing a C language
program, an expression such asx=-a is difficult to understand. Does it mean x is equal to minus a, or is it
an older representation of x -= a which means decrease x by the value of a? To treat this expression as
x is equal to minus a, but print a warning message, use a rule such as:
=-[a-zA-Z] {

printf("Operator (=-) ambiguous\n");
yyless(yyleng-1);
... action for = ...
}

Input/Output Subroutines
The lex program allows a program to use the following input/output (I/O) subroutines:

input() Returns the next input character.
output(c) Writes the character c on the output.
unput(c) Pushes the character c back onto the input stream to be read later by the input subroutine.
winput() Returns the next multibyte input character.
woutput(C) Writes the multibyte character C back onto the output stream.
wunput(C) Pushes the multibyte character C back onto the input stream to be read by the winput

subroutine.

lex provides these subroutines as macro definitions. The subroutines are coded in the lex.yy.c file. You
can override them and provide other versions.

The winput, wunput, and woutput macros are defined to use the yywinput, yywunput, and yywoutput
subroutines. For compatibility, the yy subroutines subsequently use the input, unput, and output
subroutine to read, replace, and write the necessary number of bytes in a complete multibyte character.

These subroutines define the relationship between external files and internal characters. If you change the
subroutines, change them all in the same way. They should follow these rules:

v All subroutines must use the same character set.

v The input subroutine must return a value of 0 to indicate end of file.

v Do not change the relationship of the unput subroutine to the input subroutine or the look-ahead
functions will not work.

The lex.yy.c file allows the lexical analyzer to back up a maximum of 200 characters.

To read a file containing nulls, create a different version of the input subroutine. In the normal version of
the input subroutine, the returned value of 0 (from the null characters) indicates the end of file and ends
the input.

Character Set
The lexical analyzers that the lex command generates process character I/O through the input, output,
and unput subroutines. Therefore, to return values in the yytext subroutine, the lex command uses the
character representation that these subroutines use. Internally however, the lex command represents each
character with a small integer. When using the standard library, this integer is the value of the bit pattern
the computer uses to represent the character. Normally, the letter ’a’ is represented in the same form as

Chapter 12. lex and yacc Program Information 279

the character constant ’a’. If you change this interpretation with different I/O subroutines, put a translation
table in the definitions section of the specification file. The translation table begins and ends with lines that
contain only the entries:
%T

The translation table contains additional lines that indicate the value associated with each character. For
example:
%T
{integer} {character string}
{integer} {character string}
{integer} {character string}
%T

End-of-File Processing
When the lexical analyzer reaches the end of a file, it calls the yywrap library subroutine.

yywrap Returns a value of 1 to indicate to the lexical analyzer that it should continue with normal wrap-up at the
end of input

However, if the lexical analyzer receives input from more than one source, change the yywrap subroutine.
The new function must get the new input and return a value of 0 to the lexical analyzer. A return value of 0
indicates the program should continue processing.

You can also include code to print summary reports and tables when the lexical analyzer ends in a new
version of the yywrap subroutine. The yywrap subroutine is the only way to force the yylex subroutine to
recognize the end of input.

Passing Code to the Generated lex Program

The lex command passes C code, unchanged, to the lexical analyzer in the following circumstances:

v Lines beginning with a blank or tab in the definitions section, or at the start of the rules section before
the first rule, are copied into the lexical analyzer. If the entry is in the definitions section, it is copied to
the external declaration area of the lex.yy.c file. If the entry is at the start of the rules section, the entry
is copied to the local declaration area of the yylex subroutine in the lex.yy.c file.

v Lines that lie between delimiter lines containing only %{ (percent sign, left brace) and %} (percent sign,
right brace) either in the definitions section or at the start of the rules section are copied into the lexical
analyzer in the same way as lines beginning with a blank or tab.

v Any lines occurring after the second %% (percent sign, percent sign) delimiter are copied to the lexical
analyzer without format restrictions.

Defining lex Substitution Strings

You can define string macros that the lex program expands when it generates the lexical analyzer. Define
them before the first %% delimiter in the lex specification file. Any line in this section that begins in column 1
and that does not lie between %{ and %} defines a lex substitution string. Substitution string definitions
have the general format:
name translation

where name and translation are separated by at least one blank or tab, and the specified name begins
with a letter. When the lex program finds the string defined by name enclosed in {} (braces) in the rules
part of the specification file, it changes that name to the string defined in translation and deletes the
braces.

280 Writing and Debugging Programs

../../cmds/aixcmds3/lex.htm#HDRA1079D8

For example, to define the names D and E, put the following definitions before the first %% delimiter in the
specification file:
D [0-9]
E [DEde][-+]{D}+

Then, use these names in the rules section of the specification file to make the rules shorter:
{D}+ printf("integer");
{D}+"."{D}*({E})? |
{D}*"."{D}+({E})? |
{D}+{E} printf("real");

You can also include the following items in the definitions section:

v Character set table

v List of start conditions

v Changes to size of arrays to accommodate larger source programs

lex Start Conditions

A rule may be associated with any start condition. However, the lex program recognizes the rule only
when in that associated start condition. You can change the current start condition at any time.

Define start conditions in the definitions section of the specification file by using a line in the following
form:
%Start name1 name2

where name1 and name2 define names that represent conditions. There is no limit to the number of
conditions, and they can appear in any order. You can also shorten the word Start to s or S.

When using a start condition in the rules section of the specification file, enclose the name of the start
condition in <> (less than, greater than) symbols at the beginning of the rule. The following example
defines a rule, expression, that the lex program recognizes only when the lex program is in start condition
name1:
<name1>expression

To put the lex program in a particular start condition, execute the action statement in the action part of a
rule; for instance, BEGIN in the following line:
BEGIN name1;

This statement changes the start condition to name1.

To resume the normal state, enter:
BEGIN 0;

or
BEGIN INITIAL;

where INITIAL is defined to be 0 by the lex program. BEGIN 0; resets the lex program to its initial
condition.

The lex program also supports exclusive start conditions specified with %x (percent sign, lowercase x) or
%X (percent sign, uppercase X) operator followed by a list of exclusive start names in the same format as
regular start conditions. Exclusive start conditions differ from regular start conditions in that rules that do
not begin with a start condition are not active when the lexical analyzer is in an exclusive start state. For
example:

Chapter 12. lex and yacc Program Information 281

%s one
%x two
%%
abc {printf("matched ");ECHO;BEGIN one;}
<one>def printf("matched ");ECHO;BEGIN two;}
<two>ghi {printf("matched ");ECHO;BEGIN INITIAL;}

In start state one in the preceding example, both abc and def can be matched. In start state two, only ghi
can be matched.

Compiling the Lexical Analyzer

Compiling a lex program is a two-step process:

1. Use the lex program to change the specification file into a C language program. The resulting program
is in the lex.yy.c file.

2. Use the cc command with the -ll flag to compile and link the program with a library of lex subroutines.
The resulting executable program is in the a.out file.

For example, if the lex specification file is called lextest, enter the following commands:
lex lextest
cc lex.yy.c -ll

lex Library
The lex library contains the following subroutines:

main() Invokes the lexical analyser by calling the yylex subroutine.
yywrap() Returns the value 1 when the end of input occurs.
yymore() Appends the next matched string to the current value of the yytext array rather than

replacing the contents of the yytext array.
yyless(int n) Retains n initial characters in the yytext array and returns the remaining characters to the

input stream.
yyreject() Allows the lexical analyser to match multiple rules for the same input string. (yyreject is

called when the special action REJECT is used.)

Some of the lex subroutines can be substituted by user-supplied routines. For example, lex supports
user-supplied versions of the main and yywrap subroutines. The library versions of these routines,
provided as a base, are as follows:

main
#include <stdio.h>
#include <locale.h>
main() {

setlocale(LC_ALL, "");
yylex();
exit(0);

}

yywrap
yywrap() {

return(1);
}

yymore, yyless, and yyreject subroutines are available only through the lex library; however, these
subroutines are required only when used in lex actions.

282 Writing and Debugging Programs

Using the lex Program with the yacc Program

When used alone, the lex program generator makes a lexical analyzer that recognizes simple, one-word
input or receives statistical input. You can also use the lex program with a parser generator, such as the
yacc command. The yacc command generates a program, called a parser, that analyzes the construction
of more than one-word input. This parser program operates well with the lexical analyzers that the lex
command generates. The parsers recognize many types of grammar with no regard to context. These
parsers need a preprocessor to recognize input tokens such as the preprocessor that the lex command
produces.

The lex program recognizes only extended regular expressions and formats them into character packages
called tokens, as specified by the input file. When using the lex program to make a lexical analyzer for a
parser, the lexical analyzer (created from the lex command) partitions the input stream. The parser (from
the yacc command) assigns structure to the resulting pieces. You can also use other programs along with
the programs generated by either the lex or yacc commands.

A token is the smallest independent unit of meaning as defined by either the parser or the lexical analyzer.
A token can contain data, a language keyword, an identifier, or other parts of a language syntax.

The yacc program looks for a lexical analyzer subroutine named yylex, which is generated by the lex
command. Normally, the default main program in the lex library calls the yylex subroutine. However, if the
yacc command is loaded and its main program is used, yacc calls the yylex subroutine. In this case,
each lex rule should end with:
return(token);

where the appropriate token value is returned.

The yacc command assigns an integer value to each token defined in the yacc grammar file through a
#define preprocessor statement. The lexical analyzer must have access to these macros to return the
tokens to the parser. Use the yacc -d option to create a y.tab.h file, and include the y.tab.h file in the lex
specification file by adding the following lines to the definition section of the lex specification file:
%{
#include "y.tab.h"
%}

Alternately, you can include the lex.yy.c file in the yacc output file by adding the following line after the
second %% (percent sign, percent sign) delimiter in the yacc grammar file:
#include "lex.yy.c"

The yacc library should be loaded before the lex library to get a main program that invokes the yacc
parser. You can generate lex and yacc programs in either order.

Creating a Parser with the yacc Program

The yacc program creates parsers that define and enforce structure for character input to a computer
program. To use this program, you must supply the following inputs:

Grammar file A source file that contains the specifications for the language to recognize. This file also
contains the main, yyerror, and yylex subroutines. You must supply these subroutines.

main A C language subroutine that, as a minimum, contains a call to the yyparse subroutine
generated by the yacc program. A limited form of this subroutine is available in the yacc
library.

yyerror A C language subroutine to handle errors that can occur during parser operation. A limited
form of this subroutine is available in the yacc library.

Chapter 12. lex and yacc Program Information 283

yylex A C language subroutine to perform lexical analysis on the input stream and pass tokens to
the parser. You can generate this lexical analyzer subroutine using the lex command.

When the yacc command gets a specification, it generates a file of C language functions called y.tab.c.
When compiled using the cc command, these functions form the yyparse subroutine and return an
integer. When called, the yyparse subroutine calls the yylex subroutine to get input tokens. The yylex
subroutine continues providing input until either the parser detects an error or the yylex subroutine returns
an end-marker token to indicate the end of operation. If an error occurs and the yyparse subroutine
cannot recover, it returns a value of 1 to main. If it finds the end-marker token, the yyparse subroutine
returns a value of 0 to main.

yacc Grammar File

To use the yacc command to generate a parser, give it a grammar file that describes the input data
stream and what the parser is to do with the data. The grammar file includes rules describing the input
structure, code to be invoked when these rules are recognized, and a subroutine to do the basic input.

The yacc command uses the information in the grammar file to generate a parser that controls the input
process. This parser calls an input subroutine (the lexical analyzer) to pick up the basic items (called
tokens) from the input stream. The parser organizes these tokens according to the structure rules in the
grammar file. The structure rules are called grammar rules. When the parser recognizes one of these
rules, it executes the user code supplied for that rule. The user code is called an action. Actions return
values and use the values returned by other actions.

Use the C programming language to write the action code and other subroutines. The yacc command
uses many of the C language syntax conventions for the grammar file.

main and yyerror Subroutines
You must provide the main and yyerror subroutines for the parser. To ease the initial effort of using the
yacc command, the yacc library contains simple versions of the main and yyerror subroutines. Include
these subroutines by using the -ly argument to the ld command (or to the cc command). The source code
for the main library program is:
#include <locale.h>
main()
{

setlocale(LC_ALL, "");
yyparse();

}

The source code for the yyerror library program is:
#include <stdio.h>
yyerror(s)

char *s;
{

fprintf(stderr, "%s\n" ,s);
}

The argument to the yyerror subroutine is a string containing an error message, usually the string syntax
error.

These are very limited programs. You should provide more function in these subroutines. For example,
keep track of the input line number and print it along with the message when a syntax error is detected.
You may also want to use the value in the external integer variable yychar. This variable contains the
look-ahead token number at the time the error was detected.

284 Writing and Debugging Programs

yylex Subroutine
The input subroutine that you supply must be able to:

v Read the input stream.

v Recognize basic patterns in the input stream.

v Pass the patterns to the parser along with tokens that define the pattern to the parser.

A token is a symbol or name that tells the parser which pattern is being sent to it by the input subroutine.
A nonterminal symbol is the structure that the parser recognizes.

For example, if the input subroutine separates an input stream into the tokens of WORD, NUMBER, and
PUNCTUATION, and it receives the following input:
I have 9 turkeys.

the program could choose to pass the following strings and tokens to the parser:

String Token
I WORD
have WORD
9 NUMBER
turkeys WORD
. PUNCTUATION

The parser must contain definitions for the tokens passed to it by the input subroutine. Using the -d option
for the yacc command, it generates a list of tokens in a file called y.tab.h. This list is a set of #define
statements that allow the lexical analyzer (yylex) to use the same tokens as the parser.

To avoid conflict with the parser, do not use names that begin with the letters yy.

You can use the lex command to generate the input subroutine or you can write the routine in the C
language.

Using the yacc Grammar File
A yacc grammar file consists of three sections:

v Declarations

v Rules

v Programs

Two adjacent %% (double percent signs) separate each section of the grammar file. To make the file easier
to read, put the %% on a line by themselves. A complete grammar file looks like:
declarations
%%
rules
%%
programs

The declarations section may be empty. If you omit the programs section, omit the second set of %%.
Therefore, the smallest yacc grammar file is:
%%
rules

The yacc command ignores blanks, tabs and new-line characters in the grammar file. Therefore, use
these characters to make the grammar file easier to read. Do not, however, use blanks, tabs or new-lines
in names or reserved symbols.

Chapter 12. lex and yacc Program Information 285

Using Comments
Put comments in the grammar file to explain what the program is doing. You can put comments anywhere
in the grammar file you can put a name. However, to make the file easier to read, put the comments on
lines by themselves at the beginning of functional blocks of rules. A comment in a yacc grammar file looks
the same as a comment in a C language program. The comment is enclosed between /* (backslash,
asterisk) and */ (asterisk, backslash). For example:
/* This is a comment on a line by itself. */

Using Literal Strings
A literal string is one or more characters enclosed in ’’ (single quotes). As in the C language, the \
(backslash) is an escape character within literals, and all the C language escape codes are recognized.
Thus, the yacc command accepts the symbols in the following table:

Symbol Definition
’\a’ Alert
’\n’ New-line
’\r’ Return
’\’’ Single quote (’)
’\″’ Double quote (″)
’\?’ Question mark (?)
’\\’ Backslash (\)
’\t’ Tab
’\v’ Vertical tab
’\b’ Backspace
’\f’ Form-feed
’\Digits’ The character whose encoding is represented by the one-, two-, or three-digit octal integer

specified by the Digits string.
’\xDigits’ The character whose encoding is represented by the sequence of hexadecimal characters

specified by the Digits string.

Never use \0 or 0 (the null character) in grammar rules.

Formatting the Grammar File
Use the following guidelines to help make the yacc grammar file more readable:

v Use uppercase letters for token names and lowercase letters for nonterminal symbol names.

v Put grammar rules and actions on separate lines to allow changing either one without changing the
other.

v Put all rules with the same left side together. Enter the left side once, and use the vertical bar to begin
the rest of the rules for that left side.

v For each set of rules with the same left side, enter the semicolon once on a line by itself following the
last rule for that left side. You can then add new rules easily.

v Indent rule bodies by two tab stops and action bodies by three tab stops.

Errors in the Grammar File
The yacc command cannot produce a parser for all sets of grammar specifications. If the grammar rules
contradict themselves or require matching techniques that are different from what the yacc command
provides, the yacc command will not produce a parser. In most cases, the yacc command provides
messages to indicate the errors. To correct these errors, redesign the rules in the grammar file, or provide
a lexical analyzer (input program to the parser) to recognize the patterns that the yacc command cannot.

yacc Declarations

The declarations section of the yacc grammar file contains:

v Declarations for any variables or constants used in other parts of the grammar file

286 Writing and Debugging Programs

v #include statements to use other files as part of this file (used for library header files)

v Statements that define processing conditions for the generated parser

It is also possible to keep semantic information associated with the tokens currently on the parse stack in
a user-defined C language union, if the members of the union are associated with the various names in
the grammar file.

A declaration for a variable or constant uses the syntax of the C programming language:

TypeSpecifier Declarator ;

TypeSpecifier is a data type keyword and Declarator is the name of the variable or constant. Names can
be any length and consist of letters, dots, underscores, and digits. A name cannot begin with a digit.
Uppercase and lowercase letters are distinct.

Terminal (or token) names can be declared using the %token declaration and nonterminal names can be
declared using the %type declaration. The %type declaration is not required for nonterminal names.
Nonterminal names are defined automatically if they appear on the left side of at least one rule. Without
declaring a name in the declarations section, you can use that name only as a nonterminal symbol. The
#include statements are identical to C language syntax and perform the same function.

The yacc program has a set of keywords that define processing conditions for the generated parser. Each
of the keywords begin with a % (percent sign) and is followed by a list of tokens or nonterminal names.
These keywords are:

%left Identifies tokens that are left-associative with other tokens.
%nonassoc Identifies tokens that are not associative with other tokens.
%right Identifies tokens that are right-associative with other tokens.
%start Identifies a nonterminal name for the start symbol.
%token Identifies the token names that the yacc command accepts. Declares all token names in the

declarations section.
%type Identifies the type of nonterminals. Type checking is performed when this construct is present.
%union Identifies the yacc value stack as the union of the various type of values desired. By default, the

values returned are integers. The effect of this construct is to provide the declaration of YYSTYPE
directly from the input.

%{

Code

%} Copies the specified Code into the code file. This construct can be used to add C language declarations and
definitions to the declarations section.

Note: The %{ (percent sign, left bracket) and %} (percent sign, right bracket) symbols must appear on
lines by themselves.

The %token, %left, %right, and %nonassoc keywords optionally support the name of a C union member (as
defined by %union) called a <Tag> (literal angle brackets surrounding a union member name). The %type
keyword requires a <Tag>. The use of <Tag> specifies that the tokens named on the line are to be of the
same C type as the union member referenced by <Tag>. For example, the declaration:
%token [<Tag>] Name [Number] [Name [Number]]...

declares the Name parameter to be a token. If <Tag> is present, the C type for all tokens on this line are
declared to be of the type referenced by <Tag>. If a positive integer, Number, follows the Name parameter,
that value is assigned to the token.

Chapter 12. lex and yacc Program Information 287

All of the tokens on the same line have the same precedence level and associativity. The lines appear in
the file in order of increasing precedence or binding strength. For example:
%left '+' '-'
%left '*' '/'

describes the precedence and associativity of the four arithmetic operators. The + (plus sign) and - (minus
sign) are left associative and have lower precedence than * (asterisk) and / (slash), which are also left
associative.

Defining Global Variables
To define variables to be used by some or all actions, as well as by the lexical analyzer, enclose the
declarations for those variables between %{ (percent sign, left bracket) and %} (percent sign, right bracket)
symbols. Declarations enclosed in these symbols are called global variables. For example, to make the
var variable available to all parts of the complete program, use the following entry in the declarations
section of the grammar file:
%{
int var = 0;
%}

Start Conditions
The parser recognizes a special symbol called the start symbol. The start symbol is the name of the rule
in the rules section of the grammar file that describes the most general structure of the language to be
parsed. Because it is the most general, this is the structure where the parser starts in its top-down
analysis of the input stream. Declare the start symbol in the declarations section using the %start keyword.
If you do not declare the name of the start symbol, the parser uses the name of the first grammar rule in
the grammar file.

For example, when parsing a C language function, the most general structure for the parser to recognize
is:
main()
{

code_segment
}

The start symbol should point to the rule that describes this structure. All remaining rules in the file
describe ways to identify lower-level structures within the function.

Token Numbers
Token numbers are nonnegative integers that represent the names of tokens. If the lexical analyzer passes
the token number to the parser instead of the actual token name, both programs must agree on the
numbers assigned to the tokens.

You can assign numbers to the tokens used in the yacc grammar file. If you do not assign numbers to the
tokens, the yacc grammar file assigns numbers using the following rules:

1. A literal character is the numerical value of the character in the ASCII character set.

2. Other names are assigned token numbers starting at 257.

Note: Do not assign a token number of 0. This number is assigned to the endmarker token. You
cannot redefine it.

To assign a number to a token (including literals) in the declarations section of the grammar file, put a
positive integer (not 0) immediately following the token name in the %token line. This integer is the token
number of the name or literal. Each token number must be unique. All lexical analyzers used with the yacc
command must return a 0 or a negative value for a token when they reach the end of their input.

288 Writing and Debugging Programs

yacc Rules

The rules section contains one or more grammar rules. Each rule describes a structure and gives it a
name. A grammar rule has the form:
A : BODY;

where A is a nonterminal name, and BODY is a sequence of 0 or more names, literals, and semantic actions
that can optionally be followed by precedence rules. Only the names and literals are required to form the
grammar. Semantic actions and precedence rules are optional. The colon and the semicolon are required
yacc punctuation.

Semantic actions allow you to associate actions to be performed each time a rule is recognized in the
input process. An action can be an arbitrary C statement, and as such, perform input or output, call
subprograms, or alter external variables. Actions can also refer to the actions of the parser; for example,
shift and reduce.

Precedence rules are defined by the %prec keyword and change the precedence level associated with a
particular grammar rule. The reserved symbol %prec can appear immediately after the body of the
grammar rule and can be followed by a token name or a literal. The construct causes the precedence of
the grammar rule to become that of the token name or literal.

Repeating Nonterminal Names
If several grammar rules have the same nonterminal name, use the | (pipe symbol) to avoid rewriting the
left side. In addition, use the ; (semicolon) only at the end of all rules joined by pipe symbols. For
example, the grammar rules:
A : B C D ;
A : E F ;
A : G ;

can be given to the yacc command by using the pipe symbol as follows:
A : B C D

| E F
| G
;

Using Recursion in a Grammar File
Recursion is the process of using a function to define itself. In language definitions, these rules normally
take the form:
rule : EndCase

| rule EndCase

Therefore, the simplest case of the rule is the EndCase, but rule can also consist of more than one
occurrence of EndCase. The entry in the second line that uses rule in the definition of rule is the
recursion. The parser cycles through the input until the stream is reduced to the final EndCase.

When using recursion in a rule, always put the call to the name of the rule as the leftmost entry in the rule
(as it is in the preceding example). If the call to the name of the rule occurs later in the line, such as in the
following example, the parser may run out of internal stack space and stop.:
rule : EndCase

| EndCase rule

The following example defines the line rule as one or more combinations of a string followed by a newline
character (\n):

Chapter 12. lex and yacc Program Information 289

lines : line
| lines line
;

line : string '\n'
;

Empty String
To indicate a nonterminal symbol that matches the empty string, use a ; (semicolon) by itself in the body
of the rule. To define a symbol empty that matches the empty string, use a rule similar to the following rule:
empty : ;

| x;

OR
empty :

| x
;

End-of-Input Marker
When the lexical analyzer reaches the end of the input stream, it sends an end-of-input marker to the
parser. This marker is a special token called endmarker, and has a token value of 0. When the parser
receives an end-of-input marker, it checks to see that it has assigned all input to defined grammar rules
and that the processed input forms a complete unit (as defined in the yacc grammar file). If the input is a
complete unit, the parser stops. If the input is not a complete unit, the parser signals an error and stops.

The lexical analyzer must send the end-of-input marker at the appropriate time, such as the end of a file,
or the end of a record.

yacc Actions

With each grammar rule, you can specify actions to be performed each time the parser recognizes the rule
in the input stream. An action is a C language statement that does input and output, calls subprograms,
and alters external vectors and variables. Actions return values and obtain the values returned by previous
actions. The lexical analyzer can also return values for tokens.

Specify an action in the grammar file with one or more statements enclosed in {} (braces). The following
examples are grammer rules with actions:
A : '('B')'

{
hello(1, "abc");

}

AND
XXX : YYY ZZZ

{
printf("a message\n");
flag = 25;
}

Passing Values between Actions
To get values generated by other actions, an action can use the yacc parameter keywords that begin with
a dollar sign ($1, $2, ...). These keywords refer to the values returned by the components of the right
side of a rule, reading from left to right. For example, if the rule is:
A : B C D ;

then $1 has the value returned by the rule that recognized B, $2 has the value returned by the rule that
recognized C, and $3 the value returned by the rule that recognized D.

290 Writing and Debugging Programs

To return a value, the action sets the pseudo-variable $$ to some value. For example, the following action
returns a value of 1:
{ $$ = 1;}

By default, the value of a rule is the value of the first element in it ($1). Therefore, you do not need to
provide an action for rules that have the following form:
A : B ;

The following additional yacc parameter keywords beginning with a $ (dollar sign) allow for type checking:

v $<Tag>$

v $<Tag>Number

$<Tag>Number imposes on the reference the type of the union member referenced by <Tag>. This adds
.tag to the reference so that the union member identified by Tag is accessed. This construct is equivalent
to specifying $$.Tag or $1.Tag. You may use this construct when you use actions in the middle of rules
where the return type cannot be specified through a %type declaration. If a %type has been declared for a
nonterminal name, do not use the <Tag> construct; the union reference will be done automatically

Putting Actions in the Middle of Rules
To get control of the parsing process before a rule is completed, write an action in the middle of a rule. If
this rule returns a value through the $ keywords, actions that follow this rule can use that value. This rule
can also use values returned by actions that precede it. Therefore, the rule:
A : B

{
$$ =1;

}
C

{
x = $2;
y = $3;

}
;

sets x to 1 and y to the value returned by C. The value of rule A is the value returned by B, following the
default rule.

Internally, the yacc command creates a new nonterminal symbol name for the action that occurs in the
middle. It also creates a new rule matching this name to the empty string. Therefore, the yacc command
treats the preceding program as if it were written in the following form:
$ACT : /* empty */

{
$$ = 1;

}
;

A : B $ACT C
{

x = $2;
y = $3;

}
;

where $ACT is an empty action.

yacc Error Handling

When the parser reads an input stream, that input stream might not match the rules in the grammar file.
The parser detects the problem as early as possible. If there is an error-handling subroutine in the
grammar file, the parser can allow for entering the data again, skipping over the bad data, or initiating a

Chapter 12. lex and yacc Program Information 291

cleanup and recovery action. When the parser finds an error, for example, it may need to reclaim parse
tree storage, delete or alter symbol table entries, and set switches to avoid generating further output.

When an error occurs, the parser stops unless you provide error-handling subroutines. To continue
processing the input to find more errors, restart the parser at a point in the input stream where the parser
can try to recognize more input. One way to restart the parser when an error occurs is to discard some of
the tokens following the error. Then try to restart the parser at that point in the input stream.

The yacc command has a special token name, error, to use for error handling. Put this token in the rules
file at places that an input error might occur so that you can provide a recovery subroutine. If an input
error occurs in this position, the parser executes the action for the error token, rather than the normal
action.

The following macros can be placed in yacc actions to assist in error handling:

YYERROR Causes the parser to initiate error handling.
YYABORT Causes the parser to return with a value of 1.
YYACCEPT Causes the parser to return with a value of 0.
YYRECOVERING() Returns a value of 1 if a syntax error has been detected and the parser has not yet fully

recovered.

To prevent a single error from producing many error messages, the parser remains in error state until it
processes 3 tokens following an error. If another error occurs while the parser is in the error state, the
parser discards the input token and does not produce a message.

For example, a rule of the form:
stat : error ';'

tells the parser that when there is an error, it should skip over the token and all following tokens until it
finds the next semicolon. All tokens after the error and before the next semicolon are discarded. After
finding the semicolon, the parser reduces this rule and performs any cleanup action associated with it.

Providing for Error Correction
You can also allow the person entering the input stream in an interactive environment to correct any input
errors by entering a line in the data stream again. For example:
input : error '\n'

{
printf(" Reenter last line: ");
}
input

{
$$ = $4;

}
;

is one way to do this. However, in this example the parser stays in the error state for 3 input tokens
following the error. If the corrected line contains an error in the first 3 tokens, the parser deletes the tokens
and does not give a message. To allow for this condition, use the yacc statement:
yyerrok;

When the parser finds this statement, it leaves the error state and begins processing normally. The
error-recovery example then becomes:
input : error '\n'

{
yyerrok;
printf(" Reenter last line: ");
}

292 Writing and Debugging Programs

input
{

$$ = $4;
}
;

Clearing the Look-Ahead Token
The look-ahead token is the next token that the parser examines. When an error occurs, the look-ahead
token becomes the token at which the error was detected. However, if the error recovery action includes
code to find the correct place to start processing again, that code must also change the look-ahead token.
To clear the look-ahead token include the following statement in the error-recovery action:
yyclearin ;

Lexical Analysis for the yacc Command

You must provide a lexical analyzer to read the input stream and send tokens (with values, if required) to
the parser that the yacc command generates. To build a lexical analyzer that works well with the parser
that yacc generates, use the lexlex command.

The lex command generates a lexical analyzer called yylex. The yylexprogram must return an integer that
represents the kind of token that was read. The integer is called the token number. In addition, if a value is
associated with the token, the lexical analyzer must assign that value to the yylval external variable.

yacc-Generated Parser Operation
The yacc command turns the grammar file into a C language program. That program, when compiled and
executed, parses the input according to the grammar specification given.

The parser is a finite state machine with a stack. The parser can read and remember the look-ahead
token. The current state is always the state at the top of the stack. The states of the finite state machine
are represented by small integers. Initially, the machine is in state 0, the stack contains only 0, and no
look-ahead token has been read.

The machine can perform one of four actions:

shift State The parser pushes the current state onto the stack, makes State the current state, and clears
the look-ahead token.

reduce Rule When the parser finds a string defined by Rule (a rule number) in the input stream, the parser
replaces that string with Rule in the output stream.

accept The parser looks at all input, matches it to the grammar specification, and recognizes the input
as satisfying the highest-level structure (defined by the start symbol). This action appears only
when the look-ahead token is the endmarker and indicates that the parser has successfully
done its job.

error The parser cannot continue processing the input stream and still successfully match it with any
rule defined in the grammar specification. The input tokens the parser looked at, together with
the look-ahead token, cannot be followed by anything that would result in valid input. The
parser reports an error and attempts to recover the situation and resume parsing.

The parser performs the following actions during one process step:

1. Based on its current state, the parser decides whether it needs a look-ahead token to decide the
action to be taken. If the parser needs a look-ahead token and does not have one, it calls the yylex
subroutine to obtain the next token.

2. Using the current state, and the look-ahead token if needed, the parser decides on its next action and
carries it out. As a result, states may be pushed onto or popped off the stack, and the look-ahead
token may be processed or left alone.

Chapter 12. lex and yacc Program Information 293

../../cmds/aixcmds3/lex.htm#HDRA1079D8

Shift
The shift action is the most common action the parser takes. Whenever the parser does a shift, there is
always a look-ahead token. For example, consider the following grammar specification rule:
IF shift 34

If the parser is in the state that contains this rule and the look-ahead token is IF, the parser:

1. Pushes the current state down on the stack.

2. Makes state 34 the current state (puts it at the top of the stack).

3. Clears the look-ahead token.

Reduce
The reduce action keeps the stack from growing too large. The parser uses reduce actions after matching
the right side of a rule with the input stream. The parser is then ready to replace the characters in the
input stream with the left side of the rule. The parser may have to use the look-ahead token to decide if
the pattern is a complete match.

Reduce actions are associated with individual grammar rules. Because grammar rules also have small
integer numbers, you can easily confuse the meanings of the numbers in the two actions, shift and
reduce. For example, the following action refers to grammar rule 18:
. reduce 18

The following action refers to state 34:
IF shift 34

For example, to reduce the following rule, the parser pops off the top three states from the stack:
A : x y z ;

The number of states popped equals the number of symbols on the right side of the rule. These states are
the ones put on the stack while recognizing x, y, and z. After popping these states, a state is uncovered,
which is the state the parser was in before beginning to process the rule, that is, the state that needed to
recognize rule A to satisfy its rule. Using this uncovered state and the symbol on the left side of the rule,
the parser performs an action called goto, which is similar to a shift of A. A new state is obtained, pushed
onto the stack, and parsing continues.

The goto action is different from an ordinary shift of a token. The look-ahead token is cleared by a shift
but is not affected by a goto action. When the three states are popped, the uncovered state contains an
entry such as:
A goto 20

This entry causes state 20 to be pushed onto the stack and become the current state.

The reduce action is also important in the treatment of user-supplied actions and values. When a rule is
reduced, the parser executes the code that you included in the rule before adjusting the stack. Another
stack running in parallel with the stack holding the states holds the values returned from the lexical
analyzer and the actions. When a shift takes place, the yylval external variable is copied onto the stack
holding the values. After executing the code that you provide, the parser performs the reduction. When the
parser performs the goto action, it copies the yylval external variable onto the value stack. The yacc
keywords that begin with $ refer to the value stack.

Using Ambiguous Rules in the yacc Program

A set of grammar rules is ambiguous if any possible input string can be structured in two or more different
ways. For example, the grammar rule:
expr : expr '-' expr

294 Writing and Debugging Programs

states a rule that forms an arithmetic expression by putting two other expressions together with a minus
sign between them. Unfortunately, this grammar rule does not specify how to structure all complex inputs.
For example, if the input is:
expr - expr - expr

a program could structure this input as either left associative:
(expr - expr) - expr

or as right associative:
expr - (expr - expr)

and produce different results.

Parser Conflicts
When the parser tries to handle an ambiguous rule, confusion occurs over which of its four actions to
perform when processing the input. Two major types of conflict develop:

shift/reduce conflict A rule can be evaluated correctly using either a shift action or a reduce
action, but the result is different.

reduce/reduce conflict A rule can be evaluated correctly using one of two different reduce
actions, producing two different actions.

A shift/shift conflict is not possible. The shift/reduce and reduce/reduce conflicts result from a rule that
is not completely stated. For example, using the ambiguous rule stated in the previous section, if the
parser receives the input:
expr - expr - expr

after reading the first three parts the parser has:
expr - expr

which matches the right side of the preceding grammar rule. The parser can reduce the input by applying
this rule. After applying the rule, the input becomes:
expr

which is the left side of the rule. The parser then reads the final part of the input:
- expr

and reduces it. This produces a left associative interpretation.

However, the parser can also look ahead in the input stream. If, when the parser receives the first three
parts:
expr - expr

it reads the input stream until it has the next two parts, it then has the following input:
expr - expr - expr

Applying the rule to the rightmost three parts reduces them to expr. The parser then has the expression:
expr - expr

Reducing the expression once more produces a right associative interpretation.

Therefore, at the point where the parser has read only the first three parts, it can take two valid actions: a
shift or a reduce. If the parser has no rule to decide between the two actions, a shift/reduce conflict
results.

Chapter 12. lex and yacc Program Information 295

A similar situation occurs if the parser can choose between two valid reduce actions. That situation is
called a reduce/reduce conflict.

How the Parser Responds to Conflicts
When shift/reduce or reduce/reduce conflicts occur, the yacc command produces a parser by selecting
one of the valid steps wherever it has a choice. If you do not provide a rule that makes the choice, yacc
uses two rules:

1. In a shift/reduce conflict, choose the shift.

2. In a reduce/reduce conflict, reduce by the grammar rule that can be applied at the earliest point in the
input stream.

Using actions within rules can cause conflicts if the action must be performed before the parser is sure
which rule is being recognized. In such cases, the preceding rules result in an incorrect parser. For this
reason, the yacc program reports the number of shift/reduce and reduce/reduce conflicts resolved using
the preceding rules.

Turning on Debug Mode for a yacc-Generated Parser

You can access the debugging code either by invoking the yacc command with the -t option or compiling
the y.tab.c file with -DYYDEBUG.

For normal operation, the yydebug external integer variable is set to 0. However, if you set it to a nonzero
value, the parser generates a description of:

v The input tokens it receives.

v The actions it takes for each token while parsing an input stream.

Set this variable in one of the following ways:

v Put the following C language statement in the declarations section of the yacc grammar file:
int yydebug = 1;

v Use dbx to execute the final parser, and set the variable ON or OFF using dbx commands.

Example Program for the lex and yacc Programs
This section describes example programs for the lex and yacc commands. Together, these example
programs create a simple, desk-calculator program that performs addition, subtraction, multiplication, and
division operations. This calculator program also allows you to assign values to variables (each designated
by a single, lowercase letter) and then use the variables in calculations. The files that contain the example
lex and yacc programs are:

File Content
calc.lex (“Lexical
Analyzer Source
Code” on
page 299)

Specifies the lex command specification file that defines the lexical analysis rules.

calc.yacc
(“Parser Source
Code” on
page 297)

Specifies the yacc command grammar file that defines the parsing rules, and calls the yylex
subroutine created by the lex command to provide input.

The following descriptions assume that the calc.lex and calc.yacc example programs are found in your
current directory.

Compiling the Example Program
Perform the following steps, in order, to create the desk calculator example program:

296 Writing and Debugging Programs

1. Process the yacc grammar file using the -d optional flag (which tells the yacc command to create a
file that defines the tokens used in addition to the C language source code):
yacc -d calc.yacc

2. Use the ls command to verify that the following files were created:

y.tab.c The C language source file that the yacc command created for the parser.
y.tab.h A header file containing define statements for the tokens used by the parser.

3. Process the lex specification file:
lex calc.lex

4. Use the ls command to verify that the following file was created:

lex.yy.c The C language source file that the lex command created for the lexical analyzer.

5. Compile and link the two C language source files:
cc y.tab.c lex.yy.c

6. Use the ls command to verify that the following files were created:

y.tab.o The object file for the y.tab.c source file
lex.yy.o The object file for the lex.yy.c source file
a.out The executable program file

To then run the program directly from the a.out file, enter:
$ a.out

Or, to move the program to a file with a more descriptive name, as in the following example, and run it,
enter:
$ mv a.out calculate
$ calculate

In either case, after you start the program, the cursor moves to the line below the $ (command
prompt). Then enter numbers and operators in calculator fashion. When you press the Enter key, the
program displays the result of the operation. After you assign a value to a variable:
m=4 <enter>
_

the cursor moves to the next line. When you use the variable in subsequent calculations, it will have
the assigned value:
m+5 <enter>
9
_

Parser Source Code
The following example shows the contents of the calc.yacc file. This file has entries in all three sections of
a yacc grammar file: declarations, rules, and programs.
%{
#include <stdio.h>

int regs[26];
int base;

%}

%start list

%token DIGIT LETTER

Chapter 12. lex and yacc Program Information 297

%left '|'
%left '&'
%left '+' '-'
%left '*' '/' '%'
%left UMINUS /*supplies precedence for unary minus */

%% /* beginning of rules section */

list: /*empty */
|
list stat '\n'
|
list error '\n'
{

yyerrok;
}
;

stat: expr
{

printf("%d\n",$1);
}
|
LETTER '=' expr
{

regs[$1] = $3;
}

;

expr: '(' expr ')'
{

$$ = $2;
}
|
expr '*' expr
{

$$ = $1 * $3;
}
|
expr '/' expr
{

$$ = $1 / $3;
}
|
expr '%' expr
{

$$ = $1 % $3;
}
|
expr '+' expr
{

$$ = $1 + $3;
}
|

expr '-' expr
{

$$ = $1 - $3;
}
|
expr '&' expr
{

$$ = $1 & $3;
}
|
expr '|' expr
{

$$ = $1 | $3;
}
|

298 Writing and Debugging Programs

'-' expr %prec UMINUS
{

$$ = -$2;
}
|
LETTER
{

$$ = regs[$1];
}

|
number
;

number: DIGIT
{

$$ = $1;
base = ($1==0) ? 8 : 10;

} |
number DIGIT
{

$$ = base * $1 + $2;
}
;

%%
main()
{
return(yyparse());
}

yyerror(s)
char *s;
{

fprintf(stderr, "%s\n",s);
}

yywrap()
{

return(1);
}

Declarations Section: This section contains entries that:

v Include standard I/O header file.

v Define global variables.

v Define the list rule as the place to start processing.

v Define the tokens used by the parser.

v Define the operators and their precedence.

Rules Section: The rules section defines the rules that parse the input stream.

Programs Section: The programs section contains the following subroutines. Because these subroutines
are included in this file, you do not need to use the yacc library when processing this file.

main The required main program that calls the yyparse subroutine to start the program.
yyerror(s) This error-handling subroutine only prints a syntax error message.
yywrap The wrap-up subroutine that returns a value of 1 when the end of input occurs.

Lexical Analyzer Source Code
Following are the contents of the calc.lex file. This file contains include statements for standard input and
output, as well as for the y.tab.h file. The yacc program generates that file from the yacc grammar file
information if you use the -d flag with the yacc command. The y.tab.h file contains definitions for the
tokens that the parser program uses. In addition, calc.lex contains the rules to generate these tokens from
the input stream.

Chapter 12. lex and yacc Program Information 299

%{

#include <stdio.h>
#include "y.tab.h"
int c;
extern int yylval;
%}
%%
" " ;
[a-z] {

c = yytext[0];
yylval = c - 'a';
return(LETTER);

}
[0-9] {

c = yytext[0];
yylval = c - '0';
return(DIGIT);

}
[|a-z0-9\b] {

c = yytext[0];
return(c);

}

300 Writing and Debugging Programs

Chapter 13. Logical Volume Programming

This chapter provides an introduction to programming considerations for the Logical Volume Manager
(LVM), which consists of the library of LVM subroutines and the logical volume device driver.

The Logical Volume Manager (LVM) consists of two main components.

The first is the library of LVM subroutines. These subroutines define volume groups and maintain the
logical and physical volumes of volume groups. They are used by the system management commands to
perform system management tasks for the logical and physical volumes of a system. The programming
interface for the library of LVM subroutines is available to anyone who wishes to provide alternatives or to
expand the function of the system management commands for logical volumes.

The other main component of LVM is the logical volume device driver. The logical volume device driver is
a pseudo-device driver that processes all logical I/O. It exists as a layer between the file system and the
disk device drivers. The logical volume device driver converts a logical address to a physical address,
handles mirroring and bad-block relocation, and then sends the I/O request to the specific disk device
driver. Interfaces to the logical volume device driver are provided by the open, close, read, write, and
ioctl subroutines.

A description of the readx and writex extension parameters and those ioctl operations specific to the
logical volume device driver is found in Understanding the Logical Volume Device Driver in AIX 5L Version
5.1 Kernel Extensions and Device Support Programming Concepts.

See the Logical Volume Storage Overview in AIX 5L Version 5.1 System Management Guide: Operating
System and Devices for more information on logical volumes.

List of Logical Volume Subroutines

The library of LVM subroutines is a main component of the Logical Volume Manager.

LVM subroutines define and maintain the logical and physical volumes of a volume group. They are used
by the system management commands to perform system management for the logical and physical
volumes of a system. The programming interface for the library of LVM subroutines is available to anyone
who wishes to provide alternatives to or expand the function of the system management commands for
logical volumes.

Note: The LVM subroutines use the sysconfig system call, which requires root user authority, to query
and update kernel data structures describing a volume group. You must have root user authority to use the
services of the LVM subroutine library.

The following services are available:

lvm_querylv Queries a logical volume and returns all pertinent
information.

lvm_querypv Queries a physical volume and returns all pertinent
information.

lvm_queryvg Queries a volume group and returns pertinent information.
lvm_queryvgs Queries the volume groups of the system and returns

information for groups that are varied on-line.

© Copyright IBM Corp. 1997, 2001 301

../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/close.htm#HDRA08793A0
../../libs/basetrf2/read.htm#HDRJO11350GACO
../../libs/basetrf2/write.htm#HDRCI2270GACO
../../libs/basetrf1/ioctl32.htm
../../aixprggd/kernextc/logical_vol_dd.htm#HDRA156C174
../../aixbman/admnconc/lvm_overview.htm
../../libs/basetrf1/lvm_querylv.htm#HDRA135916B
../../libs/basetrf1/lvm_querypv.htm#HDRA1359541
../../libs/basetrf1/lvm_queryvg.htm#HDRA1359595
../../libs/basetrf1/lvm_queryvgs.htm#HDRA13595E1

302 Writing and Debugging Programs

Chapter 14. make Command

This chapter provides information about simplifying the recompiling and relinking processes using the
make command. It is a useful utility that can save you time when managing projects.

The make program is most useful for medium-sized programming projects. It does not solve the problems
of maintaining more than one source version and of describing large programs (see sccs command).

The make command assists you in maintaining a set of programs, usually pertaining to a particular
software project. It does this by building up-to-date versions of programs.

In any project, you normally link programs from object files and libraries. Then, after modifying a source
file, you recompile some of the sources and relink the program as often as required.

The make command simplifies the process of recompiling and relinking programs. It allows you to record,
once only, specific relationships among files. You can then use the make command to automatically
perform all updating tasks.

Using the make command to maintain programs, you can:

v Combine instructions for creating a large program in a single file.

v Define macros to use within the make command description file.

v Use shell commands to define the method of file creation, or use the make program to create many of
the basic types of files.

v Create libraries.

The make command requires a description file, file names, specified rules to tell the make program how to
build many standard types of files, and time stamps of all system files.

Creating a Description File

The make program uses information from a description file that you create to build a file containing the
completed program, which is then called a target file. The description file tells the make command how to
build the target file, which files are involved, and what their relationships are to the other files in the
procedure. The description file contains the following information:

v Target file name

v Parent file names that make up the target file

v Commands that create the target file from the parent files

v Definitions of macros in the description file

v User-specified rules for building target files

By checking the dates of the parent files, the make program determines which files to create to get an
up-to-date copy of the target file. If any parent file was changed more recently than the target file, the
make command creates the files affected by the change, including the target file.

If you name the description file makefile or Makefile and are working in the directory containing that
description file, enter:
make

to update the first target file and its parent files. Updating occurs regardless of the number of files changed
since the last time the make command created the target file. In most cases, the description file is easy to
write and does not change often.

© Copyright IBM Corp. 1997, 2001 303

../../cmds/aixcmds5/sccs.htm#HDRA180945
../../cmds/aixcmds3/make.htm#HDRA0949729

To keep many different description files in the same directory, name them differently. Then, enter:
make -f Desc-File

substituting the name of the description file for the Desc-File variable.

Format of a make Description File Entry
The general form of an entry is:
target1 [target2..]:[:] [parent1..][; command]...
[(tab) commands]

Items inside brackets are optional. Targets and parents are file names (strings of letters, numbers, periods,
and slashes). The make command recognizes wildcard characters such as * (asterisk) and ? (question
mark). Each line in the description file that contains a target file name is called a dependency line. Lines
that contain commands must begin with a tab character.

Note: The make command uses the $ (dollar sign) to designate a macro. Do not use that symbol in
file names of target or parent files, or in commands in the description file unless you are using a
predefined make command macro.

Begin comments in the description file with a # (pound sign). The make program ignores the # and all
characters that follow it. The make program also ignores blank lines.

Except for comment lines, you can enter lines longer than the line width of the input device. To continue a
line on the next line, put a \ (backslash) at the end of the line to be continued.

Using Commands in a make Description File
A command is any string of characters except a # (pound sign) or a new-line character. A command can
use a # only if it is in quotes. Commands can appear either after a semicolon on a dependency line or on
lines beginning with a tab that immediately follows a dependency line.

When defining the command sequence for a particular target, specify one command sequence for each
target in the description file, or else separate command sequences for special sets of dependencies. Do
not do both.

To use one command sequence for every use of the target file, use a single : (colon) following the target
name on the dependency line. For example:
test: dependency list1...

command list...
.
.
.

test: dependency list2...

defines a target name, test, with a set of parent files and a set of commands to create the file. The target
name, test, can appear in other places in the description file with another dependency list.

However, that name cannot have another command list in the description file. When one of the files that
test depends on changes, the make command runs the commands in that one command list to create the
target file named test.

To specify more than one set of commands to create a particular target file, enter more than one
dependency definition. Each dependency line must have the target name, followed by :: (two colons), a
dependency list, and a command list that the make command uses if any of the files in the dependency
list changes. For example:

304 Writing and Debugging Programs

test:: dependency list1...
command list1...

test:: dependency list2...
command list2...

defines two separate processes to create the target file, test. If any of the files in dependency list1
changes, the make command runs command list1. If any of the files in dependency list2 changes, the
make command runs command list2. To avoid conflicts, a parent file cannot appear in both dependency
list1 and dependency list2.

Note: The make command passes the commands from each command line to a new shell. Be
careful when using commands that have meaning only within a single shell process; for example, cd
and shell commands. The make program forgets these results before running the commands on the
next line.

To group commands together, use the \ (backslash) at the end of a command line. The make program
then continues that command line into the next line in the description file. The shell sends both of these
lines to a single new shell.

Calling the make Program from a Description File
To nest calls to the make program within a make command description file, include the $(MAKE) macro in
one of the command lines in the file.

If the -n flag is set when the $(MAKE) macro is found, the new copy of the make command does not
execute any of its commands, except another $(MAKE) macro. Use this characteristic to test a set of
description files that describe a program. Enter the command:
make -n

The make program does not perform any of the program operations. However, it does write all of the
steps needed to build the program, including output from lower-level calls to the make command.

Preventing the make Program from Writing Commands
To prevent the make program from writing the commands while it runs, do any of the following:

v Use the -s flag on the command line when using the make command.

v Put the fake target name .SILENT on a dependency line by itself in the description file. Because
.SILENT is not a real target file, it is called a fake target. If .SILENT has prerequisites, the make
command does not display any of the commands associated with them.

v Put an @ (at sign) in the first character position of each line in the description file that the make
command should not write.

Preventing the make Program from Stopping on Errors
The make program normally stops if any program returns a nonzero error code. Some programs return
status that has no meaning.

To prevent the make command from stopping on errors, do any of the following:

v Use the -i flag with the make command on the command line.

v Put the fake target name .IGNORE on a dependency line by itself in the description file. Because
.IGNORE is not a real target file, it is called a fake target. If .IGNORE has prerequisites, the make
command ignores errors associated with them.

v Put a - (minus sign) in the first character position of each line in the description file where the make
command should not stop on errors.

Chapter 14. make Command 305

Example of a Description File
For example, a program named prog is made by compiling and linking three C language files x.c, y.c,
and z.c. The x.c and y.c files share some declarations in a file named defs. The z.c file does not share
those declarations. The following is an example of a description file, which creates the prog program:
Make prog from 3 object files
prog: x.o y.o z.o
Use the cc program to make prog

cc x.o y.o z.o -o prog
Make x.o from 2 other files
x.o: x.c defs
Use the cc program to make x.o

cc -c x.c
Make y.o from 2 other files
y.o: y.c defs
Use the cc program to make y.o

cc -c y.c
Make z.o from z.c
z.o: z.c
Use the cc program to make z.o

cc -c z.c

If this file is called makefile, just enter the command:
make

to update the prog program after making changes to any of the four source files: x.c, y.c, z.c, or defs.

Making the Description File Simpler
To make this file simpler, use the internal rules of the make program. Based on file-system naming
conventions, the make command recognizes three .c files corresponding to the needed .o files. This
command can also generate an object from a source file, by issuing a cc -c command.

Based on these internal rules, the description file becomes:
Make prog from 3 object files
prog: x.o y.o z.o
Use the cc program to make prog

cc x.o y.o z.o -o prog
Use the file defs and the .c file
when making x.o and y.o
x.o y.o: defs

Internal Rules for the make Program

The internal rules for the make program are in a file that looks like a description file. When the -r flag is
specified, the make program does not use the internal rules file. You must supply the rules to create the
files in your description file. The internal-rules file contains a list of file-name suffixes (such as .o, or .a)
that the make command understands, plus rules that tell the make command how to create a file with one
suffix from a file with another suffix. If you do not change the list, the make command understands the
following suffixes:

.a Archive library.

.C C++ source file.

.C\x SCCS file containing C++ source file.

.c C source file.

.cx Source Code Control System (SCCS) file containing C source file.

.f FORTRAN source file.

.fx SCCS file containing FORTRAN source file.

.h C language header file.

306 Writing and Debugging Programs

.hx SCCS file containing C language header file.

.l lex source grammar.

.lx SCCS file containing lex source grammar.

.o Object file.

.s Assembler source file.

.sx SCCS file containing assembler source file.

.sh Shell-command source file.

.shx SCCS file containing shell-command source file.

.y yacc-c source grammar.

.yx SCCS file containing yacc-c source grammar.

The list of suffixes is similar to a dependency list in a description file, and follows the fake target name
.SUFFIXES. Because the make command looks at the suffixes list in left-to-right order, the order of the
entries is important.

The make program uses the first entry in the list that satisfies the following two requirements:

v The entry matches input and output suffix requirements for the current target and dependency files.

v The entry has a rule assigned to it.

The make program creates the name of the rule from the two suffixes of the files that the rule defines. For
example, the name of the rule to transform a .c file to an .o file is .c.o.

To add more suffixes to the list, add an entry for the fake target name .SUFFIXES in the description file.
For a .SUFFIXES line without any suffixes following the target name in the description file, the make
command erases the current list. To change the order of the names in the list, erase the current list and
then assign a new set of values to .SUFFIXES.

Example of Default Rules File
The following example shows a portion of the default rules file:
Define suffixes that make knows.
.SUFFIXES: .o .C .C\x .c .cx .f .fx .y .yx .l .lx .s .sx .sh .shx .h .hx .a
#Begin macro definitions for
#internal macros
YACC=yacc
YFLAGS=
ASFLAGS=
LEX=lex
LFLAGS=
CC=cc
CCC=xlC
AS=as
CFLAGS=
CCFLAGS=
End macro definitions for
internal macros
Create a .o file from a .c
file with the cc program.
c.o:

$(CC) $(CFLAGS) -c $<

Create a .o file from
a .s file with the assembler.
s.o:

(AS)(ASFLAGS) -o $@ $<

.y.o:
Use yacc to create an intermediate file

$(YACC) $(YFLAGS) $<
Use cc compiler

$(CC) $(CFLAGS) -c y.tab.c

Chapter 14. make Command 307

Erase the intermediate file
rm y.tab.c

Move to target file
mv y.tab.o $@.

.y.c:
Use yacc to create an intermediate file

$(YACC) $(YFLAGS) $<
Move to target file

mv y.tab.c $@

Single-Suffix Rules
The make program has a set of single-suffix rules to build source files directly into a target file name that
does not have a suffix (command files, for example). The make program also has rules to change the
following source files with suffix to object files without a suffix:

.C: From a C++ language source file.

.C\x: From an SCCS C++ language source file.

.c: From a C language source file.

.cx: From an SCCS C language source file.

.sh: From a shell file.

.shx: From an SCCS shell file.

For example, to maintain the cat program, enter:
make cat

if all of the needed source files are in the current directory.

Using the Make Command with Archive Libraries
Use the make command to build libraries and library files. The make program recognizes the suffix .a as a
library file. The internal rules for changing source files to library files are:

.C.a C++ source to archive.

.C\x.a SCCS C++ source to archive.

.c.a C source to archive.

.cx.a SCCS C source to archive.

.sx.a SCCS assembler source to archive.

.f.a Fortran source to archive.

.fx.a SCCS Fortran source to archive.

Changing Macros in the Rules File
The make program uses macro definitions in the rules file. To change these macro definitions, enter new
definitions for each macro on the command line or in the description file. The make program uses the
following macro names to represent the language processors that it uses:

AS For the assembler.
CC For the C compiler.
CCC For the C++ compiler.
YACC For the yacc command.
LEX For the lex command.

The make program uses the following macro names to represent the flags that it uses:

CFLAGS For C compiler flags.
CCFLAGS For C++ compiler flags.

308 Writing and Debugging Programs

YFLAGS For yacc command flags.
LFLAGS For lex command flags.

Therefore, the command:
make "CC=NEWCC"

directs the make command to use the NEWCC program in place of the usual C language compiler. Similarly,
the command:
make "CFLAGS=-O"

directs the make command to optimize the final object code produced by the C language compiler.

To review the internal rules that the make command uses, refer to the /usr/ccs/lib/make.cfg file.

Defining Default Conditions in a Description File
When the make command creates a target file but cannot find commands in the description file or internal
rules to create a file, it looks at the description file for default conditions. To define the commands that the
make command performs in this case, use the .DEFAULT target name in the description file:
.DEFAULT:

command
command

.

.

.

Because .DEFAULT is not a real target file, it is called a fake target. Use the .DEFAULT fake target name
for an error-recovery routine or for a general procedure to create all files in the program that are not
defined by an internal rule of the make program.

Including Other Files in a Description File
Include files other than the current description file by using the word include as the first word on any line
in the description file. Follow the word with a blank or a tab, and then the file name for the make
command to include in the operation.

Note: Only one file is supported per include statement.

For example:
include /home/tom/temp

include /home/tom/sample

directs the make command to read the temp and sample files and the current description file to build the
target file.

Do not use more than 16 levels of nesting with the include files feature.

Defining and Using Macros in a Description File

A macro is a name (or label) to use in place of several other names. It is a way of writing the longer string
of characters in shorthand. To define a macro:

1. Start a new line with the name of the macro.

2. Follow the name with an = (equal sign).

3. To the right of the = (equal sign), enter the string of characters that the macro name represents.

Chapter 14. make Command 309

The macro definition can contain blanks before and after the = (equal sign) without affecting the result.
The macro definition cannot contain a : (colon) or a tab before the = (equal sign).

The following are examples of macro definitions:
Macro -"2" has a value of "xyz"
2 = xyz

Macro "abc" has a value of "-ll -ly"
abc = -ll -ly

Macro "LIBES" has a null value
LIBES =

A macro that is named, but not defined, has the same value as the null string.

Using Macros in a Description File
After defining a macro in a description file, use the macro in description file commands by putting a $
(dollar sign) before the name of the macro. If the macro name is longer than one character, put ()
(parentheses) or { } (braces) around it. The following are examples of using macros:
$(CFLAGS)
$2
$(xy)
$Z
$(Z)

The last two examples in the previous list have the same effect.

The following fragment shows how to define and use some macros:
OBJECTS is the 3 files x.o, y.o and
z.o (previously compiled)
OBJECTS = x.o y.o z.o
LIBES is the standard library
LIBES = -lc
prog depends on x.o y.o and z.o
prog: $(OBJECTS)
Link and load the 3 files with
the standard library to make prog

cc $(OBJECTS) $(LIBES) -o prog

The make program using this description file links and loads the three object files (x.o, y.o, and z.o) with
the libc.a library.

A macro definition entered on the command line overrides any duplicate macro definitions in the
description file. Therefore, the command:
make "LIBES= -ll"

loads the files with the lex (-11) library.

Note: When entering macros with blanks in them on the command line, put ″ ″ (double quotation
marks) around the macro. Without the double quotation marks, the shell interprets the blanks as
parameter separators and not as part of the macro.

The make command handles up to 10 levels of nested macro expansion. Based on the definitions in the
following example:
macro1=value1

macro2=macro1

the expression $($(macro2)) would evaluate to value1.

310 Writing and Debugging Programs

The evaluation of a macro occurs each time the macro is referenced. It is not evaluated when it is defined.
If a macro is defined but never used, it will never be evaluated. This is especially important if the macro is
assigned values that will be interpreted by the shell, particularly if the value might change. A variable
declaration such as:
OBJS = 'ls *.o'

could change in value if referenced at different times during the process of building or removing object
files. It does not hold the value of the ls command at the time the OBJS macro is defined.

Internal Macros
The make program has built-in macro definitions for use in the description file. These macros help specify
variables in the description file. The make program replaces the macros with one of the following values:

$@ Name of the current target file.
$$@ Label name on the dependency line.
$? Names of the files that have changed more recently than the target.
$< Parent file name of the out-of-date file that caused a target file to be created.
$* Name of the current parent file without the suffix.
$% Name of an archive library member.

Target File Name
If the $@ macro is in the command sequence in the description file, the make command replaces the
symbol with the full name of the current target file before passing the command to the shell to be run. The
make program replaces the symbol only when it runs commands from the description file to create the
target file.

Label Name
If the $$@ macro is on the dependency line in a description file, the make command replaces this symbol
with the label name that is on the left side of the colon in the dependency line. For example, if the
following is included on a dependency line:
cat: $$@.c

the make program translates it to:
cat: cat.c

when the make command evaluates the expression. Use this macro to build a group of files, each of
which has only one source file. For example, to maintain a directory of system commands, use a
description file like:
Define macro CMDS as a series
of command names
CMDS = cat dd echo date cc cmp comm ar ld chown
Each command depends on a .c file
$(CMDS): $$@.c
Create the new command set by compiling the out of
date files ($?) to the target file name ($@)

$(CC) -O $? -o $@

The make program changes the $$(@F) macro to the file part of $@ when it runs. For example, use this
symbol when maintaining the usr/include directory while using a description file in another directory. That
description file is similar to the following:
Define directory name macro INCDIR
INCDIR = /usr/include
Define a group of files in the directory
with the macro name INCLUDES
INCLUDES = \

$(INCDIR)/stdio.h \
$(INCDIR)/pwd.h \

Chapter 14. make Command 311

$(INCDIR)/dir.h \
$(INCDIR)/a.out.h \

Each file in the list depends on a file
of the same name in the current directory
$(INCLUDES): $$(@F)
Copy the younger files from the current
directory to /usr/include

cp $? $@
Set the target files to read only status

chmod 0444 $@

This description file creates a file in the /usr/include directory when the corresponding file in the current
directory has been changed.

Younger Files
If the $? macro is in the command sequence in the description file, the make command replaces the
symbol with a list of parent files that have been changed since the target file was last changed. The make
program replaces the symbol only when it runs commands from the description file to create the target file.

First Out-of-Date File
If the $< macro is in the command sequence in the description file, the make command replaces the
symbol with the name of the file that started the file creation. The file name is the name of the parent file
that was out-of-date with the target file, and therefore caused the make command to create the target file
again.

In addition, use a letter (D or F) after the < (less-than sign) to get either the directory name (D) or the file
name (F) of the first out-of-date file. For example, if the first out-of-date file is:
/home/linda/sample.c

then the make command gives the following values:
$(<D) = /home/linda
$(<F) = sample.c
$< = /home/linda/sample.c

The make program replaces this symbol only when the program runs commands from its internal rules or
from the .DEFAULT list.

Current File-Name Prefix
If the $* macro is in the command sequence in the description file, the make command replaces the
symbol with the file-name part (without the suffix) of the parent file that the make command is currently
using to generate the target file. For example, if the make command is using the file:
test.c

then the $* macro represents the file name test.

In addition, use a letter (D or F) after the * (asterisk) to get either the directory name (D) or the file name
(F) of the current file.

For example, the make command uses many files (specified either in the description file or in the internal
rules) to create a target file. Only one of those files (the current file) is used at any moment. If that current
file is:
/home/tom/sample.c

then the make command gives the following values for the macros:
$(*D) = /home/tom
$(*F) = sample
$* = /home/tom/sample

312 Writing and Debugging Programs

The make program replaces this symbol only when running commands from its internal rules (or from the
.DEFAULT list), but not when running commands from a description file.

Archive Library Member
If the $% macro is in a description file, and the target file is an archive library member, the make
command replaces the macro symbol with the name of the library member. For example, if the target file
is:
lib(file.o)

then the make command replaces the $% macro with the member name, file.o.

Changing Macro Definitions in a Command
When macros in the shell commands are defined in the description file, you can change the values that
the make command assigns to the macro. To change the assignment of the macro, put a : (colon) after
the macro name, followed by a replacement string. The form is as follows:
$(macro:string1=string2)

When the make command reads the macro and begins to assign the values to the macro based on the
macro definition, the command replaces each string1 in the macro definition with a value of string2. For
example, if the description file contains the macro definition:
FILES=test.o sample.o form.o defs

you can replace the form.o file with a new file, input.o, by using the macro in the description-file
commands, as follows:
cc -o $(FILES:form.o=input.o)

Changing the value of a macro in this manner is useful when maintaining archive libraries. For more
information, see the ar command.

How the make Command Creates a Target File

The make command creates a file containing the completed program called a target file, using a
step-by-step procedure.

The make program:

1. Finds the name of the target file in the description file or in the make command

2. Ensures that the files on which the target file depends exist and are up-to-date

3. Determines if the target file is up-to-date with the files it depends on.

If the target file or one of the parent files is out-of-date, the make program creates the target file using one
of the following:

v Commands from the description file

v Internal rules to create the file (if they apply)

v Default rules from the description file.

If all files in the procedure are up-to-date when running the make program, the make command displays a
message to indicate that the file is up-to-date, and then stops. If some files have changed, the make
command builds only those files that are out-of-date. The command does not rebuild files that are already
current.

When the make program runs commands to create a target file, it replaces macros with their values,
writes each command line, and then passes the command to a new copy of the shell.

Chapter 14. make Command 313

Using the make Command with Source Code Control System (SCCS)
Files

The SCCS command and file system is primarily used to control access to a file, track who altered the file,
why it was altered, and what was altered. An SCCS file is any text file controlled with SCCS commands.
Using non-SCCS commands to edit SCCS files can damage the SCCS files. See “Chapter 23. Source
Code Control System (SCCS)” on page 629 to learn more about SCCS.

All SCCS files use the prefix s. to set them apart from regular text files. The make program does not
recognize references to prefixes of file names. Therefore, do not refer to SCCS files directly within the
make command description file. The make program uses a different suffix, the x (tilde), to represent SCCS
files. Therefore, .cx.o refers to the rule that transforms an SCCS C language source file into an object file.
The internal rule is:
.cx.o:

$(GET) $(GFLAGS) -p $< >$*.c
$(CC) $(CFLAGS) -c $*.c
-rm -f $*.c

The x (tilde) added to any suffix changes the file search into an SCCS file-name search, with the actual
suffix named by the . (period) and all characters up to (but not including) the x (tilde). The GFLAGS macro
passes flags to the SCCS to determine which SCCS file version to use.

The make program recognizes the following SCCS suffixes:

.C\x C++ source

.cx c source

.yx yacc source grammar

.sx Assembler source

.shx Shell

.hx Header

.fx FORTRAN

.lx lex source

The make program has internal rules for changing the following SCCS files:

.C\x.a:

.C\x.c:

.C\x.o:

.cx:

.cx.a:

.cx.c:

.cx.o:

.fx:

.fx.a:

.fx.o:

.fx.f:

.hx.h:

.lx.o:

.sx.a:

314 Writing and Debugging Programs

.shx:

.sx.o:

.yx.c:

.yx.o:

Description Files Stored in the Source Code Control System (SCCS)
If you specify a description file, or a file named makefile or Makefile is in the current directory, the make
command does not look for a description file within SCCS. If a description file is not in the current directory
and you enter the make command, the make program looks for an SCCS file named either s.makefile or
s.Makefile. If either of these files are present, the make command uses a get command to direct SCCS to
build the description file from that source file. When the SCCS generates the description file, the make
command uses the file as a normal description file. When the make command finishes executing, it
removes the created description file from the current directory.

Using the make Command with Non-Source Code Control System
(SCCS) Files

Start the make program from the directory that contains the description file for the file to create. The
variable name desc-file represents the name of that description file. Then, enter the command:
make -f desc-file

on the command line. If the name of the description file is makefile or Makefile, you do not have to use
the -f flag. Enter macro definitions, flags, description file names, and target file names along with the make
command on the command line as follows:
make [flags] [macro definitions] [targets]

The make program then examines the command-line entries to determine what to do. First, it looks at all
macro definitions on the command line (entries that are enclosed in quotes and have equal signs in them)
and assigns values to them. If the make program finds a definition for a macro on the command line
different from the definition for that macro in the description file, it chooses the command-line definition for
the macro.

Next, the make program looks at the flags. For more information, see the make command for a list of the
flags that it recognizes.

The make program expects the remaining command-line entries to be the names of target files to be
created. Any shell commands enclosed in back quotes that generate target names are performed by the
make command. Then the make program creates the target files in left-to-right order. Without a target file
name, the make program creates the first target file named in the description file that does not begin with
a period. With more than one description file specified, the make command searches the first description
file for the name of the target file.

How the make Command Uses the Environment Variables
Each time the make command runs, it reads the current environment variables and adds them to its
defined macros. Using the MAKEFLAGS macro or the MFLAGS macro, the user can specify flags to be
passed to the make command. If both are set, the MAKEFLAGS macro overrides the MFLAGS macro.
The flags specified using these variables are passed to the make command along with any command-line
options. In the case of recursive calls to the make command, using the $(MAKE) macro in the description
file, the make command passes all flags with each invocation.

When the make command runs, it assigns macro definitions in the following order:

Chapter 14. make Command 315

1. Reads the MAKEFLAGS environment variable.

If the MAKEFLAGS environment variable is not present or null, the make command checks for a
non-null value in the MFLAGS environment variable. If one of these variables has a value, the make
command assumes that each letter in the value is an input flag. The make program uses these flags
(except for the -f, -p, and -d flags, which cannot be set from the MAKEFLAGS or MFLAGS
environment variable) to determine its operating conditions.

2. Reads and sets the input flags from the command line. The command line adds to the previous
settings from the MAKEFLAGS or MFLAGS environment variable.

3. Reads macro definitions from the command line. The make command ignores any further assignments
to these names.

4. Reads the internal macro definitions.

5. Reads the environment. The make program treats the environment variables as macro definitions and
passes them to other shell programs.

Example of a Description File
The following example description file could maintain the make program. The source code for the make
command is spread over a number of C language source files and a yacc grammar.
Description file for the Make program
Macro def: send to be printed
P = qprt
Macro def: source filenames used

FILES = Makefile version.c defs main.c \
doname.c misc.c files.c \
dosy.c gram.y lex.c gcos.c

Macro def: object filenames used
OBJECTS = version.o main.o doname.o \

misc.o files.o dosys.o \
gram.o

Macro def: lint program and flags
LINT = lint -p
Macro def: C compiler flags
CFLAGS = -O
make depends on the files specified
in the OBJECTS macro definition
make: $(OBJECTS)
Build make with the cc program

cc $(CFLAGS) $(OBJECTS) -o make
Show the file sizes

@size make

The object files depend on a file
named defs

$(OBJECTS): defs
The file gram.o depends on lex.c
uses internal rules to build gram.o
gram.o: lex.c
Clean up the intermediate files
clean:

-rm *.o gram.c
-du

Copy the newly created program
to /usr/bin and deletes the program
from the current directory
install:

@size make /usr/bin/make
cp make /usr/bin/make ; rm make

Empty file "print" depends on the
files included in the macro FILES
print: $(FILES)
Print the recently changed files

pr $? | $P

316 Writing and Debugging Programs

Change the date on the empty file,
print, to show the date of the last
printing

touch print

Check the date of the old
file against the date
of the newly created file
test:

make -dp | grep -v TIME >1zap
/usr/bin/make -dp | grep -v TIME >2zap
diff 1zap 2zap
rm 1zap 2zap

The program, lint, depends on the
files that are listed
lint: dosys.c doname.c files.c main.c misc.c \

version.c gram.c
Run lint on the files listed
LINT is an internal macro

$(LINT) dosys. doname.c files.c main.c \
misc.c version.c gram.c
rm gram.c

Archive the files that build make
arch:

ar uv /sys/source/s2/make.a $(FILES)

The make program usually writes out each command before issuing it.

The following output results from entering the simple make command in a directory containing only the
source and description file:
cc -O -c version.c
cc -O -c main.c
cc -O -c doname.c
cc -O -c misc.c
cc -O -c files.c
cc -O -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -O -c gram.c
cc version.o main.o doname.o misc.o files.o dosys.o

gram.o -o make
make: 63620 + 13124 + 764 + 4951 = 82459

None of the source files or grammars are specified in the description file. However, the make command
uses its suffix rules to find them and then issues the needed commands. The string of digits on the last
line of the previous example results from the size make command. Because the @ (at sign) on the size
command in the description file prevented writing of the command, only the sizes are written.

The output can be sent to a different printer or to a file by changing the definition of the P macro on the
command line, as follows:
make print "P = print -sp"

OR
make print "P = cat >zap"

Chapter 14. make Command 317

318 Writing and Debugging Programs

Chapter 15. m4 Macro Processor Overview

This chapter provides information about the m4 macro processor, which is a front-end processor for any
programming language being used in the operating system environment.

The m4 macro processor is useful in many ways. At the beginning of a program, you can define a
symbolic name or symbolic constant as a particular string of characters. You can then use the m4 program
to replace unquoted occurrences of the symbolic name with the corresponding string. Besides replacing
one string of text with another, the m4 macro processor provides the following features:

v Arithmetic capabilities

v File manipulation

v Conditional macro expansion

v String and substring functions

The m4 macro processor processes strings of letters and digits called tokens. The m4 program reads
each alphanumeric token and determines if it is the name of a macro. The program then replaces the
name of the macro with its defining text, and pushes the resulting string back onto the input to be
rescanned. You can call macros with arguments, in which case the arguments are collected and
substituted into the right places in the defining text before the defining text is rescanned.

The m4 program provides built-in macros such as define. You can also create new macros. Built-in and
user-defined macros work the same way.

Using the m4 Macro Processor

To use the m4 macro processor, enter the following command:
m4 [file]

The m4 program processes each argument in order. If there are no arguments or if an argument is -
(dash), m4 reads standard input as its input file. The m4 program writes its results to standard output.
Therefore, to redirect the output to a file for later use, use a command such as:
m4 [file] >outputfile

Creating a User-Defined Macro

define (MacroName, Replacement) Defines new macro MacroName with a value of
Replacement.

For example, if the following statement is in a program:
define(name, stuff)

The m4 program defines the string name as stuff. When the string name occurs in a program file, the
m4 program replaces it with the string stuff. The string name must be ASCII alphanumeric and must begin
with a letter or underscore. The string stuff is any text, but if the text contains parentheses the number of
open, or left, parentheses must equal the number of closed, or right, parentheses. Use the / (slash)
character to spread the text for stuff over multiple lines.

The open (left) parenthesis must immediately follow the word define. For example:

© Copyright IBM Corp. 1997, 2001 319

../../cmds/aixcmds3/m4.htm#HDRA258B9F

define(N, 100)
. . .

if (i > N)

defines N to be 100 and uses the symbolic constant N in a later if statement.

Macro calls in a program have the following form:
name(arg1,arg2, . . . argn)

A macro name is recognized only if it is surrounded by nonalphanumerics. Using the following example:
define(N, 100)
. . .

if (NNN > 100)

the variable NNN is not related to the defined macro N.

You can define macros in terms of other names. For example:
define(N, 100)
define(M, N)

defines both M and N to be 100. If you later change the definition of N and assign it a new value, M retains
the value of 100, not N.

The m4 macro processor expands macro names into their defining text as soon as possible. The string N
is replaced by 100. Then the string M is also replaced by 100. The overall result is the same as using the
following input in the first place:
define(M, 100)

The order of the definitions can be interchanged as follows:
define(M, N)
define(N, 100)

Now M is defined to be the string N, so when the value of M is requested later, the result is the value of N at
that time (because the M is replaced by N, which is replaced by 100).

Using the Quote Characters

To delay the expansion of the arguments of define, enclose them in quote characters. If you do not
change them, quote characters are ′ ’ (left and right single quotes). Any text surrounded by quote
characters is not expanded immediately, but quote characters are removed. The value of a quoted string is
the string with the quote characters removed. If the input is:
define(N, 100)
define(M, 'N')

the quote characters around the N are removed as the argument is being collected. The result of using
quote characters is to define M as the string N, not 100. The general rule is that the m4 program always
strips off one level of quote characters whenever it evaluates something. This is true even outside of
macros. To make the word define appear in the output, enter the word in quote characters, as follows:
'define' = 1;

Another example of using quote characters is redefining N. To redefine N, delay the evaluation by putting N
in quote characters. For example:
define(N, 100)
. . .
define('N', 200)

320 Writing and Debugging Programs

To prevent problems from occurring, quote the first argument of a macro. For example, the following
fragment does not redefine N:
define(N, 100)
. . .
define(N, 200)

The N in the second definition is replaced by 100. The result is the same as the following statement:
define(100, 200)

The m4 program ignores this statement because it can only define names, not numbers.

Changing the Quote Characters

Quote characters are normally ′ ’ (left or right single quotes). If those characters are not convenient,
change the quote characters with the following built-in macro:

changequote (l, r) Changes the left and right quote characters to the characters represented by
the l and r variables.

To restore the original quote characters, use changequote without arguments as follows:
changequote

Arguments

The simplest form of macro processing is replacing one string by another (fixed) string. However, macros
can also have arguments, so that you can use the macro in different places with different results. To
indicate where an argument is to be used within the replacement text for a macro (the second argument of
its definition), use the symbol $n to indicate the nth argument. When the macro is used, the m4 macro
processor replaces the symbol with the value of the indicated argument. For example, the symbol:
$2

refers to the second argument of a macro. Therefore, if you define a macro called bump as:
define(bump, $1 = $1 + 1)

the m4 program generates code to increment the first argument by 1. The bump(x) statement is equivalent
to x = x + 1.

A macro can have as many arguments as needed. However, you can access only nine arguments using
the $n symbol ($1 through $9). To access arguments past the ninth argument, use the shift macro.

shift (ParameterList) Returns all but the first element of ParameterList to perform a destructive
left shift of the list.

This macro drops the first argument and reassigns the remaining arguments to the $n symbols (second
argument to $1, third argument to $2. . . tenth argument to $9). Using the shift macro more than once
allows access to all arguments used with the macro.

The $0 macro returns the name of the macro. Arguments that are not supplied are replaced by null strings,
so that you can define a macro that concatenates its arguments like this:
define(cat, $1$2$3$4$5$6$7$8$9)

Thus:

Chapter 15. m4 Macro Processor Overview 321

cat(x, y, z)

is the same as:
xyz

Arguments $4 through $9 in this example are null since corresponding arguments were not provided.

The m4 program discards leading unquoted blanks, tabs, or new-line characters in arguments, but keeps
all other white space. Thus:
define(a, b c)

defines a to be b c.

Arguments are separated by commas. Use parentheses to enclose arguments containing commas, so that
the comma does not end the argument. For example:
define(a, (b,c))

has only two arguments. The first argument is a, and the second is (b,c). To use a comma or single
parenthesis, enclose it in quote characters.

Using a Built-In m4 Macro

The m4 program provides a set of predefined macros. The subsequent sections explain many of the
macros and their uses.

Removing a Macro Definition

undefine (′MacroName’) Removes the definition of a user-defined or built-in macro (′MacroName’)

For example:
undefine(′N')

removes the definition of N. Once you remove a built-in macro with the undefine macro, as follows:
undefine(′define')

then you cannot use its definition of the built-in macro again.

Single quotes are required in this case to prevent substitution.

Checking for a Defined Macro

ifdef (′MacroName’, Argument1, Argument2)
If macro MacroName is defined and is not defined to zero,
returns the value of Argument1. Otherwise, it returns
Argument2.

The ifdef macro permits three arguments. If the first argument is defined, the value of ifdef is the second
argument. If the first argument is not defined, the value of ifdef is the third argument. If there is no third
argument, the value of ifdef is null.

322 Writing and Debugging Programs

Using Integer Arithmetic

The m4 program provides the following built-in functions for doing arithmetic on integers only:

incr (Number) Returns the value of Number + 1.
decr (Number) Returns the value of Number - 1.
eval Evaluates an arithmetic expression.

Thus, to define a variable as one more than the Number value, use the following:
define(Number, 100)
define(Number1, ′incr(Number)')

This defines Number1 as one more than the current value of Number.

The eval function can evaluate expressions containing the following operators (listed in decreasing order
of precedence):

unary + and -

** or | (exponentiation)

* / % (modulus)

+ -

== != < <= > >=

!(not)

& or && (logical AND)

| or || (logical OR)

Use parentheses to group operations where needed. All operands of an expression must be numeric. The
numeric value of a true relation (for example, 1 > 0) is 1, and false is 0. The precision of the eval function
is 32 bits.

For example, define M to be 2==N+1 using the eval function as follows:
define(N, 3)
define(M, ′eval(2==N+1)')

Use quote characters around the text that defines a macro unless the text is very simple.

Manipulating Files

To merge a new file in the input, use the built-in include function.

include (File) Returns the contents of the file File.

For example:
include(FileName)

inserts the contents of FileName in place of the include command.

A fatal error occurs if the file named in the include macro cannot be accessed. To avoid a fatal error, use
the alternate form sinclude.

Chapter 15. m4 Macro Processor Overview 323

sinclude (File) Returns the contents of the file File, but does not report an error if it cannot access
File.

The sinclude (silent include) macro does not write a message, but continues if the file named cannot be
accessed.

Redirecting Output

The output of the m4 program can be redirected again to temporary files during processing, and the
collected material can be output upon command. The m4 program maintains nine possible temporary files,
numbered 1 through 9. If you use the built-in divert macro.

divert (Number) Changes output stream to the temporary file Number.

The m4 program writes all output from the program after the divert function at the end of temporary file,
Number. To return the output to the display screen, use either the divert or divert(0) function, which
resumes the normal output process.

The m4 program writes all redirected output to the temporary files in numerical order at the end of
processing. The m4 program discards the output if you redirect the output to a temporary file other than 0
through 9.

To bring back the data from all temporary files in numerical order, use the built-in undivert macro.

undivert (Number1, Number2...) Appends the contents of the indicated temporary files to
the current temporary file.

To bring back selected temporary files in a specified order, use the built-in undivert macro with arguments.
When using the undivert macro, the m4 program discards the temporary files that are recovered and
does not search the recovered data for macros.

The value of the undivert macro is not the diverted text.

divnum Returns the value of the currently active temporary file.

If you do not change the output file with the divert macro, the m4 program puts all output in a temporary
file named 0.

Using System Programs in a Program

You can run any program in the operating system from a program by using the built-in syscmd macro. For
example, the following statement runs the date program:
syscmd(date)

Using Unique File Names

Use the built-in maketemp macro to make a unique file name from a program.

maketemp (String...nnnnn...String) Creates a unique file name by replacing the
characters nnnnn in the argument string with the
current process ID.

324 Writing and Debugging Programs

For example, for the statement:
maketemp(myfilennnnn)

the m4 program returns a string that is myfile concatenated with the process ID. Use this string to name a
temporary file.

Using Conditional Expressions

ifelse (String1, String2, Argument1, Argument2)
If String1 matches String2, returns the value of
Argument1. Otherwise it returns Argument2.

The built-in ifelse macro performs conditional testing. In the simplest form:
ifelse(a, b, c, d)

compares the two strings a and b.

If a and b are identical, the built-in ifelse macro returns the string c. If they are not identical, it returns
string d. For example, you can define a macro called compare to compare two strings and return yes if they
are the same, or no if they are different, as follows:
define(compare, ′ifelse($1, $2, yes, no)′)

The quote characters prevent the evaluation of the ifelse macro from occurring too early. If the fourth
argument is missing, it is treated as empty.

The ifelse macro can have any number of arguments, and therefore, provides a limited form of
multiple-path decision capability. For example:
ifelse(a, b, c, d, e, f, g)

This statement is logically the same as the following fragment:
if(a == b) x = c;
else if(d == e) x = f;
else x = g;
return(x);

If the final argument is omitted, the result is null, so:
ifelse(a, b, c)

is c if a matches b, and null otherwise.

Manipulating Strings

len Returns the byte length of the string that makes up its argument

Thus:
len(abcdef)

is 6, and:
len((a,b))

is 5.

dlen Returns the length of the displayable characters in a string

Chapter 15. m4 Macro Processor Overview 325

Characters made up from 2-byte codes are displayed as one character. Thus, if the string contains any
2-byte, international character-support characters, the results of dlen will differ from the results of len.

substr (String, Position, Length) Returns a substring of String that begins at
character number Position and is Length characters
long.

Using input, substr (s, i, n) returns the substring of s that starts at the ith position (origin zero) and is n
characters long. If n is omitted, the rest of the string is returned. For example, the function:
substr('now is the time',1)

returns the following string:
now is the time

index (String1, String2) Returns the character position in String1 where String2 starts (starting
with character number 0), or -1 if String1 does not contain String2.

As with the built-in substr macro, the origin for strings is 0.

translit (String, Set1, Set2) Searches String for characters that are in Set1. If it finds
any, changes (transliterates) those characters to
corresponding characters in Set2.

It has the general form:
translit(s, f, t)

which modifies s by replacing any character found in f by the corresponding character of t. For example,
the function:
translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If t is shorter than f, characters that do not have an entry
in t are deleted. If t is not present at all, characters from f are deleted from s. So:
translit(s, aeiou)

deletes vowels from string s.

dnl Deletes all characters that follow it, up to and including the new-line character.

Use this macro to get rid of empty lines. For example, the function:
define(N, 100)
define(M, 200)
define(L, 300)

results in a new-line at the end of each line that is not part of the definition. These new-line characters are
passed to the output. To get rid of the new lines, add the built-in dnl macro to each of the lines.
define(N, 100) dnl
define(M, 200) dnl
define(L, 300) dnl

Printing

errprint (String) Writes its argument (String) to the standard error file

326 Writing and Debugging Programs

For example:
errprint ('error')

dumpdef (′MacroName’...) Dumps the current names and definitions of items named as
arguments (′MacroName’...)

If you do not supply arguments, the dumpdef macro prints all current names and definitions. Remember
to quote the names.

List of Additional m4 Macros
A list of additional m4 macros, with a brief explanation of each, follows:

changecom (l, r) Changes the left and right comment characters to the
characters represented by the l and r variables.

defn (MacroName) Returns the quoted definition of MacroName
en (String) Returns the number of characters in String.
eval (Expression) Evaluates Expression as a 32-bit arithmetic

expression.
m4exit (Code) Exits m4 with a return code of Code.
m4wrap (MacroName) Runs macro MacroName at the end of m4.
popdef (MacroName) Replaces the current definition of MacroName with the

previous definition saved with the pushdef macro.
pushdef (MacroName, Replacement) Saves the current definition of MacroName and then

defines MacroName to be Replacement.
syscmd (Command) Executes the system command Command with no

return value.
sysval Gets the return code from the last use of the syscmd

macro.
traceoff (MacroList) Turns off trace for any macro in MacroList. If

MacroList is null, turns off all tracing.
traceon (MacroName) Turns on trace for macro MacroName. If MacroName

is null, turns trace on for all macros.

Chapter 15. m4 Macro Processor Overview 327

328 Writing and Debugging Programs

Chapter 16. National Language Support

National Language Support (NLS) provides commands and library subroutines for a single worldwide
system base.

v Code sets

v Character classifications

v Character comparison rules

v Character collation order

v Numeric and monetary formatting

v Date and time formatting

v Message-text language

NLS Capabilities

An application that runs in an international environment must not have built-in assumptions about:

v “Locale-Specific and Culture-Specific Conventions”

v “User Messages in Native Languages”

v “Code Set Support”

v “Input Method Support” on page 330

This information must be determined during application execution. NLS provides these capabilities and a
base upon which new languages and code sets can be supported. As a result, programs can be ported
across national language and locale boundaries. The POSIX.1 standard, the POSIX.2 standard, the
ANSI/ISO C language standard, and the X/Open XPG specifications define standards for providing NLS
support.

Locale-Specific and Culture-Specific Conventions

An internationalized program can process information correctly for different locations. (For example, the
conventions for specifying date and time differ in the United States and England.) Similarly, the decimal
point (radix character) and monetary symbols differ between the two countries. These types of language
and cultural conventions for handling information are defined in a locale. For more information about
locales, see “Locale Overview for Programming” on page 330.

User Messages in Native Languages
To facilitate translations of messages into various languages and make translated messages available to
the program based on a user’s locale, messages are kept separate from the programs by providing them
in the form of message catalogs that a program can access at run time. To aid in this task, commands and
subroutines are provided by the Message Facility. For more information, see “Message Facility Overview
for Programming” on page 480.

Code Set Support

A character is any symbol used for the organization, control, or representation of data. A group of such
symbols for describing a particular language make up a character set. A code set contains the encoding
values for a character set. The encoding values in a code set provide the interface between the system
and its input and output devices.

In the past, the effort was directed at encoding the English alphabet. A 7-bit encoding method was
adequate for this purpose because the number of English characters is not large. The C language defined

© Copyright IBM Corp. 1997, 2001 329

the char data type to indicate a 7-bit character. A byte is an 8-bit quantity and is therefore used to
represent a char data type value. The eighth bit was typically used for parity.

To support larger character sets, such as the Asian languages (for example, Chinese, Japanese, and
Korean), additional code sets were developed that contained multibyte encodings. Because of multibyte
encodings, the old concept of the char data type is no longer sufficient to represent a character. The C
standard continues to refer to the char data type to mean a 7-bit character. However, the char data type
really means a byte, either signed or unsigned.

An internationalized program must accurately read data generated in different code set environments and
process the information accurately. You can use nl_langinfo(CODESET) to obtain the current code set in
a process. The return value is a char pointer that is the name of the code set in the system. Because
code set names are not standard, programs should not depend on any specific value for this string.
Knowing the current code set can aid in code-set conversion. NLS supplies converters that translate
character encoding values found in different code sets. For more information, see “Converters Overview
for Programming” on page 410.

Input Method Support
The input of characters becomes complicated for languages having large character sets. For example, in
Chinese, Korean, and Japanese, where the number of characters is large, it is not possible to provide
one-to-one key mapping for a keystroke to a character. However, a special input method enables the user
to enter phonetic or stroke characters and have them converted into native-language characters. A
keyboard map associated with each keyboard matches sequences of one or more keystrokes with the
appropriate character encoding. For more information, see the “Input Method Overview” on page 452.

Overview of Chapter Contents
This NLS chapter contains the following information:

v “Locale Overview for Programming”

v “National Language Support Subroutines Overview” on page 339

v “Layout (Bidirectional Text and Character Shaping) Overview” on page 373

v “Use of the libcur Package” on page 377

v “Code Set Overview” on page 379

v “Converters Overview for Programming” on page 410

v “Writing Converters Using the iconv Interface” on page 438

v “Input Method Overview” on page 452

v “Message Facility Overview for Programming” on page 480

v “Culture-Specific Data Processing” on page 489

v “NLS Sample Program” on page 491

v “National Language Support (NLS) Quick Reference” on page 497

Locale Overview for Programming
National Language Support (NLS) provides commands and library subroutines for a single worldwide
system base. An internationalized system has no built-in assumptions or dependencies on
language-specific or cultural-specific conventions. All locale information is obtained at program run time.

The following concepts are needed to understand the internationalization of programs:

v “Working with Code Sets” on page 331

v “Data Representation” on page 331

v “Character Properties” on page 332

330 Writing and Debugging Programs

v “Localization” on page 333

v “Multibyte Subroutines” on page 336

v “Wide Character Subroutines” on page 336

v “Bidirectionality and Character Shaping” on page 337

v “Code Set Independence” on page 337

v “File Name Matching” on page 338

v “Radix Character Handling” on page 338

v “Programming Model” on page 338

Working with Code Sets

ASCII is a code set containing 128 code points (0x00 through 0x7F). The ASCII character set contains
control characters, punctuation marks, digits, and the uppercase and lowercase English alphabet. Several
8-bit code sets incorporate ASCII as a proper subset. However, throughout this document, ASCII refers to
7-bit-only code sets. To emphasize this, it is referred to as 7-bit ASCII. The 7-bit ASCII code set is a
proper subset of all supported code sets and is referred to as the portable character set. For more
information, see “Code Set Overview” on page 379 .

Single-Byte and Multibyte Code Sets

A single-byte encoding method is sufficient for representing the English character set because the number
of characters is not large. To support larger alphabets, such as Japanese and Chinese, additional code
sets containing multibyte encodings are necessary. All supported single-byte and multibyte code sets
contain the single-byte ASCII character set. Therefore, programs that handle multibyte code sets must
handle character encodings of one or more bytes.

Examples of single-byte code sets are the ISO 8859 family of code sets and the IBM-850 code set.
Examples of multibyte character sets are the IBM-eucJP and the IBM-943 code sets. The single-byte code
sets have at most 256 characters and the multibyte code sets have more than 256 (without any theoretical
limit).

The Unique Code-Point Range

None of the supported code sets have bytes 0x00 through 0x3F in any byte of a multibyte character. This
group of code points is called the unique code-point range. Furthermore, these code points always refer to
the same characters as specified for 7-bit ASCII. This is a special property governing all supported code
sets. ASCII Characters in the Unique Code-Point Range (“ASCII Characters” on page 380) lists the
characters in the unique code-point range.

For more information about code sets, see the “Code Set Overview” on page 379.

Data Representation

Because the encoding for some characters requires more than one byte, a single character may be
represented by one or several bytes when data is created in files or transferred between a computer and
its I/O devices. This external representation of data is referred to as the file code or multibyte character
code representation of a character.

For processing strings of such characters, it is more efficient to convert file codes into a uniform
representation. This converted form is intended for internal processing of characters. This internal
representation of data is referred to as the process code or wide character code representation of the
character. An understanding of multibyte character and wide character codes is essential to the overall
internationalization strategy.

Chapter 16. National Language Support 331

Multibyte Character Code Data Representation
A multibyte character code is an external representation of data, regardless of whether it is character input
from a keyboard or a file on a disk. Within the same code set, the number of bytes that represent the
multibyte code of a character can vary. You must use NLS functions for character processing to ensure
code set independence.

For example, a code set may specify the following character encodings:
C = 0x43
* = 0x81 0x43
*C = 0x81 0x43& 0x43

A program searching for C, not accounting for multibyte characters, finds the second byte of the *C string
and assumes it found C when in fact it found the second byte of the * (asterisk) character.

Wide Character Code Data Representation
The wide character code was developed so that multibyte characters could be processed more efficiently
internally in the system. A multibyte character representation is converted into a uniform internal
representation (wide character code) so that internally all characters have the same length. Using this
internal form, character processing can be done in a code set-independent fashion. The wide character
code refers to this internal representation of characters.

The wchar_t data type is used to represent the wide character code of a character. The size of the
wchar_t data type is implementation-specific. It is a typedef definition and can be found in the ctype.h,
stddef.h, and stdlib.h files. No program should assume a particular size for the wchar_t data type,
enabling programs to run under implementations that use different sizes for the wchar_t data type.

On AIX 4.3, the wchar_t datatype is implemented as an unsigned short value (16 bits). The locale
methods in AIX have been standardized such that in most locales, the value stored in the wchar_t for a
particular character will always be its Unicode data value. For applications which are intended to run only
on AIX, this allows certain applications handle the wchar_t datatype in a consistent fashion, even if the
underlying codeset is unknown. All locales on AIX 4.3 will use Unicode for their wide character code
values (process code), except the following:

1. Locales based on the IBM-850 codeset are provided strictly for compatibility with previous releases of
AIX. These locales have not been modified from previous releases and will be removed in a future
release of AIX. It is strongly suggested that users use the industry standard ISO8859-1 codeset
instead of IBM-850. For IBM-850 locales, the wchar_t data value will be the same value as the
IBM-850 codepoint value.

2. The IBM-eucTW codeset (LANG =zh_TW) contains many characters that are not contained in the
Unicode standard. Because of this, it is impossible to represent these characters with a Unicode wide
character value. Applications that need to have Unicode based wchar_t data for Traditional Chinese
should use the Zh_TW locale (big5 codeset) instead.

Character Properties
Every character has several language-dependent attributes or properties. These properties are called class
properties. For example, the lowercase letter a in U.S. English has the following properties:

v alphabetic

v hexadecimal digit

v printable

v lowercase

v graphic

Character class properties are specified by the LC_CTYPE category.

332 Writing and Debugging Programs

../../files/aixfiles/LC_CTYPE.htm#HDRA3JQ6380BOB

Collation-Order Properties

Character ordering or collation refers to the culture-specific ordering of characters. This ordering differs
from that based on the ordinal value of a character in a code set. Collation-based ordering is dependent
on the language. Character collation is specified by the LC_COLLATE category. The term collating
element refers to one or more characters that have a collation value in a specific locale. The Spanish ll
character is an example of a multicharacter collating element.

To sort the characters in any given language in the proper order, a Weight is assigned to each character
so they sort as expected. However, a character’s sort value and code-point value are not necessarily
related.

One set of weights is not sufficient to sort strings for all languages. For example, in the case of the
German words b<a-umlaut>ch and bane, if there is only one set of weights, and the weight of the letter a is
less than that of <a-umlaut>, then bane sorts before b<a-umlaut>ch. However, the opposite result is
correct. To satisfy the requirement of this example, two sets of weights, the Primary and Secondary
Weights, are given to each character in the language. In the case of the characters a and <a-umlaut>, they
have the same Primary Weights, but differ in their Secondary Weights. In the German locale, the
Secondary Weight of a is less than that of <a-umlaut>.

The sorting algorithm first compares the two strings based on the Primary Weights of each character. If the
Primary Weight values are the same, the two strings are compared again based on their Secondary
Weights. In this example, the Primary Weights of the first two characters ba and b<a-umlaut> are the
same, but the Primary Weights of the characters that follow (c and n, respectively) differ. As a result of this
comparison, b<a-umlaut>ch is sorted before bane.

Here, the Secondary Weights are not used to collate the strings. However, as in the case of the strings
bach and b<a-umlaut>ch, Secondary Weights must be used to get the proper order. When compared using
Primary Weight values, these two strings are found to be equivalent. To break the tie, the Secondary
Weights of a and <a-umlaut> are used. Because the Secondary Weight of a is less than that of
<a-umlaut>, the string bach sorts before b<a-umlaut>ch.

Characters having the same Primary Weights belong to the same equivalence class. In this example, the
characters a and <a-umlaut> are said to be members of the same equivalence class.

In string collation, each pair of strings is first compared based on Primary Weight. If the two strings are
equal, they are compared again based on their Secondary Weights. If still equal, they are compared again
based on Tertiary Weights up to the limit set by the COLL_WEIGHTS_MAX collating weight limit specified
in the sys/limits.h file.

Code-Set Width

Code-set width refers to the maximum number of bytes required to represent a character as a file code.
This information is specified by the LC_CTYPE category.

Code-Set Display Width

Code-set display width refers to the maximum number of columns required to display a character on a
terminal. This information is specified by the LC_CTYPE category.

Localization

An internationalized program must process information correctly for different locations. For example, in the
United States, the date format 9/6/1990 is interpreted to mean the sixth day of the ninth month of the year

Chapter 16. National Language Support 333

../../files/aixfiles/LC_COLLATE.htm#HDRBJQ6320BOB
../../files/aixfiles/LC_CTYPE.htm#HDRA3JQ6380BOB

1990. The United Kingdom interprets the same date format to mean the ninth day of the sixth month of the
year 1990. The formatting of numerical and monetary data is also country specific, as in the case of the
U.S. dollar and the U.K. pound.

A locale is defined by language-specific and cultural-specific conventions for processing information. All
such information should be accessible to a program at run time so that the same program can display or
process data differently for different countries. The process of providing a language interface to obtain and
process this information into a database containing the locale-specific data is known as localization.

The setlocale subroutine establishes locale information. This subroutine uses the values of certain
environment variables to initialize locale information contained in locale definition files. To deal with locale
data in a logical manner, locale definition source files are divided into six categories defining specific
aspects of the locale data.

Locale Categories

A category is a group of language-specific and culture-specific data. For instance, data referring to date
and time formatting, the names of the days of the week, and names of the months is grouped into the
LC_TIME category. Each category uses a set of keywords that describe a particular aspect of a locale.
The following standard categories can be defined in a locale definition source file:

LC_COLLATE Defines string-collation order information.
LC_CTYPE Defines character classification, case conversion, and other character attributes.
LC_MESSAGES Defines the format for affirmative and negative responses.
LC_MONETARY Defines rules and symbols for formatting monetary numeric information.
LC_NUMERIC Defines rules and symbols for formatting nonmonetary numeric information.
LC_TIME Lists rules and symbols for formatting time and date information.

Understanding Locale

Locale information consists of data from these six categories. Each locale is described by a locale
definition file. These files are named by the language, territory and code set information they describe. The
format for naming a locale definition file is:
language[_territory][.codeset][@modifier]

For example, the locale for the Danish language spoken in Denmark using the ISO8859-1 code set is
da_DK.ISO8859-1. The da stands for the Danish language and the DK stands for Denmark. The short form
of da_DK is sufficient to indicate this locale. The same language and territory using the IBM-850 code set is
indicated by either Da_DK.IBM-850 or Da_DK for short.

The C or POSIX Locale

This locale refers to the ANSI C or POSIX-defined standard for the locale inherited by all processes at
startup time. The C or POSIX locale assumes the 7-bit ASCII character set and defines information for the
six previous categories.

The Installation Default Locale

The installation default locale refers to the locale selected at system installation time as the systemwide
locale. For example, a French user in Canada may define the default locale to be fr_CA.ISO8859-1 (fr for
French, CA for Canada, and ISO8859-1 for the code set). Every process uses this locale unless the NLS
environment variables are changed.

NLS Environment Variables

For localization, NLS uses the following environment variables:

334 Writing and Debugging Programs

../../libs/basetrf2/setlocale.htm#HDRA15096AB
../../files/aixfiles/Locale_Definition.htm#HDRC5D71C0BOB
../../files/aixfiles/LC_COLLATE.htm#HDRBJQ6320BOB
../../files/aixfiles/LC_CTYPE.htm#HDRA3JQ6380BOB
../../files/aixfiles/LC_MESSAGES.htm#HDRSJQ6200BOB
../../files/aixfiles/LC_MONETARY.htm#HDRFJQ6260BOB
../../files/aixfiles/LC_NUMERIC.htm#HDRUJQ6260BOB
../../files/aixfiles/LC_TIME.htm#HDRLJQ680BOB

v LANG

v LC_ALL

v LC_COLLATE

v LC_CTYPE

v LC_MESSAGES

v LC_MONETARY

v LC_NUMERIC

v LC_TIME

v LOCPATH

v NLSPATH

The LC_COLLATE, LC_CTYPE, LC_MONETARY, LC_NUMERIC, LC_TIME, and LC_MESSAGES
environment variables determine the current values for their respective categories.

The LC_ALL and LANG environment variables also determine the current locale.

The NLSPATH environment variable specifies a colon-separated list of directory names where the
message catalog files are located. This environment variable is used by the Message Facility component
of the NLS subsystem.

The LOCPATH environment variable specifies the directories where localization information such as locale
database files, input method files, and iconv converters are located. This variable specifies a
colon-separated list of directory names. The list is used for setting up the locale for a particular process.

Note: All setuid and setgid programs will ignore the LOCPATH environment variable.

The environment variables that affect locale information can be grouped into three priority classes:

Priority Class Environment Variable

high LC_ALL

medium LC_COLLATE, LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC

low LANG

When a locale is requested by the setlocale subroutine for a particular category or for all categories, the
environment variable settings are queried by their priority level in the following manner:

v If the LC_ALL environment variable is set, all six categories use the locale it specified. For example, if
the LC_ALL environment variable is equal to en_US and the LANG environment variable is equal to
fr_FR, a call to the setlocale subroutine sets each of the six categories to the en_US locale.

v If the LC_ALL environment variable is not set, each individual category uses the locale specified by its
corresponding environment variable. For example, if the LC_ALL environment variable is not set, the
LC_COLLATE environment variable is set to de_DE, and the LC_TIME environment variable is set to
fr_CA, then a call to the setlocale subroutine sets the LC_COLLATE category to de_DE and the
LC_TIME category to fr_CA. Neither environment variable has precedence over the other in this
situation.

v If the LC_ALL environment variable is not set, and a value for a particular LC_* environment variable is
not set, the value of the LANG environment variable determines the setting for that specific category.
For example, if the LC_ALL environment variable is not set, the LC_CTYPE environment variable is set
to en_US, the LC_NUMERIC environment variable is not set, and the LANG environment variable is set
to is_IS, then a call to the setlocale subroutine sets the LC_CTYPE category to en_US and the
LC_NUMERIC category to is_IS. The LANG environment variable specifies the locale for only those
categories not previously determined by an LC_* environment variable.

Chapter 16. National Language Support 335

v If the LC_ALL environment variable is not set, a value for a particular LC_* environment variable is not
set, and the value of the LANG environment variable is not set, the locale for that specific category
defaults to the C locale. For example, if the LC_ALL environment variable is not set, the
LC_MONETARY environment variable is set to sv_SE, the LC_TIME environment variable is not set,
and the LANG environment variable is not set, then a call to the setlocale subroutine sets the
LC_MONETARY category to sv_SE and the LC_TIME category to C.

Environment Variables Precedence Example
The following table shows the current setting of the environment variables and the effect of calling
setlocale(LC_ALL,″″). After the setlocale subroutine is called, the string sorting and character properties
are done as in the German language, the monetary formatting is done as in the US conventions, the
numeric, time formatting is done in Danish conventions, the date and time data formatting is done in the
Danish conventions, and the user messages are displayed in the Danish language. The last column
indicates the locale setting after setlocale(LC_ALL,″″) is called.

Environment Variable and Category
Names

Value of Environment Variables Value of Category After Call To
setlocale(LC_ALL,″″)

LC_COLLATE de_DE de_DE

LC_CTYPE de_DE de_DE

LC_MONETARY en_US en_US

LC_NUMERIC (unset) da_DK

LC_TIME (unset) da_DK

LC_MESSAGES (unset) da_DK

LC_ALL (unset) (not applicable)

LANG da_DK (not applicable)

Multibyte Subroutines

Multibyte subroutines process characters in file-code form. The names of these subroutines usually start
with the prefix mb. However, some multibyte subroutines do not have this prefix. For example, the strcoll
and strxfrm subroutines process characters in their multibyte form but do not have the mb prefix. The
following standard C subroutines operate on bytes and can be used in handling multibyte data: strcmp,
strcpy, strncmp, strncpy, strcat, and strncat. The standard C search subroutines strchr, strrchr,
strpbrk, strcspn, strrchr, strspn, strstr, and strtok can be used in the following cases:

v Searching or scanning for characters in single-byte code sets

v Searching or scanning for unique code-point range characters in multibyte strings.

For more information about multibyte character subroutines, see “National Language Support Subroutines
Overview” on page 339.

Wide Character Subroutines

Wide character subroutines process characters in process-code form. Wide character subroutines usually
start with a wc prefix. However, there are exceptions to this rule. For example, the wide character
classification functions use an isw prefix. To determine if a subroutine is a wide character subroutine,
check if the subroutine prototype defines characters as wchar_t data type or wchar_t data pointer, or else
check whether the subroutine returns a wchar_t data type. There are some exceptions to this rule. For
example, the wide character classification subroutines accept wint_t data type values.

For more information about wide character subroutines, see “National Language Support Subroutines
Overview” on page 339.

336 Writing and Debugging Programs

../../libs/basetrf2/strcmp.htm#HDRC0D23CB987SYLV
../../libs/basetrf2/strcat.htm#HDRC0D20D9496SYLV

Bidirectionality and Character Shaping

An internationalized program may need to handle bidirectionality of text and character shaping.

Bidirectionality (BIDI) occurs when texts of different direction orientation appear together. For example,
English text is read from left to right. Hebrew text is read from right to left. If both English and Hebrew
texts appear on the same line, the text is bidirectional.

Character shaping occurs when the shape of a character is dependent on its position in a line of text. In
some languages, such as Arabic, characters have different shapes depending on their position in a string
and on the surrounding characters.

For more information about bidirectionality and character shaping, see “Layout (Bidirectional Text and
Character Shaping) Overview” on page 373, “Character Shaping” on page 376, and “Introducing Layout
Library Subroutines” on page 377.

Code Set Independence

The system needs certain information about code sets to communicate with the external environment. This
information is hidden by the code set-independent library subroutines (NLS library). These subroutines
pass information to the code set-dependent functions. Because NLS subroutines handle the necessary
code set information, you do not need explicit knowledge of any code set when you write programs that
process characters. This programming technique is called code set independence.

Determining Maximum Number of Bytes in Code Sets

You can use the MB_CUR_MAX macro to determine the maximum number of bytes in a multibyte
character for the code set in the current locale. The value of this macro is dependent on the current setting
of the LC_CTYPE category. Because the locale can differ between processes, running the MB_CUR_MAX
macro in different processes or at different times may produce different results. The MB_CUR_MAX macro
is defined in the stdlib.h header file.

You can use the MB_LEN_MAX macro to determine the maximum number of bytes in any code set that is
supported by the system. This macro is defined in the limits.h header file.

Determining Character and String Display Widths

The _max_disp_width macro is operating-system-specific, and its use should be avoided in portable
applications. If portability is not important, you can use the _max_disp_width macro to determine the
maximum number of display columns required by a single character in the code set in the current locale .
The value of this macro is dependent on the current setting of the LC_CTYPE category. If the value of this
is 1 (one), all characters in the current code set require only one display column width on output.

When both MB_CUR_MAX and _max_disp_width are set to 1 (one), you can use the strlen subroutine
to determine the display column width needed for a string. When MB_CUR_MAX is greater than one, use
the wcswidth subroutine to find the display column width of the string.

The wcswidth and wcwidth wide character display width subroutines do not have corresponding multibyte
functions. The wcswidth subroutine does not indicate how many characters can be displayed in the space
available on a display. The wcwidth subroutine is useful for this purpose. This subroutine must be called
repeatedly on a wide character string to find out how many characters can be displayed in the available
positions on the display.

Chapter 16. National Language Support 337

Exceptions to Code Set Knowledge: Unique Code-Point Range

There is one exception to the statement: ″No knowledge of the underlying code set can be assumed in a
program.″ This exception arises due to the way the supported code sets are organized.

When a multibyte character string is searched for any character within the unique code-point range (for
example, the . (period) character), it is not necessary to convert the string to process code form. It is
sufficient to just look for that character (.) by examining each byte. This exception enables the kernel and
utilities to search for the special characters . and / while parsing file names. If a program searches for any
of the characters in the unique code-point range, the standard string functions that operate on bytes (such
as strchr), should be used. “ASCII Characters” on page 380 lists the characters in the unique code-point
range.

Note: This exception is not a property that is applicable to all code sets. It should not be construed
that this exception will remain valid in future releases.

File Name Matching

POSIX.2 defines the fnmatch subroutine to be used for file name matching. An application can use the
fnmatch subroutine to read a directory and apply a pattern against each entry. For example, the find
utility can use the fnmatch subroutine. The pax utility can use the fnmatch subroutine to process its
pattern operands. Applications that need to match strings in a similar fashion can use the fnmatch
subroutine.

Radix Character Handling

Note that the radix character, as obtained by nl_langinfo(RADIXCHAR), is a pointer to a string. It is
possible that a locale may specify this as a multibyte character or as a string of characters. However, in
AIX, a simplifying assumption is made that the RADIXCHAR is a single-byte character.

Programming Model
The programming model presented here highlights changes you need to make when an existing program
is internationalized or when a new program is developed:

v Provide complete internationalization. Do not assume that characters have any specific properties.
Determine the properties dynamically by using the appropriate interfaces. Do not assume properties of
code sets, except for the ASCII characters with code points in the unique code-point range.

v Make programs code set-independent. Programs should not assume single-byte, double-byte, or
multibyte encoding of any sort. Data can be processed in either process-code or file-code form by using
the appropriate subroutines.

v Provide interaction with the kernel in file-code form only. The kernel does not handle process codes.

v The NLS subroutine library can handle processing based on file-code as well as processing based on
process-code.

Note: Several subroutines based on process-code do not have corresponding subroutines based
on file-code. Due to this asymmetry, it may be necessary to convert strings to process-code form
and invoke the appropriate process-code subroutines.

v Some libraries may not provide processing in process-code form. An application needing these libraries
must use file-codes when invoking functions from them.

v Programs can process characters either in process-code form or file-code form. It is possible to write
code set-independent programs using both methods.

338 Writing and Debugging Programs

../../libs/basetrf1/fnmatch.htm#HDRA143C1295

National Language Support Subroutines Overview

When internationalizing programs using National Language Support (NLS), it is important that there be
some guidelines for providing this support. The intent of this section is to guide programmers in developing
portable internationalized programs. An understanding of the concepts explained in “Locale Overview for
Programming” on page 330 is a prerequisite to this section.

Introducing Locale Subroutines

Programs that perform locale-dependent processing, including user messages, must call the setlocale
subroutine at the beginning of the program. This call should be the first executable statement in the main
program. Programs that do not call the setlocale subroutine in this way inherit the C or POSIX locale.
Such programs perform as in the C locale regardless of the setting of the LC_* and LANG environment
variables.

Other subroutines are provided to determine the current settings for locale data formatting. For more
information about these subroutines, see “Locale Subroutines” on page 340.

Introducing Time Formatting Subroutines
Programs that need to format or time into wide character code strings can use the wcsftime subroutine.
Programs that need to convert multibyte strings into an internal time format can use the strptime
subroutine. For more information about these subroutines, see “Time Formatting Subroutines” on
page 345.

Introducing Monetary Formatting Subroutines
Programs that need to specify or access monetary quantities can call the strfmon subroutine. For more
information about this subroutine, see “Monetary Formatting Subroutines” on page 346.

Introducing Multibyte and Wide Character Subroutines

The external representation of data is referred to as the file code representation of a character. When file
code data is created in files or transferred between a computer and its I/O devices, a single character may
be represented by one or several bytes. For processing strings of such characters, it is more efficient to
convert these codes into a uniform-length representation. This converted form is intended for internal
processing of characters. The internal representation of data is referred to as the process code or wide
character code representation of the character.

NLS internationalization of programs is a blend of multibyte and wide character subroutines. A multibyte
subroutine uses multibyte character sets. A wide character subroutine uses wide character sets. Multibyte
subroutines have an mb prefix. Wide character subroutines have a wc prefix. The corresponding
string-handling subroutines are indicated by the mbs and wcs prefixes, respectively. Deciding when to use
multibyte or wide character subroutines can be made only after careful analysis.

If a program primarily uses multibyte subroutines, it may be necessary to convert the multibyte character
codes to wide character codes to use certain wide character subroutines. If a program uses wide character
subroutines, data may need to be converted to multibyte form for invoking subroutines. Both methods have
drawbacks, depending on the program and the availability of standard subroutines to perform the required
processing. For instance, there is no corresponding standard multibyte subroutine for the wide character
display-column-width subroutine.

If a program can process its characters in multibyte code, this method should be used instead of
converting the characters to wide character code.

Chapter 16. National Language Support 339

../../libs/basetrf2/setlocale.htm#HDRA15096AB

For more information about the subroutines provided for converting between multibyte code and wide
character code form, see “Multibyte Code and Wide Character Code Conversion Subroutines” on
page 348.

wchar.h Header File

The wchar.h header file declares information necessary for programming with multibyte and wide
character subroutines. The wchar.h header file declares the wchar_t, wctype_t, and wint_t data types,
as well as several functions for testing wide characters. Because the number of characters implemented
as wide characters exceeds that of basic characters, it is not possible to classify all wide characters into
the existing classes used for basic characters. Therefore, it is necessary to provide a way of defining
additional classes specific to some locale. The action of these subroutines is affected by the current locale.

The wchar.h header file also declares subroutines for manipulating wide character strings (that is,
wchar_t data type arrays). Array length is always determined in terms of the number of wchar_t elements
in an array. A null wide character code ends an array. A pointer to a wchar_t or void array always points to
the initial element of the array.

Note: If the number of wchar_t elements in an array exceeds the defined array length, unpredictable
results can occur.

Introducing Internationalized Regular Expression Subroutines
Programs that contain internationalized regular expressions can use the regcomp, regexec, regerror,
regfree, and fnmatch subroutines. For more information about these subroutines, see “Internationalized
Regular Expression Subroutines” on page 370.

Locale Subroutines

The locale of a process determines the way character collation, character classification, date and time
formatting, numeric punctuation, monetary punctuation, and message output are handled. The following
section describes how to set and access information about the current locale in a program using National
Language Support (NLS).

Setting the Locale

Every internationalized program must set the current locale using the setlocale subroutine. This
subroutine allows a process to change or query the current locale by accessing locale databases.

When a process is started, its current locale is set to the C or POSIX locale. A program that depends on
locale data not defined in the C or POSIX locale must invoke the setlocale subroutine in the following
manner before using any of the locale-specific information:
setlocale(LC_ALL, "");

Accessing Locale Information

The following subroutines provide access to information defined in the current locale as determined by the
most recent call to the setlocale subroutine:

localeconv Provides access to locale information defined in the LC_MONETARY and LC_NUMERIC
categories of the current locale. The localeconv subroutine retrieves information about these
categories, places the information in a structure of type lconv as defined in the locale.h file,
and returns a pointer to this structure.

nl_langinfo Returns a pointer to a null-terminated string containing information defined in the LC_CTYPE,
LC_MESSAGES, LC_MONETARY, LC_NUMERIC, and LC_TIME categories of the current
locale.

340 Writing and Debugging Programs

../../libs/basetrf2/setlocale.htm#HDRA15096AB
../../libs/basetrf2/setlocale.htm#HDRA15096AB
../../libs/basetrf1/localeconv.htm#HDRA1509139
../../files/aixfiles/LC_MONETARY.htm#HDRFJQ6260BOB
../../files/aixfiles/LC_NUMERIC.htm#HDRUJQ6260BOB
../../libs/basetrf1/nl_langinfo.htm#HDRA4F011
../../files/aixfiles/LC_CTYPE.htm#HDRA3JQ6380BOB
../../files/aixfiles/LC_MESSAGES.htm#HDRSJQ6200BOB
../../files/aixfiles/LC_MONETARY.htm#HDRFJQ6260BOB
../../files/aixfiles/LC_NUMERIC.htm#HDRUJQ6260BOB
../../files/aixfiles/LC_TIME.htm#HDRLJQ680BOB

rpmatch Tests for positive and negative responses. These are specified in the LC_MESSAGES category
of the current locale. Responses can be regular expressions as well as simple strings. The
rpmatch subroutine is not an industry-standard subroutine. Portable applications should not
assume that this subroutine is available.

The localeconv and nl_langinfo subroutines do not provide access to all LC_* categories.

The current locale setting for a category can be obtained by: setlocale(Category, (char*)0). The return
value is a string specifying the current locale for Category. The following example determines the current
locale setting for the LC_CTYPE category:
char *ctype_locale; ctype_locale = setlocale(LC_CTYPE, (char*)0);

Examples
1. The following example uses the setlocale subroutine to change the locale from the default C locale

to the locale specified by the environment variables, consistent with the hierarchy of the locale
environment variables:
#include <locale.h>
main()
{

char *p;

p = setlocale(LC_ALL, "");

/*
** The program will have the locale as set by the
** LC_* and LANG variables.
*/

}

2. The following example uses the setlocale subroutine to obtain the current locale setting for the
LC_COLLATE category:
#include <stdio.h>
#include <locale.h>

main()
{

char *p;

/* set the current locale to what is specified */
p = setlocale(LC_ALL, "");
/* The current locale settings for all the
** categories is pointed to by p
*/

/*
** Find the current setting for the
** LC_COLLATE category
*/
p = setlocale(LC_COLLATE, NULL);
/*
** p points to a string containing the current locale
** setting for the LC_COLLATE category.
*/

}

3. The following example uses the setlocale subroutine to obtain the current locale setting and saves it
for later use. This action allows the program to temporarily change the locale to a new locale. After
processing is complete, the locale can be returned to its original state.

Chapter 16. National Language Support 341

../../libs/basetrf2/rpmatch.htm#HDRA143C127A
../../libs/basetrf2/setlocale.htm#HDRA15096AB
../../libs/basetrf2/setlocale.htm#HDRA15096AB
../../libs/basetrf2/setlocale.htm#HDRA15096AB

#include <stdio.h>
#include <locale.h>
#include <string.h>

#define NEW_LOCALE "MY_LOCALE"

main()
{

char *p, *save_locale;

p = setlocale(LC_ALL, "");
/*
** Initiate locale. p points to the current locale
** setting for all the categories
*/

save_locale = (char *)malloc(strlen(p) +1);
strcpy(save_locale, p);

/* Save the current locale setting */
p = setlocale(LC_ALL, NEW_LOCALE);

/* Change to new locale */

/*
** Do processing ...
*/

/* Change back to old locale */
p = setlocale(LC_ALL, save_locale); /* Restore old locale */

free(save_locale); /* Free the memory */
}

4. The following example uses the setlocale subroutine to set the LC_MESSAGES category to the
locale determined by the environment variables. All other categories remain set to the C locale.
#include <locale.h>

main()
{

char *p;

/*
** The program starts in the C locale for all categories.
*/

p = setlocale(LC_MESSAGES, "");

/*
** At this time the LC_COLLATE, LC_CTYPE, LC_NUMERIC,
** LC_MONETARY, LC_TIME will be in the C locale.
** LC_MESSAGES will be set to the current locale setting
** as determined by the environment variables.
*/

}

5. The following example uses the localeconv subroutine to obtain the decimal-point setting for the
current locale:
#include <locale.h>

main()
{

struct lconv *ptr;
char *decimal;

(void)setlocale(LC_ALL, "");
ptr = localeconv();
/*
** Access the data obtained. For example,

342 Writing and Debugging Programs

../../libs/basetrf2/setlocale.htm#HDRA15096AB
../../files/aixfiles/LC_MESSAGES.htm#HDRSJQ6200BOB
../../libs/basetrf1/localeconv.htm#HDRA1509139

** obtain the current decimal point setting.
*/
decimal = ptr->decimal_point;

}

6. The following example uses the nl_langinfo subroutine to obtain the date and time format for the
current locale:
#include <langinfo.h>
#include <locale.h>
main()
{

char *ptr;
(void)setlocale(LC_ALL, "");
ptr = nl_langinfo(D_T_FMT);

}

7. The following example uses the nl_langinfo subroutine to obtain the radix character for the current
locale:
#include <langinfo.h>
#include <locale.h>

main()
{

char *ptr;
(void)setlocale(LC_ALL, ""); /* Set the program's locale */
ptr = nl_langinfo(RADIXCHAR); /* Obtain the radix character*/

}

8. The following example uses the nl_langinfo subroutine to obtain the setting of the currency symbol
for the current locale:
#include <langinfo.h>
#include <locale.h>

main()
{

char *ptr;
(void)setlocale(LC_ALL, ""); /* Set the program's locale */
ptr = nl_langinfo(CRNCYSTR); /* Obtain the currency string*/
/* The currency string will be "-$" in the U. S. locale. */

}

9. The following example uses the rpmatch subroutine to obtain the setting of affirmative and negative
response strings for the current locale:

The affirmative and negative responses as specified in the locale database are no longer simple
strings; they can be regular expressions. For example, the yesexpr can be the following regular
expression, which will accept an upper or lower case letter y, followed by zero or more alphabetic
characters; or the character O followed by K. Thus, yesexpr may be the following regular expression:
([yY][:alpha:]*|OK)

The standards do not contain a subroutine to retrieve and compare this information. You can use the
AIX-specific rpmatch(const char *response) subroutine.
#include <stdio.h>
#include <langinfo.h>
#include <locale.h>
#include <regex.h>

int rpmatch(const char *);
/*
** Returns 1 if yes response, 0 if no response,
** -1 otherwise
*/

main()
{

int ret;

Chapter 16. National Language Support 343

../../libs/basetrf1/nl_langinfo.htm#HDRA4F011
../../libs/basetrf1/nl_langinfo.htm#HDRA4F011
../../libs/basetrf1/nl_langinfo.htm#HDRA4F011
../../libs/basetrf2/rpmatch.htm#HDRA143C127A

char *resp;

(void)setlocale(LC_ALL, "");

do {
/*
** Obtain the response to the query for yes/no strings.
** The string pointer resp points to this response.
** Check if the string is yes.
*/

ret = rpmatch(resp);

if(ret == 1){
/* Response was yes. */
/* Process accordingly. */
}else if(ret == 0){
/* Response was negative. */
/* Process negative response. */
}else if(ret<0){
/* No match with yes/no occurred. */
continue;
}

}while(ret <0);
}

10. The following example provides a method of implementing the rpmatch subroutine. Note that most
applications should use the rpmatch subroutine in libc. The following implementation of rpmatch is
just for illustration purposes.

Note that nl_langinfo(YESEXPR) and nl_langinfo(NOEXPR) are used to obtain the regular
expressions for the affirmative and negative responses respectively.
#include <langinfo.h>
#include <regex.h>
/*
** rpmatch() performs comparison of a string to a regular expression
** using the POSIX.2 defined regular expression compile and match
** functions. The first argument is the response from the user and the
** second string is the current locale setting of the regular expression.
*/
int rpmatch(const char *string)

{
int status;
int retval;
regex_t re;
char *pattern;

pattern = nl_langinfo(YESEXPR);
/* Compile the regular expression pointed to by pattern. */
if((status = regcomp(&re, pattern, REG_EXTENDED | REG_NOSUB)) != 0){

retval = -2; /*-2 indicates yes expr compile error */
return(retval);

}
/* Match the string with the compiled regular expression. */
status = regexec(&re, string, (size_t)0, (regmatch_t *)NULL, 0);
if(status == 0){

retval = 1; /* Yes match found */
}else{ /* Check for negative response */

pattern = nl_langinfo(NOEXPR);
if((status = regcomp(&re, pattern,

REG_EXTENDED | REG_NOSUB)) != 0){
retval = -3;/*-3 indicates no compile error */
return(retval);

}
status = regexec(&re, string, (size_t)0,

(regmatch_t *)NULL, 0);

344 Writing and Debugging Programs

if(status == 0)
retval = 0;/* Negative response match found */

}else
retval = -1; /* The string did not match yes or no

response */
regfree(&re);
return(retval);

}

Time Formatting Subroutines

In addition to the strftime subroutine defined in the C programming language standard, XPG4 defines the
following time formatting subroutines:

wcsftime Formats time into wide character code strings.
strptime Converts a multibyte string into an internal time format.

Examples
1. The following example uses the wcsftime subroutine to format time into a wide character string:

#include <stdio.h>
#include <langinfo.h>
#include <locale.h>
#include <time.h>

main()
{

wchar_t timebuf[BUFSIZE];
time_t clock = time((time_t*) NULL);
struct tim *tmptr = localetime(&clock);

(void)setlocale(LC_ALL, "");

wcsftime(
timebuf, /* Time string output buffer */
BUFSIZ, /*Maximum size of output string */
nl_langinfo(D_T_FMT), /* Date/time format */
tmptr /* Pointer to tm structure */

);

printf("%S\n", timebuf);
}

2. The following example uses the strptime subroutine to convert a formatted time string to internal
format:
#include <langinfo.h>
#include <locale.h>
#include <time.h>

main(int argc, char **argv)
{

struct tm tm;

(void)setlocale(LC_ALL, "");

if (argc != 2) {
... /* Error handling */

}
if (strptime(

argv[1], /* Formatted time string */
nl_langinfo(D_T_FMT), /* Date/time format */
&tm /* Address of tm structure */

) == NULL) {

Chapter 16. National Language Support 345

../../libs/basetrf2/strftime.htm#HDRA1819455
../../libs/basetrf2/wcsftime.htm#HDRA143C130B
../../libs/basetrf2/strptime.htm#HDRA143C1327

... /* Error handling */
}
else {

... /* Other Processing */
}

}

Monetary Formatting Subroutines

Although the C programming language standard in conjunction with POSIX provides a means of specifying
and accessing monetary information, these standards do not define a subroutine that formats monetary
quantities. The XPG strfmon subroutine provides the facilities to format monetary quantities. There is no
defined subroutine that converts a formatted monetary string into a numeric quantity suitable for arithmetic.
Applications that need to do arithmetic on monetary quantities may do so after processing the
locale-dependent monetary string into a number. The culture-specific monetary formatting information is
specified by the LC_MONETARY category. An application can obtain information pertaining to the
monetary format and the currency symbol by calling the localeconv subroutine.

Euro Currency Support via the @euro Modifier

The strfmon subroutine uses the information from the locale’s LC_MONETARY category to determine the
correct monetary format for the given language/territory. With the advent of the common European
currency (Euro), locales must be able to handle both the traditional national currencies as well as the
common European currency. This is accomplished via the @euro modifier. Each European country that
uses the Euro will have an additional LC_MONETARY definition with the @euro modifier appended. This
alternate format will be invoked when specified via the locale environment variables, or with the setlocale
subroutine.

To use the French locale , UTF-8 codeset environment, and French francs as the monetary unit, simply
set:
LANG=FR_FR

To use the French locale, UTF-8 codeset environment,and Euros as the monetary unit, set:
LANG=FR_FR

LC_MONETARY=FR_FR@euro

Users should NOT attempt to set LANG=FR_FR@euro, as the @euro variant for locale categories other
than LC_MONETARY is undefined.

Examples
1. The following example uses the strfmon subroutine and accepts a format specification and an input

value. The input value is formatted according to the input format specification.
#include <monetary.h>
#include <locale.h>
#include <stdio.h>

main(int argc, char **argv)
{

char bfr[256], format[256];
int match; ssize_t size;
float value;

(void) setlocal(LC_ALL, "");

if (argc != 3){
... /* Error handling */

}

346 Writing and Debugging Programs

../../libs/basetrf2/strfmon.htm

match = sscanf(argv[1], "%f", &value);
if (!match) {

... /* Error handling */
}
match = sscanf(argv[2], "%s", format);
if (!match) {

... /*Error handling */
}
size = strfmon(bfr, 256, format, value);
if (size == -1) {

... /* Error handling */
}
printf ("Formatted monetary value is: %s\n", bfr);

}

The following table provides examples of some of the possible conversion specifications and the
outputs for 12345.67 and -12345.67 in a US English locale:

Conversion Specification Output Description

%n $12,345.67 -$12,345.67 Default formatting

%15n $12,345.67 -$12,345.67 Right justifies within a 15-character
field.

%#6n $ 12,345.67 -$ 12,345.67 Aligns columns for values up to
999,999.

%=*#8n $****12,345.67 -$****12,345.67 Specifies a fill character.

%=0#8n $000012,345.67 -$000012,345.67 Fill characters do not use grouping.

%|#6n $ 12345.67 -$ 12345.67 Disables the thousands separator.

%|#6.0n $ 12346 -$ 12346 Rounds off to whole units.

%|#6.3n $ 12345.670 -$ 12345.670 Increases the precision.

%(#6n $ 12,345.67 ($ 12,345.67) Uses an alternate positive or negative
style.

%!(#6n 12,345.67 (12,345.67) Disables the currency symbol.

2. The following example converts a monetary value into a numeric value. The monetary string is pointed
to by input and the result of converting it into numeric form is stored in the string pointed to by output.
Assume input and output are initialized.
char *input; /* the input multibyte string containing the monetary string */
char *output; /* the numeric string obtained from the input string */
wchar_t src_string[SIZE], dest_string[SIZE];
wchar_t *monetary, *numeric;
wchar_t mon_decimal_point, radixchar;
wchar_t wc;
localeconv *lc;

/* Initialize input and output to point to valid buffers as appropriate. */
/* Convert the input string to process code form*/
retval = mbstowcs(src_string, input, SIZE);
/* Handle error returns */

monetary = src_string;
numeric = dest_string;
lc = localeconv();

/* obtain the LC_MONETARY and LC_NUMERIC info */

/* Convert the monetary decimal point to wide char form */
retval = mbtowc(&mon_decimal_point, lc->mon_decimal_point,

MB_CUR_MAX);
/* Handle any error case */

Chapter 16. National Language Support 347

/* Convert the numeric decimal point to wide char form */
retval = mbtowc(&radixchar, lc->decimal_point, MB_CUR_MAX);
/* Handle error case */
/* Assuming the string is converted first into wide character
** code form via mbstowcs, monetary points to this string.
*/
/* Pick up the numeric information from the wide character
** string and copy it into a temp buffer.
*/

while(wc = *monetary++){
if(iswdigit(wc))

*numeric++ = wc;
else if(wc == mon_decimal_point)

*numeric++=radixchar;
}
*numeric = 0;

/* dest_string has the numeric value of the monetary quantity. */
/* Convert the numeric quantity into multibyte form */
retval = wcstombs(output, dest_string, SIZE);
/* Handle any error returns */
/* Output contains a numeric value suitable for atof conversion. */

Related Information
“National Language Support Subroutines Overview” on page 339 provides information about wide
character and multibyte subroutines.

For general information about internationalizing programs, see National Language Support Overview for
Programming (“Chapter 16. National Language Support” on page 329) and “Locale Overview for
Programming” on page 330 .

The strfmon subroutine.

Multibyte and Wide Character Subroutines
This section contains information about multibyte and wide character code subroutines. This section
contains the following major subsections:

v “Multibyte Code and Wide Character Code Conversion Subroutines”

v “Wide Character Classification Subroutines” on page 353

v 355

v “Multibyte and Wide Character String Collation Subroutines” on page 356

v “Multibyte and Wide Character String Comparison Subroutines” on page 359

v 359

v “Multibyte and Wide Character String Collation Subroutines” on page 356

v “Wide Character String Search Subroutines” on page 362

v 365

v “Working with the Wide Character Constant” on page 369

Multibyte Code and Wide Character Code Conversion Subroutines

The internationalized environment of National Language Support blends multibyte and wide character
subroutines. The decision of when to use wide character or multibyte subroutines can be made only after
careful analysis.

If a program primarily uses multibyte subroutines, it may be necessary to convert the multibyte character
codes to wide character codes before certain wide character subroutines can be used. If a program uses
wide character subroutines, data may need to be converted to multibyte form when invoking subroutines.

348 Writing and Debugging Programs

../../libs/basetrf2/strfmon.htm

Both methods have drawbacks, depending on the program in use and the availability of standard
subroutines to perform the required processing. For instance, the wide character display-column-width
subroutine has no corresponding standard multibyte subroutine.

If a program can process its characters in multibyte form, this method should be used instead of
converting the characters to wide character form.

Attention: The conversion between multibyte and wide character code depends on the current locale
setting. Do not exchange wide character codes between two processes, unless you have knowledge
that each locale that might used handles wide character codes in a consistent fashion. Most AIX
locales use the Unicode character value as a wide character code, except locales based on the
IBM-850 and IBM-eucTW codesets.

Multibyte Code to Wide Character Code Conversion Subroutines

The following subroutines are used when converting from multibyte code to wide character code:

mblen Determines the length of a multibyte character.
mbstowcs Converts a multibyte string to a wide character string.
mbtowc Converts a multibyte character to a wide character.

Wide Character Code to Multibyte Code Conversion Subroutines

The following subroutines are used when converting from wide character code to multibyte character code:

wcslen Determines the number of wide characters in a wide character string.
wcstombs Converts a wide character string to a multibyte character string.
wctomb Converts a wide character to a multibyte character.

Examples
1. The following example uses the mbtowc subroutine to convert a character in multibyte character code

to wide character code:
main()
{

char *s;
wchar_t wc;
int n;

(void)setlocale(LC_ALL,"");

/*
** s points to the character string that needs to be
** converted to a wide character to be stored in wc.
*/
n = mbtowc(&wc, s, MB_CUR_MAX);

if (n == -1){
/* Error handle */

}
if (n == 0){

/* case of name pointing to null */
}

/*
** wc contains the process code for the multibyte character
** pointed to by s.
*/

}

Chapter 16. National Language Support 349

../../libs/basetrf1/mblen.htm
../../libs/basetrf1/mbstowcs.htm
../../libs/basetrf1/mbtowc.htm
../../libs/basetrf2/wcslen.htm
../../libs/basetrf2/wcstombs.htm
../../libs/basetrf2/wctomb.htm
../../libs/basetrf1/mbtowc.htm

2. The following example uses the wctomb subroutine to convert a character in wide character code to
multibyte character code:
#include <stdlib.h>
#include <limits.h> /* for MB_LEN_MAX */
#include <stdlib.h> /* for wchar_t */

main()
{

char s[MB_LEN_MAX}; /* system wide maximum number of
** bytes in a multibyte character r. */

wchar_t wc;
int n;

(void)setlocale(LC_ALL,"");

/*
** wc is the wide character code to be converted to
** multibyte character code.
*/
n = wctomb(s, wc);

if(n == -1){
/* pwcs does not point to a valid wide character */

}
/*
** n has the number of bytes contained in the multibyte
** character stored in s.
*/

}

3. The following example uses the mblen subroutine to find the byte length of a character in multibyte
character code:
#include <stdlib.h>
#include <locale.h>

main
{

char *name = "h";
int n;

(void)setlocale(LC_ALL,"");

n = mblen(name, MB_CUR_MAX);
/*
** The count returned in n is the multibyte length.
** It is always less than or equal to the value of
** MB_CUR_MAX in stdlib.h
*/
if(n == -1){

/* Error Handling */
}

}

4. The following example obtains a previous character position in a multibyte string. If you need to
determine the previous character position, starting from a current character position (not just some
random byte position), step through the buffer starting at the beginning. Use the mblen subroutine until
the current character position is reached and save the previous character position to obtain the needed
character position.
char buf[]; /* contains the multibyte string */
char *cur, /* points to the current character position */
char *prev, /* points to previous multibyte character */
char *p; /* moving pointer */

/* initialize the buffer and pointers as needed */
/* loop through the buffer until the moving pointer reaches
** the current character position in the buffer, always

350 Writing and Debugging Programs

../../libs/basetrf2/wctomb.htm
../../libs/basetrf1/mblen.htm

** saving the last character position in prev pointer */
p = prev = buf;

/* cur points to a valid character somewhere in buf */
while(p< cur){

prev = p;
if((i=mblen(p, mbcurmax))<=0){

/* invalid multibyte character or null */
/* You can have a different error handling
** strategy */
p++; /* skip it */

}else {
p += i;

}
}
/* prev will point to the previous character position */

/* Note that if(prev == cur), then it means that there was
** no previous character. Also, if all bytes up to the
** current character are invalid, it will treat them as
** all valid single-byte characters and this may not be what
** you want. One may change this to handle another method of
** error recovery. */

5. The following example uses of the mbstowcs subroutine to convert a multibyte string to wide
character string:
#include <stdlib.h>
#include <locale.h>

main()
{

char *s;
wchar_t *pwcs;
size_t retval, n;

(void)setlocale(LC_ALL, "");

n = strlen(s) + 1; /*string length + terminating null */

/* Allocate required wchar array */
pwcs = (wchar_t *)malloc(n * sizeof(wchar_t));
retval = mbstowcs(pwcs, s, n);
if(retval == -1){

/* Error handle */
}
/*
** pwcs contains the wide character string.
*/

}

6. The following example illustrates the problems with using the mbstowcs subroutine on a large block of
data for conversion to wide character form. When it encounters an invalid multibyte, the mbstowcs
subroutine returns a value of -1 but does not specify where the error occurred. Therefore, the mbtowc
subroutine must be used repeatedly to convert one character at a time to wide character code.

Note: Processing in this manner will considerably slow down program performance.

During the conversion of single-byte code sets, there is no possibility for partial multibytes. However,
during the conversion of multibyte code sets, partial multibytes are copied to a save buffer. During the
next call to the read subroutine, the partial multibyte is prefixed to the rest of the byte sequence.

Note: A null-terminated wide character string is obtained. Optional error handling can be done if
an instance of an invalid byte sequence is found.

Chapter 16. National Language Support 351

../../libs/basetrf1/mbstowcs.htm
../../libs/basetrf1/mbstowcs.htm
../../libs/basetrf1/mbtowc.htm
../../libs/basetrf2/read.htm

#include <stdio.h>
#include <locale.h>
#include <stdlib.h>

main(int argc, char *argv[])
{

char *curp, *cure;
int bytesread, bytestoconvert, leftover;
int invalid_multibyte, mbcnt, wcnt;
wchar_t *pwcs;
wchar_t wbuf[BUFSIZ+1];
char buf[BUFSIZ+1];
char savebuf[MB_LEN_MAX];
size_t mb_cur_max;
int fd;

/*
** MB_LEN_MAX specifies the system wide constant for
** the maximum number of bytes in a multibyte character.
*/

(void)setlocale(LC_ALL, "");
mb_cur_max = MB_CUR_MAX;

fd = open(argv[1], 0);
if(fd < 0){

/* error handle */
}

leftover = 0;
if(mb_cur_max==1){ /* Single byte code sets case */

for(;;){
bytesread = read(fd, buf, BUSIZ);
if(bytesread <= 0)

break;
mbstowcs(wbuf, buf, bytesread+1);
/* Process using the wide character buffer */

}
/* File processed ... */

exit(0); /* End of program */

}else{ /* Multibyte code sets */
leftover = 0;

for(;;) {
if(leftover)

strncpy(buf, savebuf ,leftover);
bytesread=read(fd,buf+leftover, BUFSIZ-leftover);
if(bytesread <= 0)

break;

buf[leftover+bytesread] = '\0';
/* Null terminate string */

invalid_multibyte = 0;
bytestoconvert = leftover+bytesread;
cure= buf+bytestoconvert;
leftover=0;
pwcs = wbuf;

/* Stop processing when invalid mbyte found. */
curp= buf;

for(;curp<cure;){
mbcnt = mbtowc(pwcs,curp, mb_cur_max);
if(mbcnt>0){

curp += mbcnt;
pwcs++;
continue;

352 Writing and Debugging Programs

}else{
/* More data needed on next read*/
if (cure-curp<mb_cur_max){

leftover=cure-curp;
strncpy(savebuf,curp,leftover);
/* Null terminate before partial mbyte */
*curp=0;
break;

}else{
/*Invalid multibyte found */

invalid_multibyte =1;
break;

}
}

}
if(invalid_multibyte){ /*error handle */
}
/* Process the wide char buffer */

}
}

}

7. The following example uses the wcstombs and wcslen subroutines to convert a wide character string
to multibyte form:
#include <stdlib.h>
#include <locale.h>

main()
{

wchar_t *pwcs; /* Source wide character string */
char *s; /* Destination multibyte character string */
size_t n;
size_t retval;

(void)setlocale(LC_ALL, "");
/*
** Calculate the maximum number of bytes needed to
** store the wide character buffer in multibyte form in the
** current code page and malloc() the appropriate storage,
** including the terminating null.
*/
s = (char *) malloc(wcslen(pwcs) * MB_CUR_MAX + 1);
retval= wcstombs(s, pwcs, n);
if(retval == -1) {

/* Error handle */
/* s points to the multibyte character string. */

}

Wide Character Classification Subroutines

The majority of wide character classification subroutines are similar to traditional character classification
subroutines, except that wide character classification subroutines operate on a wchar_t data type
argument passed as a wint_t data type argument.

Generic Wide Character Classification Subroutines

In the internationalized environment of National Language Support, the ability to create new character
class properties is essential. For example, several properties are defined for Japanese characters that are
not applicable to the English language. As more languages are supported, a framework enabling
applications to deal with a varying number of character properties is needed. The wctype and iswctype
subroutines allow handling of character classes in a general fashion. These subroutines are used to allow
for both user-defined and language-specific character classes.

Chapter 16. National Language Support 353

../../libs/basetrf2/wctype.htm
../../libs/basetrf1/iswctype.htm

The action of wide character classification subroutines is affected by the definitions in the LC_CTYPE
category for the current locale.

To create new character classifications for use with the wctype and iswctype subroutines, create a new
character class in the LC_CTYPE category and generate the locale using the localedef command. A user
application obtains this locale data with the setlocale subroutine. The program can then access the new
classification subroutines by using the wctype subroutine to get the wctype_t property handle. It then
passes to the iswctype subroutine both the property handle and the wide character code of the character
to be tested.

wctype Obtains handle for character property classification.
iswctype Tests for character property.

Standard Wide Character Classification Subroutines

The isw* subroutines determine various aspects of a standard wide character classification. The isw*
subroutines also work with single-byte code sets. The isw* subroutines should be used in preference to
the wctype and iswctype subroutines. The wctype and iswctype subroutines should be used only for
extended character class properties (for example, Japanese language properties).

When using the wide character functions to convert the case in several blocks of data, the application
must convert characters from multibyte to wide character code form. Since this may affect performance in
single-byte code set locales, you should consider providing two conversion paths in your application. The
traditional path for single-byte code set locales would convert case using the isupper,islower, toupper,
and tolower subroutines. The alternate path for multibyte code set locales would convert multibyte
characters to wide character code form and convert case using the iswupper, iswlower, towupper and
towlower subroutines. When converting multibyte characters to wide character code form, an application
needs to handle special cases where a multibyte character may split across successive blocks.

iswalnum Tests for alphanumeric character classification.
iswalpha Tests for alphabetic character classification.
iswcntrl Tests for control character classification.
iswdigit Tests for digit character classification.
iswgraph Tests for graphic character classification.
iswlower Tests for lowercase character classification.
iswprint Tests for printable character classification.
iswpunct Tests for punctuation character classification.
iswspace Tests for space character classification.
iswupper Tests for uppercase character classification.
iswxdigit Tests for hexadecimal-digit character classification.

Wide Character Case Conversion Subroutines

The following subroutines convert cases for wide characters. The action of wide character case conversion
subroutines is affected by the definition in the LC_CTYPE category for the current locale.

towlower Converts an uppercase wide character to a lowercase wide character.
towupper Converts a lowercase wide character to an uppercase wide character.

Example
The following example uses the wctype subroutine to test for the NEW_CLASS character classification:
#include <ctype.h>
#include <locale.h>
#include <stdlib.h>

354 Writing and Debugging Programs

../../files/aixfiles/LC_CTYPE.htm
../../files/aixfiles/LC_CTYPE.htm
../../cmds/aixcmds3/localedef.htm
../../libs/basetrf2/setlocale.htm
../../libs/basetrf2/wctype.htm
../../libs/basetrf1/iswctype.htm
../../libs/basetrf1/iswalnum.htm
../../libs/basetrf1/iswalnum.htm
../../libs/basetrf1/iswalnum.htm
../../libs/basetrf1/iswalnum.htm
../../libs/basetrf1/iswalnum.htm
../../libs/basetrf1/iswalnum.htm
../../libs/basetrf1/iswalnum.htm
../../libs/basetrf1/iswalnum.htm
../../libs/basetrf1/iswalnum.htm
../../libs/basetrf1/iswalnum.htm
../../libs/basetrf1/iswalnum.htm
../../files/aixfiles/LC_CTYPE.htm
../../libs/basetrf2/towlower.htm
../../libs/basetrf2/towupper.htm

main()
{

wint_t wc;
int retval;
wctype_t chandle;

(void)setlocale(LC_ALL,"");
/*
** Obtain the character property handle for the NEW_CLASS
** property.
*/
chandle = wctype("NEW_CLASS") ;
if(chandle == (wctype_t)0){

/* Invalid property. Error handle. */
}
/* Let wc be the wide character code for a character */
/* Test if wc has the property of NEW_CLASS */
retval = iswctype(wc, chandle);
if(retval > 0) {

/*
** wc has the property NEW_CLASS.
*/

}else if(retval == 0) {
/*
** The character represented by wc does not have the
** property NEW_CLASS.
*/

}
}

Wide Character Display Column Width Subroutines

When characters are displayed or printed, the number of columns occupied by a character may differ. For
example, a Kanji character (Japanese language) may occupy more than one column position. The number
of display columns required by each character is part of the National Language Support locale database.
The LC_CTYPE category defines the number of columns needed to display a character.

There are no standard multibyte display-column-width subroutines. For portability, convert multibyte codes
to wide character codes and use the required wide character display-width subroutines. However, if the
__max_disp_width macro (defined in the stdlib.h file) is set to 1 and a single-byte code set is in use,
then the display-column widths of all characters (except tabs) in the code set are the same, and are equal
to 1. In this case, the strlen (string) subroutine gives the display column width of the specified string. This
is demonstrated in the following example:
#include <stdlib.h>

int display_column_width; /* number of display columns */
char *s; /* character string */
....
if((MB_CUR_MAX == 1) && (__max_disp_width == 1)){

display_column_width = strlen(s);
/* s is a string pointer */

}

The following subroutines find the display widths for wide character strings:

wcswidth Determines the display width of a wide character string.
wcwidth Determines the display width of a wide character.

Examples
1. The following example uses the wcwidth subroutine to find the display column width of a wide

character:

Chapter 16. National Language Support 355

../../files/aixfiles/LC_CTYPE.htm
../../libs/basetrf2/strlen.htm
../../libs/basetrf2/wcswidth.htm
../../libs/basetrf2/wcwidth.htm
../../libs/basetrf2/wcwidth.htm

#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wint_t wc;
int retval;

(void)setlocale(LC_ALL, "");

/*
** Let wc be the wide character whose display width is
** to be found.
*/
retval = wcwidth(wc);
if(retval == -1){

/*
** Error handling. Invalid or nonprintable
** wide character in wc.
*/

}
}

2. The following example uses the wcswidth subroutine to find the display column width of a wide
character string:
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs;
int retval;
size_t n;

(void)setlocale(LC_ALL, "");
/*
** Let pwcs point to a wide character null
** terminated string.
** Let n be the number of wide characters
** whose display column width is to be determined.
*/
retval = wcswidth(pwcs, n);
if(retval == -1){

/*
** Error handling. Invalid wide or nonprintable
** character ode encountered in the wide
** character string pwcs.
*/

}
}

Multibyte and Wide Character String Collation Subroutines

Strings can be compared in two ways:

v Using the ordinal (binary) values of the characters.

v Using the weights associated with the characters for each locale, as determined by the LC_COLLATE
category.

National Language Support (NLS) uses the second method.

356 Writing and Debugging Programs

../../libs/basetrf2/wcswidth.htm
../../files/aixfiles/LC_COLLATE.htm

Collation is a locale-specific property of characters. A weight is assigned to each character to indicate its
relative order for sorting. A character may be assigned more than one weight. Weights are prioritized as
primary, secondary, tertiary, and so forth. The maximum number of weights assigned each character is
system-defined.

A process inherits the C locale or POSIX locale at its startup time. When the setlocale (LC_ALL, ″ ″)
subroutine is called, a process obtains its locale based on the LC_* and LANG environment variables. The
following subroutines are affected by the LC_COLLATE category and determine how two strings will be
sorted in any given locale.

Note: Collation-based string comparisons take a long time because of the processing involved in
obtaining the collation values. Such comparisons should be used only when necessary. If you need
to find whether two wide character strings are equal, do not use the wcscoll and wcsxfrm
subroutines. Use the wcscmp subroutine instead.

The following subroutines compare multibyte character strings:

strcoll Compares the collation weights of multibyte character strings.
strxfrm Converts a multibyte character string to values representing character collation weights.

The following subroutines compare wide character strings:

wcscoll Compares the collation weights of wide character strings.
wcsxfrm Converts a wide character string to values representing character collation weights.

Examples
1. The following example uses the wcscoll subroutine to compare two wide character strings based on

their collation weights:
#include <stdio.h>
#include <string.h>
#include <locale.h>
#include <stdlib.h>

extern int errno;

main()
{

wchar_t *pwcs1, *pwcs2;
size_t n;

(void)setlocale(LC_ALL, "");

/* set it to zero for checking errors on wcscoll */
errno = 0;
/*
** Let pwcs1 and pwcs2 be two wide character strings to
** compare.
*/
n = wcscoll(pwcs1, pwcs2);

/*
** If errno is set then it indicates some
** collation error.
*/

if(errno != 0){
/* error has occurred... handle error ...*/

}
}

2. The following example uses the wcsxfrm subroutine to compare two wide character strings based on
collation weights:

Chapter 16. National Language Support 357

../../libs/basetrf2/wcscat.htm
../../libs/basetrf2/strcmp.htm
../../libs/basetrf2/strcat.htm
../../libs/basetrf2/wcscoll.htm
../../libs/basetrf2/wcsxfrm.htm
../../libs/basetrf2/wcscoll.htm
../../libs/basetrf2/wcsxfrm.htm

Note: Determining the size n (where n is a number) of the transformed string, when using the
wcsxfrm subroutine, can be accomplished in one of the following ways:

a. For each character in the wide character string, the number of bytes for possible collation values
cannot exceed the COLL_WEIGHTS_MAX * sizeof(wchar_t) value. This value, multiplied by the
number of wide character codes, gives the buffer length needed. To the buffer length add 1 for the
terminating wide character null. This strategy may slow down performance.

b. Estimate the byte-length needed. If the previously obtained value is not enough, increase it. This
may not satisfy all strings but gives maximum performance.

c. Call the wcsxfrm subroutine twice: once to find the value of n, and again to transform the string
using this n value. This strategy slows down performance because the wcsxfrm subroutine is
called twice. However, it yields a precise value for the buffer size needed to store the transformed
string.

Which method to choose depends on the characteristics of the strings used in the program and the
performance objectives of the program.
#include <stdio.h>
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs1, *pwcs2, *pwcs3, *pwcs4;
size_t n, retval;

(void)setlocale(LC_ALL, "");
/*
** Let the string pointed to by pwcs1 and pwcs3 be the
** wide character arrays to store the transformed wide
** character strings. Let the strings pointed to by pwcs2
** and pwcs4 be the wide character strings to compare based
** on the collation values of the wide characters in these
** strings.
** Let n be large enough (say,BUFSIZ) to transform the two
** wide character strings specified by pwcs2 and pwcs4.
**
** Note:
** In practice, it is best to call wcsxfrm if the wide
** character string is to be compared several times to
** different wide character strings.
*/

do {
retval = wcsxfrm(pwcs1, pwcs2, n);
if(retval == (size_t)-1){

/* error has occurred. */
/* Process the error if needed */
break;

}

if(retval >= n){
/*
** Increase the value of n and use a bigger buffer pwcs1.
*/
}

}while (retval >= n);

do {
retval = wcsxfrm(pwcs3, pwcs4, n);
if (retval == (size_t)-1){

/* error has occurred. */
/* Process the error if needed */
break;

358 Writing and Debugging Programs

if(retval >= n){
/*Increase the value of n and use a bigger buffer pwcs3.*/
}

}while (retval >= n);
retval = wcscmp(pwcs1, pwcs3);
/* retval has the result */

}

Multibyte and Wide Character String Comparison Subroutines

The strcmp and strncmp subroutines determine if the contents of two multibyte strings are equivalent. If
your application needs to know how the two strings differ lexically, use the multibyte and wide character
string collation subroutines.

The following NLS subroutines compare wide character strings:

wcscmp Compares two wide character strings.
wcsncmp Compares a specific number of wide character strings.

Example
The following example uses the wcscmp subroutine to compare two wide character strings:
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs1, *pwcs2;
int retval;

(void)setlocale(LC_ALL, "");
/*
** pwcs1 and pwcs2 point to two wide character
** strings to compare.
*/
retval = wcscmp(pwcs1, pwcs2);
/* pwcs1 contains a copy of the wide character string
** in pwcs2
*/

}

Wide Character String Conversion Subroutines

The following NLS subroutines convert wide character strings to double, long, and unsigned long integers:

wcstod Converts a wide character string to a double-precision floating point.
wcstol Converts a wide character string to a signed long integer.
wcstoul Converts a wide character string to an unsigned long integer.

Before calling the wcstod, wcstoul, or wcstol subroutine, the errno global variable must be set to 0. Any
error that occurs as a result of calling these subroutines can then be handled correctly.

Examples
1. The following example uses the wcstod subroutine to convert a wide character string to a

double-precision floating point:
#include <stdlib.h>
#include <locale.h>
#include <errno.h>

Chapter 16. National Language Support 359

../../libs/basetrf2/strcmp.htm
../../libs/basetrf2/strcmp.htm
../../libs/basetrf2/wcscat.htm
../../libs/basetrf2/wcsncat.htm
../../libs/basetrf2/wcscat.htm
../../libs/basetrf2/wcstod.htm
../../libs/basetrf2/wcstol.htm
../../libs/basetrf2/wcstoul.htm
../../libs/basetrf2/wcstod.htm

extern int errno;

main()
{

wchar_t *pwcs, *endptr;
double retval;

(void)setlocale(LC_ALL, "");
/*
** Let pwcs point to a wide character null terminated
** string containing a floating point value.
*/
errno = 0; /* set errno to zero */
retval = wcstod(pwcs, &endptr);

if(errno != 0){
/* errno has changed, so error has occurred */

if(errno == ERANGE){
/* correct value is outside range of
** representable values. Case of overflow
** error
*/

if((retval == HUGE_VAL) ||
(retval == -HUGE_VAL)){
/* Error case. Handle accordingly. */

}else if(retval == 0){
/* correct value causes underflow */
/* Handle appropriately */

}
}

}
/* retval contains the double. */

}

2. The following example uses the wcstol subroutine to convert a wide character string to a signed long
integer:
#include <stdlib.h>
#include <locale.h>
#include <errno.h>
#include <stdio.h>

extern int errno;

main()
{

wchar_t *pwcs, *endptr;
long int retval;

(void)setlocale(LC_ALL, "");
/*
** Let pwcs point to a wide character null terminated
** string containing a signed long integer value.
*/
errno = 0; /* set errno to zero */
retval = wcstol(pwcs, &endptr, 0);

if(errno != 0){
/* errno has changed, so error has occurred */

if(errno == ERANGE){
/* correct value is outside range of
** representable values. Case of overflow
** error
*/

360 Writing and Debugging Programs

../../libs/basetrf2/wcstol.htm

if((retval == LONG_MAX) || (retval == LONG_MIN)){
/* Error case. Handle accordingly. */

}else if(errno == EINVAL){
/* The value of base is not supported */
/* Handle appropriately */

}
}

}
/* retval contains the long integer. */

}

3. The following example uses the wcstoul subroutine to convert a wide character string to an unsigned
long integer:
#include <stdlib.h>
#include <locale.h>
#include <errno.h>

extern int errno;

main()
{

wchar_t *pwcs, *endptr;
unsigned long int retval;

(void)setlocale(LC_ALL, "");

/*
** Let pwcs point to a wide character null terminated
** string containing an unsigned long integer value.
*/
errno = 0; /* set errno to zero */
retval = wcstoul(pwcs, &endptr, 0);

if(errno != 0){
/* error has occurred */
if(retval == ULONG_MAX || errno == ERANGE){

/*
** Correct value is outside of
** representable value. Handle appropriately
*/

}else if(errno == EINVAL){
/* The value of base is not representable */
/* Handle appropriately */

}
}
/* retval contains the unsigned long integer. */

}

Wide Character String Copy Subroutines

The following NLS subroutines copy wide character strings:

wcscpy Copies a wide character string to another wide character string.
wcsncpy Copies a specific number of characters from a wide character string to another wide character string.
wcscat Appends a wide character string to another wide character string.
wcsncat Appends a specific number of characters from a wide character string to another wide character string.

Example
The following example uses the wcscpy subroutine to copy a wide character string into a wide character
array:

Chapter 16. National Language Support 361

../../libs/basetrf2/wcstoul.htm
../../libs/basetrf2/wcscat.htm
../../libs/basetrf2/wcsncat.htm
../../libs/basetrf2/wcscat.htm
../../libs/basetrf2/wcsncat.htm
../../libs/basetrf2/wcscat.htm

#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs1, *pwcs2;
size_t n;

(void)setlocale(LC_ALL, "");
/*
** Allocate the required wide character array.
*/
pwcs1 = (wchar_t *)malloc((wcslen(pwcs2) +1)*sizeof(wchar_t));
wcscpy(pwcs1, pwcs2);
/*
** pwcs1 contains a copy of the wide character string in pwcs2
*/

}

Wide Character String Search Subroutines

The following NLS subroutines are used to search for wide character strings:

wcschr Searches for the first occurrence of a wide character in a wide character string.
wcsrchr Searches for the last occurrence of a wide character in a wide character string.
wcspbrk Searches for the first occurrence of a several wide characters in a wide character string.
wcsspn Determines the number of wide characters in the initial segment of a wide character string.
wcscspn Searches for a wide character string.
wcswcs Searches for the first occurrence of a wide character string within another wide character string.
wcstok Breaks a wide character string into a sequence of separate wide character strings.

Examples
1. The following example uses the wcschr subroutine to locate the first occurrence of a wide character in

a wide character string:
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs1, wc, *pws;
int retval;

(void)setlocale(LC_ALL, "");

/*
** Let pwcs1 point to a wide character null terminated string.
** Let wc point to the wide character to search for.
**
*/
pws = wcschr(pwcs1, wc);
if (pws == (wchar_t)NULL){

/* wc does not occur in pwcs1 */
}else{

/* pws points to the location where wc is found */
}

}

2. The following example uses the wcsrchr subroutine to locate the last occurrence of a wide character
in a wide character string:

362 Writing and Debugging Programs

../../libs/basetrf2/wcsrchr.htm
../../libs/basetrf2/wcsrchr.htm
../../libs/basetrf2/wcspbrk.htm
../../libs/basetrf2/wcsspn.htm
../../libs/basetrf2/wcscat.htm
../../libs/basetrf2/wcswcs.htm
../../libs/basetrf2/wcstok.htm
../../libs/basetrf2/wcsrchr.htm
../../libs/basetrf2/wcsrchr.htm

#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs1, wc, *pws;
int retval;

(void)setlocale(LC_ALL, "");
/*
** Let pwcs1 point to a wide character null terminated string.
** Let wc point to the wide character to search for.
**
*/
pws = wcsrchr(pwcs1, wc);
if (pws == (wchar_t)NULL){

/* wc does not occur in pwcs1 */
}else{

/* pws points to the location where wc is found */
}

}

3. The following example uses the wcspbrk subroutine to locate the first occurrence of several wide
characters in a wide character string:
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs1, *pwcs2, *pws;

(void)setlocale(LC_ALL, "");

/*
** Let pwcs1 point to a wide character null terminated string.
** Let pwcs2 be initialized to the wide character string
** that contains wide characters to search for.
*/
pws = wcspbrk(pwcs1, pwcs2);

if (pws == (wchar_t)NULL){
/* No wide character from pwcs2 is found in pwcs1 */

}else{
/* pws points to the location where a match is found */

}
}

4. The following example uses the wcsspn subroutine to determine the number of wide characters in the
initial segment of a wide character string segment:
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs1, *pwcs2;
size_t count;

(void)setlocale(LC_ALL, "");
/*
** Let pwcs1 point to a wide character null terminated string.
** Let pwcs2 be initialized to the wide character string
** that contains wide characters to search for.
*/
count = wcsspn(pwcs1, pwcs2);

Chapter 16. National Language Support 363

../../libs/basetrf2/wcspbrk.htm
../../libs/basetrf2/wcsspn.htm

/*
** count contains the length of the segment.
*/

}

5. The following example uses the wcscspn subroutine to determine the number of wide characters not
in a wide character string segment:
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs1, *pwcs2;
size_t count;

(void)setlocale(LC_ALL, "");

/*
** Let pwcs1 point to a wide character null terminated string.
** Let pwcs2 be initialized to the wide character string
** that contains wide characters to search for.
*/
count = wcscspn(pwcs1, pwcs2);
/*
** count contains the length of the segment consisting
** of characters not in pwcs2.
*/

}

6. The following example uses the wcswcs subroutine to locate the first occurrence of a wide character
string within another wide character string:
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs1, *pwcs2, *pws;

(void)setlocale(LC_ALL, "");
/*
** Let pwcs1 point to a wide character null terminated string.
** Let pwcs2 be initialized to the wide character string
** that contains wide characters sequence to locate.
*/
pws = wcswcs(pwcs1, pwcs2);
if (pws == (wchar_t)NULL){

/* wide character sequence pwcs2 is not found in pwcs1 */
}else{

/*
** pws points to the first occurrence of the sequence
** specified by pwcs2 in pwcs1.
*/

}
}

7. The following example uses the wcstok subroutine to tokenize a wide character string:
#include <string.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wchar_t *pwcs1 = L"?a???b,,,#c";
wchar_t *pwcs;

364 Writing and Debugging Programs

../../libs/basetrf2/wcscat.htm
../../libs/basetrf2/wcswcs.htm
../../libs/basetrf2/wcstok.htm

(void)setlocale(LC_ALL, "");
pwcs = wcstok(pwcs1, L"?");
/* pws points to the token: L"a" */
pwcs = wcstok((wchar_t *)NULL, L",");
/* pws points to the token: L"??b" */
pwcs = wcstok((wchar_t *)NULL, L"#,");
/* pws points to the token: L"c" */

}

Wide Character Input/Output Subroutines

NLS provides subroutines for both formatted and unformatted I/O.

Formatted Wide Character I/O

Additions to the printf and scanf family of subroutines allow for the formatting of wide characters. The
printf and scanf subroutines have two additional format specifiers for wide character handling: %C and
%S. The %C and %S format specifiers allow I/O on a wide character and a wide character string,
respectively. They are similar to the %c and %s format specifiers, which allow I/O on a multibyte character
and string.

The multibyte subroutines accept a multibyte array and output a multibyte array. To convert multibyte
output from a multibyte subroutine to a wide character string, use the mbstowcs subroutine.

Unformatted Wide Character I/O

Unformatted wide character I/O subroutines are used when a program requires code set-independent I/O
for characters from multibyte code sets. For example, the fgetwc or getwc subroutine should be used to
input a multibyte character. If the program uses the getc subroutine to input a multibyte character, the
program must call the getc subroutine once for each byte in the multibyte character.

Wide character input subroutines read multibyte characters from a stream and convert them to wide
characters. The conversion is done as if the subroutines call the mbtowc and mbstowcs subroutines.

Wide character output subroutines convert wide characters to multibyte characters and write the result to
the stream. The conversion is done as if the subroutines call the wctomb and wcstombs subroutines.

The behavior of wide character I/O subroutines is affected by the LC_CTYPE category of the current
locale.

Reading and Processing an Entire File: If a program has to go through an entire file that must be
handled in wide character code form, it can be done in one of the following ways:

v In the case of multibyte characters, use either the read or fread subroutine to convert a block of text
data into a buffer. Convert one character at a time in this buffer using the mbtowc subroutine. Handle
special cases of multibyte characters crossing block boundaries. For multibyte code sets, do not use the
mbstowcs subroutine on this buffer. On an invalid or a partial multibyte character sequence, the
mbstowcs subroutine returns -1 without indicating how far it successfully converted the data. You can
use the mbstowcs subroutine with single-byte code sets because you will not run into a partial-byte
sequence problem with single-byte code sets.

v Use the fgetws subroutine to obtain a line from the file. If the returned wide character string contains a
wide character <new-line>, then a complete line is obtained. If there is no <new-line> wide character, it
means that the line is longer than expected, and more calls to the fgetws subroutine are needed to
obtain the complete line. If the program can efficiently process one line at a time, this approach is
recommended.

v If the fgets subroutine is used to read a multibyte file to obtain one line at a time, a split multibyte
character may result. This condition needs to be handled just as in the case of the read subroutine
breaking up a multibyte character across successive reads. If you can guarantee that the input line

Chapter 16. National Language Support 365

../../libs/basetrf1/printf.htm
../../libs/basetrf2/scanf.htm
../../libs/basetrf1/mbstowcs.htm
../../libs/basetrf1/getwc.htm
../../libs/basetrf1/getwc.htm
../../libs/basetrf1/getc.htm
../../libs/basetrf1/mbtowc.htm
../../libs/basetrf1/mbstowcs.htm
../../libs/basetrf2/wctomb.htm
../../libs/basetrf2/wcstombs.htm
../../files/aixfiles/LC_CTYPE.htm

length is not more than a set limit, a buffer of that size (plus 1 for null) can be used, thereby avoiding
the possibility of a split multibyte character. If the program can efficiently process one line at a time, this
approach may be used. Because of the possibility of split bytes in the buffer, you should use the fgetws
subroutine in preference to the fgets subroutine for multibyte characters.

v Use the fgetwc subroutine on the file to read one wide character code at a time. If a file is large, the
function call overhead becomes large and reduces the value of this method.

The decision of which one of these methods to use should be made on a per program basis. The second
option is recommended, as it is capable of high performance and the program does not have to handle the
special cases.

Input Subroutines: A new data type, wint_t,is required to represent the wide character code value as
well as the end-of-file (EOF) marker. For example, consider the case of the fgetwc subroutine, which
returns a wide character code value:

wchar_t fgetwc(); If the wchar_t data type is defined as a char value, the y-umlaut symbol cannot be
distinguished from the end-of-file (EOF) marker in the ISO8859-1 code set. The
0xFF code point is a valid character (y umlaut). Hence, the return value cannot be
the wchar_t data type. A data type is needed that can hold both the EOF marker
and all the code points in a code set.

int fgetwc(); On some machines, the int data type is defined to be 16 bits. When the wchar_t
data type is larger than 16 bits, the int value cannot represent all the return values.

Due to these reasons, wint_t data type is needed to represent the fgetwc subroutine return value. The
wint_t data type is defined in the wchar.h file.

The following subroutines are used for wide character input:

fgetwc Gets next wide character from a stream.
fgetws Gets a string of wide characters from a stream.
getwc Gets next wide character from a stream.
getwchar Gets next wide character from standard input.
getws Gets a string of wide characters from a standard input.
ungetwc Pushes a wide character onto a stream.

Output Subroutines: The following subroutines are used for wide character output:

fputwc Writes a wide character to an output stream.
fputws Writes a wide character string to an output stream.
putwc Writes a wide character to an output stream.
putwchar Writes a wide character to standard output.
putws Writes a wide character string to standard output.

Examples
1. The following example uses the fgetwc subroutine to read wide character codes from a file:

#include <stdio.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wint_t retval;
FILE *fp;
wchar_t *pwcs;

(void)setlocale(LC_ALL, "");

366 Writing and Debugging Programs

../../libs/basetrf1/getwc.htm
../../libs/basetrf1/getwc.htm
../../libs/basetrf1/getws.htm
../../libs/basetrf1/getwc.htm
../../libs/basetrf1/getwc.htm
../../libs/basetrf1/getws.htm
../../libs/basetrf2/ungetc.htm
../../libs/basetrf1/putwc.htm
../../libs/basetrf1/putws.htm
../../libs/basetrf1/putwc.htm
../../libs/basetrf1/putwc.htm
../../libs/basetrf1/putws.htm
../../libs/basetrf1/getwc.htm

/*
** Open a stream.
*/
fp = fopen("file", "r");

/*
** Error Handling if fopen was not successful.
*/
if(fp == NULL){

/* Error handler */
}else{

/*
** pwcs points to a wide character buffer of BUFSIZ.
*/
while((retval = fgetwc(fp)) != WEOF){

*pwcs++ = (wchar_t)retval;
/* break when buffer is full */

}
}
/* Process the wide characters in the buffer */

}

2. The following example uses the getwchar subroutine to read wide characters from standard input:
#include <stdio.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wint_t retval;
FILE *fp;
wchar_t *pwcs;

(void)setlocale(LC_ALL, "");

index = 0;
while((retval = getwchar()) != WEOF){

/* pwcs points to a wide character buffer of BUFSIZ. */
*pwcs++ = (wchar_t)retval;
/* break on buffer full */

}
/* Process the wide characters in the buffer */

}

3. The following example uses the ungetwc subroutine to push a wide character onto an input stream:
#include <stdio.h>
#include <locale.h>
#include <stdlib.h>

main()
{

wint_t retval;
FILE *fp;

(void)setlocale(LC_ALL, "");
/*
** Open a stream.
*/
fp = fopen("file", "r");

/*
** Error Handling if fopen was not successful.
*/
if(fp == NULL){

/* Error handler */

Chapter 16. National Language Support 367

../../libs/basetrf1/getwc.htm
../../libs/basetrf2/ungetc.htm

else{
retval = fgetwc(fp);
if(retval != WEOF){

/*
** Peek at the character and return it to the stream.
*/
retval = ungetwc(retval, fp);
if(retval == EOF){

/* Error on ungetwc */
}

}
}

}

4. The following example uses the fgetws subroutine to read a file one line at a time:
#include <stdio.h>
#include <locale.h>
#include <stdlib.h>

main()
{

FILE *fp;
wchar_t *pwcs;

(void)setlocale(LC_ALL, "");

/*
** Open a stream.
*/
fp = fopen("file", "r");

/*
** Error Handling if fopen was not successful.
*/
if(fp == NULL){

/* Error handler */
}else{

/* pwcs points to wide character buffer of BUFSIZ. */
while(fgetws(pwcs, BUFSIZ, fp) != (wchar_t *)NULL){

/*
** pwcs contains wide characters with null
** termination.
*/

}
}

}

5. The following example uses the fputwc subroutine to write wide characters to an output stream:
#include <stdio.h>
#include <locale.h>
#include <stdlib.h>

main()
{

int index, len;
wint_t retval;
FILE *fp;
wchar_t *pwcs;

(void)setlocale(LC_ALL, "");

/*
** Open a stream.
*/
fp = fopen("file", "w");

/*

368 Writing and Debugging Programs

../../libs/basetrf1/getws.htm
../../libs/basetrf1/putwc.htm

** Error Handling if fopen was not successful.
*/
if(fp == NULL){

/* Error handler */
}else{

/* Let len indicate number of wide chars to output.
** pwcs points to a wide character buffer of BUFSIZ.
*/
for(index=0; index < len; index++){

retval = fputwc(*pwcs++, fp);
if(retval == WEOF)

break; /* write error occurred */
/* errno is set to indicate the error. */

}
}

}

6. The following example uses the fputws subroutine to write a wide character string to a file:
#include <stdio.h>
#include <locale.h>
#include <stdlib.h>

main()
{

int retval;
FILE *fp;
wchar_t *pwcs;

(void)setlocale(LC_ALL, "");

/*
** Open a stream.
*/
fp = fopen("file", "w");

/*
** Error Handling if fopen was not successful.
*/
if(fp == NULL){

/* Error handler */

}else{
/*
** pwcs points to a wide character string
** to output to fp.
*/
retval = fputws(pwcs, fp);
if(retval == -1){

/* Write error occurred */
/* errno is set to indicate the error */

}
}

}

Working with the Wide Character Constant

Use the L constant for ASCII characters only. For ASCII characters, the L constant value is numerically the
same as the code point value of the character. For example, L’a’ is same as a. The reason for using the
L constant is to obtain the wchar_t value of an ASCII character for assignment purposes. A wide character
constant is introduced by the L specifier. For example:
wchar_t wc = L'x' ;

A wide character code corresponding to the character x is stored in wc. The C compiler converts the
character x using the mbtowc or mbstowcs subroutine as appropriate. This conversion to wide characters

Chapter 16. National Language Support 369

../../libs/basetrf1/putws.htm

is based on the current locale setting at compile time. Because ASCII characters are part of all supported
code sets and the wide character representation of all ASCII characters is the same in all locales, L’x’
results in the same value across all code sets. However, if the character x is non-ASCII, the program may
not work when it is run on a different code set than used at compile time. This limitation impacts some
programs that use switch statements using the wide character constant representation.

See the following partial program ″example″, compiled using the IBM-850 code set.
wchar_t
wc;
switch(wc){

case L'a-umlaut':/*substitute the a-umlaut character here*/
/*Process*/

break;
case :L'c-cedilla':/*substitute the c-cedilla character here*/

/*Process*/
break;

default:
break;

}

If this program is compiled and executed on an IBM-850 code set system, it will run correctly. However, if
the same executable is run on an ISO8859-1 system, it may not work correctly. The characters a-umlaut
and c-cedilla may have different process codes in IBM-850 and ISO8859-1 code sets.

Related Information
“National Language Support Subroutines Overview” on page 339 provides information about wide
character and multibyte subroutines.

For general information about internationalizing programs, see “Chapter 16. National Language Support”
on page 329 and “Locale Overview for Programming” on page 330.

The LC_COLLATE category of the locale definition file in AIX 5L Version 5.1 Files Reference.

The LC_CTYPE category of the locale definition file in AIX 5L Version 5.1 Files Reference.

The localedef command in AIX 5L Version 5.1 Commands Reference, Volume 3

“List of Wide Character Subroutines” on page 503 and “List of Multibyte Character Subroutines” on
page 503

The getc subroutine, printf subroutines, in AIX 5L Version 5.1 Technical Reference: Base Operating
System and Extensions Volume 1; and read subroutine, scanf subroutines, setlocale subroutine, strlen
subroutine in AIX 5L Version 5.1 Technical Reference: Base Operating System and Extensions Volume 2.

Internationalized Regular Expression Subroutines
The following subroutines are available for use with internationalized regular expressions.

regcomp Compiles a specified basic or extended regular expression into an executable string.
regexec Compares a null-terminated string with a compiled basic or extended regular expression that must

have been previously compiled by a call to the regcomp subroutine.
regerror Provides a mapping from error codes returned by the regcomp and regexec subroutines to printable

strings.
regfree Frees any memory allocated by the regcomp subroutine associated with the compiled basic or

extended regular expression. The expression is no longer treated as a compiled basic or extended
regular expression after it is given to the regfree subroutine.

370 Writing and Debugging Programs

../../files/aixfiles/LC_COLLATE.htm
../../files/aixfiles/Locale_Definition.htm
../../files/aixfiles/LC_CTYPE.htm
../../files/aixfiles/Locale_Definition.htm
../../cmds/aixcmds3/localedef.htm
../../libs/basetrf1/getc.htm
../../libs/basetrf1/printf.htm
../../libs/basetrf2/read.htm
../../libs/basetrf2/scanf.htm
../../libs/basetrf2/setlocale.htm
../../libs/basetrf2/strlen.htm
../../libs/basetrf2/regcomp.htm#HDRA143C11B2
../../libs/basetrf2/regexec.htm#HDRA143C1206
../../libs/basetrf2/regerror.htm#HDRA143C11E6
../../libs/basetrf2/regfree.htm#HDRA143C1264

fnmatch Checks a specified string to see if it matches a specified pattern. You can use the fnmatch
subroutine in an application that reads a dictionary to find which entries match a given pattern. You
also can use the fnmatch subroutine to match pathnames to patterns.

Examples
1. The following example compiles an internationalized regular expression and matches a string using

this compiled expression. A match is found for the first pattern, but no match is found for the second
pattern.
#include <locale.h>
#include <regex.h>

#define BUFSIZE 256

main()
{

char *p;

char *pattern[] = {
"hello[0-9]*",
"1234"

};

char *string = "this is a test string hello112 and this is test";
/* This is the source string for matching */

int retval;
regex_t re;
char buf[BUFSIZE];

int i;

setlocale(LC_ALL, "");

for(i = 0;i <2; i++){
retval = match(string, pattern[i], &re);
if(retval == 0){

printf("Match found \n");
}else{

regerror(retval, &re, buf, BUFSIZE);
printf("error = %s\n", buf);

}
}
regfree(&re);

}

int match(char *string, char *pattern, regex_t *re)
{

int status;

if((status=regcomp(re, pattern, REG_EXTENDED))!= 0)
return(status);

status = regexec(re, string, 0, NULL, 0);
return(status);

}

2. The following example finds all substrings in a line that match a pattern. The numbers 11 and 1992 are
matched. Every digit that is matched counts as one match. There are six such matches corresponding
to the six digits supplied in the string.

Chapter 16. National Language Support 371

../../libs/basetrf1/fnmatch.htm#HDRA143C1295

#include <locale.h>
#include <regex.h>

#define BUFSIZE 256

main()
{

char *p;

char *pattern = "[0-9]";
char *string = "Today is 11 Feb 1992 ";

int retval;
regex_t re;
char buf[BUFSIZE];
regmatch_t pmatch[100];
int status;
char *ps;

int eflag;

setlocale(LC_ALL, "");

/* Compile the pattern */

if((status = regcomp(&re, pattern, REG_EXTENDED))!= 0){
regerror(status, &re, buf, 120);
exit(2);

}

ps = string;
printf("String to match=%s\n", ps);
eflag = 0;

/* extract all the matches */
while(status = regexec(&re, ps, 1, pmatch, eflag)== 0){

printf("match found at: %d, string=%s\n",
pmatch[0].rm_so, ps +pmatch[0].rm_so);

ps += pmatch[0].rm_eo;
printf("\nNEXTString to match=%s\n", ps);
eflag = REG_NOTBOL;

}
regfree(&re);

}

3. The following example uses the fnmatch subroutine to read a directory and match file names with a
pattern.
#include <locale.h>
#include <fnmatch.h>
#include <sys/dir.h>

main(int argc, char *argv[])
{

char *pattern;
DIR *dir;
struct dirent *entry;
int ret;

setlocale(LC_ALL, "");

dir = opendir(".");

pattern = argv[1];

372 Writing and Debugging Programs

if(dir != NULL){
while((entry = readdir(dir)) != NULL){

ret = fnmatch(pattern, entry->d_name,
FNM_PATHNAME|FNM_PERIOD);

if(ret == 0){
printf("%s\n", entry->d_name);

}else if(ret == FNM_NOMATCH){
continue ;

}else{
printf("error file=%s\n",

entry->d_name);
}

}
closedir(dir);

}
}

Layout (Bidirectional Text and Character Shaping) Overview
Bidirectional (BIDI) text results when texts of different direction orientation appear together. For example,
English text is read from left to right. Arabic and Hebrew texts are read from right to left. If both English
and Hebrew texts appear on the same line, the text is bidirectional.

Write bidirectional text according to the following guidelines:

v Arabic and Hebrew words are written from right to left. (A character string is considered a word for the
purposes of sequencing in an alphanumeric environment.)

v Numbers and English quotations are written from left to right.

v Digits and their punctuation are written marks from left to right.

Bidirectional script is read from right to left and from top to bottom.

If the embedded text is contained in one line, the text is written from left to right and embedded in the
bidirectional text. However, if the embedded text is split between two or more lines, the correct order must
be maintained in the left to right portions to allow top to bottom reading.

For example, right-to-left text embedded in left-to-right text that is contained in one line is written as
follows:
THERE IS txet lanoitceridib deddebme IN THIS SENTENCE.

Right-to-left text embedded in left-to-right text that is split between two lines is written as follows:
THERE IS senil owt neewteb tilps si taht txet lanoitceridib deddebme IN THIS SENTENCE.

Both texts maintain readability even though the embedded text is split.

Chapter 16. National Language Support 373

Data Streams

Bidirectional text environments use the following data streams:

Visual Data Streams The system organizes characters in the sequence in which they are
presented on the screen.

If a visual data stream is presented from left to right, the first character of the
data stream is on the left side of the viewport (screen, window, line, field, and
so on). If the same data stream is presented on a right-to-left viewport, the
initial character of the data stream is on the right.

If a language of opposite writing orientation is embedded in the visual data
stream, the sequence of each text is preserved when the viewport orientation
is reversed. For example, (the lowercase text represents bidirectional text) if
the keystroke order is :

THERE IS bidirectional text IN THIS SENTENCE.

then the visual data stream is:

THERE IS txet lanoitceridib IN THIS SENTENCE.

This visual data stream’s presentation on a left-to-right viewport is
left-justified, as follows:

THERE IS txet lanoitceridib IN THIS SENTENCE.
-------> <----------------- ---------------->

The arrows indicate reading direction.

If you change the viewport orientation to right-to-left, the visual data stream is
reversed, right-justified, and unreadable, as follows:

.ECNETNES SIHT NI bidirectional text SI EREHT
<---------------- -----------------> <-------

Thus, if English text is embedded in Arabic or Hebrew text, both texts are in
proper reading order only on a left-to-right viewport. The same is true for
Arabic or Hebrew embedded in English. Reversing the viewport orientation
makes both texts unreadable.

374 Writing and Debugging Programs

Logical Data Streams The system organizes characters in a readable sequence. The bidirectional
presentation-management functions arrange text strings in a readable order.

If a logical data stream is presented on a left-to-right viewport, the initial
character of the data stream is presented on the left side. If the same data
stream is presented on a right-to-left viewport, the initial character of the data
stream is presented on the right side, though it is still presented in a readable
order.

If a language of opposite writing orientation is embedded in the logical data
stream, the orientations of each text are preserved by the bidirectional
presentation-management functions. For example, if the keystroke order is:

THERE IS bidirectional text IN THIS SENTENCE.

then the logical data stream is the same. For example:

THERE IS bidirectional text IN THIS SENTENCE.

This logical data stream’s presentation on a left to right viewport (left-justified)
is as follows:

THERE IS txet lanoitceridib IN THIS SENTENCE.
-------> <----------------- ---------------->

The logical data stream’s presentation on a right to left viewport
(right-justified) is as follows:

IN THIS SENTENCE. txet lanoitceridib THERE IS
----------------> <----------------- ------->

The logical data stream is readable on both viewport orientations.

Cursor Movement

Cursor movement on a screen containing bidirectional text is as follows:

Visual The cursor moves from its current position left or right to the next character, or up or down to the next
row. For example, if the cursor is located at the end of the first left-to-right part of a mixed sentence:

THERE IS_txet lanoitceridib IN THIS SENTENCE.

then, moving the cursor visually to the right causes it to move one character to the right, as follows:

THERE IS txet lanoitceridib IN THIS SENTENCE.

The cursor moves without regard to the contents of the text.
Logical The cursor moves from its current position to the next or previous character in the data stream. The

character may be adjacent to the cursor’s position, elsewhere in the same line, or on another line on
the screen. Logical cursor movement requires scanning the data stream to find the next logical
character. For example, if the cursor is located at the end of the first left-to- right part of a mixed
sentence:

THERE IS_txet lanoitceridib IN THIS SENTENCE.

then, moving the cursor logically to the next character causes the data stream to be scanned to find
the next logical character. The cursor moves to the next logical part of the sentence, as follows:

THERE IS txet lanoitceridib_IN THIS SENTENCE.

The cursor moves according to content.

Chapter 16. National Language Support 375

Character Shaping

Character shaping occurs when the shape of a character is dependent on its position in a line of text. In
some languages, such as Arabic, characters have different shapes depending on their position in a string
and on the surrounding characters.

The following characteristics determine character shaping in Arabic script:

v The written language has no equivalent to capital letters.

v The characters have different shapes, depending on their position in a string and on the surrounding
characters.

v The written language is cursive. Most characters of a word are connected, as in English handwriting.

v Joined characters can form nonspacing characters. Additionally, a character can have a vowel or
diacritic mark written over or under it.

v Characters can vary in length, resulting in an output of two coded shapes.

Methods of Character Shaping
Implement character shaping separately from other system components. However, character shaping
should be accessible as a utility by other system components. The system may use character shaping in
the following ways:

v As the user enters data into the computer, the system uses character shaping to shape the characters.
The system stores these characters in their shaped format.

This method avoids the need to use character shaping every time these characters are displayed. This
method is meant for static data such as menus and help. This method requires preprocessing for proper
sorting, searching, or indexing of the characters.

The characters may need reshaping after processing for proper presentation.

v As the user enters data into the computer, the system stores the characters in their unshaped format.

This method allows for sorting, searching or indexing of the characters. However, the system must use
character shaping every time the characters are displayed.

Base shapes are isolated shapes that were not generated by character shaping. Use base shapes during
editing, searching for character strings, or other text operations. Use shaping only when the text is
displayed or printed. If characters are stored in their shaped form, the system must deshape them before
sorting, collating, searching, or indexing. Character shapes that are not shape determined according to
their position in a string are needed for specific character-handling applications as well as for
communication with different coding environments.

Contextual Character Shaping
In general, contextual character shaping is the selection of the required shape of a character in a given
font depending on its position in a word and its surrounding characters. The following shapes are possible:

Isolated A character that is connected to neither a preceding nor succeeding character.
Final A character that is connected to a preceding character but not with a succeeding character.
Initial A character connected to a succeeding character but not with a preceding character.
Middle A character connected to both a preceding and succeeding character.

A character may also have any of the following characteristics:

v Connecting to a preceding character.

v Connecting to a succeeding character.

v Allowing surrounding characters’ connections to pass through it.

376 Writing and Debugging Programs

Acronyms, part numbers, and graphic characters do not need contextual character shaping. To properly
enter these characters, turn off the contextual character shaping and use a specific keyboard interface for
exact selection of the desired shape. Tag these characters by field, line, or control character for later
presentation.

For more information about bidirectionality and character shaping, see “Layout (Bidirectional Text and
Character Shaping) Overview” on page 373, and ″Introducing the Layout Library Subroutines″ (“Introducing
Layout Library Subroutines”) .

Introducing Layout Library Subroutines

For information on the layout library, please see website:
www.opengroup.org

Or order ″Portable Layout Services: Context-dependent and Directional Text″
Book# C616 ISBN 1-85912-142-X January 1997

From:
The Open Group,
Publications Department,
PO Box 96,
Witney,
Oxon OX8 6PG,
England

Tel: +44 (0)1993 708731, Fax: +44 (0)1993 708732

Use of the libcur Package
Programs that use the libcur package (extension to AT&T’s libcurses package) need to make the following
changes:

1. Remove the assumption that the number of bytes need to represent a character in a code set also
represents the display column width of the character. Use the wcwidth subroutine to determine the
number of display columns needed by the wide character code of a character.

2. NLSCHAR is redefined to be wchar_t.

3. The win->_y [y][x] has wchar_t encodings.

4. Programs should not assume any particular encodings on the wchar_t.

5. Programs should use the addstr, waddstr, mvaddstr, and mvwaddstr subroutines rather than the
addch family of subroutines. All string arguments are in multibyte form.

6. The addch and waddch subroutines accept a wchar_t encoding of the character. Programs that use
these subroutines should ensure that wchar_t are used in calling these functions. The (x,y) are
incremented by the number of columns occupied by the wchar_t passed to these subroutines.

7. The delch, wdelch, mvdelch, and mvwdelch subroutines support delete and backspace on
multibyte characters depending on the current position of (x,y). If the current (x,y) column position
points to either the first or second column of a two-column character, the delch subroutine deletes
both columns and shifts the rest of the line by the number of columns deleted.

8. The insch, winsch, mvinsch, and mvwinsch subroutines can be used to insert a wchar_t encoding
of a character at the current (x,y) position. The line is shifted by the number of columns needed by
the wchar_t.

9. The libcur package is modified to support box drawing characters as defined in the terminfo
database and not assume the graphic characters in the IBM-850 code set. The libcur package
supports drawing of primary and alternate box characters as defined in the box_chars_1 and
box_chars_2 entries in the terminfo database. To use this, programs should be modified in the
following fashion:

Chapter 16. National Language Support 377

../../libs/basetrf2/wcwidth.htm#HDRA109F1329
../../libs/basetrf2/addnstr.htm#HDRA9D21FBE934DAVI
../../libs/basetrf2/addch.htm#HDRA9D21FB5217DAVI
../../libs/basetrf2/addch.htm#HDRA9D21FB5217DAVI
../../libs/basetrf2/delch.htm#HDRA9D35DD5930DAVI
../../libs/basetrf2/insch.htm#HDRA9D21FE5598DAVI

Drawing Primary box characters:

wcolorout(win, Bxa);
cbox(win);
wcolorend(win);

or,
wcolorout(win, Bxa);
drawbox(win, y,x, height, width);
wcolorend(win);

Drawing Alternate box characters:

wcolorout(win, Bya)
cboxalt(win);
wcolorend(win);

or,

wcolorout(win, Bya);
drawbox(win, y, x, height, width);
wcolorend(win);

Bxa and Bya refer to the primary and alternate attributes defined in the terminfo database.

The following macros are added in the cur01.h file:
cboxalt(win)

drawboxalt(win, y,x, height, width)

10. Programs that need to support input of multibyte characters should not set _extended to TRUE by a
call to extended(TRUE). When the _extended flag is true, the wgetch subroutine returns wchar_t
encodings of the character. With multibyte characters, this encoding of wchar_t may conflict with
predefined values for escape sequences or function keys. Avoid this conflict when using multibyte
code sets by setting extended to off (extended(FALSE)) before input. (The default is TRUE.)

Programs that do multibyte character input should do the following:
Input routine:

Example:

int c, count;
char buf[];

extended(FALSE); /* obtain one byte at a time */
count =0;
while(1){

c = wgetch(); /* get one byte at a time */
buf[count++] = c;
if(count <=MB_CUR_MAX)

if(mblen(buf, count) != -1)
break; /* character found* /

else
/*Error. No character can be found */
/* Handle this case appropriately */
break;

}
/* buf contains the input multibyte sequence */
/* Now handle PF keys, or any escape sequence here */

378 Writing and Debugging Programs

../../libs/basetrf2/getch.htm#HDRA9D35DFB905DAVI

11. The inch, winch, mvinch, and mvwinch subroutines return the wchar_t at the current (x,y) position.
Note that in the case of a double column width character, if the (x,y) point is at the first column, the
wchar_t code of the double column width character is returned. If the (x,y) point is at the second
column, WEOF is returned.

Code Set Overview

To understand code sets, it is necessary to first understand character sets. A character set is a collection
of predefined characters based on the specific needs of one or more languages without regard to the
encoding values used to represent the characters. The choice of which code set to use depends on the
user’s data processing requirements. A particular character set can be encoded using different encoding
schemes. For example, the ASCII character set defines the set of characters found in the English
language. The Japanese Industrial Standard (JIS) character set defines the set of characters used in the
Japanese language. Both the English and Japanese character sets can be encoded using different code
sets.

The ISO2022 standard defines a coded character set as a set of precise rules that defines a character set
and the one-to-one relationship between each character and it’s bit pattern. A code set defines the bit
patterns that the system uses to identify characters.

A code page is similar to a code set with the limitation that a code-page specification is based on a
16-column by 16-row matrix. The intersection of each column and row defines a coded character.

The following code sets are supported:

v Support for industry-standard code sets is provided. The ISO8859 family of code sets provides a range
of single-byte code set support that includes Latin-1, Latin-2, Cyrillic, Arabic, Greek, Hebrew, and
Turkish countries. The IBM-eucJP code set is the industry-standard code set used to support the
Japanese locale. The IBM-eucKR code set is the industry-standard code set used to support Korean
countries. The IBM-eucTW code set is the industry-standard code set used to support Traditional
Chinese countries. The IBM-eucCN code set is the industry-standard code set used to support countries
using Simplified Chinese. The UTF-8 code set is a Universal Transformation Format of
Unicode/ISO10646 used to support multiple languages at once (including Simplified Chinese, Traditional
Chinese, and Chinese characters used in Japanese and Korean).

v ISO8859-15 standard codeset is a replacement standard for the existing ISO8859-1 codeset that is
currently in use by the western European locales, the United States, and Canada. The need for a new
codeset came about as a result of the introduction of the Euro currency unit, and the need for European
countries to be able to do business transactions using the Euro. In addition, ISO8859-15 contains 7
additional characters for the French and Finnish languages.

v Support is also provided for the personal computer (PC) based code sets IBM-850, IBM-856, IBM-943,
IBM-932, and IBM-1046. IBM-850 is a single-byte code set used to support Latin-1 countries (U.S.,
Canada, and Western Europe). IBM-856 is a single-byte code set used to support Hebrew countries.
IBM-943 and IBM-932 are multibyte code set used to support the Japanese locale. IBM-1046 is a
single-byte code set used to support Arabic countries.

v IBM-1129 is a single-byte code set used to support Vietnamese.

v TIS-620 is a single-byte code set used to support Thai.

v IBM-1124 is a single-byte code set used to support Ukrainian.

v Full Unicode support is provided via the UTF-8 code set for ALL languages and territories supported by
AIX. The UTF-8 code set is a Universal Transformation Format of Unicode/ISO10646 used to support
multiple languages at once. The UTF-8 code set provides the most complete solution for use in
environments where multiple languages and alphabets must be processed. The Unicode/UTF-8 codeset
also provides full support for the common European currency (Euro).

v IBM-1252 codeset support is provided as a compatibility option for users who require a single byte
codeset environment containing the Euro currency symbol. The structure of the IBM-1252 codeset is

Chapter 16. National Language Support 379

../../libs/basetrf2/inch.htm#HDRA9CF98D1863ERIC

identical to the industry standard codeset ISO8859-1, except that additional graphic characters are
added in the ISO control characters range from 0x80 through 0x9F. The Euro currency symbol is
located at hexadecimal value 0x80 in the IBM-1252 codeset.

For more information on code sets, refer to these articles:

v “ASCII Characters”

v “Code Set Strategy” on page 382

v “Code Set Structure” on page 382

v “ISO Code Sets” on page 384

v “IBM PC Code Sets” on page 397

ASCII Characters

The following sections describe the 7-bit ASCII characters.

ASCII Characters in the Unique Code-Point Range

The following table lists the ASCII characters in the unique code-point range. These characters are in the
range 0x00 through 0x3F.

ASCII Characters in the Unique Code-Point Range

Symbolic Name Hex Value Glyph Symbolic Name Hex Value Glyph

nul 00 space 20 blank

soh 01 exclamation-mark 21 !

stx 02 quotation-mark 22 ″

etx 03 number-sign 23 #

eot 04 dollar-sign 24 $

enq 05 percent 25 %

ack 06 ampersand 26 &

alert 07 apostrophe 27 ’

backspace 08 left-parenthesis 28 (

tab 09 right-parenthesis 29)

newline 0A asterisk 2A *

vertical-tab 0B plus-sign 2B +

form-feed 0C comma 2C ,

carriage-return 0D hyphen 2D -

so 0E period 2E .

si 0F slash 2F /

dle 10 zero 30 0

dc1 11 one 31 1

dc2 12 two 32 2

dc3 13 three 33 3

dc4 14 four 34 4

nak 15 five 35 5

syn 16 six 36 6

etb 17 seven 37 7

380 Writing and Debugging Programs

can 18 eight 38 8

em 19 nine 39 9

sub 1A colon 3A :

esc 1B semicolon 3B ;

is1 1C less-than 3C <

is2 1D equal-sign 3D =

is3 1E greater-than 3E >

is4 1F question-mark 3F ?

Other ASCII Characters
The following table lists the 7-bit ASCII characters that are not in the unique code-point range. These
characters are in the range 0x40 through 0x7F.

Other ASCII Characters

Symbolic Name Hex Value Glyph Symbolic Name Hex Value Glyph

commercial-at 40 @ grave-accent 60 ′

A 41 A a 61 a

B 42 B b 62 b

C 43 C c 63 c

D 44 D d 64 d

E 45 E e 65 e

F 46 F f 66 f

G 47 G g 67 g

H 48 H h 68 h

I 49 I i 69 i

J 4A J j 6A j

K 4B K k 6B k

L 4C L l 6C l

M 4D M m 6D m

N 4E N n 6E n

O 4F O o 6F o

P 50 P p 70 p

Q 51 Q q 71 q

R 52 R r 72 r

S 53 S s 73 s

T 54 T t 74 t

U 55 U u 75 u

V 56 V v 76 v

W 57 W w 77 w

X 58 X x 78 x

Y 59 Y y 79 y

Z 5A Z z 7A z

Chapter 16. National Language Support 381

left-bracket 5B [left-brace 7B {

backslash 5C \ vertical-line 7C |

right-bracket 5D] right-brace 7D }

circumflex 5E | tilde 7E x

underscore 5F _ del 7F

Code Set Strategy

Prior to AIX 3.2, IBM-850 and IBM-932 were the only supported code sets. AIX 3.2 enhanced the system
code set support by adding code sets that are based on International Organization for Standardization
(ISO) and industry-standard code sets. It is suggested that users use to these new code sets. The ultimate
goal is to provide industry-standard code sets that satisfy the data processing needs of users.

Support for the IBM-850 codeset will be removed in future releases. Users who are currently using
IBM-850 based locales should strongly consider use of the corresponding industry standard ISO8859-1
based locale. For example, users of the French IBM-850 locale (Fr_FR) should use the French ISO8859-1
locale (fr_FR).

Each locale in the system defines which code set it uses and how the characters within the code set are
manipulated. Because multiple locales can be installed on the system, multiple code sets can be used by
different users on the system. While the system can be configured with locales using different code sets,
all system utilities assume that the system is running under a single code set.

Most commands have no knowledge of the underlying code set being used by the locale. The knowledge
of code sets is hidden by the code set-independent library subroutines (NLS library), which pass
information to the code set-dependent subroutines.

Because many programs rely on ASCII, all code sets include the 7-bit ASCII code set as a proper subset.
Since the 7-bit ASCII code set is common to all supported code sets, its characters are sometimes
referred to as the portable character set.

The 7-bit ASCII code set is based on the ISO646 definition and contains the control characters,
punctuation characters, digits (0-9), and the English alphabet in uppercase and lowercase.

Code Set Structure

Each code set is divided into two principal areas:

Graphic Left (GL) Columns 0-7
Graphic Right (GR) Columns 8-F

The first two columns of each code set are reserved by International Organization for Standardization
(ISO) standards for control characters. The terms C0 and C1 are used to denote the control characters for
the Graphic Left and Graphic Right areas, respectively.

Note: The IBM PC code sets use the C1 control area to encode graphic characters.

The remaining 6 columns are used to encode graphic characters. Graphic characters are considered to be
printable characters, while the control characters are used by devices and applications to indicate some
special function.

382 Writing and Debugging Programs

Control Characters

Based on the ISO definition, a control character initiates, modifies, or stops a control operation. A control
character is not a graphic character, but can have graphic representation in some instances. The control
characters in the table below are present in all supported code sets and the encoded values of the control
characters are consistent throughout the code sets.

Table 2. Code Set Control Points Table

NUL 00 Null

SOH 01 Start of header

STX 02 Start of text

ETX 03 End of text

EOT 04 End of transmission

ENQ 05 Enguiry

ACK 06 Acknowledge

BEL 07 Bell

BS 08 Backspace

HT 09 Horizontal tab

LF 0A Line feed

VT 0B Vertical tab

FF 0C Form feed

CR 0D Carrier return

SO 0E Shift Out

SI 0F Shift In

DLE 10 Data link escape

DC1 11 Device control 1

DC2 12 Device control 2

DC3 13 Device control 3

DC4 14 Device control 4

NAK 15 Not acknowlegde

SYN 16 Synchrous idle

ETB 17 End of trans. block

CAN 18 Cancel

EM 1 End of media

SUB 1A Substitute character

ESC 1B Escape character

IS4 1C Info Separator Four

IS3 1D Info Separator Three

IS2 1E Info Separator Two

IS1 1F Info Separator One

Chapter 16. National Language Support 383

Graphic Characters

Each code set can be considered to be divided into one or more character sets, such that each character
is given a unique coded value. The ISO standard reserves six columns for encoding characters and does
not allow graphic characters to be encoded in the control character columns.

The internationalization of AIX is based on the assumption that all code sets can be divided into any
number of character sets.

Single-Byte and Multibyte Code Sets

Code sets that use all 8 bits of a byte can support European, Middle Eastern, and other alphabetic
languages. Such code sets are called single-byte code sets. This provides a limit of encoding 191
characters, not including control characters.

Languages that require more than 191 characters use a mixture of single-byte characters (8 bits) and
multibyte characters (more than 8 bits). The system is capable of supporting any number of bits to encode
a character.

ISO Code Sets

These code sets are based on definitions set by the International Organization for Standardization (ISO).

v “ISO646-IRV”

v “ISO8859 Family” on page 385

v “Code Set ISO8859-2” on page 386

v “Code Set ISO8859-5” on page 387

v “Code Set ISO8859-6” on page 388

v “Code Set ISO8859-7” on page 389

v “Code Set ISO8859-8” on page 390

v “Code Set ISO8859-9” on page 391

v “Code Set ISO8859-15” on page 392

v “IBM-eucJP” on page 394

v “IBM-eucTW” on page 395

v “Big5” on page 396

v “IBM-eucKR” on page 397

v “UCS-2 and UTF-8” on page 407

v “UCS-2 and UTF-8” on page 407

ISO646-IRV
The ″ISO646-IRV code set″ below defines the code set used for information processing based on a 7-bit
encoding. The character set associated with this code set is derived from the ASCII characters.

384 Writing and Debugging Programs

ISO8859 Family

ISO8859 is a family of single-byte encodings based on and compatible with other ISO, American National
Standards Institute (ANSI), and European Computer Manufacturer’s Association (ECMA) code extension
techniques. The ISO8859 encoding defines a family of code sets with each member containing its own
unique character sets. The 7-bit ASCII code set is a proper subset of each of the code sets in the
ISO8859 family.

While the ASCII code set defines an order for the English alphabet, the Graphic Right (GR) characters are
not ordered according to any specific language. The language-specific ordering is defined by the locale.

Each code set includes the ASCII character set plus its own unique character set. The ISO8859 encoding
figure shows the ISO8859 general encoding scheme.

Table 3. ISO8859 Encoding

Character Encoding Code Point Description Count

000xxxxx 00–1F Controls 32

00100000 20 Space 1

0xxxxxxx 21–7E 7–bit 94

01111111 7F Delete 1

100xxxxx 80–9F Controls 32

10100000 A0 No-break Space 1

1xxxxxxx A1–F 8–bit 96

Chapter 16. National Language Support 385

Code Set ISO8859-1

The following figure summarizes the available symbols and shows the layout of Code Set ISO8859-1. For
a textual representation of this code set, see “ISO8859–1” on page 943.

Code Set ISO8859-2

The following figure summarizes the available symbols and shows the layout of Code Set ISO8859-2. For
a textual representation of this code set, see “ISO8859–2” on page 945.

386 Writing and Debugging Programs

Code Set ISO8859-5

The following figure summarizes the available symbols and shows the layout of Code Set ISO8859-5. For
a textual representation of this code set, see “ISO8859–5” on page 948.

Chapter 16. National Language Support 387

Code Set ISO8859-6

The following figure summarizes the available symbols and shows the layout of Code Set ISO8859-6. For
a textual representation of this code set, see “ISO8859–6” on page 950.

388 Writing and Debugging Programs

Code Set ISO8859-7

The following figure summarizes the available symbols and layout of Code Set ISO8859-7. This code set
is made up of an ASCII character set plus its own unique character set. For a textual representation of this
code set, see “ISO8859–7” on page 952.

Chapter 16. National Language Support 389

Code Set ISO8859-8

The following figure summarizes the available symbols and shows the layout of Code Set ISO8859-8. For
a textual representation of this code set, see “ISO8859–8” on page 954.

390 Writing and Debugging Programs

Code Set ISO8859-9

The following figure summarizes the available symbols and layout of Code Set ISO8859-9. This code set
is made up of an ASCII character set plus its own unique character set. For a textual representation of this
code set, see “ISO8859–9” on page 956.

Chapter 16. National Language Support 391

Code Set ISO8859-15

The following figure summarizes the available symbols and shows the layout of Code Set ISO8859-15. For
a textual representation of this code set, see “ISO8859–15” on page 958.

392 Writing and Debugging Programs

Extended UNIX Code (EUC) Encoding Scheme

The EUC encoding scheme defines a set of encoding rules that can support one to four character sets.
The encoding rules are based on the ISO2022 definition for the encoding of 7-bit and 8-bit data. The EUC
encoding scheme uses control characters to identify some of the character sets. The following table shows
the basic structure of all EUC encoding.

Table 4. EUC Encoding Table

CS0 0xxxxxxx

CS1 1xxxxxxx
1xxxxxxx 1xxxxxxxx
1xxxxxxx 1xxxxxxxx 1xxxxxxx
...

CS2 10001110 1xxxxxxx
10001110 1xxxxxxx 1xxxxxxxx
10001110 1xxxxxxx 1xxxxxxxx 1xxxxxxxx
...

CS3 10001111 1xxxxxxx
10001111 1xxxxxxx 1xxxxxxxx
10001111 1xxxxxxx 1xxxxxxxx 1xxxxxxxx
...

Chapter 16. National Language Support 393

The term EUC denotes these general encoding rules. A code set based on EUC conforms to the EUC
encoding rules but also identifies the specific character sets associated with the specific instances. For
example, IBM-eucJP for Japanese refers to the encoding of the Japanese Industrial Standard characters
according to the EUC encoding rules.

The first set (CS0) always contains an ISO646 character set. All of the other sets must have the most
significant bit (MSB) set to 1 and can use any number of bytes to encode the characters. In addition, all
characters within a set must have:

v Same number of bytes to encode all characters

v Same column display width (number of columns on a fixed-width terminal)

All characters in the third set (CS2) are always preceded with the control character SS2 (single-shift 2,
0x8e). Code sets that conform to EUC do not use the SS2 control character other than to identify the third
set.

All characters in the fourth set (CS3) are always preceded with the control character SS3 (single-shift 3,
0x8f). Code sets that conform to EUC do not use the SS3 control character other than to identify the fourth
set.

IBM-eucJP

The EUC for Japanese is an encoding consisting of single-byte and multibyte characters. The encoding is
based on ISO2022, Japanese Industrial Standard (JIS), and EUC definitions.

The IBM-eucJP code set consists of the following character sets:

JISCII JISX0201 Graphic Left character set
JISX0201.1976 Katakana/Hiragana Graphic Right character set
JISX0208.1983 Kanji level 1 and 2 character sets
IBM-udcJP IBM-user definable characters

The IBM-eucJP code set is also capable of supporting:

JISX0212.1990 Supplemental Kanji

The IBM-eucJP code set is encoded as follows:

v CS0 maps JISX0201 Graphic Left characters starting at the 0x00 position.

v CS1 maps the JISX0208 character set starting at the 0xa1xa1 position.

The positions 0xf5a1 through 0xfefe (940 characters) in CS1 are reserved as primary user definable
character areas.

v CS2 maps the JISX0201 Graphic Right starting at the 0x8ea1 position.

v CS3 is capable of mapping JISX0212 starting at the 0x8fa1a1 position.

The positions 0x8ff5a1 through 0x8ffefe in CS3 (940 characters) are reserved as secondary user definable
character areas.

v The positions 0x8feea1 through 0x8ff4fe in CS3 (658 characters) are reserved for future system use.
Therefore, users should not use this area.

IBM-eucCN

The EUC for the Simplified Chinese language is an encoding consisting of characters that contain 1 or 2
bytes. The EUC encoding is based on ISO2022, GB2312 as defined by the People’s Republic of China,
and multibyte character definitions unique to the manufacturer.

394 Writing and Debugging Programs

The current GB2312 defines 6,763 Simplified Chinese characters and 682 symbols. The IBM-eucCN is
based upon a concept of one plane containing up to 94x94 characters. The encoding values of these
characters range from 0xa1a1 to 0xfefe.

The GB2312 is mapped into the CS1 of EUC. Specifically, the IBM-eucCN consists of the following
character sets:

ISO0646-IRV 7-bit ASCII character set, Graphic Left.
GB2312.1980 Contains 7445 characters. It occupies positions 0xa1a1 to 0xfedf (some user-defined

characters scattered in 0xa1a1 to 0xfedf).
IBM-udcCN Scattered in GB. It occupies positions Oxa1a1 to Oxfedf. The actual values are:

a2a1 -- a2b0 a1e3 -- a2e4 a1ef -- a2f0
a2fd -- a1fe a4f4 -- a4fe a5f7 -- a5fe
a6b9 -- a6c0 a6d9 -- a6fe a7c2 -- a7d0
a7f2 -- a7fe a8bb -- a8c4 a8ea -- a9a3
a9f0 -- affe a7fa -- d7fe f8a1 -- fedf

IBM-sbdCN Scattered in GB. It occupies positions 0xfee0 to 0xfefe.

GBK

GBK stands for Guo (national) Biao (Standard) Kuo (Extension). GBK expands the national ″Industry GB″
definition to contain all 20, 902 Han Characters defined in Unicode and additional DBCS symbols defined
in Big-5 code (Traditional Chinese PC defacto standard). Restated, GBK defined all DBCS characters and
symbols in use on both sides of the Taiwan Strait. Currently, GBK is a Normative Annex of GB13000 (PRC
Unicode Standard) and is being positioned as an interim step for migration to Unicode.

Locale Code Set Description

Zh_CN GBK Simplified Chinese, GBK Locale

Code Range Words Marks

A1A1-A9FE 846 GB2312, GB12345 (GBK/1)

A840-A9A0 192 Big5, Symbols (GBK/5)

B0A1-F7FE 6768 GB2312 (GBK/2)

8140-A0FE 6080 GB13000 (GBK/3)

AA40-FEA0 8160 GB13000 (GBK/4)

AAA1-AFFE 564 User defined 1

F8A1-FEFE 658 User defined 2

A140-A7A0 672 User defined 3

IBM-eucTW

The EUC for the Traditional Chinese language is an encoding consisting of characters that contain 1, 2
and 4 bytes. The EUC encoding is based on ISO2022, the Chinese National Standard (CNS) as defined
by the Republic of China and multibyte character definitions unique to the manufacturer.

The current CNS defines 13,501 Chinese characters and 684 symbols. The IBM-eucTW is based upon a
concept of 15 planes, each containing up to 8836 (94x94) characters. The encoding values of these
characters range from 0xa1a1 to 0xfefe. Characters have presently been defined for only 4 of the planes,
with the other planes being reserved for future expansion.

The 15 planes are mapped into the CS1 and CS2 of EUC, with the CS2 of EUC consisting of 14 planes.
Specifically, the IBM-eucTW consists of the following character sets:

Chapter 16. National Language Support 395

ISO646-IRV 7-bit ASCII character set, Graphic Left.
CNS11643.1986-1 Plane 1, containing 6085 characters (5401+684). This plane uses positions

0ax1a1-0xc2c1 and 0xc4a1-0xfdcb.
CNS11643.1986-2 Plane 2, containing 7650 characters. This plane occupies positions

0x8ea2a1a1-0x8ea2f2c4.
CNS11643.1992-3 Plane 4, containing 7298 characters. This plane occupies positions

0x8ea4a1a1-0x8ea4eedc.
IBM-udcTW Plane 12, containing 6204 characters. This plane is reserved for the User Defined

Characters (udc) areas. It occupies the positions 0x8eaca1a1-0x8ea2f2c4.
IBM-sbdTW Plane 13, containing 325 characters. This plane is reserved for symbols unique to

the manufacturer. It occupies positions 0xeada1a1-0x8eada4cb.

Planes 3-11 are expected to occupy positions 0x8ea3xxxx to 0x8eabxxxx. Planes 14-15 are expected to
occupy positions 0x8eaexxxx to 0x8eafxxxx.

Big5

The Traditional Chinese big5 locale, Zh_TW, code set is the most commonly used code set in the PC field
which is used to support countries using Traditional Chinese.

Big5 code set defines 13056 characters and 1004 symbols. It includes 684 symbols in CNS11643.192, as
well as 325 IBM unique symbols.

Locale Code Set Description

Zh_TW Big5 (IBM-950) Traditional Chinese, Big5 Locale

Code Range for Big5 Locale::

Plan Code Range Description

1 A140H - A3E0H Symbol and Chinese Control Code

1 A440H - C67EH Commonly Used Characters

2 C940H - F9D5H Less Commonly Used Characters

UDF FA40H - FEFE User-Defined Characters

8E40H - A0FEH User-Defined Characters

8140H - 8DFEH User-Defined Characters

8181H - 8C82H User-Defined Characters

F9D6H - F9F1H User-Defined Characters

Code Set Words Code Range Marks

Commonly Used Area 5841 A140-C67E

Less Commonly Used Area 7652 C940-F9D5

ET Unique Area (1) 308 C6A1-C878

ET Unique Area (2) 7 C8CD-C8D3

IBM Unique Area 251 F286-F9A0 Low-Byte Range 81-A0

User-Defined Area (1) 785 FA40-FEFE

User-Defined Area (2) 2983 8E40-A0FE

User-Defined Area (3) 2041 8140-8DFE

User-Defined Area (4) 354 8181-8C82 Low-Byte Range 81-AQ

396 Writing and Debugging Programs

Code Set Words Code Range Marks

User-Defined Area (5) 41 F9D6-F9FE

IBM-eucKR

The EUC for the Korean language is an encoding consisting of single-byte and multibyte characters. The
encoding is based on ISO2022, Korean Standard Code set and EUC definitions.

The Korean EUC code set consists of two main character groups:

v ASCII (English)

v Hangul (Korean characters)

The Hangul code set includes Hangul and Hanja (Chinese) characters. One Hangul character can be
comprised of several consonants and vowels. However, most Hangul words can be expressed in Hanja.
Each Hanja character has its own meaning and is more specific than Hangul.

The IBM-eucKR consists of the following character sets:

ISO646-IRV 7-bit ASCII character set, Graphic Left
KSC5601.1987-0 Korean Graphic Character Set, Graphic Right

IBM PC Code Sets

IBM PC code sets are the code sets originally supported on the IBM PC systems and AIX. The IBM PC
code sets assign graphic characters to the Control One (C1) control area. Applications that depend on
these control characters can not support these code sets.

The ASCII characters are encoded with the most significant bit (MSB) zero in positions 0x20-0x7e. The
extended Latin 1 combined with the IBM PC unique characters sets make up the extended set of
characters which are encoded in positions 0x80-0xfe. The table below shows the location of the control,
ASCII, and extended characters for the IBM-850 code set.

Character Encoding Code Points Description Count

000xxxxx 00–1F Controls 32

00100000 20 Space 1

0xxxxxxx 21–7E 7–bit 94

01111111 7F Delete 1

1xxxxxxx 80–FE 8–bit 17

11111111 FF All ones 1

The IBM PC unique character set includes the following:

IBM PC Unique Character Set

Symbol Return Code

Florin sign 0x9f

Quarter-hashed 0xb0

Half-hashed 0xb1

Full-hashed 0xb2

Chapter 16. National Language Support 397

Vertical bar 0xb3

Right-side middle 0xb4

Double right-side middle 0xb9

Double vertical bar 0xba

Double upper right-corner box 0xbb

Double lower right-corner box 0xbc

Upper right-corner box 0xbf

Lower left-corner box 0xc0

Bottom-side middle 0xc1

Top-side middle 0xc2

Left-side middle 0xc3

Center-box bar 0xc4

Intersection 0xc5

Double lower left-corner box 0xc8

Double upper left-corner box 0xc9

Double bottom-side middle 0xca

Double top-side middle 0xcb

Double left-side middle 0xcc

Double center-box bar 0xcd

Double intersection 0xce

Small i dotless 0xd5

Lower right-corner box 0xd9

Upper left-corner box 0xda

Bright character cell 0xdb

Bright character cell - lower half 0xde

Bright character cell - upper half 0xdf

Overbar 0xee

Middle dot, Product dot 0xfa

Vertical solid rectangle 0xfe

IBM-850

The following figure summarizes the available symbols and shows the layout of Code Set IBM-850. For a
textual representation of this code set, see “IBM-850” on page 961.

398 Writing and Debugging Programs

IBM-856

The following figure summarizes the available symbols and shows the layout of Code Set IBM-856. For a
textual representation of this code set, see “IBM-856” on page 964.

Chapter 16. National Language Support 399

IBM-921

The following figure summarizes the available symbols and shows the layout of Code Set IBM-921. For a
textual representation of this code set, see “IBM-921” on page 966.

400 Writing and Debugging Programs

IBM-922

The following figure summarizes the available symbols and shows the layout of Code Set IBM-922. For a
textual representation of this code set, see “IBM-922” on page 969.

Chapter 16. National Language Support 401

IBM-943 and IBM-932

Each of the Japanese IBM PC code sets are an encoding consisting of single-byte and multibyte coded
characters. The encoding is based on the IBM PC code set and places the JIS characters in shifted
positions. This is referred to as Shift-JIS or SJIS.

IBM-943 is newer code set for the Japanese locale than IBM-932. IBM-943 is a compatible code set for
the Japanese Microsoft Windows environment. This code set is known as 1983 ordered shift-JIS. The
difference between IBM-932 and IBM-943 is as follows

v Old JIS sequence (1978 ordered) is applied for IBM-932 while new JIS sequence (1983 ordered) is
applied for IBM-943.

v NEC selected characters are added to IBM-943.

v NEC’s IBM selected characters are added to IBM-943.

The IBM-932 consists of the following character sets:

JISCII JISX0201 Graphic Left character set
JISX0201.1976 Katakana/Hiragana Graphic Right character set
JISX0208.1983 Kanji level 1 and 2 character sets
IBM-udcJP IBM user-definable characters

402 Writing and Debugging Programs

The IBM-943 consists of the following character sets:

JISCII JISX0201 Graphic Left character set
JISX0201.1976 Katakana/Hiragana Graphic Right character set
JISX0208.1990 Kanji level 1 and 2 character sets
IBM-udcJP IBM user-definable characters and NEC’s IBM selected characters and NEC selected

characters

The first byte of each character is used to determine the number of bytes for a given character. The values
0x20-0x7e and 0xa1-oxdf are used to encode JISX0201 characters, with exceptions. The positions
0x81-0x9f and 0xe0-0xfc are reserved for use as the first byte of a multibyte character. The JISX0208
characters are mapped to the multibyte values starting at 0x8140. The second byte of a multibyte
character can have any value. The Shift-JIS table shows where these characters are located on the code
set.

Table 5. Shift-JIS (IBM-943 and IBM-932) Encoding Scheme for Japanese

Character Encoding Code Point Description Count

000xxxxx 00–1f Controls 32

00100000 20 Space 1

0xxxxxxx 21–7E 7–bit ASCII 94

01111111 7F Delete 1

10000000 80 Undefined 1

100xxxxx 01xxxxxx [81–9F] [40–7E] Double byte 1953

100xxxxx 1xxxxxxx [81–9F] [80–FC] Double byte 3975

10100000 A0 Undefined 1

1xxxxxxx A1–DF 8–bit single byte 63

111xxxxx 01xxxxxx [E0–FC] [40–7E] Double byte 1827

111xxxxx 1xxxxxxx [E0–FC] [80–FC] Double byte 3625

11111101 FD Undefined 1

11111110 FE Undefined 1

11111111 FF Undefined 1

The following table shows the DBCS part of IBM-943.

Table 6. DBCS Portion of IBM-943

Code Point Description

[81–84] [40–7E] and [81–84] [80–F0] JIS X 0208 (Non-Kanji)

[87] [40–7E] and [87] [80–F0] NEC selected characters

[89–98] [40–7E] and [88] [9F-F0], [89–97]
[80–F0], [98] [80–9F]

JIS X0208 (Level-1 Kanji)

[99–9F] [40–7E] and [98] [9F-F0], [99–9F]
[80–F0]

JIS X0208 (Level-2 Kanji)

[E0–EA] [40–7E] and [E0–EA] [80–F0] JIS X0208 (Level-2 Kanji)

[ED–EE] [40–7E] and [ED–EE] [80–F0] NEC IBM selected characters

[F0–F9] [40–7E] and [F0–F9] [80–F0] User defined characters

[FA] [40–5C] IBM selected characters (non-Kanji)

Chapter 16. National Language Support 403

Table 6. DBCS Portion of IBM-943 (continued)

[FA] [5C-7E], [FB-FC] [40–7E] and [FA-FC]
[80–F0]

IBM selected characters (Kanji)

The following table shows the DBCS part of IBM-932.

Table 7.

Code Point Description

[81–98] [40–7E] and [81–97] [80–FC], [98] [80–9F] JIS X 0208 (Level-1 Kanji)

[99–9F] [40–7E] and [98] [9F-FC], [99–9F] [80–FC] JIS X 0208 (Level-2 Kanji)

[E0–EF] [40–7E] and [E0–EF] [80–FC] JIS X 0208 (Level-2 Kanji)

[F0–F9] [40–7E] and [F0–F9] [80–FC] User defined characters

[FA–FC] [40–7E] and [FA–FC] [80–FC] IBM selected characters

IBM-1046

The following figure summarizes the available symbols and shows the layout of Code Set IBM-1046. For a
textual representation of this code set, see “IBM-1046” on page 971.

404 Writing and Debugging Programs

IBM-1124

The following figure summarizes the available symbols and shows the layout of Code Set IBM-1124. For a
textual representation of this code set, see “IBM-1124” on page 974.

IBM-1129

The following figure summarizes the available symbols and shows the layout of Code Set IBM-1129. For a
textual representation of this code set, see “IBM-1129” on page 977.

Chapter 16. National Language Support 405

TIS-620

The following figure summarizes the available symbols and shows the layout of Code Set TIS-620. For a
textual representation of this code set, see “TIS-620” on page 979.

406 Writing and Debugging Programs

UCS-2 and UTF-8
AIX provides a set of codesets that address the needs of a particular language or a language group. None
of the codesets represented in the ISO8859 family of codesets, the PC codesets, nor the Extended Unix
Code (EUC) codesets allow the mixing of characters from different scripts. With ISO8859-1, you can mix
and represent the Latin 1 characters (languages principally spoken in the U.S., Canada, Western Europe,
and Latin America). ISO8859-2 covers Eastern European languages; ISO8859-5 covers Cyrillic, ISO8859-6
covers Arabic, ISO8859-7 covers Greek, ISO8859-8 covers Hebrew, ISO8859-9 covers Turkish,
IBM-eucJP covers Japanese, IBM-eucKR covers Korean, IBM-eucTW covers Simplified Chinese. The
point is that none of the above codesets covers all of the languages.

The International Organization for Standardization (ISO) has addressed the limited language coverage by
codesets by adopting Unicode as the encoding for the 2-octet form of the ISO10646 Universal
Multiple-Octet Coded Character Set (UCS-2). The 32-bit form of ISO10646 is known as UCS-4 for 4-octet
form. AIX has adopted the 16-bit form of ISO10646 and uses the standard label ″UCS-2″ to describe this
encoding.

Chapter 16. National Language Support 407

Although UCS-2 is ideal for an internal process code, it is not suitable for encoding plain text on traditional
byte-oriented systems, such as AIX. Therefore, the external file code is X/Open’s File System Safe UCS
Transformation Format (FSS-UTF). This transformation format encoding is also known as UTF-8, and
″UTF-8″ is the label that is used for this encoding on AIX.

ISO10646 UCS-2 (Unicode)
Universal Coded Character Set (UCS) is the name of the ISO10646 standard that defines a single code
for the representation, interchange, processing, storage, entry, and presentation of the written form of all
the major languages of the world.

UCS has the following key objectives:

v Improve interoperability between systems in an open environment.

v Simplify development of internationalized products.

v Provide a base for multilingual applications.

v Make more characters available.

ISO10646 defines canonical character codes with a length of 32 bits. This provides code numbers for over
4 billion characters. When used in canonical form to represent text, the coding is referred to as UCS-4 for
Universal Coded Character Set 4-byte form.

The code values from 0x0000 through 0xFFFF of ISO 10646 can be represented by a uniform character
encoding of 16 bits. When used in this form to represent text, these codes are referred to as UCS-2, for
Universal Character Set 2-octet form. This range is also called the Basic Multilingual Plane (BMP) of
ISO10646. The standard is arranged so that the most useful characters, covering all major existing
standards worldwide, are assigned within this range.

The character code values of UCS-2 are identical to those of the Unicode character encoding standard
published by the Unicode Consortium.

UCS-2 defines codes for characters used in all major written languages. In addition to a set of scientific,
mathematic, and publishing symbols, UCS-2 covers the following scripts:

v Arabic

v Armenian

v Bengali

v Bopomofo

v Cyrillic

v Devanagari

v Georgian

v Greek

v Gujarati

v Gurmukhi

v Hangul

v Chinese Hanzi

v Hebrew

v Hiragana

v International Phonetic Alphabet (IPA)

v Katakana

v Japanese Kanji

v Kannada

v Korean Hanja

408 Writing and Debugging Programs

v Laotian

v Latin

v Malayalam

v Oriya

v Tamil

v Teluga

v Thai

v Tibetan

The ability of AIX to display characters in the scripts mentioned above is limited to the availability of fonts.
AIX provides bitmap fonts for most of the major languages of the world, as well as a Unicode based
scalable TrueType font. Use of this font requires the TrueType font rasterizer for AIX, which is a separately
installable feature.

UCS-2 encodes a number of combining characters, also known as non-spacing marks for floating
diacritics. These characters are necessary in several scripts including Indic, Thai, Arabic, and Hebrew. The
combining characters are used for generating characters in Latin, Cyrillic, and Greek scripts. However, the
presence of combining characters creates the possibility for an alternative coding for the same text.
Although the coding is unambiguous and data integrity is preserved, the processing of text that contains
combining characters is more complex. To provide conformance for applications that choose not to deal
with the combining characters, ISO10646 defines the following three implementation levels:

Level 1 Does not allow combining characters.
Level 2 Allows combining marks from Thai, Indic, Hebrew, and Arabic scripts.
Level 3 Allows combining marks, including ones for Latin, Cyrillic, and Greek.

UTF-8 (UCS Transformation Format)
X/Open has developed a transformation format for UCS designed for use in existing file systems. The
original name of this transformation is FSS-UTF, but it is expected to be registered by ISO as UTF-8.
UTF-8 is expected to become the standard transformation method, for situations where UCS is not
practical. The intent is that UCS will be the process code for the transformation format, which is usable as
a file code.

UTF-8 has the following properties:

v It is a superset of ASCII, in which the ASCII characters are encoded as single-byte characters with the
same numeric value.

v No ASCII code values occur in multibyte characters, other than those which represent the ASCII
characters.

v Conversion to and from UCS is simple and efficient.

v The first byte of a character indicates the number of bytes to follow in the multibyte character sequence
and cannot occur anywhere else in the sequence.

The UTF-8 encodes UCS values in the 0 through 0x7FFFFFFF range using multibyte characters with
lengths of 1, 2, 3, 4, 5, and 6 bytes. Single-byte characters are reserved for the ASCII characters in the 0
through 0x7f range. These all have the high order bit set to 0. For all character encodings of more than
one byte, the initial byte determines the number of bytes used, and the high-order bit in each byte is set.
Every byte that does not start with the bit combination of 10xxxxxx, where x represents a bit that may be 0
or 1, is the start of a UCS character sequence.

UTF-8 Multibyte Codes

Bytes Bits Hex Minimum Hex Maximum Byte Sequence in Binary

1 7 00000000 0000007F 0xxxxxxx

Chapter 16. National Language Support 409

2 11 00000080 000007FF 110xxxxx 10xxxxxx

3 16 00000800 0000FFFF 1110xxxx 10xxxxxx 10xxxxxx

4 21 00010000 001FFFFF 11110xxx 10xxxxxx 10xxxxxx
10xxxxxx

5 26 00200000 03FFFFFF 111110xx 10xxxxxx 10xxxxxx
10xxxxx 10xxxxxx

6 31 04000000 7FFFFFFF 1111110x 10xxxxxx 10xxxxxx
10xxxxxx 10xxxxxx 10xxxxxx

The UCS value is just the concatenation of the x bits in the multibyte encoding. When there are multiple
ways to encode a value (for example, UCS 0), only the shortest encoding is legal.

The following subset of UTF-8 is used to encode UCS-2:

UTF-8 Multibyte Codes

Bytes Bits Hex Minimum Hex Maximum Byte Sequence in Binary

1 7 00000000 0000007F 0xxxxxxx

2 11 00000080 000007FF 110xxxxx 10xxxxxx

3 16 00000800 0000FFFF 1110xxxx 10xxxxxx 10xxxxxx

This subset of UTF-8 requires a maximum of three (3) bytes.

Related Information
Low Function Terminal (LFT) Subsystem Overview in AIX 5L Version 5.1 Kernel Extensions and Device
Support Programming Concepts.

v “Chapter 16. National Language Support” on page 329

v “Locale Overview for Programming” on page 330

v “Converters Overview for Programming”

v “Input Method Overview” on page 452

v Keyboard Overview

National Language Support Overview for System Management, National Language Support Overview for
Devices, and Locale Overview for System Management in AIX 5L Version 5.1 System Management Guide:
Operating System and Devices.

The iconv command.

Converters Overview for Programming

National Language Support (NLS) provides a base for internationalization in which data often can be
changed from one code set to another. Support of several standard converters for this purpose is
provided. This section discusses the following aspects of conversion:

v “Converters Introduction” on page 411

v “Standard Converters” on page 411

v “Understanding libiconv” on page 412

v “Using Converters” on page 414

v “List of Converters” on page 416

410 Writing and Debugging Programs

../../aixprggd/kernextc/lowfunc_term_subsys.htm
../../aixkybd/kybdtech/Chapter1.htm
../../aixbman/admnconc/nls_overview.htm
../../aixbman/baseadmn/nls_dev.htm
../../aixbman/baseadmn/nls_dev.htm
../../aixbman/admnconc/locale_overview.htm
../../cmds/aixcmds3/iconv.htm

Converters Introduction
Data sent by one program to another program residing on a remote host may require conversion from the
code set of the source machine to that of the receiver. For example, when communicating with a VM
system, the workstation converts its ISO8859-1 data to an EBCDIC form.

Code sets define graphic characters and control character assignments to code points. These coded
characters must also be converted when a program obtains data in one code set but displays it in another
code set.

Two interfaces for conversions are provided:

iconv command Allows you to request a specific conversion by naming the FromCode and
ToCode code sets.

libiconv functions
(“Understanding libiconv” on
page 412)

Allow applications to request converters by name.

The system provides ready-to-use libraries of converters. You supply the name of the converter you want
to use. The converter libraries are found in the /usr/lib/nls/loc/iconv/* and /usr/lib/nls/loc/iconvTable/*
directories.

In addition to code set converters, the converter library also provides a set of network interchange
converters. In a network environment, the code sets of the communications systems and the protocols of
communication determine how the data should be converted.

Interchange converters are used to convert data sent from one system to another. Conversions from one
internal code set to another require code set converters. When data must be converted from a sender’s
code set to a receiver’s code set or from 8-bit data to 7-bit data, a uniform interface is required. The iconv
subroutines provide this interface.

Standard Converters
The system supports standard converters for use with the iconv command and subroutines. The following
list describes the different types of converters:

Code Set Converter Types Description
Table converter (“List of PC, ISO, and EBCDIC
Code Set Converters” on page 417)

Converts single-byte stateless code sets. Performs a table
translation from one byte to another byte.

Algorithmic converter (“List of Multibyte Code
Set Converters” on page 421)

Performs a conversion that cannot be implemented using a simple
single-byte mapping table. All multibyte converters are currently
implemented in this way.

Interchange Converter Types Description
“List of Interchange Converters—7-bit” on page 425 Converts between internal code sets and ISO2022 standard

interchange formats (7-bit).
“List of Interchange Converters—8-bit” on page 427 Converts between internal code sets and ISO2022 standard

interchange formats (8-bit).
“List of Interchange Converters—Compound Text” on
page 430

Converts between compound text and internal code sets.

“List of Interchange Converters—uucode” on page 432 Provides the same mapping as that defined in the uuencode
and uudecode command.

“List of UCS-2 Interchange Converters” on page 433 Converts between UCS-2 and other code sets.
“List of UTF-8 Interchange Converters” on page 435 Converts between UTF-8 and other code sets.

Chapter 16. National Language Support 411

../../cmds/aixcmds3/iconv.htm#HDRA332F9AC8
../../cmds/aixcmds3/iconv.htm#HDRA332F9AC8
../../cmds/aixcmds5/uuencode.htm#HDRA34592

Miscellaneous Converters Description
“List of Miscellaneous Converters” on page 437 Used by some of the converters listed above.

Understanding libiconv
The iconv application programming interface (API) consists of three subroutines that accomplish
conversion:

iconv_open Performs the initialization required to convert characters from the code set specified by the
FromCode parameter to the code set specified by the ToCode parameter. The strings specified
are dependent on the converters installed in the system. If initialization is successful, the
converter descriptor, iconv_t, is returned in its initial state.

“The iconv
Subroutine” on
page 440

Invokes the converter function using the descriptor obtained from the iconv_open subroutine.
The inbuf parameter points to the first character in the input buffer, and the inbytesleft
parameter indicates the number of bytes to the end of the buffer being converted. The outbuf
parameter points to the first available byte in the output buffer, and the outbytesleft parameter
indicates the number of available bytes to the end of the buffer.

For state-dependent encoding, the subroutine is placed in its initial state by a call for which the
inbuf value is a null pointer. Subsequent calls with the inbuf parameter as something other than
a null pointer cause the internal state of the function to be altered as necessary.

iconv_close Closes the conversion descriptor specified by the cd variable and makes it usable again.

In a network environment, two factors determine how data should be converted:

v Code sets of the sender and the receiver

v Communication protocol (8-bit or 7-bit data)

The following table outlines the conversion methods and recommends how you should convert data in
different situations. See the “List of Interchange Converters—7-bit” on page 425 and the “List of
Interchange Converters—8-bit” on page 427 for more information.

Outline of Methods and Recommended Choices

Communication with system using the same
code set

Communication with system using different
code set or receiver’s code set is unknown

Protocol Protocol

Method to choose 7-bit only 8-bit 7-bit only 8-bit

as is Not valid Best choice Not valid Not valid if remote
code set is unknown

fold7 OK OK Best choice OK

fold8 Not valid OK Not valid Best choice

uucode Best choice OK Not valid Not valid

If the sender uses the same code set as the receiver, there are two possibilities:

v When protocol allows 8-bit data, the data can be sent without conversions.

v When protocol allows only 7-bit data, the 8-bit code points must be mapped to 7-bit values. Use the
iconv interface and one of the following methods:

“List of Interchange
Converters—uucode” on
page 432

Provides the same mapping as the uuencode and uudecode commands. This is the
recommended method.

412 Writing and Debugging Programs

../../libs/basetrf1/iconv_open.htm#HDRA108C1C9F
../../libs/basetrf1/iconv_close.htm#HDRA108C1CCB

“List of Interchange
Converters—7-bit” on
page 425

Converts internal code sets using 7-bit data. This method passes ASCII without any
change.

If the sender uses a code set different from the receiver, there are two possibilities:

v When protocol allows only 7-bit data, use the fold7 method.

v When protocol allows 8-bit data and you know the receiver’s code set, use the iconv interface to convert
the data. If you do not know the receiver’s code set, use the following method:

“List of Interchange
Converters—8-bit” on
page 427

Converts internal code sets to standard interchange formats. The 8-bit data is transmitted and
the information is preserved so that the receiver can reconstruct the data in its code set.

Using the iconv_open Subroutine
The following examples illustrate how to use the iconv_open subroutine in different situations:

v Sender and receiver use the same code sets:

If the protocol allows 8-bit data, you can send data without converting it.

If the protocol allows only 7-bit data, do the following:
Sender:
cd = iconv_open("uucode", nl_langinfo(CODESET));

Receiver:
cd = iconv_open(nl_langinfo(CODESET), "uucode");

v Sender and receiver use different code sets:

If the protocol allows 8-bit data and the receiver’s code set is unknown, do the following:
Sender:
cd = iconv_open("fold8", nl_langinfo(CODESET));

Receiver:
cd = iconv_open(nl_langinfo(CODESET),"fold8");

If the protocol allows only 7-bit data, do the following:
Sender:
cd = iconv_open("fold7", nl_langinfo(CODESET));

Receiver:
cd = iconv_open(nl_langinfo(CODESET), "fold7");

How the iconv_open Subroutine Finds Converters
The iconv_open subroutine uses the LOCPATH environment variable to search for a converter whose
name is in the form:
iconv/FromCodeSet_ToCodeSet

The FromCodeSet string represents the sender’s code set, and the ToCodeSet string represents the
receiver’s code set. The underscore character separates the two strings.

Note: All setuid and setgid programs will ignore the LOCPATH environment variable.

Since the iconv converter is aloadable object module, a different object is required when running in the
64-bit environment. In the 64-bit environment, the iconv_open routine will use the LOCPATH environment
variable to search for a converter whose name is in the form:
iconv/FromCodeSet_ToCodeSet__64.

Chapter 16. National Language Support 413

../../libs/basetrf1/iconv_open.htm#HDRA108C1C9F
../../libs/basetrf1/iconv_open.htm#HDRA108C1C9F

The iconv library will automatically choose whether to load the standard converter object or the 64-bit
converter object.

If the iconv_open subroutine does not find the converter, it uses the from,to pair to search for a file that
defines a table-driven conversion. The file contains a conversion table created by the genxlt command.

The iconvTable converter uses the LOCPATH environment variable to search for a file whose name is in
the form:
iconvTable/FromCodeSet_ToCodeSet

If the converter is found, it performs a load operation and is initialized. The converter descriptor, iconv_t,
is returned in its initial state.

Converter Programs versus Tables
Converter programs are executable functions that convert data according to a set of rules. Converter
tables are single-byte conversion tables that perform stateless conversions. Programs and tables are in
separate directories:

/usr/lib/nls/loc/iconv Converter programs
/usr/lib/nls/loc/iconvTable Converter tables.

After a converter program is compiled and linked with the libiconv.a library, the program is placed in the
/usr/lib/nls/loc/iconv directory.

To build a table converter, build a source converter table file. Use the genxlt command to compile
translation tables into a format understood by the table converter. The output file is then placed in the
/usr/lib/nls/loc/iconvTable directory.

Unicode and Universal Converters
Unicode (or UCS-2) conversion tables are found in:
$LOCPATH/uconvTable/*CodeSet*

The $LOCPATH/uconv/UCSTBL converter program is used to perform the conversion to and from UCS-2
using the iconv utilities. For the iconv utilities to use these uconvTable conversion tables, links must be
set up within the $LOCPATH/iconv directory, for example, for code set ″X.″
ln -s /usr/lib/nls/loc/uconv/UCSTBL /usr/lib/nls/loc/iconv/X_UCS-2
ln -s /usr/lib/nls/loc/uconv/UCSTBL /usr/lib/nls/loc/iconv/UCS-2_X

A ″Universal converter″ program is provided that can be used to convert between any two code sets
whose conversions to and from UCS-2 is defined. Given the following uconvTables:
X -> UCS-2
UCS-2 -> Y

a universal conversion can be defined that maps
X -> UCS-2 -> Y

by use of the $LOCPATH/iconv/Universal_UCS_Conv. The conversion X->Y is set by defining links to
the universal converter, for example:
ln-s /usr/lib/nls/loc/iconv/Universal_UCS_Conv /usr/lib/nls/loc/iconv/X_Y

Using Converters
The iconv interface is a set of subroutines used to open, perform, and close conversions:

v iconv_open

v iconv (“The iconv Subroutine” on page 440)

414 Writing and Debugging Programs

../../cmds/aixcmds2/genxlt.htm#HDRA332F9A8F
../../cmds/aixcmds2/genxlt.htm#HDRA332F9A8F
../../libs/basetrf1/iconv_open.htm#HDRA108C1C9F

v iconv_close

Code Set Conversion Filter Example
The following example shows how you can use these subroutines to create a code set conversion filter
that accepts the ToCode and FromCode parameters as input arguments:
#include <stdio.h>
#include <nl_types.h>
#include <iconv.h>
#include <string.h>
#include <errno.h>
#include <locale.h>

#define ICONV_DONE() (r>=0)
#define ICONV_INVAL() (r<0) && (errno==EILSEQ))
#define ICONV_OVER() (r<0) && (errno==E2BIG))
#define ICONV_TRUNC() (r<0) && (errno==EINVAL))

#define USAGE 1
#define ERROR 2
#define INCOMP 3

char ibuf[BUFSIZ], obuf[BUFSIZ];

extern int errno;

main (argc,argv)
int argc;
char **argv;
{

size_t ileft,oleft;
nl_catd catd;
iconv_t cd;
int r;
char *ip,*op;

setlocale(LC_ALL,"");
catd = catopen (argv[0],0);

if(argc!=3){
fprintf(stderr,
catgets (catd,NL_SETD,USAGE,"usage;conv fromcode tocode\n"));
exit(1);
}

cd=iconv_open(argv[2],argv[1]);

ileft=0;

while(!feof(stdin)) {

/*
* After the next operation,ibuf will
* contain new data plus any truncated
* data left from the previous read.
*/
ileft+=fread(ibuf+ileft,1,BUFSIZ-ileft,stdin);
do {
ip=ibuf;
op=obuf;
oleft=BUFSIZ;

r=iconv(cd,&ip,&ileft,&op,&oleft);

if(ICONV_INVAL()){
fprintf(stderr,

catgets(catd,NL_SETD,ERROR,"invalid input\n"));

Chapter 16. National Language Support 415

../../libs/basetrf1/iconv_close.htm#HDRA108C1CCB

exit(2);
}

fwrite(obuf,1,BUFSIZ-oleft,stdout);

if(ICONV_TRUNC() || ICONV_OVER())
/*
*Data remaining in buffer-copy
*it to the beginning
*/

memcpy(ibuf,ip,ileft);

/*
*loop until all characters in the input
*buffer have been converted.
*/
} while(ICONV_OVER());

}

if(ileft!=0){
/*
*This can only happen if the last call
*to iconv() returned ICONV_TRUNC, meaning
*the last data in the input stream was
*incomplete.
*/
fprintf(stderr,catgets(catd,NL_SETD,INCOMP,"input incomplete\n"));
exit(3);
}

iconv_close(cd);
exit(0);

}

Naming Converters
Code set names are in the form CodesetRegistry-CodesetEncoding where:

CodesetRegistry Identifies the registration authority for the encoding. The CodesetRegistry must be
made of characters from the portable code set (usually A-Z and 0-9).

CodesetEncoding Identifies the coded character set defined by the registered authority.

The from,to variable used by the iconv command and iconv_open subroutine identifies a file whose name
should be in the form /usr/lib/nls/loc/iconv/%f_%t or /usr/lib/nls/loc/iconvTable/%f_%t, where:

%f Represents the FromCode set name.
%t Represents the ToCode set name.

List of Converters
Converters change data from one code set to another. The sets of converters supported with the ICONV
library are in the following sections. All converters shipped with the BOS Runtime Environment are located
in the /usr/lib/nls/loc/iconv/* or /usr/lib/nls/loc/iconvTable/* directory.

These directories also contain private converters; that is, they are used by other converters. However,
users and programs should only depend on the converters in the following lists.

Any converter shipped with the BOS Runtime Environment and not listed here should be considered
private and subject to change or deletion. Converters supplied by other products can be placed in the
/usr/lib/nls/loc/iconv/* or /usr/lib/nls/loc/iconvTable/* directory.

416 Writing and Debugging Programs

../../cmds/aixcmds3/iconv.htm#HDRA332F9AC8
../../libs/basetrf1/iconv_open.htm#HDRA108C1C9F

Programmers are encouraged to use registered code set names or code set names associated with an
application. The X Consortium maintains a registry of code set names for reference. See the “Code Set
Overview” on page 379 for more information about code sets.

v “List of PC, ISO, and EBCDIC Code Set Converters”

v “List of Multibyte Code Set Converters” on page 421

v “List of Interchange Converters—7-bit” on page 425

v “List of Interchange Converters—8-bit” on page 427

v “List of Interchange Converters—Compound Text” on page 430

v “List of Interchange Converters—uucode” on page 432

v “List of UCS-2 Interchange Converters” on page 433

v “List of UTF-8 Interchange Converters” on page 435

v “List of Miscellaneous Converters” on page 437

List of PC, ISO, and EBCDIC Code Set Converters

These converters provide conversion between PC, ISO, and EBCDIC single-byte stateless code sets. The
following types of conversions are supported: PC to/from ISO, PC to/from EBCDIC, and ISO to/from
EBCDIC.

Conversion is provided between compatible code sets such as Latin-1 to Latin-1 and Greek to Greek.
However, conversion between different EBCDIC national code sets is not supported. For information about
converting between incompatible character sets refer to the “List of Interchange Converters—7-bit” on
page 425 and the “List of Interchange Converters—8-bit” on page 427.

Conversion tables in the iconvTable directory are created by the genxlt command.

Compatible Code Set Names: The following table lists code set names that are compatible. Each line
defines to/from strings that may be used when requesting a converter.

Note: The PC and ISO code sets are ASCII-based.

Code Set Compatibility

Character Set Languages PC ISO EBCDIC

Latin-1 U.S. English,
Portuguese, Canadian
French

IBM-850 ISO8859-1 IBM-037

Latin-1 Danish, Norwegian IBM-850 ISO8859-1 IBM-277

Latin-1 Finnish, Swedish IBM-850 ISO8859-1 IBM-278

Latin-1 Italian IBM-850 ISO8859-1 IBM-280

Latin-1 Japanese IBM-850 ISO8859-1 IBM-281

Latin-1 Spanish IBM-850 ISO8859-1 IBM-284

Latin-1 U.K. English IBM-850 ISO8859-1 IBM-285

Latin-1 German IBM-850 ISO8859-1 IBM-273

Latin-1 French IBM-850 ISO8859-1 IBM-297

Latin-1 Belgian, Swiss
German

IBM-850 ISO8859-1 IBM-500

Chapter 16. National Language Support 417

../../cmds/aixcmds2/genxlt.htm#HDRA332F9A8F

Latin-2 Croatian,
Czechoslovakian,
Hungarian, Polish,
Romanian, Serbian
Latin, Slovak, Slovene

IBM-852 ISO88859-2 IBM-870

Cyrillic Bulgarian,
Macedonian, Serbian
Cyrillic, Russian

IBM-855 ISO8859-5 IBM-880 IBM-1025

Cyrillic Russian IBM-866 ISO8859-5 IBM-1025

Hebrew Hebrew IBM-856 IBM-862 ISO8859-8 IBM-424 IBM-803

Turkish Turkish IBM-857 ISO8859-9 IBM-1026

Arabic Arabic IBM-864 IBM-1046 ISO8859-6 IBM-420

Greek Greek IBM-869 ISO8859-7 IBM-875

Greek Greek IBM-869 ISO8859-7 IBM-875

Baltic Lithuanian, Latvian,
Estonian

IBM-921 IBM-922 IBM-1112 IBM-1122

Note: A character that exists in the source code set but does not exist in the target code set is
converted to a converter-defined substitute character.

Files: The following table describes the inconvTable converters found in the /usr/lib/nls/loc/iconvTable
directory:

iconvTable Converters

Converter Table Description Language

IBM-037_IBM-850 IBM-037 to IBM-850 U.S. English, Portuguese,
Canadian-French

IBM-273_IBM-850 IBM-273 to IBM-850 German

IBM-277_IBM-850 IBM-277 to IBM-850 Danish, Norwegian

IBM-278_IBM-850 IBM-278 to IBM-850 Finnish, Swedish

IBM-280_IBM-850 IBM-280 to IBM-850 Italian

IBM-281_IBM-850 IBM-281 to IBM-850 Japanese-Latin

IBM-284_IBM-850 IBM-284 to IBM-850 Spanish

IBM-285_IBM-850 IBM-285 to IBM-850 U.K. English

IBM-297_IBM-850 IBM-297 to IBM-850 French

IBM-420_IBM_1046 IBM-420 to IBM-1046 Arabic

IBM-424_IBM-856 IBM-424 to IBM-856 Hebrew

IBM-424_IBM-862 IBM-424 to IBM-862 Hebrew

IBM-500_IBM-850 IBM-500 to IBM-850 Belgian, Swiss German

IBM-803_IBM-856 IBM-803 to IBM-856 Hebrew

IBM-803_IBM-862 IBM-803 to IBM-862 Hebrew

IBM-850_IBM-037 IBM-850 to IBM-037 U.S. English, Portuguese,
Canadian-French

IBM-850_IBM-273 IBM-850 to IBM-273 German

IBM-850_IBM-277 IBM-850 to IBM-277 Danish, Norwegian

IBM-850_IBM-278 IBM-850 to IBM-278 Finnish, Swedish

418 Writing and Debugging Programs

IBM-850_IBM-280 IBM-850 to IBM-280 Italian

IBM-850_IBM-281 IBM-850 to IBM-281 Japanese-Latin

IBM-850_IBM-284 IBM-850 to IBM-284 Spanish

IBM-850_IBM-285 IBM-850 to IBM-285 U.K. English

IBM-850_IBM-297 IBM-850 to IBM-297 French

IBM-850_IBM-500 IBM-850 to IBM-500 Belgian, Swiss German

IBM-856_IBM-424 IBM-856 to IBM-424 Hebrew

IBM-856_IBM-803 IBM-856 to IBM-803 Hebrew

IBM-856_IBM-862 IBM-856 to IBM-862 Hebrew

IBM-862_IBM-424 IBM-862 to IBM-424 Hebrew

IBM-862_IBM-803 IBM-862 to IBM-803 Hebrew

IBM-862_IBM-856 IBM-862 to IBM-856 Hebrew

IBM-864_IBM-1046 IBM-864 to IBM-1046 Arabic

IBM-921_IBM-1112 IBM-921 to IBM-1112 Lithuanian, Latvian

IBM-922_IBM-1122 IBM-922 to IBM-1122 Estonian

IBM-1112_IBM-921 IBM-1121 to IBM-921 Lithuanian, Latvian

IBM-1122_IBM-922 IBM-1122 to IBM-922 Estonian

IBM-1046_IBM-420 IBM-1046 to IBM-420 Arabic

IBM-1046_IBM-864 IBM-1046 to IBM-864 Arabic

IBM-037_ISO8859-1 IBM-037 to ISO8859-1 U.S. English, Portuguese, Canadian
French

IBM-273_ISO8859-1 IBM-273 to ISO8859-1 German

IBM-277_ISO8859-1 IBM-277 to ISO8859-1 Danish, Norwegian

IBM-278_ISO8859-1 IBM-278 to ISO8859-1 Finnish, Swedish

IBM-280_ISO8859-1 IBM-280 to ISO8859-1 Italian

IBM-281_ISO8859-1 IBM-281 to ISO8859-1 Japanese-Latin

IBM-284_ISO8859-1 IBM-284 to ISO8859-1 Spanish

IBM-285_ISO8859-1 IBM-285 to ISO8859-1 U.K. English

IBM-297_ISO8859-1 IBM-297 to ISO8859-1 French

IBM-420_ISO8859-6 IBM-420 to ISO8859-6 Arabic

IBM-424_ISO8859-8 IBM-424 to ISO8859-8 Hebrew

IBM-500_ISO8859-1 IBM-500 to ISO8859-1 Belgian, Swiss German

IBM-803_ISO8859-8 IBM-803 to ISO8859-8 Hebrew

IBM-852_ISO8859-2 IBM-852 to ISO8859-2 Croatian, Czechoslovakian,
Hungarian, Polish, Romanian,
Serbian Latin, Slovak, Slovene

IBM-855_ISO8859-5 IBM-855 to ISO8859-5 Bulgarian, Macedonian, Serbian
Cyrillic, Russian

IBM-866_ISO8859-5 IBM-866 to ISO8859-5 Russian

IBM-869_ISO8859-7 IBM-869 to ISO8859-7 Greek

IBM-875_ISO8859-7 IBM-875 to ISO8859-7 Greek

Chapter 16. National Language Support 419

IBM-870_ISO8859-2 IBM-870 to ISO8859-2 Croatian, Czechoslovakian,
Hungarian, Polish, Romanian,
Serbian, Slovak, Slovene

IBM-880_ISO8859-5 IBM-880 to ISO8859-5 Bulgarian, Macedonian, Serbian
Cyrillic, Russian

IBM-1025_ISO8859-5 IBM-1025 to ISO8859-5 Bulgarian, Macedonian, Serbian
Cyrillic, Russian

IBM-857_ISO8859-9 IBM-857 to ISO8859-9 Turkish

IBM-1026_ISO8859-9 IBM-1026 to ISO8859-9 Turkish

IBM-850_ISO8859-1 IBM-850 to ISO8859-1 Latin

IBM-856_ISO8859-8 IBM-856 to ISO8859-8 Hebrew

IBM-862_ISO8859-8 IBM-862 to ISO8859-8 Hebrew

IBM-864_ISO8859-6 IBM-864 to ISO8859-6 Arabic

IBM-1046_ISO8859-6 IBM-1046 to ISO8859-6 Arabic

ISO8859-1_IBM-850 ISO8859-1 to IBM-850 Latin

ISO8859-6_IBM-864 ISO8859-6 to IBM-864 Arabic

ISO8859-6_IBM-1046 ISO8859-6 to IBM-1046 Arabic

ISO8859-8_IBM-856 ISO8859-8 to IBM-856 Hebrew

ISO8859-8_IBM-862 ISO8859-8 to IBM-862 Hebrew

ISO8859-1_IBM-037 ISO8859-1 to IBM-037 U.S. English, Portuguese, Canadian
French

ISO8859-1_IBM-273 ISO8859-1 to IBM-273 German

ISO8859-1_IBM-277 ISO8859-1 to IBM-277 Danish, Norwegian

ISO8859-1_IBM-278 ISO8859-1 to IBM-278 Finnish, Swedish

ISO8859-1_IBM-280 ISO8859-1 to IBM-280 Italian

ISO8859-1_IBM-281 ISO8859-1 to IBM-281 Japanese-Latin

ISO8859-1_IBM-284 ISO8859-1 to IBM-284 Spanish

ISO8859-1_IBM-285 ISO8859-1 to IBM-285 U.K. English

ISO8859-1_IBM-297 ISO8859-1 to IBM-297 French

ISO8859-1_IBM-500 ISO8859-1 to IBM-500 Belgian, Swiss German

ISO8859-2_IBM-852 ISO8859-2 to IBM-852 Croatian, Czechoslovakian,
Hungarian, Polish, Romanian,
Serbian Latin, Slovak, Slovene

ISO8859-2_IBM-870 ISO8859-2 to IBM-870 Croatian, Czechoslovakian,
Hungarian, Polish, Romanian,
Serbian Latin, Slovak, Slovene

ISO8859-5_IBM-855 ISO8859-5 to IBM-855 Bulgarian, Macedonian, Serbian
Cyrillic, Russian

ISO8859-5_IBM-880 ISO8859-5 to IBM-880 Bulgarian, Macedonian, Serbian
Cyrillic, Russian

ISO8859-5_IBM-1025 ISO8859-5 to IBM-1025 Bulgarian, Macedonian, Serbian
Cyrillic, Russian

ISO8859-6_IBM-420 ISO8859-6 to IBM-420 Arabic

ISO8859-5_IBM-866 ISO8859-5 to IBM-866 Russian

ISO8859-7_IBM-869 ISO8859-7 to IBM-869 Greek

420 Writing and Debugging Programs

ISO8859-7_IBM-875 ISO8859-7 to IBM-875 Greek

ISO8859-8_IBM-424 ISO8859-8 to IBM-424 Hebrew

ISO8859-8_IBM-803 ISO8859-8 to IBM-803 Hebrew

ISO8859-9_IBM-857 ISO8859-9 to IBM-857 Turkish

ISO8859-9_IBM-1026 ISO8859-9 to IBM-1026 Turkish

List of Multibyte Code Set Converters

Multibyte code-set converters convert characters among the following code-sets:

v PC multibyte code sets

v EUC multibyte code sets (ISO-based)

v EBCDIC multibyte code sets

The following table lists code set names that are compatible. Each line defines to/from strings that may be
used when requesting a converter.

Code Set Compatibility

Language PC ISO EBCDIC

Japanese IBM-932 IBM-eucJP IBM-930, IBM-939

Japanese
(MS compatible)

IBM-943 IBM-eucJP IBM-930, IBM-939

Korean IBM-934 IBM-eucKR IBM-933

Traditional Chinese IBM-938, big-5 IBM-eucTW IBM-937

Simplified Chinese IBM-1381 IBM-eucCN IBM-935

1. Conversions between Simplified and Traditional Chinese are provided (IBM-eucTW <—> IBM-eucCN
and big5 <—> IBM-eucCN).

2. UTF-8 is an additional code set. See “List of UTF-8 Interchange Converters” on page 435 for more
information.

Files: The following list describes the Multibyte Code Set converters that are found in the
/usr/lib/nls/loc/iconv directory.

Converter Description

IBM-eucJP_IBM-932 IBM-eucJP to IBM-932

IBM-eucJP_IBM-943 IBM-eucJP to IBM-943

IBM-eucJP_IBM-930 IBM-eucJP to IBM-930

IBM-eucCN_IBM-936(PC5550) IBM-eucCN to IBM-936(PC5550)

IBM-eucCN_IBM-935 IBM-eucCN to IBM-935

IBM-eucJP_IBM-939 IBM-eucJP to IBM-939

IBM-eucCN_IBM-1381 IBM-eucCN to IBM-1381

IBM-943_IBM-932 IBM-943 to IBM-932

IBM-932_IBM-943 IBM-932 to IBM-943

IBM-930_IBM-932 IBM-930 to IBM-932

IBM-930_IBM-943 IBM-930 to IBM-943

IBM-930_IBM-eucJP IBM-930 to IBM-eucJP

Chapter 16. National Language Support 421

Converter Description

IBM-932_IBM-eucJP IBM-932 to IBM-eucJP

IBM-932_IBM-930 IBM-932 to IBM-930

IBM-943_IBM-eucJP IBM-943 to IBM-eucJP

IBM-943_IBM-930 IBM-943 to IBM-930

IBM-936(PC5550)_IBM-935 IBM-936(PC5550) to IBM-935

IBM-936_IBM-935 IBM-936 to IBM-935

IBM-932_IBM-939 IBM-932 to IBM-939

IBM-939_IBM-932 IBM-939 to IBM-932

IBM-943_IBM-939 IBM-943 to IBM-939

IBM-939_IBM-943 IBM-939 to IBM-943

IBM-935_IBM-936(PC5550) IBM-935 to IBM-936(PC5550)

IBM-935_IBM-936 IBM-935 to IBM-936

IBM-1381_IBM-935 IBM-1381 to IBM-935

IBM-935_IBM-1381 IBM-935 to IBM-1381

IBM-935_IBM-eucCN IBM-935 to IBM-eucCN

IBM-936(PC5550)_IBM-eucCN IBM-936(PC5550) to IBM-eucCN

IBM-eucTW_IBM-eucCN IBM-eucTW to IBM-eucCN

big5_IBM-eucCN big5 to IBM-eucCN

IBM-1381_IBM-eucCN IBM-1381 to IBM-eucCN

IBM-939_IBM-eucJP IBM-939 to IBM-eucJP

IBM-eucKR_IBM-934 IBM-eucKR to IBM-934

IBM-934_IBM-eucKR IBM-934 to IBM-eucKR

IBM-eucKR_IBM-933 IBM-eucKR to IBM-933

IBM-933_IBM-eucKR IBM-933 to IBM-eucKR

IBM-eucTW_IBM-937 IBM-eucTW to IBM-937

IBM-938_IBM-937 IBM-938 to IBM-937

big-5_IBM-937 big-5 to IBM-937

IBM-eucCN_IBM-eucTW IBM-eucCN to IBM-eucTW

IBM-937_IBM-eucTW IBM-937 to IBM-eucTW

IBM-937_IBM-938 IBM-937 to IBM-938

IBM-eucTW_IBM-938 IBM_eucTW to IBM_938

IBM-eucCN_big5 IBM-eucCN to big5

IBM-eucTW_big-5 IBM_eucTW to big-5

IBM-937_big-5 IBM-937 to big-5

CNS11643.1992-3_IBM-eucTW CNS11643.1992-3 to IBM_eucTW

CNS11643.1992-3-GL_IBM-eucTW CNS11643.1992-3-GL to IBM_eucTW

CNS11643.1992-3-GR_IBM-eucTW CNS11643.1992-3-GR to IBM_eucTW

CNS11643.1992-4_IBM-eucTW CNS11643.1992-4 to IBM_eucTW

CNS11643.1992-4-GL_IBM-eucTW CNS11643.1992-4-GL to IBM_eucTW

CNS11643.1992-4-GR_IBM-eucTW CNS11643.1992-4-GR to IBM_eucTW

IBM-eucTW_CNS11643.1992-3 IBM_eucTW to CNS11643.1992-3

422 Writing and Debugging Programs

Converter Description

IBM-eucTW_CNS11643.1992-3-GL IBM_eucTW to CNS11643.1992-3-GL

IBM-eucTW_CNS11643.1992-3-GR IBM_eucTW to CNS11643.1992-3-GR

IBM-eucTW_CNS11643.1992-4 IBM_eucTW to CNS11643.1992-4

IBM-eucTW_CNS11643.1992-4-GL IBM_eucTW to CNS11643.1992-4-GL

IBM-eucTW_CNS11643.1992-4-GR IBM_eucTW to CNS11643.1992-4-GR

IBM-eucCN_GB2312.1980-1 IBM-eucCN to GB2312.1980-1

IBM-eucCN_GB2312.1980-1-GL IBM-eucCN to GB2312.1980-1-GL

IBM-eucCN_GB2312.1980-1-GR IBM-eucCN to GB2312.1980-1-GR

IBM-937_csic IBM-937 to csic

csic_IBM-937 csic to IBM-937

IBM-938_csic IBM-938 to csic

csic_IBM-938 csic to IBM-938

IBM-eucTW_ccdc IBM-eucTW to ccdc

ccdc_IBM-eucTW ccdc to IBM-eucTW

IBM-eucTW_cns IBM-eucTW to cns

cns_IBM-eucTW cnd to IBM-eucTW

IBM-eucTW_csic IBM-eucTW to csic

csic_IBM-eucTW csic to IBM-eucTW

IBM-eucTW_sops IBM-ecuTW to sops

sops_IBM-eucTW sops to IBM-eucTW

IBM-eucTW_tca IBM-eucTW to tca

tca_IBM-eucTW tca to IBM-eucTW

big5_cns big5 to cns

cns_big5 cns to big5

big5_csic big5 to csic

csic_big5 csic to big5

big5_ttc big5 to ttc

ttc_big5 ttc to big5

big5_ttcmin big5 to ttcmin

ttcmin_big5 ttcmin to big5

big5_unicode big5 to unicode

unicode_big5 unicode to big5

big5_wang big5 to wang

wang_big5 wang to big5

ccdc_csic ccdc to csic

csic_ccdc csic to_ccdc

csic_sops csic to sops

sops_csic sops to csic

CNS11643.1986-1_big5 CNS11643.1986-1 to big5

big5_CNS11643.1986-1 big5 to CNS11643.1986-1

CNS11643.1986-1-GR_big5 CNS11643.1986-1-GR to big5

Chapter 16. National Language Support 423

Converter Description

big5_CNS11643.1986-1-GR big5 to CNS11643.1986-1-GR

CNS11643.1986-2_big5 CNS11643.1986-2 to big5

big5_CNS11643.1986-2 big5 to CNS11643.1986-2

CNS11643.1986-2-GR_big5 CNS11643.1986-2-GR to big5

big5_CNS11643.1986-2-GR big5 to CNS11643.1986-2-GR

CNS11643.CT-GR_big5 CNS11643.CT-GR to big5

big5_CNS11643.CT-GR big5 to CNS11643.CT-GR

IBM-sbdTW-GR_big5 IBM-sbdTW-GR to big5

big5_IBM-sbdTW-GR big5 to IBM-sbdTW-GR

IBM-sbdTW.CT-GR_big5 IBM-sbdTW.CT-GR to big5

big5_IBM-sbdTW.CT-GR big5 to IBM-sbdTW.CT-GR

IBM-sbdTW_big5 IBM-sbdTW to big5

big5_IBM-sbdTW big5 to IBM-sbdTW

IBM-udcTW-GR_big5 IBM-udcTW-GR to big5

big5_IBM-udcTW-GR big5 to IBM-udcTW-GR

IBM-udcTW.CT-GR_big5 IBM-udcTW.CT-GR to big5

big5_IBM-udcTW.CT-GR big5 to IBM-udcTW.CT-GR

ISO8859-1_big5 ISO8859 to big5

big5_ISO8859-1 big5 to ISO8859

IBM-sbdTW_big5 IBM-sbdTW to big5

big5_IBM-sbdTW big5 to IBM-sbdTW

big5_ASCII-GR big5 to ASCII-GR

ASCII-GR_big5 ASCII-GR to big5

GBK_big5 GBK to big5

big5_GBK big5 to GBK

GBK_IBM-eucTW GBK to IBM-eucTW

IBM-eucTW_GBK IBM-eucTW to GBK

CNS11643.1986-1_GBK CNS11643.1986-1 to GBK

GBK_CNS11643.1986-1 GBK to CNS11643.1986-1

CNS11643.1986-2_GBK CNS11643.1986-2 to GBK

GBK_CNS11643.1986-2 GBK to CNS11643.1986-2

CNS11643.1986-1-GR_GBK CNS11643.1986-1-GR to GBK

GBK_CNS11643.1986-1-GR GBK to CNS11643.1986-1-GR

CNS11643.1986-2-GR_GBK CNS11643.1986-2-GR to GBK

GBK_CNS11643.1986-2-GR GBK to CNS11643.1986-2-GR

CNS11643.1986-1-GL_GBK CNS11643.1986-1-GL to GBK

GBK_CNS11643.1986-1-GL GBK to CNS11643.1986-1-GL

CNS11643.1986-2-GL_GBK CNS11643.1986-2-GL to GBK

GBK_CNS11643.1986-2-GL GBK to CNS11643.1986-2-GL

CNS11643.CT-GR_GBK CNS11643.CT-GR to GBK

GBK_CNS11643.CT-GR GBK to CNS11643.CT-GR

424 Writing and Debugging Programs

Converter Description

GB2312.1980.CT-GR_GBK GB2312.1980.CT-GR to GBK

GBK_GB2312.1980.CT-GR GBK to GB2312.1980.CT-GR

GB2312.1980-0_GBK GBK2312.1980-0 to GBK

GBK_GB2312.1980-0 GBK to GBK2312.1980-0

GB2312.1980-0-GR_GBK GB2312.1980-0-GR to GBK

GBK_GB2312.1980-0-GR GBK to GB2312.1980-0-GR

GB2312.1980-0-GL_GBK GB2312.1980-0-GL to GBK

GBK_GB2312.1980-0-GL GBK to GB2312.1980-0-GL

ASCII-GR_GBK ASCII-GR to GBK

GBK_ASCII-GR GBK to ASCII-GR

ISO8859-1_GBK ISO8859-1 to GBK

GBK_ISO8859-1 GBK to ISO8859-1

IBM-eucCN_GBK IBM-eucCN to GBK

GBK_IBM-eucCN GBK to IBM-eucCN

List of Interchange Converters—7-bit

This converter provides conversion between internal code and 7-bit standard interchange formats (fold7).
The fold7 name identifies encodings that can be used to pass text data through 7-bit mail protocols. The
encodings are based on ISO2022. For more information about fold7 see “Understanding libiconv” on
page 412.

The fold7 converters convert characters from a code set to a canonical 7-bit encoding that identifies each
character. This type of conversion is useful in networks where clients communicate with different code sets
but use the same character sets. For example:

IBM-850 <—> ISO8859-1 Common Latin characters
IBM-932 <—>IBM-eucJP Common Japanese characters

The following escape sequences designate standard code sets:

Escape Sequence Standard Code Set

01/11 02/04 04/00 GL JIS X0208.1978-0.

01/11 02/04 02/08 04/01 GL left half of GB2312.1980-0.

01/11 02/08 04/02 GL 7-bit ASCII or left half of ISO8859-1.

01/11 02/14 04/01 GL right half of ISO8859-1.

01/11 02/14 04/02 GL right half of ISO8859-2.

01/11 02/14 04/03 GL right half of ISO8859-3.

01/11 02/14 04/04 GL right half of ISO8859-4.

01/11 02/14 04/06 GL right half of ISO8859-7.

01/11 02/14 04/07 GL right half of ISO8859-6.

01/11 02/14 04/08 GL right half of ISO8859-8.

01/11 02/14 04/12 GL right half of ISO8859-5.

01/11 02/14 04/13 GL right half of ISO8859-9.

Chapter 16. National Language Support 425

Escape Sequence Standard Code Set

01/11 02/08 04/09 GL right half of JIS X0201.1976-0.

01/11 02/08 04/10 GL left half of JIS X0201.1976.

01/11 02/04 04/02 GL JIS X0208.1983-0.

01/11 02/04 02/08 04/02 GL JIS X0208.1983-0.

01/11 02/04 02/08 04/00 GL JISX0208.1978-0.

01/11 02/05 02/15 03/01 M L 06/09 06/02 06/13 02/13
03/08 03/05 03/00 00/02

GL right half of IBM-850 unique characters. Characters
common to ISO8859-1 do not use this escape sequence.

01/11 02/05 02/15 03/02 M L 06/09 06/02 06/13 02/13
07/05 06/04 06/03 04/10 05/00 00/02

GL Japanese) IBM-udcJP) user-definable characters.

01/11 02/04 02/08 04/03 GL KSC5601-1987.

01/11 02/04 02/09 03/00 GL CNS11643-1986-1.

01/11 02/04 02/10 03/01 GL CNS11643-1986-2.

01/11 02/05 02/15 03/00 M L 05/05 05/04 04/06 02/13
03/07 00/02

UCS-2 encoded as base64; used only for those
characters not encoded by any of the other 7-bit escape
sequences listed above.

When converting from a code set to fold7, the escape sequence used to designate the code set is chosen
according to the order listed. For example, the JISX0208.1983-0 characters use 01/11 01/04 04/02 as the
designation.

Files: The following list describes the fold7 converters that are found in the /usr/lib/nls/loc/iconv
directory:

Converter Description

fold7_IBM-850 Interchange format to IBM-850

fold7_IBM-921 Interchange format to IBM-921

fold7_IBM-922 Interchange format to IBM-922

fold7_IBM-932 Interchange format to IBM-932

fold7_IBM-943 Interchange format to IBM-943

fold7_IBM_1124 Interchange format to IBM-1124

fold7_IBM_1129 Interchange format to IBM-1129

fold7_IBM_eucCN Interchange format to IBM-eucCN

fold7_IBM-eucJP Interchange format to IBM-eucJP

fold7_IBM-eucKR Interchange format to IBM-eucKR

fold7_IBM-eucTW Interchange format to IBM-eucTW

fold7_ISO8859-1 Interchange format to ISO8859-1

fold7_ISO8859-2 Interchange format to ISO8859-2

fold7_ISO8859-3 Interchange format to ISO8859-3

fold7_ISO8859-4 Interchange format to ISO8859-4

fold7_ISO8859-5 Interchange format to ISO8859-5

fold7_ISO8859-6 Interchange format to ISO8859-6

fold7_ISO8859-7 Interchange format to ISO8859-7

fold7_ISO8859-8 Interchange format to ISO8859-8

fold7_ISO8859-9 Interchange format to ISO8859-9

426 Writing and Debugging Programs

Converter Description

fold7_TIS-620 Interchange format to TIS-620

fold7_UTF-8 Interchange format to UTF-8

fold7_big5 Interchange format to big5

fold7_GBK Interchange format to GBK

IBM-921_fold7 IBM-921 to interchange format

IBM-922_fold7 IBM-922 to interchange format

IBM-850_fold7 IBM-850 to interchange format

IBM-932_fold7 IBM-932 to interchange format

IBM-943_fold7 IBM-943 to interchange format

IBM-1124_fold7 IBM-1124 to interchange format

IBM-1129_fold7 IBM-1129 to interchange format

IBM-eucCN_fold7 IBM-eucCN to interchange format

IBM-eucJP_fold7 IBM-eucJP to interchange format

IBM-eucKR_fold7 IBM-eucKR to interchange format

IBM-eucTW_fold7 IBM-eucTW to interchange format

ISO8859-1_fold7 ISO8859-1 to interchange format

ISO8859-2_fold7 ISO8859-2 to interchange format

ISO8859-3_fold7 ISO8859-3 to interchange format

ISO8859-4_fold7 ISO8859-4 to interchange format

ISO8859-5_fold7 ISO8859-5 to interchange format

ISO8859-6_fold7 ISO8859-6 to interchange format

ISO8859-7_fold7 ISO8859-7 to interchange format

ISO8859-8_fold7 ISO8859-8 to interchange format

ISO8859-9_fold7 ISO8859-9 to interchange format

TIS-620_fold7 TIS-620 to interchange format

UTF-8_fold7 UTF-8 to interchange format

big5_fold7 big5 to interchange format

GBK_fold7 GBK to interchange format

List of Interchange Converters—8-bit

This converter provides conversions between internal code and 8-bit standard interchange formats (fold8).
The fold8 name identifies encodings that can be used to pass text data through 8-bit mail protocols. The
encodings are based on ISO2022. For more information about fold8 see “Understanding libiconv” on
page 412.

The fold8 converters convert characters from a specific code set encoding to a canonical 8-bit encoding
that identifies each character. This type of conversion is useful in networks where clients communicate
with different code sets but use the same character sets. For example:

IBM-850 <—> ISO8859-1 Common Latin characters
IBM-932 <—>IBM-eucJP Common Japanese characters

Chapter 16. National Language Support 427

The following escape sequences designate standard code sets.

Escape Sequence Standard Code Set

01/11 02/04 02/09 04/01 GR right half of GB2312.1980-0.

01/11 02/13 04/01 GR right half of ISO8859-1.

01/11 02/13 04/02 GR right half of ISO8859-2.

01/11 02/13 04/03 GR right half of ISO8859-3.

01/11 02/13 04/04 GR right half of ISO8859-4.

01/11 02/13 04/06 GR right half of ISO8859-7.

01/11 02/13 04/07 GR right half of ISO8859-6.

01/11 02/13 04/08 GR right half of ISO8859-8.

01/11 02/13 04/13 GR right half of ISO8859-5.

01/11 02/13 04/13 GR right half of ISO8859-9.

01/11 02/09 04/09 GR right half of JIS X0201.1976-1.

01/11 02/04 02/09 04/02 GR JIS X0208.1983-1.

01/11 02/04 02/09 04/00 GR JISX0208.1978-1.

01/11 02/09 04/02 GR 7-bit ASCII or left half of ISO8859-1.

01/11 02/05 02/15 03/01 M L 04/09 04/02 04/13 02/13
03/08 03/05 03/00 00/02

GR right half of IBM-850 unique characters. Characters
common to ISO8859-1 should not use this escape
sequence.

01/11 02/05 02/15 03/02 M L 04/09 04/02 04/13 02/13
07/05 06/04 06/03 04/10 05/00 00/02

GR right half of Japanese user-definable characters.

01/11 02/08 04/02 GL 7-bit ASCII or left half of ISO8859-1.

01/11 02/14 04/01 GL right half of ISO8859-1.

01/11 02/14 04/02 GL right half of ISO8859-2.

01/11 02/14 04/03 GL right half of ISO8859-3.

01/11 02/14 04/04 GL right half of ISO8859-4.

01/11 02/14 04/06 GL right half of ISO8859-7.

01/11 02/14 04/07 GL right half of ISO8859-6.

01/11 02/14 04/08 GL right half of ISO8859-8.

01/11 02/14 04/12 GL right half of ISO8859-5.

01/11 02/14 04/13 GL right half of ISO8859-9.

01/11 02/08 04/09 GL right half of JIS X0201.1976-0.

01/11 02/08 04/10 GL left half of JIS X0201.1976.

01/11 02/04 02/08 04/02 GL JIS X0208.1983-0.

01/11 02/04 04/02 GL JIS X0208.1983-0.

01/11 02/04 04/00 GL JIS X0208.1978-0.

01/11 02/05 02/15 03/01 M L 06/09 06/02 06/13 02/13
03/08 03/05 03/00 00/02

GL right half of IBM-850 unique characters. Characters
common to ISO8859-1 do not use this escape sequence.

01/11 02/05 02/15 03/02 M L 06/09 06/02 06/13 02/13
07/05 06/04 06/03 04/10 05/00 00/02

GL Japanese (IBM-udcJP) user-definable characters.

01/11 02/04 02/09 04/03 GR KSC5601-1987.

01/11 02/04 02/09 03/00 GR CNS11643-1986-1.

01/11 02/04 02/10 03/01 GR CNS11643-1986-2.

428 Writing and Debugging Programs

Escape Sequence Standard Code Set

01/11 02/05 02/15 03/02 M L 04/09 04/02 04/13 02/13
07/05 06/04 06/03 05/05 05/08 00/02

GR right half of Traditional Chinese user-definable
characters.

01/11 02/05 02/15 03/02 M L 04/09 04/02 04/13 02/13
07/03 06/02 06/04 05/05 05/08 00/02

GR right half of IBM-850 unique symbols.

01/11 02/04 02/08 04/03 GL KSC5601-1987.

01/11 02/05 02/15 03/02 M L 06/09 06/02 06/13 02/13
07/05 06/04 06/03 05/05 05/08 00/02

GL Traditional Chinese (IBM-udcTW) user-definable
characters.

01/11 02/05 02/15 03/02 M L 06/09 06/02 06/13 02/13
07/03 06/02 06/04 05/05 05/08 00/02

GL Traditional Chinese IBM-850 unique symbols
(IBM-shdTW) user-definable characters.

01/11 02/05 02/15 03/00 M L 05/05 05/04 04/06 02/13
03/08 00/02

UCS-2 encoded as UTF-8; used only for those characters
not encoded by any of the above escape sequences
listed above.

When converting from a code set to fold8, the escape sequence used to designate the code set is chosen
according to the order listed. For example, the JISX0208.1983-0 characters use 01/11 02/04 02/08 04/02
as the designation.

Files: The following list describes the fold8 converters found in the /usr/lib/nls/loc/iconv directory:

Converter Description

fold8_IBM-850 Interchange format to IBM-850

fold8_IBM-921 Interchange format to IBM-921

fold8_IBM-922 Interchange format to IBM-922

fold8_IBM-932 Interchange format to IBM-932

fold8_IBM-943 Interchange format to IBM-943

fold8_IBM-1124 Interchange format to IBM-1124

fold8_IBM-1129 Interchange format to IBM-1129

fold8_IBM-eucCN Interchange format to IBM-eucCN

fold8_IBM-eucJP Interchange format to IBM-eucJP

fold8_IBM-eucKR Interchange format to IBM-eucKR

fold8_IBM-eucTW Interchange format to IBM-eucTW

fold8_IBM-eucCN Interchange fromat to IBM-eucCN

fold8_ISO8859-1 Interchange format to ISO8859-1

fold8_ISO8859-2 Interchange format to ISO8859-2

fold8_ISO8859-3 Interchange format to ISO8859-3

fold8_ISO8859-4 Interchange format to ISO8859-4

fold8_ISO8859-5 Interchange format to ISO8859-5

fold8_ISO8859-6 Interchange format to ISO8859-6

fold8_ISO8859-7 Interchange format to ISO8859-7

fold8_ISO8859-8 Interchange format to ISO8859-8

fold8_ISO8859-9 Interchange format to ISO8859-9

fold8_TIS-620 Interchange format to TIS-620

fold8_UTF-8 Interchange format to UTF-8

fold8_big5 Interchange format to big5

Chapter 16. National Language Support 429

Converter Description

fold8_GBK Interchange format to GBK

IBM-921_fold8 IBM-921 to interchange format

IBM-922_fold8 IBM-922 to interchange format

IBM-850_fold8 IBM-850 to interchange format

IBM-932_fold8 IBM-932 to interchange format

IBM-943_fold8 IBM-943 to interchange format

IBM-1124_fold8 IBM-1124 to interchange format

IBM-1129_fold8 IBM-1129 to interchange format

IBM-eucCN_fold8 IBM-eucCN to interchange format

IBM-eucJP_fold8 IBM-eucJP to interchange format

IBM-eucKR_fold8 IBM-eucKR to interchange format

IBM-eucTW_fold8 IBM-eucTW to interchange format

IBM-eucCN_fold8 IBM-eucCN to interchange format

ISO8859-1_fold8 ISO8859-1 to interchange format

ISO8859-2_fold8 ISO8859-2 to interchange format

ISO8859-3_fold8 ISO8859-3 to interchange format

ISO8859-4_fold8 ISO8859-4 to interchange format

ISO8859-5_fold8 ISO8859-5 to interchange format

ISO8859-6_fold8 ISO8859-6 to interchange format

ISO8859-7_fold8 ISO8859-7 to interchange format

ISO8859-8_fold8 ISO8859-8 to interchange format

ISO8859-9_fold8 ISO8859-9 to interchange format

TIS-620_fold8 TIS-620 to interchange format

UTF-8_fold8 UTF-8 to interchange format

big5_fold8 big5 to interchange format

GBK_fold8 GBK to interchange format

List of Interchange Converters—Compound Text

Compound text interchange converters convert between compound text and internal code sets.

Compound text is an interchange encoding defined by the X Consortium. It is used to communicate text
between X clients. Compound text is based on ISO2022 and can encode most character sets using
standard escape sequences. It also provides extensions for encoding private character sets. The
supported code sets provide a converter to and from compound text. The name used to identify the
compound text encoding is ct.

The following escape sequences are used to designate standard code sets in the order listed below.

01/11 02/05 02/15 03/01 M L 04/09 04/02 04/13 02/13 03/08 03/05 03/00 00/02
GR right half of IBM-850 unique characters. Characters
common to ISO8859-1 should not use this escape
sequence.

01/11 02/05 02/15 03/02 M L 04/09 04/02 04/13 02/13 07/05 06/04 06/03 04/10 05/00 00/02
GR right half of Japanese user-definable characters.

430 Writing and Debugging Programs

01/11 02/05 02/15 03/01 M L 06/09 06/02 06/13 02/13 03/08 03/05 03/00 00/02
GL right half of IBM-850 unique characters. Characters
common to ISO8859-1 do not use this escape sequence.

01/11 02/05 02/15 03/02 M L 06/09 06/02 06/13 02/13 07/05 06/04 06/03 04/10 05/00 00/02
GL Japanese (IBM-udcJP) user-definable characters.

Files: The following list describes the compound text converters that are found in the
/usr/lib/nls/loc/iconv directory:

Converter Description

ct_IBM-850 Interchange format to IBM-850

ct_IBM-921 Interchange format to IBM-921

ct_IBM-922 Interchange format to IBM-922

ct_IBM-932 Interchange format to IBM-932

ct_IBM-943 Interchange format to IBM-943

ct_IBM-1124 Interchange format to IBM-1124

ct_IBM-1129 Interchange format to IBM-1129

ct_IBM-eucCN Interchange format to IBM-eucCN

ct_IBM-eucJP Interchange format to IBM-eucJP

ct_IBM-eucKR Interchange format to IBM-eucKR

ct_IBM-eucTW Interchange format to IBM-eucTW

ct_ISO8859-1 Interchange format to ISO8859-1

ct_ISO8859-2 Interchange format to ISO8859-2

ct_ISO8859-3 Interchange format to ISO8859-3

ct_ISO8859-4 Interchange format to ISO8859-4

ct_ISO8859-5 Interchange format to ISO8859-5

ct_ISO8859-6 Interchange format to ISO8859-6

ct_ISO8859-7 Interchange format to ISO8859-7

ct_ISO8859-8 Interchange format to ISO8859-8

ct_ISO8859-9 Interchange format to ISO8859-9

ct_TIS-620 Interchange format to TIS-620

ct_big5 Interchange format to big5

ct_GBK Interchange format to GBK

IBM-850_ct IBM-850 to interchange format

IBM-921_ct IBM-921 to interchange format

IBM-922_ct IBM-922 to interchange format

IBM-932_ct IBM-932 to interchange format

IBM-943_ct IBM-943 to interchange format

IBM-1124_ct IBM-1124 to interchange format

IBM-1129_ct IBM-1129 to interchange format

IBM-eucCN_ct IBM-eucCN to interchange format

IBM-eucJP_ct IBM-eucJP to interchange format

IBM-eucKR_ct IBM-eucKR to interchange format

IBM-eucTW_ct IBM-eucTW to interchange format

Chapter 16. National Language Support 431

Converter Description

ISO8859-1_ct ISO8859-1 to interchange format

ISO8859-2_ct ISO8859-2 to interchange format

ISO8859-3_ct ISO8859-3 to interchange format

ISO8859-4_ct ISO8859-4 to interchange format

ISO8859-5_ct ISO8859-5 to interchange format

ISO8859-6_ct ISO8859-6 to interchange format

ISO8859-7_ct ISO8859-7 to interchange format

ISO8859-8_ct ISO8859-8 to interchange format

ISO8859-9_ct ISO8859-9 to interchange format

TIS-620_ct TIS-620 to interchange format

big5_ct big5 to interchange format

GBK_ct GBK to interchange format

List of Interchange Converters—uucode

This converter provides the same mapping as the uuencode and uudecode Command.

During conversion from uucode, 62 bytes at a time (including a new-line character trailing the record) are
converted, and generating 45 bytes in outbuf.

Files: The following list describes the uucode converters found in the /usr/lib/nls/loc/iconv directory:

Converter Description

IBM-850_uucode IBM-850 to uucode

IBM-921_uucode IBM-921 to uucode

IBM-922_uucode IBM-922 to uucode

IBM-932_uucode IBM-932 to uucode

IBM-943_uucode IBM-943 to uucode

IBM-1124_uucode IBM-1124 to uucode

IBM-1129_uucode IBM-1129 to uucode

IBM-eucJP_uucode IBM-eucJP to uucode

IBM-eucKR_uucode IBM-eucKR to uucode

IBM-eucTW_uucode IBM-eucTW to uucode

IBM-eucCN_uucode IBM-eucCN to uucode

ISO8859-1_uucode ISO8859-1 to uucode

ISO8859-2_uucode ISO8859-2 to uucode

ISO8859-3_uucode ISO8859-3 to uucode

ISO8859-4_uucode ISO8859-4 to uucode

ISO8859-5_uucode ISO8859-5 to uucode

ISO8859-6_uucode ISO8859-6 to uucode

ISO8859-7_uucode ISO8859-7 to uucode

ISO8859-8_uucode ISO8859-8 to uucode

ISO8859-9_uucode ISO8859-9 to uucode

432 Writing and Debugging Programs

../../cmds/aixcmds5/uuencode.htm#HDRA34592

Converter Description

TIS-620_uucode TIS-620 to uucode

big5_uucode big5 to uucode

GBK_uucode GBK to uucode

uucode_IBM-850 uucode to IBM-850

uucode_IBM-921 uucode to IBM-921

uucode_IBM-922 uucode to IBM-922

uucode_IBM-932 uucode to IBM-932

uucode_IBM-943 uucode to IBM-943

uucode_IBM-1124 uucode to IBM-1124

uucode_IBM-1129 uucode to IBM-1129

uucode_IBM-eucCN uucode to IBM-eucCN

uucode_IBM-eucJP uucode to IBM-eucJP

uucode_IBM-eucKR uucode to IBM-eucKR

uucode_IBM-eucTW uucode to IBM-eucTW

uucode_ISO8859-1 uucode to ISO8859-1

uucode_ISO8859-2 uucode to ISO8859-2

uucode_ISO8859-3 uucode to ISO8859-3

uucode_ISO8859-4 uucode to ISO8859-4

uucode_ISO8859-5 uucode to ISO8859-5

uucode_ISO8859-6 uucode to ISO8859-6

uucode_ISO8859-7 uucode to ISO8859-7

uucode_ISO8859-8 uucode to ISO8859-8

uucode_ISO8859-9 uucode to ISO8859-9

uucode_TIS-1124 uucode to TIS-1129

uucode_big5 uucode to big5

uucode_GBK uucode to GBK

List of UCS-2 Interchange Converters
UCS-2 is a universal, 16-bit encoding described in the “Code Set Overview” on page 379. Conversions for
each code set are provided in both directions, between the code set and UCS-2.

UCS-2 converters are found in /usr/lib/nls/loc/uconvTable and /usr/lib/nls/loc/uconv directories. The
uconvdef command is used to generate new converters or to customize existing UCS-2 converters.

The /usr/lib/nls/loc/iconv/Universal_UCS_Conv converter is used to generate conversions from any code
set X to code set Y by setting the proper links:
cd /usr/lib/nls/loc/iconv
ln -s /usr/lib/nls/loc/uconv/Universal_UCS_Conv X_Y
ln -s /usr/lib/nls/loc/uconv/UCSTBL X_UCS-2
ln-s /usr/lib/nls/loc/uconv/UCSTBL UCS-2_Y
ln -s /usr/lib/nls/loc/uconv/UCSTBL X
ln -s /usr/lib/nls/loc/uconv/UCSTBL Y

Converter Description

ISO8859-1 UCS-2 <—> ISO Latin-1

Chapter 16. National Language Support 433

Converter Description

ISO8859-2 UCS-2 <—> ISO Latin-2

ISO8859-3 UCS-2 <—> ISO Latin-3

ISO8859-4 UCS-2 <—> ISO Latin-4

ISO8859-5 UCS-2 <—> ISO Cyrillic

ISO8859-6 UCS-2 <—> ISO Arabic

ISO8859-7 UCS-2 <—> ISO Greek

ISO8859-8 UCS-2 <—> ISO Hebrew

ISO8859-9 UCS-2 <—> ISO Turkish

JISX0201.1976-0 UCS-2 <—> Japanese JISX0201-0

JISX0208.1983-0 UCS-2 <—> Japanese JISX0208-0

CNS11643.1986-1 UCS-2 <—> Chinese CNS11643-1

CNS11643.1986-2 UCS-2 <—> Chinese CNS11643-2

KSC5601.1987-0 UCS-2 <—> Korean KSC5601-0

IBM-eucCN UCS-2 <—> Simplified Chinese EUC

IBM-udcCN UCS-2 <—> Simplified Chinese user-defined characters

IBM-sbdCN UCS-2 <—> Simplified Chinese IBM-specific characters

GB2312.1980-0 UCS-2 <—> Simplified Chinese GB

IBM-1381 UCS-2 <—> Simplified Chinese PC data code

IBM-935 UCS-2 <—> Simplified Chinese EBCDIC

IBM-936 UCS-2 <—> Simplified Chinese PC5550

IBM-eucJP UCS-2 <—> Japanese EUC

IBM-eucKR UCS-2 <—> Korean EUC

IBM-eucTW UCS-2 <—> Traditional Chinese EUC

IBM-udcJP UCS-2 <—> Japanese user-defined characters

IBM-udcTW UCS-2 <—> Traditional Chinese user-defined characters

IBM-sbdTW UCS-2 <—> Traditional Chinese IBM-specific characters

UTF-8 UCS-2 <—> UTF-8

IBM-437 UCS-2 <—> USA PC data code

IBM-850 UCS-2 <—> Latin-1 PC data code

IBM-852 UCS-2 <—> Latin-2 PC data code

IBM-857 UCS-2 <—> Turkish PC data code

IBM-860 UCS-2 <—> Portuguese PC data code

IBM-861 UCS-2 <—> Icelandic PC data code

IBM-863 UCS-2 <—> French Canadian PC data code

IBM-865 UCS-2 <—> Nordic PC data code

IBM-869 UCS-2 <—> Greek PC data code

IBM-921 UCS-2 <—> Baltic Multilingual data code

IBM-922 UCS-2 <—> Estonian data code

IBM-932 UCS-2 <—> Japanese PC data code

IBM-943 UCS-2 <—> Japanese PC data code

IBM-934 UCS-2 <—> Korea PC data code

434 Writing and Debugging Programs

Converter Description

IBM-936 UCS-2 <—> People’s Republic of China PC data code

IBM-938 UCS-2 <—> Taiwanese PC data code

IBM-942 UCS-2 <—> Extended Japanese PC data code

IBM-944 UCS-2 <—> Korean PC data code

IBM-946 UCS-2 <—> People’s Republic of China SAA data code

IBM-948 UCS-2 <—> Traditional Chinese PC data code

IBM-1124 UCS-2 <—> Ukranian PC data code

IBM-1129 UCS-2 <—> Vietnamese PC data code

TIS-620 UCS-2 <—> Thailand PC data code

IBM-037 UCS-2 <—> USA, Canada EBCDIC

IBM-273 UCS-2 <—> Germany, Austria EBCDIC

IBM-277 UCS-2 <—> Denmark, Norway EBCDIC

IBM-278 UCS-2 <—> Finland, Sweden EBCDIC

IBM-280 UCS-2 <—> Italy EBCDIC

IBM-284 UCS-2 <—> Spain, Latin America EBCDIC

IBM-285 UCS-2 <—> United Kingdom EBCDIC

IBM-297 UCS-2 <—> France EBCDIC

IBM-500 UCS-2 <—> International EBCDIC

IBM-875 UCS-2 <—> Greek EBCDIC

IBM-930 UCS-2 <—> Japanese Katakana-Kanji EBCDIC

IBM-933 UCS-2 <—> Korean EBCDIC

IBM-937 UCS-2 <—> Traditional Chinese EBCDIC

IBM-939 UCS-2 <—> Japanese Latin-Kanji EBCDIC

IBM-1026 UCS-2 <—> Turkish EBCDIC

IBM-1112 UCS-2 <—> Baltic Multilingual EBCDIC

IBM-1122 UCS-2 <—> Estonian EBCDIC

IBM-1124 UCS-2 <—> Ukranian EBCDIC

IBM-1129 UCS-2 <—> Vietnamese EBCDIC

GBK UCS-2<—> Simplified Chinese

TIS-620 UCS-2 <—>Thailand EBCDIC

List of UTF-8 Interchange Converters
UTF-8 is a universal, multibyte encoding described in the “UCS-2 and UTF-8” on page 407. Conversions
for each code set are provided in both directions, between the code set and UTF-8.

UTF-8 converters are usually done by using the Universal_UCS_Conv (see “List of UCS-2 Interchange
Converters” on page 433 and /usr/lib/nls/loc/uconv/UTF-8 conversion.

Converter Description

ISO8859-1 UTF-8 <—> ISO Latin-1

ISO8859-2 UTF-8 <—> ISO Latin-2

ISO8859-3 UTF-8 <—> ISO Latin-3

ISO8859-4 UTF-8 <—> ISO Latin-4

Chapter 16. National Language Support 435

Converter Description

ISO8859-5 UTF-8 <—> ISO Cyrillic

ISO8859-6 UTF-8 <—> ISO Arabic

ISO8859-7 UTF-8 <—> ISO Greek

ISO8859-8 UTF-8 <—> ISO Hebrew

ISO8859-9 UTF-8 <—> ISO Turkish

JISX0201.1976-0 UTF-8 <—> Japanese JISX0201-0

JISX0208.1983-0 UTF-8 <—> Japanese JISX0208-0

CNS11643.1986-1 UTF-8 <—> Chinese CNS11643-1

CNS11643.1986-2 UTF-8 <—> Chinese CNS11643-2

KSC5601.1987-0 UTF-8 <—> Korean KSC5601-0

IBM-eucCN UTF-8 <—> Simplified Chinese EUC

IBM-eucJP UTF-8 <—> Japanese EUC

IBM-eucKR UTF-8 <—> Korean EUC

IBM-eucTW UTF-8 <—> Traditional Chinese EUC

IBM-udcJP UTF-8 <—> Japanese user-defined characters

IBM-udcTW UTF-8 <—> Traditional Chinese user-defined characters

IBM-sbdTW UTF-8 <—> Traditional Chinese IBM-specific characters

UCS-2 UTF-8 <—> UCS-2

IBM-437 UTF-8 <—> USA PC data code

IBM-850 UTF-8 <—> Latin-1 PC data code

IBM-852 UTF-8 <—> Latin-2 PC data code

IBM-857 UTF-8 <—> Turkish PC data code

IBM-860 UTF-8 <—> Portuguese PC data code

IBM-861 UTF-8 <—> Icelandic PC data code

IBM-863 UTF-8 <—> French Canadian PC data code

IBM-865 UTF-8 <—> Nordic PC data code

IBM-869 UTF-8 <—> Greek PC data code

IBM-921 UTF-8 <—> Baltic Multilingual data code

IBM-922 UTF-8 <—> Estonian data code

IBM-932 UTF-8 <—> Japanese PC data code

IBM-943 UTF-8 <—> Japanese PC data code

IBM-934 UTF-8 <—> Korea PC data code

IBM-935 UTF-8 <—> Simplified Chinese EBCDIC

IBM-936 UTF-8 <—> People’s Republic of China PC data code

IBM-938 UTF-8 <—> Taiwanese PC data code

IBM-942 UTF-8 <—> Extended Japanese PC data code

IBM-944 UTF-8 <—> Korean PC data code

IBM-946 UTF-8 <—> People’s Republic of China SAA data code

IBM-948 UTF-8 <—> Traditional Chinese PC data code

IBM-1124 UTF-8 <—> Ukranian PC data code

IBM-1129 UTF-8 <—> Vietnamese PC data code

436 Writing and Debugging Programs

Converter Description

TIS-620 UTF-8 <—> Thailand PC data code

IBM-037 UTF-8 <—> USA, Canada EBCDIC

IBM-273 UTF-8 <—> Germany, Austria EBCDIC

IBM-277 UTF-8 <—> Denmark, Norway EBCDIC

IBM-278 UTF-8 <—> Finland, Sweden EBCDIC

IBM-280 UTF-8 <—> Italy EBCDIC

IBM-284 UTF-8 <—> Spain, Latin America EBCDIC

IBM-285 UTF-8 <—> United Kingdom EBCDIC

IBM-297 UTF-8 <—> France EBCDIC

IBM-500 UTF-8 <—> International EBCDIC

IBM-875 UTF-8 <—> Greek EBCDIC

IBM-930 UTF-8 <—> Japanese Katakana-Kanji EBCDIC

IBM-933 UTF-8 <—> Korean EBCDIC

IBM-937 UTF-8 <—> Traditional Chinese EBCDIC

IBM-939 UTF-8 <—> Japanese Latin-Kanji EBCDIC

IBM-1026 UTF-8 <—> Turkish EBCDIC

IBM-1112 UTF-8 <—> Baltic Multilingual EBCDIC

IBM-1122 UTF-8 <—> Estonian EBCDIC

IBM-1124 UTF-8 <—> Ukranian EBCDIC

IBM-1129 UTF-8 <—> Vietnamese EBCDIC

IBM-1381 UTF-8 <—> Simplified Chinese PC data code

GBK UTF-8<—> Simplified Chinese

TIS-620 UTF-8 <—> Thailand EBCDIC

List of Miscellaneous Converters
A set of low level converters used by the code set and interchange converters is provided. These
converters are called miscellaneous converters. These low-level converters may be used by some of the
interchange converters. However, the use of these converters is discouraged because they are intended
for support of other converters.

Files: The following list describes the miscellaneous converters found in the /usr/lib/nls/loc/iconv and
/usr/lib/nls/loc/iconvTable directories:

Converter Description

IBM-932_JISX0201.1976-0 IBM-932 to JISX0201.1976-0

IBM-932_JISX0208.1983-0 IBM-932 to JISX0208.1983-0

IBM-932_IBM-udcJP IBM-932 to IBM-udcJP (Japanese user-defined characters)

IBM-943_JISX0201.1976-0 IBM-943 to JISX0201.1976-0

IBM-943_JISX0208.1983-0 IBM-943 to JISX0208.1983-0

IBM-943_IBM-udcJP IBM-943 to IBM-udcJP (Japanese user-defined characters

IBM-eucJP_JISX0201.1976-0 IBM-eucJP to JISX0201.1976-0

IBM-eucJP_JISX0208.1983-0 IBM-eucJP to JISX0208.1983-0

IBM-eucJP_IBM-udcJP IBM-eucJP to IBM-udcJP (Japanese user-defined characters)

Chapter 16. National Language Support 437

Converter Description

IBM-eucKR_KSC5601.1987-0 IBM_eucKR to KSC5601.1987-0

IBM-eucTW_CNS11643.1986-1 IBM-eucTW to CNS11643.1986.1

IBM-eucTW_CNS11643.1986-2 IBM-eucTW to CNS11643.1986-2

IBM-eucCN_GB2312.1980-0 IBM-eucCN to GB2312.1980-0

Writing Converters Using the iconv Interface
This section provides a general background on the iconv subroutines and structures in preparation for
writing code set converters. This section gives an overview of the control flow and the order in which the
framework operates, details about writing code set converters, and an example including the code, header
file, and a makefile. This section applies to the iconv framework within AIX.

Under the framework of the iconv_open, iconv and iconv_close subroutines, you can create and use
several different types of converters. Applications can call these subroutines to convert characters in one
code set into characters in a different code set. The access and use of the iconv_open, iconv and
iconv_close subroutines is standardized by X/Open XPG4.

Code Sets and Converters
Code sets can be classified into two categories: stateful encodings and stateless encodings.

Stateful Code Sets and Converters
The stateful encodings use shift-in and shift-out codes to change state. For instance, the shift-out can be
used to indicate the start of host double-byte data in a data stream of characters, and shift-in can be used
to indicate the end of this double-byte character data. When the double-byte data is off, it signals the start
of single-byte character data. An example of such a stateful code set is IBM-930 used mainly on
mainframes (hosts).

Converters written to do the conversion of stateful encodings to other code sets tend to be complex due to
the extra processing needed.

Stateless Code Sets and Converters
The stateless code sets are those that can be classified as one of two types:

v Single-byte code sets, such as ISO8859 family (ISO8859-1, ISO8859-2, and so on)

v Multibyte code sets, such as IBM-eucJP (Japanese), IBM-932 (Shift-JIS).

Note that conversions are meaningful only if the code sets represent the same characters.

The simplest types of code set conversion can be found in single-byte code set converters, such as the
converter from ISO8859-1 to IBM-850. These single-byte code set converters are based on simple
table-based conversions. The conversion of multibyte character encodings, such as IBM-eucJP to
IBM-932, are in general based on an algorithm and not on tables, because the tables can get lengthy.

iconv Framework - Overview of Structures
The iconv framework consists of the iconv_open, iconv and iconv_close subroutines. It is based on a
common core structure that is part of all converters. The core structure is initialized at the load time of the
converter object module. After the loading of the converter is complete, the main entry point, which is
always the instantiate subroutine, is invoked. This initializes the core structure and returns the core
converter descriptor. This is further used during the call to the init subroutine provided by the converter to
allocate the converter-specific structures. This init subroutine returns another converter descriptor that has
a pointer to the core converter descriptor. The init subroutine allocates memory as needed and may

438 Writing and Debugging Programs

invoke other converters if needed. The init subroutine is the place for any converter-specific initialization
whereas the instantiate subroutine is a generic entry point.

Once the converter descriptor for this converter is allocated and initialized, the next step is to provide the
actual code needed for the exec part of the functionality. If the converter is a table-based converter, the
only need is to provide a source file format that conforms to the input needs of the genxlt utility, which
takes this source table as the input and generates an output file format usable by the iconv framework.

iconv.h File and Structures
The iconv.h file in /usr/include defines the following structures:
typedef struct __iconv_rec iconv_rec, *iconv_t;
struct __iconv_rec {

_LC_object_t hdr;
iconv_t (*open)(const char *tocode, const char *fromcode);
size_t (*exec)(iconv_t cd, char **inbuf, size_t *inbytesleft,

char **outbuf, size_t *outbytesleft);
void (*close)(iconv_t cd);

};

The common core structure is as follows (/usr/include/iconv.h):
typedef struct _LC_core_iconv_type _LC_core_iconv_t;
struct _LC_core_iconv_type {

_LC_object_t hdr;
/* implementation initialization */
_LC_core_iconv_t *(*init)();
size_t (*exec)();
void (*close)();

};

Every converter has a static memory area which contains the _LC_core_iconv_t structure. It is initialized
in the instantiate subroutine provided as part of the converter program.

iconv Control Flow
The following sections describe the iconv control flow.

The iconv_open Subroutine: An application invokes a code set converter by the following call:
iconv_open(char *to_codeset, char *from_codeset)

The to and from code sets are used in selecting the converter by way of the search path defined by the
LOCPATH environment variable. The iconv_open subroutine uses the _lc_load subroutine to load the
object module specified by concatenating the from and to code set names to the iconv_open subroutine.
CONVERTER NAME= "from_codeset" + "_" +"to_codeset"

If the from_codeset is IBM-850 and the to_codeset is ISO8859-1, the converter name is
IBM-850_ISO8859-1.

After loading the converter, its entry point is invoked by the _lc_load loader subroutine. This is the first call
to the converter. The instantiate subroutine then initializes the _LC_core_iconv_t core structure. The
iconv_open subroutine then calls the init subroutine associated with the core structure thus returned. The
init subroutine is responsible for allocating the converter specific descriptor structure and initializing it as
needed by the converter. The iconv_open subroutine returns this converter-specific structure. However,
the return value is typecast to iconv_t in the user’s application. Thus, the application does not see the
whole of the converter-specific structure; it sees only the public iconv_t structure. The converter code
itself uses the private converter structure. Applications that use iconv converters should not change the
converter descriptor; the converter descriptor should be used as an opaque structure.

Chapter 16. National Language Support 439

Entry Point: An entry point is declared in every converter such that when the converter is opened by a
call to the iconv_open subroutine, that entry point is automatically invoked. The entry point is the
instantiate subroutine that should be provided in all converters. The entry point is specified in the makefile
as follows:
LDENTRY=-einstantiate

When the converter is loaded on a call to iconv_open(), the instantiate subroutine is invoked. This
subroutine knows how the converter works. It initializes a static core conversion descriptor structure
_LC_core_iconv_t cd.

The core conversion descriptor cd contains pointers to the init, _iconv_exec, and _iconv_close
subroutines supplied by the specific converter. The instantiate subroutine returns the core conversion
descriptor to be used later. The _LC_core_iconv_t structure is defined in /usr/include/iconv.h.

When the iconv_open subroutine is called, the following actions occur:

1. The converter is found using LOCPATH, the converter is loaded, and the instantiate subroutine is
invoked. On success, it returns the core conversion descriptor. (_LC_core_iconv_t *cd). The
instantiate subroutine provided by the converter is responsible for initializing the header in the core
structure.

2. The iconv_open subroutine then invokes the init subroutine specified in the core conversion
descriptor. The init subroutine provided by the converter is responsible for allocation of memory
needed to hold the converter descriptor needed for this specific converter. For example, the following
may be the structure needed by a stateless converter:
typedef struct _LC_sample_iconv_rec {

LC_core_iconv_t core;

} _LC_sample_iconv_t;

To initialize this, the converter has to do the following in the
init subroutine:

static _LC_sample_iconv_t*
init (_LC_core_iconv_t *core_cd, char* toname,char* fromname)
{

_LC_sample_iconv_t *cd; /* converter descriptor */

/*
** Allocate a converter descriptor
**/
if(!(cd = (_LC_sample_iconv_t *) malloc (

sizeof(_LC_sample_iconv_t))))
return (NULL);

/*
** Copy the core part of converter descriptor which is
** passed in
*/
cd->core = *core_cd;
/*
** Return the converter descriptor
*/
return cd;

}

The iconv Subroutine: An application invokes the iconv subroutine to do the actual code set
conversions. The iconv subroutine invokes the exec subroutine in the core structure.

The iconv_close Subroutine: An application invokes the iconv_close subroutine to free any memory
allocated for conversions. The iconv_close subroutine invokes the close subroutine in the core structure.

440 Writing and Debugging Programs

Writing a Code Set Converter
This section gives details on how to write a converter using the concepts explained so far. This is done
starting with a simple converter and proceeds to a more complex one. The following procedures are
discussed here:

v How to write an algorithmic converter.

v How to write a table lookup converter.

v How to write a stateful code set converter.

Every converter should define the following subroutines:

v instantiate()

v init()

v iconv_exec()

v iconv_close()

The converter-specific structure should have the core iconv structure as its first element. For example:

Example 1:
typedef struct _LC_example_rec {

/* Core should be the first element */
_LC_core_iconv_t core;

/* The rest are converter specific data (optional) */
iconv_t curcd;
iconv_t sb_cd;
iconv_t db_cd;
unsigned char *cntl;

} _LC_example_iconv_t;

Example 2: A simpler converter structure
typedef struct _LC_sample_iconv_rec {

_LC_core_iconv_t core;
} _LC_sample_iconv_t;

Stateless Converters - Algorithm Based
Every converter should have the subroutines previously specified. Only the subroutine headers are
provided without details, except for the instantiate subroutine that is common to all converters and should
be coded the same.

The following example of an algorithm-based stateless converter is a sample converter of the IBM-850
code set to the ISO8859-1 code set.
#include <stdlib.h>
#include <iconv.h>
#include "850_88591.h"
/*
* Name : _iconv_exec()
*
* This contains actual conversion method.
*/
static size_t _iconv_exec(_LC_sample_iconv_t *cd,

unsigned char** inbuf,
size_t *inbytesleft,
unsigned char** outbuf,
size_t *outbytesleft)

/*
* cd : converter descriptor
* inbuf : input buffer
* outbuf : output buffer
* inbytesleft : number of data(in bytes) in input buffer

Chapter 16. National Language Support 441

* outbytesleft : number of data(in bytes) in output buffer
*/

{
}

/*
* Name : _iconv_close()
*
* Free the allocated converter descriptor
*/

static void _iconv_close(iconv_t cd)
{
}

/*
* Name : init()
*
* This allocates and initializes the converter descriptor.
*/

static _LC_sample_iconv_t *init (_LC_core_iconv_t *core_cd,
char* toname, char* fromname)

{
}

/*
* Name : instantiate()
*
* Core part of a converter descriptor is initialized here.
*/

_LC_core_iconv_t *instantiate(void)
{

static _LC_core_iconv_t cd;

/*
* * Initialize _LC_MAGIC and _LC_VERSION are
** defined in <lc_core.h>. _LC_ICONV and _LC_core_iconv_t
** are defined in <iconv.h>.
*/
cd.hdr.magic = _LC_MAGIC;
cd.hdr.version = _LC_VERSION;
cd.hdr.type_id = _LC_ICONV;
cd.hdr.size = sizeof (_LC_core_iconv_t);

/*
* Set pointers to each method.
*/
cd.init = init;
cd.exec = _iconv_exec;
cd.close = _iconv_close;

/*
* Returns the core part
*/
return &cd;

}

Stateful Converters
Here, only the subroutine headers are provided without details, except for the instantiate subroutine that
is common to all converters and should be coded the same. Because stateful converters need more
information, they provide additional converter-dependent information as well.

The following example of a stateful converter is a sample converter of IBM-930 to IBM-932 code set.

The host.h file contains the following structure:

442 Writing and Debugging Programs

typedef struct _LC_host_iconv_rec {
_LC_core_iconv_t core;
iconv_t curcd;
iconv_t sb_cd;
iconv_t db_cd;
unsigned char *cntl;

} _LC_host_iconv_t;

#include <stdlib.h>
#include <sys/types.h>
#include <iconv.h>
#include "host.h"

/*
** The _iconv_exec subroutine to be invoked via cd->exec()
*/
static int _iconv_exec(_LC_host_iconv_t *cd,

unsigned char **inbuf, size_t *inbytesleft,
unsigned char **outbuf, size_t *outbytesleft)

{
unsigned char *in, *out;
int ret_value;

if (!cd){
errno = EBADF; return NULL;

}

if (!inbuf) {
cd->curcd = cd->sb_cd;
return ICONV_DONE;

}

do {
if ((ret_value = iconv(cd->curcd, inbuf, inbytesleft, outbuf,

outbytesleft)) != ICONV_INVAL)
return ret_value;

in = *inbuf;
out = *outbuf;
if (in[0] == SO) {

if (cd->curcd == cd->db_cd){
errno = EILSEQ;
return ICONV_INVAL;

}
cd->curcd = cd->db_cd;

}
else if (in[0] == SI) {

if (cd->curcd == cd->sb_cd){
errno = EILSEQ;
return ICONV_INVAL;

}
cd->curcd = cd->sb_cd;

}else if (in[0] <= 0x3f &&
cd->curcd == cd->sb_cd) {
if (*outbytesleft < 1){

errno = E2BIG;
return ICONV_OVER;

}
out[0] = cd->cntl[in[0]];
*outbuf = ++out;
(*outbytesleft)--;

}
else {

errno = EILSEQ; return ICONV_INVAL;
}
*inbuf = ++in;
(*inbytesleft)--;

} while (1);
}

/*

Chapter 16. National Language Support 443

** The iconv_close subroutine is a macro accessing this
** subroutine as set in the core iconv structure.
*/
static void _iconv_close(_LC_host_iconv_t *cd)
{

if (cd) {
if (cd->sb_cd)

iconv_close(cd->sb_cd);
if (cd->db_cd)

iconv_close(cd->db_cd);
free(cd);

}else{
errno = EBADF;

}
}

/*
** The init subroutine to be invoked when iconv_open() is called.
*/
static _LC_host_iconv_t *init(_LC_core_iconv_t *core_cd,

char* toname, char* fromname)
{

_LC_host_iconv_t* cd;
int i;

for (i = 0; 1; i++) {
if (!_iconv_host[i].local)

return NULL;
if (strcmp(toname, _iconv_host[i].local) == 0 &&

strcmp(fromname, _iconv_host[i].host) == 0)
break;

}

if (!(cd = (_LC_host_iconv_t *)
malloc(sizeof(_LC_host_iconv_t))))

return (NULL);

if (!(cd->sb_cd = iconv_open(toname, _iconv_host[i].sbcs))) {
free(cd);
return NULL;

}
if (!(cd->db_cd = iconv_open(toname, _iconv_host[i].dbcs))) {

iconv_close(cd->sb_cd);
free(cd);
return NULL;

}
cd->core = *core_cd;

cd->cntl = _iconv_host[i].fcntl;
cd->curcd = cd->sb_cd;
return cd;

}

/*
** The instantiate() method is called when iconv_open() loads the
** converter by a call to __lc_load().
*/
_LC_core_iconv_t *instantiate(void)
{

static _LC_core_iconv_t
cd;

cd.hdr.magic = _LC_MAGIC;
cd.hdr.version = _LC_VERSION;
cd.hdr.type_id = _LC_ICONV;
cd.hdr.size = sizeof (_LC_core_iconv_t);
cd.init = init;

444 Writing and Debugging Programs

cd.exec = _iconv_exec;
cd.close = _iconv_close;
return &cd;

}

Examples
1. The following example provides sample code for a stateless converter that performs an

algorithm-based convertion of the IBM-850 code set to the ISO8859-1 code set. The file name for this
example is 850_88591.c.
#include <stdlib.h>
#include <iconv.h>
#include "850_88591.h"

#define DONE 0

/*
* Name : _iconv_exec()
*
* This contains actual conversion method.
*/
static size_t _iconv_exec(_LC_sample_iconv_t *cd,

unsigned char** inbuf, size_t *inbytesleft,
unsigned char** outbuf, size_t *outbytesleft)

/*
* cd : converter descriptor
* inbuf : input buffer
* outbuf : output buffer
* inbytesleft : number of data(in bytes) in input buffer
* outbytesleft : number of data(in bytes) in output buffer
*/
{

unsigned char *in; /* point the input buffer */
unsigned char *out; /* point the output buffer */
unsigned char *e_in; /* point the end of input buffer*/
unsigned char *e_out; /* point the end of output buffer*/

/*
* If given converter discripter is invalid,
* it sets the errno and returns the number
* of bytes left to be converted.
*/

if (!cd) {
errno = EBADF;
return *inbytesleft;
}

/*
* If the input buffer does not exist or there
* is no character to be converted, it returns
* 0 (no characters to be converted).
*/
if (!inbuf || !(*inbytesleft))

return DONE;

/*
* Set up pointers and initialize other variables
*/
e_in = (in = *inbuf) + *inbytesleft;
e_out = (out = *outbuf) + *outbytesleft;

/*
* Perform code point conversion until all input
* is consumed.
* When error occurs (i.e. buffer overflow), error
* number is set and exit this loop.

Chapter 16. National Language Support 445

*/
while (in < e_in) {

/*
* If there is not enough space left in output buffer
* to hold the converted data, it stops converting and
* sets the errno to E2BIG.
*/
if (e_out <= out) {

errno = E2BIG;
break;

}

/*
* Convert the input data and store it into the output
* buffer, then advance the pointers which point to the
* buffers.
*/
*out++ = table[*in++];

} /* while */

/*
* Update the pointers to the buffers and
* input /output byte counts
*/
*inbuf = in;

*outbuf = out;
*inbytesleft = e_in - in;
*outbytesleft = e_out - out;

/*
* Reurn the number of bytes left to be converted
* (0 for successful conversion completion)
*/
return *inbytesleft;

}

/*
* Name : _iconv_close()
*
* Free the allocated converter descriptor
*/
static void _iconv_close(iconv_t cd)
{

if (!cd)
free(cd);

else
/*
* If given converter is not valid,
* it sets the errno to EBADF
*/
errno = EBADF;

}

/*
* Name : init()
*
* This allocates and initializes the converter descriptor.
*/
static _LC_sample_iconv_t*
init (_LC_core_iconv_t *core_cd, char* toname, char* fromname)
{

_LC_sample_iconv_t *cd; /* converter descriptor */

/*
* Allocate a converter descriptor

446 Writing and Debugging Programs

*/
if (!(cd = (_LC_sample_iconv_t *)

malloc(sizeof(_LC_sample_iconv_t))))
return (NULL);

/*
*Copy the core part of converter descriptor which is passed *in
*/

cd->core = *core_cd;

/*
* Return the converter descriptor
*/

return cd;
}

/*
* Name : instantiate()
*
* Core part of a converter descriptor is initialized here.
*/
_LC_core_iconv_t* instantiate(void)
{

static _LC_core_iconv_t cd;

/*
* Initialize
* _LC_MAGIC and _LC_VERSION are defined in <lc_core.h>.
* _LC_ICONV and _LC_core_iconv_t are defined in <iconv.h>.
*/
cd.hdr.magic = _LC_MAGIC;
cd.hdr.version = _LC_VERSION;
cd.hdr.type_id = _LC_ICONV;
cd.hdr.size = sizeof (_LC_core_iconv_t);

/*
* Set pointers to each method.
*/

cd.init = init;
cd.exec = _iconv_exec;
cd.close = _iconv_close;

/*
* Returns the core part
*/

return &cd;
}

2. The following example contains a sample header file named 850_88591.h.
#ifndef _ICONV_SAMPLE_H
#define _ICONV_SAMPLE_H

/*
* Define _LC_sample_iconv_t
*/
typedef struct _LC_sample_iconv_rec {

_LC_core_iconv_t core;
} _LC_sample_iconv_t;

static unsigned char table[] = { /*

| |
| IBM-850 ISO8859-1 |
|_______________________________________|
/* 0x00 */ 0x00,

Chapter 16. National Language Support 447

/* 0x01 */ 0x01,
/* 0x02 */ 0x02,
/* 0x03 */ 0x03,
/* 0x04 */ 0x04,
/* 0x05 */ 0x05,
/* 0x06 */ 0x06,
/* 0x07 */ 0x07,
/* 0x08 */ 0x08,
/* 0x09 */ 0x09,
/* 0x0A */ 0x0A,
/* 0x0B */ 0x0B,
/* 0x0C */ 0x0C,
/* 0x0D */ 0x0D,
/* 0x0E */ 0x0E,
/* 0x0F */ 0x0F,
/* 0x10 */ 0x10,
/* 0x11 */ 0x11,
/* 0x12 */ 0x12,
/* 0x13 */ 0x13,
/* 0x14 */ 0x14,
/* 0x15 */ 0x15,
/* 0x16 */ 0x16,
/* 0x17 */ 0x17,
/* 0x18 */ 0x18,
/* 0x19 */ 0x19,
/* 0x1A */ 0x1A,
/* 0x1B */ 0x1B,
/* 0x1C */ 0x1C,
/* 0x1D */ 0x1D,
/* 0x1E */ 0x1E,
/* 0x1F */ 0x1F,
/* 0x20 */ 0x20,
/* 0x21 */ 0x21,
/* 0x22 */ 0x22,
/* 0x23 */ 0x23,
/* 0x24 */ 0x24,
/* 0x25 */ 0x25,
/* 0x26 */ 0x26,
/* 0x27 */ 0x27,
/* 0x28 */ 0x28,
/* 0x29 */ 0x29,
/* 0x2A */ 0x2A,
/* 0x2B */ 0x2B,
/* 0x2C */ 0x2C,
/* 0x2D */ 0x2D,
/* 0x2E */ 0x2E,
/* 0x2F */ 0x2F,
/* 0x30 */ 0x30,
/* 0x31 */ 0x31,
/* 0x32 */ 0x32,
/* 0x33 */ 0x33,
/* 0x34 */ 0x34,
/* 0x35 */ 0x35,
/* 0x36 */ 0x36,
/* 0x37 */ 0x37,
/* 0x38 */ 0x38,
/* 0x39 */ 0x39,
/* 0x3A */ 0x3A,
/* 0x3B */ 0x3B,
/* 0x3C */ 0x3C,
/* 0x3D */ 0x3D,
/* 0x3E */ 0x3E,
/* 0x3F */ 0x3F,
/* 0x40 */ 0x40,
/* 0x41 */ 0x41,
/* 0x42 */ 0x42,
/* 0x43 */ 0x43,

448 Writing and Debugging Programs

/* 0x44 */ 0x44,
/* 0x45 */ 0x45,
/* 0x46 */ 0x46,
/* 0x47 */ 0x47,
/* Ox48 */ 0x48,
/* 0x49 */ 0x49,
/* 0x4A */ 0x4A,
/* 0x4B */ 0x4B,
/* 0x4C */ 0x4C,
/* 0x4D */ 0x4D,
/* 0x4E */ 0x4E,
/* 0x4F */ 0x4F,
/* 0x50 */ 0x50,
/* 0x51 */ 0x51,
/* 0x52 */ 0x52,
/* 0x53 */ 0x53,
/* 0x54 */ 0x54,
/* 0x55 */ 0x55,
/* 0x56 */ 0x56,
/* 0x57 */ 0x57,
/* 0x58 */ 0x58,
/* 0x59 */ 0x59,
/* 0x5A */ 0x5A,
/* 0x5B */ 0x5B,
/* 0x5C */ 0x5C,
/* 0x5D */ 0x5D,
/* 0x5E */ 0x5E,
/* 0x5F */ 0x5F,
/* 0x60 */ 0x60,
/* 0x61 */ 0x61,
/* 0x62 */ 0x62,
/* 0x63 */ 0x63,
/* 0x64 */ 0x64,
/* 0x65 */ 0x65,
/* 0x66 */ 0x66,
/* 0x67 */ 0x67,
/* 0x68 */ 0x68,
/* 0x69 */ 0x69,
/* 0x6A */ 0x6A,
/* 0x6B */ 0x6B,
/* 0x6C */ 0x6C,
/* 0x6D */ 0x6D,
/* 0x6E */ 0x6E,
/* 0x6F */ 0x6F,
/* 0x70 */ 0x70,
/* 0x71 */ 0x71,
/* 0x72 */ 0x72,
/* 0x73 */ 0x73,
/* 0x74 */ 0x74,
/* 0x75 */ 0x75,
/* 0x76 */ 0x76,
/* 0x77 */ 0x77,
/* 0x78 */ 0x78,
/* 0x79 */ 0x79,
/* 0x7A */ 0x7A,
/* 0x7B */ 0x7B,
/* 0x7C */ 0x7C,
/* 0x7D */ 0x7D,
/* 0x7E */ 0x7E,
/* 0x7F */ 0x7F,
/* 0x80 */ 0xC7,
/* 0x81 */ 0xFC,
/* 0x82 */ 0xE9,
/* 0x83 */ 0xE2,
/* 0x84 */ 0xE4,
/* 0x85 */ 0xE0,
/* 0x86 */ 0xE5,

Chapter 16. National Language Support 449

/* 0x87 */ 0xE7,
/* 0x88 */ 0xEA,
/* 0x89 */ 0xEB,
/* 0x8A */ 0xE8,
/* 0x8B */ 0xEF,
/* 0x8C */ 0xEE,
/* 0x8D */ 0xEC,
/* 0x8E */ 0xC4,
/* 0x8F */ 0xC5,
/* 0x90 */ 0xC9,
/* 0x91 */ 0xE6,
/* 0x92 */ 0xC6,
/* 0x93 */ 0xF4,
/* 0x94 */ 0xF6,
/* 0x95 */ 0xF2,
/* 0x96 */ 0xFB,
/* 0x97 */ 0xF9,
/* 0x98 */ 0xFF,
/* 0x99 */ 0xD6,
/* 0x9A */ 0xDC,
/* 0x9B */ 0xF8,
/* 0x9C */ 0xA3,
/* 0x9D */ 0xD8,
/* 0x9E */ 0xD7,
/* 0x9F */ 0x1A,
/* 0xA0 */ 0xE1,
/* 0xA1 */ 0xED,
/* 0xA2 */ 0xF3,
/* 0xA3 */ 0xFA,
/* 0xA4 */ 0xF1,
/* 0xA5 */ 0xD1,
/* 0xA6 */ 0xAA,
/* 0xA7 */ 0xBA,
/* 0xA8 */ 0xBF,
/* 0xA9 */ 0xAE,
/* 0xAA */ 0xAC,
/* 0xAB */ 0xBD,
/* 0xAC */ 0xBC,
/* 0xAD */ 0xA1,
/* 0xAE */ 0xAB,
/* 0xAF */ 0xBB,
/* 0xB0 */ 0x1A,
/* 0xB1 */ 0x1A,
/* 0xB2 */ 0x1A,
/* 0xB3 */ 0x1A,
/* 0xB4 */ 0x1A,
/* 0xB5 */ 0xC1,
/* 0xB6 */ 0xC2,
/* 0xB7 */ 0xC0,
/* 0xB8 */ 0xA9,
/* 0xB9 */ 0x1A,
/* 0xBA */ 0x1A,
/* 0xBB */ 0x1A,
/* 0xBC */ 0x1A,
/* 0xBD */ 0xA2,
/* 0xBE */ 0xA5,
/* 0xBF */ 0x1A,
/* 0xC0 */ 0x1A,
/* 0xC1 */ 0x1A,
/* 0xC2 */ 0x1A,
/* 0xC3 */ 0x1A,
/* 0xC4 */ 0x1A,
/* 0xC5 */ 0x1A,
/* 0xC6 */ 0xE3,
/* 0xC7 */ 0xC3,
/* 0xC8 */ 0x1A,
/* 0xC9 */ 0x1A,

450 Writing and Debugging Programs

/* 0xCA */ 0x1A,
/* 0xCB */ 0x1A,
/* 0xCC */ 0x1A,
/* 0xCD */ 0x1A,
/* 0xCE */ 0x1A,
/* 0xCF */ 0xA4,
/* 0xD0 */ 0xF0,
/* 0xD1 */ 0xD0,
/* 0xD2 */ 0xCA,
/* 0xD3 */ 0xCB,
/* 0xD4 */ 0xC8,
/* 0xD5 */ 0x1A,
/* 0xD6 */ 0xCD,
/* 0xD7 */ 0xCE,
/* 0xD8 */ 0xCF,
/* 0xD9 */ 0x1A,
/* 0xDA */ 0x1A,
/* 0xDB */ 0x1A,
/* 0xDC */ 0x1A,
/* 0xDD */ 0xA6,
/* 0xDE */ 0xCC,
/* 0xDF */ 0x1A,
/* 0xE0 */ 0xD3,
/* 0xE1 */ 0xDF,
/* 0xE2 */ 0xD4,
/* 0xE3 */ 0xD2,
/* 0xE4 */ 0xF5,
/* 0xE5 */ 0xD5,
/* 0xE6 */ 0xB5,
/* 0xE7 */ 0xFE,
/* 0xE8 */ 0xDE,
/* 0xE9 */ 0xDA,
/* 0xEA */ 0xDB,
/* 0xEB */ 0xD9,
/* 0xEC */ 0xFD,
/* 0xED */ 0xDD,
/* 0xEE */ 0xAF,
/* 0xEF */ 0xB4,
/* 0xF0 */ 0xAD,
/* 0xF1 */ 0xB1,
/* 0xF2 */ 0x1A,
/* 0xF3 */ 0xBE,
/* 0xF4 */ 0xB6,
/* 0xF5 */ 0xA7,
/* 0xF6 */ 0xF7,
/* 0xF7 */ 0xB8,
/* 0xF8 */ 0xB0,
/* 0xF9 */ 0xA8,
/* 0xFA */ 0xB7,
/* 0xFB */ 0xB9,
/* 0xFC */ 0xB3,
/* 0xFD */ 0xB2,
/* 0xFE */ 0x1A,
/* 0xFF */ 0xA0,

};
#endif

3. The following example is a sample makefile.
SHELL = /bin/ksh
CFLAGS = $(COMPOPT) $(INCLUDE) $(DEFINES)
INCLUDE = -I.
COMPOPT =
DEFINES = -D_POSIX_SOURCE -D_XOPEN_SOURCE
CC = /bin/xlc
LD = /bin/ld
RM = /bin/rm

Chapter 16. National Language Support 451

SRC = 850_88591.c
TARGET = 850_88591

ENTRY_POINT = instantiate

$(TARGET) :
cc -e $(ENTRY_POINT) -o $(TARGET) $(SRC) -l iconv

clean :
$(RM) -f $(TARGET)
$(RM) -f *.o

Input Method Overview

For an application to run in the international environment for which National Language Support (NLS)
provides a base, input methods are needed. The Input Method is an application programming interface
(API) that allows you to develop applications independent of a particular language, keyboard, or code set.
Each type of input method has the following features:

Keymaps Set of input method keymaps (imkeymaps) that works with the input method and determines the
supported locales.

Keysyms Set of key symbols (keysyms) that the input method can handle.
Modifiers Set of modifiers or states, each having a mask value, that the input method supports.

See the following for more information:

v “Input Method Introduction”

v “Programming Input Methods” on page 454

v “Working with Keyboard Mapping” on page 457

v “Using Callbacks” on page 458

v “Bidirectional Input Method” on page 461

v “Cyrillic Input Method (CIM)” on page 462

v “Greek Input Method (GIM)” on page 463

v “Japanese Input Method (JIM)” on page 464

v “Korean Input Method (KIM)” on page 470

v “Latvian Input Method (LVIM)” on page 472

v “Lithuanian Input Method (LTIM)” on page 472

v “Thai Input Method (THIM)” on page 472

v “Vietnamese Input Method (VNIM)” on page 472

v “Simplified Chinese Input Method (ZIM)” on page 473

v “Simplified Chinese Input Method (ZIM-UCS)” on page 474

v “Single-Byte Input Method” on page 475

v “Traditional Chinese Input Method (TIM)” on page 477

v “Universal Input Method” on page 478

v “List of Reserved Keysyms” on page 479

Input Method Introduction

An input method is a set of functions that translates key strokes into character strings in the code set
specified by your locale. Input method functions include locale-specific input processing and keyboard
controls (for example, Ctrl, Alt, Shift, Lock, and Alt-Graphic). The input method allows various types of
input, but only keyboard events are dealt with here.

452 Writing and Debugging Programs

Your locale determines which input method should be loaded, how the input method runs, and which
devices are used. The input method then defines states and their outcome.

When the input method translates a keystroke into a character string, the translation process takes into
account the keyboard and the code set you are using. You may want to write your own input method if you
do not have a standard keyboard or if you customize your code set.

Many languages use a small set of symbols or letters to form words. To enter text with a keyboard, you
press keys that correspond to symbols of the alphabet. When a character in your alphabet does not exist
on the keyboard, you must press a combination of keys. Input methods provide algorithms that allow you
to compose such characters.

Some languages use an ideographic writing system. They use a unique symbol, rather than a group of
letters, to represent a word. For instance, the character sets used in China, Japan, Korea, and Taiwan
have more than 5,000 characters. Consequently, more than one byte must be used to represent a
character. Moreover, a single keyboard cannot include all the required ideographic symbols. You need
input methods that can compose multibyte characters.

The /usr/lib/nls/loc directory contains the input methods installed on your system. You can list the
contents of this directory to determine which input methods are available to you. Input method file names
have the format Language_Territory.im. For example, the fr_BE.im file is the input method file for the
French language as used in Belgium.

Through a well-structured protocol, input methods allow applications to support different input without using
locale-specific input processing.

In AIX, the input method is provided in the aixterm. When characters typed from the AIXwindows interface
reach the server, the characters are in the form of key codes. These key codes are converted into
keysyms as defined by the table provided in the client. This table contains mappings for each of the key
codes into a predefined set of codes called the keysyms. Any key code generated by a keyboard should
have a keysym. These keysyms are maintained and allocated by the MIT X Consortium. The keysyms are
passed to the client aixterm terminal emulator. In the aixterm, the input keysyms are converted into file
codes by the input method and are then sent to the application. The X server is designed to work with the
display adapter provided in the system hardware. The X server communicates with the X client through
sockets. Thus, the server and the client can reside on different systems in a network, provided they can
communicate with each other. The data from the keyboard enters the X server, and from the server it gets
passed to the terminal emulator. The terminal emulator passes the data to the application. When data
comes from applications to the display device, it passes through the terminal emulator by sockets to the
server and from the server to the display device.

Input Method Names

The set of input methods available depends on which locales have been installed and what input methods
those locales provide. The name of the input method usually corresponds to the locale. For example, the
Greek Input Method is named el_GR, which is the same as the locale for the Greek language spoken in
Greece.

When there is more than one input method for a locale, any secondary input method is identified by a
modifier that is part of the locale name. For example, there are two input methods for the French locale as
spoken in Canada, the default and an alternative method that supports the earlier keyboard. The input
method names are:

fr_CA Default input method
fr_CA@im=alt Alternative input method
fr_CA.im__64 64-bit input method

Chapter 16. National Language Support 453

The fr portion of the locale represents the language name (French), and the CA represents the territory
name (Canada). The @im=alt string is the modifier portion of the locale that is used to identify the
alternative input method. All modifier strings are identified by the format @im=Modifier.

Since the input method is a loadable object module, a different object is required when running in the
64-bit environment. In the 64-bit environment, the input method library will automatically append __64 to
the name when searching for the input method. In the example above, the name of the input method
would be fr_CA.im__64.

It is possible to name input methods without using the locale name. Since the libIM library does not
restrict names to locale names, the calling application must ensure that the name passed to libIM can be
found. However, applications should request only modifier strings of the form @im=Modifier and that the
user’s request be concatenated with the return string from the setlocale (LC_CTYPE,NULL) subroutine.

Input Method Areas

In order to compose, complex input methods require direct dialog with users. For example, the Japanese
Input Method may need to show a menu of candidate strings based on the phonetic matches of the keys
you enter. The feedback of the key strokes appears in one or more areas on the display. The input method
areas are:

Status
Text data and bitmaps can appear in the Status area. The Status area is an extension of the
light-emitting diodes (LEDs) on the keyboard.

Pre-edit
Intermediate text appears in the Pre-edit area for languages that compose before the client
handles the data.

A common feature of input methods is that you press a combination of keys to represent a single
character or set of characters. This process of composing characters from keystrokes is called
pre-editing.

Auxiliary
Pop-up menus and dialog that allow you to customize the input method appear in the Auxiliary
area. You can have multiple Auxiliary areas managed by the input method and independent of the
client.

Management for input method areas is based on the division of responsibility between the
application (or toolkit) and the input method. The divisions of responsibility are:

v Applications are responsible for the size and position of the input method area.

v Input methods are responsible for the contents of the input area. The input method area cannot
suggest a placement.

Related Information
“Chapter 16. National Language Support” on page 329.

“Locale Subroutines” on page 340.

Programming Input Methods

The input method is a programming interface that allows applications to run in an international
environment provided through National Language Support (NLS). The input method has the following
characteristics:

v Localized input support (defined by locale)

v Multiple keyboard support

454 Writing and Debugging Programs

v Multibyte character-input processing

Initialization

You can use the IMQueryLanguage subroutine to determine if an input method is available without
initializing it. An application (toolkit) initializes a locale-specific input method by calling the IMInitialize
subroutine, which initializes a locale-specific input method editor (IMED). The subroutine uses the
LOCPATH environment variable to search for the input method named by the LANG environment variable.
The LOCPATH variable specifies a set of directory names used to search for input methods.

If the input method is found, the IMInitialize subroutine uses the load subroutine to load the input method
and attach the imkeymap file. When the input method is accessed, an object of the type IMFep (input
method front-end processor) is returned. The IMFep should be treated as an opaque structure.

The IMInitialize subroutine links the converter function using the load subroutine. The load subroutine is
similar to the exec subroutine and links the converter program at run-time. Since the IMInitialize
subroutine is called as a library function, it must preserve security for certain programs. When the
IMInitialize subroutine is called from a set root ID program, it will ignore the LOCPATH environment
variable and search for converters only in the /usr/lib/nls/loc/iconv and /etc/nls/loc/iconv directories.

Each IMFep inherits the locale’s code set when the IMInitialize subroutine is called. Consequently, strings
returned by the IMFilter and IMLookupString subroutines are in the locale’s code set. Changing the
locale after the IMInitialize subroutine is called does not affect the code set of the IMFep.

For each IMFep, the application can use the IMCreate subroutine to create one or more IMObject
instances. The IMObject manages its own state and can manage several Input Method Areas (see “Input
Method Areas” on page 454). How each IMObject defines input processing depends on the code set and
keyboard associated with the locale. In the simplest case, a single IMObject is needed if the application is
managing a single dialog with the user. The input method also supports newer user interfaces where the
application allows multiple dialogs with the user, and each dialog requires one IMObject.

The difference between an IMFep and IMObject is that the IMFep is a handle that binds the application to
the code of the input method, while the IMObject is a handle that represents an instance of a state of an
input device, such as a keyboard. The IMFep does not represent a state of the input method. Each
IMObject is initialized to a specific input state and is changed according to the sequence of events it
receives.

Once the IMObject is created, the application can process key events. The application should pass key
events to the IMObject using the IMFilter and IMLookupString subroutines. These subroutines are
provided to isolate the internal processing of the IMED from the customized key event mapping process.

Input Method Management

The input method provides the following subroutines for maintenance purposes:

IMInitialize Initializes the standard input method for a specified language. Returns a handle to an
IMED associated with the locale. The handle is an opaque structure of type IMFep.

IMQueryLanguage Checks whether the specified language is supported.
IMCreate Creates one instance of a particular input method. This subroutine must be called

before any key event processing is performed.
IMClose Closes the input method.
IMDestroy Destroys an instance of an input method.

Chapter 16. National Language Support 455

../../libs/basetrf1/IMQueryLanguage.htm#HDRA2199ECA
../../libs/basetrf1/IMInitialize.htm#HDRA2199F06
../../libs/basetrf1/IMFilter.htm#HDRA171C13FE
../../libs/basetrf1/IMLookupString.htm#HDRA168C1169
../../libs/basetrf1/IMInitialize.htm#HDRA2199F06
../../libs/basetrf1/IMQueryLanguage.htm#HDRA2199ECA
../../libs/basetrf1/IMCreate.htm#HDRA2199F7D
../../libs/basetrf1/IMClose.htm#HDRA2199F42
../../libs/basetrf1/IMDestroy.htm#HDRA2199FB9

IM Keymap Management

The input method provides several subroutines to map key events to a string. The mapping is maintained
in an imkeymap file located in the LOCPATH directory. The subroutines used for mapping are:

IMInitializeKeymap Initializes the imkeymap associated with a specified language.
IMFreeKeymap Frees resources allocated by the IMInitializeKeymap subroutine.
IMAIXMapping Translates a pair of key-symbol and state parameters to a string and returns a

pointer to that string.
IMSimpleMapping Translates a pair of key-symbol and state parameters to a string and returns a

pointer to that string.

Key Event Processing

Input processing begins when you press keys on the keyboard. The application must have created an
IMObject before calling these functions:

IMFilter Asks the IMED to indicate if a key event is used internally. If the IMED is
composing a localized string, it maps the key event to that string.

IMLookupString Maps the key event to a localized string.
IMProcessAuxiliary Notifies the input method of input for an auxiliary area.
IMIoctl Performs a variety of control or query operations on the input method.

Callbacks

The IMED communicates directly with the user by using the Input Method-Callback (IM-CB) API to access
the graphic-dependent functions (callbacks) provided by the application. The application attaches the
callbacks, which perform output functions and query information, to the IMObject during initialization. The
application still handles all the input.

The set of callback functions that the IMED uses to communicate with a user must be provided by the
caller. See “Using Callbacks” on page 458 for a discussion of the subroutines defined by the IM-CB API.

Input Method Structures

The major structures used by the input method are:

IMFepRec Contains the front end information.
IMObjectRec Contains the common part of input method objects.
IMCallback Registers callback subroutines to the IMFep.
IMTextInfo Contains information about the text area, primarily the pre-editing string.
IMAuxInfo Defines the contents of the auxiliary area and the type of processing requested.
IMIndicatorInfo Indicates the current value of the indicators.
IMSTR Designates strings that are not null-terminated.
IMSTRATT Designates strings that are not null-terminated and their attributes.

456 Writing and Debugging Programs

../../libs/basetrf1/IMInitializeKeymap.htm#HDRA22191F4
../../libs/basetrf1/IMFreeKeymap.htm#HDRA2219231
../../libs/basetrf1/IMAIXMapping.htm#HDRA22192EC
../../libs/basetrf1/IMSimpleMapping.htm#HDRA2219328
../../libs/basetrf1/IMFilter.htm#HDRA171C13FE
../../libs/basetrf1/IMLookupString.htm#HDRA168C1169
../../libs/basetrf1/IMProcessAuxiliary.htm#HDRA2199110A
../../libs/basetrf1/IMIoctl.htm#HDRA2199114F

Working with Keyboard Mapping

The following model shows how input methods are used by applications. It can help you understand how
to customize keyboard mapping.

Input processing is divided into three steps:

1. keycode/keystate(raw) - > keysym/modifier(new)

This step is application and environment-dependent. The application is responsible for mapping the
raw key event into a keysym/modifier for input to the input method.

In the AIXwindows environment, the client uses the server’s keysym table, xmodmap, which is
installed at the server, to perform this step. The xmodmap defines the mapping of the Shift, Lock, and
Alt-Graphic keys. The client uses the xmodmap as well as the Shift and Lock modifiers from the X
event to determine the keysym/modifier represented by this event.

For example, if you press the XK_a keysym with a Shift modifier, the xmodmap maps it to the XK_A
keysym. Since you used the Shift key to map the key code to a keysym, the application should mask
the Shift modifier from the original X event. Consequently, the input to the input method (step 2) would
be the XK_A keysym and no modifier.

In another environment, if the device provides no additional information, the input method receives the
XK_a keysym with the Shift modifier. The input method should perform the same mapping in both cases
and return the letter A.

2. keysym/modifier(new) - > localized string

This step depends on the localized IMED and varies with each locale. It is used to notify the IMED that
a key event occurred and to ask for an indication that their IMED uses the key event internally. This
occurs when the application calls the IMFilter subroutine.

If the IMED indicates that the key event is used for internal processing, the application ignores the
event. Since the IMED is the first to see the event, this step should be done before the application
interprets the event. The IMED only uses key events that are essential.

If the IMED indicates the event is not used for internal processing, the application performs the next
step.

3. keysym/modifier(new) - > customized string

This step occurs when the application calls the IMLookupString subroutine. The input method keymap
(created by the keycomp command) defines the mapping for this phase. It is the last attempt to map
the key event to a string and allows a user to customize the mapping.

If the keysym/modifier (new) combination is defined in the input method keymap (imkeymap), a string
is returned. Otherwise, the key event is unknown to the input method.

IM Keymaps

The input method provides support for user-defined imkeymaps, allowing you to customize input method
mapping. The input methods support imkeymaps for each locale. The file name for imkeymaps is similar to
that of input methods, except that the suffix for imkeymap files is .imkeymap instead of .im.

Refer to this example of using the Italian input method, which illustrates how you can customize your
imkeymap:

1. To copy the default imkeymap source file to your $HOME directory, enter:
cd $HOME
cp /usr/lib/nls/loc/it_IT.ISO8859-1.imkeymap.src .

2. To edit the imkeymap source file following the default file format, enter:
vi it_IT.ISO8859-1.imkeymap.src

3. To compile the imkeymap source file, enter:
keycomp < it_IT.ISO8859-1.imkeymap.src > it_IT.ISO8859-1.imkeymap

Chapter 16. National Language Support 457

4. To make sure the LOCPATH variable specifies $HOME before /usr/lib/nls/loc, enter:
LOCPATH=$HOME:$LOCPATH

Note: All setuid and setgid programs will ignore the LOCPATH environment variable.

Inbound and Outbound Mapping

The imkeymaps map a key symbol to a file code set string. The localized imkeymaps found in the
/usr/lib/nls/loc library are defined to include mapping for all of the inbound keys. The imkeymaps provide
two types of mapping:

Inbound mapping Mapping of a keysym/modifier that generates a target string encoded in the code set
of the locale.

Outbound mapping Mapping of a keysym/modifier that does not generate a target string included in the
code set of the locale.

A special imkeymap, /usr/lib/nls/loc/C@outbound.imkeymap, defines outbound mapping for all
keyboards made by this manufacturer and is primarily intended for use by aixterm. This imkeymap
includes mapping of PF keys, cursor keys, and other special keys commonly used by applications.
Internationalized applications that use standard input and standard output should limit their dependency on
outbound mapping, which does not vary on different keyboards. For example, the Alt-a is defined in the
same way on all keyboards made by this manufacturer. Yet, the Alt-tilde is different depending on the
keyboard used.

The aixterm bases its outbound mapping on the C@outbound imkeymap. Applications that require more
mapping should modify the localized imkeymap source to include the necessary definitions.

Using Callbacks

Applications that use input methods should provide callback functions so that the Input Method Editior
(IMED) can communicate with the user. The type of input method you use determines whether or not
callbacks are necessary. For example, the single-byte input method does not need callbacks, but the
Japanese input method uses them extensively with the pre-edit facility. Pre-editing allows processing of
characters before they are committed to the application.

When you use an input method, only the application can insert or delete pre-edit data and scroll the text.
Consequently, the echo of the keystrokes is achieved by the application at the request of the input method
logic through callbacks.

When you enter a keystroke, the application calls the IMFilter subroutine. Before returning, the input
method can call the echoing callback function for inserting new keystrokes. Once a character has been
composed, the IMFilter subroutine returns it, and the key strokes are deleted.

In several cases, the input method logic has to call back the client. Each of these is defined by a callback
action. The client specifies what callback should be called for each action.

There are three types of callbacks:

v Text drawing

The IMED uses text callbacks to draw any pre-editing text currently being composed. When the
callbacks are needed, the application and the IMED share a single-line buffer, where the editing is
performed. The IMED also provides cursor information that the callbacks then present to the user.

The text callbacks are:

IMTextDraw Asks the application program to draw the text string.

458 Writing and Debugging Programs

../../libs/basetrf1/IMTextDraw.htm#HDRA2199118B

IMTextHide Tells the application program to hide the text area.
IMTextStart Notifies the application program of the length of the pre-editing space.
IMTextCursor Asks the application program to move the text cursor.

v Indicator (status)

The IMED uses indicator callbacks to request internal status. The IMIoctl subroutine works with the
IMQueryIndicatorString command to retrieve the text string that tells the internal status. Indicator
callbacks are similar to text callbacks, except that instead of sharing a single-line buffer, a status value
is used.

The Indicator callbacks are:

IMIndicatorDraw Tells the application program to draw the status indicator.
IMIndicatorHide Tells the application program to hide the status indicator.
IMBeep Tells the application program to emit a beep sound.

v Auxiliary

The IMED uses auxiliary callbacks to request complex dialogs with the user. Consequently, these
callbacks are more sophisticated than text or status callbacks.

The Auxiliary callbacks are:

IMAuxCreate Tells the application program to create an auxiliary area.
IMAuxDraw Tells the application program to draw an auxiliary area.
IMAuxHide Tells the application program to hide an auxiliary area.
IMAuxDestroy Tells the application program to destroy an auxiliary area.

The IMAuxInfo structure defines the dialog needed by the IMED.

The contents of the auxiliary area are defined by the IMAuxInfo structure, found in the
/usr/include/im.h library.

The IMAuxInfo structure contains six fields.

IMTitle Defines the title of the auxiliary area. This is a multibyte string. If title.len is 0, there is no title
to be displayed.

IMMessage Defines a list of messages to be presented. From the applications perspective, the IMMessage
structure should be treated as informative, output-only text. However, some input methods use
the IMMessage structure to conduct a dialog with the user in which the key events received by
way of the IMFilter or IMLookupString subroutine are treated as input to the input method. In
such cases, the input method may treat the IMMessage structure as either a selectable list or a
prompt area. In either case, the application displays only the message contents.

The IMProcessAuxiliary subroutine need not be called if the IMSelection structure contains
no IMPanel structures and the IMButton field is null.

The message.nline indicates the number of messages contained in the IMMessage structure.
Each message is assumed to be a single line. Control characters, such as \t, are not
recognized. The text of each message is defined by the IMSTRATT structure, which consists of
both a multibyte string and an attribute string. Each attribute is mapped one-to-one for each
byte in the text string.

If message.cursor is True, then the IMMessage structure defines a text cursor at location
message.cur_row, message.cur_col. The message.cur_col field is defined in terms of bytes. The
message.maxwidth field contains the maximum width of all text messages defined in terms of
columns.

Chapter 16. National Language Support 459

../../libs/basetrf1/IMTextHide.htm#HDRA219911C8
../../libs/basetrf1/IMTextStart.htm#HDRA21991203
../../libs/basetrf1/IMTextCursor.htm#HDRA21991585
../../libs/basetrf1/IMIoctl.htm#HDRA2199114F
../../libs/basetrf1/IMIndicatorDraw.htm#HDRA22192A
../../libs/basetrf1/IMIndicatorHide.htm#HDRA221966
../../libs/basetrf1/IMBeep.htm#HDRA22191B8
../../libs/basetrf1/IMAuxCreate.htm#HDRA21991549
../../libs/basetrf1/IMAuxDraw.htm#HDRA219915C2
../../libs/basetrf1/IMAuxHide.htm#HDRA219915FD
../../libs/basetrf1/IMAuxDestroy.htm#HDRA21991638

IMButton Indicates the possible buttons that can be presented to a user. The IMButton field tells the
application which user interface controls should be provided for the end user. The button
member is of type int and may contain the following masks:

IM_OK Present the OK button.

IM_CANCEL
Present the CANCEL button.

IM_ENTER
Present the ENTER button.

IM_RETRY
Present the RETRY button.

IM_ABORT
Present the ABORT button.

IM_YES
Present the YES button.

IM_NO Present the NO button.

IM_HELP
Present the HELP button.

IM_PREV
Present the PREV button.

IM_NEXT
Present the NEXT button.

The application should use the IMProcessAuxiliary subroutine to communicate the button
selection.

IMSelection Defines a list of items, such as ideographs, that an end user can select. This structure is used
when the input method wants to display a large number of items but does not want to control
how the list is presented to the user.

The IMSelection structure is defined as a list of IMPanel structures. Not all applications
support IMSelection structures inside the IMAuxInfo structure. Applications that do support
IMSelection structures should perform the IM_SupportSelection operation using the IMIoctl
subroutine immediately after creation of the IMObject. In addition, not all applications support
multiple IMPanel structures. Therefore, the panel_row and panel_col fields are restricted to a
setting of 1 by all input methods.

Each IMPanel structure consists of a list of IMItem fields that should be treated as a
two-dimensional, row/column list whose dimensions are defined as item_row times item_col. If
item_col is 1, there is only one column. The size of the IMPanel structure is defined in terms
of bytes. Each item within the IMPanel structure is less than or equal to panel->maxwidth.

The application should use the IMProcessAuxiliary subroutine to communicate one or more
user selections. The IM_SELECTED value indicates which item is selected. The IM_CANCEL
value indicates that the user wants to terminate the auxiliary dialog.

hint Used by the input method to provide information about the context of the IMAuxInfo structure.
A value of IM_AtTheEvent indicates that the IMAuxInfo structure is associated with the last
event passed to the input method by either the IMFilter or IMLookupString subroutine. Other
hints are used to distinguish when multiple IMAuxInfo structures are being displayed.

status Used by the input method for internal processing. This field should not be used by applications.

Each IMAuxInfo structure is independent of the others. The method used for displaying the
members is determined by the caller of the input method. The IMAuxInfo structure is used by
the IMAuxDraw callback.

460 Writing and Debugging Programs

../../libs/basetrf1/IMIoctl.htm#HDRA2199114F

Initializing Callbacks

All callbacks must be identified when you call the IMCreate subroutine. The IMCallback structure contains
the address for each callback function. The caller of the IMCreate subroutine must initialize the
IMCallback structure with the addresses.

The callback functions can be called before the IMCreate subroutine returns control to the caller. Usually,
the IMTextStart callback is called to identify the size of the pre-edit buffer.

Bidirectional Input Method

The Bidirectional Input Method (BIM) is similar to the Single-Byte Input Method except that it is customized
to process the Arabic and Hebrew keyboards. BIM also links the Hebrew and Arabic states to the Latin
states. The Alt+Right Shift keys allow the user to toggle between the Arabic/Hebrew and Latin language
layers. The use of these keys is derived from BIM. The features of BIM are:

v Supports Arabic, Hebrew, and Latin states.

v Supports the ISO8859-6, ISO8859-8, IBM-1046, and IBM-856 code sets.

v Performs diacritical composing.

v Keymaps:

ar_AA.ISO8859-6.imkeymap

ar_AA@alt.ISO8859-6.imkeymap

Ar_AA.IBM-1046.imkeymap

Ar_AA@alt.IBM-1046.imkeymap

iw_IL.ISO8859-8.imkeymap

iw_IL@alt.ISO8859-8.imkeymap

Iw_IL.IBM-856.imkeymap

Iw_IL@alt.IBM-856.imkeymap

v Key Settings:

scr-rev() Reverses the screen orientation and sets the keyboard layer to the default language of the new
orientation.

ltr-lang() Enables the Latin keyboard layer.
rtl-lang() Enables the Arabic/Hebrew keyboard layer.
col-mod() Enables the column heading adjustment, which handles each word as a separate column.
auto-push() Toggles the Autopush mode. This mode handles mixed left-to-right and right-to-left text. When

you enable the Autopush mode, reversed segments are automatically initiated and terminated
according to the entered character or the selected language layer. Thus, you are relieved of
manually invoking the Push function.

chg-push() Toggles the Push mode. This mode causes the cursor to remain in its position and pushes the
typed characters in the direction opposed to the field direction.

shp-in() Shapes Arabic characters in their initial forms.
shp-is() Shapes Arabic characters in their isolated forms.
shp-p() Shapes Arabic characters in their passthru forms.
shp-asd() Shapes Arabic characters in their automatic forms.
shp-m() Shapes Arabic characters in their middle forms.
shp-f() Shapes Arabic characters in their final forms.

v Modifiers:

ShiftMask 0x01

Chapter 16. National Language Support 461

../../libs/basetrf1/IMCreate.htm#HDRA2199F7D

LockMask 0x02
ControlMask 0x04
Mod1Mask (Left-Alt) 0x08
Mod2Mask (Right-Alt) 0x10

Cyrillic Input Method (CIM)

The Cyrillic Input Method (CIM) is similar to the Single-Byte Input Method, except that it is customized for
processing the Cyrillic keyboard. The features of CIM are:

v Supports Cyrillic and Latin states.

You can toggle between the two states by pressing the Alt key and the Left or Right Shift key
simultaneously.

Note: The Alt-Graphic (Right Alt) key can be used to generate additional characters within each
keyboard layer.

v For the Russian and Bulgarian locales, both 101-key and 102-key keyboard drivers are supported.

v Supports the ISO8859-5 code set.

Keymap:

bg_BG.ISO8859-5.imkeymap

mk_MK.ISO8859-5.imkeymap

sr_SP.ISO8859-5.imkeymap

ru_RU.ISO8859-5.imkeymap

be-BY.ISO8859-5.imkeymap

uk-UA.ISO8859-5.imkeymap

Keysyms:

The CIM uses the keysyms in the XK_CYRILLIC, XK_LATIN1, and XK_MISCELLANY groups.

Reserved Keysyms:

XK_dead_acute 0x180000b4
XK_dead_grave 0x18000060
XK_dead_circumflex 0x1800005e
XK_dead_diaeresis 0x180000a8
XK_dead_tilde 0x1800007e
XK_dead_caron 0x180001b7
XK_dead_breve 0x180001a2
XK_dead_doubleacute 0x180001bd
XK_dead_degree 0x180000b0
XK_dead_abovedot 0x180001ff
XK_dead_macron 0x180000af
XK_dead_cedilla 0x180000b8
XK_dead_ogonek 0x180001b2
XK_dead_accentdieresis 0x180007ae

462 Writing and Debugging Programs

The preceding keysyms are unique to the input method of this system.

Modifiers
v Modifiers:

ShiftMask 0x01
LockMask 0x02
ControlMask 0x04
Mod1Mask (Left-Alt) 0x08
Mod2Mask (Right-Alt) 0x10

v Internal Modifier:

Cyrillic Layer 0x20

Related Information

Greek Input Method (GIM)

The Greek Input Method (GIM) is similar to the Single-Byte Input Method (SIM), but has been extended to
handle both Latin and Greek character sets. This is accomplished by providing two layers or states of
keyboard mappings, which correspond to the two character sets.

The keyboard is initially in the Latin input state. However, if the left-shift key is pressed while the left-alt
key is held down, the keyboard is put in the Greek input state. The keyboard can be returned to the Latin
state by pressing the right-shift key, while the left-alt key is held down. These are locking shift keys, since
the state is locked when they are pressed.

While in the Greek state, the input method recognizes the following diacritical characters and valid
subsequent characters for diacritical composing.

Greek Composing Characters

Keysym Valid Composing Characters

Uppercase and Lowercase:

dead_acute alpha, epsilon, eta, iota, omicron, upsilon, omega

dead_diaeresis iota, upsilon

Lowercase Only:

dead_accentdiaeresis iota, upsilon

In the Latin state, there are no composing diacriticals, and the above keys are treated as simple graphic
characters.

The Greek and Single-Byte Input Methods also differ in their handling of illegal diacritical composing
sequences. In such cases, the GIM beeps and returns no characters. The SIM does not beep and returns
both the diacritical character and a graphic character associated with the invalid key.

Note: The Alt-Graphic (right-alt) key can be used to generate additional characters within each
keyboard state.

Chapter 16. National Language Support 463

Keymap:
el_GR.ISO8859-7.imkeymap.

Keysyms:

The GIM uses the keysyms in the XK_LATIN1, XK_GREEK, and XK_MISCELLANY groups.

Reserved keysyms:

XK_dead_acute 0x180000b4
XK_dead_grave 0x18000060
XK_dead_circumflex 0x1800005e
XK_dead_diaeresis 0x180000a8
XK_dead_tilde 0x1800007e
XK_dead_caron 0x180001b7
XK_dead_breve 0x180001a2
XK_dead_doubleacute 0x180001bd
XK_dead_degree 0x180000b0
XK_dead_abovedot 0x180001ff
XK_dead_macron 0x180000af
XK_dead_cedilla 0x180000b8
XK_dead_ogonek 0x180001b2
XK_dead_accentdieresis 0x180007ae

The preceding keysyms are unique to the input method of this system.

v Modifiers:

ShiftMask 0x01
LockMask 0x02
ControlMask 0x04
Mod1Mask (Left-Alt) 0x08
Mod2Mask (Right-Alt) 0x10

v Internal Modifier:

Greek Layer 0x20

Japanese Input Method (JIM)

The Japanese Input Method (JIM) is a sophisticated input method that provides Japanese input. The
features include:

v Supports Romaji to Kana character conversion (RKC).

v Supports Kana to Kanji character conversion (KKC).

v Includes Hankaku (half-width) and Zenkaku (full-width) character input.

v Provides system and user dictionary lookup.

v Provides runtime registration of a word to the user dictionary.

v Requires Callback functions to support:

– Status and Pre-edit drawing

– All candidate menus

– JIS Kutan number input and IBM Kanji number input

464 Writing and Debugging Programs

v Supports IBM-943, IBM-932 and IBM-eucJP code sets.
For internal processing, the JIM uses the IBM-932 code set. However, it supports any code set, such as
IBM-eucJP, that can be converted from IBM-932.

v Located in the /usr/lib/nls/loc/JP.im file.

All other localized input methods are aliases to this file.

The Japanese code sets consist of three character groups:

v Katakana

v Hiragana

v Kanji

Katakana and Hiragana consist of about 50 characters each and form the set of phonetic characters
referred to as Kana. All of the sounds in the Japanese language can be represented in Kana.

Kanji is a set of ideographs. A simple concept can be represented by a single Kanji character, while more
complicated meanings can be formed with strings of Kanji characters. There are several thousand Kanji
characters.

The Japanese also use the Roman alphabet. Called Romaji, the Roman alphabet consists of 26
characters. It is used mostly in technical and professional environments to represent technical vocabulary
that does not exist in Japanese. A typical sentence is usually a mixture of Katakana, Hiragana, Kanji,
Romaji, numbers, and other characters.

Japanese Character Processing

The Japanese Industrial Standard (JIS) specifies about 7000 Kanji characters processed by computer
systems. Japanese products made by this manufacturer support all of the standard characters and more.
Input of the characters is accomplished through:

v Kana-to-Kanji conversion (KKC)

v Romaji-to-Kana conversion (RKC)

The following special keys appear on the 106-key Japanese keyboard to allow for these conversions:

Special Japanese Keys

Key Function Key Name Description of Function

KKC Non-conversion key muhenkan Leaves Kana characters as is.

KKC Conversion key henkan Converts Kana to Kanji.

KKC All Candidates key zenkouho Shows all possible Kanji representatives.

RKC Romaji Mode key romaji Toggles RKC on and off.

Hiragana Shift key hiragana Becomes Hiragana shift state.

Katakana Shift key katakana Becomes Katakana shift state.

Romaji Shift key eisu Becomes Romaji shift state.

Note: Shift states are maintained until you press another shift key. The initial state is Romaji.

Kana-To-Kanji Conversion (KKC) Technology

The Japanese Input Method’s (JIM) KKC technology is based on the fact that every Kanji character or set
of Kanji characters has a phonetic sound or sounds that can be expressed by Katakana or Hiragana
characters.

Chapter 16. National Language Support 465

It is much easier to input Hiragana or Katakana characters than Kanji characters. The JIM analyzes the
phonetic values of the Hiragana and Katakana characters to determine the best Kanji-character equivalent.
Such phonetic analysis depends on the dictionary and tables provided to the JIM.

Input Modes
The JIM has three different modes that can be used to control the input processing:

v Keyboard Mapping

Allows invocation of alphanumeric, Katakana, or Hiragana modes.

v Character Size

Inputs in Zenkaku (full-width) or Hankaku (half-width) mode.

v RKC off/on

Inputs Kana directly or invoke the pre-edit composing mode to input Kana with a combination of
alphabetic characters. The pre-editing facility allows processing of characters before they are committed
to the application.

When the keyboard mapping mode is alphanumeric and the character size mode is Hankaku, the JIM
maps keys to Romaji characters. This mode combination is known as the ″English″ mode. Pre-editing is
not needed in English mode and cannot be invoked regardless of the RKC mode setting. The other mode
combinations may initiate pre-editing and characters generated in these modes are not ASCII.

The following keys are used to perform Kana-to-Kanji conversion by the JIM.

Keysym Keyboard Mapping

Katakana Katakana shift

Eisu_toggle Alphanumeric shift

Hiragana Hiragana shift

Keysym Character Size

Zenkaku_Hankaku Full-width or Half-width toggle

Hankaku Half-width

Zenkaku Full-width

Keysym RKC on/off

Alt-Hiragana Enables/Disables Romaji-to-Kana conversion

Romaji *The same effect

* Keysyms unique to the manufacturer

The following keys are also used when the JIM is pre-editing a Kanji string.

Keysym Kanji pre-edit

Muhenkan Non-conversion - commit Kana

Henkan Conversion - get next candidate

Kanji Same as Henkan

BunsetsuYomi *Moves back a phrase

MaeKouko *Moves to previous candidate

LeftDouble *Moves cursor two characters left

466 Writing and Debugging Programs

RightDouble *Moves cursor two characters right

ErInput *Discards the current pre-edit string

Keysym Auxiliary pre-edit

Alt-Henkan All candidates

Touroku Runtime registration

ZenKouho *All candidates (the same effect)

KanjiBangou *Kanji Number Input

HenkanMenu *Changes conversion mode

* Keysyms unique to the manufacturer

Keyboard Mapping

There are 3 possible keyboard mapping states: Alphanumeric (Romaji), Katakana and Hiragana. Each
state is invoked by a keysym that acts as a locking shift key. The keysyms are Katakana, Eisu_toggle, and
Hiragana shift.

When one of these keysyms is pressed, keyboard mapping enters the state associated with the key. This
state is maintained until one of the other keysyms is pressed. The initial shift state is Eisu_toggle, which
can be changed by customization.

When you invoke the Hiragana or Katakana state, each key is mapped to a phonetic character within the
respective character set. For example, if you press q, a Hiragana character pronounced ″ta″ is produced
during Hiragana shift state, a Katakana character pronounced ″ta″ is produced during Katakana shift state,
or a Romaji ″q″ is produced during Eisu_toggle shift state. On Japanese IBM keyboards, the tops of keys
show all three symbols.

Also, when keyboard mapping is in Hiragana state, the input method is automatically put into a composing
pre-editing mode where each Hiragana character can be converted into a Kanji character. See “Kanji
Pre-edit” on page 468 for more information.

Some keys have two Hiragana or Katakana characters assigned. For example, the 7 key has large and
small Hiragana characters both having the pronunciation ″ya″. These characters are not upper and lower
case equivalents of each other since Kanji, Hiragana, and Katakana do not have uppercase and
lowercases. The small characters are used to express special phonetic sounds. These characters can be
distinguished by using the shift key.

Character Size
A subset of the Japanese character set is represented in both full-width and half-width. Kanji ideographic
characters are usually full-width. The phonetic and ASCII characters have both full-width and half-width
representations. The user controls character size by pressing the Zenkaku_Henkaku keysym which toggles
between full-width and half-width.

Romaji-To-Kana Conversion (RKC)
For users familiar with alphanumeric keyboards, it is easier to key in the phonetic sounds rather than the
Hiragana or Katakana characters. The JIM provides Romaji-to-Kana conversion (RKC), allowing the user
to type in the phonetic sounds of Hiragana or Katakana characters on an alphanumeric keyboard.

Chapter 16. National Language Support 467

Kanji Pre-edit
When operating in Romaji-To-Kana conversion mode, you must follow two steps to produce Kanji
characters. First, the user inputs Hiragana characters by typing their Romaji phonetic characters. In this
step, you produce a Hiragana character by typing 1 to 3 Romaji alphabetic keys that compose the
phonetic sound of the Hiragana character. Second, convert the Hiragana characters to Kanji characters by
pressing the Henkan key. Many Kanji characters may be associated with a single phonetic phrase. The
Henkan key displays the most likely Kanji candidates. Repeated pressing of the Henkan key displays all
the additional candidates.

For example, when entering the Kanji characters for the phonetic sound ″k-a-n-j-i″, you must do two
things:

1. Set the keyboard mapping to the Hiragana state.

2. Enable Romaji-to-Kana mapping by pressing the Alt-Hiragana key. This action invokes the
alphanumeric keyboard.

You may now press the keys that spell ″kanji″. As each phonetic sound is completed, a Hiragana
character is displayed.

The Hiragana character is displayed with visual feedback to indicate that the JIM is composing in a
pre-edit state. The character is underlined and shown in reverse video. This feedback facility is known as
a callback. See “Using Callbacks” on page 458 for more information.

To convert the Hiragana character within the pre-edit string to a Kanji character, press the Henkan key.
The most likely candidate associated with the phonetic Hiragana sound is displayed. Pressing this key
repeatedly shows other candidates.

During the composition process, the pre-edit string is partitioned into segments that can be considered
Kanji words. Once a string of kana characters is converted into a candidate, it is treated as one of these
convertible segments. While the pre-edit string is displayed, the JIM uses the cursor key and other keys to
manipulate the string.

To commit the pre-edit string to the program, the user presses the Enter key. In this case, the Enter key
code itself is not sent to the program, only the string.

The Muhenkan keysym can also be used to turn off pre-edit and commit the Hiragana or Katakana
character directly to the program.

The Keyboard Shift-State Transition table depicts the shift state transition and the interaction of the RKC
mode key with the shift states.

Table 8.

Character Encoding Code Points Description Count

000xxxxx 00–1F Controls 32

00100000 20 Space 1

0xxxxxxx 21–7E 7–bit ASCII 94

01111111 7F Delete 1

10000000 80 Undefined 1

100xxxxx 01xxxxxx [81–9F] [40–7E] Double byte 1953

100xxxxx 1xxxxxxx [81–9F] [80–FC] Double byte 3844

10100000 A0 Undefined 1

1xxxxxxx A1–DF 8–bit single byte 63

468 Writing and Debugging Programs

Table 8. (continued)

111xxxxx 01xxxxxx [E0–FC] [40–7E] Double byte 1827

111xxxxx 1xxxxxxx [E0–FC] [80–FC] Double byte 3596

11111101 FD Undefined 1

11111110 FE Undefined 1

11111111 FF All ones 1

There are 4 types of auxiliary areas within the JIM.

v All Candidates menu

v Kanji Number Input dialog

v Conversion Mode menu

v Runtime Registration dialog

A Kana-to-Kanji conversion operation on a string of Hiragana or Katakana characters can yield from one to
a hundred Kanji candidates. At worst, you would have to press the conversion key more than a hundred
times to get the correct Kanji character.

In such cases, it is more convenient to find the correct character by requesting the All Candidates menu
with the ZenKouho or the Alt-Henkan keysym. This menu appears if the current target (a Kanji word that
the cursor is pointing to in the pre-edit area) has several alternative candidates associated with it. The
menu contains multiple candidates for selection. The All Candidates menu disappears when the Reset
keysym is pressed, the Enter key is pressed, or a candidate is selected.

A Kanji Number Input dialog prompts the user to select the Kanji character by entering 3 to 5 digits. The
digits represent the code of the character. Online dictionaries allow a user to search for the code. The
ordering formats for these dictionaries vary. For example, one dictionary lists codes by phonetic sound.
Another dictionary orders codes by the number of strokes used to compose the character. The
KanjiBangou keysym invokes this menu. The menu is terminated with either the Reset or Return keysym.

The HenkanMenu keysym invokes the Conversion Mode menu. Four items are displayed for selection.
The most important items are the word-conversion mode and phrase-conversion mode. Make a selection
by choosing a number and pressing the Return keysym. This menu is terminated when either a selection
is made or the Reset keysym is pressed.

A runtime registration dialog prompts the user to input a Kana string and a Kanji string for registering the
mapping of the strings in the user dictionary. Once the pair is registered, the JIM can use it as a
conversion candidate. The menu is terminated with the Escape or Reset keysym.

The presentation of menus depends on the interface environment in which the JIM is operating. For
example, some interfaces support scrolling menus that use the Page Down and Page Up keys. Discussion
of these interfaces is outside the scope of this document.

Keymaps:

ja_JP.IBM-eucJP.imkeymap

Ja_JP.IBM-932.imkeymap

Ja_JP.IBM-943.imkeymap

Chapter 16. National Language Support 469

Keysyms:

The JIM uses the keysyms in the XK_KATAKANA, XK_LATIN1, and XK_MISCELLANY groups.

Reserved Keysyms:

XK_BunsetsuYomi 0x1800ff05 Back a phrase to Yomi

XK_MaeKouho 0x1800ff04 Previous candidate

XK_ZenKouho 0x1800ff01 All candidates.

XK_KanjiBangou 0x1800ff02 Kanji number input.

XK_HenkanMenu 0x1800ff03 Changes conversion mode.

XK_LeftDouble 0x1800ff06 Moves cursor two characters left.

XK_RightDouble 0x1800ff07 Moves cursor two characters right.

XK_LeftPhrase 0x1800ff08 Reserved for future use.

XK_RightPhrase 0x1800ff09 Reserved for future use.

XK_ErInput 0x1800ff0a Discards the current pre-edit string

XK_Resetreset 0x1800ff0b Reset

The preceding keysyms are unique to the input method of this system.

XK_Kanji Convert Hiragana to Kanji.
XK_Muhenkan Cancels conversion.
XK_Romaji Puts JIM in Romaji input mode.
XK_Hiragana Puts JIM in Hiragana input mode.
XK_Katakana Puts JIM in Katakana input mode.
XK_Zenkaku_Hankaku Toggles between full-width and half-width character input mode.
XK_Touroku Registers a word to the user dictionary.
XK_Eisu_toggle Puts JIM in alphanumeric input mode.

v Modifiers:

ShiftMask 0x01
LockMask 0x02
ControlMask 0x04
Mod1Mask (Left-Alt) 0x08
Mod2Mask (Right-Alt) 0x10

v Internal Modifiers:

Kana 0x20
Romaji 0x40

Korean Input Method (KIM)

The Korean EUC code set consists of two main character groups:

v ASCII (English)

v Hangul (Korean characters)

470 Writing and Debugging Programs

The Hangul code set includes Hangul and Hanja (Chinese) characters. One Hangul character can
comprise several consonants and vowels. However, most Hangul words can be expressed in Hanja. Each
Hanja character has its own meaning and is thus more specific than Hangul.

The current Korean standard code set, KSC5601, contains 8224 Hangul, Hanja, and special characters. To
comply with the Korean standard Extended UNIX Code (EUC), this code set is assigned to CS1 of the
EUC.

Input of characters can be accomplished through:

v ASCII

ASCII mode is used for entering English characters.

v Hangul

The XK_Hangul key invokes Hangul mode, which must be used to enter Hangul characters. Once
Hangul mode is invoked, the KIM composes incoming consonants and vowels according to Hangul
composition rules. A Hangul character is composed of a consonant followed by a vowel. A final
consonant is optional. If incoming characters violate the construct rule, a warning beep is sounded.

There are about 1500 special characters in the standard code set. These characters must be entered
with the Code Input function of the KIM. The Code Input key invokes the Code Input function. When the
Code Input function is invoked, the code point for a desired character can be entered in the Code Input
auxiliary window.

v Hanja

The XK_Hangul_Hanja key invokes the Hanja mode. Hanja characters can only be converted from the
appropriate Hangul character. There are two modes for Hangul-to-Hanja Conversion (HHC):
single-candidate and multi-candidate. In this context, a candidate is a selection of possible character
choices.

In single-candidate mode, the candidates are displayed one by one on the command line. In
multi-candidate mode, up to ten candidates at a time are displayed in an auxiliary window.

When the Hanja conversion mode is employed, any Hangul character can be converted into Hanja
when the Conversion key is pressed. Similarly, any Hanja word can be converted to the appropriate
Hangul word.

Hanja can also be entered with the Code Input function in the same manner used for entering Hangul.

To allow for these conversions, the following special keys appear on the 106-key Korean keyboard.

Special Korean Keys

Key Function Keysym Description of Function

Hangul/English toggle key XK_Hangul Toggles between Hangul and English
modes

Hanja toggle key XK_Hangul_Hanja Toggles Hanja mode on and off

Code Input key XK_Hangul_ Codeinput Invokes the Code Input function,
which allows characters to be entered
by their code points

HHC All-Candidate key XK_Hangul_ MultipleCandidate Invokes the multi-candidate mode

HHC Conversion key XK_Hangul_ Conversion Invokes the single-candidate mode
and also scrolls forward through the
candidates in both single-candidate
and multi-candidate modes

HHC Non-Conversion key XK_Hangul_ NonConversion Scrolls backwards through the
candidates

Chapter 16. National Language Support 471

Latvian Input Method (LVIM)

The Latvian Input Method (LVIM) is similar to the Single-Byte Input Method (SIM), except that it is
customized for processing the Latvian keyboard. The features of LVIM are:

v Supports QWERTY and Ergonomic groups, as two main groups. There are two more supplementary
groups which are accessible through dead keys from both main groups:

– Pressing the left-alt key and left-shift key simultaneously, puts keyboard in the Ergonomic group.

– Pressing the left-alt key and right-shift key simultaneously, puts keyboard in the QWERTY group.

v Supports the IBM-921 code set.

Keymap:

Lv_LV.IBM-921.imkeymap

Lithuanian Input Method (LTIM)

The Lithuanian Input Method (LTIM) is similar to the Single-Byte Input Method (SIM), except that it is
customized for processing the Lithuanian keyboard. The features of LTIM are:

v Supports Programmed and Lithuanian groups, as two main groups. There are two more supplementary
groups which are accessible through dead keys from both main groups.

– Pressing the left-alt key and left-shift key simultaneously, puts keyboard in the Lithuanian group.

– Pressing the left-alt key and right-shift key simultaneously, puts keyboard in the Programmed group.

v Supports the IBM-921 code set.

Keymap:

Lt_LT.IBM-921.imkeymap

Thai Input Method (THIM)
The Thai Input Method is similar to the Single-Byte Input Method (SIM), except that it is customized for
processing the Thai language.

Specifically, it is designed to prevent entry of combinations of Thai characters (consonants, upper/lower
vowels, tone marks) that are invalid in the Thai language. The features of the THIM are:

v Supports Latin and Thai groups, as the two main groups on the keyboard.

– Pressing the left-alt key and left-shift key puts the keyboard in the Thai group.

– Pressing the left-alt key and right-shift key puts the keyboard in the Latin group.

v Supports the TIS-620 codeset.

Keymap:

th_TH.TIS-620.imkeymap

Vietnamese Input Method (VNIM)
The Vienamese Input Method is similar to the Single-Byte Input Method (SIM), except that it is customized
for processing the Vietnamese language.

472 Writing and Debugging Programs

Specifically, it is designed to prevent entry of combinations of Vietnamese characters (tone marks), that
are invalid in the Vietnamese language. The Vietnamese tone mark characters can only be entered
immediately after one of the Vietnamese vowels (a, e, i, o, u, y, a-circumflex, e-circumflex, o-circumflex,
a-breve, o-horn, or u-horn).

The Vietnamese Input method supports a single keyboard layer, including some pre-composed characters
and Vietnamese tone marks.

v Supports the IBM-1129 codeset.

Keymap:

Vi_VN.IBM-1129.imkeymap

Simplified Chinese Input Method (ZIM)

The IBM-eucCN code set consists of two character groups:

v ASCII (English)

v Simplified Chinese (GB2312.1980)

Simplified Chinese (GB2312.1980) contains 6,763 Chinese characters. It is divided into two parts: first
level and second level. The characters belonging to the first level are frequently used. Each character is
comprised of one to six components known as radicals.

The pronunciation of Simplified Chinese is represented by phonetic symbols called Bo-Po-Mo-Fo. There
are 25 phonetic symbols. A Simplified Chinese character is represented by one to three phonetic symbols.

ZIM features the following characteristics:

v Three commonly used input methods:

PinYin (including legend). An input method based on phonetic combinations.

English-to-Chinese. An input method based on word-by-word translation from English to Chinese.

ABC. An intelligent input method based on phonetic combinations.

v Half-width and full-width character input. Supports ASCII characters in both single-byte and multibyte
modes.

v Auxiliary pop-up window to support all the candidate lists. PinYin, English-to-Chinese, and ABC
generate a list of possible characters that contain the same sound symbols or radicals. Users select the
desired characters by pressing the conversion key.

v Over-the-spot pre-editing drawing area. Allows entry of radicals in reverse video area that temporarily
covers the text line. The complete character is sent to the editor by pressing the conversion key.

The ZIM files are in the /usr/lib/nls/loc directory.

The ZIM keymap is in the /usr/lib/nls/loc/zh_CN.IBM-eucCN.imkeymap directory.

Simplified Chinese Character Processing
ZIM is invoked by pressing one of the input method keys. Each radical or phonetic symbol is assigned to a
key. The user inputs radicals or phonetic symbols to an over-the-spot pre-editing area. PinYin,
English-to-Chinese, and ABC input generate a list of candidates that appear in a pop-up window. The user
chooses the desired character by selecting the candidate number. Invalid input generates a beep and an
error message.

Chapter 16. National Language Support 473

The following special keys for the Simplified Chinese input method are defined on the Simplified Chinese
101-key keyboard.

Special Simplified Chinese Keys

Key Function Keysym Description of Function

Phonetic Shift key XK_Pin_Yin Invokes the phonetic input method.

Legend Shift key XK_Legend Under phonetic input method, invokes
phonetic legend mode.

English-to-Chinese Shift key XK_English _Chinese Invokes the English-to-Chinese input
method.

ABC Shift key XK_ABC Invokes ABC input method.

ABC Set Option Shift key XK_ABC_Set _Option Under ABC input method, invokes
ABC Set Option mode.

Half/Full-Width toggle Shift key XK_Half_Full Toggles between half-width and
full-width.

Conversion Shift key XK_Convert Converts radical and phonetic
symbols into characters. Displays the
candidate list in an auxiliary window,
if needed.

Non-Conversion Shift key XK_Non _Convert Interprets a phonetic symbol as a
character.

English/Numeric key XK_Alph_Num Invokes ASCII mode.

Five Stroke Shift key XK_Five_Stroke Invokes five stroke input method.

User Defined Shift key XK_User _Defined Invokes user-defined input method.

Simplified Chinese Input Method (ZIM-UCS)
The UCS-2 code set consists of almost all character groups. For the ZH_CN locale, there are three
character groups:

v ASCII (English)

v Glyphs

v Chinese, Japanese, and Korean (CJK) Characters (unification characters)

The CJK character set contains 20,992 character positions, but only 20,902 positions are assigned to
Chinese characters.

The pronunciation of Chinese is represented by phonetic symbols called Bo-Po-Mo-Fo. There are 25
phonetic symbols. Chinese characters are represented by one to three phonetic symbols.

UCS-ZIM features the following characteristics:

v Four commonly used input methods:

Tsang-Jye. An input method based on the construction of Chinese characters.

PinYin (including legend). An input method based on phonetic combinations.

English-to-Chinese. An input method based on word-by-word translation from English to Chinese.

ABC (Chinese Word Conversion). An input method based on phonetic combinations and Chinese
words.

v Half-width and full-width character input. Supports ASCII characters in both single-byte and multibyte
modes.

474 Writing and Debugging Programs

v Auxiliary pop-up window to support all the candidate lists. PinYin, English-to-Chinese, and ABC
generate a list of possible characters that contain the same sound symbols or radicals. Users select the
desired characters by pressing the conversion key.

v Over-the-spot pre-editing drawing area. Allows entry of radicals in reverse video area that temporarily
covers the text line. The complete character is sent to the editor by pressing the conversion key.

The UCS-ZIM files are in the /usr/lib/nls/loc directory.

The UCS-ZIM keymap is in the /usr/lib/nls/loc/ZH_CN.UTF-8.imkeymap directory.

Chinese (CJK) Character Processing
UCS-ZIM is invoked by pressing one of the input method keys. Each radical or phonetic symbol is
assigned to a key. The user inputs radicals or phonetic symbols to an over-the-spot pre-editing area. For
Tsang-Jye and five stroke input, a character is generated when the conversion key is pressed. PinYin,
English-to-Chinese, and ABC input generate a list of candidates that appear in a pop-up window. The user
chooses the desired character by selecting the candidate number. Invalid input generates a beep and an
error message. The glyphs can be input using the ABC input method.

The following special keys for the UCS-Chinese input method are defined on the Simplified Chinese
101-key keyboard.

Special UCS-Chinese Keys

Key Function Keysym Description of Function

Tsang-Jye Shift key XK_Tsang_Jye Invokes Tsang-Jye input method.

Phonetic Shift key XK_Pin_Yin Invokes the phonetic input method.

Legend Shift key XK_Legend Under phonetic input method, invokes
phonetic legend mode.

English-to-Chinese Shift key XK_English _Chinese Invokes the English-to-Chinese input
method.

ABC Shift key XK_ABC Invokes ABC input method.

Five Stroke Shift key XK_Five_Stroke Invokes Five Stroke input method.

IM Set Option key XK_IMED_Set _option Under phonetic and ABC input
method, invokes territory set mode.

Half/Full-Width Toggle Shift key XK_Half_Full Toggles between half-width and
full-width.

Conversion Shift key XK_Convert Converts radical and phonetic
symbols into characters. Displays the
candidates, if needed.

Non-Conversion Shift key XK_Non _Convert Interprets a phonetic symbol as a
character.

English/Numeric key XK_Alph_Num Invokes ASCII mode.

User-Defined Shift key XK_User _Defined Invokes User defined input method.

Single-Byte Input Method

The Single-Byte Input Method (SIM) is the standard that supports most of the locales. It is a mapping
function that supports simple composing defined on workstation keyboards associated with single-byte
locales.

Chapter 16. National Language Support 475

SIM supports any keyboard, code set, and language that the keycomp command can describe. You can
customize SIM using imkeymaps. The coded strings returned by the input method depend on the
imkeymap.

Most single-byte locales share one SIM. The SIM features are:

v Supports 101-key and 102-key keyboard mapping.

v Supports Alt-Numpad composing.

When you press the Alt key, the input method composes a character by using the next three numeric
keys pressed. The three numeric keys represent the decimal encoding of the character. For example,
entering the sequence XK_0, XK_9, XK_7 maps to the character a (097).

v Supports the Num-Lock state for the numeric keypad.

v Supports diacritical composing.

The e-umlaut key is an example of diacritical composing. To compose e-umlaut, the user presses the
appropriate diacritical key (umlaut) followed by an alphabetic key (e). The specific set of diacritical keys
in use depend on the locale and keyboard definition. When a space follows a diacritical key, the
diacritical character represented by the key is returned if it is in the locale’s code set.

v Does not require callback functions.

v Located in the /usr/lib/nls/loc/sbcs.im file. Most of the other localized input methods are aliases to this
file.

v Keymaps:

cs_CZ.ISO8859-2.imkeymap
da_DK.ISO8859-1.imkeymap Da_DK.IBM-850.imkeymap
de_CH.ISO8859-1.imkeymap De_CH.IBM-850.imkeymap
de_DE.ISO8859-1.imkeymap De_DE.IBM-850.imkeymap
en_GB.ISO8859-1.imkeymap En_GB.IBM-850.imkeymap
en_GB.ISO8859-1@alt.imkeymap En_GB.IBM-850@alt.imkeymap
en_US.ISO8859-1.imkeymap En_US.IBM-850.imkeymap
es_ES.ISO8859-1.imkeymap Es_ES.IBM-850.imkeymap
Et_EE.IBM-922 - imkeymap
pl_PL.ISO8859-2@alt.imkeymap
sq_AL.ISO8859-1.imkeymap
fi_FI.ISO8859-1.imkeymap Fi_FI.IBM-850.imkeymap
fi_FI.ISO8859-1@alt.imkeymap Fi_FI.IBM-850@alt.imkeymap
fr_BE.ISO8859-1.imkeymap Fr_BE.IBM-850.imkeymap
fr_CA.ISO8859-1.imkeymap Fr_CA.IBM-850.imkeymap
fr_CH.ISO8859-1.imkeymap Fr_CH.IBM-850.imkeymap
fr_FR.ISO8859-1.imkeymap Fr_FR.IBM-850.imkeymap
fr_FR.ISO8859-1@alt.imkeymap Fr_FR.IBM-850@alt.imkeymap
hr_HR.ISO8859-2.imkeymap
hu_HU.ISO8859-2.imkeymap
is_IS.ISO8859-1.imkeymap Is_IS.IBM-850.imkeymap
it_IT.ISO8859-1.imkeymap It_IT.IBM-850.imkeymap
it_IT.ISO8859-1@alt.imkeymap It_IT.IBM-850@alt.imkeymap
nl_BE.ISO8859-1.imkeymap Nl_BE.IBM-850.imkeymap
nl_NL.ISO8859-1.imkeymap Nl_NL.IBM-850.imkeymap
no_NO.ISO8859-1.imkeymap No_NO.IBM-850.imkeymap
pl_PL.ISO8859-2.imkeymap
pt_BR.ISO8859-1.imkeymap
pt_PT.ISO8859-1.imkeymap Pt_PT.IBM-850.imkeymap
ro_RO.ISO8859-2.imkeymap
sh_SP.ISO8859-2.imkeymap
sl_SI.ISO8859-2.imkeymap
sk_SK.ISO8859-2.imkeymap

476 Writing and Debugging Programs

sv_SE.ISO8859-1.imkeymap Sv_SE.IBM-850.imkeymap
sv_SE.ISO8859-1@alt.imkeymap Sv_SE.IBM-850@alt.imkeymap
tr_TR.ISO8859-1.imkeymap

v Reserved keysyms:

XK_dead_acute 0x180000b4
XK_dead_grave 0x18000060
XK_dead_circumflex 0x1800005e
XK_dead_diaeresis 0x180000a8
XK_dead_tilde 0x1800007e
XK_dead_caron 0x180001b7
XK_dead_breve 0x180001a2
XK_dead_doubleacute 0x180001bd
XK_dead_degree 0x180000b0
XK_dead_abovedot 0x180001ff
XK_dead_macron 0x180000af
XK_dead_cedilla 0x180000b8
XK_dead_ogonek 0x180001b2
XK_dead_accentdieresis 0x180007ae

The preceding keysyms are unique to this input method and are described in the
/usr/include/X11/aix_keysym.h file.

v Modifiers:

ShiftMask 0x01
LockMask 0x02
ControlMask 0x04
Mod1Mask (Left-Alt) 0x08
Mod2Mask (Right-Alt) 0x10
Mod5Mask (Num Lock) 0x80

Traditional Chinese Input Method (TIM)

The Traditional Chinese code sets consist of two character groups:

v ASCII (English)

v Traditional Chinese characters

The Traditional Chinese character set contains more than 100,000 characters, but only about 5000 are
frequently used. Each character is comprised of one to five components known as radicals.

The pronunciation of Traditional Chinese is represented by phonetic symbols called Dsu-Yin or
Bo-Po-Mo-Fo. There are 37 phonetic symbols plus four intonation indicators. Chinese characters are
represented by one to three phonetic symbols. The character can include one intonation symbol. The
omission of an intonation symbol implies a fifth intonation accent.

TIM Features
TIM features the following characteristics:

v Five commonly used input methods:

– Tsang-Jye. Supports radicals to generate a character. Most frequently used by data entry personnel.

– Simplified Tsang-Jye. Supports wildcard input and radicals. This input method also allows entry of
partial characters.

Chapter 16. National Language Support 477

– Phonetic symbols. Inputs a character based on its pronunciation.

– Internal Code. Generates characters by EUC hexadecimal, code point input.

– Decimal value. Generates characters by decimal value. Can be invoked from any of the input modes.

v Half-width and full-width character input. Supports ASCII characters in both single-byte and multibyte
modes.

v System-defined and user-definable character input.

v Auxiliary pop-up window to support all the candidate lists. Simplified Tsang-Jye and phonetic input
methods generate a list of character candidates that contains the same input radicals or sound symbols.
Users pick the desired characters by pressing the corresponding number.

v Over-the-spot pre-editing drawing area. Allows entry of radicals in reverse video area that temporarily
covers the text line. The complete character is sent to the editor by pressing the conversion key.

The TIM file is found in the /usr/lib/nls/loc/TW.im directory.

The TIM keymap is found in the /usr/lib/nls/loc/zh_TW.IBM-eucTW.imkeymap directory.

Traditional Chinese Character Processing
TIM is invoked by pressing one of the input-method keys. Each radical or phonetic symbol is assigned to a
key. The user inputs radicals or phonetic symbols to an over-the-spot pre-editing area. For Tsang-Jye and
Internal Code input, a character is generated when the conversion key is pressed. Simplified Tsang-Jye
and Phonetic input generate a list of candidates that appear in a pop-up window. The user chooses the
desired character by selecting the candidate number. Invalid input generates a beep and an error
message.

The following special keys for the Traditional Chinese Input Method are defined on the Traditional Chinese
106-key keyboard.

Special Traditional Chinese Keys

Key Function Keysym Description of Function

Tsang-Jye Shift key XK_Chinese _Tsangjei Invokes both the Tsang-Jye and
Simplified Tsang-Jye input methods.

Phonetic Shift key XK_Chinese _Phonetic Invokes the Phonetic input method.

Half/Full-Width toggle key XK_Chinese _Full_Half Toggles between half-width and
full-width.

Conversion key XK_Convert Converts radical and phonetic
symbols or EUC code symbols into
characters. Displays the candidate list
in an auxiliary window, if needed.

Non-Conversion key XK_Non _Convert Interprets a phonetic symbol as a
character.

English/Numeric key XK_Alph_Num Invokes ASCII mode.

ALT-Tsang-Jye Shift key XK_Internal _Code Invokes Internal Code input method.

ALT plus number keypad Invoke the decimal value input
method.

Universal Input Method

The Universal Input Method is used in the Unicode/UTF-8 locales to provide complete multlingual input
method support. Features of the Universal Input Method are:

v Supports Input Method Switching

478 Writing and Debugging Programs

– Pressing the Ctrl key and the left Alt and the letter i simultaneously, presents a menu listing the
other available input methods. Selecting an input method from the list remaps the keyboard and
loads the given input method, allowing character entry using the loaded input method.

v Supports Point and Click Character Input

– Pressing the Ctrl key and the left Alt and the letter l simultaneously, presents a menu listing the
various categories of characters contained in the Unicode standard. Selecting a character list
presents a matrix of the available characters from the list. Clicking on a given character will then
send that character through the input method to the application.

– Pressing the Ctrl key and the left Alt and the letter c returns to the application, or if already in the
application, returns to the most recently used character list for point and click character entry.

v Supports the UTF-8 code set.

Keymap:

XX_XX.UTF-8.imkeymap

List of Reserved Keysyms
The keysyms listed are reserved for use by the input methods:

XK_dead_acute 0x180000b4
XK_dead_grave 0x18000060
XK_dead_circumflex 0x1800005e
XK_dead_diaeresis 0x180000a8
XK_dead_tilde 0x1800007e
XK_dead_caron 0x180001b7
XK_dead_breve 0x180001a2
XK_dead_doubleacute 0x180001bd
XK_dead_degree 0x180000b0
XK_dead_abovedot 0x180001ff
XK_dead_macron 0x180000af
XK_dead_cedilla 0x180000b8
XK_dead_ogonek 0x180001b2
XK_dead_accentdieresis 0x180007ae
XK_BunsetsuYomi 0x1800ff05
XK_MaeKouho 0x1800ff04
XK_ZenKouho 0x1800ff01
XK_KanjiBangou 0x1800ff02
XK_HenkanMenu 0x1800ff03
XK_LeftDouble 0x1800ff06
XK_RightDouble 0x1800ff07
XK_LeftPhrase 0x1800ff08
XK_RightPhrase 0x1800ff09
XK_ErInput 0x1800ff0a
XK_Reset 0x1800ff0b

Reserved Keysyms for Traditional Chinese

XK_Full_Size 0xff42
XK_Phonetic 0xff48
XK_Alph_Num 0xaff50
XK_Non_Convert 0xaff52
XK_Convert 0xaff51

Chapter 16. National Language Support 479

XK_Tsang_Jye 0xff47
XK_Internal_Code 0xff4a

Reserved Keysyms for Simplified Chinese (ZIM and ZIM-UCS)

XK_Alph_Num 0xaff47
XK_Non_Convert 0xaff59
XK_Row_Column 0xaff48
XK_PinYin 0xaff49
XK_English_Chinese 0xaff50
XK_ABC 0xaff51
XK_Fivestroke 0xaff62
XK_User-defined 0xaff56
XK_Legend 0xaff55
XK_ABC_Set_Option 0xaff60
XK_Half_full 0xaff53

Message Facility Overview for Programming

To facilitate translations of messages into various languages and make them available to a program based
on a user’s locale, it is necessary to keep messages separate from the program by providing them in the
form of message catalogs that the program can access at run time. To aid in this task, commands and
subroutines are provided by the Message Facility.

Message source files containing application messages are created by the programmer and converted to
message catalogs. The application uses these catalogs to retrieve and display messages, as needed.
Translating message source files into other languages and then converting the files to message catalogs
does not require changing and recompiling a program.

The following information is provided for understanding the Message Facility:

v “Creating a Message Source File”

v “Creating a Message Catalog” on page 484

v “Displaying Messages outside of an Application Program” on page 486

Creating a Message Source File

The Message Facility provides commands and subroutines to retrieve and display program messages
located in externalized message catalogs. A programmer creates a message source file containing
application messages and converts it to a message catalog with the gencat command.

To create a message-text source file, open a file using any text editor. Enter a message identification
number or symbolic identifier. Then enter the message text as shown in the following example:
1 message-text $ (This message is numbered)
2 message-text $ (This message is numbered)
OUTMSG message-text $ (This message has a symbolic identifier \

called OUTMSG)
4 message-text $ (This message is numbered)

Usage Considerations

Consider the following:

v One blank character must exist between the message ID number or identifier and the message text.

480 Writing and Debugging Programs

../../cmds/aixcmds2/gencat.htm#HDRA117965A

v A symbolic identifier must begin with an alphabetical character and can contain only letters of the
alphabet, decimal digits, and underscores.

v The first character of a symbolic identifier cannot be a digit.

v The maximum length of a symbolic identifier is 64 bytes.

v Message ID numbers must be assigned in ascending order within a single message set, but need not
be contiguous. 0 (zero) is not a valid message ID number.

v Message ID numbers must be assigned as if intervening symbolic identifiers are also numbered. If, for
example, you had numbered the lines as in the previous example, 1, 2, OUTMSG, and 3, the program
would contain an error. This is because the mkcatdefs command also assigns numbers to symbolic
identifiers, and would have assigned number 3 to the OUTMSG symbolic identifier.

Note: Symbolic identifiers are specific to the Message Facility. Portability of message source files
can be affected by the use of symbolic identifiers.

Adding Comments to the Message Source File

You can include a comment anywhere in a message source file except within message text. Leave at least
one space or tab (blank) after the $ (dollar sign). The following is an example of a comment:
$ This is a comment.

Comments do not appear in the message catalog generated from the message source file.

Comments can help developers in the process of maintaining message source files, translators in the
process of translation, and writers in the process of editing and documenting messages. Use comments to
identify what variables, such as %s, %c, and %d, represent. For example, create a note that states whether
the variable refers to a user, file, directory, or flag. Comments also should be used to identify obsolete
messages.

For clarity, you should place a comment line directly beneath the message to which it refers, rather than at
the bottom of the message catalog. Global comments for an entire set can be placed directly below the
$set directive.

Continuing Messages on the Next Line

All text following the blank after the message number is included as message text, up to the end of the
line. Use the escape character \ (backslash) to continue message text on the following line. The \
(backslash) must be the last character on the line as in the following example:
5 This is the text associated with \
message number 5.

These two physical lines define the single-line message:
This is the text associated with message number 5.

Note: The use of more than one blank character after the message number or symbolic identifier is
specific to the Message Facility. Portability of message source files can be affected by the use of
more than one blank.

Including Special Characters in the Message Text

The \ (backslash) can be used to insert special characters into the message text. These special characters
are:

\n Inserts a new-line character.
\t Inserts a horizontal tab character.
\v Inserts a vertical tab character.

Chapter 16. National Language Support 481

../../cmds/aixcmds3/mkcatdefs.htm#HDRA29991

\b Inserts a backspace character.
\r Inserts a carriage-return character.
\f Inserts a form-feed character.
\\ Inserts a \ (backslash) character.
\ddd Inserts a single-byte character associated with the octal value represented by the valid octal digits ddd.

Note: One, two, or three octal digits can be specified. However, you must include a leading zero if
the characters following the octal digits are also valid octal digits. For example, the octal value for $
(dollar sign) is 44. To display $5.00, use \0445.00, not \445.00, or the 5 will be parsed as part of
the octal value.

\xdd Inserts a single-byte character associated with the hexadecimal value represented by the two valid
hexadecimal digits dd. You must include a leading zero to avoid parsing errors (see the note about \ddd).

\xdddd Inserts a double-byte character associated with the hexadecimal value represented by the four valid
hexadecimal digits dddd. You must include a leading zero to avoid parsing errors (see the note about
\ddd).

Defining a Character to Delimit Message Text

You can use the $quote directive in a message source file to define a character for delimiting message
text. This character should be an ASCII character. The format is:
$quote [character] [comment]

Use the specified character before and after the message text. In the following example, the $quote
directive sets the quote character to _ (underscore), and then disables it before the last message, which
contains quotation marks:
$quote _ Use an underscore to delimit message text
$set MSFAC Message Facility - symbolic identifiers
SYM_FORM _Symbolic identifiers can contain alphanumeric \
characters or the _ (underscore character)\n_
SYM_LEN _Symbolic identifiers can be up to 65 \
characters long \n_
5 _You can mix symbolic identifiers and numbers \n_
$quote
MSG_H Remember to include the _msg_h_ file in your program\n

The last $quote directive in the previous example disables the underscore character.

In the following example, the $quote directive defines ″ (double quotation marks) as the quote character.
The quote character must be the first non-blank character following the message number. Any text
following the next occurrence of the quote character is ignored.
$quote " Use a double quote to delimit message text
$set 10 Message Facility - Quote command messages
1 "Use the $quote directive to define a character \
\n for delimiting message text"
2 "You can include the \"quote\" character in a message \n \
by placing a \\ in front of it"
3 You can include the "quote" character in a message \n \
by having another character as the first nonblank \
\n character after the message ID number
$quote
4 You can disable the quote mechanism by \n \
using the $quote directive without a character \n\
after it

This example illustrates two ways the quote character can be included in message text:

v Place a \ (backslash) in front of the quote character.

v Use some other character as the first non-blank character following the message number. This disables
the quote character only for that message.

482 Writing and Debugging Programs

The example also shows the following:

v A \ (backslash) is still required to split a quoted message across lines.

v To display a \ (backslash) in a message, place another \ (backslash) in front of it.

v You can format a message with a new-line character by using \n.

v Using the $quote directive with no character argument disables the quote mechanism.

Assigning Message Set Numbers and Message ID Numbers

All message sets require a set number or symbolic identifier. Use the $set directive in a source file to give
a group of messages a number or identifier:
$set n [comment]

The message set number is specified by the value of n, a number between 1 and NL_SETMAX. Instead
of a number, you can use a symbolic identifier. All messages following the $set directive are assigned to
that set number until the next occurrence of a $set directive. The default set number is 1. Set numbers
must be assigned in ascending order, but need not be in series. Empty sets are created for skipped
numbers. However, large gaps in the number sequence decrease efficiency and performance. Moreover,
performance is not enhanced by using more than one set number in a catalog.

You can also include a comment in the $set directive, as follows:
$set 10 Communication Error Messages

$set OUTMSGS Output Error Messages

Many AIX message sets have a symbolic identifier of the form MS_PROG, where MS represents Message
Set and PROG is the name of the program or utility related to the message set. For example:
$set MS_WC Message Set for the wc Utility

$set MS_XLC1 Message Set 1 for the C For AIX compiler

$set MS_XLC2 Message Set 2 for the C For AIX compiler

Removing Messages from a Catalog

The $delset directive removes all of the messages belonging to a specified set from an existing catalog:
$delset n [comment]

The message set is specified by n. The $delset directive must be placed in the proper set-number order
with respect to any $set directives in the same source file. You can also include a comment in the $delset
directive.

Length of Message Text

The $len directive establishes the maximum display length of message text:
$len [n [comment]]

If n is not specified or if the $len directive is not included, the message text display is set to the
NL_TEXTMAX value. The message-text display length is the maximum number of bytes allowed for a
message. Any subsequent specification of a $len directive overrides a previous specification. The value of
n cannot exceed the NL_TEXTMAX value.

Content of Message Text

Cause and Recovery Information: Whenever possible, tell users exactly what has happened and what
they can do to remedy the situation. The following example shows how cause and recovery information
can improve a message:
Original Message: Bad arg

Chapter 16. National Language Support 483

Revised Message: Specify year as a value between 1 and 9999.

The message Bad arg does not help users much; whereas the message Do not specify more than 2
files on the command line tells users exactly what they must do to make the command work. Similarly,
the message Line too long does not give users recovery information. The message Line cannot exceed
20 characters provides the missing information.

Examples of Message Source Files
1. The following example message source file uses numbers for message ID numbers and for message

set numbers:
$ This is a message source file sample.
$ Define the Quote Character.
$quote "
$set 1 This is the set 1 of messages.
1 "The specified file does not have read permission on\n"
2 "The %1$s file and the %2$s file are same\n"
3 "Hello world!\n"
$Define the quote character
$quote '
$set 2 This is the set 2 of messages
1 'fieldef: Cannot open %1$s \n'
2 'Hello world\n'

2. The following example message source file uses symbolic identifiers for message ID numbers and for
message set numbers:
$ This is a message source file sample.
$ Define the Quote Character.
$quote "
$set MS_SET1 This is the set 1 of messages.
MSG_1 "The specified file does not have read permission on\n"
MSG_2 "The %1$s file and the %2$s file are same\n"
MSG_3 "Hello world\n"
$Define the quote character
$quote
$set 2 This is the set 2 of messages.
$EMSG_1 'fieldef: Cannot open %1$s\n'
$EMSG_2 'Hello world!\n'

3. The following examples show how symbolic identifiers can make the specification of a message more
understandable:
catgets(cd, 1, 1, "default message")

catgets(cd, MS_SET1, MSG_1, "default message")

Creating a Message Catalog

The Message Facility provides commands and subroutines to retrieve and display program messages
located in externalized message catalogs. A programmer creates a message source file containing
application messages and converts it to a message catalog. Translating message source files into other
languages and then converting the files to message catalogs does not require changing or recompiling a
program.

To create a message catalog, process your completed message source file with the message facility’s
gencat command. This command can be used three ways:

v Use the gencat command to process a message source file containing set numbers, message ID
numbers, and message text. Message source files containing symbolic identifiers cannot be processed
directly by the gencat command. The following example uses the information in the x.msg message
source file to generate a catalog file:
gencat x.cat x.msg

v Use the mkcatdefs command to preprocess a message source file containing symbolic identifiers. The
resulting file is then piped to the gencat command. The mkcatdefs command produces a

484 Writing and Debugging Programs

../../cmds/aixcmds2/gencat.htm#HDRA117965A
../../cmds/aixcmds3/mkcatdefs.htm#HDRA29991

SymbolName_msg.h file containing definition statements. These statements equate symbolic identifiers
with set numbers and message ID numbers assigned by the mkcatdefs command. The
SymbolName_msg.h file should be included in programs using these symbolic identifiers. The
mkcatdefs command is specific to AIX. The following example uses the information in the x.msg
message source file to generate the x_msg.h header file:
mkcatdefs x x.msg

v Use the runcat command to automatically process a source file containing symbolic identifiers. The
runcat command invokes the mkcatdefs command and pipes its output to the gencat command. The
runcat command is specific to AIX. The following example uses the information in the x.msg message
source file to generate the x_msg.h header file and the X.cat catalog file:
runcat x x.msg

The preceding example is equivalent to the following example:
mkcatdefs x x.msg | gencat x.cat

If a message catalog with the name specified by the CatalogFile parameter exists, the gencat command
modifies the catalog according to the statements in the message source files. If a message catalog does
not exist, the gencat command creates a catalog file with the name specified by the CatalogFile
parameter.

You can specify any number of message text source files. Multiple files are processed in the sequence
you specify. Each successive source file modifies the catalog. If you do not specify a source file, the
gencat command accepts message source data from standard input.

Catalog Sizing

A message catalog can be virtually any size. The maximum numbers of sets in a catalog, messages in a
catalog, and bytes in a message are defined in the /usr/include/limits.h file by the following macros:

NL_SETMAX Specifies the maximum number of set numbers that can be specified by the $set directive. If the
NL_SETMAX limit is exceeded, the gencat command issues an error message and does not
create or update the message catalog.

NL_MSGMAX Specifies the maximum number of message ID numbers allowed by the system. If the
NL_MSGMAX limit is exceeded, the gencat command issues an error message and does not
create or update the message catalog.

NL_TEXTMAX Specifies the maximum number of bytes a message can contain. If the NL_TEXTMAX limit is
exceeded, the gencat command issues an error message and does not create or update the
message catalog.

Examples
1. This example shows how to create a message catalog from a source file containing message

identification numbers. The following is the text of the hello.msg message source file:
$ file: hello.msg
$set 1 prompts
1 Please, enter your name.
2 Hello, %s \n
$ end of file: hello.msg

To create the hello.cat message catalog from the hello.msg source file, enter:
gencat hello.cat hello.msg

2. This example shows how to create a message catalog from a source file with symbolic references. The
following is the text of the hello.msg message source file that contains symbolic references to the
message set and the messages:

Chapter 16. National Language Support 485

../../cmds/aixcmds4/runcat.htm#HDRA2789EC1

$ file: hello.msg
$quote "
$set PROMPTS
PLEASE "Please, enter your name."
HELLO "Hello, %s \n"
$ end of file: hello.msg

The following is the text of the msgerrs.msg message source file that contains error messages that can
be referenced by their symbolic IDs:
$ file: msgerrs.msg
$quote "
$set CAT_ERRORS
MAXOPEN "Cannot open message catalog %s \n \
Maximum number of catalogs already open "
NOT_EX "File %s not executable \n "
$set MSG_ERRORS
NOT_FOUND "Message %1$d, Set %2$d not found \n "
$ end of file: msgerrs.msg

To process the hello.msg and msgerrs message source files, enter:
runcat hello hello.msg
runcat msgerrs msgerrs.msg /usr/lib/nls/msg/$LANG/msgerrs.cat

The runcat command invokes the mkcatdefs and gencat commands. The first call to the runcat
command takes the hello.msg source file and uses the second parameter, hello, to produce the
hello.cat message catalog and the hello_msg.h definition file.

The hello_msg.h definition file contains symbolic names for the message catalog and symbolic IDs for
the messages and sets. The symbolic name for the hello.cat message catalog is MF_HELLO. This
name is produced automatically by the mkcatdefs command.

The second call to the runcat command takes the msgerrs.msg source file and uses the first
parameter, msgerrs, to produce the msgerrs_msg.h definition file.

Since the third parameter, /usr/lib/nls/msg/$LANG/msgerrs.cat, is present, the runcat command
uses this parameter for the catalog file name. This parameter is an absolute path name that specifies
exactly where the runcat command must put the file. The symbolic name for the msgerrs.cat catalog
is MF_MSGERRS.

Displaying Messages outside of an Application Program

The following commands allow you to display messages outside of an application program. These
commands are specific to AIX.

dspcat Displays the messages contained in the specified message catalog. The following example displays the
messages located in the x.cat message source file:

dspcat x.cat
dspmsg Displays a single message from a message catalog. The following example displays the message

located in the x.cat message source file that has the ID number of 1 and the set number of 2:

dspmsg x.cat -s 2 1

You can use the dspmsg command in shell scripts when a message must be obtained from a message
catalog.

486 Writing and Debugging Programs

../../cmds/aixcmds4/runcat.htm#HDRA2789EC1
../../cmds/aixcmds3/mkcatdefs.htm#HDRA29991
../../cmds/aixcmds2/gencat.htm#HDRA117965A
../../cmds/aixcmds2/dspcat.htm#HDRA22698EE
../../cmds/aixcmds2/dspmsg.htm#HDRA2789DC5

Displaying Messages with an Application Program

When programming with the Message Facility, you must include the following items in your application
program:

v The CatalogFile_msg.h definition file created by the mkcatdefs or runcat command if you used
symbolic identifiers in the message source file, or the limits.h and nl_types.h files if you did not use
symbolic identifiers.

v A call to initialize the locale environment.

v A call to open a catalog.

v A call to read a message.

v A call to display a message.

v A call to close the catalog.

The following subroutines provide the services necessary for displaying program messages with the
message facility:

setlocale Sets the locale. Specify the LC_ALL or LC_MESSAGES environment variable in the call to the
setlocale subroutine for the preferred message catalog language.

catopen Opens a specified message catalog and returns a catalog descriptor, which you use to retrieve
messages from the catalog.

catgets Retrieves a message from a catalog after a successful call to the catopen subroutine.
printf Converts, formats, and writes to the stdout (standard output) stream.
catclose Closes a specified message catalog.

The following C program, hello, illustrates opening the hello.cat catalog with the catopen subroutine,
retrieving messages from the catalog with the catgets subroutine, displaying the messages with the printf
subroutine, and closing the catalog with the catclose subroutine.
/* program: hello */
#include <nl_types.h>
#include <locale.h>
nl_catd catd;
main()
{
/* initialize the locale */
setlocale (LC_ALL, "");
/* open the catalog */
catd=catopen("hello.cat",NL_CAT_LOCALE);
printf(catgets(catd,1,1,"Hello World!"));
catclose(catd); /* close the catalog */
exit(0);
}

In the previous example, the catopen subroutine refers to the hello.cat message catalog only by file
name. Therefore, you must make sure that the NLSPATH environment variable is set correctly. If the
message catalog is successfully opened by the catopen subroutine, the catgets subroutine returns a
pointer to the specified message in the hello.cat catalog. If the message catalog is not found or the
message does not exist in the catalog, the catgets subroutine returns the Hello World! default string.

Understanding the NLSPATH Environment Variable

The NLSPATH environment variable specifies the directories to search for message catalogs. The
catopen subroutine searches these directories in the order specified when called to locate and open a
message catalog. If the message catalog is not found, the message-retrieving routine returns the
program-supplied default message. See the /etc/environment file for the NLSPATH default path.

Chapter 16. National Language Support 487

../../cmds/aixcmds3/mkcatdefs.htm#HDRA29991
../../cmds/aixcmds4/runcat.htm#HDRA2789EC1
../../libs/basetrf2/setlocale.htm#HDRA15096AB
../../libs/basetrf1/catopen.htm#HDRA3059C50
../../libs/basetrf1/catgets.htm#HDRA16992009
../../libs/basetrf1/printf.htm#HDRA8ZED0GACO
../../libs/basetrf1/catclose.htm#HDRAT11C0SUSA
../../libs/basetrf1/catopen.htm#HDRA3059C50
../../libs/basetrf1/catgets.htm#HDRA16992009
../../libs/basetrf1/printf.htm#HDRA8ZED0GACO
../../libs/basetrf1/catclose.htm#HDRAT11C0SUSA
../../libs/basetrf1/catopen.htm#HDRA3059C50
../../files/aixfiles/environment.htm#HDRA243Y98FF1

Retrieving Program-Supplied Default Messages

All message-retrieving routines return the program-supplied default message text if the desired message
cannot be retrieved for any reason. Program-supplied default messages are generally brief one-line
messages that contain no message numbers in the text. Users who prefer these default messages can set
the LC_MESSAGES category to the C locale or unset the NLSPATH environment variable. When none of
the LC_ALL, LC_MESSAGES, or LANG environment variables are set, the LC_MESSAGES category
defaults to the C locale.

Setting the Language Hierarchy

Multilingual users may specify a language hierarchy for message text. To set the language hierarchy for
the system default or for an individual user, see the chlang command, ″Changing the Language
Environment″ in AIX 5L Version 5.1 System Management Guide: Operating System and Devices or use
the System Management Interface Tool (SMIT). To use SMIT to set the language hierarchy, enter the SMIT
fast path
smit mlang

at the command line.

Select Change / Show Language Hierarchy

OR

At the command line, enter:
smit

Select System Environments

Select Manage Language Environment

Select Change / Show Language Hierarchy

Example of Retrieving a Message from a Catalog
This example has three parts: the message source file, the command used to generate the message
catalog file, and an example program using the message catalog.

1. The following example shows the example.msg message source file:
$quote "
$ every message catalog should have a beginning set number.
$set MS_SET1
MSG1 "Hello world\n"
MSG2 "Good Morning\n"
ERRMSG1 "example: 1000.220 Read permission is denied for the file
%s.\n"
$set MS_SET2
MSG3 "Howdy\n"

2. The following command uses the example.msg message source file to generate the example.h header
file and the example.cat catalog file in the current directory:
runcat example example.msg

3. The following example program uses the example.h header file and accesses the example.cat catalog
file:
#include <locale.h>
#include <nl_types.h>
#include "example_msg.h" /*contains definitions for symbolic

identifiers*/
main()

488 Writing and Debugging Programs

../../cmds/aixcmds1/chlang.htm#HDRA152966A
../../aixbman/baseadmn/lang_change.htm#HDRA7FE34C604MIKE
../../aixbman/baseadmn/lang_change.htm#HDRA7FE34C604MIKE

{
nl_catd catd;
int error;

(void)setlocale(LC_ALL, "");

catd = catopen(MF_EXAMPLE, NL_CAT_LOCALE);
/*
** Get the message number 1 from the first set.
*/
printf(catgets(catd,MS_SET1,MSG1,"Hello world\n"));

/*
** Get the message number 1 from the second set.
*/
printf(catgets(catd, MS_SET2, MSG3,"Howdy\n"));
/*
** Display an error message.
*/
printf(catgets(catd, MS_SET1, ERRMSG1,"example: 100.220

Permission is denied to read the file %s.\n") ,
filename);

catclose(catd);
}

Culture-Specific Data Processing
Culture-specific data handling may be part of a program, and such a program may supply different data for
different locales. In addition, a program may use different algorithms to process character data based on
the language and culture. For example, recognition of the start and end of a word and the method of
hyphenation of a word across two lines varies depending on the locale. Programs that deal with such
functionality need access to these tables or algorithms based on the current locale setting at runtime. You
can handle such programs in the following ways:

v Compile all the algorithms and tables, and load them with the program.

This makes it difficult to add or modify the algorithms and tables. Whenever a new algorithm or table is
added, the entire program must be relinked.

v Keep the locale-specific algorithms and tables in a file, and load them at run time depending on the
current locale setting.

This makes it easier to modify and add algorithms and tables. However, there is no standard defined
way to load algorithms. In AIX, you can achieve this using the load system call, but programs that use
the load system call may not be portable to other systems.

Culture-Specific Tables
If the culture-specific data can be processed by accessing tables based on the current locale setting, then
this can be accomplished by using the standard file I/O subroutines (fopen, fread, open, read, and so
on). Such tables must be provided in the directory defined in /usr/lpp/Name where Name is the name of
the particular application under the appropriate locale name.

Standard path prefix: /usr/lpp/Name (AIX-specific pathname)
Culture-specific directory: Obtain the current locale for the appropriate category that

describes the tables. Concatenate it to the above prefix.
Access: Use standard file access subroutines (fopen, fread, and so

on) as appropriate.

Culture-Specific Algorithms
The culture-specific algorithms reside in the /usr/lpp/Name/%L directory. Here %L represents the current
locale setting for the appropriate category.

Chapter 16. National Language Support 489

Use the load system call to access program-specific algorithms from an object module.

Standard path prefix: /usr/lpp/Name
Culture-specific directory: Obtain the current locale for the appropriate category.

Concatenate it to the above prefix.
Method: Concatenate the method name to it.

Example: Load a Culture-Specific Module for Arabic Text for an
Application

Header File
The methods.h include file has one structure as follows:
struct Methods {

int version;
char *(*hyphen)();
char *(*wordbegin)();
char *(*wordend)();

} ;

The Main Program
Let the program name be textpr.

The main program determines the module to load and invokes it. Note that the textpr.h include file is
used to specify the path name of the load object. This way, the path name, which is system-specific, can
be changed easily.
#include <stdio.h>
#include <errno.h>
#include "methods.h"
#include "textpr.h" /* contains the pathname where

the load object can be found */

extern int errno;

main()
{

char libpath[PATH_MAX]; /* stores the full pathname of the
load object */

char *prefix_path=PREFIX_PATH; /* from textpr.h */
char *method=METHOD; /* from textpr.h */
int (*func)();
char *path;
/* Methods */
int ver;
char *p;
struct Methods *md;

setlocale(LC_ALL, "");

path = setlocale(LC_CTYPE, 0); /* obtain the locale
for LC_CTYPE category */

/* Construct the full pathname for the */
/* object to be loaded */
strcpy(libpath, prefix_path);
strcat(libpath, path);
strcat(libpath, "/");
strcat(libpath, method);

func = load(conv, 1, libpath); /* load the object */
if(func==NULL){

strerror(errno);
exit(1);

}
/* invoke the loaded module ");

490 Writing and Debugging Programs

md =(struct Methods *) func(); /* Obtain the methods
structure */

ver = md->version;
/* Invoke the methods as needed */
p = (md->hyphen)();
p = (md->wordbegin)();
p = (md->wordend)();

}

Methods
This module contains culture-specific algorithms. In this example, it provides the Arabic method. The
method.c program follows:
#include "methods.h"

char *Arabic_hyphen(char *);
char *Arabic_wordbegin(char *);
char *Arabic_wordend(char *);

static struct Methods ArabicMethods= {
1,
Arabic_hyphen,
Arabic_wordbegin,
Arabic_wordend

} ;

struct Methods *start_methods()
{

/* startup methods */
return (&ArabicMethods);

}

char *Arabic_hyphen(char *string)
{

/* Arabic hyphen */
return(string);

}
char *Arabic_wordbegin(char *string)
{

/*Arabic word begin */);
return(string);

}
char *Arabic_wordend(char *string)
{

/* Arabic word end */;
return(string);

}

Include File: textpr
The include file contains the path name of the module to be loaded.
#define PREFIX_PATH "/usr/lpp/textpr"

/* This is an AIX-specific pathname */

NLS Sample Program
This sample program fragment, foo.c, illustrates internationalization through code set independent
programming.

Message Source File for foo
A sample message source file for the foo utility is given here. Note we defined only one set and three
messages in this catalog for illustration purposes only. A typical catalog contains several such messages.

The following is the message source file for foo, foo.msg.
$quote "

$set MS_FOO

Chapter 16. National Language Support 491

CANTOPEN "foo: cannot open %s\n"

BYTECNT "number of bytes: %d\n"

CHARCNT "number of characters: %d

Creation of Message Header File for foo
To generate the run-time catalog, use the runcat command as follows:
runcat foo foo.msg

This generates the header file foo_msg.h as shown in the following section. Note that the set mnemonic is
MS_FOO and the message mnemonics are CANTOPEN, BYTECNT, and CHARCNT. These mnemonics are used in
the programs on the following pages.
/*
** The header file: foo_msg.h is as follows:
*/

#ifndef _H_FOO_MSG
#define _H_FOO_MSG
#include <limits.h>
#include <nl_types.h>
#define MF_FOO "foo.cat"

/* The following was generated from wc.msg. */

/* definitions for set MS_FOO */
#define MS_FOO 1

#define CANTOPEN 1
#define BYTECNT 2
#define CHARCNT 3

#endif

Single Path Code Set Independent Version

The term single source single path refers to one path in a single application to be used to process both
single-byte and multibyte code sets. The single source single path method eliminates all ifdefs for
internationalization. All characters are handled the same way whether they are members of single-byte or
multibyte code sets.

Single source single path is desirable but may degrade performance. Thus, it is not recommended for all
programs. There may be some programs that do not suffer any performance degradation when they are
fully internationalized; in those cases, use the single source single path method.

The following fully internationalized version of the foo utility supports all code sets through single source
single path, code-set independent programming:
/*
* COMPONENT_NAME:
*
* FUNCTIONS: foo
*
* The following code shows how to count the number of bytes and
* the number of characters in a text file.
*
* This example is for illustration purposes only. Performance
* improvements may still be possible.
*
*/

492 Writing and Debugging Programs

#include <stdio.h>
#include <ctype.h>
#include <locale.h>
#include <stdlib.h>
#include "foo_msg.h"

#define MSGSTR(Num,Str) catgets(catd,MS_FOO,Num,Str)

/*
* NAME: foo
*
* FUNCTION: Counts the number of characters in a file.
*
*/

main(argc,argv)
int argc;
char **argv;
{

int bytesread, /* number of bytes read */
bytesprocessed;

int leftover;

int i;
int mbcnt; /* number of bytes in a character */
int f; /* File descriptor */
int mb_cur_max;
int bytect; /* name changed from charct... */
int charct; /* for real character count */
char *curp, *cure; /* current and end pointers into

** buffer */
char buf[BUFSIZ+1];

nl_catd catd;

wchar_t wc;

/* Obtain the current locale */
(void) setlocale(LC_ALL,"");

/* after setting the locale, open the message catalog */
catd = catopen(MF_FOO,NL_CAT_LOCALE);

/* Parse the arguments if any */

/*
** Obtaint he maximum number of bytes in a character in the
** current locale.
*/
mb_cur_max = MB_CUR_MAX;
i = 1;

/* Open the specified file and issue error messages if any */
f = open(argv[i],0);
if(f<0){

fprintf(stderr,MSGSTR(CANTOPEN, /*MSG*/
"foo: cannot open %s\n"), argv[i]); /*MSG*/
exit(2);

}

/* Initialize the variables for the count */
bytect = 0;
charct = 0;

/* Start count of bytes and characters */

leftover = 0;

for(;;) {
bytesread = read(f,buf+leftover, BUFSIZ-leftover);
/* issue any error messages here, if needed */
if(bytesread <= 0)

break;

Chapter 16. National Language Support 493

buf[leftover+bytesread] = '\0';
/* Protect partial reads */

bytect += bytesread;
curp=buf;
cure = buf + bytesread+leftover;
leftover=0; /* No more leftover */

for(; curp<cure ;){
/* Convert to wide character */
mbcnt= mbtowc(&wc, curp, mb_cur_max);
if(mbcnt <= 0){

mbcnt = 1;
}else if (cure - curp >=mb_cur_max){

wc = *curp;
mbcnt =1;

}else{
/* Needs more data */
leftover= cure - curp;
strcpy(buf, curp, leftover);
break;

}
curp +=mbcnt;
charct++;

}
}

/* print number of chars and bytes */
fprintf(stderr,MSGSTR(BYTECNT, "number of bytes:%d\n"),

bytect);
fprintf(stderr,MSGSTR(CHARCNT, "number of characters:%d\n"),

charct);
close(f);
exit(0);

Dual-Path Version Optimized for Single-Byte Code Sets

The term single source dual path refers to two paths in a single application where one of the paths is
chosen at run time depending on the current locale setting, which indicates whether the code set in use is
single-byte or multibyte.

If a program can retain its performance and not increase its executable file size too much, the single
source dual path method is the preferred choice. You should evaluate the increase in the executable file
size on a per command or utility basis.

In the single byte dual path method, the MB_CUR_MAX macro specifies the maximum number of bytes in
a multibyte character in the current locale. This should be used to determine at run time whether the
processing path to be chosen is the single-byte or the multibyte path. Use a boolean flag to indicate the
path to be chosen, for example:
int mbcodeset ;
/* After setlocale(LC_ALL,"") is done, determine the path to
** be chosen.
*/
if(MB_CUR_MAX == 1)

mbcodeset = 0;
else mbcodeset = 1;

This way, the current code set is checked to see if it is a multibyte code set and if so, the flag mbcodeset is
set appropriately. Testing this flag has less performance impact than testing the MB_CUR_MAX macro
several times.
if(mbcodeset){

/* Multibyte code sets (also supports single-byte
** code sets)
*/

494 Writing and Debugging Programs

/* Use multibyte or wide character processing
functions */

}else{
/* single-byte code sets */
/* Process accordingly */

}

This approach is appropriate if internationalization affects a small proportion of a module. Excessive tests
for providing dual paths may degrade performance. Provide the test at a level that precludes frequent
testing for this case.

This following version of the foo utility produces one object, yet at run time the appropriate path is chosen
based on the code set to optimize performance for that code set. Note we distinguish between single and
multibyte code sets only.
/*
* COMPONENT_NAME:
*
* FUNCTIONS: foo
*
* The following code shows how to count the number of bytes and
* the number of characters in a text file.
*
* This example is for illustration purposes only. Performance
* improvements may still be possible.
*
*/

#include <stdio.h>
#include <ctype.h>
#include <locale.h>
#include <stdlib.h>
#include "foo_msg.h"

#define MSGSTR(Num,Str) catgets(catd,MS_FOO,Num,Str)

/*
* NAME: foo
*
* FUNCTION: Counts the number of characters in a file.
*
*/

main(argc,argv)
int argc;
char **argv;
{

int bytesread, /* number of bytes read */
bytesprocessed;

int leftover;

int i;
int mbcnt; /* number of bytes in a character */
int f; /* File descriptor */
int mb_cur_max;
int bytect; /* name changed from charct... */
int charct; /* for real character count */
char *curp, *cure; /* current and end pointers into buffer */
char buf[BUFSIZ+1];

nl_catd catd;

wchar_t wc;

/* flag to indicate if current code set is a
** multibyte code set
*/
int multibytecodeset;

/* Obtain the current locale */
(void) setlocale(LC_ALL,"");

Chapter 16. National Language Support 495

/* after setting the locale, open the message catalog */
catd = catopen(MF_FOO,NL_CAT_LOCALE);

/* Parse the arguments if any */

/*
** Obtain the maximum number of bytes in a character in the
** current locale.
*/
mb_cur_max = MB_CUR_MAX;

if(mb_cur_max >1)
multibytecodeset = 1;

else
multibytecodeset = 0;

i = 1;

/* Open the specified file and issue error messages if any */
f = open(argv[i],0);
if(f<0){

fprintf(stderr,MSGSTR(CANTOPEN, /*MSG*/
"foo: cannot open %s\n"), argv[i]); /*MSG*/
exit(2);

}

/* Initialize the variables for the count */
bytect = 0;
charct = 0;

/* Start count of bytes and characters */

leftover = 0;

if(multibytecodeset){
/* Full internationalzation */
/* Handles supported multibyte code sets */
for(;;) {

bytesread = read(f,buf+leftover,
BUFSIZ-leftover);

/* issue any error messages here, if needed */
if(bytesread <= 0)

break;

buf[leftover+bytesread] = '\0';
/* Protect partial reads */

bytect += bytesread;
curp=buf;

cure = buf + bytesread+leftover;
leftover=0; /* No more leftover */

for(; curp<cure ;){
/* Convert to wide character */
mbcnt= mbtowc(&wc, curp, mb_cur_max);
if(mbcnt <= 0){

mbcnt = 1;
}else if (cure - curp >=mb_cur_max){

wc = *curp;
mbcnt =1;

}else{
/* Needs more data */
leftover= cure - curp;
strcpy(buf, curp, leftover);
break;

}
curp +=mbcnt;
charct++;

}
}

}else {

496 Writing and Debugging Programs

/* Code specific to single-byte code sets that
** avoids conversion to widechars and thus optimizes
** performance for single-byte code sets.
*/

for(;;) {
bytesread = read(f,buf, BUFSIZ);
/* issue any error messages here, if needed */
if(bytesread <= 0)

break;

bytect += bytesread;
charct += bytesread;

}

}

/* print number of chars and bytes */
fprintf(stderr,MSGSTR(BYTECNT, "number of bytes:%d\n"),

bytect);
fprintf(stderr,MSGSTR(CHARCNT, "number of characters:%d\n"),

charct);
close(f);
exit(0);

National Language Support (NLS) Quick Reference

The NLS Quick Reference provides a place to get started internationalizing programs. The following
sections offer advice and a practical guide through the NLS documentation:

v “National Language Support Do’s and Don’ts” lists NLS guiding principles.

v “National Language Support Checklist” on page 498 provides a way to analyze a program for NLS
dependencies.

v “Message Suggestions” on page 499 lists some guidelines for creating clearer and maintainable
messages.

National Language Support Do’s and Don’ts

The following list presents a set of NLS guiding principles and advice. The intention is to prevent the
occurrence of common errors when internationalizing programs. See “Chapter 16. National Language
Support” on page 329 for more information about NLS.

v DO externalize any user and error messages. We recommend the use of message catalogs. X
applications may use resource files to externalize messages for each locale. See the “Message Facility
Overview for Programming” on page 480 for more information.

v DO use standard X/Open, ISO/ANSI C, and POSIX functions to maximize portability. See ″NLS
Subroutines Overview″ (“National Language Support Subroutines Overview” on page 339) for more
information.

v DO use the font set specification in order to be code-set independent in X applications.

v DO use Xm (Motif) library widgets for building bidirectional and character shaping applicaitons. See
″Layout (Bidirectional) Support in Xm (Motif) Library″ in AIX 5L Version 5.1 AIXwindows Programming
Guide for general information. Refer to the XmText or XmTextField widgets for support of input and
output of bidirectional and shaping characteristics.

v DON’T assume the size of all characters to be 8 bits, or 1 byte. Characters may be 1, 2, 3, 4 or more
bytes. See “Multibyte Code and Wide Character Code Conversion Subroutines” on page 348 and the
“Code Set Overview” on page 379 for more information.

v DON’T assume the encoding of any code set. See the “Code Set Overview” on page 379 for more
information.

v DON’T hard code names of code sets, locales, or fonts because it may impact portability. See
“Chapter 16. National Language Support” on page 329 for more information.

Chapter 16. National Language Support 497

../../aixprggd/aixwnpgd/bidirectional.htm

v DON’T use p++ to increment a pointer in a multibyte string. Use the mblen subroutine to determine the
number of bytes that compose a character.

v DON’T assume any particular physical keyboard is in use. Use an input method based on the locale
setting to handle keyboard input. See the “Input Method Overview” on page 452 for more information.

v DON’T define your own converter unless absolutely necessary. See the “Converters Overview for
Programming” on page 410 for more information.

v DON’T assume that the char data type is either signed or unsigned. This is platform-specific. If the
particular system that is used defines char to be signed, comparisons with full 8-bit quantity will yield
incorrect results. As all the 8-bits are used in encoding a character, be sure to declare char as
unsigned char wherever necessary. Also, note that if a signed char value is used to index an array, it
may yield incorrect results. To make programs portable, define 8-bit characters as unsigned char.

v DON’T use the layout subroutines in the libi18n.a library unless the application is doing presentation
types of services. Most applications just deal with logically ordered text. See “Introducing Layout Library
Subroutines” on page 377 for more information.

National Language Support Checklist

The National Language Support (NLS) Checklist provides a way to analyze a program for NLS
dependencies. By going through this list, one can determine what, if any, NLS functions must be
considered. This is useful for both programming and testing. If you identify a set of NLS items that a
program depends on, a test strategy can be developed. This facilitates a common approach to testing all
programs.

All major NLS considerations have been identified. However, this list is not all-encompassing. There may
be other NLS questions that are not listed. See “Chapter 16. National Language Support” on page 329 for
more information about NLS. See “National Language Support Do’s and Don’ts” on page 497 for a brief list
of NLS advice.

AIXwindows CheckList
The remaining checklist items are specific to the AIXwindows systems.

1. Does your client use labels, buttons, or other output-only widgets to display translatable messages?

If yes:

v Invoke the *XtSetLanguageProc subroutine in the following manner:
XtSetLanguageProc(NULL, NULL, NULL);

v Messages can be placed in either message catalogs or localized resource files. See checklist items
1 or 20, respectively.

v To make the widgets code set-independent, specify fonts that use font sets.

2. Does your client use X resource files to define the text of labels, buttons, or text widgets?

If yes:

v Put all resources that need translation in one place.

v Consider using message catalogs for the text strings. See the “Message Facility Overview for
Programming” on page 480 for more information.

v Do not use translated color names, since color names are restricted to one encoding. The only
portable names are encoded in the portable character set.

v Put language-specific resource files in /usr/lib/X11/%L/app-defaults/%N, where %L is the name of
the locale, such as fr_FR, and %N is the name of the client.

3. Is keyboard input localized by language?

If yes:

v Invoke the *XtSetLanguageProc subroutine in the following manner:
XtSetLanguageProc(NULL, NULL, NULL);

v Use the XmText or XmTextField widgets for all text input.

498 Writing and Debugging Programs

../../libs/basetrf1/mblen.htm#HDRA1509737

Some of the XmText widgets’ arguments are defined in terms of character length instead of byte
length. The cursor position is maintained in character position, not byte position.

v Are you using the XmDrawingArea widget to do localized input?

– Use the input method subroutines to do input processing in different languages. See the “Input
Method Overview” on page 452 and the IMAuxDraw Callback subroutine for more information.

4. Does your client present lists or labels consisting of localized text from user files rather than from X
resource files?

If yes:

v Invoke the *XtSetLanguageProc subroutine in the following manner:
XtSetLanguageProc(NULL, NULL, NULL);

v Use the XmStringCreateSimple subroutine to create the XmString data type for localized text. The
XmStringCreate subroutine can be used, but XmSTRING_DEFAULT_CHARSET is preferable.

v To make the widgets code-set independent, specify fonts by using font sets. Font resources (for
example, *fontList: instead) in the app-defaults files should use the upper case and class form
rather than the lower case form (for example, *FontList: instead). This allow the desktop style
manager to affect the application font selection.

5. Does your program do any presentation operations (Xlib drawing, printing, formatting, or editing) on
bidirectional text?

If yes:

v Use the XmText or XmTextField in the Xm (Motif) library. These widgets are enabled for
bidirectional text. See ″Layout (Bidirectional) Support in Xm (Motif) Library″ in AIX 5L Version 5.1
AIXwindows Programming Guide for more information.

v If the Xm library can not be used, use the layout subroutines to perform any re-ordering and shaping
on the text. See “Introducing Layout Library Subroutines” on page 377 for more information.

v Store and communicate the text in the implicit (logical) form. Some utilities (for example, aixterm)
support the visual form of bidirectional text, but most NLS subroutines can not process the visual
form of bidirectional text.

If the response to all the above items is no, then the program probably has no NLS dependencies. In this
case, you may not need the locale-setting subroutine setlocale and the catalog facility subroutines
catopen and catgets.

Message Suggestions
The following are suggestions on how to make messages meaningful and concise:

v Plan for the translation of all messages, including messages that are displayed on panels.

v Externalize messages.

v Provide default messages.

v Make each message in a message source file be a complete entity. Building a message by
concatenating parts together makes translation difficult.

v Use the $len directive in the message source file to control the maximum display length of the message
text. (The $len directive is specific to the Message Facility.)

v Allow sufficient space for translated messages to be displayed. Translated messages often occupy more
display columns than the original message text. In general, allow about 20% to 30% more space for
translated messages, but in some cases you may need to allow 100% more space for translated
messages.

v Use symbolic identifiers to specify the set number and message number. Programs should refer to set
numbers and message numbers by their symbolic identifiers, not by their actual numbers. (The use of
symbolic identifiers is specific to the Message Facility.)

Chapter 16. National Language Support 499

../../libs/basetrf1/IMAuxDraw.htm#HDRA219915C2
../../aixprggd/aixwnpgd/bidirectional.htm
../../libs/basetrf2/setlocale.htm#HDRA15096AB
../../libs/basetrf1/catopen.htm#HDRA3059C50
../../libs/basetrf1/catgets.htm#HDRA16992009

v Facilitate the reordering of sentence clauses by numbering the %s variables. This allows the translator to
reorder the clauses if needed. For example, if a program needs to display the English message: The
file %s is referenced in %s, a program may supply the two strings as follows:
printf(message_pointer, name1, name2)

The English message numbers the %s variables as follows:
The file %1$s is referenced in %2$s\n

The translated equivalent of this message may be:
%2$s contains a reference to file %1$s\n

v Do not use sys_errlist[errno] to obtain an error message. This defeats the purpose of externalizing
messages. The sys_errlist[] is an array of error messages provided only in the English language. Use
strerror(errno) , as it obtains messages from catalogs.

v Do not use sys_siglist[signo] to obtain an error message. This defeats the purpose of externalizing
messages. The sys_siglist[] is an array of error messages provided only in the English language. Use
psignal() , as it obtains messages from catalogs.

v Use the message comments facility to aid in the maintenance and translation of messages.

v In general, create separate message source files and catalogs for messages that apply to each
command or utility.

Describing Command Syntax in Messages
v Show the command syntax in the usage statement. For example, a possible usage statement for the rm

command is:
Usage: rm [-firRe] [--] File ...

v Capitalize the first letter of such words as File, Directory, String, and Number in usage statement
messages.

v Do not abbreviate parameters on the command line. For example, Num spelled out as Number can be
more easily translated.

v Use only the following delimiters in usage statement messages:

[] Encloses an optional parameter.
{} Encloses multiple parameters, one of which is required.
| Seperates parameters that cannot both be chosen. For example, [a|b] indicates that you can choose a, b ,

or neither a nor b ; and {a|b} indicates that you must choose a or b .
... Follows a parameter that can be repeated on the command line. Note that there is a space before the

ellipsis.
- Indicates standard input.

v Do not use any delimiters for a required parameter that is the only choice. For example:
banner String

v Put a space character between flags that must be separated on the command line. For example:
unget [-n] [-rSID] [-s] {File|-}

v Do not separate flags that can be used together on the command line. For example:
wc [-cwl] {File ...|-}

v Put flags in alphabetical order when the order of the flags on the command line does not make a
difference. Put lowercase flags before uppercase flags. For example:
get -aAijlmM

v Use your best judgment to determine where you should end lines in the usage statement message. The
following example shows a lengthy usage statement message:
Usage: get [-e|-k] [-cCutoff] [-iList] [-rSID] [-wString] [-xList] [-b] [-gmnpst] [-l[p]] File ...

500 Writing and Debugging Programs

Writing Style of Messages
Clear writing aids in message translation. The following guidelines on the writing style of messages include
terminology, punctuation, mood, voice, tense, capitalization, format, and other usage questions.

v Write concise messages. One-sentence messages are preferable.

v Use complete-sentence format.

v Add articles (a, an, the) when necessary to eliminate ambiguity.

v Capitalize the first word of the sentence, and use a period at the end of the sentence.

v Use the present tense. Do not use future tense in a message. For example, use the sentence:
The cal command displays a calendar.

Instead of:
The cal command will display a calendar.

v Do not use the first person (I or we) in messages.

v Avoid using the second person (you) except in help and interactive text.

v Use active voice. The following example shows how a message written in passive voice can be turned
into an active voice message.
Passive: Month and year must be entered as numbers.
Active: Enter month and year as numbers.

v Use the imperative mood (command phrase) and active verbs such as specify, use, check, choose, and
wait.

v State messages in a positive tone. The following example shows a negative message made more
positive.
Negative: Don't use the f option more than once.
Positive: Use the -f flag only once.

v Use words only in the grammatical categories shown in a dictionary. If a word is shown only as a noun,
do not use it as a verb. For example, do not solution a problem or architect a system.

v Do not use prefixes or suffixes. Translators may not know what words beginning with re-, un-, in-, or
non- mean, and the translations of messages that use prefixes or suffixes may not have the meaning
you intended. Exceptions to this rule occur when the prefix is an integral part of a commonly used word.
For example, the words previous and premature are acceptable; the word nonexistent is not
acceptable.

v Do not use parentheses to show singular or plural, as in error(s), which cannot be translated. If you
must show singular and plural, write error or errors. You may also be able to revise the code so that
different messages are issued depending on whether the singular or plural of a word is required.

v Do not use contractions.

v Do not use quotation marks, both single and double quotation marks. For example, do not use quotation
marks around variables such as %s, %c, and %d or around commands. Users may interpret the quotation
marks literally.

v Do not hyphenate words at ends of lines.

v Do not use the standard highlighting guidelines in messages, and do not substitute initial or all caps for
other highlighting practices. (Standard highlighting includes such guidelines as bold for commands,
subroutines, and files; italics for variables and parameters; typewriter or courier for examples and
displayed text.)

v Do not use the and/or construction. This construction does not exist in other languages. Usually it is
better to say or to indicate that it is not necessary to do both.

v Use the 24-hour clock. Do not use a.m. or p.m. to specify time. For example, write 1:00 p.m. as 1300.

v Avoid acronyms. Only use acronyms that are better known to your audience than their spelled-out
version. To make a plural of an acronym, add a lowercase s without an apostrophe. Verify that the
acronym is not a trademark before using it.

Chapter 16. National Language Support 501

v Do not construct messages from clauses. Use flags or other means within the program to pass on
information so that a complete message may be issued at the proper time.

v Do not use hard-coded text as a variable for a %s string in a message.

v End the last line of the message with \n (indicating a new line). This applies to one-line messages also.

v Begin the second and remaining lines of a message with \t (indicating a tab).

v End all other lines with \n\ (indicating a new line).

v Force a newline on word boundaries where needed so that acceptable message strings display. The
printf subroutine, which often is used to display the message text, disregards word boundaries and
wraps text whenever necessary, sometimes splitting a word in the middle.

v If, for some reason, the message should not end with a newline character, leave writers a comment to
that effect.

v Precede each message with the name of the command that called the message, followed by a colon.
The following example is a message containing a command name:
OPIE "foo: Opening the file."

v Tell the user to Press the ——— key to select a key on the keyboard, including the specific key to press.
For example:
Press the Ctrl-D key

v Do not tell the user to Try again later, unless the system is overloaded. The need to try again should
be obvious from the message.

v Use the word ″parameter″ to describe text on the command line, the word ″value″ to indicate numeric
data, and the words ″command string″ to describe the command with its parameters.

v Do not use commas to set off the one-thousandth place in values. For example, use 1000 instead of
1,000.

v If a message must be set off with an * (asterisk), use two asterisks at the beginning of the message
and two at asterisks at the end of the message. For example:
** Total **

v Use the words ″log in″ and ″log off″ as verbs. For example:
Log in to the system; enter the data; then log off.

v Use the words ″user name,″ ″group name,″ and ″login″ as nouns. For example:
The user is sam.
The group name is staff.
The login directory is /u/sam.

v Do not use the word ″superuser.″ Note that the root user may not have all privileges.

v Use the following frequently occurring standard messages where applicable:

Preferred Standard Message Less Desirable Message
Cannot find or open the file. Can’t open filename.
Cannot find or access the file. Can’t access
The syntax of a parameter is not valid. syntax error

List of National Language Support Subroutines

The National Language Support (NLS) subroutines are used for handling locale-specific information,
manipulating wide characters and multibyte characters, and using regular expressions. The following
functional lists of NLS subroutines are provided:

v “List of Locale Subroutines” on page 503

v “List of Multibyte Character Subroutines” on page 503

v “List of Wide Character Subroutines” on page 503

v “List of Layout Library Subroutines” on page 505

502 Writing and Debugging Programs

v “List of Message Facility Subroutines” on page 505

v “List of Converter Subroutines” on page 505

v “List of Input Method Subroutines” on page 506

v “List of Regular Expression Subroutines” on page 506

For more information about NLS subroutines see “National Language Support Subroutines Overview” on
page 339.

List of Locale Subroutines
The following subroutines are provided to obtain and process locale-specific data:

localeconv Retrieves locale-dependent conventions of a program locale.
nl_langinfo Returns information on language or cultural area in a program locale.
rpmatch Determines whether a response is affirmative or negative in the current locale.
setlocale Changes or queries a program’s current locale.

For more information about locales and their databases see “Locale Overview for Programming” on
page 330

For more NLS subroutines see “List of National Language Support Subroutines” on page 502.

List of Time and Monetary Formatting Subroutines

strfmon Formats monetary strings according to the current locale.
strftime Formats time and date according to the current locale.
strptime Converts a character string to a time value according to the current locale.
wcsftime Converts time and date into a wide character string according to the current locale.

For more information about NLS subroutines see “National Language Support Subroutines Overview” on
page 339.

For more NLS subroutines see “List of National Language Support Subroutines” on page 502.

List of Multibyte Character Subroutines

mblen Determines the length of a multibyte character.
mbstowcs Converts a multibyte character string to a wide character string.
mbtowc Converts a multibyte character to a wide character.

For more information about multibyte character subroutines see “National Language Support Subroutines
Overview” on page 339.

For more NLS subroutines see “List of National Language Support Subroutines” on page 502.

List of Wide Character Subroutines
The following subroutines process characters in process-code form:

fgetwc Gets a wide character or word from an input stream.
fgetws Gets a wide character string from a stream.
fputwc Writes a wide character or a word to a stream.

Chapter 16. National Language Support 503

../../libs/basetrf1/localeconv.htm#HDRA1509139
../../libs/basetrf1/nl_langinfo.htm#HDRA4F011
../../libs/basetrf2/rpmatch.htm#HDRA143C127A
../../libs/basetrf2/setlocale.htm#HDRA15096AB
../../libs/basetrf2/strfmon.htm#HDRA143C13EF
../../libs/basetrf2/strftime.htm#HDRA1819455
../../libs/basetrf2/strptime.htm#HDRA143C1327
../../libs/basetrf2/wcsftime.htm#HDRA143C130B
../../libs/basetrf1/mblen.htm
../../libs/basetrf1/mbstowcs.htm
../../libs/basetrf1/mbtowc.htm
../../libs/basetrf1/getwc.htm
../../libs/basetrf1/getws.htm
../../libs/basetrf1/putwc.htm

fputws Writes a wide character string to a stream.
getwc Gets a wide character or word from an input stream.
getwchar Gets a wide character or word from an input stream.
getws Gets a wide character string from a stream.
iswalnum Determines if the wide character is alphanumeric.
iswalpha Determines if the wide character is alphabetic.
iswcntrl Determines if the wide character is a control character.
iswctype Determines the property of a wide character.
iswdigit Determines if the wide character is a digit.
iswgraph Determines if the wide character (excluding ″space characters″) is a printing character.
iswlower Determines if the wide character is lowercase.
iswprint Determines if the wide character (including ″space characters″) is a printing character.
iswpunct Determines if the wide character is a punctuation character.
iswspace Determines if the wide character is a blank space.
iswupper Determines if the wide character is uppercase.
iswxdigit Determines if the wide character is a hexadecimal digit.
putwc Writes a wide character or a word to a stream.
putwchar Writes a wide character or a word to a stream.
putws Writes a wide character string to a stream.
strcoll Compares two strings based on their collation weights in the current locale.
strxfrm Transforms a string into locale collation values.
towlower Converts an uppercase wide character to a lowercase wide character.
towupper Converts a lowercase wide character to an uppercase wide character.
ungetwc Pushes a wide character onto a stream.
wcsid Returns the charsetID of a wide character.
wcscat Concatenates wide character strings.
wcschr Searches for a wide character.
wcscmp Compares wide character strings.
wcscoll Compares the collation weights of wide character strings.
wcscpy Copies a wide character string.
wcscspn Searches for a wide character string.
wcslen Determines the number of characters in a wide character string.
wcsncat Concatenates a specified number of wide characters.
wcsncmp Compares a specified number of wide characters.
wcsncpy Copies a specified number of wide characters.
wcspbrk Locates the first occurrence of wide characters in a wide character string.
wcsrchr Locates the last occurrence of wide characters in a wide character string.
wcsspn Returns the number of wide characters in the initial segment of a string.
wcstod Converts a wide character string to a double-precision floating point value.
wcstok Breaks a wide character string into a sequence of separate wide character strings.
wcstol Converts a wide character string to a long integer value.
wcstombs Converts a sequence of wide characters to a sequence of multibyte characters.
wcstoul Converts a wide character string to an unsigned, long integer value.
wcswcs Locates the first occurrence of a wide character sequence in a wide character string.
wcswidth Determines the display width of a wide character string.
wcsxfrm Converts a wide character string to values representing character collation weights.
wctomb Converts a wide character to a multibyte character.
wctype Gets a handle for valid property names as defined in the current locale.
wcwidth Determines the display width of a wide character.

For more information about wide character subroutines see “National Language Support Subroutines
Overview” on page 339.

For more NLS subroutines see “List of National Language Support Subroutines” on page 502.

504 Writing and Debugging Programs

../../libs/basetrf1/putws.htm
../../libs/basetrf1/getwc.htm
../../libs/basetrf1/getwc.htm
../../libs/basetrf1/getws.htm
../../libs/basetrf1/iswalnum.htm
../../libs/basetrf1/iswalnum.htm
../../libs/basetrf1/iswalnum.htm
../../libs/basetrf1/iswctype.htm
../../libs/basetrf1/iswalnum.htm
../../libs/basetrf1/iswalnum.htm
../../libs/basetrf1/iswalnum.htm
../../libs/basetrf1/iswalnum.htm
../../libs/basetrf1/iswalnum.htm
../../libs/basetrf1/iswalnum.htm
../../libs/basetrf1/iswalnum.htm
../../libs/basetrf1/iswalnum.htm
../../libs/basetrf1/putwc.htm
../../libs/basetrf1/putwc.htm
../../libs/basetrf1/putws.htm
../../libs/basetrf2/strcmp.htm
../../libs/basetrf2/strcat.htm
../../libs/basetrf2/towlower.htm
../../libs/basetrf2/towupper.htm
../../libs/basetrf2/ungetc.htm
../../libs/basetrf2/wcsid.htm
../../libs/basetrf2/wcscat.htm
../../libs/basetrf2/wcscat.htm
../../libs/basetrf2/wcscat.htm
../../libs/basetrf2/wcscoll.htm
../../libs/basetrf2/wcscat.htm
../../libs/basetrf2/wcscat.htm
../../libs/basetrf2/wcslen.htm
../../libs/basetrf2/wcsncat.htm
../../libs/basetrf2/wcsncat.htm
../../libs/basetrf2/wcsncat.htm
../../libs/basetrf2/wcspbrk.htm
../../libs/basetrf2/wcsrchr.htm
../../libs/basetrf2/wcsspn.htm
../../libs/basetrf2/wcstod.htm
../../libs/basetrf2/wcstok.htm
../../libs/basetrf2/wcstol.htm
../../libs/basetrf2/wcstombs.htm
../../libs/basetrf2/wcstoul.htm
../../libs/basetrf2/wcswcs.htm
../../libs/basetrf2/wcswidth.htm
../../libs/basetrf2/wcsxfrm.htm
../../libs/basetrf2/wctomb.htm
../../libs/basetrf2/wctype.htm
../../libs/basetrf2/wcwidth.htm

List of Layout Library Subroutines
The following subroutines of the Layout library (libi18n.a) transform bidirectional and context-dependent
text to different formats:

layout_object_create Initializes a layout context.
layout_object_free Frees a LayoutObject structure.
layout_object_editshape Edits the shape of the context text.
layout_object_getvalue Queries the current layout values of a LayoutObject structure.
layout_object_setvalue Sets the layout values of a LayoutObject structure.
layout_object_shapeboxchars Shapes box characters.
layout_object_transform Transforms the text according to the current layout values of a

LayoutObject structure.

For more information about Layout library subroutines see “National Language Support Subroutines
Overview” on page 339.

For more NLS subroutines see “List of National Language Support Subroutines” on page 502.

List of Message Facility Subroutines
The Message Facility consists of standard defined subroutines and commands, and manufacturer
value-added extensions to support externalized message catalogs. These catalogs are used by an
application to retrieve and display messages, as needed. The following Message Facility subroutines get
messages for an application:

catopen Opens a catalog.
catgets Gets a messages from a catalog.
catclose Closes a catalog.
strerror Maps an error number to an error-message string appropriate for the current locale.

For more information about multibyte character subroutines see “National Language Support Subroutines
Overview” on page 339.

For more NLS subroutines see “List of National Language Support Subroutines” on page 502.

List of Converter Subroutines
In an internationalized environment, it is often necessary to convert data from one code set to another.
The following converter subroutines are supported for this purpose:

iconv_open Performs the initialization required to convert characters from the code set specified by the
FromCode parameter to the code set specified by the ToCode parameter.

iconv Invokes the converter function using the descriptor obtained from the iconv_open subroutine.
iconv_close Closes the conversion descriptor specified by the cd variable and makes it usable again.
ccsidtocs Returns the code-set name of the corresponding coded character set IDs (CCSID).
cstoccsid Returns the CCSID of the corresponding code-set name.

For more information about multibyte character subroutines see “National Language Support Subroutines
Overview” on page 339.

For more NLS subroutines see “List of National Language Support Subroutines” on page 502.

Chapter 16. National Language Support 505

../../libs/basetrf1/layout_object_create.htm#HDRCEBCB3A296AMY
../../libs/basetrf1/layout_object_free.htm#HDRCEBD6D6811AMY
../../libs/basetrf1/layout_object_editshape.htm#HDRCEBCFD3654AMY
../../libs/basetrf1/layout_object_getvalue.htm#HDRCEBD7B9399AMY
../../libs/basetrf1/layout_object_setvalue.htm#HDRCEBD88F071AMY
../../libs/basetrf1/layout_object_shapeboxchars.htm#HDRCEBD948338AMY
../../libs/basetrf1/layout_object_transform.htm#HDRCEBDA22094AMY
../../libs/basetrf1/catopen.htm#HDRA3059C50
../../libs/basetrf1/catgets.htm#HDRA16992009
../../libs/basetrf1/catclose.htm#HDRAT11C0SUSA
../../libs/basetrf2/strerror.htm#HDRA4OH11B0SHAD
../../libs/basetrf1/iconv_open.htm#HDRA108C1C9F
../../libs/basetrf1/iconv.htm#HDRHG3250CHER
../../libs/basetrf1/iconv_close.htm#HDRA108C1CCB
../../libs/basetrf1/ccsidtocs.htm#HDRA108C1D18
../../libs/basetrf1/ccsidtocs.htm#HDRA108C1D18

List of Input Method Subroutines
The Input Method is a set of subroutines that translate key strokes into character strings in the code set
specified by a locale. The Input Method subroutines include logic for locale-specific input processing and
keyboard controls (for example, Ctrl, Alt, Shift, Lock, and Alt-Graphic). The following subroutines support
this Input Method:

IMAIXMapping Translates a pair of KeySymbol and State parameters to a string and returns a
pointer to that string.

IMAuxCreate Tells the application program to create an auxiliary area.
IMAuxDestroy Notifies the callback to destroy any knowledge of the auxiliary area.
IMAuxDraw Tells the application program to draw the auxiliary area.
IMAuxHide Tells the application program to hide the auxiliary area.
IMBeep Tells the application program to emit a beep sound.
IMClose Closes the input method.
IMCreate Creates one instance of a particular input method.
IMDestroy Destroys an input method instance.
IMFilter Checks whether a keyboard event is used by the input method for its internal

processing.
IMFreeKeymap Frees resources allocated by the IMInitialzieKeymap subroutine.
IMIndicatorDraw Tells the application program to draw the indicator.
IMIndicatorHide Tells the application program to hide the indicator.
IMInitialize Initializes the input method for a particular language.
IMInitializeKeymap Initializes the input method for a particular language.
IMIoctl Performs a variety of control or query operations on the input method.
IMLookupString Maps a keyboard-symbol/state pair to a string defined by the user.
IMProcessAuxiliary Notifies the input method of input for an auxiliary area.
IMQueryLanguage Checks to see if the specified language is supported.
IMSimpleMapping Translates a pair of KeySymbol and State parameters to a string a returns a

pointer to that string.
IMTextCursor Sets the new display cursor position.
IMTextDraw Asks the application program to draw the next string.
IMTextHide Tells the application program to hide the text area.
IMTextStart Notifies the application program of the length of the pre-editing space.
IMTextStart Notifies the application program of the length of the pre-editing space.

List of Regular Expression Subroutines
The following subroutines handle regular expressions:

regcomp Compiles a regular expression for comparison by the regexec subroutine.

For more information about multibyte character subroutines see “National Language Support Subroutines
Overview” on page 339.

For more NLS subroutines see “List of National Language Support Subroutines” on page 502.

506 Writing and Debugging Programs

../../libs/basetrf1/IMAIXMapping.htm#HDRA22192EC
../../libs/basetrf1/IMAuxCreate.htm#HDRA21991549
../../libs/basetrf1/IMAuxDestroy.htm#HDRA21991638
../../libs/basetrf1/IMAuxDraw.htm#HDRA219915C2
../../libs/basetrf1/IMAuxHide.htm#HDRA219915FD
../../libs/basetrf1/IMBeep.htm#HDRA22191B8
../../libs/basetrf1/IMClose.htm#HDRA2199F42
../../libs/basetrf1/IMCreate.htm#HDRA2199F7D
../../libs/basetrf1/IMDestroy.htm#HDRA2199FB9
../../libs/basetrf1/IMFilter.htm#HDRA171C13FE
../../libs/basetrf1/IMFreeKeymap.htm#HDRA2219231
../../libs/basetrf1/IMIndicatorDraw.htm#HDRA22192A
../../libs/basetrf1/IMIndicatorHide.htm#HDRA221966
../../libs/basetrf1/IMInitialize.htm#HDRA2199F06
../../libs/basetrf1/IMInitializeKeymap.htm#HDRA22191F4
../../libs/basetrf1/IMIoctl.htm#HDRA2199114F
../../libs/basetrf1/IMLookupString.htm#HDRA168C1169
../../libs/basetrf1/IMProcessAuxiliary.htm#HDRA2199110A
../../libs/basetrf1/IMQueryLanguage.htm#HDRA2199ECA
../../libs/basetrf1/IMSimpleMapping.htm#HDRA2219328
../../libs/basetrf1/IMTextCursor.htm#HDRA21991585
../../libs/basetrf1/IMTextDraw.htm#HDRA2199118B
../../libs/basetrf1/IMTextHide.htm#HDRA219911C8
../../libs/basetrf1/IMTextStart.htm#HDRA21991203
../../libs/basetrf1/IMTextStart.htm#HDRA21991203
../../libs/basetrf2/regcomp.htm#HDRA143C11B2

Chapter 17. Object Data Manager (ODM)

Object Data Manager (ODM) is a data manager intended for storing system information. Information is
stored and maintained as objects with associated characteristics. You can also use ODM to manage data
for application programs.

System data managed by ODM includes:

v Device configuration information

v Display information for SMIT (menus, selectors, and dialogs)

v Vital product data for installation and update procedures

v Communications configuration information

v System resource information.

You can create, add, lock, store, change, get, show, delete, and drop objects and object classes with
ODM. ODM commands provide a command line interface to these functions. ODM subroutines access
these functions from within an application program.

Some object classes come with the system. These object classes are discussed in the documentation for
the specific system products that provide them.

This chapter discusses:

ODM Object Classes and Objects

The basic components of ODM are object classes and objects. To manage object classes and objects, you
use the ODM commands and subroutines (“List of ODM Commands and Subroutines” on page 517).
Specifically, you use the create and add features of these interfaces to build object classes and objects for
storage and management of your own data.

object class A group of objects with the same definition. An object class comprises one or more
descriptors (“ODM Descriptors” on page 510).

object A member of a defined object class, is an entity that requires storage and management of
data

An object class is conceptually similar to an array of structures, with each object being a structure that is
an element of the array. Values are associated with the descriptors of an object when the object is added
to an object class. The descriptors of an object and their associated values can be located and changed
with ODM facilities.

The following example provides an overview of manipulating object classes and objects.

Example:

1. To create an object class called Fictional_Characters, enter:
class Fictional_Characters {

char Story_Star[20];
char Birthday[20];
short Age;
char Friend[20];

};

In this example, the Fictional_Characters object class contains four descriptors: Story_Star,
Birthday, and Friend, which have a descriptor type of character and a 20-character maximum length;

© Copyright IBM Corp. 1997, 2001 507

and Age, with a descriptor type of short. To create the object class files required by ODM, you process
this file with the odmcreate command or the odm_create_class subroutine.

2. Once you create an object class, you can add objects to the class using the odmadd command or the
odm_add_obj subroutine. For example, enter the following code with the odmadd command to add
the objects Cinderella and Snow White to the Fictional_Characters object class, along with values for
the descriptors they inherit:
Fictional_Characters:

Story_Star = "Cinderella"
Birthday = "Once upon a time"
Age = 19
Friend = "mice"

Fictional_Characters:
Story_Star = "Snow White"
Birthday = "Once upon a time"
Age = 18
Friend = "Fairy Godmother"

The Fictional_Characters table shows a conceptual picture of the Fictional_Characters object class
with the two added objects Cinderella and Snow White.

Table 9. Conceptual Picture of Fictional_Characters Object Class with Two Objects, Cinderella and Snow White

Fictional Characters

Story Star (char) Birthday (char) Age (short) Friend (char)

Cinderella Once upon a time 19 Mice

Snow White Once upon a time 18 Fairy Godmother

Retrieved data for 'Story_Star = "Cinderella"'
Cinderella:

Birthday = Once upon a time
Age = 19
Friend = Mice

3. After the Fictional_Characters object class is created and the objects Cinderella and Snow White are
added, the retrieved data for ’Story_Star = ″Cinderella″’ is:
Cinderella:

Birthday = Once upon a time
Age = 19
Friend = mice

Creating an Object Class

Prerequisite Tasks or Conditions

Attention: Making changes to files that define system object classes and objects can result in
system problems. Consult your system administrator before using the /usr/lib/objrepos directory as
a storage directory for object classes and objects.

1. Create the definition for one or more object classes in an ASCII file. “ODM Example Code and Output”
on page 518 shows an ASCII file containing several object class definitions.

2. Specify the directory in which the generated object must be stored.

″ODM Object Class and Object Storage″ discusses the criteria used at object-class creation time for
determining the directory in which to store generated object classes and objects. Most system object
classes and objects are stored in the /usr/lib/objrepos directory.

Procedure
Generate an empty object class by running the odmcreate command with the ASCII file of object class
definitions specified as the ClassDescriptionFile input file.

508 Writing and Debugging Programs

../../cmds/aixcmds4/odmcreate.htm#HDRA265911DB

Adding Objects to an Object Class

Prerequisite Tasks or Conditions

Attention: Making changes to files that define system object classes and objects can result in
system problems. Consult your system administrator before using the /usr/lib/objrepos directory as
a storage directory for object classes and objects.

1. Create the object class to which the objects will be added. See “Creating an Object Class” on
page 508 for instructions on creating an object class.

2. Create the definitions for one or more objects. “ODM Example Code and Output” on page 518 shows
an ASCII file containing several object definitions.

3. Specify the directory in which the generated objects will be stored.

″ODM Object Class and Object Storage″ discusses the criteria used at object class creation time for
determining the directory in which to store generated object classes and objects. Most system object
classes and objects are stored in the /usr/lib/objrepos directory.

Procedure
Add objects to an empty object class by running the odmadd command with the ASCII file of object
definitions specified as the InputFile input file.

Locking Object Classes

ODM does not implicitly lock object classes or objects. The coordination of locking and unlocking is the
responsibility of the applications accessing the object classes. However, ODM provides the odm_lock and
odm_unlock subroutines to control locking and unlocking object classes by application programs.

odm_lock Processes a string that is a path name and can resolve in an object class file or a directory of object
classes. It returns a lock identifier and sets a flag to indicate that the specified object class or classes
defined by the path name are in use.

When the odm_lock subroutine sets the lock flag, it does not disable use of the object class by other
processes. If usage collision is a potential problem, an application program should explicitly wait until it is
granted a lock on a class before using the class.

Another application cannot acquire a lock on the same path name while a lock is in effect. However, a lock
on a directory name does not prevent another application from acquiring a lock on a subdirectory or the
files within that directory.

To unlock a locked object class, use an odm_unlock subroutine called with the lock identifier returned by
the odm_lock subroutine.

Storing Object Classes and Objects

Each object class you create with an odmcreate command or odm_create_class subroutine is stored in a
file as a C language definition of an array of structures. Each object you add to the object class with an
odmadd command or an odm_add_obj subroutine is stored as a C language structure in the same file.

You determine the directory in which to store this file when you create the object class.

Prerequisite Tasks or Condition
Create an object or object class.

Chapter 17. Object Data Manager (ODM) 509

../../cmds/aixcmds4/odmadd.htm#HDRA26491517

Procedure
Storage methods vary according to whether commands or subroutines are used to create object classes
and objects.

Attention: Making changes to files that define system object classes and objects can result in
system problems. Consult your system administrator before using the /usr/lib/objrepos directory as
a storage directory for object classes and objects.

Using ODM Commands
When using the odmcreate or odmdrop command to create or drop an object class, specify the directory
from which the class definition file will be accessed as follows:

1. Store the file in the default directory indicated by $ODMDIR, which is the /usr/lib/objrepos directory.

2. Use the set command to set the ODMDIR environment variable to specify a directory for storage.

3. Use the unset command to unset the ODMDIR environment variable and the cd command to change
the current directory to the one in which you want the object classes or objects stored. Then, run the
ODM commands in that directory. The file defining the object classes and objects will be stored in the
current directory.

When using the odmdelete, odmadd, odmchange, odmshow, or odmget command to work with classes
and objects, specify the directory from which the class definition file will be accessed as follows:

1. Store the file in the default directory indicated by $ODMDIR, which is the /usr/lib/objrepos directory.

2. Use the set command to set the ODMDIR environment variable to specify a directory for storage.

3. Use the unset command to unset the ODMDIR environment variable and the cd command to change
the current directory to the one in which you want the object classes or objects stored. Then, run the
ODM commands in that directory. The file defining the object classes and objects will be stored in the
current directory.

4. From the command line, use the set command to set the ODMPATH environment variable to a string
containing a colon-separated list of directories to be searched for classes and objects. For example:
$ export ODMPATH = /usr/lib/objrepos:/tmp/myrepos

The directories in the $ODMPATH are searched only if the directory $ODMDIR does not have the
class definition file.

Using the odm_create_class or odm_add_obj Subroutines
The odm_create_class or odm_add_obj subroutine is used to create object classes and objects:

v If there is a specific requirement for your application to store object classes other than specified by the
ODMDIR environment variable, use the odm_set_path subroutine to reset the path. It is strongly
recommended that you use this subroutine to set explicitly the storage path whenever creating object
classes or objects from an application.

OR

v Before running your application, use the set command from the command line to set the ODMDIR
environment variable to specify a directory for storage.

OR

v Store the file in the default object repository used to store most of the system object classes, the
/usr/lib/objrepos directory.

ODM Descriptors

An Object Data Manager (ODM) descriptor is conceptually similar to a variable with a name and type.
When an object class is created, its descriptors are defined like variable names with associated ODM
descriptor types. When an object is added to an object class, it gets a copy of all of the descriptors of the
object class. Values are also associated with object descriptors already stated.

510 Writing and Debugging Programs

../../cmds/aixcmds4/odmcreate.htm#HDRA265911DB
../../cmds/aixcmds4/odmdrop.htm#HDRA26591200
../../cmds/aixcmds4/odmdelete.htm#HDRA265911F2
../../cmds/aixcmds4/odmadd.htm#HDRA26491517
../../cmds/aixcmds4/odmchange.htm#HDRA265911CC
../../cmds/aixcmds4/odmshow.htm#HDRA2659121B
../../cmds/aixcmds4/odmget.htm#HDRA2659120D
../../libs/basetrf1/odm_create_class.htm#HDRA265914BA
../../libs/basetrf1/odm_add_obj.htm#HDRA26591482

ODM supports several descriptor types:

terminal descriptor (“ODM Terminal
Descriptors”)

Defines a character or numerical data type

link descriptor (“ODM Link
Descriptor”)

Defines a relationship between object classes

method descriptor (“ODM Method
Descriptor” on page 513)

Defines an operation or method for an object

Use the descriptors of an object and their associated values to define criteria for retrieving individual
objects from an object class. Format the selection criteria you pass to ODM as defined in “ODM Object
Searches” on page 514. Do not use the binary terminal descriptor in search criteria because of its
arbitrary length.

ODM Terminal Descriptors

Terminal descriptors define the most primitive data types used by ODM. A terminal descriptor is basically a
variable defined with an ODM terminal descriptor type. The terminal descriptor types provided by ODM
are:

short Specifies a signed 2-byte number.
long Specifies a signed 4-byte number.
ulong Specifies an unsigned 4-byte number.
binary Specifies a fixed-length bit string. The binary terminal

descriptor type is defined by the user at ODM creation
time. The binary terminal descriptor type cannot be used
in selection criteria.

char Specifies a fixed-length, null-terminated string.
vchar Specifies variable-length, null-terminated string. The

vchar terminal descriptor type can be used in selection
criteria.

long64/ODM_LONG_LONG/int64 Specifies a signed 8-byte number.
ulong64/ODM_ULONG_LONG/uint64 Specifies an unsigned 8-byte number.

ODM Link Descriptor

The ODM link descriptor establishes a relationship between an object in an object class and an object in
another object class. A link descriptor is a variable defined with the ODM link descriptor type.

For example, the following code can be processed by the ODM create facilities to generate the
Friend_Table and Fictional_Characters object classes:
class Friend_Table {

char Friend_of[20];
char Friend[20];

};

class Fictional_Characters {
char Story_Star[20];
char Birthday[20];
short Age;
link Friend_Table Friend_Table Friend_of Friends_of;

};

The Fictional_Characters object class uses a link descriptor to make the Friends_of descriptors link to
the Friend_Table object class. To resolve the link, the Friends_of descriptor retrieves objects in the
Friend_Table object class with matching data in its Friend_of descriptors. The link descriptor in the

Chapter 17. Object Data Manager (ODM) 511

Fictional_Characters object class defines the class being linked to (Friend_Table), the descriptor being
linked to (Friend_of), and the name of the link descriptor (Friends_of) in the Fictional_Characters object
class.

The following code could be used to add objects to the Fictional_Characters and Friend_Table object
classes:
Fictional_Characters:

Story_Star = "Cinderella"
Birthday = "Once upon a time"
Age = 19
Friends_of = "Cinderella"

Fictional_Characters:
Story_Star = "Snow White"
Birthday = "Once upon a time"
Age = 18
Friends_of = "Snow White"

Friend_Table:
Friend_of = "Cinderella"
Friend = "Fairy Godmother"

Friend_Table:
Friend_of = "Cinderella"
Friend = "mice"

Friend_Table:
Friend_of = "Snow White"
Friend = "Sneezy"

Friend_Table:
Friend_of = "Snow White"
Friend = "Sleepy"

Friend_Table:
Friend_of = "Cinderella"
Friend = "Prince"

Friend_Table:
Friend_of = "Snow White"
Friend = "Happy"

The following tables show a conceptual picture of the Fictional_Characters and Friend_Table object
classes, the objects added to the classes, and the link relationship between them:

Fictional_Characters

Story_Star (char) Birthday (char) Age (short) Friends_of (link)

Cinderella Once upon a time 19 Cinderella

Snow White Once upon a time 18 Snow White

Retrieved data for 'Story_Star = "Cinderella"
Cinderella:

Birthday = Once upon a time
Age = 19
Friends_of = Cinderella
Friend_of = Cinderella

There is a direct link between the ″Friends_of″ and ″Friend_of″ columns of the two tables.

Friend_Table

Friend_of (char) Friend (char)

Cinderella Fairy Godmother

Cinderella mice

512 Writing and Debugging Programs

Snow White Sneezy

Snow White Sleepy

Cinderella Prince

Snow White Happy

Conceptual Picture of a Link Relationship Between Two Object Classes

After the Fictional_Characters and Friend_Table object classes are created and the objects are added,
the retrieved data for Story_Star = ’Cinderella’ would be:
Cinderella:

Birthday = Once upon a time
Age = 19
Friends_of = Cinderella
Friend_of = Cinderella

To see the expanded relationship between the linked object classes, use the odmget command on the
Friend_Table object class. The retrieved data for the Friend_of = ’Cinderella’ object class would be:
Friend_Table:

Friend_Of = "Cinderella"
Friend = "Fairy Godmother"

Friend_Table:
Friend_of = "Cinderella"
Friend= "mice"

Friend_Table:
Friend_of = "Cinderella"
Friend = "Prince"

ODM Method Descriptor

The ODM method descriptor gives the definition of an object class with objects that can have associated
methods or operations. A method descriptor is a variable defined with the ODM method descriptor type.

The operation or method descriptor value for an object is a character string that can be any command,
program, or shell script run by method invocation. A different method or operation can be defined for each
object in an object class. The operations themselves are not part of ODM; they are defined and coded by
the application programmer.

The method for an object is called by a call to the odm_run_method subroutine. The invocation of a
method is a synchronous event, causing ODM operation to pause until the operation is completed.

For example, the following code can be input to the ODM create facilities to generate the
Supporting_Cast_Ratings object class:
class Supporting_Cast_Ratings {

char Others[20];
short Dexterity;
short Speed;
short Strength;
method Do_This;

};

Chapter 17. Object Data Manager (ODM) 513

../../cmds/aixcmds4/odmget.htm#HDRA2659120D
../../libs/basetrf1/odm_run_method.htm#HDRA26591269

In the example, the Do_This descriptor is a method descriptor defined for the Supporting_Cast_Ratings
object class. The value of the method descriptor can be a string specifying a command, program, or shell
script for future invocation by an odm_run_method subroutine.

The following code is an example of how to add objects to the Supporting_Cast_Ratings object class:
Supporting_Cast_Ratings:

Others = "Sleepy"
Dexterity = 1
Speed = 1
Strength = 3
Do_This = "echo Sleepy has speed of 1"

Supporting_Cast_Ratings:
Others = "Fairy Godmother"
Dexterity = 10
Speed = 10
Strength = 10
Do_This = "odmget -q "Others='Fairy Godmother'" Supporting_Cast_Ratings"

The Supporting_Cast_Ratings table shows a conceptual picture of the Supporting_Cast_Ratings object
class with the Do_This method descriptor and operations associated with individual objects in the class.

Supporting_Cast_Ratings

Others (char) Dexterity (short) Speed (short) Stength (short) Do_This (method)

Sleepy 1 1 3 echo Sleepy has speed of 1

Fairy Godmother 10 10 10 odmget —q ″Others=’Fairy
Godmother’″Supporting_Cast_Ratings″

odm_run_method run of Sleepy's method displays
(using echo):
"Sleepy has speed of 1"

Conceptual Picture of an Object Class with a Method Descriptor

After the Supporting_Cast_Ratings object class is created and the objects are added, an invocation (by
the odm_run_method subroutine) of the method defined for Sleepy would cause the echo command to
display:
Sleepy has speed of 1

ODM Object Searches

Many ODM routines require that one or more objects in a specified object class be selected for
processing. You can include search criteria in the form of qualifiers when you select objects with certain
routines.

qualifier A null-terminated string parameter on ODM subroutine calls that gives the qualification criteria for
the objects to retrieve

The descriptor names and qualification criteria specified by this parameter determine which objects in the
object class are selected for later processing. Each qualifier contains one or more predicates connected
with logical operators. Each predicate consists of a descriptor name, a comparison operator, and a
constant.

A qualifier with three predicates joined by two logical operators follows:
SUPPNO=30 AND (PARTNO>0 AND PARTNO<101)

514 Writing and Debugging Programs

../../libs/basetrf1/odm_run_method.htm#HDRA26591269

In this example, the entire string is considered the qualifier. The three predicates are SUPPNO=30, PARTNO>0,
and PARTNO<101, and the AND logical operator is used to join the predicates. In the first predicate, SUPPNO
is the name of the descriptor in an object, the = (equal sign) is a comparison operator, and 30 is the
constant against which the value of the descriptor is compared.

Each predicate specifies a test applied to a descriptor that is defined for each object in the object class.
The test is a comparison between the value of the descriptor of an object and the specified constant. The
first predicate in the example shows an = (equal to) comparison between the value of a descriptor
(SUPPNO) and a constant (30).

The part of the qualifier within parentheses:
PARTNO>0 AND PARTNO<101

contains two predicates joined by the AND logical operator. The PARTNO descriptor is tested for a value
greater than 0 in the first predicate, then tested for a value less than 101 in the second predicate. Then the
two predicates are logically concatenated to determine a value for that part of the qualifier. For example, if
PARTNO is the descriptor name for a part number in a company inventory, then this part of the qualifier
defines a selection for all products with part numbers greater than 0 and less than 101.

In another example, the qualifier:
lname='Smith' AND Company.Dept='099' AND Salary<2500

can be used to select everyone (in ODM, every object) with a last name of Smith who is in Department
099 and has a salary less than $2500. Note that the Dept descriptor name is qualified with its Company
object class to create a unique descriptor.

Descriptor Names in ODM Predicates

In ODM, a descriptor name is not necessarily unique. You can use a descriptor name in more than one
object class. When this is the case, you specify the object class name along with the descriptor name in a
predicate to create a unique reference to the descriptor.

Comparison Operators in ODM Predicates

The following are valid comparison operators:

= Equal to
!= Not equal to
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to
LIKE Similar to; finds patterns in character string data

Comparisons can be made only between compatible data types.

LIKE Comparison Operator
The LIKE operator enables searching for a pattern within a char descriptor type. For example, the
predicate:
NAME LIKE 'ANNE'

defines a search for the value ANNE in the NAME descriptor in each object in the specified object class. In
this case, the example is equivalent to:
NAME = 'ANNE'

Chapter 17. Object Data Manager (ODM) 515

You can also use the LIKE operator with the following pattern-matching characters and conventions:

v Use the ? (question mark) to represent any single character. The predicate example:
NAME LIKE '?A?'

defines a search for any three-character string that has A as a second character in the value of the NAME
descriptor of an object. The descriptor values PAM, DAN, and PAT all satisfy this search criterion.

v Use the * (asterisk) to represent any string of zero or more characters. The predicate example:
NAME LIKE '*ANNE*'

defines a search for any string that contains the value ANNE in the NAME descriptor of an object. The
descriptor values LIZANNE, ANNETTE, and ANNE all satisfy this search criterion.

v Use [] (brackets) to match any of the characters enclosed within the brackets. The predicate example:
NAME LIKE '[ST]*'

defines a search for any descriptor value that begins with S or T in the NAME descriptor of an object.

Use a - (minus sign) to specify a range of characters. The predicate example:
NAME LIKE '[AD-GST]*'

defines a search for any descriptor value that begins with any of the characters A, D, E, F, G, S, or T.

v Use [!] (brackets enclosing an exclamation mark) to match any single character except one of those
enclosed within the brackets. The predicate example:
NAME LIKE '[!ST]*'

defines a search for any descriptor value except those that begin with S or T in the NAME descriptor of
an object.

You can use the pattern-matching characters and conventions in any combination in the string.

Constants in ODM Predicates

The specified constant can be either a numeric constant or a character string constant.

Numeric Constants in ODM Predicates
Numeric constants in ODM predicates consist of an optional sign followed by a number (with or without a
decimal point), optionally followed by an exponent marked by the letter E or e. If used, the letter E or e
must be followed by an exponent that can be signed.

Some valid numeric constants are:
2 2.545 0.5 -2e5 2.11E0
+4.555e-10 4E0 -10 999 +42

The E0 exponent can be used to specify no exponent.

Character String Constants in ODM Predicates
Character string constants must be enclosed in single quotation marks:
'smith' '91'

All character string constants are considered to have a variable length. To represent a single quotation
mark inside a string constant, use two single quotation marks. For example:
'DON''T GO'

is interpreted as:
DON'T GO

516 Writing and Debugging Programs

AND Logical Operator for Predicates

The AND logical operator can be used with predicates. Use AND or and for the AND logical operator.

The AND logical operator connects two or more predicates. The qualifier example:
predicate1 AND predicate2 AND predicate3

specifies predicate1 logically concatenated with predicate2 followed by the result logically concatenated
with predicate3.

List of ODM Commands and Subroutines
You can create, add, change, retrieve, display, delete, and remove objects and object classes with ODM.
You enter ODM commands on the command line.

You can put ODM subroutines in a C language program to handle objects and object classes. An ODM
subroutine returns a value of -1 if the subroutine is unsuccessful. The specific error diagnostic is returned
as the odmerrno external variable (defined in the odmi.h include file). ODM error-diagnostic constants are
also included in the odmi.h include file.

Note: If the application is linking statically, use option
-binitfini:__odm_initfini_init:__odm_initfini_fini.

Commands

ODM commands are:

odmadd Adds objects to an object class. The odmadd command takes an ASCII stanza file as input and
populates object classes with objects found in the stanza file.

odmchange Changes specific objects in a specified object class.
odmcreate Creates empty object classes. The odmcreate command takes an ASCII file describing object

classes as input and produces C language .h and .c files to be used by the application accessing
objects in those object classes.

odmdelete Removes objects from an object class.
odmdrop Removes an entire object class.
odmget Retrieves objects from object classes and puts the object information into odmadd command

format.
odmshow Displays the description of an object class. The odmshow command takes an object class name

as input and puts the object class information into odmcreate command format.

Subroutines

ODM subroutines are:

odm_add_obj Adds a new object to the object class.
odm_change_obj Changes the contents of an object.
odm_close_class Closes an object class.
odm_create_class Creates an empty object class.
odm_err_msg Retrieves a message string.
odm_free_list Frees memory allocated for the odm_get_list subroutine.
odm_get_by_id Retrieves an object by specifying its ID.
odm_get_first Retrieves the first object that matches the specified criteria in an object class.
odm_get_list Retrieves a list of objects that match the specified criteria in an object class.
odm_get_next Retrieves the next object that matches the specified criteria in an object class.

Chapter 17. Object Data Manager (ODM) 517

../../cmds/aixcmds4/odmadd.htm#HDRA26491517
../../cmds/aixcmds4/odmchange.htm#HDRA265911CC
../../cmds/aixcmds4/odmcreate.htm#HDRA265911DB
../../cmds/aixcmds4/odmdelete.htm#HDRA265911F2
../../cmds/aixcmds4/odmdrop.htm#HDRA26591200
../../cmds/aixcmds4/odmget.htm#HDRA2659120D
../../cmds/aixcmds4/odmshow.htm#HDRA2659121B
../../libs/basetrf1/odm_add_obj.htm#HDRA26591482
../../libs/basetrf1/odm_change_obj.htm#HDRA26591495
../../libs/basetrf1/odm_close_class.htm#HDRA265914A8
../../libs/basetrf1/odm_create_class.htm#HDRA265914BA
../../libs/basetrf1/odm_err_msg.htm#HDRA265914CA
../../libs/basetrf1/odm_free_list.htm#HDRA265914DB
../../libs/basetrf1/odm_get_by_id.htm#HDRA265914EE
../../libs/basetrf1/odm_get_obj.htm#HDRA26591500
../../libs/basetrf1/odm_get_list.htm#HDRA26591519
../../libs/basetrf1/odm_get_obj.htm#HDRA26591500

odm_get_obj Retrieves an object that matches the specified criteria from an object class.
odm_initialize Initializes an ODM session.
odm_lock Locks an object class or group of classes.
odm_mount_class Retrieves the class symbol structure for the specified object class.
odm_open_class Opens an object class.
odm_rm_by_id Removes an object by specifying its ID.
odm_rm_obj Removes all objects that match the specified criteria from the object class.
odm_run_method Invokes a method for the specified object.
odm_rm_class Removes an object class.
odm_set_path Sets the default path for locating object classes.
odm_unlock Unlocks an object class or group of classes.
odm_terminate Ends an ODM session.

ODM Example Code and Output

The following Fictional_Characters, Friend_Table, and Enemy_Table Object Classes and Relationships
tables list the object classes and objects created by the example code in this section.

Fictional_Characters

Story_Star (char) Birthday (char) Age (short) Friends_of (link) Enemies_of (link) Do_This (method)

Cinderella Once upon a time 19 Cinderella Cinderella echo Cleans House

Snow White Once upon a time 18 Snow White Snow White echo Cleans House

Friend_Table

Friend_of (char) Friend (char)

Cinderella Fairy Godmother

Cinderella mice

Snow White Sneezy

Snow White Sleepy

Cinderella Prince

Snow White Happy

Table 10.

Enemy_Table

Enemy_of (char) Enemy (char)

Cinderella midnight

Cinderella Mean Stepmother

Snow White Mean Stepmother

ODM Example Input Code for Creating Object Classes

The following example code in the MyObjects.cre file creates three object classes when used as an input
file with the odmcreate command:

518 Writing and Debugging Programs

../../libs/basetrf1/odm_get_obj.htm#HDRA26591500
../../libs/basetrf1/odm_initialize.htm#HDRA26591530
../../libs/basetrf1/odm_lock.htm#HDRA265912D3
../../libs/basetrf1/odm_mount_class.htm#HDRA265912C1
../../libs/basetrf1/odm_open_class.htm#HDRA265912B0
../../libs/basetrf1/odm_rm_by_id.htm#HDRA2659129F
../../libs/basetrf1/odm_rm_obj.htm#HDRA2659127D
../../libs/basetrf1/odm_run_method.htm#HDRA26591269
../../libs/basetrf1/odm_rm_class.htm#HDRA2659128F
../../libs/basetrf1/odm_set_path.htm#HDRA26591258
../../libs/basetrf1/odm_unlock.htm#HDRA26591228
../../libs/basetrf1/odm_terminate.htm#HDRA26591238
../../cmds/aixcmds4/odmcreate.htm#HDRA265911DB

* MyObjects.cre
* An input file for ODM create utilities.
* Creates three object classes:
* Friend_Table
* Enemy_Table
* Fictional_Characters

class Friend_Table {
char Friend_of[20];
char Friend[20];

};

class Enemy_Table {
char Enemy_of[20];
char Enemy[20];

};

class Fictional_Characters {
char Story_Star[20];
char Birthday[20];
short Age;
link Friend_Table Friend_Table Friend_of Friends_of;
link Enemy_Table Enemy_Table Enemy_of Enemies_of;
method Do_This;

};

* End of MyObjects.cre input file for ODM create utilities. *

The Fictional_Characters object class contains six descriptors:

v Story_Star and Birthday, each with a descriptor type of char and a 20-character maximum length.

v Age with a descriptor type of short.

v Arrange to Friends_of and Enemies_of are both from the link class, link to the two previously defined
object classes.

Note: Note that the object class link is repeated twice.

v Do_This with a descriptor type of method.

The file containing this code must be processed with the odmcreate command to generate the object
class files required by ODM.

ODM Example Output for Object Class Definitions
Processing the code in the MyObjects.cre file with the odmcreate command generates the following
structures in a .h file:
* MyObjects.h
* The file output from ODM processing of the MyObjects.cre input
* file. Defines structures for the three object classes:
* Friend_Table
* Enemy_Table
* Fictional_Characters
#include <odmi.h>

struct Friend_Table {
long _id; * unique object id within object class *
long _reserved; * reserved field *
long _scratch; * extra field for application use *
char Friend_of[20];
char Friend[20];

};

#define Friend_Table_Descs 2
extern struct Class Friend_Table_CLASS[];
#define get_Friend_Table_list(a,b,c,d,e) (struct Friend_Table *)odm_get_list (a,b,c,d,e)

struct Enemy_Table {
long _id;
long _reserved;

Chapter 17. Object Data Manager (ODM) 519

long _scratch;
char Enemy_of[20];
char Enemy[20];

};
#define Enemy_Table_Descs 2
extern struct Class Enemy_Table_CLASS[];
#define get_Enemy_Table_list(a,b,c,d,e) (struct Enemy_Table *)odm_get_list (a,b,c,d,e)

struct Fictional_Characters {
long _id;
long _reserved;
long _scratch;
char Story_Star[20];
char Birthday[20];
short Age;
struct Friend_Table *Friends_of; * link *
struct listinfo *Friends_of_info; * link *
char Friends_of_Lvalue[20]; * link *
struct Enemy_Table *Enemies_of; * link *
struct listinfo *Enemies_of_info; * link *
char Enemies_of_Lvalue[20]; * link *
char Do_This[256]; * method *

};

#define Fictional_Characters_Descs 6

extern struct Class Fictional_Characters_CLASS[];
#define get_Fictional_Characters_list(a,b,c,d,e) (struct Fictional_Characters *)odm_get_list (a,b,c,d,e)

* End of MyObjects.h structure definition file output from ODM * processing.

ODM Example Code for Adding Objects to Object Classes

The following code can be processed by the odmadd command to populate the object classes created by
the processing of the MyObjects.cre input file:
* MyObjects.add
* An input file for ODM add utilities.
* Populates three created object classes:
* Friend_Table
* Enemy_Table
* Fictional_Characters

Fictional_Characters:
Story_Star = "Cinderella" #a comment for the MyObjects.add file.
Birthday = "Once upon a time"
Age = 19
Friends_of = "Cinderella"
Enemies_of = "Cinderella"
Do_This = "echo Cleans house"

Fictional_Characters:
Story_Star = "Snow White"
Birthday = "Once upon a time"
Age = 18
Friends_of = "Snow White"
Enemies_of = "Snow White"
Do_This = "echo Cleans house"

Friend_Table:
Friend_of = "Cinderella"
Friend = "Fairy Godmother"

Friend_Table:
Friend_of = "Cinderella"
Friend = "mice"

Friend_Table:
Friend_of = "Snow White"
Friend = "Sneezy"

520 Writing and Debugging Programs

../../cmds/aixcmds4/odmadd.htm#HDRA26491517

Friend_Table:
Friend_of = "Snow White"
Friend = "Sleepy"

Friend_Table:
Friend_of = "Cinderella"
Friend = "Prince"

Friend_Table:
Friend_of = "Snow White"
Friend = "Happy"

Enemy_Table:
Enemy_of = "Cinderella"
Enemy = "midnight"

Enemy_Table:
Enemy_of = "Cinderella"
Enemy = "Mean Stepmother"

Enemy_Table:
Enemy_of = "Snow White"
Enemy = "Mean Stepmother"

* End of MyObjects.add input file for ODM add utilities. *

Note: The * (asterisk) or the # (pound sign) comment above will not go into the object file; it is only
for the .add file as a comment. The comment will be included in the file and treated as a string if it is
included inside the ″ ″ (double quotes).

Chapter 17. Object Data Manager (ODM) 521

522 Writing and Debugging Programs

Chapter 18. sed Program Information

The sed program is a text editor that has similar functions to those of ed, the line editor. Unlike ed,
however, the sed program performs its editing without interacting with the person requesting the editing.

Manipulating Strings with sed

The sed program enables you to to do the following:

v Edit very large files

v Perform complex editing operations many times without requiring extensive retyping and cursor
positioning (as interactive editors do)

v Perform global changes in one pass through the input.

The editor keeps only a few lines of the file being edited in memory at one time, and does not use
temporary files. Therefore, the file to be edited can be any size as long as there is room for both the input
file and the output file in the file system.

Starting the Editor

To use the editor, create a command file containing the editing commands to perform on the input file. The
editing commands perform complex operations and require a small amount of typing in the command file.
Each command in the command file must be on a separate line. Once the command file is created, enter
the following command on the command line:
sed -fCommandFile >Output <Input

In this command the parameters mean the following:

CommandFile The name of the file containing editing commands.
Output The name of the file to contain the edited output.
Input The name of the file, or files, to be edited.

The sed program then makes the changes and writes the changed information to the output file. The
contents of the input file are not changed.

How sed Works
The sed program is a stream editor that receives its input from standard input, changes that input as
directed by commands in a command file, and writes the resulting stream to standard output. If you do not
provide a command file and do not use any flags with the sed command, the sed program copies
standard input to standard output without change. Input to the program comes from two sources:

Input stream A stream of ASCII characters either from one or more files or entered directly from the
keyboard. This stream is the data to be edited.

Commands A set of addresses and associated commands to be performed, in the following general form:

[Line1 [,Line2]] command [argument]

The parameters Line1 and Line2 are called addresses. Addresses can be either patterns to
match in the input stream, or line numbers in the input stream.

You can also enter editing commands along with the sed command by using the -e flag.

© Copyright IBM Corp. 1997, 2001 523

../../cmds/aixcmds5/sed.htm#HDRA10793B

When sed edits, it reads the input stream one line at a time into an area in memory called the pattern
space. When a line of data is in the pattern space, sed reads the command file and tries to match the
addresses in the command file with characters in the pattern space. If it finds an address that matches
something in the pattern space, sed then performs the command associated with that address on the part
of the pattern space that matched the address. The result of that command changes the contents of the
pattern space, and thus becomes the input for all following commands.

When sed has tried to match all addresses in the command file with the contents of the pattern space, it
writes the final contents of the pattern space to standard output. Then it reads a new input line from
standard input and starts the process over at the start of the command file.

Some editing commands change the way the process operates.

Flags used with the sed command can also change the operation of the command. See “Using the sed
Command Summary” for more information.

Using Regular Expressions
A regular expression is a string that contains literal characters, pattern-matching characters and/or
operators that define a set of one or more possible strings. The stream editor uses a set of
pattern-matching characters that is different from the shell pattern-matching characters, but the same as
the line editor, ed.

Using the sed Command Summary

All sed commands are single letters plus some parameters, such as line numbers or text strings. The
commands summarized below make changes to the lines in the pattern space.

The following symbols are used in the syntax diagrams:

Symbol Meaning
[] Square brackets enclose optional parts of the commands
italics Parameters in italics represent general names for a name that you enter. For example, FileName

represents a parameter that you replace with the name of an actual file.
Line1 This symbol is a line number or regular expression to match that defines the starting point for applying

the editing command.
Line2 This symbol is a line number or regular expression to match that defines the ending point to stop

applying the editing command.

Line Manipulation

Function Syntax/Description

append lines [Line1]a\\nText

Writes the lines contained in Text to the output stream after Line1. The a command must
appear at the end of a line.

change lines [Line1 [,Line2]]c\\nText

Deletes the lines specified by Line1 and Line2 as the delete lines command does. Then it
writes Text to the output stream in place of the deleted lines.

524 Writing and Debugging Programs

../../cmds/aixcmds5/sed.htm#HDRA107955

Function Syntax/Description

delete lines [Line1 [,Line2]]d

Removes lines from the input stream and does not copy them to the output stream. The
lines not copied begin at line number Line1. The next line copied to the output stream is line
number Line2 + 1. If you specify only one line number, then only that line is not copied. If
you do not specify a line number, the next line is not copied. You cannot perform any other
functions on lines that are not copied to the output.

insert lines [Line1] i \\nText

Writes the lines contained in Text to the output stream before Line1. The i command must
appear at the end of a line.

next line [Line1 [,Line2]]n

Reads the next line, or group of lines from Line1 to Line2 into the pattern space. The current
contents of the pattern space are written to the output if it has not been deleted.

Substitution

Function Syntax/Description

substitution for pattern [Line1 [,Line2]] s/Pattern/String/Flags

Searches the indicated line(s) for a set of characters that matches
the regular expression defined in Pattern. When it finds a match, the
command replaces that set of characters with the set of characters
specified by String.

Input and Output

Function Syntax/Description

print lines [Line1 [,Line2]] p

Writes the indicated lines to STDOUT at the point in the editing process that the p command
occurs.

write lines [Line1 [,Line2]]w FileName

Writes the indicated lines to a FileName at the point in the editing process that the w
command occurs.

If FileName exists, it is overwritten; otherwise, it is created. A maximum of 10 different files
can be mentioned as input or output files in the entire editing process. Include exactly one
space between w and FileName.

read file [Line1]r FileName

Reads FileName and appends the contents after the line indicated by Line1.

Include exactly one space between r and FileName. If FileName cannot be opened, the
command reads it as a null file without giving any indication of an error.

Chapter 18. sed Program Information 525

Matching Across Lines

Function Syntax/Description

join next line [Line1 [,Line2]]N

Joins the indicated input lines together, separating
them by an embedded new-line character. Pattern
matches can extend across the embedded
new-lines(s).

delete first line of pattern space [Line1 [,Line2]]D

Deletes all text in the pattern space up to and
including the first new-line character. If only one
line is in the pattern space, it reads another line.
Starts the list of editing commands again from the
beginning.

print first line of pattern space [Line1 [,Line2]]P

Prints all text in the pattern space up to and
including the first new-line character to STDOUT.

Pick up and Put down

Function Syntax/Description

pick up copy [Line1 [,Line2]]h

Copies the contents of the pattern space indicated by Line1 and Line2
if present, to the holding area.

pick up copy, appended [Line1 [,Line2]]H

Copies the contents of the pattern space indicated by Line1 and Line2
if present, to the holding area, and appends it to the end of the
previous contents of the holding area.

put down copy [Line1 [,Line2]]g

Copies the contents of the holding area to the pattern space indicated
by Line1 and Line2 if present. The previous contents of the pattern
space are destroyed.

put down copy, appended [Line1 [,Line2]]G

Copies the contents of the holding area to the end of the pattern space
indicated by Line1 and Line2 if present. The previous contents of the
pattern space are not changed. A new-line character separates the
previous contents from the appended text.

exchange copies [Line1 [,Line2]]x

Exchanges the contents of the holding area with the contents of the
pattern space indicated by Line1 and Line2 if present.

Control

Function Syntax/Description

negation [Line1 [,Line2]]!

The ! (exclamation point) applies the command that
follows it on the same line to the parts of the input file
that are not selected by Line1 and Line2.

526 Writing and Debugging Programs

Function Syntax/Description

command groups [Line1 [,Line2]]{

grouped commands

}

The { (left brace) and the } (right brace) enclose a set of
commands to be applied as a set to the input lines
selected by Line1 and Line2. The first command in the
set can be on the same line or on the line following the
left brace. The right brace must be on a line by itself. You
can nest groups within groups.

labels :Label

Marks a place in the stream of editing command to be
used as a destination of each branch. The symbol Label
is a string of up to 8 bytes. Each Label in the editing
stream must be different from any other Label.

branch to label, unconditional [Line1 [,Line2]]xLabel

Branches to the point in the editing stream indicated by
Label and continues processing the current input line with
the commands following Label. If Label is null, branches
to the end of the editing stream, which results in reading
a new input line and starting the editing stream over. The
string Label must appear as a Label in the editing stream.

test and branch [Line1 [,Line2]]tLabel

If any successful substitutions were made on the current
input line, branches to Label. If no substitutions were
made, does nothing. Clears the flag that indicates a
substitution was made. This flag is cleared at the start of
each new input line.

wait [Line1]q

Stops editing in an orderly fashion by writing the current
line to the output, writing any appended or read test to
the output, and stopping the editor.

find line number [Line1]=

Writes to standard output the line number of the line that
matches Line1.

Using Text in Commands

The append, insert and change lines commands all use a supplied text string to add to the output
stream. This text string conforms to the following rules:

v Can be one or more lines long.

v Each \n (new-line character) inside Text must have an additional \ character before it (\\n).

v The Text string ends with a new-line that does not have an additional \ character before it (\n).

v Once the command inserts the Text string, the string:

– Is always written to the output stream, regardless of what other commands do to the line that caused
it to be inserted.

– Is not scanned for address matches.

Chapter 18. sed Program Information 527

– Is not affected by other editing commands.

– Does not affect the line number counter.

Using String Replacement

The s command performs string replacement in the indicated lines in the input file. If the command finds a
set of characters in the input file that satisfies the regular expression Pattern, it replaces the set of
characters with the set of characters specified in String.

The String parameter is a literal set of characters (digits, letters and symbols). Two special symbols can be
used in String:

Symbol Use

& This symbol in String is replaced by the set of characters in the input lines that matched Pattern. For
example, the command:

s/boy/&s/

tells sed to find a pattern boy in the input line, and copy that pattern to the output with an appended s.
Therefore, it changes the input line:

From: The boy look at the game.
To: The boys look at the game.

Symbol Use

\d d is a single digit. This symbol in String is replaced by the set of characters in the input lines that
matches the dth substring in Pattern. Substrings begin with the characters \(and end with the
characters\). For example, the command:

s/\(stu\)\(dy\)/\1r\2/

From: The study chair

To: The sturdy chair

The letters that appear as flags change the replacement as follows:

Symbol Use

g Substitutes String for all instances of Pattern in the indicated line(s). Characters in String are not
scanned for a match of Pattern after they are inserted. For example, the command:

s/r/R/g

changes:

From: the red round rock

To: the Red Round Rock

p Prints (to STDOUT) the line that contains a successfully matched Pattern.

w FileName Writes to FileName the line that contains a successfully matched Pattern. if FileName exists, it is
overwritten; otherwise, it is created. A maximum of 10 different files can be mentioned as input
or output files in the entire editing process. Include exactly one space between w and FileName.

528 Writing and Debugging Programs

Chapter 19. Shared Libraries, Shared Memory, and The malloc
Subsystem

This chapter provides information about the operating system facilities provided for sharing libraries and
memory allocation.

The operating system provides facilities for the creation and use of dynamically bound shared libraries.
Dynamic binding allows external symbols referenced in user code and defined in a shared library to be
resolved by the loader at run time.

The shared library code is not present in the executable image on disk. Shared code is loaded into
memory once in the shared library segment and shared by all processes that reference it. The advantages
of shared libraries are:

v Less disk space is used because the shared library code is not included in the executable programs.

v Less memory is used because the shared library code is only loaded once.

v Load time may be reduced because the shared library code may already be in memory.

v Performance may be improved because fewer page faults will be generated when the shared library
code is already in memory. However, there is a performance cost in calls to shared library routines of
one to eight instructions.

The symbols defined in the shared library code that are to be made available to referencing modules must
be explicitly exported using an exports file, unless the -bexpall options is used. The first line of the file
optionally contains the path name of the shared library. Subsequent lines contain the symbols to be
exported.

Shared Objects and Runtime Linking

By default, programs are linked so that a reference to a symbol imported from a shared object is bound to
that definition at load time. This is true even if the program, or another shared object required by the
program, defines the same symbol.

Runtime linker A shared object that allows symbols to be rebound for appropriately linked programs

You include the runtime linker in a program by linking the program with the -brtl option. This option has
the following effects:

v A reference to the runtime linker is added to your program. When program execution begins, the startup
code (/lib/crt0.o) will call the runtime linker before the main function is called.

v All input files that are shared objects are listed as dependents of your program in your program’s loader
section. The shared objects are listed in the same order as they were specified on the command line.
This causes the system loader to load all these shared objects so that the runtime linker can use their
definitions. If the -brtl option is not used, a shared object that is not referenced by the program is not
listed, even if it provides definitions that might be needed by another shared object used by the
program.

v A shared object contained in an archive is only listed if the archive specifies automatic loading for the
shared object member. You specify automatic loading for an archive member foo.o by creating a file
with the following lines:
autoload
#! (foo.o)

and adding the file as a member to the archive.

© Copyright IBM Corp. 1997, 2001 529

v In dynamic mode, input files specified with the -l flag may end in .so, as well as in .a. That is, a
reference to -lfoo is satisfied by the first libfoo.so or libfoo.a found in any of the directories being
searched. Dynamic mode is in effect by default unless the -bstatic option is used.

The runtime linker mimics the behavior of the ld command when static linking is used, except that only
exported symbols can be used to resolve symbols. Even when runtime linking is used, the system loader
must be able to load and resolve all symbol references in the main program and any module it depends
on. Therefore, if a definition is removed from a module, and the main program has a reference to this
definition, the program will not execute, even if another definition for the symbol exists in another module.

The runtime linker can rebind all references to symbols imported from another module. A reference to a
symbol defined in the same module as the reference can only be rebound if the module was built with
runtime linking enabled for that symbol.

Shared modules shipped with AIX 4.2 or later have runtime linking enabled for most exported variables.
Runtime linking for functions is only enabled for functions called through a function pointer. For example,
as shipped, calls to the malloc subroutine within shared object shr.o in /lib/libc.a cannot be rebound,
even if a definition of malloc exists in the main program or another shared module. You can link most
shipped shared modules to enable runtime linking for functions as well as variables by running the
rtl_enable command.

Operation of the Runtime Linker
The main program is loaded and resolved by the system loader in the usual way. If the executable
program cannot be loaded for any reason, the exec() subroutine fails and the runtime linker is not invoked
at all. If the main program loads successfully, control passes to the runtime linker, which rebinds symbols
as described below. When the runtime linker completes, initialization routines are called, if appropriate, and
then the main function is called.

The runtime linker processes modules in breadth-first search order, starting with the main executable and
continuing with the direct dependents of the main executable, according to the order of dependent
modules listed in each module’s loader section. This order is also used when searching for the defining
instance of a symbol. The ″defining instance″ of a symbol is usually the first instance of a symbol, but
there are two exceptions. If the first instance of a symbol is an unresolved, deferred import, no defining
instance exists. If the first instance is a BSS symbol (that is, with type XTY_CM, indicating an uninitialized
variable), and there is another instance of the symbol that is neither a BSS symbol nor an unresolved,
deferred import, the first such instance of the symbol is the defining instance.

The loader section of each module lists imported symbols, which are usually defined in another specified
module, and exported symbols, which are usually defined in the module itself. A symbol that is imported
and exported is called a ″passed-through’’ import. Such a symbol appears to be defined in one module,
although it is actually defined in another module.

Symbols can also be marked as ″deferred imports.″ References to deferred import symbols are never
rebound by the runtime linker. Resolution of these symbols must be performed by the system loader, either
by calling loadbind() or by loading a new module explicitly with load() or dlopen().

References to imported symbols (other than deferred imports) can always be rebound. The system loader
will have already resolved most imports. References to each imported symbol are rebound to the symbol’s
defining instance. If no defining instance exists, an error message will be printed to standard error. In
addition, if the typechecking hash string of an imported symbol does not match the hash string of the
defining symbol, an error message is printed.

References to exported symbols are also rebound to their defining instances, as long as the references
appear in the relocation table of the loader section. (Passed-through imports are processed along with
other imports, as described above.) Depending on how the module was linked, some references to

530 Writing and Debugging Programs

../../cmds/aixcmds4/rtl_enable.htm#HDRULTGN378MART

exported symbols are bound at link time and cannot be rebound. Since exported symbols are defined in
the exporting module, a defining instance of the symbol will always exist, unless the first instance is a
deferred import, so errors are unlikely, but still possible, when rebinding exported symbols. As with imports,
errors are printed if the typechecking hash strings do not match when a symbol is rebound.

Whenever a symbol is rebound, a dependency is added from the module using the symbol to the module
defining the symbol. This dependency prevents modules from being removed from the address space
prematurely. This is important when a module loaded by the dlopen subroutine defines a symbol that is
still being used when an attempt is made to unload the module with the dlclose subroutine.

The loader section symbol table does not contain any information about the alignment or length of
symbols. Thus, no errors are detected when symbols are rebound to instances that are too short or
improperly aligned. Execution errors may occur in this case.

Once all modules have been processed, the runtime linker calls the exit subroutine if any runtime linking
errors occurred, passing an exit code of 144 (0x90). Otherwise, execution continues by calling initialization
routines or main().

Creating a Shared Object with Runtime Linking Enabled

To create a shared object enabled for runtime linking, you link with the -G flag. When this flag is used, the
following actions take place:

1. Exported symbols are given the nosymbolic attribute, so that all references to the symbols can be
rebound by the runtime linker.

2. Undefined symbols are permitted (see the -berok option). Such symbols are marked as being imported
from the symbolic module name ″..″. Symbols imported from ″..″ must be resolved by the runtime
linker before they can be used because the system loader will not resolve these symbols.

3. The output file is given a module type of SRE, as if the -bM:SRE option had been specified.

4. All shared objects listed on the command line are listed as dependents of the output module, in the
same manner as described when linking a program with the -brtl option.

5. Shared objects in archives are listed if they have the autoload attribute.

Using the -berok option, implied by the -G flag, can mask errors that could be detected at link time. If you
intend to define all referenced symbols when linking a module, you should use the -bernotok option after
the -G flag. This causes errors to be reported for undefined symbols.

Shared Libraries and Lazy Loading

By default, when a module is loaded, the system loader automatically loads all of the module’s dependents
at the same time. Loading of dependents occurs because when a module is linked, a list of the module’s
dependent modules is saved in the loader section of the module.

dump -H Command that allows viewing of dependent modules list.
-blazy In AIX 4.2.1 and later, linker option that links a module so that only some of its dependents are loaded

when a function in the module is first used.

When you use lazy loading, you can improve the performance of a program if most of a module’s
dependents are never actually used. On the other hand, every function call to a lazily loaded module has
an additional overhead of about 7 instructions, and the first call to a function requires loading the defining
module and modifying the function call. Therefore, if a module calls functions in most of its dependents,
lazy loading may not be appropriate.

Chapter 19. Shared Libraries, Shared Memory, and The malloc Subsystem 531

When a function defined in a lazily loaded module is called for the first time, an attempt is made to load
the defining module and find the desired function. If the module cannot be found or if the function is not
exported by the module, the default behavior is to print an error message to standard error and exit with a
return code of 1. An application can supply its own error handler by calling the function
_lazySetErrorHandler and supplying the address of an error handler. An error handler is called with 3
arguments: the name of the module, the name of the symbol, and an error value indicating the cause of
the error. If the error handler returns, its return value should be the address of a substitute function for the
desired function. The return value for _lazySetErrorHandler is NULL if no error handler exists, and the
address of a previous handler if one exists.

Using lazy loading does not usually change the behavior of a program, but there are a few exceptions.
First, any program that relies on the order that modules are loaded is going to be affected, because
modules can be loaded in a different order, and some modules might not be loaded at all.

Second, a program that compares function pointers might not work correctly when lazy loading is used,
because a single function can have multiple addresses. In particular, if module A calls function ′f’ in
module B, and if lazy loading of module B was specified when module A was linked, then the address of ′f’
computed in module A differs from the address of ′f’ computed in other modules. Thus, when you use lazy
loading, two function pointers might not be equal, even if they point to the same function.

Third, if any modules are loaded with relative path names and if the program changes working directories,
the dependent module might not be found when it needs to be loaded. When you use lazy loading, you
should use only absolute path names when referring to dependent modules at link time.

The decision to enable lazy loading is made at link time on a module-by-module basis. In a single
program, you can mix modules that use lazy loading with modules that do not. When linking a single
module, a reference to a variable in a dependent module prevents that module from being loaded lazily. If
all references to a module are to function symbols, the dependent module can be loaded lazily.

The lazy loading facility can be used in both threaded and non-threaded applications.

Lazy Loading Execution Tracing
A runtime feature is provided that allows you to view the loading activity as it takes place. This is
accomplished using the environment variable LDLAZYDEBUG. The value of this variable is a number, in
decimal, octal (leading 0), or hexadecimal (leading 0x) that is the sum of one or more of the following
values:

1 Show load or look-up errors.

If a required module cannot be found, a message displays and the lazy load error handler is called. If a
requested symbol is not available in the loaded referenced module, a message displays before the error
handler is called.

2 Write tracing messages to stderr instead of stdout.

By default, these messages are written to the standard output file stream. This value selects the standard
error stream.

4 Display the name of the module being loaded.

When a new module is required to resolve a function call, the name of the module that is found and loaded
displays. This only occurs at the first reference to a function within that module; that is, once a module is
loaded, it remains available for subsequent references to functions within that module. Additional load
operations are not required.

8 Display the name of the called function.

The name of the required function, along with the name of the module from which the function is expected,
displays. This information displays before the module is loaded.

532 Writing and Debugging Programs

Creating a Shared Library

Prerequisite Tasks
1. Create one or more source files that are to be compiled and linked to create a shared library. These

files contain the exported symbols that are referenced in other source files.

For the examples in this article, two source files, share1.c and share2.c, are used. The share1.c file
contains the following code:
/************
* share1.c: shared library source.
*************/

#include <stdio.h>

void func1 ()
{

printf("func1 called\n");
}

void func2 ()
{

printf("func2 called\n");
}

The share2.c file contains the following code:
/************
* share2.c: shared library source.
*************/

void func3 ()
{

printf("func3 called\n");
}

The exported symbols in these files are func1, func2, and func3.

2. Create a main source file that references the exported symbols that will be contained in the shared
library.

For the examples in this article the main source file named main.c is used. The main.c file contains
the following code:
/************
* main.c: contains references to symbols defined
* in share1.c and share2.c
*************/

#include <stdio.h>

extern void func1 (),
unc2 (),
func3 ();

main ()
{

func1 ();
func2 ();
func3 ();

}

3. Create the exports file necessary to explicitly export the symbols in the shared library that are
referenced by other object modules.

For the examples in this article, an exports file named shrsub.exp is used. The shrsub.exp file
contains the following code:

Chapter 19. Shared Libraries, Shared Memory, and The malloc Subsystem 533

#! /home/sharelib/shrsub.o
* Above is full pathname to shared library object file
func1
func2
func3

The #! line is meaningful only when the file is being used as an import file. In this case, the #! line
identifies the name of the shared library file to be used at run time.

Procedure
1. Compile and link the two source code files to be shared. (This procedure assumes you are in the

/home/sharedlib directory.) To compile and link the source files, enter the following commands:
cc -c share1.c
cc -c share2.c
cc -o shrsub.o share1.o share2.o -bE:shrsub.exp -bM:SRE -bnoentry

This creates a shared library name shrsub.o in the /home/sharedlib directory.

-bM:SRE flag Marks the resultant object file shrsub.o as a re-entrant, shared library

Each process that uses the shared code gets a private copy of the data in its private process area.

flag Sets the dummy entry point _nostart to override the default entry point, _start
-bnoentry flag Tells the linkage editor that the shared library does not have an entry point

A shared library may have an entry point, but the system loader does not make use of an entry point
when a shared library is loaded.

2. Use the following command to put the shared library in an archive file:
ar qv libsub.a shrsub.o

This step is optional. Putting the shared library in an archive makes it easier to specify the shared
library when linking your program, because you can use the -l and -L flags with the ld command.

3. Compile and link the main source code with the shared library to create the executable file. (This step
assumes your current working directory contains the main.c file.) Use the following command:
cc -o main main.c -lsub -L/home/sharedlib

If the shared library is not in an archive, use the command:
cc -o main main.c /home/sharedlib/shrsub.o -L/home/sharedlib

The program main is now executable. The func1, func2, and func3 symbols have been marked for
load-time deferred resolution. At run time, the system loader loads the module in to the shared library
(unless the module is already loaded) and dynamically resolves the references.

-L flag Adds the specified directory (in this case, /home/sharedlib) to the library search path, which is saved
in the loader section of the program.

At run time the library search path is used to tell the loader where to find shared libraries.

LIBPATH environment variable A colon-separated list of directory paths that can also be
used to specify a different library search path. Its format is
identical to that of the PATH environment variable.

534 Writing and Debugging Programs

The directories in the list are searched to resolve references to shared objects. The /usr/lib and /lib
directories contain shared libraries and should normally be included in your library search path.

Program Address Space Overview

The Base Operating System provides a number of services for programming application program memory
use. Tools are available to assist in allocating memory, mapping memory and files, and profiling application
memory usage. As background, this section describes the system’s memory management architecture and
memory management policy.

System Memory Architecture Introduction

The system employs a memory management scheme that uses software to extend the capabilities of the
physical hardware. Because the address space does not correspond one-to-one with real memory, the
address space (and the way the system makes it correspond to real memory) is called virtual memory.

The subsystems of the kernel and the hardware that cooperate to translate the virtual address to physical
addresses make up the memory management subsystem. The actions the kernel takes to ensure that
processes share main memory fairly comprise the memory management policy. The following sections
describe the characteristics of the memory management subsystem in greater detail.

The Physical Address Space of 32-bit Systems
The hardware provides a continuous range of virtual memory addresses, from 0x0000000000000 to
0xFFFFFFFFFFFFF, for accessing data. The total addressable space is more than 1,000 terabytes. Memory
access instructions generate an address of 32 bits: 4 bits to select a segment register and 28 bits to give
an offset within the segment. This addressing scheme provides access to 16 segments of up to 256M
bytes each. Each segment register contains a 24-bit segment ID that becomes a prefix to the 28-bit offset,
which together form the virtual memory address. The resulting 52-bit virtual address refers to a single,
large, systemwide virtual memory space.

The process space is a 32-bit address space; that is, programs use 32-bit pointers. However, each
process or interrupt handler can address only the systemwide virtual memory space (segment) whose
segment IDs are in the segment register. A process accesses more than 16 segments by changing
registers rapidly.

32-bit processes on 64-bit systems have the same effective address space as on 32-bit systems (23 2

bytes), but can access the same virtual address space as 64-bit processes (28 0 bytes).

The Physical Address Space of 64-bit Systems
The hardware provides a continuous range of virtual memory addresses, from 0x00000000000000000000 to
0xFFFFFFFFFFFFFFFFFFFF, for accessing data. The total addressable space is more than 1 trillion terabytes.
Memory access instructions generate an address of 64 bits: 36 bits to select a segment register and 28
bits to give an offset within the segment. This addressing scheme provides access to more than 64 million
segments of up to 256M bytes each. Each segment register contains a 52-bit segment ID that becomes a
prefix to the 28-bit offset, which together form the virtual memory address. The resulting 80-bit virtual
address refers to a single, large, systemwide virtual memory space.

The process space is a 64-bit address space; that is, programs use 64-bit pointers. However, each
process or interrupt handler can address only the systemwide virtual memory space (segment) whose
segment IDs are in the segment register.

Chapter 19. Shared Libraries, Shared Memory, and The malloc Subsystem 535

Segment Register Addressing
The system kernel loads some segment registers in the conventional way for all processes, implicitly
providing the memory addressability needed by most processes. These registers include two kernel
segments, and a shared-library segment, and an I/O device segment, that are shared by all processes and
whose contents are read-only to non-kernel programs. There is also a segment for the exec system call of
a process, which is shared on a read-only basis with other processes executing the same program, a
private shared-library data segment that contains read-write library data, and a read-write segment that is
private to the process. The remaining segment registers may be loaded using memory mapping
techniques to provide more memory, or through memory access to files according to access permissions
imposed by the kernel. See “Understanding Memory Mapping” on page 537 for information on the
available memory mapping services.

The system’s 32-bit addressing and the access provided through indirection capabilities gives each
process an interface that does not depend on the actual size of the systemwide virtual memory space.
Some segment registers are shared by all processes, others by a subset of processes, and yet others are
accessible to only one process. Sharing is achieved by allowing two or more processes to load the same
segment ID.

Paging Space
To accommodate the large virtual memory space with a limited real memory space, the system uses real
memory as a work space and keeps inactive data and programs that are not mapped on disk. The area of
disk that contains this data is called the paging space. A page is a unit of virtual memory that holds 4K
bytes of data and can be transferred between real and auxiliary storage. When the system needs data or
a program in the page space, it:

1. Finds an area of memory that is not currently active.

2. Ensures that an up-to-date copy of the data or program from that area of memory is in the paging
space on disk.

3. Reads the new program or data from the paging space on disk into the newly freed area of memory.

Memory Management Policy
The real-to-virtual address translation and most other virtual memory facilities are provided to the system
transparently by the Virtual Memory Manager (VMM). The VMM implements virtual memory, allowing the
creation of segments larger than the physical memory available in the system. It accomplishes this by
maintaining a list of free pages of real memory that it uses to retrieve pages that need to be brought into
memory.

The VMM occasionally must replenish the pages on the free list by removing some of the current page
data from real memory. The process of moving data between memory and disk as the data is needed is
called ″paging.″ To accomplish paging, the VMM uses page-stealing algorithms that categorize pages into
three classes, each with unique entry and exit criteria:

v working storage pages

v local file pages

v remote file pages

In general, working pages have highest priority, followed by local file pages, and then remote file pages.

In addition, the VMM uses a technique known as the clock algorithm to select pages to be replaced. This
technique takes advantage of a referenced bit for each page as an indication of what pages have been
recently used (referenced). When a page-stealer routine is called, it cycles through a page frame table,
examining each page’s referenced bit. If the page was unreferenced and is stealable (that is, not pinned
and meets other page-stealing criteria), it is stolen and placed on the free list. Referenced pages may not

536 Writing and Debugging Programs

be stolen, but their reference bit is reset, effectively ″aging″ the reference so that the page may be stolen
the next time a page-stealing algorithm is issued. See “Paging Space Programming Requirements” on
page 564 for more information.

Memory Allocation
Version 3 of the operating system uses a delayed paging slot technique for storage allocated to
applications. This means that when storage is allocated to an application with a subroutine such as
malloc, no paging space is assigned to that storage until the storage is referenced. See ″System Memory
Allocation″ (“System Memory Allocation Using the malloc Subsystem” on page 545) to learn more about
the system’s allocation policy.

Understanding Memory Mapping

The speed at which application instructions are processed on a system is proportionate to the number of
access operations required to obtain data outside of program-addressable memory. The system provides
two methods for reducing the transactional overhead associated with these external read and write
operations. You can map file data into the process address space. You can also map processes to
anonymous memory regions that may be shared by cooperating processes.

Memory mapped files provide a mechanism for a process to access files by directly incorporating file data
into the process address space. The use of mapped files can significantly reduce I/O data movement since
the file data does not have to be copied into process data buffers, as is done by the read and write
subroutines. When more than one process maps the same file, its contents are shared among them,
providing a low-overhead mechanism by which processes can synchronize and communicate.

Mapped memory regions, also called shared memory areas, can serve as a large pool for exchanging data
among processes. The available subroutines do not provide locks or access control among the processes.
Therefore, processes using shared memory areas must set up a signal or semaphore control method to
prevent access conflicts and to keep one process from changing data that another is using. Shared
memory areas can be most beneficial when the amount of data to be exchanged between processes is
too large to transfer with messages, or when many processes maintain a common large database.

The system provides two methods for mapping files and anonymous memory regions. The following
subroutines, known collectively as the shmat services, are typically used to create and use shared
memory segments from a program:

shmctl Controls shared memory operations
shmget Gets or creates a shared memory segment
shmat Attaches a shared memory segment from a process
shmdt Detaches a shared memory segment from a process
disclaim Removes a mapping from a specified address range within a shared memory segment

The ftok subroutine provides the key that the shmget subroutine uses to create the shared segment

The second set of services, collectively known as the mmap services, is typically used for mapping files,
although it may be used for creating shared memory segments as well. The mmap services include the
following subroutines:

madvise Advises the system of a process’ expected paging behavior
mincore Determines residency of memory pages
mmap Maps an object file into virtual memory
mprotect Modifies the access protections of memory mapping
msync Synchronizes a mapped file with its underlying storage device
munmap Unmaps a mapped memory region

Chapter 19. Shared Libraries, Shared Memory, and The malloc Subsystem 537

../../libs/basetrf2/shmctl.htm#HDRA087915E2
../../libs/basetrf2/shmget.htm#HDRA1259507
../../libs/basetrf2/shmat.htm#HDRA087911D0
../../libs/basetrf2/shmdt.htm#HDRA087915A6
../../libs/basetrf1/disclaim.htm#HDRA087913A6
../../libs/basetrf1/ftok.htm#HDRA09099AB
../../libs/basetrf1/madvise.htm#HDRA108C1E97
../../libs/basetrf1/mincore.htm#HDRA108C1EB0
../../libs/basetrf1/mmap.htm#HDRA108C1EC9
../../libs/basetrf1/mprotect.htm#HDRA108C1F08
../../libs/basetrf1/msync.htm#HDRA108C1F31
../../libs/basetrf1/munmap.htm#HDRA108C1F55

The msem_init, msem_lock, msem_unlock, msem_remove, msleep, and mwakeup subroutines
provide access control for the processes mapped using the mmap services.

v “mmap Comparison with shmat”

v “mmap Compatibility Considerations” on page 539

v “Using the Semaphore Subroutines” on page 540

v “Mapping Files with the shmat Subroutine” on page 540

v “Mapping Shared Memory Segments with the shmat Subroutine” on page 541

mmap Comparison with shmat

As with the shmat services, the portion of the process address space available for mapping files with the
mmap services is dependent on whether a process is a 32-bit process or a 64-bit process. For 32-bit
processes, the portion of address space available for mapping consists of addresses in the range of
0x30000000-0xCFFFFFFF, for a total of 2.5G bytes of address space. In AIX 4.2.1 and later, the portion of
address space available for mapping files consists of addresses in the rangesof 0x30000000-0xCFFFFFFF
and 0x30000000-0xCFFFFFFF, 0xE0000000-0xEFFFFFFF for a total of 2.75G bytes of address space. All
available ranges within the 32-bit process address space are available for both fixed-location and
variable-location mappings. Fixed-location mappings occur when applications specify that a mapping be
placed at a fixed location within the address space. Variable-location mappings occur when applications
specify that the system should decide the location at which a mapping should be placed.

For 64-bit processes, two sets of address ranges with the process address space are available for mmap
or shmat mappings. The first, consisting of the single range 0x07000000_00000000-0x07FFFFFF_FFFFFFFF, is
available for both fixed-location and variable-location mappings. The second set of address ranges is
available for fixed-location mappings only and consists of the ranges 0x30000000-0xCFFFFFFF,
0xE0000000-0xEFFFFFFF, and 0x10_00000000-0x06FFFFFF_FFFFFFFF. The last range of this set, consisting of
0x10_00000000-0x06FFFFFF_FFFFFFFF, is also made available to system loader to hold program text, data
and heap, so only unused portions of the range are available for fixed-location mappings.

Both the mmap and shmat services provide the capability for multiple processes to map the same region
of an object such that they share addressability to that object. However, the mmap subroutine extends this
capability beyond that provided by the shmat subroutine by allowing a relatively unlimited number of such
mappings to be established. While this capability increases the number of mappings supported per file
object or memory segment, it can prove inefficient for applications in which many processes map the same
file data into their address space.

The mmap subroutine provides a unique object address for each process that maps to an object. The
software accomplishes this by providing each process with a unique virtual address, known as an alias.
The shmat subroutine allows processes to share the addresses of the mapped objects.

Because only one of the existing aliases for a given page in an object has a real address translation at
any given time, only one of the mmap mappings can make a reference to that page without incurring a
page fault. Any reference to the page by a different mapping (and thus a different alias) results in a page
fault that causes the existing real-address translation for the page to be invalidated. As a result, a new
translation must be established for it under a different alias. Processes share pages by moving them
between these different translations.

For applications in which many processes map the same file data into their address space, this toggling
process may have an adverse affect on performance. In these cases, the shmat subroutine may provide
more efficient file-mapping capabilities.

Note: On systems with PowerPC processors, multiple virtual addresses can exist for the same real
address. A real address can be aliased to different effective addresses in different processes without
toggling. Because there is no toggling, there is no performance degradation.

538 Writing and Debugging Programs

../../libs/basetrf1/msem_init.htm#HDRA221F18B
../../libs/basetrf1/msem_lock.htm#HDRA221F1BE
../../libs/basetrf1/msem_unlock.htm#HDRA221F1A7
../../libs/basetrf1/msem_remove.htm#HDRA221F1DB
../../libs/basetrf1/msleep.htm#HDRA3JC5I18CMARY
../../libs/basetrf1/mwakeup.htm#HDRRKC5I172MARY

Use the shmat services under the following circumstances:

v For 32-bit application, eleven or fewer files are mapped simultaneously, and each is smaller than
256MB.

v When mapping files larger than 256MB.

v When mapping shared memory regions which need to be shared among unrelated processes (no
parent-child relationship).

v When mapping entire files.

Use mmap under the following circumstances:

v Portability of the application is a concern.

v Many files are mapped simultaneously.

v Only a portion of a file needs to be mapped.

v Page-level protection needs to be set on the mapping.

v Private mapping is required.

In AIX 4.2.1 and later, an ″extended shmat″ capability is available for 32-bit applications with their limited
address spaces. If you define the environment variable EXTSHM=ON, then processes executing in that
environment can create and attach more than eleven shared memory segments. The segments can be
from 1 byte to 256M bytes in size. For segments larger than 256M bytes in size, the environment variable
EXTSHM=ON is ignored. The process can attach these segments into the address space for the size of
the segment. Another segment can be attached at the end of the first one in the same 256M byte region.
The address at which a process can attach is at page boundaries, which is a multiple of
SHMLBA_EXTSHM bytes. For segments larger than 256M bytes in size, the address at which a process
can attach is at 256M byte boundaries, which is a multiple of SHMLBA bytes.

Some restrictions exist on the use of the extended shmat feature. These shared memory regions cannot
be used as I/O buffers where the unpinning of the buffer occurs in an interrupt handler. The restrictions on
the use of extended shmat I/O buffers is the same as that of mmap buffers.

The environment variable provides the option of executing an application with either the additional
functionality of attaching more than 11 segments when EXTSHM=ON, or the higher-performance access to
11 or fewer segments when the environment variable is not set. Again, the ″extended shmat″ capability
only applies to 32-bit processes.

mmap Compatibility Considerations

The mmap services are specified by various standards and commonly used as the file-mapping interface
of choice in other operating system implementations. However, the system’s implementation of the mmap
subroutine may differ from other implementations. The mmap subroutine incorporates the following
modifications:

v Mapping into the process private area is not supported.

v Mappings are not implicitly unmapped. An mmap operation which specifies MAP_FIXED will fail if a
mapping already exists within the range specified.

v For private mappings, the copy-on-write semantic makes a copy of a page on the first write reference.

v Mapping of I/O or device memory is not supported.

v Mapping of character devices or use of an mmap region as a buffer for a read-write operation to a
character device is not supported.

v The madvise subroutine is provided for compatibility only. The system takes no action on the advice
specified.

v The mprotect subroutine allows the specified region to contain unmapped pages. In operation, the
unmapped pages are simply skipped over.

Chapter 19. Shared Libraries, Shared Memory, and The malloc Subsystem 539

v The OSF/AES-specific options for default exact mapping and for the MAP_INHERIT,
MAP_HASSEMAPHORE, and MAP_UNALIGNED flags are not supported.

Using the Semaphore Subroutines

The msem_init, msem_lock, msem_unlock, msem_remove, msleep and mwakeup subroutines
conform to the OSF Application Environment specification. They provide an alternative to IPC interfaces
such as the semget and semop subroutines. Benefits of using the semaphores include an efficient
serialization method and the reduced overhead of not having to make a system call in cases where there
is no contention for the semaphore.

Semaphores should be located in a shared memory region. Semaphores are specified by msemaphore
structures. All of the values in a msemaphore structure should result from a msem_init subroutine call.
This call may or may not be followed by a sequence of calls to the msem_lock subroutine or the
msem_unlock subroutine. If a msemaphore structure values originated in another manner, the results of
the semaphore subroutines are undefined.

The address of the msemaphore structure is significant. You should be careful not to modify the
structure’s address. If the structure contains values copied from a msemaphore structure at another
address, the results of the semaphore subroutines are undefined.

The semaphore subroutines may prove less efficient when the semaphore structures exist in anonymous
memory regions created with the mmap subroutine, particularly in cases where many processes reference
the same semaphores. In these instances, the semaphore structures should be allocated out of shared
memory regions created with the shmget and shmat subroutines.

Mapping Files with the shmat Subroutine
Mapping can be used to reduce the overhead involved in writing and reading the contents of files. Once
the contents of a file are mapped to an area of user memory, the file may be manipulated as if it were
data in memory, using pointers to that data instead of input/output calls. The copy of the file on disk also
serves as the paging area for that file, saving paging space.

A program can use any regular file as a mapped data file. You can also extend the features of mapped
data files to files containing compiled and executable object code. Because mapped files can be accessed
more quickly than regular files, the system can load a program more quickly if its executable object file is
mapped to a file.See “Creating a Mapped Data File with the shmat Subroutine” on page 543 for
information on using any regular file as a mapped data file.

To create a program as a mapped executable file, compile and link the program using the -K flag with the
cc or ld command. The -K flag tells the linker to create an object file with a page-aligned format. That is,
each part of the object file starts on a page boundary (an address that can be divided by 2K bytes with no
remainder). This option results in some empty space in the object file but allows the executable file to be
mapped into memory. When the system maps an object file into memory, the text and data portions are
handled differently.

Copy-on-Write Mapped Files
To prevent changes made to mapped files from appearing immediately in the file on disk, map the file as a
copy-on-write file. This option creates a mapped file with changes that are saved in the system paging
space, instead of to the copy of the file on disk. You must choose to write those changes to the copy on
disk to save the changes. Otherwise, you lose the changes when closing the file.

Because the changes are not immediately reflected in the copy of the file that other users may access,
use copy-on-write mapped files only among processes that cooperate with each other.

540 Writing and Debugging Programs

../../libs/basetrf1/msem_init.htm#HDRA221F18B
../../libs/basetrf1/msem_lock.htm#HDRA221F1BE
../../libs/basetrf1/msem_unlock.htm#HDRA221F1A7
../../libs/basetrf1/msem_remove.htm#HDRA221F1DB
../../libs/basetrf1/msleep.htm#HDRA3JC5I18CMARY
../../libs/basetrf1/mwakeup.htm#HDRRKC5I172MARY
../../libs/basetrf2/semget.htm#HDRA087910E0
../../libs/basetrf2/semop.htm#HDRA31399D4

The system does not detect the end of files mapped with the shmat subroutine. Therefore, if a program
writes beyond the current end of file in a copy-on-write mapped file by storing into the corresponding
memory segment (where the file is mapped), the actual file on disk is extended with blocks of zeros in
preparation for the new data. If the program does not use the fsync subroutine before closing the file, the
data written beyond the previous end of file is not written to disk. The file appears larger, but contains only
the added zeros. Therefore, always use the fsync subroutine before closing a copy-on-write mapped file
to preserve any added or changed data. See “Creating a Copy-On-Write Mapped Data File with the shmat
Subroutine” on page 544 for additional information.

Mapping Shared Memory Segments with the shmat Subroutine
The system uses shared memory segments similarly to the way it creates and uses files. Defining the
terms used for shared memory with respect to the more familiar file-system terms is critical to
understanding shared memory. A definition list of shared memory terms follows:

Term Definition
key The unique identifier of a particular shared segment. It is associated with the shared segment as long as

the shared segment exists. In this respect, it is similar to the file name of a file.
shmid The identifier assigned to the shared segment for use within a particular process. It is similar in use to a

file descriptor for a file.
attach Specifies that a process must attach a shared segment in order to use it. Attaching a shared segment is

similar to opening a file.
detach Specifies that a process must detach a shared segment once it is finished using it. Detaching a shared

segment is similar to closing a file.

See “Creating a Shared Memory Segment with the shmat Subroutine” on page 544 for additional
information.

Related Information
“Program Address Space Overview” on page 535.

“Creating a Mapped Data File with the shmat Subroutine” on page 543.

“Creating a Copy-On-Write Mapped Data File with the shmat Subroutine” on page 544.

IPC (Inter-Process Communication) Limits
This document describes how to set limits for IPC mechanisms and applies to AIX 3.2.5, AIX 4.1, AIX 4.2,
and AIX 4.3.

Shared Memory Segments
On some UNIX systems, users edit /etc/master and set their own limits for IPC mechanisms (semaphore,
shared memory segments, and message queues). The problem with this method is that the higher the
limits are set, the bigger the kernel gets, and performance can be adversely affected. AIX uses a different
method.

In AIX, upper limits are set for IPC mechanisms, and the individual IPC types are dynamically
allocated/deallocated up to these upper limits. These are not configurable in AIX.

Therefore, the kernel grows and shrinks in size as IPC types are allocated, so any performance hit is only
for the life of the IPC type.

This difference in methods sometimes confuses users who are installing or using databases. In AIX, IPC
limits are handled for users. The limit that may cause a problem is the maximum number of shared

Chapter 19. Shared Libraries, Shared Memory, and The malloc Subsystem 541

../../libs/basetrf1/fsync.htm#HDRA164930

memory segments per process. This number can be 10, 11 or more if EXTSHM is used. In other words
the limit that may cause a problem is the maximum number of shared memory regions that can be
attached simultaneously per process.

The structures containing IPC limits are defined in three files in /usr/include/sys/: sem.h, msg.h, and
shm.h. The structures themselves are called seminfo, msginfo, and shminfo, respectively. Only the
structures are defined—not the contents.

The following is a list of values for AIX 3.2.5, 4.1, 4.2, 4.3.0 4.3.1, 4.3.2 and later. None of these values
can be modified.

Before AIX 4.2.1
v In these versions, a single shared memory region, whatever its size, always consumes a 256MB region

of the address space.

v Only 10 regions can be attached to a process.

AIX 4.2.1
v AIX 4.2.1 provides enhancements to the number of shared memory regions a process can attach. A

process can attach to 11 shared memory regions, each up to 256MB in size.

v AIX 4.2.1 also provides the ability to attach more than 10 shared memory regions to a process when
the process is created in a shell with an environment variable defined (for example, EXTSHM=ON). In this
environment, a shared memory region can be as small as one page in size (4096 bytes) and as large
as 256MB. The address space consumed is exactly the size of the shared memory region. The number
of regions a process can attach is now limited only by the available address space. The total amount of
address space available in this mode is also 11*256MB.

v The only change in any values is the maximum bytes on queue, which has changed from 64KB to 4MB.

AIX 4.3
v There were no limit changes in AIX 4.3.

AIX 4.3.1
v Provides all the features of AIX 4.3. The only change in any values is the maximum size of a shared

memory segment which has changed from 256MB to 2GB.

AIX 4.3.2
v Provides all the features of AIX 4.3.1. The only change in any values is the maximum number of

message queues, semaphore sets and shared memory segments which has changed from 4096 to
131072.

v AIX 4.3.2 included a change to increase the maximum number of messages per queue from 8192 to
524288.

542 Writing and Debugging Programs

AIX VERSIONS 3.2.5 - 4.2.0 4.2.1 4.3.0 4.3.1 4.3.2
------------- ------- ------ ------ ------

Semaphores:

Maximum number of semaphore IDs 4096 4096 4096 4096 131072
Maximum semaphores per semaphore ID 65535 65535 65535 65535 65535
Maximum operations per semop call 1024 1024 1024 1024 1024
Maximum undo entries per process 1024 1024 1024 1024 1024
Size in bytes of undo structure 8208 8208 8208 8208 8208
Semaphore maximum value 32767 32767 32767 32767 32767
Adjust on exit maximum value 16384 16384 16384 16384 16384

Message Queues:

Maximum message size 65535 4MB 4MB 4MB 4MB
Maximum bytes on queue 65535 4MB 4MB 4MB 4MB
Maximum number of message queue IDs 4096 4096 4096 4096 131072
Maximum messages per queue ID 8192 524288 524288 524288 524288

Shared Memory:

Maximum segment size 256MB 256MB 256MB 2GB 2GB
Minimum segment size 1 1 1 1 1
Maximum number of shared memory IDs. 4096 4096 4096 4096 131072
Maximum number of segments per process 10 11* 11* 11* 11*

* See the information in preceding sections of this document about the differences between the various
versions.

Creating a Mapped Data File with the shmat Subroutine

Prerequisite Condition
The file to be mapped is a regular file.

Procedure
The creation of a mapped data file is a two-step process. First, you create the mapped file. Then, because
the shmat subroutine does not provide for it, you must program a method for detecting the end of the
mapped file.

1. To create the mapped data file:

a. Open (or create) the file and save the file descriptor:
if((fildes = open(filename , 2)) < 0)
{

printf("cannot open file\n");
exit(1);

}

b. Map the file to a segment with the shmat subroutine:
file_ptr=shmat (fildes, 0, SHM_MAP);

The SHM_MAP constant is defined in the /usr/include/sys/shm.h file. This constant indicates that the
file is a mapped file. Include this file and the other shared memory header files in a program with
the following directives:
#include <sys/shm.h>

2. To detect the end of the mapped file:

a. Use the lseek subroutine to go to the end of file:
eof = file_ptr + lseek(fildes, 0, 2);

Chapter 19. Shared Libraries, Shared Memory, and The malloc Subsystem 543

This example sets the value of eof to an address that is 1 byte beyond the end of file. Use this
value as the end-of-file marker in the program.

b. Use file_ptr as a pointer to the start of the data file, and access the data as if it were in memory:
while (file_ptr < eof)
{

.

.

.
(references to file using file_ptr)

}

Note: The read and write subroutines also work on mapped files and produce the same data
as when pointers are used to access the data.

c. Close the file when the program is finished working with it:
close (fildes);

Creating a Copy-On-Write Mapped Data File with the shmat Subroutine

Prerequisite Condition
The file to be mapped is a regular file.

Procedure
1. Open (or create) the file and save the file descriptor:

if((fildes = open(filename , 2)) < 0)
{

printf("cannot open file\n");
exit(1);

}

2. Map the file to a segment as copy-on-write, with the shmat subroutine:
file_ptr = shmat(fildes, 0, SHM_COPY);

The SHM_COPY constant is defined in the /usr/include/sys/shm.h file. This constant indicates that the
file is a copy-on-write mapped file. Include this header file and other shared memory header files in a
program with the following directives:
#include <sys/shm.h>

3. Use file_ptr as a pointer to the start of the data file, and access the data as if it were in memory.
while (file_ptr < eof)
{

.

.

.
(references to file using file_ptr)

}

4. Use the fsync subroutine to write changes to the copy of the file on disk to save the changes:
fsync(fildes);

5. Close the file when the program is finished working with it:
close(fildes);

Creating a Shared Memory Segment with the shmat Subroutine

Prerequisite Tasks or Conditions
None.

544 Writing and Debugging Programs

../../libs/basetrf1/fsync.htm#HDRA164930

Procedure
1. Create a key to uniquely identify the shared segment. Use the ftok subroutine to create the key. For

example, to create the key mykey using a project ID of R contained in the variable proj (type char) and
a file name of null_file, use a statement like:
mykey = ftok(null_file, proj);

2. Either:

v Create a shared memory segment with the shmget subroutine. For example, to create a shared
segment that contains 4096 bytes and assign the shmid to an integer variable mem_id, use a
statement like:
mem_id = shmget(mykey, 4096, IPC_CREAT | o666);

v Get a previously created shared segment with the shmget subroutine. For example, to get a shared
segment that is already associated with the key mykey and assign the shmid to an integer variable
mem_id, use a statement like:
mem_id = shmget(mykey, 4096, IPC_ACCESS);

3. Attach the shared segment to the process with the shmat subroutine. For example, to attach a
previously created segment, use a statement like:
ptr = shmat(mem_id);

In this example, the variable ptr is a pointer to a structure that defines the fields in the shared
segment. Use this template structure to store and retrieve data in the shared segment. This template
should be the same for all processes using the segment.

4. Work with the data in the segment using the template structure.

5. Detach from the segment using the shmdt subroutine:
shmdt(ptr);

6. If the shared segment is no longer needed, remove it from the system with the shmctl subroutine:
shmctl(mem_id, IPC_RMID, ptr);

Note: You can also use the ipcs command to get information about a segment, and the ipcrm
command to remove a segment.

System Memory Allocation Using the malloc Subsystem

Memory is allocated to applications using the malloc subsystem. The malloc subsystem is a memory
management API that consists of the following subroutines:

v malloc

v calloc

v realloc

v free

v mallopt

v mallinfo

v alloca

v valloc

The malloc subsystem manages a logical memory object called a heap. The heap is a region of memory
that resides in the application’s address space between the last byte of data allocated by the compiler and
the end of the data region. The heap is the memory object from which memory is allocated and to which
memory is returned by the malloc subsystem API.

The malloc subsystem performs three fundamental memory operations: allocation, deallocation, and
reallocation. Allocation is performed by the malloc and calloc subroutines, deallocation by the free

Chapter 19. Shared Libraries, Shared Memory, and The malloc Subsystem 545

../../libs/basetrf1/ftok.htm#HDRA09099AB
../../cmds/aixcmds3/ipcs.htm#HDRA27291F6
../../cmds/aixcmds3/ipcrm.htm#HDRA1049A4B
../../libs/basetrf1/malloc.htm#HDRA174921E

subroutine, and reallocation by the realloc subroutine. The mallopt and mallinfo subroutines are
supported for System V compatibility. The mallinfo subroutine can be used during program development
to obtain information about the heap managed by the malloc subroutine. The mallopt subroutine can be
used to disclaim page-aligned, page-sized free memory, and to enable and disable the default allocator.
Similar to the malloc subroutine, the valloc subroutine is provided for Berkeley compatibility.

Refer to the following sections for additional information:

v Working with the Heap

v “Understanding System Allocation Policy” on page 547

v “Understanding the Default Allocation Policy” on page 547

v “Understanding the 3.1 Allocation Policy” on page 548

v “Comparison of the Default and 3.1 Allocation Policies” on page 550

Working with the Heap
A 32-bit application program running on the system has an address space that is divided into seven
segments, as follows:

0x00000000 to 0x0fffffff Contains the kernel.
0x10000000 to 0x1fffffff Contains the application program text.
0x20000000 to 0x2fffffff Contains the application program data and the application stack.
0x30000000 to 0xafffffff Available for use by shared memory or mmap services.
0xd0000000 to 0xdfffffff Contains shared library text.
0xe0000000 to 0xefffffff Contains miscellaneous kernel data.
0xf0000000 to 0x0fffffff Contains the application shared library data.

Working with the Heap
A 64-bit application program running on the system has an address space that is divided into seven
segments, as follows:

0x0000 0000 0000 0000 to 0x0000 0000 0fff ffff Contains the kernel.
0x0000 0000 d000 0000 to 0x0000 0000 dfff ffff Contains shared library information.
0x0000 0000 e000 0000 to 0x0000 0000 efff ffff Contains miscellaneous kernel data.
0x0000 0000 f000 0000 to 0x0000 0000 0fff ffff Reserved.
0x0000 0001 0000 0000 to 0x07ff ffff ffff ffff Contains the application program text and application

program data and the application stack and shared
memory or mmap services.

0x0800 0000 0000 0000 to 0x08ff ffff ffff ffff Privately loaded objects.
0x0900 0000 0000 0000 to 0x09ff ffff ffff ffff Shared library text and data.
0x0f00 0000 0000 0000 to 0x0fff ffff ffff ffff Application stack.

The _edata location is an identifier that points to the first byte following the last byte of program data. The
heap is created by the malloc subsystem when the first block of data is allocated. The malloc subroutine
creates the heap by calling the sbrk subroutine to move the _edata location up to make room for the
heap. The malloc subroutine then expands the heap as the needs of the application dictate. Space for the
heap is acquired in increments determined by the BRKINCR value. This value can be examined with the
mallinfo subroutine.

The heap is divided into allocated blocks and freed blocks. The free pool consists of the memory available
for subsequent allocation. An allocation is completed by first removing a block from the free pool and then
returning to the free pool a pointer to this block. A reallocation is completed by allocating a block of
storage of the new size, moving the data to the new block, and freeing the original block. The allocated
blocks consist of the pieces of the heap being used by the application. Because the memory blocks are

546 Writing and Debugging Programs

../../libs/basetrf1/brk.htm#HDRA08791427

not physically removed from the heap (they simply change state from free to in-use), the size of the heap
does not decrease when memory is freed by the application.

Understanding System Allocation Policy
The allocation policy refers to the set of data structures and algorithms employed to represent the heap
and to implement allocation, deallocation, and reallocation. The malloc subsystem supports two allocation
policies: the default allocation policy and the 3.1 allocation policy. The interface to the malloc subsystem is
identical for both allocation policies.

The default allocation policy is generally more efficient and is the preferred choice for the majority of
applications. The 3.1 allocation policy has some unique behavioral characteristics that may be beneficial in
specific circumstances, as described under “Comparison of the Default and 3.1 Allocation Policies” on
page 550. However, the 3.1 allocation policy is only available for use with 32-bit applications. It is not
supported for 64-bit applications.

Understanding the Default Allocation Policy
The default allocation policy maintains the free space in the heap as a free tree. The free tree is a binary
tree in which nodes are sorted vertically by length and horizontally by address. The data structure imposes
no limitation on the number of block sizes supported by the tree, allowing a wide range of potential block
sizes. Tree reorganization techniques optimize access times for node location, insertion, and deletion, and
also protect against fragmentation.

The default allocation policy provides support for the following optional capabilities:

v “Malloc Multiheap” on page 559

v “Malloc Buckets” on page 560

v “Debug Malloc” on page 554

Allocation
The number of bytes required for a block is calculated using a roundup function. The equation is:
If x mod y = 0, then
Roundup(x,y) = x
otherwise,
Roundup(x,y) = (x/y rounded down to the nearest whole number + 1)y

p = sizeof(prefix)=8

pad = Roundup(len + p,16)

The leftmost node of the tree that is greater than or equal to the size of the malloc subroutine len
parameter value is removed from the tree. If the block found is larger than the needed size, the block is
divided into two blocks: one of the needed size, and the second a remainder. The second block, called the
runt, is returned to the free tree for future allocation. The first block is returned to the caller.

If a block of sufficient size is not found in the free tree, the heap is expanded, a block the size of the
acquired extension is added to the free tree and allocation continues as previously described.

Deallocation
Memory blocks deallocated with the free subroutine are returned to the tree, at the root. Each node along
the path to the insertion point for the new node is examined to see if it adjoins the node being inserted. If
it does, the two nodes are merged and the newly merged node is relocated in the tree. Length determines
the depth of a node in the tree. If no neighbor is found, the node is simply inserted at the appropriate
place in the tree. Merging adjacent blocks can significantly reduce heap fragmentation.

Chapter 19. Shared Libraries, Shared Memory, and The malloc Subsystem 547

Reallocation
If the size of the reallocated block will be larger than the original block, the original block is returned to the
free tree with the free subroutine so that any possible coalescence can occur. Then, a new block of the
requested size is allocated, the data is moved from the original block to the new block, and the new block
is returned to the caller.

If the size of the reallocated block is smaller than the original block, the block is split and the runt is
returned to the free tree.

Understanding the 3.1 Allocation Policy
The 3.1 allocation policy can be invoked by entering:

MALLOCTYPE=3.1; export MALLOCTYPE

Thereafter, all 32-bit programs run by the shell will use the 3.1 allocation policy (64-bit programs will
continue to use the default allocation policy). Setting MALLOCTYPE to anything other than 3.1 causes the
default allocation policy to be used.

The 3.1 allocation policy maintains the heap as a set of 28 hash buckets, each of which points to a linked
list. Hashing is a method of transforming a search key into an address for the purpose of storing and
retrieving items of data. The method is designed to minimize average search time. A bucket is one or more
fields in which the result of an operation is kept. Each linked list contains blocks of a particular size. The
index into the hash buckets indicates the size of the blocks in the linked list. The size of the block is
calculated using the following formula:
size = 2 i + 4

where i identifies the bucket. This means that the blocks in the list anchored by bucket zero are 20+4 = 16
bytes long. Therefore, given that a prefix is 8 bytes in size, these blocks can satisfy requests for blocks
between 0 and 8 bytes long. The following table illustrates how requested sizes are distributed among the
buckets.

Note: This algorithm can use as much as twice the amount of memory actually allocated by the
application. An extra page is required for buckets larger than 4096 bytes because objects of a page
in size or larger are page-aligned. Since the prefix immediately precedes the block, an entire page is
required solely for the prefix.

3.1 Allocation Policy

Bucket Block Size Sizes Mapped Pages Used

0 16 0 ... 8

1 32 9 ... 24

2 64 25 ... 56

3 128 57 ... 120

4 256 121 ... 248

5 512 249 ... 504

6 1K 505 ... 1K-8

7 2K 1K-7 ... 2K-8

8 4K 2K-7 ... 4K-8 2

9 8K 4K-7 ... 8K-8 3

10 16K 8K-7 ... 16K-8 5

11 32K 16K-7 ... 32K-8 9

12 64K 32K-7 ... 64K-8 17

548 Writing and Debugging Programs

13 128K 64K-7 ... 128K-8 33

14 256K 128K-7 ... 256K-8 65

15 512K 256K-7 ... 512K-8 129

16 1M 256K-7 ... 1M-8 257

17 2M 1M-7 ... 2M-8 513

18 4M 2M-7 ... 4M-8 1K + 1

19 8M 4M-7 ... 8M-8 2K + 1

20 16M 8M-7 ... 16M-8 4K + 1

21 32M 16M-7 ... 32M-8 8K + 1

22 64M 32M-7 ... 64M-8 16K + 1

23 128M 64M-7 ... 128M-8 32K + 1

24 256M 128M-7 ... 256M-8 64K + 1

25 512M 256M-7 ... 512M-8 128K + 1

26 1024M 512M-7 ... 1024M-8 256K + 1

27 2048M 1024M-7 ... 2048M-8 512K + 1

Allocation
A block is allocated from the free pool by first converting the requested bytes to an index in the bucket
array, using the following equation:
needed = requested + 8

If needed <= 16,
then
bucket = 0

If needed > 16,
then
bucket = (log(needed)/log(2) rounded down to the nearest whole number) - 3

The size of each block in the list anchored by the bucket is block size = 2 bucket + 4. If the list in the
bucket is null, memory is allocated using the sbrk subroutine to add blocks to the list. If the block size is
less than a page, then a page is allocated using the sbrk subroutine, and the number of blocks arrived at
by dividing the block size into the page size are added to the list. If the block size is equal to or greater
than a page, needed memory is allocated using the sbrk subroutine, and a single block is added to the
free list for the bucket. If the free list is not empty, the block at the head of the list is returned to the caller.
The next block on the list then becomes the new head.

Deallocation
When a block of memory is returned to the free pool, the bucket index is calculated as with allocation. The
block to be freed is then added to the head of the free list for the bucket.

Reallocation
When a block of memory is reallocated, the needed size is compared against the existing size of the
block. Because of the wide variance in sizes handled by a single bucket, the new block size often maps to
the same bucket as the original block size. In these cases, the length of the prefix is updated to reflect the
new size and the same block is returned. If the needed size is greater than the existing block, the block is
freed, a new block is allocated from the new bucket, and the data is moved from the old block to the new
block.

Limitations
The 3.1 allocation policy is available for use with 32-bit applications only. If MALLOCTYPE=3.1 is specified
for a 64-bit application, the default allocation policy will be used instead.

Chapter 19. Shared Libraries, Shared Memory, and The malloc Subsystem 549

The 3.1 allocation policy does not support any of the following capabilities:

v Malloc Multiheap

v Malloc Buckets

v Debug Malloc

Comparison of the Default and 3.1 Allocation Policies
The 3.1 allocation policy has been widely used in UNIX systems. However, because it rounds up the size
of each allocation request to the next power of 2, it can produce considerable virtual- and real-memory
fragmentation and poor locality of reference. The default allocation policy is generally a better choice
because it allocates exactly the amount of space requested and is more efficient about reclaiming
previously used blocks of memory.

Unfortunately, some application programs may depend inadvertently on side effects of the 3.1 allocation
policy for acceptable performance or even for correct functioning. For example, a program that overruns
the end of an array may function correctly when using the 3.1 allocator only because of the additional
space provided by the rounding-up process. The same program is likely to experience erratic behavior or
even fail when used with default allocator because the default allocator only allocates the number of bytes
requested.

As another example, because of the inefficient space reclamation of the 3.1 allocation algorithm, the
application program almost always receives space that has been set to zeros (when a process touches a
given page in its working segment for the first time, that page is set to zeros). Applications may depend on
this side effect for correct execution. In fact, zeroing out of the allocated space is not a specified function
of malloc and would result in an unnecessary performance penalty for programs that initialize only as
required and possibly not to zeros. Because the default allocator is more aggressive about reusing space,
programs that are dependent on receiving zeroed storage from malloc will probably fail when the default
allocator is used.

Similarly, if a program continually reallocs a structure to a slightly greater size, the 3.1 allocator may not
need to move the structure very often. In many cases, realloc can make use of the extra space provided
by the rounding implicit in the 3.1 allocation algorithm. The default allocator will usually have to move the
structure to a slightly larger area because of the likelihood that something else has been malloced just
above it. This may present the appearance of a degradation in realloc performance when the default
allocator is used instead of the 3.1 allocator. In reality, it is the surfacing of a cost that is implicit in the
application program’s structure.

User Defined Malloc Replacement
The AIX memory subsystem (malloc, calloc, realloc, free, mallopt and mallinfo) has been modified to allow
users to replace it with one of their own design.

NOTE: Replacement Memory Subsystems written in C++ are not supported due to the use of the
libc.a memory subsystem in the C++ library libC.a.

The existing memory subsystem works for both threaded and non-threaded applications. The user defined
memory subsystem should be thread-safe so that it works in both threaded and non-threaded processes,
however, there are no checks to verify that it is. So, if a non-thread safe memory module is loaded in a
threaded application, memory and data may be corrupted.

The user defined memory subsystem 32 and 64 bit objects must be placed in an archive with the 32bit
shared object named mem32.o and the 64bit shared object named mem64.o.

The user shared objects must export the following symbols :

v __malloc__

550 Writing and Debugging Programs

v __free__

v __realloc__

v __calloc__

v __mallinfo__

v __mallopt__

v __malloc_init__

v __malloc_prefork_lock__

v __malloc_postfork_unlock__

The functions are defined as follows:

void *__malloc__(size_t) :
This function is the user equivalent of malloc() as described in the AIX documentation.

void __free__(void *) :
This function is the user equivalent of free() as described in the AIX documentation.

void *__realloc__(void *, size_t) :
This function is the user equivalent of realloc() as described in the AIX documentation.

void *__calloc__(size_t, size_t) :
This function is the user equivalent of calloc() as described in the AIX documentation.

int __mallopt__(int, int) :
This function is the user equivalent of mallopt() as described in the AIX documentation.

struct mallinfo __mallinfo__() :
This function is the user equivalent of mallinfo() as described in the AIX documentation.

The following interfaces are used by the thread subsystem to manage the user defined memory
subsystem in a multi-threaded environment. The are only called if the application and/or the user defined
module are bound with libpthreads.a. Even if the the user defined subsystem is not thread-safe and not
bound with libpthreads.a these symbols must be defined and exported or the object will not be loaded.

void __malloc_init__(void)
Called by the pthread initialization routine. This function is used to initialize the threaded user
memory subsystem. In most cases, this includes creating and initializing some form of locking
data. Even if the user defined memory subsystem module is bound with libpthreads.a the user
defined memory subsystem MUST work before __malloc_init__() is called.

void __malloc_prefork_lock__(void)
Called by pthreads when fork() is called. This function is used to insure that the memory
subsystem is in a known state before the fork() and stays that way until the fork() has returned.
In most cases this includes acquiring the memory subsystem locks.

void __malloc_postfork_unlock__(void)
Called by pthreads when fork() is called. This function is used to make the memory subsystem
available in the parent and child after a fork(). This should undo the work done by
__malloc_prefork_lock__(). In most cases this includes releasing the memory subsystem locks.

All of the functions must be exported from a shared module. There must be separate modules for 32 and
64 bit implementations place in an archive. For example:

v mem.exp:
__malloc__
__free__
__realloc__
__calloc__
__mallopt__

Chapter 19. Shared Libraries, Shared Memory, and The malloc Subsystem 551

__mallinfo__
__malloc_init__
__malloc_prefork_lock__
__malloc_postfork_unlock__

v mem_functions32.o:

Contains all of the required 32 bit functions

v mem_functions64.o:

Contains all of the required 64 bit functions

v Creating 32bit shared object:
ld -b32 -m -o mem32.o mem_functions32.o \
-bE:mem.exp \
-bM:SRE -lpthreads -lc

v Creating 64bit shared object:
ld -b64 -m -o mem64.o mem_functions64.o \
-bE:mem.exp \
-bM:SRE -lpthreads -lc

v Creating the archive (the shared objects name must be mem32.o for the 32bit object and mem64.o for the
64bit object):
ar -X32_64 -r archive_name mem32.o mem64.o

NOTE: In the above examples for creating the shared objects -lpthreads is only needed if the
object uses pthread functions.

Enablement
The user defined memory subsystem can be enabled by using either:

v the MALLOCTYPE environment variable, or

v the global variable _malloc_user_defined_name in the user’s application

To use the MALLOCTYPE environment variable, the archive containing the user defined memory subsystem is
specified by setting MALLOCTYPE to user:archive_name where archive_name is in the application’s libpath
or the path is specified in the LIBPATH environment variable.

To use the global variable_malloc_user_defined_name, the user’s application must declare the global
variable as:
char *_malloc_user_defined_name="archive_name"

where archive_name must be in the application’s libpath or a path specified in the LIBPATH environment
variable.

NOTES:

1. When a setuid application is exec’d, the LIBPATH environment variable is ignored so the archive
must be in the application’s libpath.

2. archive_name cannot contain path information.

3. When both the environment variable, MALLOCTYPE, and the global variable,
_malloc_user_defined_name, are used to specify the archive_name, the archive specified by
MALLOCTYPE will override the one specified by _malloc_user_defined_name.

32/64bit Considerations
If the archive does not contain both the 32 and 64 bit shared objects and the user defined memory
subsystem was enabled using the MALLOCTYPE environment variable, there will be problems exec’ing 64bit
processes from 32bit applications and 32bit processes from 64bit applications. When an new process is
created using exec(), it inherits the environment of the calling application. This means that MALLOCTYPE will

552 Writing and Debugging Programs

be inherited and the new process will attempt to load the user defined memory subsystem. If the archive
member does not exist for this type of executable, the load will fail and the new process will exit.

Thread Considerations
All of the provided memory functions must work in a multi-threaded environment. Even if the module is
linked with libpthreads.a, at least __malloc__() MUST work before __malloc_init__() is called and
pthreads is initialized. This is required because the pthread initialization requires malloc() before
__malloc_init__() is called.

All provided memory functions must work in both threaded and non-threaded environments. The
__malloc__() function should be able to run to completion without having any dependencies on
__malloc_init__() (i.e. __malloc__() should initially assume that __malloc_init__() has NOT yes run.)
Once __malloc_init__() has completed, then __malloc__() can rely on any work done by
__malloc_init__(). This is required because the pthread initialization uses malloc() before
__malloc_init__() is called.

There are two variables provided to keep from calling thread related routines when they are not needed.
The first, __multi_threaded, is zero until a thread is created when it becomes non-zero and for that
process will not be reset to zero. The other variable, __n_pthreads, is -1 until pthreads has been initialized
when it is set to 1. From that point on it is a count of the number of active threads.

Example:
If __malloc__() uses pthread_mutex_lock() the code may look something like this:
if (__multi_threaded)
pthread_mutex_lock(mutexptr);

/* work */

if (__multi_threaded)
pthread_mutex_unlock(mutexptr);

Not only does this keep __malloc__() from executing pthread functions before pthreads is fully initialized,
it also speeds up single threaded applications because locking is not done until a second thread is started.

Limitations
Memory subsystems written in C++ are not supported due to initialization and the dependencies of libC.a
and the libc.a memory subsystem.

Error messages are not translated due to setlocale() using malloc() to initialize the locales. If malloc()
fails then setlocale() cannot finish and the application is still in the POSIX locale so only the default
English messages will be displayed.

Existing statically built executables will not be able to use the user defined memory subsystem without
recompiling.

Error Reporting
The first time malloc() is called, the 32 or 64 bit object in the archive specified by the MALLOCTYPE
environment variable is loaded. If the load fails, a message will be displayed and the application will exit. If
the load is successful, an attempt is made to verify that all of the required symbols are present. If any
symbols are missing the application will be terminated and the list of missing symbols will displayed.

Related Information
“Creating a Shared Library” on page 533

“Chapter 11. Threads Programming Guidelines” on page 215

Chapter 19. Shared Libraries, Shared Memory, and The malloc Subsystem 553

The malloc, free, realloc, calloc, mallopt, mallinfo, alloca, or valloc subroutine.

Debug Malloc
Debugging applications that are mismanaging memory allocated via the malloc() subroutine can be difficult
and tedious. Most often, the problem is that data is written past the end of an allocated buffer. Since this
has no immediate consequence, problems don’t become apparent until much later when the space that
was overwritten (usually belonging to another allocation) is used and no longer contains the data originally
stored there.

The AIX memory subsystem includes an optional debug capability to allow users to identify memory
overwrites, overreads, duplicate frees and reuse of freed memory allocated by malloc(). Activation and
configuration of the Debug Malloc capability is available at process startup via the MALLOCTYPE and
MALLOCDEBUG environment variables.

Memory problems detected by Debug Malloc result in an abort() or a segmentation violation (SIGSEGV).
In most cases, when an error is detected the application stops immediately and a core file is produced.

Debug Malloc is only available for applications using the default allocator. It is not supported for the AIX
3.1 malloc.

Enabling Debug Malloc
Debug Malloc is not enabled by default. It is enabled and configured by setting the following environment
variables:

MALLOCTYPE

MALLOCDEBUG

To enable Debug Malloc with default settings, set the MALLOCTYPE environment variable as follows:

MALLOCTYPE=debug

To enable Debug Malloc with user-specified configuration options, set both the MALLOCTYPE and
MALLOCDEBUG environment variables as follows:

MALLOCTYPE=debug

MALLOCDEBUG=options

where options is a comma-separated list of one or more predefined configuration options, as described in
the next section of this document.

If the application being debugged calls malloc() frequently, it may be necessary to enable the application to
access additional memory via use of the the ulimit command and the -bmaxdata option of the ld
command. Please refer to the section entitled ″Disk and Memory Considerations″ later in this document for
additional information.

MALLOCDEBUG Options
The MALLOCDEBUG environment variable can be used to provide Debug Malloc with one or more of the
following predefined configuration options:

v align:n

v postfree_checking

v validate_ptrs

v override_signal_handling

v allow_overreading

554 Writing and Debugging Programs

../../libs/basetrf1/malloc.htm

v report_allocations

v record_allocations

Each of these options is described in detail later in this document.

The MALLOCDEBUG environment variable is set using the following syntax:

MALLOCDEBUG=[[align:n | postfree_checking | validate_ptrs |
override_signal_handling | allow_overreading |
report_allocations | record_allocations],...]

More than one option can be specified (and in any order) as long as options are comma-separated, as in
the following example:

MALLOCDEBUG=align:0,validate_ptrs,report_allocations

Each configuration option should only be specified once when setting MALLOCDEBUG. If a configuration
option is specified more than once per setting, only the final instance will apply.

It is important to remember that the MALLOCDEBUG environment variable will only be recognized by the
malloc subsystem if MALLOCTYPE is set to ″debug″, as in the following example:

MALLOCTYPE=debug

MALLOCDEBUG=align:2,postfree_checking,override_signal_handling

Each of the MALLOCDEBUG options is described in detail below:

align:n By default, malloc() returns a pointer aligned on a 2-word boundary (4-word in 64bit mode). The
Debug Malloc align:n option can be used to change the default alignment, where n is the number
of bytes to be aligned and can be any power of 2 between 0 and 4096 inclusive (e.g. 0, 1, 2, 4,
...). The values 0 and 1 are treated as the same, i.e., there is no alignment so any memory
accesses outside the allocated area will cause an abort().

NOTES:

1. Please refer to the section entitled ″Additional Information about align:n Option″ later in
this document for additional information about the align:n option.

2. For allocated space to be word aligned, specify align:n with a value of 4.

3. Applications built using DCE components are restricted to a value of 8 for the align:n
option. Values other than 8 may result in undefined behavior.

postfree_checking
By default, the malloc subsystem allows the calling program to access memory that has previously
been freed. This is, of course, an error in the calling program. If the Debug Malloc
postfree_checking option is specified, any attempt to access memory after it is freed will cause
Debug Malloc to report the error and abort the program. A core file will be produced.

NOTE:

1. Specifying the postfree_checking option automatically enables the validate_ptrs option.

validate_ptrs
By default, free() does not validate its input pointer to ensure that it actually references memory
previously allocated by malloc(). If the parameter passed to free() is a NULL value, free() will
return to the caller without taking any action. If the parameter is invalid, the results will be
undefined. A core dump may or may not occur in this case, depending upon the value of the
invalid parameter. Specifying the Debug Malloc validate_ptrs option will cause free() to perform

Chapter 19. Shared Libraries, Shared Memory, and The malloc Subsystem 555

extensive validation on its input parameter. If the parameter is found to be invalid (i.e., it does not
reference memory previously allocated by a call to malloc() or realloc()), Debug Malloc will print an
error message stating why it is invalid. The abort() function is then called to terminate the process
and produce a core file.

override_signal_handling
Debug Malloc reports errors in one of two ways:

1. Memory access errors (such as trying to read or write past the end of allocated memory) will
cause a segmentation violation (SIGSEGV), resulting in a core dump.

2. For other types of errors (such as trying to free space that was already freed), Debug Malloc
will output an error message, then call abort(), which will send a SIGIOT signal to end the
current process.

If the calling program is blocking or catching the SIGSEGV and/or the SIGIOT signals, Debug
Malloc will be prevented from reporting errors. The Debug Malloc override_signal_handling option
provides a means of addressing this situation without recoding and rebuilding the application.

If the Debug Malloc override_signal_handling option is specified, Debug Malloc will perform the
following actions upon each call to one of the memory allocation routines (malloc(), free(), realloc()
or calloc()):

1. Disable any existing signal handlers set up by the application.

2. Set the action for both SIGIOT and SIGSEGV to the default (SIG_DFL).

3. Unblock both SIGIOT and SIGSEGV.

If an application signal handler modifies the action for SIGSEGV between memory allocation
routine calls and then attempts an invalid memory access, Debug Malloc will be unable to report
the error (the application will not exit and no core file will be produced).

NOTES:

1. The override_signal_handling option may be ineffective in a threaded application
environment because Debug Malloc uses sigprocmask() and many threaded processes
use pthread_sigmask().

2. If a thread calls sigwait() without including SIGSEGV and SIGIOT in the signal set and
Debug Malloc subsequently detects an error, the thread will hang because Debug Malloc
can only generate SIGSEGV or SIGIOT.

3. If a pointer to invalid memory is passed to a kernel routine, the kernel routine will fail and
usually return with errno set to EFAULT. If the application is not checking the return from
the system call, this error can go undetected.

allow_overreading

By default, Debug Malloc will respond with a segmentation violation and a core dump if the calling
program attempts to read past the end of allocated memory. Specifying the Debug Malloc
allow_overreading option will cause Debug Malloc to ignore ″overreads″ of this nature so that
other types of errors, which may be considered more serious, can be detected first.

report_allocations
Specifying the Debug Malloc report_allocations option will cause Debug Malloc to report all active
allocation records at application exit. An active allocation record will be listed for any memory
allocation that was not freed prior to application exit. Each allocation record will contain the
information listed below under the description for the record_allocations option.

556 Writing and Debugging Programs

NOTES:

1. Specifying the report_allocations option automatically enables the record_allocations
option.

2. One allocation record will always be listed for the atexit() handler that dumps the
allocation records.

record_allocations
Specifying the Debug Malloc record_allocations option will cause Debug Malloc to create an
allocation record for each malloc() request. Each record contains the following information:

v the original address returned to the caller from malloc().

v a six function traceback starting from the call to malloc().

Each allocation record will be retained until the memory associated with it is freed.

Additional Information about align:n Option
The following formula can be used to calculate how many bytes of overreads and/or overwrites Debug
Malloc will allow for a given allocation request when MALLOCDEBUG=align:n and size is the number of
bytes to be allocated:
((((size / n) + 1) * n) - size) % n

The following examples demonstrate the effect of the align:n option on the application’s ability to perform
overreads and/or overwrites with Debug Malloc enabled:

1. In the example below, the align:n option is specified with a value of 2:
MALLOCTYPE=debug
MALLOCDEBUG=align:2,postfree_checking,override_signal_handling

In this case, Debug Malloc will handle overreads and overwrites as follows:

v When an even number of bytes is allocated, Debug Malloc will allocate exactly the number of bytes
requested, which will allow for 0 bytes of overreads and/or overwrites.

v When an odd number of bytes is allocated, Debug Malloc will allocate the number of bytes
requested, plus one additional byte to satisfy the required alignment. This will allow for 1 byte of
overreads and/or overwrites.

2. In the example below, the align:n option is specified with a value of 0:
MALLOCTYPE=debug
MALLOCDEBUG=align:0,postfree_checking,override_signal_handling

In this case, Debug Malloc will allow 0 bytes of overreads and/or overwrites in all cases, regardless of
the number of bytes requested.

Debug Malloc Output
All memory problems detected by Debug Malloc result in an abort() or a segmentation violation
(SIGSEGV). If Debug Malloc is enabled and the application runs to completion without an abort() or a
segmentation violation, then the malloc subsystem did not detect any memory problems.

In most cases, when an error is detected the application stops immediately and a core file is produced. If
the error is caused by an attempt to read or write past the end of allocated memory or to access freed
memory, then a segmentation violation will occur at the instruction accessing the memory. If a memory
routine (malloc(), free(), realloc() or calloc()) detects an error, a message is displayed and abort() is called.

Chapter 19. Shared Libraries, Shared Memory, and The malloc Subsystem 557

Performance Considerations
Because of the extra work involved in making various run-time checks, malloc subsystem performance will
degrade considerably with Debug Malloc enabled, but not to the point that applications will become
unusable. Because of this performance degradation, applications should only be be run with Debug Malloc
enabled when trying to debug a known problem. Once the problem is resolved, Debug Malloc should be
turned off to restore malloc subsystem performance.

Disk and Memory Considerations
With Debug Malloc enabled, the malloc subsystem will consume significantly more memory. Each malloc()
request is increased by ″4096+2*sizeof(unsigned long)″ and then rounded up to the next multiple of
PAGESIZE. Debug Malloc may prove to be too memory-intensive to use for some large applications, but
for the majority of applications that need memory debugging, the extra use of memory should not cause a
problem.

If the application being debugged calls malloc() frequently, it may encounter memory usage problems with
Debug Malloc enabled which may prevent the application from executing properly in a single segment. If
this occurs, it may be helpful to enable the application to access additional memory via use of the the
ulimit command and the -bmaxdata option of the ld command.

For the purpose of running with Debug Malloc enabled, the ulimit should be set for both data (-d) and
stack (-s) as follows:
ulimit -d unlimited
ulimit -s unlimited

The -bmaxdata option should be specified as -bmaxdata:0x80000000 in order to reserve the maximum of
8 segments for a 32-bit process.

When Debug Malloc is turned off, the default values for ulimit and -bmaxdata should be restored.

The ulimit command and the -bmaxdata option are discussed in detail in “Chapter 8. Large Program
Support” on page 157.

Limitations
Debug Malloc is only available for applications using the default allocator. It is not supported for the AIX
3.1 malloc.

Debug Malloc is not appropriate for full-time, constant or system-wide use. Although it is designed for
minimal performance impact upon the application being debugged, it may have significant negative impact
upon overall system throughput if it is used widely throughout a system. In particular, setting
MALLOCTYPE=debug in the /etc/environment file (to enable Debug Malloc for the entire system) is
unsupported, and will likely cause significant system problems such as excessive use of paging space.
Debug Malloc should only be used to debug single applications or small groups of applications at the
same time.

In addition, please note that Debug Malloc is not appropriate for use in some debugging situations.
Because Debug Malloc places each individual memory allocation on a separate page, programs that issue
many small allocation requests will see their memory usage increase dramatically. These programs may
encounter new failures as memory allocation requests are denied due to a lack of memory or paging
space. These failures are not necessarily errors in the program being debugged, and they are not errors in
Debug Malloc.

One specific example of this is the X server, which issues numerous tiny allocation requests during its
initialization and operation. Any attempt to run the X server (via the X or xinit commands) with Debug
Malloc enabled will result in the failure of the X server due to a lack of available memory. This is a known

558 Writing and Debugging Programs

limitation of the Debug Malloc tool. However, X clients in general will not encounter functional problems
running under Debug Malloc. To use Debug Malloc on an X client program, take the following steps:

1. Start the X server with Debug Malloc turned off.

2. Start a terminal window (e.g. dtterm, xterm, aixterm).

3. Set the appropriate environment variables within the terminal window session to turn Debug Malloc on.

4. Invoke the X client program to be debugged from within the same window.

Related Information
“Chapter 8. Large Program Support” on page 157

malloc, free, realloc, calloc, mallopt, mallinfo, alloca, or valloc Subroutine in AIX 5L Version 5.1 Technical
Reference: Base Operating System and Extensions Volume 1.

Malloc Multiheap
By default, the malloc subsystem uses a single heap, or free memory pool. However, it also provides an
optional multiheap capability to allow users to enable the use of multiple heaps of free memory, rather than
just one.

The purpose of providing multiple heap capability in the malloc subsystem is to improve the performance
of threaded applications running on multiprocessor systems. When the malloc subsystem is limited to
using a single heap, simultaneous memory allocation requests received from threads running on separate
processors are serialized, meaning that the malloc subsystem can only service one thread at a time. This
can have a serious impact on multiprocessor system performance.

With malloc multiheap capability enabled, the malloc subsystem creates a fixed number of heaps for its
use. It will begin to use multiple heaps after the second thread is started (process becomes multithreaded).
Each memory allocation request will be serviced using one of the available heaps. The malloc subsystem
can then process memory allocation requests in parallel, as long as the number of threads simultaneously
requesting service is less than or equal to the number of heaps.

If the number of threads simultaneously requesting service exceeds the number of heaps, then additional
simultaneous requests will be serialized. Unless this occurs on an ongoing basis, the overall performance
of the malloc subsystem should be significantly improved when multiple threads are making calls to
malloc() in a multiprocessor environment.

Activation and configuration of the malloc multiheap capability is available at process startup via the
MALLOCMULTIHEAP environment variable. The maximum number of heaps available with malloc
multiheap enabled is 32.

Enabling Malloc Multiheap
Malloc multiheap is not enabled by default. It is enabled and configured by setting the
MALLOCMULTIHEAP environment variable.

To enable malloc multiheap with default settings, set the MALLOCMULTIHEAP environment variable to
any non-null value, as follows:

MALLOCMULTIHEAP=true

Setting MALLOCMULTIHEAP in this manner will enable malloc multiheap in its default configuration, with
all 32 heaps and the fast heap selection algorithm.

To enable malloc multiheap with user-specified configuration options, set the MALLOCMULTIHEAP
environment variable as follows:

MALLOCMULTIHEAP=options

Chapter 19. Shared Libraries, Shared Memory, and The malloc Subsystem 559

../../libs/basetrf1/malloc.htm#HDRA174921E

where options is a comma-separated list of one or more predefined configuration options, as described in
the next section of this document.

MALLOCMULTIHEAP Options
MALLOCMULTIHEAP environment variable options are as follows:

v heaps:n

v considersize

Each of these options is described in detail later in this document.

The MALLOCMULTIHEAP environment variable is set using the following syntax:
MALLOCMULTIHEAP=[heaps:n] | [considersize]

One or both options can be specified in any order as long as options are comma-separated, as in the
following example:

MALLOCMULTIHEAP=heaps:3,considersize

In the above example, malloc multiheap would be enabled with three heaps and a somewhat slower heap
selection algorithm that tries to minimize process size.

Each configuration option should only be specified once when setting MALLOCMULTIHEAP. If a
configuration option is specified more than once per setting, only the final instance will apply.

Each of the MALLOCMULTIHEAP options is described below:

heaps:n
By default, the maximum number of heaps available to malloc multiheap is 32. The heaps:n option
can be used to change the maximum number of heaps to any value from 1 through 32, where n is
the number of heaps. If n is set to a value outside the given range, the default value of 32 is used.

considersize
By default, malloc multiheap selects the next available heap. If the considersize option is specified,
malloc multiheap will use an alternate heap selection algorithm that tries to select an available
heap that has enough free space to handle the request. This may minimize the working set size of
the process by reducing the number of sbrk() calls. However, because of the additional processing
required, the considersize heap selection algorithm is somewhat slower than the default heap
selection algorithm.

Malloc Buckets
Malloc buckets provides an optional buckets-based extension of the default allocator. It is intended to
improve malloc performance for applications that issue large numbers of small allocation requests. When
malloc buckets is enabled, allocation requests that fall within a predefined range of block sizes are
processed by malloc buckets. All other requests are processed in the usual manner by the default
allocator.

Malloc buckets is not enabled by default. It is enabled and configured prior to process startup by setting
the MALLOCTYPE and MALLOCBUCKETS environment variables.

Bucket Composition and Sizing
A bucket consists of a block of memory that is subdivided into a predetermined number of smaller blocks
of uniform size, each of which is an allocatable unit of memory. Each bucket is identified using a bucket
number. The first bucket is bucket 0, the second bucket is bucket 1, the third bucket is bucket 2, and so
on. The first bucket is the smallest and each bucket after that is larger in size than the preceding bucket,
using a formula described later in this section. A maximum of 128 buckets is available per heap.

560 Writing and Debugging Programs

The block size for each bucket is a multiple of a bucket sizing factor. The bucket sizing factor equals the
block size of the first bucket. Each block in the second bucket is twice this size, each block in the third
bucket is three times this size, and so on. Therefore, a given bucket’s block size is determined as follows:
block size = (bucket number + 1) * bucket sizing factor

For example, a bucket sizing factor of 16 would result in a block size of 16 bytes for the first bucket
(bucket 0), 32 bytes for the second bucket (bucket 1), 48 bytes for the third bucket (bucket 2), and so on.

The bucket sizing factor must be a multiple of 8 for 32-bit implementations and a multiple of 16 for 64-bit
implementations in order to guarantee that addresses returned from malloc subsystem functions are
properly aligned for all data types.

The bucket size for a given bucket is determined as follows:
bucket size = number of blocks per bucket * (malloc overhead +

((bucket number + 1) * bucket sizing factor))

The above formula can be used to determine the actual number of bytes required for each bucket. In this
formula, malloc overhead refers to the size of an internal malloc construct that is required for each block in
the bucket. This internal construct is 8 bytes long for 32-bit applications and 16 bytes long for 64-bit
applications. It is not part of the allocatable space available to the user, but is part of the total size of each
bucket.

Number of blocks per bucket, number of buckets and bucket sizing factor are all configurable by setting
the MALLOCBUCKETS environment variable.

Processing Allocations from the Buckets
A block will be allocated from one of the buckets whenever malloc buckets is enabled and an allocation
request falls within the range of block sizes defined by the buckets. Each allocation request is serviced
from the smallest possible bucket to conserve space.

If an allocation request is received for a bucket and all of its blocks are already allocated, malloc buckets
will automatically enlarge the bucket to service the request. The number of new blocks added to enlarge a
bucket is always equal to the number of blocks initially contained in the bucket, which is configurable by
setting the MALLOCBUCKETS environment variable.

Support for Multiheap Processing
The malloc multiheap capability provides a means to enable multiple malloc heaps to improve the
performance of threaded applications running on multiprocessor systems. Malloc buckets supports up to
128 buckets per heap. This allows the malloc subsystem to support concurrent enablement of malloc
buckets and malloc multiheap so that threaded processes running on multiprocessor systems can benefit
from the buckets algorithm.

Enabling Malloc Buckets
Malloc buckets is not enabled by default. It is enabled and configured by setting the following environment
variables:

v MALLOCTYPE

v MALLOCBUCKETS

To enable malloc buckets with default settings, set the MALLOCTYPE environment variable as follows:
MALLOCTYPE=buckets

To enable malloc buckets with user-specified configuration options, set both the MALLOCTYPE and
MALLOCBUCKETS environment variables as follows:

Chapter 19. Shared Libraries, Shared Memory, and The malloc Subsystem 561

MALLOCTYPE=buckets

MALLOCBUCKETS=options

Where, options is a comma-separated list of one or more predefined configuration options, as defined in
the next section of this document, Malloc Buckets Configuration Options.

Note: The following malloc subsystem capabilities are mutually exclusive.

v 3.1 Malloc (MALLOCTYPE=3.1)

v Debug Malloc (MALLOCTYPE=debug)

v User Defined Malloc (MALLOCTYPE=user:archive_name)

v Malloc Buckets (MALLOCTYPE=buckets)

Malloc Buckets Configuration Options
The MALLOCBUCKETS environment variable can be used to provide malloc buckets with one or more of
the following predefined configuration options:
number_of_buckets:n

bucket_sizing_factor:n

blocks_per_bucket:n

bucket_statistics:[stdout|stderr|pathname]

Each of these options is described in detail in “MALLOCBUCKETS Options”.

The MALLOCBUCKETS environment variable is set using the following syntax:
MALLOCBUCKETS=[[number_of_buckets:n | bucket_sizing_factor:n | blocks_per_bucket:n |
bucket_statistics:[stdout|stderr|pathname]],...]

More than one option can be specified (and in any order) as long as options are comma-separated, for
example:
MALLOCBUCKETS=number_of_buckets:128,bucket_sizing_factor:8,bucket_statistics:stderr

MALLOCBUCKETS=bucket_statistics:stdout,blocks_per_bucket:512

Commas are the only delimiters that are valid for separating configuration options in this syntax. The use
of other delimiters (such as blanks) between options will cause configuration options to be parsed
incorrectly.

Each configuration option should only be specified once when setting MALLOCBUCKETS. If a
configuration option is specified more than once per setting, only the final instance will apply.

If a configuration option is specified with an invalid value, malloc buckets will write a warning message to
standard error and then continue execution using a documented default value.

It is important to remember that the MALLOCBUCKETS environment variable will only be recognized by
the malloc subsystem if MALLOCTYPE is set to buckets, as in the following example:
MALLOCTYPE=buckets

MALLOCBUCKETS=number_of_buckets:8,bucket_statistics:stderr

MALLOCBUCKETS Options
number_of_buckets:n

The number_of_buckets:n option can be used to specify the number of buckets available per
heap, where n is the number of buckets. The value specified for n will apply to all available heaps.

The default value for number_of_buckets is 16. The minimum value allowed is 1. The maximum
value allowed is 128.

562 Writing and Debugging Programs

bucket_sizing_factor:n
The bucket_sizing_factor:n option can be used to specify the bucket sizing factor, where n is the
bucket sizing factor in bytes.

The value specified for bucket_sizing_factor must be a multiple of 8 for 32-bit implementations and
a multiple of 16 for 64-bit implementations. The default value for bucket_sizing_factor is 32 for
32-bit implementations and 64 for 64-bit implementations.

blocks_per_bucket:n
The blocks_per_bucket:n option can be used to specify the number of blocks initially contained in
each bucket, where n is the number of blocks. This value is applied to all of the buckets. The
value of n is also used to determine how many blocks to add when a bucket is automatically
enlarged because all of its blocks have been allocated.

The default value for blocks_per_bucket is 1024.

bucket_statistics:[stdout|stderr|pathname]
The bucket_statistics option will cause the malloc subsystem to output a statistical summary for
malloc buckets upon normal termination of each process that calls the malloc subsystem while
malloc buckets is enabled. This summary will show buckets configuration information and the
number of allocation requests processed for each bucket. If multiple heaps have been enabled by
way of malloc multiheap, the number of allocation requests shown for each bucket will be the sum
of all allocation requests processed for that bucket for all heaps.

The buckets statistical summary will be written to one of the following output destinations, as
specified with the bucket_statistics option.

v stdout - standard output

v stderr - standard error

v pathname - a user-specified pathname

If a user-specified pathname is provided, statistical output will be appended to the existing
contents of the file (if any).

Standard output should not be used as the output destination for a process whose output is piped
as input into another process.

The bucket_statistics option is disabled by default.

Notes:

1. One additional allocation request will always be shown in the first bucket for the atexit()
handler that prints the statistical summary.

2. For threaded processes, additional allocation requests will be shown for some of the buckets
due to malloc subsystem calls issued by the pthreads library.

Malloc Buckets Default Configuration
The following table summarizes the malloc buckets default configuration.

Configuration Option Default Value (32-bit) Default Value (64-bit)

number of buckets per heap 16 16

bucket sizing factor 32 bytes 64 bytes

allocation range 1 to 512 bytes (inclusive) 1 to 1024 bytes (inclusive)

number of blocks initially contained in
each bucket

1024 1024

bucket statistical summary disabled disabled

Chapter 19. Shared Libraries, Shared Memory, and The malloc Subsystem 563

The default configuration for malloc buckets should be sufficient to provide a performance improvement for
many applications that issue large numbers of small allocation requests. However, it may be possible to
achieve additional gains by setting the MALLOCBUCKETS environment variable to modify the default
configuration. Developers who wish to modify the default configuration should first become familiar with the
application’s memory requirements and usage. Malloc buckets can then be enabled with the
bucket_statistics option to fine tune the buckets configuration.

Limitations
Malloc buckets is only available for applications using the default allocator. It is not supported for the AIX
3.1 malloc.

Because of variations in memory requirements and usage, some applications may not benefit from the
memory allocation scheme used by malloc buckets. Therefore, it is not advisable to enable malloc buckets
system-wide. For optimal performance, malloc buckets should be enabled and configured on a
per-application basis.

Paging Space Programming Requirements
The amount of paging space required by an application depends on the type of activities performed on the
system. If paging space runs low, processes may be lost. If paging space runs out, the system may panic.
When a paging space low condition is detected, additional paging space should be defined.

The system monitors the number of free paging space blocks and detects when a paging space shortage
exists. The vmstat command obtains statistics related to this condition. When the number of free paging
space blocks falls below a threshold known as the paging space warning level, the system informs all
processes (excepts kprocs) of the low condition by sending the SIGDANGER signal.

Note: If the shortage continues and falls below a second threshold known as the paging space kill
level, the system sends the SIGKILL signal to processes that are the major users of paging space
and that do not have a signal handler for the SIGDANGER signal (the default action for the
SIGDANGER signal is to ignore the signal). The system continues sending SIGKILL signals until the
number of free paging space blocks is above the paging space kill level.

Processes that dynamically allocate memory can ensure that sufficient paging space exists by monitoring
the paging space levels with the psdanger subroutine or by using special allocation routines. Processes
can avoid being ended when the paging space kill level is reached by defining a signal handler for the
SIGDANGER signal and by using the disclaim subroutine to release memory and paging space resources
allocated in the data and stack areas, and in shared memory segments.

Other subroutines that can assist in dynamically retrieving paging information from the VMM include the
following:

mincore Determines the residency of memory pages.
madvise Permits a process to advise the system about its expected paging behavior.
swapqry Returns paging device status.
swapon Activates paging or swapping to a designated block device.

List of Memory Manipulation Services

The memory functions operate on arrays of characters in memory called memory areas. These
subroutines enable you to:

v Locate a character within a memory area

v Copy characters between memory areas

564 Writing and Debugging Programs

../../cmds/aixcmds6/vmstat.htm#HDRA341F927
../../libs/basetrf1/psdanger.htm#HDRA53F0812
../../libs/basetrf1/disclaim.htm#HDRA087913A6
../../libs/basetrf1/mincore.htm#HDRA108C1EB0
../../libs/basetrf1/madvise.htm#HDRA108C1E97
../../libs/basetrf2/swapqry.htm#HDRA3F0621
../../libs/basetrf2/swapon.htm#HDRA3F05F4

v Compare contents of memory areas

v Set a memory area to a value.

You do not need to specify any special flag to the compiler in order to use the memory functions.
However, you must include the header file for these functions in your program. To include the header file,
use the following statement:
#include <memory.h>

The following memory services are provided:

compare_and_swap Compares and swaps data
fetch_and_add Updates a single word variable atomically
fetch_and_and or fetch_and_or Set or clear bits in a single word variable atomically
malloc, free, realloc, calloc, mallopt, mallinfo, or alloca Allocate memory
memccpy, memchr, memcmp, memcpy, memset or
memmove

Perform memory operations.

moncontrol Starts and stops execution profiling after initialization by the monitor subroutine
monitor Starts and stops execution profiling using data areas defined in the function parameters
monstartup Starts and stops execution profiling using default-sized data areas
msem_init Initializes a semaphore in a mapped file or shared memory region
msem_lock Locks a semaphore
msem_remove Removes a semaphore
msem_unlock Unlocks a semaphore
msleep Puts a process to sleep when a semaphore is busy
mwakeup Wakes up a process that is waiting on a semaphore
disclaim Disclaims the content of a memory address range
ftok Generates a standard interprocess communication key
getpagesize Gets the system page size
psdanger Defines the amount of free paging space available
shmat Attaches a shared memory segment or a mapped file to the current process
shmctl Controls shared memory operations
shmdt Detaches a shared memory segment
shmget Gets a shared memory segment
swapon Activates paging or swapping to a designated block device
swapqry Returns device status

List of Memory Mapping Services

The memory mapping subroutines operate on memory regions that have been mapped with the mmap
subroutine. These subroutines enable you to:

v Map an object file into virtual memory

v Synchronize a mapped file

v Determine residency of memory pages

v Determine access protections to a mapped memory region

v Unmap mapped memory regions.

You do not need to specify any special flag to the compiler to use the memory functions. However, you
must include the header file for some of these subroutines. If the subroutine description specifies a header
file, you can include it with the following statement:
#include <HeaderFile.h>

Chapter 19. Shared Libraries, Shared Memory, and The malloc Subsystem 565

../../libs/basetrf1/compare_and_swap.htm#HDRYHYJI20DTHOM
../../libs/basetrf1/fetch_and_add.htm#HDREEYJI5FTHOM
../../libs/basetrf1/fetch_and_and.htm#HDRNOYJI90THOM
../../libs/basetrf1/fetch_and_and.htm#HDRNOYJI90THOM
../../libs/basetrf1/malloc.htm#HDRA174921E
../../libs/basetrf1/memccpy.htm#HDRA108915ED
../../libs/basetrf1/moncontrol.htm#HDRA29F0571
../../libs/basetrf1/monitor.htm#HDRA230Y944B4
../../libs/basetrf1/monstartup.htm#HDRA29F0554
../../libs/basetrf1/msem_init.htm#HDRA221F18B
../../libs/basetrf1/msem_lock.htm#HDRA221F1BE
../../libs/basetrf1/msem_remove.htm#HDRA221F1DB
../../libs/basetrf1/msem_unlock.htm#HDRA221F1A7
../../libs/basetrf1/msleep.htm#HDRA3JC5I18CMARY
../../libs/basetrf1/mwakeup.htm#HDRRKC5I172MARY
../../libs/basetrf1/disclaim.htm#HDRA087913A6
../../libs/basetrf1/ftok.htm#HDRA09099AB
../../libs/basetrf1/getpagesize.htm#HDRA244Y9955F
../../libs/basetrf1/psdanger.htm#HDRA53F0812
../../libs/basetrf2/shmat.htm#HDRA087911D0
../../libs/basetrf2/shmctl.htm#HDRA087915E2
../../libs/basetrf2/shmdt.htm#HDRA087915A6
../../libs/basetrf2/shmget.htm#HDRA1259507
../../libs/basetrf2/swapon.htm#HDRA3F05F4
../../libs/basetrf2/swapqry.htm#HDRA3F0621

The following memory mapping services are provided:

madvise Advises the system of a process’ expected paging behavior.
mincore Determines residency of memory pages.
mmap Maps an object file onto virtual memory.
mprotect Modifies access protections of memory mapping.
msync Synchronizes a mapped file with its underlying storage device.
munmap Unmaps a mapped memory region.

566 Writing and Debugging Programs

../../libs/basetrf1/madvise.htm#HDRA108C1E97
../../libs/basetrf1/mincore.htm#HDRA108C1EB0
../../libs/basetrf1/mmap.htm#HDRA108C1EC9
../../libs/basetrf1/mprotect.htm#HDRA108C1F08
../../libs/basetrf1/msync.htm#HDRA108C1F31
../../libs/basetrf1/munmap.htm#HDRA108C1F55

Chapter 20. Packaging Software for Installation

This article provides information about preparing applications to be installed using the AIX installp
command.

This section describes the format and contents of the software product installation package that must be
supplied by the product developer. It gives a description of the required and optional files that are part of a
software installation or update package.

An AIX software product installation package is an AIX backup-format file containing the files of the
software product, required installation control files, and optional installation customization files. The
installp command is used to install and update software products.

An installation package contains one or more separately installable, logically-grouped units called filesets.
Each fileset in a package must belong to the same product.

A fileset update or update package is a package containing modifications to an existing fileset.

Throughout this article, the term standard system is used to refer to a system that is not configured as a
diskless system.

This article contains the following main sections:

v “Installation Procedure Requirements”

v “Package Control Information Requirements” on page 568

v “Package Partitioning Requirements” on page 568

v “Software Product Packaging Parts” on page 568

v “Format of a Software Package” on page 569

v “Package and Fileset Naming Conventions” on page 569

v “Fileset Revision Level Identification” on page 571

v “Contents of a Software Package” on page 572

v “The lpp_name Package Information File” on page 573

v “The liblpp.a Installation Control Library File” on page 584

v “Further Description of Installation Control Files” on page 588

v “Installation Control Files Specifically for Repackaged Products” on page 592

v “Installation Files for Supplemental Disk Subsystems” on page 594

v “Format of Distribution Media” on page 595

v “The Table of Contents File” on page 596

v “The installp Processing of Product Packages” on page 598)

Note: Starting in AIX Version 4.3, a new service is available to application developers. If your online
documentation is written in HTML, you should register your documentation with the Documentation Library
Service during installation. Your documents will then appear in the Documentation Library GUI so that
users can search, navigate, and read your online documents. The service can also be launched from
within your application to provide a custom GUI for users to read your application’s documents. For
information on how to build your install package to use this service, see “Chapter 21. Documentation
Library Service” on page 607 before you build your install package.

Installation Procedure Requirements
v Installation must not require user interaction. Product configuration requiring user interaction must occur

before or after installation.

© Copyright IBM Corp. 1997, 2001 567

../../cmds/aixcmds3/installp.htm#HDRA1539AD6
../../cmds/aixcmds3/installp.htm#HDRA1539AD6

v All installations of or updates to interdependent filesets must be able to be performed during a single
installation.

v No system restart should be required for installation. The installation may stop portions of the system
related to the installation, and a system restart may be required after installation in order for the
installation to take full effect.

Package Control Information Requirements
v The control information must specify all installation requirements the filesets have on other filesets.

v The control information must specify all file system size requirements for the fileset installation.

Package Partitioning Requirements
v In order to support client workstations, machine-specific portions of the package (the root part) must be

separated from the machine-shareable portions of the package (the usr part). The usr part of the
package contains files that reside in the /usr file system.

v Installation of the root part of the package must not modify any files in the /usr file system. The /usr file
system is not writable during installation of the root part of a client system.

Software Product Packaging Parts
In order to support installation in the client/server environment, the installation packaging is divided in the
following parts:

usr Contains the part of the product that can be shared
among several machines with compatible hardware
architectures. For a standard system, these files are
stored in the /usr file tree.

root Contains the part of the product that cannot be shared
among machines. Each client must have its own copy.
Most of this software requiring a separate copy for each
machine is associated with the configuration of the
machine or product. For a standard system, files in the
root part are stored in the root (/) file tree. The root part of
a fileset must be in the same package as the usr part of
the fileset. If a fileset contains a root part, it must also
contain a usr part.

share Contains the part of the product that can be shared
among several machines, even if the machines have a
different hardware architecture. The share part of the
product can include non-executable files, such as
documentation and data files. For a standard system, files
are stored in the /usr/share file tree. A share part fileset
package must be separately packaged from usr and root
parts, and the fileset name cannot be the same as a
fileset which has usr or root parts.

Sample File System Guide for Package Partitioning
Following is a brief description of some AIX file systems and directories. You can use this as a guide for
splitting a product package into root, usr, and share parts.

Some root-part directories and their contents:

/dev Local machine device files

568 Writing and Debugging Programs

/etc Machine configuration files such as hosts and passwd
/sbin System utilities needed to boot the system
/var System-specific data files and log files

Some usr-part directories and their contents:

/usr/bin User commands and scripts
/usr/sbin System administration commands
/usr/include Include files
/usr/lib Libraries, non-user commands, and architecture-dependent data

Some share-part directories and their contents:

/usr/share/dict Dictionary files
/usr/share/man Manual pages

Format of a Software Package
An installation or update package must be a single file in backup format that can be restored by the
installp command during installation. This file can be distributed on tape, diskette, or CD-ROM. See
“Format of Distribution Media” on page 595 for information about the format used for product packages on
each type of media.

Package and Fileset Naming Conventions
Use the following conventions when naming a software package and its filesets:

A package name (PackageName) should begin with the product name. All package names must be
unique.

A fileset name has the form:

PackageName[[.SubProduct].Option]

If a package has only one installable fileset, the fileset name may be the same as the PackageName.

SubProduct identifies the set of filesets within the package.

Option further describes the fileset and may contain a fileset extension.

A fileset name contains more than one character and begins with a letter or an underline (_). Subsequent
characters can be letters, digits, underlines, dots (.), plus signs (+), minus signs (-), exclamations (!), tildes
(x), percent signs (%), and carets (|). A fileset name cannot end with a dot. All characters in a fileset
name are ASCII characters. The maximum length for a fileset name is 144 bytes. All fileset names must
be unique within the package.

Fileset Extension Naming Conventions
The following list provides some fileset extension naming conventions:

Extension Fileset Description
.adt Application development toolkit

Chapter 20. Packaging Software for Installation 569

../../cmds/aixcmds3/installp.htm#HDRA1539AD6

.com Common code required by similar filesets

.compat Compatibility code that may be removed in a future release

.data Share portion of a package

.diag Diagnostics support

.fnt Fonts

.info. Language InfoExplorer databases for a particular language

.help. Language Common Desktop Environment (CDE) help files for a particular language

.loc Locale

.mp Multiprocessor-specific code

.msg. Language Message files for a particular language

.rte Run-time environment or minimum set for a product

.ucode Microcode

.up Uniprocessor-specific code

Special Naming Considerations for Device Driver Packaging
The cfgmgr (configuration manager command) automatically installs software support for detectable
devices that are available on the installation media and packaged with the following naming convention:

devices.BusTypeID.CardID

BusTypeID Specifies the type of bus to which the card attaches (for
example, mca for Micro Channel Adapter

CardID Specifies the unique hexadecimal identifier associated
with the card type

For example, a token-ring device attaches to the Micro Channel and is identified by the configuration
manager as having a unique card identifier of 8fc8. The package of filesets associated with this token-ring
device is named devices.mca.8fc8. A microcode fileset within this package is named
devices.mca.8fc8.ucode.

Special Naming Considerations for Message Catalog Packaging
A user installing a package can request the message catalogs be installed automatically. When this
request is made, the system automatically installs message filesets for the primary language if the
message filesets are available on the installation media and packaged with the following naming
convention:

Product.msg.Language[.SubProduct]

The optional .SubProduct suffix is used when a product has multiple message catalog filesets for the same
language, each message catalog fileset applying to a different SubProduct. You can choose to have one
message fileset for an entire product.

For example, the Super.Widget product has a plastic and a metal set of fileset options. All Super.Widget
English U.S. message catalogs can be packaged in a single fileset named Super.Widget.msg.en_US. If
separate message catalog filesets are needed for the plastic and metal options, the English U.S.
message catalog filesets would be named Super.Widget.msg.en_US.plastic and
Super.Widget.msg.en_US.metal.

Note: A message fileset that conforms to this naming convention MUST contain an installed-requisite on
another fileset in the product in order to avoid accidental automatic installation of the message fileset.

570 Writing and Debugging Programs

File Names
Files delivered with the software package cannot have names containing commas or colons. Commas and
colons are used as delimiters in the control files used during the software installation process. File names
can contain non-ASCII characters.

Fileset Revision Level Identification

Fileset Level Overview
The fileset level is referred to as the level or alternatively as the v.r.m.f or VRMF and has the form:

Version.Release.ModificationLevel.FixLevel[.FixID]

Version A numeric field of 1 to 2 digits that identifies the version
number.

Release A numeric field of 1 to 2 digits that identifies the release
number.

ModificationLevel A numeric field of 1 to 4 digits that identifies the
modification level.

FixLevel A numeric field of 1 to 4 digits that identifies the fix level.
FixID A character field of 1 to 9 characters identifying the fix

identifier. The FixID is used by Version 3.2-formatted
fileset updates only.

A base fileset installation level is the full initial installation level of a fileset. This level contains all files in
the fileset, as opposed to a fileset update, which may contain a subset of files from the full fileset.

All filesets in a software package should have the same fileset level, though it is not required for AIX
Version 4.1-formatted packages.

For all new levels of a fileset, the fileset level must increase. The installp command uses the fileset level
to check for a later level of the product on subsequent installations.

Fileset level precedence reads from left to right (for example, 3.2.0.0 is a newer level than 2.3.0.0).

Fileset Level Rules and Conventions for AIX Version 4.1-Formatted
Filesets
The following conventions and rules have been put in place in order to simplify the software maintenance
for product developers and customers:

v A base fileset installation level should have a fix level of 0 (zero).

v A base fileset installation level package must contain the functionality provided in other installation
packages for that fileset with lower fileset levels. For example, the Plan.Day level 2.1 fileset must
contain the functionality provided in the Plan.Day level 1.1 fileset.

v A fileset update must have either a non-zero modification level or a non-zero fix level.

v A fileset update must have the same version and release numbers as the base fileset installation level
to which it is to be applied.

v Unless otherwise specified in the software package, a fileset update with a non-zero fix level must be
an update to the fileset with the same version number, release number, and modification level and a
zero fix level. Providing information in the requisite section of the lpp_name file causes an exception to
this rule.

Chapter 20. Packaging Software for Installation 571

v Unless otherwise specified in the software package, a fileset update with a non-zero modification level
and a zero fix level must be an update to the fileset with the same version number and release number
and a zero modification level. Providing information in the requisite section of the lpp_name file causes
an exception to this rule.

v A fileset update must contain the functionality of the fileset’s previous updates that apply to the same
fileset level.

Compatibility Information For Version 3.2-Formatted Fileset Updates
The fix identifier is required for all 3.2-formatted update packages. It is not allowable in any other types of
software packages.

The fix identifier is not allowed as part of the product level for a base fileset installation level.

The fix identifier contains ASCII characters only. The first character must be a letter. Subsequent
characters can be letters or digits. All fix identifiers must be unique within a product.

Fix identifiers beginning with U4 are reserved for the AIX operating system manufacturer.

Contents of a Software Package
This section describes the files contained in an installation or update package. File path names are given
for installation package types. For update packages, wherever PackageName is part of the path name, it
is replaced by PackageName/FilesetName/FilesetLevel (or for the obsolete 3.2->formatted updates,
PackageName/inst_FixID where FixID is the fix ID of the update).

The usr part of an installation or update package contains the following installation control files:

v ./lpp_name

This file provides information about the software package to be installed or updated. For performance
reasons, the lpp_name file should be the first file in the backup-format file that makes up a software
installation package. See “The lpp_name Package Information File” on page 573 for more information.

v ./usr/lpp/PackageName/liblpp.a

This archive file contains control files used by the installation process for installing or updating the usr part
of the software package. See The liblpp.a Installation Control File (“The liblpp.a Installation Control Library
File” on page 584) for information about files contained in this archive library.

v All files, backed up relative to root, that are to be restored for the installation or update of the usr part of
the software product.

If the installation or update package contains a root part, the root part contains the following files:

v ./usr/lpp/PackageName/inst_root/liblpp.a

This library file contains control files used by the installation process for installing or updating the root part
of the software package.

v All files that are to be restored for the installation or update of the root part of the software package. For
a base fileset installation level. these files must be backed up relative to
./usr/lpp/PackageName/inst_root.

If the software product has a share part, it must be packaged in a separate installation package from the
usr and root parts. The backup format file that makes up an installation or update package for the share
part of a software product must contain the following files:

v ./lpp_name

This file provides information about the share part of the software package to be installed or updated.

572 Writing and Debugging Programs

v ./usr/share/lpp/PackageName/liblpp.a

This library file contains control files used by the installation process for installing or updating the share
part of the software package.

v All files, backed up relative to root, that are to be restored for the installation or update of the share part
of the software package.

Example Contents of a Software Package
The farm.apps package contains the farm.apps.hog 4.1.0.0 fileset. The farm.apps.hog 4.1.0.0 fileset
delivers the following files:
/usr/bin/raisehog (in the usr part of the package)
/usr/sbin/sellhog
(in the usr part of the package)

/etc/hog
(in the root part of the package)

The farm.apps package contains at least the following files:
./lpp_name
./usr/lpp/farm.apps/liblpp.a
./usr/lpp/farm.apps/inst_root/liblpp.a
./usr/bin/raisehog
./usr/sbin/sellhog
./usr/lpp/farm.apps/inst_root/etc/hog

Fileset update farm.apps.hog 4.1.0.3 delivers updates to the following files:
/usr/sbin/sellhog
/etc/hog

The fileset update package contains the following files:
./lpp_name
./usr/lpp/farm.apps/farm.apps.hog/4.1.0.3/liblpp.a
./usr/lpp/farm.apps/farm.apps.hog/4.1.0.3/inst_root/liblpp.a
./usr/sbin/sellhog
./usr/lpp/farm.apps/farm.apps.hog/4.1.0.3/inst_root/etc/hog

Note that the file from the root part of the package was restored under an inst_root directory. Files
installed for the machine-dependent root part of a package are restored relative to an inst_root directory.
This facilitates installation of machine-specific files in the root file systems of multiple systems. The root
part files are installed into the root portions of systems by copying the files from the inst_root directory.
This allows multiple machines to share a common machine-independent usr part.

The lpp_name Package Information File
Each software package must contain the lpp_name package information file. The lpp_name file gives the
installp command information about the package and each fileset in the package. Refer to the figure for
an example lpp_name file for a fileset update package. The numbers and arrows in the figure refer to
fields that are described in the table that follows.

The following table defines the fields in the lpp_name file.

Fields in the lpp_name File

Field Name Format Separator Description

Chapter 20. Packaging Software for Installation 573

1. Format Integer White space Indicates the release level
of installp for which this
package was built. The
values are:

v 1 - AIX Version 3.1

v 3 - Version 3.2

v 4 - AIX Version 4.1

2. Platform Character White space Indicates the platform for
which this package was
built. The only available
value is R.

3. Package Type Character White space Indicates whether this is an
installation or update
package and what type.
The values are:

v I - Installation

v S - Single update

v SR - Single update
required

v ML - Maintenance level
update

The following types are
valid for Version
3.2-formatted update
packages only:

v G -Single update
required

v M -Maintenance
packaging update

v MC -Cumulative
packaging update

v ME -Enhancement
packaging update

4. Package Name Character White space The name of the software
package (PackageName).

{ New line Indicates the beginning of
the repeatable sections of
fileset-specific data.

5. Fileset name Character White space The complete name of the
fileset. This field begins the
heading information for the
fileset or fileset update.

6. Level Shown in Description
column

White space The level of the fileset to be
installed. The format is:
Version.Release.ModificationLevel.FixLevel
.FixID should be appended
for Version 3.2-formatted
updates only.

7. Diskette Volume Integer White space Indicates the diskette
volume number where the
fileset is located, if shipped
on diskette.

574 Writing and Debugging Programs

8. Bosboot Character White space Indicates whether a bosboot
is needed following the
installation. The values are:

v N - Do not invoke
bosboot

v b - Invoke bosboot

9. Content Character White space Indicates the parts included
in the fileset or fileset
update. The values are:

v B -usr and root part

v H -share part

v U -usr part only

10. Language Character White space Not used.

11. Description Character # or new line Fileset description.

12. Comments Character New line (Optional) Additional
comments.

[New line Indicates the beginning of
the body of the fileset
information.

13. Requisite information Described following table New line (Optional) Installation
dependencies the fileset
has on other filesets and
fileset updates. See the
section following this table
for detailed description.

% New line Indicates the separation
between requisite and size
information.

14. Size and License
Agreement information

Described later in this
chapter

New line Size requirements by
directory and license
agreement information. See
Size and License
Agreement Information
Section later in this article
for detailed description.

% New line Indicates the separation
between size and
supersede information.

15. Supersede information Described later in this
chapter

New line (Optional) Information on
what the fileset replaces.
This field should exist in
Version 3.2-formatted
updates only. See
Supersede Information
Section later in this article
for detailed description.

% New line Indicates the separation
between supersede and
licensing information.

Chapter 20. Packaging Software for Installation 575

16. Fix information Described later in article New line Information regarding the
fixes contained in the fileset
update. See Fix Information
Section later in this article
for detailed description.

] New line Indicates the end of the
body of the fileset
information.

} New line Indicates the end of the
repeatable sections of
fileset-specific information.

1 2 3 4
| | | | 6 7 89 10 11 12 4 R S farm.apps { | | || | | |

5 --> farm.apps.hog 04.01.0000.0003 1 N U en_US Hog Utilities # ...
[
13--> *ifreq bos.farming.rte (4.2.0.0) 4.2.0.15
%
14--> /usr/sbin 48
14--> /usr/lpp/farm.apps/farm.apps.hog/4.1.0.3 280
14--> /usr/lpp/farm.apps/farm.apps.hog/inst_root/4.1.0.3.96
14--> /usr/lpp/SAVESPACE 48
14--> /lpp/SAVESPACE 32
14--> /usr/lpp/bos.hos/farm.apps.hog/inst_root/4.1.0.3/ etc 32
15--> INSTWORK 348 128
%
%
16--> iFOR/LS_vendor_id
17--> iFOR/LS_product_id
18--> iFOR/LS_product_version
%
19--> IX51366 Hogs producing eggs.
19--> IX81360 Piglets have too many ears.
]
}

Example lpp_name File

Requisite Information Section
The requisite information section contains information about installation dependencies on other filesets or
fileset updates. Each requisite listed in the requisite section must be satisfied according to the requisite
rules in order to apply the fileset or fileset update.

Before any installing or updating occurs, the installp command compares the current state of the filesets
to be installed with the requirements listed in the lpp_name file. If the -g flag was specified with the
installp command, any missing requisites are added to the list of filesets to be installed. The filesets are
ordered for installation according to any prerequisites. Immediately before a fileset is installed, the installp
command again checks requisites for that fileset. This check verifies that all requisites installed earlier in
the installation process were installed successfully and that all requisites are satisfied.

In the following descriptions of the different types of requisites, RequiredFilesetLevel represents the
minimum fileset level that satisfies the requirements. Except when explicitly blocked by mechanisms
described in “Supersede Information Section” on page 582, newer levels of a fileset satisfy requisites on
an earlier level. For example, a requisite on the plum.tree 2.2.0.0 fileset is satisfied by the plum.tree
3.1.0.0 fileset.

576 Writing and Debugging Programs

Prerequisite

Syntax *prereq Fileset RequiredFilesetLevel
Alternate Syntax Fileset RequiredFilesetLevel
Description A prerequisite indicates that the specified fileset must be

installed at the specified fileset level or at a higher level
for the current fileset to install successfully. If a
prerequisite fileset is scheduled to be installed, the
installp command orders the list of filesets to install to
make sure the prerequisite is met.

A fileset update contains an implicit prerequisite to its base-level fileset. If this implicit prerequisite is not
adequate, you must specify explicitly a different prerequisite. The Version and Release of the update and
the implicit prerequisite are the same. If the FixLevel of the update is 0, the ModificationLevel and the
FixLevel of the implicit prerequisite are both 0. Otherwise, the implicit prerequisite has a ModificationLevel
that is the same as the ModificationLevel of the update and a FixLevel of 0. For example, a 4.1.3.2 level
update requires its 4.1.3.0 level to be installed before the update installation. A 4.1.3.0 level update
requires its 4.1.0.0 level to be installed before the update installation.

Co-requisite

Syntax *coreq Fileset RequiredFilesetLevel
Description A co-requisite indicates that the specified fileset must be

installed for the current fileset to function successfully. At
the end of the installation process, the installp command
issues warning messages for any unmet co-requisites. A
co-requisite is most commonly used for a fileset within the
same package. A prerequisite on a fileset within the same
package is not guaranteed.

If-requisite

Syntax *ifreq Fileset [(InstalledFilesetLevel)] RequiredFilesetLevel
Description An if-requisite indicates that the specified fileset is

required to be at RequiredFilesetLevel only if the fileset is
installed at InstalledFilesetLevel. This is most commonly
used to coordinate dependencies between fileset updates.
The following example shows an if-requisite:

*ifreq A.obj (1.1.0.0) 1.1.2.3

If the A.obj fileset is not already installed, this example does not cause it to be installed. If the A.obj
fileset is already installed at any of the following levels, this example does not cause the 1.1.2.3 level to
be installed:

1.1.2.3 This level matches the RequiredFilesetLevel.
1.2.0.0 This level is a different base fileset level.
1.1.3.0 This level supersedes the RequiredFilesetLevel.

If the A.obj fileset is already installed at any of the following levels, this example causes the 1.1.2.3 level
to be installed:

1.1.0.0 This level matches the InstalledFilesetLevel.
1.1.2.0 This level is the same base level as the

InstalledFilesetLevel and a lower level than the
RequiredFilesetLevel.

Chapter 20. Packaging Software for Installation 577

The (InstalledFilesetLevel) parameter is optional. If it is omitted, the Version and Release of the
InstalledFilesetLevel and the RequiredFilesetLevel are assumed to be the same. If the FixLevel of the
RequiredFilesetLevel is 0, the ModificationLevel and the FixLevel of the InstalledFilesetLevel are both 0.
Otherwise, the InstalledFilesetLevel has a ModificationLevel that is the same as the ModificationLevel of
the RequiredFilesetLevel and a FixLevel of 0. For example, if the RequiredFilesetLevel is 4.1.1.1 and no
InstalledFilesetLevel parameter is supplied, the InstalledFilesetLevel is 4.1.1.0. If the RequiredFilesetLevel
is 4.1.1.0 and no InstalledFilesetLevel parameter is supplied, the InstalledFilesetLevel is 4.1.0.0.

Installed-requisite

Syntax *instreq Fileset RequiredFilesetLevel
Description An installed-requisite indicates that the specified fileset

should be installed automatically only if its corresponding
fileset is already installed or is on the list of filesets to
install. An installed-requisite also is installed if the user
explicitly requests that it be installed. A fileset update can
not have an installed-requisite. Because a fileset
containing the message files for a particular package
should not be installed automatically without some other
part of the package being installed, a message fileset
should contain an installed-requisite for another fileset in
its package.

Group Requisite

Syntax >Number { RequisiteExpressionList }
Description A group requisite indicates that different requisite

conditions can satisfy the requisite. A group requisite can
contain prerequisites, co-requisites, if-requisites, and
nested group requisites. The Number preceding the {
RequisiteExpressionList } identifies how many of the items
in the RequisiteExpressionList are required. For example,
>2 states that at least three items in the
RequisiteExpressionList are required.

Alternate Requisite Syntax for AIX Versions 3.1 and 3.2 Compatibility
For compatibility with AIX Versions 3.1- and 3.2-formatted packages, you can specify RequiredFilesetLevel
using an alternate syntax. This alternate syntax cannot be used for an AIX Version 4.1-formatted fileset
update that contains a prerequisite on another level of the same fileset.

The alternate syntax consists of logical expressions using the letters v (version number), r (release
number), m (modification level), f (fix level), and p (Version 3.2-format update fix ID) and the symbols <,
=, and >. If multiple conditions apply to a field, an o (or symbol) is used to identify an alternate acceptable
condition for the previously mentioned field. The following example specifies a prerequisite on the
old.syntax fileset with the version number 3 and the release level greater than or equal to 2.
*prereq old.syntax v=3 r=2 o>2

Because the installp command interprets the specified requisite as the minimum fileset level that will
satisfy the requisite, o>2 can not be specified the following example. The following example is equivalent to
the preceding example:
*prereq old.syntax 3.2.0.0

Alternate syntax containing a fix ID is handled differently than in Version 3.2. If the RequiredFilesetLevel
expression contains more information than just a fix ID, either a newer base level of the fileset or the fix
(defined by the fix ID) satisfies the requisite. (A supersede entry can still block a newer base level from
satisfying the requisite. See “Supersede Information Section” on page 582 for more information about
supersede entries.) For example, the old.syntax 1.3.0.0 fileset satisfies the following requisite:

578 Writing and Debugging Programs

*prereq old.syntax v=1 r=2 p=U412345

The alternate syntax also can be used to define a requisite that is lower than a certain level. For example,
the old.syntax fileset at a lower level than 1.3.0.0 satisfies the following requisite:
*prereq old.syntax v=1 r<3

Requisite Information Section Examples
1. The following example illustrates the use of co-requisites. The book.create 12.30.0.0 fileset cannot

function without the layout.text 1.1.0.0 and index.generate 2.3.0.0 filesets installed, so the
requisite section for book.create 12.30.0.0 contains:
*coreq layout.text 1.1.0.0
*coreq index.generate 2.3.0.0

The index.generate 3.1.0.0 fileset satisfies the index.generate requisite, because 3.1.0.0 is a newer
level than the required 2.3.0.0 level.

2. The following example illustrates the use of the more common requisite types. Fileset new.fileset.rte
1.1.0.0 contains the following requisites:
*prereq database 1.2.0.0
*coreq spreadsheet 1.3.1.0
*ifreq wordprocessorA (4.1.0.0) 4.1.1.1
*ifreq wordprocessorB 4.1.1.1

The database fileset must be installed at level 1.2.0.0 or higher before the new.fileset.rte fileset can
be installed. If database and new.fileset.rte are installed in the same installation session, the
installation program will install the database fileset before the new.fileset.rte fileset.

The spreadsheet fileset must be installed at level 1.3.1.0 or higher for the new.fileset.rte fileset to
function properly. The spreadsheet fileset does not need to be installed before the new.fileset.rte
fileset is installed, provided both are installed in the same installation session. If an adequate level of
the spreadsheet fileset is not installed by the end of the installation session, a warning message will be
issued stating that the co-requisite is not met.

If the wordprocessorA fileset is installed (or being installed with new.fileset.rte) at level 4.1.0.0, the
wordprocessorA fileset update must be installed at level 4.1.1.1 or higher.

If the wordprocessorB fileset is installed (or being installed with new.fileset.rte) at level 4.1.1.0, the
wordprocessorB fileset update must be installed at level 4.1.1.1 or higher.

3. The following example illustrates an installed-requisite. Fileset Super.msg.fr_FR.Widget at level
2.1.0.0 contains the following install-requisite:
Super.Widget 2.1.0.0

The Super.msg.fr_FR.Widget fileset can not be installed automatically when the Super.Widget fileset is
not installed. The Super.msg.fr_FR.Widget fileset can be installed explicitly when the Super.Widget
fileset is not installed.

4. The following example illustrates a group requisite. At least one of the prerequisite filesets listed must
be installed (both can be installed). If installed, the spreadsheet_1 fileset must be at least at level
1.2.0.0 and the spreadsheet_2 fileset must be at least at level 1.3.0.0.
>0 {
*prereq spreadsheet_1 1.2.0.0
*prereq spreadsheet_2 1.3.0.0
}

5. The following example illustrates use of the alternate requisite syntax for compatibility with AIX
Versions 3.1- and 3.2-formatted packages. The following requisite expressions are all equivalent to the
expression *prereq database 1.2.0.0 and will be satisfied as described in Example 2.

Chapter 20. Packaging Software for Installation 579

*prereq database v=1 r=2
*prereq database v=1 r=2 o=3
*prereq database v=1 r=2 o>2
*prereq database v=1 r=2 m=0 f=0

Note: The preceding examples stated that levels higher than the level specified in the requisite
expression satisfy the requisite. This is not true when the required fileset indicates it has broken
compatibility by including a barrier entry in the supersede information section of the lpp_name file. See
“Supersede Information Section” on page 582 for more information.

Size and License Agreement Information Section
The size and license agreement information section contains information about the disk space and license
agreement requirements for the fileset.

Size Information
This information is used by the installation process to ensure that enough disk space is available for the
installation or update to succeed. Size information has the form:

Directory PermanentSpace [TemporarySpace]

Additionally, the product developer can specify PAGESPACE or INSTWORK in the full-path name field to
indicate disk space requirements for paging space and work space needed in the package directory during
the installation process.

Directory The full path name of the directory that has size
requirements.

PermanentSpace The size (in 512-byte blocks) of the permanent space
needed for the installation or update. Permanent space is
space that is needed after the installation completes. This
field has a different meaning in the following cases:

If Directory is PAGESPACE, PermanentSpace represents the size of page space needed (in 512-byte
blocks) to perform the installation.

If Directory is INSTWORK, PermanentSpace represents the number of 512-byte blocks needed for
extracting control files used during the installation. These control files are the files that are archived to the
liblpp.a file.

TemporarySpace The size (in 512-byte blocks) of the temporary space
needed for the installation only. Temporary space is
released after the installation completes. The
TemporarySpace value is optional. An example of
temporary space is the space needed to relink an
executable object file. Another example is the space
needed to archive an object file into a library. To archive
into a library, the installp command makes a copy of the
library, archives the object file into the copied library, and
moves the copied library over the original library. The
space for the copy of the library is considered temporary
space.

When Directory is INSTWORK, TemporarySpace represents the number of 512-byte blocks needed for the
unextracted liblpp.a file.

The following example shows a size information section:

580 Writing and Debugging Programs

/usr/bin 30
/lib 40 20
PAGESPACE 10
INSTWORK 10 6

Because it is difficult to predict how disk file systems are mounted in the file tree, the directory path name
entries in the size information section should be as specific as possible. For example, it is better to have
an entry for /usr/bin and one for /usr/lib than to have a combined entry for /usr, because /usr/bin and
/usr/lib can exist on different file systems that are both mounted under /usr. In general, it is best to
include entries for each directory into which files are installed.

For an update package only, the size information must include any old files (to be replaced) that will move
into the save directories. These old files will be restored if the update is later rejected. In order to indicate
these size requirements, an update package must specify the following special directories:

/usr/lpp/SAVESPACE The save directory for usr part files. By default, the usr
part files are saved in the
/usr/lpp/PackageName/FilesetName/FilesetLevel.save
directory.

/lpp/SAVESPACE The save directory for root part files. By default, the root
part files are saved in the
/lpp/PackageName/FilesetName/FilesetLevel.save
directory.

/usr/share/lpp/SAVESPACE The save directory for share part files. By default, the
share part files are saved in the
/usr/share/lpp/PackageName/inst_FixID.save directory.

The following save directories are used for obsolete 3.2-formatted fileset updates only:

/usr/lpp/PackageName/inst_FixID.save Directory for usr part files.
/lpp/PackageName/inst_FixID.save Directory for root part files.
/usr/share/lpp/PackageName/inst_FixID.save Directory for share part files.

License Agreement Information
Products which require users to agree to software license terms before the product can be installed must
provide special entries in the size and license agreement information section. There are two forms of
license agreement information: license agreement requirement entries indicating that a fileset is governed
by a license agreement and license agreement file entries indicating that a package contains a license
agreement file.

License agreement files are indicated by a size section entry which begins with LAF<%locale_spec>/,
where LAF stands for License Agreement File, and locale_spec specifies the locale for which the file is
encoded. If the locale spec is not specified, then the agreement file will be assumed to be nontranslated
and encoded as ASCII. If the license agreement file is translated, the locale name must be part of the path
so that the requirement entry may be associated with the file.
The remainder of the string is a path designation which uniquely identifies a particular license file which is
included in the package. Each time that the license text changes, the fullpath of the license must also
change. Licenses are not modifiable once they have been delivered, since the terms associated with
preexisting products cannot be modified. Only one fileset in the package is required to carry the license
agreement file information, though it may appear in the size and license information section of more than
one. It is desirable to only carry the license agreement file information for one fileset since the information
would otherwise be redundant. Note: the license agreement file should be in neither the apply list nor the
inventory for a fileset in order to prevent the removal of the license agreement when the fileset is removed.
If there are unique directories required for the license files, those must be included in the apply list and
inventory in order to properly control the permissions associated with the directories.

Chapter 20. Packaging Software for Installation 581

The second field in the license agreememt file indicator is the size in 512-byte blocks of the license
agreement file, rounded up to multiples of 8 to reflect a 4096-byte block size for a standard JFS
filesystem.

License agreement requirements are indicated by a size and license information section entry which
begins with LAR/, where LAR stands for License Agreement Requirement. The remainder of the string is
the filepath which uniquely identifies the particular license. The license agreement requirement entry will
have an additional second field of 0 to indicate that no additional size requirements exist. The actual size
information will be derived from the license agreement file size indication.

Internationalization: Each available translated license agreement file must be listed in the size and
license information section of one of the filesets in the package. Translated license agreement files must
include a locale designation as part of the full pathname.
License agreement requirement entries indicate the base pattern of the license files associated with
license agreement file entries. A %L pattern will designate the locale substitution string which will be
applied to identify which particular license agreement file to use.

In the following example, product IcedTea contains a license information file which has been translated into
English, Japanese, and German. The fileset IcedTea.rte both requires and provides a license agreement.
The basic form of the license file provided for IcedTea is /usr/opt/IcedTea/license/LANG/license.txt.
The size and license information section for IcedTea.rte would include the following entries:
LAF%en_US/usr/opt/IcedTea/license/en_US/license.txt 8
LAF%ja_JP/usr/opt/IcedTea/license/ja_JP/license.txt 8
LAF%de_DE/usr/opt/IcedTea/license/de_DE/license.txt 8
LAR/usr/opt/IcedTea/license/%L/license.txt 0

The following files would be included in the package containing IcedTea.rte:
./usr/opt/IcedTea/license/en_US/license.txt
./usr/opt/IcedTea/license/ja_JP/license.txt
./usr/opt/IcedTea/license/de_DE/license.txt

The license agreement files may be carried in separate packages from the packages containing the
license agreement requirements. This enables shipping translations separately and also allows for a
product consisting of multiple packages to only ship the license agreement files in a single package. It is
preferable to limit the number of filesets in a product as much as possible. If there is a common fileset
which is a prerequisite for the other filesets in a product, the license agreement requirement should just be
associated with that one fileset.

Supersede Information Section
The supersede information section indicates the levels of a fileset or fileset update for which this fileset or
fileset update may (or may not) be used as a replacement. Supersede information is optional and is only
applicable to AIX Version 4.1-formatted fileset base installation packages and Version 3.2-formatted fileset
update packages.

A newer fileset supersedes any older version of that fileset unless the supersedes section of the
lpp_name file identifies the latest level of that fileset it supersedes. In the rare cases where a fileset does
not supersede all earlier levels of that fileset, the installp command does not use the fileset to satisfy
requisites on levels older than the level of the fileset listed in the supersedes section.

A fileset update supersedes an older update for that fileset only if it contains all of the files, configuration
processing, and requisite information contained in the older fileset update. The installp command
determines that a fileset update supersedes another update for that fileset in the following conditions:

v The version, release, and modification levels for the updates are equal, the fix levels are both non-zero,
and the update with the higher fix level does not contain a prerequisite on a level of the fileset greater
than or equal to the level of the update with the lower fix level.

582 Writing and Debugging Programs

v The version and release levels for the updates are equal, and the update with the higher modification
level does not contain a prerequisite on a level of the fileset greater than or equal to the level of the
update with the lower modification level.

For example, the fileset update farm.apps.hog 4.1.0.1 delivers an update of /usr/sbin/sellhog. Fileset
update farm.apps.hog 4.1.0.3 delivers updates to the /usr/sbin/sellhog file and the /etc/hog file.
Fileset update farm.apps.hog 4.1.1.2 delivers an update to the /usr/bin/raisehog file.

Update farm.apps.hog 4.1.0.3 supersedes farm.apps.hog 4.1.0.1 because it delivers the same files and
applies to the same level, farm.apps.hog 4.1.0.0.

Update farm.apps.hog 4.1.1.2 does not supersede either farm.apps.hog 4.1.0.3 or farm.apps.hog
4.1.0.1 because it does not contain the same files and applies to a different level, farm.apps.hog
4.1.1.0. Update farm.apps.hog 4.1.1.0 supersedes farm.apps.hog 4.1.0.1 and farm.apps.hog 4.1.0.3.

Supersede Section for Fileset Installation Levels (Base Levels)
An AIX Version 4.1-formatted fileset installation package can contain the following supersede entries:

Barrier Entry Identifies the fileset level where a major incompatibility
was introduced. Such an incompatibility keeps the current
fileset from satisfying requisites to levels of the fileset
earlier than the specified level.

Compatibility Entry Indicates the fileset can be used to satisfy the requisites
of another fileset. A compatibility entry is used when a
fileset has been renamed or made obsolete. Only one
fileset can supersede a given fileset. You may specify only
one compatibility entry for each fileset.

The lpp_name file can contain at most one barrier and one compatibility entry for a fileset.

A barrier entry consists of the fileset name and the fileset level when the incompatibility was introduced. A
barrier entry is necessary for a fileset only in the rare case that a level of the fileset has introduced an
incompatibility such that functionality required by dependent filesets has been modified or removed to such
an extent that requisites on previous levels of the fileset are not met. A barrier entry must exist in all
subsequent versions of the fileset indicating the latest level of the fileset that satisfies requisites by
dependent filesets.

For example, if a major incompatibility was introduced in fileset Bad.Idea 6.5.6.0, the supersede
information section for each Bad.Idea fileset installation package from fileset level 6.5.6.0 onward would
contain a Bad.Idea 6.5.6.0 barrier entry. This barrier entry would prevent a requisite of Bad.Idea 6.5.4.0
from being satisfied by any levels of Bad.Idea greater than or equal to 6.5.6.0.

A compatibility entry consists of a fileset name (different from the fileset in the package) and a fileset level.
The fileset level identifies the level at which requisites to the specified fileset (and earlier levels of that
fileset) are met by the fileset in the installation package. The compatibility is useful when the specified
fileset is obsolete or has been renamed, and the function from the specified fileset is contained in the
current fileset. The fileset level in the compatibility entry should be higher than any level expected to exist
for the specified fileset.

For example, the Year.Full 19.91.0.0 fileset is no longer delivered as a unit and is instead broken into
several smaller, individual filesets. Only one of the smaller resulting filesets, perhaps Winter 19.94.0.0,
should contain a compatibility entry of Year.Full 19.94.0.0. This compatibility entry allows the Winter
19.94.0.0 fileset to satisfy the requisites of filesets dependent on Year.Full at levels 19.94.0.0 and
earlier.

Chapter 20. Packaging Software for Installation 583

Supersede Section for Version 3.2-Formatted Updates
A Version 3.2-formatted fileset update can supersede another update for that fileset if each file and
configuration action contained in the older update are contained in the newer update and if each of those
filesets can be applied to the same fileset installation level. The installp command does not use the fileset
level and prerequisite information to determine if a Version 3.2-formatted fileset update supersedes
another. Instead, the Version 3.2-formatted fileset update must explicitly list each fix identifier that the
update supersedes. The supersedes section for a Version 3.2-formatted fileset update consists of a
newline-separated list of entries. Each entry contains the fileset name and the fix identifier of the
superseded fileset.

Supersedes Processing
The installp command provides the following special features for installing filesets and fileset updates
which supersede other filesets or fileset updates:

v If the installation media does not contain a fileset or fileset update that the user requested to install, a
superseding fileset or fileset update on the installation media can be installed.

For example, the user invokes the installp command with the -g flag (automatically install requisites) to
install the farm.apps.hog 4.1.0.2 fileset. If the installation media contains the farm.apps.hog 4.1.0.4
fileset only, the installp command will install the farm.apps.hog 4.1.0.4 fileset because it supersedes the
requested level.

v If the system and the installation media do not contain a requisite fileset or fileset update, the requisite
can be satisfied by a superseding fileset or fileset update.

v If an update is requested for installation and the -g flag is specified, the request is satisfied by the
newest superseding update on the installation media.

v If an update and a superseding update (both on the installation media) are requested for installation, the
installp command installs the newer update only.

When the -g flag is specified with the installp command, any update requested for installation (either
explicitly or implicitly) is satisfied by the newest superseding update on the installation media. If the user
wants to install a particular level of an update, not necessarily the latest level, the user can invoke the
installp command without the -g flag.

In the last case, if a user wishes to apply a certain update and its superseding update from the installation
media, the user must do separate installp operations for each update level. Note that this kind of
operation is meaningless if the two updates are applied and committed (-ac). Committing the second
update removes the first update from the system.

Fix Information Section
The fix information section is optional and is only applicable to update packages. The fix information
section entries contain a fix keyword and a 60-character or less description of the problem fixed. A fix
keyword is a 16-character or less identifier corresponding to the fix. Fix keywords beginning with ix and IX
are reserved for use by the AIX operating system manufacturer.

A maintenance level is a fix that is a major update level. AIX periodic preventive maintenance packages
are maintenance levels. A maintenance level identifier begins with the name of the software product (not
the package), followed by a single dot (.) and an identifying level, such as farm.4.1.1.0.

The liblpp.a Installation Control Library File
The liblpp.a file is an AIX archive file that contains the files required to control the package installation.
You can create a liblpp.a file for your package using the ar command. This section describes many of the
files you can put in a liblpp.a archive.

584 Writing and Debugging Programs

../../cmds/aixcmds1/ar.htm#HDRA0949A5B

Throughout this section, Fileset appears in the names of the control files. Fileset represents the name of
the separate fileset to be installed within the software package. For example, the apply list file is described
as Fileset.al. The apply list file for the bos.net.tcp.client option of the bos.net software product is
bos.net.tcp.client.al.

For any files you include in the liblpp.a archive file other than the files listed in this section, you should
use the following naming conventions:

v If the file is used in the installation of a specific fileset, the file name should begin with the Fileset.
prefix.

v If the file is used as a common file for several filesets in the same package, the file name should begin
with the lpp. prefix.

Many files described in this section are optional. An optional file is necessary only if the function the file
provides is required for the fileset or fileset update. Unless stated, a file pertains to both full installation
packages and fileset update packages.

Data Files Contained in the liblpp.a File

Fileset.al Apply list. This file lists all files to be restored for this
fileset. Files are listed one per line with a path relative to
root, as in ./usr/bin/pickle. An apply list file is required
if any files are delivered with the fileset or fileset update.

Fileset.cfginfo Special instructions file. This file lists one keyword per
line, each keyword indicating special characteristics of the
fileset or fileset update. The only currently recognized
keyword is BOOT, which causes a message to be
generated after installation is complete indicating that the
system needs to be restarted.

Fileset.cfgfiles List of user-configurable files and processing instructions
for use when applying a newer or equal installation level
of a fileset that is already installed. Before restoring the
files listed in the Fileset.al file, the system saves the files
listed in Fileset.cfgfiles file. Later, these saved files are
processed according to the handling methods specified in
the Fileset.cfgfiles file.

Fileset.copyright Required copyright information file for the fileset. This file
consists of the full name of the software product followed
by the copyright notices.

Fileset.err Error template file used as input to the errupdate
command to add or delete entries in the Error Record
Template Repository. This file is commonly used by device
support software. The errupdate command creates a
Fileset.undo.err file for cleanup purposes. See the
errupdate command for information about the format of
the Fileset.err file.

Fileset.fixdata Optional stanza format file. This file contains information
about the fixes contained in a fileset or fileset update.

Fileset.inventory The inventory file. This file contains required software vital
product data for the files in the fileset or fileset update.
The inventory file is a stanza-format file containing an
entry for each file to be installed or updated.

Fileset.namelist List of obsolete filesets that once contained files now
existing in the fileset to be installed. This file is used for
installation of repackaged software products only.

Fileset.odmadd
Fileset.*.odmadd Stanzas to be added to ODM (Object Data Manager)

databases.

Chapter 20. Packaging Software for Installation 585

../../cmds/aixcmds2/errupdate.htm#HDRA251B9A8A6
../../cmds/aixcmds2/errupdate.htm#HDRA251B9A8A6

Fileset.rm_inv Remove inventory file. This file is for installation of
repackaged software products only and must exist if the
fileset is not a direct replacement for an obsolete fileset.
This stanza-format file contains names of files that need to
be removed from obsolete filesets.

Fileset.trc Trace report template file. The trcupdate command uses
this file to add, replace, or delete trace report entries in
the /etc/trcfmt file. The trcupdate command creates a
Fileset.undo.trc file for cleanup purposes. Only the root
part of a package can contain Fileset.trc files.

lpp.acf Archive control file for the entire package. This file is
needed only when adding or replacing an archive member
file to an archive file that already exists on the system.
The archive control file consists of lines containing pairs of
the member file in the temporary directory as listed in the
Fileset.al file and the archive file that the member belongs
to, both listed relative to root as in:

./usr/ccs/lib/libc/member.o ./usr/ccs/lib/libc.a
lpp.README Readme file. This file contains information the user should

read before using the software. This file is optional and
can also be named README, lpp.doc, lpp.instr, or
lpp.lps.

productid Product identification file. This optional file consists of a
single line indicating the product name, the product
identifier (20-character limit), and the optional feature
number (10-character limit).

Optional Executable Files Contained in the liblpp.a File
The product-specific executable files described in this section are called during the installation process.
Unless otherwise noted, file names that end in _i are used during installation processing only, and file
names that end in _u are used in fileset update processing only. All files described in this section are
optional and can be either shell scripts or executable object modules. Each program should have a return
value of 0 (zero), unless the program is intended to cause the installation or update to fail.

Fileset.config
Fileset.config_u Modifies configuration near the end of the default

installation or update process. Fileset.config is used
during installation processing only.

Fileset.odmdel
Fileset.*.odmdel Updates ODM database information for the fileset prior to

adding new ODM entries for the fileset. The odmdel file
naming conventions enables a fileset to have multiple
odmdel files.

Fileset.pre_d Indicates whether a fileset may be removed. The program
must return a value of 0 (zero) if the fileset may be
removed. Filesets are removable by default. The program
should generate error messages indicating why the fileset
is not removable.

Fileset.pre_i
Fileset.pre_u Runs prior to restoring or saving the files from the apply

list in the package, but after removing the files from a
previously installed version of the fileset.

Fileset.pre_rm Runs during a fileset installation prior to removing the files
from a previously installed version of the fileset.

Fileset.post_i
Fileset.post_u Runs after restoring the files from the apply list of the

fileset installation or update.

586 Writing and Debugging Programs

../../cmds/aixcmds5/trcupdate.htm#HDRA237Y97B74

Fileset.unconfig
Fileset.unconfig_u Undoes configuration processing performed in the

installation or update. Fileset.unconfig is used during
installation processing only.

Fileset.unodmadd Deletes entries that were added to ODM databases during
the installation or update.

Fileset.unpost_i_0
Fileset.unpost_u Undoes processing performed following restoring the files

from the apply list in the installation or update.
Fileset.unpre_i
Fileset.unpre_u Undoes processing performed prior to restoring the files

from the apply list in the installation or update.

If any of these executable files runs a command that may change the device configuration on a machine,
that executable file should check the INUCLIENTS environment variable before running the command. If
the INUCLIENTS environment variable is set, the command should not be run. The Network Installation
Management (NIM) environment uses the installp command for many purposes, some of which require
the installp command to bypass some of its normal processing. NIM sets the INUCLIENTS environment
variable when this normal processing must be bypassed.

If the default installation processing is insufficient for your package, you can provide the following
executable files in the liblpp.a file. If these files are provided in your package, the installp command uses
your package-provided files in place of the system default files. Your package-provided files must contain
the same functionality as the default files or unexpected results can occur. You can use the default files as
models for creating your own files. Use of the default files in place of package-provided files is strongly
recommended.

instal Used in place of the default installation script
/usr/lib/instl/instal. The installp command calls this
executable file if a fileset in an installation package is
applied.

lpp.cleanup Used in place of the default installation cleanup script
/usr/lib/instl/cleanup. The installp command calls this
executable file if a fileset in an installation or update
package has been partially applied and must be cleaned
up to put the fileset back into a consistent state.

lpp.deinstal Used in place of the default fileset removal script
/usr/lib/instl/deinstal. This executable file must be placed
in the /usr/lpp/PackageName directory. The installp
command calls this executable file if a fileset in an
installation package is removed.

lpp.reject Used in place of the default installation rejection script
/usr/lib/instl/reject. The installp command calls this
executable if a fileset update in an update package is
rejected. (The default /usr/lib/instl/reject script is a link to
the /usr/lib/instl/cleanup script.)

update Used in place of the default fileset update script
/usr/lib/instl/update. The installp command calls this
executable file if a fileset in an update package is applied.
(The default /usr/lib/instl/update script is a link to the
/usr/lib/instl/instal script.)

To ensure compatibility with the installp command, the instal or update executable provided with a
software package must:

v Process all of the filesets in the software product. It can either process the installation for all the filesets
or invoke other executables for each fileset.

Chapter 20. Packaging Software for Installation 587

../../cmds/aixcmds3/installp.htm#HDRA1539AD6

v Use the inusave command to save the current level of any files to be installed.

v Use inurest command to restore all required files for the usr part from the distribution media.

v Use the inucp command to copy all required files for the root part from the
/usr/lpp/Package_Name/inst_root directory.

v Create an $INUTEMPDIR/status file indicating success or failure for each fileset being installed or
updated. See “The Installation Status File” on page 604 for more information about this file.

v Return an exit code indicating the status of the installation. If the instal or update executable file
returns a nonzero return code and no status file is found, the installation process assumes all filesets
failed.

Optional Executable File Contained in the Fileset.al File

Fileset.unconfig_d Undoes fileset-specific configuration operations performed
during the installation and updates of the fileset. The
Fileset.unconfig_d file is used when the -u flag is
specified with the installp command. If this file is not
provided and the -u flag is specified, the Fileset.unconfig,
Fileset.unpost_i, and Fileset.unpre_i operations are
performed.

Further Description of Installation Control Files

The Fileset.cfgfiles File
The Fileset.cfgfiles file lists configuration files that need to be saved in order to migrate to a new version
of the fileset without losing user-configured data. To preserve user-configuration data, a Fileset.cfgfiles file
must be provided in the proper liblpp.a file (usr, root, or share).

The Fileset.cfgfiles contains a one-line entry for each file to be saved. Each entry contains the file name
(a path name relative to root), a white-space separator, and a keyword describing the handling method for
the migration of the file. The handling method keywords are:

preserve Replaces the installed new version of the file with the
saved version from the save directory. After replacing the
new file with the saved version, the saved file from the
configuration save directory is deleted.

user_merge Leaves the installed new version of the file on the system
and keeps the old version of the file in the configuration
save directory. The user will be able to reference the old
version to perform any merge that may be necessary.

auto_merge During the Fileset.post_i processing, the product-provided
executables merge necessary data from the installed new
version of the file into the previous version of the file
saved in the configuration save directory. After the
Fileset.post_i processing, the installp command replaces
the installed new version of the file with the merged
version in the configuration save directory (if it exists) and
then removes the saved file.

hold_new Replaces the installed new version of the file with the
saved version from the save directory. The new version of
the file is placed in the configuration save directory in
place of the old version. The user will be able to reference
the new version.

588 Writing and Debugging Programs

../../cmds/aixcmds3/inusave.htm#HDRA22393CB
../../cmds/aixcmds3/inurest.htm#HDRA2239272
../../cmds/aixcmds3/inucp.htm#HDRA92F1110B

other Used in any case where none of the other defined
handling methods are sufficient. The installp command
saves the file in the configuration save directory and
provides no further support. Any other manipulation and
handling of the configuration file must be done by the
product-provided executables. The product developer has
the responsibility of documenting the handling of the file.

The Fileset.post_i executable can be used to do specific manipulating or merging of configuration data
that cannot be done through the the default installation processing.

Configuration files listed in the Fileset.cfgfiles file are saved in the configuration save directory with the
same relative path name given in the Fileset.cfgfiles file. The name of the configuration save directory is
stored in the MIGSAVE environment variable. The save directory corresponds to the part of the package
being installed. The following directories are the configuration save directories:

/usr/lpp/save.config For the usr part
/lpp/save.config For the root part
/usr/share/lpp/save.config For the share part

If the list of files that you need to save varies depending on the currently installed level of the fileset, the
Fileset.cfgfiles file must contain the entire list of configuration files that might be found. If necessary, the
Fileset.post_i executable (or executables provided by other products) must handle the difference.

For example, you have a fileset (foo.rte) that has one file that can be configured. So, in the root
foo.rte.cfgfiles, there is one file listed:
/etc/foo_user user_merge

When migrating from your old fileset (foo.obj) to foo.rte, you cannot preserve this file because the format
has changed. However, when migrating from an older level foo.rte to a newer level foo.rte, the file can be
preserved. In this case, you might want to create a foo.rte.post_i script that checks to see what fileset
you are migrating from and acts appropriately. This way, if a user had made changes to the /etc/foo_user
file, they are saved.

The root foo.bar.post_i script could be as follows:
#! /bin/ksh
grep -q foo.rte $INSTALLED_LIST
if [$? = 0]
then

mv $MIGSAVE/etc/foo_user/ /etc/foo_user
fi

$INSTALLED_LIST is created and exported by installp. See Installation for Control Files Specifically for
Repackaged Products (“Installation Control Files Specifically for Repackaged Products” on page 592) for
more information about the Fileset.installed_list configuration file. The $MIGSAVE variable contains the
name of the directory in which the root part configuration files are saved.

The installp command does not produce a warning or error message if a file listed in the Fileset.cfgfiles
file is not found. The installp command also does not produce a message for a file that is not found
during the phase following Fileset.post_i processing when saved configuration files are processed
according to their handling methods. If any warning or error messages are desired, the product-provided
executables must generate the messages.

Chapter 20. Packaging Software for Installation 589

As an example of the Fileset.cfgfiles file, the Product_X.option1 fileset must recover user configuration
data from three configuration files located in the root part of the fileset. The Product_X.option1.cfgfiles
is included in the root part of the liblpp.a file and contains the following:
./etc/cfg_leaf preserve
./etc/cfg_pudding user_merge
./etc/cfg_newton preserve

The Fileset.fixdata File

Fileset.fixdata A stanza-format file that describes the fixes contained in
the fileset update (or in a fileset installation, if used in
place of an update)

The information in this file is added to a fix database. The instfix command uses this database to identify
fixes installed on the system. If the Fileset.fixdata exists in a package, the fix information in the fix
database is updated when the package is applied.

Each fix in the fileset should have its own stanza in the Fileset.fixdata file. A Fileset.fixdata stanza has
the following format:
fix:

name = FixKeyword
abstract = Abstract
type = {f | p}
filesets = FilesetName FilesetLevel
[FilesetName FilesetLevel ...]
[symptom = [Symptom]]

FixKeyword can not exceed 16 characters. Abstract describes the fix and can not exceed 60 characters. In
the type field, f represents a fix, and p represents a preventive maintenance update. The filesets field
contains a new-line separated list of filesets and fileset levels. FilesetLevel is the initial level in which the
fileset delivered all or part of the fix. Symptom is an optional description of the problem corrected by the
fix. Symptom does not have a character limit.

The following example shows a Fileset.fixdata stanza for problem MS21235. The fix for this problem is
contained in two filesets.
fix:

name = MS21235
abstract = 82 gigabyte diskette drive unusable on Mars
type = f
filesets = devices.mca.8d77.rte 12.3.6.13

devices.mca.8efc.rte 12.1.0.2
symptom = The 82 gigabyte subatomic diskettes fail to operate in a Martian environment.

The Fileset.inventory File

Fileset.inventory File that contains specific information about each file that
is to be installed or updated for the fileset

sysck Command that uses the Fileset.inventory file to enter the
file name, product name, type, checksum, size, link, and
symlink information into the software information database

The Fileset.inventory file is required for each part of a fileset that installs or update files. If the package
has a root part that does not contain files to be installed (it does configuration only), the root part does not
require the Fileset.inventory file.

590 Writing and Debugging Programs

../../cmds/aixcmds3/instfix.htm#HDRDFE1610954JOYC
../../cmds/aixcmds5/sysck.htm#HDRA169F169

Note: The Fileset.inventory file does not support files which are greater than 2 gigabytes (>2GB) in size.
If you ship a file that is greater than 2GB, include it in your fileset.al file, but not in your Fileset.inventory
file. sysck has not been updated to handle files larger than 2GB, and the /usr file system on most
machines will not be created with capability for files greater than 2GB (by default).

The inventory file consists of ASCII text in stanza format. The name of a stanza is the full path name of
the file to be installed. The stanza name ends with a colon (:) and is followed by a new-line character. The
file attributes follow the stanza name and have the format Attribute=Value. Each attribute is described on a
separate line. The following list describes the valid attributes of a file:

Attribute Description

class The logical group of the file. A value must be specified
because it cannot be computed. The value is ClassName
[ClassName].

type Specifies the file type. The type attribute can have the
following values:

Type Meaning

FILE Ordinary file.

DIRECTORY
Directory.

SYMLINK
A symbolic link to a file.

FIFO First-in-first-out file.

BLK_DEV
Block device special file.

CHAR_DEV
Character device special file.

MPX_DEV
Multiplexed device special file.

owner Specifies the file owner. The attribute value can be in the
owner name or owner ID format.

group Specifies the file group. The attribute value can be in the
group name or group ID format.

mode Specifies the file mode. The value must contain the
permissions of the file in octal format. Any of the following
keywords can precede the permissions value. Items in the
list are separated by commas.

Mode Items
Meaning

tcb Part of the Trusted Computing Base.

tp Part of the Trusted Process.

svtx Text will be saved on swap for this file.

suid File has the set user ID bit set.

sgid File has the set group ID bit set.

target Valid only for type=SYMLINK. The attribute value is the
path name of the file to which the link points.

program Specifies the software product to use to verify the file.
This attribute is not usually used.

Chapter 20. Packaging Software for Installation 591

source Specifies the location of the original copy of the file.
size Specifies the size of the file in blocks. If the file size is

expected to change through normal operation, the value
for this attribute must be VOLATILE.

checksum Specifies the checksum values of the file. The attribute
value is a string containing the checksum value and
number of 1024-byte blocks in the file as generated by the
sum command. If the files size is expected to change
through normal operation, the value for this attribute must
be VOLATILE.

link Specifies any hard links. If multiple hard links exist, each
link is separated by a comma.

Note: The sysck command creates hard links and symbolic links during installation if those links do not
exist. The root part symbolic links should be packaged in the root part Fileset.inventory file.

Installation Control Files Specifically for Repackaged Products

The Fileset.installed_list File

Fileset.installed_list File created by the installp command when installing the
fileset from a package if it is found that the fileset (or
some form of it) is already installed on the system at
some level

The software information database is searched to determine if either Fileset or any filesets listed in the file
Fileset.namelist (if it exists) are already installed on the system. If so, the fileset and the installation level
are written to the Fileset.installed_list file.

If it is created, the Fileset.installed_list is available at the time of the calls to the rminstal and instal
executables. The Fileset.installed_list file can be located in the following directories, the packaging
working directories, or PackageWorkDirectory:

/usr/lpp/ PackageName for the usr part
/lpp/ PackageName for the root part
/usr/share/lpp/ PackageName for the share part

The Fileset.installed_list file contains a one-line entry for each fileset that was installed. Each entry
contains the fileset name and the fileset level.

For example, while the storm.rain 1.2.0.0 fileset is being installed, the installp command discovers that
storm.rain 1.1.0.0 is already installed. The installp command creates the
PackageWorkDirectory/storm.rain.installed_list file with the following contents:
storm.rain 1.1.0.0

As another example, the Baytown.com fileset contains a Baytown.com.namelist file with the following
entries:
Pelly.obj
GooseCreek.rte
CedarBayou.stream

592 Writing and Debugging Programs

../../cmds/aixcmds5/sum.htm#HDRA26F0756
../../cmds/aixcmds5/sysck.htm#HDRA169F169

While installing the Baytown.com 2.3.0.0 fileset, the installp command finds that Pelly.obj 1.2.3.0 and
CedarBayou.stream 4.1.3.2 are installed. The installp command creates
thePackageWorkDirectory/Baytown.com.installed_list file with the following contents:
Pelly.obj 1.2.3.0
CedarBayou.stream 4.1.3.2

The Fileset.namelist File

Fileset.namelist File necessary when the fileset name has changed or the
fileset contains files previously packaged in obsolete
filesets. It contains names of all filesets that previously
contained files currently included in the fileset to be
installed. Each fileset name must appear on a separate
line.

The Fileset.namelist file must be provided in the usr, root, or share part of the liblpp.a file. The
Fileset.namelist file is only valid for installation packages; it is not valid for update packages.

At the beginning of installation, the installp command searches the Software Vital Product Data (SWVPD)
to determine if the fileset or any fileset listed in the Fileset.namelist file is already installed on the system.
The installp command writes to the Fileset.installed_list file the fileset names and fileset levels that are
found installed, making this information available to product-provided executables.

As a simple example of a Fileset.namelist file, the small.business fileset replaces an earlier fileset named
family.business. The small.business product package contains the small.business.namelist file in its
usr part liblpp.a file. The small.business.namelist file contains the following entry:
family.business

As a more complex example of a Fileset.namelist file, a fileset is divided into a client fileset and a server
fileset. The LawPractice.client and LawPractice.server filesets replace the earlier lawoffice.mgr fileset.
The LawPractice.server fileset also contains a few files from the obsolete BusinessOffice.mgr fileset. The
LawPractice.client.namelist file in the liblpp.a file for the LawPractice package contains the following
entry:
lawoffice.mgr

The LawPractice.server.namelist file in the liblpp.a file for the LawPractice package contains the
following entries:
lawoffice.mgr
BusinessOffice.mgr

If the Fileset.namelist file contains only one entry and the current fileset is not a direct replacement for the
fileset listed in the Fileset.namelist file, you must include a Fileset.rm_inv file in the liblpp.a file. The
installation process uses the Fileset.namelist file and the Fileset.rm_inv file to determine if a fileset is a
direct replacement for another fileset. If the Fileset.namelist file contains only one entry and there is no
Fileset.rm_inv file, the installation process assumes the new fileset is a direct replacement for the old
fileset. When the new (replacement) fileset is installed, the installation process removes from the system
all files from the old (replaced) fileset, even files not included in the new fileset.

In the previous examples, the small.business fileset is a direct replacement for the family.business
fileset, so a small.business.rm_inv file should not exist. The LawPractice.client fileset is not a direct
replacement for the lawoffice.mgr fileset, so a LawPractice.client.rm_inv file must exist, even if it is
empty.

Chapter 20. Packaging Software for Installation 593

The Fileset.rm_inv File

Fileset.rm_inv File that contains a list of files, links, and directories to be
removed from the system if they are found installed

This file is used when the current fileset is packaged differently from a previous level of the fileset and the
installation process should not remove previously installed files based on the fileset’s entries in the
inventory database.

A simple name change for a fileset is not sufficient to require a Fileset.rm_inv file. The Fileset.rm_inv file
is necessary when a new fileset is either a subset of a previous fileset or a mixture of parts of previous
filesets. If a Fileset.namelist file exists and contains entries for more than one fileset, you must use the
Fileset.rm_inv file to remove previously installed levels of the files from the system.

The Fileset.rm_inv file consists of ASCII text in stanza format. The name of a stanza is the full path name
of the file or directory to be removed if found on the system. The stanza name ends with a colon (:) and is
followed by a new-line character. If attributes follow the stanza name, the attributes have the format
Attribute=Value. Attributes are used to identify hard links and symbolic links that need to be removed. Each
attribute is described on a separate line. The following list describes the valid attributes:

Attribute Description
links One or more hard links to the file. The full path names of

the links are delimited by commas.
symlinks One or more symbolic links to the file. The full path names

of the links are delimited by commas.

For example, the U.S.S.R 19.91.0.0 fileset contains the following files in the /usr/lib directory: moscow,
leningrad, kiev, odessa, and petrograd (a symbolic link to leningrad). The product developers decide to
split the U.S.S.R 19.91.0.0 fileset into two filesets: Ukraine.lib 19.94.0.0 and Russia.lib 19.94.0.0.
The Ukraine.lib fileset contains the kiev and odessa files. The Russia.lib fileset contains the moscow file.
The leningrad file no longer exists and is replaced by the st.petersburg file in the Russia.lib fileset.

The Ukraine.lib.rm_inv file must exist because the Ukraine.lib fileset is not a direct replacement for the
U.S.S.R fileset. The Ukraine.lib.rm_inv file should be empty because no files need to be removed when
the Ukraine.lib fileset is installed to clean up the migrating U.S.S.R fileset.

The Russia.lib.rm_inv file must exist because the Russia.lib fileset is not a direct replacement for the
U.S.S.R fileset. If the Russia.lib.rm_inv file is used to remove the leningrad file when the Russia.lib
fileset is installed, the Russia.lib.rm_inv file would contain the following stanza:
/usr/lib/leningrad:

symlinks = /usr/lib/petrograd

Installation Files for Supplemental Disk Subsystems
A disk subsystem that will not configure with the provided SCSI or bus-attached device driver requires its
own device driver and configuration methods. These installation files are provided on a supplemental
diskette (which accompanies the device) and must be in backup format with a ./signature file and a
./startup file. The signature file must contain the string target. The startup file must use restore by name
to extract the needed files from the supplemental diskette and to run the commands necessary to bring the
device to the available state.

594 Writing and Debugging Programs

Format of Distribution Media
The following types of media can be used to distribute software product installation packages.

v “Tape”

v “CD-ROM”

v “Diskette” on page 596

The following sections describe the formats that must be used to distribute multiple product packages on
each of these media.

Tape
In order to stack multiple product package images onto either a single tape or a set of tapes, the files on
each tape in the set must conform to the following format:

v File 1 is empty. (Reserved for bootable tapes.)

v File 2 is empty. (Reserved for bootable tapes.)

v File 3 contains a table of contents file that describes product package images on the set of tapes.
Therefore, each tape in the set contains a copy of the same table of contents file, except for the
difference of the tape volume number in a multi-volume set. See “The Table of Contents File” on
page 596 for more information.

v Files 4 through (N+3) contain the backup-format file images for product packages 1 through N.

v A product package image file cannot span across two tapes.

v Each file is followed by an end-of-file tape mark.

CD-ROM
A CD-ROM that is to contain multiple product package images must be compliant with the Rock Ridge
Group Protocol. Product packages should be stored in the /usr/sys/inst.images directory, which must
contain the following:

v The backup-format file images of the product packages.

v A table of contents file named .toc that describes the product package images in the directory. See
“The Table of Contents File” on page 596 for more information.

A multiple volume CD-ROM is a CD-ROM that has an additional directory structure to define a set of
CD-ROMs as a single installable unit.

A multiple volume CD-ROM must conform to the following rules:

v A /usr/sys/mvCD directory exists with the following contents:

1. A table of contents file (.toc) that describes the product package images on all of the CD-ROMs of
the set. Each volume of the CD-ROM must have the same .toc in /usr/sys/mvCD.

2. An ASCII file named volume_id in which the first line consists of the decimal volume number of the
CD in the set1.

3. A symbolic link named vol% n, where n is the decimal volume number of the of the CD in the set.
The target of the symbolic link must be a relative path to the directory of product packages on that
particular volume of the CD. The standard value for the symbol link is ../inst.images.

v The table of contents file (.toc) in the /usr/sys/mvCD conforms to the standard table of contents format.
The special characteristic of the multiple volume .toc is that the location of each product package image
begins with the directory entry vol% n, where n indicates the volume which contains that particular
product package.

Example:

Chapter 20. Packaging Software for Installation 595

Fileset A is in file A.bff on volume 1. Fileset B is in file B.bff on volume 2. The field in the table of
contents file in /usr/sys/mvCD containing the location of the product package images for A and B are
vol%1/A.bff and vol%2.bff, respectively. The field in the table of contents file in /usr/sys/inst.images of
volume 1 contains the location of A as A.bff. The field in the table of contents file in /usr/sys/inst.images
of volume 2 contains the location of B as B.bff.

Note: Multiple volume CD-ROMs are not recognized on AIX systems prior to AIX 4.3. Each volume of the
CD-ROM will be processed separately. The CD-ROMs should be produced whenever possible so that
each volume may be processed separately, since there can be situations where a volume of the CD-ROM
is unmountable and only the single volume may be accessible.

Diskette
In order to stack multiple product package images onto a set of diskettes, the following files must be
written to the set of diskettes:

v A table of contents file that describes product package images to be included in the set. See “The Table
of Contents File” for more information.

v Each product package image file that is to be included in the set.

The files are written to the set of diskettes using the following rules:

v Write the data as a stream to the diskette set with a volume ID sector inserted in block 0 of each
diskette in the set. The data from the last block of one volume is treated as logically adjacent to the
data from block 1 of the next volume (the volume ID sector is verified and discarded when read).

v Each file begins on a 512-byte block boundary.

v Write the table of contents file first. Pad this file to fill its last sector with null characters (x’00’). At least
one null character is required to mark the end of the table of contents file. Thus, a full sector of null
characters may be required.

v Following the table of contents file, write each of the product package image files to successive sectors.
Pad each file to fill its last sector using null characters. A null character is not required if the file ends on
the block boundary.

v Block 0 of each diskette in the set contains a volume ID sector. The format of this sector is:

Bytes 0:3 A magic number for identification. This is a binary integer
with a value of decimal 3609823513=x’D7298918’.

Bytes 4:15 A date and time stamp (in ASCII) that serves as the
identification for the set of diskettes. The format is
MonthDayHourMinuteSecondYear. The Hour should be a
value from 00 to 23. All date and time fields contain two
digits. Thus, Month should be represented as 03 instead
of 3, and Year should be represented as 94 instead of
1994.

Bytes 16:19 A binary integer volume number within this set of
diskettes. The first diskette in the set is x’00000001’.

Bytes 20:511 Binary zeroes.

The Table of Contents File
The following table describes the table of contents file. Note that some fields are different for the different
types of media.

The Table of Contents File

Field Name Format Separator Description

596 Writing and Debugging Programs

1. Volume Character White space For the tape and diskette
table of contents file, this is
the number of the volume
containing this data. For the
fixed disk or CD-ROM table
of contents file, the volume
number is 0.

2. Date and time stamp mmddhhMMssyy White space For tape or diskette, this is
the time stamp when
volume 1 was created. For
fixed disk or CD-ROM, this
is the time stamp when the
.toc file was created. See
Date and Time Stamp
Format later in this article
for detailed description.

3. Header format Character New line A number indicating the
format of the table of
contents file. Valid entries
are: 1 -AIX Version 3.1, 2
-Version 3.2, 3 -AIX Version
4.1, B -mksysb tape
(invalid for use by installp)

4. Location of product
package image

Character White space For tape or diskette, this is
a character string in the
form:
vvv:bbbbb:sssssssSee
Location Format for Tape
and Diskette later in this
article for detailed
description. For fixed disk
or CD-ROM, this is the file
name of the product
package image file. Note
that this is the file name
only and must not be
preceded by any part of the
path name.

5. Package specific
information

lpp_name file format New line The contents of the
lpp_name file contained in
this product package image.
See The lpp_name
Package Information File for
detailed description.

Note: Items 4 and 5 described in the preceding table are repeated for each product package image
contained on the media.

Date and Time Stamp Format
A date and time stamp format is an ASCII string that has the following format:

MonthDayHourMinuteSecondYear

The Hour should be a value from 00 to 23. All date and time fields contain two digits. Thus, Month should
be represented as 03 instead of 3, and Year should be represented as 94 instead of 1994.

Chapter 20. Packaging Software for Installation 597

Location Format for Tape and Diskette
The location has the format of vvv:bbbbb:sssssss where each letter represents a digit and has the
following meaning:

For tape

vvv is the volume number of the tape.

bbbbb is the file number on the tape of the product package image.

ssssssss
is the size of the file in bytes.

For diskette

vvv is the volume number of the diskette.

bbbbb is the block number on diskette where the product package image file begins.

ssssssss
is the size of the file in bytes (including padding to the end of the block boundary).

The installp Processing of Product Packages
The major actions that can be taken with the installp command are:

Apply When a fileset in a product installation package is applied,
it is installed on the system and it overwrites any
pre-existing version of that fileset, therefore committing
that version of the fileset on the system. The fileset may
be removed if the user decides the fileset is no longer
required.

When a fileset update is applied, the update is installed and information is saved (unless otherwise requested) so that
the update can be removed later. Fileset updates that have been applied can be committed or rejected later.
Commit When a fileset update is committed, the information saved

during the apply is removed from the system. Committing
already applied software does not change the currently
active version of a fileset.

Reject When an update is rejected, information saved during the
apply is used to change the active version of the fileset to
the version previous to the rejected update. The saved
information is then removed from the system. The reject
operation is valid only for updates. Many of the same
steps in the reject operation are performed in a cleanup
operation when a fileset or fileset update fails to complete
installation.

Remove When a fileset is removed, the fileset and its updates are
removed from the system independent of their state
(applied, committed, or broken). The remove operation is
valid only for the installation level of a fileset.

Executables provided within a product package can tailor processing for the apply, reject, and remove
operations.

Reinstalling a fileset does not perform the same actions that removing and installing the same fileset do.
The reinstall action (see /usr/lib/instl/rminstal) cleans up the current files from the previous or the same
version, but does not run any of the unconfig or unpre* scripts. Therefore, do not assume that the
unconfig script was run. The .config script should check the environment before assuming that the
unconfig was completed.

598 Writing and Debugging Programs

For example, for the ras.berry.rte fileset, the config script adds a line to root’s crontab file. Reinstalling
the ras.berry.rte fileset results in two crontab entries, because the unconfig script was not run on
reinstall (which removed the crontab entry). The config script should always remove the entry and then
add it again.

Processing for the Apply Operation
This section describes the steps taken by the installp command when a fileset or fileset update is applied.

1. Restore the lpp_name product package information file for the package from the specified device.

2. Verify that the requested filesets exist on the installation medium.

3. Check the level of the requested filesets to ensure that they may be installed on the system.

4. Restore control files from the liblpp.a archive library file into the package directory
(/usr/lpp/Package_Name for usr or usr/root packages and /usr/share/lpp/Package_Name for share
packages. The control files specifically for the root portion of a usr/root package reside in
/usr/lpp/Package_Name/inst_root/liblpp.a).

5. Check disk space requirements.

6. Check that necessary requisites (filesets required to be at certain levels to use or install another fileset)
are already installed or are on the list to be installed.

7. If this is an instalation package rather than an update package, determine if there are license
agreement requirements which must be satisfied in order to proceed with the installation.

8. If this is an installation package rather than a fileset update package, search the software vital product
data (SWVPD) to see if Fileset (the fileset being installed) or any filesets listed in the Fileset.namelist
file are already installed on the system at any level. If Fileset is already installed, write the fileset name
and installed level to the Work_Directory/Fileset.installed_list file. If no level of Fileset is installed,
then if any filesets listed in the Fileset.namelist file are installed, list all those filesets and levels in the
Work_Directory/Fileset.installed_list file. Work_Directory is the same as the package directory with the
exception of root parts, which use /lpp/Package_Name.

9. If this is an installation package rather than a fileset update package, call the /usr/lib/instl/rminstal
script to do the following for each fileset being installed (unless otherwise specified, files checked for
existence must have been restored from the liblpp.a control file library):

a. If Fileset.pre_rm exists, execute Fileset.pre_rm to perform required steps before removing any
files from this version or an existing version of Fileset.

b. If Work_Directory/Fileset .installed_list exists, move the existing files listed in Fileset.cfgfiles to the
configuration file save directory (indicated by the MIGSAVE environment variable).

c. If a version of Fileset is already installed, remove files and SWVPD information (except history) for
Fileset.

ELSE
If Work_Directory/Fileset.installed_list exists,
If Fileset.rm_inv exists or Fileset.namelist contains more than one fileset or the only fileset listed in
Fileset.namelist is bos.obj,
Remove files and SWVPD inventory information for files listed in the file Fileset.rm_inv.
Remove files and SWVPD inventory information for files listed in the file Fileset.inventory.
Remove other SWVPD information for any filesets listed in Fileset.namelist which no longer have any SWVPD
inventory information.

ELSE
If Work_Directory/Fileset.installed_list exists and contains only one fileset and Fileset.namelist contained only
one fileset,
Remove files and SWVPD information (except history) for that fileset.

d. For each part of a product package (usr part only, share part only, or usr followed by root)

Chapter 20. Packaging Software for Installation 599

1) Set INUTREE (U forusr, M for root, and S for share) and INUTEMPDIR (name of created
temporary working directory environment variables.

2) If an installation package:

If an instal control program exists in the package directory (not recommended)
Execute ./instal.
ELSE
Execute the default script /usr/lib/instl/instal.
ELSE /* update package */
Set INUSAVEDIR environment variable.
If an update control program exists in the package directory (not recommended)
Execute ./update.
ELSE
Execute the default script /usr/lib/instl/update.

3) If a status file has been successfully created by instal or update

Use status file to determine success/failure of each fileset.
ELSE
Assume all requested filesets in package failed to apply.

4) If apply operation was successful for a fileset

Update the Software Vital Product Data (SWVPD).
Register associated license agreement requirement if one exists.
ELSE
Run cleanup (the recommended default /usr/lib/instl/cleanup or the package-supplied lpp.cleanup from package
directory) to clean up the failed filesets.

Processing of the Default install/update Script
The instal or update executable is invoked from installp with the first parameter being the device being
used for the installation or update. The second parameter is the full path name to the file containing the list
of filesets to be installed or updated, referred to below as $FILESETLIST. The default instal and update
scripts are linked together; processing varies based on whether it is invoked as instal or update. The
current directory is the package directory. A temporary directory INUTEMPDIR is created in /tmp to hold
working files. The referenced files are described in Description of Installation Control Files (“Further
Description of Installation Control Files” on page 588).

The flow within the default instal and update script is as follows:

1. Do the following for each fileset listed in the $FILESETLIST:

a.

If update
Execute Fileset.pre_u (pre_update) if it exists.
ELSE
Execute Fileset.pre_i (pre_installation) if it exists.

b. Build a master list of files to be restored from the package by appending Fileset.al to the new file
INUTEMPDIR/master.al.

c. If update and files specified to be saved and lpp.acf (archive control file) exists,
Save off the library archive members being updated.

d. If processing is successful, append this fileset to the list to be installed in file $FILESETLIST.new.

2. If update and file saving specified, call inusave to save current versions of the files.

600 Writing and Debugging Programs

3. If processing root part,

Call inucp to copy files from apply list to root part.
ELSE
Call inurest to restore files from apply list for usr or share parts.

4. Do the following for each fileset listed in $FILESETLIST.new (failure in any step is recorded in the
status file and processing for that fileset ends):

a. Determine if this fileset is installed at the same or older level or if filesets listed in the
Fileset.namelist are installed. Export environment variables INSTALLED_LIST and MIGSAVE if
such a condition (called a migration).

b. If processing an update,

Invoke Fileset.post_u if it exists.
ELSE
Invoke Fileset.post_i if it exists.
If Fileset.cfgfiles exists, then call /usr/lib/instl/migrate_cfg to handle processing of configuration files according to
their specified handling method.

c. Invoke sysck to add the information in the Fileset.inventory file to the software vital product
database (SWVPD).

d. Invoke the tcbck command to add the trusted computing base information to the system if the
Fileset.tcb file exists and the trusted computing base attribute tcb_enabled is set in the
/usr/lib/objrepos/PdAt ODM database.

e. Invoke errupdate to add error templates if Fileset.err exists.

f. Invoke trcupdate to add trace report format templates if Fileset.trc exists.

g. If update or if Work_Directory/Fileset.installed_list exists, invoke each Fileset.odmdel and
Fileset.*.odmdel script to process ODM database deletion commands.

h. Invoke odmadd on each existing Fileset.odmadd and Fileset.*.odmadd to add information to ODM
databases.

i. If update,

Invoke Fileset.config_u (fileset configuration update) if it exists.
ELSE
Invoke Fileset.config (fileset configuration) if it exists.

j. Update the status file indicating successful processing for the fileset.

5. Link control files for needed for fileset removal into the package’s deinstl directory for future use.
These files include the following files that might be present in the package directory:

lpp.deinstal , Fileset. al, Fileset. inventory, Fileset. pre_d,Fileset. unpre_i, Fileset. unpre_u, Fileset.
unpost_i, Fileset. unpost_u, Fileset. unodmadd, Fileset. unconfig, Fileset. unconfig_u,
$SAVEDIR/Fileset. *.rodmadd, and SAVEDIR/Fileset. *.unodmadd

Processing for the Reject and Cleanup Operations
This section describes the steps taken by the installp command when a fileset update is rejected or when
a fileset or fileset update fails to complete installation. The default cleanup and reject scripts located in
/usr/lib/instl are linked together. Their logic differs slightly depending on whether the script was invoked
as reject or cleanup. For usr/root filesets or fileset updates, the root part is processed before the usr
part.

1. If rejecting, check requisites to ensure that all dependent product updates are also rejected.

2. For each part of a package (i.e., usr, root, or share)

a. Set INUTREE (U for usr, M for root, and S for share) and INUTEMPDIR environment variables.

Chapter 20. Packaging Software for Installation 601

b. If reject control file exists in current directory (INULIBDIR)

Invoke ./lpp.reject
ELSE
Invoke the default script /usr/lib/instl/reject

3. Update the Software Vital Product Data.

The reject executable is invoked from installp with the first parameter being undefined and the second
parameter being the full path name to the file containing the list of filesets (referred to below as
$FILESETLIST) to be rejected for the update.

The following files are referenced by the default cleanup and reject script. They are described in detail in
“Further Description of Installation Control Files” on page 588.

The flow within the default cleanup and reject script is as follows:

1. Do the following for each fileset listed in $FILESETLIST:

a. If invoked as cleanup, then read the line in the Package_Name.s status file to determine which
step the installation failed on and skip ahead to the undo action for that step. A cleanup operation
will only begin at the step where the the installation failed. For example, if the installation of a
fileset failed in the Fileset.post_i script, then the cleanup operation for that fileset would begin at
step (i) below, since there are no actions to undo from subsequent steps in the installation.

b. Undo any configuration processing performed during the installation:

If rejecting an update,

Invoke Fileset.unconfig_u if it exists
ELSE
Invoke Fileset.unconfig if it exists.

c. Run any Fileset.*.unodmadd and/or Fileset.unodmadd files to remove Object Data Manager
(ODM) entries added during the installation.

d. Run any Fileset.*.rodmadd and/or Fileset.rodmadd exist to replace ODM entries deleted during
the installation.

e. Invoke trcupdate if Fileset.undo.trc exists to undo any trace format template changes made
during the installation.

f. Invoke errupdate if Fileset.undo.err exists to undo any error format template changes made during
the installation.

g. Invoke tcbck to delete the trusted computing base information to the system if the Fileset.tcb file
exists and the trusted computing base attribute tcb_enabled is set in the /usr/lib/objrepos/PdAt
ODM database.

h. Invoke sysck if Fileset.inventory exists to undo changes to the software information database.

i. Undo any post_installation processing performed during the installation:

If update,

Invoke Fileset.unpost_u if it exists
ELSE
Invoke Fileset.unpost_i if it exists.

j. Build a master apply list (called master.al) from Fileset.al files.

k. Add Fileset to $FILESETLIST.new.

2. Do the following if $INUTEMPDIR/master.al exists.

a. Change directories to / (root).

b. Remove all files in master.al.

602 Writing and Debugging Programs

3. Do the following while reading $FILESETLIST.new.

a. Call inurecv to recover all saved files.

b. If update,

Invoke Fileset.unpre_u if it exists
ELSE
Invoke Fileset.unpre_i if it exists.

c. Delete the install/update control files.

4. Remove the Package_Name.s status file.

Processing for the Remove Operation
This section describes the steps taken by the installp command when a fileset is removed. For usr/root
filesets or fileset updates, the root part is processed before the usr part.

1. Check requisites to ensure that all dependent filesets are also removed.

2. For each part of a product package (i.e., usr, root, or share)

a. Set INUTREE (U for usr, M for root, and S for share) and INUTEMPDIR (installp working
directory generated in /tmp) environment variables.

b. Change directory to INULIBDIR.

c. If deinstal control file exists in current directory

Invoke ./lpp.deinstal
ELSE
Invoke the default script /usr/lib/instl/deinstal.

3. Remove files belonging to the fileset from the file system.

4. Remove fileset entries from the SWVPD except for history data.

5. Deactivate license agreement requirement registration for the fileset.

The deinstal executable is invoked from installp with the first parameter being the full path name to the
file containing the list of filesets to be removed, referred to below as $FILESETLIST.

The flow within the default deinstal script is as follows:

1. Do the following for each fileset listed in input file $FILESETLIST:

2. If Fileset.unconfig_d exists

Execute Fileset.unconfig_d to remove all configuration changes, Object Data Manager (ODM)
changes, and error and trace format changes, and to undo all operations performed in the
post-installation and preinstallation scripts for all updates and the base level installation.

3. If Fileset.unconfig_d does not exist,

a. For each update for that fileset

Run any Fileset.unconfig_u to undo any update configuration processing.
Run any Fileset.*.unodmadd and/or Fileset.unodmadd to delete Object DataManager (ODM) entries added during
the update.
Run any Fileset.*.rodmadd and/or Fileset.rodmadd to add Object Data Manager (ODM) entries deleted during the
update.
Run errupdate if Fileset.undo.err exists to undo error log template changes.
Run trcupdate if Fileset.undo.trc exists to undo trace report template changes.
Run any Fileset.unpost_u to undo any post-installation customization.

Chapter 20. Packaging Software for Installation 603

b. For the fileset base installation level,

Run any Fileset.*.unodmadd and/or Fileset.unodmadd to delete Object Data Manager (ODM) entries added during
the installation.
Run any Fileset.*.rodmadd and/or Fileset.rodmadd to add Object Data Manager (ODM) entries deleted during the
installation.
Run errupdate if Fileset.undo.err exists to undo error log template changes.
Run trcupdate if Fileset.undo.trc exists to undo trace report template changes.
Run Fileset.unconfig_i to undo any installation configuration processing.
Run Fileset.unpost_i to undo any post-file installation customization.

4. Remove the files and software data information installed with the fileset.

5. If Fileset.unconfig_d does not exist,

a. For each update for that fileset

Run any Fileset.unpre_u to undo any pre-file installation customization.

b. For the fileset base installation level

Run any Fileset.unpre_i to undo any pre-file installation customization.

6. Delete any empty directories associated with the fileset.

Note: If an error is returned from some call during the execution of the deinstal executable, the error
will be logged, but execution will continue. This is different from the other scripts because execution for
that fileset is normally canceled once an error is encountered. However, once the removal of a fileset
has begun, there is no recovery; therefore, removal becomes a best effort once an error is found.

The Installation Status File

$INUTEMPDIR/status File that contains a one-line entry for each fileset that was
to be installed or updated

The installp command uses this status file to determine appropriate processing. If you create installation
scripts, your scripts should produce a status file that has the correct format. Each line in the status file
has the format:
StatusCode Fileset

The following list describes the valid StatusCode values:

Status Code Meaning
s Success, update SWVPD
f Failure, perform cleanup procedure
b Bypass, failed, cleanup not needed
i Requisite failure, cleanup not needed
v sysck verification failed

The following example of a status file indicates to the installp command that the installations for the
tcp.client and tcp.server filesets of bos.net package were successful and the installation for the
nfs.client fileset was not successful.
s bos.net.tcp.client
s bos.net.tcp.server
f bos.net.nfs.client

604 Writing and Debugging Programs

Installation Commands Used During Installation and Update
Processing

inucp Copies files from the /usr/lpp/Package_Name/inst_root
directory to the / (root) file tree when installing the root
part.

inurecv Recovers saved files for installation failure or software
rejection (installp -r).

inurest Restores files from the distribution medium onto the
system using an apply list as input.

inusave Saves all files specified by an apply list into the save
directory belonging to the software product.

inuumsg Issues messages from the inuumsg.cat message catalog
file for the software product being installed.

ckprereq Verifies compatibility of the software product with any
dependencies using requisite information supplied in the
lpp_name file and information about already installed
products found in the SWVPD.

sysck Checks the inventory information during installation and
update procedures.

The sysck command is in the /usr/bin directory. Other
commands listed previously are in the /usr/sbin directory.

For examples of their use, refer to the default installation script, /usr/lib/instl/instal.

Chapter 20. Packaging Software for Installation 605

606 Writing and Debugging Programs

Chapter 21. Documentation Library Service

The Documentation Library Service provides an application that allows users to read and search HTML
online documents. The Documentation Library Service was formerly known as the Documentation Search
Service.

This chapter provides specific instructions for:

v Application developers who are including HTML documentation with their application and want to use
the Documentation Library Service to provide reading, navigation, and search functions for their
manuals.

v Anyone who wants to place a documents on a system and allow users to use the Documentation
Library Service to read, navigate and search their documents.

The Documentation Library Service includes a search engine and the Documentation Library CGI
programs. The Documentation Library CGI programs are stored in and run by a web server on a
documentation server computer.

When the Documentation Library CGI program is called by an application, it displays the Documentation
Library GUI in the user’s browser. The user can then read, navigate through, or search the documents
displayed in the interface.

When the user enters a text string in the search fields in the Documentation Library interface, the search
string is then sent to the Library Service which conducts the search, generates a search results page, and
then passes that page back to the user’s browser.

The Documentation Library Service does not actually search through documents. Instead it searches
compressed copies, called indexes, of documents. This greatly increases performance. In order to use the
service, indexes must be created for documents. When the indexes are copied or installed on a system,
the indexes must be registered with the library service so that the service knows their names and
locations.

A default library GUI is provided. However, using customization features, you can customize the Library
GUI to change things such as the title, text, graphics, and which documents are searched.

Note: This chapter contains commands that are longer than the width of the page. To make sure that long
commands are completely visible, they are split up and displayed on multiple lines. This is an
example of a long command line that has been split for viewing:
/usr/IMNSearch/cli/itecrix -s server

-x index_name
-p /usr/docsearch/indexes/index_name/data

When you see a command displayed like this, you must type it all on one command line, with a
space between each part. The above command parts would be typed like the following:
/usr/IMNSearch/cli/itecrix -s server -x index_name -p /usr/docsearch/indexes/index_name/data

This chapter contains the following topics:

1. “Language Support” on page 608

2. “Writing your HTML Documents” on page 608

3. “Calling the Documentation Library Service From Your Documentation” on page 609

a. Section A: Calling the Documentation Library Service From Your Documentation (for AIX 4.3, AIX
4.3.1 and AIX 4.3.2)

b. Section B: Calling the Documentation Library Service From Your Documentation (for AIX 4.3.3 and
later)

© Copyright IBM Corp. 1997, 2001 607

c. Section C: Calling the Documentation Library Service From Your Documentation (for all versions)

4. “Creating Indexes of your Documentation” on page 616

5. “Removing Indexes of your Documentation” on page 624

6. “Packaging your Application’s Documentation” on page 624

Language Support
Currently, the AIX 4.3 Documentation Library Service can only search documents that are written in
supported languages and codesets. Refer to the Language Support Table for specific information.

For information on any changes in language support, make sure to read the README files that come with
any updates to the Documentation Library Service.

Writing your HTML Documents
Currently, the Documentation Library Service supports searching HTML documents that are written using
the languages and codesets listed in the Language Support Table. All documents in a single index must be
written using the same language and codeset. Note that even though a document is written in a supported
language, it cannot be searched unless it is written using the codeset of characters listed in the table. The
last column in the table shows the characters that must be used as the last two characters of the index
name for an index that contains that language. For example, if you are going to create an index named
doc456 and it is written in Spanish in the 8859-1 codeset, you would name it doc456es.

For more information on codesets and locales see Locale Overview in AIX 5L Version 5.1 System
Management Guide: Operating System and Devices.

The Portable ASCII codeset of characters is included inside all other codesets. So you can include
Portable ASCII characters in documents in all languages.

If you are creating a document in a codeset other than ISO8859-1, the Netscape browser may have a
problem with displaying ampersand encoded characters that are equivalent to characters outside the
Portable ASCII characters. These characters will not display correctly. For example, if you are using ©
for the copyright symbol, this is equal to a character value that is not in the Portable ASCII codeset. It may
not display properly in any non-ISO8859-1 codeset.

HTML documents must be customized for use with the Documentation Library Service by including Search
links in each document that will call the search form. These search links can be placed anywhere in the
document. For example, they can be in the body of the text, in a header at the top of each page, in a
navigation frame - anywhere where users are able to view them. See the next section for information on
how the search link must be written.

Users may be using an ASCII browser to view the documentation. If it is likely that end users will be using
an ASCII browser, the HTML documentation should be ASCII user-friendly. This includes techniques such
as using an ALT attribute in the tag for users unable to view images and <NOFRAMES> tags for
users with browsers that are not frames capable. Consult HTML reference material for other techniques.

Insert a title tag in each document. Document titles should be meaningful and unique. The document title
will appear in the list of matched documents in the search results page as the title of the found document.
The text between the <TITLE> and </TITLE> tags should contain the title of the document and no other
HTML tags. Additionally, titles should have a maximum length of 256 bytes.

608 Writing and Debugging Programs

../../aixbman/admnconc/locale_overview.htm

Making your Documents Printable
Books within the documentation library are structured as a collection of articles or chapters. These articles
are loaded into the client web browser one at a time for reading. While this allows great flexibility in
navigating through articles, it is difficult to print an entire book in one print action. Beginning in AIX 5.1, the
Documentation Library Service contains a Print Tool button. When you clicks this button, list of books that
can be downloaded in a single printable file is displayed. You have the option of including your book in this
list for printing.

To have your book appear in this list, complete the following:

1. Create a single file that merges all of your book’s files into a single file in a printable format. The
format you use is up to you. AIX manual print files are in PDF format, but any format can be used.

2. Add the print file to your install package. The print file must be installed to be accessible from the
machine’s web server’s document directory. By default, the /usr/share/man/info directory is always
linked under the web server’s document directory, therefore, it is recommended that you install the
printable file for your book into /usr/share/man/info. For example, if your product is called Esther, and
your book’s print file is named userguide.pdf, you could install the print file as
/usr/share/man/info/esther/userguide.pdf.

Note: If you have different language versions of your book, you will need to ship and install a separate
print file for each language. For example, if you have an English and a Spanish version of your
book, you might install two printable files as follows:
/usr/share/man/info/esther/english/userguide.pdf and
/usr/share/man/info/esther/spanish/userguide.pdf

3. In your View Definition File (VDF) , include a Printfile tag on the entry line that defines the book to
define the name and location of the file that contains the printable version of the book. The library
service uses the path in this tag to create a link to your printable book in the printable books list in the
Print Tool. During configuration, the library service automatically creates a link in the machine’s web
server’s documentation directory which points to /usr/share/man/info. This link is named doc_link.
Therefore, if you are installing your print file under the /usr/share/man/info directory, you must use the
name doc_link instead of /usr/share/man/info as the first part of your path in the Printfile tag. Using
our above English-only example, you would include the following tag in the entry line for your book in
your VDF: Printfile:/doc_link/esther/userguide.pdf

For our two language example, you would use the following Printfile tags - the first one in the English
VDF and the second in the Spanish VDF:
Printfile:/doc_link/esther/english/userguide.pdf
Printfile:/doc_link/esther/spanish/userguide.pdf

For more details on View Definition Files and the Printfile tag, see 612.

Calling the Documentation Library Service From Your Documentation

Navigation Strategies
Users can navigate your documents in two ways:

v Global View Set - Navigate all documents registered into the Global view set.

To enable users to navigate and search your documentation in the Global view set, you must:

1. Register your documentation into the Global view set’s Books view.

a. Create a View Definition File that describes the hierarchical structure of your documentation.

b. Register the Contents of each of your View Definition Files.

Chapter 21. Documentation Library Service 609

Note: You may register your documentation into any of the other views of the Global view set. The
process is the same for the Books view though a separate view definition file may be required for
each view.

2. Create links in your documentation to the Global view set for your document’s language.

If your documentation is in English, the HTML link might be
Home/Search

v Custom View Set - Only navigate and search documents for your application

To enable users to navigate and search your documentation separately from all other documentation on
the system, you must create a Custom View Set.

Creating a Custom View Set
1. Create a View Set Configuration File

2. Create a View Definition File

3. Register the Contents of each of your View Definition Files

4. Create Links in your Documentation to your Custom View Set

1. Create a View Set Configuration File

a. Create a view set directory. This directory is named /usr/docsearch/views/locale/view_set_name
where locale is the name of the language locale in which the documentation was written, and
view_set_name is a name which uniquely identifies your view set.

b. Create a view set configuration file named config in the view set directory.

Example: If your view set is named MyDocuments and you want to create a set of English views, your
configuration file should be in the location /usr/docsearch/views/en_US/MyDocuments/config

Note: Lines in the configuration file beginning with a # are assumed to be comments and are ignored.

There are many things that can be customized in the view set configuration file:

Field Description and Examples

View Name and Label The name of an view and the text to be displayed on the tabs which allow the
user to change between different views of a view set. A separate view name is
necessary because a view label may be different in other languages. For
example, if you have a view named Books which you link to from your
documentation, the name of the view will always be Books but in Spanish the
label of the view could be Libros.

view = View_Name <TAB> View Label

Example: If the name of the view is Tasks, but you want the label on the tab to
be How To, you would add the following line to the view set configuration file:

view = Tasks How To

title The text to be displayed at the top of the library GUI and the browser window.

title = Library GUI Title

Example: If you want the text at the top of the library GUI to be My
Documentation, you would add the following line to the view set configuration file:

title = My Documentation

610 Writing and Debugging Programs

Field Description and Examples

results_title The text to be displayed at the top of the results GUI and the browser window
containing the results GUI.

results_title = Results GUI Title

Example: If you want the text at the top of the library GUI to be My
Documentation Search Results, you would add the following line to the view set
configuration file:

results_title = My Documentation Search Results

page_top Replaces the default HTML header of the library GUI with the HTML code
between the page_top_begin and page_top_end tags.

Example: If you want the top of your library GUI to contain an image named
myimage.gif which is in the web server’s /myimages directory, and the title of
browser window to be My Documents, you might insert the following in your view
set configuration file:

page_top_begin
<HTML>
<HEAD>
<TITLE>My Documents</TITLE>
<BODY>
<DIV ALIGN=“CENTER”>

</DIV>
<P>
page_top_end

Note : If a title configuration file entry is specified, it will be ignored.

page_bottom Replaces the default HTML footer of the library GUI with the HTML code
between the page_bottom_begin and page_bottom_end tags.

Example: If you want the bottom of the library GUI to have a MAILTO link so
that users can send mail to you, you might insert the following in your
configuration file:

page_bottom_begin
<HR>
<DIV ALIGN=“CENTER”>
Feedback
</DIV>
</BODY>
</HTML>
page_bottom_end

results_top Replaces the default HTML header of the results GUI with the HTML code
between the results_top_begin and results_top_end tags.

Example: If you want the top of your results page to contain an image named
myimage.gif which is in the web server’s /myimages directory, and the title of the
browser window to be Results of My Search, you might insert the following in
your view set configuration file:

results_top_begin
<HTML>
<HEAD>
<TITLE>Results of My Search</TITLE>
<BODY>
<DIV ALIGN=“CENTER”>

</DIV>
results_top_end

Note: If a results_title configuration file entry was specified, it will be ignored.

Chapter 21. Documentation Library Service 611

Field Description and Examples

results_bottom Replaces the default HTML footer of the results GUI with the HTML code
between the results_bottom_begin and results_bottom_end tags.

Example: If you want the bottom of the results page to have a MAILTO link so
that users can send mail to you, you might insert the following in your
configuration file:

results_bottom_begin
<HR>
<DIV ALIGN=“CENTER”>
Feedback
</DIV>
</BODY>
</HTML>
results_bottom_end

2. Create a View Definition File

Create a view definition file for each view in your view set. The format of this file is as follows:
#<TAB>Entry Title[<TAB>Field:Value...]
#<TAB>Entry Title[<TAB>Field:Value...]
#<TAB>Entry Title[<TAB>Field:Value...]

where the # is the level of the entry in the hierarchical tree structure, the entry title is the text to be
displayed in the library GUI, and the possible fields are those listed below. The first entry level in a
view definition file is always 0 and can increase up to 9 as the depth of the entry increases. Entries
with the same level # will be displayed with the same indentation. (You can think of the entry level as
the number of times to indent the tree at that entry.)

612 Writing and Debugging Programs

Field Description and Examples

Printfile Beginning in AIX 5.1, this optional VDF tag is used to create a link to your book in
the list of printable books in the Print Tool . When a user clicks on this link in the
Print Tool, the library service will download a printable file containing your entire
book to the user’s browser. In addition to inserting this tag in your VDF, you will
need to create and package the printable book file. For more information on these
tasks, see “Making your Documents Printable” on page 609.

The Printfile tag has the following syntax:

Printfile[1-20]:/doc_link/$path

This syntax displays the book in the list of printable books in the Print Tool. $path
is the path to your printable file. This path must be a sub-directory of the
/usr/share/man/info directory. The link doc_link is automatically placed by the
library service in the machine’s web server document directory. This link points
the web server to the /usr/share/man/info directory and allows the web server to
find your print file if it is installed under /usr/share/man/info.

The number 1-20 is optional. It is used only when your book is too large to be
contained in one printable file. You can split your book into as many as 20
different printable files for downloading. The number specifies which section of
the book is located in the file defined by the path. A separate link will appear in
the list of printable books for each section or Printfile tag for a book. If your book
only has one file for downloading, omit the number entry.

Examples: Assuming your application is called the Esther tool, and your book is
called userguide.pdf, you could use the following tags:

If you ship the entire book in one file, in only one language (English), use:

Printfile:/doc_link/esther/userguide.pdf

If you split the book up into two files for download, use:

Printfile1:/doc_link/esther/userguide_section1.pdf
Printfile2:/doc_link/esther/userguide_section2.pdf

You ship an English version and a Spanish version. The first tag is used in your
English VDF and the second is used in your Spanish VDF:

Printfile:/doc_link/english/esther/myownbigbook/userguide.pdf
Printfile:/doc_link/spanish/esther/myownbigbook/userguide.pdf

Checked Specifies default search state (selected for search or not selected for search)
(This applies only to custom views. You can not specify a default search state for
the Global Views.) The value can be either Yes or No. If no Checked field is
present for an entry, the default search state is for the entry to be selected for
search (i.e. Yes).

Examples:Checked: Yes
Checked: No

Collate Specifies whether to sort the children of this entry (whether entries directly under
this entry are to be kept in the order given, or sorted lexicographically according
to the locale). The value can be either Yes or No. If no Collate field is present for
an entry, the default ordering is the order given (i.e. No).

Examples:Collate: Yes
Collate: No

Chapter 21. Documentation Library Service 613

Field Description and Examples

Expand Specifies whether this node of the tree is expanded or collapsed by default. (This
applies only to custom views. You can not specify a default expansion state for
the Global Views.) The value can be either Yes or No. If no Expand field is
present for an entry, the default expansion state is the for the entry to be
collapsed (i.e. No).

Examples:Expand: Yes
Expand: No

Extra Specifies text that is to be displayed after the title, but that should not be a link
when a URL is given.

Example: Extra: Some other text that isn’t part of the link

Icon Specifies the filename of the icon which is to be displayed before the entry’s title.

Following is a list of icon’s which are provided by the Documentation Library
Service.

v bookcase.gif

v bookshelf.gif

v book.gif

v chapter.gif

v paper.gif

These icons reside in the directory /usr/docsearch/images. If you want to use
your own icon, place it in that directory on the documentation server machine. If
no Icon field is present for an entry, no icon will be displayed.
Example: Icon:book.gif

Note: Icons are assumed to be 24 pixels wide and 24 pixels high. If you use an
icon which is larger or smaller than this size, the icon will be resized to 24 by 24.

Index Name of the search engine index(es) of documents represented by this entry and
its descendants. Multiple indexes can be specified by listing them, separated by
commas. Once a view definition file specifies an index for an entry, no other view
definition files will be able to add entries under that entry. This helps to ensure
that the contents of the tree below the index are exactly the documents which
were indexed.

Examples: Index:BSADMNEN
Index: CMDS01EN,CMDS02EN,CMDS03EN, CMDS04EN,CMDS05EN,CMDS06EN

Position Suggested relative position within a container. For example, if you are inserting
an article under a book and you want that article to appear as the third article in
the book, you could assign it a position number of 3 if there were already articles
with positions of 1 and 2. In case of multiple entries with the same position, order
will be determined by the value of Collate field of the parent entry. The position of
an entry in the view definition file overrides any position field. Therefore, it is not
necessary to specify positions for entries below the point at which no other books
will be occupying the same space. If no Position field is present for an entry, the
default position value is zero (0).

Example: Position:5

URL The URL of the document to go to for navigation. This is used to locate the
document when a web server is being used. This value must be an absolute
path, but must not contain the protocol (http://) or the name or port number of the
web server. If no URL is specified, the entry will not be a HTML link when
displayed.

Example:URL:/doc_link/en_US/a_doc_lib/cmds/aixcmds2/grep.htm

614 Writing and Debugging Programs

Field Description and Examples

Version The version of this entry. When registering documentation, a higher numbered
version on an entry will replace a previous lower version number.

Example: Version:4.3.2.0

A portion of an example view definition file is below:
0 AIX Base Library Position:1 Icon:library.gif
1 AIX System Management Guides Position:1 Icon:bookshelf.gif
2 Operating System and Devices Index:BADMNEN Postion:1 Icon:book.gif
3 Chapter 1. System Management with AIX URL:/doc_link/en_US/a_doc_lib/aixbman/baseadmn/Ch1.htm

Icon:chapter.gif
4 The System Administrator's Objectives URL:/doc_link/en_US/a_doc_lib/aixbman/baseadmn/Ch1.htm#CE13340208vick

Icon:paper.gif
3 Chapter 2. Starting and Stopping the System URL:/doc_link/en_US/a_doc_lib/aixbman/baseadmn/Ch2.htm

Icon:chapter.gif
4 Starting the System URL:/doc_link/en_US/a_doc_lib/aixbman/baseadmn/starting.htm

Icon:paper.gif
4 Understanding the Boot Process URL:/doc_link/en_US/a_doc_lib/aixbman/baseadmn/under_boot.htm Icon:paper.gif

.

.

.

3. Register the Contents of each of your View Definition Files

/usr/sbin/ds_reg [-d] locale View_Set View view_definition_file

where locale is the locale (language) in which your documentation is written, View_Set is the name of
the view set, View is the name of the view into which you wish to register your documentation, and
view_definition_file is the location of the view definition file. The optional -d flag is used to unregister
the contents of a registered view definition file.

Example: If you have a view definition file in /MyDocuments/Books.vdf, and you want to register it into
the English Global Books view, you would type the command:
/usr/sbin/ds_reg en_US Global Books /MyDocuments/Books.vdf

Example: If you have a view definition file in /MyDocuments/Commands.vdf, and you want to unregister it
from the Spanish AIX Commands view, you would type the command:
/usr/sbin/ds_reg -d es_ES AIX Commands /MyDocuments/Commands.vdf

4. Create Links in your Documentation to your Custom View Set

The base URL of the Documentation Service CGI program is always /cgi-bin/ds_form. This URL can
be modified by any of the following arguments. Multiple arguments are separated by an ampersand (&).

Argument Description and Example

lang The locale of the documentation you want to display. If no locale is specified the
default locale of the documentation server will be used.

Example: If you want to see Japanese documentation, your link might be

viewset The name of the view set you want to display. If no viewset is specified, the
Global view set will be used.

Example: If your view set is called MyDocuments your link might be

view If no view is specified, the first view in the viewset will be used.

Example: If you want to see the Commands view of the default (Global) view
set, your link might be

Chapter 21. Documentation Library Service 615

../../cmds/aixcmds2/ds_reg.htm

Argument Description and Example

advanced This argument specifies that you want to see the advanced search form. If no
advanced argument is given, the simple search form will be displayed.

Example: If you want to see the advanced version of the library GUI

Example: If you want to create a link in your Spanish (es_ES) documentation to the Subroutines view
of your Custom View Set MyDocuments, your link could be

Creating Indexes of your Documentation
The search engine does not search your actual documentation files. Instead it searches indexes that are
created from your documentation. Very simplistically, indexes are compressed copies of your files. This
greatly speeds up the searches. Therefore, if you want to use the search service to search your
documents, you must create at least one index that will be installed with your documents.

Requirements
Before beginning to create your indexes, make sure you meet the following requirements:

v If it is not already installed, install the Documentation Library Service package onto your development
computer. For more information on installation and configuration, see “Chapter 21. Documentation
Library Service” on page 607 in System Management Guide: Operating System and Devices.

v If it is not already installed, install the search engine authoring tools package - IMNSearch Build Time
package (IMNSearch.bld) on your computer. This software is contained on the AIX Base Operating
System media.

v To use the index creation tool, you must be a member of the imnadm index administrators user group.
If your username is not a member of this group, have your system administrator add your user ID to this
group. Or log in using another username that is a member of this group.

Building the Indexes
1. Choose a Unique Index Name

2. Create a New Directory

3. Create an ASCII File

4. Choose a Title for your Index

5. Create an Empty Index

6. Add your Documents to the Update List

7. Start the Index Updating Process to Build your Index

8. Update the Registration Table

9. Copy your HTML Documents from the Build Directory into the Documentation Directory

10. Test your Index

11. Final Step

Each index you create will have its own selection checkbox in the search form. Typically, you create one
index that contains text from multiple documents. Each time that index is selected for search, all the
documents in that index will be searched. So when you combine documents into an index, you should
think about what documents your user will want to search together.

616 Writing and Debugging Programs

Also, if you are creating an installp package, all documents that are within one index should be placed
inside the same installable unit (fileset) of documentation. Otherwise users might only install some of the
documents within the index and they would get missing document errors when they try to open the
documents from the search results page.

For each index you want to create, repeat the following steps:

1. Choose a Unique Index Name

When you create a search index for a document you must specify an eight (8) character name for the
index. However, the search service will not let you register your new index if there is already a
registered index that has the same name as your index. To reduce the probability of naming conflicts,
it is recommended that certain naming conventions be followed:

v If you are not an application developer and are just creating indexes for documents written at your
site, use 999 as the first three characters of all your index names. The middle three characters of
the name can be any combination of letters and numbers. The last two characters of the name
must specify the language and codeset of the document. The language is specified using the
appropriate two character suffix listed in the Language Support Table.

Example: If you are creating an index for a document you wrote in English and the ISO8859-1
codeset, the index name must end in en. You could name the index 999ak2en.

v If you are an application developer and you are creating indexes to package in your installp
package, all of your index names should star with three characters that represent your application’s
name. The middle three characters of the name can be any combination of letters and numbers.
The last two characters of the name must specify the language and codeset of the document. The
language is specified using the appropriate two character suffix listed in the Language Support
Table.

Example: If your application is called Calculator, and the document you are indexing is written in
English and the ISO8859-1 codeset, the index name must end in en. You could name the index
cal2b4en.

v The following table shows the required index name endings (suffixes) for each supported
language/codeset combination.

Language Support Table

Language Codeset Locale Index Name
Suffix

Support
Started in
AIX:

Catalan ISO8859-1 ca_ES name ca 4.3.0

ISO8859-15 ca _ES.8859-15 name c5 4.3.2

Danish ISO8859-1 da_DK name da 4.3.0

Dutch Netherlands ISO8859-1 nl_NL name nl 4.3.0

ISO8859-15 nl_NL.8859-15 name b5 4.3.2

English United States ISO8859-1 en_US name en 4.3.0

ISO8859-1 C name en 4.3.0

English Great Britain ISO8859-1 en_GB name gb 4.3.0

Finnish ISO8859-1 fi_FI name fi 4.3.0

ISO8859-15 fi_FI.8859-15 name u5 4.3.2

French ISO8859-1 fr_FR name fr 4.3.0

ISO8859-15 fr_FR.8859-15 name f5 4.3.2

French Canada ISO8859-1 fr_CA name fc 4.3.0

German ISO8859-1 de_DE name de 4.3.0

ISO8859-15 de_DE.8859-15 name d5 4.3.2

Chapter 21. Documentation Library Service 617

Language Codeset Locale Index Name
Suffix

Support
Started in
AIX:

German Switzerland ISO8859-1 de_CH name cd 4.3.0

Icelandic ISO8859-1 is_IS name is 4.3.0

Italian ISO8859-1 it_IT name it 4.3.0

ISO8859-15 it_IT.8859-15 name i5 4.3.2

Norwegian ISO8859-1 no_NO name no 4.3.0

Portuguese, Brazilian ISO8859-1 pt_BR name pt 4.3.0

Portuguese, Portugal ISO8859-1 pt_PT name po 4.3.0

ISO8859-15 pt_PT.8859-15 name y5 4.3.2

Russian ISO8859-5 ru_RU name ru 5.0.0

Spanish ISO8859-1 es_ES name es 4.3.0

ISO8859-15 es_ES.8859-15 name s5 4.3.2

Swedish ISO8859-1 sv_SE name sv 4.3.0

Japanese IBM-932 Ja_JP name jp 4.3.2

Korean IBM-eucKR ko_KR name kr 4.3.2

Simplified Chinese IBM-eucCN zh_CN name cn 4.3.2

Traditional Chinese big5 Zh_TW name tw 4.3.2

2. Create a New Directory

Create a new directory to hold the documents that will go into the index. We will call this directory the
build directory. The build directory can be any place you want it. In our examples we are building
indexes for a calculator application, so our build directory will be named /usr/work/calculator. Inside
this build directory, arrange the documents into a directory tree structure exactly as you want them to
be installed/placed relative to each other on a documentation search server computer.

The result is that each document will have a full pathname that is composed of a “temporary” part,
and a “permanent” part. The temporary part is the pathname of the build directory. The permanent
part of the path specifies the location of the document inside your document tree. Once an index is
built, the permanent part of a document’s pathname cannot be changed. The one rule about the
pathnames is that the first directory in the permanent part of the pathname must be the index name.

For example, your application is called calculator. The online documents for the application are
written in US English. There are two user guide documents (doc1, doc2) and one administrator
document (doc3). You could place the documents like this in the filesystem on the computer on which
you are building the indexes:
/usr/work/calculator/user/doc1.html
/usr/work/calculator/user/doc2.html
/usr/work/calculator/admin/doc3.html

You can place your build directory anywhere, but all documents that go into a single index must
under a single directory which acts as the common top directory so that they form a single tree. In the
example, calculator is the common top directory.

3. Create an ASCII File

For each index, create a document list file. Place inside this file a list of all the documents you want
to be in the index. For each document, list it by using the full pathname that specifies where the
document can be currently found on your development computer. Note that the working locations of
these documents do not need to be the same location where the documents will be eventually
installed on a documentation server. This document list file can be named anything and placed in any
directory. Put each pathname on its own line in the file.

618 Writing and Debugging Programs

If you arranged your documents like the example above, your ASCII file would have the following
contents:
/usr/work/calculator/user/doc1.html
/usr/work/calculator/user/doc2.html
/usr/work/calculator/admin/doc3.html

Next you must indicate where the temporary part of each pathname ends and where the permanent
“installed” part of the pathnames start. You do this by replacing the last slash (/) in the temporary part
of the document pathnames (the build directory pathname) with a commercial at symbol (@). When
the index is created, only the part of each pathname that is to the right of the @ will be saved in the
index.

For example, the above example file would now be modified to look like this:
/usr/work@calculator/user/doc1.html
/usr/work@calculator/user/doc2.html
/usr/work@calculator/admin/doc3.html

The slash before the application name (calculator) was replaced with an @ since it is the last slash
in the temporary part of the path.

4. Choose a Title for your Index

The title of your index is the text that will appear next to the index’s checkbox in the search form. The
title should uniquely describe the document or documents that are in the index and contain a
maximum of 150 characters.

5. Create an Empty Index

You must then create an empty index. After the index is created you will fill it. To prepare for index
creation, you must check the following:

Your user id must be a member of the imnadm group to use the steps that follow. Before you can
create your first index you will need to change ownership of the /usr/docsearch/indexes directory so
that it is owned by the user imnadm. You will only need to do this step before you create your first
index.

chown imnadm:imnadm /usr/docsearch/indexes

Creation of an index requires three steps.

a. Create the empty index.

The index creation command has the syntax (all 5 lines on one command line):
/usr/IMNSearch/bin/itecrix -s server -x index_name
-p /usr/docsearch/indexes/index_name/data
-pw /usr/docsearch/indexes/index_name/work
-lsse itelsswt
-t NORM | -t NGRAM
-ccsid <codeset_id>

Where index_name is the 8 character name of the index. The values for -t and -ccsid depend on
the language of the documents in the index. Note that all single-byte languages have a -t value of
NORM. All multi-byte languages have a -t value of NGRAM and you also must add the -ccsid
value when creating a multi-byte index. The following table specifies the values to use for each
language:

Language -t -ccsid -lang

English (United States) ISO8859-1 NORM 819 EN_US

English (United States) ISO8859-15 NORM 923 EN_US

English Great Britain ISO8859-1 NORM 819 EN_GB

Catalan ISO8859-1 NORM 819 CA_ES

Catalan ISO8859-15 NORM 923 CA_ES

Chapter 21. Documentation Library Service 619

French ISO8859-1 NORM 819 FR_FR

French ISO8859-15 NORM 923 FR_FR

French Canadian ISO8859-1 NORM 819 FR_FR

German ISO8859-1 NORM 819 DE_DE

German ISO8859-15 NORM 923 DE_DE

German Switzerland ISO8859-1 NORM 819 DE_CH

Icelandic ISO8859-1 NORM 819 IS_IS

Italian ISO8859-1 NORM 819 IT_IT

Italian ISO8859-15 NORM 923 IT_IT

Norwegian ISO8859-1 NORM 819 NO_NO

Portuguese, Brazil ISO8859-1 NORM 819 PT_BR

Portuguese, Portugal ISO8859-1 NORM 819 PT_PT

Portuguese, Portugal ISO8859-15 NORM 923 PT_PT

Russian ISO8859-9 NORM 878 RU_RU

Spanish ISO8859-1 NORM 819 ES_ES

Spanish ISO8859-15 NORM 923 ES_ES

Swedish ISO8859-1 NORM 819 SV_SE

Japanese IBM-932 NGRAM 932 JA_JP

Korean IBM-eucKR NGRAM 949 KO_KR

Traditional. Chinese big5 NGRAM 950 ZH_TW

Simplified Chinese IBM-eucCN NGRAM 1381 ZH_CN

Following our example, to create a single byte English index, you could type (all 5 lines on one
command line):
/usr/IMNSearch/bin/itecrix -s server -x cal413en
-p /usr/docsearch/indexes/cal413en/data
-pw /usr/docsearch/indexes/cal413en/work
-lsse itelsswt
-t NORM

b. Next you must specify the language and codeset of the documents that will be inserted into the
index. The language specfication command has the following format (all on one line):
/usr/IMNSearch/bin/iterulix -s server -x index_name -dfmt HTML
-ccsid <codeset_id
-lang <language

where index_name is the same name that was used in the previous command and codeset_id
and language are the values from the table above.

Following our example, you would now type (all on one line):
/usr/IMNSearch/bin/iterulix -s server -x cal413en -dfmt HTML -ccsid 819
-lang EN_US

c. After you create your index, you should check to make sure that your index is listed with the
Documentation Library Service by typing:

/usr/IMNSearch/bin/itelstix -s server

6. Add your Documents to the Update List

Next you must tell the Documentation Library Service the name of the file that contains the list of the
documents that will go into the the empty index you just created. Then later you will run an update
command and those documents will be indexed and the results will be inserted in the index.

620 Writing and Debugging Programs

Use the following command to add your documents to the list of documents that will get inserted into
the index
/usr/IMNSearch/bin/itequeue -s server -x index_name -add -l document_list_file

(where document_list_file is the name of the ASCII file you created that contains your list of
documents):

Note: Test to make sure that your documents were queued successfully. Type:
/usr/IMNSearch/bin/itestaix -s server -x indexname

The number after Number of indexing requests scheduled should equal the number of documents
in your index.

7. Start the Index Updating Process to Build your Index

Start the index updating process. This will take the documents that are in your document update list,
index them, and put the results into the empty index to build your final complete index.

Note: Indexing may take a significant amount of time to complete. You CANNOT move onto the
Update the Registration Table step until indexing is complete. Use the status command below to tell
when indexing is done.

Use the following update command:
/usr/IMNSearch/bin/iteupdix -s server -x index_name

Note: Test to make sure that your documents were indexed successfully. Type:
/usr/IMNSearch/bin/itestaix -s server -x indexname

The number after Number of documents in the primary index should equal the number of
documents in your index.

8. Update the Registration Table

Next you need to register the new index in the registration table of your development computer so
that the search service knows the index exists and you can do a test searches of the index.

To update the registration table on the development computer, do the following (all on one command
line):

Note: There must be a final slash (/) after the application_name.
/usr/IMNSearch/bin/itedomap

-p /var/docsearch/indexes -c -x index_name
-sp /doc_link/locale/application_name/
-ti index_title

The locale variable is the name of the language directory under /usr/share/man/info where the
index’s documents are stored. The variable index_name is the name of your index, and index_title is
the title of your index. The title is the text you want the user to see in the bottom of the search form
when they are selecting which indexes to search. Remember that the title should be written using the
same language and codeset as the documents inside the index.

Additionally, for index titles, it is recommended that you specify the title as an HTML link. The title will
then appear as a link in the search form. This allows a user to click on the title in the search form to
open the first document in the index for reading.

Chapter 21. Documentation Library Service 621

Note:

Every web server has an internal document home directory where it starts its search for documents. When the
Documentation Library Service is installed and configured, a filesystem link is placed in this directory. This link points
to the standard location of documents in the AIX filesystem: /usr/share/man/info. Since your web server will
automatically go to this location to find your documents, the search engine only needs the portion of the document
path from this location forward.

The link that the Documentation Library Service puts into your web server’s starting directory is:

doc_link -> /usr/share/man/info

Your web server will be able to serve the documentation with URLs like:

http://your.machine.name/doc_link/en_US/calculator/user/doc1.html

For example, you might want the title of your index to be Calculator Application Manuals. You have
three documents(manuals) inside this one index which is named cal413en. You decide that when the
title link is clicked it would be best for the Beginners Guide document to be opened. So, you would
insert in the title the URL that opens the Beginners Guide document. If you would normally type the
URL /doc_link/en_US/calculator/user/doc1.htm (doc_link is the link to the /usr/share/man/info
directory) to open the Beginners Guide document, you would use the following update command (all
on one command line):
/usr/IMNSearch/bin/itedomap

-p /var/docsearch/indexes -c -x cal413en
-sp /doc_link/en_US/calculator/
-ti Calculator Application Manuals

9. Copy your HTML Documents from the Build Directory into the Documentation Directory

You must now copy your HTML documents into the location where they can be read by your users.
Your documents should be placed under the directory /usr/share/man/info/locale/application_name/
index_name. Using our example, the Calculator Application’s English documents would be placed in
/usr/share/man/info/en_US/calculator/.

a. Find out if the language directory /usr/share/man/info/ locale already exists. If it does not exist,
create it. When you create this directory, make sure that it is executable and readable by all
users.

Using our example, the English directory is named: /usr/share/man/info/en_US.

b. Create your application directory under the language directory. The directory structure should now
look like: /usr/share/man/info/locale/application_name.

Using our example, the application’s directory is named: /usr/share/man/info/en_US/calculator.

c. Copy your documents and place them under the application directory you just created. The
directory structure should now look like:

/usr/share/man/info/locale/application_name/documents.

Using our example, you would use the following command to copy the calculator’s documents
from the build directory into the directory where they will be read by users.
cp -R /usr/work/calculator/* /usr/share/man/info/en_US/calculator

The calculator’s documents would then end up in these locations:
/usr/share/man/info/en_US/calculator/user/doc1.html
/usr/share/man/info/en_US/calculator/user/doc2.html
/usr/share/man/info/en_US/calculator/admin/doc3.html

10. Test your Index

You have now completed the creation and registration of an index on this development computer. You
should now test the index by opening the search form, selecting the new index for search, and
searching for words that you know are in the index. If the index does not work properly and you need
to remove it so you can build it again, go to the section called Removing Indexes in your

622 Writing and Debugging Programs

Documentation (“Removing Indexes of your Documentation” on page 624). When you are satisfied
that the index is working correctly, go on to the next step

11. Final Step

v If this development computer where you created the index is also your real documentation server
computer, you are now done with creating an index.

v If you are an application developer and you were creating this index for inclusion in your
application’s installp install package, skip to the section titled “Packaging your Application’s
Documentation” on page 624.

v If this development computer is not your documentation server, you now need to copy the new
index to your documentation server and register it there. To do this, complete the following steps
on the computer where you just created your index:

a. Type the command:
cd /usr/docsearch/indexes

b. An index is not a single file, it is really a collection of files. You need to create a tar file that
contains copies all of the files that make up your index. To create the tar file, type this
command:
tar cvf index_name.tar index_name

c. Next move this tar file to the documentation server by using the ftp command to put it into the
/usr/docsearch/indexes directory on the destination machine.

Note: Be sure to transfer the tar file in binary mode.

d. Log on to the destination documentation server as root.

e. Type the command:
cd /usr/docsearch/indexes

f. Untar the tar file.
tar xvf index_name.tar

g. Change the ownership of the indexes.
chown -R imnadm:imnadm index_name

h. Stop the search server.
/usr/IMNSearch/bin/itess -stop search

i. Update the master table.

Type the following command, all on one command line:
/usr/IMNSearch/bin/itemtupd -m /etc/IMNSearch

-i /usr/docsearch/indexes/index_name/data
-w /usr/docsearch/indexes/index_name/work
-n index_name

j. Restart the search server.
/usr/IMNSearch/bin/itess -start search

k. Next, you need to register the new index in the registration table of your documentation server
computer so that the search service knows the index exists and you can do a test search of the
index.

To update the registration table on the development computer, do the following (all on one
command line):

Note: The following command must end with a slash (/) after the application_name.
/usr/IMNSearch/bin/itedomap

-p /var/docsearch/indexes -c -x index_name
-sp /doc_link/locale/application_name/
-ti index_title

The locale variable is the name of the language directory under /usr/share/man/info where the
index’s documents are stored. The variable index_name is the name of your index, and
index_title is the search from title of your index. The title is the text you want the user to see in

Chapter 21. Documentation Library Service 623

the bottom of the search form when they are selecting which indexes to search. Remember that
the title should be written using the same language and codeset as the documents inside the
index.

Additionally, for index titles, it is recommended that you specify the title as an HTML link. The
title will then appear as a link in the search form. This allows a user to click on the title in the
search form to open your primary document in the index for reading.

For example, you might want the title of your index to be Calculator Application Manuals. You
have three documents (manuals) inside this one index which is named cal413en. You decide
that when the title link is clicked it would be best for the Beginners Guide document to be
opened. So, you would insert in the title the URL that opens the Beginners Guide document. If
you would normally type the URL /doc_link/en_US/calculator/user/doc1.htm (doc_link is the
link to the /usr/share/man/info directory) to open the Beginners Guide document, you would
use the following update command (all on one command line):
/usr/IMNSearch/bin/itedomap

-p /var/docsearch/indexes -c -x cal413en
-sp /doc_link/en_US/calculator/
-ti Calculator Application Manuals

v You have now finished the copy and registration of the index on the documentation server. You
should do test searches of the index to make sure it is working correctly.

Removing Indexes of your Documentation
You cannot just delete files to remove an index from a server. This will leave the search service corrupted.
Use the following steps to remove an index (replacing index_name with the name of the index you wish to
remove):

1. Delete the index.
/usr/IMNSearch/bin/itedelix -s server -x index_name

2. Remove the index entry in the registration table.
/usr/IMNSearch/bin/itedomap -p /var/docsearch/indexes -d -x index_name

3. Delete the empty index directories that held the index files:
rm -r /usr/docsearch/indexes/index_name

Packaging your Application’s Documentation
1. “Include a Search Index”

2. “Register your Documentation” on page 626

3. “Create an install package” on page 626

Include a Search Index
To include a search index in your application’s installp installation package, you will need to complete the
following steps:

Note: You must repeat these steps for each separately installable fileset in your package that contains one
or more indexes.

1. Create the install script

You must perform the following steps to create a registration script. This script will automatically
register your indexes with the Documentation Library Service during the installation of your
application’s installp installation package. You will be using and modifying an example script to create
your own registration script.

a. Make a copy of the example script /usr/docsearch/tools/index_config.sh. You can use any name
for the copy.

624 Writing and Debugging Programs

b. Edit the script and change:

Note: The script is designed to install one or more indexes. In each of the following variables,
replace the X character with the number for the index you are specifying.

1) index_type to DBCS if you are registering double-byte codeset indexes.

2) indexdir_name_X to the name of your index (repeat for each index).

3) index_title_X to the title of your index.

4) index_loc_X to /usr/docsearch/indexes. This is where installp will be placing your index
when your application is installed.

5) document_loc_X to the temporary portion of the document path. This path segment must
begin and end with a slash (/).

Example:
To install the indexes Book1Sen and Book2Sen, which are being installed in
/usr/docsearch/indexes/Book1Sen and /usr/docsearch/indexes/Book2Sen, have the titles Book #1
and Book #2, and whose documents are in /usr/share/man/info/en_US/calculator/... you might
have lines in the script like:
indexdir_name_1=“Book1Sen”
indexdir_name_2=“Book2Sen”

index_title_1=“Book #1”
index_title_2=“Book #2”

index_loc_1=“/usr/docsearch/indexes/Book1Sen”
index_loc_2=“/usr/docsearch/indexes/Book2Sen”

document_loc_1=“/doc_link/en_US/”
document_loc_2=“/doc_link/en_US/”

c. Delete all other indexXXX variable assignments from the script. There should only be as many
lines of the form indexdir_name_X=“...” as there are indexes you want to install. The same holds
true for index_title_X, index_loc_X, and document_loc_X.

2. Create the uninstall script

Create the uninstall script that will cleanly unregister your index if your application is uninstalled.

a. Make a copy of the unconfig script in /usr/docsearch/tools/index_unconfig.sh

b. Edit the script and change index_type to DBCS if the indexes you are unregistering are double-byte
indexes.

c. Edit the script and change indexdir_name_X to the name of your index (repeat for each index).

d. Delete all other indexdir_name_X variable assignments from the script. There should only be as
many lines of the form indexdir_name_X=“...” as there are indexes you want to uninstall.

3. Create the pre_rm script

Create the pre_rm script that will cleanly unregister your index when your application is reinstalled
using a force install or updated in preparation for installing new versions of your index.

a. Make a copy of the pre_rm script that is in /usr/docsearch/tools/index_pre_rm.sh

b. Edit the script and change index_type to DBCS if you are unregistering any double-byte indexes.

c. Edit your copy of the script and change indexdir_name_X to the name of your index (repeat for
each index).

Example: If you have two indexes with the names cal413en and cal567en, your copy of the
pre_rm script would have lines like:
indexdir_name_1=“cal413en”
indexdir_name_2=“cal567en”

d. Delete all other indexdir_name_X variable assignments from the script. There should only be as
many lines of the form indexdir_name_X=“...” as there are indexes in your fileset.

Chapter 21. Documentation Library Service 625

Register your Documentation
To have your application’s installp installation package automatically register your documentation into a
view you will need to complete the following steps:

1. Ship your configuration file to the appropriate directory in /usr/docsearch/views

See the section titled Create a View Set Configuration File.

2. Create a view definition file for every view in which you want your documents to appear

See the section titled Create a View Definition File.

3. Modify the install script After the call to /usr/sbin/index_config.sh, put a line to register a view
definition file for each view into which you want to register your documentation.

See the section titled Register the Contents of each of your View Definition Files.

4. Modify the uninstall and pre_rm scripts After the call to /usr/sbin/index_config.sh, put a line to
unregister a view definition file for each view into which you registered your documentation.

See the section titled Register the Contents of each of your View Definition Files.

Create an install package
Create a normal install package for your documentation or application. If you need instructions on how to
create an install package, see “Chapter 20. Packaging Software for Installation” on page 567.

In addition to the normal packaging steps, do the following:

1. Place the install script in your installp package so that it will be run in your post-install process when
the fileset containing the index is installed.

2. Place the uninstall script in your installp package so that it will be run in your uninstall process when
the fileset containing the index is uninstalled.

3. Place the pre_rm script in your installp package so that it will be run when the fileset containing the
index is uninstalled.

4. If you are using configuration files, have your package create your application’s config directory, put
your configuration file(s) there, and set permissions for the directories and configuration files.

5. During installation, have your package install your documentation and indexes.

Packaging Book Guidelines
By using the Printfile tag in the VDF, you have the option of defining a single printable file which contains
all of the files that make up your book. This file will then appear within the Print Tool page of the library
service so that users can download this file for printing on their local printer. For further information on
using the Printfile tag and the other packaging tasks, see “Making your Documents Printable” on page 609.

626 Writing and Debugging Programs

Chapter 22. Software Vital Product Data (SWVPD)

Information about a software product and its installable options is maintained in the Software Vital Product
Data (SWVPD) database. The SWVPD consists of a set of commands and the Object Data Manager
(ODM) object classes for the maintenance of software product information. The SWVPD commands are
provided for the user to query (lslpp) and verify (lppchk) installed software products. The ODM object
classes define the scope and format of the software product information that is maintained.

The installp command uses the Object Data Manager to maintain the following information in the SWVPD
database:

v The name of the software product (for example, AIXwindows).

v The version of the software product, which indicates the operating system upon which it operates.

v The release level of the software product, which indicates changes to the external programming
interface of the software product.

v The modification level of the software product, which indicates changes that do not affect the software
product’s external interface.

v The fix level of the software product, which indicates small updates that are to be built into a regular
modification level at a later time.

v The fix identification field.

v The names, checksums, and sizes of the files that make up the software product or option.

v The state of the software product: available, applying, applied, committing, committed, rejecting, or
broken.

Object Classes
The information in the lpp, inventory, history, and product object classes comprises the SWVPD for an
installed software product. These object classes are stored in the following directories:

/etc/objrepos / (root) part of the installable software product
/usr/lib/objrepos /usr part of the installable software product
/usr/share/lib/objrepos /usr/share part of the installable software product

Any of the ODM commands and subroutines can be used with these object classes. All of the object
classes and defined values for the SWVPD are in the swvpd.h header file. A constant that defines an
object class attribute is valid for only that object class.

lpp Object Class (LPP_TABLE) The lpp object class contains
information about the installed
software products, including the
current software product state.

inventory Object Class (INVENTORY_TABLE) The inventory object class contains
information about the files associated
with a software product.

history Object Class (HIST_TABLE) The history object class contains
historical information about the
installation and updates of software
products.

product Object Class (PRODUCT_TABLE) The product object class contains
product information about the
installation and updates of software
products and their prerequisites.

© Copyright IBM Corp. 1997, 2001 627

../../cmds/aixcmds3/lslpp.htm#HDRA228Y9593
../../cmds/aixcmds3/lppchk.htm#HDRA228Y9547
../../cmds/aixcmds3/installp.htm#HDRA1539AD6

Files

/etc/objrepos Contains the four object classes used by the SWVPD for the / (root)
part of the installable software product.

/usr/lib/objrepos Contains the four object classes used by the SWVPD for the /usr part
of the installable software product.

/usr/share/lib/objrepos Contains the four object classes used by the SWVPD for the /usr/share
part of the installable software product.

628 Writing and Debugging Programs

Chapter 23. Source Code Control System (SCCS)

The Source Code Control System (SCCS) is a complete system of commands that allows specified users
to control and track changes made to an SCCS file. SCCS files allow several versions of the same file to
exist simultaneously, which can be helpful when developing a project requiring many versions of large
files. The SCCS commands support Multibyte Character Set (MBCS) characters.

Introduction to SCCS
The SCCS commands form a complete system for creating, editing, converting, or changing the controls
on SCCS files. An SCCS file is any text file controlled with SCCS commands. All SCCS files have the
prefix s., which sets them apart from regular text files.

Attention: Using non-SCCS commands to edit SCCS files can damage the SCCS files.

Use SCCS commands on an SCCS file. If you wish to look at the structure of an SCCS file, use the pg
command or a similar command to view its contents. However, do not use an editor to directly change the
file.

To change text in an SCCS file, use an SCCS command (such as the get command) to obtain a version of
the file for editing, and then use any editor to modify the text. After changing the file, use the delta
command to save the changes. To store the separate versions of a file, and control access to its contents,
SCCS files have a unique structure.

An SCCS file is made up of three parts:

v Delta table

v Access and tracking flags

v Body of the text

Delta Table in SCCS files
Instead of creating a separate file for each version of a file, the SCCS file system only stores the changes
for each version of a file. These changes are referred to as deltas. The changes are tracked by the delta
table in every SCCS file.

Each entry in the delta table contains information about who created the delta, when they created it, and
why they created it. Each delta has a specific SID (SCCS IDentification number) of up to four digits. The
first digit is the release, the second digit the level, the third digit the branch, and the fourth digit the
sequence.

An example of an SID number is:
SID = 1.2.1.4

that is, release 1, level 2, branch 1, sequence 4.

No SID digit can be 0, so there cannot be an SID of 2.0 or 2.1.2.0, for example.

Each time a new delta is created, it is given the next higher SID number by default. That version of the file
is built using all the previous deltas. Typically, an SCCS file grows sequentially, so each delta is identified
only by its release and level. However, a file may branch and create a new subset of deltas. The file then
has a trunk, with deltas identified by release and level, and one or more branches, which have deltas
containing all four parts of an SID. On a branch, the release and level numbers are fixed, and new deltas
are identified by changing sequence numbers.

© Copyright IBM Corp. 1997, 2001 629

../../cmds/aixcmds4/pg.htm#HDRYLI150CRAW
../../cmds/aixcmds2/get.htm#HDRA0949810
../../cmds/aixcmds2/delta.htm#HDRA1299FC8

Note: A file version built from a branch does not use any deltas placed on the trunk after the point of
separation.

Control and Tracking Flags in SCCS Files
After the delta table in an SCCS file, a list of flags starting with the @ (at sign) define the various access
and tracking options of the SCCS file. Some of the SCCS flag functions include:

v Designating users who may edit the files

v Locking certain releases of a file from editing

v Allowing joint editing of the file

v Cross-referencing changes to a file

Body of an SCCS file
The SCCS file body contains the text for all the different versions of the file. Consequently, the body of the
file does not look like a standard text file. Control characters bracket each portion of the text and specify
which delta created or deleted it. When the SCCS system builds a specific version of a file, the control
characters indicate the portions of text that correspond to each delta. The selected pieces of text are then
used to build that specific version.

SCCS Flag and Parameter Conventions

In most cases, SCCS commands accept two types of parameters:

flags Flags consist of a - (minus sign), followed by a lowercase character, which is
sometimes followed by a value. Flags control how the command operates.

File or Directory These parameters specify the file or files with which the command operates. Using
a directory name as an argument specifies all SCCS files in that directory.

File or directory names cannot begin with a - (minus sign). If you specify this sign by itself, the command
reads standard input or keyboard input until it reaches an end-of-file character. This is useful when using
pipes that allow processes to communicate.

Any flags specified for a command apply to all files on the command line and are processed before any
other parameters to that command. Flag placement in the command line is not important. Other
parameters are processed left to right. Some SCCS files contain flags that determine how certain
commands operate on the file. See the admin command description of SCCS header flags for more
information.

Creating, Editing, and Updating an SCCS File

You can create, edit, and update an SCCS file using the admin, get, and delta commands.

Creating an SCCS File

admin Creates an SCCS file or changes an existing SCCS file.

v To create an empty SCCS file named s.test.c, enter:
admin -n s.test.c

Using the admin command with the -n flag creates an empty SCCS file.

v To convert an existing text file into an SCCS file, enter:

630 Writing and Debugging Programs

../../cmds/aixcmds1/admin.htm#HDRA09497B4
../../cmds/aixcmds1/admin.htm#HDRA09497B4

admin -itest.c s.test.c
There are no SCCS identification keywords in the file (cm7)

ls
s.test.c test.c

If you use the -i flag, the admin command creates delta 1.1 from the specified file. Once delta 1.1 is
created, rename the original text file so it does not interfere with SCCS commands (it will act as a
backup):
mv test.c back.c

The message There are no SCCS identification keywords in the file (cm7) does not indicate an
error.

v To start the test.c file with a release number of 3.1, use the -r flag with the admin command, as
follows:
admin -itest.c -r3 s.test.c

Editing an SCCS file

Attention: Do not edit SCCS files directly with non-SCCS commands, or you can damage the SCCS
files.

get Gets a specified version of an SCCS file for editing or compiling.

1. To edit an SCCS file, enter the get command with the -e flag to produce an editable version of the file:
get -e s.test.c
1.3
new delta 1.4
67 lines

ls
p.test.c s.test.c test.c

The get command produces two new files, p.test.c and test.c. The editable file is test.c. The
p.test.c file is a temporary, uneditable file used by SCCS to keep track of file versions. It will
disappear when you update your changes to the SCCS file. Notice also that the get command prints
the SID of the version built for editing, the SID assigned to the new delta when you update your
changes, and the number of lines in the file.

2. Use any editor to edit test.c, for example:
ed test.c

You can now work on your actual file. Edit this file as often as you wish. Your changes will not affect
the SCCS file until you choose to update it.

3. To edit a specific version of an SCCS file with multiple versions, enter the get command with the -r
flag :
get -r1.3 s.test.c
1.3
67 lines

get -r1.3.1.4 s.test.c
1.3.1.4
50 lines

Updating an SCCS File

delta Adds a set of changes (deltas) to the text of an SCCS file.

Chapter 23. Source Code Control System (SCCS) 631

../../cmds/aixcmds2/get.htm#HDRA0949810
../../cmds/aixcmds2/delta.htm#HDRA1299FC8

1. To update the SCCS file and create a new delta with the changes you made while editing, use the
delta command:
$delta s.test.c
Type comments, terminated with EOF or a blank line:

2. The delta command prompts you for comments to be associated with the changes you made. For
example, enter your comments, and then press the Enter key twice:
No id keywords (cm7)
1.2
5 lines inserted
6 lines deleted
12 lines unchanged

The delta command updates the s.prog.c file with the changes you made to the test.c file. The delta
command tells you that the SID of the new version is 1.2, and that the edited file inserted 5 lines,
deleted 6 lines, and left 12 lines unchanged from the previous version.

Controlling and Tracking SCCS File Changes

The SCCS command and file system are primarily used to control access to a file and to track who altered
a file, why it was altered, and what was altered.

Controlling Access to SCCS files
Three kinds of access can be controlled in an SCCS file system:

v File access

v User access (“User Access Controls”)

v Version access (“Version Access Controls”).

File Access Controls
Directories containing SCCS files should be created with permission code 755 (read, write, and execute
permissions for owner; read and execute permissions for group members and others). The SCCS files
themselves should be created as read-only files (444). With these permissions, only the owner can use
non-SCCS commands to modify SCCS files. If a group can access and modify the SCCS files, the
directories should have group write permission.

User Access Controls
The admin command with the -a flag can designate a group of users that can make changes to the SCCS
file. A group name or number can also be specified with this flag.

Version Access Controls
The admin command can lock, or prevent, various versions of a file from being accessed by the get
command by using header flags.

-fc Sets a ceiling on the highest release number that can be retrieved
-ff Sets a floor on the lowest release number that can be retrieved
-fl Locks a particular release against being retrieved

Tracking Changes to an SCCS File
There are three ways to track changes to an SCCS file:

v Comments associated with each delta

v Modification Request (MR) numbers

v The SCCS commands.

632 Writing and Debugging Programs

../../cmds/aixcmds1/admin.htm#HDRA09497B4
../../cmds/aixcmds1/admin.htm#HDRA09497B4
../../cmds/aixcmds2/get.htm#HDRA0949810

Tracking Changes with Delta Comments
After an SCCS file is updated and a new delta created, the system prompts for comments to be
associated with that delta. These comments can be up to 512 characters long and can be modified with
the cdc command.

cdc Changes the comments associated with a delta

The get command with the -l flag prints out the delta table and all the delta comments for any version of a
file. In addition to storing the comments associated with a delta, the delta table automatically stores the
time and date of the last modification, the real user ID at the time of the modification, the serial numbers of
the delta and its predecessor, and any MR numbers associated with the delta.

Tracking Changes with Modification Request Numbers
The admin command with the -fv flag prompts for MR numbers each time a delta is created. A program
can be specified with the -fv flag to check the validity of the MR numbers when an attempt is made to
create a new delta in the SCCS file. If the MR validity-checking program returns a nonzero exit value, the
update will be unsuccessful.

The MR validity-checking program is created by the user. It can be written to track changes made to the
SCCS file and index them against any other database or tracking system.

Tracking Changes with SCCS commands

sccsdiff Compares two SCCS files and prints their differences to standard output

The delta command with the -p flag acts the same as the sccsdiff command when the file is updated.
Both of these commands allow you to see what changes have been made between versions.

prs Formats and prints specified portions of an SCCS file to standard output

This command allows you to find the differences in two versions of a file.

Detecting and Repairing Damaged SCCS Files

You can detect and repair damaged SCCS files using the admin command.

Procedure
1. Check SCCS files on a regular basis for possible damage. Any time an SCCS file is changed without

properly using SCCS commands, damage may result to the file. The SCCS file system detects this
damage by calculating the checksum and comparing it with the one stored in the delta table. Check for
damage by running the admin command with the -h flag on all SCCS files or SCCS directories as
shown:
admin -h s.file1 s.file2 ...

OR
admin -h directory1 directory2 ...

If the admin command finds a file where the computed checksum is not equal to the checksum listed
in the SCCS file header, it displays this message:
ERROR [s.filename]:
1255-057 The file is damaged. (co6)

2. If a file was damaged, try to edit the file again or read a backup copy. Once the checksum has been
recalculated, any remaining damage will be undetectable by the admin command.

Chapter 23. Source Code Control System (SCCS) 633

../../cmds/aixcmds1/cdc.htm#HDRA09494FD
../../cmds/aixcmds1/cdc.htm#HDRA09494FD
../../cmds/aixcmds2/get.htm#HDRA0949810
../../cmds/aixcmds1/admin.htm#HDRA09497B4
../../cmds/aixcmds5/sccsdiff.htm#HDRA0949952
../../cmds/aixcmds2/delta.htm#HDRA1299FC8
../../cmds/aixcmds4/prs.htm#HDRA0949A12

Note: Using the admin command with the -z flag on a damaged file can prevent future detection
of the damage.

3. After fixing the file, run the admin command with the -z flag and the repaired file name:
admin -z s.file1

List of Additional SCCS Commands

Attention: Using non-SCCS commands with SCCS files can damage the SCCS files.

The following SCCS commands complete the system for handling SCCS files:

rmdel Removes the most recent delta on a branch from an SCCS file.
sact Displays current SCCS file editing status.
sccs Administration program for the SCCS system. The sccs command contains a set of

pseudo-commands that perform most SCCS services.
sccshelp Explains an SCCS error message or command.
unget Cancels the effect of a previous use of the get -e command.
val Checks an SCCS file to see if its computed checksum matches the checksum listed in the header.
vc Substitutes assigned values in place of identification keywords.
what Searches a system file for a pattern and displays text that follows it.

634 Writing and Debugging Programs

../../cmds/aixcmds4/rmdel.htm#HDRA09498DC
../../cmds/aixcmds5/sact.htm#HDRA297988F
../../cmds/aixcmds5/sccs.htm#HDRA180945
../../cmds/aixcmds5/sccshelp.htm#HDRA226983F
../../cmds/aixcmds5/unget.htm#HDRA09498A0
../../cmds/aixcmds6/val.htm#HDRA09499D0
../../cmds/aixcmds6/vc.htm#HDRA187996F
../../cmds/aixcmds6/what.htm#HDRA0949914

Chapter 24. Subroutines, Example Programs, and Libraries

This chapter provides information about what subroutines are, how to use them, and where they are
stored.

Subroutines are stored in libraries to conserve storage space and to make the program linkage process
more efficient. A library is a data file that contains copies of a number of individual files and control
information that allows them to be accessed individually. The libraries are located in the /usr/ccs/lib and
/usr/lib directories. By convention, most of them have names of the form libname.a where name identifies
the specific library.

All include statements should be near the beginning of the first file being compiled, usually in the
declarations section before main(), and must occur before using any library functions. For example, use
the following statement to include the stdio.h file:
#include <stdio.h>

You do not need to do anything special to use subroutines from the Standard C library (libc.a). The cc
command automatically searches this library for subroutines that a program needs. However, if you use
subroutines from another library, you must tell the compiler to search that library. If your program uses
subroutines from the library libname.a, compile your program with the flag -lname (lowercase L). The
following example compiles the program myprog.c, which uses subroutines from the libdbm.a library:
cc myprog.c -ldbm

You can specify more than one -l (lowercase L) flag. Each flag is processed in the order specified.

If you are using a subroutine that is stored in the Berkeley Compatibility Library, bind to the libbsd.a
library before binding to the libc.a library, as shown in the following example:
cc myprog.c -lbsd

When an error occurs, many subroutines return a value of -1 and set an external variable named errno to
identify the error. The sys/errno.h file declares the errno variable and defines a constant for each of the
possible error conditions.

In this documentation, all system calls are described as subroutines and are resolved from the libc.a
library. The programming interface to system calls is identical to that of subroutines. As far as a C
Language program is concerned, a system call is merely a subroutine call. The real difference between a
system call and a subroutine is the type of operation it performs. When a program invokes a system call, a
protection domain switch takes place so that the called routine has access to the operating system
kernel’s privileged information. The routine then operates in kernel mode to perform a task on behalf of the
program. In this way, access to the privileged system information is restricted to a predefined set of
routines whose actions can be controlled.

Notes:

1. The following list represents the wString routines that are obsolete for the 64 bit libc.a. Their
corresponding 64 bit libc.a equivalents are included. The routines for the 32 bit libc.a can be
found in the wstring Subroutine. The corresponding routines for the 64 bit libc.a can be found in
the List of Wide Character Subroutines (“List of Wide Character Subroutines” on page 503).
32 Bit only 64 Bit Equivalent

wstrcat wcscat
wstrchr wcschr
wstrcmp wcscoll
wstrcpy wcscpy
wstrcspn wcscspn
wstrdup Not available and has no

© Copyright IBM Corp. 1997, 2001 635

../../libs/basetrf2/wstring.htm

equivalents in the 64 bit libc.a
wstrlen wcslen
wstrncat wcsncat
wstrncpy wcsncpy
wstrpbrk wcspbrk
wstrrchr wcsrchr
wstrspn wcsspn
wstrtok wcstok

2. All programs that handle multibyte characters, wide characters, or locale-specific information must
call the setlocale subroutine at the beginning of the program. See “National Language Support
Subroutines Overview” on page 339 for more information.

3. Programming in a multi-threaded environment requires reentrant subroutines to ensure data
integrity. See the ″List of Multi-threaded Programming Subroutines″ (“List of Multi-threaded
Programming Subroutines” on page 646)

128-Bit Long Double Floating-Point Data Type
The AIX operating system supports a 128-bit long double data type that provides greater precision than
the default 64-bit long double data type. The 128-bit data type can handle up to 31 significant digits
(compared to 17 handled by the 64-bit long double). However, while this data type can store numbers with
more precision than the 64-bit data type, it does not store numbers of greater magnitude.

The following special issues apply to the use of the 128-bit long double data type:

v Compiling programs that use the 128-bit long double data type

v Compliance with the IEEE 754 standard

v Implementing the 128-bit long double format

v Values of numeric macros

Compiling Programs that Use the 128-bit Long Double Data Type
To compile C programs that use the 128-bit long double data type, use the xlc128 command. This
command is an alias to the xlc command with support for the 128-bit data type. The xlc command
supports only the 64-bit long double data type.

The standard C library, libc.a provides replacements for libc.a routines which are implicitly sensitive to the
size of long double. Link with the libc.a library when compiling applications that use the 64-bit long double
data type. Link applications that use 128-bit long double values with both the libc128.a and libc.a libraries.
When linking, be sure to specify the libc128.a library before the libc.a library in the library search order.

Compliance with IEEE 754 Standard
The 64-bit implementation of the long double data type is fully compliant with the IEEE 754 standard, but
the 128-bit implementation is not. Use the 64-bit implementation in applications that must conform to the
IEEE 754 standard.

The 128-bit implementation differs from the IEEE standard for long double in the following ways:

v Supports only round-to-nearest mode. If the application changes the rounding mode, results are
undefined.

v Does not fully support the IEEE special numbers NaN and INF.

v Does not support IEEE status flags for overflow, underflow, and other conditions. These flags have no
meaning for the 128-bit long double inplementation.

636 Writing and Debugging Programs

../../libs/basetrf2/setlocale.htm#HDRA15096AB

Implementing the 128-Bit Long Double Format
A 128-bit long double number consists of an ordered pair of 64-bit double-precision numbers. The first
member of the ordered pair contains the high-order part of the number, and the second member contains
the low-order part. The value of the long double quantity is the sum of the two 64-bit numbers.

Each of the two 64-bit numbers is itself a double-precision floating-point number with a sign, exponent,
and significand. Typically the low-order member has a magnitude that is less than 0.5 units in the last
place of the high part, so the values of the two 64-bit numbers do not overlap and the entire significand of
the low-order number adds precision beyond the high-order number.

This representation results in several issues that must be considered in the use of these numbers:

v The exponent range is the same as that of double precision. Although the precision is greater, the
magnitude of representable numbers is the same as 64-bit double precision.

v As the absolute value of the magnitude decreases (near the denormal range), the additional precision
available in the low-order part also decreases. When the value to be represented is in the denormal
range, this representation provides no more precision than the 64-bit double-precision data type.

v The actual number of bits of precision can vary. If the low-order part is much less than 1 ULP of the
high-order part, significant bits (either all 0’s or all 1’s) are implied between the significands of the
high-order and low-order numbers. Certain algorithms that rely on having a fixed number of bits in the
significand can fail when using 128-bit long double numbers.

Values of Numeric Macros
Because of the storage method for the long double data type, more than one number can satisfy certain
values that are available as macros.The representation of 128-bit long double numbers means that the
following macros required by standard C in the values.h file do not have clear meaning:

v Number of bits in the mantissa (LDBL_MANT_DIG)

v Epsilon (LBDL_EPSILON)

v Maximum representable finite value (LDBL_MAX)

Number of Bits in the Mantissa
The number of bits in the significand is not fixed, but for a correctly formatted number (except in the
denormal range) the minimum number available is 106. Therefore, the value of the LDBL_MANT_DIG
macro is 106.

Epsilon
The ANSI C standard defines the value of epsilon as the difference between 1.0 and the least
representable value greater than 1.0, that is, b**(1-p), where b is the radix (2) and p is the number of base
b digits in the number. This definition requires that the number of base b digits is fixed, which is not true
for 128-bit long double numbers.

The smallest representable value greater than 1.0 is this number:
0x3FF0000000000000, 0x0000000000000001

The difference between this value and 1.0 is this number:
0x0000000000000001, 0x0000000000000000
0.4940656458412465441765687928682213E-323

Because 128-bit numbers usually provide at least 106 bits of precision, an appropriate minimum value for
p is 106. Thus, b**(1-p) and 2**(-105) yield this value:
0x3960000000000000, 0x0000000000000000
0.24651903288156618919116517665087070E-31

Both values satisfy the definition of epsilon according to standard C. The long double subroutines use the
second value because it better characterizes the accuracy provided by the 128-bit implementation.

Chapter 24. Subroutines, Example Programs, and Libraries 637

Maximum Long Double Value
The value of the LDBL_MAX macro is the largest 128-bit long double number that can be multiplied by
1.0 and yield the original number. This value is also the largest finite value that can be generated by
primitive operations, such as multiplication and division:
0x7FEFFFFFFFFFFFFF, 0x7C8FFFFFFFFFFFFF
0.1797693134862315807937289714053023E+309

List of Character Manipulation Subroutines
The character manipulation functions and macros test and translate ASCII characters.

These functions and macros are of three kinds:

v Character testing

v Character translation

v Miscellaneous character manipulation

The “Programming Example for Manipulating Characters” on page 649 illustrates some of the character
manipulation routines.

Character Testing
Use the following functions and macros to determine character type. Punctuation, alphabetic, and
case-querying functions values depend on the current collation table.

The ctype subroutines contain the following functions:

isalpha Is character alphabetic?
isalnum Is character alphanumeric?
isupper Is character uppercase?
islower Is character lowercase?
isdigit Is character a digit?
isxdigit Is character a hex digit?
isspace Is character a blank-space character?
ispunct Is character a punctuation character?
isprint Is character a printing character, including space?
isgraph Is character a printing character, excluding space?
iscntrl Is character a control character?
isascii Is character an integer ASCII character?

Character Translation
The conv subroutines contain the following functions:

toupper Converts a lowercase letter to uppercase
_toupper (Macro) Converts a lowercase letter to uppercase
tolower Converts an uppercase letter to lowercase
_tolower (Macro) Converts an uppercase letter to lowercase
toascii Converts an integer to an ASCII character

Miscellaneous Character Manipulation

getc, fgetc,getchar, getw Get a character or word from an input stream
putc,putchar, fputc, putw Write a character or word to a stream

638 Writing and Debugging Programs

../../libs/basetrf1/ctype.htm#HDRA142927C
../../libs/basetrf1/conv.htm#HDRA14292DE
../../libs/basetrf1/getc.htm#HDRA1429390
../../libs/basetrf1/putc.htm#HDRA1429342

List of Executable Program Creation Subroutines
The list of executable program creation services consists of subroutines that support a group of
commands. These commands and subroutines allow you to create, compile, and work with files in order to
make your programs run.

_end, _text, _edata Define the last location of a program
confstr Determines the current value of a specified system variable defined

as a string
getopt Gets flag letters from the argument vector
ldopen, ldaopen Open a common object file
ldclose, ldaclose Close a common object file
ldahread Reads the archive header of a member of an archive file
ldfhread Reads the file header of a common object file
ldlread, ldlinit, ldlitem Read and manipulate line number entries of a common object file

function
ldshread, ldnshread Read a section header of a common object file
ldtbread Reads a symbol table entry of a common object file
ldgetname Retrieves a symbol name from a symbol table entry or from the

string table
ldlseek, ldnseek Seek to line number entries of a section of a common object file
ldohseek Seek to the optional file header of a common object file
ldrseek, ldnrseek Seek to the relocation information for a section of a common object

file
ldsseek, ldnsseek Seek to a section of a common object file
ldtbseek Seeks to the symbol table of a common object file
ldtbindex Returns the index of a particular common object file symbol table

entry
load Loads and binds an object module into the current process
unload Unloads an object file
loadbind Provides specific runtime resolution of a module’s deferred symbols
loadquery Returns error information from the load subroutine or the exec

subroutine. Also provides a list of object files loaded for the current
process

monitor Starts and stops execution profiling
nlist Gets entries from a name list
regcmp, regex Compile and matche regular-expression patterns
setjmp, longjmp Store a location
sgetl, sputl Accesses long numeric data in a machine-independent fashion
sysconf Determines the current value of a specified system limit or option

List of Files and Directories Subroutines

The system provides services to create files, move data into and out of files, and describe restrictions and
structures of the file system. Many of these subroutines are the base for the system commands that have
similar names. You can, however, use these subroutines to write new commands or utilities to help in the
program development process, or to include in an application program.

The system provides subroutines for:

v Controlling Files

v “Working with Directories” on page 640

v “Manipulating File Systems” on page 641

Chapter 24. Subroutines, Example Programs, and Libraries 639

../../libs/basetrf1/_end.htm#HDRA09098AD
../../libs/basetrf1/confstr.htm#HDRA101C1218A
../../libs/basetrf1/getopt.htm#HDRA0909FAA
../../libs/basetrf1/ldopen.htm#HDRA248Y99F16
../../libs/basetrf1/ldclose.htm#HDRA248Y99EB5
../../libs/basetrf1/ldahread.htm#HDRA248Y99F44
../../libs/basetrf1/ldfhread.htm#HDRA248Y99F57
../../libs/basetrf1/ldlread.htm#HDRA248Y99F6A
../../libs/basetrf1/ldshread.htm#HDRA248Y99F7E
../../libs/basetrf1/ldtbread.htm#HDRA248Y99F92
../../libs/basetrf1/ldgetname.htm#HDRA248Y99F02
../../libs/basetrf1/ldlseek.htm#HDRA32196D6
../../libs/basetrf1/ldohseek.htm#HDRA248Y99FB8
../../libs/basetrf1/ldrseek.htm#HDRA248Y99FC9
../../libs/basetrf1/ldsseek.htm#HDRA248Y99FDC
../../libs/basetrf1/ldtbseek.htm#HDRA248Y99FF4
../../libs/basetrf1/ldtbindex.htm#HDRA248Y99F32
../../libs/basetrf1/load.htm#HDRA1289A2C
../../libs/basetrf2/unload.htm#HDRA2019D34
../../libs/basetrf1/loadbind.htm#HDRA262B9118
../../libs/basetrf1/loadquery.htm#HDRA12F03C
../../libs/basetrf1/monitor.htm#HDRA230Y944B4
../../libs/basetrf1/nlist.htm
../../libs/basetrf2/regcmp.htm#HDRA353F91
../../libs/basetrf2/setjmp.htm#HDROF4B0SHAD
../../libs/basetrf2/sgetl.htm#HDRLK4310SHAD
../../libs/basetrf2/sysconf.htm#HDRA2639C5

Controlling Files

access, accessx, or faccessx Determine accessibility of a file
fclear Clears space in a file
fcntl, dup, or dup2 Control open file descriptors
fsync Writes changes in a file to permanent storage
getenv Returns the value of an environment variable
getutent, getutid, getutline, putuline, setutent, endutent, or utmpname

Access utmp file entries
getutid_r, getutline_r, pututline_r, setutent_r, endutent_r, or utmpname_r

Access utmp file entries
lseek or llseek Move the read-write pointer in an open file
lockfx, lockf, or flock Controls open file descriptor locks
mknod or mkfifo Create regular, FIFO, or special files
mktemp or mkstemp Construct a unique file name
open, openx, or creat Return a file descriptor and creates files
pclose Closes an open pipe
pipe Creates an interprocess channel
popen Initiates a pipe to a process
pathconf, fpathconf Retrieve file implementation characteristics
putenv Sets an environment variable
read, readx, readv, readvx Read from a file or device
rename Renames directory or file within a file system
statx, stat, fstatx, fstat, fullstat, fullstat

Get file status
tmpfile Creates a temporary file
tmpnam or tempnam Construct a name for a temporary file
truncate, ftruncate Make a file shorter
umask Gets and sets the value of the file creation mask
utimes or utime Set file access or modification time
write, writex, writev, writevx Write to a file or device

Working with Directories

chdir Changes the current working directory
chroot Changes the effective root directory
getwd, getcwd Get the current directory path name
glob Generates a list of path names to accessible files
globfree Frees all memory associated with the pglob parameter
link Creates additional directory entry for an existing file
mkdir Creates a directory
opendir, readdir, telldir, seekdir, rewinddir, closedir

Performs operations on directories
readdir_r Reads a directory
rmdir Removes a directory
scandir, alphasort Scan a directory
readlink Reads the volume of a symbolic link
remove Makes a file inaccessible by specified name
symlink Creates a symbolic link to a file
unlink Removes a directory entry

640 Writing and Debugging Programs

../../libs/basetrf1/access.htm#HDRSL240GACO
../../libs/basetrf1/fclear.htm#HDRXKNA0GACO
../../libs/basetrf1/fcntl.htm#HDRNEM2E0GACO
../../libs/basetrf1/fsync.htm#HDRA164930
../../libs/basetrf1/getenv.htm#HDRA23F03F
../../libs/basetrf1/getutent.htm#HDRA0909CF4
../../libs/basetrf1/lseek.htm#HDRA21595D1
../../libs/basetrf1/lseek.htm#HDRA21595D1
../../libs/basetrf1/lockfx.htm#HDRA142945D
../../libs/basetrf1/mknod.htm#HDRGEKB0GACO
../../libs/basetrf1/mktemp.htm#HDRLJ4E0SHAD
../../libs/basetrf1/open.htm#HDRA1509805
../../libs/basetrf1/pclose.htm#HDRA0869583
../../libs/basetrf1/pipe.htm#HDRS381F0GACO
../../libs/basetrf1/popen.htm#HDRSK62B0SHAD
../../libs/basetrf1/pathconf.htm#HDRA161C177
../../libs/basetrf1/putenv.htm#HDRA23F0A
../../libs/basetrf2/read.htm#HDRJO11350GACO
../../libs/basetrf2/rename.htm#HDRV9Q260GACO
../../libs/basetrf2/statx.htm#HDRA1609C70
../../libs/basetrf2/tmpfile.htm#HDRAF2F0SHAD
../../libs/basetrf2/tmpnam.htm#HDRGP3100SHAD
../../libs/basetrf2/truncate.htm#HDRA1589227B
../../libs/basetrf2/umask.htm#HDRKOE120GACO
../../libs/basetrf2/utimes.htm#HDRTK290SHAD
../../libs/basetrf2/write.htm#HDRCI2270GACO
../../libs/basetrf1/chdir.htm#HDRSQJE0GACO
../../libs/basetrf1/chroot.htm#HDRMPJ140GACO
../../libs/basetrf1/getwd.htm#HDRA0909E38
../../libs/basetrf1/getcwd.htm#HDRA0909EF1
../../libs/basetrf1/glob.htm#HDRA143C1420
../../libs/basetrf1/globfree.htm#HDRA143C145F
../../libs/basetrf1/link.htm#HDRA169C1F6
../../libs/basetrf1/mkdir.htm#HDRA3IK150GACO
../../libs/basetrf1/opendir.htm#HDRA0909AF7
../../libs/basetrf2/readdir_r.htm#HDRDCE0909AF7
../../libs/basetrf2/rmdir.htm#HDRBBI1D0GACO
../../libs/basetrf2/scandir.htm#HDRA12F0C9
../../libs/basetrf2/readlink.htm#HDRA08791030
../../libs/basetrf2/remove.htm#HDRA244Y99629
../../libs/basetrf2/symlink.htm#HDRA2089B6D
../../libs/basetrf2/unlink.htm#HDRA0949BAB

Manipulating File Systems

confstr Determines the current value of a specified system
variable defined by a string

fscntl Manipulates file system control operations
getfsent, getfsspec, getfsfile, getfstype, setfsent, or endfsent

Get information about a file system
getfsent_r, getfsspec_r, getfsfile_r, getfstype_r, setfsent_r, or endfsent_r

Get information about a file system
getvfsent, getvfsbytype, getvfsbyname, getvfsbyflag, setvfsent, endvfsent

Get information about virtual file system entries
mnctl Returns mount status information
quotactl Manipulates disk quotas
statfs, fstatfs Get the status of a file’s file system
sysconf Reports current value of system limits or options
sync Updates all file systems information to disk
umask Gets and sets the value of the file creation mask
vmount Mounts a file system
umount, uvmount Remove a virtual file system from the file tree

List of FORTRAN BLAS Level 1: Vector-Vector Subroutines
Level 1: vector-vector subroutines include:

SDOT, DDOT Return the dot product of two vectors
CDOTC, ZDOTC Return the complex dot product of two vectors,

conjugating the first
CDOTU, ZDOTU Return the complex dot product of two vectors
SAXPY, DAXPY, CAXPY, ZAXPY Return a constant times a vector plus a vector
SROTG, DROTG, CROTG, ZROTG Construct a Givens plane rotation
SROT, DROT, CSROT, ZDROT Apply a plane rotation
SCOPY, DCOPY, CCOPY, ZCOPY Copy vector X to Y
SSWAP, DSWAP, CSWAP, ZSWAP Interchange vectors X and Y
SNRM2, DNRM2, SCNRM2, DZNRM2 Return the Euclidean norm of the N-vector stored in X()

with storage increment INCX
SASUM, DASUM, SCASUM, DZASUM Return the sum of absolute values of vector components
SSCAL, DSCAL, CSSCAL, CSCAL, ZDSCAL, ZSCAL

Scale a vector by a constant
ISAMAX, IDAMAX, ICAMAX, IZAMAX Find the index of element having maximum absolute value
SDSDOT Returns the dot product of two vectors plus a constant
SROTM, DROTM Apply the modified Givens transformation
SROTMG, DROTMG Construct a modified Givens transformation

List of FORTRAN BLAS Level 2: Matrix-Vector Subroutines
Level 2: matrix-vector subroutines include:

SGEMV, DGEMV,CGEMV, ZGEMV Perform matrix-vector operation with general matrices
SGBMV, DGBMV, CGBMV, ZGBMV Perform matrix-vector operations with general banded matrices
CHEMV, ZHEMV Perform matrix-vector operations using Hermitian matrices
CHBMV, ZHBMV Perform matrix-vector operations using a Hermitian band matrix
CHPMV,ZHPMV Perform matrix-vector operations using a packed Hermitian matrix
SSYMV , DSYMV Perform matrix-vector operations using a symmetric matrix
SSBMV , DSBMV Perform matrix-vector operations using symmetric band matrix

Chapter 24. Subroutines, Example Programs, and Libraries 641

../../libs/basetrf1/confstr.htm#HDRA101C1218A
../../libs/basetrf1/fscntl.htm#HDRA5F0173
../../libs/basetrf1/getfsent.htm#HDRA244Y994C2
../../libs/basetrf1/getfsent_r.htm#HDRDCE244Y994C2
../../libs/basetrf1/getvfsent.htm#HDRA244Y99599
../../libs/basetrf1/mntctl.htm#HDRISL60MARC
../../libs/basetrf2/quotactl.htm#HDRON2250BOB
../../libs/basetrf2/statfs.htm#HDRA163915C
../../libs/basetrf2/sysconf.htm#HDRA2639C5
../../libs/basetrf2/sync.htm#HDRA0949B75
../../libs/basetrf2/umask.htm#HDRKOE120GACO
../../libs/basetrf2/vmount.htm#HDRIO2200GACO
../../libs/basetrf2/umount.htm#HDRYNQ160GACO
../../libs/basetrf2/SDOT.htm#HDRX3110PRIO
../../libs/basetrf2/CDOTC.htm#HDRA34170PRIO
../../libs/basetrf2/CDOTU.htm#HDRJ41130PRIO
../../libs/basetrf2/SAXPY.htm#HDRD512F0PRIO
../../libs/basetrf2/SROTG.htm#HDRH5170PRIO
../../libs/basetrf2/SROT.htm#HDRF8170PRIO
../../libs/basetrf2/SCOPY.htm#HDRL81370PRIO
../../libs/basetrf2/SSWAP.htm#HDRD91150PRIO
../../libs/basetrf2/SNRM2.htm#HDRE911F0PRIO
../../libs/basetrf2/SASUM.htm#HDRA4A12B0PRIO
../../libs/basetrf2/SSCAL.htm#HDRUA1150PRIO
../../libs/basetrf2/ISAMAX.htm#HDRUA1D0PRIO
../../libs/basetrf2/SDSDOT.htm#HDRNB11B0PRIO
../../libs/basetrf2/SROTM.htm#HDRTB1D0PRIO
../../libs/basetrf2/SROTMG.htm#HDRKC1150PRIO
../../libs/basetrf2/SGEMV.htm#HDRHYL320PRIO
../../libs/basetrf2/SGBMV.htm#HDRA7ZL20PRIO
../../libs/basetrf2/CHEMV.htm#HDRKZLE0PRIO
../../libs/basetrf2/CHBMV.htm#HDRFQL340PRIO
../../libs/basetrf2/CHPMV.htm#HDRYAL120PRIO
../../libs/basetrf2/SSYMV.htm#HDRODM340PRIO
../../libs/basetrf2/SSBMV.htm#HDRUDM340PRIO

SSPMV , DSPMV Perform matrix-vector operations using a packed symmetric matrix
STRMV, DTRMV, CTRMV, ZTRMV Perform matrix-vector operations using a triangular matrix
STBMV, DTBMV, CTBMV, ZTBMV Perform matrix-vector operations using a triangular band matrix
STPMV, DTPMV, CTPMV, ZTPMV Perform matrix-vector operations on a packed triangular matrix
STRSV, DTRSV, CTRSV, ZTRSV Solve system of equations
STBSV, DTBSV, CTBSV, ZTBSV Solve system of equations
STPSV, DTPSV, CTPSV, ZTPSV Solve systems of equations
SGER, DGER Perform rank 1 operation
CGERU, ZGERU Perform rank 1 operation
CGERC,ZGERC Perform rank 1 operation
CHER, ZHER Perform Hermitian rank 1 operation
CHPR,ZHPR Perform Hermitian rank 1 operation
CHPR2,ZHPR2 Perform Hermitian rank 2 operation
SSYR, DSYR Perform symmetric rank 1 operation
SSPR, DSPR Perform symmetric rank 1 operation
SSYR2 , DSYR2 Perform symmetric rank 2 operation
SSPR2 ,DSPR2 Perform symmetric rank 2 operation

List of FORTRAN BLAS Level 3: Matrix-Matrix Subroutines
Level 3: matrix-matrix subroutines include:

SGEMM, DGEMM, CGEMM, ZGEMM Perform matrix-matrix operations on general matrices
SSYMM, DSYMM,CSYMM, ZSYMM Perform matrix-matrix operations on symmetrical matrices
CHEMM,ZHEMM Perform matrix-matrix operations on Hermitian matrices
SSYRK, DSYRK,CSYRK, ZSYRK Perform symmetric rank k operations
CHERK, ZHERK Perform Hermitian rank k operations
SSYR2K, DSYR2K, CSYR2K, ZSYR2K Perform symmetric rank 2k operations
CHER2K,ZHER2K Perform Hermitian rank 2k operations
STRMM, DTRMM,CTRMM, ZTRMM, Perform matrix-matrix operations on triangular matrixes
STRSM, DTRSM, CTRSM, ZTRSM Solve certain matrix equations

List of Numerical Manipulation Subroutines
These functions perform numerical manipulation:

a64l, l64a Convert between long integers and base-64 ASCII strings
abs, div, labs, ldiv, imul_dbl, umul_dbl, llabs, lldiv Compute absolute value, division, and multiplication of

integers
asin, asinl, acos, acosl, atan, atanl, atan2, atan2l Compute inverse trigonometric functions
asinh, acosh, atanh Compute inverse hyperbolic functions
atof, atoff, strtod, strtold, strtof Convert an ASCII string to a floating point number
bessell: j0, j1, jn, y0, y1, yn Compute bessel functions
class, finite, isnan, unordered Determine types of floating point functions
copysign, nextafter, scalb, logb, ilogb Compute certain binary floating-point functions
nrand48, mrand48, jrand48, srand48, seed48, lcong48 Generate pseudo-random sequences
lrand48_r, mrand48_r, nrand48_r, seed48_r, or
srand48_r

Generate pseudo-random sequences

drem or remainder Compute an IEEE remainder
ecvt, fcvt, gcvt Convert a floating-point number to a string
erf, erfl, erfc, erfcl Compute error and complementary error functions
exp, expl, expm1, log, logl, log10, log10l, log1p, pow,
powl

Compute exponential, log, and power functions

floor, floorl, ceil, ceill, nearest,

642 Writing and Debugging Programs

../../libs/basetrf2/SSPMV.htm#HDRV1M2C0PRIO
../../libs/basetrf2/STRMV.htm#HDRA12M20PRIO
../../libs/basetrf2/STBMV.htm#HDRV2M80PRIO
../../libs/basetrf2/STPMV.htm#HDRA83ME0PRIO
../../libs/basetrf2/STRSV.htm#HDRY7M70PRIO
../../libs/basetrf2/STBSV.htm#HDRA58M70PRIO
../../libs/basetrf2/STPSV.htm#HDRQ8M380PRIO
../../libs/basetrf2/SGER.htm#HDRG9M2C0PRIO
../../libs/basetrf2/CGERU.htm#HDRK9ME0PRIO
../../libs/basetrf2/CGERC.htm#HDRAAM260PRIO
../../libs/basetrf2/CHER.htm#HDRXAM320PRIO
../../libs/basetrf2/CHPR.htm#HDRAZEM200PRIO
../../libs/basetrf2/CHPR2.htm#HDRPFM380PRIO
../../libs/basetrf2/SSYR.htm#HDRNFM2C0PRIO
../../libs/basetrf2/SSPR.htm#HDRIGM80PRIO
../../libs/basetrf2/SSYR2.htm#HDRHGM380PRIO
../../libs/basetrf2/SSPR2.htm#HDRBHMPRIO
../../libs/basetrf2/SGEMM.htm#HDRLE250PRIO
../../libs/basetrf2/SSYMM.htm#HDRUE21D0PRIO
../../libs/basetrf2/CHEMM.htm#HDRMF2230PRIO
../../libs/basetrf2/SSYRK.htm#HDRSF2130PRIO
../../libs/basetrf2/CHERK.htm#HDRRG2290PRIO
../../libs/basetrf2/SSYR2K.htm#HDRKH250PRIO
../../libs/basetrf2/CHER2K.htm#HDRNH21D0PRIO
../../libs/basetrf2/STRMM.htm#HDRII2290PRIO
../../libs/basetrf2/STRSM.htm#HDRSI2170PRIO
../../libs/basetrf1/a64l.htm#HDRH390SUSA
../../libs/basetrf1/abs.htm#HDRF220SUSA
../../libs/basetrf1/asin.htm#HDRCE7DD9F280RAGA
../../libs/basetrf1/asinh.htm#HDRAHN10846
../../libs/basetrf1/atof.htm#HDRA1299EC9
../../libs/basetrf1/bessel.htm#HDRA090911AA
../../libs/basetrf1/class.htm#HDRSHADOW17
../../libs/basetrf1/copysign.htm#HDRA0909B3A
../../libs/basetrf1/drand48.htm#HDRA130924B
../../libs/basetrf1/drem.htm#HDRAHN10871
../../libs/basetrf1/ecvt.htm#HDRA090912B6
../../libs/basetrf1/erf.htm#HDRA1299F06
../../libs/basetrf1/exp.htm#HDRA09091271
../../libs/basetrf1/exp.htm#HDRA09091271
../../libs/basetrf1/floor.htm#HDRLWE0SUSA

trunc, rint, itrunc, uitrunc, fmod, fmodl, fabs, fabsl Round floating-point numbers
fp_any_enable, fp_is_enabled, fp_enable_all,
fp_enable, fp_disable_all, fp_disable Allow operations on the floating-point exception status
fp_clr_flag, fp_set_flag, fp_read_flag, or fp_swap_flag Allow operations on the floating-point exception status
fp_invalid_op, fp_divbyzero, fp_overflow,
fp_underflow, fp_inexact, fp_any_xcp Test to see if a floating-point exception has occurred
fp_iop_snan, fp_iop_infsinf, fp_iop_infdinf,
fp_iop_zrdzr, fp_iop_infmzr, fp_iop_invcmp Test to see if a floating-point exception has occurred
fp_read_rnd,fp_swap_rnd Read and set the IEEE rounding mode
frexp, frexpl, ldexp, ldexpl, modf, modfl Manipulate floating point numbers
l64a_r Converts base-64 long integers to strings
lgamma, lgammal, gamma Compute the logarithm of the gamma function
hypot, cabs Compute Euclidean distance functions and absolute

values
13tol, ltol3 Convert between 3-byte integers and long integers
madd, msub, mult, mdiv, pow, gcd, invert,
rpow, msqrt, mcmp, move, min, omin,
fmin, m_in, mout, omout, fmout, m_out, sdiv, itom Provide multiple precision integer arithmetic
rand, srand Generate random numbers
rand_r Generates random numbers
random, srandom, initstate, setstate Generate better random numbers
rsqrt Computes the reciprocal of the square root of a number
sin, cos, tan Compute trigonometric and inverse trigonometric functions
sinh, sinhl, cosh, coshl, tanh, tanhl Computes hyperbolic functions
sqrt, sqrtl, cbrt Compute square root and cube root functions
strtol, strtoll, strtoul, strtoull, atol, atoi Convert a string to an integer

List of Long Long Integer Numerical Manipulation Subroutines
The following subroutines perform numerical manipulation of integers stored in the long long integer data
format:

llabs Computes the absolute value of a long long integer
lldiv Computes the quotient and remainder of the division of two long long integers
strtoll Converts a string to a signed long long integer
strtoull Converts a string to an unsigned long long integer
wcstoll Converts a wide character string to a signed long long integer
wcstoull Converts a wide character string to an unsigned long long integer

List of 128-Bit Long Double Numerical Manipulation Subroutines
The following subroutines perform numerical manipulation of floating-point numbers stored in the 128-bit
long double data type. These subroutines do not support the 64-bit long double data type. Applications that
use the 64-bit long double data type should use the corresponding double-precision subroutines.

acosl Computes the inverse cosine of a floating-point number in long double format
asinl Computes the inverse sine of a floating-point number in long double format
atan2l Computes the principal value of the arc tangent of x/y, whose components are expressed in long

double format
atanl Computes the inverse tangent of a floating-point number in long double format
ceill Computes the smallest integral value not less than a specified floating-point number in long double

format
coshl Computes the hyperbolic cosine of a floating-point number in long double format
cosl Computes the cosine of a floating-point number in long double format

Chapter 24. Subroutines, Example Programs, and Libraries 643

../../libs/basetrf1/floor.htm#HDRLWE0SUSA
../../libs/basetrf1/fp_any_enable.htm#HDROB5280SHAD
../../libs/basetrf1/fp_any_enable.htm#HDROB5280SHAD
../../libs/basetrf1/fp_clr_flag.htm#HDRWF53A0SHAD
../../libs/basetrf1/fp_invalid_op.htm#HDRFE5220SHAD
../../libs/basetrf1/fp_invalid_op.htm#HDRFE5220SHAD
../../libs/basetrf1/fp_iop_snan.htm#HDRC556F25402AMY
../../libs/basetrf1/fp_iop_snan.htm#HDRC556F25402AMY
../../libs/basetrf1/fp_read_rnd.htm#HDRD731E0SHAD
../../libs/basetrf1/frexp.htm#HDRA0909229
../../libs/basetrf1/l64a_r.htm#HDRLOPRG214S06
../../libs/basetrf1/lgamma_no_r.htm
../../libs/basetrf1/hypot.htm#HDRA09091467
../../libs/basetrf1/l3tol.htm#HDRA09091431
../../libs/basetrf1/madd.htm#HDRA16F02AC
../../libs/basetrf1/madd.htm#HDRA16F02AC
../../libs/basetrf1/madd.htm#HDRA16F02AC
../../libs/basetrf2/rand.htm#HDRUV4140SHAD
../../libs/basetrf2/rand_r.htm#HDRDCEUV4140SHAD
../../libs/basetrf2/random.htm#HDRCA4140SHAD
../../libs/basetrf2/rsqrt.htm#HDRCDFC904455RAGA
../../libs/basetrf2/sin.htm#HDRA66F0689
../../libs/basetrf2/sinh.htm#HDRMX4230SHAD
../../libs/basetrf2/sqrt.htm#HDRA14591280
../../libs/basetrf2/strtol.htm#HDRA1299E8C
../../libs/basetrf1/abs.htm#HDRF220SUSA
../../libs/basetrf1/abs.htm#HDRF220SUSA
../../libs/basetrf2/strtol.htm#HDRA1299E8C
../../libs/basetrf2/strtol.htm#HDRA1299E8C
../../libs/basetrf2/wcstol.htm#HDRA109F1269
../../libs/basetrf2/wcstoul.htm#HDRA109F1295
../../libs/basetrf1/asin.htm#HDRCE7DD9F280RAGA
../../libs/basetrf1/asin.htm#HDRCE7DD9F280RAGA
../../libs/basetrf1/asin.htm#HDRCE7DD9F280RAGA
../../libs/basetrf1/asin.htm#HDRCE7DD9F280RAGA
../../libs/basetrf1/floor.htm#HDRLWE0SUSA
../../libs/basetrf2/sinh.htm#HDRMX4230SHAD
../../libs/basetrf2/sin.htm#HDRA66F0689

erfcl Computes the value of 1 minus the error function of a floating-point number in long double format
erfl Computes the error function of a floating-point number in long double format
expl Computes the exponential function of a floating-point number in long double format
fabsl Computes the absolute value of a floating-point number in long double format
floorl Computes the largest integral value not greater than a specified floating-point number in long double

format
fmodl Computes the long double remainder of a fraction x/y, where x and y are floating-point numbers in

long double format
frexpl Expresses a floating-point number in long double format as a normalized fraction and an integral

power of 2, storing the integer and returning the fraction
ldexpl Multiplies a floating-point number in long double format by an integral power of 2
lgammal Computes the natural logarithm of the absolute value of the gamma function of a floating-point

number in long double format
log10l Computes the base 10 logarithm of a floating-point number in long double format
logl Computes the natural logarithm of a floating-point number in long double format
modfl Stores the integral part of a real number in a long double variable and returns the fractional part of

the real number
powl Computes the value of x raised to the power of y, where both numbers are floating-point numbers in

long double format
sinhl Computes the hyperbolic sine of a floating-point number in long double format
sinl Computes the sine of a floating-point number in long double format
sqrtl Computes the square root of a floating-point number in long double format
strtold Converts a string to a floating-point number in long double format
tanl Computes the tangent of a floating-point number in long double format
tanhl Computes the hyperbolic tangent of a floating-point number in long double format

List of Processes Subroutines
With the introduction of threads in the operating system, several process subroutines have been extended
and other subroutines have been added. Threads, not processes, are now the schedulable entity. For
signals, the handler exists at the process level, but each thread can define a signal mask. Some examples
of changed or new subroutines are: getprocs, getthrds, ptrace, getpri, setpri, yield and sigprocmask.

Process Initiation

exec:, execl, execv, execle, execve, execlp, execvp, or exect
Execute new programs in the calling process

fork or vfork Create a new process
reboot Restarts the system
siginterrupt Sets subroutines to restart when they are interrupted by

specific signals

Process Suspension

pause Suspends a process until that process receives a signal
wait, wait3, waitpid Suspend a process until a child process stops or terminates

Process Termination

abort Terminates current process and produces a memory dump by sending a
SIGOT signal

exit, atexit, or _exit Terminate a process
kill or killpg Terminate current process or group of processes with a signal

644 Writing and Debugging Programs

../../libs/basetrf1/erf.htm#HDRA1299F06
../../libs/basetrf1/erf.htm#HDRA1299F06
../../libs/basetrf1/exp.htm#HDRA09091271
../../libs/basetrf1/floor.htm#HDRLWE0SUSA
../../libs/basetrf1/floor.htm#HDRLWE0SUSA
../../libs/basetrf1/floor.htm#HDRLWE0SUSA
../../libs/basetrf1/frexp.htm#HDRA0909229
../../libs/basetrf1/frexp.htm#HDRA0909229
../../libs/basetrf1/lgamma_no_r.htm
../../libs/basetrf1/exp.htm#HDRA09091271
../../libs/basetrf1/exp.htm#HDRA09091271
../../libs/basetrf1/frexp.htm#HDRA0909229
../../libs/basetrf1/exp.htm#HDRA09091271
../../libs/basetrf2/sinh.htm#HDRMX4230SHAD
../../libs/basetrf2/sin.htm#HDRA66F0689
../../libs/basetrf2/sqrt.htm#HDRA14591280
../../libs/basetrf1/atof.htm#HDRA1299EC9
../../libs/basetrf2/sin.htm#HDRA66F0689
../../libs/basetrf2/sinh.htm#HDRMX4230SHAD
../../libs/basetrf1/exec.htm#HDRPDR80GACO
../../libs/basetrf1/fork.htm
../../libs/basetrf2/reboot.htm#HDRA08791468
../../libs/basetrf2/siginterrupt.htm#HDRA17192D15
../../libs/basetrf1/pause.htm#HDRA0879F0B
../../libs/basetrf2/wait_waitpid_wait3_wait364.htm#HDRA1599EFA
../../libs/basetrf1/abort.htm#HDRUC390SUSA
../../libs/basetrf1/exit.htm#HDRA087913E7
../../libs/basetrf1/kill.htm#HDRA199944D

Process and Thread Identification

ctermid Gets the path name for the terminal that controls the current
process

cuserid Gets the alphanumeric user name associated with the current
process

getpid, getpgrp, or getppid Get the process ID, process group ID, or the parent process ID,
respectively

getprocs Gets process table entries
getthrds Gets thread table entries
setpgid or setpgrp Set the process group ID
setsid Creates a session and sets process group IDs
uname or unamex Gets the names of the current operating system

Process Accounting

acct Enables and disables process accounting
ptrace Traces the execution of a process

Process Resource Allocation

brk or sbrk Change data segment space allocation
getdtablesize Gets the descriptor table size
getrlimit, setrlimit, or vlimit Limit the use of system resources by current process
getrusage, times, or vtimes Display information about resource use
plock Locks processes, text, and data into memory
profil Starts and stops program address sampling for

execution profiling
ulimit Sets user process limits

Process Prioritization

getpri Returns the scheduling priority of a process
getpriority, setpriority, or nice Get or set the priority value of a process
setpri Sets a process scheduling priority to a constant

value
yield Yields the processor to processes with higher

priorities

Process and Thread Synchronization

compare_and_swap Conditionally updates or returns a single word variable
atomically

fetch_and_add Updates a single word variable atomically
fetch_and_and and fetch_and_or Sets or clears bits in a single word variable atomically
semctl Controls semaphore operations
semget Gets a set of semaphores
semop Performs semaphore operations

Process Signals and Masks

raise Sends a signal to an executing program

Chapter 24. Subroutines, Example Programs, and Libraries 645

../../libs/basetrf1/ctermid.htm#HDRA0909C73
../../libs/basetrf1/cuserid.htm#HDRA0909535
../../libs/basetrf1/getpid.htm#HDRA5F0257
../../libs/basetrf1/getprocs.htm#HDRLAHMI52THOM
../../libs/basetrf1/getthrds.htm#HDROKHMI31ETHOM
../../libs/basetrf2/setpgid.htm#HDRA21991022
../../libs/basetrf2/setsid.htm#HDRA1729302D
../../libs/basetrf2/uname.htm#HDRYIP190GACO
../../libs/basetrf1/acct.htm#HDRA087914AA
../../libs/basetrf1/ptrace.htm#HDRA2019BB0
../../libs/basetrf1/brk.htm#HDRA08791427
../../libs/basetrf1/getdtablesize.htm#HDRA0909EB9
../../libs/basetrf1/getrlimit_64.htm#HDRA215961F
../../libs/basetrf1/getrusage_64.htm#HDRA235Y96C29
../../libs/basetrf1/plock.htm#HDRA0879F3F
../../libs/basetrf1/profil.htm#HDRSI5260MJPA
../../libs/basetrf2/ulimit.htm#HDRIXO2F0GACO
../../libs/basetrf1/getpri.htm#HDRA29798DD
../../libs/basetrf1/getpriority.htm#HDRA2199106C
../../libs/basetrf2/setpri.htm#HDRA29798C6
../../libs/basetrf2/yield.htm#HDRA357C11
../../libs/basetrf1/compare_and_swap.htm#HDRYHYJI20DTHOM
../../libs/basetrf1/fetch_and_add.htm#HDREEYJI5FTHOM
../../libs/basetrf1/fetch_and_and.htm#HDRNOYJI90THOM
../../libs/basetrf1/fetch_and_and.htm#HDRNOYJI90THOM
../../libs/basetrf2/semctl.htm#HDRA08791086
../../libs/basetrf2/semget.htm#HDRA087910E0
../../libs/basetrf2/semop.htm#HDRA31399D4
../../libs/basetrf2/raise.htm#HDRA1729356D

sigaction, sigvec, or signal Specifies the action to take upon delivery of a signal
sigemptyset, sigfillset, sigaddset, sigdelset, or sigismember

Create and manipulate signal masks
sigpending Determines the set of signals that are blocked from

delivery
sigprocmask, sigsetmask, or sigblock Set signal masks
sigset, sighold, sigrelse, or sigignore Enhance the signal facility and provide signal

management
sigsetjmp or siglongjmp Save and restore stack context and signal masks
sigstack Sets signal stack context
sigsuspend Changes the set of blocked signals
ssignal or gsignal Implement a software signal facility

Process Messages

msgctl Provides message control operations
msgget Displays a message queue identifier
msgrcv Reads messages from a queue
msgsnd Sends messages to the message queue
msgxrcv Receives an extended message
psignal Printing system signal messages

List of Multi-threaded Programming Subroutines
Programming in a multithreaded environment requires reentrant subroutines to ensure data integrity. Use
the following subroutines rather than the nonreentrant version:

asctime_r Converts a time value into a character array
getgrnam_r Returns the next group entry in the user database that matches a specific name
getpwuid_r Returns the next entry that matches a specific user ID in the use database

List of Programmer’s Workbench Library Subroutines
The Programmers Workbench Library (libPW.a) contains routines that are provided only for compatibility
with existing programs. Their use in new programs is not recommended. These interfaces are from AT&T
PWB Toolchest.

any (Character, String) Determines whether String contains Character
anystr (String1, String2) Determines the offset in String1 of the first

character that also occurs in String2
balbrk (String, Open, Close, End) Determines the offset in String of the first

character in the string End that occurs outside of
a balanced string as defined by Open and Close

cat (Destination, Source1, Source0) Concatenates the Source strings and copies
them to Destination

clean_up () Defaults the cleanup routine
curdir (String) Puts the full path name of the current directory

in String
dname (p) Determines which directory contains the file p
fatal (Message) General purpose error handler
fdfopen (fd, Mode) Same as the stdio fdopen subroutine
giveup (Dump) Forces a core dump
imatch (pref, String) Determines if the string pref is an initial

substring of String

646 Writing and Debugging Programs

../../libs/basetrf2/sigaction.htm#HDRA5F01CB
../../libs/basetrf2/sigemptyset.htm#HDRA17292FA6
../../libs/basetrf2/sigpending.htm#HDRA5F0277
../../libs/basetrf2/sigprocmask.htm#HDRA17192D8D
../../libs/basetrf2/sigset.htm#HDRA334F9465
../../libs/basetrf2/sigsetjmp.htm#HDRA6F08A
../../libs/basetrf2/sigstack.htm#HDRSJO340GACO
../../libs/basetrf2/sigsuspend.htm#HDRA17292F6A
../../libs/basetrf2/ssignal.htm#HDRA2089B25
../../libs/basetrf1/msgctl.htm#HDRA2089F0
../../libs/basetrf1/msgget.htm#HDRA208926E
../../libs/basetrf1/msgrcv.htm#HDRA20891A9
../../libs/basetrf1/msgsnd.htm#HDRA326F93
../../libs/basetrf1/msgxrcv.htm#HDRA2089208
../../libs/basetrf1/psignal.htm#HDRA23F01E5
../../libs/basetrf1/ctime_r.htm#HDRDCE181939B
../../libs/basetrf1/getgrent.htm
../../libs/basetrf1/getpwent.htm

lockit (LockFile, Count, pid) Creates a lock file
move (String1, String2, n) Copies the first n characters of String1 to

String2
patoi (String) Converts String to integer
patol (String) Converts String to long.
repeat (Destination, String, n) Sets Destination to String repeated n times
repl (String, Old, New) Replaces each occurrence of the character Old

in String with the character New
satoi (String, *ip) Converts String to integer and saves it in *ip
setsig () Causes signals to be caught by setsig1
setsig1 (Signal) General purpose signal handling routine
sname (String) Gets a pointer to the simple name of full path

name String
strend (String) Finds the end of String.
trnslat (s, old, new, Destination) Copies string s into Destination and replace any

character in old with the corresponding
characters in new

unlockit (lockfile, pid) Deletes the lock file
userdir (uid) Gets the user’s login directory
userexit (code) Defaults user exit routine
username (uid) Gets the user’s login name
verify (String1, String2) Determines the offset in string String1 of the first

character that is not also in string String2
xalloc (asize) Allocates memory
xcreat (name, mode) Creates a file
xfree (aptr) Frees memory
xfreeall () Frees all memory
xlink (f1, f2) Links files
xmsg (file, func) Calls the routine fatal with an appropriate error

message
xpipe (t) Creates a pipe
xunlink (f) Removes a directory entry
xwrite (fd, buffer, n) Writes n bytes to the file associated with fd from

buffer
zero (p, n) Zeros n bytes starting at address p
zeropad (s) Replaces the initial blanks with the character 0

(zero) in string s

File

/usr/lib/libPW.a Contains routines provided only for compatibility with existing programs

List of Security and Auditing Subroutines

Access Control Subroutines

acl_chg or acl_fchg Change the access control information on a file
acl_get or acl_fget Get the access control information of a file
acl_put or acl_fput Set the access control information of a file
acl_set or acl_fset Set the base entries of the access control information of a file
chacl or fchac l Change the permissions on a file
chmod or fchmod Change file access permissions
chown, fchown, chownx, or fchownx Change file ownership
frevoke Revokes access to a file by other processes

Chapter 24. Subroutines, Example Programs, and Libraries 647

../../libs/basetrf1/acl_chg.htm
../../libs/basetrf1/acl_get.htm
../../libs/basetrf1/acl_put.htm#HDRA227Y91B2
../../libs/basetrf1/acl_set.htm
../../libs/basetrf1/chacl.htm
../../libs/basetrf1/chmod.htm
../../libs/basetrf1/chown.htm
../../libs/basetrf1/frevoke.htm

revoke Revokes access to a file
statacl or fstatacl Retrieve the access control information for a file

Auditing Subroutines

audit Enables and disables system auditing
auditbin Defines files to contain audit records
auditevents Gets or sets the status of system event auditing
auditlog Appends an audit record to an audit bin file
auditobj Gets or sets the auditing mode of a system data object
auditpack Compresses and uncompresses audit bins
auditproc Gets or sets the audit state of a process
auditread or auditread_r Read an audit record
auditwrite Writes an audit record

Identification and Authentication Subroutines
User authentication routines have a potential to store passwords and encrypted passwords in memory.
This may expose passwords and encrypted passwords in coredumps.

authenticate Authenticates the user’s name and password
ckuseracct Checks the validity of a user account
ckuserID Authenticates the user
crypt, encrypt, or setkey Encrypt or decrypt data
getgrent, getgrgid, getgrnam, setgrent, or endgrent Access the basic group information in the user database
getgrgid_r Gets a group database entry for a group ID in a

multithreaded environment
getgrnam_r Searches a group database for a name in a multithreaded

environment
getgroupattr, IDtogroup, nextgroup, or putgroupattr Access the group information in the user database
getlogin Gets the user’s login name
getlogin_r Gets the user’s login name in a multithreaded environment
getpass Reads a password
getportattr or putportattr Access the port information in the port database
getpwent, getpwuid, getpwnam, putpwent, setpwent,
or endpwent

Access the basic user information in the user database

getuinfo Finds the value associated with a user
getuserattr, IDtouser, nextuser, or putuserattr Access the user information in the user database
getuserpw, putuserpw, or putuserpwhist Access the user authentication data
loginfailed Records an unsuccessful login attempt
loginrestrictions Determines if a user is allowed to access the system
loginsuccess Records a successful login
newpass Generates a new password for a user
passwdexpired Checks the user’s password to determine if it has expired
setpwdb or endpwdb Open or close the authentication database
setuserdb or enduserdb Open or close the user database
system Runs a shell command
tcb Alters the Trusted Computing Base status of a file

Process Subroutines

getgid or getegid Get the real or group ID of the calling process
getgroups Gets the concurrent group set of the current process
getpcred Gets the current process security credentials

648 Writing and Debugging Programs

../../libs/basetrf2/revoke.htm
../../libs/basetrf2/statacl.htm
../../libs/basetrf1/audit.htm
../../libs/basetrf1/auditbin.htm
../../libs/basetrf1/auditevents.htm
../../libs/basetrf1/auditlog.htm
../../libs/basetrf1/auditobj.htm
../../libs/basetrf1/auditpack.htm
../../libs/basetrf1/auditproc.htm
../../libs/basetrf1/auditread.htm
../../libs/basetrf1/auditwrite.htm
../../libs/basetrf1/authenticate.htm
../../libs/basetrf1/ckuseracct.htm
../../libs/basetrf1/ckuserID.htm
../../libs/basetrf1/crypt.htm
../../libs/basetrf1/getgrent.htm
../../libs/basetrf1/getgrgid_r.htm
../../libs/basetrf1/getgrnam_r.htm
../../libs/basetrf1/getgroupattr.htm
../../libs/basetrf1/getlogin.htm
../../libs/basetrf1/getlogin_r.htm
../../libs/basetrf1/getpass.htm
../../libs/basetrf1/getportattr.htm
../../libs/basetrf1/getpwent.htm
../../libs/basetrf1/getpwent.htm
../../libs/basetrf1/getuinfo.htm
../../libs/basetrf1/getuserattr.htm
../../libs/basetrf1/getuserpw.htm
../../libs/basetrf1/loginfailed.htm
../../libs/basetrf1/loginrestrictions.htm
../../libs/basetrf1/loginsuccess.htm
../../libs/basetrf1/newpass.htm
../../libs/basetrf1/passwdexpired.htm
../../libs/basetrf2/setpwdb.htm
../../libs/basetrf2/setuserdb.htm
../../libs/basetrf2/system.htm
../../libs/basetrf2/tcb.htm
../../libs/basetrf1/getgid.htm
../../libs/basetrf1/getgroups.htm
../../libs/basetrf1/getpcred.htm

getpenv Gets the current process environment
getuid or geteuid Get the real or effective user ID of the current process
initgroups Initializes the supplementary group ID of the current

process
kleenup Cleans up the run-time environment of a process
setgid, setrgid, setegid, or setregid Set the group IDs of the calling process
setgroups Sets the supplementary group ID of the current process
setpcred Sets the current process credentials
setpenv Sets the current process environment
setuid, setruid, setuid, or setreuid Set the process user IDs
usrinfo Gets and sets user information about the owner of the

current process

List of String Manipulation Subroutines
The string manipulation functions include:

v Locate a character position within a string

v Locate a sequence of characters within a string

v Copy a string

v Concatenate strings

v Compare strings

v Translate a string

v Measure a string

When using these string functions, you do not need to include a header file for them in the program or
specify a special flag to the compiler.

The following functions manipulate string data:

bcopy, bcmp, bzero, ffs Perform bit and byte string operations
gets, fgets Get a string from a stream
puts, fputs Write a string to a stream
compile, step, advance Compile and match regular-expression patterns
strlen, strchr, strrchr, strpbrk, strspn, strcspn, strstr, strtok

Perform operations on strings
jcode Performs string conversion on 8-bit processing codes.
varargs Handles a variable-length parameter list

Programming Example for Manipulating Characters
/*
This program is designed to demonstrate the use of "Character
classification and conversion" subroutines. Since we are dealing
with characters, it is a natural place to demonstrate the use of
getchar subroutine and putchar subroutine from the stdio library.

The program objectives are:

-Read input from "stdin"

-Verify that all characters are ascii and printable

-Convert all uppercase characters to lowercase

-Discard multiple white spaces

-Report statistics regarding the types of characters

Chapter 24. Subroutines, Example Programs, and Libraries 649

../../libs/basetrf1/getpenv.htm
../../libs/basetrf1/getuid.htm
../../libs/basetrf1/initgroups.htm
../../libs/basetrf1/kleenup.htm
../../libs/basetrf2/setgid.htm
../../libs/basetrf2/setgroups.htm
../../libs/basetrf2/setpcred.htm
../../libs/basetrf2/setpenv.htm
../../libs/basetrf2/setuid.htm
../../libs/basetrf2/usrinfo.htm
../../libs/basetrf1/bcopy.htm#HDRA0909A7D
../../libs/basetrf1/gets.htm#HDRA0909D73
../../libs/basetrf1/puts.htm#HDRHP590SHAD
../../libs/basetrf1/compile.htm#HDRFW4A0SHAD
../../libs/basetrf2/strlen.htm#HDRA1149117
../../libs/basetrf1/jcode.htm#HDRA339F9CDD
../../libs/basetrf2/varargs.htm#HDRA12198BF

The following routines are demonstrated by this example program:

- getchar

- putchar

- isascii (ctype)

- iscntrl (ctype)

- isspace (ctype)

- isalnum (ctype)

- isdigit (ctype)

- isalpha (ctype)

- isupper (ctype)

- islower (ctype)

- ispunct (ctype)

- tolower (conv)

- toascii (conv)

*/

#include <stdio.h> /* The mandatory include file */
#include <ctype.h> /* Included for character classification

subroutines */

/* The various statistics gathering counters */

int asciicnt, printcnt, punctcnt, uppercnt, lowercnt,

digcnt, alnumcnt, cntrlcnt, spacecnt, totcnt, nonprntcnt,linecnt, tabcnt ;

main()
{

int ch ; /* The input character is read in to this */
char c , class_conv() ;

asciicnt=printcnt=punctcnt=uppercnt=lowercnt=digcnt==0;
cntrlcnt=spacecnt=totcnt=nonprntcnt=linecnt=tabcnt=0;
alnumcnt=0;

while ((ch =getchar()) != EOF)
{

totcnt++;
c = class_conv(ch) ;
putchar(c);

650 Writing and Debugging Programs

}
printf("The number lines of of input were %d\n",linecnt);
printf(" The character wise breakdown follows :\n");
printf(" TOTAL ASCII CNTRL PUNCT ALNUM DIGITS UPPER

LOWER SPACE TABCNT\n");

printf("%5d %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",totcnt,

asciicnt, cntrlcnt, punctcnt, alnumcnt, digcnt, uppercnt,lowercnt, spacecnt, tabcnt);

}

char class_conv(ch)
char ch;
{

if (isascii(ch)) {

asciicnt++;
if (iscntrl(ch) && ! isspace(ch)) {

nonprntcnt++ ;
cntrlcnt++ ;
return(' ');

}
else if (isalnum(ch)) {

alnumcnt++;
if (isdigit(ch)){

digcnt++;
return(ch);

}
else if (isalpha(ch)){

if (isupper(ch)){

uppercnt++ ;
return(tolower(ch));

}
else if (islower(ch)){

lowercnt++;
return(ch);

}
else {

/*
We should never be in this situation since an alpha character can only be
either uppercase or lowercase.
*/

fprintf(stderr,"Classification error for %c \n",ch);
return(NULL);

}

}
else if (ispunct(ch)){

punctcnt++;
return(ch);

}
else if (isspace(ch)){

Chapter 24. Subroutines, Example Programs, and Libraries 651

spacecnt++;
if (ch == '\n'){
linecnt++;
return(ch);

}
while ((ch == '\t') || (ch == ' ')) {
if (ch == '\t') tabcnt ++ ;
else if (ch == ' ') spacecnt++ ;
totcnt++;
ch = getchar();

}
ungetc(ch,stdin);
totcnt--;
return(' ');

}
else {

/*
We should never be in this situation any ASCII character
can only belong to one of the above classifications.
*/
fprintf(stderr,"Classification error for %c \n",ch);
return(NULL);
}

}
else
{

fprintf(stdout,"Non Ascii character encountered \n");
return(toascii(ch));

}

}

Searching and Sorting Example Program
/**This program demonstrates the use of the following:

-qsort subroutine (a quick sort library routine)

-bsearch subroutine (a binary search library routine)

-fgets, fopen, fprintf, malloc, sscanf, and strcmp subroutines.

The program reads two input files with records in
string format, and prints or displays:

-records from file2, which are excluded in file1

-records from file1, which are excluded in file2

The program reads the input records from both files
into two arrays, which are subsequently sorted in
common order using the qsort subroutine. Each element of
one array is searched for its counterpart entry in the
other array using the bsearch subroutine. If the item is
not found in both arrays, a message indicates the record
was not found. The process is repeated interchanging
the two arrays, to obtain the second list of exclusions.

**/

#include <stdio.h> /*the library file to be included for
/*standard input and output*/

#include <search.h> /*the file to be included for qsort*/
#include <sys/errno.h> /*the include file for interpreting

652 Writing and Debugging Programs

/*predefined error conditions*/

#define MAXRECS 10000 /*array size limit*/

#define MAXSTR 256 /*maximum input string length*/
#define input1 "file1" /*one input file*/
#define input2 "file2" /*second input file*/
#define out1 "o_file1" /*output file1*/
#define out2 "o_file2" /*output file2*/

main()
{

char *arr1[MAXRECS] , *arr2[MAXRECS] ;/*the arrays to store

input records*/

unsigned int num1 , num2; /*to keep track of the number of

/*input records. Unsigned int

/*declaration ensures
/*compatability

/*with qsort library routine.*/

int i ;
int compar(); /*the function used by qsort and

/*bsearch*/

extern int errno ; /*to capture system call failures*/
FILE *ifp1 , *ifp2, *ofp1, *ofp2; /*the file pointers for

input and output */

void *bsearch() ; /*the library routine for binary search*/
void qsort(); /*the library routine for quick sort*/
char*malloc() ; /*memory allocation subroutine*/
void exit() ;

num1 = num2 = 0;

/**Open the input and output files for reading or writing
**/

if ((ifp1 = fopen(input1 , "r")) == NULL)
{

(void) fprintf(stderr,"%s could not be opened\n",input1);
exit(-1);

}

if ((ifp2 = fopen(input2 , "r")) == NULL)
{

(void) fprintf(stderr,"%s could not be opened\n",input2);
exit(-1);

}

if ((ofp1 = fopen(out1,"w")) == NULL)
{

(void) fprintf(stderr,"%s could not be opened\n",out1);
exit(-1);

}

if ((ofp2 = fopen(out2,"w")) == NULL)
{

(void) fprintf(stderr,"%s could not be opened\n", out2);
exit(-1);

}

/**Fill the arrays with data from input files. Readline
function returns the number of input records.**/

Chapter 24. Subroutines, Example Programs, and Libraries 653

if ((i = readline(arr1 , ifp1)) < 0)
{

(void) fprintf(stderr,"o data in %s. Exiting\n",input1);
exit(-1);

}
num1 = (unsigned) i;
if ((i = readline (arr2 , ifp2)) < 0)
{

(void) fprintf(stderr,"No data in %s. Exiting\n",input2);
exit(-1);

}
num2 = (unsigned) i;

/**
The arrays can now be sorted using qsort subroutine
**/

qsort((char *)arr1 , num1 , sizeof (char *) , compar);
qsort((char *)arr2 , num2 , sizeof (char *) , compar);

/**When the two arrays are sorted in a common order, the
program builds a list of elements found in one but not
in the other, using bsearch.

Check that each element in array1 is in array2
**/

for (i= 0 ; i < num1 ; i++)
{

if (bsearch((void *)&arr1[i] , (char *)arr2,num2,

sizeof(char *) , compar) == NULL)

{
(void) fprintf(ofp1,"%s",arr1[i]);

}

} /**One list of exclusions is complete**/

/**Check that each element in array2 is in array1**/

for (i = 0 ; i < num2 ; i++)
{
if (bsearch((void *)&arr2[i], (char *)arr1, num1

, sizeof(char *) , compar) == NULL)

{
(void) fprintf(ofp2,"%s",arr2[i]);

}

}

/**Task completed, so return**/

return(0);

}

/**The function reads in records from an input
file and fills in the details into the two arrays.**/

readline (char **aptr, FILE *fp)

{

char str[MAXSTR] , *p ;
int i=0 ;

/**Read the input file line by line**/

while (fgets(str , sizeof(str) , fp))
{

/**Allocate sufficient memory. If the malloc subroutine
fails, exit.**/

if ((p = (char *)malloc (sizeof(str))) == NULL)
{

654 Writing and Debugging Programs

(void) fprintf(stderr,"Insufficient Memory\n");
return(-1);

}
else

{
if (0 > strcpy(p, str))

{
(void) fprintf(stderr,"Strcpy failed \n");
return(-1);
}
i++ ; /*increment number of records count*/

}

} /**End of input file reached**/
return(i);/*return the number of records read*/

}

/**We want to sort the arrays based only on the contents of the first field of
the input records. So we get the first field using SSCANF**/

compar(char **s1 , char **s2)
{

char st1[100] , st2[100] ;
(void) sscanf(*s1,"%s" , st1) ;
(void) sscanf(*s2,"%s" , st2) ;

/**Return the results of string comparison to the calling procedure**/

return(strcmp(st1 , st2));

}

List of Operating System Libraries

/usr/lib/libbsd.a Berkeley library
/lib/profiled/libbsd.a Berkeley library profiled
/usr/ccs/lib/libcurses.a Curses library
/usr/ccs/lib/libc.a Standard I/O library, standard C library
/lib/profiled/libc.a Standard I/O library, standard C library profiled
/usr/ccs/lib/libdbm.a Database Management library
/usr/ccs/lib/libi18n.a Layout library
/usr/lib/liblvm.a LVM (Logical Volume Manager) library
/usr/ccs/lib/libm.a Math library
/usr/ccs/lib/libp/libm.a Math library profiled
/usr/lib/libodm.a ODM (Object Data Manager) library
/usr/lib/libPW.a Programmers Workbench library
/usr/lib/libpthreads.a POSIX compliant Threads library
/usr/lib/libqb.a Queue Backend library
/usr/lib/librpcsvc.a RPC (Remote Procedure Calls) library
/usr/lib/librts.a Run-Time Services library
/usr/lib/libs.a Security functions
/usr/lib/libsm.a System management library
/usr/lib/libsrc.a SRC (System Resource Controller) library
/usr/lib/libmsaa.a SVID (System V Interface Definition) math library
/usr/ccs/lib/libp/libmsaa.a SVID (System V Interface Definition) math library profiled
/usr/ccs/lib/libtermcap.a Terminal I/O
/usr/lib/liby.a YP (Yellow Pages) library
/usr/lib/lib300.a Graphics subroutines for DASI 300 workstations
/usr/lib/lib300s.a Graphics subroutines for DASI 300s workstations
/usr/lib/lib300S.a Graphics subroutines for DASI 300S workstations
/usr/lib/lib4014.a Graphics subroutines for Tektronix 4014 workstations

Chapter 24. Subroutines, Example Programs, and Libraries 655

/usr/lib/lib450.a Graphics subroutines for DASI 450 workstations
/usr/lib/libcsys.a Kernel extensions services
/usr/ccs/lib/libdbx.a Debug program library
/usr/lib/libgsl.a Graphics Support library
/usr/lib/libieee.a IEEE floating point library
/usr/lib/libIM.a Stanza file processing library
/usr/ccs/lib/libl.a lex library
/usr/lib/libogsl.a Old graphics support library
/usr/lib/liboldX.a X10 library
/usr/lib/libplot.a Plotting subroutines
/usr/lib/librpcsvc.a RPC services
/usr/lib/librs2.a Hardware-specific sqrt and itrunc subroutines
/usr/lib/libxgsl.a Enhanced X-Windows graphics subroutines
/usr/lib/libX11.a X11 run time library
/usr/lib/libXt.a X11 toolkit library
/usr/lib/liby.a yacc run time library

librs2.a Library

The /usr/lib/librs2.a library provides statically linked, hardware-specific replacements for the sqrt and
itrunc subroutines. These replacement subroutines make use of hardware-specific instructions on some
POWER-based, POWERstation, and POWERserver models to increase performance.

Note: Use the hardware-specific versions of these subroutines in programs that will run only on
models of POWER-based machines, POWERstations, and POWERservers that support hardware
implementations of square root and conversion to integer. Attempting to use them in programs
running on other models will result in an illegal instruction trap.

General-Use sqrt and itrunc Subroutines
The general-use version of the sqrt subroutine is in the libm.a library. The sqrt subroutine computes the
square root of a floating-point number.

The general-use version of the itrunc subroutine is in the libc.a library. The itrunc subroutine converts a
floating-point number to integer format.

POWER2-Specific sqrt and itrunc Subroutines
The /usr/lib/librs2.a library contains the following subroutines:

v sqrt

v _sqrt

v itrunc

v _itrunc

The subroutine names with leading underscores are used by the C and Fortran compilers. They are
functionally identical to the versions without underscores.

For best performance, source code that computes square roots or converts floating-point numbers to
integers can be recompiled with the xlc or xlf command using the -qarch=pwrx compiler option. This
option enables a program to use the square-root and convert-to-integer instructions.

To use the hardware-specific subroutines in the librs2.a library, link it ahead of the libm.a and libc.a
libraries. For example:
xlc -O -o prog prog.c -lrs2 -lm

656 Writing and Debugging Programs

../../libs/basetrf2/sqrt.htm#HDRA14591280
../../libs/basetrf1/floor.htm#HDRLWE0SUSA

OR

xlf -O -o prog prog.f -lrs2

You can use the xlf or xlc compiler to rebind a program to use this library. For example, to create a
POWER2-specific executable file named progrs2 from an existing non-stripped file named prog in the
current directory:
xlc -lrs2 prog -o progrs2

OR

xlf -lrs2 prog -o progrs2

Chapter 24. Subroutines, Example Programs, and Libraries 657

658 Writing and Debugging Programs

Chapter 25. System Management Interface Tool (SMIT)

The System Management Interface Tool (SMIT) is an interactive and extensible screen-oriented command
interface. It prompts users for the information needed to construct command strings and presents
appropriate predefined selections or run time defaults where available. This shields users from many
sources of extra work or error, including the details of complex command syntax, valid parameter values,
system command spelling, or custom shell path names.

You can also build and use alternate databases instead of modifying SMIT’s default system database.

The following sections discuss SMIT in detail:

New tasks consisting of one or more commands or inline ksh shell scripts can be added to SMIT at any
time by adding new instances of predefined screen objects to SMIT’s database. These screen objects
(described by stanza files) are used by the Object Data Manager (ODM) to update SMIT’s database. This
database controls SMIT’s run-time behavior.

SMIT Screen Types

There are three main screen types available for the System Management Interface Tool (SMIT). The
screens occur in a hierarchy consisting of menu screens, selector screens, and dialog screens. When
performing a task, a user typically traverses one or more menus, then zero or more selectors, and finally
one dialog.

The following table shows SMIT screen types, what the user sees on each screen, and what SMIT does
internally with each screen:

SMIT Screens

Screen Type What the User Sees on the Screen What SMIT Does Internally with
Each Screen

Menu A list of choices Uses the choice to select the next
screen to display.

Selector Either a list of choices or an entry
field

Obtains a data value for subsequent
screens. Optionally selects alternative
dialogs or selectors.

Dialog A sequence of entry fields. Uses data from the entry fields to
construct and run the target task
command string.

Menus present a list of alternative subtasks; a selection can then lead to another menu screen or to a
selector or dialog screen. A selector is generally used to obtain one item of information that is needed by a
subsequent screen and which can also be used to select which of several selector or dialog screens to
use next. A dialog screen is where any remaining input is requested from the user and where the chosen
task is actually run.

A menu is the basic entry point into SMIT and can be followed by another menu, a selector, or a dialog. A
selector can be followed by a dialog. A dialog is the final entry panel in a SMIT sequence.

Menu Screens

A SMIT menu is a list of user-selectable items. Menu items are typically tasks or classes of tasks that can
be performed from SMIT. A user starting with the main SMIT menu selects an item defining a broad range

© Copyright IBM Corp. 1997, 2001 659

of system tasks. A selection from the next and subsequent menus progressively focuses the user’s choice,
until finally a dialog is typically displayed to collect information for performance of a particular task.

Design menus to help a user of SMIT narrow the scope of choice to a particular task. Your design can be
as simple as a new menu and dialog attached to an existing branch of SMIT, or as complex as an entire
new hierarchy of menus, selectors, and dialogs starting at the SMIT applications menu.

At run time, SMIT retrieves all menu objects with a given ID (id descriptor value) from the specified object
repository. To add an item to a particular SMIT menu, add a menu object having an ID value equal to the
value of the id descriptor of other non-title objects in the same menu.

Build menus by defining them in a stanza file and then processing the file with the odmadd command. A
menu definition is compiled into a group of menu objects. Any number of menus, selectors, and dialogs
can be defined in one or more files.

odmadd Adds the menu definitions to the specified object repository.
/usr/lib/objrepos Default object repository for system information and can be used to store your

compiled objects.

At SMIT run time, the objects are automatically retrieved from a SMIT database.

Note: You should always back up the /usr/lib/objrepos directory before deleting or adding any
objects or object classes. Unanticipated damage to objects or classes needed for system operations
can cause system problems.

Selector Screens

A SMIT selector prompts a user to specify a particular item, typically a system object (such as a printer) or
attribute of an object (such as a serial or parallel printer mode). This information is then generally used by
SMIT in the next dialog.

For instance, a selector can prompt a user to enter the name of a logical volume for which to change
logical volume characteristics. This could then be used as a parameter in the
sm_cmd_hdr.cmd_to_discover_postfix field of the next dialog for entry field initialization. Likewise, the
selector value could also be used as the value for a subsequent sm_cmd_opt.cmd_to_list_postfix field. It
can also be used directly as a subsequent initial entry field value. In each case, logical consistency
requires that this item either be selected prior to the dialog or be held constant while in the dialog.

Design a selector to request a single piece of information from the user. A selector, when used, falls
between menus and dialogs. Selectors can be strung together in a series to gather several pieces of
information before a dialog is displayed.

Selectors should usually contain a prompt displayed in user-oriented language and either a response area
for user input or a pop-up list from which to select a value; that is, one question field and one answer.
Typically the question field is displayed and the SMIT user enters a value in the response area by typing
the value or by selecting a value from a list or an option ring.

To give the user a run-time list of choices, the selector object can have an associated command (defined
in the sm_cmd_opt.cmd_to_list field) that lists the valid choices. The list is not hard-coded, but developed
by the command in conjunction with standard output. The user gets this list by selecting the F4=List
function of the SMIT interface.

In a ghost selector (sm_cmd_hdr.ghost=″y″), the command defined in the sm_cmd_opt.cmd_to_list field, if
present, is automatically run. The selector screen is not displayed at this time and the user sees only the
pop-up list.

660 Writing and Debugging Programs

../../cmds/aixcmds4/odmadd.htm#HDRA26491517

The application of a super-ghost selector permits branching following menu selection, where the branch to
be taken depends on the system state and not user input. In this case, the cmd_to_classify descriptor in
the super-ghost selector can be used to get the required information and select the correct screen to
present next.

Build selectors by defining them in a stanza file and then processing the file with the odmadd command.
Several menus, selectors, and dialogs can be defined in a single file. The odmadd command adds each
selector to the specified object repository. The /usr/lib/objrepos directory is the default object repository
for system information and is used to store your compiled objects. At SMIT run time, the objects are
automatically retrieved from a SMIT database.

Note: Always back up the /usr/lib/objrepos directory before deleting or adding any objects or object
classes. Unanticipated damage to objects or classes needed for system operations can cause
system problems.

Dialog Screens

A dialog in SMIT is the interface to a command or task a user performs. Each dialog executes one or
more commands, shell functions, and so on. A command can be run from any number of dialogs.

To design a dialog, you need to know the command string you want to build and the command options
and operands for which you want user-specified values. In the dialog display, each of these command
options and operands is represented by a prompt displayed in user-oriented language and a response
area for user input. Each option and operand is represented by a dialog command option object in the
Object Data Manager (ODM) database. The entire dialog is held together by the dialog header object.

The SMIT user enters a value in the response area by typing the value, or by selecting a value from a list
or an option ring. To give the user a run-time list of choices, each dialog object can have an associated
command (defined in the sm_cmd_opt.cmd_to_list field) that lists the valid choices. The user gets this list
by invoking the F4=List function of the SMIT interface. This causes SMIT to run the command defined in
the associated cmd_to_list field and to use its standard output and stderr file for developing the list.

In a ghost dialog, the dialog screen is not displayed. The dialog runs as if the user had immediately
pressed the dialog screen Enter key to run the dialog.

Build dialogs by defining them in a stanza file and then processing the file with the odmadd command.
Several menus, selectors, and dialogs can be defined in a single file. The odmadd command adds each
dialog definition to the specified object repository. The /usr/lib/objrepos directory is the default object
repository for system information and can be used to store your compiled objects. At SMIT run time, the
objects are automatically retrieved from a SMIT database.

Note: Always back up the /usr/lib/objrepos directory before deleting or adding any objects or object
classes. Unanticipated damage to objects or classes needed for system operations can cause
system problems.

SMIT Object Classes

A System Management Interface Tool (SMIT) object class created with the Object Data Manager (ODM)
defines a common format or record data type for all individual objects that are instances of that object
class. Therefore a SMIT object class is basically a record data type and a SMIT object is a particular
record of that type.

SMIT menu, selector, and dialog screens are described by objects that are instances of one of four object
classes:

v sm_menu_opt

Chapter 25. System Management Interface Tool (SMIT) 661

../../cmds/aixcmds4/odmadd.htm#HDRA26491517
../../cmds/aixcmds4/odmadd.htm#HDRA26491517

v sm_name_hdr

v sm_cmd_hdr

v sm_cmd_opt

The following table shows the objects used to create each screen type:

SMIT Classes

Screen Type Object Class Object’s Use (typical case)

Menu sm_menu_opt 1 for title of screen

sm_menu_opt 1 for first item

sm_menu_opt 1 for second item

... ...

sm_menu_opt 1 for last item

Selector sm_name_hdr 1 for title of screen and other attributes

sm_cmd_opt 1 for entry field or pop-up list

Dialog sm_cmd_hdr 1 for title of screen and command string

sm_cmd_opt 1 for first entry field

sm_cmd_opt 1 for second entry field

... ...

sm_cmd_opt 1 for last entry field

Each object consists of a sequence of named fields and associated values. These are represented in
stanza format in ASCII files that can be used by the odmadd command to initialize or extend SMIT
databases. Stanzas in a file should be separated with one or more blank lines.

Note: Comments in an ODM input file (ASCII stanza file) used by the odmadd command must be
alone on a line beginning with a # (pound sign) or an * (asterisk) in column one. Only an * (asterisk)
comment can be on the same line as a line of the stanza, and must be after the descriptor value.

The following is an example of a stanza for an sm_menu_opt object:
sm_menu_opt: *name of object class

id = "top_menu" *object's (menu screen) name
id_seq_num = "050"
next_id = "commo" *id of objects for next menu screen
text = "Communications Applications & Services"
text_msg_file = ""
text_msg_set = 0
text_msg_id = 0
next_type = "m" *next_id specified another menu
alias = ""
help_msg_id = ""
help_msg_loc = ""
help_msg_base = ""
help_msg_book = ""

The notation ObjectClass.Descriptor is commonly used to describe the value of the fields of an object. For
instance, in the preceding sm_menu_opt object, the value of sm_menu_opt.id is top_menu.

See “sm_menu_opt (SMIT Menu) Object Class” on page 673 for a detailed explanation of each field in the
sm_menu_opt object class.

The following is an example of a stanza for an sm_name_hdr object:

662 Writing and Debugging Programs

../../cmds/aixcmds4/odmadd.htm#HDRA26491517

sm_name_hdr: *---- used for selector screens
id = "" *the name of this selector screen
next_id = "" *next sm_name_hdr or sm_cmd_hdr
option_id = "" *specifies one associated sm_cmd_opt
has_name_select = ""
name = "" *title for this screen
name_msg_file = ""
name_msg_id = 0
type = ""
ghost = ""
cmd_to_classify = ""
cmd_to_classify_postfix = ""
raw_field_name = ""
cooked_field_name = ""
next_type = ""
help_msg_id = ""
help_msg_loc = ""
help_msg_base = ""
help_msg_book = ""

See the “sm_name_hdr (SMIT Selector Header) Object Class” on page 674 for a detailed explanation of
each field in the sm_name_hdr object class.

The following is an example of a stanza for an sm_cmd_hdr object:
sm_cmd_hdr: *---- used for dialog screens

id = "" *the name of this dialog screen
option_id = "" *defines associated set of sm_cmd_opt objects
has_name_select = ""
name = "" *title for this screen
name_msg_file = ""
name_msg_set = 0
name_msg_id = 0
cmd_to_exec = ""
ask = ""
exec_mode = ""
ghost = ""
cmd_to_discover = ""
cmd_to_discover_postfix = ""
name_size = 0
value_size = 0
help_msg_id = ""
help_msg_loc = ""
help_msg_base = ""
help_msg_book = ""

See the “sm_cmd_hdr (SMIT Dialog Header) Object Class” on page 680 for a detailed explanation of each
field in the sm_cmd_hdr object class.

The following is an example of a stanza for an sm_cmd_opt object:
sm_cmd_opt: *---- used for selector and dialog screens

id = "" *name of this object
id_seq_num = "" *"0" if associated with selector screen
disc_field_name = ""
name = "" *text describing this entry
name_msg_file = ""
name_msg_set = 0
name_msg_id = 0
op_type = ""
entry_type = ""
entry_size = 0
required = ""
prefix = ""
cmd_to_list_mode = ""
cmd_to_list = ""

Chapter 25. System Management Interface Tool (SMIT) 663

cmd_to_list_postfix = ""
multi_select = ""
value_index = 0
disp_values = ""
values_msg_file = ""
values_msg_set = 0
values_msg_id = 0
aix_values = ""
help_msg_id = ""
help_msg_loc = ""
help_msg_base = ""
help_msg_book = ""

See “sm_cmd_opt (SMIT Dialog/Selector Command Option) Object Class” on page 677 for a detailed
explanation of each field in the sm_cmd_opt object class.

All SMIT objects have an id field that provides a name used for looking up that object. The sm_menu_opt
objects used for menu titles are also looked up using their next_id field. The sm_menu_opt and
sm_name_hdr objects also have next_id fields that point to the id fields of other objects. These are how
the links between screens are represented in the SMIT database. Likewise, there is an option_id field in
sm_name_hdr and sm_cmd_hdr objects that points to the id fields of their associated sm_cmd_opt
object(s).

Note: The sm_cmd_hdr.option_id object field is equal to each sm_cmd_opt.id object field; this defines
the link between the sm_cmd_hdr object and its associated sm_cmd_opt objects.

Two or more dialogs can share common sm_cmd_opt objects since SMIT uses the ODM LIKE operator
to look up objects with the same sm_cmd_opt.id field values. SMIT allows up to five IDs (separated by
commas) to be specified in a sm_cmd_hdr.option_id field, so that sm_cmd_opt objects with any of five
different sm_cmd_opt.id field values can be associated with the sm_cmd_hdr object.

The following table shows how the value of an sm_cmd_hdr.option_id field relates to the values of the
sm_cmd_opt.id and sm_cmd_opt.id_seq_num fields.

Note: The values in the sm_cmd_opt.id_seq_num fields are used to sort the retrieved objects for
screen display.

SMIT Objects

IDs of Objects to Retrieve
(sm_cmd_hdr.option_id)

Objects Retrieved (sm_cmd_opt.id) Display Sequence of Retrieved
Objects (sm_cmd_opt.id_seq_num)

″demo.[AB]″ ″demo.A″ ″10″

″demo.B″ ″20″

″demo.A″ ″30″

″demo.A ″40″

″demo.[ACD]″ ″demo.A″ ″10″

″demo.C″ ″20″

″demo.A″ ″30″

″demo.A″ ″40″

″demo.D″ ″50″

″demo.X,demo.Y,demo.Z″ ″demo.Y″ ″20″

″demo.Z″ ″40″

″demo.X″ ″60″

″demo.X″ ″80″

664 Writing and Debugging Programs

The SMIT Database
SMIT objects are generated with ODM creation facilities and stored in files in a designated database. The
default SMIT database consists of eight files:

v sm_menu_opt

v sm_menu_opt.vc

v sm_name_hdr

v sm_name_hdr.vc

v sm_cmd_hdr

v sm_cmd_hdr.vc

v sm_cmd_opt

v sm_cmd_opt.vc

The files are stored by default in the /usr/lib/objrepos directory. They should always be saved and
restored together.

SMIT Aliases and Fast Paths

A System Management Interface Tool (SMIT) sm_menu_opt object can be used to define a fast path that,
when entered with the smit command to start SMIT, can get a user directly to a specific menu, selector, or
dialog; the alias itself is never displayed. Use of a fast path allows a user to bypass the main SMIT menu
and other objects in the SMIT interface path to that menu, selector, or dialog. Any number of fast paths
can point to the same menu, selector, or dialog.

An sm_menu_opt object is used to define a fast path by setting the sm_menu_opt.alias field to ″y″. In this
case, the sm_menu_opt object is used exclusively to define a fast path. The new fast path or alias name
is specified by the value in the sm_menu_opt.id field. The contents of the sm_menu_opt.next_id field points
to another menu object, selector header object, or dialog header object, depending on whether the value
of the sm_menu_opt.next_type field is ″m″ (menu), ″n″ (selector), or ″d″ (dialog).

Every non alias sm_menu_opt object for a menu title (next_type=″m″) should have a unique
sm_menu_opt.next_id field value, since this field is automatically used as a fast path.

If you want two menu items to point to the same successor menu, one of the next_id fields should point to
an alias, which in turn points to the successor menu.

Build aliases and fast paths by defining them in a stanza file and then processing the file with the odmadd
command. Several menus, selectors, and dialogs can be defined in a single file. The odmadd command
adds each alias definition to the specified object repository. The /usr/lib/objrepos directory is the default
object repository for system information and can be used to store your compiled objects. At SMIT run time,
the objects are automatically retrieved from a SMIT database.

Note: You should always back up the /usr/lib/objrepos directory before deleting or adding any
objects or object classes. Unanticipated damage to objects or classes needed for system operations
can cause system problems.

SMIT Information Command Descriptors

The System Management Interface Tool (SMIT) can use several descriptors defined in its objects to get
the information, such as current run time values, required to continue through the SMIT interface structure.
Each of these descriptors is assigned some form of command string to run and retrieve the needed data.

The descriptors that can be set to a command for discovery of required information are:

Chapter 25. System Management Interface Tool (SMIT) 665

../../cmds/aixcmds5/smit.htm#HDRA1879A27
../../cmds/aixcmds4/odmadd.htm#HDRA26491517

v The cmd_to_discover descriptor that is part of the sm_cmd_hdr object class used to define a dialog
header.

v The cmd_to_classify descriptor that is part of the sm_name_hdr object class used to define a selector
header.

v The cmd_to_list descriptor that is part of the sm_cmd_opt object class used to define a selector
option list associated with a selector or a dialog command option list associated with a dialog entry field.

SMIT executes a command string specified by a cmd_to_list, cmd_to_classify, or cmd_to_discover
descriptor by first creating a child process. The standard error (strerr) and standard output of the child
process are redirected to SMIT via pipes. SMIT next executes a setenv(″ENV=″) subroutine in the child
process to prevent commands specified in the $HOME/.env file of the user from being run automatically
when a new shell is invoked. Finally, SMIT calls the execl system subroutine to start a new ksh shell,
using the command string as the ksh -c parameter value. If the exit value is not 0, SMIT notifies the user
that the command failed.

SMIT makes the path names of the log files and the settings of the command line verbose, trace, and
debug flags available in the shell environment of the commands it runs. These values are provided via the
following environment variables:

v _SMIT_LOG_FILE

v _SMIT_SCRIPT_FILE

v _SMIT_VERBOSE_FLAG

v _SMIT_TRACE_FLAG

v _SMIT_DEBUG_FLAG

The presence or absence of the corresponding flag is indicated by a value of 0 or 1, respectively.

An easy way to view the current settings is to invoke the shell function after starting SMIT and then run
the command string env | grep _SMIT.

All writes to the log files should be done as appends and should be immediately followed by flushes
unless this occurs automatically.

The cmd_to_discover Descriptor

When SMIT puts up a dialog, it gets the sm_cmd_hdr (dialog header) object and its associated dialog
body (one or more sm_cmd_opt objects) from the object repository. However, the sm_cmd_opt objects
can also be initialized with current run time values. If the sm_cmd_hdr.cmd_to_discover field is not empty
(″″), SMIT runs the command specified in the field to obtain current run time values.

Any valid ksh command string can be used as a cmd_to_discover descriptor value. The command
should generate the following output format as its standard output:
#name_1:name_2: ... :name_n\n
value_1:value_2: ... :value_n

In the standard output of a command, the first character is always a # (pound sign). A \n (new line
character) is always present to separate the name line from the value line. Multiple names and values are
separated by : (colons). And any name or value can be an empty string (which in the output format
appears as two colons with no space between them). SMIT maintains an internal current value set in this
format that is used to pass name-value pairs from one screen to the next.

Note: If the value includes a : (colon), the : must be preceded by #! (pound sign, exclamation point).
Otherwise, SMIT reads the : (colon) as a field separator.

666 Writing and Debugging Programs

../../cmds/aixcmds3/ksh.htm#HDRA265912F6
../../cmds/aixcmds3/ksh.htm#HDRA265912F6

When SMIT runs a command specified in a cmd_to_discover field, it captures the stdout of the command
and loads these name-value pairs (name_1 and value_1 name_2 and value_2, and so on) into the
disp_values and aix_values descriptors of the sm_cmd_opt (dialog command option) objects by
matching each name to a sm_cmd_opt.disc_field_name descriptor in each sm_cmd_opt object.

For a sm_cmd_opt (dialog command option) object that displays a value from a preceding selector, the
disc_field_name descriptor for the dialog command option object must be set to ″_rawname″ or
″_cookedname″ (or whatever alternate name was used to override the default name) to indicate which value
to use. In this case, the disc_field_name descriptor of the sm_cmd_opt (dialog command option) object
should normally be a no-entry field. If a particular value should always be passed to the command, the
required descriptor for the sm_cmd_opt (dialog command option) object must be set to y (yes), or one of
the other alternatives.

A special case of option ring field initialization permits the current value for a cmd_to_discover descriptor
(that is, any name-value pair from the current value set of a dialog) of a ring entry field to specify which
pre-defined ring value to use as the default or initial value for the corresponding entry field. At dialog
initialization time, when a dialog entry field matches a name in the current value set of the dialog (via
sm_cmd_opt.disc_field_name), a check is made to determine if it is an option ring field
(sm_cmd_opt.op_type = ″r″) and if it has predefined ring values (sm_cmd_opt.aix_values != ″″). If so,
this set of option ring values is compared with the current value for disc_field_name from the current
value set. If a match is found, the matched option ring value becomes the default ring value
(sm_cmd_opt.value_index is set to its index). The corresponding translated value
(sm_cmd_opt.disp_values), if available, is displayed. If no match is found, the error is reported and the
current value becomes the default and only value for the ring.

In many cases, discovery commands already exist. In the devices and storage areas, the general
paradigms of add, remove, change, and show exist. For example, to add (mk), a dialog is needed to solicit
characteristics. The dialog can have as its discovery command the show (ls) command with a parameter
that requests default values. SMIT uses the standard output of the show (ls) command to fill in the
suggested defaults. However, for objects with default values that are constants known at development time
(that is, that are not based on the current state of a given machine), the defaults can be initialized in the
dialog records themselves; in this case, no cmd_to_discover is needed. The dialog is then displayed.
When all fields are filled in and the dialog is committed, the add (mk) command is executed.

As another example, a change (ch) dialog can have as its discovery command a show (ls) command to
get current values for a given instance such as a particular device. SMIT uses the standard output of the
show (ls) command to fill in the values before displaying the dialog. The show (ls) command used for
discovery in this instance can be the same as the one used for discovery in the add (mk) example, except
with a slightly different set of options.

The cmd_to_*_postfix Descriptors

Associated with each occurrence of a cmd_to_discover, cmd_to_classify, or cmd_to_list descriptor is a
second descriptor that defines the postfix for the command string defined by the cmd_to_discover,
cmd_to_classify, or cmd_to_list descriptor. The postfix is a character string defining the flags and
parameters that are appended to the command before it is executed.

The descriptors that can be used to define a postfix to be appended to a command are:

v The cmd_to_discover_postfix descriptor that defines the postfix for the cmd_to_discover descriptor
in an sm_cmd_hdr object defining a dialog header.

v The cmd_to_classify_postfix descriptor that defines the postfix for the cmd_to_classify descriptor in
an sm_name_hdr object defining a selector header.

v The cmd_to_list_postfix descriptor that defines the postfix for the cmd_to_list descriptor in an
sm_cmd_opt object defining a selector entry field associated with a selector or a dialog entry field
associated with a dialog.

Chapter 25. System Management Interface Tool (SMIT) 667

The following is an example of how the postfix descriptors are used to specify parameter flags and values.
The * (asterisk) in the example can be list, classify, or discover.

Assume that cmd_to_* equals ″DEMO -a″, that cmd_to_*_postfix equals ″-l _rawname -n stuff -R
_cookedname″, and that the current value set is:
#name1:_rawname:_cookedname::stuff\n
value1:gigatronicundulator:parallel:xxx:47

Then the constructed command string would be:
DEMO -a -l 'gigatronicundulator' -n '47' -R 'parallel'

Surrounding ’’ (single-quotation marks) can be added around postfix descriptor values to permit handling
of parameter values with embedded spaces.

SMIT Command Generation and Execution

Each dialog in the System Management Interface Tool (SMIT) builds and executes a version of a standard
command. The command to be executed by the dialog is defined by the cmd_to_exec descriptor in the
sm_cmd_hdr object that defines the dialog header.

Generating Dialog Defined Tasks

In building the command defined in an sm_cmd_hdr.cmd_to_exec descriptor, SMIT uses a two-pass
scan over the dialog set of sm_cmd_opt objects to collect prefix and parameter values. The parameter
values collected include those that the user changed from their initially displayed values and those with the
sm_cmd_opt.required descriptor set to ″y″.

The first pass gathers all of the values of the sm_cmd_opt objects (in order) for which the prefix
descriptor is either an empty string (″″) or starts with a - (a minus sign). These parameters are not
position-sensitive and are added immediately following the command name, together with the contents of
the prefix descriptor for the parameter.

The second pass gathers all of the values of the remaining sm_cmd_opt objects (in order) for which the
prefix descriptor is — (two dashes). These parameters are position-sensitive and are added after the
flagged options collected in the first pass.

Note: SMIT executes the value of what you enter in the prefix field. If the value in the prefix field is a
reserved shell character, for example, the * (asterisk), you must follow the character with a —’ (dash
dash single quotation mark). Then, when the system evaluates the character, it does not mistake it
for a shell character.

Command parameter values in a dialog are filled in automatically when the disc_field_name descriptors
of its sm_cmd_opt objects match names of values generated by preceding selectors or a preceding
discovery command. These parameter values are effectively default values and are normally not added to
the command line. Initializing an sm_cmd_opt.required descriptor to ″y″ or ″+″ causes these values to be
added to the command line even when they are not changed in the dialog. If the sm_cmd_opt.required
descriptor value is ″?″, the corresponding values are used only if the associated entry field is non-empty.
These parameter values are built into the command line as part of the regular two-pass process.

Leading and trailing white spaces (spaces and tabs) are removed from parameter values except when the
sm_cmd_opt.entry_type descriptor is set to ″r″. If the resulting parameter value is an empty string, no
further action is taken unless the sm_cmd_opt.prefix descriptor starts with an option flag. Surrounding
single quotation marks are added to the parameter value if the prefix descriptor is not set to ″—″ (two

668 Writing and Debugging Programs

dashes). Each parameter is placed immediately after the associated prefix, if any, with no intervening
spaces. Also, if the multi_select descriptor is set to ″m″, tokens separated by white space in the entry field
are treated as separate parameters.

Executing Dialog Defined Tasks

SMIT runs the command string specified in a sm_cmd_hdr.cmd_to_exec descriptor by first creating a
child process. The standard error and standard output of the child process are handled as specified by the
contents of the sm_cmd_hdr.exec_mode descriptor. SMIT next runs a setenv(″ENV=″) subroutine in the
child process to prevent commands specified in the $HOME/.env file of the user from being run
automatically when a new shell is invoked. Finally, SMIT calls the execl subroutine to start a ksh shell,
using the command string as the ksh -c parameter value.

SMIT makes the path names of the log files and the settings of the command line verbose, trace, and
debug flags available in the shell environment of the commands it runs. These values are provided with
the following environment variables:

v _SMIT_LOG_FILE

v _SMIT_SCRIPT_FILE

v _SMIT_VERBOSE_FLAG

v _SMIT_TRACE_FLAG

v _SMIT_DEBUG_FLAG

The presence or absence of the corresponding flag is indicated by a value of 0 or 1, respectively.

Additionally, the SMIT environment variable provides information about which SMIT environment is active.
The SMIT environment variable can have the following vaues:

Value SMIT Environment
a SMIT in an ASCII interface
d SMIT in the Distributed SMIT (DSMIT) interface
m SMIT in a windows (also called Motif) interface

An easy way to view the current settings is to invoke the shell function after starting SMIT and then run
the command string env | grep SMIT.

You can disable the function key F9=Shell by setting the environment variable SMIT_SHELL=n.

All writes to the log files should be done as appends and should immediately be followed by flushes where
this does not occur automatically.

You can override SMIT default output redirection of the (child) task process by setting the
sm_cmd_hdr.exec_mode field to ″i″. This setting gives output management control to the task, since the task
process simply inherits the standard error and standard output file descriptors.

You can cause SMIT to shutdown and replace itself with the target task by setting the
sm_cmd_hdr.exec_mode field to ″e″.

Adding Tasks to the SMIT Database

When developing new objects for the System Management Interface Tool (SMIT) database, it is
recommended that you set up a separate test database for development.

Chapter 25. System Management Interface Tool (SMIT) 669

../../cmds/aixcmds3/ksh.htm#HDRA265912F6

Procedure
To create a test database, do the following:

1. Create a directory for testing use. For example, the following command creates a /home/smit/test
directory:
mkdir /home/smit /home/smit/test

2. Make the test directory the current directory:
cd /home/smit/test

3. Define the test directory as the default object repository by setting the ODMDIR environment variable
to . (the current directory):
export ODMDIR=

4. Create a new SMIT database in the test directory:
cp /etc/objrepos/sm_* $ODMDIR

To add tasks to the SMIT database:

1. Design the dialog for the command you want SMIT to build. See “Dialog Screens” on page 661 for
more information.

2. Design the hierarchy of menus and, optionally, of selectors needed to get a SMIT user to the dialog,
and determine where and how this hierarchy should be linked into the existing SMIT database. See
“Menu Screens” on page 659 and “Selector Screens” on page 660 for more information. The following
strategy may save you time if you are developing SMIT database extensions for the first time:

a. Start SMIT (run the smit command), look for existing menu, selector, and dialog screens that
perform tasks similar to the one you want to add, and find the menu screen(s) to which you will
add the new task.

b. Exit from SMIT, then remove the existing SMIT log file. Instead of removing the log file, you can
use the -l flag of the smit command to specify a different log file when starting SMIT in the
following step. This enables you to isolate the trace output of your next SMIT session.

c. Start SMIT again with the -t command flags and again look at the screen to which you will add the
new task. This logs the object IDs accessed for each screen for the next step.

d. Look at the SMIT log file to determine the ID for each object class used as part of the menu(s).

e. Use the object class IDs with the odmget command to retrieve the stanzas for these objects. The
stanzas can be used as rough examples to guide your implementation and to learn from the
experience of others.

f. Look in the SMIT log file for the command strings used when running through the screens to see if
special tools are being utilized (such as sed or awk scripts, ksh shell functions, environment
variable assignment, and so on). When entering command strings, keep in mind that they are
processed twice: the first time by the odmadd command and the second time by the ksh shell. Be
careful when using special escape meta-characters such as \ or quotation characters (’ and ″).
Note also that the output of the odmget command does not always match the input to the odmadd
command, especially when these characters or multiline string values are used.

3. Code the dialog, menu, and selector objects by defining them in the ASCII object stanza file format
required by the odmadd command. For examples of stanzas used to code SMIT objects, see “SMIT
Screen Types” on page 659.

4. Add the dialog, menu, and selector objects to the SMIT test database with the odmadd command,
using the name of your ASCII object stanza file in place of test_stanzas:
odmadd test_stanzas

5. Test and debug your additions by running SMIT using the local test database:
smit -o

“Debugging SMIT Database Extensions” on page 671 discusses how to test and debug additions to
SMIT.

670 Writing and Debugging Programs

../../cmds/aixcmds5/smit.htm#HDRA1879A27
../../cmds/aixcmds4/odmget.htm#HDRA2659120D
../../cmds/aixcmds4/odmadd.htm#HDRA26491517
../../cmds/aixcmds4/odmadd.htm#HDRA26491517

When you are finished testing, restore the /usr/lib/objrepos directory as the default object repository by
setting the ODMDIR environment variable to /usr/lib/objrepos:
export ODMDIR=/usr/lib/objrepos

Debugging SMIT Database Extensions

Prerequisite Tasks or Conditions
1. Add a task to the SMIT Database.

2. Test the task.

Procedure
1. Identify the problem using one of the following flags:

v Run the smit -v command if the problem applies to the following SMIT descriptors:

– cmd_to_list

– cmd_to_classify

– cmd_to_discover

v Run the smit -t command if the problems applies to individual SMIT database records.

v Run the smit -l command to generate an alternate log file. Use the alternate log file to isolate
current session information.

2. Modify the SMIT database where the incorrect information resides.

3. Retest SMIT task.

Creating SMIT Help Information for a New Task

System Management Interface Tool (SMIT) helps are an extension of the SMIT program. They are a series
of helps designed to give you online information about the components of SMIT used to construct dialogs
and menus. SMIT helps reside in a database, just as the SMIT executable code resides in a database.
SMIT has three ways to retrieve SMIT help information:

v “Man Pages Method”

v “Message Catalog Method” on page 672

v “Softcopy Libraries Method” on page 672.

Each of these methods provides a different way to retrieve SMIT helps from the SMIT help database.

Man Pages Method

Prerequisite Tasks or Conditions
Create a new SMIT task that requires help information.

Procedure
1. Using any editor, create a file and enter help text inside the file. The file must adhere to the format

specified by the man command. Put only one set of help information in a file.

2. Give the help text file a title as specified by the man command.

3. Place the help text file in the correct place in the manual subdirectory.

4. Test the newly created file to ensure it works using the man command.

5. Locate the file that contains the ASCII object stanza file format for the new SMIT task.

6. Locate the help descriptor fields in the object stanzas of the file.

7. Set the help_msg_loc help descriptor field equal to the title of the help text file. The title for the text file
is also the parameter to pass to the man command. For example:

Chapter 25. System Management Interface Tool (SMIT) 671

../../cmds/aixcmds3/man.htm
../../cmds/aixcmds3/man.htm
../../cmds/aixcmds3/man.htm

help_msg_loc = "xx", where "xx" = title string name

This example executes the man command with the xx title string name.

8. Leave the rest of the help descriptor fields empty.

Message Catalog Method

Prerequisite Tasks or Conditions
Create a new SMIT task that requires help information.

Procedure
1. Use any editor to create a file and enter help messages inside the file. The .msg file must adhere to

the format specified by the “Message Facility Overview for Programming” on page 480.

Note: An existing .msg file may also be used.

2. Give each help message a set number (Set #) and a message number (MSG#). This allows the
system to retrieve the proper help text.

3. Use the gencat command to convert the .msg file into a .cat file. Place the .cat file in the correct
directory according to the NLSPATH environment variable.

4. Test the help messages using the dspmsg command.

5. Locate the file that contains the ASCII object stanza file format for the new SMIT task.

6. Locate the help descriptor fields in the object stanzas of the file.

7. For each object stanza, locate the help_msg_id help descriptor field. Enter the Set# and Msg# values
for the message in the .msg file. These values must adhere to the Messages Facility format. For
example, to retrieve message #14 for set #2, set:
help_msg_id - "2,14"

8. Set the help_msg_loc help descriptor field to the filename of the file containing the help text.

9. Leave the other help descriptor fields empty.

Softcopy Libraries Method

Prerequisite Tasks or Conditions
Create a new SMIT task that requires help information.

InfoCrafter must be installed on your system in order to create softcopy files.

Procedure
1. Create a softcopy database file that tags the SMIT help information with the proper SMiT ID. SMiT IDs

are hidden search strings that are given to text in a softcopy database. SMiT tags take the format of
SMiTtopic#tag#, where topic#tag# is a numeric string of at least 4 digits and up to 8 digits. For
example:
SMiT0822369 is a SMiT ID tag for TCP/IP

2. Create a softcopy library file to create a pointer to the softcopy database file. For details on the format
of the library file, refer to the ispaths file.

3. Set the help_msg_id help descriptor field to equal the numeric string of the SMiT ID tag. For example,
if the SMiT identifier tag is SMiT0822369, then set:
help_msg_id = "0822369"

4. Set the help_msg_base help descriptor field to equal the full path name of the ispaths file created in
step 2. SMIT reads the file for the softcopy database associated with the correct book.

5. Set the help_msg_book help descriptor field to equal the value of the name field contained in the file
indicated by the help_msg_base help descriptor field.

672 Writing and Debugging Programs

../../cmds/aixcmds2/gencat.htm#HDRA117965A
../../files/aixfiles/environment.htm#SPTA243Y98FC7
../../cmds/aixcmds2/dspmsg.htm#HDRA2789DC5
../../files/aixfiles/ispaths.htm#HDRA135A1990D

sm_menu_opt (SMIT Menu) Object Class

Each item on a menu is specified by an sm_menu_opt object. The displayed menu represents the set of
objects that have the same value for id plus the sm_menu_opt object used for the title, which has a
next_id value equal to the id value of the other objects.

Note: When coding an object in this object class, set unused empty strings to ″″ (double-quotation
marks) and unused integer fields to 0.

The descriptors for sm_menu_opt objects are:

id The ID or name of the object. The value of id is a string with a maximum length of 64
characters. IDs should be unique both to your application and unique within the particular
SMIT database used. See the next_id and alias definitions for this object for related
information.

id_seq_num The position of this item in relation to other items on the menu. Non-title sm_menu_opt
objects are sorted on this string field. The value of id_seq_num is a string with a maximum
length of 16 characters.

next_id The fast path name of the next menu, if the value for the next_type descriptor of this
object is ″m″ (menu). The next_id of a menu should be unique both to your application and
within the particular SMIT database used. All non-alias sm_menu_opt objects with id
values matching the value of next_id form the set of selections for that menu. The value of
next_id is a string with a maximum length of 64 characters.

text The description of the task that is displayed as the menu item. The value of text is a string
with a maximum length of 1024 characters. This string can be formatted with embedded \n
(newline) characters.

text_msg_file The file name (not the full path name) that is the Message Facility catalog for the string,
text. The value of text_msg_file is a string with a maximum length of 1024 characters.
Message catalogs required by an application program can be developed with the Message
Facility. Set to ″″ if you are not using the Message Facility.

text_msg_set The Message Facility set ID for the string, text. Set IDs can be used to indicate subsets of
a single catalog. The value of text_msg_set is an integer. Set to 0 if you are not using the
Message Facility.

text_msg_id The Message Facility ID for the string, text. The value of text_msg_id is an integer. Set to
0 if you are not using the Message Facility.

next_type The type of the next object if this item is selected. Valid values are:

″m″ Menu; the next object is a menu (sm_menu_opt).

″d″ Dialog; the next object is a dialog (sm_cmd_hdr).

″n″ Name; the next object is a selector (sm_name_hdr).

″i″ Info; this object is used to put blank or other separator lines in a menu, or to
present a topic that does not lead to an executable task but about which help is
provided via the help_msg_loc descriptor of this object.

alias Defines whether or not the value of the id descriptor for this menu object is an alias for
another existing fast path specified in the next_id field of this object. The value of the alias
descriptor must be ″n″ for a menu object.

help_msg_id Specifies a Message Facility message set number and message ID number with a comma
as the separator or a numeric string equal to a SMIT identifier tag.

help_msg_loc The file name sent as a parameter to the man command for retrieval of help text, or the file
name of a file containing help text. The value of help_msg_loc is a string with a maximum
length of 1024 characters.

help_msg_base The fully qualified path name of a library that SMIT reads for the file names associated with
the correct book.

help_msg_book Contains the string with the value of the name file contained in the file library indicated by
help_msg_base.

Chapter 25. System Management Interface Tool (SMIT) 673

The sm_menu_opt Object Class Used for Aliases

A SMIT alias is specified by an sm_menu_opt object.

The descriptors for the sm_menu_opt object class and their settings to specify an alias are:

id The ID or name of the new or alias fast path. The value of id is a string with a maximum
length of 64 characters. IDs should be unique to your application and unique within the
SMIT database in which they are used.

id_seq_num Set to ″″ (empty string).
next_id Specifies the id_seq_num of the menu object pointed to by the alias. The value of next_id

is a string with a maximum length of 64 characters.
text Set to ″″ (empty string).
text_msg_file Set to ″″ (empty string).
text_msg_set Set to 0.
text_msg_id Set to 0.
next_type The fast path screen type. The value of next_type is a string. Valid values are:

″m″ Menu; the next_id field specifies a menu screen fast path.

″d″ Dialog; the next_id field specifies a dialog screen fast path.

″n″ Name; the next_id field specifies a selector screen fast path.

alias Defines this object as an alias fast path. The alias descriptor for an alias must be set to ″y″
(yes).

help_msg_id Set to ″″ (empty string).
help_msg_loc Set to ″″ (empty string).
help_msg_base Set to ″″ (empty string).
help_msg_book Set to ″″ (empty string).

For information on retrieving SMIT help using the help_msg_id, help_msg_loc, help_msg_base, and
help_msg_book fields, see the “Man Pages Method” on page 671, “Softcopy Libraries Method” on page 672,
and “Message Catalog Method” on page 672 methods located in ″Creating SMIT Help Information for a
New Task .

sm_name_hdr (SMIT Selector Header) Object Class

A selector screen is specified by two objects: an sm_name_hdr object that specifies the screen title and
other information, and an sm_cmd_opt object that specifies what type of data item is to be obtained.

Note: When coding an object in this object class, set unused empty strings to ″″ (double-quotation
marks) and unused integer fields to 0.

In a SMIT Selector Header screen (sm_name_hdr) with type = ″c″, if you specify a value using a :
(colon), (for example, tty:0), SMIT inserts a #! (pound sign, exclamation point) in front of the : to signify
that the : is not a field separator. SMIT removes the #! after parsing the rest of the value, before passing it
to the cmd_to_classify descriptor. To make any further additions to the cmd_to_classify descriptor,
reinsert the #! in front of the :

The descriptors for the sm_name_hdr object class are:

id The ID or name of the object. The id field can be externalized as a fast
path ID unless has_name_select is set to ″y″ (yes). The value of id is
a string with a maximum length of 64 characters. IDs should be unique
to your application and unique within your system.

674 Writing and Debugging Programs

next_id Specifies the header object for the subsequent screen; set to the value
of the id field of the sm_cmd_hdr object or the sm_name_hdr object
that follows this selector. The next_type field described below specifies
which object class is indicated. The value of next_id is a string with a
maximum length of 64 characters.

option_id Specifies the body of this selector; set to the id field of the
sm_cmd_opt object. The value of option_id is a string with a
maximum length of 64 characters.

has_name_select Specifies whether this screen must be preceded by a selector screen.
Valid values are:

″″ or ″n″
No; this is the default case. The id of this object can be used
as a fast path, even if preceded by a selector screen.

″y″ Yes; a selector must precede this object. This setting prevents
the id of this object from being used as a fast path to the
corresponding dialog screen.

name The text displayed as the title of the selector screen. The value of name
is a string with a maximum length of 1024 characters. The string can be
formatted with embedded \n (newline) characters.

name_msg_file The file name (not the full path name) that is the Message Facility
catalog for the string, name. The value of name_msg_file is a string
with a maximum length of 1024 characters. Message catalogs required
by an application program can be developed with the Message Facility.

name_msg_set The Message Facility set ID for the string, name. Set IDs can be used
to indicate subsets of a single catalog. The value of name_msg_set is
an integer.

name_msg_id The Message Facility ID for the string, name. The value of
name_msg_id is an integer.

type The method to be used to process the selector. The value of type is a
string with a maximum length of 1 character. Valid values are:

″″ or ″j″
Just next ID; the object following this object is always the
object specified by the value of the next_id descriptor. The
next_id descriptor is a fully-defined string initialized at
development time.

″r″ Cat raw name; in this case, the next_id descriptor is defined
partially at development time and partially at runtime by user
input. The value of the next_id descriptor defined at
development time is concatenated with the value selected by
the user to create the id value to search for next (that of the
dialog or selector to display).

″c″ Cat cooked name; the value selected by the user requires
processing for more information. This value is passed to the
command named in the cmd_to_classify descriptor, and then
output from the command is concatenated with the value of the
next_id descriptor to create the id descriptor to search for next
(that of the dialog or selector to display).

Chapter 25. System Management Interface Tool (SMIT) 675

ghost Specifies whether to display this selector screen or only the list pop-up
panel produced by the command in the cmd_to_list field. The value of
ghost is a string. Valid values are:

″″ or ″n″
No; display this selector screen.

″y″ Yes; display only the pop-up panel produced by the command
string constructed using the cmd_to_list and
cmd_to_list_postfix fields in the associated sm_cmd_opt
object. If there is no cmd_to_list value, SMIT assumes this
object is a super-ghost (nothing is displayed), runs the
cmd_to_classify command, and proceeds.

cmd_to_classify The command string to be used, if needed, to classify the value of the
name field of the sm_cmd_opt object associated with this selector. The
value of cmd_to_classify is a string with a maximum length of 1024
characters. The input to the cmd_to_classify taken from the entry field
is called the ″raw name″ and the output of the cmd_to_classify is
called the ″cooked name″. Previous to AIX Version 4.2.1, you could
create only one value with cmd_to_classify. If that value included a
colon, it was escaped automatically. In AIX 4.2.1 and later, you can
create multiple values with cmd_to_classify, but the colons are no
longer escaped. The colon is now being used as a delimiter by this
command. If you use colons in your values, you must preserve them
manually.

cmd_to_classify_postfix The postfix to interpret and add to the command string in the
cmd_to_classify field. The value of cmd_to_classify_postfix is a
string with a maximum length of 1024 characters.

raw_field_name The alternate name for the raw value. The value of raw_field_name is
a string with a maximum length of 1024 characters. The default value is
″_rawname″.

cooked_field_name The alternate name for the cooked value. The value of
cooked_field_name is a string with a maximum length of 1024
characters. The default value is ″cookedname″.

next_type The type of screen that follows this selector. Valid values are:

″n″ Name; a selector screen follows. See the description of
next_id above for related information.

″d″ Dialog; a dialog screen follows. See the description of next_id
above for related information.

help_msg_id Specifies a Message Facility message set number and message ID
number with a comma as the separator or a numeric string equal to a
SMIT identifier tag.

help_msg_loc The file name sent as a parameter to the man command for retrieval of
help text, or the file name of a file containing help text. The value of
help_msg_loc is a string with a maximum length of 1024 characters.

help_msg_base The fully qualified path name of a library that SMIT reads for the file
names associated with the correct book.

help_msg_book Contains the string with the value of the name file contained in the file
library indicated by help_msg_base.

See the “Man Pages Method” on page 671, “Softcopy Libraries Method” on page 672, and “Message
Catalog Method” on page 672 located in ″Creating SMIT Help Information for a New Task″ for information
on retrieving SMIT help using the help_msg_id, help_msg_loc, help_msg_base, and help_msg_book fields.

676 Writing and Debugging Programs

sm_cmd_opt (SMIT Dialog/Selector Command Option) Object Class

Each object in a dialog, except the dialog header object, normally corresponds to a flag, option, or attribute
of the command that the dialog performs. One or more of these objects is created for each SMIT dialog; a
ghost dialog can have no associated dialog command option objects. Each selector screen is composed of
one selector header object and one selector command option object.

Note: When coding an object in this object class, set unused empty strings to ″″ (double-quotation
marks) and unused integer fields to 0.

The dialog command option object and the selector command option object are both sm_cmd_opt
objects. The descriptors for the sm_cmd_opt object class and their functions are:

id The ID or name of the object. The id of the associated dialog or selector
header object can be used as a fast path to this and other dialog objects in the
dialog. The value of id is a string with a maximum length of 64 characters. All
dialog objects that appear in one dialog must have the same ID. Also, IDs
should be unique to your application and unique within the particular SMIT
database used.

id_seq_num The position of this item in relation to other items on the dialog; sm_cmd_opt
objects in a dialog are sorted on this string field. The value of id_seq_num is a
string with a maximum length of 16 characters. When this object is part of a
dialog screen, the string ″0″ is not a valid value for this field. When this object is
part of a selector screen, the id_seq_num descriptor must be set to 0.

disc_field_name A string that should match one of the name fields in the output of the
cmd_to_discover command in the associated dialog header. The value of
disc_field_name is a string with a maximum length of 64 characters.

The value of the disc_field_name descriptor can be defined using the raw or
cooked name from a preceding selector instead of the cmd_to_discover
command in the associated header object. If the descriptor is defined with input
from a preceding selector, it must be set to either ″_rawname″ or ″_cookedname″,
or to the corresponding sm_name_hdr.cooked_field_name value or
sm_name_hdr.raw_field_name value if this was used to redefine the default
name.

name The string that appears on the dialog or selector screen as the field name. It is
the visual questioning or prompting part of the object, a natural language
description of a flag, option or parameter of the command specified in the
cmd_to_exec field of the associated dialog header object. The value of name is
a string with a maximum length of 1024 characters.

name_msg_file The file name (not the full path name) that is the Message Facility catalog for
the string, name. The value of name_msg_file is a string with a maximum
length of 1024 characters. Message catalogs required by an application
program can be developed with the Message Facility. Set to ″″ (empty string) if
not used.

name_msg_set The Message Facility set ID for the string, name. The value of name_msg_set
is an integer. Set to 0 if not used.

name_msg_id The Message Facility message ID for the string, name. The value of
name_msg_id is an integer. Set to 0 if not used.

Chapter 25. System Management Interface Tool (SMIT) 677

op_type The type of auxiliary operation supported for this field. The value of op_type is
a string. Valid values are:

″″ or ″n″ - This is the default case. No auxiliary operations (list or ring selection)
are supported for this field.

″l″ - List selection operation provided. A pop-up window displays a list of items
produced by running the command in the cmd_to_list field of this object when
the user selects the F4=List function of the SMIT interface.

″r″ - Ring selection operation provided. The string in the disp_values or
aix_values field is interpreted as a comma-delimited set of valid entries. The
user can tab or backtab through these values to make a selection. Also, the
F4=List interface function can be used in this case, since SMIT will transform
the ring into a list as needed.

The values ″N″, ″L″, and ″R″ can be used as op_type values just as the
lowercase values ″n″, ″l″, and ″r″. However, with the uppercase values, if the
cmd_to_exec command is run and returns with an exit value of 0, then the
corresponding entry field will be cleared to an empty string.

entry_type The type of value required by the entry field. The value of entry_type is a
string. Valid values are:

″″ or ″n″ - No entry; the current value cannot be modified via direct type-in. The
field is informational only.

″t″ - Text entry; alphanumeric input can be entered.

″#″ - Numeric entry; only the numeric characters 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 can
be entered. A - (minus sign) or + (plus sign) can be entered as the first
character.

″x″ - Hex entry; hexadecimal input only can be entered.

″f″ - File entry; a file name should be entered.

″r″ - Raw text entry; alphanumeric input can be entered. Leading and trailing
spaces are considered significant and are not stripped off the field.

entry_size Limits the number of characters the user can type in the entry field. The value
of entry_size is an integer. A value of 0 defaults to the maximum allowed value
size.

required Defines if a command field must be sent to the cmd_to_exec command
defined in the associated dialog header object. The value of required is a
string. If the object is part of a selector screen, the required field should
normally be set to ″″ (empty string). If the object is part of a dialog screen, valid
values are:

″″ or ″n″ - No; the option is added to the command string in the cmd_to_exec
command only if the user changes the initially-displayed value. This is the
default case.

″y″ - Yes; the value of the prefix field and the value of the entry field are
always sent to the cmd_to_exec command.

″+″ - The value of the prefix field and the value of the entry field are always
sent to the cmd_to_exec command. The entry field must contain at least one
non-blank character. SMIT will not allow the user to run the task until this
condition is satisfied.

″?″ - Except when empty; the value of the prefix field and the value of the
entry field are sent to the cmd_to_exec field unless the entry field is empty.

678 Writing and Debugging Programs

prefix In the simplest case, defines the flag to send with the entry field value to the
cmd_to_exec command defined in the associated dialog header object. The
value of prefix is a string with a maximum length of 1024 characters.

The use of this field depends on the setting of the required field, the contents
of the prefix field, and the contents of the associated entry field.

Note: If the prefix field is set to — (dash dash), the content of the
associated entry field is appended to the end of the cmd_to_exec
command. If the prefix field is set to —’ (dash dash single quotation
mark), the contents of the associated entry field is appended to the end of
the cmd_to_exec command in single quotes.

cmd_to_list_mode Defines how much of an item from a list should be used. The list is produced by
the command specified in this object’s cmd_to_list field. The value of
cmd_to_list_mode is a string with a maximum length of 1 character. Valid
values are:

″″ or ″a″ - Get all fields. This is the default case.

″1″ - Get the first field.

″2″ - Get the second field.

″r″ - Range; running the command string in the cmd_to_list field returns a
range (such as 1..99) instead of a list. Ranges are for information only; they are
displayed in a list pop-up, but do not change the associated entry field.

cmd_to_list The command string used to get a list of valid values for the value field. The
value of cmd_to_list is a string with a maximum length of 1024 characters.
This command should output values that are separated by \n (new line)
characters.

cmd_to_list_postfix The postfix to interpret and add to the command string specified in the
cmd_to_list field of the dialog object. The value of cmd_to_list_postfix is a
string with a maximum length of 1024 characters. If the first line starts with #
(pound sign) following a space, that entry will be made non-selectable. This is
useful for column headings. Subsequent lines that start with a #, optionally
preceded by spaces, are treated as a comment and as a continuation of the
preceding entry.

multi_select Defines if the user can make multiple selections from a list of valid values
produced by the command in the cmd_to_list field of the dialog object. The
value of multi_select is a string. Valid values are:

″″ - No; a user can select only one value from a list. This is the default case.

″,″ - Yes; a user can select multiple items from the list. When the command is
built, a comma is inserted between each item.

″y″ - Yes; a user can select multiple values from the list. When the command is
built, the option prefix is inserted once before the string of selected items.

″m″ - Yes; a user can select multiple items from the list. When the command is
built, the option prefix is inserted before each selected item.

value_index For an option ring, the zero-origin index to the array of disp_value fields. The
value_index number indicates the value that is displayed as the default in the
entry field to the user. The value of entry_size is an integer.

disp_values The array of valid values in an option ring to be presented to the user. The
value of the disp_values fields is a string with a maximum length of 1024
characters. The field values are separated by , (commas) with no spaces
preceding or following the commas.

Chapter 25. System Management Interface Tool (SMIT) 679

values_msg_file The file name (not the full path name) that is the Message Facility catalog for
the values in the disp_values fields, if the values are initialized at development
time. The value of the values_msg_file field is a string with a maximum length
of 1024 characters. Message catalogs required by an application program can
be developed with the Message Facility.

values_msg_set The Message Facility set ID for the values in the disp_values fields. Set to 0 if
not used.

values_msg_id The Message Facility message ID for the values in the disp_values fields. Set
to 0 if not used.

aix_values If for an option ring, an array of values specified so that each element
corresponds to the element in the disp_values array in the same position; use
if the natural language values in disp_values are not the actual options to be
used for the command. The value of the aix_values field is a string with a
maximum length of 1024 characters.

help_msg_id Specifies a Message Facility message set number and message ID number
with a comma as the separator or a numeric string equal to a SMIT identifier
tag.

help_msg_loc The file name sent as a parameter to the man command for retrieval of help
text, or the file name of a file containing help text. The value of help_msg_loc
is a string with a maximum length of 1024 characters.

help_msg_base The fully qualified path name of a library that SMIT reads for the file names
associated with the correct book.

help_msg_book Contains the string with the value of the name file contained in the file library
indicated by help_msg_base.

For information on retrieving SMIT help using the help_msg_id, help_msg_loc, help_msg_base, and
help_msg_book fields, see “Man Pages Method” on page 671, “Softcopy Libraries Method” on page 672,
and “Message Catalog Method” on page 672 located in ″“Creating SMIT Help Information for a New Task”
on page 671″ .

sm_cmd_hdr (SMIT Dialog Header) Object Class

A dialog header object is an sm_cmd_hdr object. A dialog header object is required for each dialog, and
points to the dialog command option objects associated with the dialog.

Note: When coding an object in this object class, set unused empty strings to ″″ (double-quotation
marks) and unused integer fields to 0.

The descriptors for the sm_cmd_hdr object class are:

id The ID or name of the object. The value of id is a string with a
maximum length of 64 characters. The id field can be used as a fast
path ID unless there is a selector associated with the dialog. IDs should
be unique to your application and unique within your system.

option_id The id of the sm_cmd_opt objects (the dialog fields) to which this
header refers. The value of option_id is a string with a maximum
length of 64 characters.

has_name_select Specifies whether this screen must be preceded by a selector screen or
a menu screen. Valid values are:

″″ or ″n″
No; this is the default case.

″y″ Yes; a selector precedes this object. This setting prevents the
id of this object from being used as a fast path to the
corresponding dialog screen.

680 Writing and Debugging Programs

name The text displayed as the title of the dialog screen. The value of name
is a string with a maximum length of 1024 characters. The text
describes the task performed by the dialog. The string can be formatted
with embedded \n (newline) characters.

name_msg_file The file name (not the full path name) that is the Message Facility
catalog for the string, name. The value of name_msg_file is a string
with a maximum length of 1024 characters. Message catalogs required
by an application program can be developed with the Message Facility.

name_msg_set The Message Facility set ID for the string, name. Set IDs can be used
to indicate subsets of a single catalog. The value of name_msg_set is
an integer.

name_msg_id The Message Facility ID for the string, name. Message IDs can be
created by the message extractor tools owned by the Message Facility.
The value of name_msg_id is an integer.

cmd_to_exec The initial part of the command string, which can be the command or
the command and any fixed options that execute the task of the dialog.
Other options are automatically appended through user interaction with
the command option objects (sm_cmd_opt) associated with the dialog
screen. The value of cmd_to_exec is a string with a maximum length
of 1024 characters.

ask Defines whether or not the user is prompted to reconsider the choice to
execute the task. Valid values are:

″″ or ″n″
No; the user is not prompted for confirmation; the task is
performed when the dialog is committed. This is the default
setting for the ask descriptor.

″y″ Yes; the user is prompted to confirm that the task be
performed; the task is performed only after user confirmation.

Prompting the user for execution confirmation is especially
useful prior to performance of deletion tasks, where the deleted
resource is either difficult or impossible to recover, or when
there is no displayable dialog associated with the task (when
the ghost field is set to ″y″).

Chapter 25. System Management Interface Tool (SMIT) 681

exec_mode Defines the handling of standard input, standard output, and the stderr
file during task execution. The value of exec_mode is a string. Valid
values are:

″″ or ″p″
Pipe mode; the default setting for the exec_mode descriptor.
The command executes with standard output and the stderr
file redirected through pipes to SMIT. SMIT manages output
from the command. The output is saved and is scrollable by
the user after the task finishes running. While the task runs,
output is scrolled as needed.

″n″ No scroll pipe mode; works like the ″p″ mode, except that the
output is not scrolled while the task runs. The first screen of
output will be shown as it is generated and then remains there
while the task runs. The output is saved and is scrollable by
the user after the task finishes running.

″i″ Inherit mode; the command executes with standard input,
standard output, and the stderr file inherited by the child
process in which the task runs. This mode gives input and
output control to the executed command. This value is
intended for commands that need to write to the /dev/tty file,
perform cursor addressing, or use libcur or libcurses library
operations.

″e″ Exit/exec mode; causes SMIT to run (do an execl subroutine
call on) the specified command string in the current process,
which effectively terminates SMIT. This is intended for running
commands that are incompatible with SMIT (which change
display modes or font sizes, for instance). A warning is given
that SMIT will exit before running the command.

″E″ Same as ″e″, but no warning is given before exiting SMIT.

″P″ , ″N″ or ″I″
Backup modes; work like the corresponding ″p″, ″n″, and ″i″
modes, except that if the cmd_to_exec command is run and
returns with an exit value of 0, SMIT backs up to the nearest
preceding menu (if any), or to the nearest preceding selector (if
any), or to the command line.

ghost Indicates if the normally displayed dialog should not be shown. The
value of ghost is a string. Valid values are:

″″ or ″n″
No; the dialog associated with the task is displayed. This is the
default setting.

″y″ Yes; the dialog associated with the task is not displayed
because no further information is required from the user. The
command specified in the cmd_to_exec descriptor is executed
as soon as the user selects the task.

cmd_to_discover The command string used to discover the default or current values of
the object being manipulated. The value of cmd_to_discover is a string
with a maximum length of 1024 characters. The command is executed
before the dialog is displayed, and its output is retrieved. Output of the
command must be in colon format.

cmd_to_discover_postfix The postfix to interpret and add to the command string in the
cmd_to_discover field. The value of cmd_to_discover_postfix is a
string with a maximum length of 1024 characters.

682 Writing and Debugging Programs

help_msg_id Specifies a Message Facility message set number and message ID
number with a comma as the separator or a numeric string equal to a
SMIT identifier tag.

help_msg_loc The file name sent as a parameter to the man command for retrieval of
help text, or the file name of a file containing help text. The value of
help_msg_loc is a string with a maximum length of 1024 characters.

help_msg_base The fully qualified path name of a library that SMIT reads for the file
names associated with the correct book.

help_msg_book Contains the string with the value of the name file contained in the file
library indicated by help_msg_base.

For information on retrieving SMIT help using the help_msg_id, help_msg_loc, help_msg_base, and
help_msg_book fields, see “Man Pages Method” on page 671, “Softcopy Libraries Method” on page 672,
and “Message Catalog Method” on page 672 located in “Creating SMIT Help Information for a New Task”
on page 671.

Related Information
For information about managing SMIT, see System Management Interface Tool (SMIT): Overview in AIX
5L Version 5.1 System Management Guide: Operating System and Devices.

The dspmsg command, gencat command, ksh command, man command, odmadd command,
odmcreate command, odmget command, smit command in AIX 5L Version 5.1 Commands Reference.

The ispaths file in AIX 5L Version 5.1 Files Reference.

SMIT Example Program

The following example program is designed to help you write your own stanzas. If you add these stanzas
to the SMIT directory that comes with the operating system, they will be accessible through SMIT by
selecting the Applications item in the SMIT main menu. All of the demos are functional except for Demo
3, which does not install any languages.
#--
Intro:
Unless you are creating a new SMIT database, first you need
to decide where to insert the menu for your application.
Your new menu will point to other menus, name headers, and
dialogs. For this example, we are inserting a pointer to the
demo menu under the "Applications" menu option. The next_id for
the Applications menu item is "apps", so we begin by creating a
menu_opt with "apps" as its id.
#--
sm_menu_opt:

id = "apps"
id_seq_num = "010"
next_id = "demo"
text = "SMIT Demos"
next_type = "m"

sm_menu_opt:
id = "demo"
id_seq_num = "010"
next_id = "demo_queue"
text = "Demo 1: Add a Print Queue"
next_type = "n"

sm_menu_opt:
id = "demo"
id_seq_num = "020"
next_id = "demo_mle_inst_lang_hdr"

Chapter 25. System Management Interface Tool (SMIT) 683

../../aixbman/baseadmn/smit_overview.htm#HDRA28294F9
../../cmds/aixcmds2/dspmsg.htm#HDRA2789DC5
../../cmds/aixcmds2/gencat.htm#HDRA117965A
../../cmds/aixcmds3/ksh.htm#HDRA265912F6
../../cmds/aixcmds3/man.htm#HDRBRI1350CRAW
../../cmds/aixcmds4/odmadd.htm#HDRA26491517
../../cmds/aixcmds4/odmcreate.htm#HDRA265911DB
../../cmds/aixcmds4/odmget.htm#HDRA2659120D
../../cmds/aixcmds5/smit.htm#HDRA1879A27
../../files/aixfiles/ispaths.htm#HDRA135A1990D

text = "Demo 2: Add Language for Application Already Installed"
next_type = "n"

#----
Since demo_mle_inst_lang_hdr is a descriptive, but not very
memorable name, an alias with a simpler name can be made to
point to the same place.
#----
sm_menu_opt:

id = "demo_lang"
next_id = "demo_mle_inst_lang_hdr"
next_type = "n"
alias = "y"

sm_menu_opt:
id_seq_num = "030"
id = "demo"
next_id = "demo_lspv"
text = "Demo 3: List Contents of a Physical Volume"
text_msg_file = "smit.cat"
next_type = "n"

sm_menu_opt:
id_seq_num = "040"
id = "demo"
next_id = "demo_date"
text = "Demo 4: Change / Show Date, Time"
text_msg_file = "smit.cat"
next_type = "n"

#--
Demo 1

Goal: Add a Print Queue. If the printers.rte package is not
installed, install it automatically. If the user is
running MSMIT (SMIT in a windows interface), launch a
graphical program for this task. Otherwise, branch to
the SMIT print queue task.
#
Topics: 1. cooked output & cmd_to_classify
2. SMIT environment variable (msmit vs. ascii)
3. ghost name_hdr
4. super-ghost name_hdr
5. creating an "OK / cancel" option
6. dspmsg for translations
7. exit/exec mode
8. id_seq_num for a name_hdr option
#--
#----
Topics: 1,4
Note that the next_id is the same as the id. Remember that the
output of the cmd_to_classify is appended to the next_id,
since the type is "c", for cooked. So, the next_id will be
either demo_queue1 or demo_queue2. None of the output of the
name_hdr is displayed, and there is no cmd_to_list in the
demo_queue_dummy_opt, making this name_hdr a super-ghost.
#----
sm_name_hdr:

id = "demo_queue"
next_id = "demo_queue"
option_id = "demo_queue_dummy_opt"
name = "Add a Print Queue"
name_msg_file = "smit.cat"
name_msg_set = 52
name_msg_id = 41
type = "c"
ghost = "y"

684 Writing and Debugging Programs

cmd_to_classify = "\
x()
{

Check to see if the printer file is installed.
lslpp -l printers.rte 2>/dev/null 1>/dev/null
if [[$? != 0]]
then
echo 2
else
echo 1
fi

}
x"

next_type = "n"

#----
Topics: 2,4
Having determined the printer software is installed, we want
to know if the gui program should be run or if we should
branch to the ascii SMIT screen for this task. To do this, we
check the value of the environment variable SMIT, which is "m"
for windows (Motif) or "a" for ascii. Here again we tack the
output of the cmd_to_classify onto the next_id.
#----
sm_name_hdr:

id = "demo_queue1"
next_id = "mkpq"
option_id = "demo_queue_dummy_opt"
has_name_select = ""
ghost = "y"
next_type = "n"
type = "c"
cmd_to_classify = "\

gui_check()
{

if [$SMIT = \"m\"]; then
echo gui

fi
}

gui_check"

sm_name_hdr:
id = "mkpqgui"
next_id = "invoke_gui"
next_type = "d"
option_id = "demo_queue_dummy_opt"
ghost = "y"

#----
Topics: 7
Note: the exec_mode of this command is "e", which
exits SMIT before running the cmd_to_exec.
#----
sm_cmd_hdr:

id = "invoke_gui"
cmd_to_exec = "/usr/bin/X11/xprintm"
exec_mode = "e"
ghost = "y"

sm_cmd_opt:
id = "demo_queue_dummy_opt"
id_seq_num = 0

#----
Topics: 3,5
The printer software is not installed. Install the software
and loop back to demo_queue1 to check the SMIT environment

Chapter 25. System Management Interface Tool (SMIT) 685

variable. This is a ghost name_hdr. The cmd_to_list of the
sm_cmd_opt is displayed immediately as a pop-up option
instead of waiting for the user to input a response. In this
ghost, the cmd_opt is a simple OK/cancel box that prompts the
user to press return.
#----
sm_name_hdr:

id = "demo_queue2"
next_id = "demo_queue1"
option_id = "demo_queue_opt"
name = "Add a Print Queue"
name_msg_file = "smit.cat"
name_msg_set = 52
name_msg_id = 41
ghost = "y"
cmd_to_classify = "\

install_printers ()
{

Install the printer package.
/usr/lib/assist/install_pkg \"printers.rte\" 2>&1 >/dev/null
if [[$? != 0]]
then

echo "Error installing printers.rte"
exit 1

else
exit 0

fi
}
install_printers "

next_type = "n"

#----
Topics: 5,6,8
Here a cmd_opt is used as an OK/cancel box. Note also that the
command dspmsg is used to display the text for the option. This
allows for translation of the messages.
Note: the id_seq_num for the option is 0. Only one option is
allowed per name_hdr, and its id_seq_num must be 0.
#----
sm_cmd_opt:

id = "demo_queue_opt"
id_seq_num = "0"
disc_field_name = ""
name = "Add a Print Queue"
name_msg_file = "smit.cat"
name_msg_set = 52
name_msg_id = 41
op_type = "l"
cmd_to_list = "x()\

{
if [$SMIT = \"a\"] \n\
then \n\
dspmsg -s 52 smit.cat 56 \
'Press Enter to automatically install the printer software.\n\
Press F3 to cancel.\n\
'\n\
else \n\
dspmsg -s 52 smit.cat 57 'Click on this item to automatically install
the printer software.\n' \n\
fi\n\
} \n\
x"

entry_type = "t"
multi_select = "n"

#--

686 Writing and Debugging Programs

#
Demo 2

Goal: Add a Language for an Application Already Installed. It
is often clearer to the user to get some information
before displaying the dialog screen. Name Headers
(sm_name_hdr) can be used for this purpose. In this
example, two name headers are used to determine the
language to install and the installation device. The
dialog has entries for the rest of the information needed
to perform the task.
#
Topics:
1. Saving output from successive name_hdrs with
cooked_field_name
2. Using getopts inside cmd_to_exec to process cmd_opt
info
3. Ring list vs. cmd_to_list for displaying values
cmd_opts
#--

#----
Topic: 1
This is the first name_hdr. It is called by the menu_opt for
this function. We want to save the user's input for later use
in the dialog. The parameter passed into the cmd_to_classify
comes from the user's selection/entry. Cmd_to_classify cleans
up the output and stores it in the variable specified by
cooked_field_name. This overrides the default value for the
cmd_to_classify output, which is _cookedname. The default must
be overridden because we also need to save the output of the
next name_hdr.
#----
sm_name_hdr:

id = "demo_mle_inst_lang_hdr"
next_id = "demo_mle_inst_lang"
option_id = "demo_mle_inst_lang_select"
name = "Add Language for Application Already Installed"
name_msg_file = "smit.cat"
name_msg_set = 53
name_msg_id = 35
type = "j"
ghost = "n"
cmd_to_classify = "\

foo() {
echo $1 | sed -n \"s/[|[]*\\[\\([|]]*\\).*/\\1/p\"

}
foo"

cooked_field_name = "add_lang_language"
next_type = "n"
help_msg_id = "2850325"

sm_cmd_opt:
id = "demo_mle_inst_lang_select"
id_seq_num = "0"
disc_field_name = "add_lang_language"
name = "LANGUAGE translation to install"
name_msg_file = "smit.cat"
name_msg_set = 53
name_msg_id = 20
op_type = "l"
entry_type = "n"
entry_size = 0
required = ""
prefix = "-l "
cmd_to_list_mode = "a"
cmd_to_list = "/usr/lib/nls/lsmle -l"

Chapter 25. System Management Interface Tool (SMIT) 687

help_msg_id = "2850328"

#----
Topic:1
This is the second name_hdr. Here the user's input is passed
directly through the cmd_to_classify and stored in the
variable add_lang_input.
#----
sm_name_hdr:

id = "demo_mle_inst_lang"
next_id = "demo_dialog_add_lang"
option_id = "demo_add_input_select"
has_name_select = "y"
name = "Add Language for Application Already Installed"
name_msg_file = "smit.cat"
name_msg_set = 53
name_msg_id = 35
type = "j"
ghost = "n"
cmd_to_classify = "\

foo() {
echo $1

}
foo"

cooked_field_name = "add_lang_input"
next_type = "d"
help_msg_id = "2850328"

sm_cmd_opt:
id = "demo_add_input_select"
id_seq_num = "0"
disc_field_name = "add_lang_input"
name = "INPUT device/directory for software"
name_msg_file = "smit.cat"
name_msg_set = 53
name_msg_id = 11
op_type = "l"
entry_type = "t"
entry_size = 0
required = "y"
prefix = "-d "
cmd_to_list_mode = "1"
cmd_to_list = "/usr/lib/instl/sm_inst list_devices"
help_msg_id = "2850313"

#----
Topic: 2
Each of the cmd_opts formats its information for processing
by the getopts command (a dash and a single character, followed
by an optional parameter). The colon following the letter in
the getopts command means that a parameter is expected after
the dash option. This is a nice way to process the cmd_opt
information if there are several options, especially if one of
the options could be left out, causing the sequence of $1, $2,
etc. to get out of order.
#----
sm_cmd_hdr:

id = "demo_dialog_add_lang"
option_id = "demo_mle_add_app_lang"
has_name_select = ""
name = "Add Language for Application Already Installed"
name_msg_file = "smit.cat"
name_msg_set = 53
name_msg_id = 35
cmd_to_exec = "\

foo()
{

688 Writing and Debugging Programs

while getopts d:l:S:X Option \"$@\"
do

case $Option in
d) device=$OPTARG;;
l) language=$OPTARG;;
S) software=$OPTARG;;
X) extend_fs="-X";;

esac
done

if [[′/usr/lib/assist/check_cd -d $device′ = '1']]
then

/usr/lib/assist/mount_cd $device
CD_MOUNTED=true

fi

if [[$software = \"ALL\"]]
then

echo "Installing all software for $language..."
else

echo "Installing $software for $language..."
fi
exit $RC
}
foo"

ask = "y"
ghost = "n"
help_msg_id = "2850325"

sm_cmd_opt:
id = "demo_mle_add_app_lang"
id_seq_num = "0"
disc_field_name = "add_lang_language"
name = "LANGUAGE translation to install"
name_msg_file = "smit.cat"
name_msg_set = 53
name_msg_id = 20
entry_type = "n"
entry_size = 0
required = "y"
prefix = "-l "
cmd_to_list_mode = "a"
help_msg_id = "2850328"

#----
Topic: 2
The prefix field precedes the value selected by the user, and
both the prefix and the user-selected value are passed into
the cmd_to_exec for getopts processing.
#----
sm_cmd_opt:

id = "demo_mle_add_app_lang"
id_seq_num = "020"
disc_field_name = "add_lang_input"
name = "INPUT device/directory for software"
name_msg_file = "smit.cat"
name_msg_set = 53
name_msg_id = 11
entry_type = "n"
entry_size = 0
required = "y"
prefix = "-d "
cmd_to_list_mode = "1"
cmd_to_list = "/usr/lib/instl/sm_inst list_devices"
help_msg_id = "2850313"

sm_cmd_opt:

Chapter 25. System Management Interface Tool (SMIT) 689

id = "demo_mle_add_app_lang"
id_seq_num = "030"
name = "Installed APPLICATION"
name_msg_file = "smit.cat"
name_msg_set = 53
name_msg_id = 43
op_type = "l"
entry_type = "n"
entry_size = 0
required = "y"
prefix = "-S "
cmd_to_list_mode = ""
cmd_to_list = "\

list_messages ()
{

language=$1
device=$2
lslpp -Lqc | cut -f2,3 -d':'

}
list_messages"

cmd_to_list_postfix = "add_lang_language add_lang_input"
multi_select = ","
value_index = 0
disp_values = "ALL"
help_msg_id = "2850329"

#----
Topic: 3
Here, instead of a cmd_to_list, there is a comma-delimited set
of Ring values in the disp_values field. This list is displayed
one item at a time as the user presses tab in the cmd_opt entry
field. However, instead of passing a yes or no to the cmd_hdr,
it is more useful to use the aix_values field to pass either
a -X or nothing. The list in the aix_values field must match
one-to-one with the list in the disp_values field.
#----
sm_cmd_opt:

id_seq_num = "40"
id = "demo_mle_add_app_lang"
disc_field_name = ""
name = "EXTEND file systems if space needed?"
name_msg_file = "smit.cat"
name_msg_set = 53
name_msg_id = 12
op_type = "r"
entry_type = "n"
entry_size = 0
required = "y"
multi_select = "n"
value_index = 0
disp_values = "yes,no"

values_msg_file = "sm_inst.cat"
values_msg_set = 1
values_msg_id = 51
aix_values = "-X,"
help_msg_id = "0503005"

#--
#
Demo 3

Goal: Show Characteristics of a Logical Volume. The name of the
logical volume is entered by the user and passed to the
cmd_hdr as _rawname.
#
Topics: 1. _rawname
2. Ringlist & aix_values

690 Writing and Debugging Programs

#--

#----
Topic: 1
No rawname is needed because we have only one name_hdr and
we can use the default variable name _rawname.
#----
sm_name_hdr:

id = "demo_lspv"
next_id = "demo_lspvd"
option_id = "demo_cmdlvmpvns"
has_name_select = ""
name = "List Contents of a Physical Volume"
name_msg_file = "smit.cat"
name_msg_set = 15
name_msg_id = 100
type = "j"
ghost = ""
cmd_to_classify = ""
raw_field_name = ""
cooked_field_name = ""
next_type = "d"
help_msg_id = "0516100"

sm_cmd_opt:
id_seq_num = "0"
id = "demo_cmdlvmpvns"
disc_field_name = "PVName"
name = "PHYSICAL VOLUME name"
name_msg_file = "smit.cat"
name_msg_set = 15
name_msg_id = 101
op_type = "l"
entry_type = "t"
entry_size = 0
required = "+"
cmd_to_list_mode = "1"
cmd_to_list = "lsvg -o|lsvg -i -p|grep -v '[:P]'| \

cut -f1 -d' '"
cmd_to_list_postfix = ""
multi_select = "n"
help_msg_id = "0516021"

#----
Topic: 1
The cmd_to_discover_postfix passes in the name of the physical
volume, which is the raw data selected by the user in the
name_hdr - _rawname.
#----
sm_cmd_hdr:

id = "demo_lspvd"
option_id = "demo_cmdlvmlspv"
has_name_select = "y"
name = "List Contents of a Physical Volume"
name_msg_file = "smit.cat"
name_msg_set = 15
name_msg_id = 100
cmd_to_exec = "lspv"
ask = "n"
cmd_to_discover_postfix = "_rawname"
help_msg_id = "0516100"

sm_cmd_opt:
id_seq_num = "01"
id = "demo_cmdlvmlspv"
disc_field_name = "_rawname"
name = "PHYSICAL VOLUME name"

Chapter 25. System Management Interface Tool (SMIT) 691

name_msg_file = "smit.cat"
name_msg_set = 15
name_msg_id = 101
op_type = "l"
entry_type = "t"
entry_size = 0
required = "+"
cmd_to_list_mode = "1"
cmd_to_list = "lsvg -o|lsvg -i -p|grep -v '[:P]'| \

cut -f1 -d' '"
help_msg_id = "0516021"

#----
Topic: 2
Here a ringlist of 3 values matches with the aix_values we
want to pass to the sm_cmd_hdr's cmd_to_exec.
#----
sm_cmd_opt:

id_seq_num = "02"
id = "demo_cmdlvmlspv"
disc_field_name = "Option"
name = "List OPTION"
name_msg_file = "smit.cat"
name_msg_set = 15
name_msg_id = 92
op_type = "r"
entry_type = "n"
entry_size = 0
required = "n"
value_index = 0
disp_values = "status,logical volumes,physical \

partitions"
values_msg_file = "smit.cat"
values_msg_set = 15
values_msg_id = 103
aix_values = " ,-l,-p"
help_msg_id = "0516102"

#--
#
Demo 4

Goal: Change / Show Date & Time
#
Topics: 1. Using a ghost name header to get variable
values for the next dialog screen.
2. Using a cmd_to_discover to fill more than one
cmd_opt with initial values.
3. Re-ordering parameters in a cmd_to_exec.
#--

#----
Topic: 1
This ghost name_hdr gets two values and stores them in the
variables daylight_y_n and time_zone for use in the cmd_opts
for the next dialog. The output of cmd_to_classify is colon-
delimited, as is the list of field names in cooked_field_name.
#----
sm_name_hdr:

id = "demo_date"
next_id = "demo_date_dial"
option_id = "date_sel_opt"
name_msg_set = 0
name_msg_id = 0
ghost = "y"
cmd_to_classify = " \

if [$(echo $TZ | awk '{ \

692 Writing and Debugging Programs

if (length($1) <=6) {printf(\"2\")} \
else {printf(\"1\")} }') = 1] \n\

then\n\
echo $(dspmsg smit.cat -s 30 18 'yes')\":$TZ\"\n\

else\n\
echo $(dspmsg smit.cat -s 30 19 'no')\":$TZ\"\n\

fi #"
cooked_field_name = "daylight_y_n:time_zone"

sm_cmd_opt:
id_seq_num = "0"
id = "date_sel_opt"

#----
Topic: 2,3
Here the cmd_to_discover gets six values, one for each of the
editable sm_cmd_opts for this screen. The cmd_to_discover
output is two lines, the first with a # followed by a list of
variable names, and the second line the list of values. Both
lists are colon-delimited. We also see here the cmd_to_exec
takeing the parameters from the cmd_opts and reordering them
when calling the command.
#----
sm_cmd_hdr:

id = "demo_date_dial"
option_id = "demo_chtz_opts"
has_name_select = "y"
name = "Change / Show Date & Time"
name_msg_file = "smit.cat"
name_msg_set = 30
name_msg_id = 21
cmd_to_exec = "date_proc () \

MM dd hh mm ss yy\n\
dialogue param order # 3 4 5 6 7 2\n\
{\n\
date \"$3$4$5$6.$7$2\"\n\
}\n\
date_proc "

exec_mode = "P"
cmd_to_discover = "disc_proc() \n\

{\n\
TZ=\"$1\"\n\
echo '#cur_month:cur_day:cur_hour:cur_min:cur_sec:cur_year'\n\
date +%m:%d:%H:%M:%S:%y\n\
}\n\
disc_proc"

cmd_to_discover_postfix = ""
help_msg_id = "055101"

#----
The first two cmd_opts get their initial values
(disc_field_name) from the name_hdr.
#----
sm_cmd_opt:

id_seq_num = "04"
id = "demo_chtz_opts"
disc_field_name = "time_zone"
name = "Time zone"
name_msg_file = "smit.cat"
name_msg_set = 30
name_msg_id = 16
required = "y"

sm_cmd_opt:
id_seq_num = "08"
id = "demo_chtz_opts"
disc_field_name = "daylight_y_n"

Chapter 25. System Management Interface Tool (SMIT) 693

name = "Does this time zone go on daylight savings time?\n"
name_msg_file = "smit.cat"
name_msg_set = 30
name_msg_id = 17
entry_size = 0

#----
The last six cmd_opts get their values from the
cmd_to_discover.
#----
sm_cmd_opt:

id_seq_num = "10"
id = "demo_chtz_opts"
disc_field_name = "cur_year"
name = "YEAR (00-99)"
name_msg_file = "smit.cat"
name_msg_set = 30
name_msg_id = 10
entry_type = "#"
entry_size = 2
required = "+"
help_msg_id = "055102"

sm_cmd_opt:
id_seq_num = "20"
id = "demo_chtz_opts"
disc_field_name = "cur_month"
name = "MONTH (01-12)"
name_msg_file = "smit.cat"
name_msg_set = 30
name_msg_id = 11
entry_type = "#"
entry_size = 2
required = "+"
help_msg_id = "055132"

sm_cmd_opt:
id_seq_num = "30"
id = "demo_chtz_opts"
disc_field_name = "cur_day"
name = "DAY (01-31)\n"
name_msg_file = "smit.cat"
name_msg_set = 30
name_msg_id = 12
entry_type = "#"
entry_size = 2
required = "+"
help_msg_id = "055133"

sm_cmd_opt:
id_seq_num = "40"
id = "demo_chtz_opts"
disc_field_name = "cur_hour"
name = "HOUR (00-23)"
name_msg_file = "smit.cat"
name_msg_set = 30
name_msg_id = 13
entry_type = "#"
entry_size = 2
required = "+"
help_msg_id = "055134"

sm_cmd_opt:
id_seq_num = "50"
id = "demo_chtz_opts"
disc_field_name = "cur_min"
name = "MINUTES (00-59)"

694 Writing and Debugging Programs

name_msg_file = "smit.cat"
name_msg_set = 30
name_msg_id = 14
entry_type = "#"
entry_size = 2
required = "+"
help_msg_id = "055135"

sm_cmd_opt:
id_seq_num = "60"
id = "demo_chtz_opts"
disc_field_name = "cur_sec"
name = "SECONDS (00-59)"
name_msg_file = "smit.cat"
name_msg_set = 30
name_msg_id = 15
entry_type = "#"
entry_size = 2
required = "+"
help_msg_id = "055136"

Chapter 25. System Management Interface Tool (SMIT) 695

696 Writing and Debugging Programs

Chapter 26. System Resource Controller

This article provides information about the System Resource Controller (SRC), which facilitates the
management and control of complex subsystems.

The SRC is a subsystem controller. Subsystem programmers who own one or more daemon processes
can use SRC services to define a consistent system management interface for their applications. The SRC
provides a single set of commands to start, stop, trace, refresh, and query the status of a subsystem.

In addition, the SRC provides an error notification facility. You can use this facility to incorporate
subsystem-specific recovery methods. The type of recovery information included is limited only by the
requirement that the notify method is a string in a file and is executable.

Refer to the following information to learn more about SRC programming requirements:

v “SRC Objects” on page 698

v “SRC Communication Types” on page 702

v “Programming Subsystem Communication with the SRC” on page 705

v “Defining Your Subsystem to the SRC” on page 711

Subsystem Interaction with the SRC
The SRC defines a subsystem as a program or set of related programs designed as a unit to perform
related functions. See ″System Resource Controller Overview″ in AIX 5L Version 5.1 System Management
Guide: Operating System and Devices for a more detailed description of the characteristics of a
subsystem.

A subserver, commonly known to UNIX programmers as a daemon, is a process that belongs to and is
controlled by a subsystem.

The SRC operates on objects in the SRC object class. Subsystems are defined to the SRC as subsystem
objects; subservers, as subserver-type objects. The structures associated with each type of object are
predefined in the usr/include/sys/srcobj.h file.

The SRC can issue SRC commands against objects at the subsystem, subserver, and subsystem-group
levels. A subsystem group is a group of any user-specified subsystems. Grouping subsystems allows
multiple subsystems to be controlled by invoking a single command. Groups of subsystems may also
share a common notification method.

The SRC communicates with subsystems by sending signals and exchanging request and reply packets.
In addition to signals, the SRC recognizes the sockets and IPC message-queue communication types. A
number of subroutines (“List of Additional SRC Subroutines” on page 712) are available as an SRC API to
assist in programming communication between subsystems and the SRC. The SRC API also supports
programming communication between client programs and the SRC.

The SRC and the init Command

The SRC is operationally independent of the init command. However, the SRC is intended to extend the
process-spawning functionality provided by this command. In addition to providing a single point of control
to start, stop, trace, refresh, and query the status of subsystems, the SRC can control the operations of
individual subsystems, support remote system control, and log subsystem failures.

Operationally, the only time the init command and the SRC interact occurs when the srcmstr (SRC
master) daemon is embedded within the inittab file. (By default, the srcmstr daemon is in the inittab file.)

© Copyright IBM Corp. 1997, 2001 697

../../aixbman/admnconc/sys_res_overview.htm
../../files/aixfiles/srcobj.h.htm#HDRDAK1C0GACO
../../cmds/aixcmds5/srcmstr.htm#HDRA200940F
../../files/aixfiles/inittab.htm#HDRA241Y97E94

In this case, the init command starts the srcmstr daemon at system startup, as with all other processes.
You must have root user authority or be in the system group to invoke the srcmstr daemon.

Compiling Programs to Interact With the srcmstr Daemon
To enable programs to interact with the srcmstr daemon, the /usr/include/spc.h file should be included
and the program should be compiled with the libsrc.a library. This support is not needed if the subsystem
uses signals to communicate with the SRC.

SRC Operations
To make use of SRC functionality, a subsystem must interact with the srcmstr daemon in two ways:

v A subsystem object must be created for the subsystem in the SRC subsystem object class.

v If a subsystem uses signals, it does not need to use SRC subroutines. However, if it uses message
queues or sockets, it must respond to stop requests using the SRC subroutines.

All SRC subsystems must support the stopsrc command. The SRC uses this command to stop
subsystems and their subservers with the SIGNORM (stop normal), SIGFORCE (stop force), or
SIGCANCEL (cancel systems) signals.

Subsystem support is optional for the startsrc, lssrc -l, traceson, tracesoff, and refresh commands, long
status and subserver status reporting, and the SRC notification mechanism. See “Programming Subsystem
Communication with the SRC” on page 705 for details.

SRC Capabilities

The SRC provides the following support for the subsystem programmer:

v A common command interface to support starting, stopping, and sending requests to a subsystem

v A central point of control for subsystems and groups of subsystems

v A common format for requests to the subsystem

v A definition of subservers so that each subserver can be managed as it is uniquely defined to the
subsystem

v The ability to define subsystem-specific error notification methods

v The ability to define subsystem-specific responses to requests for status, trace support, and
configuration refresh

v A single point of control for servicing subsystem requests in a network computing environment

SRC Objects

The System Resource Controller (SRC) defines and manages three object classes:

v “Subsystem Object Class” on page 699

v “Subserver Type Object Class” on page 701

v “Notify Object Class” on page 701

Together, these object classes represent the domain in which the SRC performs its functions. A predefined
set of object-class descriptors comprise the possible set of subsystem configurations supported by the
SRC.

Note: Only the SRC Subsystem object class is required. Use of the Subserver Type and Notify object
classes is subsystem-dependent.

698 Writing and Debugging Programs

../../cmds/aixcmds5/telinit.htm#HDRA15891E19

Subsystem Object Class
The subsystem object class contains the descriptors for all SRC subsystems. A subsystem must be
configured in this class before it can be recognized by the SRC.

The descriptors for the Subsystem object class are defined in the SRCsubsys structure of the
/usr/include/sys/srcobj.h file. The Subsystem Object Descriptors and Default Values table provides a
short-form illustration of the subsystem descriptors as well as the mkssys and chssys command flags
associated with each descriptor.

Subsystem Object Descriptors and Default Values

Descriptors Default Values Flags

Subsystem name -s

Path to subsystem command -p

Command arguments -a

Execution priority 20 -E

Multiple instance NO -Q -q

User ID -u

Synonym name (key) -t

Start action ONCE -O -R

stdin /dev/console -i

stdout /dev/console -o

stderr /dev/console -e

Communication type Sockets -K -I -S

Subsystem message type -m

Communication IPC queue key -l

Group name -G

SIGNORM signal -n

SIGFORCE signal -f

Display Yes -D -d

Wait time 20 seconds -w

Auditid

The subsystem object descriptors are defined as follows:

Subsystem name Specifies the name of the subsystem object. The name cannot exceed 30 bytes,
including the null terminator (29 characters for single-byte character sets, or 14
characters for multibyte character sets). This descriptor must be
POSIX-compliant. This field is required.

Subsystem command path Specifies the full path name for the program executed by the subsystem start
command. The path name cannot exceed 200 bytes, including the null
terminator (199 characters for single-byte character sets, or 99 characters for
multibyte character sets). The path name must be POSIX-compliant. This field is
required.

Chapter 26. System Resource Controller 699

../../files/aixfiles/srcobj.h.htm#HDRDAK1C0GACO
../../files/aixfiles/srcobj.h.htm#HDRDAK1C0GACO
../../cmds/aixcmds3/mkssys.htm#HDRA2009247
../../cmds/aixcmds1/chssys.htm#HDRA200911B

Command arguments Specifies any arguments that must be passed to the command that starts the
subsystem. The arguments cannot exceed 200 bytes, including the null
terminator (199 characters for single-byte character sets, or 99 characters for
multibyte character sets). The arguments are parsed by the srcmstr daemon
according to the same rules used by shells. For example, quoted strings are
passed as a single argument, and blanks outside quoted strings delimit
arguments.

Execution priority Specifies the process priority of the subsystem to be run. Subsystems started by
the srcmstr daemon run with this priority. The default value is 20.

Multiple instance Specifies the number of instances of a subsystem that can run at one time. A
value of NO (the -Q flag) specifies that only one instance of the subsystem can
run at one time. Attempts to start this subsystem if it is already running will fail,
as will attempts to start a subsystem on the same IPC message queue key. A
value of YES (the -q flag) specifies that multiple subsystems may use the same
IPC message queue and that there can be multiple instances of the same
subsystem. The default value is NO.

User ID Specifies the user ID (numeric) under which the subsystem is run. A value of 0
indicates the root user.

Synonym name Specifies a character string to be used as an alternate name for the subsystem.
The character string cannot exceed 30 bytes, including the null terminator (29
characters for single-byte character sets, or 14 characters for multibyte character
sets). This field is optional.

Start action Specifies whether the srcmstr daemon should restart the subsystem after an
abnormal end. A value of RESPAWN (the -R flag) specifies the srcmstr daemon
should restart the subsystem. A value of ONCE (the -O flag) specifies the
srcmstr daemon should not attempt to restart the failed system. There is a
respawn limit of two restarts within a specified wait time. If the failed subsystem
cannot be successfully restarted, the notification method option is consulted. The
default value is ONCE.

Standard Input File/Device Specifies the file or device from which the subsystem receives its input. The
default is /dev/console. This field cannot exceed 200 bytes, including the null
terminator (199 characters for single-byte character sets, or 99 characters for
multibyte character sets). This field is ignored if the communication type is
sockets.

Standard Output File/Device Specifies the file or device to which the subsystem sends its output. This field
cannot exceed 200 bytes, including the null terminator (199 characters for
single-byte character sets, or 99 characters for multibyte character sets). The
default is /dev/console.

Standard Error File/Device Specifies the file or device to which the subsystem writes its error messages.
This field cannot exceed 200 bytes, including the null terminator (199 characters
for single-byte character sets, or 99 characters for multibyte character sets).
Failures are handled as part of the notify method. The default is /dev/console.

Note: Catastrophic errors are sent to the error log.
Communication type Specifies the communication method between the srcmstr daemon and the

subsystem. Three types can be defined: IPC (-I), sockets (-K), or signals (-S).
The default is sockets.

Communication IPC queue key Specifies a decimal value that corresponds to the IPC message queue key that
the srcmstr daemon uses to communicate to the subsystem. This field is
required for subsystems that communicate using IPC message queues. Use the
ftok subroutine with a fully qualified path name and an ID parameter to ensure
that this key is unique. The srcmstr daemon creates the message queue prior
to starting the subsystem.

Group name Designates the subsystem as a member of a group. This field cannot exceed 30
bytes, including the null terminator (29 characters for single-byte character sets,
or 14 characters for multibyte character sets). This field is optional.

700 Writing and Debugging Programs

../../cmds/aixcmds5/srcmstr.htm#HDRA200940F
../../libs/basetrf1/ftok.htm#HDRA09099AB

Subsystem message type Specifies the mtype of the message that is placed on the subsystem’s message
queue. The subsystem uses this value to retrieve messages by using the
msgrcv or msgxrcv subroutine. This field is required if you are using message
queues.

SIGNORM signal value Specifies the value to be sent to the subsystem when a stop normal request is
sent. This field is required of subsystems using the signals communication type.

SIGFORCE signal value Specifies the value to be sent to the subsystem when a stop force request is
sent. This field is required of subsystems using the signals communication type.

Display value Indicates whether the status of an inoperative subsystem can be displayed on
lssrc -a or lssrc -g output. The -d flag indicates display; the -D flag indicates do
not display. The default is -d (display).

Wait time Specifies the time in seconds that a subsystem has to complete a restart or stop
request before alternate action is taken. The default is 20 seconds.

Auditid Specifies the subsystem audit ID. Created automatically by the srcmstr daemon
when a subsystem is defined, this field is used by the security system, if
configured. This field cannot be set or changed by a program.

See “Defining Your Subsystem to the SRC” on page 711 for information on defining and modifying
subsystem objects.

Subserver Type Object Class

An object must be configured in this class if a subsystem has subservers and the subsystem expects to
receive subserver-related commands from the srcmstr daemon.

This object class contains three descriptors, which are defined in the SRCsubsvr structure of the srcobj.h
file:

Subserver ID (key) Specifies the name of the subserver type object identifier. The set of subserver
type names defines the allowable values for the -t flag of the subserver
commands. The name length cannot exceed 30 bytes, including the
terminating null (29 characters for single-byte character sets, or 14 characters
for multibyte character sets).

Owning subsystem name Specifies the name of the subsystem that owns the subserver object. This field
is defined as a link to the SRC subsystem object class.

Code point Specifies a decimal number that identifies the subserver. The code point is
passed to the subsystem controlling the subserver in the object field of the
subreq structure of the SRC request structure. If a subserver object name is
also provided in the command, the srcmstr daemon forwards the code point to
the subsystem in the objname field of the subreq structure. See the ″SRC
Request Structure Example″ in the spc.h file documentation for examples of
these elements.

The commands that reference subservers identify each subserver as a named type of subserver and can
also append a name to each instance of a subserver type. The SRC daemon uses the subserver type to
determine the controlling subsystem for the subserver, but does not examine the subserver name.

See “Defining Your Subsystem to the SRC” on page 711 for information on defining and modifying
subserver type objects.

Notify Object Class

This class provides a mechanism for the srcmstr daemon to invoke subsystem-provided routines when
the failure of a subsystem is detected. When the SRC daemon receives a SIGCHLD signal indicating the
termination of a subsystem process, it checks the status of the subsystem (maintained by the srcmstr

Chapter 26. System Resource Controller 701

../../libs/basetrf1/msgrcv.htm#HDRA20891A9
../../files/aixfiles/srcobj.h.htm#SPTA12F035
../../files/aixfiles/spc.h.htm#HDRA9CFB281667SYLV
../../files/aixfiles/spc.h.htm#HDRA9CFB281667SYLV

daemon) to determine if the termination was caused by a stopsrc command. If no stopsrc command was
issued, the termination is interpreted as an abnormal termination. If the restart action in the definition does
not specify respawn, or if respawn attempts fail, the srcmstr daemon attempts to read an object
associated with the subsystem name from the Notify object class. If such an object is found, the method
associated with the subsystem is run.

If no subsystem object is found in the Notify object class, the srcmstr daemon determines whether the
subsystem belongs to a group. If so, the srcmstr daemon attempts to read an object of that group name
from the Notify object class. If such an object is found, the method associated with it is invoked. In this
way, groups of subsystems can share a common method.

Note: The subsystem notify method takes precedence over the group notify method. Therefore, a
subsystem can belong to a group that is started together, but still have a specific recovery or cleanup
routine defined.

Notify objects are defined by two descriptors:

Subsystem name or Group name Specifies the name of the subsystem or group for which a notify method is
defined.

Notify method Specifies the full path name to the routine that is executed when the
srcmstr daemon detects abnormal termination of the subsystem or group.

Such notification is useful when specific recovery or clean-up work needs to be performed before a
subsystem can be restarted. It is also a tool for information gathering to determine why a subsystem
abnormally stopped.

Notify objects are created with the mknotify command. To modify a notify method, the existing notify
object must be removed using the rmnotify command, and then a new notify object created.

mknotify Adds a notify method to the SRC configuration database
rmnotify Removes a notify method from the SRC configuration database

The srcmstr daemon logs subsystem recovery activity. The subsystem is responsible for reporting
subsystem failures.

SRC Communication Types

The System Resource Controller (SRC) supports three communication types: signals, sockets, and
interprocess communication (IPC) message queues. The communication type chosen determines to what
degree the subsystem takes advantage of SRC functions.

Note: All subsystems, regardless of the communication type specified in the subsystem environment
object, must be capable of supporting limited signals communication. A signal-catcher routine must
be defined to handle SIGTERM (stop cancel) signals. The SIGTERM signal indicates a subsystem
should clean up all resources and terminate.

The Communications Between the srcmstr Daemon and Subsystems table summarizes communication
type actions associated with SRC functions.

Communications Between the srcmstr Daemon and Subsystems

Function Using IPC or Sockets Using Signals

start

702 Writing and Debugging Programs

../../cmds/aixcmds3/mknotify.htm#HDRA20091B1
../../cmds/aixcmds4/rmnotify.htm#HDRA200932E

subsystem SRC forks and execs to create
subsystem process.

SRC forks and execs to create
subsystem process.

subserver Uses IPC message queue or socket
to send request to subsystem.

Not supported

stop normal

subsystem Uses IPC message queue or socket
to send request to subsystem.

Sends SIGNORM to the subsystem.

subserver Uses IPC message queue or socket
to send request to subsystem.

Not supported.

stop forced

subsystem Uses IPC message queue or socket
to send request to subsystem.

Sends SIGFORCE to the subsystem.

subserver Uses IPC message queue or socket
to send request to subsystem.

Not supported.

stop cancel

subsystem Sends SIGTERM followed by
SIGKILL to the process group of the
subsystem.

Sends SIGTERM followed by
SIGKILL to the process group of the
subsystem.

status short

subsystem Implemented by SRC (no subsystem
request).

Implemented by SRC (no subsystem
request).

subserver Uses IPC message queue or socket
to send request to subsystem.

Not supported.

status long

subsystem Uses IPC message queue or socket
to send request to subsystem.

Not supported.

subserver Uses IPC message queue or socket
to send request to subsystem.

Not supported.

traceon/traceoff

subsystem Uses IPC message queue or socket
to send request to subsystem.

Not supported.

subserver Uses IPC message queue or socket
to send request to subsystem.

Not supported.

refresh

subsystem Uses IPC message queue or socket
to send request to subsystem.

Not supported.

subserver Uses IPC message queue or socket
to send request to subsystem.

Not supported.

notify

subsystem Implemented by subsystem-provided
method.

Implemented by subsystem-provided
method.

Signals Communication
The most basic type of communication between a subsystem and the srcmstr daemon is accomplished
with signals. Because signals constitute a one-way communication scheme, the only SRC command that
signals subsystems recognize is a stop request. Subsystems using signals do not recognize long status,
refresh, or trace requests. Nor do they recognize subservers.

Chapter 26. System Resource Controller 703

../../cmds/aixcmds5/srcmstr.htm#HDRA200940F

Signals subsystems must implement a signal-catcher routine, such as the sigaction, sigvec, or signal
subroutine, to handle SIGNORM and SIGFORCE requests.

Signals subsystems are specified in the SRC subsystem object class by issuing a mkssys -Snf command
string or by using the defssys and addssys subroutines.

addssys Adds a subsystem definition to the SRC configuration database
defssys Initializes a new subsystem definition with default values
mkssys Adds a subsystem definition to the SRC configuration database

Sockets Communication

Increasingly, the communication option of choice for subsystem programmers is sockets. Sockets are also
the default communication type for the srcmstr daemon. See the ″Sockets Overview″ in AIX 5L Version
5.1 Communications Programming Concepts for more information.

The srcmstr daemon uses sockets to receive work requests from a command process. When this
communication type is chosen, the srcmstr daemon creates the subsystem socket in which the subsystem
will receive srcmstr daemon requests. UNIX sockets (AF_UNIX) are created for local subsystems. Internet
sockets (AF_INET) are created for remote subsystems. The following steps describe the command
processing sequence:

1. The command process accepts a command from the input device, constructs a work-request message,
and sends the work-request UDP datagram to the srcmstr daemon on the well-known SRC port. The
AF_INET is identified in the /etc/services file.

2. The srcmstr daemon listens on the well-known SRC port for work requests. Upon receiving a work
request, it tells the system to fill the socket subroutine’s sockaddr structure to obtain the originating
system’s address and appends the address and port number to the work request.

3. The srcmstr daemon uses the srcrrqs and srcsrpy subroutines. It processes only those requests that
it can process and then sends the information back to the command process. Other requests are
forwarded to the appropriate subsystem on the port that the subsystem has specified for its work
requests.

4. The subsystem listens on the port previously obtained by the srcmstr daemon for the subsystem.
(Each subsystem inherits a port when the srcmstr daemon starts a subsystem.) The subsystem
processes the work request and sends a reply back to the command process.

5. The command process listens for the response on the specified port.

The file access permissions and addresses of the sockets used by the srcmstr daemon are maintained in
the /dev/SRC and /dev/.SRC-unix temporary directories. Though displayable using the ls command, the
information contained in these directories is for internal SRC use only.

Message queues and sockets offer equal subsystem functionality.

See “Programming Subsystem Communication with the SRC” on page 705 for more information.

srcrrqs Saves the destination address of your subsystem’s response to a received packet. (Also see
threadsafe version srcrrqs_r)

srcsrpy Sends your subsystem response packet to a request that your subsystem received.

IPC Message Queue Communication

IPC message queue functionality is similar to sockets functionality. Both communication types support a
full-function SRC environment.

704 Writing and Debugging Programs

../../libs/basetrf2/sigaction.htm#HDRA5F01CB
../../libs/basetrf2/sigaction.htm#HDRA5F01CB
../../libs/basetrf2/sigaction.htm#HDRA5F01CB
../../cmds/aixcmds3/mkssys.htm#HDRA2009247
../../libs/basetrf1/defssys.htm#HDRA27991382
../../libs/basetrf1/addssys.htm#HDRA2839AF5
../../aixprggd/progcomc/skt_ovw.htm#HDRA257X9369
../../libs/commtrf2/socket.htm#HDRTP22B0CHER
../../libs/basetrf2/srcrrqs.htm#HDRA2159678
../../libs/basetrf2/srcsrpy.htm#HDRA349F941

When the communication type is IPC message queue, the srcmstr daemon uses sockets to receive work
requests from a command process, then uses an IPC message queue in which the subsystem receives
SRC messages. The message queue is created when the subsystem is started, and is used thereafter.
Message queue subsystems use the following command-processing sequence to communicate with the
srcmstr daemon:

1. The srcmstr daemon gets the message queue ID from the SRC subsystem object and sends the
message to the subsystem.

2. The subsystem waits for the message queue and issues a msgrcv subroutine to receive the command
from the message queue in the form of the subreq structure required of subsystem requests.

3. The subsystem calls the srcrrqs subroutine to get a tag ID that is used in responding to the message.

4. The subsystem interprets and processes the received command. Depending upon the command, the
subsystem creates either a svrreply or statcode data structure to return a reply to the command
process. Refer to the /usr/include/spc.h file for more information on these structures.

5. The subsystem calls the srcsrpy subroutine to send back a reply buffer to the command process.

See ″Message Queue Kernel Services″ in AIX 5L Version 5.1 Kernel Extensions and Device Support
Programming Concepts for additional information on this communication type. See “Programming
Subsystem Communication with the SRC” for the next step in establishing communication with the
srcmstr daemon.

Programming Subsystem Communication with the SRC

System Resource Controller (SRC) commands are executable programs that take options from the
command line. After the command syntax has been verified, the commands call SRC run-time subroutines
to construct a User Datagram Protocol (UDP) datagram and send it to the srcmstr daemon.

The following sections provide more information about SRC subroutines and how they can be used by
subsystems to communicate with the SRC main process:

Programming Subsystems to Receive SRC Requests
The programming tasks associated with receiving SRC requests vary with the communication type
specified for the subsystem. The srcmstr daemon uses sockets to receive work requests from a command
process and constructs the necessary socket or message queue to forward work requests. Each
subsystem needs to verify the creation of its socket or message queue. See “SRC Communication Types”
on page 702 for a description of the SRC communication types. Read the following sections for
information on communication type-specific guidelines on programming your subsystem to receive SRC
request packets.

Receiving SRC Signals

Subsystems that use signals as their communication type must define a signal-catcher routine to catch the
SIGNORM and SIGFORCE signals. The signal-catching method used is subsystem-dependent. Following
are two examples of the types of subroutines that can be used for this purpose.

sigaction, sigvec, or signal subroutine Specifies the action to take upon the delivery of a signal.
sigset, sighold, sigrelse, or sigignore subroutine Enhances the signal facility and provides signal

management for application processes.

See “Signals Communication” on page 703 in ″Understanding SRC Communication Types″ for more
information.

Receiving SRC Request Packets Using Sockets

Use the following guidelines when programming sockets subsystems to receive SRC request packets:

Chapter 26. System Resource Controller 705

../../libs/basetrf1/msgrcv.htm#HDRA20891A9
../../libs/basetrf2/srcrrqs.htm#HDRA2159678
../../files/aixfiles/spc.h.htm#HDRA9CF832A393SYLV
../../libs/basetrf2/srcsrpy.htm#HDRA349F941
../../aixprggd/kernextc/msgqueue_kernsvcs.htm#HDRQ0IFRZ4JEAN
../../aixuser/glossary/U.htm#SPTA207P11A7F
../../cmds/aixcmds5/srcmstr.htm#HDRA200940F
../../libs/basetrf2/sigaction.htm#HDRA5F01CB
../../libs/basetrf2/sigset.htm#HDRA334F9465

v Include the SRC subsystem structure in your subsystem code by specifying the /usr/include/spc.h file.
This file contains the structures the subsystem uses to respond to SRC commands. In addition, the
spc.h file includes the srcerrno.h file, which does not need to be included separately. The srcerrno.h
file contains error-code definitions for daemon support.

v When a sockets subsystem is started, the socket on which the subsystem receives SRC request
packets is set as file descriptor 0. The subsystem should verify this by calling the getsockname
subroutine, which returns the address of the subsystem’s socket. If file descriptor 0 is not a socket, the
subsystem should log an error and then exit. See ″Reading Internet Datagrams Example Program″ in
AIX 5L Version 5.1 Communications Programming Concepts for information on how the getsockname
subroutine can be used to return the address of a subsystem socket.

v If a subsystem polls more than one socket, use the select subroutine to determine which socket has
something to read. See ″Checking for Pending Connections Example Program″ in AIX 5L Version 5.1
Communications Programming Concepts for more information on how the select subroutine can be
used for this purpose.

v Use the recvfrom subroutine to get the request packet from the socket.

Note: The return address for the subsystem response packet is in the received SRC request
packet. This address should not be confused with the address that the recvfrom subroutine
returns as one of its parameters.

After the recvfrom subroutine completes and the packet has been received, use the srcrrqs subroutine
to return a pointer to a static srchdr structure. This pointer contains the return address for the
subsystem’s reply. This structure is overwritten each time the srcrrqs subroutine is called, so its
contents should be stored elsewhere if they will be needed after the next call to the srcrrqs subroutine.

See “Programming Subsystems to Process SRC Request Packets” on page 707 for the next step in
establishing subsystem communication with the SRC.

Receiving SRC Request Packets Using Message Queues

Use the following guidelines when programming message queue subsystems to receive SRC request
packets:

v Include the SRC subsystem structure in your subsystem code by specifying the /usr/include/spc.h file.
This file contains the structures the subsystem uses to respond to SRC commands. In addition, the
spc.h file includes the srcerrno.h include file, which does not need to be included separately. The
srcerrno.h file contains error-code definitions for daemon support.

v Specify -DSRCBYQUEUE as a compile option. This places a message type (mtype) field as the first
field in the srcreq structure. This structure should be used any time an SRC packet is received.

v When the subsystem has been started, use the msgget subroutine to verify that a message queue was
created at system startup. The subsystem should log an error and exit if a message queue was not
created.

v If a subsystem polls more than one message queue, use the select subroutine to determine which
message queue has something to read. See ″Checking for Pending Connections Example Program″ in
AIX 5L Version 5.1 Communications Programming Concepts for information on how the select
subroutine can be used for this purpose.

v Use the msgrcv or msgxrcv subroutine to get the packet from the message queue. The return address
for the subsystem response packet is in the received packet.

v When the msgrcv or msgxrcv subroutine completes and the packet has been received, call the
srcrrqs subroutine to finish the reception process. The srcrrqs subroutine returns a pointer to a static
srchdr structure that is overwritten each time the srcrrqs subroutine is called. This pointer contains the
return address for the subsystem’s reply.

706 Writing and Debugging Programs

../../files/aixfiles/spc.h.htm#HDRA9CF832A393SYLV
../../libs/commtrf2/getsockname.htm#HDRHC3D0CHER
../../aixprggd/progcomc/skt_readinet_ex.htm#HDRWG41300CHER
../../libs/basetrf2/select.htm#HDRA15691187
../../aixprggd/progcomc/skt_check_ex.htm#HDRN151190CHER
../../libs/commtrf2/recvfrom.htm#HDRMU2110CHER
../../libs/basetrf2/srcrrqs.htm#HDRA2159678
../../files/aixfiles/spc.h.htm#HDRA9CF832A393SYLV
../../libs/basetrf1/msgget.htm#HDRA208926E
../../libs/basetrf2/select.htm#HDRA15691187
../../aixprggd/progcomc/skt_check_ex.htm#HDRN151190CHER
../../libs/basetrf1/msgrcv.htm#HDRA20891A9
../../libs/basetrf1/msgxrcv.htm#HDRA2089208
../../libs/basetrf2/srcrrqs.htm#HDRA2159678

Programming Subsystems to Process SRC Request Packets

Subsystems must be capable of processing stop requests. Optionally, subsystems may support start,
status, trace, and refresh requests.

Processing request packets involves a two-step process:

1. Reading SRC request packets

2. “Programming Subsystem Response to SRC Requests”

Reading SRC Request Packets
SRC request packets are received by subsystems in the form of a srcreq structure as defined in the
/usr/include/spc.h file. The subsystem request resides in the subreq structure of the srcreq structure:
struct subreq

short object; /*object to act on*/
short action; /*action START, STOP, STATUS, TRACE,\

REFRESH*/
short parm1; /*reserved for variables*/
short parm2; /*reserved for variables*/
char objname; /*object name*/

The object field of the subreq structure indicates the object to which the request applies. When the
request applies to a subsystem, the object field is set to the SUBSYSTEM constant. Otherwise, the
object field is set to the subserver code point or the objname field is set to the subserver PID as a
character string. It is the subsystem’s responsibility to determine the object to which the request applies.

The action field specifies the action requested of the subsystem. Subsystems should understand the
START, STOP, and STATUS action codes. The TRACE and REFRESH action codes are optional.

The parm1 and parm2 fields are used differently by each of the actions.

Action parm1 parm2

STOP NORMAL or FORCE

STATUS LONGSTAT or SHORTSTAT

TRACE LONGTRACE or SHORT-TRACE TRACEON or TRACEOFF

The START subserver and REFRESH actions do not use the parm1 and parm2 fields.

Programming Subsystem Response to SRC Requests
The appropriate subsystem actions for the majority of SRC requests are programmed when the subsystem
object is defined to the SRC. See “SRC Objects” on page 698 and “Defining Your Subsystem to the SRC”
on page 711 for more information. The structures that subsystems use to respond to SRC requests are
defined in the /usr/include/spc.h file. Subsystems may use the following SRC run-time subroutines to
meet command processing requirements:

srcrrqs Allows a subsystem to store the header from a request.
srcsrpy Allows a subsystem to send a reply to a request.

See “Responding to Trace Requests” on page 710 and “Responding to Refresh Requests” on page 711 for
information on how to program support for these commands in your subsystem.

Status-request processing requires a combination of tasks and subroutines. See “Processing SRC Status
Requests” on page 708 for more information.

Chapter 26. System Resource Controller 707

../../files/aixfiles/spc.h.htm#HDRA9CF832A393SYLV
../../libs/basetrf2/srcrrqs.htm#HDRA2159678
../../libs/basetrf2/srcsrpy.htm#HDRA349F941

When subsystems receive requests they cannot process or that are invalid, they must send an error
packet with an error code of SRC_SUBICMD in response to the unknown, or invalid, request. SRC
reserves action codes 0-255 for SRC internal use. If your subsystem receives a request containing an
action code that is not valid, your subsystem must return an error code of SRC_SUBICMD. Valid action
codes supported by SRC are defined in the spc.h file. You can also define subsystem-specific action
codes. An action code is not valid if it is not defined by the SRC or your subsystem. See “Programming
Subsystems to Return SRC Error Packets” on page 710 for more information.

Note: Action codes 0-255 are reserved for SRC use.

Processing SRC Status Requests

Subsystems may be requested to provide three types of status reports: long subsystem status, short
subserver status, and long subserver status.

Note: Short subsystem status reporting is performed by the srcmstr daemon. Statcode and
reply-status value constants for this type of report are defined in the /usr/include/spc.h file. The
Status Value Constants table lists required and suggested reply-status value codes.

Reply Status Value Codes

Value Meaning Subsystem Subserver

SRCWARN Received a request to stop.
(Will be stopped within 20
seconds.)

X X

SRCACT Started and active. X X

SRCINAC Not active.

SRCINOP Inoperative. X X

SRCLOSD Closed.

SRCLSPN In the process of being
closed.

SRCNOSTAT Idle.

SRCOBIN Open, but not active.

SRCOPND Open.

SRCOPPN In the process of being
opened.

SRCSTAR Starting. X

SRCSTPG Stopping. X X

SRCTST TEST active.

SRCTSTPN TEST pending.

The SRC lssrc command displays the received information on standard output. The information returned
by subsystems in response to a long status request is left to the discretion of the subsystem. Subsystems
that own subservers are responsible for tracking and reporting the state changes of subservers, if desired.
Use the srcstathdr subroutine to retrieve a standard status header to pass back at the beginning of your
status data.

The following steps are recommended in processing status requests:

1. To return status from a subsystem (short or long), allocate an array of statcode structures plus a
srchdr structure. The srchdr structure must start the buffer that you are sending in response to the
status request. The statcode structure is defined in the /usr/include/spc.h file.

708 Writing and Debugging Programs

../../files/aixfiles/spc.h.htm#HDRA9CF832A393SYLV
../../cmds/aixcmds3/lssrc.htm#HDRA2009166
../../libs/basetrf2/srcstathdr.htm#HDRA345F9452TAGNAM
../../files/aixfiles/spc.h.htm#SPTOXYLG2C8JEFF

struct statcode
{

short objtype;
short status;
char objtext [65];
char objname [30];

};

2. Fill in the objtype field with the SUBSYSTEM constant to indicate that the status is for a subsystem, or
with a subserver code point to indicate that the status is for a subserver.

3. Fill in the status field with one of the SRC status constants defined in the spc.h file.

4. Fill in the objtext field with the NLS text that you wish displayed as status.

5. Fill in the objname field with the name of the subsystem or subserver for which the objtext field
applies.

Note: The subsystem and requester can agree to send other subsystem-defined information back
to the requester. See “srcsrpy Continuation Packets” for more information on this type of
response.

Programming Subsystems to Send Reply Packets

The packet that a subsystem returns to the SRC should be in the form of the srcrep structure as defined
in the /usr/include/spc.h file. The svrreply structure that is part of the srcrep structure will contain the
subsystem reply:
struct svrreply
{

short rtncode; /*return code from the subsystem*/
short objtype; /*SUBSYSTEM or SUBSERVER*/
char objtext[65]; /*object description*/
char objname[20]; /*object name*/
char rtnmsg[256]; /*returned message*/

};

Use the srcsrpy subroutine to return a packet to the requester.

Creating a Reply
To program a subsystem reply, use the following procedure:

1. Fill in the rtncode field with the SRC error code that applies. Use SRC_SUBMSG as the rtncode field
to return a subsystem-specific NLS message.

2. Fill in the objtype field with the SUBSYSTEM constant to indicate that the reply is for a subsystem, or
with the subserver code point to indicate that the reply is for a subserver.

3. Fill in the objname field with the subsystem name, subserver type, or subserver object that applies to
the reply.

4. Fill in the rtnmsg field with the subsystem-specific NLS message.

5. Key the appropriate entry in the srcsrpy Continued parameter. See ″srcsrpy Continuation Packets″ for
more information.

Note: The last packet from the subsystem must always have END specified in the Continued
parameter to the srcsrpy subroutine.

srcsrpy Continuation Packets

Subsystem responses to SRC requests are made in the form of continuation packets. Two types of
continuation packets may be specified: Informative message, and reply packets.

Chapter 26. System Resource Controller 709

../../libs/basetrf2/srcsrpy.htm#HDRA349F941

The informative message is not passed back to the client. Instead, it is printed to the client’s standard
output. The message must consist of NLS text, with message tokens filled in by the sending subsystem.
To send this type of continuation packet, specify CONTINUED in the srcsrpy subroutine Continued
parameter.

Note: The STOP subsystem action does not allow any kind of continuation. However, all other action
requests received by the subsystem from the SRC may be sent an informative message.

The reply packet is passed back to the client for further processing. Therefore, the packet must be agreed
upon by the subsystem and the requester. One example of this type of continuation is a status request.
When responding to subsystem status requests, specify STATCONTINUED in the srcsrpy Continued
parameter. When status reporting has completed, or all subsystem-defined reply packets have been sent,
specify END in the srcsrpy Continued parameter. The packet is then passed to the client to indicate the
end of the reply.

Programming Subsystems to Return SRC Error Packets

Subsystems are required to return error packets for both SRC errors and non-SRC errors.

When returning an SRC error, the reply packet that the subsystem returns should be in the form of the
svrreply structure of the srcrep structure, with the objname field filled in with the subsystem name,
subserver type, or subserver object in error. If the NLS message associated with the SRC error number
does not include any tokens, the error packet is returned in short form. This means the error packet
contains the SRC error number only. However, if tokens are associated with the error number, standard
NLS message text from the message catalog should be returned.

When returning a non-SRC error, the reply packet should be the rtncode field of the svrreply structure set
to the SRC_SUBMSG constant and the rtnmsg field set to a subsystem-specific NLS message. The
rtnmsg field is printed to the client’s standard output.

Responding to Trace Requests
Support for the traceson and tracesoff commands is subsystem-dependent. If you choose to support
these commands, trace actions can be specified for subsystems and subservers.

Subsystem trace requests will arrive in the following form: A subsystem trace request will have the subreq
action field set to the TRACE constant and the subreq object field set to the SUBSYSTEM constant.
The trace action uses parm1 to indicate LONGTRACE or SHORTTRACE trace, and parm2 to indicate
TRACEON or TRACEOFF.

When the subsystem receives a trace subsystem packet with parm1 set to SHORTTRACE and parm2 set to
TRACEON, the subsystem should turn short tracing on. Conversely, when the subsystem receives a trace
subsystem packet with parm1 set to LONGTRACE and parm2 set to TRACEON, the subsystem should turn
long tracing on. When the subsystem receives a trace subsystem packet with parm2 set to TRACEOFF, the
subsystem should turn subsystem tracing off.

Subserver trace requests will arrive in the following form: the subserver trace request will have the subreq
action field set to the TRACE constant and the subreq object field set to the subserver code point of the
subserver to send status on. The trace action uses parm1 to indicate LONGTRACE or SHORTTRACE, and
parm2 to indicate TRACEON or TRACEOFF.

When the subsystem receives a trace subserver packet with parm1 set to SHORTTRACE and parm2 set to
TRACEON, the subsystem should turn subserver short tracing on. Conversely, when the subsystem
receives a trace subserver packet with parm1 set to LONGTRACE and parm2 set to TRACEON, the
subsystem should turn subserver long tracing on. When the subsystem receives a trace subserver packet
with parm2 set to TRACEOFF, the subsystem should turn subserver tracing off.

710 Writing and Debugging Programs

../../cmds/aixcmds5/traceson.htm#HDRA2149D37
../../cmds/aixcmds5/tracesoff.htm#HDRA2029299

Responding to Refresh Requests
Support for subsystem refresh requests is subsystem-dependent. Subsystem programmers that choose to
support the refresh command should program their subsystems to interact with the SRC in the following
manner:

v A subsystem refresh request will have the subreq structure action field set to the REFRESH constant
and the subreq structure object field set to the SUBSYSTEM constant. The refresh subsystem action
does not use parm1 or parm2.

v When the subsystem receives the refresh request, the subsystem should reconfigure itself.

Defining Your Subsystem to the SRC

Subsystems are defined to the SRC object class as subsystem objects. Subservers are defined in the
SRC configuration database as subserver type objects. The structures associated with each type of object
are predefined in the sys/srcobj.h file.

A subsystem object is created with the mkssys command or the addssys subroutine. A subserver type
object is created with the mkserver command. You are not required to specify all possible options and
parameters using the configuration commands and subroutines. The SRC offers pre-set defaults. You must
specify only the required fields and any fields in which you want some value other than the default. See
the Subsystem Object Descriptor and Default Value table in “Subsystem Object Class” on page 699 in
″SRC Objects″ for a list of subsystem and subserver default values.

Descriptors can be added or modified at the command line by writing a shell script. They can also be
added or modified using the C interface. Commands and subroutines are available for configuring and
modifying the SRC objects.

Note: The choice of programming interfaces is provided for convenience only.

At the command line use the following commands:

mkssys Adds a subsystem definition to the SRC configuration database.
mkserver Adds a subserver definition to the SRC configuration database.
chssys Changes a subsystem definition in the SRC configuration database.
chserver Changes a subserver definition in the SRC configuration database.
rmssys Removes a subsystem definition from the SRC configuration database.
rmserver Removes a subserver definition from the SRC configuration database.

When using the C interface, use the following subroutines:

addssys Adds a subsystem definition to the SRC configuration database
chssys Changes a subsystem definition in the SRC configuration database
defssys Initializes a new subsystem definition with default values
delssys Deletes an existing subsystem definition from the SRC configuration database

Note: The object code running with the chssys subroutine must be running with the group
system.

getssys Gets a subsystem definition from the SRC configuration database
getsubsvr Gets a subserver definition from the SRC configuration database

The mkssys and mkserver commands call the defssys subroutine internally to determine subsystem and
subserver default values prior to adding or modifying any values entered at the command line.

Chapter 26. System Resource Controller 711

../../cmds/aixcmds4/refresh.htm#HDRA20092DD
../../files/aixfiles/srcobj.h.htm#HDRDAK1C0GACO
../../cmds/aixcmds3/mkssys.htm#HDRA2009247
../../libs/basetrf1/addssys.htm#HDRA2839AF5
../../cmds/aixcmds3/mkserver.htm#HDRA20091FC
../../cmds/aixcmds3/mkssys.htm#HDRA2009247
../../cmds/aixcmds3/mkserver.htm#HDRA20091FC
../../cmds/aixcmds1/chssys.htm#HDRA200911B
../../cmds/aixcmds1/chserver.htm#HDRA2009D0
../../cmds/aixcmds4/rmssys.htm#HDRA20093C4
../../cmds/aixcmds4/rmserver.htm#HDRA2009379
../../libs/basetrf1/addssys.htm#HDRA2839AF5
../../libs/basetrf1/chssys.htm#HDRA279913A6
../../libs/basetrf1/defssys.htm#HDRA27991382
../../libs/basetrf1/delssys.htm#HDRA2789CA2
../../libs/basetrf1/getssys.htm#HDRPRIX14
../../libs/basetrf1/getsubsvr.htm

The getssys and getsubsvr subroutines are used when the SRC master program or a subsystem
program needs to retrieve data from the SRC configuration files.

List of Additional SRC Subroutines

Use the following subroutines to program communication with the SRC and the subsystems controlled by
the SRC:

src_err_msg Returns message text for SRC errors encountered by SRC library routines.
(Also see threadsafe version src_err_msg_r)

srcsbuf Requests status from the subsystem in printable format.
(Also see threadsafe version srcsbuf_r)

srcsrqt Sends a message or request to the subsystem.
(Also see threadsafe version srcsrqt_r)

srcstat Requests short subsystem status.
(Also see threadsafe version srcstat_r)

srcstathdr Gets the title text for SRC status.
srcstattxt Gets the text representation for an SRC status code.

(Also see threadsafe version srcstattxt_r)
srcstop Requests termination of the subsystem.
srcstrt Requests the start of a subsystem.

712 Writing and Debugging Programs

../../libs/basetrf2/src_err_msg.htm
../../libs/basetrf2/src_err_msg_r.htm
../../libs/basetrf2/srcsbuf.htm
../../libs/basetrf2/srcsbuf_r.htm
../../libs/basetrf2/srcsrqt.htm
../../libs/basetrf2/srcsrqt_r.htm
../../libs/basetrf2/srcstat.htm
../../libs/basetrf2/srcstat_r.htm
../../libs/basetrf2/srcstathdr.htm
../../libs/basetrf2/srcstattxt.htm
../../libs/basetrf2/srcstattxt_r.htm
../../libs/basetrf2/srcstop.htm
../../libs/basetrf2/srcstrt.htm

Chapter 27. Trace Facility

The trace facility helps you isolate system problems by monitoring selected system events. Events that
can be monitored include: entry and exit to selected subroutines, kernel routines, kernel extension
routines, and interrupt handlers. When the trace facility is active, information about these events is
recorded in a system trace log file. The trace facility includes commands for activating and controlling
traces and generating trace reports. Applications and kernel extensions can use several subroutines to
record additional events.

The Trace Facility Overview
The trace facility is in the bos.sysmgt.trace file set. To see if this file set is installed, use

lslpp -l | grep bos.sysmgt.trace

If a line is produced which includes bos.sysmgt.trace then the file set is installed, otherwise you must
install it.

The following topics are discussed:

v Overview

v Controlling the trace

v Recording Trace Event Data

v Generating a Trace Report

v Extracting trace data from a dump

The AIX system trace facility records trace events which can be formatted later by the trace report
command. Trace events are compiled into kernel or application code, but are only traced if tracing is
active.

Tracing is activated with the trace command or the trcstart subroutine. Tracing is stopped with either the
trcstop command or the trcstop subroutine. While active, tracing can be suspended or resumed with the
trcoff and trcon commands, or the trcoff and trcon subroutines.

Once the trace has been stopped with trcstop, a trace report can then be generated with the trcrpt
command. This command uses a template file, /etc/trcfmt, to know how to format the entries. The
templates are installed with the trcupdate command. For a discussion of the templates, see the trcupdate
command.

Controlling the Trace
The trace command starts the tracing of system events and controls the trace buffer and log file sizes.
This command is documented in the article on the trace daemon in the Command’s Reference.

There are three methods of gathering trace data.

1. The default method is to use 2 buffers to continuously gather trace data, writing one buffer while data
is being put into the other buffer. The log file wraps when it becomes full.

2. The circular method gathers trace data continuously, but only writes the data to the log file when the
trace is stopped. This is particularly useful for debugging a problem where you know when the problem
is happening and you just want to capture the data at that time. You can start the trace at any time,
and then stop it right after the problem occurs and you’ll have captured the events around the problem.
This method is enabled with the -l trace daemon flag.

3. The third option only uses one trace buffer, and quits tracing when that buffer fills, and writes the buffer
to the log file. The trace is not stopped at this point, rather tracing is turned off as if a trcoff command

© Copyright IBM Corp. 1997, 2001 713

../../cmds/aixcmds5/trcupdate.htm
../../cmds/aixcmds5/trcupdate.htm
../../cmds/aixcmds5/trace.htm#HDRA236Y977A8

had been issued. At this point you will usually want to stop the trace with the trcstop command. This
option is most often used to gather performance data where we don’t want trace to do i/o or buffer
swapping until the data has been gathered. Use the -f flag to enable this option.

You will usually want to run the trace command asynchronously, in other words, you want to enter the
trace command and then continue with other work. To run the trace asynchronously, use the -a flag. You
must then stop the trace with the trcstop command.

It is usually desirable to limit the information that is traced. Use the -j events or -k events flags to specify
a set of events to include (-j) or exclude (-k). Note, however, that to be able to display the program names
associated with trace hooks, certain hooks must be enabled. These are given in the trace command
article. These hooks may also be enabled by selecting the tidhk trace hook group from SMIT.

For example, if you want to trace the mbuf hook, 254, and show program names also, you need to run
trace as follows:

trace -aj 106,10c,134,139,465,254

Tracing occurs.

trcstop

trcrpt -O exec=on

The hooks needed for showing the program name may change from release to release, so please check
the trace command article. The -O exec=on trcrpt option shows the program names, see the trcrpt
command.

It is often desirable to specify the buffer size and the maximum log file size. The trace buffers require real
memory to be available so that no paging is necessary to record trace hooks. The log file will fill to the
maximum size specified, and then wrap around, discarding the oldest trace data. The -T size and -L size
flags specify the size of the memory buffers and the maximum size of the trace data in the log file in
bytes.

Note: Because the trace facility pins the data collection buffers, making this amount of memory
unavailable to the rest of the system, the trace facility can impact performance in a memory-constrained
environment. If the application being monitored is not memory-constrained, or if the percentage of memory
consumed by the trace routine is small compared to what is available in the system, the impact of trace
“stolen” memory should be small. If you do not specify a value, trace uses the default sizes.

It should also be noted that the buffer memory is allocated from the kernel heap by default. If there isn’t
enough available memory, it is allocated from separate segments. On a busy system it may be desirable
to allocate the buffers from separate memory segments to avoid constraining the kernel heap. This is done
with the -B flag on the trace command.

Tracing may also be controlled from an application. See the trcstart, and trcstop articles.

Recording Trace Event Data
There are two types of trace data.

generic data
consists of a data word, a buffer of opaque data and the opaque data’s length. This is useful for
tracing items such as path names. See the Generic Trace Channels article in the Trace Facility
Overview. It can be found in “Chapter 27. Trace Facility” on page 713.

714 Writing and Debugging Programs

../../cmds/aixcmds5/trcstop.htm#HDRA26591143
../../cmds/aixcmds5/trace.htm
../../cmds/aixcmds5/trcrpt.htm#HDRA265911A9
../../cmds/aixcmds5/trcrpt.htm#HDRA265911A9
../../libs/basetrf2/trcstart.htm#HDRA284978
../../libs/basetrf2/trcstop.htm#HDRBI1240THRI

Non-generic data
This is what is normally traced by the AIX operating system. Each entry of this type consists of a
hook word and up to 5 words of trace data. For a 64-bit application these are 8-byte words. The C
programmer should use the macros TRCHKL0 through TRCHKL5, and TRCHKL0T through
TRCHKL5T defined in the /usr/include/sys/trcmacros.h file, to record non-generic data. If these
macros can not be used, see the article on the utrchook subroutine.

Generating a Trace Report
See the trcrpt command article for a full description of trcrpt. This command is used to generate a
readable trace report from the log file generated by the trace command. By default the command formats
data from the default log file, /var/adm/ras/trcfile. The trcrpt output is written to standard output.

To generate a trace report from the default log file, and write it to /tmp/rptout, enter

trcrpt >/tmp/rptout

To generate a trace report from the log file /tmp/tlog to /tmp/rptout, which includes program names and
system call names, use

trcrpt -O exec=on,svc=on /tmp/tlog >/tmp/rptout

Extracting trace data from a dump
If trace was active when the system takes a dump, the trace can usually be retrieved with the trcdead
command. To avoid overwriting the default trace log file on the current system, use the -o output-file
option.

For example

trcdead /o /tmp/tlog /var/adm/ras/vmcore.0

creates a trace log file /tmp/tlog which may then be formatted with

trcrpt /tmp/tlog

Trace Facility Commands
The following commands are part of the trace facility:

trace Starts the tracing of system events. With this command,
you can control the size and manage the trace log file as
well as the internal trace buffers that collect trace event
data.

trcdead Extracts trace information from a system dump. If the
system halts while the trace facilities are active, the
contents of the internal trace buffers are captured. This
command extracts the trace event data from the dump
and writes it to the trace log file.

trcnm Generates a kernel name list used by the trcrpt
command. A kernel name list is composed of a symbol
table and a loader symbol table of an object file. The
trcrpt command ues the kernel name list file to inerpret
addresses when formatting a report from a trace log file.

Chapter 27. Trace Facility 715

../../libs/basetrf2/trchook.htm
../../cmds/aixcmds5/trcrpt.htm#HDRA265911A9
../../cmds/aixcmds5/trcdead.htm
../../cmds/aixcmds5/trcdead.htm
../../cmds/aixcmds5/trace.htm#HDRA236Y977A8
../../cmds/aixcmds5/trcdead.htm#HDRA30896
../../cmds/aixcmds5/trcnm.htm#HDRMOKNI2ABILL

trcrpt Formats reports of trace event data contained in the trace
log file. You can specify the events to be included (or
omitted) in the report, as well as determine the
presentation of the output with this command. The trcrpt
command uses the trace formatting templates stored in
the /etc/trcfmt file to determine how to interpret the data
recorded for each event.

trcstop Stops the tracing of system events.
trcupdate Updates the trace formatting templates stored in the

/etc/trcfmt file. When you add applications or kernel
extensions that record trace events, templates for these
events must be added to the /etc/trcfmt file. The trcrpt
command will use the trace formatting templates to
determine how to interpret the data recorded for each
event. Software products that record events usually run
the trcupdate command as part of the installation
process.

Trace Facility Calls and Subroutines
The following calls and subroutines are part of the trace facility:

trcgen, trcgent Records trace events of more than five words of data. The
trcgen subroutine may be used to record an event as part
of the system event trace (trace channel 0) or to record an
event on a generic trace channel (channels 1 through 7).
You specify the channel number in a subroutine parameter
when you record the trace event. The trcgent subroutine
appends a time stamp to the event data.

trchook, utrchook Records trace events of up to five words of data. These
subroutines may be used to record an event as part of the
system event trace (trace channel 0). The utrchook
subroutine uses a special FAST-SVC path to improve
performance and should be used by programs at the user
(application) level.

trcgenk, trcgenkt Records trace events of more than five words of data. The
trcgenk subroutine may be used to record an event as
part of the system event trace (trace channel 0) or to
record an event on a generic trace channel (channels 1
through 7). You specify the channel number in a
subroutine parameter when you record the trace event.
The trcgenkt subroutine appends a time stamp to the
event data.

trcoff Suspends the collection of trace data on either the system
event trace channel (channel 0) or a generic trace channel
(1 through 7). The trace channel remains active and trace
data collection can be resumed by using the trcon
subroutine.

trcon Starts the collection of trace data on a trace channel. The
channel may be either the system event trace channel (0)
or a generic channel (1 through 7). The trace channel,
however, must have been previously activated by using
the trace command or the trcstart subroutine. You can
suspend trace data collection by using the trcoff
subroutine.

716 Writing and Debugging Programs

../../cmds/aixcmds5/trcrpt.htm#HDRA265911A9
../../cmds/aixcmds5/trcstop.htm#HDRA26591143
../../cmds/aixcmds5/trcupdate.htm#HDRA237Y97B74
../../libs/basetrf2/trcgen.htm#HDRA3129604
../../libs/basetrf2/trchook.htm#HDRBOG1F0KEVI
../../libs/ktechrf1/trcgenk.htm#HDRV9F360NICK
../../libs/ktechrf1/trcgenkt_Kernel.htm#HDRO4F230NICK
../../libs/basetrf2/trcoff.htm#HDRA28497B
../../libs/basetrf2/trcon.htm#HDRA3119E42

trcstart Requests a generic trace channel. This subroutine
activates a generic trace channel and returns the channel
number to the calling application to use in recording trace
events using the trcgen, trcgent, trcgenk, and trcgenkt
subroutines.

trcstop Frees and deactivates a generic trace channel.

Trace Facility Files

/etc/trcfmt Contains the trace formatting templates used by the trcrpt
command to determine how to interpret the data recorded
for each event.

/var/adm/ras/trcfile Contains the default trace log file. The trace command
allows you to specify a different trace log file.

/usr/include/sys/trchkid.h Contains trace hook identifier definitions.
/usr/include/sys/trcmacros.h Contains commonly used macros for recording trace

events.

Trace Event Data
The data recorded for each traced event consist of a word containing the trace hook identifier and the
hook type followed by a variable number of words of trace data optionally followed by a time stamp. The
word containing the trace hook identifier and the hook type is called the hook word. The remaining two
bytes of the hook word are called hook data and are available for recording event data.

Trace Hook Identifiers
A trace hook identifier is a three-digit hexadecimal number that identifies an event being traced. You
specify the trace hook identifier in the first twelve bits of the hook word. Trace hook identifiers are defined
in the /usr/include/sys/trchkid.h file. The values 0x010 through 0x0FF are available for use by user
applications. All other values are reserved for system use. The currently defined trace hook identifiers can
be listed using the trcrpt -j command.

Hook Types
The hook type identifies the composition of the event data and is user-specified. The twelfth through the
sixteenth bits of the hook word constitute the hook type. For more information on hook types, refer to the
trcgen, trcgenk, and trchook subroutines.

Trace Facility Generic Trace Channels
The trace facility supports up to eight active trace sessions at a time. Each trace session uses a channel
of the multiplexed trace special file, /dev/systrace. Channel 0 is used by the trace facility to record system
events. The tracing of system events is started and stopped by the trace and trcstop commands.
Channels 1 through 7 are referred to as generic trace channels and may be used by subsystems for other
types of tracing such as data link tracing.

To implement tracing using the generic trace channels of the trace facility, a subsystem calls the trcstart
subroutine to activate a trace channel and to determine the channel number. The subsystem modules can
then record trace events using the trcgen, trcgent, trcgenk, or trcgenkt subroutine. The channel number
returned by the trcstart subroutine is one of the parameters that must be passed to these subroutines.
The subsystem can suspend and resume trace data collection using the trcoff and trcon subroutines and
can deactivate a trace channel using the trcstop subroutine. The trace events for each channel must be
written to a separate trace log file, which must be specified in the call to the trcstart subroutine. The
subsystem must provide the user interface to activating and deactivating subsystem tracing.

The trace hook IDs, which are stored in the /usr/include/sys/trchkid.h file, and the trace formatting
templates, which are stored in the /etc/trcfmt file, are shared by all the trace channels.

Chapter 27. Trace Facility 717

../../libs/basetrf2/trcstart.htm#HDRA284978
../../libs/basetrf2/trcstop.htm#HDRBI1240THRI
../../files/aixfiles/trcfmt.htm#HDREVN21E0KEVI

Related Information
The trace daemon in AIX 5L Version 5.1 Commands Reference.

The trcdead command, trcnm command, trcrpt command, trcstop command, trcupdate command in
AIX 5L Version 5.1 Commands Reference.

The trchook subroutine, trcgen subroutine, trcoff subroutine, trcon subroutine, trcstart subroutine,
trcstop subroutine in AIX 5L Version 5.1 Technical Reference: Base Operating System and Extensions
Volume 2.

Start the Trace Facility

Use the following procedures to configure and start a system trace:

v “Configuring the trace Command”

v “Recording Trace Event Data” on page 719

v “Using Generic Trace Channels” on page 720

v “Starting a Trace” on page 720

v “Stopping a Trace” on page 720

v “Generating a Trace Report” on page 721

Configuring the trace Command

The trace command starts the tracing of system events and controls the size of and manages the trace
log file, as well as the internal trace buffers that collect trace event data. The syntax of this command is:
trace [-fl] [-ad] [-s] [-h] [-jk events] [,events] [-m message] [-o outfile][-g] [-T buf_sz] [-L log_sz]

The various options of the trace command are:

-f or -l Controls the capture of trace data in system memory. If you specify
neither the -f nor -l option, the trace facility creates two buffer areas in
system memory to capture the trace data. The trace log files and the
internal trace buffers that collect trace event data can be managed,
including their size, by this command. The -f or -l flag provides the ability
to prevent data from being written to the file during data collection. The
options are to collect data only until the memory buffer becomes full (-f for
first), or to use the memory buffer as a circular buffer that captures only
the last set of events that occurred before trace was terminated (-l). The
-f and -l options are mutually exclusive. With either the -f or -l option,
data is not transferred from the memory collection buffers to file until
trace is terminated.

-a Runs the trace collection asynchronously (as a background task),
returning a normal command line prompt. Without this option, the trace
command runs in a subcommand mode and returns a > prompt. You can
issue subcommands and regular shell commands from the trace
subcommand mode by preceding the shell commands with an !
(exclamation point).

-d Delays data collection. The trace facility is only configured. Data collection
is delayed until one of the collection trigger events occurs. Various
methods for triggering data collection on and off are provided. These
include the following:

v trace subcommands

v trace commands

v trace subroutines.

718 Writing and Debugging Programs

../../cmds/aixcmds5/trace.htm#HDRA236Y977A8
../../cmds/aixcmds5/trcdead.htm#HDRA30896
../../cmds/aixcmds5/trcnm.htm#HDRMOKNI2ABILL
../../cmds/aixcmds5/trcrpt.htm#HDRA265911A9
../../cmds/aixcmds5/trcstop.htm#HDRA26591143
../../cmds/aixcmds5/trcupdate.htm#HDRA237Y97B74
../../libs/basetrf2/trchook.htm#HDRBOG1F0KEVI
../../libs/basetrf2/trcgen.htm#HDRA3129604
../../libs/basetrf2/trcoff.htm#HDRA28497B
../../libs/basetrf2/trcon.htm#HDRA3119E42
../../libs/basetrf2/trcstart.htm#HDRA284978
../../libs/basetrf2/trcstop.htm#HDRBI1240THRI

-j events or -k events Specifies a set of events to include (-j) or exclude (-k) from the collection
process. Specifies a list of events to include or exclude by a series of
three-digit hexadecimal event IDs separated by a space.

-s Terminate trace data collection if the trace log file reaches its maximum
specified size. The default without this option is to wrap and overwrite the
data in the log file on a FIFO basis.

-h Does not write a date/sysname/message header to the trace log file.
-m message Specifies a text string (message) to be included in the trace log header

record. The message is included in reports generated by the trcrpt
command.

-o outfile Specifies a file to use as the log file. If you do not use the -o option, the
default log file is /var/adm/ras/trcfile. To direct the trace data to standard
output, code the -o option as -o -. Use this technique only to pipe the
data stream to another process since the trace data contains raw binary
events that are not displayable.

-g Duplicates the trace design for multiple channels. Channel 0 is the default
channel and is always used for recording system events. The other
channels are generic channels, and their use is not predefined. There are
various uses of generic channels in the system. The generic channels are
also available to user applications. Each created channel is a separate
events data stream. Events recorded to channel 0 are mixed with the
predefined system events data stream. The other channels have no
predefined use and are assigned generically.

A program typically requests that a generic channel be opened by using
the trcstart subroutine. A channel number is returned, similar to the way
a file descriptor is returned when a file is opened (the channel ID). The
program can record events to this channel and, thus, have a private data
stream. Less frequently, the trace command allows a generic channel to
be specifically configured by defining the channel number with this option.

-T size and -L size Specifies the size of the collection memory buffers and the maximum size
of the log file in bytes.

Note: Because the trace facility pins the data collection buffers,
making this amount of memory unavailable to the rest of the
system, the trace facility can impact performance in a
memory-constrained environment. If the application being monitored
is not memory-constrained, or if the percentage of memory
consumed by the trace routine is small compared to what is
available in the system, the impact of trace ″stolen″ memory should
be small.

If you do not specify a value, trace uses a default size.

Recording Trace Event Data

The data recorded for each traced event consist of a word containing the trace hook identifier and the
hook type followed by a variable number of words of trace data optionally followed by a time stamp. The
word containing the trace hook identifier and the hook type is called the hook word. The remaining two
bytes of the hook word are called hook data and are available for recording event data.

Trace Hook Identifiers

A trace hook identifier is a three-digit hexadecimal number that identifies an event being traced. You
specify the trace hook identifier in the first 12 bits of the hook word. The values 0x010 through 0x0FF are
available for use by user applications. All other values are reserved for system use. The trace hook
identifiers for the installed software can be listed using the trcrpt -j command.

Chapter 27. Trace Facility 719

The trace hook IDs, which are stored in the /usr/include/sys/trchkid.h file, and the trace formatting
templates, which are stored in the /etc/trcfmt file, are shared by all the trace channels.

Hook Types
The hook type identifies the composition of the event data and is user-specified. Bits 12 through 16 of the
hook word constitute the hook type. For more information on hook types, refer to the trcgen, trcgenk, and
trchook subroutines.

Using Generic Trace Channels

The trace facility supports up to eight active trace sessions at a time. Each trace session uses a channel
of the multiplexed trace special file, /dev/systrace. Channel 0 is used by the trace facility to record system
events. The tracing of system events is started and stopped by the trace and trcstop commands.
Channels 1 through 7 are referred to as generic trace channels and may be used by subsystems for other
types of tracing such as data link tracing.

To implement tracing using the generic trace channels of the trace facility, a subsystem calls the trcstart
subroutine to activate a trace channel and to determine the channel number. The subsystem modules can
then record trace events using the trcgen, trcgent, trcgenk, or trcgenkt subroutine. The channel number
returned by the trcstart subroutine is one of the parameters that must be passed to these subroutines.
The subsystem can suspend and resume trace data collection using the trcoff and trcon subroutines and
can deactivate a trace channel using the trcstop subroutine. The trace events for each channel must be
written to a separate trace log file, which must be specified in the call to the trcstart subroutine. The
subsystem must provide the user interface for activating and deactivating subsystem tracing.

Starting a Trace

Use the one of the following procedures to start the trace facility.

v Start the trace facility by using the trace command.

Start the trace asynchronously. For example:
trace -a
mycmd
trcstop

When using the trace facility asynchronously, use the trace daemon to trace the selected system events
(such as the mycmd command); then, use the trcstop command to stop the trace.

OR

Start the trace interactively. For example:
trace
->!mycmd
->quit

When using the trace facility interactively, get into the interactive mode as denoted by the -> prompt,
and use the trace subcommands (such as !) to trace the selected system events. Use the quit
subcommand to stop the trace.

v Use smit trace, and choose the Start Trace option.
smit trace

Stopping a Trace

Use one of the following procedures to stop the trace you started earlier.

v When using trace asynchronously at the command line, use the trcstop command:

720 Writing and Debugging Programs

trace -a
mycmd
trcstop

When using the trace facility asynchronously, use the trace daemon to trace the selected system events
(such as the mycmd command); then, use the trcstop command to stop the trace.

v When using trace interactively at the command line, use the quit subcommand:
trace
->!mycmd
->quit

The interactive mode is denoted by the -> prompt. Use the trace subcommands (such as !) to trace the
selected system events. Use the quit subcommand to stop the trace.

v Use smit trace and choose the Stop Trace option:
smit trace

Generating a Trace Report

Use either of the following procedures to generate a report of events that have been traced.

v Use the trcrpt command:
trcrpt>/tmp/NewFile

The previous example formats the trace log file and sends the report to /tmp/newfile. The trcrpt
command reads the trace log file, formats the trace entries, and writes a report.

v Use the smit trcrpt command:
smit trcrpt

Trace Hook IDs: 001 through 10A

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

001 : HKWD TRACE TRCON
This event is recorded by the trcon ioctl of the /dev/systrcctl file.

Recorded Data

TRACE ON channel channel number

channel channel number Trace channel number:

0 System event trace
1-7 Generic trace channels.

002 : HKWD TRACE TRCOFF
This event is recorded by the trcoff ioctl of the /dev/systrcctl file.

Recorded Data

TRACE OFF channel channel number

channel channel number Trace channel number:

Chapter 27. Trace Facility 721

0 System event trace
1-7 Generic trace channels.

003 : HKWD TRACE HEADER
This event is used to record the timestamp and the system information that appear at the top of the trace
report.

Recorded Data

timestamp System system name Machine machine id Internet Address internet address

timestamp Date and time the trace log was created
System system name Operating system name, release, and version
Machine machine id The machine ID
Internet Address internet address The Internet address of this machine.

004 : HKWD TRACE NULL
This hook ID is used to provide a template for formatting events for which the trace hook ID is 000.

Recorded Data

TRACEID IS ZERO hookword=hookword file=file name index=value

hookword=hookword The contents of the hook word
file=file name The trace log file pathname
index=value The offset into the trace log file of the event.

005 : HKWD TRACE LWRAP
The trace daemon records this hook ID each time the trace log file wraps.

Recorded Data

LOGFILE WRAPAROUND count

Wraparound count Number of times log file has wrapped.

006 : HKWD TRACE TWRAP
This event is recorded by the trchk and trcgen subroutines each time the trace buffer wraps.

Recorded Data

TRACEBUFFER Wraparound count value missed entries

Wraparound count Number of times trace buffer has wrapped
value missed entries Number of entries overwritten.

007 : HKWD TRACE UNDEFINED
This hook ID is used to provide a template for formatting undefined events. Events in the trace log file for
which there is no template defined in the /etc/trcfmt file are formatted using this template.

722 Writing and Debugging Programs

Recorded Data

UNDEFINED TRACE ID idx offset traceid trace id hookword hookword type hook type hookdata data

idx offset Offset of event into the trace log file
traceid trace id Trace hook ID of undefined event
hookword hookword The contents of the hook word for the event
type hook type The hook type (0-7)
hookdata data The data recorded for the event is printed in hexadecimal.

100 : HKWD KERN FLIH
This event is recorded by the First Level Interrupt Handler in the event of a first-level interrupt. Return from
FLIH is recorded by hook ID 200 : HKWD KERN RESUME.

Recorded Data

Type of interrupt:
Machine Check

Data Access Page Fault

Instruction Page Fault

I/O Interrupt

Alignment Error

Program Check

Floating Point Unavailable

101 : HKWD KERN SVC
This event is recorded by SVC handler on entry to a subroutine.

Recorded Data

Name of the subroutine.

102 : HKWD KERN SLIH
This event is recorded by the Second Level Interrupt Handler in the event of a second-level interrupt.
Return from SLIH is recorded by hook ID 103 : HKWD KERN SLIHRET.

Recorded Data

The name of the SLIH function.

103 : HKWD KERN SLIHRET
This event ID is recorded by the Second Level Interrupt Handler on return from a second-level interrupt.

Recorded Data

return from slih

Chapter 27. Trace Facility 723

104 : HKWD KERN SYSCRET
This event is recorded by the SVC handler on return from a subroutine.

Recorded Data

return from subroutine error errno

subroutine Name of the subroutine
error errno If errno is nonzero, the value of the errno global variable is printed.

105 : HKWD KERN LVM
This event is recorded by the Logical Volume Manager for selected events.

Recorded Data

Event:

LVM relocingblk bp=value pblock=value relblock=value Encountered relocated block

bp=value
Buffer pointer

pblock=value
Physical block number

relblock=value
Relocated block number.

LVM oldbadblk bp=value pblock=value state=value
bflags

Bad block waiting to be relocated

bp=value Buffer pointer
pblock=value Physical block number
state=value State of the physical volume
bflags Buffer flags are defined in the sys/buf.h file.

LVM badblkdone bp=value Block relocation complete

bp=value Buffer pointer.

LVM newbadblk bp=value badblock=value error=value
bflags

New bad block found

bp=value Buffer pointer
badblock=value Block number of bad block
error=value System error number (the errno global variable)
bflags Buffer flags are defined in the sys/buf.h file.

LVM swreloc bp=value status=value error=value
retry=value

Software relocating bad block

bp=value Buffer pointer
status=value Bad block directory entry status

724 Writing and Debugging Programs

error=value System error number (the errno global variable)
retry=value Relocation entry count.

LVM resyncpp bp=value bflags Resyncing Logical Partition mirrors

bp=value Buffer pointer
bflags Buffer flags are defined in the sys/buf.h file.

LVM open device name flags=value Open

device name Name of the device
flags=value Open file mode.

LVM close device name Close

device name Name of the device.

LVM read device name ext=value Read

device name Name of the device
ext=value Extension parameters.

LVM write device name ext=value Write

device name Name of the device
ext=value Extension parameters.

LVM ioctl device name cmd=value arg=value ioctl

device name Name of the device
cmd=value ioctl command
arg=value ioctl arguments.

106 : HKWD KERN DISPATCH
This event is recorded by the dispatcher when a process thread is dispatched.

Recorded Data

dispatch process name process id

process name Name of the dispatched process
process id Process ID of the dispatched process.

dispatch cmd=process name pid=process id tid=thread id priority=priority old_tid=old thread id old_priority=old
priority
dispatch scheduler
process name Process name of the dispatched thread.

Chapter 27. Trace Facility 725

process id Process ID of the dispatched thread.
thread id Thread ID of the dispatched thread.
priority Priority of the dispatched thread.
old thread id Thread ID of the thread that dispatches.
old priority Priority of the thread that dispatches.

107 : HKWD LFS LOOKUP
This event is recorded by the lookuppn kernel service.

Recorded Data

lookuppn pathname

pathname Path name of the current file.

108 : HKWD SYSC LFS
This event is recorded by the file system related subroutines.

Recorded Data

Event:

access file mode access subroutine
fchmod file mode fchmod subroutine
chown file name uid=value gid=value chown subroutine
fchown file name uid=value gid=value fchown subroutine
chownx file name uid=value gid=value chownx subroutine
fchownx file name uid=value gid=value fchownx subroutine
ftruncate file name to length ftruncate subroutine
truncate file name to length truncate subroutine
ioctlx file name cmd=value ioctlx subroutine
lockfx file name start=value length=value whence=value lockfx subroutine
mknod file name file mode mknod subroutine
fsync file name fsync subroutine
readx (fd,buf,count) file name readx subroutine
writex (fd,buf,count) file name writex subroutine

726 Writing and Debugging Programs

openx file name fd=value file mode openx subroutine

file name
File path name

uid=value
User ID

gid=value
Group ID

fd=value
File descriptor

file mode
File mode

to length
Length to truncate to

cmd=value
ioctl operation

start=value
Starting offset

length=value
Length to lock

whence=value
Type of lock

(fd,buf,count)
File descriptor, buffer pointer, and count.

10A : HKWD KERN PFS
This event is recorded by the kernel physical file system for selected events.

Recorded Data

Event:

PFS rdwr (vp, ip)=(vp, ip) filename

PFS readi VA.S=value bcount=value ip=value filename

PFS writei VA.S=value bcount=value ip=value filename

(vp, ip)=(vp, ip)

vp v_node pointer
ip i_node pointer
filename File path name
VA.S=value Segment ID that maps the file
bcount=value Byte count.

Trace Hook IDs: 10B through 14E

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

Chapter 27. Trace Facility 727

10B : HKWD KERN LVMSIMP
This event is recorded by Logical Volume Manager for selected events.

Recorded Data

Event:

LVM rblocked: bp=value Request blocked by conflict resolution

bp=value
Buffer pointer.

LVM pend: bp=value resid=value error=value bflags End of physical operation

bp=value Buffer pointer
resid=value Residual byte count
error=value System error number (the errno global variable)
bflags Buffer flags are defined in the sys/buf.h file.

bp=value Buffer pointer
resid=value Residual byte count
error=value System error number (the errno global variable)
bflags Buffer flags are defined in the sys/buf.h file.
LVM lstart: device name bp=value lblock=value bcount=value bflags opts:value Start of logical operation

device name Device name
bp=value Buffer pointer
lblock=value Logical block number
bcount=value Byte count
bflags Buffer flags are defined in the sys/buf.h file
opts: value Possible values:

WRITEV

HWRELOC

UNSAFEREL

RORELOC

NO_MNC

MWC_RCV_OP

RESYNC_OP

AVOID_C1

AVOID_C2

AVOID_C3

device name
Device name

pblock=value Physical block number

728 Writing and Debugging Programs

(lbp,pbp)=(lbp,pbp) Description of variables:

lbp Logical buffer pointer

pbp Physical buffer pointer.

opts: value Possible values:

WRITEV

HWRELOC

UNSAFEREL

RORELOC

NO_MNC

MWC_RCV_OP

RESYNC_OP

AVOID_C1

AVOID_C2

AVOID_C3

bflags Buffer flags are defined in the sys/buf.h file

filename File path name.

10C : HKWD KERN IDLE
This event is recorded by the dispatcher when dispatching a thread of the idle process.

Recorded Data

dispatch: idle process pid=process id tid=thread id priority=priority old_tid=old thread id
old_priority=old priority

process id Process ID of the dispatched thread.
thread id Thread ID of the dispatched thread.
priority Priority of the dispatched thread.
old thread id Thread ID of the thread that dispatches.
old priority Priority of the thread that dispatches.

10F : HKWD KERN EOF
This event is recorded by the kernel end of a file routine.

Recorded Data

KERN_EOF hookdata data

hookdata data The data printed for this event is recorded in hexadecimal.

Chapter 27. Trace Facility 729

110 : HKWD KERN STDERR
This event is recorded by the kernel stderr routine.

Recorded Data

KERN_STERR hookdata data

hookdata data The data recorded for the event is printed in hexadecimal.

112 : HKWD KERN LOCK
This event is recorded on each lock request.

Recorded Data

lock: sub-hook lock addr=lock lock status=content request_mode=mode return addr=address
name=name

sub-hook Possible values:

lock

miss

recu

busy
lock Address of the lock.
content Content of the lock

Possible values:

LOCK_WRITE

LOCK_READ

LOCK_UPGRADE

LOCK_DOWNGRADE

address - Return address of the call.

name

113 : HKWD KERN UNLOCK
This event is recorded on each unlock request.

Recorded Data

unlock: lock addr=lock lock status=content return addr=address name=name

lock Address of the lock.
content Content of the lock
address Return address of the call.

730 Writing and Debugging Programs

name

114 : HKWD KERN LOCKALLOC
This event is recorded when allocating a lock.

Recorded Data

lockalloc: lock addr=lock name=class.occurence return addr=address

lock Address of the lock.
class Class name of the lock.
occurence Index of the lock in the class.
address Return address of the call.

115 : HKWD KERN SETRECURSIVE
This event is recorded by the lock_set_recursive and lock_clear_recursive kernel services.

Recorded Data

SETRECURSIVE lock addr=lock return addr=address

CLEARRECURSIVE lock addr=lock return addr=address

lock Address of the lock.
address Return address of the call.

116 : HKWD KERN XMALLOC
This event is recorded by the kernel xmalloc routine.

Recorded Data

xmalloc (size, align, heap)

size Number of bytes to allocate
align Alignment characteristics for the allocated memory
heap Address of the heap from which memory is to be allocated.

117 : HKWD KERN XMFREE
This event is recorded by the kernel xmfree routine.

Recorded Data

xfree (address, heap)

address Address of area in memory to free
heap Address of the heap from which memory is to be allocated.

118 : HKWD KERN FORKCOPY
This event is recorded by the forkcopy routine.

Recorded Data

Chapter 27. Trace Facility 731

vmm_forkcopy

119 : HKWD KERN SENDSIGNAL
This event is recorded by the kernel sendsignal routine.

Recorded Data

KERN_SENDSIGNAL hookdata data

hookdata data The data recorded for this event is printed in hexadecimal.

11A : HKWD KERN RCVSIGNAL
This event is recorded by the kernel rcvsignal routine.

Recorded Data

KERN_RCVSIGNAL hookdata data

hookdata data The data recorded for this event is printed in hexadecimal.

11B : HKWD KERN LOCKL
This event is recorded by the kernel lockl routine.

Recorded Data

KERN_LOCKL hookdata data

hookdata data The data recorded for this event is printed in hexadecimal.

11C : HKWD KERN P SLIH
This event is recorded by the sigreturn routine.

Recorded Data

KERN_SIGRETURN hookdata data

hookdata data The data recorded for this event is printed in hexadecimal.

11D : HKWD KERN SIG SLIH
This event is recorded by the sigdeliver routine.

Recorded Data

KERN_SIGDELIVER hookdata data

hookdata data The data recorded for this event is printed in hexadecimal.

732 Writing and Debugging Programs

11E : HKWD KERN ISSIG
This event is recorded by the kernel issig routine.

Recorded Data

issig

11F : HKWD KERN SORQ
This event is recorded by the kernel set on ready queue routine.

Recorded Data

setrq: cmd=process name pid=process id tid=thread id priority=priority policy=policy

process name Process name of the thread set on the ready queue.
process id Process ID of the thread set on the ready queue.
thread id Thread ID of the thread set on the ready queue.
priority Priority of the thread set on the ready queue.
policy Scheduling policy of the thread set on the ready queue.

120 : HKWD SYSC ACCESS
This event is recorded by the access subroutine.

Recorded Data

access mode=value

mode=value Requested access.

121 : HKWD SYSC ACCT
This event is recorded by the acct subroutine.

Recorded Data

acct fname=value

fname=value File path name.

122 : HKWD SYSC ALARM
This event is recorded by the alarm subroutine.

Recorded Data

alarm secs seconds

alarm off (zero seconds specified)

secs seconds Number of seconds specified.

Chapter 27. Trace Facility 733

12E : HKWD SYSC CLOSE
This event is recorded by the close subroutine.

Recorded Data

close filename fd=value

filename File path name
fd=value File descriptor.

134 : HKWD SYSC EXECVE
This event is recorded by the exec subroutine.

Recorded Data

File path name.

filename File path name.
process id Process ID.
thread id Thread ID.

135 : HKWD SYSC EXIT
This event is recorded by the exit subroutine.

Recorded Data

exit wait_status=value lockct=value

wait_status=value Wait status
lockct=value Lock count.

139 : HKWD SYSC FORK
This event is recorded by the fork subroutine.

Recorded Data

Process ID.

process id Process ID.
thread id Thread ID.

145 : HKWD SYSC GETPGRP
This event is recorded by the getpgrp subroutine.

Recorded Data

GETPGRP

734 Writing and Debugging Programs

146 : HKWD SYSC GETPID
This event is recorded by the getpid subroutine.

Recorded Data

GETPID

147 : HKWD SYSC GETPPID
This event is recorded by the getppid subroutine.

Recorded Data

GETPPID

14C : HKWD SYSC IOCTL
This event is recorded by the ioctl subroutine.

Recorded Data

Event:

ioctl fd=value command=value arg=value

ioctl fd=value TCGETA

ioctl fd=value TCSETA

ioctl fd=value TCSETAW

ioctl fd=value TCSETAF

ioctl fd=value TCSBRK arg=value

ioctl fd=value TCXONC arg=value

ioctl fd=value TCXFLSH arg=value

fd=value File descriptor.

command=value

arg=value

14E : HKWD SYSC KILL
This event is recorded by the kill subroutine.

Recorded Data

signal value Signal name.
to process process id
process name

Chapter 27. Trace Facility 735

Trace Hook IDs: 152 through 19C

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

152 : HKWD SYSC LOCKF
This event is recorded by the lockf subroutine.

Recorded Data

Event:

lockf filename fd=value unlock value bytes
lockf filename fd=value lock_wait value bytes
lockf filename fd=value lock_busy value bytes
filename File path name
fd=value File descriptor
value bytes Number of bytes.

154 : HKWD SYSC LSEEK
This event is recorded by the lseek subroutine.

Recorded Data

Event:

lseek fd=file descriptor to offset
lseek fd=file descriptor relative offset
lseek fd=file descriptor relative offset from end of file
lseek fd=file descriptor offset=offset whence=whence (whence)
fd=file descriptor File descriptor
offset=offset Offset into file
relative offset Offset into file
whence=whence

Value Meaning

0 From beginning

1 From current offset

2 From end of file.

15F : HKWD SYSC PIPE
This event is recorded by the pipe subroutine.

Recorded Data

pipe read_fd=value write_fd=value
read_fd=value Read file descriptor
write_fd=value Write file descriptor.

736 Writing and Debugging Programs

160 : HKWD SYSC PLOCK
This event is recorded by the pblock subroutine.

Recorded Data

Event:

pblock process UNLOCK
pblock process PROCESS LOCK
pblock process TEXT SEGMENT LOCK
pblock process DATA SEGMENT DATLOCK

process
Process name.

169 : HKWD SYSC SBREAK
This event is recorded by the sbreak subroutine.

Recorded Data

sbreak new dmax is value
new dmax is value

Value of dmax.

16E : HKWD SYSC SETPGRP
This event is recorded by the setpgid subroutine.

Recorded Data

setpgid pid=value pgrp=value
pid=value Process ID
pgrp=value Process group.

16F : HKWD SYSC SETPRIO
This event is recorded by the sbreak subroutine.

Recorded Data

SBREAK SUBROUTINE hookdata data
hookdata data

The data recorded for this event is printed in
hexadecimal.

180 : HKWD SYSC SIGACTION
This event is recorded by the sigaction subroutine.

Chapter 27. Trace Facility 737

Recorded Data

sigaction signal value mask=value
signal value

Signal number and name

mask=value
sigaction mask.

181 : HKWD SYSC SIGCLEANUP
This event is recorded by the sigcleanup subroutine.

Recorded Data

SIGCLEANUP

18E : HKWD SYSC TIMES
This event is recorded by the times subroutine.

Recorded Data

TIMES subroutine times u=value s=value cu=value
cs=value (ticks) u=value

The CPU time (in ticks) used while executing
instructions in the user space of the calling
process

s=value
The CPU time (in ticks) used by the system on
behalf of the calling process

cu=value
The CPU time (in ticks) used while executing
instructions in the user space of child processes
of the calling process

cs=value
The CPU time (in ticks) used by the system on
behalf of child processes of the calling
processes.

18F : HKWD SYSC ULIMIT
This event is recorded by the ulimit subroutine.

Recorded Data

Event:

ulimit get fsize
ulimit set fsize to newlimit
ulimit get data limit
ulimit set data limit to newlimit
ulimit get stack
ulimit set stack limit to newlimit
ulimit get RAWDIR compatibility mode (REALDIR)
ulimit clear RAWDIR compatibility mode (REALDIR)

738 Writing and Debugging Programs

ulimit set RAWDIR compatibility mode (REALDIR)
ulimit get TRUNCATE compatibility mode
(SYSVLOOKUP)
ulimit clear TRUNCATE compatibility mode
(SYSVLOOKUP)
ulimit set TRUNCATE compatibility mode
(SYSVLOOKUP)

195 : HKWD SYSC USRINFO
This event is recorded by the usrinfo subroutine.

Recorded Data

usrinfo

19B : HKWD SYSC WAIT
This event is recorded by the wait subroutine.

Recorded Data

wait rv=value pflag=value wstat=value
rv=value

Value of the rv argument

pflag=value
Wait operation

wstat=value
Returned status.

Trace Hook IDs: 1A4 through 1BF

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

1A4 : HKWD SYSC GETRLIMIT
This event is recorded by the getrlimit subroutine.

Recorded Data

Event:

getrlimit resource=0 CPU TIME
getrlimit resource=1 MAX FILE SIZE
getrlimit resource=2 DATA SEGMENT SIZE
getrlimit resource=3 SIZE SIZE
getrlimit resource=4 CORE FILE SIZE
getrlimit resource=5 RESIDENT SET SIZE

1A5 : HKWD SYSC SETRLIMIT
This event is recorded by the setrlimit subroutine.

Recorded Data

Chapter 27. Trace Facility 739

Event:

setrlimit resource=0 CPU TIME
setrlimit resource=1 MAX FILE SIZE
setrlimit resource=2 DATA SEGMENT SIZE
setrlimit resource=3 SIZE SIZE
setrlimit resource=4 CORE FILE SIZE
setrlimit resource=5 RESIDENT SET SIZE

1A6 : HKWD SYSC GETRUSAGE
This event is recorded by the getrusage subroutine.

Recorded Data

Event:

getrusage who=value of self
getrusage who=value of children

who=value Possible values:

RUSAGE_SELF

RUSAGE_CHILDREN

1A7 : HKWD SYSC GETPRIORITY
This event is recorded by the getpriority subroutine.

Recorded Data

Event:

getpriority of process process id process name

getpriority of process group process id process name

getpriority of uid (current process)

1A8 : HKWD SYSC SETPRIORITY
This event is recorded by the setpriority subroutine.

Recorded Data

Event:

setpriority of process process id process name
setpriority of process group process id process name
setpriority of uid (current process)

1A9 : HKWD SYSC ABSINTERVAL
This event is recorded by the absinterval subroutine.

740 Writing and Debugging Programs

Recorded Data

absinterval timerid=value
timerid=value

Timer identifier.

1AA : HKWD SYSC GETINTERVAL
This event is recorded by the getinterval subroutine.

Recorded Data

getinterval timerid=value
timerid=value

Timer identifier.

1AB : HKWD SYSC GETTIMER
This event is recorded by the gettimer subroutine.

Recorded Data

gettimer timer_type=value
timer_type=value

Timer type.

1AC : HKWD SYSC INCINTERVAL
This event is recorded by the incinterval subroutine.

Recorded Data

incinterval timerid=value
timerid=value

Timer identifier.

1AD : HKWD SYSC RESTIMER
This event is recorded by the restimer subroutine.

Recorded Data

restimer timer_type=value
timer_type=value

Timer type.

1AE : HKWD SYSC RESABS
This event is recorded by the resabs subroutine.

Chapter 27. Trace Facility 741

Recorded Data

resabs timer_type=value
timer_type=value

Timer type.

1AF : HKWD SYSC RESINC
This event is recorded by the resinc subroutine.

Recorded Data

resinc timer_type=value
timer_type=value

Timer type.

1B0 : HKWD VMM ASSIGN
This event is recorded by the virtual memory manager.

Recorded Data

VMM page assign: V.S=value.value ppage=value
segment state

Assign a real page frame to a segment

V.S=value.value Virtual page number and virtual memory identifier
ppage=value Real page frame number
segment state Segment state information:
WS Working storage
WS_delete Working storage with delete pending
delete_pending
delete_in_progress
delete_when_iodone
working_storage
client_segment
persistent_storage
journalled
log
deferred_update
system_segment
pta_segment
hidden
commit_in_progress
modified
(type 0) Page-protection bits = 00
(type 1) Page-protection bits = 01
(type 2) Page-protection bits = 02

(type 3)
Page-protection bits = 03.

1B1 : HKWD VMM DELETE
This event is recorded by the virtual memory manager.

742 Writing and Debugging Programs

Recorded Data

VMM page delete: V.S=value.value ppage=value
segment state

Delete real page frame from a segment

V.S=value.value Virtual page number and virtual memory identifier
ppage=value Real page frame number

segment state
Segment state information.

1B2 : HKWD VMM PGEXCT
This event is recorded by the virtual memory manager.

Recorded Data

VMM pagefault: V.S=value.value segment state Page fault (other than protection fault or hardware
lock-miss faults)

V.S=value.value Virtual page number and virtual memory identifier

segment state
Segment state information.

1B3 : HKWD VMM PROTEXCT
This event is recorded by the virtual memory manager.

Recorded Data

VMM protection fault: V.S=value.value ppage=value
segment state

Page-protection fault

V.S=value.value Virtual page number and virtual memory identifier
ppage=value Real page frame number

segment state
Segment state information.

1B4 : HKWD VMM LOCKEXCT
This event is recorded by the virtual memory manager.

Recorded Data

VMM lockmiss: V.S=value.value ppage=value segment
state

Hardware lock miss

V.S=value.value Virtual page number and virtual memory identifier
ppage=value Real page frame number

segment state
Segment state information.

1B5 : HKWD VMM RECLAIM
This event is recorded by the virtual memory manager.

Chapter 27. Trace Facility 743

Recorded Data

VMM reclaim: V.S=value.value ppage=value segment
state

Reclaim a page in the I/O state

V.S=value.value Virtual page number and virtual memory identifier
ppage=value Real page frame number

segment state
Segment state information.

1B6 : HKWD VMM GETPARENT
This event is recorded by the virtual memory manager.

Recorded Data

VMM getparent: V.S=value.value ppage=value segment
state

Move a page from the parent segment to the child
segment

V.S=value.value Virtual page number and virtual memory identifier
ppage=value Real page frame number

segment state
Segment state information.

1B7 : HKWD VMN COPYPARENT
This event is recorded by the virtual memory manager.

Recorded Data

VMM copyparent: V.S=value.value ppage=value segment
state
V.S=value.value Virtual page number and virtual memory identifier
ppage=value Real page frame number

segment state
Segment state information.

1B8 : HKWD VMN VMAP
This event is recorded by the virtual memory manager.

Recorded Data

VMM vmapped page: V.S=value.value ppage=value
segment state

Page fault on a page mapped from the source segment to
a target segment

V.S=value.value Virtual page number and virtual memory identifier
ppage=value Real page frame number

segment state
Segment state information.

1B9 : HKWD VMN ZFOD
This event is recorded by the virtual memory manager.

744 Writing and Debugging Programs

Recorded Data

VMM zero filled page: V.S=value.value ppage=value
segment state

Zero-filled on the demand page fault

V.S=value.value Virtual page number and virtual memory identifier
ppage=value Real page frame number

segment state
Segment state information.

1BA : HKWD VMN SIO
This event is recorded by the virtual memory manager.

Recorded Data

VMM start io: V.S=value.value ppage=value segment
state bp=value bflags

Start I/O for a page

V.S=value.value Virtual page number and virtual memory identifier
ppage=value Real page frame number
segment state Segment state information
bp=value Buffer pointer
bflags Buffer flags:
B_READ Pagein operation

B_WRITE
Pageout operation.

1BB : HKWD VMM SEGCREATE
This event is recorded by the virtual memory manager.

Recorded Data

VMM segment creation: S=value segment state Creation of a virtual memory object
S=value Virtual memory object identifier

segment state
Segment state information.

1BC : HKWD VMM SEGDELETE
This event is recorded by the virtual memory manager.

Recorded Data

VMM segment deletion: S=value segment state Deletion by the virtual memory manager

S=value
Virtual memory object identifier

segment state
Segment state information.

Chapter 27. Trace Facility 745

1BD : HKWD VMM DALLOC
This event is recorded by the virtual memory manager.

Recorded Data

NOWRAP>VMM disk allocation: V.S=value.value
dblk=dblk segment state pdtx/devid=value

Logical disk block allocation

V.S=value.value Virtual page number and virtual memory object identifier
dblk=dblk Logical disk block number
segment state Segment state information

pdtx/devid=value
Paging device table index (file system) or device
ID (paging space).

1BE : HKWD VMM PFEND
This event is recorded by the virtual memory manager.

Recorded Data

VMM page fault end: V.S=V.S ppage=value segment
state error=error bflag=bflag

Virtual memory manager I/O done

V.S=V.S Virtual page number and virtual memory identifier
ppage=value Real page frame number
segment state Segment state information
error=error Exception value
bflag=bflag Possible buffer flags:
B_READ Pagein operation

B_WRITE
Pageout operation.

1BF : HKWD VMM EXCEPT
This event is recorded by the virtual memory manager.

Recorded Data

VMM exception: sregval=sregval vaddr=vaddr segment
state error=error pid=pid

Exception within the virtual memory manager

sregval=sregval Segment register value
vaddr=vaddr Virtual address
segment state Segment state information
error=error Exception value

pid=pid
Process ID of the process receiving the
exception.

Trace Hook IDs: 1C8 through 1CE

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

746 Writing and Debugging Programs

1C8 : HKWD DD PPDD
The event is recorded by the parallel printer device driver.

Recorded Data

Event:

PPDD entry_open: errno: errno devno: devno rwflag: rwflag chan: chan ext: ext flags: open flags

PPDD exit_open: errno: errno devno: devno

PPDD entry_close: errno: errno devno: devno

PPDD exit_close: errno: errno devno: devno

PPDD entry_read: errno: errno devno: devno

PPDD exit_read: errno: errno devno: devno

PPDD entry_write: errno: errno devno: devno resid: resid iovcnt: iovcnt offset: offset fmode: fmode

PPDD exit_write: errno: errno devno: devno

PPDD entry_ioctl: errno: errno devno: devno op: ioctl op flag: dev flag chan: 0 ext: 0

PPDD exit_ioctl: errno: errno devno: devno

errno: errno Error number
devno: devno Major and minor device number
rwflag: rwflag Passed into the device driver to indicate how the device is being used
chan: chan Channel
ext: ext Extension
op: ioctl op Command used in ioctl
flag: dev flag Current status of the device driver
flags: open flags Device flags at open
resid: resid Count left to be sent out
offset: offset Offset into data buffer
iovcnt: iovcnt Number of output buffers

fmode: fmode
Type of open.

1C9 : HKWD DD CDDD
This event is recorded by the cd-rom device driver.

Recorded Data

Event:

CDDD entry_open: errno: errno devno: devno rwflag: rwflag chan: chan ext: ext

CDDD exit_open: errno: errno devno: devno

CDDD entry_close: errno: errno devno: devno

Chapter 27. Trace Facility 747

CDDD exit_close: errno: errno devno: devno

CDDD entry_read: errno: errno devno: devno

CDDD exit_read: errno: errno devno: devno

CDDD entry_ioctl: errno: errno devno: devno op: ioctl op flag: ioctl flag chan: chan ext: ext

CDDD exit_ioctl: errno: errno devno: devno

CDDD entry_config: errno: errno devno: devno op: config op

CDDD exit_config: errno: errno devno: devno

CDDD entry_strategy: errno: errno devno: devno bp: bp flags: strategy flags block: block bcount:
bcount

CDDD exit_strategy: errno: errno devno: devno

CDDD entry_bstart: errno: errno devno: devno bp: bp pblock: pblock bcount: bcount bflags

CDDD exit_bstart: errno: errno devno: devno

CDDD entry_iodone: errno: errno devno: devno

CDDD exit_iodone: errno: errno devno: devno

CDDD iodone: device name bp: bp

errno: errno Error number
devno: devno Major and minor device number
rwflag: rwflag Mode of open
chan: chan Channel
ext: ext Extension
op: ioctl op ioctl operation to perform
flag: ioctl flag Memory address
op: config op Configuration operation to perform
bp: bp Buffer pointer
flags: strategy flags Buffer flags from buf structure
block: block Block number on device
bcount: bcount Number of bytes to transfer
pblock: pblock Block number on device

bflags Buffer flags are defined in the sys/buf.h file.

1CA : HKWD DD TAPEDD
This event is recorded by the tape device driver.

Recorded Data

Event:

TAPEDD entry_open: errno: errno devno: devno rwflag: rwflag chan: chan ext: ext

TAPEDD exit_open: errno: errno devno: devno

748 Writing and Debugging Programs

TAPEDD entry_close: errno: errno devno: devno

TAPEDD exit_close: errno: errno devno: devno

TAPEDD entry_read: errno: errno devno: devno

TAPEDD exit_read: errno: errno devno: devno

TAPEDD entry_write: errno: errno devno: devno

TAPEDD exit_write: errno: errno devno: devno

TAPEDD entry_ioctl: errno: errno devno: devno op: ioctl op flag: ioctl flag chan: chan ext: ext

TAPEDD exit_ioctl: errno: errno devno: devno

TAPEDD entry_config: errno: errno devno: devno op: config op

TAPEDD exit_config: errno: errno devno: devno

TAPEDD entry_cstart: errno: 0 devno: devno command: cstart cmd baddress: baddress bcount:
bcount

TAPEDD exit_cstart: errno: errno devno: devno

TAPEDD entry_iodone: errno: 0 devno: devno command: iodone cmd baddress: baddress bcount:
bcount

TAPEDD exit_iodone: errno: errno devno: devno

TAPEDD iodone: device name bp: bp

errno: errno Error number
devno: devno Major and minor device number
rwflag: rwflag Possible values:
FREAD Device opened read-only
FWRITE Device opened read-write
chan: chan Channel
ext: ext Extension
op: ioctl op ioctl operation
flag: ioctl flag Address of users argument structure
op: config op Possible values:
CFG_INIT Configures the device
CFT_TERM Unconfigures the device
bcount: bcount Number of bytes to transfer
command: cstart cmd Low-order byte contains SCSI command issued to the drive
baddress: baddress Buffer address where information is transferred to and from the device; zero for

commands that do not transfer data

command: iodone cmd
Low-order byte contains SCSI command issued to the drive

bp: bp Buffer pointer.

Chapter 27. Trace Facility 749

1CD : HKWD DD ENTDD
This event is recorded by the ethernet device handler to track the various phases of data transfer within
the device handler.

Recorded Data

Event:

Ethernet: enque kernel data device name mbuf=mbuf count=count channel=channel

Ethernet: enque user data device name mbuf=mbuf count=count channel=channel

Ethernet: receive overflow device name mbuf=mbuf count=count channel=channel

Ethernet: transmit done device name mbuf=mbuf count=count channel=channel

Ethernet: return form read device name mbuf=mbuf count=count channel=channel

Ethernet: write device name mbuf=mbuf count=count channel=channel

Ethernet: transmit interrupt device name mbuf=mbuf count=count channel=channel

Ethernet: receive interrupt device name mbuf=mbuf count=count channel=channel

device name The /dev entry point for this device
mbuf=mbuf Address of the mbuf that contains the user data
count=count Number of bytes of user data to be transferred

channel=channel
Channel number of the process that opened the device.

1CE : HKWD DD TOKDD
This event is recorded by the token ring device driver.

Recorded Data

Event:

Token Ring: enque kernel data device name mbuf=mbuf count=count channel=channel

Token Ring: enque user data device name mbuf=mbuf count=count channel=channel

Token Ring: receive overflow device name mbuf=mbuf count=count channel=channel

Token Ring: transmit done device name mbuf=mbuf count=count channel=channel

Token Ring: return form read device name mbuf=mbuf count=count channel=channel

Token Ring: write device name mbuf=mbuf count=count channel=channel

Token Ring: transmit interrupt device name mbuf=mbuf count=count channel=channel

750 Writing and Debugging Programs

Token Ring: receive interrupt device name mbuf=mbuf count=count channel=channel

device name The /dev entry point for this device
mbuf=mbuf Address of the mbuf which contains the user data
count=count Number of bytes of user data to be transferred

channel=channel
Channel number of the process that opened the device.

Trace Hook IDs: 1CF through 211

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

1CF : HKWD DD C327DD
This event is recorded by the 3270 Connection Adapter device driver.

Recorded Data

Event:

C327DD entry_open: errno: errno devno: devno rwflag: rwflag chan: chan ext: ext

C327DD exit_open: errno: errno devno: devno

C327DD entry_close: errno: errno devno: devno chan: chan

C327DD exit_close: errno: errno devno: devno

C327DD entry_read: errno: errno devno: devno

C327DD exit_read: errno: errno devno: devno

C327DD entry_write: errno: errno devno: devno uiop: uiop chan: chan ext: ext

C327DD exit_write: errno: errno devno: devno

C327DD entry_ioctl: errno: errno devno: devno op: ioctl op flag: ioctl flag chan: chan ext: ext

C327DD exit_ioctl: errno: errno devno: devno

C327DD entry_select: errno: errno devno: devno event: event chan: chan

C327DD exit_select: errno: errno devno: devno

C327DD entry_config: errno: errno devno: devno op: config op

C327DD exit_config: errno: errno devno: devno

C327DD entry_mpx: errno: errno devno: devno name: name chan: chan

C327DD exit_mpx: errno: errno devno: devno name: name chan: chan oflag: mpx flag

errno: errno Error number
devno: devno Major and minor device number

Chapter 27. Trace Facility 751

rwflag: rwflag Open flags
chan: chan Channel
ext: ext Extension
uiop: uiop uio structure pointer
event: event Event specified in the select or poll subroutine
op: ioctl op Command code specified in the ioctl subroutine
flag: ioctl flag Argument code specified in the ioctl subroutine
op: config op Command code specified in the config subroutine
name: name Path-name extension of the multiplex channel to be allocated

oflag: mpx flag
Unused.

1D1 : HKWD RAS ERRLG
This event is recorded by the /dev/error file.

Recorded Data

Event:

ERRLG erropen: errno

ERRLG errclose: errno

ERRLG errioctl: errno device name ERRIOC_STOP

ERRLG errioctl: errno device name ERRIOC_SYNC

ERRLG errread: bad erec_length length bytes

ERRLG errread: errno

ERRLG errwrite: errno

ERRLG errput

ERRLG errput: buffer overflow: state=state

ERRLG errdd: lockl from value already locked by process

ERRLG errdd: unlockl from value not locked

ERRLG errdemon: cannot write to errlog. error id=error id

errno Error number
device name Device name
length Length
state=state Possible values:

RDOPEN

SLEEP

STOP

752 Writing and Debugging Programs

SYNC

process Process name and ID
lockl from value Routine that called the lockl subroutine
unlockl from value Routine that called the unlockl subroutine

error id=error id
Error identifier.

1D2 : HKWD RAS DUMP
This event is recorded by the dump device driver.

Recorded Data

Event:

DUMP dmpopen : errno device name

DUMP dmpioctl : errno device name DMPSET_PRIM

DUMP dmpioctl : errno device name DMPSET_SEC

DUMP dmpioctl : errno device name DMPNOW_PRIM

DUMP dmpioctl : errno device name DMPNOW_SEC

DUMP dmpdump : DUMPINIT device name

DUMP dmpdump : DUMPSTART device name

DUMP dmpdump : DUMPWRITE device name

DUMP dmpdump : DUMPEND device name

DUMP dmpdump : DUMPTERM device name

DUMP dmpdump : DUMPQUERY device name

DUMP dmpadd : calling func is function

DUMP dmp : return: errno

DUMP dmpdel : calling func is function

DUMP dmpdel : return: errno

DUMP dmp_do : PRIMARY

DUMP dmp_do : SECONDARY

DUMP dmp_do : return: errno

DUMP dmpwrcdt : ptr=wrcdt ptr length=wrcdtlength

DUMP dump_op : return: errno

Chapter 27. Trace Facility 753

DUMP dmpnull : DUMPINIT

DUMP dmpnull : DUMPSTART

DUMP dmpnull : DUMPWRITE

DUMP dmpnull : DUMPEND

DUMP dmpnull : DUMPTERM

DUMP dmpnull : DUMPQUERY

DUMP dmpfile : DUMPINIT

DUMP dmpfile : DUMPSTART

DUMP dmpfile : DUMPWRITE

DUMP dmpfile : DUMPEND

DUMP dmpfile : DUMPTERM

DUMP dmpfile : DUMPQUERY

errno Error number
device name Name of dump device
function Name of function calling the dmp_add subroutine or dmp_del subroutine
ptr=wrcdt ptr Pointer to Component Dump Table to be written

length=wrcdt length
Length of Component Dump Table to be written.

1F0 : HKWD SYSC SETTIMER
This event is recorded by the settimer subroutine.

Recorded Data

settimer timer_type timer type

timer_type timer type

Type of timer.

200 : HKWD KERN RESUME
This event is recorded by the resume subroutine.

Recorded Data

resume process name
resume interrupt process mst=mst
process name Process name of the resumed thread.
mst MST of the resumed thread.

754 Writing and Debugging Programs

20E: HKWD KERN LOCKL
This event is recorded by the lockl kernel service.

Recorded Data

lockl lock address=lock address lock value=lock value
return address=return address flags=flags
lock address Address of the lock word
lock value Content of the lock word
return address Return address of the caller

flags Flags parameter.

20F: HKWD KERN UNLOCKL
This event is recorded by the unlockl kernel service.

Recorded Data

unlockl lock address=lock address lock value=lock
value return address=return address
lock address Address of the lock word
lock value Content of the lock word

return address
Return address of the caller.

211 : HKWD NFS VOPSRW
This event is recorded to the read/write vnop op for NFS client.

Recorded Data

Event:

NFS_READ filename count=count offset=offset sid=sid Client NFS read call entry
NFS_WRITE filename count=count offset=offset sid=sid Client NFS write call entry

filename
File path name

count=count

offset=offset

sid=sid

Trace Hook IDs: 212 through 220

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

212 : HKWD NFS VOPS
This event is recorded by the client NFS routine entry points.

Recorded Data

Chapter 27. Trace Facility 755

Event:

NFS_LOOKUP filename

NFS_CREATE filename

NFS_REMOVE filename

NFS_LINK filename

NFS_RENAME from: filename

NFS_RENAME to: filename

NFS_MKDIR filename

NFS_RMDIR filename

NFS_SYMLINK from: filename

NFS_SYMLINK to: filename

NFS_SELECT filename

NFS_LOOKUP vnode=vnode

NFS_OPEN filename

NFS_CLOSE filename

NFS_IOCTL filename

NFS_GETATTR filename

NFS_SETATTR filename

NFS_ACCESS filename

NFS_CREATE filename

NFS_REMOVE filename

NFS_LINK filename

NFS_RENAME filename

NFS_MKDIR filename

NFS_RMDIR filename

NFS_READDIR filename

NFS_SYMLINK filename

NFS_READLINK filename

756 Writing and Debugging Programs

NFS_FSYNC filename

NFS_INACTIVE filename

NFS_BMAP filename

NFS_BADOP

NFS_STRATEGY filename

NFS_LOCKCTL filename

NFS_NOOP

NFS_CMP filename

filename File path name

vnode=vnode
v_node.

213 : HKWD NFS RFSRW
This event is recorded by the server NFS read/write routines.

Recorded Data

RFS_READ seqno=seqno filename vnode count=count
offset=offset

Server read request

RFS_WRITE seqno=seqno filename vnode count=count
offset=offset

Server write request

seqno=seqno Sequence number to match client call
filename File path name
vnode v_node of file
count=count Number of bytes to read or write

offset=offset
Offset in file to read or write.

214 : HKWD NFS RFS
This event is recorded by the server NFS routine entry points.

Recorded Data

Event:

RFS_LOOKUP filename

RFS_LOOKUP filename

RFS_CREATE filename

RFS_REMOVE filename

Chapter 27. Trace Facility 757

RFS_RENAME from: filename

RFS_RENAME to: filename

RFS_LINK filename

RFS_SYMLINK from: filename

RFS_SYMLINK to: filename

RFS_MKDIR filename

RFS_RMDIR filename

RFS_NULL seqno=seqno

RFS_GETATTR seqno=seqno filename

RFS_SETATTR seqno=seqno filename

RFS_ERROR

RFS_LOOKUP seqno=seqno filename

RFS_READLINK seqno=seqno filename

RFS_CREATE seqno=seqno filename

RFS_REMOVE seqno=seqno filename

RFS_RENAME seqno=seqno filename filename

RFS_LINK seqno=seqno filename filename

RFS_SYMLINK seqno=seqno filename

RFS_MKDIR seqno=seqno filename

RFS_RMDIR seqno=seqno filename

RFS_READDIR seqno=seqno filename

RFS_STATFS seqno=seqno filename

filename File path name

seqno=seqno
Sequence number to match client call.

215 : HKWD NFS DISPATCH
This event is recorded by the server dispatch routine entry and exit.

Recorded Data

758 Writing and Debugging Programs

Event:

RFS_DISP_ENTRY seqno=seqno client=client
NOWRAP>RFS_DISP_EXIT seqno=seqno client=client
dispcode
seqno=seqno Sequence number to match calls to client-side request
client=client IP address of client
dispcode Routine called on the server:

NULL

GETATTR

SETATTR

LOOKUP

READLINK

READ

WRITE

CREATE

REMOVE

RENAME

LINK

SYMLINK

MKDIR

RMDIR

READDIR

STATFS

216 : HKWD NFS CALL
This event is recorded by the NFS call routine entry and exit.

Recorded Data

Event:

NFS_CALL_ENTRY seqno=seqno server=server

Chapter 27. Trace Facility 759

NFS_CALL_EXIT seqno=seqno server=server

seqno=seqno Sequence number to track call on server

server=server
Server IP address.

218 : HKWD RPC LOCKD
This event is recorded by the RPC lockd routine entry points.

Recorded Data

Event:

LOCKD_KLM_PROG proc=proc pid=pid cookie=cookie
port=port

Entry point for remote lock requests coming from the
kernel

LOCKD_NLM_REQUEST proc=proc to addr
cookie=cookie pid=pid

Entry point for incoming lock request on the network

LOCKD_NLM_RESULTS proc=proc to addr
cookie=cookie result=result

Entry point for responses coming over the network

LOCKD_KLM_REPLY proc=proc stat=stat
cookie=cookie

Entry point for lockd reply to kernel

LOCKD_NLM_REPLY proc=proc to addr stat=stat
cookie=cookie

Entry point for lockd reply to network

LOCKD_NLM_CALL proc=proc cookie=cookie pid=pid
retransmit=retransmit

Entry point for sending lock request over the network

LOCKD_CALL_UDP to addr proc=proc
program=program version=version

Entry point for send udp request for RPC.lockd.

proc=proc RPC procedure number
pid=pid Process ID
cookie=cookie Internal RPC.lockd counter
port=port Socket port
to addr Internet address
result=result Result for a previous request
stat=stat RPC.lockd reply status
retransmit=retransmit Value of retransmit flag
program=program RPC program number

version=version
RPC version number.

220 : HKWD DD FDDD
This event is recorded by the diskette device driver.

Recorded Data

Event:

FDDD entry_open: errno: errno devno: devno rwflag: rwflag chan: chan ext: ext

FDDD exit_open: errno: errno devno: devno

FDDD entry_close: errno: errno devno: devno

760 Writing and Debugging Programs

FDDD exit_close: errno: errno devno: devno

FDDD entry_read: errno: errno devno: devno

FDDD exit_read: errno: errno devno: devno

FDDD entry_write: errno: errno devno: devno

FDDD exit_write: errno: errno devno: devno

FDDD entry_ioctl: errno: errno devno: devno op: ioctl op flag: ioctl flag chan: chan ext: ext

FDDD exit_ioctl: errno: errno devno: devno

FDDD entry_select: errno: errno devno: devno

FDDD exit_select: errno: errno devno: devno

FDDD entry_config: errno: errno devno: devno op: config op

FDDD exit_config: errno: errno devno: devno

FDDD entry_strategy: errno: errno devno: devno bp: bp flags: strategy flags block: block bcount:
bcount

FDDD exit_strategy: errno: errno devno: devno

FDDD entry_mpx: errno: errno devno: devno

FDDD exit_mpx: errno: errno devno: devno name: name chan: chan oflag: mpx oflag

FDDD entry_revoke: errno: errno devno: devno

FDDD exit_revoke: errno: errno devno: devno

FDDD entry_intr: errno: errno devno: devno

FDDD exit_intr: errno: errno devno: devno

FDDD entry_bstart: errno: errno devno: devno bp: bp pblock: pblock bcount: bcount bflags

FDDD exit_bstart: errno: errno devno: devno

FDDD entry_cstart: errno: errno devno: devno

FDDD exit_cstart: errno: errno devno: devno

FDDD entry_iodone: errno: errno devno: devno

FDDD exit_iodone: errno: errno devno: devno

FDDD iodone: device name bp: bp

errno: errno Error number
devno: devno Major and minor device number
rwflag: rwflag Possible values:

Chapter 27. Trace Facility 761

FREAD Device is opened read-only
FWRITE Device is opened read-write.
chan: chan Channel
ext: ext Extension
op: ioctl op ioctl operation
flag: ioctl flag Address of users argument structure
op: config op Possible values:
CFG_INIT Configures the device
CFG_TERM Unconfigures the device.
bp: bp Buffer pointer
flags: strategy flags Buffer flags field in the buf structure
block: block Physical block number
bcount: bcount Number of bytes to transfer
name: name Path-name extension of multiplex channel to be allocated
oflag: mpx flag
pblock: pblock Physical block

bflags Buffer flags are defined in the sys/buf.h file.

Trace Hook IDs: 221 through 223

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

221 : HKWD DD SCDISKDD
This event is recorded by the SCSI device driver

Recorded Data

SCDISKDD entry_open: errno: errno devno: devno rwflag: rwflag chan: chan ext: ext

SCDISKDD exit_open: errno: errno devno: devno

SCDISKDD entry_close: errno: errno devno: devno

SCDISKDD exit_close: errno: errno devno: devno

SCDISKDD entry_read: errno: errno devno: devno

SCDISKDD exit_read: errno: errno devno: devno

SCDISKDD entry_write: errno: errno devno: devno

SCDISKDD exit_write: errno: errno devno: devno

SCDISKDD entry_ioctl: errno: errno devno: devno op: ioctl op flag: ioctl flag chan: chan ext: ext

SCDISKDD exit_ioctl: errno: errno devno: devno

SCDISKDD entry_config: errno: errno devno: devno op: config op

SCDISKDD exit_config: errno: errno devno: devno

762 Writing and Debugging Programs

SCDISKDD entry_strategy: errno: errno devno: devno bp: bp flags: strategy flags block: block bcount:
bcount

SCDISKDD exit_strategy: errno: errno devno: devno

SCDISKDD entry_bstart: errno: errno devno: devno bp: bp pblock: pblock bcount: bcount bflags

SCDISKDD exit_bstart: errno: errno devno: devno

SCDISKDD entry_iodone: errno: errno devno: devno

SCDISKDD exit_iodone: errno: errno devno: devno sc_bufp: sc bufp

SCDISKDD coalesce: (bp,sc bp)

SCDISKDD iodone: errno: errno devno: devno bp: bp

errno: errno Error number
devno: devno Major and minor device number
rwflag: rwflag Possible values:
FREAD Device is opened read-only
FWRITE Device is opened read-write.
chan: chan Channel:
For open: always zero
For ioctl: DKERNEL if called by kernel process
ext: ext Extension:
SC_DIAGNOSTIC Open in diagnostic mode
SC_RETAIN_RESERVATION Do not release reservation on close
SC_FORCED_OPEN Reset device before opening.
op: ioctl op Possible values:
IOCINFO Get information about the device
DKIORDSE Issue read command and return sense data if error occurs
DKIOWRSE Issue write command and return sense data if error

occurs
DKIOCMD Issue pass-through command (user-defined) to the device.
flag: ioctl flag Address of the user’s argument structure
op: config op Possible values:
CFG_INIT Configure the device
CFG_TERM Unconfigure the device.
bp: bp Buffer pointer

flags: strategy flags

block: block

bcount: bcount Number of bytes to be read or written
pblock: pblock Physical block
bflags Buffer flags are defined in the sys/buf.h file

Chapter 27. Trace Facility 763

sc_bufp: sc bufp SCSI buffer pointer

(bp, sc bp)
Parameters used to issue this command to the SCSI adapter driver:

bp Buffer pointer

sc bp Associated SCSI buffer pointer.

222 : HKWD DD BADISKDD
This event is recorded by the bus-attached hard disk device driver.

Recorded Data

BADDD entry_open: errno: errno devno: devno rwflag: rwflag chan: chan ext: ext

BADDD exit_open: errno: errno devno: devno

BADDD entry_close: errno: errno devno: devno

BADDD exit_close: errno: errno devno: devno

BADDD entry_read: errno: errno devno: devno

BADDD exit_read: errno: errno devno: devno

BADDD entry_write: errno: errno devno: devno

BADDD exit_write: errno: errno devno: devno

BADDD entry_ioctl: errno: errno devno: devno op: ioctl op flag: ioctl flag chan: chan ext: ext

BADDD exit_ioctl: errno: errno devno: devno

BADDD entry_config: errno: errno devno: devno op: config op

BADDD exit_config: errno: errno devno: devno

BADDD entry_strategy: errno: errno devno: devno bp: bp flags: strategy flags block: block bcount:
bcount

BADDD exit_strategy: errno: errno devno: devno

BADDD entry_intr: errno: errno devno: devno

BADDD exit_intr: errno: errno devno: devno

BADDD entry_bstart: errno: errno devno: devno bp: bp pblock: pblock bcount: bcount bflags

BADDD exit_bstart: errno: errno devno: devno

errno: errno Error number
devno: devno Major and minor device number

764 Writing and Debugging Programs

rwflag: rwflag Possible values:
FREAD Device is opened read-only
FWRITE Device is opened read-write.
chan: chan Channel
ext: ext Extension
op: ioctl op
flag: ioctl flag Address of the users argument structure
op: config op Possible values:
CFG_INIT Configure the device
CFG_TERM Unconfigure the device.
bp: bp Buffer pointer
flags: strategy flags Buffer flags field in the buf structure
block: block Physical block
bcount: bcount Number of bytes to read or write
pblock: pblock Physical block

bflags Buffer flags are defined in the sys/buf.h file.

223 : HKWD DD SCSIDD
This event is recorded by the SCSI adapter driver.

Recorded Data

SCSIDD entry_open: errno: errno devno: devno rwflag: rwflag chan: chan ext: ext

SCSIDD exit_open: errno: errno devno: devno

SCSIDD entry_close: errno: errno devno: devno

SCSIDD exit_close: errno: errno devno: devno

SCSIDD entry_read: errno: errno devno: devno

SCSIDD exit_read: errno: errno devno: devno

SCSIDD entry_write: errno: errno devno: devno

SCSIDD exit_write: errno: errno devno: devno

SCSIDD entry_ioctl: errno: errno devno: devno op: ioctl op flag: ioctl flag chan: chan ext: ext

SCSIDD exit_ioctl: errno: errno devno: devno

SCSIDD entry_select: errno: errno devno: devno

SCSIDD exit_select: errno: errno devno: devno

SCSIDD entry_config: errno: errno devno: devno op: config op

SCSIDD exit_config: errno: errno devno: devno

SCSIDD strategy: bp: bp

SCSIDD exit_strategy: errno: errno devno: devno

Chapter 27. Trace Facility 765

SCSIDD entry_mpx: errno: errno devno: devno

SCSIDD exit_mpx: errno: errno devno: devno name: name chan: chan oflag: mpx flag

SCSIDD entry_revoke: errno: errno devno: devno

SCSIDD exit_revoke: errno: errno devno: devno

SCSIDD entry_intr: errno: errno devno: devno

SCSIDD exit_intr: errno: errno devno: devno

SCSIDD entry_bstart: device name bp: bp pblock: pblock bcount: bcount bflags

SCSIDD exit_bstart: errno: errno devno: devno

SCSIDD entry_cstart: errno: errno devno: devno

SCSIDD exit_cstart: errno: errno devno: devno

SCSIDD entry_iodone: errno: errno devno: devno

SCSIDD exit_iodone: errno: errno devno: devno

SCSIDD scsi_intr: errno: errno devno: devno sc_bufp: sc bufp

SCSIDD coalesce: (bp,sc bp)

SCSIDD iodone: device name bp: bp filename

errno: errno Error number
devno: devno Major and minor device number
rwflag: rwflag Possible values:
FREAD Device is opened read-only
FWRITE Device is opened read-write.
chan: chan Channel
ext: ext Extension
op: ioctl op ioctl operation
flag: ioctl flag Address of the user’s argument structure
op: config op Possible values:
CFG_INIT Configure the device
CFG_TERM Unconfigure the device.
bp: bp Buffer pointer
flags: strategy flags Buffer flags field in the buf structure
block: block Physical block
bcount: bcount Number of bytes to read or write
name: name Path-name extension of multiplex channel to be allocated
oflag: mpx flag
pblock: pblock Physical block
bflags Buffer flags are defined in the sys/buf.h file

766 Writing and Debugging Programs

sc_bufp: sc bufp
(bp, sc bp)

Parameters used to issue this command:

bp Buffer pointer

sc bp Associated SCSI buffer pointer.

filename
File path name.

Trace Hook IDs: 224 through 226

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

224 : HKWD DD MPQPDD
This event is recorded by the Multiprotocol Quad Port (MPQP) device driver.

Recorded Data

MPQPDD entry_open: errno: errno devno: devno devflag: devflag chan: chan p_ext: p_ext

MPQPDD exit_open: break=all. errno: errno devno: devno Suberror: suberror

MPQPDD entry_close: errno: errno devno: devno chan: chan

MPQPDD exit_close: errno: errno devno: devno Suberror: suberror

MPQPDD entry_read: errno: errno devno: devno bufptr: bufptr chan: chan ext: ext

MPQPDD exit_read: errno: errno devno: devno bufptr: bufptr chan: chan status: status Suberror:
suberror

MPQPDD entry_write: errno: errno devno: devno bufptr: bufptr chan: chan ext: ext

MPQPDD exit_write: errno: errno devno: devno bufptr: bufptr chan: chan status: status Suberror:
suberror

MPQPDD entry_ioctl: errno: errno devno: devno op: op flag: flag chan: chan ext: ext

MPQPDD exit_ioctl: errno: errno devno: devno Suberror: suberror

MPQPDD entry_select: errno: errno devno: devno events: events chan: chan

MPQPDD exit_select: errno: errno devno: devno reventp: reventp chan: chan Suberror: suberror

MPQPDD entry_config: errno: errno devno: devno op: op

MPQPDD exit_config: errno: errno devno: devno Suberror: suberror

MPQPDD entry_mpx: errno: errno devno: devno

MPQPDD exit_mpx: errno: errno devno: devno nameptr: nameptr chan: chan openflag: openflag
Suberror: suberror

Chapter 27. Trace Facility 767

MPQPDD entry_intr: errno: errno devno: devno

MPQPDD exit_intr: errno: errno devno: devno status: status

MPQPDD entry_cstart: errno: errno devno: devno parm1: parm1 parm2: parm2 parm3: parm3 parm4:
parm4

MPQPDD exit_cstart: errno: errno devno: devno parm#: parm# Parmval: Parmval Suberror: suberror

MPQPDD entry_halt: errno: errno devno: devno

MPQPDD exit_halt: errno: errno devno: devno status: status

MPQPDD entry_getstat: errno: errno devno: devno devflag: devflag chan: chan

MPQPDD exit_getstat: errno: errno devno: devno code: code opt[0]: opt[0] opt[1]: opt[1] opt[2]: opt[2]

MPQPDD exit_kread: errno: errno devno: devno openid: openid status: status bufptr: bufptr

MPQPDD exit_kstat: errno: errno devno: devno openid: openid code: code opt[0]: opt[0] opt[1]: opt[0]

MPQPDD exit_ktx_fn: errno: errno devno: devno openid: openid

MPQPDD entry_chgparm: errno: errno devno: devno rcv timer: rcv timer Poll addr: Poll addr Select
addr: Select addr

MPQPDD exit_chgparm: errno: errno devno: devno

MPQPDD entry_start_ar: errno: errno devno: devno

MPQPDD exit_start_ar: errno: errno devno: devno

MPQPDD entry_flushport: errno: errno devno: devno

MPQPDD exit_flushport: errno: errno devno: devno

MPQPDD entry_adaptquery: errno: errno devno: devno

MPQPDD exit_adaptquery: errno: errno devno: devno

MPQPDD entry_query_stat: errno: errno devno: devno

MPQPDD entry_trace_on: errno: errno devno: devno

MPQPDD exit_trace_on: errno: errno devno: devno

MPQPDD entry_stop_port: errno: errno devno: devno

MPQPDD exit_stop_port: errno: errno devno: devno

MPQPDD entry_traceoff: errno: errno devno: devno

MPQPDD exit_traceoff: errno: errno devno: devno

errno: errno Error number
devno: devno Major and minor device number

768 Writing and Debugging Programs

devflag: devflag Device flag
chan: chan Channel
p_ext: p_ext Pointer to extension
ext: ext Extension
bufptr: bufptr Buffer pointer
status: status
op: op ioctl operation
flag: flag ioctl devflag argument
events: events events argument for select
reventp: reventp reventp argument for select
nameptr: nameptr Pointer to channel name

openflag: openflag

parm1: parm1 parm1 parameter to cstart; physical link

parm2: parm2parm2 parameter to cstart; data flags

parm3: parm3parm3 parameter to cstart; baud rate

parm4: parm4

parm4 parameter to cstart; receive data offset

parm#: parm# Parameter number
Parmval: Parmval Parameter value

opt[0]: opt[0]

opt[1]: opt[1]

opt[2]: opt[2]

openid: openid

code: code

rcv timer: rcv timer Receive timer
Poll addr: Poll addr Poll address
Select addr: Select addr Select address
Suberror: suberror Additional error information:

Adapter number too big.

There is no ACB.

No offlevel intr. structure.

Cannot register interrupt.

No port dds.

Channel too big.

Chapter 27. Trace Facility 769

Channel busy.

No mbuf available.

No transmit chain.

Adapter already opened.

Cannot set up POS REG.

Error in uiomove.

Port not open.

Port not started.

Pin code failed.

Add entry failed in devswadd.

Port already opened.

Physical link invalid.

Data protocol invalid.

Baud rate invalid.

None.

225 : HKWD DD X25DD
This event is recorded by the X25 device driver.

Recorded Data

Event:

X25DD entry_open: errno: errno devno: devno flag: flag chan: chan ext: ext

X25DD exit_open: errno: errno devno: devno Suberror: suberror chan: chan

X25DD entry_close: errno: errno devno: devno chan: chan

X25DD exit_close: errno: errno devno: devno chan: chan gp_rc: gp_rc

X25DD entry_read: errno: errno devno: devno chan: chan ext: ext

X25DD exit_read: errno: errno devno: devno packet_type: packet_type session_id: sesson_id status:
status

X25DD entry_write: errno: errno devno: devno chan: chan ext: ext

X25DD exit_write: errno: errno devno: devno packet_type: packet_type session_id: sesson_id status:
status

770 Writing and Debugging Programs

X25DD entry_ioctl: errno: errno devno: devno cmd: cmd flag: flag chan: chan

X25DD exit_ioctl: errno: errno devno: devno

X25DD entry_select: errno: errno devno: devno chan: chan events: events

X25DD exit_select: errno: errno devno: devno chan: chan events: events reventp: reventp

X25DD entry_config: errno: errno devno: devno uiop: uiop

X25DD exit_config: errno: errno devno: devno

X25DD entry_mpx: errno: errno devno: devno

X25DD exit_mpx: errno: errno devno: devno channame: channame chan: chan

X25DD entry_halt: errno: errno devno: devno chan: chan

X25DD exit_halt: errno: errno devno: devno chan: chan status: status session_id: sesson_id
session_type: session_type

X25DD entry_get_stat: errno: errno devno: devno flag: flag chan: chan ext: ext

X25DD exit_get_stat: errno: errno devno: devno block.code: block.code block.opt 0: block.opt 0
block.opt 1: block.opt 1

X25DD entry_iocinfo: errno: errno devno: devno

X25DD exit_iocinfo: errno: errno devno: devno

X25DD entry_start: errno: errno devno: devno cmd: cmd flag: flag chan: chan

X25DD exit_start: errno: errno devno: devno Suberror: suberror status: status session_id: sesson_id

X25DD entry_query: errno: errno devno: devno chan: chan

X25DD exit_query: errno: errno devno: devno status: status

X25DD entry_reject_call: errno: errno devno: devno cmd: cmd flag: flag chan: chan

X25DD exit_reject_call: errno: errno devno: devno chan: chan status: status session_id: sesson_id
call_id: call_id

X25DD entry_query_session: errno: errno devno: devno flag: flag chan: chan

X25DD exit_query_session: errno: errno devno: devno chan: chan session_id: session_id

X25DD entry_del_rid: errno: errno devno: devno flag: flag chan: chan

X25DD exit_del_rid: errno: errno devno: devno router_id: router_id

X25DD entry_query_rid: errno: errno devno: devno flag: flag chan: chan

X25DD exit_query_rid: errno: errno devno: devno router_id: router_id

X25DD entry_link_con: errno: errno devno: devno chan: chan

Chapter 27. Trace Facility 771

X25DD exit_link_con: errno: errno devno: devno cmd: cmd chan: chan status: status

X25DD entry_link_dis: errno: errno devno: devno cmd: cmd flag: flag chan: chan

X25DD exit_link_dis: errno: errno devno: devno cmd: cmd chan: chan status: status

X25DD entry_link_stat: errno: errno devno: devno cmd: cmd flag: flag chan: chan

X25DD exit_link_stat: errno: errno devno: devno status: status packet: packet frame: frame physical:
physical

X25DD entry_local_busy: errno: errno devno: devno

X25DD exit_local_busy: errno: errno devno: devno session_id: sesson_id busy_mode: busy_mode

X25DD entry_counter_get: errno: errno devno: devno flag: flag chan: chan

X25DD exit_counter_get: errno: errno devno: devno chan: chan counter_val: counter_val

X25DD entry_counter_wait: errno: errno devno: devno flag: flag chan: chan

X25DD exit_counter_wait: errno: errno devno: devno chan: chan counter_id: counter_id
counter_num: counter_num

X25DD entry_counter_read: errno: errno devno: devno flag: flag chan: chan

X25DD exit_counter_read: errno: errno devno: devno chan: chan counter_id: counter_id counter_val:
counter_val

X25DD entry_counter_rem: errno: errno devno: devno flag: flag chan: chan

X25DD exit_counter_rem: errno: errno devno: devno chan: chan counter_id: counter_id

X25DD entry_diag_io: errno: errno devno: devno cmd: cmd chan: chan

X25DD exit_diag_io: errno: errno devno: devno cmd: cmd chan: chan crd_rc: crd_rc

X25DD entry_diag_mem: errno: errno devno: devno cmd: cmd flag: flag chan: chan

X25DD exit_diag_mem: errno: errno devno: devno cmd: cmd chan: chan crd_rc: crd_rc

X25DD exit_diag_card: errno: errno devno: devno

X25DD entry_diag_card: errno: errno devno: devno

X25DD entry_reset: errno: errno devno: devno

X25DD exit_reset: errno: errno devno: devno

X25DD entry_diag_task: errno: errno devno: devno

X25DD exit_diag_task: errno: errno devno: devno

X25DD entry_ucode_task: errno: errno devno: devno

X25DD exit_ucode_task: errno: errno devno: devno

772 Writing and Debugging Programs

X25DD entry_add_rid: errno: errno devno: devno flag: flag chan: chan

X25DD exit_add_rid: errno: errno devno: devno router_id: router_id priority: priority action: action uid:
uid

X25DD entry_intr_stat: errno: errno devno: devno

X25DD exit_intr_stat: errno: errno devno: devno

X25DD entry_traceon: errno: errno devno: devno

X25DD exit_traceoff: errno: errno devno: devno

errno: errno Error number
devno: devno Major and minor device number
cmd: cmd ioctl command
chan: chan Channel number
flag: flag Open mode
ext: ext Pointer to extension data area
gp_rc: gp_rc Internal return code (for reporting to service organization)
packet_type: packet_type Type of X.25 packet being sent
session_id: sesson_id Session identifier, created with the CIO_START ioctl
status: status Status return code
events: events Events mask passed to select
reventp: reventp Events that were signalled by the select call
uiop: uiop Pointer to the uio structure passed by a nonkernel user
channame: channame Extension to the pathname on the open call
session_type: session_type Session type, created with the CIO_START ioctl
block.code: block.code Type of status block returned as described in the X.25

documentation
block.opt 0: block.opt 0 Type of status block returned as described in the X.25

documentation
block.opt 1: block.opt 1 Type of status block returned as described in the X.25

documentation
call_id: call_id Incoming call identifier supplied to a listening session, used when

creating the SVC_IN session type
router_id: router_id Identifies the X.25 router table element
packet: packet Status of the packet layer of the X.25 link
0 Disconnected
1 Connecting
2 Connected.
frame: frame The status of the frame layer of the X.25 link
physical: physical The status of the physical layer of the X.25 link
busy_mode: busy_mode A flag controlling whether the driver goes in or out of local-busy

mode, defined in the X25/X25user.h file
counter_val: counter_val Value of the X.25 counter being referenced
counter_id: counter_id Reference ID of the X.25 counter being referenced
counter_num: counter_num Number of counters being waited on
crd_rc: crd_rc Internal return code that can be reported to the service

organization
priority: priority Priority given to a router entry as documented in the X.25

documentation
action: action Action given for a router entry as documented in the X.25

documentation

Chapter 27. Trace Facility 773

uid: uid uid of the user submitting this router request

Suberror: suberror
Error starting an X.25 session:

None.

Device was not configured before OPEN.

Interrupt could not be registered.

Non-monitor START in monitor session.

Monitor START in non-monitor session.

START is not legal in D or R session.

START has an invalid session type.

226 : HKWD DD GIO
This event is recorded by the Graphics IO device driver.

Trace Hook IDs: 230 through 233

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

230: HKWD PTHREAD MUTEX LOCK
This event is recorded by the pthread_mutex_lock subroutine.

Recorded Data

pthread_mutex_lock lock_addr=address lock=status lock owner=owner
address Address of the mutex lock
status Possible values:

REQUESTED

IRST GOT

GOT

GOT after thread_tsleep

NOT GOTowner

User thread ID of the mutex lock.

231: HKWD PTHREAD MUTEX UNLOCK
This event is recorded by the pthread_mutex_unlock subroutine.

774 Writing and Debugging Programs

Recorded Data

pthread_mutex_unlock lock_addr=address lock owner=owner
address Address of the mutex lock
owner User thread ID of the mutex lock.

232: HKWD PTHREAD SPIN LOCK
This event is recorded by the pthread_spin_lock internal subroutine.

Recorded Data

pthread_spin_lock lock_addr=address lock=status
address Address of the mutex lock
status Possible values:

REQUESTED

FIRST GOT

GOT after thread_tsleep

NOT GOT

233: HKWD PTHREAD SPIN UNLOCK
This event is recorded by the pthread_spin_unlock internal subroutine.

Recorded Data

pthread_spin_unlock lock_addr=address
address Address of the mutex lock

Trace Hook IDs: 240 through 252

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

240 : HKWD SYSX DLC START
This event is recorded by a Data Link Control (/dev/dlcether, /dev/dlcsdlc, or /dev/dlctoken) when an
attachment to a remote station is started.

Recorded Data

LAN protocol physical LAN

attachment name station name

station address

LAN protocol Type of LAN protocol:

EthernetI

Chapter 27. Trace Facility 775

EEE_802.3

SDLC

Token_Ring

physical LAN Type of physical LAN:

EIA_RS232D

EIA_RS336

X_21

PC_Network_Broadband

Standard_Baseband_Ethernet

Smart_MODEM_Autodial

IEEE_802.3_Baseband_Ethernet

IEEE_802.4_Token_Bus

IEEE_802.5_Token_Ring

attachment name Name of attachment
station name Remote station name

station address
Remote station address.

241 : HKWD SYSX DLC HALT
This event is recorded by a Data Link Control (/dev/dlcether, /dev/dlcsdlc, or /dev/dlctoken) when an
attachment to a remote station is halted.

Recorded Data

LAN protocol physical LAN

attachment name station name

station address

LAN protocol Type of LAN protocol:

Ethernet

IEEE_802.3

SDLC

776 Writing and Debugging Programs

Token_Ring

physical LAN Type of Physical LAN:

EIA_RS232D

EIA_RS336

X_21

PC_Network_Broadband

Standard_Baseband_Ethernet

Smart_MODEM_Autodial

IEEE_802.3_Baseband_Ethernet

IEEE_802.4_Token_Bus

IEEE_802.5_Token_Ring

attachment name Name of attachment
station name Remote station name

station address
Remote station address.

242 : HKWD SYSX DLC TIMER
This event is recorded by a Data Link Control (/dev/dlcether, /dev/dlcsdlc, or /dev/dlctoken) when an
internal time expires.

Recorded Data

LAN protocol timer type

LAN protocol Type of LAN protocol:
Ethernet
IEEE_802.3
SDLC
Token_Ring
timer type Type_of_Timer:
Slow_Station_Poll
Idle_Station_Poll
Link_Station_Aborted
Link_Station_Receive_Inactivity
Command_Fail_Safe
Command_Repoll

I_Frame_Acknowledgement.

243 : HKWD SYSX DLC XMIT
This event is recorded by a Data Link Control (/dev/dlcether, /dev/dlcsdlc, or /dev/dlctoken) when a
packet is sent.

Chapter 27. Trace Facility 777

Recorded Data

LAN protocol header data

LAN protocol Type of LAN protocol:
Ethernet
IEEE_802.3
SDLC
Token_Ring

header data
LAN header data.

244 : HKWD SYSX DLC RECV
This event is recorded by a Data Link Control (/dev/dlcether, /dev/dlcsdlc, or /dev/dlctoken) when a
packet is received.

Recorded Data

LAN protocol header data

LAN protocol Type of LAN protocol
header data LAN header data.

245 : HKWD SYSX DLC PERF
This event is recorded by a Data Link Control (/dev/dlcether, /dev/dlcsdlc, or /dev/dlctoken) at key
points in the Data Link Control program to record performance data. This trace hook will normally be used
by the LAN Administrator during DLC debug.

Recorded Data

event LAN protocol

event Possible values:

Begin_Wait_Call

End_Wait_Call

Begin_Get_Rcv_Buffer

End_Get_Rcv_Buffer

Begin_HASH_Function

End_HASH_Function

Begin_Get_Transmit_Buffer

End_Get_Transmit_Buffer

Begin_Receive-Network_Data

Send_I_Frame_To_Device_Handler

778 Writing and Debugging Programs

Put_Write_Data_in_Xmit_Queue

Put_Write_XID_in_Xmit_Queue

T1_Timeout

T2_Timeout

T3_Timeout

Send_Start_to_Device_Handler

Receive_Discovery_Find_Command

Receive_Resolve_Find_Command

Open_Physical_Link

Device_Started

Send_Non_I_Frame_Data

Send_Datagram_Data

Send_Network_Data

T3_Abort_Timeout

LAN protocol Type of LAN protocol:

Ethernet

IEEE_802.3

SDLC

Token_Ring

246 : HKWD SYSX DLC MONITOR
This event is recorded by a Data Link Control (/dev/dlcether, /dev/dlcsdlc, or /dev/dlctoken) at key
points in the Data Link Control program to record input commands, commands sent to the device handler,
packets sent and packets received. This trace hook will normally be used by the LAN administrator during
DLC debug.

Recorded Data

LAN Protocol LAN activity debug data

LAN protocol Type of LAN protocol:

Ethernet

IEEE_802.3

Chapter 27. Trace Facility 779

SDLC

Token_Ring

LAN activity Type of LAN activity:

Write_Command

Receive_Non_I_Data

Receive_I_Frame_Data

Input_Send_Command

Send_Command

Timer

Receive_Network_Data

debug data Debug data.

251 : HKWD NETERR
This hook ID records TCP/IP network error events. TCP/IP network error events are recorded by the
network interface layer, most of which are return status codes from network adapter device drivers.

Recorded Data

Event:

NETERR CIO_OK ifp=ifp

NETERR CIO_BAD_MICROCODE ifp=ifp

NETERR CIO_BUF_OVFLW ifp=ifp

NETERR CIO_HARD_FAIL ifp=ifp

NETERR CIO_LOST_DATA ifp=ifp

NETERR CIO_NOMBUF ifp=ifp

NETERR CIO_NOT_STARTED ifp=ifp

NETERR CIO_TIMEOUT ifp=ifp

NETERR CIO_NET_RCVRY_ENTER ifp=ifp

NETERR CIO_NET_RCVRY_EXIT ifp=ifp

NETERR CIO_NET_RCVRY_MODE ifp=ifp

NETERR CIO_INV_CMD ifp=ifp

780 Writing and Debugging Programs

NETERR CIO_BAD_RANGE ifp=ifp

NETERR CIO_NETID_INV ifp=ifp

NETERR CIO_NETID_DUP ifp=ifp

NETERR CIO_NETID_FULL ifp=ifp

NETERR X25_BAD_CALL_ID ifp=ifp

NETERR X25_CLEAR ifp=ifp

NETERR X25_INV_CTR ifp=ifp

NETERR X25_NAME_USED ifp=ifp

NETERR X25_NOT_PVC ifp=ifp

NETERR X25_NO_ACK ifp=ifp

NETERR X25_NO_ACK_REQ ifp=ifp

NETERR X25_NO_LINK ifp=ifp

NETERR X25_NO_NAME ifp=ifp

NETERR X25_PROTOCOL ifp=ifp

NETERR X25_PVC_USED ifp=ifp

NETERR X25_RESET ifp=ifp

NETERR X25_TABLE ifp=ifp

NETERR X25_TOO_MANY_VCS ifp=ifp

NETERR X25_AUTH_LISTEN ifp=ifp

NETERR X25_BAD_PKT_TYPE ifp=ifp

NETERR X25_BAD_SESSION_TYPE ifp=ifp

NETERR invalid xmit complete intr ifp=ifp

NETERR if detach() fail ifp=ifp

NETERR find_input_type() fail ifp=ifp

NETERR no mbufs ifp=ifp

NETERR if not running ifp=ifp

NETERR clear indication ifp=ifp

NETERR unknown packet type ifp=ifp

Chapter 27. Trace Facility 781

NETERR NET_XMIT_FAIL ifp=ifp

NETERR NET_DETACH_FAIL ifp=ifp

NETERR ARP, wrong header ifp=ifp

NETERR ARP, unknown protocol ifp=ifp

NETERR ARP, ip broadcast address ifp=ifp

NETERR ARP, duplicate address ifp=ifp

NETERR ARP, arp table full ifp=ifp

ifp=ifp Address of network interface if structure.

252 : HKWD SYSC TCPIP
This hook ID records socket-type system call events. The socket layer records these events on entry and
exit to socket-type subroutines.

Event:

SOCKET socket (domain, type, protocol)

SOCKET bind (s, name, namelen)

SOCKET listen (s, backlog)

SOCKET accept (s, addr, addrlen)

SOCKET connect (s, name, namelen)

SOCKET socketpair (d, type, protocol, sv)

SOCKET sendto (s, msg, len, flags, to, tolen)

SOCKET send (s, msg, len, flags)

SOCKET sendmsg (s, msg, flags)

SOCKET recvfrom (s, buf, len, flags, from, fromlen)

SOCKET recv (s, buf, len, flags)

SOCKET recvmsg (s, msg, flags)

SOCKET shutdown (s, how)

SOCKET setsocketopt (s, level, optname, optval, optlen)

SOCKET getsocketopt (s, level, optname, optval, optlen)

SOCKET getsockname (s, name, namelen)

SOCKET getpeername (s, name, namelen)

782 Writing and Debugging Programs

SOCKET gethostid

SOCKET sethostid (hostid)

SOCKET gethostname (name, namelen)

SOCKET sethostname (name, namelen)

SOCKET getdomainname (name, namelen)

SOCKET setdomainname (name, namelen)

domain Specifies an address format (Internet or the operating system domain).
type Specifies semantics of communication (for example, stream or datagram).
protocol Specifies a particular protocol to be used with the socket.
s Socket file descriptor.
name Name that the socket will be bound to.
namelen Length of the name.
backlog Defines the maximum length for the queue of pending connections.
addr Specifies the address of the connecting entry.
addrlen Contains the amount of space pointed to by the addr parameter.
d Specifies the domain.
sv References new sockets.
msg Points to the message that will be sent.
len Specifies the length of the message.
flags Specifies the options to be used in sending the message.
to Specifies the address of the target.
tolen Specifies the size of the target.
buf Specifies the address where data is entered.
from Specifies the source address.
fromlen Initialized to the size of the buffer associated with the from parameter.
how Determines the action of the shutdown is determined by the how parameter.
level Specifies the level of the protocol (for example, socket or tcp).
optname Passed uninterpreted to the appropriate protocol.
optval Used to access option values.
optlen Used to access option values.

hostid Integer identifying the host.

Trace Hook IDs: 253 through 25A

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

253 : HKWD SOCKET
This hook ID records TCP/IP socket layer events. TCP/IP socket layer events are recorded by socket-layer
code, most of which records parameters passed to functions and return values from functions.

Recorded Data

Event:

socreate (value, value, value, value)

sobind (value, value)

Chapter 27. Trace Facility 783

solisten (value, value)

sofree (value)

soclose (value)

return from soclose (value)

soabort (value)

soaccept (value, value, value, value)

return from soaccept (value)

soconnect (value, value)

soconnect2 (value, value)

soconnect2_out

sodisconnect (value)

return from sodisconnect (value)

sosend (value, value, value, value, value)

return from sosend (value)

soreceive (value, value, value, value, value)

return from soreceive (value, value)

soshutdown (value)

sorflush (value, value, value, value)

sosetopt (value)

return from sosetopt (value, value, value, value)

sogetopt (value, value, value, value)

return from sogetopt

sohasoutofband (value)

return from sohasoutofband

254 : HKWD MBUF
This hook word is used by the MBUF services routines to record mbuf activity. The mbuf routines are
called by many system components. These routines record parameters passed to functions and the return
values.

Recorded Data

784 Writing and Debugging Programs

Event:

m_get (value, value)

return from m_get (value)

m_getclr (value, value)

return form m_getclr (value)

m_free (value)

return from m_free (value)

m_copy (value, value, value)

return from m_copy (value)

m_copydata (value, value, value, value)

return from m_copydata

m_pullup_1

m_pullup_2

mlowintr

return from mlowintr

m_low: schedule mlowintr

255 : HKWD IFEN
This hook ID is used by the Ethernet network interface to record interface events. The Ethernet network
interface records packet transmit-and-receive operations and unusual interface conditions.

Recorded Data

Event:

en_statintr (entry) ifp=ifp sbp_option=sbp_option

en_statintr (rtn)

en_netintr (entry) ifp=ifp status=status

en_netintr (rtn)

en_attach (entry) unit=unit

en_attach (rtn)

en_detach (entry) ifp=ifp

en_detach (rtn)

Chapter 27. Trace Facility 785

en_init (entry)

en_init (rtn)

en_ioctl (entry) ifp=ifp cmd=cmd data=data data

en_ioctl (rtn) error=error

en_output (entry) ifp=ifp m=m family=family dst_ipaddr=dst_ipaddr

en_output (rtn) error=error

en_reset (entry)

en_reset (rtn)

en_recv (entry) m=m ifp=ifp

en_recv (rtn)

ifp=ifp Address of network interface if structure
sbp_option=sbp_option Status block option value
status=status Status value
unit=unit Network interface unit number
cmd=cmd Value of ioctl command parameter
data=data Value of ioctl data parameter
m=m Address of mbuf
family=family Address family value
dst_ipaddr=dst_ipaddr Destination IP address value

error=error
Return status of interface output routine.

256 : HKWD IFTR
This hook ID is used by the token-ring network interface to record interface events. The token-ring network
interface records packet transmit-and-receive operations and unusual interface conditions.

Recorded Data

Event:

ie5_statintr (entry) ifp=ifp sbp_option=sbp_option

ie5_statintr (rtn)

ie5_netintr (entry) ifp=ifp status=status

ie5_netintr (rtn)

ie5_attach (entry) unit=unit

ie5_attach (rtn)

ie5_detach (entry) ifp=ifp

786 Writing and Debugging Programs

ie5_detach (rtn)

ie5_init (entry)

ie5_init (rtn)

ie5_ioctl (entry) ifp=ifp cmd=cmd data=data data

ie5_ioctl (rtn) error=error

ie5_output (entry) ifp=ifp m=m family=family dst_ipaddr=dst_ipaddr

ie5_output (rtn) error=error

ie5_reset (entry)

ie5_reset (rtn)

ie5_recv (entry) m=m ifp=ifp

ie5_recv (rtn)

ifp=ifp Address of network interface if structure
sbp_option=sbp_option Status block option value
status=status Status value
unit=unit Network interface unit number
cmd=cmd Value of ioctl command parameter
data=data Value of ioctl data parameter
m=m Address of mbuf
family=family Address family value
dst_ipaddr=dst_ipaddr Destination IP address value

error=error
Return status of interface output routine.

257 : HKWD IFET
This hook ID is used by the 802.3 network interface to record interface events. The 802.3 network
interface records packet transmit-and-receive operations and unusual interface conditions.

Recorded Data

Event:

ie3_statintr (entry) ifp=ifp sbp_option=sbp_option

ie3_statintr (rtn)

ie3_netintr (entry) ifp=ifp status=status

ie3_netintr (rtn)

ie3_attach (entry) unit=unit

ie3_attach (rtn)

Chapter 27. Trace Facility 787

ie3_detach (entry) ifp=ifp

ie3_detach (rtn)

ie3_init (entry)

ie3_init (rtn)

ie3_ioctl (entry) ifp=ifp cmd=cmd data=data data

ie3_ioctl (rtn) error=error

ie3_output (entry) ifp=ifp m=m family=family dst_ipaddr=dst_ipaddr

ie3_output (rtn) error=error

ie3_reset (entry)

ie3_reset (rtn)

ie3_recv (entry) m=m ifp=ifp

ie3_recv (rtn)

ifp=ifp Address of network interface if structure
sbp_option=sbp_option Status block option value
status=status Status value
unit=unit Network interface unit number
cmd=cmd Value of ioctl command parameter
data=data Value of ioctl data parameter
m=m Address of mbuf
family=family Address family value
dst_ipaddr=dst_ipaddr Destination IP address value

error=error
Return status of interface output routine.

258 : HKWD IFXT
This hook ID is used by the X.25 network interface to record interface events. The X.25 network interface
records packet transmit-and-receive operations and unusual interface conditions.

Recorded Data

Event:

xt_statintr (entry) ifp=ifp sbp_option=sbp_option

xt_statintr (rtn)

xt_netintr (entry) ifp=ifp status=status

xt_netintr (rtn)

xt_attach (entry) unit=unit

788 Writing and Debugging Programs

xt_attach (rtn)

xt_detach (entry) ifp=ifp

xt_detach (rtn)

xt_init (entry)

xt_init (rtn)

xt_ioctl (entry) ifp=ifp cmd=cmd data=data data

xt_ioctl (rtn) error=error

xt_output (entry) ifp=ifp m=m family=family dst_ipaddr=dst_ipaddr

xt_output (rtn) error=error

xt_reset (entry)

xt_reset (rtn)

xt_recv (entry) m=m ifp=ifp

xt_recv (rtn)

ifp=ifp Address of network interface if structure
sbp_option=sbp_option Status block option value
status=status Status value
unit=unit Network interface unit number
cmd=cmd Value of ioctl command parameter
data=data Value of ioctl data parameter
m=m Address of mbuf
family=family Address family value
dst_ipaddr=dst_ipaddr Destination IP address value

error=error
Return status of interface output routine.

259 : HKWD IFSL
This hook ID is used by the SLIP network interface to record interface events. The SLIP network interface
records packet transmit and receive operations and unusual interface conditions.

Recorded Data

Event:

slattach (entry) unit=unit

slattach (rtn)

sl_detach (entry) ifp=ifp

sl_detach (rtn)

Chapter 27. Trace Facility 789

slinit (entry)

slinit (rtn)

slioctl (entry) ifp=ifp cmd=cmd data=data

slioctl (rtn) error=error

sloutput (entry) ifp=ifp m=m family=family dst_ipaddr=dst_ipaddr

sloutput (rtn) error=error

slreset (entry)

slreset (rtn)

unit=unit Network interface unit number
ifp=ifp Address of network interface if structure
cmd=cmd Value of ioctl command parameter
data=data Value of ioctl data parameter
m=m Address of mbuf
family=family Address family value

dst_ipaddr=dst_ipaddr
Destination IP address value

error=error
Return status of interface output routine.

25A : HKWD TCPDBG
This event ID is used to trace TCP events. The TCP protocol records outgoing and incoming packet
events when the socket used has had the SO_DEBUG option turned on for the socket.

Recorded Data

Events:

TA_INPUT tp=tp ostate=ostate flags=flags

TA_OUTPUT tp=tp ostate=ostate flags=flags

TA_USER req=req

TA_RESPOND tp=tp ostate=ostate flags=flags

TA_DROP tp=tp ostate=ostate flags=flags

seq=seq ack=ack len=len

rcvnxt=rcvnxt rcvwnd=rcvwnd snduna=snduna

sndmax=sndmax

790 Writing and Debugging Programs

sndw11=sndw11 sndw12=sndw12 sndwnd=sndwnd

tp=tp Address control block structure
ostate=ostate State of tcp connection
flags=flags Flags value for incoming/outgoing packet
req=req Type of user request
seq=seq Sequence number value
ack=ack ack value
len=len Length of data
rcvnxt=rcvnxt Receive next value
rcvwnd=rcvwnd Receive window value
snduna=snduna Send unnumbered acknowledgement value
sndmax=sndmax Send maximum value
sndw11=sndw11 Send w11 value
sndw12=sndw12 Send w12 value

sndwnd=sndwnd
Send window value.

Trace Hook IDs: 271 through 280

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

271: HKWD SNA API
This error is logged by the SNA Services upon entry and exit of the SNA API command routines.

Recorded Data

Event:

SNA API Commands Entry SNA_API Open Connection ID=cid Resource ID=rid Buffer Address=buf
Buffer Length=len

SNA API Commands Exit SNA_API Open Connection ID=cid Resource ID=rid Buffer Address=buf
Return Code=rc

SNA API Commands Entry SNA_API Close Connection ID=cid Resource ID=rid Buffer Address=buf
Buffer Length=len

SNA API Commands Exit SNA_API Close Connection ID=cid Resource ID=rid Buffer Address=buf
Return Code=rc

SNA API Commands Entry SNA_API IOCTL Connection ID=cid Resource ID=rid Buffer Address=buf
Buffer Length=len Request=ioctl req

SNA API Commands Exit SNA_API IOCTL Connection ID=cid Resource ID=rid Buffer Address=buf
Return Code=rc Request=ioctl req

SNA API Commands Entry SNA_API Write Connection ID=cid Resource ID=rid Buffer Address=buf
Buffer Length=len

SNA API Commands Exit SNA_API Write Connection ID=cid Resource ID=rid Buffer Address=buf
Return Code=rc

Chapter 27. Trace Facility 791

SNA API Commands Entry SNA_API Read Connection ID=cid Resource ID=rid Buffer Address=buf
Buffer Length=len

SNA API Commands Exit SNA_API Read Connection ID=cid Resource ID=rid Buffer Address=buf
Return Code=rc

SNA API Commands Entry SNA_API MPX Connection ID=cid Resource ID=rid Buffer Address=buf
Buffer Length=len

SNA API Commands Exit SNA_API MPX Connection ID=cid Resource ID=rid Buffer Address=buf
Return Code=rc

SNA API Commands Entry SNA_API Select Connection ID=cid Resource ID=rid Buffer Address=buf
Buffer Length=len Request=select req

SNA API Commands Exit SNA_API Select Connection ID=cid Resource ID=rid Buffer Address=buf
Return Code=rc Request=select req

SNA API Commands Entry SNA_API Config Connection ID=cid Resource ID=rid Buffer Address=buf
Buffer Length=len Request=config req

SNA API Commands Exit SNA_API Config Connection ID=cid Resource ID=rid Buffer Address=buf
Return Code=rc Request=config req

Connection ID=cid Connection identifier
Resource ID=rid Resource identifier
Buffer Address=buf Buffer address
Buffer Length=len Buffer length
Return Code=rc SNA return code as defined in the luxsna.h file
Request=icoctl req ioctl operation:

Allocate

Deallocate

Confirm

Confirmed

Flush

Prepare_To_Receive

Request_To_Send

Send_FMH

Send_Error

Get_Attribute

Send_Status

Get_Status

792 Writing and Debugging Programs

CP_Status

Allocate_Listen

Get_Parameters

Request=select req Select operation:

Asynchronous - Read

Asynchronous - Write

Asynchronous - Write,Read

Asynchronous - Exception

Asynchronous - Exception,Read

Asynchronous - Exception,Write

Asynchronous - Exception,Write,Read

Synchronous - Read

Synchronous - Write

Synchronous - Write,Read

Synchronous - Exception

Synchronous - Exception,Read

Synchronous - Exception,Write

Synchronous - Exception,Write,Read

Request=config req Configuration operation:

Initiate

Terminate

Query

280: HKWD HIA
This error is logged by the HIA device driver.

Recorded Data

Event:

HIADD Ccls Entry to device close routine:
d1=d1 Device minor number
d2=d2 Session address number

Chapter 27. Trace Facility 793

d3=d3 Pointer to close extension structure, if any.
HIADD CclE Exit from device close routine:

d1=d1 Status of link.
HIADD IinS Entry to top half of device head interrupt handler routine:

d1=d1 Session address number
d2=d2 Operation results passed up from device handler
d3=d3 Interrupt type passed up from device handler.

HIADD IinE Exit to top half of device head interrupt handler routine:

d1=d1

Session address number.

HIADD IioS

Entry to ioctl routine:

d1=d1

Device minor number

d2=d2

ioctl command parameter

d3=d3

Pointer to ioctl arg parameter

d4=d4

Value of ioctl flag parameter.
HIADD Iio1 Second trace point for start of ioctl entry point:

d1=d1

Session address number.
HIADD IioE Exit of ioctl routine:

d1=d1

Link address status.
HIADD MpxS Entry to mpx routine:

d1=d1

Device minor number

d2=d2

Session address number

d3=d3

First character of channel name

d4=d4

State of the DDS.

794 Writing and Debugging Programs

HIADD MpxE Exit mpx routine:

d1=d1

Device minor number

d2=d2

Address of session address number

d3=d3

Address of channel name string

d4=d4

Session address number.
HIADD OpeS Entry to open routine:

d1=d1

Device minor session

d2=d2

Read/write flag

d3=d3

Session address number

d4=d4

Address of DDS.
HIADD OpeE Exit open routine:

d1=d1

Address of DDS

d2=d2

Session address number.
HIADD RrdS Entry to read routine:

d1=d1

State of DDS

d2=d2

Session address number

d3=d3

Address of ext structure, used with the readx subroutine.

Chapter 27. Trace Facility 795

HIADD RrdE Exit read routine:

d1=d1

Value entry point will return

d2=d2

Value of link address IO flag

d3=d3

Status of link address IO.
HIADD SslS Entry to select routine:

d1=d1

Device number

d2=d2

Events to select on

d3=d3

Session address number.
HIADD SslE Exit select routine:

d1=d1

Device number

d2=d2

Events to select on

d3=d3

Status of events selected on

d4=d4

Session address number.
HIADD WwrS Entry to write routine:

d1=d1

State of DDS

d2=d2

Session address number

d3=d3

Address of ext structure, used with the writex subroutine.

796 Writing and Debugging Programs

HIADD WwrE Exit write routine:

d1=d1

Status of link

d2=d2

Value of link address IO flag

d3=d3

Status of link address IO

d4=d4

Return value for entry point.
HIADD CDDs Entry for hia configuration:

d1=d1

Device number

d2=d2

Configuration command

d3=d3

Flag indicating if this is first open.
HIADD CDDe Exit hia configuration routine:

d1=d1

Return value.
HIADD INTO Device handler I/O routine:

d1=d1

Interrupt status.
HIADD INT2 Beginning of device handler I/O routine:

d1=d1

stb

d2=d2

icc

d3=d3

ccb

d4=d4

lda.

Chapter 27. Trace Facility 797

HIADD INT3 Beginning of device handler I/O routine:

d1=d1

count

d2=d2

ipf

d3=d3

vda[0]

d4=d4

vda[1].
HIADD INTz Beginning of device handler I/O routine:

d1=d1

xrc.
HIADD INT6 Beginning of device handler I/O routine:

d1=d1

Type of IO requested

d2=d2

Address of link address structure.
HIADD INT9 Unrecognized interrupt.
HIADD IIOs Entry to I/O handler portion of bottom half:

d1=d1

Session number

d2=d2

Type of IO requested.
HIADD IIOe Exit to I/O handler portion of bottom half:

d1=d1

Return value.
HIADD RIO0 Entry to routine to update the romp to hia area to send the hia a new command:

d1=d1

Interrupt pending flag value

d2=d2

Command control byte

d3=d3

Flag byte

d4=d4

Minor session number of the link address.

798 Writing and Debugging Programs

HIADD RIO1 Entry to routine to update the romp to hia area to send the hia a new command:

d1=d1

Size of the data to transfer

d2=d2

Address of the buffer to transfer

d3=d3

Variable data area.
HIADD RIO2 Routine to update the romp to hia area to send the hia a new command:

d1=d1

First byte of the buffer

d2=d2

In-use flag of the buffer

d3=d3

Count of data for transfer

d4=d4

Offset of data in buffer.
HIADD RIO3 Routine to update the romp to hia area to send the hia a new command:

d1=d1

dma base

d2=d2

dma channel ID

d3=d3

dma memory block.
HIADD RIO4 Routine to update the romp to hia area to send the hia a new command:

d1=d1

First byte of data

d2=d2

Second byte of data

d3=d3

Third byte of data

d4=d4

Fourth byte of data.
HIADD RIO5 End of routine to update the romp to hia area to send the hia a new command.

Chapter 27. Trace Facility 799

HIADD SOFs Entry to the main off-level routine:

d1=d1

Type of interrupt processing, should be 70 to indicate off-level

d2=d2

Address of DDS.
HIADD SOFe Exit from the main off-level routine.
HIADD YOF1 Entry to routine to handle interrupt to indicate statistical data has been reported by the hia:

d1=d1

Count

d2=d2

Session address number

d3=d3

Status

d4=d4

Address of read buffer.
HIADD stmr Routine to set timers:

d1=d1

Timer ID

d2=d2

Time count.
HIADD utmr Routine to cancel timers:

d1=d1

Timer ID.

Trace Hook IDs: 301 through 315

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

301: HKWD KERN ASSERTWAIT
This event is recorded by the e_assert_wait kernel service.

Recorded Data

e_assert_wait: tid=tid anchor=anchor flag=flag lr=lr
tid Thread ID of the calling kernel thread.
anchor The event_word parameter; the anchor to the list of kernel

threads waiting on this event.
flag The interruptible parameter.
lr Value of the link register, specifying the return address of

the service.

800 Writing and Debugging Programs

302: HKWD KERN CLEARWAIT
This event is recorded by the e_clear_wait kernel service.

Recorded Data

e_clear_wait: tid=tid anchor=anchor result=result lr=lr
tid The tid parameter; the thread ID of the kernel thread to be

awakened.
anchor Anchor to the event list where the target thread is

sleeping.
result The result parameter; the value to return to the awkened

thread.
lr Value of the link register, specifying the return address of

the service.

303: HKWD KERN THREADBLOCK
This event is recorded by the e_block_thread kernel service.

Recorded Data

e_block_thread: tid=tid anchor=anchor t_flags=t_flags lr=lr
tid Thread ID of the calling kernel thread.
anchor Anchor to the event list where the kernel thread will sleep.
t_flags Flags of the kernel thread.
lr Value of the link register, specifying the return address of

the service.

304: HKWD KERN EMPSLEEP
This event is recorded by the e_mpsleep kernel service.

Recorded Data

e_mpsleep: tid=tid anchor=anchor timeout=timeout lock=lock flags=flags lr=lr
tid Thread ID of the calling kernel thread.
anchor The event_word parameter; the anchor to the list of kernel

threads waiting on this event.
timeout The timeout parameter; the timeout for the sleep.
lock The lock_word parameter; the lock (simple or complex) to

unlock by the kernel service.
flags The flags parameter; the lock and signal handling options.
lr Value of the link register, specifying the return address of

the service.

305: HKWD KERN EWAKEUPONE
This event is recorded by the e_wakeup_one kernel service.

Recorded Data

e_wakeup_one: tid=tid anchor=anchor lr=lr
tid Thread ID of the calling kernel thread.
anchor The event_word parameter; the anchor to the list of kernel

threads waiting on this event.

Chapter 27. Trace Facility 801

lr Value of the link register, specifying the return address of
the service.

306: HKWD SYSC CRTHREAD
This event is recorded by the thread_create system call.

Recorded Data

thread_create: pid=pid tid=tid priority=priority policy=policy
pid Process ID of the calling kernel thread’s process.
tid Thread ID of the calling kernel thread.
priority Priority of the new kernel thread.
policy Scheduling policy of the new kernel thread.

307: HKWD KERN KTHREADSTART
This event is recorded by the kthread_start kernel service.

Recorded Data

kthread_start: pid=pid tid=tid priority=priority policy=policy func=func
pid Process ID of the calling kernel thread’s process.
tid The tid parameter; the thread ID of the kernel thread to

start.
priority Priority of the new kernel thread.
policy Scheduling policy of the new kernel thread.
func The i_func parameter, the address of the new kernel

thread’s entry-point routine.

308 : HKWD SYSC TERMTHREAD
This event is recorded by the thread_terminate system call.

Recorded Data

thread_terminate: pid=pid tid=tid
pid Process ID of the calling kernel thread’s process.
tid Thread ID of the calling kernel thread.

309 : HKWD KERN KSUSPEND
This event is recorded by the ksuspend subroutine. This subroutine is used internally by the system and
is undocumented.

Recorded Data

ksuspend: tid=tid p_suspended=suspended p_active=active
tid Thread ID of the calling kernel thread.
suspended Number of suspended kernel threads in the process.
active Number of active (suspendable) kernel threads in the

process.

802 Writing and Debugging Programs

310 : HKWD SYSC THREADSETSTATE
This event is recorded by the thread_setstate system call.

Recorded Data

thread_setstate: tid=tid t_state=t_state t_flags=t_flags priority=priority policy=policy
tid Thread ID of the target kernel thread.
t_state Current state of the kernel thread. Possible values:

NONE

IDLE

RUN

SLEEP

SWAP

STOP

ZOMB
t_flags New flags of the kernel thread.
priority New priority of the kernel thread.
policy New scheduling policy of the kernel thread.

311 : HKWD SYSC THREADTERM ACK
This event is recorded by the thread_terminate_ack system call.

Recorded Data

thread_terminate_ack: current_tid=crt_tid target_tid=targ_tid
crt_tid Thread ID of the calling kernel thread.
targ_tid Thread ID of the target kernel thread.

312 : HKWD SYSC THREADSETSCHED
This event is recorded by the thread_setsched system call.

Recorded Data

thread_setsched: pid=pid tid=tid priority=priority policy=policy
pid Process ID of the calling kernel thread’s process.
tid The tid parameter; the thread ID of the target kernel

thread.
priority The priority parameter; the priority to set.
policy The policy parameter; the scheduling policy to set.

313 : HKWD KERN TIDSIG
This event is recorded by the tidsig subroutine. This subroutine is used internally by the system and is
undocumented.

Recorded Data

tidsig: pid=pid tid=tid signal=signal lr=lr
pid Process ID of the calling kernel thread’s process.

Chapter 27. Trace Facility 803

tid Thread ID of the calling kernel thread.
signal Symbolic name of the delivered signal.
lr Value of the link register, specifying the return address of

the routine.

314 : HKWD KERN WAITLOCK
This event is recorded by the wait_on_lock subroutine. This subroutine is used internally by the system
and is undocumented.

Recorded Data

wait_on_lock: pid=pid tid=tid lockaddr=lockaddr
pid Process ID of the calling kernel thread’s process.
tid Thread ID of the calling kernel thread.
lockaddr Address of the lock.

315 : HKWD KERN WAKEUPLOCK
This event is recorded by the wakeup_lock subroutine. This subroutine is used internally by the system
and is undocumented.

Recorded Data

wakeup_lock: lockaddr=lockaddr waiters=waiters
lockaddr Address of the lock.
waiters Number of kernel threads remaining sleeping on the lock.

Trace Hook IDs: 3C5 through 3E2

3c5 : HKWD SYSC IPCACCESS
This event is recorded by the msgctl, msgrcv, msgsnd, semctl, semop, shmat, and shmctl
subroutines.

Recorded Data

ipcaccess p->uid=value p->mode=value p->seq=value p->key=value mode=value

p->uid=value The user id of the ipc object creator.
p->mode=value The mode of the ipc object.
p->seq=value The slot usage sequence number of the ipc object.
p->key=value The key of the ipc object.
mode=value The mode being requested.

3c6 : HKWD SYSC IPCGET
This event is recorded by the msgget, semget and shmget subroutines.

Recorded Data

ipcget key=value flag=value base=value size=value *mark=value

key=value The key of the requested ipc object.

804 Writing and Debugging Programs

flag=value The get flags.
base=value The base address of the ipc object array.
size=value The size of each ipc object.
*mark=value The largest used index into the ipc object array.

3c7 : HKWD SYSC MSGCONV
This event is recorded by the msgctl, msgrcv, msgsnd and msgselect subroutines.

Recorded Data

msgconv msgid=value seq=value index=value qp=value

msgid=value The id of the message queue.
seq=value The slot usage sequence number of the message queue.
index=value The index into the message queue array.
qp=value The pointer to the message queue.

3c8 : HKWD SYSC MSGCTL
This event is recorded by the msgctl subroutine.

Recorded Data

msgctl msgid=value cmd=value buf=value

msgid=value The id of the message queue.
cmd=value The command to perform.
buf=value The buffer used by the command.

3c9 : HKWD SYSC MSGGET
This event is recorded by the msgget subroutine.

Recorded Data

msgget key=value msgflg=value msgid=value rval=value

key=value The key of the requested message queue.
msgflg=value The get flags.
msgid=value The id of the message queue.
rval=value The pointer to the message queue.

3ca : HKWD SYSC MSGRCV
This event is recorded by the msgrcv subroutine.

Recorded Data

msgrcv msgid=value msgp=value msgsz=value msgtyp=value msgflg=value

msgid=value The id of the message queue.
msgp=value The pointer to the message buffer.
msgsz=value The size of the message.
msgtyp=value The type of the message.

Chapter 27. Trace Facility 805

msgflg=value The receive flags.

3cb : HKWD SYSC MSGSELECT
This event is recorded by the msgselect subroutine.

Recorded Data

msgselect msgid=value corl=value reqevents=value rtneventsp=value

msgid=value The id of the message queue.
corl=value The correlator of the select.
reqevents=value The requested events
rtneventsp=value The buffer for recorded events.

3cc : HKWD SYSC MSGSND
This event is recorded by the msgsnd subroutine.

Recorded Data

msgsnd msgid=value msgp=value msgsz=value msgflg=value

msgid=value The id of the message queue.
msgp=value The pointer to the message buffer.
msgsz=value The size of the message.
msgflg=value The send flags.

3cd : HKWD SYSC MSGXRCV
This event is recorded by the msgxrcv subroutine.

Recorded Data

msgxrcv msgid=value msgp=value msgsz=value msgtyp=value msgflg=value

msgid=value The id of the message queue.
msgp=value The pointer to the message buffer.
msgsz=value The size of the message.
msgtyp=value The type of the message.
msgflg=value The receive flags.

3ce : HKWD SYSC SEMCONV
This event is recorded by the semctl, exit and semop subroutines.

Recorded Data

semconv semid=value seq=value index=value sp=value

semid=value The id of the semaphore set.
seq=value The slot usage sequence number of the message queue.
index=value The index into the semaphore set array.
sp=value The pointer to the semaphore set.

806 Writing and Debugging Programs

3cf : HKWD SYSC SEMCTL
This event is recorded by the semctl subroutine.

Recorded Data

semctl semid=value semnum=value cmd=value arg=value

semid=value The id of the semaphore set.
semnum=value The number of the semaphore in the set.
cmd=value The command to perform.
arg=value The argument to the command.

3d0 : HKWD SYSC SEMGET
This event is recorded by the semget subroutine.

Recorded Data

semget key=value nsems=value semflg=value sp=value

key=value The key of the requested semaphore set.
nsems=value The number of semaphores requested.
semflg=value The get flags.
sp=value Pointer to the semaphore set.

3d1 : HKWD SYSC SEMOP
This event is recorded by the semop subroutine.

Recorded Data

semop semid=value sops=value nsops=value

semid=value The id of the semaphore set.
sops=value The semaphore operations.
nsops=value The number of semaphore operations.

3d2 : HKWD SYSC SEM
This event is recorded by the semop subroutine.

Recorded Data

semop semid=value semval=value sem_num=value sem_op=value sem_flg=value

semid=value The id of the semaphore set.
semval=value The current semaphore value.
sem_num=value The semaphore number.
sem_op=value The semaphore operation.
sem_flg=value The operation flags.

Chapter 27. Trace Facility 807

3d3 : HKWD SYSC SHMAT
This event is recorded by the shmat subroutine.

Recorded Data

shmat shmid=value addr=value flag=value

shmid=value The id of the shared memory region.
addr=value The address to attach to.
flag=value The attach flags.

3d4 : HKWD SYSC SHMCONV
This event is recorded by the shmat and shmctl subroutines.

Recorded Data

shmconv shmid=value flg=value seq=value index=value sp=value

shmid=value The id of the shared memory region.
flg=value The operation flags.
seq=value The slot usage sequence number of the shared memory region.
index=value The index into the shared memory region array.
sp=value The pointer to the shared memory region.

3d5 : HKWD SYSC SHMCTL
This event is recorded by the shmctl subroutine.

Recorded Data

shmctl shmid=value cmd=value arg=value

shmid=value The id of the shared memory region.
cmd=value The command to perform.
arg=value The argument to the command.

3d6 : HKWD SYSC SHMDT
This event is recorded by the shmdt subroutine.

Recorded Data

shmdt addr=value

addr=value The address to detach from.

3d7 : HKWD SYSC SHMGET
This event is recorded by the shmget subroutine.

Recorded Data

808 Writing and Debugging Programs

shmget key=value size=value shmflg=value sp=value

key=value The id of the shared memory region.
size=value The size of the shared memory region.
shmflg=value The get flags.
sp=value The pointer to the shared memory region.

3d8 : HKWD SYSC MADVISE
This event is recorded by the madvise subroutine.

Recorded Data

madvise addr=value len=value behav=value

addr=value The address to advise on.
len=value The length of the region to advise on.
behav=value The behavior to advise.

3d9 : HKWD SYSC MINCORE
This event is recorded by the mincore subroutine.

Recorded Data

mincore addr=value len=value vec=value

addr=value The address to check.
len=value The length of the region to check.
vec=value The state of the pages.

3da : HKWD SYSC MMAP
This event is recorded by the mmap subroutine.

Recorded Data

mmap addr=value len=value prot=value flags=value fd=value

addr=value The address to map to.
len=value The length of the region to map.
prot=value The protection of the region to map.
flags=value The map flags.
fd=value The file descriptor to map.

3db : HKWD SYSC MPROTECT
This event is recorded by the mprotect subroutine.

Recorded Data

mprotect addr=value len=value prot=value

addr=value The address to protect.
len=value The length of the region to protect.
prot=value The protection requested.

Chapter 27. Trace Facility 809

3dc : HKWD SYSC MSYNC
This event is recorded by the msync subroutine.

Recorded Data

msync addr=value len=value

addr=value The address to sync.
len=value The length of the region to sync.

3dd : HKWD SYSC MUNMAP
This event is recorded by the munmap subroutine.

Recorded Data

munmap addr=value len=value

addr=value The address to unmap.
len=value The length of the region to unmap.

3de : HKWD SYSC MVALID
This event is recorded by the mvalid subroutine.

Recorded Data

mvalid addr=value len=value prot=value

addr=value The address to validate.
len=value The length of the region to validate.
prot=value The protection requested.

3df : HKWD SYSC MSEM_INIT
This event is recorded by the msem_init subroutine.

Recorded Data

msem_init msem=value msem_state=value msem_wanted=value initial_value=value

msem=value The pointer to the msemaphore.
msem_state=value The state of the msemaphore after.
msem_wanted=value Threads waiting on the msemaphore.
initial_value=value The initial value of the msemaphore

3e0 : HKWD SYSC MSEM_LOCK
This event is recorded by the msem_lock subroutine.

Recorded Data

810 Writing and Debugging Programs

msem_lock msem=value msem_state=value msem_wanted=value condition=value

msem=value The pointer to the msemaphore.
msem_state=value The current state of the msemaphore.
msem_wanted=value The threads waiting on the msemaphore.
condition=value The flags for the operation.

3e1 : HKWD SYSC MSEM_REMOVE
This event is recorded by the msem_remove subroutine.

Recorded Data

msem_remove msem=value msem_state=value msem_wanted=value

msem=value The pointer to the msemaphore.
msem_state=value The current state of the msemaphore.
msem_wanted=value The threads waiting on the msemaphore.

3e2 : HKWD SYSC MSEM_UNLOCK
This event is recorded by the msem_unlock subroutine.

Recorded Data

msem_unlock msem=value msem_state=value msem_wanted=value condition=value

msem=value The pointer to the msemaphore.
msem_state=value The current state of the msemaphore.
msem_wanted=value The threads waiting on the msemaphore.
condition=value The flags for the operation.

Trace Hook IDs: 401

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

401 : HKWD TTY TTY
This event is recorded by the TTY device driver.

Recorded Data

Event:

(maj, min, chan) tty config cmd cmd ret ret

(maj, min, chan) tty alloc cin cin cmd alloc cmd ret ret

(maj, min, chan) tty open mode open mode ext ext ret ret

(maj, min, chan) tty close ret ret

(maj, min, chan) tty read ret ret

(maj, min, chan) tty write ret ret

Chapter 27. Trace Facility 811

(maj, min, chan) tty ioctl cmd ioctl cmd arg ioctl arg mode mode ret ret

(maj, min, chan) tty select events events revents revents ret ret

(maj, min, chan) tty revoke flag revoke flag ret ret

(maj, min, chan) tty mpx ret ret

(maj, min, chan) tty input c c input status ret ret

(maj, min, chan) tty output output status

(maj, min, chan) tty service proc proc ret ret

(maj, min, chan) tty service set control control ret ret

(maj, min, chan) tty service get control ret ret

(maj, min, chan) tty service get status ret ret

(maj, min, chan) tty service baud baud ret ret

(maj, min, chan) tty service get baud ret ret

(maj, min, chan) tty service set input baud baud ret ret

(maj, min, chan) tty service get input baud ret ret

(maj, min, chan) tty service set bpc bpc ret ret

(maj, min, chan) tty service get bpc ret ret

(maj, min, chan) tty service set parity parity ret ret

(maj, min, chan) tty service get parity ret ret

(maj, min, chan) tty service set stops stops ret ret

(maj, min, chan) tty service get stops ret ret

(maj, min, chan) tty service set break ret ret

(maj, min, chan) tty service clear break ret ret

(maj, min, chan) tty service open open ret ret

(maj, min, chan) tty service dopace dopace ret ret

(maj, min, chan) tty service softpace softpace ret ret

(maj, min, chan) tty service softrchar softrchar ret ret

(maj, min, chan) tty service softlchar softlchar ret ret

(maj, min, chan) tty service softrstr softrstr ret ret

812 Writing and Debugging Programs

(maj, min, chan) tty service softlstr softlstr ret ret

(maj, min, chan) tty service hardrbits hardrbits ret ret

(maj, min, chan) tty service hardlbits hardlbits ret ret

(maj, min, chan) tty service loop enter ret ret

(maj, min, chan) tty service loop exit ret ret

(maj, min, chan) tty proc proc ret ret

(maj, min, chan) tty slih intr intr slih status

(maj, min, chan) tty offlevel intr intr ret ret

(maj, min, chan) tty ttyinit disp disp ret ret

(maj, min, chan) tty ttyfree ret ret

(maj, min, chan) tty ttynull ret ret

(maj, min, chan) tty ttcwait wait ret ret

(maj, min, chan) tty ttyspgrp ret ret

(maj, min, chan) tty ttypath input ttypath input ret ret

(maj, min, chan) tty ttypath output ttypath output ret ret

(maj, min, chan) tty ttypath service ttypath service ret ret

(maj, min, chan) tty stack ctl disp disp mode mode ext ext ret ret

(maj, min, chan) tty unstack ctl ctl ctl ext ext ret ret

(maj, min, chan) tty getctlbytype type type ctl ctl ret ret

(maj, min, chan) tty getctlbyname name name ctl ctl ret ret

(maj, min, chan) tty getdispbyname name name disp disp ret ret

(maj, min, chan) tty getdispbytype type type disp disp ret ret

(maj, min, chan) tty dispadd ret ret

(maj, min, chan) tty dispdel ret

(maj, min, chan) tty tty_do_offlevel ret

(maj, min, chan) tty ttyofflevel ret

(maj, min, chan) Major and minor device number, and channel number

config cmd cmd

Chapter 27. Trace Facility 813

cin cin

cmd alloc cmd Possible values:

push

pop

unconfig

mode open mode

ext ext

ioctl cmd ioctl cmd

arg ioctl arg

mode mode
events events Possible values:

in

out

pri

sync

revents revents

revoke flag revoke flag

c c
input status Possible values:

good char

overrun

parity error

framing error

break interrupt

cts on

cts off

dsr on

dsr off

ri on

ri off

cd on

cd off

cblock buf

other buf

814 Writing and Debugging Programs

proc proc Possible values:

output

suspend

resume

block

unblock

rflush

wflush
output output status Possible values:

done

more output
set control control Possible values:

TSDTR

TSRTS

TSCTS

TSDSR

TSRI

TSCD

baud baud

bpc bpc
parity parity Possible values:

Tnone

odd

mark

even

space
stops stops Possible values:

1

2
open open Possible values:

local

remote

Chapter 27. Trace Facility 815

dopace dopace Possible values:

again

xon

str

dtr

rts
softpace softpace Possible values:

remote off

remote any

remote on

remote str

local off

local on

local str

softrchar softrchar

softlchar softlchar

softrstr softrstr

softlstr softlstr

hardrbits hardrbits

hardlbits hardlbits
slih status Possible values:

serviced

no intr serviced

intr intr

disp disp

ttcwait wait

ttypath input ttypath input

ttypath output ttypath output

ttypath service ttypath service

ctl ctl

type type

name name

ret ret

816 Writing and Debugging Programs

Trace Hook IDs: 402

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

402 : HKWD TTY PTY
Recorded Data

Event:

(maj, min, chan) pty config cmd cmd ret ret

(maj, min, chan) pty alloc cin cin cmd alloc cmd ret ret

(maj, min, chan) pty open mode open mode ext ext ret ret

(maj, min, chan) pty close ret ret

(maj, min, chan) pty read ret ret

(maj, min, chan) pty write ret ret

(maj, min, chan) pty ioctl cmd ioctl cmd arg ioctl arg mode mode ret ret

(maj, min, chan) pty select events events revents revents ret ret

(maj, min, chan) pty revoke flag revoke flag ret ret

(maj, min, chan) pty mpx ret ret

(maj, min, chan) pty input c c input status ret ret

(maj, min, chan) pty output output status

(maj, min, chan) pty service proc proc ret ret

(maj, min, chan) pty service set control control ret ret

(maj, min, chan) pty service get control ret ret

(maj, min, chan) pty service get status ret ret

(maj, min, chan) pty service baud baud ret ret

(maj, min, chan) pty service get baud ret ret

(maj, min, chan) pty service set input baud baud ret ret

(maj, min, chan) pty service get input baud ret ret

(maj, min, chan) pty service set bpc bpc ret ret

(maj, min, chan) pty service get bpc ret ret

(maj, min, chan) pty service set parity parity ret ret

Chapter 27. Trace Facility 817

(maj, min, chan) pty service get parity ret ret

(maj, min, chan) pty service set stops stops ret ret

(maj, min, chan) pty service get stops ret ret

(maj, min, chan) pty service set break ret ret

(maj, min, chan) pty service clear break ret ret

(maj, min, chan) pty service open open ret ret

(maj, min, chan) pty service dopace dopace ret ret

(maj, min, chan) pty service softpace softpace ret ret

(maj, min, chan) pty service softrchar softrchar ret ret

(maj, min, chan) pty service softlchar softlchar ret ret

(maj, min, chan) pty service softrstr softrstr ret ret

(maj, min, chan) pty service softlstr softlstr ret ret

(maj, min, chan) pty service hardrbits hardrbits ret ret

(maj, min, chan) pty service hardlbits hardlbits ret ret

(maj, min, chan) pty service loop enter ret ret

(maj, min, chan) pty service loop exit ret ret

(maj, min, chan) pty proc proc ret ret

(maj, min, chan) pty slih intr intr slih status

(maj, min, chan) pty offlevel intr intr ret ret

(maj, min, chan) pty ptycreate ret ret

(maj, min, chan) pty ptcwakeup flag flag ret ret

(maj, min, chan) Major and minor device number, and channel number.

config cmd cmd

818 Writing and Debugging Programs

cin cin

cmd alloc cmd Possible values:

push

pop

unconfig

mode open mode

ext ext

ioctl cmd ioctl cmd

arg ioctl arg

mode mode
events events Possible values:

in

out

pri

sync

revents revents

revoke flag revoke flag

c c
input status Possible values:

good char

overrun

parity error

framing error

break interrupt

cts on

cts off

dsr on

dsr off

ri on

ri off

cd on

cd off

cblock buf

other buf

Chapter 27. Trace Facility 819

proc proc Possible values:

output

suspend

resume

block

unblock

rflush

wflush
output output status Possible values:

done

more output
set control control Possible values:

TSDTR

TSRTS

TSCTS

TSDSR

TSRI

TSCD

baud baud

bpc bpc
parity parity Possible values:

none

odd

mark

even

space
stops stops Possible values:

1

2
open open Possible values:

local

remote

820 Writing and Debugging Programs

dopace dopace Possible values:

again

xon

str

dtr

rts
softpace softpace Possible values:

remote off

remote any

remote on

remote str

local off

local on

local str

softrchar softrchar

softlchar softlchar

softrstr softrstr

softlstr softlstr

hardrbits hardrbits

hardlbits hardlbits

intr intr

flag flag

slih status

serviced

no intr serviced

ret ret

Trace Hook IDs: 403

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

403 : HKWD TTY RS
Recorded Data

Event:

(maj, min, chan) rs config cmd cmd ret ret

Chapter 27. Trace Facility 821

(maj, min, chan) rs alloc cin cin cmd alloc cmd ret ret

(maj, min, chan) rs open mode open mode ext ext ret ret

(maj, min, chan) rs close ret ret

(maj, min, chan) rs read ret ret

(maj, min, chan) rs write ret ret

(maj, min, chan) rs ioctl cmd ioctl cmd arg ioctl arg mode mode ret ret

(maj, min, chan) rs select events events revents revents ret ret

(maj, min, chan) rs revoke flag revoke flag ret ret

(maj, min, chan) rs mpx ret ret

(maj, min, chan) rs input c c input status ret ret

(maj, min, chan) rs output output status

(maj, min, chan) rs service proc proc ret ret

(maj, min, chan) rs service set control control ret ret

(maj, min, chan) rs service get control ret ret

(maj, min, chan) rs service get status ret ret

(maj, min, chan) rs service baud baud ret ret

(maj, min, chan) rs service get baud ret ret

(maj, min, chan) rs service set input baud baud ret ret

(maj, min, chan) rs service get input baud ret ret

(maj, min, chan) rs service set bpc bpc ret ret

(maj, min, chan) rs service get bpc ret ret

(maj, min, chan) rs service set parity parity ret ret

(maj, min, chan) rs service get parity ret ret

(maj, min, chan) rs service set stops stops ret ret

(maj, min, chan) rs service get stops ret ret

(maj, min, chan) rs service set break ret ret

(maj, min, chan) rs service clear break ret ret

(maj, min, chan) rs service open open ret ret

822 Writing and Debugging Programs

(maj, min, chan) rs service dopace dopace ret ret

(maj, min, chan) rs service softpace softpace ret ret

(maj, min, chan) rs service softrchar softrchar ret ret

(maj, min, chan) rs service softlchar softlchar ret ret

(maj, min, chan) rs service softrstr softrstr ret ret

(maj, min, chan) rs service softlstr softlstr ret ret

(maj, min, chan) rs service hardrbits hardrbits ret ret

(maj, min, chan) rs service hardlbits hardlbits ret ret

(maj, min, chan) rs service loop enter ret ret

(maj, min, chan) rs service loop exit ret ret

(maj, min, chan) rs proc proc ret ret

(maj, min, chan) rs slih intr intr slih status

(maj, min, chan) rs offlevel intr intr ret ret

(maj, min, chan) rs add type type ret ret

(maj, min, chan) rs delete type type ret ret

(maj, min, chan) rs nslih intr intr ret ret

(maj, min, chan) rs 8slih intr intr ret ret

(maj, min, chan) rs RT8slih intr intr ret ret

(maj, min, chan) rs RT4slih intr intr ret ret

(maj, min, chan) rs RT4detect id_ptr id_ptr ret ret

(maj, min, chan) Major and minor device number, and channel number.

config cmd cmd

Chapter 27. Trace Facility 823

cin cin

cmd alloc cmd Possible values:

push

pop

unconfig

mode open mode

ext ext

ioctl cmd ioctl cmd

arg ioctl arg

mode mode
events events Possible values:

in

out

pri

sync

revents revents

revoke flag revoke flag

c c
input status Possible values:

good char

overrun

parity error

framing error

break interrupt

cts on

cts off

dsr on

dsr off

ri on

ri off

cd on

cd off

cblock buf

other buf

824 Writing and Debugging Programs

proc proc Possible values:

output

suspend

resume

block

unblock

rflush

wflush
output output status Possible values:

done

more output
set control control Possible values:

TSDTR

TSRTS

TSCTS

TSDSR

TSRI

TSCD

baud baud

bpc bpc
parity parity Possible values:

none

odd

mark

even

space
stops stops Possible values:

1

2
open open Possible values:

local

remote

Chapter 27. Trace Facility 825

dopace dopace Possible values:

again

xon

str

dtr

rts
softpace softpace Possible values:

remote off

remote any

remote on

remote str

local off

local on

local str

softrchar softrchar

softlchar softlchar

softrstr softrstr

softlstr softlstr

hardrbits hardrbits

hardlbits hardlbits

intr intr

type type
slih status Possible values:

servicedno intr servicedid_ptr id_prt

ret ret

Trace Hook IDs: 404

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

404 : HKWD TTY LION
Recorded Data

Event:

(maj, min, chan) lion config cmd cmd ret ret

(maj, min, chan) lion alloc cin cin cmd alloc cmd ret ret

826 Writing and Debugging Programs

(maj, min, chan) lion open mode open mode ext ext ret ret

(maj, min, chan) lion close ret ret

(maj, min, chan) lion read ret ret

(maj, min, chan) lion write ret ret

(maj, min, chan) lion ioctl cmd ioctl cmd arg ioctl arg mode mode ret ret

(maj, min, chan) lion select events events revents revents ret ret

(maj, min, chan) lion revoke flag revoke flag ret ret

(maj, min, chan) lion mpx ret ret

(maj, min, chan) lion input c c input status ret ret

(maj, min, chan) lion output output status

(maj, min, chan) lion service proc proc ret ret

(maj, min, chan) lion service set control control ret ret

(maj, min, chan) lion service get control ret ret

(maj, min, chan) lion service get status ret ret

(maj, min, chan) lion service baud baud ret ret

(maj, min, chan) lion service get baud ret ret

(maj, min, chan) lion service set input baud baud ret ret

(maj, min, chan) lion service get input baud ret ret

(maj, min, chan) lion service set bpc bpc ret ret

(maj, min, chan) lion service get bpc ret ret

(maj, min, chan) lion service set parity parity ret ret

(maj, min, chan) lion service get parity ret ret

(maj, min, chan) lion service set stops stops ret ret

(maj, min, chan) lion service get stops ret ret

(maj, min, chan) lion service set break ret ret

(maj, min, chan) lion service clear break ret ret

(maj, min, chan) lion service open open ret ret

(maj, min, chan) lion service dopace dopace ret ret

Chapter 27. Trace Facility 827

(maj, min, chan) lion service softpace softpace ret ret

(maj, min, chan) lion service softrchar softrchar ret ret

(maj, min, chan) lion service softlchar softlchar ret ret

(maj, min, chan) lion service softrstr softrstr ret ret

(maj, min, chan) lion service softlstr softlstr ret ret

(maj, min, chan) lion service hardrbits hardrbits ret ret

(maj, min, chan) lion service hardlbits hardlbits ret ret

(maj, min, chan) lion service loop enter ret ret

(maj, min, chan) lion service loop exit ret ret

(maj, min, chan) lion proc proc ret ret

(maj, min, chan) lion slih intr intr slih status

(maj, min, chan) lion offlevel intr intr ret ret

(maj, min, chan) lion add ret ret

(maj, min, chan) lion add del ret

(maj, min, chan) Major and minor device number, and channel number.

config cmd cmd

cin cin

cmd alloc cmd Possible values:

push

pop

unconfig

mode open mode

ext ext

ioctl cmd ioctl cmd

arg ioctl arg

mode mode

828 Writing and Debugging Programs

events events Possible values:

in

out

pri

sync

revents revents

revoke flag revoke flag

c c
input status Possible values:

good char

overrun

parity error

framing error

break interrupt

cts on

cts off

dsr on

dsr off

ri on

ri off

cd on

cd off

cblock buf

other buf
proc proc Possible values:

output

suspend

resume

block

unblock

rflush

wflush
output output status Possible values:

done

more output

Chapter 27. Trace Facility 829

set control control Possible values:

TSDTR

TSRTS

TSCTS

TSDSR

TSRI

TSCD

baud baud

bpc bpc
parity parity Possible values:

none

odd

mark

even

space
stops stops Possible values:

1

2
open open Possible values:

local

remote
dopace dopace Possible values:

again

xon

str

dtr

rts

830 Writing and Debugging Programs

softpace softpace Possible values:

remote off

remote any

remote on

remote str

local off

local on

local str

softrchar softrchar

softlchar softlchar

softrstr softrstr

softlstr softlstr

hardrbits hardrbits

hardlbits hardlbits

intr intr
slih status Possible values:

serviced

no intr serviced

ret ret

Trace Hook IDs: 405

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

405 : HKWD TTY HFT
Recorded Data

Event:

(maj, min, chan) hft config cmd cmd ret ret

(maj, min, chan) hft alloc cin cin cmd alloc cmd ret ret

(maj, min, chan) hft open mode open mode ext ext ret ret

(maj, min, chan) hft close ret ret

(maj, min, chan) hft read ret ret

(maj, min, chan) hft write ret ret

(maj, min, chan) hft ioctl cmd ioctl cmd arg ioctl arg mode mode ret ret

Chapter 27. Trace Facility 831

(maj, min, chan) hft select events events revents revents ret ret

(maj, min, chan) hft revoke flag revoke flag ret ret

(maj, min, chan) hft mpx ret ret

(maj, min, chan) hft input c c input status ret ret

(maj, min, chan) hft output output status

(maj, min, chan) hft service proc proc ret ret

(maj, min, chan) hft service set control control ret ret

(maj, min, chan) hft service get control ret ret

(maj, min, chan) hft service get status ret ret

(maj, min, chan) hft service baud baud ret ret

(maj, min, chan) hft service get baud ret ret

(maj, min, chan) hft service set input baud baud ret ret

(maj, min, chan) hft service get input baud ret ret

(maj, min, chan) hft service set bpc bpc ret ret

(maj, min, chan) hft service get bpc ret ret

(maj, min, chan) hft service set parity parity ret ret

(maj, min, chan) hft service get parity ret ret

(maj, min, chan) hft service set stops stops ret ret

(maj, min, chan) hft service get stops ret ret

(maj, min, chan) hft service set break ret ret

(maj, min, chan) hft service clear break ret ret

(maj, min, chan) hft service open open ret ret

(maj, min, chan) hft service dopace dopace ret ret

(maj, min, chan) hft service softpace softpace ret ret

(maj, min, chan) hft service softrchar softrchar ret ret

(maj, min, chan) hft service softlchar softlchar ret ret

(maj, min, chan) hft service softrstr softrstr ret ret

(maj, min, chan) hft service softlstr softlstr ret ret

832 Writing and Debugging Programs

(maj, min, chan) hft service hardrbits hardrbits ret ret

(maj, min, chan) hft service hardlbits hardlbits ret ret

(maj, min, chan) hft service loop enter ret ret

(maj, min, chan) hft service loop exit ret ret

(maj, min, chan) hft proc proc ret ret

(maj, min, chan) hft slih intr intr slih status

(maj, min, chan) hft offlevel intr intr ret ret

(maj, min, chan) Major and minor device number, and channel number.

config cmd cmd

cin cin

cmd alloc cmd Possible values:

push

pop

unconfig

mode open mode

ext ext

ioctl cmd ioctl cmd

arg ioctl arg

mode mode
events events Possible values:

in

out

pri

sync

revents revents

revoke flag revoke flag

c c

Chapter 27. Trace Facility 833

input status Possible values:

good char

overrun

parity error

framing error

break interrupt

cts on

cts off

dsr on

dsr off

ri on

ri off

cd on

cd offc

block buf

other buf
proc proc Possible values:

output

suspend

resume

block

unblock

rflush

wflush
output output status Possible values:

done

more output

834 Writing and Debugging Programs

set control control Possible values:

TSDTR

TSRTS

TSCTS

TSDSR

TSRI

TSCD

baud baud

bpc bpc
parity parity Possible values:

none

odd

mark

even

space
stops stops Possible values:

1

2
open open Possible values:

local

remote
dopace dopace Possible values:

again

xon

str

dtr

rts

Chapter 27. Trace Facility 835

softpace softpace Possible values:

remote off

remote any

remote on

remote str

local off

local on

local str

softrchar softrchar

softlchar softlchar

softrstr softrstr

softlstr softlstr

hardrbits hardrbits

hardlbits hardlbits

intr intr
slih status Possible values:

serviced

no intr serviced

ret ret

Trace Hook IDs: 406

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

406 : HKWD TTY RTS
Recorded Data

Event:

(maj, min, chan) rts config cmd cmd ret ret

(maj, min, chan) rts alloc cin cin cmd alloc cmd ret ret

(maj, min, chan) rts open mode open mode ext ext ret ret

(maj, min, chan) rts close ret ret

(maj, min, chan) rts read ret ret

(maj, min, chan) rts write ret ret

(maj, min, chan) rts ioctl cmd ioctl cmd arg ioctl arg mode mode ret ret

836 Writing and Debugging Programs

(maj, min, chan) rts select events events revents revents ret ret

(maj, min, chan) rts revoke flag revoke flag ret ret

(maj, min, chan) rts mpx ret ret

(maj, min, chan) rts input c c input status ret ret

(maj, min, chan) rts output output status

(maj, min, chan) rts service proc proc ret ret

(maj, min, chan) rts service set control control ret ret

(maj, min, chan) rts service get control ret ret

(maj, min, chan) rts service get status ret ret

(maj, min, chan) rts service baud baud ret ret

(maj, min, chan) rts service get baud ret ret

(maj, min, chan) rts service set input baud baud ret ret

(maj, min, chan) rts service get input baud ret ret

(maj, min, chan) rts service set bpc bpc ret ret

(maj, min, chan) rts service get bpc ret ret

(maj, min, chan) rts service set parity parity ret ret

(maj, min, chan) rts service get parity ret ret

(maj, min, chan) rts service set stops stops ret ret

(maj, min, chan) rts service get stops ret ret

(maj, min, chan) rts service set break ret ret

(maj, min, chan) rts service clear break ret ret

(maj, min, chan) rts service open open ret ret

(maj, min, chan) rts service dopace dopace ret ret

(maj, min, chan) rts service softpace softpace ret ret

(maj, min, chan) rts service softrchar softrchar ret ret

(maj, min, chan) rts service softlchar softlchar ret ret

(maj, min, chan) rts service softrstr softrstr ret ret

(maj, min, chan) rts service softlstr softlstr ret ret

Chapter 27. Trace Facility 837

(maj, min, chan) rts service hardrbits hardrbits ret ret

(maj, min, chan) rts service hardlbits hardlbits ret ret

(maj, min, chan) rts service loop enter ret ret

(maj, min, chan) rts service loop exit ret ret

(maj, min, chan) rts proc proc ret ret

(maj, min, chan) rts slih intr intr slih status

(maj, min, chan) rts offlevel intr intr ret ret

(maj, min, chan) Major and minor device number, and channel number.

config cmd cmd

cin cin

cmd alloc cmd Possible values:

push

pop

unconfig

mode open mode

ext ext

ioctl cmd ioctl cmd

arg ioctl arg

mode mode
events events Possible values:

in

out

pri

sync

revents revents

revoke flag revoke flag

838 Writing and Debugging Programs

c cinput status Possible values:

good char

overrun

parity error

framing error

break interrupt

cts on

cts off

dsr on

dsr off

ri on

ri off

cd on

cd off

cblock buf

other buf
proc proc Possible values:

output

suspend

resume

block

unblock

rflush

wflush
output output status Possible values:

done

more output

Chapter 27. Trace Facility 839

set control control Possible values:

TSDTR

TSRTS

TSCTS

TSDSR

TSRI

TSCD

baud baud

bpc bpc
parity parity Possible values:

none

odd

mark

even

space
stops stops Possible values:

1

2
open open Possible values:

local

remote
dopace dopace Possible values:

again

xon

str

dtr

rts

840 Writing and Debugging Programs

softpace softpace Possible values:

remote off

remote any

remote on

remote str

local off

local on

local str

softrchar softrchar

softlchar softlchar

softrstr softrstr

softlstr softlstr

hardrbits hardrbits

hardlbits hardlbits

intr intr
slih status Possible values:

serviced

no intr serviced

ret ret

Trace Hook IDs: 407

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

407 : HKWD TTY XON
Recorded Data

Event:

(maj, min, chan) xon config cmd cmd ret ret

(maj, min, chan) xon alloc cin cin cmd alloc cmd ret ret

(maj, min, chan) xon open mode open mode ext ext ret ret

(maj, min, chan) xon close ret ret

(maj, min, chan) xon read ret ret

(maj, min, chan) xon write ret ret

(maj, min, chan) xon ioctl cmd ioctl cmd arg ioctl arg mode mode ret ret

Chapter 27. Trace Facility 841

(maj, min, chan) xon select events events revents revents ret ret

(maj, min, chan) xon revoke flag revoke flag ret ret

(maj, min, chan) xon mpx ret ret

(maj, min, chan) xon input c c input status ret ret

(maj, min, chan) xon output output status

(maj, min, chan) xon service proc proc ret ret

(maj, min, chan) xon service set control control ret ret

(maj, min, chan) xon service get control ret ret

(maj, min, chan) xon service get status ret ret

(maj, min, chan) xon service baud baud ret ret

(maj, min, chan) xon service get baud ret ret

(maj, min, chan) xon service set input baud baud ret ret

(maj, min, chan) xon service get input baud ret ret

(maj, min, chan) xon service set bpc bpc ret ret

(maj, min, chan) xon service get bpc ret ret

(maj, min, chan) xon service set parity parity ret ret

(maj, min, chan) xon service get parity ret ret

(maj, min, chan) xon service set stops stops ret ret

(maj, min, chan) xon service get stops ret ret

(maj, min, chan) xon service set break ret ret

(maj, min, chan) xon service clear break ret ret

(maj, min, chan) xon service open open ret ret

(maj, min, chan) xon service dopace dopace ret ret

(maj, min, chan) xon service softpace softpace ret ret

(maj, min, chan) xon service softrchar softrchar ret ret

(maj, min, chan) xon service softlchar softlchar ret ret

(maj, min, chan) xon service softrstr softrstr ret ret

(maj, min, chan) xon service softlstr softlstr ret ret

842 Writing and Debugging Programs

(maj, min, chan) xon service hardrbits hardrbits ret ret

(maj, min, chan) xon service hardlbits hardlbits ret ret

(maj, min, chan) xon service loop enter ret ret

(maj, min, chan) xon service loop exit ret ret

(maj, min, chan) xon proc proc ret ret

(maj, min, chan) xon slih intr intr slih status

(maj, min, chan) xon offlevel intr intr ret ret

(maj, min, chan) Major and minor device number, and channel number.

config cmd cmd

cin cin

cmd alloc cmd Possible values:

push

pop

unconfig

mode open mode

ext ext

ioctl cmd ioctl cmd

arg ioctl arg

mode mode
events events Possible values:

in

out

pri

sync

revents revents

revoke flag revoke flag

c c

Chapter 27. Trace Facility 843

input status Possible values:

good char

overrun

parity error

framing error

break interrupt

cts on

cts off

dsr on

dsr off

ri on

ri off

cd on

cd off

cblock buf

other buf
proc proc Possible values:

output

suspend

resume

block

unblock

rflush

wflush
output output status Possible values:

done

more output

844 Writing and Debugging Programs

set control control Possible values:

TSDTR

TSRTS

TSCTS

TSDSR

TSRI

TSCD

baud baud

bpc bpc
parity parity Possible values:

none

odd

mark

even

space
stops stops Possible values:

1

2
open open Possible values:

local

remote
dopace dopace Possible values:

again

xon

str

dtr

rts

Chapter 27. Trace Facility 845

softpace softpace Possible values:

remote off

remote any

remote on

remote str

local off

local on

local str

softrchar softrchar

softlchar softlchar

softrstr softrstr

softlstr softlstr ardrbits hardrbits

hardlbits hardlbits

intr intr
slih status Possible values:

serviced

no intr serviced

Trace Hook IDs: 408

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

408 : HKWD TTY DTR
Recorded Data

Event:

(maj, min, chan) dtr config cmd cmd ret ret

(maj, min, chan) dtr alloc cin cin cmd alloc cmd ret ret

(maj, min, chan) dtr open mode open mode ext ext ret ret

(maj, min, chan) dtr close ret ret

(maj, min, chan) dtr read ret ret

(maj, min, chan) dtr write ret ret

(maj, min, chan) dtr ioctl cmd ioctl cmd arg ioctl arg mode mode ret ret

(maj, min, chan) dtr select events events revents revents ret ret

(maj, min, chan) dtr revoke flag revoke flag ret ret

846 Writing and Debugging Programs

(maj, min, chan) dtr mpx ret ret

(maj, min, chan) dtr input c c input status ret ret

(maj, min, chan) dtr output output status

(maj, min, chan) dtr service proc proc ret ret

(maj, min, chan) dtr service set control control ret ret

(maj, min, chan) dtr service get control ret ret

(maj, min, chan) dtr service get status ret ret

(maj, min, chan) dtr service baud baud ret ret

(maj, min, chan) dtr service get baud ret ret

(maj, min, chan) dtr service set input baud baud ret ret

(maj, min, chan) dtr service get input baud ret ret

(maj, min, chan) dtr service set bpc bpc ret ret

(maj, min, chan) dtr service get bpc ret ret

(maj, min, chan) dtr service set parity parity ret ret

(maj, min, chan) dtr service get parity ret ret

(maj, min, chan) dtr service set stops stops ret ret

(maj, min, chan) dtr service get stops ret ret

(maj, min, chan) dtr service set break ret ret

(maj, min, chan) dtr service clear break ret ret

(maj, min, chan) dtr service open open ret ret

(maj, min, chan) dtr service dopace dopace ret ret

(maj, min, chan) dtr service softpace softpace ret ret

(maj, min, chan) dtr service softrchar softrchar ret ret

(maj, min, chan) dtr service softlchar softlchar ret ret

(maj, min, chan) dtr service softrstr softrstr ret ret

(maj, min, chan) dtr service softlstr softlstr ret ret

(maj, min, chan) dtr service hardrbits hardrbits ret ret

(maj, min, chan) dtr service hardlbits hardlbits ret ret

Chapter 27. Trace Facility 847

(maj, min, chan) dtr service loop enter ret ret

(maj, min, chan) dtr service loop exit ret ret

(maj, min, chan) dtr proc proc ret ret

(maj, min, chan) dtr slih intr intr slih status

(maj, min, chan) dtr offlevel intr intr ret ret

(maj, min, chan) Major and minor device number, and channel number.

config cmd cmd

cin cin

cmd alloc cmd Possible values:

push

pop

unconfig

mode open mode

ext ext

ioctl cmd ioctl cmd

arg ioctl arg

mode mode
events events Possible values:

in

out

pri

sync

revents revents

revoke flag revoke flag

c c

848 Writing and Debugging Programs

input status Possible values:

good char

overrun

parity error

framing error

break interrupt

cts on

cts off

dsr on

dsr off

ri on

ri off

cd on

cd off

cblock buf
other bufproc proc Possible values:

output

suspend

resume

block

unblock

rflush

wflush
output output status Possible values:

done

more output
set control control Possible values:

TSDTR

TSRTS

TSCTS

TSDSR

TSRI

TSCD

baud baud

bpc bpc

Chapter 27. Trace Facility 849

parity parity Possible values:

none

odd

mark

even

space
stops stops Possible values:

1

2
open open Possible values:

local

remote
dopace dopace Possible values:

again

xon

str

dtr

rts
softpace softpace Possible values:

remote off

remote any

remote on

remote str

local off

local on

local str

softrchar softrchar

softlchar softlchar

softrstr softrstr

softlstr softlstr

hardrbits hardrbits

hardlbits hardlbits

intr intr

850 Writing and Debugging Programs

slih status Possible values:

serviced

no intr serviced

ret ret

Trace Hook IDs: 409

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

409 : HKWD TTY DTRO
Recorded Data

Event:

(maj, min, chan) dtr open config cmd cmd ret ret

(maj, min, chan) dtr open alloc cin cin cmd alloc cmd ret ret

(maj, min, chan) dtr open open mode open mode ext ext ret ret

(maj, min, chan) dtr open close ret ret

(maj, min, chan) dtr open read ret ret

(maj, min, chan) dtr open write ret ret

(maj, min, chan) dtr open ioctl cmd ioctl cmd arg ioctl arg mode mode ret ret

(maj, min, chan) dtr open select events events revents revents ret ret

(maj, min, chan) dtr open revoke flag revoke flag ret ret

(maj, min, chan) dtr open mpx ret ret

(maj, min, chan) dtr open input c c input status ret ret

(maj, min, chan) dtr open output output status

(maj, min, chan) dtr open service proc proc ret ret

(maj, min, chan) dtr open service set control control ret ret

(maj, min, chan) dtr open service get control ret ret

(maj, min, chan) dtr open service get status ret ret

(maj, min, chan) dtr open service baud baud ret ret

(maj, min, chan) dtr open service get baud ret ret

(maj, min, chan) dtr open service set input baud baud ret ret

Chapter 27. Trace Facility 851

(maj, min, chan) dtr open service get input baud ret ret

(maj, min, chan) dtr open service set bpc bpc ret ret

(maj, min, chan) dtr open service get bpc ret ret

(maj, min, chan) dtr open service set parity parity ret ret

(maj, min, chan) dtr open service get parity ret ret

(maj, min, chan) dtr open service set stops stops ret ret

(maj, min, chan) dtr open service get stops ret ret

(maj, min, chan) dtr open service set break ret ret

(maj, min, chan) dtr open service clear break ret ret

(maj, min, chan) dtr open service open open ret ret

(maj, min, chan) dtr open service dopace dopace ret ret

(maj, min, chan) dtr open service softpace softpace ret ret

(maj, min, chan) dtr open service softrchar softrchar ret ret

(maj, min, chan) dtr open service softlchar softlchar ret ret

(maj, min, chan) dtr open service softrstr softrstr ret ret

(maj, min, chan) dtr open service softlstr softlstr ret ret

(maj, min, chan) dtr open service hardrbits hardrbits ret ret

(maj, min, chan) dtr open service hardlbits hardlbits ret ret

(maj, min, chan) dtr open service loop enter ret ret

(maj, min, chan) dtr open service loop exit ret ret

(maj, min, chan) dtr open proc proc ret ret

(maj, min, chan) dtr open slih intr intr slih status

(maj, min, chan) dtr open offlevel intr intr ret ret

(maj, min, chan) Major and minor device number, and channel number.

config cmd cmd

852 Writing and Debugging Programs

cin cin

cmd alloc cmd Possible values:

push

pop

unconfig

mode open mode

ext ext

ioctl cmd ioctl cmd

arg ioctl arg

mode mode
events events Possible values:

in

out

pri

sync

revents revents

revoke flag revoke flag

c c
input status Possible values:

good char

overrun

parity error

framing error

break interrupt

cts on

cts off

dsr on

dsr off

ri on

ri off

cd on

cd off

cblock buf

other buf

Chapter 27. Trace Facility 853

proc proc Possible values:

output

suspend

resume

block

unblock

rflush

wflush
output output status Possible values:

done

more output
set control control Possible values:

TSDTR

TSRTS

TSCTS

TSDSR

TSRI

TSCD

baud baud

bpc bpc
parity parity Possible values:

none

odd

mark

even

space
stops stops Possible values:

1

2
open open Possible values:

local

remote

854 Writing and Debugging Programs

dopace dopace Possible values:

again

xon

str

dtr

rts
softpace softpace Possible values:

remote off

remote any

remote on

remote str

local off

local on

local str

softrchar softrchar

softlchar softlchar

softrstr softrstr

softlstr softlstr

hardrbits hardrbits

hardlbits hardlbits

intr intr

slih status Possible values:

serviced

no intr serviced

ret ret

Trace Hook IDs: 411 through 418

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

411: HKWD STTY STRTTY
This event is recorded by the tty stream head.

Recorded Data

Chapter 27. Trace Facility 855

Events:

(maj, min) sth revoke flag flag

(maj, min) sth ioctl osr osr cmd ioctl_cmd

(maj, min) sth event ret ret from line line

(maj, min) Major and minor device number.
flag flag Result of a frevoke or revoke system call.
osr osr Pointer to a structure representing the operating system request.
cmd ioctl_cmd Symbolic name of the ioctl command.
event One of the recorded event. Possible values:

revoke

ioctl
ret ret Function’s return value.
from line line Function’s return line number.

412: HKWD STTY LDTERM
This event is recorded by the ldterm line discipline module.

Recorded Data

(maj, min) ldterm config cmd cmd

(maj, min) ldterm open ptr ptr mode: mode sflag: sflag

(maj, min) ldterm close ptr ptr mode: mode

(maj, min) ldterm wput ptr ptr msg msg msg_type type

(maj, min) ldterm rput ptr ptr msg msg msg_type type

(maj, min) ldterm wsrv ptr ptr q_count count

(maj, min) ldterm rsrv ptr ptr q_count count

(maj, min) ldterm ioctl ptr ptr cmd ioctl_cmd

(maj, min) ldterm event ret ret from line line

(maj, min) Major and minor device number.
cmd cmd Configuration command. Possible values:

CFG_INIT

CFG_TERM
ptr ptr Pointer to the module’s private structure (the ldtty structure).

856 Writing and Debugging Programs

mode: mode Open mode of the stream. Possible values:

READ

WRITE

NONBLOCK

EXCL

NOCTTY

NDELAY
sflag: sflag Possible values:

0

MODOPEN

CLONEOPEN
msg msg Message to be processed.
msg_type type Message type. Possible values:

M_DATA

M_PROTO

M_BREAK

M_SIG

M_DELAY

M_CTL

M_IOCTL

M_SETOPS
q_count count Total amount of data in the queue.
cmd ioctl_cmd Symbolic name of the ioctl command.
event One of the recorded event. Possible values:

config

open

close

wput

rput

wsrv

rsrv

ioctl
ret ret Function’s return value.
from line line Function’s return line number.

Chapter 27. Trace Facility 857

413: HKWD STTY SPTR
This event is recorded by the sptr serial printer module.

Recorded Data

(maj, min) sptr config cmd cmd

(maj, min) sptr open ptr ptr mode: mode sflag: sflag

(maj, min) sptr close ptr ptr mode: mode

(maj, min) sptr wput ptr ptr msg msg msg_type type

(maj, min) sptr rput ptr ptr msg msg msg_type type

(maj, min) sptr wsrv ptr ptr q_count count

(maj, min) sptr rsrv ptr ptr q_count count

(maj, min) sptr ioctl ptr ptr cmd ioctl_cmd

(maj, min) sptr event ret ret from line line

(maj, min) Major and minor device number.
cmd cmd Configuration command. Possible values:

CFG_INIT

CFG_TERM
ptr ptr Pointer to the module’s private structure (the sptr_config structure).
mode: mode Open mode of the file. Possible values:

READ

WRITE

NONBLOCK

EXCL

NOCTTY

NDELAY
sflag: sflag Possible values:

0

MODOPEN

CLONEOPEN
msg msg Message to be processed.

858 Writing and Debugging Programs

msg_type type Message type. Possible values:

M_DATA

M_PROTO

M_BREAK

M_PASSFP

M_SIG

M_DELAY

M_CTL

M_IOCTL

M_SETOPS

M_RSE
q_count count Total amount of data in the queue.
cmd ioctl_cmd Symbolic name of the ioctl command.
event One of the recorded event. Possible values:

config

open

close

wput

rput

wsrv

rsrv

ioctl
ret ret Function’s return value.
from line line Function’s return line number.

414: HKWD STTY NLS
This event is recorded by the nls mapping discipline module.

Recorded Data

(maj, min) nls config cmd cmd

(maj, min) nls open ptr ptr mode: mode sflag: sflag

(maj, min) nls close ptr ptr mode: mode

(maj, min) nls wput ptr ptr msg msg msg_type type

(maj, min) nls rput ptr ptr msg msg msg_type type

(maj, min) nls wsrv ptr ptr q_count count

Chapter 27. Trace Facility 859

(maj, min) nls rsrv ptr ptr q_count count

(maj, min) nls ioctl ptr ptr cmd ioctl_cmd

(maj, min) nls event ret ret from line line

(maj, min) Major and minor device number.
cmd cmd Configuration command. Possible values:

CFG_INIT

CFG_TERM
ptr ptr Pointer to the module’s private structure (the nls structure).
mode: mode Open mode of the file. Possible values:

READ

WRITE

NONBLOCK

EXCL

NOCTTY

NDELAY
sflag: sflag Possible values:

0

MODOPEN

CLONEOPEN
msg msg Message to be processed.
msg_type type Message type. Possible values:

M_DATA

M_PROTO

M_BREAK

M_PASSFP

M_SIG

M_DELAY

M_CTL

M_IOCTL

M_SETOPS

M_RSE
q_count count Total amount of data in the queue.
cmd ioctl_cmd Symbolic name of the ioctl command.

860 Writing and Debugging Programs

event One of the recorded event. Possible values:

config

open

close

wput

rput

wsrv

rsrv

ioctl
ret ret Function’s return value.
from line line Function’s return line number.

415: HKWD STTY PTY
This event is recorded by the pty pseudo-device driver.

Recorded Data

(maj, min) pty config cmd cmd

(maj, min) pty open ptr ptr mode: mode sflag: sflag

(maj, min) pty close ptr ptr mode: mode

(maj, min) pty wput ptr ptr msg msg msg_type type

(maj, min) pty rput ptr ptr msg msg msg_type type

(maj, min) pty wsrv ptr ptr q_count count

(maj, min) pty rsrv ptr ptr q_count count

(maj, min) pty ioctl ptr ptr cmd ioctl_cmd

(maj, min) pty event ret ret from line line

(maj, min) Major and minor device number.
cmd cmd Configuration command. Possible values:

CFG_INIT

CFG_TERM
ptr ptr Pointer to the module’s private structure (the pty_s structure).
mode: mode Open mode of the file. Possible values:

NONBLOCK

NDELAY

Chapter 27. Trace Facility 861

sflag: sflag Possible values:

0

MODOPEN

CLONEOPEN
msg msg Message to be processed.
msg_type type Message type. Possible values:

M_DATA

M_PROTO

M_BREAK

M_SIG

M_CTL

M_IOCTL

M_SETOPS

q_count count Total amount of data in the queue.

cmd ioctl_cmd Symbolic name of the ioctl command.

event One of the recorded event. Possible values:

config

open

close

wput

rput

wsrv

rsrv

ioctl
ret ret Function’s return value.
from line line Function’s return line number.

416: HKWD STTY RS
This event is recorded by the rs tty driver.

Recorded Data

(maj, min) rs config cmd cmd

(maj, min) rs open ptr ptr mode: mode sflag: sflag

(maj, min) rs close ptr ptr mode: mode

(maj, min) rs wput ptr ptr msg msg msg_type type

862 Writing and Debugging Programs

(maj, min) rs rput ptr ptr msg msg msg_type type

(maj, min) rs wsrv ptr ptr q_count count

(maj, min) rs rsrv ptr ptr q_count count

(maj, min) rs ioctl ptr ptr cmd ioctl_cmd

(maj, min) rs proc ptr ptr proc

(maj, min) rs service ptr ptr service

(maj, min) rs slih rintr rintr adap_type adap_type

(maj, min) rs offlevel rintr rintr

(maj, min) rs event ret ret from line line

(maj, min) Major and minor device number.
cmd cmd Configuration command. Possible values:

CFG_INIT

CFG_TERM

CFG_QVPD

ptr ptr Pointer to the driver’s private structure (the str_rs structure).

mode: mode Open mode of the file. Possible values:

READ

WRITE

NONBLOCK

EXCL

NOCTTY

NDELAY
sflag: sflag Possible values:

0

MODOPEN

CLONEOPEN
msg msg Message to be processed.

Chapter 27. Trace Facility 863

msg_type type Message type. Possible values:

M_DATA

M_PROTO

M_BREAK

M_SIG

M_DELAY

M_CTL

M_IOCTL
q_count count Total amount of data in the queue.
cmd ioctl_cmd Symbolic name of the ioctl command.
proc Possible values:

output

suspend

resume

block

unblock

rflush

wflush

864 Writing and Debugging Programs

service Driver internal service. Possible values:

proc output | suspend | resume | block | unblock | rflush | wflush

set control { TSDTR | TSRTS }

get control

get status

sbaud baud

get baud

set input baud baud

get input baud

set bpc bpc

set parity none | odd | mark | even | space

get parity

set stops 1 | 2

get stops

set break

clear break

open local | remote

softpace remote off | remote any | remote on | local off | local on

softrchar char

softlchar char

hardrbits bits

hardlbits bits

loop enter | exit
rintr Pointer to the interupt handler structure.
adap_type Adapter type. Possible values:

Native io

8/16 Port

Chapter 27. Trace Facility 865

event One of the recorded event. Possible values:

config

open

close

wput

rput

wsrv

rsrv

ioctl

service

slih

offlevel
ret ret Function’s return value.
from line line Function’s return line number.

417: HKWD STTY LION
This event is recorded by the lion tty driver.

Recorded Data

(maj, min) lion config cmd cmd

(maj, min) lion open ptr ptr mode: mode sflag: sflag

(maj, min) lion close ptr ptr mode: mode

(maj, min) lion wput ptr ptr msg msg msg_type type

(maj, min) lion rput ptr ptr msg msg msg_type type

(maj, min) lion wsrv ptr ptr q_count count

(maj, min) lion lionrv ptr ptr q_count count

(maj, min) lion ioctl ptr ptr cmd ioctl_cmd

(maj, min) lion proc ptr ptr proc

(maj, min) lion service ptr ptr service

(maj, min) lion slih rintr rintr adap_type adap_type

(maj, min) lion offlevel rintr rintr

(maj, min) lion event ret ret from line line

(maj, min) Major and minor device number.

866 Writing and Debugging Programs

cmd cmd Configuration command. Possible values:

CFG_INIT

CFG_TERM

CFG_QVPD
ptr ptr Pointer to the driver’s private structure (the str_lion structure).
mode: mode Open mode of the file. Possible values:

READ

WRITE

NONBLOCK

APPEND

CREAT

TRUNC

EXCL

NOCTTY

NDELAY
sflag: sflag Possible values:

0

MODOPEN

CLONEOPEN
msg msg Message to be processed.
msg_type type Message type. Possible values:

M_DATA

_PROTO

M_BREAK

M_PASSFP

M_SIG

M_DELAY

M_CTL

M_IOCTL

_SETOPS

M_RSE
q_count count Total amount of data in the queue.
cmd ioctl_cmd Symbolic name of the ioctl command.

Chapter 27. Trace Facility 867

proc Possible values:

output

suspend

resume

block

unblock

rflush

wflush

868 Writing and Debugging Programs

service Driver internal service. Possible values:

proc output | suspend | resume | block | unblock | rflush | wflush

set control { TSDTR | TSRTS }

get control

get status

sbaud baud

get baud

set input baud baud

get input baud

set bpc bpc

set parity none | odd | mark | even | space

get parity

set stops 1 | 2

get stops

set break

clear break

open local | remote

dopace again | xon | str | dtr | rts

softpace remote off | remote any | remote on | remote str |

local off | local on | local str

softrchar char

softlchar char

softrstr str

softlstr str

hardrbits bits

hardlbits bits

loop enter | exit

rintr

adap_type Adapter type. Possible value:

64-port adapter

Chapter 27. Trace Facility 869

event One of the recorded event. Possible values:

config

open

close

wput

rput

wsrv

rsrv

ioctl

service

slih

offlevel
ret ret Function’s return value.
from line line Function’s return line number.

418: HKWD STTY CXMA
This event is recorded by the cxma tty driver.

Recorded Data

(maj, min) cxma config cmd cmd

(maj, min) cxma open ptr ptr mode: mode sflag: sflag

(maj, min) cxma close ptr ptr mode: mode

(maj, min) cxma wput ptr ptr msg msg msg_type type

(maj, min) cxma rput ptr ptr msg msg msg_type type

(maj, min) cxma wsrv ptr ptr q_count count

(maj, min) cxma cxmarv ptr ptr q_count count

(maj, min) cxma ioctl ptr ptr cmd ioctl_cmd

(maj, min) cxma proc ptr ptr proc

(maj, min) cxma service ptr ptr service

(maj, min) cxma slih rintr rintr adap_type adap_type

(maj, min) cxma offlevel rintr rintr

(maj, min) cxma event ret ret from line line

(maj, min) Major and minor device number.

870 Writing and Debugging Programs

cmd cmd Configuration command. Possible values:

CFG_INIT

CFG_TERM

CFG_QVPD

CFG_UCODE
ptr ptr Pointer to the module’s instance structure.
mode: mode Open mode of the file. Possible values:

READ

WRITE

NONBLOCK

EXCL

NOCTTY

NDELAY
sflag: sflag Possible values:

0

MODOPEN

CLONEOPEN
msg msg Message to be processed.
msg_type type Message type. Possible values:

M_DATA

M_PROTO

M_BREAK

M_PASSFP

M_SIG

M_DELAY

M_CTL

M_IOCTL

M_SETOPS

M_RSE
q_count count Total amount of data in the queue.
cmd ioctl_cmd Symbolic name of the ioctl command.

Chapter 27. Trace Facility 871

proc Possible values:

output

suspend

resume

block

unblock

rflush

wflush

872 Writing and Debugging Programs

service Driver internal service. Possible values:

proc output | suspend | resume | block | unblock | rflush | wflush

set control { TSDTR | TSRTS | TSCTS | TSDSR | TSRI | TSCD }

get control

get status

sbaud baud

get baud

set input baud baud

get input baud

set bpc bpc

set parity none | odd | mark | even | space

get parity

set stops 1 | 2

get stops

set break

clear break

open local | remote

dopace again | xon | str | dtr | rts

softpace remote off | remote any | remote on | remote str |

local off | local on | local str

softrchar char

softlchar char

softrstr str

softlstr str

hardrbits bits

hardlbits bits

loop enter | exit

rintr

adap_type Possible values:

cxma

Chapter 27. Trace Facility 873

event One of the recorded event. Possible values:

config

open

close

wput

rput

wsrv

rsrv

ioctl

service

slih

offlevel
ret ret Function’s return value.
from line line Function’s return line number.

Trace Hook IDs: 460 through 46E

The following trace hook IDs are stored in the /usr/include/sys/trchkid.h file.

460: HKWD KERN ASSERTWAIT
This event is recorded by the e_assert_wait kernel service.

Recorded Data

e_assert_wait: tid=tid anchor=anchor flag=flag lr=lr
tid Thread ID of the calling kernel thread.
anchor The event_word parameter; the anchor to the list of kernel

threads waiting on this event.
flag The interruptible parameter.
lr Value of the link register, specifying the return address of

the service.

461: HKWD KERN CLEARWAIT
This event is recorded by the e_clear_wait kernel service.

Recorded Data

e_clear_wait: tid=tid anchor=anchor result=result lr=lr
tid The tid parameter; the thread ID of the kernel thread to be

awakened.
anchor Anchor to the event list where the target thread is

sleeping.
result The result parameter; the value to return to the awkened

thread.
lr Value of the link register, specifying the return address of

the service.

874 Writing and Debugging Programs

462: HKWD KERN THREADBLOCK
This event is recorded by the e_block_thread kernel service.

Recorded Data

e_block_thread: tid=tid anchor=anchor t_flags=t_flags lr=lr
tid Thread ID of the calling kernel thread.
anchor Anchor to the event list where the kernel thread will sleep.
t_flags Flags of the kernel thread.
lr Value of the link register, specifying the return address of

the service.

463: HKWD KERN EMPSLEEP
This event is recorded by the e_mpsleep kernel service.

Recorded Data

e_mpsleep: tid=tid anchor=anchor timeout=timeout lock=lock flags=flags lr=lr
tid Thread ID of the calling kernel thread.
anchor The event_word parameter; the anchor to the list of kernel

threads waiting on this event.
timeout The timeout parameter; the timeout for the sleep.
lock The lock_word parameter; the lock (simple or complex) to

unlock by the kernel service.
flags The flags parameter; the lock and signal handling options.
lr Value of the link register, specifying the return address of

the service.

464: HKWD KERN EWAKEUPONE
This event is recorded by the e_wakeup_one kernel service.

Recorded Data

e_wakeup_one: tid=tid anchor=anchor lr=lr
tid Thread ID of the calling kernel thread.
anchor The event_word parameter; the anchor to the list of kernel

threads waiting on this event.
lr Value of the link register, specifying the return address of

the service.

465: HKWD SYSC CRTHREAD
This event is recorded by the thread_create system call.

Recorded Data

thread_create: pid=pid tid=tid priority=priority policy=policy
pid Process ID of the calling kernel thread’s process.
tid Thread ID of the calling kernel thread.
priority Priority of the new kernel thread.
policy Scheduling policy of the new kernel thread.

Chapter 27. Trace Facility 875

466: HKWD KERN KTHREADSTART
This event is recorded by the kthread_start kernel service.

Recorded Data

kthread_start: pid=pid tid=tid priority=priority policy=policy func=func
pid Process ID of the calling kernel thread’s process.
tid The tid parameter; the thread ID of the kernel thread to

start.
priority Priority of the new kernel thread.
policy Scheduling policy of the new kernel thread.
func The i_func parameter, the address of the new kernel

thread’s entry-point routine.

467: HKWD SYSC TERMTHREAD
This event is recorded by the thread_terminate system call.

Recorded Data

thread_terminate: pid=pid tid=tid
pid Process ID of the calling kernel thread’s process.
tid Thread ID of the calling kernel thread.

468: HKWD KERN KSUSPEND
This event is recorded by the ksuspend subroutine. This subroutine is used internally by the system and
is undocumented.

Recorded Data

ksuspend: tid=tid p_suspended=suspended p_active=active
tid Thread ID of the calling kernel thread.
suspended Number of suspended kernel threads in the process.
active Number of active (suspendable) kernel threads in the

process.

469: HKWD SYSC THREADSETSTATE
This event is recorded by the thread_setstate system call.

Recorded Data

thread_setstate: tid=tid t_state=t_state t_flags=t_flags priority=priority policy=policy
tid Thread ID of the target kernel thread.
t_state Current state of the kernel thread. Possible values:

NONE
IDLE
RUN
SLEEP
SWAP
STOP
ZOMB

t_flags New flags of the kernel thread.
priority New priority of the kernel thread.

876 Writing and Debugging Programs

policy New scheduling policy of the kernel thread.

46A: HKWD SYSC THREADTERM ACK
This event is recorded by the thread_terminate_ack system call.

Recorded Data

thread_terminate_ack: current_tid=crt_tid target_tid=targ_tid
crt_tid Thread ID of the calling kernel thread.
targ_tid Thread ID of the target kernel thread.

46B: HKWD SYSC THREADSETSCHED
This event is recorded by the thread_setsched system call.

Recorded Data

thread_setsched: pid=pid tid=tid priority=priority policy=policy
pid Process ID of the calling kernel thread’s process.
tid The tid parameter; the thread ID of the target kernel

thread.
priority The priority parameter; the priority to set.
policy The policy parameter; the scheduling policy to set.

46C: HKWD KERN TIDSIG
This event is recorded by the tidsig subroutine. This subroutine is used internally by the system and is
undocumented.

Recorded Data

tidsig: pid=pid tid=tid signal=signal lr=lr
pid Process ID of the calling kernel thread’s process.
tid Thread ID of the calling kernel thread.
signal Symbolic name of the delivered signal.
lr Value of the link register, specifying the return address of

the routine.

46D: HKWD KERN WAITLOCK
This event is recorded by the wait_on_lock subroutine. This subroutine is used internally by the system
and is undocumented.

Recorded Data

wait_on_lock: pid=pid tid=tid lockaddr=lockaddr
pid Process ID of the calling kernel thread’s process.
tid Thread ID of the calling kernel thread.
lockaddr Address of the lock.

46E: HKWD KERN WAKEUPLOCK
This event is recorded by the wakeup_lock subroutine. This subroutine is used internally by the system
and is undocumented.

Chapter 27. Trace Facility 877

Recorded Data

wakeup_lock: lockaddr=lockaddr waiters=waiters
lockaddr Address of the lock.
waiters Number of kernel threads remaining sleeping on the lock.

878 Writing and Debugging Programs

Chapter 28. tty Subsystem

AIX is a multiuser operating system that allows user access from local or remote attached device. The
communication layer that supports this function is the tty subsystem.

The communication between terminal devices and the programs that read and write to them is controlled
by the tty interface. Examples of tty devices are:

v Modems

v ASCII terminals

v System console

v Serial printer

v System console

v Xterm or aixterm under X-Windows

TTY Subsystem Objectives
The tty subsystem is responsible for:

v Controlling the physical flow of data on asynchronous lines (including the transmission speed, character
size, line availability)

v Interpreting the data by recognizing special characters and adapting to national languages

v Controlling jobs and terminal accesses by using the concept of controlling terminal

A controlling terminal manages the input and output operations of a group of processes. The tty special
file supports the controlling terminal interface. In practice, user programs seldom open terminal files, such
as dev/tty5. These files are opened by a getty or rlogind command and become the user’s standard
input and output devices.

See ″tty Special File″ in AIX 5L Version 5.1 Files Reference for more information about controlling
terminal.

tty Subsystem Modules
To perform these tasks, the tty subsystem is composed of modules, or disciplines. A module is a set of
processing rules that govern the interface for communication between the computer and an asynchronous
device. Modules can be added and removed dynamically for each tty.

The tty subsystem supports three main types of modules:

v “tty Drivers”

v “Line Disciplines” on page 880

v “Converter Modules” on page 880

tty Drivers

tty drivers, or hardware disciplines, directly control the hardware (tty devices) or pseudo-hardware (pty
devices). They perform the actual input and output to the adapter by providing services to the modules
above it: flow control and special semantics when a port is being opened.

The following tty drivers are provided:

cxma 128-port asynchronous controller High-function terminal. The tty name is /dev/hft/Y, where Y > = 0.
lft Low-function terminal. The tty name is /dev/lftY, where Y >= 0.
lion 64-port asynchronous controller.

© Copyright IBM Corp. 1997, 2001 879

../../files/aixfiles/tty.htm#HDRA336F9457

pty pseudo-terminal device driver.
rs Native, 8-port, and 16-port asynchronous controller.

The section, “TTY Drivers” on page 887, provides more information.

Line Disciplines

Line disciplines provide editing, job control, and special character interpretation. They perform all
transformations that occur on the inbound and outbound data stream. Line disciplines also perform most of
the error handling and status monitoring for the tty driver.

The following line disciplines are provided:

ldterm Terminal devices (see “Line Discipline Module (ldterm)” on page 883)
sptr Serial printer (splp command)
slip Serial Line Internet Protocol (slattach command)

Converter Modules

Converter modules, or mapping disciplines, translate, or map, input and output characters.

The following converter modules are provided:

nls National language support for terminal mapping; this converter translates
incoming and outgoing characters on the data stream, based on the input and
output maps defined for the port (see the setmaps command)

lc_sjis and uc_sjis Upper and lower converter used to translate multibyte characters between the
Shifted Japanese Industrial Standard (SJIS) and the Advanced Japanese EUC
Code (AJEC) handled by the ldterm line discipline.

The section, “Converter Modules” on page 886, provides more information.

TTY Subsystem Structure
The tty subsystem is based on STREAMS. This STREAMS-based structure provides modularity and
flexibility, and enables the following features:

v Easy customizing; users can customize their terminal subsystem environment by adding and removing
modules of their choice.

v Reusable modules; for example, the same line discipline module can be used on many tty devices with
different configurations.

v Easy addition of new features to the terminal subsystem.

v Providing an homogeneous tty interface on heterogeneous devices.

The structure of a tty stream is made up of the following modules:

v The stream head, processing the user’s requests. The stream head is the same for all tty devices,
regardless of what line discipline or tty driver is in use.

v An optional upper converter (uc_sjis for example), a converter module pushed above the line discipline
to convert upstream and downstream data.

v The line discipline.

v An optional lower converter (lc_sjis for example), a converter module pushed below the line discipline
to convert upstream and downstream data.

v An optional character mapping module (nls), a converter module pushed above the tty driver to support
input and output terminal mapping.

880 Writing and Debugging Programs

../../files/aixfiles/pty.htm
../../cmds/aixcmds5/splp.htm#HDRQ1G230JOYC
../../cmds/aixcmds5/slattach.htm#HDRAKK21D0SARA
../../cmds/aixcmds5/setmaps.htm#HDRA18P0178
../../aixprggd/progcomc/ch10_streams.htm

v The stream end: a tty driver.

Unless required, the internationalization modules are not present in the tty stream.

For a serial printer, the internationalization modules are usually not present on the stream; therefore, the
structure is simpler.

Common Services
The /usr/include/sys/ioctl.h and /usr/include/termios.h files describe the interface to the common
services provided by the tty subsystem. The ioctl.h file, which is used by all of the modules, includes the
winsize structure, as well as several ioctl commands. The termios.h file includes the POSIX compliant
subroutines and data types.

The provided services are grouped and discussed here according to their specific functions.

v “Hardware Control Services”:

– cfgetispeed subroutine

– cfgetospeed subroutine

– cfsetispeed subroutine

– cfsetospeed subroutine

– tcsendbreak subroutine

v “Flow Control Services” on page 882:

– tcdrain subroutine

– tcflow subroutine

– tcflush subroutine

v “Terminal Information and Control” on page 882:

– isatty subroutine

– tcgetattr subroutine

– tcsetattr subroutine

– ttylock subroutine

– ttylocked subroutine

– ttyname subroutine

– ttyunlock subroutine

– ttywait subroutine

v “Window and Terminal Size Services” on page 882:

– termdef subroutine

– TIOCGWINSZ ioctl operation

– TIOCSWINSZ ioctl operation

v “Process Group Management Services” on page 882:

– tcgetpgrp subroutine

– tcsetpgrp subroutine

Hardware Control Services
The following subroutines are provided for hardware control:

cfgetispeed Gets input baud rate
cfgetospeed Gets output baud rate
cfsetispeed Sets input baud rate
cfsetospeed Sets output baud rate
tcsendbreak Sends a break on an asynchronous serial data line

Chapter 28. tty Subsystem 881

../../files/aixfiles/termios.h.htm#HDRA2839B1D
../../libs/basetrf1/cfgetospeed.htm#HDRA17F016D
../../libs/basetrf1/cfgetospeed.htm#HDRA17F016D
../../libs/basetrf1/cfgetospeed.htm#HDRA17F016D
../../libs/basetrf1/cfgetospeed.htm#HDRA17F016D
../../libs/basetrf2/tcsendbreak.htm#HDRA2019C70

Flow Control Services
The following subroutines are provided for flow control:

tcdrain Waits for output to complete
tcflow Performs flow control functions
tcflush Discards data from the specified queue

Terminal Information and Control
The following subroutines are provided for terminal information and control:

isatty Determines if the device is a terminal
setcsmap Reads a code set map file and assigns it to the standard

input device
tcgetattr Gets terminal state
tcsetattr Sets terminal state
ttylock, ttywait, ttyunlock, or ttylocked Controls tty locking functions
ttyname Gets the name of a terminal

Window and Terminal Size Services

The kernel stores the winsize structure to provide a consistent interface for the current terminal or window
size. The winsize structure contains the following fields:

ws_row Indicates the number of rows (in characters) on the window or terminal
ws_col Indicates the number of columns (in characters) on the window or terminal
ws_xpixel Indicates the horizontal size (in pixels) of the window or terminal
ws_ypixel Indicates the vertical size (in pixels) of the window or terminal

By convention, a value of 0 in all of the winsize structure fields indicates that the structure has not yet
been set up.

termdef Queries terminal characteristics.
TIOCGWINSZ Gets the window size. The argument to this ioctl operation is a pointer to a winsize structure, into

which the current terminal or window size is placed.
TIOCSWINSZ Sets the window size. The argument to this ioctl operation is a pointer to a winsize structure,

which is used to set the current terminal or window size information. If the new information differs
from the previous, a SIGWINCH signal is sent to the terminal process group.

Process Group Management Services
The following subroutines are provided for process group management:

tcgetpgrp Gets foreground process group ID
tcsetpgrp Sets foreground process group ID

Buffer Size Operations

The following ioctl operations are used for setting the size of the terminal input and output buffers. The
argument to these operations is a pointer to an integer specifying the size of the buffer.

TXSETIHOG Sets the hog limit for the number of input characters that can be received and stored in the internal
tty buffers before the process reads them. The default hog limit is 512 characters. Once the hog
limit plus one character is reached, an error is logged in the error log and the input buffer is
flushed. The hog number should not be too large, since the buffer is allocated from the
system-pinned memory.

882 Writing and Debugging Programs

../../libs/basetrf2/tcdrain.htm#HDRLEL3E0GACO
../../libs/basetrf2/tcflow.htm#HDRVEL3380GACO
../../libs/basetrf2/tcflush.htm#HDRAZKL380GACO
../../libs/basetrf2/ttyname.htm#HDRA244Y996CB
../../libs/basetrf2/setcsmap.htm#HDRA163C11872
../../libs/basetrf2/tcgetattr.htm#HDRVDD32A0GACO
../../libs/basetrf2/tcsetattr.htm#HDRSCD32A0GACO
../../libs/basetrf2/ttylock.htm#HDRA64F032F
../../libs/basetrf2/ttyname.htm#HDRA244Y996CB
../../libs/basetrf2/termdef.htm#HDRGA41260GACO
../../libs/basetrf2/tcgetpgrp.htm#HDRA2019CB1
../../libs/basetrf2/tcsetpgrp.htm#HDRA2019CF1

TXSETOHOG Sets the hog limit for the number of output characters buffered to echo input. The default hog limit
is 512 characters. Once the hog output limit is reached, input characters are no longer echoed. The
hog number should not be too large, since the buffer is allocated from the system-pinned memory.

Synchronization
The tty subsystem takes advantage of the synchronization provided by STREAMS. The tty stream
modules are configured with the queue pair level synchronization. This synchronization allows the
parallelization of the processing for two different streams.

Line Discipline Module (ldterm)
The ldterm line discipline is the common line discipline for terminals. This line discipline is POSIX
compliant and also ensures compatibility with the BSD interface. The latter line discipline is supported only
for compatibility with older applications. For portability reasons, it is strongly recommended that you use
the POSIX line discipline in new applications.

This section describes the features provided by the ldterm line discipline. For more information about
controlling ldterm, see ″termios.h File″ in AIX 5L Version 5.1 Files Reference

Terminal Parameters
The parameters that control certain terminal I/O characteristics are specified in the termios structure as
defined in the termios.h file. The termios structure includes (but is not limited to) the following members:

tcflag_t c_iflag Input modes
tcflag_t c_oflag Output modes
tcflag_t c_cflag Control modes
tcflag_t c_lflag Local modes
cc_t c_cc[NCCS] Control characters.

The tcflag_t and cc_t unsigned integer types are defined in the termios.h file. The NCCS symbol is also
defined in the termios.h file.

Process Group Session Management (Job Control)
A controlling terminal distinguishes one process group in the session, with which it is associated, to be the
foreground process group. All other process groups in the session are designated as background process
groups. The foreground process group plays a special role in handling signals.

Command interpreter processes that support job control, such as the Korn shell (the ksh command) and
the C shell (the csh command), can allocate the terminal to different jobs, or process groups, by placing
related processes in a single process group and associating this process group with the terminal. A
terminal’s foreground process group can be set or examined by a process, assuming the permission
requirements are met. The terminal driver assists in job allocation by restricting access to the terminal by
processes that are not in the foreground process group.

Terminal Access Control
If a process that is not in the foreground process group of its controlling terminal attempts to read from the
controlling terminal, the process group of that process is sent a SIGTTIN signal. However, if the reading
process is ignoring or blocking the SIGTTIN signal, or if the process group of the reading process is
orphaned, the read request returns a value of -1, sets the errno global variable to EIO, and does not send
a signal.

Chapter 28. tty Subsystem 883

../../files/aixfiles/termios.h.htm#HDRA2839B1D
../../files/aixfiles/termios.h.htm#HDRA2839B1D

If a process that is not in the foreground process group of its controlling terminal attempts to write to the
controlling terminal, the process group of that process is sent a SIGTTOU signal. However, the
management of the SIGTTOU signal depends on the TOSTOP flag which is defined in the c_lflag field of
the termios structure. If the TOSTOP flag is not set, or if the TOSTOP flag is set and the process is
ignoring or blocking the SIGTTOU signal, the process is allowed to write to the terminal, and the SIGTTOU
signal is not sent. If the TOSTOP flag is set, the process group of the writing process is orphaned, and the
writing process is not ignoring or blocking the SIGTTOU signal, then the write request returns a value of
-1, sets the errno global variable to EIO, and does not send a signal.

Certain functions that set terminal parameters (tcsetattr, tcsendbreak, tcflow, and tcflush) are treated in
the same manner as write requests, except that the TOSTOP flag is ignored. The effect is identical to that
of terminal write requests when the TOSTOP flag is set.

Reading Data and Input Processing
For terminals that operate in full-duplex mode, data can arrive even while output is occurring. Each
terminal device file is associated with an input queue, where incoming data is stored by the system before
being read by a process. The system imposes a limit (defined by the MAX_INPUT constant in the limits.h
header file) on the number of bytes that can be stored in the input queue. When the input limit is reached,
all the saved characters are thrown away without notice.

Two general kinds of input processing are available, depending on whether the terminal device file is in
canonical or noncanonical mode. Additionally, input characters are processed according to the c_iflag and
c_lflag fields. Such processing can include echoing, or the transmitting of input characters immediately
back to the terminal that sent them. Echoing is useful for terminals that can operate in full-duplex mode.

A read request can be handled in two ways, depending on whether the O_NONBLOCK flag is set by an
open or fcntl subroutine. If the O_NONBLOCK flag is not set, the read request is blocked until data is
available or until a signal is received. If the O_NONBLOCK flag is set, the read request is completed,
without blocking, in one of three ways:

v If there is enough data available to satisfy the entire request, the read request completes successfully
and returns the number of bytes read.

v If there is not enough data available to satisfy the entire request, the read request completes
successfully, having read as much data as possible, and returns the number of bytes it was able to
read.

v If there is no data available, the read request returns a value of -1 and sets the errno global variable to
EAGAIN.

The availability of data depends on whether the input processing mode is canonical or noncanonical. The
canonical or noncanonical modes can be set with the stty command.

Canonical Mode Input Processing
In canonical mode input processing (ICANON flag set in c_lflag field of termios structure), terminal input
is processed in units of lines. A line is delimited by a new-line (ASCII LF) character, an end-of-file (EOF)
character, or an end-of-line (EOL) character. This means that a program attempting to read is blocked until
an entire line has been typed or a signal has been received. Also, regardless of how many characters are
specified in the read request, no more than one line is returned. It is not, however, necessary to read an
entire line at once. Any number of characters can be specified in a read request without losing information.
During input, erase and kill processing is done.

ERASE character (Backspace, by default) erases the last character typed
WERASE character (Ctrl-W key sequence, by default) erases the last word typed in the current line, but

not any preceding spaces or tabs

884 Writing and Debugging Programs

(A word is defined as a sequence of nonblank characters; tabs are regarded as blanks.) Neither the
ERASE nor the WERASE character erases beyond the beginning of the line.

KILL character (Ctrl-U sequence, by default) deletes the entire input line and, optionally, outputs a
new-line character

All of these characters operate on a keystroke basis, independent of any backspacing or tabbing that
might have been done.

REPRINT character (Ctrl-R sequence, by default) prints a new line followed by the characters from the
previous line that have not been read

Reprinting also occurs automatically if characters that would normally be erased from the screen are
fouled by program output. The characters are reprinted as if they were being echoed. Consequently, if the
ECHO flag is not set in the c_lflag field of the termios structure, the characters are not printed. The
ERASE and KILL characters can be entered literally by preceding them with the escape character \
(backslash), in which case, the escape character is not read. The ERASE, WERASE, and KILL characters
can be changed.

Noncanonical Mode Input Processing
In noncanonical mode input processing (-ICANON flag set in c_lflag field of termios structure), input
bytes are not assembled into lines, and erase and kill processing does not occur.

MIN Represents the minimum number of bytes that should be received when the read request is successful
TIME A timer of 0.1-second granularity that is used to time-out burst and short-term data transmissions

The values of the MIN and TIME members of the c_cc array are used to determine how to process the
bytes received. The MIN and TIME values can be set with the stty command. If the MIN value is greater
than the defined value of the MAX_INPUT constant, the response to the request is implementation-
defined. The four possible values for MIN and TIME and their interactions are described in the subsequent
paragraphs.

Case A: MIN 0, TIME 0: In this case, TIME serves as an interbyte timer, which is activated after the first
byte is received and reset each time a byte is received. If MIN bytes are received before the interbyte
timer expires, the read request is satisfied. If the timer expires before MIN bytes are received, the
characters received to that point are returned to the user. If TIME expires, at least one byte is returned.
(The timer would not have been enabled unless a byte was received.) The read operation blocks until the
MIN and TIME mechanisms are activated by the receipt of the first byte or until a signal is received.

Case B: MIN 0, TIME = 0: In this case, only MIN is significant; the timer is not significant (the value of
TIME is 0). A pending read request is not satisfied (blocks) until MIN bytes are received or until a signal is
received. A program that uses this case to read record-based terminal I/O can block indefinitely in the read
operation.

Case C: MIN = 0, TIME 0: In this case, because the value of MIN is 0, TIME no longer represents an
interbyte timer. It now serves as a read timer that is activated as soon as the read request is processed. A
read request is satisfied as soon as a byte is received or when the read timer expires. Note that if the
timer expires, no bytes are returned. If the timer does not expire, the read request can be satisfied only if
a byte is received. In this case, the read operation does not block indefinitely, waiting for a byte. If, after
the read request is initiated, no byte is received within the period specified by TIME multiplied by 0.1
seconds, the read request returns a value of 0, having read no data.

Case D: MIN = 0, TIME = 0: In this case, the minimum of either the number of bytes requested or the
number of bytes currently available is returned without waiting for more bytes to be input. If no characters
are available, the read request returns a value of 0, having read no data.

Chapter 28. tty Subsystem 885

Cases A and B exist to handle burst-mode activity, such as file transfer programs, where a program needs
to process at least the number of characters specified by the MIN variable at one time. In Case A, the
interbyte timer is activated as a safety measure. In Case B, the timer is turned off.

Cases C and D exist to handle single-character, limited transfers. These cases are readily adaptable to
screen-based applications that need to know if a character is present in the input queue before refreshing
the screen. In Case C, the timer is activated. In Case D, the timer is turned off. Case D leads to bad
performance; but it is better to use it than doing a read request with setting the O_NONBLOCK flag.

Writing Data and Output Processing
When one or more characters are written, they are transmitted to the terminal as soon as previously
written characters are displayed. (Input characters are echoed by putting them into the output queue as
they arrive.) If a process produces characters more rapidly than they can be displayed, the process is
suspended when its output queue exceeds a certain limit. When the queue has drained down to a certain
threshold, the program is resumed.

Modem Management
If the CLOCAL flag is set in the c_cflag field of the termios structure, a connection does not depend on
the state of the modem status lines. If the CLOCAL flag is clear, the modem status lines are monitored.
Under normal circumstances, an open function waits for the modem connection to complete. However, if
the O_NONBLOCK or CLOCAL flag is set, the open function returns immediately without waiting for the
connection.

If the CLOCAL flag is not set in the c_cflag field of the termios structure and a modem disconnect is
detected by the terminal interface for a controlling terminal, the SIGHUP signal is sent to the controlling
process associated with the terminal. Unless other arrangements have been made, this signal causes the
process to terminate. If the SIGHUP signal is ignored or caught, any subsequent read request returns an
end-of-file indication until the terminal is closed. Any subsequent write request to the terminal returns a
value of -1 and sets the errno global variable to EIO until the device is closed.

Closing a Terminal Device File
The last process to close a terminal device file causes any output to be sent to the device and any input to
be discarded. Then, if the HUPCL flag is set in the c_cflag field of the termios structure and the
communications port supports a disconnect function, the terminal device performs a disconnect.

Converter Modules
Converter modules are optional modules; they are pushed onto a tty stream only if required. They are
usually provided for internationalization purposes and perform various character mapping.

The following converter modules are shipped with the Base Operating System:

v The nls module

v The uc_sjis and lc_sjis modules.

NLS Module
The nls module is a lower converter module that can be pushed onto a tty stream below the line
discipline. The nls module ensures terminal mapping: it executes the mapping of input and output
characters for nonstandard terminals (that is, for terminals that do not support the basic codeset ISO 8859
of the system).

886 Writing and Debugging Programs

The mapping rules are specified in two map files located in the /usr/lib/nls/termmap directory. The .in
files contain the mapping rules for the keyboard inputs. The .out files contain the mapping rules for the
display outputs. The files format is specified in the setmaps file format ″setmaps File Format″ in AIX 5L
Version 5.1 Files Reference.

SJIS Modules
The uc_sjis and lc_sjis modules are converter modules that can be pushed onto a tty stream. They
ensure codeset handling: they execute the conversion of multibyte characters between the shifted
Japanese industrial standard (SJIS) format and the advanced Japanese EUC code (AJEC) format,
supported by the line disciplines. They are needed when the user process and the hardware terminal uses
the IBM-943 or IBM-932 code set.

AJEC is a Japanese implementation of the extended UNIX code (EUC) encoding method, which allows
combination of ASCII, phonetic Kana, and ideographic Kanji characters. AJEC is a superset of UNIX
Japanese industrial standard (UJIS), a common Japanese implementation of EUC.

Japanese-encoded data consist of characters from up to four code sets:

Code set Contained characters
ASCII Roman letters, digits, punctuation and control characters
JIS X0201 Phonetic Kana
JIS X0208 Ideographic Kanji
JIS X0212 Supplemental Kanji.

AJEC makes use of all four code sets. SJIS makes use only of ASCII, JIS X0201, and JIS X0208 code
sets. Therefore, the uc_sjis and lc_sjis modules convert:

v All SJIS characters into AJEC characters

v AJEC characters from ASCII, JIS X0201, and JIS X0208 code sets into SJIS characters

v AJEC characters from JIS X0212 code set into the SJIS undefined character.

The uc_sjis and lc_sjis modules are always used together. The uc_sjis upper converter is pushed onto
the tty stream above the line discipline; the lc_sjis lower converter is pushed onto the stream below the
line discipline. The uc_sjis and lc_sjis modules are automatically pushed onto the tty stream by the
setmaps command and the setcsmap subroutine. They are also controlled by the EUC ioctl operations
described in the eucioctl.h file in the AIX Version 4 Files Reference .

Related Information

TTY Drivers
A tty driver is a STREAMS driver managing the actual connection to the hardware terminal. Depending on
the connection, three kinds of tty drivers are provided: asynchronous line drivers, the pty driver, and the
LFT driver.

Asynchronous Line Drivers
The asynchronous line drivers are provided to support devices (usually ASCII terminals) directly connected
to the system through asynchronous lines, including modems.

The asynchronous line drivers provide the interface to the line control hardware:

v The cxma driver supports the 128-port adapter card.

v The lion driver supports the 64-port adapter card.

v The rs driver supports the native ports and the 8-port and 16-port adapter cards.

Chapter 28. tty Subsystem 887

../../files/aixfiles/setmaps.htm#HDRA163C116FB
../../cmds/aixcmds5/setmaps.htm#HDRA18P0178
../../libs/basetrf2/setcsmap.htm#HDRA163C11872
../../files/aixfiles/eucioctl.h.htm#HDRKBCPI2A8MANU

The asynchronous line drivers are responsible for setting parameters, such as the baud rate, the character
size, and the parity checking. The user can control these parameters through the c_cflag field of the
termios structure.

The asynchronous line drivers also provide the following features:

v The hardware and software flow control, or pacing discipline, specifies how the connection is managed
to prevent a buffer overflow. The user can control this feature through the c_iflag field of the termios
structure (software flow control) and the x_hflag field of the termiox structure (hardware flow control).

v The open discipline specifies how to establish a connection. This feature is controlled at configuration
time through the x_sflag field of the termiox structure.

Pseudo-Terminal Driver
The pseudo-terminal (pty) driver is provided to support terminals that need special processing, such as
X terminals or remote systems connected through a network.

A pty driver just transmits the input and output data from the application to a server process through a
second stream. The server process, running in the user space, is usually a daemon, such as the rlogind
daemon or the xdm daemon. It manages the actual communication with the terminal.

Other optional modules may be pushed on either user or server stream.

Related Information
STREAMS Overview in AIX 5L Version 5.1 Communications Programming ConceptsThe setmaps
command, stty command in AIX 5L Version 5.1 Commands Reference

The setmaps file format, lp special file, pty special file, tty special file, eucioctl.h file, termios.h file,
termiox.h file in AIX 5L Version 5.1 Files Reference

888 Writing and Debugging Programs

../../files/aixfiles/termios.h.htm#HDRA2839B1D
../../files/aixfiles/termios.h.htm#HDRA2839B1D
../../files/aixfiles/termiox.h.htm#HDRO4KPI28CMANU
../../files/aixfiles/termiox.h.htm#HDRO4KPI28CMANU
../../cmds/aixcmds4/rlogind.htm#HDRBCD290SARA
../../cmds/aixcmds6/xdm.htm#HDRA3E23DF707MLAK
../../files/aixfiles/lft.htm#HDRERU8J39BRGEB

Chapter 29. High-Resolution Time Measurements Using
POWER-based Time Base or POWER family Real-Time Clock

The POWER family and PowerPC 601 RISC Microprocessor have real-time clock registers that can be
used to make high-resolution time measurements. These registers provide seconds and nanoseconds.

POWER-based processors other than PowerPC 601 RISC Microprocessor do not have real time clock
registers. Instead these processors have a time base register, which is a free-running 64-bit register that
increments at a constant rate. The time base register can also be used to make high resolution
elapsed-time measurements, but requires calculations to convert the value in the time base register to
seconds and nanoseconds.

If an application tries to read the real-time clock registers on a POWER-based processor that does not
implement them, the processor generates a trap that causes the instruction to be emulated. The answer is
correct, but the emulation requires a much larger number of cycles than just reading the register. If the
application uses this for high-resolution timing, the time associated with the emulation is included.

If an application tries to read the time base registers on any processor that does not implement them,
including the PowerPC 601 RISC Microprocessor, this will not be emulated and will result in the application
being killed.

Beginning with AIX Version 4, the operating system provides the following library services to support
writing processor-independent code to perform high resolution time measurements:

read_real_time Reads either the real-time clock registers or the time base register and stores the
result

time_base_to_time Converts the results of read_real_time to seconds and nanoseconds

read_real_time does no conversions and runs quickly. time_base_to_time does whatever conversions
are needed, based on whether the processor has a real-time clock register or a time base register, to
convert the results to seconds and nanoseconds.

Since there are separate routines to read the registers and do the conversions, an application can move
the conversion out of time-critical code paths.

© Copyright IBM Corp. 1997, 2001 889

890 Writing and Debugging Programs

Chapter 30. Loader Domains

In some programming environments, it is desirable to have shared libraries loaded at the same virtual
address in each process. Due to the dynamic nature of shared libraries maintained by the AIX system
loader, this condition cannot be guaranteed. Loader domains provide a means of loading shared libraries
at the same virtual address in a set of processes.

The system loader loads shared libraries into multiple global shared library regions. One region is called
the shared library text region, which contains the executable instructions for loaded shared libraries. The
shared library text region is mapped to the same virtual address in every process. The other region is the
shared library data region. This region contains the data for shared libraries. Because shared library data
is read/write, each process has its own private region that is a copy of the global shared library region.
This private region is mapped to the same virtual address in every process.

Since the global shared library regions are mapped at the same virtual address in every process, shared
libraries are loaded at the same virtual address in most cases. The case where this is not true is when
there is more than one version of a shared library loaded in the system. This happens whenever a shared
library that is in use is modified, or any shared libraries it depends on are modified. When this happens,
the loader must create a new version of the modified shared library and all other shared libraries that
depend on the modified shared library. Note that all shared libraries ultimately depend on the Kernel Name
Space. The Kernel Name Space contains all the system calls defined by the kernel and can be modified
any time a kernel extension is dynamically loaded or unloaded. When the system loader creates a new
version of a shared library, the new version must be located at a different location in the global shared
library segments. Therefore, processes that use the new version have the shared libraries loaded at a
different virtual address than processes that use the previous versions of the shared libraries.

A loader domain is a subset of all the shared libraries that are loaded in the system. The set of all shared
libraries loaded in the system is called the global loader domain. This global loader domain can be
subdivided into smaller user-defined loader domains. A user-defined loader domain contains one version of
any particular shared library. Processes can specify a loader domain. If a process specifies a loader
domain, the process uses the shared libraries contained in the loader domain. If more than one process
specifies the same loader domain, they use the same set of shared libraries. Since a loader domain
contains one version of any particular shared library, all processes that specify the same loader domain
use the same version of shared libraries and have their shared libraries loaded at the same virtual
address.

Using Loader Domains

If a process uses a loader domain, it must be specified at exec time. The loader domain specified is in
effect and used for the entire duration of the process. When a process that specifies a loader domain calls
the exec system call, the system loader takes the following actions:

Finds/creates loader domain

© Copyright IBM Corp. 1997, 2001 891

The access permissions associated with
the loader domain are checked to
determine if this process can use the
loader domain. If the process does not
have sufficient privilege to access (read or
write) the loader domain, no domain is
used by the process. If the process does
have sufficient privilege, the list of loader
domains maintained by the system loader
is searched for the loader domain
specified by the process. If the loader
domain specified is not found, it is created
if the process has sufficient privilege. If the
process does not have sufficient privilege
to create the loader domain, then the exec
call fails, and an error is returned.

Uses loader domain to limit search
If the process needs any shared libraries
that are already listed in the loader
domain, the version of the library specified
in the domain is used. The version of the
shared library in the loader domain is used
regardless of other versions of the shared
library that may exist in the global loader
domain.

Adds shared libraries to loader domain
If the process needs a library that is not in
the loader domain, the loader loads the
library into the process image by following
the normal loader convention of loading
the most recent version. If the process has
sufficient privilege, this version of the
library is also added to the loader domain.
If the process does not have sufficient
privilege to add an entry, the exec call
fails, and an error is returned.

Shared libraries can also be explicitly loaded with the load() system call. When a shared library is
explicitly loaded, the data for these modules is normally put at the current break value of the process for a
32-bit process. For a 64-bit process, the data for the modules is put in the region’s privately loaded
modules. If a process uses a loader domain, the system loader puts the data in the shared library data
region. The virtual address of this explicitly loaded module is the same for all processes that load the
module. If the process has sufficient privilege, the shared library is added to the loader domain. If the
process does not have sufficient privilege to add an entry, the load call fails, and an error is returned.

A loader domain can be associated with any regular file. It is important to note that a loader domain is
associated with the file, NOT the path name of the file. The mode (access permissions) of the file
determines the operations that can be performed on the loader domain. Access permissions on the file
associated with the loader domain and the operations allowed on the loader domain are as follows:

v If the process is able to read the file, the process can specify the loader domain to limit the set of
shared libraries it uses.

v If the process is able to write to the file, the process is able to add shared libraries to the loader domain
and create the loader domain associated with the file.

If a process attempts to create or add entires to a loader domain without sufficient privilege, the operation
in progress (exec or load) fails, and an error is returned.

892 Writing and Debugging Programs

Loader domains are specified as part of the LIBPATH information. LIBPATH information is a colon (:)
separated list of directory path names used to locate shared libraries. LIBPATH information can come from
either the LIBPATH environment variable or the LIBPATH string specified in the loader section of the
executable file. If the first path name in the LIBPATH information is a regular file, a loader domain
associated with the file is specified. For example:

v If /etc/loader_domain/OOdomain_1 is a regular file, then setting the LIBPATH environment variable to
the string
/etc/loader_domain/OOdomain_1:/lib:/usr/lib

causes processes to create and use the loader domain associated with the
/etc/loader_domain/OOdomain_1 file.

v If /etc/loader_domain/OOdomain_1 is a regular file, then the ldom program is built with the following
command:
cc -o ldom ldom.c -L/etc/loader_domain/OOdomain_1

The path name /etc/loader_domain/OOdomain_1 is inserted as the first entry in the LIBPATH
information of the loader section for the ldom file. When ldom is executed, it creates and uses the loader
domain associated with the /etc/loader_domain/OOdomain_1 file.

Creating/Deleting Loader Domains

A loader domain is created the first time a process with sufficient privilege attempts to use the domain.
Access to a loader domain is controlled by access to the regular file associated with the domain.
Application writers are responsible for managing the regular files associated with loader domains used by
their applications. Loader domains are associated with regular files NOT the path names of the files. The
following examples illustrate this point:

v The apl application has specified loader domain domain01 in its LIBPATH information. The apl
application is then executed. The current working directory is /home/user1, and it contains a regular file
domain1 that is writable by apl. A new loader domain associated with the file /home/user1/domain01 is
created. apl is executed again. This time /home/user2 is the current working directory, and it also
contains a regular file domain01 that is writable by apl. A new loader domain associated with the file
/home/user1/domain02 is created.

v Application apl has specified loader domain /etc/1_domain/domain01 in its LIBPATH information. apl is
then executed. /etc/1_domain/domain01 is a regular file that is writable by apl. A new loader domain
associated with the file /etc/1_domain/domain01 is created.

/home/user1/my_domain is a symbolic link to file /etc/1_domain/domain01.

Application ap2 has specified loader domain /home/user1/my_domain in its LIBPATH information. ap2 is
then executed. The system loader notices that /home/user1/my_domain refers to the same file as
/etc/1_domain/domain01. A loader domain is already associated with file /etc/1_domain/domain01;
therefore, this loader domain is used by application ap2.

v Application apl has specified loader domain /etc/1_domain/domain01 in its LIBPATH information. apl is
then executed. /etc/1_domain/domain01 is a regular file that is writable by apl. A new loader domain
associated with the file /etc/1_domain/domain01 is created.

File /etc/1_domain/domain01 is deleted and recreated as a regular file.

Application apl is executed again. There is no longer any way to access the regular file that is
associated with the original loader domain /etc/1_domain/domain01. Therefore, a new loader domain
associated with the file /etc/1_domain/domain01 is created.

Loader domains are dynamic structures. During the life of a loader domain, shared libraries are added and
deleted. A shared library is added to a loader domain when a process that specified the loader domain
needs a shared library that does not already exist in the domain. Of course, this assumes the process has
sufficient privilege to add the shared library to the loader domain.

Chapter 30. Loader Domains 893

A separate use count is kept for each shared library that is a member of a loader domain. This use count
keeps track of how many processes with loader domains are using the shared library. When this use count
drops to zero, the shared library is deleted from the loader domain.

894 Writing and Debugging Programs

Chapter 31. Power Management-Aware Application Program

Power Management (PM) is a technique that uses hardware and software to minimize system power
consumption. Power Management has been primarily available on mobile computer systems, but it is now
available in the desktop computer environment. Since PM state transitions introduce different environments
to application programs, it may be necessary for some application programs to know the PM state
transitions. For example, since all processes are frozen at the suspend or hibernation states, some
processes might want to save data in a file before entering suspend or hibernation. Also, some application
programs might need to control PM state transitions.

Although the AIX PM system consists of several components, such as the PM core (kernel extension), PM
daemon, PM system calls, and PM commands, all the communication between the PM system and
application programs can be done through the PM library. The PM library provides the following functions
to PM-aware application programs:

v Controlling or querying PM parameters

v Controlling or querying PM states

v Querying PM events

v Controlling or querying battery information

Although a PM-aware application can run on any platform, it will only be beneficial on a platform that
supports PM.

For detailed information on the syntax and return codes of each PM library function, see AIX 5L Version
5.1 Technical Reference: Kernel and Subsystems Volume 1.

© Copyright IBM Corp. 1997, 2001 895

896 Writing and Debugging Programs

Chapter 32. ELF Object Files and Dynamic Linking

These sections contains general information for ELF (Executable and Linking Format) object files and
dynamic linking.

v “Section 1. ELF Object File General Information”

– “ELF Header” on page 899

– “Sections” on page 906

– “String Table” on page 917

– “System V Application Binary Interface” on page 918

– “Relocation” on page 918

– “Symbol Table” on page 920

v “Section 2. ELF Program and Dynamic Linking General Information” on page 925

– “Program Header” on page 926

– “Program Loading (Processor-Specific)” on page 931

– “Dynamic Linking” on page 931

Section 1. ELF Object File General Information
v “ELF Header” on page 899

v “Sections” on page 906

v “String Table” on page 917

v “System V Application Binary Interface” on page 918

v “Relocation” on page 918

v “Symbol Table” on page 920

ELF Object File General Information
This section describes the object file format, called ELF (Executable and Linking Format). There are three
main types of object files.

v A relocatable file holds code and data suitable for linking with other object files to create an executable
or a shared object file.

v An executable file holds a program suitable for execution; the file specifies how exec(base operating
system) creates a program’s process image.

v A shared object file holds code and data suitable for linking in two contexts. First, the link editor [see
ld(base operating system)] processes the shared object file with other relocatable and shared object
files to create another object file. Second, the dynamic linker combines it with an executable file and
other shared objects to create a process image.

Created by the assembler and link editor, object files are binary representations of programs intended to
be executed directly on a processor. Programs that require other abstract machines, such as shell scripts,
are excluded.

After the introductory material, this chapter focuses on the file format and how it pertains to building
programs. Chapter 32 also describes parts of the object file, concentrating on the information necessary to
execute a program.

File Format
Object files participate in program linking (building a program) and program execution (running a program).
For convenience and efficiency, the object file format provides parallel views of a file’s contents, reflecting
the differing needs of those activities. The table below shows an object file’s organization.

© Copyright IBM Corp. 1997, 2001 897

Object File Format

An ELF header resides at the beginning and holds a road map describing the file’s organization. Sections
hold the bulk of object file information for the linking view: instructions, data, symbol table, relocation
information, and so on. Descriptions of special sections appear later in the chapter. Chapter 32 discusses
segments and the program execution view of the file.

A program header table tells the system how to create a process image. Files used to build a process
image (execute a program) must have a program header table; relocatable files do not need one. A
section header table contains information describing the file’s sections. Every section has an entry in the
table; each entry gives information such as the section name, the section size, and so on. Files used
during linking must have a section header table; other object files may or may not have one.

NOTE: Although the figure shows the program header table immediately after the ELF header, and
the section header table following the sections, actual files may differ. Moreover, sections and
segments have no specified order. Only the ELF header has a fixed position in the file.

Data Representation
As described here, the object file format supports various processors with 8-bit bytes and either 32-bit or
64-bit architectures. Nevertheless, it is intended to be extensible to larger (or smaller) architectures. Object
files therefore represent some control data with a machine-independent format, making it possible to
identify object files and interpret their contents in a common way. Remaining data in an object file use the
encoding of the target processor, regardless of the machine on which the file was created.

32-Bit Data Types

Name Size Alignment Purpose

Elf32_Addr 4 4 Unsigned program address

Elf32_Off 4 4 Unsigned file offset

Elf32_Half 2 2 Unsigned medium integer

Elf32_Word 4 4 Unsigned integer

Elf32_Sword 4 4 Signed integer

unsigned char 1 1 Unsigned small integer

64-Bit Data Types

Name Size Alignment Purpose

Elf64_Addr 8 8 Unsigned program address

Elf64_Off 8 8 Unsigned file offset

Elf64_Half 2 2 Unsigned medium integer

Elf64_Word 4 4 Unsigned integer

Elf64_Sword 4 4 Signed integer

Elf64_Xword 8 8 Unsigned long integer

Elf64_Sxword 8 8 Signed long integer

unsigned char 1 1 Unsigned small integer

All data structures that the object file format defines follow the natural size and alignment guidelines for the
relevant class. If necessary, data structures contain explicit padding to ensure 8-byte alignment for 8-byte
objects, 4-byte alignment for 4-byte objects, to force structure sizes to a multiple of 4 or 8, and so forth.

898 Writing and Debugging Programs

Data also have suitable alignment from the beginning of the file. Thus, for example, a structure containing
an Elf32_Addr member will be aligned on a 4-byte boundary within the file.

For portability reasons, ELF uses no bit-fields.

ELF Header
Some object file control structures can grow, because the ELF header contains their actual sizes. If the
object file format changes, a program may encounter control structures that are larger or smaller than
expected. Programs might therefore ignore extra information. The treatment of missing information
depends on context and will be specified when and if extensions are defined.

ELF Header

#define EI_NIDENT 16
typedef struct {

unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry;
Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;
Elf32_Half e_shtrndx;

} Elf32_Ehdr;

typedef struct {
unsigned char e_ident[EI_NIDENT];
Elf64_Half e_type;
Elf64_Half e_machine;
Elf64_Word e_version;
Elf64_Addr e_entry;
Elf64_Off e_phoff;
Elf64_Off e_shoff;
Elf64_Word e_flags;
Elf64_Half e_ehsize;
Elf64_Half e_phentsize;
Elf64_Half e_phnum;
Elf64_Half e_shentsize;
Elf64_Half e_shnum;
Elf64_Half e_shtrndx;

} Elf64_Ehdr;

e_ident
The initial bytes mark the file as an object file and provide machine-independent data with which to
decode and interpret the file’s contents. Complete descriptions appear below in “ELF Identification”
on page 903.

e_type
This member identifies the object file type.

Name Value Meaning

ET_NONE 0 No file type

Chapter 32. ELF Object Files and Dynamic Linking 899

Name Value Meaning

ET_REL 1 Relocatable file

ET_EXEC 2 Executable file

ET_DYN 3 Shared object file

ET_CORE 4 Core file

ET_LOOS 0xfe00 Operating system-specific

ET_HIOS 0xfeff Operating system-specific

ET_LOPROC 0xff00 Processor-specific

ET_HIPROC 0xffff Processor-specific

Although the core file contents are unspecified, type ET_CORE is reserved to mark the file. Values
from ET_LOOS through ET_HIOS (inclusive) are reserved for operating system-specific
semantics. Values from ET_LOPROC through ET_HIPROC (inclusive) are reserved for
processor-specific semantics. If meanings are specified, the processor supplement explains them.
Other values are reserved and will be assigned to new object file types as necessary.

e_machine
This member’s value specifies the required architecture for an individual file.

Name Value Meaning

EM_NONE 0 No machine

EM_M32 1 AT&T WE 32100

EM_SPARC 2 SPARC

EM_386 3 Intel 80386

EM_68K 4 Motorola 68000

EM_88K 5 Motorola 88000

RESERVED 6 Reserved for future use

EM_860 7 Intel 80860

EM_MIPS 8 MIPS I Architecture

EM_S370 9 IBM System/370 Processor

EM_MIPS_RS3_LE 10 MIPS RS3000 Little-endian

RESERVED 11-14 Reserved for future use

EM_PARISC 15 Hewlett-Packard PA-RISC

RESERVED 16 Reserved for future use

EM_VPP500 17 Fujitsu VPP500

EM_SPARC32PLUS 18 Enhanced instruction set SPARC

EM_960 19 Intel 80960

EM_PPC 20 PowerPC

EM_PPC64 21 64-bit PowerPC

RESERVED 22-35 Reserved for future use

EM_V800 36 NEC V800

EM_FR20 37 Fujitsu FR20

EM_RH32 38 TRW RH-32

900 Writing and Debugging Programs

Name Value Meaning

EM_RCE 39 Motorola RCE

EM_ARM 40 Advanced RISC Machines ARM

EM_ALPHA 41 Digital Alpha

EM_SH 42 Hitachi SH

EM_SPARCV9 43 SPARC Version 9

EM_TRICORE 44 Siemens Tricore embedded processor

EM_ARC 45 Argonaut RISC Core, Argonaut
Technologies Inc.

EM_H8_300 46 Hitachi H8/300

EM_H8_300H 47 Hitachi H8/300H

EM_H8S 48 Hitachi H8S

EM_H8_500 49 Hitachi H8/500

EM_IA_64 50 Itanium-based platform

EM_MIPS_X 51 Stanford MIPS-X

EM_COLDFIRE 52 Motorola ColdFire

EM_68HC12 53 Motorola M68HC12

EM_MMA 54 Fujitsu MMA Multimedia Accelerator

EM_PCP 55 Siemens PCP

EM_NCPU 56 Sony nCPU embedded RISC
processor

EM_NDR1 57 Denso NDR1 microprocessor

EM_STARCORE 58 Motorola Star*Core processor

EM_ME16 59 Toyota ME16 processor

EM_ST100 60 STMicroelectronics ST100 processor

EM_TINYJ 61 Advanced Logic Corp. TinyJ
embedded processor family

Reserved 62-65 Reserved for future use

EM_FX66 66 Siemens FX66 microcontroller

EM_ST9PLUS 67 STMicroelectronics ST9+ 8/16 bit
microcontroller

EM_ST7 68 STMicroelectronics ST7 8-bit
microcontroller

EM_68HC16 69 Motorola MC68HC16 Microcontroller

EM_68HC11 70 Motorola MC68HC11 Microcontroller

EM_68HC08 71 Motorola MC68HC08 Microcontroller

EM_68HC05 72 Motorola MC68HC05 Microcontroller

EM_SVX 73 Silicon Graphics SVx

EM_ST19 74 STMicroelectronics ST19 8-bit
microcontroller

EM_VAX 75 Digital VAX

EM_CRIS 76 Axis Communications 32-bit
embedded processor

Chapter 32. ELF Object Files and Dynamic Linking 901

Name Value Meaning

EM_JAVELIN 77 Infineon Technologies 32-bit
embedded processor

EM_FIREPATH 78 Element 14 64-bit DSP Processor

EM_ZSP 79 LSI Logic 16-bit DSP Processor

EM_MMIX 80 Donald Knuth’s educational 64-bit
processor

EM_HUANY 81 Harvard University
machine-independent object files

EM_PRISM 82 SiTera Prism

Other values are reserved and will be assigned to new machines as necessary. Processor-specific
ELF names use the machine name to distinguish them. For example, the flags mentioned below
use the prefix EF_; a flag named WIDGET for the EM_XYZ machine would be called
EF_XYZ_WIDGET.

e_version
This member identifies the object file version.

Name Value Meaning

EV_NONE 0 Invalid version

EV_CURRENT 1 Current version

The value 1 signifies the original file format; extensions will create new versions with higher
numbers. Although the value of EV_CURRENT is shown as 1 in the previous table, it will change
as necessary to reflect the current version number.

e_entry
This member gives the virtual address to which the system first transfers control, thus starting the
process. If the file has no associated entry point, this member holds zero.

e_phoff
This member holds the program header table’s file offset in bytes. If the file has no program
header table, this member holds zero.

e_shoff
This member holds the section header table’s file offset in bytes. If the file has no section header
table, this member holds zero.

e_flags
This member holds processor-specific flags associated with the file. Flag names take the form
EF_machine_flag.

e_ehsize
This member holds the ELF header’s size in bytes.

e_phentsize
This member holds the size in bytes of one entry in the file’s program header table; all entries are
the same size.

e_phnum
This member holds the number of entries in the program header table. Thus the product of
e_phentsize and e_phnum gives the table’s size in bytes. If a file has no program header table,
e_phnum holds the value zero.

902 Writing and Debugging Programs

e_shentsize
This member holds a section header’s size in bytes. A section header is one entry in the section
header table; all entries are the same size.

e_shnum
This member holds the number of entries in the section header table. Thus the product of
e_shentsize and e_shnum gives the section header table’s size in bytes. If a file has no section
header table, e_shnum holds the value zero.

e_shstrndx
This member holds the section header table index of the entry associated with the section name
string table. If the file has no section name string table, this member holds the value
SHN_UNDEF. See “Sections” on page 906 and “String Table” on page 917 for more information.

ELF Identification
As mentioned above, ELF provides an object file framework to support multiple processors, multiple data
encodings, and multiple classes of machines. To support this object file family, the initial bytes of the file
specify how to interpret the file, independent of the processor on which the inquiry is made and
independent of the file’s remaining contents.

The initial bytes of an ELF header (and an object file) correspond to the e_ident member.

e_ident[] Identification Indexes

Name Value Purpose

EI_MAG0 0 File identification

EI_MAG1 1 File identification

EI_MAG2 2 File identification

EI_MAG3 3 File identification

EI_CLASS 4 File class

EI_DATA 5 Data encoding

EI_VERSION 6 File version

EI_OSABI 7 Operating system/ABI identification

EI_ABIVERSION 8 ABI version

EI_PAD 9 Start of padding bytes

EI_NIDENT 16 Size of e_ident[]

These indexes access bytes that hold the following values.

EI_MAG0 to EI_MAG3
A file’s first 4 bytes hold a magic number, identifying the file as an ELF object file.

Name Value Position

ELFMAG0 0x7f e_ident[EI_MAG0]

ELFMAG1 ’E’ e_ident[EI_MAG1]

ELFMAG2 ’L’ e_ident[EI_MAG2]

ELFMAG3 ’F’ e_ident[EI_MAG3]

EI_CLASS
The next byte, e_ident[EI_CLASS], identifies the file’s class, or capacity.

Chapter 32. ELF Object Files and Dynamic Linking 903

Name Value Meaning

ELFCLASSNONE 0 Invalid class

ELFCLASS32 1 32-bit objects

ELFCLASS64 2 64-bit objects

The file format is designed to be portable among machines of various sizes, without imposing the
sizes of the largest machine on the smallest. The class of the file defines the basic types used by
the data structures of the object file container itself. The data contained in object file sections may
follow a different programming model. If so, the processor supplement describes the model used.

Class ELFCLASS32 supports machines with 32-bit architectures. It uses the basic types defined
in the table labeled 32-Bit Data Types.

Class ELFCLASS64 supports machines with 64-bit architectures. It uses the basic types defined
in the table labeled 64-Bit Data Types.

Other classes will be defined as necessary, with different basic types and sizes for object file data.

EI_DATA
Byte e_ident[EI_DATA] specifies the encoding of both the data structures used by object file
container and data contained in object file sections.

The following encoding are currently defined.

Name Value Meaning

ELFDATANONE 0 Invalid data encoding

ELFDATA2LSB 1 See below

ELFDATA2MSB 2 See below

Other values are reserved and will be assigned to new encodings as necessary.

NOTE: Primarily for the convenience of code that looks at the ELF file at runtime, the ELF data
structures are intended to have the same byte order as that of the running program.

EI_VERSION
Byte e_ident[EI_VERSION] specifies the ELF header version number. Currently, this value must
be EV_CURRENT, as explained above for e_version.

EI_OSABI
Byte e_ident[EI_OSABI] identifies the operating system and ABI to which the object is targeted.
Some fields in other ELF structures have flags and values that have operating system and/or ABI
specific meanings; the interpretation of those fields is determined by the value of this byte. The
value of this byte must be interpreted differently for each machine. That is, each value for the
e_machine field determines a set of values for the EI_OSABI byte. Values are assigned by the
ABI processor supplement for each machine. If the processor supplement does not specify a set
of values, the value 0 shall be used and indicates unspecified.

EI_ABIVERSION
Byte e_ident[EI_ABIVERSION] identifies the version of the ABI to which the object is targeted.
This field is used to distinguish among incompatible versions of an ABI. The interpretation of this
version number is dependent on the ABI identified by the EI_OSABI field. If no values are
specified for the EI_OSABI field by the processor supplement or no version values are specified
for the ABI determined by a particular value of the EI_OSABI byte, the value 0 shall be used for
the EI_ABIVERSION byte; it indicates unspecified.

EI_PAD
This value marks the beginning of the unused bytes in e_ident. These bytes are reserved and set

904 Writing and Debugging Programs

to zero; programs that read object files should ignore them. The value of EI_PAD will change in
the future if currently unused bytes are given meanings.

A file’s data encoding specifies how to interpret the basic objects in a file. Class ELFCLASS32 files use
objects that occupy 1, 2, and 4 bytes. Class ELFCLASS64 files use objects that occupy 1, 2, 4, and 8
bytes. Under the defined encodings, objects are represented as shown below.

Encoding ELFDATA2LSB specifies 2’s complement values, with the least significant byte occupying the
lowest address.

01

0x01

02 01

0x0102

04 03 02 01

0x01020304

08 07 06 05 04 03 02 01

0x0102030405060708

Data Encoding ELFDATA2LSB, byte address zero on the left

Encoding ELFDATA2MSB specifies 2’s complement values, with the most significant byte occupying the
lowest address.

01

0x01

01 02

0x0102

01 02 03 04

0x01020304

01 02 03 04 05 06 07 08

0x0102030405060708

Data Encoding ELFDATA2MSB, byte address zero on the left

Chapter 32. ELF Object Files and Dynamic Linking 905

Machine Information (Processor-Specific)
NOTE: This section requires processor-specific information. The ABI supplement for the desired processor
describes the details.

Sections
An object file’s section header table lets one locate all the file’s sections. The section header table is an
array of Elf32_Shdr or Elf64_Shdr structures as described below. A section header table index is a
subscript into this array. The ELF header’s e_shoff member gives the byte offset from the beginning of the
file to the section header table. e_shnum tells how many entries the section header table contains.
e_shentsize gives the size in bytes of each entry.

If the number of sections is greater than or equal to SHN_LORESERVE (0xff00), e_shnum has the value
SHN_UNDEF (0) and the actual number of section header table entries is contained in the sh_size field of
the section header at index 0 (otherwise, the sh_size member of the initial entry contains 0).

Some section header table indexes are reserved in contexts where index size is restricted, for example,
the st_shndx member of a symbol table entry and the e_shnum and e_shstrndx members of the ELF
header. In such contexts, the reserved values do not represent actual sections in the object file. Also in
such contexts, an escape value indicates that the actual section index is to be found elsewhere, in a larger
field.

Special Section Indexes

Name Value

SHN_UNDEF 0

SHN_LORESERVE 0xff00

SHN_LOPROC 0xff00

SHN_HIPROC 0xff1f

SHN_LOOS 0xff20

SHN_HIOS 0xff3f

SHN_ABS 0xfff1

SHN_COMMON 0xfff2

SHN_HIRESERVE 0xffff

SHN_UNDEF
This value marks an undefined, missing, irrelevant, or otherwise meaningless section reference.
For example, a symbol defined relative to section number SHN_UNDEF is an undefined symbol.

NOTE: Although index 0 is reserved as the undefined value, the section header table contains an entry for
index 0. If the e_shnum member of the ELF header says a file has 6 entries in the section header table,
they have the indexes 0 through 5. The contents of the initial entry are specified later in this section.

SHN_LORESERVE
This value specifies the lower bound of the range of reserved indexes.

SHN_LOPROC through SHN_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

SHN_LOOS through SHN_HIOS
Values in this inclusive range are reserved for operating system-specific semantics.

906 Writing and Debugging Programs

SHN_ABS
This value specifies absolute values for the corresponding reference. For example, symbols
defined relative to section number equals SHN_ABS have absolute values and are not affected by
relocation.

SHN_COMMON
Symbols defined relative to this section are common symbols, such as FORTRAN COMMON or
unallocated C external variables.

SHN_HIRESERVE
This value specifies the upper bound of the range of reserved indexes. The system reserves
indexes between SHN_LORESERVE and SHN_HIRESERVE, inclusive; the values do not
reference the section header table. The section header table does not contain entries for the
reserved indexes.

Sections contain all information in an object file except the ELF header, the program header table, and the
section header table. Moreover, object files’ sections satisfy several conditions.

v Every section in an object file has exactly one section header describing it. Section headers may exist
that do not have a section.

v Each section occupies one contiguous (possibly empty) sequence of bytes within a file.

v Sections in a file may not overlap. No byte in a file resides in more than one section.

v An object file may have inactive space. The various headers and the sections might not cover every
byte in an object file. The contents of the inactive data are unspecified.

A section header has the following structure.

typedef struct {
Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;
} Elf32_Shdr;

typedef struct {
Elf64_Word sh_name;
Elf64_Word sh_type;
Elf64_Xword sh_flags;
Elf64_Addr sh_addr;
Elf64_Off sh_offset;
Elf64_Xword sh_size;
Elf64_Word sh_link;
Elf64_Word sh_info;
Elf64_Xword sh_addralign;
Elf64_Xword sh_entsize;
} Elf64_Shdr;

Section Header

sh_name
This member specifies the name of the section. Its value is an index into the section header string
table section [see “String Table” on page 917 below], giving the location of a null-terminated string.

Chapter 32. ELF Object Files and Dynamic Linking 907

sh_type
This member categorizes the section’s contents and semantics. Section types and their
descriptions appear below.

sh_flags
Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions appear below.

sh_addr
If the section will appear in the memory image of a process, this member gives the address at
which the section’s first byte should reside. Otherwise, the member contains 0.

sh_offset
This member’s value gives the byte offset from the beginning of the file to the first byte in the
section. One section type, SHT_NOBITS described below, occupies no space in the file, and its
sh_offset member locates the conceptual placement in the file.

sh_size
This member gives the section’s size in bytes. Unless the section type is SHT_NOBITS, the
section occupies sh_size bytes in the file. A section of type SHT_NOBITS may have a non-zero
size, but it occupies no space in the file.

sh_link
This member holds a section header table index link, whose interpretation depends on the section
type. A table below describes the values.

sh_info
This member holds extra information, whose interpretation depends on the section type. A table
below describes the values. If the sh_flags field for this section header includes the attribute
SHF_INFO_LINK, then this member represents a section header table index.

sh_addralign
Some sections have address alignment constraints. For example, if a section holds a doubleword,
the system must ensure doubleword alignment for the entire section. The value of sh_addr must
be congruent to 0, modulo the value of sh_addralign. Currently, only 0 and positive integral
powers of two are allowed. Values 0 and 1 mean the section has no alignment constraints.

sh_entsize
Some sections hold a table of fixed-size entries, such as a symbol table. For such a section, this
member gives the size in bytes of each entry. The member contains 0 if the section does not hold
a table of fixed-size entries.

A section header’s sh_type member specifies the section’s semantics.

Section Types,sh_type

Name Value

SHT_NULL 0

SHT_PROGBITS 1

SHT_SYMTAB 2

SHT_STRTAB 3

SHT_RELA 4

SHT_HASH 5

SHT_DYNAMIC 6

SHT_NOTE 7

SHT_NOBITS 8

SHT_REL 9

908 Writing and Debugging Programs

Name Value

SHT_SHLIB 10

SHT_DYNSYM 11

SHT_INIT_ARRAY 14

SHT_FINI_ARRAY 15

SHT_PREINIT_ARRAY 16

SHT_LOOS 0x60000000

SHT_HIOS 0x6fffffff

SHT_LOPROC 0x70000000

SHT_HIPROC 0x7fffffff

SHT_LOUSER 0x80000000

SHT_HIUSER 0xffffffff

SHT_NULL
This value marks the section header as inactive; it does not have an associated section. Other
members of the section header have undefined values.

SHT_PROGBITS
The section holds information defined by the program, whose format and meaning are determined
solely by the program.

SHT_SYMTAB and SHT_DYNSYM
These sections hold a symbol table. Currently, an object file may have only one section of each
type, but this restriction may be relaxed in the future. Typically, SHT_SYMTAB provides symbols
for link editing, though it may also be used for dynamic linking. As a complete symbol table, it may
contain many symbols unnecessary for dynamic linking. Consequently, an object file may also
contain a SHT_DYNSYM section, which holds a minimal set of dynamic linking symbols, to save
space. See the “Symbol Table” on page 920 for details.

SHT_STRTAB
The section holds a string table. An object file may have multiple string table sections. See the
“String Table” on page 917 for details.

SHT_RELA
The section holds relocation entries with explicit addends, such as type Elf32_Rela for the 32-bit
class of object files or type Elf64_Rela for the 64-bit class of object files. An object file may have
multiple relocation sections. See “Relocation” on page 918 for details.

SHT_HASH
The section holds a symbol hash table. Currently, an object file may have only one hash table, but
this restriction may be relaxed in the future. See the “Hash Table” on page 940 in Chapter 32 for
details.

SHT_DYNAMIC
The section holds information for dynamic linking. Currently, an object file may have only one
dynamic section, but this restriction may be relaxed in the future. See “Dynamic Section” on
page 933 in chapter 32 for details.

SHT_NOTE
The section holds information that marks the file in some way. See “Note Section” on page 930 in
Chapter 32 for details.

SHT_NOBITS
A section of this type occupies no space in the file but otherwise resembles SHT_PROGBITS.
Although this section contains no bytes, the sh_offset member contains the conceptual file offset.

Chapter 32. ELF Object Files and Dynamic Linking 909

SHT_REL
The section holds relocation entries without explicit addends, such as type Elf32_Rel for the 32-bit
class of object files or type Elf64_Rel for the 64-bit class of object files. An object file may have
multiple relocation sections. See “Relocation” on page 918 for details.

SHT_SHLIB
This section type is reserved but has unspecified semantics.

SHT_INIT_ARRAY
This section contains an array of pointers to initialization functions, as described in “Initialization
and Termination Functions” on page 941 in Chapter 32. Each pointer in the array is taken as a
parameterless procedure with a void return.

SHT_FINI_ARRAY
This section contains an array of pointers to termination functions, as described in “Initialization
and Termination Functions” on page 941 in chapter 32. Each pointer in the array is taken as a
parameterless procedure with a void return.

SHT_PREINIT_ARRAY
This section contains an array of pointers to functions that are invoked before all other initialization
functions, as described in “Initialization and Termination Functions” on page 941 in Chapter 32.
Each pointer in the array is taken as a parameterless procedure with a void return.

SHT_LOOS through SHT_HIOS
Values in this inclusive range are reserved for operating system-specific semantics.

SHT_LOPROC through SHT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics.

SHT_LOUSER
This value specifies the lower bound of the range of indexes reserved for application programs.

SHT_HIUSER
This value specifies the upper bound of the range of indexes reserved for application programs.
Section types between SHT_LOUSER and SHT_HIUSER may be used by the application, without
conflicting with current or future system-defined section types.

Other section type values are reserved. As mentioned before, the section header for index 0
(SHN_UNDEF) exists, even though the index marks undefined section references. This entry holds the
following.

Section Header Table Entry:Index 0

Name Value Note

sh_name 0 No name

sh_type SHT_NULL Inactive

sh_flags 0 No flags

sh_addr 0 No address

sh_offset 0 No offset

sh_size Unspecified If non-zero, the actual number of
section header entries

sh_link Unspecified If non-zero, the index of the section
header string table section

sh_info 0 No auxiliary information

sh_addralign 0 No alignment

sh_entsize 0 No entries

910 Writing and Debugging Programs

A section header’s sh_flags member holds 1-bit flags that describe the section’s attributes. Defined values
appear in the following table; other values are reserved.

Section Attribute Flags

Name Value

SHF_WRITE 0x1

SHF_ALLOC 0x2

SHF_EXECINSTR 0x4

SHF_MERGE 0x10

SHF_STRINGS 0x20

SHF_INFO_LINK 0x40

SHF_LINK_ORDER 0x80

SHF_OS_NONCONFORMING 0x100

SHF_GROUP 0x200

SHF_MASKOS 0x0ff00000

SHF_MASKPROC 0xf0000000

If a flag bit is set in sh_flags, the attribute is on for the section. Otherwise, the attribute is off or does not
apply. Undefined attributes are set to zero.

SHF_WRITE
The section contains data that should be writable during process execution.

SHF_ALLOC
The section occupies memory during process execution. Some control sections do not reside in
the memory image of an object file; this attribute is off for those sections.

SHF_EXECINSTR
The section contains executable machine instructions.

SHF_MERGE
The data in the section may be merged to eliminate duplication. Unless the SHF_STRINGS flag is
also set, the data elements in the section are of a uniform size. The size of each element is
specified in the section header’s sh_entsize field. If the SHF_STRINGS flag is also set, the data
elements consist of null-terminated character strings. The size of each character is specified in the
section header’s sh_entsize field.

Each element in the section is compared against other elements in sections with the same name,
type and flags. Elements that would have identical values at program run-time may be merged.
Relocations referencing elements of such sections must be resolved to the merged locations of the
referenced values. Note that any relocatable values, including values that would result in run-time
relocations, must be analyzed to determine whether the run-time values would actually be
identical. An ABI-conforming object file may not depend on specific elements being merged, and
an ABI-conforming link editor may choose not to merge specific elements.

SHF_STRINGS
The data elements in the section consist of null-terminated character strings. The size of each
character is specified in the section header’s sh_entsize field.

SHF_INFO_LINK
The sh_info field of this section header holds a section header table index.

SHF_LINK_ORDER
This flag adds special ordering requirements for link editors. The requirements apply if the sh_link
field of this section’s header references another section (the linked-to section). If this section is

Chapter 32. ELF Object Files and Dynamic Linking 911

combined with other sections in the output file, it must appear in the same relative order with
respect to those sections, as the linked-to section appears with respect to sections the linked-to
section is combined with.

NOTE: A typical use of this flag is to build a table that references text or data sections in address
order.

SHF_OS_NONCONFORMING
This section requires special operating system specific processing (beyond the standard linking
rules (“Rules for Linking Unrecognized Sections”) to avoid incorrect behavior. If this section has
either an sh_type value or contains sh_flags bits in the OS-specific ranges for those fields, and a
link editor processing this section does not recognize those values, then the link editor should
reject the object file containing this section with an error.

SHF_MASKOS
All bits included in this mask are reserved for operating system-specific semantics.

SHF_MASKPROC
All bits included in this mask are reserved for processor-specific semantics. If meanings are
specified, the processor supplement explains them.

Two members in the section header, sh_link and sh_info, hold special information, depending on section
type.

sh_link and sh_info Interpretation

sh_type sh_link sh_info

SHT_DYNAMIC The section header index of the string
table used by entries in the section.

0

SHT_HASH The section header index of the
symbol table to which the hash table
applies.

0

SHT_REL
SHT_RELA

The section header index of the
associated symbol table.

The section header index of the
section to which the relocation
applies.

SHT_SYMTAB
SHT_DYNSYM

The section header index of the
associated string table.

One greater than the symbol table
index of the last local symbol (binding
STB_LOCAL).

SHT_GROUP The section header index of the
associated symbol table.

The symbol table index of an entry in
the associated symbol table. The
name of the specified symbol table
entry provides a signature for the
section group.

SHT_SYMTAB_SHNDX The section header index of the
associated symbol table section.

0

Rules for Linking Unrecognized Sections
If a link editor encounters sections whose headers contain operating system specific values it does not
recognize in the sh_type or sh_flags fields, the link editor should combine those sections as described
below.

If the section’s sh_flags bits include the attribute SHF_OS_NONCONFORMING, then the section requires
special knowledge to be correctly processed, and the link editor should reject the object containing the
section with an error.

912 Writing and Debugging Programs

Unrecognized sections that do not have the SHF_OS_NONCONFORMING attribute, are combined in a
two-phase process. As the link editor combines sections using this process, it must honor the alignment
constraints of the input sections (asserted by the sh_addralign field), padding between sections with zero
bytes, if necessary, and producing a combination with the maximum alignment constraint of its component
input sections.

1. In the first phase, input sections that match in name, type and attribute flags should be concatenated
into single sections. The concatenation order should satisfy the requirements of any known input
section attributes (e.g, SHF_MERGE and SHF_LINK_ORDER). When not otherwise constrained,
sections should be emitted in input order.

2. In the second phase, sections should be assigned to segments or other units based on their attribute
flags. Sections of each particular unrecognized type should be assigned to the same unit unless
prevented by incompatible flags, and within a unit, sections of the same unrecognized type should be
placed together if possible.

Non operating system specific processing (e.g. relocation) should be applied to unrecognized section
types. An output section header table, if present, should contain entries for unknown sections. Any
unrecognized section attribute flags should be removed.

NOTE: It is recommended that link editors follow the same two-phase ordering approach described above
when linking sections of known types. Padding between such sections may have values different from
zero, where appropriate.

Section Groups
Some sections occur in interrelated groups. For example, an out-of-line definition of an inline function
might require, in addition to the section containing its executable instructions, a read-only data section
containing literals referenced, one or more debugging information sections and other informational
sections. Furthermore, there may be internal references among these sections that would not make sense
if one of the sections were removed or replaced by a duplicate from another object. Therefore, such
groups must be included or omitted from the linked object as a unit.

A section of type SHT_GROUP defines such a grouping of sections. The name of a symbol from one of
the containing object’s symbol tables provides a signature for the section group. The section header of the
SHT_GROUP section specifies the identifying symbol entry, as described above: the sh_link member
contains the section header index of the symbol table section that contains the entry. The sh_info member
contains the symbol table index of the identifying entry. The sh_flags member of the section header
contains 0. The name of the section (sh_name) is not specified.

The section data of a SHT_GROUP section is an array of Elf32_Word entries. The first entry is a flag
word. The remaining entries are a sequence of section header indices.

The following flags are currently defined:

Section Group Flags

Name Value

GRP_COMDAT 0x1

GRP_COMDAT
This is a COMDAT group. It may duplicate another COMDAT group in another object file, where
duplication is defined as having the same group signature. In such cases, only one of the
duplicate groups may be retained by the linker, and the members of the remaining groups must be
discarded.

Chapter 32. ELF Object Files and Dynamic Linking 913

The section header indices in the SHT_GROUP section identify the sections that make up the group. Each
such section must have the SHF_GROUP flag set in its sh_flags section header member. If the linker
decides to remove the section group, it must remove all members of the group.

Note: This requirement is not intended to imply that special case behavior like removing debugging
information requires removing the sections to which that information refers, even if they are part of the
same group.

To facilitate removing a group without leaving dangling references and with only minimal processing of the
symbol table, the following rules must be followed:

v References to the sections comprising a group from sections outside of the group must be made via
symbol table entries with STB_GLOBAL or STB_WEAK binding and section index SHN_UNDEF. If there
is a definition of the same symbol in the object containing the references, it must have a separate
symbol table entry from the references. Sections outside of the group may not reference symbols with
STB_LOCAL binding for addresses contained in the group’s sections, including symbols with type
STT_SECTION.

v There may not be non-symbol references to the sections comprising a group from outside the group, for
example, use of a group member’s section header index in an sh_link or sh_info member.

v A symbol table entry that is defined relative to one of the group’s sections and that is contained in a
symbol table section that is not part of the group, must be removed if the group members are
discarded.

Special Sections
Various sections hold program and control information.

The following table shows sections that are used by the system and have the indicated types and
attributes.

Special Sections

Name Type Attributes

.bss SHT_NOBITS SHF_ALLOC+SHF_WRITE

.comment SHT_PROGBITS none

.data SHT_PROGBITS SHF_ALLOC+SHF_WRITE

.data1 SHT_PROGBITS SHF_ALLOC+SHF_WRITE

.debug SHT_PROGBITS none

.dynamic SHT_DYNAMIC see below

.dynstr SHT_STRTAB SHF_ALLOC

.dynsym SHT_DYNSYM SHF_ALLOC

.fini SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR

.fini_array SHT_FINI_ARRAY SHF_ALLOC+SHF_WRITE

.got SHT_PROGBITS see below

.hash SHT_HASH SHF_ALLOC

.init SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR

.init_array SHT_INIT_ARRAY SHF_ALLOC+SHF_WRITE

.interp SHT_PROGBITS see below

.line SHT_PROGBITS none

.note SHT_NOTE none

.plt SHT_PROGBITS see below

914 Writing and Debugging Programs

Name Type Attributes

.preinit_array SHT_PREINIT_ARRAY SHF_ALLOC+SHF_WRITE

.relname SHT_REL see below

.relaname SHT_RELA see below

.rodata SHT_PROGBITS SHF_ALLOC

.rodata1 SHT_PROGBITS SHF_ALLOC

.shstrtab SHT_STRTAB none

.strtab SHT_STRTAB see below

.symtab SHT_SYMTAB see below

.text SHT_PROGBITS SHF_ALLOC+SHF_EXECINSTR

.bss This section holds uninitialized data that contribute to the program’s memory image. By definition,
the system initializes the data with zeros when the program begins to run. The section occupies
no file space, as indicated by the section type, SHT_NOBITS.

.comment
This section holds version control information.

.data and .data1
These sections hold initialized data that contribute to the program’s memory image.

.debug
This section holds information for symbolic debugging. The contents are unspecified. All section
names with the prefix .debug are reserved for future use in the ABI.

.dynamic
This section holds dynamic linking information. The section’s attributes will include the
SHF_ALLOC bit. Whether the SHF_WRITE bit is set is processor specific. See chapter 32 for
more information.

.dynstr
This section holds strings needed for dynamic linking, most commonly the strings that represent
the names associated with symbol table entries. See chapter 32 for more information.

.dynsym
This section holds the dynamic linking symbol table, as described in “Symbol Table” on page 920.
See Chapter 32 for more information.

.fini This section holds executable instructions that contribute to the process termination code. That is,
when a program exits normally, the system arranges to execute the code in this section.

.fini_array
This section holds an array of function pointers that contributes to a single termination array for the
executable or shared object containing the section.

.got This section holds the global offset table. See Coding Examples in chapter 32, Special Sections in
chapter 32, and Global Offset Table in chapter 32 of the processor supplement for more
information.

.hash This section holds a symbol hash table. See “Hash Table” on page 940 in chapter 32 for more
information.

.init This section holds executable instructions that contribute to the process initialization code. When a
program starts to run, the system arranges to execute the code in this section before calling the
main program entry point (called main for C programs).

Chapter 32. ELF Object Files and Dynamic Linking 915

.init_array
This section holds an array of function pointers that contributes to a single initialization array for
the executable or shared object containing the section.

.interp
This section holds the path name of a program interpreter. If the file has a loadable segment that
includes relocation, the sections’ attributes will include the SHF_ALLOC bit; otherwise, that bit will
be off. See chapter 32 for more information.

.line This section holds line number information for symbolic debugging, which describes the
correspondence between the source program and the machine code. The contents are
unspecified.

.note This section holds information in the format that Chapter 32 describes. See “Note Section” on
page 930.

.plt This section holds the procedure linkage table. See ″Special Sections″ in Chapter 32 and the
″Procedure Linkage Table″ in chapter 32 of the processor supplement for more information.

.preinit_array
This section holds an array of function pointers that contributes to a single pre-initialization array
for the executable or shared object containing the section.

.relname and .relaname
These sections hold relocation information, as described in “Relocation” on page 918. If the file
has a loadable segment that includes relocation, the sections’ attributes will include the
SHF_ALLOC bit; otherwise, that bit will be off. Conventionally, name is supplied by the section to
which the relocations apply. Thus a relocation section for .text normally would have the name
.rel.text or .rela.text.

.rodata and .rodata1
These sections hold read-only data that typically contribute to a non-writable segment in the
process image. See “Program Header” on page 926 in Chapter 32 for more information.

.shstrtab
This section holds section names.

.strtab
This section holds strings, most commonly the strings that represent the names associated with
symbol table entries. If the file has a loadable segment that includes the symbol string table, the
section’s attributes will include the SHF_ALLOC bit; otherwise, that bit will be off.

.symtab
This section holds a symbol table, as “Symbol Table” on page 920 in this chapter describes. If the
file has a loadable segment that includes the symbol table, the section’s attributes will include the
SHF_ALLOC bit; otherwise, that bit will be off.

.text This section holds the text, or executable instructions, of a program.

Section names with a dot (.) prefix are reserved for the system, although applications may use these
sections if their existing meanings are satisfactory. Applications may use names without the prefix to avoid
conflicts with system sections. The object file format lets one define sections not shown in the previous list.
An object file may have more than one section with the same name.

Section names reserved for a processor architecture are formed by placing an abbreviation of the
architecture name ahead of the section name. The name should be taken from the architecture names
used for e_machine. For instance .FOO.psect is the psect section defined by the FOO architecture.

916 Writing and Debugging Programs

Existing extensions are called by their historical names.

Table 11. Pre-existing Extensions

.sdata .tdesc

.sbss .lit4

.lit8 .reginfo

.gptab .liblist

.conflict

NOTE: For information on processor-specific sections, see the ABI supplement for the desired processor.

String Table
String table sections hold null-terminated character sequences, commonly called strings. The object file
uses these strings to represent symbol and section names. One references a string as an index into the
string table section. The first byte, which is index zero, is defined to hold a null character. Likewise, a
string table’s last byte is defined to hold a null character, ensuring null termination for all strings. A string
whose index is zero specifies either no name or a null name, depending on the context. An empty string
table section is permitted; its section header’s sh_size member would contain zero. Non-zero indexes are
invalid for an empty string table.

A section header’s sh_name member holds an index into the section header string table section, as
designated by the e_shstrndx member of the ELF header. The following tables show a string table with 25
bytes and the strings associated with various indexes.

Index +0 +1 +2 +3 +4 +5 +6 +7 +8 +9

0 \0 n a m e . \0 V a r

10 i a b l e \0 a b l e

20 \0 \0 x x \0

String Indexes

Index String

0 none

1 name.

7 Variable

11 able

16 able

24 null string

As the example shows, a string table index may refer to any byte in the section. A string may appear more
than once; references to substrings may exist; and a single string may be referenced multiple times.
Unreferenced strings also are allowed.

Chapter 32. ELF Object Files and Dynamic Linking 917

System V Application Binary Interface
This topic describes the executable and linking format (ELF) of the object files produced by the C and C++
compilation system.

There are three main types of object files.

v A relocatable file holds code and data suitable for linking with other object files to create an executable
or a shared object file.

v An executable file holds a program suitable for execution; the file specifies how exec creates a
program’s process image.

v A shared object file holds code and data suitable for linking in two contexts. First, the link editor
processes the shared object file with other relocatable and shared object files to create another object
file. Second, the dynamic linker combines it with an executable file and other shared objects to create a
process image.

Programs manipulate object files with the functions contained in the ELF access library, libelf.

See Intro(elf) for more information.

NOTE: Further information is available in the System V Application Binary Interface and processor
specific supplements. The processor supplements define a naming convention for ELF constants that
have processor ranges specified. Names such as DT_ and PT_ for processor specific extensions
incorporate the name of the processor.

Relocation
Relocation is the process of connecting symbolic references with symbolic definitions. For example, when
a program calls a function, the associated call instruction must transfer control to the proper destination
address at execution. Relocatable files must have relocation entries which are necessary because they
contain information that describes how to modify their section contents, thus allowing executable and
shared object files to hold the right information for a process’s program image.

Relocation Entries
typedef struct {

Elf32_Addr r_offset;
Elf32_Word r_info;

} Elf32_Rel;
typedef struct {

Elf32_Addr r_offset;
Elf32_Word r_info;
Elf32_Sword r_addend;

} Elf32_Rela;
typedef struct {

Elf64_Addr r_offset;
Elf64_Xword r_info;

} Elf64_Rel;
typedef struct {

Elf64_Addr r_offset;
Elf64_Xword r_info;
Elf64_Sxword r_addend;

} Elf64_Rela;

r_offset
This member gives the location at which to apply the relocation action. For a relocatable file, the
value is the byte offset from the beginning of the section to the storage unit affected by the
relocation. For an executable file or a shared object, the value is the virtual address of the storage
unit affected by the relocation.

r_info This member gives both the symbol table index with respect to which the relocation must be

918 Writing and Debugging Programs

made, and the type of relocation to apply. For example, a call instruction’s relocation entry would
hold the symbol table index of the function being called. If the index is STN_UNDEF, the
undefined symbol index, the relocation uses 0 as the symbol value. Relocation types are
processor-specific; descriptions of their behavior appear in the processor supplement. When the
text below refers to a relocation entry’s relocation type or symbol table index, it means the result of
applying ELF32_R_TYPE (or ELF64_R_TYPE) or ELF32_R_SYM (or ELF64_R_SYM),
respectively, to the entry’s r_info member.

#define ELF32_R_SYM(i) ((i)>>8)
#define ELF32_R_TYPE(i) ((unsigned char)(i))
#define ELF32_R_INFO(s,t) (((s)<<8)+(unsigned char)(t))

#define ELF64_R_SYM(i) ((i)>>32)
#define ELF64_R_TYPE(i) ((i)&0xffffffffL)
#define ELF64_R_INFO(s,t) (((s)<<32)+((t)&0xffffffffL))

r_addend
This member specifies a constant addend used to compute the value to be stored into the
relocatable field.

As specified previously, only Elf32_Rela and Elf64_Rela entries contain an explicit addend. Entries of type
Elf32_Rel and Elf64_Rel store an implicit addend in the location to be modified. Depending on the
processor architecture, one form or the other might be necessary or more convenient. Consequently, an
implementation for a particular machine may use one form exclusively or either form depending on
context.

A relocation section references two other sections: a symbol table and a section to modify. The section
header’s sh_info and sh_link members, described in “Sections” on page 906 above, specify these
relationships. Relocation entries for different object files have slightly different interpretations for the
r_offset member.

v In relocatable files, r_offset holds a section offset. The relocation section itself describes how to modify
another section in the file; relocation offsets designate a storage unit within the second section.

v In executable and shared object files, r_offset holds a virtual address. To make these files’ relocation
entries more useful for the dynamic linker, the section offset (file interpretation) gives way to a virtual
address (memory interpretation).

Although the interpretation of r_offset changes for different object files to allow efficient access by the
relevant programs, the relocation types’ meanings stay the same.

The typical application of an ELF relocation is to determine the referenced symbol value, extract the
addend (either from the field to be relocated or from the addend field contained in the relocation record, as
appropriate for the type of relocation record), apply the expression implied by the relocation type to the
symbol and addend, extract the desired part of the expression result, and place it in the field to be
relocated.

If multiple consecutive relocation records are applied to the same relocation location (r_offset), they are
composed instead of being applied independently, as described above. By consecutive, we mean that the
relocation records are contiguous within a single relocation section. By composed, we mean that the
standard application described above is modified as follows:

v In all but the last relocation operation of a composed sequence, the result of the relocation expression
is retained, rather than having part extracted and placed in the relocated field. The result is retained at
full pointer precision of the applicable ABI processor supplement.

v In all but the first relocation operation of a composed sequence, the addend used is the retained result
of the previous relocation operation, rather than that implied by the relocation type.

Chapter 32. ELF Object Files and Dynamic Linking 919

Note that a consequence of the above rules is that the location specified by a relocation type is relevant
for the first element of a composed sequence (and then only for relocation records that do not contain an
explicit addend field) and for the last element, where the location determines where the relocated value will
be placed. For all other relocation operands in a composed sequence, the location specified is ignored.

An ABI processor supplement may specify individual relocation types that always stop a composition
sequence, or always start a new one.

Relocation Types (Processor-Specific)
NOTE: This section requires processor-specific information. The ABI supplement for the desired processor
describes the details.

Symbol Table
An object file’s symbol table holds information needed to locate and relocate a program’s symbolic
definitions and references. A symbol table index is a subscript into this array. Index 0 both designates the
first entry in the table and serves as the undefined symbol index. The contents of the initial entry are
specified later in this section.

Name Value

STN_UNDEF 0

A symbol table entry has the following format.

typedef struct {
Elf32_Word st_name;
Elf32_Addr st_value;
Elf32_Word st_size;
unsigned char st_info;
unsigned char st_other;
Elf32_Half st_shndx;

} Elf32_Sym;

typedef struct {
Elf64_Word st_name;
unsigned char st_info;
unsigned char st_other;
Elf64_Half st_shndx;
Elf64_Addr st_value;
Elf64_Xword st_size;

} Elf64_Sym;

Symbol Table Entry

st_name
This member holds an index into the object file’s symbol string table, which holds the character
representations of the symbol names. If the value is non-zero, it represents a string table index
that gives the symbol name. Otherwise, the symbol table entry has no name.

NOTE: External C symbols have the same names in C and object files’ symbol tables.

st_value
This member gives the value of the associated symbol. Depending on the context, this may be an
absolute value, an address, and so on; details appear below.

st_size
Many symbols have associated sizes. For example, a data object’s size is the number of bytes
contained in the object. This member holds 0 if the symbol has no size or an unknown size.

920 Writing and Debugging Programs

st_info
This member specifies the symbol’s type and binding attributes. A list of the values and meanings
appears below. The following code shows how to manipulate the values for both 32 and 64-bit
objects.

#define ELF32_ST_BIND(i) ((i)>>4)
#define ELF32_ST_TYPE(i) ((i)&0xf)
#define ELF32_ST_INFO(b,t) (((b)<<4)+((t)&0xf))

#define ELF64_ST_BIND(i) ((i)>>4)
#define ELF64_ST_TYPE(i) ((i)&0xf)
#define ELF64_ST_INFO(b,t) (((b)<<4)+((t)&0xf))

st_other
This member currently specifies a symbol’s visibility. A list of the values and meanings appears
below. The following code shows how to manipulate the values for both 32 and 64-bit objects.
Other bits contain 0 and have no defined meaning.

#define ELF32_ST_VISIBILITY(o) ((o)&0x3)
#define ELF32_ST_OTHER(v) ((v)&0x3)

#define ELF64_ST_VISIBILITY(o) ((o)&0x3)
#define ELF64_ST_OTHER(v) ((v)&0x3)

st_shndx
Every symbol table entry is defined in relation to some section. This member holds the relevant
section header table index. As the sh_link and sh_info interpretation table and the related text
describe, some section indexes indicate special meanings.

If this member contains SHN_XINDEX, then the actual section header index is too large to fit in
this field. The actual value is contained in the associated section of type SHT_SYMTAB_SHNDX.

A symbol’s binding determines the linkage visibility and behavior.

Symbol Binding

Name Value

STB_LOCAL 0

STB_GLOBAL 1

STB_WEAK 2

STB_LOOS 10

STB_HIOS 12

STB_LOPROC 13

STB_HIPROC 15

STB_LOCAL
Local symbols are not visible outside the object file containing their definition. Local symbols of the
same name may exist in multiple files without interfering with each other.

STB_GLOBAL
Global symbols are visible to all object files being combined. One file’s definition of a global
symbol will satisfy another file’s undefined reference to the same global symbol.

STB_WEAK
Weak symbols resemble global symbols, but their definitions have lower precedence.

STB_LOOS through STB_HIOS
Values in this inclusive range are reserved for operating system-specific semantics.

Chapter 32. ELF Object Files and Dynamic Linking 921

STB_LOPROC through STB_HIPROC
Values in this inclusive range are reserved for processor-specific semantics. If meanings are
specified, the processor supplement explains them.

Global and weak symbols differ in two major ways.

v When the link editor combines several relocatable object files, it does not allow multiple definitions of
STB_GLOBAL symbols with the same name. On the other hand, if a defined global symbol exists, the
appearance of a weak symbol with the same name will not cause an error. The link editor honors the
global definition and ignores the weak ones. Similarly, if a common symbol exists (that is, a symbol
whose st_shndx field holds SHN_COMMON), the appearance of a weak symbol with the same name
will not cause an error. The link editor honors the common definition and ignores the weak ones.

v When the link editor searches archive libraries [see Archive File in Chapter 7], it extracts archive
members that contain definitions of undefined global symbols. The member’s definition may be either a
global or a weak symbol. The link editor does not extract archive members to resolve undefined weak
symbols. Unresolved weak symbols have a zero value.

NOTE: The behavior of weak symbols in areas not specified by this document is implementation defined.
Weak symbols are intended primarily for use in system software. Their use in application programs is
discouraged.

In each symbol table, all symbols with STB_LOCAL binding precede the weak and global symbols. As
“Sections” on page 906, above describes, a symbol table section’s sh_info section header member holds
the symbol table index for the first non-local symbol.

A symbol’s type provides a general classification for the associated entity.

Symbol Types

Name Value

STT_NOTYPE 0

STT_OBJECT 1

STT_FUNC 2

STT_SECTION 3

STT_FILE 4

STT_COMMON 5

STT_LOOS 10

STT_HIOS 12

STT_LOPROC 13

STT_HIPROC 15

STT_NOTYPE
The symbol’s type is not specified.

STT_OBJECT
The symbol is associated with a data object, such as a variable, an array, and so on.

STT_FUNC
The symbol is associated with a function or other executable code.

STT_SECTION
The symbol is associated with a section. Symbol table entries of this type exist primarily for
relocation and normally have STB_LOCAL binding.

922 Writing and Debugging Programs

STT_FILE
Conventionally, the symbol’s name gives the name of the source file associated with the object
file. A file symbol has STB_LOCAL binding, its section index is SHN_ABS, and it precedes the
other STB_LOCAL symbols for the file, if it is present.

STT_COMMON
The symbol labels an uninitialized common block. See below for details.

STT_LOOS through STT_HIOS
Values in this inclusive range are reserved for operating system-specific semantics.

STT_LOPROC through STT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics. If meanings are
specified, the processor supplement explains them.

Function symbols (those with type STT_FUNC) in shared object files have special significance. When
another object file references a function from a shared object, the link editor automatically creates a
procedure linkage table entry for the referenced symbol. Shared object symbols with types other than
STT_FUNC will not be referenced automatically through the procedure linkage table.

Symbols with type STT_COMMON label uninitialized common blocks. In relocatable objects, these
symbols are not allocated and must have the special section index SHN_COMMON (see below). In shared
objects and executables these symbols must be allocated to some section in the defining object.

In relocatable objects, symbols with type STT_COMMON are treated just as other symbols with index
SHN_COMMON. If the link-editor allocates space for the SHN_COMMON symbol in an output section of
the object it is producing, it must preserve the type of the output symbol as STT_COMMON.

When the dynamic linker encounters a reference to a symbol that resolves to a definition of type
STT_COMMON, it may (but is not required to) change its symbol resolution rules as follows: instead of
binding the reference to the first symbol found with the given name, the dynamic linker searches for the
first symbol with that name with type other than STT_COMMON. If no such symbol is found, it looks for
the STT_COMMON definition of that name that has the largest size.

A symbol’s visibility, although it may be specified in a relocatable object, defines how that symbol may be
accessed once it has become part of an executable or shared object.

Symbol Visibility

Name Value

STV_DEFAULT 0

STV_INTERNAL 1

STV_HIDDEN 2

STV_PROTECTED 3

STV_DEFAULT
The visibility of symbols with the STV_DEFAULT attribute is as specified by the symbol’s binding
type. That is, global and weak symbols are visible outside of their defining component (executable
file or shared object). Local symbols are hidden, as described below. Global and weak symbols
are also preemptable, that is, they may by preempted by definitions of the same name in another
component.

NOTE: An implementation may restrict the set of global and weak symbols that are externally
visible.

STV_PROTECTED
A symbol defined in the current component is protected if it is visible in other components but not

Chapter 32. ELF Object Files and Dynamic Linking 923

preemptable, meaning that any reference to such a symbol from within the defining component
must be resolved to the definition in that component, even if there is a definition in another
component that would preempt by the default rules. A symbol with STB_LOCAL binding may not
have STV_PROTECTED visibility.

STV_HIDDEN
A symbol defined in the current component is hidden if its name is not visible to other components.
Such a symbol is necessarily protected. This attribute may be used to control the external
interface of a component. Note that an object named by such a symbol may still be referenced
from another component if its address is passed outside.

A hidden symbol contained in a relocatable object must be either removed or converted to
STB_LOCAL binding by the link-editor when the relocatable object is included in an executable
file or shared object.

STV_INTERNAL
The meaning of this visibility attribute may be defined by processor supplements to further
constrain hidden symbols. A processor supplement’s definition should be such that generic tools
can safely treat internal symbols as hidden.

An internal symbol contained in a relocatable object must be either removed or converted to
STB_LOCAL binding by the link-editor when the relocatable object is included in an executable
file or shared object.

None of the visibility attributes affects resolution of symbols within an executable or shared object during
link-editing — such resolution is controlled by the binding type. Once the link-editor has chosen its
resolution, these attributes impose two requirements, both based on the fact that references in the code
being linked may have been optimized to take advantage of the attributes.

v First, all of the non-default visibility attributes, when applied to a symbol reference, imply that a definition
to satisfy that reference must be provided within the current executable or shared object. If such a
symbol reference has no definition within the component being linked, then the reference must have
STB_WEAK binding and is resolved to zero.

v Second, if any reference to or definition of a name is a symbol with a non-default visibility attribute, the
visibility attribute must be propagated to the resolving symbol in the linked object. If different visibility
attributes are specified for distinct references to or definitions of a symbol, the most constraining
visibility attribute must be propagated to the resolving symbol in the linked object. The attributes,
ordered from least to most constraining, are: STV_PROTECTED, STV_HIDDEN and STV_INTERNAL.

If a symbol’s value refers to a specific location within a section, its section index member, st_shndx, holds
an index into the section header table. As the section moves during relocation, the symbol’s value changes
as well, and references to the symbol continue to point to the same location in the program. Some special
section index values give other semantics.

SHN_ABS
The symbol has an absolute value that will not change because of relocation.

SHN_COMMON
The symbol labels a common block that has not yet been allocated. The symbol’s value gives
alignment constraints, similar to a section’s sh_addralign member. The link editor will allocate the
storage for the symbol at an address that is a multiple of st_value. The symbol’s size tells how
many bytes are required. Symbols with section index SHN_COMMON may appear only in
relocatable objects.

SHN_UNDEF
This section table index means the symbol is undefined. When the link editor combines this object
file with another that defines the indicated symbol, this file’s references to the symbol will be linked
to the actual definition.

The symbol table entry for index 0 (STN_UNDEF) is reserved; it holds the following.

924 Writing and Debugging Programs

Symbol Entry:Index 0

Name Value Note

st_name 0 No name

st_value 0 Zero value

st_size 0 No size

st_info 0 No type, local binding

st_other 0 Default visibility

st_shndx SHN_UNDEF No section

Symbol Values
Symbol table entries for different object file types have slightly different interpretations for the st_value
member.

v In relocatable files, st_value holds alignment constraints for a symbol whose section index is
SHN_COMMON.

v In relocatable files, st_value holds a section offset for a defined symbol. st_value is an offset from the
beginning of the section that st_shndx identifies.

v In executable and shared object files, st_value holds a virtual address. To make these files’ symbols
more useful for the dynamic linker, the section offset (file interpretation) gives way to a virtual address
(memory interpretation) for which the section number is irrelevant.

Although the symbol table values have similar meanings for different object files, the data allows efficient
access by the appropriate programs.

Section 2. ELF Program and Dynamic Linking General Information
v “Program Header” on page 926

v “Program Loading (Processor-Specific)” on page 931

v “Dynamic Linking” on page 931

ELF Program and Dynamic Linking General Information
This section describes the object file information and system actions that create running programs. Some
information here applies to all systems; information specific to one processor resides in sections marked
accordingly.

Executable and shared object files statically represent programs. To execute such programs, the system
uses the files to create dynamic program representations, or process images. As section Virtual Address
Space in Chapter 32 of the processor supplement describes, a process image has segments that hold its
text, data, stack, and so on. This chapter’s major sections discuss the following:

v “Program Header” on page 926. This section complements chapter 32, describing object file structures
that relate directly to program execution. The primary data structure, a program header table, locates
segment images within the file and contains other information necessary to create the memory image
for the program.

v “Program Loading (Processor-Specific)” on page 931. Given an object file, the system must load it into
memory for the program to run.

v “Dynamic Linking” on page 931. After the system loads the program it must complete the process image
by resolving symbolic references among the object files that compose the process.

NOTE: The processor supplement defines a naming convention for ELF constants that have processor
ranges specified. Names such as DT_, PT_, for processor specific extensions, incorporate the name of the

Chapter 32. ELF Object Files and Dynamic Linking 925

processor: DT_M32_SPECIAL, for example. Pre-existing processor extensions not using this convention
will be supported.

Pre-Existing Extensions

DT_JUMP_REL

Program Header
An executable or shared object file’s program header table is an array of structures, each describing a
segment or other information the system needs to prepare the program for execution. An object file
segment contains one or more sections, as “Segment Contents” on page 929 describes below. Program
headers are meaningful only for executable and shared object files. A file specifies its own program header
size with the ELF header’s e_phentsize and e_phnum members.

See “ELF Header” on page 899 in chapter 32 for more information.

Program Header

typedef struct {
Elf32_Word p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;

} Elf32_Phdr;

typedef struct {
Elf64_Word p_type;
Elf64_Word p_flags;
Elf64_Off p_offset;
Elf64_Addr p_vaddr;
Elf64_Addr p_paddr;
Elf64_Xword p_filesz;
Elf64_Xword p_memsz;
Elf64_Xword p_align;

} Elf64_Phdr;

p_type
This member tells what kind of segment this array element describes or how to interpret the array
element’s information. Type values and their meanings appear below.

p_offset
This member gives the offset from the beginning of the file at which the first byte of the segment
resides.

p_vaddr
This member gives the virtual address at which the first byte of the segment resides in memory.

p_paddr
On systems for which physical addressing is relevant, this member is reserved for the segment’s
physical address. Because System V ignores physical addressing for application programs, this
member has unspecified contents for executable files and shared objects.

p_filesz
This member gives the number of bytes in the file image of the segment; it may be zero.

p_memsz
This member gives the number of bytes in the memory image of the segment; it may be zero.

926 Writing and Debugging Programs

p_flags
This member gives flags relevant to the segment. Defined flag values appear below.

p_align
As Program Loading describes in this chapter of the processor supplement, loadable process
segments must have congruent values for p_vaddr and p_offset, modulo the page size. This
member gives the value to which the segments are aligned in memory and in the file. Values 0
and 1 mean no alignment is required. Otherwise, p_align should be a positive, integral power of 2,
and p_vaddr should equal p_offset, modulo p_align.

Some entries describe process segments; others give supplementary information and do not contribute to
the process image. Segment entries may appear in any order, except as explicitly noted below.

Defined type values follow; other values are reserved for future use.

Segment Types, p_type table

Name Value

PT_NULL 0

PT_LOAD 1

PT_DYNAMIC 2

PT_INTERP 3

PT_NOTE 4

PT_SHLIB 5

PT_PHDR 6

PT_LOOS 0x60000000

PT_HIOS 0x6fffffff

PT_LOPROC 0x70000000

PT_HIPROC 0x7fffffff

PT_NULL
The array element is unused; other members’ values are undefined. This type lets the program
header table have ignored entries.

PT_LOAD
The array element specifies a loadable segment, described by p_filesz and p_memsz. The bytes
from the file are mapped to the beginning of the memory segment. If the segment’s memory size
(p_memsz) is larger than the file size (p_filesz), the extra bytes are defined to hold the value 0
and to follow the segment’s initialized area. The file size may not be larger than the memory size.
Loadable segment entries in the program header table appear in ascending order, sorted on the
p_vaddr member.

PT_DYNAMIC
The array element specifies dynamic linking information. See “Dynamic Section” on page 933
below for more information.

PT_INTERP
The array element specifies the location and size of a null-terminated path name to invoke as an
interpreter. This segment type is meaningful only for executable files (though it may occur for
shared objects); it may not occur more than once in a file. If it is present, it must precede any
loadable segment entry. See “Program Interpreter” on page 931 for more information.

PT_NOTE
The array element specifies the location and size of auxiliary information.

Chapter 32. ELF Object Files and Dynamic Linking 927

See “Note Section” on page 930 for more information.

PT_SHLIB
This segment type is reserved but has unspecified semantics. Programs that contain an array
element of this type do not conform to the ABI.

PT_PHDR
The array element, if present, specifies the location and size of the program header table itself,
both in the file and in the memory image of the program. This segment type may not occur more
than once in a file. Moreover, it may occur only if the program header table is part of the memory
image of the program. If it is present, it must precede any loadable segment entry.

See “Program Interpreter” on page 931 for more information.

PT_LOOS through PT_HIOS
Values in this inclusive range are reserved for operating system-specific semantics.

PT_LOPROC through PT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics. If meanings are
specified, the processor supplement explains them.

NOTE: Unless specifically required elsewhere, all program header segment types are optional. A file’s
program header table may contain only those elements relevant to its contents.

Base Address
As Program Loading in this chapter of the processor supplement describes, the virtual addresses in the
program headers might not represent the actual virtual addresses of the program’s memory image.
Executable files typically contain absolute code. To let the process execute correctly, the segments must
reside at the virtual addresses used to build the executable file. On the other hand, shared object
segments typically contain position-independent code. This lets a segment’s virtual address change from
one process to another, without invalidating execution behavior.

On some platforms, while the system chooses virtual addresses for individual processes, it maintains the
relative position of one segment to another within any one shared object. Because position-independent
code on those platforms uses relative addressing between segments, the difference between virtual
addresses in memory must match the difference between virtual addresses in the file. The differences
between the virtual address of any segment in memory and the corresponding virtual address in the file is
thus a single constant value for any one executable or shared object in a given process. This difference is
the base address. One use of the base address is to relocate the memory image of the file during dynamic
linking.

An executable or shared object file’s base address (on platforms that support the concept) is calculated
during execution from three values: the virtual memory load address, the maximum page size, and the
lowest virtual address of a program’s loadable segment. To compute the base address, one determines
the memory address associated with the lowest p_vaddr value for a PT_LOAD segment. This address is
truncated to the nearest multiple of the maximum page size. The corresponding p_vaddr value itself is
also truncated to the nearest multiple of the maximum page size. The base address is the difference
between the truncated memory address and the truncated p_vaddr value.

See this chapter in the processor supplement for more information and examples. Operating System
Interface of chapter 32 in the processor supplement contains more information about the virtual address
space and page size.

Segment Permissions
A program to be loaded by the system must have at least one loadable segment (although this is not
required by the file format). When the system creates loadable segments’ memory images, it gives access
permissions as specified in the p_flags member.

928 Writing and Debugging Programs

Segment Flag Bits, p_flags table

Name Value Meaning

PF_X 0x1 Execute

PF_W 0x2 Write

PF_R 0x4 Read

PF_MASKOS 0x0ff00000 Unspecified

PF_MASKPROC 0xf0000000 Unspecified

All bits included in the PF_MASKOS mask are reserved for operating system-specific semantics.

All bits included in the PF_MASKPROC mask are reserved for processor-specific semantics. If meanings
are specified, the processor supplement explains them.

If a permission bit is 0, that type of access is denied. Actual memory permissions depend on the memory
management unit, which may vary from one system to another. Although all flag combinations are valid,
the system may grant more access than requested. In no case, however, will a segment have write
permission unless it is specified explicitly. The following table shows both the exact flag interpretation and
the allowable flag interpretation. ABI-conforming systems may provide either.

Segment Permissions

Flags Value Exact Allowable

none 0 All access denied All access denied

PF_X 1 Execute only Read, execute

PF_W 2 Write only Read, write, execute

PF_W+PF_X 3 Write, execute Read, write, execute

PF_R 4 Read only Read, execute

PF_R+PF_X 5 Read, execute Read, execute

PF_R+PF_W 6 Read, write Read, write, execute

PF_R+PF_W+PF_X 7 Read, write, execute Read, write, execute

For example, typical text segments have read and execute - but not write - permissions. Data segments
normally have read, write, and execute permissions.

Segment Contents
An object file segment comprises one or more sections, though this fact is transparent to the program
header. Whether the file segment holds one or many sections also is immaterial to program loading.
Nonetheless, various data must be present for program execution, dynamic linking, and so on. The
diagrams below illustrate segment contents in general terms. The order and membership of sections within
a segment may vary; moreover, processor-specific constraints may alter the examples below. See the
processor supplement for details.

Text segments contain read-only instructions and data, typically including the following sections described
in Chapter 32. Other sections may also reside in loadable segments; these examples are not meant to
give complete and exclusive segment contents.

Chapter 32. ELF Object Files and Dynamic Linking 929

Text Segment

.text

.rodata

.hash

.dynsym

.dynstr

.plt

.rel.got

Data segments contain writable data and instructions, typically including the following sections.

Data Segment

.data

.dynamic

.got

.bss

A PT_DYNAMIC program header element points at the .dynamic section, explained in “Dynamic Section”
on page 933. The .got and .plt sections also hold information related to position-independent code and
dynamic linking. Although the .plt appears in a text segment in the previous table, it may reside in a text or
a data segment, depending on the processor. See Global Offset Table and Procedure Linkage Table in this
section of the processor supplement for details.

As “Sections” on page 906 in Chapter 32 describes, the .bss section has the type SHT_NOBITS. Although
it occupies no space in the file, it contributes to the segment’s memory image. Normally, these uninitialized
data reside at the end of the segment, thereby making p_memsz larger than p_filesz in the associated
program header element.

Note Section
Sometimes a vendor or system builder needs to mark an object file with special information that other
programs will check for conformance, compatibility, etc. Sections of type SHT_NOTE and program header
elements of type PT_NOTE can be used for this purpose. The note information in sections and program
header elements holds a variable amount of entries. In 64-bit objects (files with e_ident[EI_CLASS] equal
to ELFCLASS64), each entry is an array of 8-byte words in the format of the target processor. In 32-bit
objects (files with e_ident[EI_CLASS] equal to ELFCLASS32), each entry is an array of 4-byte words in
the format of the target processor. Labels appear below to help explain note information organization, but
they are not part of the specification.

Note Information

namesz

descsz

type

name
. . .

desc
. . .

930 Writing and Debugging Programs

namesz and name
The first namesz bytes in name contain a null-terminated character representation of the entry’s
owner or originator. There is no formal mechanism for avoiding name conflicts. By convention,
vendors use their own name, such as XYZ Computer Company, as the identifier. If no name is
present, namesz contains 0. Padding is present, if necessary, to ensure 8 or 4-byte alignment for
the descriptor (depending on whether the file is a 64-bit or 32-bit object). Such padding is not
included in namesz.

descsz and desc
The first descsz bytes in desc hold the note descriptor. The ABI places no constraints on a
descriptor’s contents. If no descriptor is present, descsz contains 0. Padding is present, if
necessary, to ensure 8 or 4-byte alignment for the next note entry (depending on whether the file
is a 64-bit or 32-bit object). Such padding is not included in descsz.

type This word gives the interpretation of the descriptor. Each originator controls its own types; multiple
interpretations of a single type value may exist. Thus, a program must recognize both the name
and the type to recognize a descriptor. Types currently must be non-negative. The ABI does not
define what descriptors mean.

To illustrate, the following note segment holds two entries.

Example Note Segment

NOTE: The system reserves note information with no name (namesz=0) and with a zero-length name
(name[0]=’\0’) but currently defines no types. All other names must have at least one non-null character.

NOTE: Note information is optional. The presence of note information does not affect a program’s ABI
conformance, provided the information does not affect the program’s execution behavior. Otherwise, the
program does not conform to the ABI and has undefined behavior.

Program Loading (Processor-Specific)

NOTE: This section requires processor-specific information. The ABI supplement for the desired
processor describes the details.

Dynamic Linking

Program Interpreter
An executable file that participates in dynamic linking shall have one PT_INTERP program header
element. During exec(base operating system), the system retrieves a path name from the PT_INTERP
segment and creates the initial process image from the interpreter file’s segments. That is, instead of using
the original executable file’s segment images, the system composes a memory image for the interpreter. It
then is the interpreter’s responsibility to receive control from the system and provide an environment for
the application program.

As Process Initialization in Chapter 32 of the processor supplement mentions, the interpreter receives
control in one of two ways. First, it may receive a file descriptor to read the executable file, positioned at
the beginning. It can use this file descriptor to read and/or map the executable file’s segments into
memory. Second, depending on the executable file format, the system may load the executable file into
memory instead of giving the interpreter an open file descriptor. With the possible exception of the file
descriptor, the interpreter’s initial process state matches what the executable file would have received. The
interpreter itself may not require a second interpreter. An interpreter may be either a shared object or an
executable file.

v A shared object (the normal case) is loaded as position-independent, with addresses that may vary from
one process to another; the system creates its segments in the dynamic segment area used by

Chapter 32. ELF Object Files and Dynamic Linking 931

mmap(kernal operating system) and related services [See Virtual Address Space in chapter 32 of the
processor supplement]. Consequently, a shared object interpreter typically will not conflict with the
original executable file’s original segment addresses.

v An executable file may be loaded at fixed addresses; if so, the system creates its segments using the
virtual addresses from the program header table. Consequently, an executable file interpreter’s virtual
addresses may collide with the first executable file; the interpreter is responsible for resolving conflicts.

Dynamic Linker
When building an executable file that uses dynamic linking, the link editor adds a program header element
of type PT_INTERP to an executable file, telling the system to invoke the dynamic linker as the program
interpreter.

NOTE: The locations of the system provided dynamic linkers are processor specific.

Exec(base operating system) and the dynamic linker cooperate to create the process image for the
program, which entails the following actions:

v Adding the executable file’s memory segments to the process image;

v Adding shared object memory segments to the process image;

v Performing relocations for the executable file and its shared objects;

v Closing the file descriptor that was used to read the executable file, if one was given to the dynamic
linker;

v Transferring control to the program, making it look as if the program had received control directly from
exec(base operating system).

The link editor also constructs various data that assist the dynamic linker for executable and shared object
files. As shown above in “Program Header” on page 926, this data resides in loadable segments, making
them available during execution. (Once again, recall the exact segment contents are processor-specific.
See the processor supplement for complete information).

v A .dynamic section with type SHT_DYNAMIC holds various data. The structure residing at the
beginning of the section holds the addresses of other dynamic linking information.

v The .hash section with type SHT_HASH holds a symbol hash table.

v The .got and .plt sections with type SHT_PROGBITS hold two separate tables: the global offset table
and the procedure linkage table. Chapter 32 discusses how programs use the global offset table for
position-independent code. Sections below explain how the dynamic linker uses and changes the tables
to create memory images for object files.

Because every ABI-conforming program imports the basic system services from a shared object library
[See System Library in Chapter 32], the dynamic linker participates in every ABI-conforming program
execution.

As Program Loading explains in the processor supplement, shared objects may occupy virtual memory
addresses that are different from the addresses recorded in the file’s program header table. The dynamic
linker relocates the memory image, updating absolute addresses before the application gains control.
Although the absolute address values would be correct if the library were loaded at the addresses
specified in the program header table, this normally is not the case.

If the process environment [see exec(base operating system)] contains a variable named LD_BIND_NOW
with a non-null value, the dynamic linker processes all relocations before transferring control to the
program. For example, all the following environment entries would specify this behavior.

v LD_BIND_NOW=1

v LD_BIND_NOW=on

v LD_BIND_NOW=off

932 Writing and Debugging Programs

Otherwise, LD_BIND_NOW either does not occur in the environment or has a null value. The dynamic
linker is permitted to evaluate procedure linkage table entries lazily, thus avoiding symbol resolution and
relocation overhead for functions that are not called. See the Procedure Linkage Table in this chapter of
the processor supplement for more information.

Dynamic Section
If an object file participates in dynamic linking, its program header table will have an element of type
PT_DYNAMIC. This segment contains the .dynamic section. A special symbol, _DYNAMIC, labels the
section, which contains an array of the following structures.

Dynamic Structure
typedef struct {
Elf32_Sword d_tag;

union {
Elf32_Word d_val;
Elf32_Addr d_ptr;

} d_un;
} Elf32_Dyn;
extern Elf32_Dyn _DYNAMIC[];
typedef struct {
Elf64_Sxword d_tag;

union {
Elf64_Xword d_val;
Elf64_Addr d_ptr;

} d_un;
} Elf64_Dyn;
extern Elf64_Dyn _DYNAMIC[];

For each object with this type, d_tag controls the interpretation of d_un.

d_val These objects represent integer values with various interpretations.

d_ptr These objects represent program virtual addresses. As mentioned previously, a file’s virtual
addresses might not match the memory virtual addresses during execution. When interpreting
addresses contained in the dynamic structure, the dynamic linker computes actual addresses,
based on the original file value and the memory base address.

For consistency, files do not contain relocation entries to correct addresses in the dynamic
structure.

To make it simpler for tools to interpret the contents of dynamic section entries, the value of each tag,
except for those in two special compatibility ranges, will determine the interpretation of the d_un union. A
tag whose value is an even number indicates a dynamic section entry that uses d_ptr. A tag whose value
is an odd number indicates a dynamic section entry that uses d_val or that uses neither d_ptr nor d_val.
Tags whose values are less than the special value DT_ENCODING and tags whose values fall between
DT_HIOS and DT_LOPROC do not follow these rules.

The following table summarizes the tag requirements for executable and shared object files. If a tag is
marked mandatory, the dynamic linking array for an ABI-conforming file must have an entry of that type.
Likewise, optional means an entry for the tag may appear but is not required.

Dynamic Array Tags, d_tag

Name Value d_un Executable Shared Object

DT_NULL 0 ignored mandatory mandatory

DT_NEEDED 1 d_val optional optional

DT_PLTRELSZ 2 d_val optional optional

DT_PLTGOT 3 d_ptr optional optional

Chapter 32. ELF Object Files and Dynamic Linking 933

Name Value d_un Executable Shared Object

DT_HASH 4 d_ptr mandatory mandatory

DT_STRTAB 5 d_ptr mandatory mandatory

DT_SYMTAB 6 d_ptr mandatory mandatory

DT_RELA 7 d_ptr mandatory optional

DT_RELASZ 8 d_val mandatory optional

DT_RELAENT 9 d_val mandatory optional

DT_STRSZ 10 d_val mandatory mandatory

DT_SYMENT 11 d_val mandatory mandatory

DT_INIT 12 d_ptr optional optional

DT_FINI 13 d_ptr optional optional

DT_SONAME 14 d_val ignored optional

DT_RPATH* 15 d_val optional ignored

DT_SYMBOLIC* 16 ignored ignored optional

DT_REL 17 d_ptr mandatory optional

DT_RELSZ 18 d_val mandatory optional

DT_RELENT 19 d_val mandatory optional

DT_PLTREL 20 d_val optional optional

DT_DEBUG 21 d_ptr optional ignored

DT_TEXTREL* 22 ignored optional optional

DT_JMPREL 23 d_ptr optional optional

DT_BIND_NOW* 24 ignored optional optional

DT_INIT_ARRAY 25 d_ptr optional optional

DT_FINI_ARRAY 26 d_ptr optional optional

DT_INIT_ARRAYSZ 27 d_val optional optional

DT_FINI_ARRAYSZ 28 d_val optional optional

DT_RUNPATH 29 d_val optional optional

DT_FLAGS 30 d_val optional optional

DT_ENCODING 32 unspecified unspecified unspecified

DT_PREINIT_ARRAY 32 d_ptr optional ignored

DT_PREINIT_ARRAYSZ 33 d_val optional ignored

DT_LOOS 0x6000000D unspecified unspecified unspecified

DT_HIOS 0x6ffff000 unspecified unspecified unspecified

DT_LOPROC 0x70000000 unspecified unspecified unspecified

DT_HIPROC 0x7fffffff unspecified unspecified unspecified

* Signifies an entry that is at level 2.

DT_NULL
An entry with a DT_NULL tag marks the end of the _DYNAMIC array.

DT_NEEDED
This element holds the string table offset of a null-terminated string, giving the name of a needed
library. The offset is an index into the table recorded in the DT_STRTAB code. See “Shared

934 Writing and Debugging Programs

Object Dependencies” on page 938 for more information about these names. The dynamic array
may contain multiple entries with this type. These entries’ relative order is significant, though their
relation to entries of other types is not.

DT_PLTRELSZ
This element holds the total size, in bytes, of the relocation entries associated with the procedure
linkage table. If an entry of type DT_JMPREL is present, a DT_PLTRELSZ must accompany it.

DT_PLTGOT
This element holds an address associated with the procedure linkage table and/or the global offset
table. See this section in the processor supplement for details.

DT_HASH
This element holds the address of the symbol hash table, described in “Hash Table” on page 940.
This hash table refers to the symbol table referenced by the DT_SYMTAB element.

DT_STRTAB
This element holds the address of the string table, described in chapter 32. Symbol names, library
names, and other strings reside in this table.

DT_SYMTAB
This element holds the address of the symbol table, described in the first part of this chapter, with
Elf32_Sym entries for the 32-bit class of files and Elf64_Sym entries for the 64-bit class of files.

DT_RELA
This element holds the address of a relocation table, described in chapter 32. Entries in the table
have explicit addends, such as Elf32_Rela for the 32-bit file class or Elf64_Rela for the 64-bit file
class. An object file may have multiple relocation sections. When building the relocation table for
an executable or shared object file, the link editor catenates those sections to form a single table.
Although the sections remain independent in the object file, the dynamic linker sees a single table.
When the dynamic linker creates the process image for an executable file or adds a shared object
to the process image, it reads the relocation table and performs the associated actions. If this
element is present, the dynamic structure must also have DT_RELASZ and DT_RELAENT
elements. When relocation is mandatory for a file, either DT_RELA or DT_REL may occur (both
are permitted but not required).

DT_RELASZ
This element holds the total size, in bytes, of the DT_RELA relocation table.

DT_RELAENT
This element holds the size, in bytes, of the DT_RELA relocation entry.

DT_STRSZ
This element holds the size, in bytes, of the string table.

DT_SYMENT
This element holds the size, in bytes, of a symbol table entry.

DT_INIT
This element holds the address of the initialization function, discussed in “Initialization and
Termination Functions” on page 941.

DT_FINI
This element holds the address of the termination function, discussed in “Initialization and
Termination Functions” on page 941.

DT_SONAME
This element holds the string table offset of a null-terminated string, giving the name of the shared
object. The offset is an index into the table recorded in the DT_STRTAB entry. See “Shared
Object Dependencies” on page 938 for more information about these names.

DT_RPATH
This element holds the string table offset of a null-terminated search library search path string

Chapter 32. ELF Object Files and Dynamic Linking 935

discussed in “Shared Object Dependencies” on page 938. The offset is an index into the table
recorded in the DT_STRTAB entry. This entry is at level 2. Its use has been superseded by
DT_RUNPATH.

DT_SYMBOLIC
This element’s presence in a shared object library alters the dynamic linker’s symbol resolution
algorithm for references within the library. Instead of starting a symbol search with the executable
file, the dynamic linker starts from the shared object itself. If the shared object fails to supply the
referenced symbol, the dynamic linker then searches the executable file and other shared objects
as usual. This entry is at level 2. Its use has been superseded by the DF_SYMBOLIC flag.

DT_REL
This element is similar to DT_RELA, except its table has implicit addends, such as Elf32_Rel for
the 32-bit file class or Elf64_Rel for the 64-bit file class. If this element is present, the dynamic
structure must also have DT_RELSZ and DT_RELENT elements.

DT_RELSZ
This element holds the total size, in bytes, of the DT_REL relocation table.

DT_RELENT
This element holds the size, in bytes, of the DT_REL relocation entry.

DT_PLTREL
This member specifies the type of relocation entry to which the procedure linkage table refers. The
d_val member holds DT_REL or DT_RELA, as appropriate. All relocations in a procedure linkage
table must use the same relocation.

DT_DEBUG
This member is used for debugging. Its contents are not specified for the ABI; programs that
access this entry are not ABI-conforming.

DT_TEXTREL
This member’s absence signifies that no relocation entry should cause a modification to a
non-writable segment, as specified by the segment permissions in the program header table. If this
member is present, one or more relocation entries might request modifications to a non-writable
segment, and the dynamic linker can prepare accordingly. This entry is at level 2. Its use has been
superseded by the DF_TEXTREL flag.

DT_JMPREL
If present, this entry’s d_ptr member holds the address of relocation entries associated solely with
the procedure linkage table. Separating these relocation entries lets the dynamic linker ignore
them during process initialization, if lazy binding is enabled. If this entry is present, the related
entries of types DT_PLTRELSZ and DT_PLTREL must also be present.

DT_BIND_NOW
If present in a shared object or executable, this entry instructs the dynamic linker to process all
relocations for the object containing this entry before transferring control to the program. The
presence of this entry takes precedence over a directive to use lazy binding for this object when
specified through the environment or via dlopen(BA_LIB). This entry is at level 2. Its use has been
superseded by the DF_BIND_NOW flag.

DT_INIT_ARRAY
This element holds the address of the array of pointers to initialization functions, discussed in
“Initialization and Termination Functions” on page 941.

DT_FINI_ARRAY
This element holds the address of the array of pointers to termination functions, discussed in
“Initialization and Termination Functions” on page 941.

936 Writing and Debugging Programs

DT_INIT_ARRAYSZ
This element holds the size in bytes of the array of initialization functions pointed to by the
DT_INIT_ARRAY entry. If an object has a DT_INIT_ARRAY entry, it must also have a
DT_INIT_ARRAYSZ entry.

DT_FINI_ARRAYSZ
This element holds the size in bytes of the array of termination functions pointed to by the
DT_FINI_ARRAY entry. If an object has a DT_FINI_ARRAY entry, it must also have a
DT_FINI_ARRAYSZ entry.

DT_RUNPATH
This element holds the string table offset of a null-terminated library search path string discussed
in “Shared Object Dependencies” on page 938. The offset is an index into the table recorded in
the DT_STRTAB entry.

DT_FLAGS
This element holds flag values specific to the object being loaded. Each flag value will have the
name DF_flag_name. Defined values and their meanings are described below. All other values are
reserved.

DT_PREINIT_ARRAY
This element holds the address of the array of pointers to pre-initialization functions, discussed in
“Initialization and Termination Functions” on page 941. The DT_PREINIT_ARRAY table is
processed only in an executable file; it is ignored if contained in a shared object.

DT_PREINIT_ARRAYSZ
This element holds the size in bytes of the array of pre-initialization functions pointed to by the
DT_PREINIT_ARRAY entry. If an object has a DT_PREINIT_ARRAY entry, it must also have a
DT_PREINIT_ARRAYSZ entry. As with DT_PREINIT_ARRAY, this entry is ignored if it appears in
a shared object.

DT_ENCODING
Values greater than or equal to DT_ENCODING and less than DT_LOOS follow the rules for the
interpretation of the d_un union described above.

DT_LOOS through DT_HIOS
Values in this inclusive range are reserved for operating system-specific semantics. All such values
follow the rules for the interpretation of the d_un union described above.

DT_LOPROC through DT_HIPROC
Values in this inclusive range are reserved for processor-specific semantics. If meanings are
specified, the processor supplement explains them. All such values follow the rules for the
interpretation of the d_un union described above.

Except for the DT_NULL element at the end of the array, and the relative order of DT_NEEDED elements,
entries may appear in any order. Tag values not appearing in the table are reserved.

DT_FLAGS values

Name Value

DF_ORIGIN 0x1

DF_SYMBOLIC 0x2

DF_TEXTREL 0x4

DF_BIND_NOW 0x8

DF_ORIGIN
This flag signifies that the object being loaded may make reference to the $ORIGIN substitution

Chapter 32. ELF Object Files and Dynamic Linking 937

string (see “Substitution Sequences” on page 939). The dynamic linker must determine the
pathname of the object containing this entry when the object is loaded.

DF_SYMBOLIC
If this flag is set in a shared object library, the dynamic linker’s symbol resolution algorithm for
references within the library is changed. Instead of starting a symbol search with the executable
file, the dynamic linker starts from the shared object itself. If the shared object fails to supply the
referenced symbol, the dynamic linker then searches the executable file and other shared objects
as usual.

DF_TEXTREL
If this flag is not set, no relocation entry should cause a modification to a non-writable segment, as
specified by the segment permissions in the program header table. If this flag is set, one or more
relocation entries might request modifications to a non-writable segment, and the dynamic linker
can prepare accordingly.

DF_BIND_NOW
If set in a shared object or executable, this flag instructs the dynamic linker to process all
relocations for the object containing this entry before transferring control to the program. The
presence of this entry takes precedence over a directive to use lazy binding for this object when
specified through the environment or via dlopen(BA_LIB).

Shared Object Dependencies
When the link editor processes an archive library, it extracts library members and copies them into the
output object file. These statically linked services are available during execution without involving the
dynamic linker. Shared objects also provide services, and the dynamic linker must attach the proper
shared object files to the process image for execution.

When the dynamic linker creates the memory segments for an object file, the dependencies (recorded in
DT_NEEDED entries of the dynamic structure) tell what shared objects are needed to supply the
program’s services. By repeatedly connecting referenced shared objects and their dependencies, the
dynamic linker builds a complete process image. When resolving symbolic references, the dynamic linker
examines the symbol tables with a breadth-first search. That is, it first looks at the symbol table of the
executable program itself, then at the symbol tables of the DT_NEEDED entries (in order), and then at the
second level DT_NEEDED entries, and so on. Shared object files must be readable by the process; other
permissions are not required.

NOTE: Even when a shared object is referenced multiple times in the dependency list, the dynamic linker
will connect the object only once to the process.

Names in the dependency list are copies either of the DT_SONAME strings or the path names of the
shared objects used to build the object file. For example, if the link editor builds an executable file using
one shared object with a DT_SONAME entry of lib1 and another shared object library with the path name
/usr/lib/lib2, the executable file will contain lib1 and /usr/lib/lib2 in its dependency list.

If a shared object name has one or more slash (/) characters anywhere in the name, such as /usr/lib/lib2
or directory/file, the dynamic linker uses that string directly as the path name. If the name has no
slashes, such as lib1, three facilities specify shared object path searching.

1. The dynamic array tag DT_RUNPATH gives a string that holds a list of directories, separated by
colons (:). For example, the string /home/dir/lib:/home/dir2/lib: tells the dynamic linker to search first
the directory /home/dir/lib, then /home/dir2/lib, and then the current directory to find dependencies.

The set of directories specified by a given DT_RUNPATH entry is used to find only the immediate
dependencies of the executable or shared object containing the DT_RUNPATH entry. That is, it is used
only for those dependencies contained in the DT_NEEDED entries of the dynamic structure containing
the DT_RUNPATH entry, itself. One object’s DT_RUNPATH entry does not affect the search for any
other object’s dependencies.

938 Writing and Debugging Programs

2. A variable called LD_LIBRARY_PATH in the process environment [see exec(base operating system)]
may hold a list of directories as above, optionally followed by a semicolon (;) and another directory list.

The following values would be equivalent to the previous example:

a. LD_LIBRARY_PATH=/home/dir/usr/lib:/home/dir2/usr/lib:

b. LD_LIBRARY_PATH=/home/dir/usr/lib;/home/dir2/usr/lib:

c. LD_LIBRARY_PATH=/home/dir/usr/lib:/home/dir2/usr/lib:;

Although some programs (such as the link editor) treat the lists before and after the semicolon
differently, the dynamic linker does not. Nevertheless, the dynamic linker accepts the semicolon
notation, with the semantics described previously.

All LD_LIBRARY_PATH directories are searched before those from DT_RUNPATH.

3. Finally, if the other two groups of directories fail to locate the desired library, the dynamic linker
searches the default directories, /usr/lib or such other directories as may be specified by the ABI
supplement for a given processor.

When the dynamic linker is searching for shared objects, it is not a fatal error if an ELF file with the wrong
attributes is encountered in the search. Instead, the dynamic linker shall exhaust the search of all paths
before determining that a matching object could not be found. For this determination, the relevant
attributes are contained in the following ELF header fields:

e_ident[EI_DATA], e_ident[EI_CLASS], e_ident[EI_OSABI], e_ident[EI_ABIVERSION], e_machine,
e_type, e_flags and e_version.

NOTE: For security, the dynamic linker ignores LD_LIBRARY_PATH for set-user and set-group ID
programs. It does, however, search DT_RUNPATH directories and the default directories. The same
restriction may be applied to processes that have more than minimal privileges on systems with installed
extended security mechanisms.

NOTE: A fourth search facility, the dynamic array tag DT_RPATH, has been moved to level 2 in the ABI. It
provides a colon-separated list of directories to search. Directories specified by DT_RPATH are searched
before directories specified by LD_LIBRARY_PATH.

If both DT_RPATH and DT_RUNPATH entries appear in a single object’s dynamic array, the dynamic
linker processes only the DT_RUNPATH entry.

Substitution Sequences
Within a string provided by dynamic array entries with the DT_NEEDED or DT_RUNPATH tags and in
pathnames passed as parameters to the dlopen() routine, a dollar sign ($) introduces a substitution
sequence. This sequence consists of the dollar sign immediately followed by either the longest name
sequence or a name contained within left and right braces ({) and (}). A name is a sequence of bytes that
start with either a letter or an underscore followed by zero or more letters, digits or underscores. If a dollar
sign is not immediately followed by a name or a brace-enclosed name, the behavior of the dynamic linker
is unspecified.

If the name is ORIGIN, then the substitution sequence is replaced by the dynamic linker with the absolute
pathname of the directory in which the object containing the substitution sequence originated. Moreover,
the pathname will contain no symbolic links or use of . or .. components. Otherwise (when the name is not
ORIGIN) the behavior of the dynamic linker is unspecified.

When the dynamic linker loads an object that uses $ORIGIN, it must calculate the pathname of the
directory containing the object. Because this calculation can be computationally expensive,
implementations may want to avoid the calculation for objects that do not use $ORIGIN. If an object calls
dlopen() with a string containing $ORIGIN and does not use $ORIGIN in one if its dynamic array entries,
the dynamic linker may not have calculated the pathname for the object until the dlopen() actually occurs.

Chapter 32. ELF Object Files and Dynamic Linking 939

Since the application may have changed its current working directory before the dlopen() call, the
calculation may not yield the correct result. To avoid this possibility, an object may signal its intention to
reference $ORIGIN by setting the DF_ORIGIN flag. An implementation may reject an attempt to use
$ORIGIN within a dlopen() call from an object that did not set the DF_ORIGIN flag and did not use
$ORIGIN within its dynamic array.

NOTE: For security, the dynamic linker does not allow use of $ORIGIN substitution sequences for set-user
and set-group ID programs. For such sequences that appear within strings specified by DT_RUNPATH
dynamic array entries, the specific search path containing the $ORIGIN sequence is ignored (though other
search paths in the same string are processed). $ORIGIN sequences within a DT_NEEDED entry or path
passed as a parameter to dlopen() are treated as errors. The same restrictions may be applied to
processes that have more than minimal privileges on systems with installed extended security
mechanisms.

Global Offset Table
NOTE: This section requires processor-specific information. The System V Application Binary Interface
supplement for the desired processor describes the details.

Procedure Linkage Table

NOTE: This section requires processor-specific information. The System V Application Binary
Interface supplement for the desired processor describes the details.

Hash Table
A hash table of Elf32_Word objects supports symbol table access. The same table layout is used for both
the 32-bit and 64-bit file class. Labels appear below to help explain the hash table organization, but they
are not part of the specification.

Symbol Hash

nbucket

nchain

bucket[0]
. . .

bucket[nbucket-1]

chain[0]
. . .

chain[nchain-1]

The bucket array contains nbucket entries, and the chain array contains nchain entries; indexes start at
0. Both bucket and chain hold symbol table indexes.

Chain table entries parallel the symbol table. The number of symbol table entries should equal nchain; so
symbol table indexes also select chain table entries. A hashing function (shown below) accepts a symbol
name and returns a value that may be used to compute a bucket index.

Consequently, if the hashing function returns the value x for some name, bucket[x%nbucket] gives an
index, y, into both the symbol table and the chain table.

If the symbol table entry is not the one desired, chain[y] gives the next symbol table entry with the same
hash value.

940 Writing and Debugging Programs

One can follow the chain links until either the selected symbol table entry holds the desired name or the
chain entry contains the value STN_UNDEF.

Hashing Function

unsigned long
elf_hash(const unsigned char *name)
{
unsigned long h = 0, g;
while (*name)
{

h = (h << 4) + *name++;
if (g = h & 0xf0000000)

h |= g >> 24;
h &= xg;

}
return h;
}

Initialization and Termination Functions
After the dynamic linker has built the process image and performed the relocations, each shared object
and the executable file get the opportunity to execute some initialization functions. All shared object
initializations happen before the executable file gains control.

Before the initialization functions for any object A is called, the initialization functions for any other objects
that object A depends on are called. For these purposes, an object A depends on another object B, if B
appears in A’s list of needed objects (recorded in the DT_NEEDED entries of the dynamic structure). The
order of initialization for circular dependencies is undefined.

The initialization of objects occurs by recursing through the needed entries of each object. The initialization
functions for an object are invoked after the needed entries for that object have been processed. The
order of processing among the entries of a particular list of needed objects is unspecified.

NOTE: Each processor supplement may optionally further restrict the algorithm used to determine the
order of initialization. Any such restriction, however, may not conflict with the rules described by this
specification.

The following example illustrates two of the possible correct orderings which can be generated for the
example NEEDED lists. In this example the a.out is dependent on b, d, and e. b is dependent on d and f,
while d is dependent on e and g. From this information a dependency graph can be drawn. The above
algorithm on initialization will then allow the following specified initialization orderings among others.

Initialization Ordering Example Similarly, shared objects and executable files may have termination
functions, which are executed with the atexit(base operating system) mechanism after the base process
begins its termination sequence. The termination functions for any object A must be called before the
termination functions for any other objects that object A depends on. For these purposes, an object A
depends on another object B, if B appears in A’s list of needed objects (recorded in the DT_NEEDED
entries of the dynamic structure). The order of termination for circular dependencies is undefined.

Finally, an executable file may have pre-initialization functions. These functions are executed after the
dynamic linker has built the process image and performed relocations but before any shared object
initialization functions. Pre-initialization functions are not permitted in shared objects.

NOTE: Complete initialization of system libraries may not have occurred when pre-initializations are
executed, so some features of the system may not be available to pre-initialization code. In general, use of
pre-initialization code can be considered portable only if it has no dependencies on system libraries.

Chapter 32. ELF Object Files and Dynamic Linking 941

The dynamic linker ensures that it will not execute any initialization, pre-initialization, or termination
functions more than once.

Shared objects designate their initialization and termination code in one of two ways. First, they may
specify the address of a function to execute via the DT_INIT and DT_FINI entries in the dynamic structure,
described in “Dynamic Section” on page 933 above.

Shared objects may also (or instead) specify the address and size of an array of function pointers. Each
element of this array is a pointer to a function to be executed by the dynamic linker. Each array element is
the size of a pointer in the programming model followed by the object containing the array. The address of
the array of initialization function pointers is specified by the DT_INIT_ARRAY entry in the dynamic
structure. Similarly, the address of the array of pre-initialization functions is specified by
DT_PREINIT_ARRAY and the address of the array of termination functions is specified by
DT_FINI_ARRAY. The size of each array is specified by the DT_INIT_ARRAYSZ,
DT_PREINIT_ARRAYSZ, and DT_FINI_ARRAYSZ entries.

The functions whose addresses are contained in the arrays specified by DT_INIT_ARRAY and by
DT_PREINIT_ARRAY are executed by the dynamic linker in the same order in which their addresses
appear in the array; those specified by DT_FINI_ARRAY are executed in reverse order.

If an object contains both DT_INIT and DT_INIT_ARRAY entries, the function referenced by the DT_INIT
entry is processed before those referenced by the DT_INIT_ARRAY entry for that object. If an object
contains both DT_FINI and DT_FINI_ARRAY entries, the functions referenced by the DT_FINI_ARRAY
entry are processed before the one referenced by the DT_FINI entry for that object.

NOTE: Although the atexit(base operating system) termination processing normally will be done, it is not
guaranteed to have executed upon process death. In particular, the process will not execute the
termination processing if it calls _exit [see exit(base operating system)] or if the process dies because it
received a signal that it neither caught nor ignored.

The processor supplement for each processor specifies whether the dynamic linker is responsible for
calling the executable file’s initialization function or registering the executable file’s termination function
with atexit(base operating system). Termination functions specified by users via the atexit(base operating
system) mechanism must be executed before any termination functions of shared objects.

942 Writing and Debugging Programs

Appendix A. Character Maps

The following tables are a textual representation of the character maps listed in “Code Set Overview” on
page 379:

v “ISO Code Sets”

v “IBM Code Sets” on page 961

ISO Code Sets
The following ISO code sets are described:

v “ISO8859–1”

v “ISO8859–2” on page 945

v “ISO8859–5” on page 948

v “ISO8859–6” on page 950

v “ISO8859–7” on page 952

v “ISO8859–8” on page 954

v “ISO8859–9” on page 956

v “ISO8859–15” on page 958

ISO8859–1
Table 12. ISO8859–1 Code set

Symbolic Name Hex Value

no break space A0

inverted exclamation mark A1

cent sign A2

pound sign A3

currency sign A4

yen sign A5

broken bar A6

section sign A7

diaeresis A8

copyright sign A9

feminine ordinal indicator AA

left-pointing double angle quotation mark AB

not sign AC

soft hyphen AD

registered sign AE

macron AF

degree sign B0

plus-minus sign B1

superscript two B2

superscript three B3

acute accent B4

© Copyright IBM Corp. 1997, 2001 943

Table 12. ISO8859–1 Code set (continued)

micro sign B5

pilcrow sign B6

middle dot B7

cedilla B8

superscript one B9

masculine ordinal indicator BA

right-pointing double angle quotation mark BB

vulgar fraction one quarter BC

vulgar fraction one half BD

vulgar fraction three quarters BE

inverted question mark BF

latin capital letter A with grave C0

latin capital letter A with acute C1

latin capital letter A with circumflex C2

latin capital letter A with tilde C3

latin capital letter A with diaeresis C4

latin capital letter A with ring above C5

latin capital letter AE C6

latin capital letter C with cedilla C7

latin capital letter E with grave C8

latin capital letter E with acute C9

latin capital letter E with circumflex CA

latin capital letter E with diaeresis CB

latin capital letter I with grave CC

latin capital letter I with acute CD

latin capital letter I with circumflex CE

latin capital letter I with diaeresis CF

latin capital letter eth D0

latin capital letter n with tilde D1

latin capital letter O with grave D2

latin capital letter O with acute D3

latin capital letter O with circumflex D4

latin capital letter O with tilde D5

latin capital letter O with diaeresis D6

multiplication sign D7

latin capital letter O with stroke D8

latin capital letter U with grave D9

latin capital letter U with acute DA

latin capital letter U with circumflex DB

latin capital letter U with diaeresis DC

latin capital letter Y with acute DD

944 Writing and Debugging Programs

Table 12. ISO8859–1 Code set (continued)

latin capital letter thorn DE

latin small letter sharp S DF

latin small letter A with grave E0

latin small letter A with acute E1

latin small letter A with circumflex E2

latin small letter A with tilde E3

latin small letter A with diaeresis E4

latin small letter A with ring above E5

latin small letter AE E6

latin small letter C with cedilla E7

latin small letter E with grave E8

latin small letter E with acute E9

latin small letter E with circumflex EA

latin small letter E with diaeresis EB

latin small letter I with grave EC

latin small letter I with acute ED

latin small letter I with circumflex EE

latin small letter I with diaeresis EF

latin small letter eth F0

latin small letter n with tilde F1

latin small letter O with grave F2

latin small letter O with acute F3

latin small letter O with circumflex F4

latin small letter O with tilde F5

latin small letter O with diaeresis F6

division sign F7

latin small letter O with stroke F8

latin small letter U with grave F9

latin small letter U with acute FA

latin small letter U with circumflex FB

latin small letter U with diaeresis FC

latin small letter Y with acute FD

latin small letter thorn FE

latin small letter y with diaeresis FF

ISO8859–2
Table 13. ISO8859–2 Code set

Symbolic Name Hex Value

no break space A0

latin capital letter A with ogonek A1

Appendix A. Character Maps 945

Table 13. ISO8859–2 Code set (continued)

bleve A2

capital letter L with stroke A3

currency sign A4

latin capital letter L with caron A5

latin capital letter S with acute A6

section sign A7

diaeresis A8

latin capital letter S with caron A9

latin capital letter S with cedilla AA

latin capital letter T with caron AB

latin capital letter Z with acute AC

soft hyphen AD

latin capital letter Z with caron AE

latin capital letter Z with dot above AF

degree sign B0

latin small letter A with ogenek B1

ogenek B2

latin small letter L with stroke B3

acute accent B4

latin small letter L with caron B5

latin small letter S with acute B6

caron B7

cedilla B8

latin small letter S with caron B9

latin small letter S with cedilla BA

latin small letter T with caron BB

latin small letter Z with acute BC

double acute accent BD

latin small letter Z with caron BE

latin small letter Z with dot above BF

latin capital letter R with acute C0

latin capital letter A with acute C1

latin capital letter A with circumflex C2

latin capital letter A with breve C3

latin capital letter A with diaeresis C4

latin capital letter L with acute C5

latin capital letter C with acute C6

latin capital letter C with cedilla C7

latin capital letter C with caron C8

latin capital letter E with acute C9

latin capital letter E with ogonek CA

946 Writing and Debugging Programs

Table 13. ISO8859–2 Code set (continued)

latin capital letter E with diaeresis CB

latin capital letter E with caron CC

latin capital letter I with acute CD

latin capital letter I with circumflex CE

latin capital letter D with caron CF

latin capital letter D with stroke D0

latin capital letter N with acute D1

latin capital letter N with caron D2

latin capital letter O with acute D3

latin capital letter O with circumflex D4

latin capital letter O with double acute D5

latin capital letter O with diaeresis D6

multiplication sign D7

latin capital letter R with caron D8

latin capital letter U with ring above D9

latin capital letter U with acute DA

latin capital letter U with double acute DB

latin capital letter U with diaeresis DC

latin capital letter Y with acute DD

latin capital letter T with cedilla DE

latin small letter sharp S DF

latin small letter R with acute E0

latin small letter A with acute E1

latin small letter A with circumflex E2

latin small letter A with breve E3

latin small letter A with diaeresis E4

latin small letter L with acute E5

latin small letter C with acute E6

latin small letter C with cedilla E7

latin small letter C with caron E8

latin small letter E with acute E9

latin small letter E with ogonek EA

latin small letter E with diaeresis EB

latin small letter E with caron EC

latin small letter I with acute ED

latin small letter I with circumflex EE

latin small letter D with caron EF

latin small letter D with stroke F0

latin small letter N with acute F1

latin small letter N with caron F2

latin small letter O with acute F3

Appendix A. Character Maps 947

Table 13. ISO8859–2 Code set (continued)

latin small letter O with circumflex F4

latin small letter O with double acute F5

latin small letter O with diaeresis F6

division sign F7

latin small letter R with caron F8

latin small letter U with ring above F9

latin small letter U with acute FA

latin small letter Uwith double acute FB

latin small letter U with diaeresis FC

latin small letter Y with acute FD

latin small letter T with cedilla FE

dot above FF

ISO8859–5
Table 14. ISO8859–5 Code set

Symbolic Name Hex Value

no break space A0

cyrillic capital letter io A1

cyrillic capital letter dje A2

cyrillic capital letter gje A3

cyrillic capital letter ukrainian ie A4

cyrillic capital letter dze A5

cyrillic capital letter byelorussian-ukranian I A6

cyrillic capital letter yi A7

cyrillic capital letter je A8

cyrillic capital letter lje A9

cyrillic capital letter nje AA

cyrillic capital letter tshe AB

cyrillic capital letter kje AC

soft hyphen AD

cyrillic capital letter short U AE

cyrillic capital letter dzhe AF

cyrillic capital letter A B0

cyrillic capital letter be B1

cyrillic capital letter ve B2

cyrillic capital letter ghe B3

cyrillic capital letter de B4

cyrillic capital letter ie B5

cyrillic capital letter zhe B6

cyrillic capital letter ze B7

948 Writing and Debugging Programs

Table 14. ISO8859–5 Code set (continued)

cyrillic capital letter I B8

cyrillic capital letter short I B9

cyrillic capital letter ka BA

cyrillic capital letter el BB

cyrillic capital letter em BC

cyrillic capital letteren BD

cyrillic capital letter O BE

cyrillic capital letter pe BF

cyrillic capital letter er C0

cyrillic capital letter es C1

cyrillic capital letter te C2

cyrillic capital letter U C3

cyrillic capital letter ef C4

cyrillic capital letter ha C5

cyrillic capital letter tse C6

cyrillic capital letter che C7

cyrillic capital letter sha C8

cyrillic capital letter shcha C9

cyrillic capital letter hard sign CA

cyrillic capital letter yeru CB

cyrillic capital letter soft sign CC

cyrillic capital letter E CD

cyrillic capital letter tu CE

cyrillic capital letter ya CF

cyrillic small letter A D0

cyrillic small letter be D1

cyrillic small letter ve D2

cyrillic small letter ghe D3

cyrillic small letter de D4

cyrillic small letter ie D5

cyrillic small letter zhe D6

cyrillic small letter ze D7

cyrillic small letter I D8

cyrillic small letter short I D9

cyrillic small letter ka DA

cyrillic small letter el DB

cyrillic small letter em DC

cyrillic small letter en DD

cyrillic small letter O DE

cyrillic small letter pe DF

cyrillic small letter er E0

Appendix A. Character Maps 949

Table 14. ISO8859–5 Code set (continued)

cyrillic small letter es E1

cyrillic small letter te E2

cyrillic small letter U E3

cyrillic small letter ef E4

cyrillic small letter ha E5

cyrillic small letter tse E6

cyrillic small letter che E7

cyrillic small letter sha E8

cyrillic small letter shcha E9

cyrillic small letter hard sign EA

cyrillic small letter yeru EB

cyrillic small letter soft sign EC

cyrillic small letter E ED

cyrillic small letter yu EE

cyrillic small letter ta EF

numero sign F0

cyrillic small letter io F1

cyrillic small letter dje F2

cyrillic small letter gje F3

cyrillic small letter ukranian ie F4

cyrillic small letter dze F5

cyrillic small letter byelorussian-ukranian I F6

cyrillic small letter yi F7

cyrillic small letter je F8

cyrillic small letter lje F9

cyrillic small letter nje FA

cyrillic small letter tshe FB

cyrillic small letter kje FC

selection sign FD

cyrillic small letter short U FE

cyrillic small letter dzhe FF

ISO8859–6
Table 15. ISO8859–6

Symbolic Name Hex Value

no-break space A0

currency sign A4

Arabic comma AC

soft hyphen AD

Arabic semicolon BB

950 Writing and Debugging Programs

Table 15. ISO8859–6 (continued)

Arabic question mark BF

Arabic letter hamza C1

Arabic letter alef with madda above C2

Arabic letter alef with hamza above C3

Arabic letter waw with hamza above C4

Arabic letter alef with hamza below C5

Arabic letter yeh with hamza above C6

Arabic letter alef C7

Arabic letter beh C8

Arabic letter teh marbuta C9

Arabic letter teh CA

Arabic letter theh CB

Arabic letter jeem CC

Arabic letter hah CD

Arabic letter khah CE

Arabic letter dal CF

Arabic letter thal D0

Arabic letter reh D1

Arabic letter zain D2

Arabic letter seen D3

Arabic letter sheen D4

Arabic letter sad D5

Arabic letter dad D6

Arabic letter tah D7

Arabic letter zah D8

Arabic letter ain D9

Arabic letter ghain DA

Arabic letter tatweel E0

Arabic letter feh E1

Arabic letter qaf E2

Arabic letter kaf E3

Arabic letter lam E4

Arabic letter meem E5

Arabic letter noon E6

Arabic letter heh E7

Arabic letter waw E8

Arabic letter alef maksura E9

Arabic letter yeh EA

Arabic letter fathatan EB

Arabic letter dammatan EC

Arabic letter kasratan ED

Appendix A. Character Maps 951

Table 15. ISO8859–6 (continued)

Arabic letter fatha EE

Arabic letter damma EF

Arabic letter kasra F0

Arabic letter shadda F1

Arabic letter sukun F2

ISO8859–7
Table 16. ISO8859–7 Code set

Symbolic Name Hex Value

no break space A0

left single quotation mark A1

right single quotation mark A2

puond sign A3

euro sign A4

broken bar A6

section sign A7

diaeresis A8

copyright sign A9

left-pointing double angle quotation mark AB

not sign AC

soft hyphen AD

horizontal bar AF

degree sign B0

plus-minus sign B1

superscript two B2

superscript three B3

greek tonos B4

greek dialytika tonos B5

greek capital letter alpha with tonos B6

middle dot B7

greek capital letter epsilon with tonos B8

greek capital letter eta with tonos B9

greek capital letter iota with tonos BA

right-pointing double angle quotation mark BB

greek capital letter omicron with tonos BC

vulgar fraction one half BD

greek capital letter upsilon with tonos BE

greek capital letter omega with tonos BF

greek small letter iota with dialytika and tonos C0

greek capital letter alpha C1

952 Writing and Debugging Programs

Table 16. ISO8859–7 Code set (continued)

greek capital letter beta C2

greek capital letter gamma C3

greek capital letter delta C4

greek capital letter epsilon C5

greek capital letter zeta C6

greek capital letter eta C7

greek capital letter theta C8

greek capital letter iota C9

greek capital letter kappa CA

greek capital letter lamda CB

greek capital letter mu CC

greek capital letter nu CD

greek capital letter xi CE

greek capital letter omicron CF

greek capital letter pi D0

greek capital letter rho D1

greek capital letter sigma D3

greek capital letter tau D4

greek capital letter upsilon D5

greek capital letter phi D6

greek capital letter chi D7

greek capital letter psi D8

greek capital letter omega D9

greek capital letter iota with dialytika DA

greek capital letter upsilon with dialytika DB

greek small letter alpha with tonos DC

greek small letter epsilon with tonos DD

greek small letter eta with tonos DE

greek small letter iota with tonos DF

greek small letter upsilon with dialytika and tonos E0

greek small letter alpha E1

greek small letter beta E2

greek small letter gamma E3

greek small letter delta E4

greek small letter epsilon E5

greek small letter zeta E6

greek small letter eta E7

greek small letter theta E8

greek small letter iota E9

greek small letter kappa EA

greek small letter lamda EB

Appendix A. Character Maps 953

Table 16. ISO8859–7 Code set (continued)

greek small letter mu EC

greek small letter nu ED

greek small letter xi EE

greek small letter omicron EF

greek small letter pi F0

greek small letter rho F1

greek small letter final sigma F2

greek small letter sigma F3

greek small letter tau F4

greek small letter upsilon F5

greek small letter phi F6

greek small letter chi F7

greek small letter psi F8

greek small letter omega F9

greek small letter iota with dialytika FA

greek small letter upsilon with dialytika FB

greek small letter omicron with tonos FC

greek small letter upsilon with tonos FD

greek small letter omega with tonos FE

ISO8859–8
Table 17. ISO8859–8 Code set

Symbolic Name Hex Value

no-break space A0

cent sign A2

pound sign A3

currency sign A4

yen sign A5

broken bar A6

section sign A7

diaeresis A8

copyright sign A9

multiplication sign AA

left-pointing double angle quotation mark AB

not sign AC

soft hyphen AD

registered sign AE

overline AF

degree sign B0

plus-minus sign B1

954 Writing and Debugging Programs

Table 17. ISO8859–8 Code set (continued)

superscript two B2

superscript three B3

acute accent B4

micro sign B5

pilcrow sign B6

middle dot B7

cedilla B8

superscript one B9

division sign BA

right-pointing double angle quotation mark BB

vulgar fraction one quarter BC

vulgar fraction one half BD

vilgar fraction three quarters BE

double low line DF

hebrew letter alef EO

hebrew letter bet E1

hebrew letter gimel E2

hebrew letter dalet E3

hebrew letter he E4

hebrew letter vav E5

hebrew letter zayin E6

hebrew letter het E7

hebrew letter tet E8

hebrew letter yod E9

hebrew letter final kaf EA

hebrew letter kaf EB

hebrew letter lamed EC

hebrew letter final mem ED

hebrew letter mem EE

hebrew letter final nun EF

hebrew letter nun F0

hebrew letter samekh F1

hebrew letter ayin F2

hebrew letter final pe F3

hebrew letter pe F4

hebrew letter final tsadi F5

hebrew letter tsadi F6

hebrew letter qof F7

hebrew letter resh F8

hebrew letter shin F9

hebrew letter tav FA

Appendix A. Character Maps 955

ISO8859–9
Table 18. ISO8859–9 Code set

Symbolic Name Hex Value

no-break space A0

inverted exclamation mark A1

cent sign A2

pound sign A3

currency sign A4

yen sign A5

broken bar A6

section sign A78

diaeresis A8

copyright sign A9

feminine ordinal indicator AA

left-pointing double quotation mark AB

not sign AC

sofy hyphen AD

registered sign AE

macron AF

degree sign B0

plus-minus sign B1

superscript two B2

superscript three B3

acute accent B4

micro sign B5

pilcrow sign B6

middle dot B7

cedilla B8

superscript one B9

masculine ordinal indicator BA

right pointing double angle quotation mark BB

vulgar fraction one quarter BC

vulgar fraction one half BD

vulgar fraction three quarters BE

inverted question mark BF

latin capital letter A with grave C0

latin capital letter A with acute C1

latin capital letter A with circumflex C2

latin capital letter A with tilde C3

latin capital letter A with diaeresis C4

956 Writing and Debugging Programs

Table 18. ISO8859–9 Code set (continued)

latin capital letter A with ring above C5

latin capital letter AE C6

latin capital letter C with cedilla C7

latin capital letter E with grave C8

latin capital letter E with acute C9

latin capital letter E with circumflex CA

latin capital letter E with diaeresis CB

latin capital letter I with grave CC

latin capital letter I with acute CD

latin capital letter I with circumflex CE

latin capital letter I with diaeresis CF

latin capital letter G with breve D0

latin capital letter N with tilde D1

latin capital letter O with grave D2

latin capital letter O with acute D3

latin capital letter O with circumflex D4

latin capital letter O with tilde D5

latin capital letter O with diaeresis D6

multiplication sign D7

latin capital letter O with stroke D8

latin capital letter U with grave D9

latin capital letter U with acute DA

latin capital letter U with circumflex DB

latin capital letter U with diaeresis DC

latin capital letter I with dot above DD

latin capital letter S with cedilla DE

latin small letter sharp S DF

latin small letter A with grave E0

latin small letter A with acute E1

latin small letter A with circumflex E2

latin small letter A with tilde E3

latin small letter A with diaeresis E4

latin small letter A with ring above E5

latin small letter AE E6

latin small letter C with cedilla E7

latin small letter E with grave E8

latin small letter E with acute E9

latin small letter E with circumflex EA

latin small letter E with diseresis EB

latin small letter I with grave EC

latin small letter I with acute ED

Appendix A. Character Maps 957

Table 18. ISO8859–9 Code set (continued)

latin small letter I with circumflex EE

latin small letter I with diaeresis EF

latin small letter G with breve F0

latin small letter N with tilde F1

latin small letter O with grave F2

latin small letter O with acute F3

latin small letter O with circumflex F4

latin small letter O with tilde F5

latin small letter O with diaeresis F6

division sign F7

latin small letter O with stroke F8

latin small letter U with grave F9

latin small letter U with acute FA

latin small letter U with circumflex FB

latin small letter U with diaeresis FC

latin small letter dotless I FD

latin small letter S with cedilla FE

latin small letter Y with diaeresis FF

ISO8859–15
Table 19. ISO8859–1 Code set

Symbolic Name Hex Value

no-break space A0

inverted exclamation mark A1

cent sign A2

pound sign A3

euro sign A4

yen sign A5

latin capital letter S with caron A6

section sign A7

letin small letter S with caron A8

copyright sign A9

feminine ordinal indicator AA

left-pointing double angle quotation mark AB

not sign AC

soft hyphen AD

registered sign AE

macron AF

degree sign B0

plus-minus sign B1

958 Writing and Debugging Programs

Table 19. ISO8859–1 Code set (continued)

superscript two B2

superscript three B3

latin capital letter Z with caron B4

micro sign B5

pilcrow sign B6

middle dot B7

latin small letter Z with caron B8

superscript one B9

masculine ordinal indicator BA

right-pointing bouble angle quotation marks BB

latin capital ligature oe BC

latin small ligature oe BD

latin capital letter Y with diaeresis BE

inverted question mark BF

latin capital letter A with grave C0

latin capital letter A with acute C1

latin capital letter A with circumflex C2

latin capital letter A with tilde C3

latin capital letter A with diaeresis C4

latin capital letter A with ring above C5

latin capital letter AE C6

latin capital letter C with cedilla C7

latin capital letter E with grave C8

latin capital letter E with acute C9

latin capital letter W with circumflex CA

latin capital letter E with diaeresis CB

latin capital letter I with grave CC

latin capital letter I with acute CD

latin capital letter I with circumflex CE

latin capital letter I with diaeresis CF

latin capital letter eth D0

latin capital letter N with tilde D1

latin capital letter O with grave D2

latin capital letter O with acute D3

latin capital letter O with circumflex D4

latin capital letter O with tilde D5

latin capital letter O with diaeresis D6

multiplication sign D7

latin capital letter O with stroke D8

latin capital letter U with grave D9

latin capital letter U with acute DA

Appendix A. Character Maps 959

Table 19. ISO8859–1 Code set (continued)

latin capital letter U with circumflex DB

latin capital letter U with diaeresis DC

latin capital letter Y with acute DD

latin capital letter thorn DE

latin small letter sharp S DF

latin small letter A with grave EO

latin small letter A with acute E1

latin small letter A with circumflex E2

latin small letter A with tilde E3

latin small letter A with diaeresis E4

latin small letter A with ring above E5

latin small letter AE E6

latin small letter C with cedilla E7

latin small letter E with grave E8

latin small letter E with acute E9

latin small letter E with circumflex EA

latin small letter E with diaeresis EB

latin small letter I with grave EC

latin small letter I with acute ED

latin small letter I with circumflex EE

latin small letter I with diaeresis EF

latin small letter eth F0

latin small letter N with tilde F1

latin small letter O with grave F2

latin small letter O with acute F3

latin small letter O with circumflex F4

latin small letter O with tilde F5

latin small letter O with diaeresis F6

division sign F7

latin small letter O with stroke F8

latin small letter U with grave F9

latin small letter U with acute FA

latin small letter U with circumflex FB

latin small letter U with diaeresis FC

latin small letter Y with acute FD

latin small letter thorn FE

latin small letter Y with diaeresis FF

960 Writing and Debugging Programs

IBM Code Sets
The following IBM PC code sets are described:

v “IBM-850”

v “IBM-856” on page 964

v “IBM-921” on page 966

v “IBM-922” on page 969

v “IBM-1046” on page 971

v “IBM-1124” on page 974

v “IBM-1129” on page 977

v “TIS-620” on page 979

IBM-850
Table 20. IBM—850 Code set

Symbolic Name Hex Value

delete 7F

latin capital letter C with cedilla 80

latin small letter U with diaeresis 81

latin small letter E with acute 82

latin small letter A with circumflex 83

latin small letter A with diaeresis 84

latin small letter A with grave diaeresis 85

latin small letter A with ring above 86

latin small letter C with cedilla 87

latin small letter E with circumflex 88

latin small letter E with diaeresis 89

latin small letter E with grave 8A

latin small letter I with diaeresis 8B

latin small letter I with circumflex 8C

latin small letter I with grave 8D

latin capital letter A with diaeresis 8E

latin capital letter A with ring above 8F

latin capital letter E with acute 90

latin small letter AE 91

latin capital letter AE 92

latin small letter O with circumflex 93

latin small letter O with diaeresis 94

latin small letter O with grave 95

latin small letter U with circumflex 96

latin small letter U with grave 97

latin small letter Y with diaeresis 98

latin capital letter O with diaeresis 99

latin capital letter U with diaeresis 9A

Appendix A. Character Maps 961

Table 20. IBM—850 Code set (continued)

latin small letter O with stroke 9B

pound sign 9C

latin capital letter O with stroke 9D

multiplication sign 9E

latin small letter F with hook 9F

latin small letter A with acute A0

latin small letter I with acute A1

latin small letter O with acute A2

latin small letter U with acute A3

latin small letter N with tilde A4

latin capital letter N with tilde A5

feminie ordinal indicator A6

masculine ordinal indicator A7

inverted question mark A8

registered sign A9

not sign AA

vulgar fraction one half AB

vulgar fraction one quarter AC

inverted exclamation mark AD

left-pointing double angle quotation mark AE

right-pointing double angle quotation mark AF

light shade B0

medium shade B1

dark shade B2

box drawings light vertical B3

box drawings light vertical and left B4

latin capital letter A with acute B5

latin capital letter A with circumflex B6

latin capital letter A with grave B7

copyright sign B8

box drawings double vertical and left B9

box drawings double vartical BA

box drawings double down and left BB

box drawings double up and left BC

cent sign BD

yen sign BE

box drawings light down and left BF

box drawings light up and right C0

box drawings light up abd horizontal C1

box drawings light down and horizontal C2

box drawings light vertical and right C3

962 Writing and Debugging Programs

Table 20. IBM—850 Code set (continued)

box drawings light horizontal C4

box drawings light vertical and horizontal C5

latin small letter A with tilde C6

latin capital letter A with tilde C7

box drawings double up and right C8

box drawings double down and right C9

box drawings double up and horizontal CA

box drawings double down and horizontal CB

box drawings double vertical and right CC

box drawings double horizontal CD

box drawings double vertical and horizontal CE

currency sign CF

latin small letter eth D0

latin capital letter eth D1

latin capital letter E with circumflex D2

latin capital letter E with diaeresis D3

latin capital letter E with grave D4

latin small letter dotless I D5

latin capital letter I with acute D6

latin capital letter I with circumflex D7

latin capital letter I with diaeresis D8

box drawings light up and left D9

box drawings right down and right DA

full block DB

lower half block DC

broken bar DD

latin capital letter I with grave DE

upper half block DF

latin capital letter O with acute E0

latin small letter sharp S E1

latin capital letter O with circumflex E2

latin capital letter O with grave E3

latin small letter O with tilde E4

latin capital letter O with tilde E5

micro sign E6

latin small capital letter thorn E7

latin capital letter thorn E8

latin capital letter U with acute E9

latin capital letter U with circumflex EA

latin capital letter U with grave EB

latin small letter U with acute EC

Appendix A. Character Maps 963

Table 20. IBM—850 Code set (continued)

latin capital letter Y with acute ED

macron EE

acute accent EF

soft hyphen F0

plus-minus sign F1

double low line F2

vulgar fraction three quarters F3

pilcrow sign F4

section sign F5

division sign F6

cedilla F7

degree sign F8

diaeresis F9

middle dot FA

superscript one FB

superscript three FC

superscript two FD

black square FE

no-break space FF

IBM-856
Table 21. IBM–856 Code set

Symbolic Name Hex Value

hebrew letter alef 80

hebrew letter bet 81

hebrew letter gimel 82

hebrew letter dalet 83

hebrew letter he 84

hebrew letter vav 85

hebrew letter zayin 86

hebrew letter het 87

hebrew letter tet 88

hebrew letter yod 89

hebrew letter final kaf 8A

hebrew letter kaf 8B

hebrew letter lamed 8C

hebrew letter final mem 8D

hebrew letter mem 8E

hebrew letter final nun 8F

hebrew letter nun 90

964 Writing and Debugging Programs

Table 21. IBM–856 Code set (continued)

hebrew letter samekh 91

hebrew letter ayin 92

hebrew letter final pe 93

hebrew letter pe 94

hebrew letter final tsadi 95

hebrew letter tsadi 96

hebrew letter qof 97

hebrew letter resh 98

hebrew letter shin 99

hebrew letter tav 9A

pound sign 9C

multiplication sign 9E

registered sign A9

not sign AA

vulgar fraction one half AB

vulgar fraction one quarter AC

left pointing double angle quotation mark AE

right pointing double angle quotation mark AF

light shade B0

medium shade B1

dark shade B2

box drawings light vertical B3

box drawings light vertical and left B4

copyright sign B8

box drawings double vertival and left B9

box drawings double vertical BA

box drawings double down and left BB

box drawings double up and left BC

cent sign BD

yen sign BE

box drawings light down and left BF

box drawings light up and right C0

box drawings light up and horizontal C1

box drawings light down and horizontal C2

box drawings light vertical and right C3

box drawings light horizontal C4

box drawings light vertical and horizontal C5

box drawings double up and right C8

box drawings double down and right C9

box drawings double up and horizontal CA

box drawings double down and horizontal CB

Appendix A. Character Maps 965

Table 21. IBM–856 Code set (continued)

box drawings double vertical and right CC

box drawings double horizontal CD

box drawings double vertical and horizontal CE

currency sign CF

box drawings light up and left D9

box drawings light down and right DA

full block DB

lower half block DC

broken bar DD

upper half block DF

micro sign E6

overline EE

acute accent EF

soft hyphen F0

plus-minus sign F1

double low line F2

vulgar fraction three quarters F3

pilcrow sign F4

section sign F5

division sign F6

cedilla F7

degree sign F8

diaeresis F9

middle dot FA

superscript one FB

superscript three FC

superscript two FD

black square FE

no-break space FF

IBM-921
Table 22. IBM–921 Code set

Symbolic Name Hex Value

no-break space A0

right double quotation mark A1

cent sign A2

pound sign A3

euro sign A4

double low-9 quotation mark A5

broken bar A6

966 Writing and Debugging Programs

Table 22. IBM–921 Code set (continued)

section sign A7

latin capital letter O with stroke A8

copyright sign A9

latin capital letter R with cedilla AA

left-pointing double angle quotation mark AB

not sign AC

soft hyphen AD

registered sign AE

latin capital letter AE AF

degree sign B0

plus-minus sign B1

superscript two B2

superscript three B3

left double quotation mark B4

micro sign B5

pilcrow sign B6

middle dot B7

latin small letter O with stroke B8

superscript one B9

latin small letter R with cedilla BA

right-pointing double angle quotation mark BB

vulgar fraction one quarter BC

vulgar fraction one half BD

vulgar fraction three quarters BE

latin small letter AE BF

latin capital letter A with ogonek C0

latin capital letter I with ogonek C1

latin capital letter A with macron C2

latin capital letter C with acute C3

latin capital letter A with diaeresis C4

latin capital letter A with ring above C5

latin capital letter E with ogonek C6

latin capital letter E with macron C7

latin capital letter C with caron C8

latin capital letter E with acute C9

latin capital letter Z with acute CA

latin capital letter E with dot above CB

latin capital letter G with cedilla CC

latin capital letter K with cedilla CD

latin capital letter I with macron CE

latin capital letter L with cedilla CF

Appendix A. Character Maps 967

Table 22. IBM–921 Code set (continued)

latin capital letter S with caron D0

latin capital letter N with acute D1

latin capital letter N with cedilla D2

latin capital letter O with acute D3

latin capital letter O with macron D4

latin capital letter O with tilde D5

latin capital letter O with diaeresis D6

multiplication sign D7

latin capital letter U with ogonek D8

latin capital letter L with stroke D9

latin capital letter S with acute DA

latin capital letter U with macron DB

latin capital letter U with diaeresis DC

latin capital letter Z with dot above DD

latin capital letter Z with caron DE

latin small letter sharp S DF

latin small letter A with ogonek E0

latin small letter I with ogonek E1

latin small letter A with macron E2

latin small letter C with acute E3

latin small letter A with diaeresis E4

latin small letter A with ring above E5

latin small letter E with ogonek E6

latin small letter E with macron E7

latin small letter C with caron E8

latin small letter E with acute E9

latin small letter Z with acute EA

latin small letter E with dot above EB

latin small letter G with cedilla EC

latin small letter K with cedilla ED

latin small letter I with macron EE

latin small letter L with cedilla EF

latin small letter S with caron F0

latin small letter N with acute F1

latin small letter N with cedilla F2

latin small letter O with acute F3

latin small letter O with macron F4

latin small letter O with tilde F5

latin small letter O with diaeresis F6

division sign F7

latin small letter U with ogonek F8

968 Writing and Debugging Programs

Table 22. IBM–921 Code set (continued)

latin small letter L with stroke F9

latin small letter S with acute FA

latin small letter U with macron FB

latin small letter U with diaeresis FC

latin small letter Z with dot above FD

latin small letter Z with caron FE

right single quotation mark FF

IBM-922
Table 23. IBM–922 Code set

Symbolic Name Hex Value

no break space A0

inverted excamation mark A1

cent sign A2

pound sign A3

euro sign A4

yenb sign A5

broken bar A6

section sign A7

diaeresis A8

copyright sign A9

feminine ordinal indicator AA

left-pointing double angle quotation mark AB

not sign AC

soft hyphen AD

registered sign AE

macron AF

degree sign B0

plus-minus sign B1

superscript two B2

superscript three B3

acute accent B4

micro sign B5

pilcrow sign B6

middle dot B7

cedilla B8

superscript one B9

masculine ordinal indicator BA

right-pointing double angle quotation mark BB

vulgar fraction one quarter BC

Appendix A. Character Maps 969

Table 23. IBM–922 Code set (continued)

vulgar fraction one half BD

vulgar fraction three quarters BE

inverted question mark BF

latin capital letter A with grave C0

latin capital letter A with acute C1

latin capital letter A with circumflex C2

latin capital letter A with tilde C3

latin capital letter A with diaeresis C4

latin capital letter A with ring above C5

latin capital letter AE C6

latin capital letter C with cedilla C7

latin capital letter E with grave C8

latin capital letter E with acute C9

latin capital letter E with circumflex CA

latin capital letter E with diaeresis CB

latin capital letter I with grave CC

latin capital letter I with acute CD

latin capital letter I with circumflex CE

latin capital letter I with diaeresis CF

latin capital letter S with caron D0

latin capital letter N with tilde D1

latin capital letter O with grave D2

latin capital letter O with acute D3

latin capital letter O with circumflex D4

latin capital letter O with tilde D5

latin capital letter O with diaeresis D6

multiplication sign D7

latin capital letter O with stroke D8

latin capital letter U with grave D9

latin capital letter U with acute DA

latin capital letter U with circuflex DB

latin capital letter U with diaeresis DC

latin capital letter Y with acute DD

latin capital letter Z with caron DE

latin small letter sharp S DF

latin small letter A with grave E0

latin small letter A with acute E1

latin small letter A with circumflex E2

latin small letter A with tilde E3

latin small letter A with diaeresis E4

latin small letter A with ring above E5

970 Writing and Debugging Programs

Table 23. IBM–922 Code set (continued)

latin small letter AE E6

latin small letter C with cedilla E7

latin small letter E with grave E8

latin small letter E with acute E9

latin small letter E with circumflex EA

latin small letter E with diaeresis EB

latin small letter I with grave EC

latin small letter I with acute ED

latin small letter I with curcumflex EE

latin small letter I with diaeresis EF

latin small letter S with caron F0

latin small letter N with tilde F1

latin small letter O with grave F2

latin small letter O with acute F3

latin small letter O with circumflex F4

latin small letter O with tilde F5

latin small letter O with diaeresis F6

division sign F7

latin small letter O with stroke F8

latin small letter U with grave F9

latin small letter U with acute FA

latin small letter U with circumflex FB

latin small letter U with diaeresis FC

latin small letter Y with acute FD

latin small letter Z with caron FE

latin small letter Y with diaeresis FF

IBM-1046
Table 24. IBM–1046 Code set

Symbolic Name Hex Value

arabic letter alef with hamza below final form 80

multiplication sign 81

division sign 82

arabic letter seen first part of final form 83

arabic letter sheen first part of final form 84

arabic letter sad first part of final form 85

arabic letter dadfirst part of final form 86

arabic tatweel with fathatan above 87

full block 89

box drawings light vertical 8A

Appendix A. Character Maps 971

Table 24. IBM–1046 Code set (continued)

box drawings light horizontal 8B

box drawings light down and left 8C

box drawings light down and right 8D

box drawings light up and right 8E

box drawings light up and left 8F

arabic damma medial form 90

arabic kasra medial form 91

arabic shadda medial form 92

arabic sukun medial form 93

arabic fatha medial form 94

arabic letter yeh with hamza above final form 95

arabic letter alef maksura final form 96

arabic letter yeh initial form 97

arabic letter yeh final form 98

arabic letter ghain final form 99

arabic letter ghain initial form 9A

arabic letter ghain medial form 9B

arabic ligature lam with alef with madda above final form 9C

arabic ligature lam with alef with hamza above final form 9D

arabic ligature lam with alef with hamza below final form 9E

arabic ligature lam with alef final form 9f

no-break space A0

arabic letter alef with madda above after lam A1

arabic letter alef with hamza above after lam A2

arabic letter alef with hamza below after lam A3

currency sign A4

arabic letter alef after lam A5

arabic letter yeh with hamza above initial form A6

arabic letter beh with initial form A7

arabic letter teh with initial form A8

arabic letter theh with initial form A9

arabic letter jeem with initial form AA

arabic letter hah with initial form AB

arabic comma AC

soft hyphen AD

arabic letter khan initial form AE

arabic letter seen initial form AF

arabic-indic digit zero B0

arabic-indic digit one B1

arabic-indic digit two B2

arabic-indic digit three B3

972 Writing and Debugging Programs

Table 24. IBM–1046 Code set (continued)

arabic-indic digit four B4

arabic-indic digit five B5

arabic-indic digit six B6

arabic-indic digit seven B7

arabic-indic digit eight B8

arabic-indic digit nine B9

arabic letter sheen initial form BA

arabic semicolon BB

arabic letter sad initial form BC

arabic letter dad initial form BD

arabic letter ain initial form BE

arabic question mark BF

arabic letter ain initial form C0

arabic letter hamza C1

arabic letter alef with madda above C2

arabic letter alef with hamza above C3

arabic letter waw with hamza above C4

arabic letter alef with hamza below C5

arabic letter yeh with hamza above C6

arabic letter alef C7

arabic letter beh C8

arabic letter teh marbuta C9

arabic letter teh CA

arabic letter theh CB

arabic letter jeem CC

arabic letter hah CD

arabic letter khah CE

arabic letter dal CF

arabic letter thal D0

arabic letter reh D1

arabic letter zain D2

arabic letter seen D3

arabic letter sheen D4

arabic letter sad D5

arabic letter dad D6

arabic letter tah D7

arabic letter zah D8

arabic letter ain D9

arabic letter ghain DA

arabic letter ain medial form DB

arabic letter alef with madda above final form DC

Appendix A. Character Maps 973

Table 24. IBM–1046 Code set (continued)

arabic letter alef with hamza above final form DD

arabic letter alef with final form DE

arabic letter feh initial form DF

arabic tatweel E0

arabic letter feh E1

arabic letter qaf E2

arabic letter kaf E3

arabic letter lam E4

arabic letter meem E5

arabic letter noon E6

arabic letter heh E7

arabic letter waw E8

arabic letter alef maksura E9

arabic letter yeh EA

arabic fathatan EB

arabic dammatan EC

arabic kasratan ED

arabic fatha EE

arabic damma EF

arabic kasra F0

arabic shadda F1

arabic sukun F2

arabic letter qar initial form F3

arabic letter kaf initial form F4

arabic letter lam initial form F5

arabic kasseh F6

arabic ligature lam with alef with madda above isolated form F7

arabic ligature lam with alef with hamza above isolated form F8

arabic ligature lam with alef with madda below isolated form F9

arabic ligature lam with alef isolated form FA

arabic letter meem initial form FB

arabic letter noon initial form FC

arabic letter heh initial form FD

arabic letter heh final form FE

euro sign FF

IBM-1124
Table 25. IBM–1124 Code set

Symbolic Name Hex Value

no-break space A0

974 Writing and Debugging Programs

Table 25. IBM–1124 Code set (continued)

cyrillic capital letter io A1

cyrillic capital letter dje A2

cyrillic capital letter ghe with upturn A3

cyrillic capital letter ukranian ie A4

cyrillic capital letter dze A5

cyrillic capital letter byelorussian-ukranian i A6

cyrillic capital letter yi A7

cyrillic capital letter je A8

cyrillic capital letter lje A9

cyrillic capital letter nje AA

cyrillic capital letter tshe AB

cyrillic capital letter kje AC

soft hyphen AD

cyrillic capital letter short U AE

cyrillic capital letter dzhe AF

cyrillic capital letter A B0

cyrillic capital letter be B1

cyrillic capital letter ve B2

cyrillic capital letter ghe B3

cyrillic capital letter de B4

cyrillic capital letter ie B5

cyrillic capital letter zhe B6

cyrillic capital letter ze B7

cyrillic capital letter I B8

cyrillic capital letter short I B9

cyrillic capital letter ka BA

cyrillic capital letter el BB

cyrillic capital letter em BC

cyrillic capital letter en BD

cyrillic capital letter O BE

cyrillic capital letter pe BF

cyrillic capital letter er C0

cyrillic capital letter es C1

cyrillic capital letter te C2

cyrillic capital letter U C3

cyrillic capital letter ef C4

cyrillic capital letter ha C5

cyrillic capital letter tse C6

cyrillic capital letter che C7

cyrillic capital letter sha C8

cyrillic capital letter shcha C9

Appendix A. Character Maps 975

Table 25. IBM–1124 Code set (continued)

cyrillic capital letter hard sign CA

cyrillic capital letter yeru CB

cyrillic capital letter soft sign CC

cyrillic capital letter E CD

cyrillic capital letter yu CE

cyrillic capital letter ya CF

cyrillic small letter A D0

cyrillic small letter be D1

cyrillic small letter ve D2

cyrillic small letter ghe D3

cyrillic small letter de D4

cyrillic small letter ie D5

cyrillic small letter zhe D6

cyrillic small letter ze D7

cyrillic small letter I D8

cyrillic small letter short I D9

cyrillic small letter ka DA

cyrillic small letter el DB

cyrillic small letter em DC

cyrillic small letter en DD

cyrillic small letter O DE

cyrillic small letter pe DF

cyrillic small letter er E0

cyrillic small letter es E1

cyrillic small letter te E2

cyrillic small letter u E3

cyrillic small letter ef E4

cyrillic small letter ha E5

cyrillic small letter tse E6

cyrillic small letter che E7

cyrillic small letter sha E8

cyrillic small letter shcha E9

cyrillic small letter hard sign EA

cyrillic small letter yeru EB

cyrillic small letter soft sign EC

cyrillic small letter E ED

cyrillic small letter yu EE

cyrillic small letter ya EF

numero sign F0

cyrillic small letter io F1

cyrillic small letter dje F2

976 Writing and Debugging Programs

Table 25. IBM–1124 Code set (continued)

cyrillic small letter ghe with upturn F3

cyrillic small letter ukrainian ie F4

cyrillic small letter dze F5

cyrillic small letter byelorussian-ukrainian F6

cyrillic small letter yi F7

cyrillic small letter je F8

cyrillic small letter lje F9

cyrillic small letter nje FA

cyrillic small letter tshe FB

cyrillic small letter kje FC

section sign FD

cyrillic small letter short u FE

cyrillic small letter dzhe FF

IBM-1129
Table 26. IBM–1129 Code set

Symbolic Name Hex Value

no-break space A0

inverted exclamation mark A1

cent sign A2

pound sign A3

euro sign A4

yen sign A5

broken bar A6

section sign A7

latin small ligature OE A8

copyright sign A9

feminine ordinal indicator AA

left pointing double angle quotation mark AB

not sign AC

soft hyphen AD

registered sign AE

macron AF

degree sign B0

plus-minus sign B1

superscript two B2

superscript three B3

latin capital Y with diaeresis B4

micro sign B5

pilcrow sign B6

Appendix A. Character Maps 977

Table 26. IBM–1129 Code set (continued)

middle dot B7

latin capitol ligature OE B8

superscript one B9

masculine ordinal indicator BA

right pointing double angle quotation mark BB

vulgar fraction one quarter BC

vulgar fraction one half BD

vulgar fraction three quarters BE

inverted question mark BF

latin capitol letter A with grave C0

latin capitol letter A with acute C1

latin capitol letter A with circumflex C2

latin capitol letter A with breve C3

latin capitol letter A with diaeresis C4

latin capitol letter A with ring above C5

latin capitol letter AE C6

latin capitol letter C with cedilla C7

latin capitol letter E with grave C8

latin capitol letter E with acute C9

latin capitol letter E with circumflex CA

latin capitol letter E with diaeresis CB

combining grave accent CC

latin capitol letter I with acute CD

latin capitol letter I with circumflex CE

latin capitol letter I with diaeresis CF

latin capitol letter D with stroke D0

latin capitol letter N with tilde D1

combining hook above D2

latin capitol letter O with acute D3

latin capitol letter O with circumflex D4

latin capitol letter O with horn D5

latin capitol letter O with diaeresis D6

multiplication sign D7

latin capitol letter O with stroke D8

latin capitol letter U with grave D9

latin capitol letter U with acute DA

latin capitol letter U with circuflex DB

latin capitol letter U with diaeresis DC

latin capitol letter U with horn DD

combining tilde DE

latin small letter sharp S DF

978 Writing and Debugging Programs

Table 26. IBM–1129 Code set (continued)

latin small letter A with grave E0

latin small letter A with acute E1

latin small letter A with circumflex E2

latin small letter A with breve E3

latin small letter A with diaeresis E4

latin small letter A with ring above E5

latin small letter AE E6

latin small letter C with cedilla E7

latin small letter E with grave E8

latin small letter E with acute E9

latin small letter E with circumflex EA

latin small letter E with diaeresis EB

combining acute accent EC

latin small letter I with acute ED

latin small letter I with circumflex EE

latin small letter I with diaeresis EF

latin small letter D with stroke F0

latin small letter N with tilde F1

combining dot below F2

latin small letter O with acute F3

latin small letter O with circumflex F4

latin small letter O with horn F5

latin small letter O with diaeresis F6

division sign F7

latin small letter O with stroke F8

latin small letter U with grave F9

latin small letter U with acute FA

latin small letter U with circumflex FB

latin small letter U with diaeresis FC

latin small letter U with horn FD

dong sign FE

latin small letter Y with diaeresis FF

TIS-620
Table 27. TIS–620 Code set

Symbolic Name Hex Value

thai character ko kai A1

thai character kho khai A2

thai character kho khuat A3

thai character kho khwai A4

Appendix A. Character Maps 979

Table 27. TIS–620 Code set (continued)

thai character kho khon A5

thai character kho rakhang A6

thai character ngo ngu A7

thai character cho chan A8

thai character cho ching A9

thai character cho chang AA

thai character so so AB

thai character cho choe AC

thai character yo ying AD

thai character do chada AE

thai character to patak AF

thai character tho than B0

thai character tho nangmontho B1

thai character tho phuthao B2

thai character no nen B3

thai character do dek B4

thai character to tao B5

thai character tho thung B6

thai character tho thahan B7

thai character tho thong B8

thai character no nu B9

thai character bo baimai BA

thai character po pla BB

thai character pho phung BC

thai character fo fa BD

thai character pho phan BE

thai character fo fan BF

thai character pho samphao C0

thai character mo ma C1

thai character yo yak C2

thai character ro rua C3

thai character ru C4

thai character lo ling C5

thai character lu C6

thai character wo waen C7

thai character so sala C8

thai character so rusi C9

thai character so sua CA

thai character ho hip CB

thai character lo chula CC

thai character o ang CD

980 Writing and Debugging Programs

Table 27. TIS–620 Code set (continued)

thai character ho nokhuk CE

thai character paiyannoi CF

thai character sara a D0

thai character mai han-akat D1

thai character sara aa D2

thai character sara am D3

thai character sara i D4

thai character sara ii D5

thai character sara ue D6

thai character sara uee D7

thai character sara u D8

thai character uu D9

thai character phinthu DA

thai currency symbol baht DF

thai character sara e E0

thai character sara ae E1

thai character sara O E2

thai character sara ai maimuan E3

thai character sara ai maimalai E4

thai character lakkhangyao E5

thai character maiyamok E6

thai character maitaikhu E7

thai character mai ek E8

thai character mai tho E9

thai character mai tri EA

thai character mai chattawa EB

thai character thanthakhat EC

thai character nikhahit ED

thai character yamakkan EE

thai character fongman EF

thai digit zero F0

thai digit one F1

thai digit two F2

thai digit three F3

thai digit four F4

thai digit five F5

thai digit six F6

thai digit seven F7

thai digit eight F8

thai digit nine F9

that character angkhankhu FA

Appendix A. Character Maps 981

Table 27. TIS–620 Code set (continued)

thai character khomut FB

982 Writing and Debugging Programs

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service.
IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.
This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication. IBM
may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:
IBM Corporation
Dept. LRAS/Bldg. 003
11400 Burnet Road
Austin, TX 78758-3498
U.S.A.
Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.
The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and

© Copyright IBM Corp. 1997, 2001 983

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

984 Writing and Debugging Programs

Index

Special Characters
_exit subroutine 260
_LARGE_FILES 117
_max_disp_width macro 355

use of 337

Numerics
216840 83, 84
41Map203831 49
42Gap211376 538
64-bit 203

execution environment 204
kernel extension development 205

A
access subroutine 136
adb debug program

address maps
displaying 49

addresses
displaying 44
finding current 48
forming 43

binary files
patching 46

breakpoints 34, 35
C stack backtrace

displaying 44
commands, combining 39
computing numbers 42
creating scripts 39
customizing 38
data

displaying 43
data formats

choosing 45
data formatting, example 58
default input formats

setting 41
directory dumps

example 56
displaying text 42
examples

data formatting 58
directory dumps 56
i-node dumps 56
tracing multiple functions 60

exiting 33
expressions

list of 50
using integers 37
using operators 37
using symbols 37

external variables
displaying 48

adb debug program (continued)
files

locating values in 46
writing 46

i-node dumps
example 56

instructions
displaying 43

integers
using in expressions 37

list of operators 50
list of subcommands 51
list of variables 54
maps

memory, changing 45
maps, address

displaying 49
maximum offsets

setting 41
memory

changing 47
memory maps

changing 45
numbers, computing 42
operators

using in expressions 37
operators, list of 50
output widths

setting 41
program execution

controlling 33
programs

continuing execution 36
preparing for debugging 33
running 34
single-stepping 36
stopping 37
stopping with keys 36

prompts, using 33
sample programs 54
scripts, creating 39
shell commands, using 33
source files

displaying and manipulating 43
starting 31, 32
stopping a program 37
subcommands, list of 51
symbols

using in expressions 37
text, displaying 42
tracing multiple functions, example of 60
using prompts 33
using shell commands 33
values

locating in files 46
variables

displaying external 48
list of 54

© Copyright IBM Corp. 1997, 2001 985

adb debug program (continued)
using 47

addresses
disk 111
program

overview 535
alarm subroutine 257
alarms

audible
curses 26

beeps
curses 26

flashes
curses 26

visible
curses 26

alerts 97
aliases

SMIT 665
allocation

compressed file system 110
JFS 109

allocation bitmaps 138
allocation groups 138
applications 203

32-bit 203
ASCII

definition 331
ASCII characters

list of 380
ASCII code set 331
async-cancel safety 222
attributes

setting
curses 26

turning off
curses 26

turning on
curses 26

attributes object 216, 227, 231
auxiliary area 454

B
back end program 142
backup command 97
beeps

curses 26
BIDI 337
bidirectional data streams

logical 375
visual 374

Bidirectional Input Method 461
features 461
Key Settings 461
keymap 461
modifiers 461

bidirectionality (BIDI) 374, 375
definition 337

binding a thread 196
blocks

boot 137

blocks (continued)
data 138
full logical 109
indirect 111, 131
logical 109
partial logical 109
super 137

boot block 137
buffer size operations 882
byte size of characters

determining 337
example 494

C
C locale 339, 340, 341, 342

definition 334
callbacks

auxiliary 459
initializing 461
input method 456
status 459
text drawing 458

cancelability 221
cancellation

points 222
states 221
types 221

cancellation request 221
catclose subroutine 487
category

definition 334
catgets subroutine 487
catopen subroutine 487, 488
cbreak mode

curses 20
minicurses 20

changing the locale
example 341

Chapter 410
char data type 330, 366
character

definition 329
previous character in a buffer 350

character class properties
description 332

character conversion 354
character processing

Japanese 465
character set

definition 329
character shaping 337, 376
characters

adding characters to windows
curses 10, 13
minicurses 10

allowing 8-bit character return 16
ASCII

list of 380
control characters

converting to printables 14

986 Writing and Debugging Programs

characters (continued)
converting control characters to printables

curses 14
current

curses 3
deleting

curses 15
determining display width 337
erasing characters

curses 15
getting characters from standard input

curses 16
retrieving from a window using

curses 16
returning if no input is available

curses 16
chdir subroutine 104
Chinese

input method 477
chmod subroutine 137
chown subroutine 137
chroot subroutine 104
cleanup handlers 225
close subroutine

closing files with 129
code page independence

definition 337
code set

obtaining current 330
support 329

code-set 421
code set display width 333
code set independence 332
code set width 333
code sets 379

ASCII 331
Big5 396
definition 329
determining byte size of characters 337

example 494
history 329
IBM-1046 379, 404
IBM-1124 379, 405
IBM-1129 379, 405
IBM-1252 380
IBM-850 379, 398
IBM-856 379, 399
IBM-932 379
IBM-943 331, 379, 402
IBM-eucJP 379
IBM-eucKR 397
IBM-eucTW 395
IBM PC

IBM-850 397
IBM-921 400
IBM-922 401
IBM-932 402

implementation strategy 382
ISO

GBK 395
IBM-eucCN 394

code sets 379 (continued)
ISO (continued)

IBM-eucJP 394
ISO646-IRV 384
ISO8859-1 385, 386

ISO8859-1 386
ISO8859-15 379, 392
ISO8859-5 387
ISO8859-6 388
ISO8859-7 389
ISO8859-8 390
ISO8859-9 391
ISO8859 family 379
structure

control characters 383
extended UNIX code (EUC) 393
general format 382
graphic characters 384
single-byte and multibyte 384

TID-620 406
TIS-620 379
understanding 329
UTF-8 379

collation
definition 333
primary weight 333
secondary weight 333

collation subroutines
multibyte character

strcoll 357
strxfrm 357

wide character
understanding 356
wcscoll 357
wcsxfrm 357, 358

collation weight
definition 333

commands
backup 97
cron 96
diag 86
dspcat 486
dspmsg 486
errclear 96, 98
errdemon 98
errlogger 98
errmsg 97
errpt 86, 92, 95, 98
errstop 96
errupdate 92, 98
ls 97
mycmd 720
SCCS

list of 634
trace 718, 720
trcrpt 719, 721
trcstop 720

comparing
wide character string collation values

example 357

Index 987

comparing (continued)
wide character strings

example 359
comparison subroutines

wide character
understanding 359
wcscmp 357, 359
wcsncmp 359

compiling a multi-threaded program 173
compressed file system 110
concurrency level 163
condition variable

attributes
creation 231
destruction 231
object 231
process-shared 251

creation 232
definition 231
destruction 232, 234
signalling 234
usage 235
wait 235
waiting 233

contention scope 242
global contention scope 163
local contention scope 163
process contention scope 163
system contention scope 163

contention-scope attribute 242
control characters

converting to printables
curses 14

controlling terminal 879
conversion subroutines

wide character
understanding 359
wcstod 359
wcstol 359, 360
wcstoul 359, 361

conversion technology
kana-to-kanji 465

converters 880
converters overview for programming 410
description 330

converting
multibyte string to wide character string

example 351
multibyte to wide character

example 349
wide character

to double 359
to signed long integer 360
to unsigned long integer 361

wide character string to multibyte character string
example 353

wide character string to multibyte string
example 351

wide character to multibyte
example 350

copy subroutines
wide character

understanding 361
wcscat 361
wcscpy 361, 362
wcsncat 361
wcsncpy 361

copying
wide characters

example 361
creat subroutine 125

creating files with 128
creating a thread 164, 216
creation and destruction 228, 232
cron command 96
ctype.h file 332
currency symbol 346

euro 346
curses

adding
characters to windows 10, 13
strings to windows 13

alarms
audible 26
beeps 26
flashes 26
visible 26

attributes
setting 26
turning off 26
turning on 26

beeps 26
cbreak mode 20
characters

adding characters to windows 10, 13
allowing 8-bit character return 16
converting control characters to printables 14
current 3
deleting 15
erasing characters 15
getting characters from standard input 16
retrieving from a window 16
returning if no input is available 16

clearing
windows 15

control characters
converting to printables 14

converting termcap to terminfo 24
creating

pads 7
current character 3
current line 3
cursors

controlling placement after refresh 9
getting location of logical cursor 9
logical 3
moving the logical cursor 9
moving the physical cursor 9
physical 3

delaying
output 20

988 Writing and Debugging Programs

curses (continued)
deleting

characters 15
lines 15, 27
pads 7

displays 3
erasing

lines 15
windows 15

flashes 26
input

converting new lines 20
converting returns 20
echoing 20
raw mode 20
waiting for a new line 20

inserting
blank lines in windows 14
lines 27

keypads
enabling/disabling 27

lines
current 3
deleting 15, 27
erasing 15
inserting 27

logical cursor 3
macros 3
moving

logical cursor 9
physical cursor 9

naming conventions 3
output

delaying 20
pads 3

creating 7
deleting 7
refreshing 7

physical cursor 3
printing

formatted printf on windows 14
refreshing

multiple windows 7
pads 7
sub-windows 7
windows 7

restoring
terminals 20

saving
shell mode as normal mode 22
terminal mode as program mode 22
terminals 20

screen 3
scrolling

windows 14
starting 4
stopping 4
strings

adding to windows 13
making two letter codes into integers 22

sub-windows 7

curses (continued)
creating 7

termcap
converting to terminfo 24

terminology 3
typeahead 27
windows 3, 5, 7

clearing 15
copying 9
creating 7
deleting 7
drawing boxes around 9
erasing 15
moving 9
overlapping 9
refreshing 7
refreshing multiple 7
screens 3
scrolling 14

cursor movement
bidirectionality (BIDI) 375

cursors
controlling placement after refresh

curses 9
getting location of logical cursor

curses 9
logical

curses 3
moving logical curses

curses 9
moving physical

curses 9
physical

curses 3
Cyrillic Input Method 462

internal modifier 463
keymap 462
keysyms 462
modifiers 463
reserved keysyms 462

D
data blocks 109, 138
data streams

bidirectionality (BIDI) 374
data types

multibyte subroutines 340
wide character subroutines 340

dbx command
print subcommand 73
step subcommand 77
stop subcommand

thbp and thp aliases 68
thread subcommand 73

dbx debug program
files

current, displaying 66
dbx symbolic debug program 63

.dbxinit file 79

Index 989

dbx symbolic debug program 63 (continued)
aliases

dbx subcommand, creating 78
breakpoints 64
calling procedures 72
changing the current file 67
command line editing 64
current file

displaying 66
dbx subcommand aliases

creating 78
expressions

modifiers and operators for 73
type checking 74

files
.dbxinit 79
current, changing 67
reading dbx subcommands from 80
source, displaying 66

folding variables to lowercase and uppercase 74
handling signals 70
list of subcommands 80
machine level debugging 76
machine level programs

debugging 76
running 77

machine registers 76
memory addresses 76
modifiers

for expressions 73
multiple processes 69
multiple threads 67
names, scoping 73
new dbx prompt

defining 78
operators

for expressions 73
print output

changing variables 75
procedures

calling 72
current, changing 67

program control 64
programs

controlling 64
machine level 76
machine level, running 77
multiple processes 69
multiple threads 67
running 64
separating output from dbx 65

prompts
defining 78

reading dbx subcommands from a file 80
running programs 64
running shell commands 63
scoping names 73
separating dbx output from program output 65
signals, handling 70
source directory path

changing 66

dbx symbolic debug program 63 (continued)
source files

displaying and manipulating 66, 70, 78
stack trace, displaying 72
starting 63
subcommands, list of 80
thread-related objects 67
tracing execution 65
type checking in expressions 74
using 63
variables

changing print output 75
displaying and modifying 72
folding, lowercase and uppercase 74

deadlock 230
debugging a multi-threaded program 175
default locale

definition 334
descriptors 125
detached state 237
detachstate attribute 217
diag command 86
dialogs

SMIT 661
directories

changing
current 104
root 104

linking 124
overview 103
status 124
working with

overview 104
subroutines for 105

disk address format 111
disk fragments 138
disk i-nodes 106, 138
disk space allocation 109
display column width

wide character subroutines
understanding 355
wcswidth 355, 356
wcwidth 355

display width
of characters and strings 337

documentation search service 607
documents 607

searching 607
drawing alternate box characters 378
drawing primary box characters 378
dspcat command 486
dspmsg command 486
Dynamic Processor Deallocation 197

E
ECHO directive 277
entry point routine 218
environment variables

description 334
EQUIV_CLASS_MAX limit 333
equivalence class

definition 333

990 Writing and Debugging Programs

equivalence class (continued)
tertiary 333

erasing
lines

curses 15
windows

curses 15
minicurses 15

errclear command 96
errmsg command 97
error log descriptors 86
error logging

adding messages 97
alerts 97
cleaning an error log 96
commands 98
copying an error log 97
example report 92, 95
files 98
generating a report 95
kernel services 98, 99
managing 87
overview

dev/error file 86
errpt command 86

reading an error report 90
stopping an error log 96
subroutines 98, 99
transferring to another system 87

error logging facility 86
Error Record Template Repository 86
error report

detailed example 92
generating 95
summary example 95

errpt command 86, 92, 95, 98
errstop command 96, 98
errupdate command 92, 98
euro 346

IBM-1252 code set 380
ISO8859-15 codeset 379, 392
UTF-8 code set 379

example programs 650
manipulating characters

isalnum (ctype) routine 649
isalpha (ctype) routine 649
isascii (ctype) routine 649
iscntrl (ctype) routine 649
isdigit (ctype) routine 649
islower (ctype) routine 649
ispunct (ctype) routine 649
isspace (ctype) routine 649
isupper (ctype) routine 649

exec subroutine 259
extended regular expressions

lex command 272

F
fclear subroutine 130

fdpr
debugging reordered executables 77

fgets subroutine 366
fgetwc()

use of 366
fgetwc subroutine 365, 366
fgetws subroutine 365, 366
FIFO (first-in, first-out)

understanding 134
file code

definition 331, 339
file descriptor tables

definition 125
file descriptors

definition 125
duplicating

dup subroutine 126
fcntl subroutine 126
fork subroutine 126

managing 125
preset values 126
resource limit 128

file name matching
use of fnmatch subroutine 338

file-system helpers
operations 141

file systems 137
bitmap 110
compressed 110
controlling 139
fragment map 110
fragmented 109
layout 137
overview 101
quotas 112
subroutines 139
types

creating 141
file types

overview 101
files 101, 125

/usr/adm/ras/trcfile 719
access modes 136
allocating space to 109
closing 129
creating 128
input and output (I/O) 129
large

_LARGE_FILES 117
64-bit file system 118
allocation in file systems 110
common pitfalls 119
implications for existing programs 115
open protection 116
porting applications 116
writing programs that access 115

linking 122
locking fields 107
masks 128
opening 129
overview 101

Index 991

files 101, 125 (continued)
pipes 134
reading 130
SCCS

controlling 632
creating 630
detecting damage 633
editing 630
repairing damage 633
tracking 632
updating 630

sharing open 126
status 136
truncating 131
working with

subroutines for 102
writing 131

finding
multibyte character byte length

example 350
the number of wide characters in a wide character

string
example 363

the number of wide characters not in a wide
character string

example 364
wide character display column width

example 355
wide character string display column width

example 356
first-in first-out scheduling policy 240
flashes

curses 26
floating-point exceptions 144, 145

disabled and enabled processing 144
subroutines 143

fnmatch subroutine
use of 338

fork cleanup handlers 259
fork subroutine 259
fragment map 110
fragmented file system 109
fragments

disk 138
map 110

fread subroutine 365
front end program 141, 142
ftruncate subroutine 131
full logical block 109
fullstat subroutine 136

G
gencat command 484, 485, 486
generic trace channels 720
get_wctype subroutine 354
getc subroutine 365
getwc subroutine 365
Greek Input Method 463

features 462
internal modifier 464
keymap 464

Greek Input Method 463 (continued)
keysyms 464
modifiers 464
reserved keysyms 464

H
header files

control block
list of 143

multibyte subroutines 340
wide character subroutines 340

help
SMIT 671

help tasks
SMIT (System Management Interface Tool) 671

helpers 141, 142
hlpadb 51

I
i-nodes 106, 107

definition 101
disk 138
i-number byte offset 103
modifying 107
timestamp

changing 136
I/O offset

absolute 129
and read subroutine 130
and write subroutine 131
description 129
end_relative 129
manipulating 129
relative 129

I/O subroutines
wide character

fgetwc 366
fgetws 366, 368
formatted 365
fputwc 366, 368
fputws 366, 369
getc 365
getwc 365
getwchar 366, 367
getws 366
putwc 366
putwchar 366
putws 366
understanding 365
unformatted 365
ungetwc 366, 367

IBM-1046 code set 379
IBM-1046 codeset 404
IBM-1124 code set 379
IBM-1124 codeset 405
IBM-1129 code set 379
IBM-1129 codeset 405
IBM-1252 code set 380
IBM-850 code set 379
IBM-850 codeset 398

992 Writing and Debugging Programs

IBM-856 code set 379
IBM-856 codeset 399
IBM-921 codeset 400
IBM-922 codeset 401
IBM-932 code set 379
IBM-943 code set 331, 379, 402
IBM-eucJP code set 379
iconvTable converters

list of conversions performed by IconvTable
converter 417

in-core i-nodes 107
inbound mapping 458
index nodes 106
indexes for documents 607
indirect blocks 111
inheritsched attribute 240
input

converting returns
curses 20

echoing
curses 20

raw mode
curses 20

waiting for a new line
curses 20
minicurses 20

input method
areas 454
Bidirectional 461
callbacks 456
Cyrillic 462
Greek 463
initialization 455
introduction 452
Japanese 464
key event processing 456
keymaps 456
Korean 470
Latvian 472
Lithuanian 472
management 455
naming conventions 453
overview 452
programming 454
Simplified Chinese 473
single-byte 475
structures 456
Tradional Chinese 477
universal 478

input methods
callbacks 458

int data type 366
interchange converters

7-bit 425
8-bit 427
compound text 430
uucode 432

internationalization
code sets 379

IPC (interprocess channel) 102
is_wctype subroutine 354

islower subroutine 354
ISO8859-15 code set 392
ISO8859-15 codeset 379
ISO8859-2 codeset 386
ISO8859-5 codeset 387
ISO8859-6 codeset 388
ISO8859-7 codeset 389
ISO8859-8 codeset 390
ISO8859-9 code set 391
ISO8859 family of code sets 379
isupper subroutine 354
iswalnum subroutine 354
iswalpha subroutine 354
iswcntrl subroutine 354
iswdigit subroutine 354
iswgraph subroutine 354
iswlower subroutine 354
iswprint subroutine 354
iswpunct subroutine 354
iswspace subroutine 354
iswupper subroutine 354
iswxdigit subroutine 354

J
Japanese Input Method 464

internal modifiers 470
keymaps 469
keysyms 470
modifiers 470
reserved keysyms 470

JFS
disk space allocation 109

joining a thread 165

K
kernel programming

multiprocessor issues 203
kernel thread 162
key 247
keyboard mapping 457

Japanese 467
keymaps 457
keypads

enabling/disabling
curses 27

kill subroutine 257
Korean Input Method 470

L
LANG

use of 335
LANG environment variable 335, 357, 488
large files

common pitfalls 119
arithmetic overflows 120
failure to include proper headers 121
file size limits 122
fseek/ftell 120

Index 993

large files (continued)
imbedded file offsets 122
improper data types 119
parameter mismatches 119
string conversions 121

open protection 116
porting applications to 116
using _LARGE_FILES 117
using 64-bit file system 118
writing programs that access 115

Latvian
input method 472

Layout library
LayoutObject structures 377

LayoutObject structures 377
lazy loading 531
LC_* categories 341
LC_* environment variables 357
LC_ALL

use of 335
LC_ALL environment variable 335, 487, 488
LC_COLLATE category 333, 334, 341, 356, 357
LC_COLLATE environment variable 335
LC_CTYPE category 333, 334, 340, 354, 355, 365
LC_CTYPE environment variable 335
LC_MESSAGES category 334, 340, 342, 488
LC_MESSAGES environment variable 335, 487, 488
LC_MONETARY category 334, 340, 346
LC_MONETARY environment variable 335, 340
LC_NUMERIC category 334, 340
LC_NUMERIC environment variable 335
LC_TIME category 334, 340
LC_TIME environment variable 335
lex command

actions 277
compiling the lexical analyzer 282
defining substitution strings 280
explanation 271
extended regular expressions 272
passing code to program 280
start conditions 281

lex program
lex command 271
yacc program 283

lexical analyzer
parser program 283
writing a program 271

libpthreads.a library 163, 166
libpthreads_compat.a library 163
libraries

hardware-specific subroutines 656
library model test 242
librs2.a library 656
line disciplines 880
lines

deleting
curses 15

erasing
curses 15

linking
runtime 529

links 124
directory 124
hard 123
symbolic 123

Lithuanian
input method 472

load system call 490
loader domains

creating and deleting 893
using 891

locale
accessing information about 340
bidirectionality

data streams 374, 375
definition 337

changing
example 341

character shaping 337, 376
definition 329, 334
naming conventions 334
obtaining currency symbol

example 343
obtaining current values

example 341
obtaining LC_MESSAGES values

example 343
obtaining LC_MONETARY values

example 342, 343
obtaining LC_NUMERIC values

example 342
obtaining LC_TIME values

example 343
saving current values

example 341
setting 340
setting LC_* categories

example 342
locale category

definition 334
locale commands

localedef 354
locale.h file 340
locale subroutines

introducing 339
localeconv 340, 342
nl_langinfo 340, 343
rpmatch 341, 343
setlocale 334, 339, 340, 341, 342, 354, 357, 487
understanding 340

localeconv subroutine 340, 342, 346
localedef command 354
localization

definition 333
locating

first of several wide characters in a wide character
string

example 363
first wide character in a wide character string

example 362
last wide character in a wide character string

example 362

994 Writing and Debugging Programs

locating (continued)
the first wide character string in a wide character

string
example 364

locking
creating user locking services 201

locking and unlocking 229
LOCPATH

use of 335
LOCPATH environment variable 335
logical block 109
logical volume manager

library subroutines 301
long locks (from OSF/1) 252
longjmp subroutine 257
ls command 97
lseek subroutine 129

M
m4

built-in macros 322
changing quote characters 321
checking for defined macros 322
conditional expressions 325
creating user-defined macros 319
integer arithmetic 323
macro processing with arguments 321
manipulating files 323
manipulating strings 325
printing names and definitions 326
quote characters 320
redirecting output 324
removing macro definitions 322
system programs 324
unique names 324
using the macro processor 319

masks 128
MB_CUR_MAX

example 494
use of 337

MB_LEN_MAX macro
use of 337

mblen subroutine 349, 350
mbstowcs()

use of 365
mbstowcs subroutine 349, 351, 365
mbtowc subroutine 349, 351, 365
memory

system
introduction 535

memory management 537
allocating memory 545
listing of memory manipulation services 564
program address space

overview 535
memory mapping

listing of memory mapping services 565
mmap comparison with shmat 538
mmap compatibility considerations 539
overview 537
semaphore subroutines overview 540

menus
SMIT 659

message catalog
closing

example 487
creating 484
opening

example 487
sizing 485
using 487

message facility
closing a message catalog

example 487
creating a message catalog 484
displaying a message

example 487
displaying messages 486, 487
opening a message catalog

example 487
overview 480
reading a message

example 487
retrieving default messages 488
setting the language hierarchy 488
sizing a message catalog 485
using a message catalog 487

Message Facility 480
message facility commands

gencat 484, 485, 486
mkcatdefs 481, 484, 485, 486
runcat 485, 486, 487

message facility subroutines
catclose 487
catgets 487
catopen 487, 488

message source file
$delset directive 483
$len directive 483
$quote directive 482, 483
$set directive 483, 485
adding comments to 481
assigning message ID numbers 483
assigning message set numbers 483
continuing messages 481
creating 480
defining message length 483
example 480
removing messages 483
special characters 481
usage 480

message translation
description 329

messages
concatenating parts 499
displaying

example 487
reading

example 487
writing style in 501

Index 995

minicurses
adding

characters to windows 10
strings to windows 13

cbreak mode 20
characters

adding characters to windows 10
clearing

windows 15
erasing

windows 15
input

waiting for a new line 20
strings

adding to windows 13
windows

clearing 15
erasing 15

mkcatdefs command 481, 484, 485, 486
mkfifo subroutine 128
mknod subroutine

creating regular files with 128
creating special files with 128

monetary formatting subroutines 346
mount command 142
mount helpers

overview 142
multi-threaded program

Compiler Invocation 174
compiling 173
debugging 175

multibyte
list of code-set converters 421

multibyte character code 332
definition 331

multibyte character string
collation subroutines

strcoll 357
strxfrm 357

multibyte code set
support 329

Multibyte code set
definition 331

multibyte function
what is 336

multibyte string to wide character string conversion
example 351

multibyte subroutines
definition 339
introducing 339

multibyte to wide character conversion
example 349

multibyte to wide character conversion
subroutines 349

mblen 349, 350
mbstowcs 349, 351, 365
mbtowc 349, 351, 365
understanding 348

multiprocessor programming 191

mutex
attributes

creation 227
destruction 227
object 227
prioceiling 244
process-shared 251
protocol 244

creation 228
definition 227
destruction 228
locking 229
protocols 244
unlocking 229
usage 229

mycmd command 720

N
national language support 379
National Language Support (NLS) 329

capabilities 329
checklist 498
do’s and don’ts 497
list of subroutines 502
message facility 480
quick reference 497
subroutines 339

nice value 260
nl_langinfo

for obtaining code set 330
nl_langinfo subroutine 340, 343
NL_MSGMAX variable 485
NL_SETMAX 483
NL_SETMAX variable 485
NL_TEXTMAX variable 483, 485
NLS 329, 330, 379
nls commands

dspcat 486
dspmsg 486

NLSPATH
use of 335

NLSPATH environment variable 335
NLSPATH environmnet variable 487

definition 487
notify object class (SRC)

creating a subsystem notification method 701
removing a subsystem notification method 701

O
O_DEFER 130
object classes 507

SMIT 661
object data manager 86
objects 507
obtaining

currency symbol
example 343

current locale
example 341

996 Writing and Debugging Programs

obtaining (continued)
LC_MESSAGES values

example 343
LC_MONETARY values

example 342, 343
LC_NUMERIC values

example 342
LC_TIME values

example 343

ODM (Object Data Manager)

descriptors 510
link 511
method 513
terminal 511

example code 518
adding objects 520
creating object classes 518

list of commands 517
list of subroutines 517
object classes

adding objects 509
creating 508
definition 507
locking 509
storing 509
unlocking 509

objects
adding to object classes 509
definition 507
searching for 514
storing 509

predicates 514
comparison operators 515
constants in 516
descriptor names 515
logical operator 517

offset 129

one time initialization 246

open subroutine 125

creating files with 128
opening a file with 129

operating system

libraries 655

options (threads library) 261

outbound mapping 458

output

delaying
curses 20

overviews

make command
creating description files 303
creating target files 313
defining and using macros 309
internal rules 306
using with non-SCCS files 315
using with SCCS files 314

P
pads

creating
curses 7

curses 3
deleting

curses 7
refreshing

curses 7
parser

lexical analyzer 283
writing a program 271

partial logical block 109
pbsearchsort 652
PC, ISO, and EBCDIC Code Set Converters 417
pclose subroutine 134
permissions

directories 136
files 136

pipe subroutine 134
pipes

child processes 135
creating with mkfifo 128

popen subroutine 134
portable character set

definition 331
POSIX locale 334, 339, 340
POSIX thread 163
pre-edit area 454
primary weight

collation 333
printf subroutine 487
printf subroutine family 365
prioceiling attribute 244
priority

inheritance protocol 244
inversion 243
protection protocol 244

priority scheduling POSIX option 262
process code

definition 339
process priority 260
process-shared attribute 251
processes

using pipes 134
processor

example configurations 194
numbers 193
ODM names 193
states 194

protocol attribute 244
psignal()

use of 500
pthread 163
pthread_atfork subroutine 259
pthread_attr_destroy subroutine 217
pthread_attr_getdetachstate subroutine 217
pthread_attr_getinheitsched subroutine 240
pthread_attr_getsatckaddr subroutine 251
pthread_attr_getschedparam attribute 241
pthread_attr_getschedpolicy attribute 241

Index 997

pthread_attr_getscope subroutine 242
pthread_attr_getstacksize subroutine 251
pthread_attr_init subroutine 217
pthread_attr_setdetachstate subroutine 217
pthread_attr_setinheritsched subroutine 240
pthread_attr_setsatckaddr subroutine 251
pthread_attr_setschedparam 241
pthread_attr_setschedparam subroutine 241
pthread_attr_setschedpolicy subroutine 241
pthread_attr_setscope subroutine 242
pthread_attr_setstacksize subroutine 251
pthread_attr_t data type 216
pthread_cancel subroutine 221
pthread_cleanup_pop subroutine 225
pthread_cleanup_push subroutine 225
pthread_cond_broadcast subroutine 234
pthread_cond_destroy subroutine 232
pthread_cond_init subroutine 232
PTHREAD_COND_INITIALIZER macro 232
pthread_cond_signal subroutine 234
pthread_cond_t data type 232
pthread_cond_timedwait subroutine 233
pthread_cond_wait subroutine 233
pthread_condattr_destroy subroutine 231
pthread_condattr_init subroutine 231
pthread_condattr_t data type 231
pthread_create subroutine 218
pthread_equal subroutine 219
pthread_exit subroutine 220
pthread_getschedparam subroutine 241
pthread_getspecific subroutine 249
pthread_join subroutine 237
pthread_key_create subroutine 247
pthread_key_delete subroutine 249
pthread_key_t data type 247
pthread_kill subroutine 257
pthread_mutex_destroy subroutine 228
pthread_mutex_getprioceiling subroutine 244
pthread_mutex_init subroutine 228
pthread_mutex_lock subroutine 229
pthread_mutex_setprioceiling subroutine 244
pthread_mutex_t data type 228
pthread_mutex_trylock subroutine 229
pthread_mutex_unlock subroutine 229
pthread_mutexattr_destroy subroutine 227
pthread_mutexattr_getprioceiling subroutine 244
pthread_mutexattr_getprotocol subroutine 244
pthread_mutexattr_init subroutine 227
pthread_mutexattr_setprioceiling subroutine 244
pthread_mutexattr_setprotocol subroutine 244
pthread_mutexattr_t data type 227
PTHREAD_ONCE_INIT macro 246
pthread_once subroutine 246
pthread_once_t data type 246
pthread_self subroutine 219
pthread_setcancelstate subroutine 221
pthread_setcanceltype subroutine 221
pthread_setschedparam subroutine 243
pthread_setspecific subroutine 249
pthread_t data type 219
pthread_testcancel 222

pthread_yield subroutine 234, 260

Q
quotas 112

R
race condition 164
Radix character

handling 338
raise subroutine 257
read subroutine 130, 351, 365
regular expressions

lex command 272
REJECT directive 278
remove subroutine 124
rmdir subroutine 124
round-robin scheduling policy 240
rpmatch, details 344
rpmatch subroutine 341, 343
runcat command 485, 486, 487
runtime linking 529

S
saving

current locale
example 341

scanf subroutine family 365
SCCS

commands
list of 634

files
controlling 632
creating 630
detecting damage 633
editing 630
repairing damage 633
tracking 632
updating 630

flags and parameters 630
sched_yield subroutine 243
schedparam attribute 241
schedpolicy attribute 241
scheduling

parameters 166
policies 240
priority 240

screen types
SMIT 659

search subroutines
wide character

understanding 362
wcschr 362
wcscspn 362, 364
wcspbrk 362, 363
wcsrchr 362
wcsspn 362, 363
wcstok 362, 364
wcswcs 362, 364

998 Writing and Debugging Programs

searching and sorting
example program 652

secondary weight
collation 333

sed command
starting the editor 523
using string replacement 528
using text in commands 527
using the command summary 524

selectors
SMIT 660

semaphores (from OSF/1) 253
setjmp subroutine 257
setlocale subroutine 334, 339, 340, 341, 342, 354,

357, 487
setting

LC_* categories
example 342

shared libraries
creating 533
lazy loading 531

shared memory
mmap comparison with shmat 538
overview 537

shared objects 529
creating 531

shells
saving as normal mode

curses 22
sigaction subroutine 257
siglongjmp subroutine 257
signal

delivery 258
generation 257
handlers 257
masks 257

sigprocmask subroutine 257
sigsetjmp subroutine 257
sigthreadmask subroutine 257
sigwait subroutine 234, 257
Simplified Chinese Input Method 473
Single-byte code set

definition 331
Single Byte Input Method

keymaps 476
modifiers 477
reserved keysyms 477

Single-Byte Input Method 475
Single Source Dual Path

definition 494
example 494

Single Source Single Path
definition 492
example 492

SMIT (System Management Interface Tool)
aliases 665
dialogs

designing 661
executing 669
generating 668

example program 683

SMIT (System Management Interface Tool) (continued)
fast paths 665
generating commands with 668
help

understanding 671
help tasks

creating 671
information command descriptors

cmd_to_*_postfix 667
cmd_to_discover 666
understanding 665

menus
designing 659

name selects
designing 660

object class
for aliases 674

object classes
dialog 677
dialog header 680
menu 673
selector header 674
understanding 661

screen types 659
tasks

adding 669
debugging 671

smit errclear command 96
smit errpt command 96
smit trace command 720
SNA generic alert architecture 97
software models

divide-and-conquer 190
master/slave 190
producer/consumer 190

SRC
basic operations 697
capabilities 698
defining subservers to the SRC object class 711
defining subsystems to the SRC object class 711
list of subroutines 712
modifying subserver object definitions 711
modifying subsystem object definitions 711
relationship with init command 697
removing subserver object definitions 711
removing subsystem object definitions 711

SRC communication types
message queues (IPC)

overview 704
programming requirements 706

signals
overview 702
programming requirements 705

sockets
overview 704
programming requirements 705

SRC object classes
descriptors 698
notify object overview 701
subserver type object overview 701
subsystem environment object overview 698

Index 999

SRC subsystem programming requirements
processing SRC request packets 707
processing status requests 708
receiving SRC request packets

using message queue (IPC) communication 706
using signals communication 705
using sockets communication 705

returning continuation packets 709
returning error packets 710
returning subsystem reply packets 709

stack address POSIX option 261
stack size POSIX option 262
stackaddr attribute 251
stacksize attribute 251
status 124

directories 124
status area 454
status subroutines

overview 136
stddef.h file 332
stdlib.h file 332, 355
stop subcommand 69
strcoll subroutine 357
strerror()

use of 500
strfmon subroutine 346
string manipulation

using sed command 523
strings

adding to windows
curses 13
minicurses 13

determining display width 337
making two letter codes into integers

curses 22
strlen subroutine 355
strptime subroutine 345
strxfrm subroutine 357
sub-windows

curses 7
deleting

curses 7
refreshing

curses 7
subroutines 98

controlling files and directories
list of 639

errlog 98
hardware-specific 656

subsystems
using the system resource controller 705

super block 137
synchronization

condition variable 165
join 165
mutex 164

synchronization scheduling 243
definition 166

sys/limits.h file 333
sysconf subroutine 263
system environment 197

system environment 197 (continued)
Dynamic Processor Deallocation 197

system file tables 125
system resource controller 698, 702, 705, 711, 712

T
terminal devices 879

tty subsystem overview 879
terminals

boolean entry for termcap identifier
curses 22

capabilities
curses 20

characteristics
curses 20

delete line
curses 27

insert character capabilities
curses 20

insert line
curses 27

insert line capabilities
curses 20

number of lines and columns
curses 22

numeric entry for termcap identifier
curses 22

resetting
curses 20

restoring
curses 20

saving
curses 20

saving as program mode
curses 22

string entry for termcap identifier
curses 22

switching
curses 20

termcap
curses 22

verbose name
curses 20

terminating a thread 164, 219
testing

wide character classification
example 354

text
bidirectional

logical data stream example 375
visual data stream example 374

thread 216
attributes

contention-scope 242
creation 217
destruction 217
detachstate 217
inheritsched 240
object 216
schedparam 241
schedpolicy 241

1000 Writing and Debugging Programs

thread 216 (continued)
stackaddr 251
stacksize 251

binding 196
Compiler Invocation 174
concurrency level 163
contention scope 163, 242
creation 216
data types 268
default values 269
definition 161
detached state 237
ID 219
initial 162
join 237
kernel thread 162
libpthreads.a library 163
libpthreads_compat.a library 163
limits 269
models 162
POSIX thread 163, 174
pthread 163
supported 263
threads library 162
user thread 162

thread-safe
SRC subroutines 712

thread-safe code 168
thread-specific data 247, 249

concurrent creation 248
definition 247
destroying data 250
destructor 248
destructor routine 249
key 247
swapping data 249
usage 249

threads library 162
cancellation 224
cleanup 225
condition variable

attributes creation and destruction 231
synchronization point 236
timed wait 233, 235

dynamic initialization
thread-safe 247
traditional 246

exiting a thread 220
freeing returned data 239
join 238
mutex

attributes creation and destruction 227
deadlock 230

read/write locks (from POSIX) 254
thread creation 219

time formatting subroutines 345
timestamp

changing 136
TIS-620 code set 379
TIS-620 codeset 406

tokenizing
wide character string

example 364
tolower subroutine 354
toupper subroutine 354
towlower subroutine 354
towupper subroutine 354
trace

configuring 718
generating reports 721
recording trace event data 719
starting 720
starting a trace 718
stopping 720
using generic trace channels 720

trace command 718, 720
configuring 718

trace facility
overview of 713

trace hook identifiers 719
Trace hook ids

001 - 10A 721
10B - 14E 727
152 - 19C 736
1A4 - 1BF 739
1C8 - 1CE 746
1CF - 211 751
212 - 220 755
221 - 223 762
224 - 226 767
230 - 233 774
240 - 252 775
253 - 25A 783
271 - 280 791
301 - 315 800
3C5 - 3E2 804
400 - 46E 874
401 811
402 817
403 821
404 826
405 831
406 836
407 841
408 846
409 851
411 - 418 855

tracing
configuring 718
starting 718

transfer error log 87
trcrpt command 719, 721
trcstop command 720
truncate subroutine 131
tty

current modes
curses 24

flushing driver queue
curses 27

restoring modes
curses 24

Index 1001

tty (continued)
saving modes

curses 24
tty (teletypewriter)

definition 879
examples 879

tty driver 879
tty subsystem 879

overview 879
typeahead

curses 27

U
unique code point range

character list 380
exception 338
search for 338

unique code-point range 331, 338
universal input method 478
unlink subroutine 124
unmount command 142
user thread 162
UTF-8 code set 379
utimes subroutine 136

V
virtual memory

addressing
overview 535

virtual processor 162
vital product data (VPD) 86, 91
VP 162
VPD (vital product data) 86, 91

W
wchar.h file 340, 366
wchar_t

definition 332
wchar_t data type 336, 340, 353, 366
wcscat subroutine 361
wcschr subroutine 362
wcscmp subroutine 357, 359
wcscoll subroutine 357
wcscpy subroutine 361, 362
wcscspn subroutine 362, 364
wcsftime subroutine 345
wcslen subroutine 349, 353
wcsncat subroutine 361
wcsncmp subroutine 359
wcsncpy subroutine 361
wcspbrk subroutine 362, 363
wcsrchr subroutine 362
wcsspn subroutine 362, 363
wcstod subroutine 359
wcstok subroutine 362, 364
wcstol subroutine 359, 360
wcstombs subroutine 349, 353, 365
wcstoul subroutine 359, 361

wcswcs subroutine 362, 364
wcsxfrm subroutine 357, 358
wctomb subroutine 349, 350, 365
wctype_t data type 340, 354
wide character

classification subroutines
case conversion 354
generic 353, 354
standard 354
understanding 353

display column width subroutines
understanding 355
wcswidth 355, 356
wcwidth 355

I/O subroutines
fgetwc 366
fgetws 366
formatted 365
fputwc 366, 368
fputws 366, 369
getc 365
getwc 365
getwchar 366, 367
getws 366
putwc 366
putwchar 366
putws 366
understanding 365
unformatted 365
ungetwc 366, 367

wide character classification testing
example 354

wide character code
concept 332
definition 331, 339

wide character constant
use of

restrictions 369
wide character function

description of 336
wide character string

collation subroutines
understanding 356
wcscoll 357
wcsxfrm 357, 358

comparison subroutines
understanding 359
wcscmp 357, 359
wcsncmp 359

conversion subroutines
understanding 359
wcstod 359
wcstol 359, 360
wcstoul 359, 361

copy subroutines
understanding 361
wcscat 361
wcscpy 361, 362
wcsncat 361
wcsncpy 361

1002 Writing and Debugging Programs

wide character string (continued)
search subroutines

understanding 362
wcschr 362
wcscspn 362, 364
wcspbrk 362, 363
wcsrchr 362
wcsspn 362, 363
wcstok 362, 364
wcswcs 362, 364

wide character string to multibyte character string
conversion

example 353
wide character string to multibyte string conversion

example 351
wide character subroutines

definition 339
introducing 339

wide character to multibyte conversion
example 350

wide character to multibyte conversion
subroutines 349

understanding 348
wcslen 349, 353
wcstombs 349, 353, 365
wctomb 349, 350, 365

width of characters and strings
display 337

windows
clearing

curses 15
minicurses 15

copying
curses 9

curses 3
deleting

curses 7
drawing box around

curses 9
moving

curses 9
overlapping

curses 9
refreshing

curses 7
refreshing multiple

curses 7
scrolling

curses 14
winsize structure 882
wint_t data type 336, 340, 353, 366
write subroutine 131

Y
yacc command

actions 290
ambiguous rules 294
creating a parser 283
declarations 286
error handling 291
explanation 271

yacc command (continued)
grammar file 284
lexical analysis 293
rules 289
turning on debug mode 296

yacc program
lex program 283

yield subroutine 260
yyleng external variable 278
yywleng external variable 278

Index 1003

1004 Writing and Debugging Programs

Readers’ Comments — We’d Like to Hear from You

AIX 5L Version 5.1
General Programming Concepts:
Writing and Debugging Programs

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very Dissatisfied
Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
���

Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

PLACE

POSTAGE

STAMP

HERE

IBM Corporation
Publications Department
Internal Zip 9561
11400 Burnet Road
Austin, TX
78758-3493

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

���

Printed in U.S.A

	Contents
	About This Book
	Who Should Use This Book
	Highlighting
	ISO 9000
	Related Publications
	Trademarks

	Chapter 1. Tools and Utilities
	Entering a Program into the System
	Checking a Program
	Compiling and Linking a Program
	Correcting Errors in a Program
	Building and Maintaining a Program

	Subroutines
	Shell Commands

	Chapter 2. The Curses Library
	Terminology
	Naming Conventions
	Structure of a Curses Program
	Return Values

	Initializing Curses
	Windows in the Curses Environment
	The Default Window Structure
	The Current Window Structure
	Subwindows
	Pads

	Manipulating Window Data with Curses
	Creating Windows
	Subwindows
	Pads

	Removing Windows, Pads, and Subwindows
	Changing the Screen or Window Images
	Refreshing Windows
	Subroutines Used for Refreshing Pads
	Refreshing Areas that Have Not Changed
	Garbled Displays

	Manipulating Window Content
	Support for Filters

	Controlling the Cursor with Curses
	Manipulating Characters with Curses
	Character Size
	Adding Characters to the Screen Image
	waddch Subroutines
	Complex Characters
	Special Characters
	waddstr Subroutines
	winsch Subroutines
	winsertln Subroutines
	wprintw Subroutines
	unctrl Macro

	Enabling Text Scrolling
	Deleting Characters
	werase Subroutines
	wclear Subroutines
	wclrtoeol Subroutines
	wclrtobot Subroutines
	wdelch Subroutines
	wdeleteln Subroutines

	Getting Characters
	wgetch Subroutines
	keyname Subroutine
	winch Subroutines
	wscanw Subroutines

	Understanding Terminals with curses
	Manipulating Multiple Terminals
	Determining Terminal Capabilities

	Setting Terminal Input and Output Modes
	Input Modes
	Delay Mode
	Echo Processing

	Using the terminfo and termcap Files
	Writing Programs That Use the terminfo Subroutines

	Low-Level Screen Subroutines
	termcap Subroutines
	Converting termcap Descriptions to terminfo Descriptions

	Manipulating TTYs
	Synchronous and Networked Asynchronous Terminals
	Output
	Input

	Working with Color
	Manipulating Video Attributes
	Video Attributes, Bit Masks, and the Default Colors
	Setting Video Attributes
	Working with Color Pairs
	Extracting Attributes
	Lights and Whistles

	Setting Curses Options

	Manipulating Soft Labels
	Obsolete Curses Subroutines
	AIX 3.2 Curses Compatibility
	List of Additional Curses Subroutines
	Manipulating Windows
	Manipulating Characters
	Manipulating Terminals
	Manipulating Color
	Miscellaneous Utilities

	Chapter 3. Debugging Programs
	adb Debug Program Overview
	Getting Started with the adb Debug Program
	Starting adb with a Program File
	Starting adb with a Nonexistent or Incorrect File
	Starting adb with the Default File
	Starting adb with a Core Image File
	Starting adb with a Data File
	Starting adb with the Write Option
	Using a Prompt
	Using Shell Commands from within the adb Program
	Exiting the adb Debug Program

	Controlling Program Execution
	Preparing Programs for Debugging with the adb Program
	Running a Program
	Setting Breakpoints
	Displaying Breakpoints
	Deleting Breakpoints

	Continuing Program Execution
	Single-Stepping a Program
	Stopping a Program with the Interrupt and Quit Keys
	Stopping a Program

	Using adb Expressions
	Using Integers in Expressions
	Using Symbols in Expressions
	Using Operators in Expressions

	Customizing the adb Debug Program
	Combining Commands on a Single Line
	Creating adb Scripts
	Setting Output Width
	Setting the Maximum Offset
	Setting Default Input Format
	Changing the Disassembly Mode

	Computing Numbers and Displaying Text
	Displaying and Manipulating the Source File with the adb Program
	Displaying Instructions and Data
	Forming Addresses
	Displaying an Address
	Displaying the C Stack Backtrace
	Choosing Data Formats
	Changing the Memory Map
	Patching Binary Files
	Locating Values in a File
	Writing to a File
	Making Changes to Memory
	Using adb Variables
	Finding the Current Address
	Displaying External Variables
	Displaying the Address Maps

	adb Debug Program Reference Information
	adb Debug Program Addresses
	adb Debug Program Expressions
	adb Debug Program Operators
	adb Debug Program Subcommands
	adb Debug Program Variables

	Example adb Program: adbsamp
	Example adb Program: adbsamp2
	Example adb Program: adbsamp3
	Example of Directory and i-node Dumps in adb Debugging
	Example of Data Formatting in adb Debugging
	Example of Tracing Multiple Functions in adb Debugging
	Starting the adb Program
	Setting Breakpoints
	Displaying a Set of Instructions
	Starting the adsamp3 Program
	Removing a Breakpoint
	Continuing the Program
	Tracing the Path of Execution
	Displaying a Variable Value
	Skipping Breakpoints

	dbx Symbolic Debug Program Overview
	Using the dbx Debug Program
	Starting the dbx Debug Program
	Running Shell Commands from dbx
	Command Line Editing in dbx
	Using Program Control
	Setting and Deleting Breakpoints

	Running a Program
	Separating dbx Output from Program Output
	Tracing Execution

	Displaying and Manipulating the Source File with the dbx debugProgram
	Changing the Source Directory Path
	Displaying the Current File
	Changing the Current File or Procedure
	Debugging Programs Involving Multiple Threads
	Identifying Thread-Related Objects
	Breakpoints and Threads
	Thread-Related subcommands

	Debugging Programs Involving Multiple Processes

	Examining Program Data
	Handling Signals
	Calling Procedures
	Displaying a Stack Trace
	Displaying and Modifying Variables
	Displaying Thread-Related Information
	Scoping of Names
	Using Operators and Modifiers in Expressions
	Checking of Expression Types
	Folding Variables to Lowercase and Uppercase
	Changing Print Output with Special Debug Program Variables

	Debugging at the Machine Level with dbx
	Using Machine Registers
	General-purpose registers
	Floating-point registers
	System-control registers

	Examining Memory Addresses
	Running a Program at the Machine Level
	Debugging fdpr Reordered Executables
	Displaying Assembly Instructions

	Customizing the dbx Debugging Environment
	Defining a New dbx Prompt
	Creating dbx Subcommand Aliases
	Using the .dbxinit File
	Reading dbx Subcommands from a File

	List of dbx Subcommands
	Setting and Deleting Breakpoints
	Running Your Program
	Tracing Program Execution
	Ending Program Execution
	Displaying the Source File
	Printing and Modifying Variables, Expressions, and Types
	Thread Debugging
	Multiprocess Debugging
	Procedure Calling
	Signal Handling
	Machine-Level Debugging
	Debugging Environment Control

	Chapter 4. Error Notification
	Security
	Examples
	Related Information

	Error Logging Facility
	Error Logging Overview
	Managing Error Logging
	Transferring Your Error Log to Another System
	Configuring Error Logging
	Listing the Current Settings
	Customizing the Log File Location
	Customizing the Log File Size
	Customizing the Buffer Size

	Customizing Duplicate Error Handling
	Removing Error Log Entries
	Automatic Removal
	errclear Command

	Enabling and Disabling Logging for an Event
	Showing Events for Which Logging is Disabled
	Showing Events for which Reporting is Disabled
	Changing the Current Setting for an Event

	Setting Up Error Notification
	Logging Maintenance Activities
	Redirecting syslog Messages to Error Log
	Directing Error Log Messages to Syslog

	Error Logging Tasks
	Reading an Error Report
	Examples of Detailed Error Reports
	Example of a Summary Error Report
	Generating an Error Report
	Stopping an Error Log
	Cleaning an Error Log
	Copying an Error Log to Diskette or Tape

	Error Logging and Alerts
	Error Logging Controls
	Error Logging Commands
	Error Logging Subroutines and Kernel Services
	Error Logging Files
	Related Information

	Chapter 5. File Systems and Directories
	File Types
	Working with Files
	Creating Files
	Manipulating Files (Programming)

	JFS Directories
	JFS Directory Structures
	Working with Directories (Programming)
	Changing Current Directory of a Process
	Changing the Root Directory of a Process

	Subroutines That Control Directories

	JFS2 Directories
	JFS2 Directory Structures
	Working with Directories (Programming)
	Changing Current Directory of a Process
	Changing the Root Directory of a Process

	Subroutines That Control Directories

	Working with JFS i-nodes
	Disk i-node Structure for JFS
	In-core i-node Structure

	Working with JFS2 i-nodes
	Disk i-node Structure for JFS2
	In-core i-node Structure

	JFS File Space Allocation
	Full and Partial Logical Blocks
	Allocation in Fragmented File Systems
	Allocation in Compressed File Systems
	Allocation in File Systems Enabled for Large Files
	Disk Address Format
	Indirect Blocks
	Direct Method
	Single Indirect Method
	Double Indirect Method

	Quotas

	JFS2 File Space Allocation
	Full and Partial Logical Blocks
	JFS2 File Space Allocation
	Extents
	B+ Trees

	Writing Programs That Access Large Files
	Implications for Existing Programs
	Open Protection
	Porting Applications to the Large File Environment
	Using _LARGE_FILES
	Using the 64-Bit File System Subroutines
	Common Pitfalls using the Large File Environment
	Improper Use of Data Types
	Parameter Mismatches
	Arithmetic Overflows
	Fseek/Ftell
	Failure to Include Proper Header Files
	String Conversions
	Imbedded File Offsets
	File Size Limits
	JFS File Size Limits
	JFS2 File Size Limits

	Linking for Programmers
	Hard Links
	Symbolic Links
	Directory Links

	Using File Descriptors
	System File and File Descriptor Tables
	Managing File Descriptors
	Sharing Open Files
	Duplicating File Descriptors

	Preset File Descriptor Values
	File Descriptor Resource Limit

	File Creation and Removal
	Creating a File
	Creating a Regular File (creat, open, or mknod Subroutines)
	Creating a Special File (mknod or mkfifo Subroutine)

	Opening a File
	Closing a File

	Working with File I/O
	Manipulating the Current Offset
	Reading a File
	Writing a File
	Delayed Write
	Truncating Files

	Writing Programs to Use Direct I/O
	Direct I/O vs. Normal Cached I/O
	Benefits of Direct I/O
	Performance Costs of Direct I/O
	Direct I/O Reads
	Direct I/O Writes
	Conflicting File Access Modes
	Enabling Applications to use Direct I/O
	Offset/Length/Address Alignment Requirements of the Target Buffer
	Direct I/O Limitations
	Direct I/O and Data I/O Integrity Completion

	Working with Pipes
	Using Pipe Subroutines

	Synchronous I/O

	File Status
	File Accessibility
	JFS File System Layout
	Boot Block
	Superblock
	Allocation Bitmaps
	Fragments
	Disk I-Nodes
	Allocation Groups
	Using File System Subroutines

	JFS2 File System Layout
	Superblock
	Allocation Maps
	Disk I-Nodes
	Allocation Groups
	Allocation Group Sizes
	Partial Allocation Groups
	Using File System Subroutines

	Creating New File System Types
	File System Helpers
	Obsolete File System Helper mechanism
	File System Helper Operations

	Mount Helpers

	Major Control Block Header Files

	Chapter 6. Floating-Point Exceptions
	Floating-Point Exception Subroutines
	Floating-Point Trap Handler Operation
	Exceptions: Disabled and Enabled Comparison
	Exceptions-Disabled Model
	Exceptions-Enabled Model

	Imprecise Trapping Modes
	Precise Traps
	Imprecise Traps

	Hardware-Specific Subroutines
	Example of a Floating-Point Trap Handler

	Chapter 7. Input and Output Handling
	Low-Level I/O Interfaces
	Stream I/O Interfaces
	Terminal I/O Interfaces
	Asynchronous I/O Interfaces

	Chapter 8. Large Program Support
	Understanding the Large Address-Space Model
	Understanding the Very Large Address-Space Model
	Enabling the Large Address-Space Models
	Executing Programs with Large Data Areas
	Special Considerations

	Chapter 9. Parallel Programming
	Related Information
	Understanding Threads
	Threads and Processes
	Process Properties
	Thread Properties
	The Initial Thread

	Threads Implementation
	Kernel Threads and User Threads
	Thread Models and Virtual Processors
	Contention Scope and Concurrency Level
	libpthreads.a POSIX Threads Library
	libpthreads_compat.a POSIX Draft 7 Threads Library

	Related Information

	Thread Programming Concepts
	Basic Operations
	Thread Creation
	Thread Termination

	Synchronization
	Mutexes and Race Conditions
	Waiting for Threads

	Scheduling
	Scheduling Parameters
	Synchronization Scheduling

	Other Facilities
	Advanced Facilities
	Threads-Processes Interactions

	Threads Library API
	Object-Oriented Interface
	Naming Convention
	Related Files

	Writing Reentrant and Thread-Safe Code
	Understanding Reentrance and Thread-Safety
	Reentrance
	Thread-Safety

	Making a Function Reentrant
	Returning Data
	Keeping Data over Successive Calls

	Making a Function Thread-Safe
	Locking Shared Resources
	A Workaround for Thread-Unsafe Functions

	Reentrant and Thread-Safe Libraries
	Using Libraries
	Converting Libraries

	Developing Multi-Threaded Programs
	Compiling a Multi-Threaded Program
	Header File
	Compiler Invocation
	Compiler Invocation for Draft 7 of POSIX 1003.1c
	Porting Draft 7 applications to the X/Open Version 5 Standard

	Memory Requirements of a Multi-Threaded Program
	Debugging a Multi-Threaded Program
	Using dbx
	Using the Kernel Debug Program

	Core File Requirements of a Multi-Threaded Program

	Developing Multi-Threaded Program which examines and modifiespthread library objects
	Initialization
	Call Back Functions
	Update Function
	Context Functions
	List Functions
	Field Functions
	Customizing the Session
	Session Termination
	Related Information

	Developing Multi-Threaded Program Debuggers
	Initialization
	Call Back Functions
	Update Function
	Hold and Unhold Functions
	Context Functions
	List Functions
	Field Functions
	Customizing the Session
	Session Termination
	Example

	Multi-Threaded Call Back Functions
	Purpose
	Library
	Syntax
	Description
	Parameters
	Return Values
	Related Information

	Benefits of Threads
	Parallel Programming Concepts
	Modularity
	Software Models
	Master/Slave Model
	Divide-and-Conquer Models
	Producer/Consumer Models

	Performance Consideration
	Managing Threads
	Inter-Thread Communications
	Multiprocessor Systems

	Limitations

	Chapter 10. Programming on Multiprocessor Systems
	Identifying Processors
	ODM Processor Names
	Logical Processor Numbers
	ODM Processor States

	Controlling Processor Use
	The cpu_state Command
	Example Processor Configurations
	Simple Processor Configurations
	Complex Processor Configurations

	Binding Processes and Kernel Threads

	Dynamic Processor Deallocation
	Potential Impact to Applications
	Processor Deallocation: Flow of Events
	Programming Interfaces
	Existing AIX Interfaces Dealing with Individual Processors
	Interfaces to Determine the Number if CPUs on a System
	Interfaces to Bind Threads to a Specific Processor

	Interfaces for Processor Deallocation Notification
	Notification in User Mode
	Notification in Kernel Mode

	Test Environment

	Creating Locking Services
	Multiprocessor-Safe Locking Services
	Locking Services Example

	Kernel Programming
	32-bit and 64-bit Addressability
	Performance
	64-bit objects and archive file types

	Differences between 32-bit and 64-bit execution environments
	Tools support for 64-bit development
	Porting source code from 32-bit to 64-bit execution environments
	64-bit application development
	64-bit library development
	64-bit kernel extension development

	Performance Monitor API Programming Concepts
	Introduction
	Performance Monitor Accuracy Warning
	Performance Monitor Context and State
	Thread and thread group accumulation
	Security Considerations
	Common Definitions
	The Seven Basic API Calls
	Examples
	Simple thread counting group example
	Thread counting example with reset

	Related Information

	Chapter 11. Threads Programming Guidelines
	Thread Implementation Model
	Thread-safe and Threaded Libraries in AIX
	Threads Versions On AIX
	Threads Basic Operation Overview
	Creating Threads
	Thread Attributes Object
	Thread Attributes Object Creation and Destruction
	Detachstate Attribute
	Other Attributes

	Thread Creation
	Using the Thread Attributes Object
	Entry Point Routine
	Returned Information

	Handling Thread IDs
	A First Multi-Threaded Program

	Terminating Threads
	Exiting a Thread
	Canceling a Thread
	Cancelability State and Type
	Async-Cancel Safety
	Cancellation Points
	Cancellation Example

	Using Cleanup Handlers
	Calling Cleanup Handlers
	Balancing the Push and Pop Operations

	List of Threads Basic Operation Subroutines
	Synchronization Overview
	Using Mutexes
	Mutex Attributes Object
	Mutex Attributes Object Creation and Destruction
	Mutex Attributes

	Creating and Destroying Mutexes
	Locking and Unlocking Mutexes
	Protecting Data with Mutexes
	Mutex Usage Example
	Avoiding Deadlocks

	Using Condition Variables
	Condition Attributes Object
	Condition Attributes Object Creation and Destruction
	Condition Attribute

	Creating and Destroying Condition Variables
	Using Condition Variables
	Waiting for a Condition
	Signaling a Condition

	Synchronizing Threads with Condition Variables
	Condition Wait Semantics
	Timed Wait Semantics
	Condition Variables Usage Example

	Joining Threads
	Waiting for a Thread
	Calling the pthread_join Subroutine
	Multiple Joins
	Join Example

	Returning Information from a Thread

	List of Synchronization Subroutines
	Scheduling Overview
	Threads Scheduling
	Basic Scheduling Facilities
	Inheritsched Attribute

	Scheduling Policy and Priority
	Setting the Scheduling Policy and Priority at Creation Time
	Setting the Scheduling Attributes at Execution Time
	Considerations about Scheduling Policies

	Contention Scope
	Setting the Contention Scope
	Impacts of Contention Scope on Scheduling
	sched_yield Subroutine

	Synchronization Scheduling
	Priority Inversion
	Mutex Protocols
	Priority Inheritance Protocol
	Priority Protection Protocol

	Choosing a Mutex Protocol
	Protocol Attribute
	Inheritance or Protection

	List of Scheduling Subroutines
	Threads Advanced Features
	One-Time Initializations
	One-Time Initialization Object
	One-Time Initialization Routine

	Thread-Specific Data
	Creating and Destroying Keys
	Key Creation
	Destructor Routine
	Key Destruction

	Using Thread-Specific Data
	Setting Successive Values
	Taking Care about Destructor Routines
	Using Non-Pointer Values

	Advanced Attributes
	Stack Attributes
	Stack Size
	Stack Address

	Process Sharing

	Making Complex Synchronization Objects
	Long Locks
	Semaphores
	Write-Priority Read/Write Locks

	List of Threads Advanced-Feature Subroutines
	Threads-Processes Interactions Overview
	Signal Management
	Signal Handlers and Signal Masks
	Signal Generation
	Handling Signals
	Signal Delivery

	Process Duplication and Termination
	Forking
	Fork Handlers
	Process Termination

	Scheduling
	Process-Level Scheduling
	Timer and Sleep Subroutines

	List of Threads-Processes Interactions Subroutines
	Threads Library Options
	List of Options
	Stack Address POSIX Option
	Stack Size POSIX Option
	Priority Scheduling POSIX Option

	Checking the Availability of an Option
	Compile Time Checking
	Run Time Checking

	Threads Library Quick Reference
	Supported Interfaces
	POSIX Interfaces
	Single UNIX Specification Interfaces
	Thread-safety

	Threads Data Types
	Limits and Default Values
	Maximum Number of Threads per Process
	Minimum Stack Size
	Maximum Number of Thread-Specific Data Keys
	Default Attribute Values

	Chapter 12. lex and yacc Program Information
	Creating an Input Language with the lex and yacc Commands
	Writing a Lexical Analyzer Program with the lex Command
	How the lex Command Operates
	How the Lexical Analyzer Works

	Extended Regular Expressions in the lex Command
	Operators

	lex Actions
	Null Action
	Same As Next Action
	Printing a Matched String
	Finding the Length of a Matched String
	Matching Strings within Strings
	Getting More Input
	Putting Characters Back
	Input/Output Subroutines
	Character Set
	End-of-File Processing

	Passing Code to the Generated lex Program
	Defining lex Substitution Strings
	lex Start Conditions
	Compiling the Lexical Analyzer
	lex Library

	Using the lex Program with the yacc Program
	Creating a Parser with the yacc Program
	yacc Grammar File
	main and yyerror Subroutines
	yylex Subroutine

	Using the yacc Grammar File
	Using Comments
	Using Literal Strings
	Formatting the Grammar File
	Errors in the Grammar File

	yacc Declarations
	Defining Global Variables
	Start Conditions
	Token Numbers

	yacc Rules
	Repeating Nonterminal Names
	Using Recursion in a Grammar File
	Empty String
	End-of-Input Marker

	yacc Actions
	Passing Values between Actions
	Putting Actions in the Middle of Rules

	yacc Error Handling
	Providing for Error Correction
	Clearing the Look-Ahead Token

	Lexical Analysis for the yacc Command
	yacc-Generated Parser Operation
	Shift
	Reduce

	Using Ambiguous Rules in the yacc Program
	Parser Conflicts
	How the Parser Responds to Conflicts

	Turning on Debug Mode for a yacc-Generated Parser

	Example Program for the lex and yacc Programs
	Compiling the Example Program
	Parser Source Code
	Lexical Analyzer Source Code

	Chapter 13. Logical Volume Programming
	List of Logical Volume Subroutines

	Chapter 14. make Command
	Creating a Description File
	Format of a make Description File Entry
	Using Commands in a make Description File
	Calling the make Program from a Description File
	Preventing the make Program from Writing Commands
	Preventing the make Program from Stopping on Errors
	Example of a Description File
	Making the Description File Simpler

	Internal Rules for the make Program
	Example of Default Rules File
	Single-Suffix Rules
	Using the Make Command with Archive Libraries
	Changing Macros in the Rules File
	Defining Default Conditions in a Description File
	Including Other Files in a Description File

	Defining and Using Macros in a Description File
	Using Macros in a Description File
	Internal Macros
	Target File Name
	Label Name
	Younger Files
	First Out-of-Date File
	Current File-Name Prefix
	Archive Library Member

	Changing Macro Definitions in a Command

	How the make Command Creates a Target File
	Using the make Command with Source Code Control System (SCCS)Files
	Description Files Stored in the Source Code Control System (SCCS)
	Using the make Command with Non-Source Code Control System(SCCS) Files
	How the make Command Uses the Environment Variables
	Example of a Description File

	Chapter 15. m4 Macro Processor Overview
	Using the m4 Macro Processor
	Creating a User-Defined Macro
	Using the Quote Characters
	Changing the Quote Characters

	Arguments

	Using a Built-In m4 Macro
	Removing a Macro Definition
	Checking for a Defined Macro
	Using Integer Arithmetic
	Manipulating Files
	Redirecting Output
	Using System Programs in a Program
	Using Unique File Names
	Using Conditional Expressions
	Manipulating Strings
	Printing

	List of Additional m4 Macros

	Chapter 16. National Language Support
	NLS Capabilities
	Locale-Specific and Culture-Specific Conventions
	User Messages in Native Languages
	Code Set Support
	Input Method Support

	Overview of Chapter Contents
	Locale Overview for Programming
	Working with Code Sets
	Single-Byte and Multibyte Code Sets
	The Unique Code-Point Range

	Data Representation
	Multibyte Character Code Data Representation
	Wide Character Code Data Representation

	Character Properties
	Collation-Order Properties
	Code-Set Width
	Code-Set Display Width

	Localization
	Locale Categories
	Understanding Locale
	Environment Variables Precedence Example

	Multibyte Subroutines
	Wide Character Subroutines
	Bidirectionality and Character Shaping
	Code Set Independence
	Determining Maximum Number of Bytes in Code Sets
	Determining Character and String Display Widths
	Exceptions to Code Set Knowledge: Unique Code-Point Range

	File Name Matching
	Radix Character Handling
	Programming Model

	National Language Support Subroutines Overview
	Introducing Locale Subroutines
	Introducing Time Formatting Subroutines
	Introducing Monetary Formatting Subroutines
	Introducing Multibyte and Wide Character Subroutines
	wchar.h Header File

	Introducing Internationalized Regular Expression Subroutines

	Locale Subroutines
	Setting the Locale
	Accessing Locale Information
	Examples

	Time Formatting Subroutines
	Examples

	Monetary Formatting Subroutines
	Euro Currency Support via the @euro Modifier
	Examples
	Related Information

	Multibyte and Wide Character Subroutines
	Multibyte Code and Wide Character Code Conversion Subroutines
	Multibyte Code to Wide Character Code Conversion Subroutines
	Wide Character Code to Multibyte Code Conversion Subroutines
	Examples

	Wide Character Classification Subroutines
	Generic Wide Character Classification Subroutines
	Standard Wide Character Classification Subroutines
	Wide Character Case Conversion Subroutines
	Example

	Wide Character Display Column Width Subroutines
	Examples

	Multibyte and Wide Character String Collation Subroutines
	Examples

	Multibyte and Wide Character String Comparison Subroutines
	Example

	Wide Character String Conversion Subroutines
	Examples

	Wide Character String Copy Subroutines
	Example

	Wide Character String Search Subroutines
	Examples

	Wide Character Input/Output Subroutines
	Formatted Wide Character I/O
	Unformatted Wide Character I/O
	Examples

	Working with the Wide Character Constant
	Related Information

	Internationalized Regular Expression Subroutines
	Examples

	Layout (Bidirectional Text and Character Shaping) Overview
	Data Streams
	Cursor Movement
	Character Shaping
	Methods of Character Shaping
	Contextual Character Shaping

	Introducing Layout Library Subroutines

	Use of the libcur Package
	Code Set Overview
	ASCII Characters
	ASCII Characters in the Unique Code-Point Range

	Other ASCII Characters
	Code Set Strategy
	Code Set Structure
	Control Characters
	Graphic Characters
	Single-Byte and Multibyte Code Sets

	ISO Code Sets
	ISO646-IRV
	ISO8859 Family
	Code Set ISO8859-1
	Code Set ISO8859-2
	Code Set ISO8859-5
	Code Set ISO8859-6
	Code Set ISO8859-7
	Code Set ISO8859-8
	Code Set ISO8859-9
	Code Set ISO8859-15
	Extended UNIX Code (EUC) Encoding Scheme
	IBM-eucJP
	IBM-eucCN
	GBK
	IBM-eucTW
	Big5
	IBM-eucKR

	IBM PC Code Sets
	IBM-850
	IBM-856
	IBM-921
	IBM-922
	IBM-943 and IBM-932
	IBM-1046
	IBM-1124
	IBM-1129
	TIS-620

	UCS-2 and UTF-8
	ISO10646 UCS-2 (Unicode)
	UTF-8 (UCS Transformation Format)

	Related Information

	Converters Overview for Programming
	Converters Introduction
	Standard Converters
	Understanding libiconv
	Using the iconv_open Subroutine
	How the iconv_open Subroutine Finds Converters
	Converter Programs versus Tables
	Unicode and Universal Converters

	Using Converters
	Code Set Conversion Filter Example
	Naming Converters

	List of Converters
	List of PC, ISO, and EBCDIC Code Set Converters
	List of Multibyte Code Set Converters
	List of Interchange Converters—7-bit
	List of Interchange Converters—8-bit
	List of Interchange Converters—Compound Text
	List of Interchange Converters—uucode
	List of UCS-2 Interchange Converters
	List of UTF-8 Interchange Converters
	List of Miscellaneous Converters

	Writing Converters Using the iconv Interface
	Code Sets and Converters
	Stateful Code Sets and Converters
	Stateless Code Sets and Converters

	iconv Framework - Overview of Structures
	iconv.h File and Structures
	iconv Control Flow

	Writing a Code Set Converter
	Stateless Converters - Algorithm Based
	Stateful Converters

	Examples

	Input Method Overview
	Input Method Introduction
	Input Method Names
	Input Method Areas
	Related Information

	Programming Input Methods
	Initialization
	Input Method Management
	IM Keymap Management
	Key Event Processing
	Callbacks
	Input Method Structures

	Working with Keyboard Mapping
	IM Keymaps
	Inbound and Outbound Mapping

	Using Callbacks
	Initializing Callbacks

	Bidirectional Input Method
	Cyrillic Input Method (CIM)
	Keymap:
	Keysyms:
	Reserved Keysyms:
	Modifiers
	Related Information

	Greek Input Method (GIM)
	Keymap:
	Keysyms:
	Reserved keysyms:

	Japanese Input Method (JIM)
	Japanese Character Processing
	Kana-To-Kanji Conversion (KKC) Technology
	Input Modes
	Keyboard Mapping
	Character Size
	Romaji-To-Kana Conversion (RKC)
	Kanji Pre-edit
	Keymaps:
	Keysyms:
	Reserved Keysyms:

	Korean Input Method (KIM)
	Latvian Input Method (LVIM)
	Keymap:

	Lithuanian Input Method (LTIM)
	Keymap:

	Thai Input Method (THIM)
	Keymap:

	Vietnamese Input Method (VNIM)
	Keymap:

	Simplified Chinese Input Method (ZIM)
	Simplified Chinese Character Processing

	Simplified Chinese Input Method (ZIM-UCS)
	Chinese (CJK) Character Processing

	Single-Byte Input Method
	Traditional Chinese Input Method (TIM)
	TIM Features
	Traditional Chinese Character Processing

	Universal Input Method
	Keymap:

	List of Reserved Keysyms
	Reserved Keysyms for Traditional Chinese
	Reserved Keysyms for Simplified Chinese (ZIM and ZIM-UCS)

	Message Facility Overview for Programming
	Creating a Message Source File
	Usage Considerations
	Adding Comments to the Message Source File
	Continuing Messages on the Next Line
	Including Special Characters in the Message Text
	Defining a Character to Delimit Message Text
	Assigning Message Set Numbers and Message ID Numbers
	Removing Messages from a Catalog
	Length of Message Text
	Content of Message Text
	Examples of Message Source Files

	Creating a Message Catalog
	Catalog Sizing
	Examples

	Displaying Messages outside of an Application Program
	Displaying Messages with an Application Program
	Understanding the NLSPATH Environment Variable
	Retrieving Program-Supplied Default Messages
	Setting the Language Hierarchy

	Example of Retrieving a Message from a Catalog

	Culture-Specific Data Processing
	Culture-Specific Tables
	Culture-Specific Algorithms
	Example: Load a Culture-Specific Module for Arabic Text for anApplication
	Header File
	The Main Program
	Methods
	Include File: textpr

	NLS Sample Program
	Message Source File for foo
	Creation of Message Header File for foo
	Single Path Code Set Independent Version
	Dual-Path Version Optimized for Single-Byte Code Sets

	National Language Support (NLS) Quick Reference
	National Language Support Do's and Don'ts
	National Language Support Checklist
	AIXwindows CheckList

	Message Suggestions
	Describing Command Syntax in Messages
	Writing Style of Messages

	List of National Language Support Subroutines
	List of Locale Subroutines
	List of Time and Monetary Formatting Subroutines
	List of Multibyte Character Subroutines
	List of Wide Character Subroutines
	List of Layout Library Subroutines
	List of Message Facility Subroutines
	List of Converter Subroutines
	List of Input Method Subroutines
	List of Regular Expression Subroutines

	Chapter 17. Object Data Manager (ODM)
	ODM Object Classes and Objects
	Creating an Object Class
	Prerequisite Tasks or Conditions
	Procedure

	Adding Objects to an Object Class
	Prerequisite Tasks or Conditions
	Procedure

	Locking Object Classes
	Storing Object Classes and Objects
	Prerequisite Tasks or Condition
	Procedure
	Using ODM Commands
	Using the odm_create_class or odm_add_obj Subroutines

	ODM Descriptors
	ODM Terminal Descriptors
	ODM Link Descriptor
	ODM Method Descriptor

	ODM Object Searches
	Descriptor Names in ODM Predicates
	Comparison Operators in ODM Predicates
	LIKE Comparison Operator
	Constants in ODM Predicates
	Numeric Constants in ODM Predicates
	Character String Constants in ODM Predicates

	AND Logical Operator for Predicates

	List of ODM Commands and Subroutines
	Commands
	Subroutines

	ODM Example Code and Output
	ODM Example Input Code for Creating Object Classes
	ODM Example Output for Object Class Definitions
	ODM Example Code for Adding Objects to Object Classes

	Chapter 18. sed Program Information
	Manipulating Strings with sed
	Starting the Editor
	How sed Works
	Using Regular Expressions
	Using the sed Command Summary
	Line Manipulation
	Substitution
	Input and Output
	Matching Across Lines
	Pick up and Put down
	Control

	Using Text in Commands
	Using String Replacement

	Chapter 19. Shared Libraries, Shared Memory, and The mallocSubsystem
	Shared Objects and Runtime Linking
	Operation of the Runtime Linker
	Creating a Shared Object with Runtime Linking Enabled

	Shared Libraries and Lazy Loading
	Lazy Loading Execution Tracing

	Creating a Shared Library
	Prerequisite Tasks
	Procedure

	Program Address Space Overview
	System Memory Architecture Introduction
	The Physical Address Space of 32-bit Systems
	The Physical Address Space of 64-bit Systems
	Segment Register Addressing
	Paging Space
	Memory Management Policy
	Memory Allocation

	Understanding Memory Mapping
	mmap Comparison with shmat
	mmap Compatibility Considerations
	Using the Semaphore Subroutines
	Mapping Files with the shmat Subroutine
	Copy-on-Write Mapped Files

	Mapping Shared Memory Segments with the shmat Subroutine
	Related Information

	IPC (Inter-Process Communication) Limits
	Shared Memory Segments
	Before AIX 4.2.1
	AIX 4.2.1
	AIX 4.3
	AIX 4.3.1
	AIX 4.3.2

	Creating a Mapped Data File with the shmat Subroutine
	Prerequisite Condition
	Procedure

	Creating a Copy-On-Write Mapped Data File with the shmat Subroutine
	Prerequisite Condition
	Procedure

	Creating a Shared Memory Segment with the shmat Subroutine
	Prerequisite Tasks or Conditions
	Procedure

	System Memory Allocation Using the malloc Subsystem
	Working with the Heap
	Working with the Heap
	Understanding System Allocation Policy
	Understanding the Default Allocation Policy
	Allocation
	Deallocation
	Reallocation

	Understanding the 3.1 Allocation Policy
	Allocation
	Deallocation
	Reallocation
	Limitations

	Comparison of the Default and 3.1 Allocation Policies

	User Defined Malloc Replacement
	Enablement
	32/64bit Considerations
	Thread Considerations
	Limitations
	Error Reporting
	Related Information

	Debug Malloc
	Enabling Debug Malloc
	MALLOCDEBUG Options
	Additional Information about align:n Option
	Debug Malloc Output
	Performance Considerations
	Disk and Memory Considerations
	Limitations
	Related Information

	Malloc Multiheap
	Enabling Malloc Multiheap
	MALLOCMULTIHEAP Options

	Malloc Buckets
	Bucket Composition and Sizing
	Processing Allocations from the Buckets
	Support for Multiheap Processing
	Enabling Malloc Buckets
	Malloc Buckets Configuration Options
	MALLOCBUCKETS Options
	Malloc Buckets Default Configuration
	Limitations

	Paging Space Programming Requirements
	List of Memory Manipulation Services
	List of Memory Mapping Services

	Chapter 20. Packaging Software for Installation
	Installation Procedure Requirements
	Package Control Information Requirements
	Package Partitioning Requirements
	Software Product Packaging Parts
	Sample File System Guide for Package Partitioning

	Format of a Software Package
	Package and Fileset Naming Conventions
	Fileset Extension Naming Conventions
	Special Naming Considerations for Device Driver Packaging
	Special Naming Considerations for Message Catalog Packaging
	File Names

	Fileset Revision Level Identification
	Fileset Level Overview
	Fileset Level Rules and Conventions for AIX Version 4.1-FormattedFilesets
	Compatibility Information For Version 3.2-Formatted Fileset Updates

	Contents of a Software Package
	Example Contents of a Software Package

	The lpp_name Package Information File
	Requisite Information Section
	Prerequisite
	Co-requisite
	If-requisite
	Installed-requisite
	Group Requisite
	Alternate Requisite Syntax for AIX Versions 3.1 and 3.2 Compatibility
	Requisite Information Section Examples

	Size and License Agreement Information Section
	Size Information
	License Agreement Information

	Supersede Information Section
	Supersede Section for Fileset Installation Levels (Base Levels)
	Supersede Section for Version 3.2-Formatted Updates
	Supersedes Processing

	Fix Information Section

	The liblpp.a Installation Control Library File
	Data Files Contained in the liblpp.a File
	Optional Executable Files Contained in the liblpp.a File
	Optional Executable File Contained in the Fileset.al File

	Further Description of Installation Control Files
	The Fileset.cfgfiles File
	The Fileset.fixdata File
	The Fileset.inventory File

	Installation Control Files Specifically for Repackaged Products
	The Fileset.installed_list File
	The Fileset.namelist File
	The Fileset.rm_inv File

	Installation Files for Supplemental Disk Subsystems
	Format of Distribution Media
	Tape
	CD-ROM
	Diskette
	The Table of Contents File
	Date and Time Stamp Format
	Location Format for Tape and Diskette

	The installp Processing of Product Packages
	Processing for the Apply Operation
	Processing of the Default install/update Script

	Processing for the Reject and Cleanup Operations
	Processing for the Remove Operation
	The Installation Status File

	Installation Commands Used During Installation and UpdateProcessing

	Chapter 21. Documentation Library Service
	Language Support
	Writing your HTML Documents
	Making your Documents Printable
	Calling the Documentation Library Service From Your Documentation
	Navigation Strategies
	Creating a Custom View Set

	Creating Indexes of your Documentation
	Requirements
	Building the Indexes

	Removing Indexes of your Documentation
	Packaging your Application's Documentation
	Include a Search Index
	Register your Documentation
	Create an install package
	Packaging Book Guidelines

	Chapter 22. Software Vital Product Data (SWVPD)
	Object Classes
	Files

	Chapter 23. Source Code Control System (SCCS)
	Introduction to SCCS
	Delta Table in SCCS files
	Control and Tracking Flags in SCCS Files
	Body of an SCCS file

	SCCS Flag and Parameter Conventions
	Creating, Editing, and Updating an SCCS File
	Creating an SCCS File
	Editing an SCCS file
	Updating an SCCS File

	Controlling and Tracking SCCS File Changes
	Controlling Access to SCCS files
	File Access Controls
	User Access Controls
	Version Access Controls

	Tracking Changes to an SCCS File
	Tracking Changes with Delta Comments
	Tracking Changes with Modification Request Numbers
	Tracking Changes with SCCS commands

	Detecting and Repairing Damaged SCCS Files
	Procedure

	List of Additional SCCS Commands

	Chapter 24. Subroutines, Example Programs, and Libraries
	128-Bit Long Double Floating-Point Data Type
	Compiling Programs that Use the 128-bit Long Double Data Type
	Compliance with IEEE 754 Standard
	Implementing the 128-Bit Long Double Format
	Values of Numeric Macros
	Number of Bits in the Mantissa
	Epsilon
	Maximum Long Double Value

	List of Character Manipulation Subroutines
	Character Testing
	Character Translation
	Miscellaneous Character Manipulation

	List of Executable Program Creation Subroutines
	List of Files and Directories Subroutines
	Controlling Files
	Working with Directories
	Manipulating File Systems

	List of FORTRAN BLAS Level 1: Vector-Vector Subroutines
	List of FORTRAN BLAS Level 2: Matrix-Vector Subroutines
	List of FORTRAN BLAS Level 3: Matrix-Matrix Subroutines
	List of Numerical Manipulation Subroutines
	List of Long Long Integer Numerical Manipulation Subroutines
	List of 128-Bit Long Double Numerical Manipulation Subroutines
	List of Processes Subroutines
	Process Initiation
	Process Suspension
	Process Termination
	Process and Thread Identification
	Process Accounting
	Process Resource Allocation
	Process Prioritization
	Process and Thread Synchronization
	Process Signals and Masks
	Process Messages

	List of Multi-threaded Programming Subroutines
	List of Programmer's Workbench Library Subroutines
	File

	List of Security and Auditing Subroutines
	Access Control Subroutines
	Auditing Subroutines
	Identification and Authentication Subroutines
	Process Subroutines

	List of String Manipulation Subroutines
	Programming Example for Manipulating Characters
	Searching and Sorting Example Program
	List of Operating System Libraries
	librs2.a Library
	General-Use sqrt and itrunc Subroutines
	POWER2-Specific sqrt and itrunc Subroutines

	Chapter 25. System Management Interface Tool (SMIT)
	SMIT Screen Types
	Menu Screens
	Selector Screens
	Dialog Screens

	SMIT Object Classes
	The SMIT Database

	SMIT Aliases and Fast Paths
	SMIT Information Command Descriptors
	The cmd_to_discover Descriptor
	The cmd_to_*_postfix Descriptors

	SMIT Command Generation and Execution
	Generating Dialog Defined Tasks
	Executing Dialog Defined Tasks

	Adding Tasks to the SMIT Database
	Procedure

	Debugging SMIT Database Extensions
	Prerequisite Tasks or Conditions
	Procedure

	Creating SMIT Help Information for a New Task
	Man Pages Method
	Prerequisite Tasks or Conditions
	Procedure

	Message Catalog Method
	Prerequisite Tasks or Conditions
	Procedure

	Softcopy Libraries Method
	Prerequisite Tasks or Conditions
	Procedure

	sm_menu_opt (SMIT Menu) Object Class
	The sm_menu_opt Object Class Used for Aliases

	sm_name_hdr (SMIT Selector Header) Object Class
	sm_cmd_opt (SMIT Dialog/Selector Command Option) Object Class
	sm_cmd_hdr (SMIT Dialog Header) Object Class
	Related Information

	SMIT Example Program

	Chapter 26. System Resource Controller
	Subsystem Interaction with the SRC
	The SRC and the init Command
	Compiling Programs to Interact With the srcmstr Daemon
	SRC Operations
	SRC Capabilities

	SRC Objects
	Subsystem Object Class
	Subserver Type Object Class
	Notify Object Class

	SRC Communication Types
	Signals Communication
	Sockets Communication
	IPC Message Queue Communication

	Programming Subsystem Communication with the SRC
	Programming Subsystems to Receive SRC Requests
	Receiving SRC Signals
	Receiving SRC Request Packets Using Sockets
	Receiving SRC Request Packets Using Message Queues

	Programming Subsystems to Process SRC Request Packets
	Reading SRC Request Packets
	Programming Subsystem Response to SRC Requests

	Processing SRC Status Requests
	Programming Subsystems to Send Reply Packets
	Creating a Reply
	srcsrpy Continuation Packets

	Programming Subsystems to Return SRC Error Packets
	Responding to Trace Requests
	Responding to Refresh Requests

	Defining Your Subsystem to the SRC
	List of Additional SRC Subroutines

	Chapter 27. Trace Facility
	The Trace Facility Overview
	Controlling the Trace
	Recording Trace Event Data
	Generating a Trace Report
	Extracting trace data from a dump
	Trace Facility Commands
	Trace Facility Calls and Subroutines
	Trace Facility Files
	Trace Event Data
	Trace Hook Identifiers
	Hook Types

	Trace Facility Generic Trace Channels
	Related Information

	Start the Trace Facility
	Configuring the trace Command
	Recording Trace Event Data
	Trace Hook Identifiers
	Hook Types

	Using Generic Trace Channels
	Starting a Trace
	Stopping a Trace
	Generating a Trace Report

	Trace Hook IDs: 001 through 10A
	001 : HKWD TRACE TRCON
	002 : HKWD TRACE TRCOFF
	003 : HKWD TRACE HEADER
	004 : HKWD TRACE NULL
	005 : HKWD TRACE LWRAP
	006 : HKWD TRACE TWRAP
	007 : HKWD TRACE UNDEFINED
	100 : HKWD KERN FLIH
	101 : HKWD KERN SVC
	102 : HKWD KERN SLIH
	103 : HKWD KERN SLIHRET
	104 : HKWD KERN SYSCRET
	105 : HKWD KERN LVM
	106 : HKWD KERN DISPATCH
	107 : HKWD LFS LOOKUP
	108 : HKWD SYSC LFS
	10A : HKWD KERN PFS

	Trace Hook IDs: 10B through 14E
	10B : HKWD KERN LVMSIMP
	10C : HKWD KERN IDLE
	10F : HKWD KERN EOF
	110 : HKWD KERN STDERR
	112 : HKWD KERN LOCK
	113 : HKWD KERN UNLOCK
	114 : HKWD KERN LOCKALLOC
	115 : HKWD KERN SETRECURSIVE
	116 : HKWD KERN XMALLOC
	117 : HKWD KERN XMFREE
	118 : HKWD KERN FORKCOPY
	119 : HKWD KERN SENDSIGNAL
	11A : HKWD KERN RCVSIGNAL
	11B : HKWD KERN LOCKL
	11C : HKWD KERN P SLIH
	11D : HKWD KERN SIG SLIH
	11E : HKWD KERN ISSIG
	11F : HKWD KERN SORQ
	120 : HKWD SYSC ACCESS
	121 : HKWD SYSC ACCT
	122 : HKWD SYSC ALARM
	12E : HKWD SYSC CLOSE
	134 : HKWD SYSC EXECVE
	135 : HKWD SYSC EXIT
	139 : HKWD SYSC FORK
	145 : HKWD SYSC GETPGRP
	146 : HKWD SYSC GETPID
	147 : HKWD SYSC GETPPID
	14C : HKWD SYSC IOCTL
	14E : HKWD SYSC KILL

	Trace Hook IDs: 152 through 19C
	152 : HKWD SYSC LOCKF
	154 : HKWD SYSC LSEEK
	15F : HKWD SYSC PIPE
	160 : HKWD SYSC PLOCK
	169 : HKWD SYSC SBREAK
	16E : HKWD SYSC SETPGRP
	16F : HKWD SYSC SETPRIO
	180 : HKWD SYSC SIGACTION
	181 : HKWD SYSC SIGCLEANUP
	18E : HKWD SYSC TIMES
	18F : HKWD SYSC ULIMIT
	195 : HKWD SYSC USRINFO
	19B : HKWD SYSC WAIT

	Trace Hook IDs: 1A4 through 1BF
	1A4 : HKWD SYSC GETRLIMIT
	1A5 : HKWD SYSC SETRLIMIT
	1A6 : HKWD SYSC GETRUSAGE
	1A7 : HKWD SYSC GETPRIORITY
	1A8 : HKWD SYSC SETPRIORITY
	1A9 : HKWD SYSC ABSINTERVAL
	1AA : HKWD SYSC GETINTERVAL
	1AB : HKWD SYSC GETTIMER
	1AC : HKWD SYSC INCINTERVAL
	1AD : HKWD SYSC RESTIMER
	1AE : HKWD SYSC RESABS
	1AF : HKWD SYSC RESINC
	1B0 : HKWD VMM ASSIGN
	1B1 : HKWD VMM DELETE
	1B2 : HKWD VMM PGEXCT
	1B3 : HKWD VMM PROTEXCT
	1B4 : HKWD VMM LOCKEXCT
	1B5 : HKWD VMM RECLAIM
	1B6 : HKWD VMM GETPARENT
	1B7 : HKWD VMN COPYPARENT
	1B8 : HKWD VMN VMAP
	1B9 : HKWD VMN ZFOD
	1BA : HKWD VMN SIO
	1BB : HKWD VMM SEGCREATE
	1BC : HKWD VMM SEGDELETE
	1BD : HKWD VMM DALLOC
	1BE : HKWD VMM PFEND
	1BF : HKWD VMM EXCEPT

	Trace Hook IDs: 1C8 through 1CE
	1C8 : HKWD DD PPDD
	1C9 : HKWD DD CDDD
	1CA : HKWD DD TAPEDD
	1CD : HKWD DD ENTDD
	1CE : HKWD DD TOKDD

	Trace Hook IDs: 1CF through 211
	1CF : HKWD DD C327DD
	1D1 : HKWD RAS ERRLG
	1D2 : HKWD RAS DUMP
	1F0 : HKWD SYSC SETTIMER
	200 : HKWD KERN RESUME
	20E: HKWD KERN LOCKL
	20F: HKWD KERN UNLOCKL
	211 : HKWD NFS VOPSRW

	Trace Hook IDs: 212 through 220
	212 : HKWD NFS VOPS
	213 : HKWD NFS RFSRW
	214 : HKWD NFS RFS
	215 : HKWD NFS DISPATCH
	216 : HKWD NFS CALL
	218 : HKWD RPC LOCKD
	220 : HKWD DD FDDD

	Trace Hook IDs: 221 through 223
	221 : HKWD DD SCDISKDD
	222 : HKWD DD BADISKDD
	223 : HKWD DD SCSIDD

	Trace Hook IDs: 224 through 226
	224 : HKWD DD MPQPDD
	225 : HKWD DD X25DD
	226 : HKWD DD GIO

	Trace Hook IDs: 230 through 233
	230: HKWD PTHREAD MUTEX LOCK
	231: HKWD PTHREAD MUTEX UNLOCK
	232: HKWD PTHREAD SPIN LOCK
	233: HKWD PTHREAD SPIN UNLOCK

	Trace Hook IDs: 240 through 252
	240 : HKWD SYSX DLC START
	241 : HKWD SYSX DLC HALT
	242 : HKWD SYSX DLC TIMER
	243 : HKWD SYSX DLC XMIT
	244 : HKWD SYSX DLC RECV
	245 : HKWD SYSX DLC PERF
	246 : HKWD SYSX DLC MONITOR
	251 : HKWD NETERR
	252 : HKWD SYSC TCPIP

	Trace Hook IDs: 253 through 25A
	253 : HKWD SOCKET
	254 : HKWD MBUF
	255 : HKWD IFEN
	256 : HKWD IFTR
	257 : HKWD IFET
	258 : HKWD IFXT
	259 : HKWD IFSL
	25A : HKWD TCPDBG

	Trace Hook IDs: 271 through 280
	271: HKWD SNA API
	280: HKWD HIA

	Trace Hook IDs: 301 through 315
	301: HKWD KERN ASSERTWAIT
	302: HKWD KERN CLEARWAIT
	303: HKWD KERN THREADBLOCK
	304: HKWD KERN EMPSLEEP
	305: HKWD KERN EWAKEUPONE
	306: HKWD SYSC CRTHREAD
	307: HKWD KERN KTHREADSTART
	308 : HKWD SYSC TERMTHREAD
	309 : HKWD KERN KSUSPEND
	310 : HKWD SYSC THREADSETSTATE
	311 : HKWD SYSC THREADTERM ACK
	312 : HKWD SYSC THREADSETSCHED
	313 : HKWD KERN TIDSIG
	314 : HKWD KERN WAITLOCK
	315 : HKWD KERN WAKEUPLOCK

	Trace Hook IDs: 3C5 through 3E2
	3c5 : HKWD SYSC IPCACCESS
	3c6 : HKWD SYSC IPCGET
	3c7 : HKWD SYSC MSGCONV
	3c8 : HKWD SYSC MSGCTL
	3c9 : HKWD SYSC MSGGET
	3ca : HKWD SYSC MSGRCV
	3cb : HKWD SYSC MSGSELECT
	3cc : HKWD SYSC MSGSND
	3cd : HKWD SYSC MSGXRCV
	3ce : HKWD SYSC SEMCONV
	3cf : HKWD SYSC SEMCTL
	3d0 : HKWD SYSC SEMGET
	3d1 : HKWD SYSC SEMOP
	3d2 : HKWD SYSC SEM
	3d3 : HKWD SYSC SHMAT
	3d4 : HKWD SYSC SHMCONV
	3d5 : HKWD SYSC SHMCTL
	3d6 : HKWD SYSC SHMDT
	3d7 : HKWD SYSC SHMGET
	3d8 : HKWD SYSC MADVISE
	3d9 : HKWD SYSC MINCORE
	3da : HKWD SYSC MMAP
	3db : HKWD SYSC MPROTECT
	3dc : HKWD SYSC MSYNC
	3dd : HKWD SYSC MUNMAP
	3de : HKWD SYSC MVALID
	3df : HKWD SYSC MSEM_INIT
	3e0 : HKWD SYSC MSEM_LOCK
	3e1 : HKWD SYSC MSEM_REMOVE
	3e2 : HKWD SYSC MSEM_UNLOCK

	Trace Hook IDs: 401
	401 : HKWD TTY TTY

	Trace Hook IDs: 402
	402 : HKWD TTY PTY

	Trace Hook IDs: 403
	403 : HKWD TTY RS

	Trace Hook IDs: 404
	404 : HKWD TTY LION

	Trace Hook IDs: 405
	405 : HKWD TTY HFT

	Trace Hook IDs: 406
	406 : HKWD TTY RTS

	Trace Hook IDs: 407
	407 : HKWD TTY XON

	Trace Hook IDs: 408
	408 : HKWD TTY DTR

	Trace Hook IDs: 409
	409 : HKWD TTY DTRO

	Trace Hook IDs: 411 through 418
	411: HKWD STTY STRTTY
	412: HKWD STTY LDTERM
	413: HKWD STTY SPTR
	414: HKWD STTY NLS
	415: HKWD STTY PTY
	416: HKWD STTY RS
	417: HKWD STTY LION
	418: HKWD STTY CXMA

	Trace Hook IDs: 460 through 46E
	460: HKWD KERN ASSERTWAIT
	461: HKWD KERN CLEARWAIT
	462: HKWD KERN THREADBLOCK
	463: HKWD KERN EMPSLEEP
	464: HKWD KERN EWAKEUPONE
	465: HKWD SYSC CRTHREAD
	466: HKWD KERN KTHREADSTART
	467: HKWD SYSC TERMTHREAD
	468: HKWD KERN KSUSPEND
	469: HKWD SYSC THREADSETSTATE
	46A: HKWD SYSC THREADTERM ACK
	46B: HKWD SYSC THREADSETSCHED
	46C: HKWD KERN TIDSIG
	46D: HKWD KERN WAITLOCK
	46E: HKWD KERN WAKEUPLOCK

	Chapter 28. tty Subsystem
	TTY Subsystem Objectives
	tty Subsystem Modules
	tty Drivers
	Line Disciplines
	Converter Modules

	TTY Subsystem Structure
	Common Services
	Hardware Control Services
	Flow Control Services
	Terminal Information and Control
	Window and Terminal Size Services
	Process Group Management Services
	Buffer Size Operations

	Synchronization

	Line Discipline Module (ldterm)
	Terminal Parameters
	Process Group Session Management (Job Control)
	Terminal Access Control
	Reading Data and Input Processing
	Canonical Mode Input Processing
	Noncanonical Mode Input Processing

	Writing Data and Output Processing
	Modem Management
	Closing a Terminal Device File

	Converter Modules
	NLS Module
	SJIS Modules
	Related Information

	TTY Drivers
	Asynchronous Line Drivers
	Pseudo-Terminal Driver
	Related Information

	Chapter 29. High-Resolution Time Measurements UsingPOWER-based Time Base or POWER family Real-Time Clock
	Chapter 30. Loader Domains
	Using Loader Domains
	Creating/Deleting Loader Domains

	Chapter 31. Power Management-Aware Application Program
	Chapter 32. ELF Object Files and Dynamic Linking
	Section 1. ELF Object File General Information
	ELF Object File General Information
	File Format
	Data Representation

	ELF Header
	ELF Identification
	Machine Information (Processor-Specific)

	Sections
	Rules for Linking Unrecognized Sections
	Section Groups
	Special Sections

	String Table
	System V Application Binary Interface
	Relocation
	Relocation Types (Processor-Specific)

	Symbol Table
	Symbol Values

	Section 2. ELF Program and Dynamic Linking General Information
	ELF Program and Dynamic Linking General Information

	Program Header
	Base Address
	Segment Permissions
	Segment Contents
	Note Section

	Program Loading (Processor-Specific)
	Dynamic Linking
	Program Interpreter
	Dynamic Linker
	Dynamic Section
	Shared Object Dependencies
	Substitution Sequences

	Global Offset Table
	Procedure Linkage Table
	Hash Table
	Initialization and Termination Functions

	Appendix A. Character Maps
	ISO Code Sets
	ISO8859–1
	ISO8859–2
	ISO8859–5
	ISO8859–6
	ISO8859–7
	ISO8859–8
	ISO8859–9
	ISO8859–15

	IBM Code Sets
	IBM-850
	IBM-856
	IBM-921
	IBM-922
	IBM-1046
	IBM-1124
	IBM-1129
	TIS-620

	Appendix B. Notices
	Index
	Readers’ Comments — We'd Like to Hear from You

